MySQL 9.3 Reference Manual Including MySQL NDB Cluster 9.3
MySQL provides several MySQL-specific functions that test the
relationship between minimum bounding rectangles (MBRs) of two
geometries g1
and
g2
. The return values 1 and 0
indicate true and false, respectively.
The MBR (also known as the bounding box) for a two-dimensional
geometry is the smallest rectangle which holds all points in the
geometry, and so encloses the area between its greatest extents
in both coordinate directions. In other words, it is the
rectangle bounded by the points (min(x),
min(y))
, (min(x), max(y))
,
(max(x), max(y))
, and (max(x),
min(y))
, where min()
and
max()
represent the geometry's minimum
and maximum x-coordinate or y-coordinate, respectively.
When speaking of relationships between geometries, it is important to distinguish between containment and covering, as described here:
A geometry g1
contains another geometry
g2
if and only if all points in
g2
are also in
g1
, and their boundaries do not
intersect. That is, all points (a, b)
in
g2
must satisfy the conditions
min(x) < a < max(x)
and
min(y) < b < max(y)
. In this case,
ST_Contains(
and
g1
,
g2
)MBRContains(
both return true,
as does
g1
,
g2
)ST_Within(
.
g2
,
g1
)
We say that g1
covers g2
if
all points in g2
are also in
g1
, including any boundary
points. That is, all points (a, b)
in
g2
must satisfy the conditions
min(x) <= a <= max(x)
and
min(y) <= b <= max(y)
. In this
case,
MBRCovers(
and
g1
,
g2
)MBRCoveredBy(
both return true.
g2
,
g1
)
Let us define a rectangle g1
and
points p1
,
p2
, and p3
using the SQL statements shown here:
SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'), @p1 = ST_GeomFromText('Point(1 1)'), @p2 = ST_GeomFromText('Point(3 3)'), @p3 = ST_GeomFromText('Point(5 5)');
g1
contains and covers
p1
; p1
is
entirely within g1
and does not touch
any of its boundaries, as we can see from the
SELECT
statement shown here:
mysql>SELECT
->ST_Contains(@g1, @p1), ST_Within(@p1, @g1),
->MBRContains(@g1, @p1),
->MBRCovers(@g1, @p1), MBRCoveredBy(@p1, @g1),
->ST_Disjoint(@g1, @p1), ST_Intersects(@g1, @p1)\G
*************************** 1. row *************************** ST_Contains(@g1, @p1): 1 ST_Within(@p1, @g1): 1 MBRContains(@g1, @p1): 1 MBRCovers(@g1, @p1): 1 MBRCoveredBy(@p1, @g1): 1 ST_Disjoint(@g1, @p1): 0 ST_Intersects(@g1, @p1): 1 1 row in set (0.01 sec)
Using the same query with @p2
in place of
@p1
, we can see that
g2
covers
p2
, but does not contain it, because
p2
is included in the boundary of
g2
, but does not lie within its
interior. (That is, min(x) <= a <=
max(x)
and min(y) <= b <=
max(y)
are true, but min(x) < a <
max(x)
and min(y) < b <
max(y)
are not.)
mysql>SELECT
->ST_Contains(@g1, @p2), ST_Within(@p2, @g1),
->MBRContains(@g1, @p2),
->MBRCovers(@g1, @p2), MBRCoveredBy(@p2, @g1),
->ST_Disjoint(@g1, @p2), ST_Intersects(@g1, @p2)\G
*************************** 1. row *************************** ST_Contains(@g1, @p2): 0 ST_Within(@p2, @g1): 0 MBRContains(@g1, @p2): 0 MBRCovers(@g1, @p2): 1 MBRCoveredBy(@p2, @g1): 1 ST_Disjoint(@g1, @p2): 0 ST_Intersects(@g1, @p2): 1 1 row in set (0.00 sec)
Executing the query—this time using @p3
rather than @p2
or
@p1
—shows us that
p3
is disjoint from
g1
; the two geometries have no points
in common, and g1
neither contains
nor covers p3
.
