zunmql - N matrix C with Q*C, or Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix defined as the product of K elementary reflectors
SUBROUTINE ZUNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*) INTEGER M, N, K, LDA, LDC, LWORK, INFO SUBROUTINE ZUNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*) INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO F95 INTERFACE SUBROUTINE UNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS COMPLEX(8), DIMENSION(:) :: TAU, WORK COMPLEX(8), DIMENSION(:,:) :: A, C INTEGER :: M, N, K, LDA, LDC, LWORK, INFO SUBROUTINE UNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS COMPLEX(8), DIMENSION(:) :: TAU, WORK COMPLEX(8), DIMENSION(:,:) :: A, C INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO C INTERFACE #include <sunperf.h> void zunmql(char side, char trans, int m, int n, int k, doublecomplex *a, int lda, doublecomplex *tau, doublecomplex *c, int ldc, int *info); void zunmql_64(char side, char trans, long m, long n, long k, double- complex *a, long lda, doublecomplex *tau, doublecomplex *c, long ldc, long *info);
Oracle Solaris Studio Performance Library zunmql(3P)
NAME
zunmql - overwrite the general complex M-by-N matrix C with Q*C, or
Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix defined
as the product of K elementary reflectors
SYNOPSIS
SUBROUTINE ZUNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
CHARACTER*1 SIDE, TRANS
DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER M, N, K, LDA, LDC, LWORK, INFO
SUBROUTINE ZUNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
CHARACTER*1 SIDE, TRANS
DOUBLE COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
F95 INTERFACE
SUBROUTINE UNMQL(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)
CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A, C
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
SUBROUTINE UNMQL_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)
CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX(8), DIMENSION(:) :: TAU, WORK
COMPLEX(8), DIMENSION(:,:) :: A, C
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
C INTERFACE
#include <sunperf.h>
void zunmql(char side, char trans, int m, int n, int k, doublecomplex
*a, int lda, doublecomplex *tau, doublecomplex *c, int ldc,
int *info);
void zunmql_64(char side, char trans, long m, long n, long k, double-
complex *a, long lda, doublecomplex *tau, doublecomplex *c,
long ldc, long *info);
PURPOSE
zunmql overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C
C * Q TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k elemen-
tary reflectors
Q = H(K) . . . H(2) * H(1)
as returned by ZGEQLF. Q is of order M if SIDE = 'L' and of order N if
SIDE = 'R'.
ARGUMENTS
SIDE (input)
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
TRANS (input)
= 'N': No transpose, apply Q;
= 'C': Transpose, apply Q**H.
M (input) The number of rows of the matrix C. M >= 0.
N (input) The number of columns of the matrix C. N >= 0.
K (input) The number of elementary reflectors whose product defines the
matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K
>= 0.
A (input) The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
ZGEQLF in the last k columns of its array argument A. A is
modified by the routine but restored on exit.
LDA (input)
The leading dimension of the array A. If SIDE = 'L', LDA >=
max(1,M); if SIDE = 'R', LDA >= max(1,N).
TAU (input)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by ZGEQLF.
C (input/output)
On entry, the M-by-N matrix C. On exit, C is overwritten by
Q*C or Q**H*C or C*Q**H or C*Q.
LDC (input)
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input)
The dimension of the array WORK. If SIDE = 'L', LWORK >=
max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum per-
formance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if
SIDE = 'R', where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output)
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal value.
7 Nov 2015 zunmql(3P)