MySQL 9.3 Reference Manual Including MySQL NDB Cluster 9.3
The EXPLAIN
statement provides
information about how MySQL executes statements.
EXPLAIN
works with
SELECT
,
DELETE
,
INSERT
,
REPLACE
, and
UPDATE
statements.
EXPLAIN
returns a row of
information for each table used in the
SELECT
statement. It lists the
tables in the output in the order that MySQL would read them
while processing the statement. This means that MySQL reads a
row from the first table, then finds a matching row in the
second table, and then in the third table, and so on. When all
tables are processed, MySQL outputs the selected columns and
backtracks through the table list until a table is found for
which there are more matching rows. The next row is read from
this table and the process continues with the next table.
MySQL Workbench has a Visual Explain capability that provides a
visual representation of
EXPLAIN
output. See
Tutorial: Using Explain to Improve Query Performance.
This section describes the output columns produced by
EXPLAIN
. Later sections provide
additional information about the
type
and
Extra
columns.
Each output row from EXPLAIN
provides information about one table. Each row contains the
values summarized in
Table 10.1, “EXPLAIN Output Columns”, and described
in more detail following the table. Column names are shown in
the table's first column; the second column provides the
equivalent property name shown in the output when
FORMAT=JSON
is used.
Table 10.1 EXPLAIN Output Columns
Column | JSON Name | Meaning |
---|---|---|
id |
select_id |
The SELECT identifier |
select_type |
None | The SELECT type |
table |
table_name |
The table for the output row |
partitions |
partitions |
The matching partitions |
type |
access_type |
The join type |
possible_keys |
possible_keys |
The possible indexes to choose |
key |
key |
The index actually chosen |
key_len |
key_length |
The length of the chosen key |
ref |
ref |
The columns compared to the index |
rows |
rows |
Estimate of rows to be examined |
filtered |
filtered |
Percentage of rows filtered by table condition |
Extra |
None | Additional information |
JSON properties which are NULL
are not
displayed in JSON-formatted EXPLAIN
output.
The SELECT
identifier. This
is the sequential number of the
SELECT
within the query.
The value can be NULL
if the row refers
to the union result of other rows. In this case, the
table
column shows a value like
<union
to indicate that the row refers to the union of the rows
with M
,N
>id
values of
M
and
N
.
The type of SELECT
, which
can be any of those shown in the following table. A
JSON-formatted EXPLAIN
exposes the
SELECT
type as a property of a
query_block
, unless it is
SIMPLE
or PRIMARY
.
The JSON names (where applicable) are also shown in the
table.
select_type Value |
JSON Name | Meaning |
---|---|---|
SIMPLE |
None | Simple SELECT (not using
UNION or subqueries) |
PRIMARY |
None | Outermost SELECT |
UNION |
None | Second or later SELECT statement in a
UNION |
DEPENDENT UNION |
dependent (true ) |
Second or later SELECT statement in a
UNION , dependent on
outer query |
UNION RESULT |
union_result |
Result of a UNION . |
SUBQUERY |
None | First SELECT in subquery |
DEPENDENT SUBQUERY |
dependent (true ) |
First SELECT in subquery, dependent on
outer query |
DERIVED |
None | Derived table |
DEPENDENT DERIVED |
dependent (true ) |
Derived table dependent on another table |
MATERIALIZED |
materialized_from_subquery |
Materialized subquery |
UNCACHEABLE SUBQUERY |
cacheable (false ) |
A subquery for which the result cannot be cached and must be re-evaluated for each row of the outer query |
UNCACHEABLE UNION |
cacheable (false ) |
The second or later select in a UNION
that belongs to an uncacheable subquery (see
UNCACHEABLE SUBQUERY ) |
DEPENDENT
typically signifies the use
of a correlated subquery. See
Section 15.2.15.7, “Correlated Subqueries”.
DEPENDENT SUBQUERY
evaluation differs
from UNCACHEABLE SUBQUERY
evaluation.
For DEPENDENT SUBQUERY
, the subquery is
re-evaluated only once for each set of different values of
the variables from its outer context. For
UNCACHEABLE SUBQUERY
, the subquery is
re-evaluated for each row of the outer context.
