
Oracle® Fusion Middleware
Developing Oracle WebLogic Tuxedo
Connector Applications for Oracle WebLogic
Server

12c (12.2.1.3.0)
E80400-01
August 2107

Oracle Fusion Middleware Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic
Server, 12c (12.2.1.3.0)

E80400-01

Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility vii

Conventions vii

1 Introduction to Oracle WebLogic Tuxedo Connector Programming

1.1 Guide to this Document 1-1

1.2 Developing Oracle WebLogic Tuxedo Connector Applications 1-2

1.2.1 Developing Oracle WebLogic Tuxedo Connector Clients 1-2

1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers 1-2

1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo
CORBA objects 1-3

1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives 1-3

1.4 Oracle WebLogic Tuxedo Connector TypedBuffers 1-4

1.5 New and Changed WTC Features for this Release 1-5

2 Developing Oracle WebLogic Tuxedo Connector Client EJBs

2.1 Joining and Leaving Applications 2-1

2.1.1 Joining an Application 2-1

2.1.2 Leaving an Application 2-2

2.2 Basic Client Operation 2-2

2.2.1 Get an Oracle Tuxedo Object 2-2

2.2.2 Perform Message Buffering 2-3

2.2.3 Send and Receive Messages 2-3

2.2.3.1 Request/Response Communication 2-4

2.2.3.2 Conversational Communication 2-6

2.2.3.3 Enqueuing and Dequeuing Messages 2-6

2.2.4 Close a Connection to an Oracle Tuxedo Object 2-6

2.3 Example Client EJB 2-7

iii

3 Developing Oracle WebLogic Tuxedo Connector Service EJBs

3.1 Basic Service EJB Operation 3-1

3.1.1 Access Service Information 3-1

3.1.2 Buffer Messages 3-1

3.1.3 Perform the Requested Service 3-2

3.1.3.1 Return Client Messages for Request/Response Communication 3-2

3.1.3.2 Use tpsend and tprecv for Conversational Communication 3-2

3.2 Example Service EJB 3-3

4 Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and
CORBA Interoperability

4.1 How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the
CORBA Java API 4-1

4.1.1 Using CosNaming Service 4-2

4.1.1.1 Example ToupperCorbaBean.java Code 4-3

4.1.2 Using FactoryFinder 4-4

4.1.2.1 WLEC to Oracle WebLogic Tuxedo Connector Migration 4-4

4.1.2.2 Example Code 4-4

4.2 How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo
Connector 4-6

4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle
WebLogic Tuxedo Connector 4-6

