- Using Oracle Spatial AI on Autonomous Database Serverless
- Review Use Cases for Using Spatial AI
- Spatial Regression Use Case Scenario
- Run the Post-Processing Steps
Run the Post-Processing Steps
- Save the model in a datastore.
The following code save the model in an OML datastore as part of the post-processing step. The Spatial Pipeline is stored in the datastore named
sai_regressor_ds
, containing a dictionary with object names and Python objects.import oml oml.ds.save({'spatial_error_pipeline': spatial_error_pipeline}, 'sai_regressor_ds', description='some description', overwrite=True)
- Load the model from a datastore.
Use the
oml.ds.load
function to load the model from a datastore into Python for predictions by specifying the name of the datastore and the name of the Python object with the trained model.ds_objs = oml.ds.load('sai_regressor_ds', objs=['spatial_error_pipeline'], to_globals=False) error_model_loaded = ds_objs['spatial_error_pipeline']
- Create and store a user-defined Python function that makes predictions with the
trained model given a prediction set.
The following code creates a Python user-defined function (UDF) that loads the trained model from a datastore and uses it to make predictions with a given prediction set. The UDF is then registered with OML using
oml.script.create
.udf = """def error_model_pipeline_predict_(X): import oml ds_objs = oml.ds.load('sai_regressor_ds', objs=['spatial_error_pipeline'], to_globals=False) error_model_pipeline = ds_objs['spatial_error_pipeline'] pred = error_model_pipeline.predict(X) return pred.tolist()""" oml.script.create("errorModelPipelinePredict", udf, is_global=True, overwrite=True)
- Run a Python UDF with SQL.
The following code uses
pyqEval
to run the Python UDFerrorModelPipelinePredict
in SQL by passing theX
parameter consisting of a single observation.select * from table(pyqEval( par_lst => '{"X": [[30.6005898, 12.1, 342200.000, 0.8]]}', out_fmt => 'JSON', scr_name => 'errorModelPipelinePredict' ) );
The Moran’s I statistic is positive and significant, confirming the presence of spatial dependence in the target variable.
The response shows estimated median income for the given observation.
NAME VALUE [[67428.20461759513]]