ST_Disjoint(
returns true;
g1
,
p3
)ST_Intersects(
returns false.
g1
,
p3
)
mysql>SELECT
->ST_Contains(@g1, @p3), ST_Within(@p3, @g1),
->MBRContains(@g1, @p3),
->MBRCovers(@g1, @p3), MBRCoveredBy(@p3, @g1),
->ST_Disjoint(@g1, @p3), ST_Intersects(@g1, @p3)\G
*************************** 1. row *************************** ST_Contains(@g1, @p3): 0 ST_Within(@p3, @g1): 0 MBRContains(@g1, @p3): 0 MBRCovers(@g1, @p3): 0 MBRCoveredBy(@p3, @g1): 0 ST_Disjoint(@g1, @p3): 1 ST_Intersects(@g1, @p3): 0 1 row in set (0.00 sec)
The function descriptions shown later in this section and in Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes” provide additional examples.
The bounding box of a point is interpreted as a point that is both boundary and interior.
The bounding box of a straight horizontal or vertical line is interpreted as a line where the interior of the line is also boundary. The endpoints are boundary points.
If any of the parameters are geometry collections, the interior, boundary, and exterior of those parameters are those of the union of all elements in the collection.
Functions in this section detect arguments in either Cartesian or geographic spatial reference systems (SRSs), and return results appropriate to the SRS.
Unless otherwise specified, functions in this section handle their geometry arguments as follows:
If any argument is NULL
or an empty
geometry, the return value is NULL
.
If any geometry argument is not a syntactically well-formed
geometry, an
ER_GIS_INVALID_DATA
error
occurs.
If any geometry argument is a syntactically well-formed
geometry in an undefined spatial reference system (SRS), an
ER_SRS_NOT_FOUND
error
occurs.
For functions that take multiple geometry arguments, if
those arguments are not in the same SRS, an
ER_GIS_DIFFERENT_SRIDS
error
occurs.
If any argument is geometrically invalid, either the result is true or false (it is undefined which), or an error occurs.
For geographic SRS geometry arguments, if any argument has a longitude or latitude that is out of range, an error occurs:
If a longitude value is not in the range (−180,
180], an
ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE
error occurs.
If a latitude value is not in the range [−90, 90],
an
ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE
error occurs.
Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values in its unit. The exact range limits deviate slightly due to floating-point arithmetic.
Otherwise, the return value is non-NULL
.
These MBR functions are available for testing geometry relationships:
Returns 1 or 0 to indicate whether the minimum bounding
rectangle of g1
contains the
minimum bounding rectangle of g2
.
This tests the opposite relationship as
MBRWithin()
.
MBRContains()
handles its
arguments as described in the introduction to this section.
mysql>SET
->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
->@g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),
->@g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),
->@p1 = ST_GeomFromText('Point(1 1)'),
->@p2 = ST_GeomFromText('Point(3 3)');
->@p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec) mysql>SELECT
->MBRContains(@g1, @g2), MBRContains(@g1, @g4),
->MBRContains(@g2, @g1), MBRContains(@g2, @g4),
->MBRContains(@g2, @g3), MBRContains(@g3, @g4),
->MBRContains(@g3, @g1), MBRContains(@g1, @g3),
->MBRContains(@g1, @p1), MBRContains(@p1, @g1),
->MBRContains(@g1, @p1), MBRContains(@p1, @g1),
->MBRContains(@g2, @p2), MBRContains(@g2, @p3),
->MBRContains(@g3, @p1), MBRContains(@g3, @p2),
->MBRContains(@g3, @p3), MBRContains(@g4, @p1),
->MBRContains(@g4, @p2), MBRContains(@g4, @p3)\G
*************************** 1. row *************************** MBRContains(@g1, @g2): 1 MBRContains(@g1, @g4): 0 MBRContains(@g2, @g1): 0 MBRContains(@g2, @g4): 0 MBRContains(@g2, @g3): 0 MBRContains(@g3, @g4): 0 MBRContains(@g3, @g1): 1 MBRContains(@g1, @g3): 0 MBRContains(@g1, @p1): 1 MBRContains(@p1, @g1): 0 MBRContains(@g1, @p1): 1 MBRContains(@p1, @g1): 0 MBRContains(@g2, @p2): 0 MBRContains(@g2, @p3): 0 MBRContains(@g3, @p1): 1 MBRContains(@g3, @p2): 1 MBRContains(@g3, @p3): 0 MBRContains(@g4, @p1): 0 MBRContains(@g4, @p2): 0 MBRContains(@g4, @p3): 0 1 row in set (0.00 sec)
Returns 1 or 0 to indicate whether the minimum bounding
rectangle of g1
is covered by the
minimum bounding rectangle of g2
.