When you specify FORMAT=JSON
with
EXPLAIN
, the output has no single
property directly equivalent to
select_type
; the
query_block
property corresponds to a
given SELECT
. Properties equivalent to
most of the SELECT
subquery types just
shown are available (an example being
materialized_from_subquery
for
MATERIALIZED
), and are displayed when
appropriate. There are no JSON equivalents for
SIMPLE
or PRIMARY
.
The select_type
value for
non-SELECT
statements
displays the statement type for affected tables. For
example, select_type
is
DELETE
for
DELETE
statements.
The name of the table to which the row of output refers. This can also be one of the following values:
<union
:
The row refers to the union of the rows with
M
,N
>id
values of
M
and
N
.
<derived
:
The row refers to the derived table result for the row
with an N
>id
value of
N
. A derived table may
result, for example, from a subquery in the
FROM
clause.
<subquery
:
The row refers to the result of a materialized
subquery for the row with an N
>id
value of N
. See
Section 10.2.2.2, “Optimizing Subqueries with Materialization”.
partitions
(JSON name:
partitions
)
The partitions from which records would be matched by the
query. The value is NULL
for
nonpartitioned tables. See
Section 26.3.5, “Obtaining Information About Partitions”.
The join type. For descriptions of the different types,
see
EXPLAIN
Join Types.
possible_keys
(JSON name:
possible_keys
)
The possible_keys
column indicates the
indexes from which MySQL can choose to find the rows in
this table. Note that this column is totally independent
of the order of the tables as displayed in the output from
EXPLAIN
. That means that
some of the keys in possible_keys
might
not be usable in practice with the generated table order.
If this column is NULL
(or undefined in
JSON-formatted output), there are no relevant indexes. In
this case, you may be able to improve the performance of
your query by examining the WHERE
clause to check whether it refers to some column or
columns that would be suitable for indexing. If so, create
an appropriate index and check the query with
EXPLAIN
again. See
Section 15.1.10, “ALTER TABLE Statement”.
To see what indexes a table has, use SHOW INDEX
FROM
.
tbl_name
The key
column indicates the key
(index) that MySQL actually decided to use. If MySQL
decides to use one of the possible_keys
indexes to look up rows, that index is listed as the key
value.
It is possible that key
may name an
index that is not present in the
possible_keys
value. This can happen if
none of the possible_keys
indexes are
suitable for looking up rows, but all the columns selected
by the query are columns of some other index. That is, the
named index covers the selected columns, so although it is
not used to determine which rows to retrieve, an index
scan is more efficient than a data row scan.
For InnoDB
, a secondary index might
cover the selected columns even if the query also selects
the primary key because InnoDB
stores
the primary key value with each secondary index. If
key
is NULL
, MySQL
found no index to use for executing the query more
efficiently.
To force MySQL to use or ignore an index listed in the
possible_keys
column, use
FORCE INDEX
, USE
INDEX
, or IGNORE INDEX
in
your query. See Section 10.9.4, “Index Hints”.
For MyISAM
tables, running
ANALYZE TABLE
helps the
optimizer choose better indexes. For
MyISAM
tables, myisamchk
--analyze does the same. See
Section 15.7.3.1, “ANALYZE TABLE Statement”, and
Section 9.6, “MyISAM Table Maintenance and Crash Recovery”.
key_len
(JSON name:
key_length
)
The key_len
column indicates the length
of the key that MySQL decided to use. The value of
key_len
enables you to determine how
many parts of a multiple-part key MySQL actually uses. If
the key
column says
NULL
, the key_len
column also says NULL
.
Due to the key storage format, the key length is one
greater for a column that can be NULL
than for a NOT NULL
column.
The ref
column shows which columns or
constants are compared to the index named in the
key
column to select rows from the
table.
If the value is func
, the value used is
the result of some function. To see which function, use
SHOW WARNINGS
following
EXPLAIN
to see the extended
EXPLAIN
output. The
function might actually be an operator such as an
arithmetic operator.
The rows
column indicates the number of
rows MySQL believes it must examine to execute the query.
