MySQL 9.3 Reference Manual Including MySQL NDB Cluster 9.3
Partitioning-related clauses for ALTER
TABLE
can be used with partitioned tables for
repartitioning, to add, drop, discard, import, merge, and split
partitions, and to perform partitioning maintenance.
Simply using a partition_options
clause with ALTER TABLE
on a
partitioned table repartitions the table according to the
partitioning scheme defined by the
partition_options
. This clause
always begins with PARTITION BY
, and
follows the same syntax and other rules as apply to the
partition_options
clause for
CREATE TABLE
(for more
detailed information, see Section 15.1.22, “CREATE TABLE Statement”),
and can also be used to partition an existing table that is
not already partitioned. For example, consider a
(nonpartitioned) table defined as shown here:
CREATE TABLE t1 ( id INT, year_col INT );
This table can be partitioned by HASH
,
using the id
column as the partitioning
key, into 8 partitions by means of this statement:
ALTER TABLE t1 PARTITION BY HASH(id) PARTITIONS 8;
MySQL supports an ALGORITHM
option with
[SUB]PARTITION BY [LINEAR] KEY
.
ALGORITHM=1
causes the server to use the
same key-hashing functions as MySQL 5.1 when computing the
placement of rows in partitions;
ALGORITHM=2
means that the server employs
the key-hashing functions implemented and used by default
for new KEY
partitioned tables in MySQL
5.5 and later. (Partitioned tables created with the
key-hashing functions employed in MySQL 5.5 and later cannot
be used by a MySQL 5.1 server.) Not specifying the option
has the same effect as using ALGORITHM=2
.
This option is intended for use chiefly when upgrading or
downgrading [LINEAR] KEY
partitioned
tables between MySQL 5.1 and later MySQL versions, or for
creating tables partitioned by KEY
or
LINEAR KEY
on a MySQL 5.5 or later server
which can be used on a MySQL 5.1 server.
The table that results from using an ALTER TABLE
... PARTITION BY
statement must follow the same
rules as one created using CREATE TABLE ...
PARTITION BY
. This includes the rules governing
the relationship between any unique keys (including any
primary key) that the table might have, and the column or
columns used in the partitioning expression, as discussed in
Section 26.6.1, “Partitioning Keys, Primary Keys, and Unique Keys”.
The CREATE TABLE ... PARTITION BY
rules
for specifying the number of partitions also apply to
ALTER TABLE ... PARTITION BY
.
The partition_definition
clause
for ALTER TABLE ADD PARTITION
supports
the same options as the clause of the same name for the
CREATE TABLE
statement. (See
Section 15.1.22, “CREATE TABLE Statement”, for the syntax and
description.) Suppose that you have the partitioned table
created as shown here:
CREATE TABLE t1 ( id INT, year_col INT ) PARTITION BY RANGE (year_col) ( PARTITION p0 VALUES LESS THAN (1991), PARTITION p1 VALUES LESS THAN (1995), PARTITION p2 VALUES LESS THAN (1999) );
You can add a new partition p3
to this
table for storing values less than 2002
as follows:
ALTER TABLE t1 ADD PARTITION (PARTITION p3 VALUES LESS THAN (2002));
DROP PARTITION
can be used to drop one or
more RANGE
or LIST
partitions. This statement cannot be used with
HASH
or KEY
partitions; instead, use COALESCE
PARTITION
(see later in this section). Any data
that was stored in the dropped partitions named in the
partition_names
list is
discarded. For example, given the table
t1
defined previously, you can drop the
partitions named p0
and
p1
as shown here:
ALTER TABLE t1 DROP PARTITION p0, p1;
DROP PARTITION
does not work with
tables that use the NDB
storage engine. See
Section 26.3.1, “Management of RANGE and LIST Partitions”, and
Section 25.2.7, “Known Limitations of NDB Cluster”.
ADD PARTITION
and DROP
PARTITION
do not currently support IF
[NOT] EXISTS
.
