7.1.1 In-Database Algorithms Supported by OML4R

The functions in the OREdm package provide access to the in-database machine learning functionality of Oracle Database. You use these functions to build in-database models in the database.

The following table lists the OML4R functions that build in-database models and the corresponding in-database algorithms and functions.

Table 7-1 Oracle Machine Learning for R Model Functions

OML4R Function Name Algorithm Machine Learning Technique (Mining Function)

ore.odmAI

Minimum Description Length

Attribute importance for classification or regression

ore.odmAssocRules

Apriori

Association rules

ore.odmDT

Decision Tree

Classification

ore.odmEM

Expectation Maximization

Clustering

ore.odmESA

Explicit Semantic Analysis

Feature extraction

ore.odmGLM

Generalized Linear Models

Classification and regression

ore.odmKMeans

k-Means

Clustering

ore.odmNB

Naive Bayes

Classification

ore.odmNMF

Non-Negative Matrix Factorization

Feature extraction

ore.odmOC

Orthogonal Partitioning Cluster (O-Cluster)

Clustering

ore.odmRAlg

Extensible R Algorithm

Association rules, attribute importance, classification, clustering, feature extraction, and regression

ore.odmSVD

Singular Value Decomposition

Feature extraction

ore.odmSVM

Support Vector Machines

Classification, regression and anomaly detection.

ore.odmNN

Neural Network

Classification and regression

ore.odmRF Random Forest

Classification

ore.odmXGB XGBoost

Classification and regression

Note:

Available only in Oracle Database 21c and later
ore.odmESM Exponential Smoothing Method Regression