For InnoDB
tables, this
number is an estimate, and may not always be exact.
filtered
(JSON name:
filtered
)
The filtered
column indicates an
estimated percentage of table rows that are filtered by
the table condition. The maximum value is 100, which means
no filtering of rows occurred. Values decreasing from 100
indicate increasing amounts of filtering.
rows
shows the estimated number of rows
examined and rows
×
filtered
shows the number of rows that
are joined with the following table. For example, if
rows
is 1000 and
filtered
is 50.00 (50%), the number of
rows to be joined with the following table is 1000 ×
50% = 500.
This column contains additional information about how
MySQL resolves the query. For descriptions of the
different values, see
EXPLAIN
Extra Information.
There is no single JSON property corresponding to the
Extra
column; however, values that can
occur in this column are exposed as JSON properties, or as
the text of the message
property.
The type
column of
EXPLAIN
output describes how
tables are joined. In JSON-formatted output, these are found
as values of the access_type
property. The
following list describes the join types, ordered from the best
type to the worst:
The table has only one row (= system table). This is a
special case of the
const
join type.
The table has at most one matching row, which is read at
the start of the query. Because there is only one row,
values from the column in this row can be regarded as
constants by the rest of the optimizer.
const
tables are very
fast because they are read only once.
const
is used when you
compare all parts of a PRIMARY KEY
or
UNIQUE
index to constant values. In the
following queries, tbl_name
can
be used as a const
table:
SELECT * FROMtbl_name
WHEREprimary_key
=1; SELECT * FROMtbl_name
WHEREprimary_key_part1
=1 ANDprimary_key_part2
=2;
One row is read from this table for each combination of
rows from the previous tables. Other than the
system
and
const
types, this is
the best possible join type. It is used when all parts of
an index are used by the join and the index is a
PRIMARY KEY
or UNIQUE NOT
NULL
index.
eq_ref
can be used for
indexed columns that are compared using the
=
operator. The comparison value can be
a constant or an expression that uses columns from tables
that are read before this table. In the following
examples, MySQL can use an
eq_ref
join to process
ref_table
:
SELECT * FROMref_table
,other_table
WHEREref_table
.key_column
=other_table
.column
; SELECT * FROMref_table
,other_table
WHEREref_table
.key_column_part1
=other_table
.column
ANDref_table
.key_column_part2
=1;
All rows with matching index values are read from this
table for each combination of rows from the previous
tables. ref
is used if
the join uses only a leftmost prefix of the key or if the
key is not a PRIMARY KEY
or
UNIQUE
index (in other words, if the
join cannot select a single row based on the key value).
If the key that is used matches only a few rows, this is a
good join type.
ref
can be used for
indexed columns that are compared using the
=
or <=>
operator. In the following examples, MySQL can use a
ref
join to process
ref_table
:
SELECT * FROMref_table
WHEREkey_column
=expr
; SELECT * FROMref_table
,other_table
WHEREref_table
.key_column
=other_table
.column
; SELECT * FROMref_table
,other_table
WHEREref_table
.key_column_part1
=other_table
.column
ANDref_table
.key_column_part2
=1;
The join is performed using a FULLTEXT
index.
This join type is like
ref
, but with the
addition that MySQL does an extra search for rows that
contain NULL
values. This join type
optimization is used most often in resolving subqueries.
In the following examples, MySQL can use a
ref_or_null
join to
process ref_table
:
SELECT * FROMref_table
WHEREkey_column
=expr
ORkey_column
IS NULL;
This join type indicates that the Index Merge optimization
is used. In this case, the key
column
in the output row contains a list of indexes used, and
key_len
contains a list of the longest
key parts for the indexes used. For more information, see
Section 10.2.1.3, “Index Merge Optimization”.
This type replaces
eq_ref
for some
IN
subqueries of the following form:
value
IN (SELECTprimary_key
FROMsingle_table
WHEREsome_expr
)
unique_subquery
is just
an index lookup function that replaces the subquery
completely for better efficiency.
This join type is similar to
unique_subquery
. It
replaces IN
subqueries, but it works
for nonunique indexes in subqueries of the following form:
value
IN (SELECTkey_column
FROMsingle_table
WHEREsome_expr
)
Only rows that are in a given range are retrieved, using
an index to select the rows. The key
column in the output row indicates which index is used.