4.2.2 How to Develop Outbound RMI/IIOP Applications to use the Oracle
WebLogic Tuxedo Connector 4-7

4.2.2.1 How to Modify the ejb-jar.xml File to Pass a FederationURL to
EJBs 4-7

4.2.2.2 How to Modify EJBs to Use FederationURL to Access an Object 4-8

4.3 How to Use FederationURL Formats 4-10

4.3.1 Using corbaloc URL Format 4-10

4.3.1.1 Examples of corbaloc:tgiop 4-10

4.3.1.2 Examples using -ORBInitRef 4-10

4.3.1.3 Examples Using -ORBDefaultInitRef 4-10

4.3.2 Using the corbaname URL Format 4-11

4.3.2.1 Examples Using -ORBInitRef 4-11

4.4 How to Manage Transactions for Oracle Tuxedo CORBA Applications 4-11

5 Oracle WebLogic Tuxedo Connector JATMI Transactions

5.1 Global Transactions 5-1

5.2 JTA Transaction API 5-1

5.2.1 Types of JTA Interfaces 5-1

iv

5.2.1.1 Transaction 5-2

5.2.1.2 TransactionManager 5-2

5.2.1.3 UserTransaction 5-2

5.2.2 JTA Transaction Primitives 5-2

5.3 Defining a Transaction 5-2

5.3.1 Starting a Transaction 5-3

5.3.1.1 Using TPNOTRAN 5-3

5.3.2 Terminating a Transaction 5-3

5.4 Oracle WebLogic Tuxedo Connector Transaction Rules 5-4

5.5 Example Transaction Code 5-5

6 Oracle WebLogic Tuxedo Connector JATMI Conversations

6.1 Overview of Oracle WebLogic Tuxedo Connector Conversational
Communication 6-1

6.2 Oracle WebLogic Tuxedo Connector Conversation Characteristics 6-2

6.3 Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives 6-2

6.4 Creating Oracle WebLogic Tuxedo Connector Conversational Clients and
Servers 6-2

6.4.1 Creating Conversational Clients 6-3

6.4.1.1 Establishing a Connection to an Oracle Tuxedo Conversational
Service 6-3

6.4.1.2 Example TuxedoConversationBean.java Code 6-3

6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational Servers 6-4

6.5 Sending and Receiving Messages 6-4

6.5.1 Sending Messages 6-4

6.5.2 Receiving Messages 6-5

6.6 Ending a Conversation 6-5

6.6.1 Oracle Tuxedo Application Originates Conversation 6-6

6.6.2 Oracle WebLogic Tuxedo Connector Application Originates
Conversation 6-6

6.6.3 Ending Hierarchical Conversations 6-6

6.7 Executing a Disorderly Disconnect 6-6

6.8 Understanding Conversational Communication Events 6-7

6.9 Oracle WebLogic Tuxedo Connector Conversation Guidelines 6-8

7 Using FML with Oracle WebLogic Tuxedo Connector

7.1 Overview of FML 7-1

7.2 The Oracle WebLogic Tuxedo Connector FML API 7-2

7.3 FML Field Table Administration 7-2

7.3.1 Using the DynRdHdr Property for mkfldclass32 Class 7-3

v

7.4 Using TypedFML32 Constructors 7-4

7.4.1 Gaining TypedFML32 Performance Improvements 7-4

7.5 tBridge XML/FML32 Translation 7-5

7.5.1 FLAT 7-5

7.5.2 NO 7-6

7.5.3 FML32 Considerations 7-6

7.6 Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation 7-7

7.6.1 Limitations of XmlFmlCnv Class 7-7

7.7 MBSTRING Usage 7-7

7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain 7-8

7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain 7-8

7.7.3 Using FML with Oracle WebLogic Tuxedo Connector 7-8

8 Oracle WebLogic Tuxedo Connector JATMI VIEWs

8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers 8-1

8.2 How to Create a VIEW Description File 8-1

8.2.1 Example VIEW Description File 8-3

8.3 How to Use the viewj Compiler 8-3

8.4 How to Pass Information to and from a VIEW Buffer 8-4

8.5 How to Use VIEW Buffers in JATMI Applications 8-5

8.5.1 How to Get VIEW32 Data In and Out of FML32 Buffers 8-6

8.6 Using the XmlViewCnv Class for XML to and From View/View(32) Translation 8-7

8.6.1 Translating Nested Views 8-8

9 How to Create a Custom AppKey Plug-in

9.1 How to Create a Custom Plug-In 9-1

9.2 Example Custom Plug-in 9-1

10

Application Error Management

10.1 Testing for Application Errors 10-1

10.1.1 Exception Classes 10-1

10.1.2 Fatal Transaction Errors 10-1

10.2 Oracle WebLogic Tuxedo Connector Time-Out Conditions 10-2

10.2.1 Blocking vs. Transaction Time-out 10-2

10.2.2 Effect on commit() 10-2

10.2.3 Effect of TPNOTRAN 10-2

10.3 Guidelines for Tracking Application Events 10-3

vi

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing Oracle Weblogic Tuxedo Connector Applications for Oracle
Weblogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction to Oracle WebLogic Tuxedo
Connector Programming

This chapter provides information about the development environment you will be
using to write code for applications that interoperate between Oracle WebLogic Server
and Oracle Tuxedo.
This chapter includes the following sections:

• Guide to this Document

• Developing Oracle WebLogic Tuxedo Connector Applications

• Oracle WebLogic Tuxedo Connector JATMI Primitives

• Oracle WebLogic Tuxedo Connector TypedBuffers

• New and Changed WTC Features for this Release.

Note:

See Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server.

1.1 Guide to this Document
This document introduces the Oracle WebLogic Tuxedo Connector application
development environment. It describes how to develop EJBs that allow Oracle
WebLogic Server to interoperate with Oracle Tuxedo objects.

The document is organized as follows:

• Introduction to Oracle WebLogic Tuxedo Connector Programming, provides
information about the development environment you will be using to write code for
applications that interoperate between Oracle WebLogic Server and Oracle
Tuxedo.

• Developing Oracle WebLogic Tuxedo Connector Client EJBs, provides information
on how to create client EJBs.

• Developing Oracle WebLogic Tuxedo Connector Service EJBs, provides
information on how to create service EJBs.

• Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA
Interoperability, provides information on how to develop CORBA applications for
the Oracle WebLogic Tuxedo Connector.

• Oracle WebLogic Tuxedo Connector JATMI Transactions, provides information on
global transactions and how to define and manage them in your applications.

• Oracle WebLogic Tuxedo Connector JATMI Conversations, provides information
on conversations and how to define and manage them in your applications.

1-1

• Using FML with Oracle WebLogic Tuxedo Connector, discusses the Field
Manipulation Language (FML) and describes how the Oracle WebLogic Tuxedo
Connector uses FML.

• Oracle WebLogic Tuxedo Connector JATMI VIEWs, provides information on View
buffers and how to define and manage them in your applications.

• How to Create a Custom AppKey Plug-in, provides information on how to develop
a Custom AppKey Plug-in.

• Application Error Management, provide mechanisms to manage and interpret error
conditions.

1.2 Developing Oracle WebLogic Tuxedo Connector
Applications

Note:

See Javadocs for WebLogic Classes for more information on the Oracle
WebLogic Tuxedo Connector JATMI. The Oracle WebLogic Tuxedo
Connector classes are located in the weblogic.wtc.jatmi and weblogic.wtc.gwt
packages.

In addition to the Java code that expresses the logic of your application, you will be
using the Java Application -to-Transaction Monitor Interface (JATMI) to provide the
interface between Oracle WebLogic Server and Oracle Tuxedo.

1.2.1 Developing Oracle WebLogic Tuxedo Connector Clients

Note:

See Developing Oracle WebLogic Tuxedo Connector Client EJBs.

A client process takes user input and sends a service request to a server process that
offers the requested service. Oracle WebLogic Tuxedo Connector JATMI client
classes are used to create clients that access services found in Oracle Tuxedo. These
client classes are available to any service that is made available through a the Oracle
WebLogic Tuxedo Connector WTCServer MBean.

1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers

Note:

See Developing Oracle WebLogic Tuxedo Connector Service EJBs.

Chapter 1
Developing Oracle WebLogic Tuxedo Connector Applications

1-2

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service
subroutines. Oracle WebLogic Tuxedo Connector uses EJBs to implement services
which Oracle Tuxedo clients invoke.

1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle
Tuxedo CORBA objects

Note:

See Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA
Interoperability.

The Oracle WebLogic Tuxedo Connector provides bi-directional interoperability
between Oracle WebLogic Server and Oracle Tuxedo CORBA objects. The Oracle
WebLogic Tuxedo Connector:

• Enables Oracle Tuxedo CORBA objects to invoke upon EJBs deployed in Oracle
WebLogic Server using the RMI/IIOP API (Inbound).

• Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo using the RMI/IIOP API (Outbound).

• Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo using a CORBA Java API (Outbound).

1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives
The JATMI is a set of primitives used to begin and end transactions, allocate and free
buffers, and provide the communication between clients and servers.

Table 1-1 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of an Oracle Tuxedo service during
request/response communication.tpacall has two forms:

• deferred synchronous
• asynchronous

tpacall Use for synchronous invocation of an Oracle Tuxedo service during
request/response communication.

tpconnect Use to establish a connection to an Oracle Tuxedo conversational
service.

tpdiscon Use to abort a conversational connection and generate a
TPEV_DISCONIMM event when executed by the process controlling
the conversation.

tpdequeue Use for receiving messages from an Oracle Tuxedo /Q during request/
response communication.

Chapter 1
Oracle WebLogic Tuxedo Connector JATMI Primitives

1-3

Table 1-1 (Cont.) JATMI Primitives

Name Operation

tpenqueue Use for placing a message on an Oracle Tuxedo /Q during request/
response communication.

tpgetrply Use for retrieving replies from an Oracle Tuxedo service during
request/response communication.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application during conversational communication.

tpsend Use to send data across a open connection to an Oracle Tuxedo
application during conversational communication.

tpterm Use to close a connection to an Oracle Tuxedo object.

