dptrfs - improve the computed solution to a system of linear equations when the coefficient matrix is symmetric positive definite and tridiag- onal, provide error bounds and backward error estimates for the solu- tion
SUBROUTINE DPTRFS(N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO) INTEGER N, NRHS, LDB, LDX, INFO DOUBLE PRECISION D(*), E(*), DF(*), EF(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*) SUBROUTINE DPTRFS_64(N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO) INTEGER*8 N, NRHS, LDB, LDX, INFO DOUBLE PRECISION D(*), E(*), DF(*), EF(*), B(LDB,*), X(LDX,*), FERR(*), BERR(*), WORK(*) F95 INTERFACE SUBROUTINE PTRFS(N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO) INTEGER :: N, NRHS, LDB, LDX, INFO REAL(8), DIMENSION(:) :: D, E, DF, EF, FERR, BERR, WORK REAL(8), DIMENSION(:,:) :: B, X SUBROUTINE PTRFS_64(N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO) INTEGER(8) :: N, NRHS, LDB, LDX, INFO REAL(8), DIMENSION(:) :: D, E, DF, EF, FERR, BERR, WORK REAL(8), DIMENSION(:,:) :: B, X C INTERFACE #include <sunperf.h> void dptrfs(int n, int nrhs, double *d, double *e, double *df, double *ef, double *b, int ldb, double *x, int ldx, double *ferr, double *berr, int *info); void dptrfs_64(long n, long nrhs, double *d, double *e, double *df, double *ef, double *b, long ldb, double *x, long ldx, double *ferr, double *berr, long *info);
Oracle Solaris Studio Performance Library dptrfs(3P)
NAME
dptrfs - improve the computed solution to a system of linear equations
when the coefficient matrix is symmetric positive definite and tridiag-
onal, provide error bounds and backward error estimates for the solu-
tion
SYNOPSIS
SUBROUTINE DPTRFS(N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
FERR, BERR, WORK, INFO)
INTEGER N, NRHS, LDB, LDX, INFO
DOUBLE PRECISION D(*), E(*), DF(*), EF(*), B(LDB,*), X(LDX,*), FERR(*),
BERR(*), WORK(*)
SUBROUTINE DPTRFS_64(N, NRHS, D, E, DF, EF, B, LDB, X,
LDX, FERR, BERR, WORK, INFO)
INTEGER*8 N, NRHS, LDB, LDX, INFO
DOUBLE PRECISION D(*), E(*), DF(*), EF(*), B(LDB,*), X(LDX,*), FERR(*),
BERR(*), WORK(*)
F95 INTERFACE
SUBROUTINE PTRFS(N, NRHS, D, E, DF, EF, B, LDB, X,
LDX, FERR, BERR, WORK, INFO)
INTEGER :: N, NRHS, LDB, LDX, INFO
REAL(8), DIMENSION(:) :: D, E, DF, EF, FERR, BERR, WORK
REAL(8), DIMENSION(:,:) :: B, X
SUBROUTINE PTRFS_64(N, NRHS, D, E, DF, EF, B, LDB,
X, LDX, FERR, BERR, WORK, INFO)
INTEGER(8) :: N, NRHS, LDB, LDX, INFO
REAL(8), DIMENSION(:) :: D, E, DF, EF, FERR, BERR, WORK
REAL(8), DIMENSION(:,:) :: B, X
C INTERFACE
#include <sunperf.h>
void dptrfs(int n, int nrhs, double *d, double *e, double *df, double
*ef, double *b, int ldb, double *x, int ldx, double *ferr,
double *berr, int *info);
void dptrfs_64(long n, long nrhs, double *d, double *e, double *df,
double *ef, double *b, long ldb, double *x, long ldx, double
*ferr, double *berr, long *info);
PURPOSE
dptrfs improves the computed solution to a system of linear equations
when the coefficient matrix is symmetric positive definite and tridiag-
onal, and provides error bounds and backward error estimates for the
solution.
ARGUMENTS
N (input) The order of the matrix A. N >= 0.
NRHS (input)
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
D (input) The n diagonal elements of the tridiagonal matrix A.
E (input) The (n-1) subdiagonal elements of the tridiagonal matrix A.
DF (input)
The n diagonal elements of the diagonal matrix D from the
factorization computed by DPTTRF.
EF (input)
The (n-1) subdiagonal elements of the unit bidiagonal factor
L from the factorization computed by DPTTRF.
B (input) The right hand side matrix B.
LDB (input)
The leading dimension of the array B. LDB >= max(1,N).
X (input/output)
On entry, the solution matrix X, as computed by DPTTRS. On
exit, the improved solution matrix X.
LDX (input)
The leading dimension of the array X. LDX >= max(1,N).
FERR (output)
The forward error bound for each solution vector X(j) (the j-
th column of the solution matrix X). If XTRUE is the true
solution corresponding to X(j), FERR(j) is an estimated upper
bound for the magnitude of the largest element in (X(j) -
XTRUE) divided by the magnitude of the largest element in
X(j).
BERR (output)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in any ele-
ment of A or B that makes X(j) an exact solution).
WORK (workspace)
dimension(2*N)
INFO (output)
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
7 Nov 2015 dptrfs(3P)