The key_len
contains the longest key
part that was used. The ref
column is
NULL
for this type.
range
can be used when
a key column is compared to a constant using any of the
=
,
<>
,
>
,
>=
,
<
,
<=
,
IS NULL
,
<=>
,
BETWEEN
,
LIKE
, or
IN()
operators:
SELECT * FROMtbl_name
WHEREkey_column
= 10; SELECT * FROMtbl_name
WHEREkey_column
BETWEEN 10 and 20; SELECT * FROMtbl_name
WHEREkey_column
IN (10,20,30); SELECT * FROMtbl_name
WHEREkey_part1
= 10 ANDkey_part2
IN (10,20,30);
The index
join type is the same as
ALL
, except that the
index tree is scanned. This occurs two ways:
If the index is a covering index for the queries and
can be used to satisfy all data required from the
table, only the index tree is scanned. In this case,
the Extra
column says
Using index
. An index-only scan
usually is faster than
ALL
because the
size of the index usually is smaller than the table
data.
A full table scan is performed using reads from the
index to look up data rows in index order.
Uses index
does not appear in the
Extra
column.
MySQL can use this join type when the query uses only columns that are part of a single index.
A full table scan is done for each combination of rows
from the previous tables. This is normally not good if the
table is the first table not marked
const
, and usually
very bad in all other cases.
Normally, you can avoid
ALL
by adding indexes
that enable row retrieval from the table based on constant
values or column values from earlier tables.
The Extra
column of
EXPLAIN
output contains
additional information about how MySQL resolves the query. The
following list explains the values that can appear in this
column. Each item also indicates for JSON-formatted output
which property displays the Extra
value.
For some of these, there is a specific property. The others
display as the text of the message
property.
If you want to make your queries as fast as possible, look out
for Extra
column values of Using
filesort
and Using temporary
, or,
in JSON-formatted EXPLAIN
output, for
using_filesort
and
using_temporary_table
properties equal to
true
.
Backward index scan
(JSON:
backward_index_scan
)
The optimizer is able to use a descending index on an
InnoDB
table. Shown together with
Using index
. For more information, see
Section 10.3.13, “Descending Indexes”.
Child of '
(JSON: table
'
pushed join@1message
text)
This table is referenced as the child of
table
in a join that can be
pushed down to the NDB kernel. Applies only in NDB
Cluster, when pushed-down joins are enabled. See the
description of the
ndb_join_pushdown
server
system variable for more information and examples.
const row not found
(JSON property:
const_row_not_found
)
For a query such as SELECT ... FROM
, the table
was empty.
tbl_name
Deleting all rows
(JSON property:
message
)
For DELETE
, some storage
engines (such as MyISAM
)
support a handler method that removes all table rows in a
simple and fast way. This Extra
value
is displayed if the engine uses this optimization.
Distinct
(JSON property:
distinct
)
MySQL is looking for distinct values, so it stops searching for more rows for the current row combination after it has found the first matching row.
FirstMatch(
(JSON property: tbl_name
)first_match
)
The semijoin FirstMatch join shortcutting strategy is used
for tbl_name
.
Full scan on NULL key
(JSON property:
message
)
This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-lookup access method.
Impossible HAVING
(JSON property:
message
)
The HAVING
clause is always false and
cannot select any rows.
Impossible WHERE
(JSON property:
message
)
The WHERE
clause is always false and
cannot select any rows.
Impossible WHERE noticed after reading const
tables
(JSON property:
message
)
MySQL has read all
const
(and
system
) tables and
notice that the WHERE
clause is always
false.
LooseScan(
(JSON property: m
..n
)message
)
The semijoin LooseScan strategy is used.
m
and
n
are key part numbers.
No matching min/max row
(JSON property:
message
)
No row satisfies the condition for a query such as
SELECT MIN(...) FROM ... WHERE
.
condition
no matching row in const table
(JSON
property: message
)
For a query with a join, there was an empty table or a table with no rows satisfying a unique index condition.
