ctgexc - reorder the generalized Schur decomposition of a complex matrix pair using an orthogonal or unitary equivalence transformation
SUBROUTINE CTGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO) COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*) INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO LOGICAL WANTQ, WANTZ SUBROUTINE CTGEXC_64(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO) COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*) INTEGER*8 N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO LOGICAL*8 WANTQ, WANTZ F95 INTERFACE SUBROUTINE TGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO) COMPLEX, DIMENSION(:,:) :: A, B, Q, Z INTEGER :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO LOGICAL :: WANTQ, WANTZ SUBROUTINE TGEXC_64(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO) COMPLEX, DIMENSION(:,:) :: A, B, Q, Z INTEGER(8) :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO LOGICAL(8) :: WANTQ, WANTZ C INTERFACE #include <sunperf.h> void ctgexc(int wantq, int wantz, int n, complex *a, int lda, complex *b, int ldb, complex *q, int ldq, complex *z, int ldz, int *ifst, int *ilst, int *info); void ctgexc_64(long wantq, long wantz, long n, complex *a, long lda, complex *b, long ldb, complex *q, long ldq, complex *z, long ldz, long *ifst, long *ilst, long *info);
Oracle Solaris Studio Performance Library ctgexc(3P) NAME ctgexc - reorder the generalized Schur decomposition of a complex matrix pair using an orthogonal or unitary equivalence transformation SYNOPSIS SUBROUTINE CTGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO) COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*) INTEGER N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO LOGICAL WANTQ, WANTZ SUBROUTINE CTGEXC_64(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO) COMPLEX A(LDA,*), B(LDB,*), Q(LDQ,*), Z(LDZ,*) INTEGER*8 N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO LOGICAL*8 WANTQ, WANTZ F95 INTERFACE SUBROUTINE TGEXC(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO) COMPLEX, DIMENSION(:,:) :: A, B, Q, Z INTEGER :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO LOGICAL :: WANTQ, WANTZ SUBROUTINE TGEXC_64(WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, IFST, ILST, INFO) COMPLEX, DIMENSION(:,:) :: A, B, Q, Z INTEGER(8) :: N, LDA, LDB, LDQ, LDZ, IFST, ILST, INFO LOGICAL(8) :: WANTQ, WANTZ C INTERFACE #include <sunperf.h> void ctgexc(int wantq, int wantz, int n, complex *a, int lda, complex *b, int ldb, complex *q, int ldq, complex *z, int ldz, int *ifst, int *ilst, int *info); void ctgexc_64(long wantq, long wantz, long n, complex *a, long lda, complex *b, long ldb, complex *q, long ldq, complex *z, long ldz, long *ifst, long *ilst, long *info); PURPOSE ctgexc reorders the generalized Schur decomposition of a complex matrix pair (A,B), using an unitary equivalence transformation (A, B) := Q * (A, B) * Z', so that the diagonal block of (A, B) with row index IFST is moved to row ILST. (A, B) must be in generalized Schur canonical form, that is, A and B are both upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' ARGUMENTS WANTQ (input) LOGICAL .TRUE. : update the left transformation matrix Q; .FALSE.: do not update Q. WANTZ (input) LOGICAL .TRUE. : update the right transformation matrix Z; .FALSE.: do not update Z. N (input) The order of the matrices A and B. N >= 0. A (input/output) On entry, the upper triangular matrix A in the pair (A, B). On exit, the updated matrix A. LDA (input) The leading dimension of the array A. LDA >= max(1,N). B (input/output) On entry, the upper triangular matrix B in the pair (A, B). On exit, the updated matrix B. LDB (input) The leading dimension of the array B. LDB >= max(1,N). Q (input/output) On entry, if WANTQ = .TRUE., the unitary matrix Q. On exit, the updated matrix Q. If WANTQ = .FALSE., Q is not refer- enced. LDQ (input) The leading dimension of the array Q. LDQ >= 1; If WANTQ = .TRUE., LDQ >= N. Z (input/output) On entry, if WANTZ = .TRUE., the unitary matrix Z. On exit, the updated matrix Z. If WANTZ = .FALSE., Z is not refer- enced. LDZ (input) The leading dimension of the array Z. LDZ >= 1; If WANTZ = .TRUE., LDZ >= N. IFST (input/output) Specify the reordering of the diagonal blocks of (A, B). The block with row index IFST is moved to row ILST, by a sequence of swapping between adjacent blocks. ILST (input/output) See the description of IFST. INFO (output) =0: Successful exit. <0: if INFO = -i, the i-th argument had an illegal value. =1: The transformed matrix pair (A, B) would be too far from generalized Schur form; the problem is ill- conditioned. (A, B) may have been partially reordered, and ILST points to the first row of the current position of the block being moved. FURTHER DETAILS Based on contributions by Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden. [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A, B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF - 94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996. [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software for Solving the Generalized Sylvester Equation and Estimating the Separation between Regular Matrix Pairs, Report UMINF - 93.23, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, December 1993, Revised April 1994, Also as LAPACK working Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996. 7 Nov 2015 ctgexc(3P)