MySQL 9.3 Reference Manual Including MySQL NDB Cluster 9.3
InnoDB
tables use row-level locking so that
multiple sessions and applications can read from and write to
the same table simultaneously, without making each other wait or
producing inconsistent results. For this storage engine, avoid
using the LOCK TABLES
statement,
because it does not offer any extra protection, but instead
reduces concurrency. The automatic row-level locking makes these
tables suitable for your busiest databases with your most
important data, while also simplifying application logic since
you do not need to lock and unlock tables. Consequently, the
InnoDB
storage engine is the default in
MySQL.
MySQL uses table locking (instead of page, row, or column
locking) for all storage engines except
InnoDB
. The locking operations themselves do
not have much overhead. But because only one session can write
to a table at any one time, for best performance with these
other storage engines, use them primarily for tables that are
queried often and rarely inserted into or updated.
When choosing whether to create a table using
InnoDB
or a different storage engine, keep
in mind the following disadvantages of table locking:
Table locking enables many sessions to read from a table at the same time, but if a session wants to write to a table, it must first get exclusive access, meaning it might have to wait for other sessions to finish with the table first. During the update, all other sessions that want to access this particular table must wait until the update is done.
Table locking causes problems when a session is waiting because the disk is full and free space needs to become available before the session can proceed. In this case, all sessions that want to access the problem table are also put in a waiting state until more disk space is made available.
A SELECT
statement that
takes a long time to run prevents other sessions from
updating the table in the meantime, making the other
sessions appear slow or unresponsive. While a session is
waiting to get exclusive access to the table for updates,
other sessions that issue
SELECT
statements queue up
behind it, reducing concurrency even for read-only
sessions.
The following items describe some ways to avoid or reduce contention caused by table locking:
Consider switching the table to the
InnoDB
storage engine, either using
CREATE TABLE ... ENGINE=INNODB
during
setup, or using ALTER TABLE ...
ENGINE=INNODB
for an existing table. See
Chapter 17, The InnoDB Storage Engine for more details
about this storage engine.
Optimize SELECT
statements
to run faster so that they lock tables for a shorter time.
You might have to create some summary tables to do this.
Start mysqld with
--low-priority-updates
. For
storage engines that use only table-level locking (such as
MyISAM
, MEMORY
, and
MERGE
), this gives all statements that
update (modify) a table lower priority than
SELECT
statements. In this
case, the second SELECT
statement in the preceding scenario would execute before
the UPDATE
statement, and
would not wait for the first
SELECT
to finish.
To specify that all updates issued in a specific
connection should be done with low priority, set the
low_priority_updates
server system variable equal to 1.
To give a specific INSERT
,
UPDATE
, or
DELETE
statement lower
priority, use the LOW_PRIORITY
attribute.
To give a specific SELECT
statement higher priority, use the
HIGH_PRIORITY
attribute. See
Section 15.2.13, “SELECT Statement”.
Start mysqld with a low value for the
max_write_lock_count
system variable to force MySQL to temporarily elevate the
priority of all SELECT
statements that are waiting for a table after a specific
number of write locks to the table occur (for example, for
insert operations). This permits read locks after a
certain number of write locks.
If you have problems with mixed
SELECT
and
DELETE
statements, the
LIMIT
option to
DELETE
may help. See
Section 15.2.2, “DELETE Statement”.
Using SQL_BUFFER_RESULT
with
SELECT
statements can help
to make the duration of table locks shorter. See
Section 15.2.13, “SELECT Statement”.
Splitting table contents into separate tables may help, by allowing queries to run against columns in one table, while updates are confined to columns in a different table.
You could change the locking code in
mysys/thr_lock.c
to use a single
queue. In this case, write locks and read locks would have
the same priority, which might help some applications.