No matching rows after partition
pruning
(JSON property:
message
)
For DELETE
or
UPDATE
, the optimizer found
nothing to delete or update after partition pruning. It is
similar in meaning to Impossible WHERE
for SELECT
statements.
No tables used
(JSON property:
message
)
The query has no FROM
clause, or has a
FROM DUAL
clause.
For INSERT
or
REPLACE
statements,
EXPLAIN
displays this value
when there is no SELECT
part. For example, it appears for EXPLAIN INSERT
INTO t VALUES(10)
because that is equivalent to
EXPLAIN INSERT INTO t SELECT 10 FROM
DUAL
.
Not exists
(JSON property:
message
)
MySQL was able to do a LEFT JOIN
optimization on the query and does not examine more rows
in this table for the previous row combination after it
finds one row that matches the LEFT
JOIN
criteria. Here is an example of the type of
query that can be optimized this way:
SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;
Assume that t2.id
is defined as
NOT NULL
. In this case, MySQL scans
t1
and looks up the rows in
t2
using the values of
t1.id
. If MySQL finds a matching row in
t2
, it knows that
t2.id
can never be
NULL
, and does not scan through the
rest of the rows in t2
that have the
same id
value. In other words, for each
row in t1
, MySQL needs to do only a
single lookup in t2
, regardless of how
many rows actually match in t2
.
This can also indicate that a WHERE
condition of the form NOT IN
(
or
subquery
)NOT EXISTS
(
has been
transformed internally into an antijoin. This removes the
subquery and brings its tables into the plan for the
topmost query, providing improved cost planning. By
merging semijoins and antijoins, the optimizer can reorder
tables in the execution plan more freely, in some cases
resulting in a faster plan.
subquery
)
You can see when an antijoin transformation is performed
for a given query by checking the
Message
column from SHOW
WARNINGS
following execution of
EXPLAIN
, or in the output of
EXPLAIN FORMAT=TREE
.
An antijoin is the complement of a semijoin
. The
antijoin returns all rows from
table_a
JOIN
table_b
ON
condition
table_a
for which there is
no row in
table_b
which matches
condition
.
Plan is not ready yet
(JSON property:
none)
This value occurs with EXPLAIN FOR
CONNECTION
when the optimizer has not finished
creating the execution plan for the statement executing in
the named connection. If execution plan output comprises
multiple lines, any or all of them could have this
Extra
value, depending on the progress
of the optimizer in determining the full execution plan.
Range checked for each record (index map:
(JSON property:
N
)message
)
MySQL found no good index to use, but found that some of
indexes might be used after column values from preceding
tables are known. For each row combination in the
preceding tables, MySQL checks whether it is possible to
use a range
or
index_merge
access
method to retrieve rows. This is not very fast, but is
faster than performing a join with no index at all. The
applicability criteria are as described in
Section 10.2.1.2, “Range Optimization”, and
Section 10.2.1.3, “Index Merge Optimization”, with the
exception that all column values for the preceding table
are known and considered to be constants.
Indexes are numbered beginning with 1, in the same order
as shown by SHOW INDEX
for
the table. The index map value
N
is a bitmask value that
indicates which indexes are candidates. For example, a
value of 0x19
(binary 11001) means that
indexes 1, 4, and 5 are considered.
Recursive
(JSON property:
recursive
)
This indicates that the row applies to the recursive
SELECT
part of a recursive
common table expression. See Section 15.2.20, “WITH (Common Table Expressions)”.
Rematerialize
(JSON property:
rematerialize
)
Rematerialize (X,...)
is displayed in
the EXPLAIN
row for table
T
, where X
is any
lateral derived table whose rematerialization is triggered
when a new row of T
is read. For
example:
SELECT
...
FROM
t,
LATERAL (derived table that refers to t
) AS dt
...
The content of the derived table is rematerialized to
bring it up to date each time a new row of
t
is processed by the top query.
Scanned
(JSON property:
N
databasesmessage
)
This indicates how many directory scans the server
performs when processing a query for
INFORMATION_SCHEMA
tables, as described
in Section 10.2.3, “Optimizing INFORMATION_SCHEMA Queries”. The
value of N
can be 0, 1, or
all
.
