sgtts2 - solve a system of linear equations with a tridiagonal matrix using the LU factorization computed by sgttrf
SUBROUTINE SGTTS2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) INTEGER ITRANS, LDB, N, NRHS INTEGER IPIV(*) REAL B(LDB,*), D(*), DL(*), DU(*), DU2(*) SUBROUTINE SGTTS2_64(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) INTEGER*8 ITRANS, LDB, N, NRHS INTEGER*8 IPIV(*) REAL B(LDB,*), D(*), DL(*), DU(*), DU2(*) F95 INTERFACE SUBROUTINE GTTS2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) REAL, DIMENSION(:,:) :: B INTEGER :: ITRANS, N, NRHS, LDB INTEGER, DIMENSION(:) :: IPIV REAL, DIMENSION(:) :: DL, D, DU, DU2 SUBROUTINE GTTS2_64(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB) REAL, DIMENSION(:,:) :: B INTEGER(8) :: ITRANS, N, NRHS, LDB INTEGER(8), DIMENSION(:) :: IPIV REAL, DIMENSION(:) :: DL, D, DU, DU2 C INTERFACE #include <sunperf.h> void sgtts2 (int itrans, int n, int nrhs, float *dl, float *d, float *du, float *du2, int *ipiv, float *b, int ldb); void sgtts2_64 (long itrans, long n, long nrhs, float *dl, float *d, float *du, float *du2, long *ipiv, float *b, long ldb);
Oracle Solaris Studio Performance Library sgtts2(3P)
NAME
sgtts2 - solve a system of linear equations with a tridiagonal matrix
using the LU factorization computed by sgttrf
SYNOPSIS
SUBROUTINE SGTTS2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
INTEGER ITRANS, LDB, N, NRHS
INTEGER IPIV(*)
REAL B(LDB,*), D(*), DL(*), DU(*), DU2(*)
SUBROUTINE SGTTS2_64(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
INTEGER*8 ITRANS, LDB, N, NRHS
INTEGER*8 IPIV(*)
REAL B(LDB,*), D(*), DL(*), DU(*), DU2(*)
F95 INTERFACE
SUBROUTINE GTTS2(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
REAL, DIMENSION(:,:) :: B
INTEGER :: ITRANS, N, NRHS, LDB
INTEGER, DIMENSION(:) :: IPIV
REAL, DIMENSION(:) :: DL, D, DU, DU2
SUBROUTINE GTTS2_64(ITRANS, N, NRHS, DL, D, DU, DU2, IPIV, B, LDB)
REAL, DIMENSION(:,:) :: B
INTEGER(8) :: ITRANS, N, NRHS, LDB
INTEGER(8), DIMENSION(:) :: IPIV
REAL, DIMENSION(:) :: DL, D, DU, DU2
C INTERFACE
#include <sunperf.h>
void sgtts2 (int itrans, int n, int nrhs, float *dl, float *d, float
*du, float *du2, int *ipiv, float *b, int ldb);
void sgtts2_64 (long itrans, long n, long nrhs, float *dl, float *d,
float *du, float *du2, long *ipiv, float *b, long ldb);
PURPOSE
sgtts2 solves one of the systems of equations A*X=B or A**T*X=B, with
a tridiagonal matrix A using the LU factorization computed by SGTTRF
ARGUMENTS
ITRANS (input)
ITRANS is INTEGER
Specifies the form of the system of equations.
= 0: A * X = B (No transpose),
= 1: A**T* X = B (Transpose),
= 2: A**T* X = B (Conjugate transpose = Transpose).
N (input)
N is INTEGER
The order of the matrix A.
NRHS (input)
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
DL (input)
DL is REAL array, dimension (N-1)
The (N-1) multipliers that define the matrix L from the
LU factorization of A.
D (input)
D is REAL array, dimension (N)
The n diagonal elements of the upper triangular matrix U from
the LU factorization of A.
DU (input)
DU is REAL array, dimension (N-1)
The (N-1) elements of the first super-diagonal of U.
DU2 (input)
DU2 is REAL array, dimension (N-2)
The (N-2) elements of the second super-diagonal of U.
IPIV (input)
IPIV is INTEGER array, dimension (N)
The pivot indices; for 1 <= i <= N, row i of the matrix was
interchanged with row IPIV(i). IPIV(i) will always be either
i or i+1; IPIV(i) = i indicates a row interchange was not
required.
B (input/output)
B is REAL array, dimension (LDB,NRHS)
On entry, the matrix of right hand side vectors B.
On exit, B is overwritten by the solution vectors X.
LDB (input)
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
7 Nov 2015 sgtts2(3P)