1.4 Oracle WebLogic Tuxedo Connector TypedBuffers
Oracle WebLogic Tuxedo Connector provides an interface called TypedBuffers that
corresponds to Oracle Tuxedo typed buffers. Messages are passed to servers in typed
buffers. The Oracle WebLogic Tuxedo Connector provides the following buffer types:

Table 1-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters
(byte array), any of which can be null. Oracle Tuxedo equivalent:
CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries
its own identifier, an occurrence number, and possibly a length
indicator. Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Oracle Tuxedo
equivalent: VIEW

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

TypedMBString Buffer type used when the data is a wide array of characters to support
multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

Chapter 1
Oracle WebLogic Tuxedo Connector TypedBuffers

1-4

1.5 New and Changed WTC Features for this Release
See What's New in Oracle WebLogic Server 12.2.1.3.0 for a comprehensive listing of
the new WebLogic Server features introduced in this release.

Chapter 1
New and Changed WTC Features for this Release

1-5

Chapter 1

New and Changed WTC Features for this Release

1-6

2
Developing Oracle WebLogic Tuxedo
Connector Client EJBs

This chapter describes how to create Oracle WebLogic Tuxedo Connector client EJBs.
These client EJBs take user input and send service requests to a server process or
outbound object that offers a requested service. Oracle WebLogic Tuxedo Connector
JATMI client classes are used to create clients that access services found in Oracle
Tuxedo.
This chapter includes the following sections:

• Joining and Leaving Applications

• Basic Client Operation

• Example Client EJB

Note:

See Javadocs for WebLogic Classes for more information on the Oracle
WebLogic Tuxedo Connector JATMI. The Oracle WebLogic Tuxedo
Connector classes are located in the weblogic.wtc.jatmi and weblogic.wtc.gwt
packages.

2.1 Joining and Leaving Applications
Oracle Tuxedo and Oracle WebLogic Tuxedo Connector have different approaches to
connect to services.

2.1.1 Joining an Application
The following section compares how Oracle Tuxedo and Oracle WebLogic Tuxedo
Connector join an application:

• Oracle Tuxedo uses tpinit() to join an application.

• Oracle WebLogic Tuxedo Connector uses a WTCServer MBean to provide
information required to create a path to the Oracle Tuxedo service. Security and
client authentication is provided by configuring the Remote TDM and Imported
Services MBean components of a WTCServer MBean. This pathway is created
when the Oracle WebLogic Server is started and a WTCServer MBean is present
in the config.xml file and assigned (targeted) to a server.

• Oracle WebLogic Tuxedo Connector uses TuxedoConnectionFactory to get a
TuxedoConnection object and then uses getTuxedoConnection() to make a
connection to the Oracle Tuxedo object. The following example shows how a
Oracle WebLogic Server application joins an Oracle Tuxedo application using
Oracle WebLogic Tuxedo Connector.

2-1

Example 2-1 Example Client Code to Join an Oracle Tuxedo Application

.

.

.
try {
 ctx = new InitialContext();
 tcf =
 (TuxedoConnectionFactory)
 ctx.lookup("tuxedo.services.TuxedoConnection");
 } catch (NamingException ne) {

// Could not get the tuxedo object, throw TPENOENT
throw new TPException(TPException.TPENOENT,
 "Could not get TuxedoConnectionFactory : " + ne);
 }

myTux = tcf.getTuxedoConnection();
.
.
.

2.1.2 Leaving an Application
The following section compares how Oracle Tuxedo and Oracle WebLogic Tuxedo
Connector leave an application:

• Oracle Tuxedo uses tpterm() to leave an application.

• Oracle WebLogic Tuxedo Connector uses the JATMI primitive tpterm() to close a
connection to an Oracle Tuxedo object.

• Oracle WebLogic Tuxedo Connector closes the pathway to an Oracle Tuxedo
service when a WTCServer MBean is assigned a new target server or the server
is shutdown.

2.2 Basic Client Operation
A client process uses Java and JATMI primitives to provide the following basic
application tasks:

• Get an Oracle Tuxedo Object

• Perform Message Buffering

• Send and Receive Messages

• Close a Connection to an Oracle Tuxedo Object

A client may send and receive any number of service requests before leaving the
application.

2.2.1 Get an Oracle Tuxedo Object
Establish a connection to a remote domain by looking up
tuxedo.services.TuxedoConnection in the JNDI tree to get TuxedoConnectionFactory,
and use it to get a TuxedoConnection object.

Chapter 2
Basic Client Operation

2-2

2.2.2 Perform Message Buffering
Use the following TypedBuffers when sending and receiving messages between your
application and Oracle Tuxedo:

Table 2-1 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters
(byte array), any of which can be null. Oracle Tuxedo equivalent:
CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries
its own identifier, an occurrence number, and possibly a length
indicator. Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Oracle Tuxedo
equivalent: View

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: View32.

TypedMBString Buffer type used when the data is a wide array of characters to support
multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

2.2.3 Send and Receive Messages
Oracle WebLogic Tuxedo Connector clients support three types of communications
with Oracle Tuxedo service applications:

• Request/Response Communication

• Conversational Communication

• Enqueuing and Dequeuing Messages

Chapter 2
Basic Client Operation

2-3

2.2.3.1 Request/Response Communication

Note:

Oracle WebLogic Tuxedo Connector does not provide a JATMI primitive to
support setting the priority of a message request. All messages originating
from a Oracle WebLogic Tuxedo Connector client have a message priority of
50.

Use the following JATMI primitives to request and receive response messages
between your Oracle WebLogic Tuxedo Connector client application and Oracle
Tuxedo:

Table 2-2 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of an
Oracle Tuxedo service.This JATMI primitive
has two forms:

• deferred synchronous
• asynchronous

tpacall Use for synchronous invocation of an Oracle
Tuxedo service.

tpgetrply Use for retrieving replies from deferred
synchronous calls to an Oracle Tuxedo
service.

tpcancel Use to cancel an outstanding message reply
for a call descriptor returned by tpacall.

Note: You can not use tpcancel to cancel a
call descriptor associated with a transaction.