The DISCARD
PARTITION ... TABLESPACE
and
IMPORT
PARTITION ... TABLESPACE
options extend the
Transportable
Tablespace feature to individual
InnoDB
table partitions. Each
InnoDB
table partition has its own
tablespace file (.ibd
file). The
Transportable
Tablespace feature makes it easy to copy the
tablespaces from a running MySQL server instance to another
running instance, or to perform a restore on the same
instance. Both options take a comma-separated list of one or
more partition names. For example:
ALTER TABLE t1 DISCARD PARTITION p2, p3 TABLESPACE;
ALTER TABLE t1 IMPORT PARTITION p2, p3 TABLESPACE;
When running
DISCARD
PARTITION ... TABLESPACE
and
IMPORT
PARTITION ... TABLESPACE
on subpartitioned tables,
both partition and subpartition names are allowed. When a
partition name is specified, subpartitions of that partition
are included.
The
Transportable
Tablespace feature also supports copying or restoring
partitioned InnoDB
tables. For more
information, see Section 17.6.1.3, “Importing InnoDB Tables”.
Renames of partitioned tables are supported. You can rename
individual partitions indirectly using ALTER TABLE
... REORGANIZE PARTITION
; however, this operation
copies the partition's data.
To delete rows from selected partitions, use the
TRUNCATE PARTITION
option. This option
takes a list of one or more comma-separated partition names.
Consider the table t1
created by this
statement:
CREATE TABLE t1 ( id INT, year_col INT ) PARTITION BY RANGE (year_col) ( PARTITION p0 VALUES LESS THAN (1991), PARTITION p1 VALUES LESS THAN (1995), PARTITION p2 VALUES LESS THAN (1999), PARTITION p3 VALUES LESS THAN (2003), PARTITION p4 VALUES LESS THAN (2007) );
To delete all rows from partition p0
, use
the following statement:
ALTER TABLE t1 TRUNCATE PARTITION p0;
The statement just shown has the same effect as the
following DELETE
statement:
DELETE FROM t1 WHERE year_col < 1991;
When truncating multiple partitions, the partitions do not
have to be contiguous: This can greatly simplify delete
operations on partitioned tables that would otherwise
require very complex WHERE
conditions if
done with DELETE
statements.
For example, this statement deletes all rows from partitions
p1
and p3
:
ALTER TABLE t1 TRUNCATE PARTITION p1, p3;
An equivalent DELETE
statement is shown here:
DELETE FROM t1 WHERE (year_col >= 1991 AND year_col < 1995) OR (year_col >= 2003 AND year_col < 2007);
If you use the ALL
keyword in place of
the list of partition names, the statement acts on all table
partitions.
TRUNCATE PARTITION
merely deletes rows;
it does not alter the definition of the table itself, or of
any of its partitions.
To verify that the rows were dropped, check the
INFORMATION_SCHEMA.PARTITIONS
table,
using a query such as this one:
SELECT PARTITION_NAME, TABLE_ROWS FROM INFORMATION_SCHEMA.PARTITIONS WHERE TABLE_NAME = 't1';
COALESCE PARTITION
can be used with a
table that is partitioned by HASH
or
KEY
to reduce the number of partitions by
number
. Suppose that you have
created table t2
as follows:
CREATE TABLE t2 ( name VARCHAR (30), started DATE ) PARTITION BY HASH( YEAR(started) ) PARTITIONS 6;
To reduce the number of partitions used by
t2
from 6 to 4, use the following
statement:
ALTER TABLE t2 COALESCE PARTITION 2;
The data contained in the last
number
partitions is merged into
the remaining partitions. In this case, partitions 4 and 5
are merged into the first 4 partitions (the partitions
numbered 0, 1, 2, and 3).
To change some but not all the partitions used by a
partitioned table, you can use REORGANIZE
PARTITION
. This statement can be used in several
ways:
To merge a set of partitions into a single partition.
This is done by naming several partitions in the
partition_names
list and
supplying a single definition for
partition_definition
.
To split an existing partition into several partitions.
Accomplish this by naming a single partition for
partition_names
and providing
multiple
partition_definitions
.
To change the ranges for a subset of partitions defined
using VALUES LESS THAN
or the value
lists for a subset of partitions defined using
VALUES IN
.
For partitions that have not been explicitly named, MySQL
automatically provides the default names
p0
, p1
,
p2
, and so on. The same is true with
regard to subpartitions.
For more detailed information about and examples of
ALTER TABLE ... REORGANIZE PARTITION
statements, see
Section 26.3.1, “Management of RANGE and LIST Partitions”.
To exchange a table partition or subpartition with a table,
use the ALTER TABLE ... EXCHANGE
PARTITION
statement—that is, to move any
existing rows in the partition or subpartition to the
nonpartitioned table, and any existing rows in the
nonpartitioned table to the table partition or subpartition.