This tests the opposite relationship as
MBRCovers()
.
MBRCoveredBy()
handles its
arguments as described in the introduction to this section.
mysql>SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql>SET @g2 = ST_GeomFromText('Point(1 1)');
mysql>SELECT MBRCovers(@g1,@g2), MBRCoveredby(@g1,@g2);
+--------------------+-----------------------+ | MBRCovers(@g1,@g2) | MBRCoveredby(@g1,@g2) | +--------------------+-----------------------+ | 1 | 0 | +--------------------+-----------------------+ mysql>SELECT MBRCovers(@g2,@g1), MBRCoveredby(@g2,@g1);
+--------------------+-----------------------+ | MBRCovers(@g2,@g1) | MBRCoveredby(@g2,@g1) | +--------------------+-----------------------+ | 0 | 1 | +--------------------+-----------------------+
See the description of the
MBRCovers()
function for
additional examples.
Returns 1 or 0 to indicate whether the minimum bounding
rectangle of g1
covers the
minimum bounding rectangle of g2
.
This tests the opposite relationship as
MBRCoveredBy()
. See the
description of MBRCoveredBy()
for additional examples.
MBRCovers()
handles its
arguments as described in the introduction to this section.
mysql>SET
->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
->@p1 = ST_GeomFromText('Point(1 1)'),
->@p2 = ST_GeomFromText('Point(3 3)'),
->@p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.02 sec) mysql>SELECT
->MBRCovers(@g1, @p1), MBRCovers(@g1, @p2),
->MBRCovers(@g1, @g2), MBRCovers(@g1, @p3)\G
*************************** 1. row *************************** MBRCovers(@g1, @p1): 1 MBRCovers(@g1, @p2): 1 MBRCovers(@g1, @g2): 1 MBRCovers(@g1, @p3): 0 1 row in set (0.00 sec)
Returns 1 or 0 to indicate whether the minimum bounding
rectangles of the two geometries
g1
and
g2
are disjoint (do not
intersect).
MBRDisjoint()
handles its
arguments as described in the introduction to this section.
mysql>SET
->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
->@g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),
->@g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),
->@p1 = ST_GeomFromText('Point(1 1)'),
->@p2 = ST_GeomFromText('Point(3 3)'),
->@p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec) mysql>SELECT
->MBRDisjoint(@g1, @g4), MBRDisjoint(@g2, @g4),
->MBRDisjoint(@g3, @g4), MBRDisjoint(@g4, @g4),
->MBRDisjoint(@g1, @p1), MBRDisjoint(@g1, @p2),
->MBRDisjoint(@g1, @p3)\G
*************************** 1. row *************************** MBRDisjoint(@g1, @g4): 1 MBRDisjoint(@g2, @g4): 1 MBRDisjoint(@g3, @g4): 0 MBRDisjoint(@g4, @g4): 0 MBRDisjoint(@g1, @p1): 0 MBRDisjoint(@g1, @p2): 0 MBRDisjoint(@g1, @p3): 1 1 row in set (0.00 sec)
Returns 1 or 0 to indicate whether the minimum bounding
rectangles of the two geometries
g1
and
g2
are the same.
MBREquals()
handles its
arguments as described in the introduction to this section,
except that it does not return NULL
for
empty geometry arguments.
mysql>SET
->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
->@p1 = ST_GeomFromText('Point(1 1)'),
->@p2 = ST_GeomFromText('Point(3 3)'),
->@p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec) mysql>SELECT
->MBREquals(@g1, @g1), MBREquals(@g1, @g2),
->MBREquals(@g1, @p1), MBREquals(@g1, @p2), MBREquals(@g2, @g2),
->MBREquals(@p1, @p1), MBREquals(@p1, @p2), MBREquals(@p2, @p2)\G
*************************** 1. row *************************** MBREquals(@g1, @g1): 1 MBREquals(@g1, @g2): 0 MBREquals(@g1, @p1): 0 MBREquals(@g1, @p2): 0 MBREquals(@g2, @g2): 1 MBREquals(@p1, @p1): 1 MBREquals(@p1, @p2): 0 MBREquals(@p2, @p2): 1 1 row in set (0.00 sec)
Returns 1 or 0 to indicate whether the minimum bounding
rectangles of the two geometries
g1
and
g2
intersect.