2.2.3.1.1 Using Synchronous Service Calls
Use tpcall to send a request to a service and synchronously await for the reply. The
service specified must be advertised by your Oracle Tuxedo application. Logically,
tpcall() has the same functionality as calling tpacall() and immediately calling
tpgetreply().

2.2.3.1.2 Using Deferred Synchronous Service Calls
A deferred synchronous tpacall allows you to send a request to an Oracle Tuxedo
service and not immediately wait for the reply. This allows you to send a request,
perform other work, and then retrieve the reply.

A deferred tpacall() service call sends a request to an Oracle Tuxedo service and
immediately returns from the call. The service specified must be advertised by your
Oracle Tuxedo application. Upon successful completion of the call, tpacall() returns

Chapter 2
Basic Client Operation

2-4

an object that serves as a descriptor. The calling thread is now available to perform
other tasks. You can use the call descriptor to:

• Get the correct reply for the sent request using tpgetreply()

• Cancel an outstanding message reply using tpcancel().

When you are ready to retrieve the reply, use tpgetreply() to dequeue the reply using
the call descriptor returned by tpacall(). If the reply is not immediately available, the
calling thread polls for the reply.

If tpacall() is in a transaction, you must receive the reply using tpgetreply() before
the transaction can commit. You can not use tpcancel to cancel a call descriptor
associated with a transaction. For example: If you make three tpacall() requests in a
transaction, you must make three tpgetreply() calls and successfully dequeue a reply
for each of the three requests for the transaction to commit.

2.2.3.1.3 Using Asynchronous Calls
The asynchronous tpacall allows you to send a request to an Oracle Tuxedo service
and release the thread resource that performed the call to the thread pool. This allows
a very large number of outstanding requests to be serviced with a much smaller
number of threads.

An asynchronous tpacall() service call sends a request to an Oracle Tuxedo service.
The service specified must be advertised by your Oracle Tuxedo application. Upon
successful completion of the call, asynchronous tpacall() returns an object that
serves as a descriptor. The calling thread is now available to perform other tasks. You
can use the call descriptor to identify the correct message reply from
TpacallAsynchReply for a sent message request or cancel an outstanding message
reply using tpcancel().

Note:

You can not use the call descriptor to invoke tpgetreply().

When the service reply is ready, the callback object is invoked on a different thread. If
the original request succeeded, the TpacallAsynchReply.sucess method returns the
reply from the service. If the original request failed, the TpacallAsynchReply.failure
method returns a failure code.

You should implement the callback object using the following guidelines:

• The reply thread is obtained from the threadpool. The thread making the
asynchronous tpacall() does not wait for the reply message.

• The user context of the reply thread will be restored to that of the original caller of
asynchronous tpacall().

• It is up to the callback object to restore any additional context and resume
whatever processing was interrupted when the original asynchronous tpacall()
was made.

• It is up to you to synchronize work within the multi threaded environment. For
example: If an asynchronous tpacall() request is made and the reply is returned

Chapter 2
Basic Client Operation

2-5

immediately, it is possible for the call back object to be modified by the reply
thread before the calling thread has finished.

• The reply thread will not retain the transaction context of the calling thread.

• If asynchronous tpacall() is in a transaction, you must receive the reply using
TpacallAsynchReply before the transaction can commit. You can not use tpcancel to
cancel a call descriptor associated with a transaction.

2.2.3.2 Conversational Communication

Note:

See Oracle WebLogic Tuxedo Connector JATMI Conversations for more
information on Conversational Communication.

Use the following conversational primitives when creating conversational clients that
communicate with Oracle Tuxedo services:

Table 2-3 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational
service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event
when executed by the process controlling the conversation.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across an open connection to an Oracle Tuxedo
application.

2.2.3.3 Enqueuing and Dequeuing Messages
Use the following JATMI primitives to enqueue and dequeue messages between your
Oracle WebLogic Tuxedo Connector client application and Oracle Tuxedo:

Table 2-4 JATMI Primitives

Name Operation

tpdequeue Use for receiving messages from an Oracle Tuxedo /Q.

tpenqueue Use for placing a message on an Oracle Tuxedo /Q.

2.2.4 Close a Connection to an Oracle Tuxedo Object
Use tpterm() to close a connection to an object and prevent future operations on this
object.

Chapter 2
Basic Client Operation

2-6

2.3 Example Client EJB
The following Java code provides an example of the ToupperBean.java client EJB which
sends a string argument to a server and receives a reply string from the server.

Example 2-2 Example Client Application

.

.

.
public String Toupper(String toConvert)
 throws TPException, TPReplyException
{
 Context ctx;
 TuxedoConnectionFactory tcf;
 TuxedoConnection myTux;
 TypedString myData;
 Reply myRtn;
 int status;

 log("toupper called, converting " + toConvert);

 try {
 ctx = new InitialContext();
 tcf = (TuxedoConnectionFactory) ctx.lookup(
 "tuxedo.services.TuxedoConnection");
 }
 catch (NamingException ne) {
 // Could not get the tuxedo object, throw TPENOENT
 throw new TPException(TPException.TPENOENT, "Could not get
 TuxedoConnectionFactory : " + ne);
 }

 myTux = tcf.getTuxedoConnection();

 myData = new TypedString(toConvert);

 log("About to call tpcall");
 try {
 myRtn = myTux.tpcall("TOUPPER", myData, 0);
}
 catch (TPReplyException tre) {
 log("tpcall threw TPReplyExcption " + tre);
 throw tre;
 }
 catch (TPException te) {
 log("tpcall threw TPException " + te);
 throw te;
 }
 catch (Exception ee) {
 log("tpcall threw exception: " + ee);
 throw new TPException(TPException.TPESYSTEM, "Exception: " + ee);
 }
 log("tpcall successfull!");

 myData = (TypedString) myRtn.getReplyBuffer();

 myTux.tpterm();// Closing the association with Tuxedo

Chapter 2
Example Client EJB

2-7

 return (myData.toString());
}
.
.
.