Once one or more columns have been added to a partitioned
table using ALGORITHM=INSTANT
, it is no
longer possible to exchange partitions with that table.
For usage information and examples, see Section 26.3.3, “Exchanging Partitions and Subpartitions with Tables”.
Several options provide partition maintenance and repair
functionality analogous to that implemented for
nonpartitioned tables by statements such as
CHECK TABLE
and
REPAIR TABLE
(which are also
supported for partitioned tables; for more information, see
Section 15.7.3, “Table Maintenance Statements”). These
include ANALYZE PARTITION
, CHECK
PARTITION
, OPTIMIZE PARTITION
,
REBUILD PARTITION
, and REPAIR
PARTITION
. Each of these options takes a
partition_names
clause consisting
of one or more names of partitions, separated by commas. The
partitions must already exist in the target table. You can
also use the ALL
keyword in place of
partition_names
, in which case
the statement acts on all table partitions. For more
information and examples, see
Section 26.3.4, “Maintenance of Partitions”.
InnoDB
does not currently
support per-partition optimization; ALTER TABLE ...
OPTIMIZE PARTITION
causes the entire table to
rebuilt and analyzed, and an appropriate warning to be
issued. (Bug #11751825, Bug #42822) To work around this
problem, use ALTER TABLE ... REBUILD
PARTITION
and ALTER TABLE ... ANALYZE
PARTITION
instead.
The ANALYZE PARTITION
, CHECK
PARTITION
, OPTIMIZE PARTITION
,
and REPAIR PARTITION
options are not
supported for tables which are not partitioned.
REMOVE PARTITIONING
enables you to remove
a table's partitioning without otherwise affecting the
table or its data. This option can be combined with other
ALTER TABLE
options such as
those used to add, drop, or rename columns or indexes.
Using the ENGINE
option with
ALTER TABLE
changes the
storage engine used by the table without affecting the
partitioning. The target storage engine must provide its own
partitioning handler. Only the InnoDB
and
NDB
storage engines have native
partitioning handlers.
It is possible for an ALTER TABLE
statement to contain a PARTITION BY
or
REMOVE PARTITIONING
clause in an addition to
other alter specifications, but the PARTITION
BY
or REMOVE PARTITIONING
clause
must be specified last after any other specifications.
The ADD PARTITION
, DROP
PARTITION
, COALESCE PARTITION
,
REORGANIZE PARTITION
, ANALYZE
PARTITION
, CHECK PARTITION
, and
REPAIR PARTITION
options cannot be combined
with other alter specifications in a single ALTER
TABLE
, since the options just listed act on individual
partitions. For more information, see
Section 15.1.10.1, “ALTER TABLE Partition Operations”.
Only a single instance of any one of the following options can
be used in a given ALTER TABLE
statement: PARTITION BY
, ADD
PARTITION
, DROP PARTITION
,
TRUNCATE PARTITION
, EXCHANGE
PARTITION
, REORGANIZE PARTITION
, or
COALESCE PARTITION
, ANALYZE
PARTITION
, CHECK PARTITION
,
OPTIMIZE PARTITION
, REBUILD
PARTITION
, REMOVE PARTITIONING
.
For example, the following two statements are invalid:
ALTER TABLE t1 ANALYZE PARTITION p1, ANALYZE PARTITION p2; ALTER TABLE t1 ANALYZE PARTITION p1, CHECK PARTITION p2;
In the first case, you can analyze partitions
p1
and p2
of table
t1
concurrently using a single statement with
a single ANALYZE PARTITION
option that lists
both of the partitions to be analyzed, like this:
ALTER TABLE t1 ANALYZE PARTITION p1, p2;
In the second case, it is not possible to perform
ANALYZE
and CHECK
operations on different partitions of the same table
concurrently. Instead, you must issue two separate statements,
like this:
ALTER TABLE t1 ANALYZE PARTITION p1; ALTER TABLE t1 CHECK PARTITION p2;
REBUILD
operations are currently unsupported
for subpartitions. The REBUILD
keyword is
expressly disallowed with subpartitions, and causes
ALTER TABLE
to fail with an error if so used.
CHECK PARTITION
and REPAIR
PARTITION
operations fail when the partition to be
checked or repaired contains any duplicate key errors.
For more information about these statements, see Section 26.3.4, “Maintenance of Partitions”.