zhsein - use inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg matrix H
SUBROUTINE ZHSEIN(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO) CHARACTER*1 SIDE, EIGSRC, INITV DOUBLE COMPLEX H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*) INTEGER N, LDH, LDVL, LDVR, MM, M, INFO INTEGER IFAILL(*), IFAILR(*) LOGICAL SELECT(*) DOUBLE PRECISION RWORK(*) SUBROUTINE ZHSEIN_64(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO) CHARACTER*1 SIDE, EIGSRC, INITV DOUBLE COMPLEX H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*) INTEGER*8 N, LDH, LDVL, LDVR, MM, M, INFO INTEGER*8 IFAILL(*), IFAILR(*) LOGICAL*8 SELECT(*) DOUBLE PRECISION RWORK(*) F95 INTERFACE SUBROUTINE HSEIN(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO) CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV COMPLEX(8), DIMENSION(:) :: W, WORK COMPLEX(8), DIMENSION(:,:) :: H, VL, VR INTEGER :: N, LDH, LDVL, LDVR, MM, M, INFO INTEGER, DIMENSION(:) :: IFAILL, IFAILR LOGICAL, DIMENSION(:) :: SELECT REAL(8), DIMENSION(:) :: RWORK SUBROUTINE HSEIN_64(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO) CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV COMPLEX(8), DIMENSION(:) :: W, WORK COMPLEX(8), DIMENSION(:,:) :: H, VL, VR INTEGER(8) :: N, LDH, LDVL, LDVR, MM, M, INFO INTEGER(8), DIMENSION(:) :: IFAILL, IFAILR LOGICAL(8), DIMENSION(:) :: SELECT REAL(8), DIMENSION(:) :: RWORK C INTERFACE #include <sunperf.h> void zhsein(char side, char eigsrc, char initv, int *select, int n, doublecomplex *h, int ldh, doublecomplex *w, doublecomplex *vl, int ldvl, doublecomplex *vr, int ldvr, int mm, int *m, int *ifaill, int *ifailr, int *info); void zhsein_64(char side, char eigsrc, char initv, long *select, long n, doublecomplex *h, long ldh, doublecomplex *w, doublecom- plex *vl, long ldvl, doublecomplex *vr, long ldvr, long mm, long *m, long *ifaill, long *ifailr, long *info);
Oracle Solaris Studio Performance Library zhsein(3P) NAME zhsein - use inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg matrix H SYNOPSIS SUBROUTINE ZHSEIN(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO) CHARACTER*1 SIDE, EIGSRC, INITV DOUBLE COMPLEX H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*) INTEGER N, LDH, LDVL, LDVR, MM, M, INFO INTEGER IFAILL(*), IFAILR(*) LOGICAL SELECT(*) DOUBLE PRECISION RWORK(*) SUBROUTINE ZHSEIN_64(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO) CHARACTER*1 SIDE, EIGSRC, INITV DOUBLE COMPLEX H(LDH,*), W(*), VL(LDVL,*), VR(LDVR,*), WORK(*) INTEGER*8 N, LDH, LDVL, LDVR, MM, M, INFO INTEGER*8 IFAILL(*), IFAILR(*) LOGICAL*8 SELECT(*) DOUBLE PRECISION RWORK(*) F95 INTERFACE SUBROUTINE HSEIN(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO) CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV COMPLEX(8), DIMENSION(:) :: W, WORK COMPLEX(8), DIMENSION(:,:) :: H, VL, VR INTEGER :: N, LDH, LDVL, LDVR, MM, M, INFO INTEGER, DIMENSION(:) :: IFAILL, IFAILR LOGICAL, DIMENSION(:) :: SELECT REAL(8), DIMENSION(:) :: RWORK SUBROUTINE HSEIN_64(SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL, LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL, IFAILR, INFO) CHARACTER(LEN=1) :: SIDE, EIGSRC, INITV COMPLEX(8), DIMENSION(:) :: W, WORK COMPLEX(8), DIMENSION(:,:) :: H, VL, VR INTEGER(8) :: N, LDH, LDVL, LDVR, MM, M, INFO INTEGER(8), DIMENSION(:) :: IFAILL, IFAILR LOGICAL(8), DIMENSION(:) :: SELECT REAL(8), DIMENSION(:) :: RWORK C INTERFACE #include <sunperf.h> void zhsein(char side, char eigsrc, char initv, int *select, int n, doublecomplex *h, int ldh, doublecomplex *w, doublecomplex *vl, int ldvl, doublecomplex *vr, int ldvr, int mm, int *m, int *ifaill, int *ifailr, int *info); void zhsein_64(char side, char eigsrc, char initv, long *select, long n, doublecomplex *h, long ldh, doublecomplex *w, doublecom- plex *vl, long ldvl, doublecomplex *vr, long ldvr, long mm, long *m, long *ifaill, long *ifailr, long *info); PURPOSE zhsein uses inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg matrix H. The right eigenvector x and the left eigenvector y of the matrix H cor- responding to an eigenvalue w are defined by: H * x = w * x, y**h * H = w * y**h where y**h denotes the conjugate transpose of the vector y. ARGUMENTS SIDE (input) = 'R': compute right eigenvectors only; = 'L': compute left eigenvectors only; = 'B': compute both right and left eigenvectors. EIGSRC (input) Specifies the source of eigenvalues supplied in W: = 'Q': the eigenvalues were found using ZHSEQR; thus, if H has zero subdiagonal elements, and so is block-triangular, then the j-th eigenvalue can be assumed to be an eigenvalue of the block containing the j-th row/column. This property allows ZHSEIN to perform inverse iteration on just one diago- nal block. = 'N': no assumptions are made on the correspon- dence between eigenvalues and diagonal blocks. In this case, ZHSEIN must always perform inverse iteration using the whole matrix H. INITV (input) = 'N': no initial vectors are supplied; = 'U': user-supplied initial vectors are stored in the arrays VL and/or VR. SELECT (input) Specifies the eigenvectors to be computed. To select the eigenvector corresponding to the eigenvalue W(j), SELECT(j) must be set to .TRUE.. N (input) The order of the matrix H. N >= 0. H (input) The upper Hessenberg matrix H. LDH (input) The leading dimension of the array H. LDH >= max(1,N). W (input/output) On entry, the eigenvalues of H. On exit, the real parts of W may have been altered since close eigenvalues are perturbed slightly in searching for independent eigenvectors. VL (input/output) On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must con- tain starting vectors for the inverse iteration for the left eigenvectors; the starting vector for each eigenvector must be in the same column in which the eigenvector will be stored. On exit, if SIDE = 'L' or 'B', the left eigenvectors specified by SELECT will be stored consecutively in the col- umns of VL, in the same order as their eigenvalues. If SIDE = 'R', VL is not referenced. LDVL (input) The leading dimension of the array VL. LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. VR (input/output) On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must con- tain starting vectors for the inverse iteration for the right eigenvectors; the starting vector for each eigenvector must be in the same column in which the eigenvector will be stored. On exit, if SIDE = 'R' or 'B', the right eigenvec- tors specified by SELECT will be stored consecutively in the columns of VR, in the same order as their eigenvalues. If SIDE = 'L', VR is not referenced. LDVR (input) The leading dimension of the array VR. LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. MM (input) The number of columns in the arrays VL and/or VR. MM >= M. M (output) The number of columns in the arrays VL and/or VR required to store the eigenvectors (= the number of .TRUE. elements in SELECT). WORK (workspace) dimension(N*N) RWORK (workspace) dimension(N) IFAILL (output) INTEGER array, dimension (MM) If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left eigenvec- tor in the i-th column of VL (corresponding to the eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the eigenvector converged satisfactorily. If SIDE = 'R', IFAILL is not ref- erenced. IFAILR (output) INTEGER array, dimension (MM) If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right eigen- vector in the i-th column of VR (corresponding to the eigen- value w(j)) failed to converge; IFAILR(i) = 0 if the eigen- vector converged satisfactorily. If SIDE = 'L', IFAILR is not referenced. INFO (output) = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, i is the number of eigenvectors which failed to converge; see IFAILL and IFAILR for further details. FURTHER DETAILS Each eigenvector is normalized so that the element of largest magnitude has magnitude 1; here the magnitude of a complex number (x,y) is taken to be |x|+|y|. 7 Nov 2015 zhsein(3P)