MBRIntersects()
handles its
arguments as described in the introduction to this section.
mysql>SET
->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
->@g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),
->@g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),
->@g5 = ST_GeomFromText('Polygon((2 2,2 8,8 8,8 2,2 2))'),
->@p1 = ST_GeomFromText('Point(1 1)'),
->@p2 = ST_GeomFromText('Point(3 3)'),
->@p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec) mysql> SELECT -> MBRIntersects(@g1, @g1), MBRIntersects(@g1, @g2), -> MBRIntersects(@g1, @g3), MBRIntersects(@g1, @g4), MBRIntersects(@g1, @g5), -> MBRIntersects(@g1, @p1), MBRIntersects(@g1, @p2), MBRIntersects(@g1, @p3), -> MBRIntersects(@g2, @p1), MBRIntersects(@g2, @p2), MBRIntersects(@g2, @p3)\G *************************** 1. row *************************** MBRIntersects(@g1, @g1): 1 MBRIntersects(@g1, @g2): 1 MBRIntersects(@g1, @g3): 1 MBRIntersects(@g1, @g4): 0 MBRIntersects(@g1, @g5): 1 MBRIntersects(@g1, @p1): 1 MBRIntersects(@g1, @p2): 1 MBRIntersects(@g1, @p3): 0 MBRIntersects(@g2, @p1): 1 MBRIntersects(@g2, @p2): 0 MBRIntersects(@g2, @p3): 0 1 row in set (0.00 sec)
Two geometries spatially overlap if they intersect and their intersection results in a geometry of the same dimension but not equal to either of the given geometries.
This function returns 1 or 0 to indicate whether the minimum
bounding rectangles of the two geometries
g1
and
g2
overlap.
MBROverlaps()
handles its
arguments as described in the introduction to this section.
Two geometries spatially touch if their interiors do not intersect, but the boundary of one of the geometries intersects either the boundary or the interior of the other.
This function returns 1 or 0 to indicate whether the minimum
bounding rectangles of the two geometries
g1
and
g2
touch.
MBRTouches()
handles its
arguments as described in the introduction to this section.
Returns 1 or 0 to indicate whether the minimum bounding
rectangle of g1
is within the
minimum bounding rectangle of g2
.
This tests the opposite relationship as
MBRContains()
.
MBRWithin()
handles its
arguments as described in the introduction to this section.
mysql>SET
->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),
->@g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),
->@g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),
->@p1 = ST_GeomFromText('Point(1 1)'),
->@p2 = ST_GeomFromText('Point(3 3)');
->@p3 = ST_GeomFromText('Point(5 5)');
Query OK, 0 rows affected (0.00 sec) mysql>SELECT
->MBRWithin(@g1, @g2), MBRWithin(@g1, @g4),
->MBRWithin(@g2, @g1), MBRWithin(@g2, @g4),
->MBRWithin(@g2, @g3), MBRWithin(@g3, @g4),
->MBRWithin(@g1, @p1), MBRWithin(@p1, @g1),
->MBRWithin(@g1, @p1), MBRWithin(@p1, @g1),
->MBRWithin(@g2, @p2), MBRWithin(@g2, @p3)\G
*************************** 1. row *************************** MBRWithin(@g1, @g2): 0 MBRWithin(@g1, @g4): 0 MBRWithin(@g2, @g1): 1 MBRWithin(@g2, @g4): 0 MBRWithin(@g2, @g3): 1 MBRWithin(@g3, @g4): 0 MBRWithin(@g1, @p1): 0 MBRWithin(@p1, @g1): 1 MBRWithin(@g1, @p1): 0 MBRWithin(@p1, @g1): 1 MBRWithin(@g2, @p2): 0 MBRWithin(@g2, @p3): 0 1 row in set (0.00 sec)