Go to main content
Oracle Developer Studio 12.5 Man Pages

Exit Print View

Updated: June 2017
 
 

dorgql (3p)

Name

dorgql - N real matrix Q with orthonormal columns,

Synopsis

SUBROUTINE DORGQL(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

INTEGER M, N, K, LDA, LDWORK, INFO
DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

SUBROUTINE DORGQL_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

INTEGER*8 M, N, K, LDA, LDWORK, INFO
DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)




F95 INTERFACE
SUBROUTINE ORGQL(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

INTEGER :: M, N, K, LDA, LDWORK, INFO
REAL(8), DIMENSION(:) :: TAU, WORK
REAL(8), DIMENSION(:,:) :: A

SUBROUTINE ORGQL_64(M, N, K, A, LDA, TAU, WORK, LDWORK,
INFO)

INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
REAL(8), DIMENSION(:) :: TAU, WORK
REAL(8), DIMENSION(:,:) :: A




C INTERFACE
#include <sunperf.h>

void  dorgql(int  m, int n, int k, double *a, int lda, double *tau, int
*info);

void dorgql_64(long m, long n, long k,  double  *a,  long  lda,  double
*tau, long *info);

Description

Oracle Solaris Studio Performance Library                           dorgql(3P)



NAME
       dorgql - generate an M-by-N real matrix Q with orthonormal columns,


SYNOPSIS
       SUBROUTINE DORGQL(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

       INTEGER M, N, K, LDA, LDWORK, INFO
       DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)

       SUBROUTINE DORGQL_64(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

       INTEGER*8 M, N, K, LDA, LDWORK, INFO
       DOUBLE PRECISION A(LDA,*), TAU(*), WORK(*)




   F95 INTERFACE
       SUBROUTINE ORGQL(M, N, K, A, LDA, TAU, WORK, LDWORK, INFO)

       INTEGER :: M, N, K, LDA, LDWORK, INFO
       REAL(8), DIMENSION(:) :: TAU, WORK
       REAL(8), DIMENSION(:,:) :: A

       SUBROUTINE ORGQL_64(M, N, K, A, LDA, TAU, WORK, LDWORK,
              INFO)

       INTEGER(8) :: M, N, K, LDA, LDWORK, INFO
       REAL(8), DIMENSION(:) :: TAU, WORK
       REAL(8), DIMENSION(:,:) :: A




   C INTERFACE
       #include <sunperf.h>

       void  dorgql(int  m, int n, int k, double *a, int lda, double *tau, int
                 *info);

       void dorgql_64(long m, long n, long k,  double  *a,  long  lda,  double
                 *tau, long *info);



PURPOSE
       dorgql  generates  an  M-by-N  real  matrix Q with orthonormal columns,
       which is defined as the last N columns of a  product  of  K  elementary
       reflectors of order M

             Q  =  H(k) . . . H(2) H(1)

       as returned by DGEQLF.


ARGUMENTS
       M (input) The number of rows of the matrix Q. M >= 0.


       N (input) The number of columns of the matrix Q. M >= N >= 0.


       K (input) The number of elementary reflectors whose product defines the
                 matrix Q. N >= K >= 0.


       A (input/output)
                 On entry, the (n-k+i)-th column must contain the vector which
                 defines  the elementary reflector H(i), for i = 1,2,...,k, as
                 returned by DGEQLF in the last k columns of its  array  argu-
                 ment A.  On exit, the M-by-N matrix Q.


       LDA (input)
                 The first dimension of the array A. LDA >= max(1,M).


       TAU (input)
                 TAU(i)  must  contain  the  scalar  factor  of the elementary
                 reflector H(i), as returned by DGEQLF.


       WORK (workspace)
                 On exit, if INFO = 0, WORK(1) returns the optimal LDWORK.


       LDWORK (input)
                 The dimension of the array WORK.  LDWORK  >=  max(1,N).   For
                 optimum  performance  LDWORK >= N*NB, where NB is the optimal
                 blocksize.

                 If LDWORK = -1, then a workspace query is assumed;  the  rou-
                 tine  only  calculates  the  optimal  size of the WORK array,
                 returns this value as the first entry of the WORK array,  and
                 no error message related to LDWORK is issued by XERBLA.


       INFO (output)
                 = 0:  successful exit
                 < 0:  if INFO = -i, the i-th argument has an illegal value




                                  7 Nov 2015                        dorgql(3P)