Select tables optimized away
(JSON
property: message
)
The optimizer determined 1) that at most one row should be returned, and 2) that to produce this row, a deterministic set of rows must be read. When the rows to be read can be read during the optimization phase (for example, by reading index rows), there is no need to read any tables during query execution.
The first condition is fulfilled when the query is
implicitly grouped (contains an aggregate function but no
GROUP BY
clause). The second condition
is fulfilled when one row lookup is performed per index
used. The number of indexes read determines the number of
rows to read.
Consider the following implicitly grouped query:
SELECT MIN(c1), MIN(c2) FROM t1;
Suppose that MIN(c1)
can be retrieved
by reading one index row and MIN(c2)
can be retrieved by reading one row from a different
index. That is, for each column c1
and
c2
, there exists an index where the
column is the first column of the index. In this case, one
row is returned, produced by reading two deterministic
rows.
This Extra
value does not occur if the
rows to read are not deterministic. Consider this query:
SELECT MIN(c2) FROM t1 WHERE c1 <= 10;
Suppose that (c1, c2)
is a covering
index. Using this index, all rows with c1 <=
10
must be scanned to find the minimum
c2
value. By contrast, consider this
query:
SELECT MIN(c2) FROM t1 WHERE c1 = 10;
In this case, the first index row with c1 =
10
contains the minimum c2
value. Only one row must be read to produce the returned
row.
For storage engines that maintain an exact row count per
table (such as MyISAM
, but not
InnoDB
), this Extra
value can occur for COUNT(*)
queries
for which the WHERE
clause is missing
or always true and there is no GROUP BY
clause. (This is an instance of an implicitly grouped
query where the storage engine influences whether a
deterministic number of rows can be read.)
Skip_open_table
,
Open_frm_only
,
Open_full_table
(JSON property:
message
)
These values indicate file-opening optimizations that
apply to queries for INFORMATION_SCHEMA
tables.
Skip_open_table
: Table files do not
need to be opened. The information is already
available from the data dictionary.
Open_frm_only
: Only the data
dictionary need be read for table information.
Open_full_table
: Unoptimized
information lookup. Table information must be read
from the data dictionary and by reading table files.
Start temporary
, End
temporary
(JSON property:
message
)
This indicates temporary table use for the semijoin Duplicate Weedout strategy.
unique row not found
(JSON property:
message
)
For a query such as SELECT ... FROM
, no rows
satisfy the condition for a tbl_name
UNIQUE
index or PRIMARY KEY
on the table.
Using filesort
(JSON property:
using_filesort
)
MySQL must do an extra pass to find out how to retrieve
the rows in sorted order. The sort is done by going
through all rows according to the join type and storing
the sort key and pointer to the row for all rows that
match the WHERE
clause. The keys then
are sorted and the rows are retrieved in sorted order. See
Section 10.2.1.16, “ORDER BY Optimization”.
Using index
(JSON property:
using_index
)
The column information is retrieved from the table using only information in the index tree without having to do an additional seek to read the actual row. This strategy can be used when the query uses only columns that are part of a single index.
For InnoDB
tables that have a
user-defined clustered index, that index can be used even
when Using index
is absent from the
Extra
column. This is the case if
type
is
index
and
key
is PRIMARY
.
Information about any covering indexes used is shown for
EXPLAIN FORMAT=TRADITIONAL
and
EXPLAIN FORMAT=JSON
. It is also shown
for EXPLAIN FORMAT=TREE
.
Using index condition
(JSON property:
using_index_condition
)
Tables are read by accessing index tuples and testing them first to determine whether to read full table rows. In this way, index information is used to defer (“push down”) reading full table rows unless it is necessary. See Section 10.2.1.6, “Index Condition Pushdown Optimization”.
Using index for group-by
(JSON
property: using_index_for_group_by
)
Similar to the Using index
table access
method, Using index for group-by
indicates that MySQL found an index that can be used to
retrieve all columns of a GROUP BY
or
DISTINCT
query without any extra disk
access to the actual table. Additionally, the index is
used in the most efficient way so that for each group,
only a few index entries are read. For details, see
Section 10.2.1.17, “GROUP BY Optimization”.
