sgesv - compute the solution to a real system of linear equations A*X=B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices
SUBROUTINE SGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) INTEGER N, NRHS, LDA, LDB, INFO INTEGER IPIVOT(*) REAL A(LDA,*), B(LDB,*) SUBROUTINE SGESV_64(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) INTEGER*8 N, NRHS, LDA, LDB, INFO INTEGER*8 IPIVOT(*) REAL A(LDA,*), B(LDB,*) F95 INTERFACE SUBROUTINE GESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) INTEGER :: N, NRHS, LDA, LDB, INFO INTEGER, DIMENSION(:) :: IPIVOT REAL, DIMENSION(:,:) :: A, B SUBROUTINE GESV_64(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) INTEGER(8) :: N, NRHS, LDA, LDB, INFO INTEGER(8), DIMENSION(:) :: IPIVOT REAL, DIMENSION(:,:) :: A, B C INTERFACE #include <sunperf.h> void sgesv(int n, int nrhs, float *a, int lda, int *ipivot, float *b, int ldb, int *info); void sgesv_64(long n, long nrhs, float *a, long lda, long *ipivot, float *b, long ldb, long *info);
Oracle Solaris Studio Performance Library sgesv(3P) NAME sgesv - compute the solution to a real system of linear equations A*X=B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices SYNOPSIS SUBROUTINE SGESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) INTEGER N, NRHS, LDA, LDB, INFO INTEGER IPIVOT(*) REAL A(LDA,*), B(LDB,*) SUBROUTINE SGESV_64(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) INTEGER*8 N, NRHS, LDA, LDB, INFO INTEGER*8 IPIVOT(*) REAL A(LDA,*), B(LDB,*) F95 INTERFACE SUBROUTINE GESV(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) INTEGER :: N, NRHS, LDA, LDB, INFO INTEGER, DIMENSION(:) :: IPIVOT REAL, DIMENSION(:,:) :: A, B SUBROUTINE GESV_64(N, NRHS, A, LDA, IPIVOT, B, LDB, INFO) INTEGER(8) :: N, NRHS, LDA, LDB, INFO INTEGER(8), DIMENSION(:) :: IPIVOT REAL, DIMENSION(:,:) :: A, B C INTERFACE #include <sunperf.h> void sgesv(int n, int nrhs, float *a, int lda, int *ipivot, float *b, int ldb, int *info); void sgesv_64(long n, long nrhs, float *a, long lda, long *ipivot, float *b, long ldb, long *info); PURPOSE sgesv computes the solution to a real system of linear equations A * X = B, where A is an N-by-N matrix and X and B are N-by-NRHS matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = P * L * U, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations A * X = B. ARGUMENTS N (input) The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS (input) The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. A (input/output) On entry, the N-by-N coefficient matrix A. On exit, the fac- tors L and U from the factorization A = P*L*U; the unit diag- onal elements of L are not stored. LDA (input) The leading dimension of the array A. LDA >= max(1,N). IPIVOT (output) The pivot indices that define the permutation matrix P; row i of the matrix was interchanged with row IPIVOT(i). B (input/output) On entry, the N-by-NRHS matrix of right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X. LDB (input) The leading dimension of the array B. LDB >= max(1,N). INFO (output) = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed. 7 Nov 2015 sgesv(3P)