Chapter 2
Example Client EJB

2-8

3
Developing Oracle WebLogic Tuxedo
Connector Service EJBs

This chapter describes how to create Oracle WebLogic Tuxedo Connector service
EJBs.
This chapter includes the following sections:

• Basic Service EJB Operation

• Example Service EJB

3.1 Basic Service EJB Operation
A service application uses Java and JATMI primitives to provide the following tasks:

• Access Service Information

• Buffer Messages

• Perform the Requested Service

3.1.1 Access Service Information
Use the TPServiceInformation class to access service information sent by the Oracle
Tuxedo client to run the service.

Table 3-1 JATMI TPServiceInformation Primitives

Buffer Type Description

getServiceData() Use to return the service data sent from the Oracle Tuxedo Client.

getServiceFlags() Use to return the service flags sent from the Oracle Tuxedo Client.

getServiceName() Use to return the service name that was called.

3.1.2 Buffer Messages
Use the following TypedBuffers when sending and receiving messages between your
application and Oracle Tuxedo:

Table 3-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that
terminates with the null character. Oracle Tuxedo equivalent: STRING.

3-1

Table 3-2 (Cont.) TypedBuffers

Buffer Type Description

TypedCArray Buffer type used when the data is an undefined array of characters
(byte array), any of which can be null. Oracle Tuxedo equivalent:
CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries
its own identifier, an occurrence number, and possibly a length
indicator. Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Tuxedo equivalent:
VIEW

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

TypedXOctet Buffer type used when the data is an undefined array of characters
(byte array) any of which can be null. X_OCTET is identical in
semantics to CARRAY. Oracle Tuxedo equivalent: X_OCTET.

TypedXCommon Buffer type identical in semantics to View. Oracle Tuxedo equivalent:
VIEW.

TypedXCType Buffer type identical in semantics to View. Oracle Tuxedo equivalent:
VIEW.

TypedMBString Buffer type used when the data is a wide array of characters to support
multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

3.1.3 Perform the Requested Service
Use Java code to express the logic required to provide your service.

3.1.3.1 Return Client Messages for Request/Response Communication
Use the TuxedoReply class setReplyBuffer() method to respond to client requests.

3.1.3.2 Use tpsend and tprecv for Conversational Communication

Note:

See Oracle WebLogic Tuxedo Connector JATMI Conversations.

Chapter 3
Basic Service EJB Operation

3-2

Use the following JATMI primitives when creating conversational servers that
communicate with Oracle Tuxedo clients:

Table 3-3 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event when
executed by the process controlling the conversation.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across a open connection to an Oracle Tuxedo
application.

3.2 Example Service EJB
The following provides an example of the TolowerBean.java service EJB which receives
a string argument, converts the string to all lower case, and returns the converted
string to the client.

Example 3-1 Example Service EJB

.

.

.

public Reply service(TPServiceInformation mydata) throws TPException {
 TypedString data;
 String lowered;
 TypedString return_data;

 log("service tolower called");

 data = (TypedString) mydata.getServiceData();
 lowered = data.toString().toLowerCase();
 return_data = new TypedString(lowered);

 mydata.setReplyBuffer(return_data);
 return (mydata);
}
.
.
.

Chapter 3
Example Service EJB

3-3

Chapter 3

Example Service EJB

3-4

4
Using Oracle WebLogic Tuxedo Connector
for RMI/IIOP and CORBA Interoperability

This chapter describes how to modify applications to use Oracle WebLogic Tuxedo
Connector to support interoperability between Oracle WebLogic Server and Oracle
Tuxedo CORBA objects.
This chapter includes the following sections:

• How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the
CORBA Java API

• How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo
Connector

• How to Use FederationURL Formats

• How to Manage Transactions for Oracle Tuxedo CORBA Applications

Note:

You will need to perform some administration tasks to configure the Oracle
WebLogic Tuxedo Connector for CORBA interoperability. See Administration
of Corba Applications in Administering WebLogic Tuxedo Connector for Oracle
WebLogic Server.

See CORBA Programming at http://docs.oracle.com/cd/E13203_01/tuxedo/
tux100/interm/corbaprog.html.

4.1 How to Develop Oracle WebLogic Tuxedo Connector
Client Beans using the CORBA Java API

The Oracle WebLogic Tuxedo Connector enables objects (such as EJBs or RMI
objects) to invoke upon CORBA objects deployed in Oracle Tuxedo using the CORBA
Java API (Outbound). Oracle WebLogic Tuxedo Connector implements a WTC ORB
which uses Oracle WebLogic Server RMI-IIOP runtime and CORBA support. This
enhancement provides the following features:

• Support of out and inout parameters

• Support for a call a CORBA service from Oracle WebLogic Server using
transactions and security.

• Support for an ORB hosted in JNDI rather than an instance of the JDK ORB used
in previous releases.

• A wrapper is provided to allow users with legacy applications to use the new ORB
without modifying their existing applications. Oracle recommends that users
migrate to the new method of looking up the ORB in JNDI instead of doing:

4-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/interm/corbaprog.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/interm/corbaprog.html

ORB orb = ORB.init(args, Prop);

To use CORBA Java API, you must use the WTC ORB. Use one of the following
methods to obtain an ORB in your Bean:

Properties Prop;
Prop = new Properties();
Prop.put("org.omg.CORBA.ORBClass","weblogic.wtc.corba.ORB");
ORB orb = ORB.init(new String[0], Prop);

or

ORB orb = (ORB)(new InitialContext().lookup("java:comp/ORB"));

or

ORB orb = ORB.init();

You can use either of the following methods to reference objects deployed in Oracle
Tuxedo:

• Using CosNaming Service

• Using FactoryFinder

4.1.1 Using CosNaming Service

Note:

See How to Use FederationURL Formats.

1. The Oracle WebLogic Tuxedo Connector uses the CosNaming service to get a
reference to an object in the remote Oracle Tuxedo CORBA domain. This is
accomplished by using a corbaloc:tgiop or corbaname:tgiop object reference. The
following statements use the CosNaming service to get a reference to an Oracle
Tuxedo CORBA Object:

// Get the simple factory.
org.omg.CORBA.Object simple_fact_oref =
 orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

Where:

• simpapp is the domain id of the Oracle Tuxedo domain specified in the Oracle
Tuxedo UBB.

• simple_factory is the name that the object reference was bound to in the Oracle
Tuxedo CORBA CosNaming server.