Using index for skip scan
(JSON
property: using_index_for_skip_scan
)
Indicates that the Skip Scan access method is used. See Skip Scan Range Access Method.
Using join buffer (Block Nested Loop)
,
Using join buffer (Batched Key Access)
,
Using join buffer (hash join)
(JSON
property: using_join_buffer
)
Tables from earlier joins are read in portions into the
join buffer, and then their rows are used from the buffer
to perform the join with the current table.
(Block Nested Loop)
indicates use of
the Block Nested-Loop algorithm, (Batched Key
Access)
indicates use of the Batched Key Access
algorithm, and (hash join)
indicates
use of a hash join. That is, the keys from the table on
the preceding line of the
EXPLAIN
output are
buffered, and the matching rows are fetched in batches
from the table represented by the line in which
Using join buffer
appears.
In JSON-formatted output, the value of
using_join_buffer
is always one of
Block Nested Loop
, Batched Key
Access
, or hash join
.
For more information about hash joins, see Section 10.2.1.4, “Hash Join Optimization”.
See Batched Key Access Joins, for information about the Batched Key Access algorithm.
Using MRR
(JSON property:
message
)
Tables are read using the Multi-Range Read optimization strategy. See Section 10.2.1.11, “Multi-Range Read Optimization”.
Using sort_union(...)
, Using
union(...)
, Using
intersect(...)
(JSON property:
message
)
These indicate the particular algorithm showing how index
scans are merged for the
index_merge
join type.
See Section 10.2.1.3, “Index Merge Optimization”.
Using temporary
(JSON property:
using_temporary_table
)
To resolve the query, MySQL needs to create a temporary
table to hold the result. This typically happens if the
query contains GROUP BY
and
ORDER BY
clauses that list columns
differently.
Using where
(JSON property:
attached_condition
)
A WHERE
clause is used to restrict
which rows to match against the next table or send to the
client. Unless you specifically intend to fetch or examine
all rows from the table, you may have something wrong in
your query if the Extra
value is not
Using where
and the table join type is
ALL
or
index
.
Using where
has no direct counterpart
in JSON-formatted output; the
attached_condition
property contains
any WHERE
condition used.
Using where with pushed condition
(JSON
property: message
)
This item applies to NDB
tables only. It means that NDB
Cluster is using the Condition Pushdown optimization to
improve the efficiency of a direct comparison between a
nonindexed column and a constant. In such cases, the
condition is “pushed down” to the
cluster's data nodes and is evaluated on all data
nodes simultaneously. This eliminates the need to send
nonmatching rows over the network, and can speed up such
queries by a factor of 5 to 10 times over cases where
Condition Pushdown could be but is not used. For more
information, see
Section 10.2.1.5, “Engine Condition Pushdown Optimization”.
Zero limit
(JSON property:
message
)
The query had a LIMIT 0
clause and
cannot select any rows.
You can get a good indication of how good a join is by taking
the product of the values in the rows
column of the EXPLAIN
output.
This should tell you roughly how many rows MySQL must examine
to execute the query. If you restrict queries with the
max_join_size
system
variable, this row product also is used to determine which
multiple-table SELECT
statements to execute and which to abort. See
Section 7.1.1, “Configuring the Server”.
The following example shows how a multiple-table join can be
optimized progressively based on the information provided by
EXPLAIN
.
Suppose that you have the
SELECT
statement shown here and
that you plan to examine it using
EXPLAIN
:
EXPLAIN SELECT tt.TicketNumber, tt.TimeIn, tt.ProjectReference, tt.EstimatedShipDate, tt.ActualShipDate, tt.ClientID, tt.ServiceCodes, tt.RepetitiveID, tt.CurrentProcess, tt.CurrentDPPerson, tt.RecordVolume, tt.DPPrinted, et.COUNTRY, et_1.COUNTRY, do.CUSTNAME FROM tt, et, et AS et_1, do WHERE tt.SubmitTime IS NULL AND tt.ActualPC = et.EMPLOYID AND tt.AssignedPC = et_1.EMPLOYID AND tt.ClientID = do.CUSTNMBR;
For this example, make the following assumptions:
The columns being compared have been declared as follows.
