cunmlq - N matrix C with Q*C, or Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix defined as the product of K elementary reflectors
SUBROUTINE CUNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*) INTEGER M, N, K, LDA, LDC, LWORK, INFO SUBROUTINE CUNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER*1 SIDE, TRANS COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*) INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO F95 INTERFACE SUBROUTINE UNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS COMPLEX, DIMENSION(:) :: TAU, WORK COMPLEX, DIMENSION(:,:) :: A, C INTEGER :: M, N, K, LDA, LDC, LWORK, INFO SUBROUTINE UNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CHARACTER(LEN=1) :: SIDE, TRANS COMPLEX, DIMENSION(:) :: TAU, WORK COMPLEX, DIMENSION(:,:) :: A, C INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO C INTERFACE #include <sunperf.h> void cunmlq(char side, char trans, int m, int n, int k, complex *a, int lda, complex *tau, complex *c, int ldc, int *info); void cunmlq_64(char side, char trans, long m, long n, long k, complex *a, long lda, complex *tau, complex *c, long ldc, long *info);
Oracle Solaris Studio Performance Library cunmlq(3P)
NAME
cunmlq - overwrite the general complex M-by-N matrix C with Q*C, or
Q**H*C, or C*Q**H, or C*Q, where Q is a complex unitary matrix defined
as the product of K elementary reflectors
SYNOPSIS
SUBROUTINE CUNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
CHARACTER*1 SIDE, TRANS
COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER M, N, K, LDA, LDC, LWORK, INFO
SUBROUTINE CUNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
LWORK, INFO)
CHARACTER*1 SIDE, TRANS
COMPLEX A(LDA,*), TAU(*), C(LDC,*), WORK(*)
INTEGER*8 M, N, K, LDA, LDC, LWORK, INFO
F95 INTERFACE
SUBROUTINE UNMLQ(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO)
CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX, DIMENSION(:) :: TAU, WORK
COMPLEX, DIMENSION(:,:) :: A, C
INTEGER :: M, N, K, LDA, LDC, LWORK, INFO
SUBROUTINE UNMLQ_64(SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO)
CHARACTER(LEN=1) :: SIDE, TRANS
COMPLEX, DIMENSION(:) :: TAU, WORK
COMPLEX, DIMENSION(:,:) :: A, C
INTEGER(8) :: M, N, K, LDA, LDC, LWORK, INFO
C INTERFACE
#include <sunperf.h>
void cunmlq(char side, char trans, int m, int n, int k, complex *a, int
lda, complex *tau, complex *c, int ldc, int *info);
void cunmlq_64(char side, char trans, long m, long n, long k, complex
*a, long lda, complex *tau, complex *c, long ldc, long
*info);
PURPOSE
cunmlq overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k elemen-
tary reflectors
Q = H(K)**H . . . H(2)**H * H(1)**H
as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N if
SIDE = 'R'.
ARGUMENTS
SIDE (input)
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
TRANS (input)
= 'N': No transpose, apply Q;
= 'C': Conjugate transpose, apply Q**H.
M (input) The number of rows of the matrix C. M >= 0.
N (input) The number of columns of the matrix C. N >= 0.
K (input) The number of elementary reflectors whose product defines the
matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K
>= 0.
A (input) (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row
must contain the vector which defines the elementary reflec-
tor H(i), for i = 1,2,...,k, as returned by CGELQF in the
first k rows of its array argument A. A is modified by the
routine but restored on exit.
LDA (input)
The leading dimension of the array A. LDA >= max(1,K).
TAU (input)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by CGELQF.
C (input/output)
On entry, the M-by-N matrix C. On exit, C is overwritten by
Q*C or Q**H*C or C*Q**H or C*Q.
LDC (input)
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input)
The dimension of the array WORK. If SIDE = 'L', LWORK >=
max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum per-
formance LWORK >= N*NB if SIDE 'L', and LWORK >= M*NB if SIDE
= 'R', where NB is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
7 Nov 2015 cunmlq(3P)