dpotf2 - tive definite matrix A
SUBROUTINE DPOTF2(UPLO, N, A, LDA, INFO) CHARACTER*1 UPLO INTEGER N, LDA, INFO DOUBLE PRECISION A(LDA,*) SUBROUTINE DPOTF2_64(UPLO, N, A, LDA, INFO) CHARACTER*1 UPLO INTEGER*8 N, LDA, INFO DOUBLE PRECISION A(LDA,*) F95 INTERFACE SUBROUTINE POTF2(UPLO, N, A, LDA, INFO) CHARACTER(LEN=1) :: UPLO INTEGER :: N, LDA, INFO REAL(8), DIMENSION(:,:) :: A SUBROUTINE POTF2_64(UPLO, N, A, LDA, INFO) CHARACTER(LEN=1) :: UPLO INTEGER(8) :: N, LDA, INFO REAL(8), DIMENSION(:,:) :: A C INTERFACE #include <sunperf.h> void dpotf2(char uplo, int n, double *a, int lda, int *info); void dpotf2_64(char uplo, long n, double *a, long lda, long *info);
Oracle Solaris Studio Performance Library dpotf2(3P)
NAME
dpotf2 - compute the Cholesky factorization of a real symmetric posi-
tive definite matrix A
SYNOPSIS
SUBROUTINE DPOTF2(UPLO, N, A, LDA, INFO)
CHARACTER*1 UPLO
INTEGER N, LDA, INFO
DOUBLE PRECISION A(LDA,*)
SUBROUTINE DPOTF2_64(UPLO, N, A, LDA, INFO)
CHARACTER*1 UPLO
INTEGER*8 N, LDA, INFO
DOUBLE PRECISION A(LDA,*)
F95 INTERFACE
SUBROUTINE POTF2(UPLO, N, A, LDA, INFO)
CHARACTER(LEN=1) :: UPLO
INTEGER :: N, LDA, INFO
REAL(8), DIMENSION(:,:) :: A
SUBROUTINE POTF2_64(UPLO, N, A, LDA, INFO)
CHARACTER(LEN=1) :: UPLO
INTEGER(8) :: N, LDA, INFO
REAL(8), DIMENSION(:,:) :: A
C INTERFACE
#include <sunperf.h>
void dpotf2(char uplo, int n, double *a, int lda, int *info);
void dpotf2_64(char uplo, long n, double *a, long lda, long *info);
PURPOSE
dpotf2 computes the Cholesky factorization of a real symmetric positive
definite matrix A.
The factorization has the form
A = U' * U , if UPLO = 'U', or
A = L * L', if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
ARGUMENTS
UPLO (input)
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored. = 'U': Upper triangular
= 'L': Lower triangular
N (input) The order of the matrix A. N >= 0.
A (input/output)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n by n upper triangular part of A contains the upper triangu-
lar part of the matrix A, and the strictly lower triangular
part of A is not referenced. If UPLO = 'L', the leading n by
n lower triangular part of A contains the lower triangular
part of the matrix A, and the strictly upper triangular part
of A is not referenced.
On exit, if INFO = 0, the factor U or L from the Cholesky
factorization A = U'*U or A = L*L'.
LDA (input)
The leading dimension of the array A. LDA >= max(1,N).
INFO (output)
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, the leading minor of order k is not posi-
tive definite, and the factorization could not be completed.
7 Nov 2015 dpotf2(3P)