Chapter 4
How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

4-2

4.1.1.1 Example ToupperCorbaBean.java Code

Note:

For an example on how to develop client beans for outbound Oracle Tuxedo
CORBA objects, see the ORACLE_HOME\wlserver\samples\server\wtc\corba
\simpappcns package in your Oracle WebLogic Server examples distribution.
See Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

The following ToupperCorbaBean.java code provides an example of how to call
the WTC ORB and get an object reference using the COSNaming Service.

Example 4-1 Example Service Application

.

.

.
public String Toupper(String toConvert)
throws RemoteException
{
 log("toupper called, converting " + toConvert);

 try {
 // Initialize the ORB.
 String args[] = null;
 Properties Prop;
 Prop = new Properties();
 Prop.put("org.omg.CORBA.ORBClass",
 "weblogic.wtc.corba.ORB");

 ORB orb = (ORB) new InitialContext().lookup("java:comp/ORB");

 // Get the simple factory.
 org.omg.CORBA.Object simple_fact_oref =
 orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

 //Narrow the simple factory.
 SimpleFactory simple_factory_ref =
 SimpleFactoryHelper.narrow(simple_fact_oref);

 // Find the simple object.
 Simple simple = simple_factory_ref.find_simple();

 // Convert the string to upper case.
 org.omg.CORBA.StringHolder buf =
 new org.omg.CORBA.StringHolder(toConvert);
 simple.to_upper(buf);
 return buf.value;
 }
 catch (Exception e) {
 throw new RemoteException("Can't call TUXEDO CORBA server: " +e);
 }
}
.

Chapter 4
How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

4-3

.

.

4.1.2 Using FactoryFinder

Note:

See How to Use FederationURL Formats for more information on object
references.

Oracle WebLogic Tuxedo Connector provides support for FactoryFinder objects using
the find_one_factory_by_id method. This is accomplished by using a corbaloc:tgiop or
corbaname:tgiop object reference. Use the following method to obtain the
FactoryFinder object using the ORB:

// String to Object.
org.omg.CORBA.Object fact_finder_oref =
 orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");

// Narrow the factory finder.
FactoryFinder fact_finder_ref =
 FactoryFinderHelper.narrow(fact_finder_oref);

// Use the factory finder to find the simple factory.
org.omg.CORBA.Object simple_fact_oref =
 fact_finder_ref.find_one_factory_by_id(SimpleFactoryHelper.id());

Where:

• simpapp is the domain id of the Oracle Tuxedo domain specified in the Oracle
Tuxedo UBB.

• FactoryFinder is the name that the object reference was bound to in the Oracle
Tuxedo CORBA server.

4.1.2.1 WLEC to Oracle WebLogic Tuxedo Connector Migration
WLEC is no longer available or supported in Oracle WebLogic Server. WLEC users
should migrate their applications to Oracle WebLogic Tuxedo Connector.

4.1.2.2 Example Code
The following code provides an example of how to call the WTC ORB and get an
object reference using FactoryFinder.

Example 4-2 Example FactoryFinder Code

.

.

.
public ConverterResult convert (String changeCase, String mixed)
throws ProcessingErrorException
{
 String result;
 try {

Chapter 4
How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

4-4

 // Initialize the ORB.
 String args[] = null;
 Properties Prop;
 Prop = new Properties();
 Prop.put("org.omg.CORBA.ORBClass","weblogic.wtc.corba.ORB");
 ORB orb = (ORB)new InitialContext().lookup("java:comp/ORB");

 org.omg.CORBA.Object fact_finder_oref =
 orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");

 // Narrow the factory finder.
 FactoryFinder fact_finder_ref =
 FactoryFinderHelper.narrow(fact_finder_oref);

 // find_one_factory_by_id
 org.omg.CORBA.Object simple_fact_oref =
 fact_finder_ref.find_one_factory_by_id(FactoryFinderHelper.id());

 // Narrow the simple factory.
 SimpleFactory simple_factory_ref =
 SimpleFactoryHelper.narrow(simple_fact_oref);

 // Find the simple object.
 Simple simple = simple_factory_ref.find_simple();

 if (changeCase.equals("UPPER")) {
 // Invoke the to_upper opeation on M3 Simple object
 org.omg.CORBA.StringHolder buf =
 new org.omg.CORBA.StringHolder(mixed);
 simple.to_upper(buf);
 result = buf.value;
 }
 else
 {
 result = simple.to_lower(mixed);
 }

 }
 catch (org.omg.CORBA.SystemException e) {e.printStackTrace();

 throw new ProcessingErrorException("Converter error: Corba system exception: "
+ e);
 }
 catch (Exception e) {
 e.printStackTrace();
 throw new ProcessingErrorException("Converter error: " + e);
 }
return new ConverterResult(result);
}
.
.
.

Chapter 4
How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

4-5

4.2 How to Develop RMI/IIOP Applications for the Oracle
WebLogic Tuxedo Connector

Note:

See Developing RMI Applications for Oracle WebLogic Server.

RMI over IIOP (Internet Inter-ORB Protocol) extends RMI so that Java programs can
interact with Common Object Request Broker Architecture (CORBA) clients and
execute CORBA objects. The Oracle WebLogic Tuxedo Connector:

• Enables Oracle Tuxedo CORBA objects to invoke upon EJBs deployed in Oracle
WebLogic Server (Inbound).

• Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo (Outbound).

The following sections provide information on how to modify RMI/IIOP applications to
use the Oracle WebLogic Tuxedo Connector to interoperate with Oracle Tuxedo
CORBA applications:

• How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo
Connector

• How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic
Tuxedo Connector

4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle
WebLogic Tuxedo Connector

A client must pass the correct name to which the Oracle WebLogic Server's name
service has been bound to the COSNaming Service.

The following code provides an example for obtaining a naming context. "WLS" is the
bind name specified in the cnsbind command detailed in Administration of Corba
Applications in Administering WebLogic Tuxedo Connector for Oracle WebLogic
Server.

Example 4-3 Example Code to Obtain a Naming Context

.

.

.
// obtain a naming context
 TP::userlog("Narrowing to a naming context");
 CosNaming::NamingContext_var context =
 CosNaming::NamingContext::_narrow(o);
 CosNaming::Name name;
 name.length(1);
 name[0].id = CORBA::string_dup("WLS");
 name[0].kind = CORBA::string_dup("");
.

Chapter 4
How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

4-6

.

.