Table | Column | Data Type |
---|---|---|
tt |
ActualPC |
CHAR(10) |
tt |
AssignedPC |
CHAR(10) |
tt |
ClientID |
CHAR(10) |
et |
EMPLOYID |
CHAR(15) |
do |
CUSTNMBR |
CHAR(15) |
The tables have the following indexes.
Table | Index |
---|---|
tt |
ActualPC |
tt |
AssignedPC |
tt |
ClientID |
et |
EMPLOYID (primary key) |
do |
CUSTNMBR (primary key) |
The tt.ActualPC
values are not evenly
distributed.
Initially, before any optimizations have been performed, the
EXPLAIN
statement produces the
following information:
table type possible_keys key key_len ref rows Extra et ALL PRIMARY NULL NULL NULL 74 do ALL PRIMARY NULL NULL NULL 2135 et_1 ALL PRIMARY NULL NULL NULL 74 tt ALL AssignedPC, NULL NULL NULL 3872 ClientID, ActualPC Range checked for each record (index map: 0x23)
Because type
is
ALL
for each table, this
output indicates that MySQL is generating a Cartesian product
of all the tables; that is, every combination of rows. This
takes quite a long time, because the product of the number of
rows in each table must be examined. For the case at hand,
this product is 74 × 2135 × 74 × 3872 =
45,268,558,720 rows. If the tables were bigger, you can only
imagine how long it would take.
One problem here is that MySQL can use indexes on columns more
efficiently if they are declared as the same type and size. In
this context, VARCHAR
and
CHAR
are considered the same if
they are declared as the same size.
tt.ActualPC
is declared as
CHAR(10)
and et.EMPLOYID
is CHAR(15)
, so there is a length mismatch.
To fix this disparity between column lengths, use
ALTER TABLE
to lengthen
ActualPC
from 10 characters to 15
characters:
mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);
Now tt.ActualPC
and
et.EMPLOYID
are both
VARCHAR(15)
. Executing the
EXPLAIN
statement again
produces this result:
table type possible_keys key key_len ref rows Extra tt ALL AssignedPC, NULL NULL NULL 3872 Using ClientID, where ActualPC do ALL PRIMARY NULL NULL NULL 2135 Range checked for each record (index map: 0x1) et_1 ALL PRIMARY NULL NULL NULL 74 Range checked for each record (index map: 0x1) et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
This is not perfect, but is much better: The product of the
rows
values is less by a factor of 74. This
version executes in a couple of seconds.
A second alteration can be made to eliminate the column length
mismatches for the tt.AssignedPC =
et_1.EMPLOYID
and tt.ClientID =
do.CUSTNMBR
comparisons:
mysql>ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
MODIFY ClientID VARCHAR(15);
After that modification,
EXPLAIN
produces the output
shown here:
table type possible_keys key key_len ref rows Extra et ALL PRIMARY NULL NULL NULL 74 tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using ClientID, where ActualPC et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1 do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1
At this point, the query is optimized almost as well as
possible. The remaining problem is that, by default, MySQL
assumes that values in the tt.ActualPC
column are evenly distributed, and that is not the case for
the tt
table. Fortunately, it is easy to
tell MySQL to analyze the key distribution:
mysql> ANALYZE TABLE tt;
With the additional index information, the join is perfect and
EXPLAIN
produces this result:
table type possible_keys key key_len ref rows Extra tt ALL AssignedPC NULL NULL NULL 3872 Using ClientID, where ActualPC et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1 et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1 do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1
The rows
column in the output from
EXPLAIN
is an educated guess
from the MySQL join optimizer. Check whether the numbers are
even close to the truth by comparing the
rows
product with the actual number of rows
that the query returns. If the numbers are quite different,
you might get better performance by using
STRAIGHT_JOIN
in your
SELECT
statement and trying to
list the tables in a different order in the
FROM
clause. (However,
STRAIGHT_JOIN
may prevent indexes from
being used because it disables semijoin transformations. See
Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations.)
It is possible in some cases to execute statements that modify
data when EXPLAIN
SELECT
is used with a subquery; for more
information, see Section 15.2.15.8, “Derived Tables”.