4.2.2 How to Develop Outbound RMI/IIOP Applications to use the
Oracle WebLogic Tuxedo Connector

An EJB must use a FederationURL to obtain the initial context used to access a
remote Oracle Tuxedo CORBA object. Use the following sections to modify outbound
RMI/IIOP applications to use the Oracle WebLogic Tuxedo Connector:

• How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs

• How to Modify EJBs to Use FederationURL to Access an Object

4.2.2.1 How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
The following code provides an example of how to configure an ejb-jar.xml file to
pass a FederationURL format to the EJB at run-time.

Example 4-4 Example ejb-jar.xml File Passing a FederationURL to an EJB

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 <small-icon>images/green-cube.gif</small-icon>
 <enterprise-beans>
 <session>
 <small-icon>images/orange-cube.gif</small-icon>
 <ejb-name>IIOPStatelessSession</ejb-name>
 <home>examples.iiop.ejb.stateless.TraderHome</home>
 <remote>examples.iiop.ejb.stateless.Trader</remote>
 <ejb-class>examples.iiop.ejb.stateless.TraderBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>foreignOrb</env-entry-name>
 <env-entry-type>java.lang.String </env-entry-type>
 <env-entry-value>corbaloc:tgiop:simpapp</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>WEBL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>10.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>INTL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>15.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>tradeLimit</env-entry-name>
 <env-entry-type>java.lang.Integer </env-entry-type>
 <env-entry-value>500</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>

Chapter 4
How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

4-7

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>IIOPStatelessSession</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

To pass the FederationURL to the EJB at run-time, add an env-entry for the EJB in the
ejb-jar.xml file for your application. You must assign the following env-entry sub-
elements:

• Assign env-entry-name

• Assign env-entry-type

• Assign env-entry-value

4.2.2.1.1 Assign env-entry-name
The env-entry-name element is used to specify the name of the variable used to pass
the value in the env-entry-value element to the EJB. The example code shown in
Example 4-4 specifies the env-entry-name as foreignOrb.

4.2.2.1.2 Assign env-entry-type
The env-entry-type element is used to specify the data type (example String, Integer,
Double) of the env-entry-value element that is passed to the EJB. The example code
shown in Example 4-4 specifies that the foreignOrb variable passes String data to the
EJB.

4.2.2.1.3 Assign env-entry-value
The env-entry-value element is used to specify the data that is passed to the EJB.
The example code shown in Example 4-4 specifies that the foreignOrb variable passes
the following FederationURL format to the EJB:

corbaloc:tgiop:simpapp

Where simpapp is the DOMAINID of the Oracle Tuxedo remote service specified in the
Oracle Tuxedo UBB.

4.2.2.2 How to Modify EJBs to Use FederationURL to Access an Object
This section provides information on how to use the FederationURL to obtain the
InitialContext used to access a remote Oracle Tuxedo CORBA object.

The following code provides an example of how to use FederationURL to get an
InitialContext.

1. Retrieve the FederationURL format defined in the ejb-jar.xml file.

Example:

"ic.lookup("java:/comp/env/foreignOrb")

Chapter 4
How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

4-8

The example code shown in Example 4-4 specifies that the foreignOrb variable
passes the following FederationURL format to the EJB:

corbaloc:tgiop:simpapp

2. Concatenate the FederationURL format with "/NameService" to form the
FederationURL.

Example:

"ic.lookup("java:/comp/env/foreignOrb") + "/NameService"

The resulting FederationURL is:

corbaloc:tgiop:simpapp/NameService

3. Get the InitialContext.

Example:

env.put(Context.PROVIDER_URL, (String)
 ic.lookup("java:/comp/env/foreignOrb") + "/NameService");
InitialContext cos = new InitialContext(env);

The result is the InitialContext of the Oracle Tuxedo CORBA object.

Example 4-5 Example TraderBean.java Code to get InitialContext

.

.

.
public void createRemote() throws CreateException {
 log("createRemote() called");

 try {
 InitialContext ic = new InitialContext();

 // Lookup a EJB-like CORBA server in a remote CORBA domain
 Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, (String)
 ic.lookup("java:/comp/env/foreignOrb")
 + "/NameService");

 InitialContext cos = new InitialContext(env);
 TraderHome thome =
 (TraderHome)PortableRemoteObject.narrow(
 cos.lookup("TraderHome_iiop"),TraderHome.class);
 remoteTrader = thome.create();
}
 catch (NamingException ne) {
 throw new CreateException("Failed to find value "+ne);
}
 catch (RemoteException re) {
 throw new CreateException("Error creating remote ejb "+re);
}
}
.
.
.

Use the following steps to use FederationURL to obtain an InitialContext for a remote
Oracle Tuxedo CORBA object:

Chapter 4
How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

4-9

4.3 How to Use FederationURL Formats
This section provides information on the syntax for the following FederationURL
formats:

• The CORBA URL syntax is described in the CORBA specification. For more
information, see the OMG Web Site at http://www.omg.org/.

• The corbaloc:tgiop form is specific to the Oracle tgiop protocol.

4.3.1 Using corbaloc URL Format
This section provides the syntax for corbaloc URL format:

<corbaloc> = "corbaloc:tgiop":[<version>] <domain>["/"<key_string>]
<version> = <major> "." <minor> "@" | empty_string
<domain> = TUXEDO CORBA domain name
<major> = number
<minor> = number
<key_string> = <string> | empty_string

4.3.1.1 Examples of corbaloc:tgiop
This section provides examples on how to use corbaloc:tgiop.

orb.string_to_object("corbaloc:tgiop:simpapp/NameService");
orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");
orb.string_to_object("corbaloc:tgiop:simpapp/InterfaceRepository");
orb.string_to_object("corbaloc:tgiop:simpapp/Tobj_SimpleEventsService");
orb.string_to_object("corbaloc:tgiop:simpapp/NotificationService");
orb.string_to_object("corbaloc:tgiop:1.1@simpapp/NotificationService);

4.3.1.2 Examples using -ORBInitRef
You can also use the -ORBInitRef option to orb.init and resolve_initial_reference.

Given the following -ORBInitRef definitions:

-ORBInitRef FactoryFinder=corbaloc:tgiop:simp/FactoryFinder
-ORBInitRef InterfaceRepository=corbaloc:tgiop:simp/InterfaceRepository
-ORBInitRef Tobj_SimpleEventService=corbaloc:tgiop:simp/Tobj_SimpleEventsService
-ORBInitRef NotificationService=corbaloc:tgiop:simp/NotificationService

then:

orb.resolve_initial_references("NameService");
orb.resolve_initial_references("FactoryFinder");
orb.resolve_initial_references("InterfaceRepository");
orb.resolve_initial_references("Tobj_SimpleEventService");
orb.resolve_initial_references("NotificationService");

4.3.1.3 Examples Using -ORBDefaultInitRef
You can use the -ORBDefaultInitRef and resolve_initial_reference.

Given the following -ORBDefaultInitRef definition:

Chapter 4
How to Use FederationURL Formats

4-10

http://www.omg.org/

-ORBDefaultInitRef corbaloc:tgiop:simpapp

then:

orb.resolve_initial_references("NameService");

4.3.2 Using the corbaname URL Format
You can also use the corbaname format instead of the corbaloc format.

4.3.2.1 Examples Using -ORBInitRef
Given the following -ORBInitRef definition:

-ORBInitRef NameService=corbaloc:tgiop:simpapp/NameService

then:

orb.string_to_object("corbaname:rir:#simple_factory");
orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");
orb.string_to_object("corbaname:tgiop:1.1@simpapp#simple_factory");
orb.string_to_object("corbaname:tgiop:simpapp#simple/simple_factory");

4.4 How to Manage Transactions for Oracle Tuxedo CORBA
Applications

Note:

See Overview of Transactions in Tuxedo CORBA Applications in Using
CORBA Transactions at http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/
trans/gstrx.html.

The Oracle WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to
manage transactions with Oracle Tuxedo Corba Applications. See:

• Developing JTA Applications for Oracle WebLogic Server

• Transaction Design and Management Options in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server

Chapter 4
How to Manage Transactions for Oracle Tuxedo CORBA Applications

4-11

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/trans/gstrx.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/trans/gstrx.html

Chapter 4

How to Manage Transactions for Oracle Tuxedo CORBA Applications

4-12

5
Oracle WebLogic Tuxedo Connector
JATMI Transactions

This chapter describes how to define and manage Oracle WebLogic Tuxedo
Connector global transactions using the Java Transaction API (JTA).
This chapter includes the following sections:

• Global Transactions

• JTA Transaction API

• Defining a Transaction

• Oracle WebLogic Tuxedo Connector Transaction Rules

• Example Transaction Code

5.1 Global Transactions
A global transaction is a transaction that allows work involving more than one resource
manager and spanning more than one physical site to be treated as one logical unit. A
global transaction is always treated as a specific sequence of operations that is
characterized by the following four properties:

• Atomicity: All portions either succeed or have no effect.

• Consistency: Operations are performed that correctly transform the resources from
one consistent state to another.

• Isolation: Intermediate results are not accessible to other transactions, although
other processes in the same transaction may access the data.

• Durability: All effects of a completed sequence cannot be altered by any kind of
failure.

5.2 JTA Transaction API

Note:

See the JTA API at http://www.oracle.com/technetwork/java/javaee/jta/
index.html.

The Oracle WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to
manage transactions.

5.2.1 Types of JTA Interfaces
JTA offers three types of transaction interfaces:

5-1

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

• Transaction

• TransactionManager

• UserTransaction

5.2.1.1 Transaction
The Transaction interface allows operations to be performed against a transaction in
the target Transaction object. A transaction object is created to correspond to each
global transaction created. Use the Transaction interface to enlist resources,
synchronize registration, and perform transaction completion and status query
operations.

5.2.1.2 TransactionManager
The TransactionManager interface allows the application server to communicate to the
Transaction Manager for transaction boundaries demarcation on behalf of the
application. Use the TransactionManager interface to communicate to the transaction
manager on behalf of container-managed EJB components.

5.2.1.3 UserTransaction
The UserTransaction interface is a subset of the TransactionManager interface. Use the
UserTransaction interface when it is necessary to restrict access to Transaction object.

5.2.2 JTA Transaction Primitives
The following table maps the functionality of Oracle Tuxedo transaction primitives to
equivalent JTA transaction primitives.

Table 5-1 Mapping Oracle Tuxedo Transaction Primitives to JTA Equivalents

Oracle Tuxedo Oracle Tuxedo Functionality JTA Equivalent

tpabort Use to end a transaction.
 or rollback

tpcommit Use to complete a transaction.
commit

tpgetlev Use to determine if a service
routine is in transaction mode. getStatus

tpbegin Use to begin a transaction.
setTransactionTimeout
begin

5.3 Defining a Transaction
Transactions can be defined in either client or server processes. A transaction has
three parts: a starting point, the program statements that are in transaction mode, and
a termination point.

Chapter 5
Defining a Transaction

5-2

To explicitly define a transaction, call the begin() method. The same process that
makes the call, the initiator, must also be the one that terminates it by invoking a
commit(), setRollbackOnly(), or rollback(). Any service subroutines that are called
between the transaction delimiter become part of the current transaction.

5.3.1 Starting a Transaction

Note:

Setting setTransactionTimeout() to unrealistically large values delays system
detection and reporting of errors. Use time-out values to ensure response to
service requests occur within a reasonable time and to terminate transactions
that have encountered problem, such as a network failure. For productions
environments, adjust the time-out value to accommodate expected delays due
to system load and database contention.

A transaction is started by a call to begin(). To specify a time-out value, precede the
begin() statement with a setTransactionTimeout(int seconds) statement.

To propagate the transaction to Oracle Tuxedo, you must do the following:

• Look up a TuxedoConnectionFactory object in the JNDI.

• Get a TuxedoConnection object using getTuxedoConnection().

5.3.1.1 Using TPNOTRAN
Service routines that are called within the transaction delimiter are part of the current
transaction. However, if tpcall() or tpacall() have the flags parameter set to
TPNOTRAN, the operations performed by the called service do not become part of
that transaction. As a result, services performed by the called process are not affected
by the outcome of the current transaction.

5.3.2 Terminating a Transaction
A transaction is terminated by a call to commit(), rollback(), or setRollbackOnly().
When commit() returns successfully, all changes to the resource as a result of the
current transaction become permanent. In order for a commit() to succeed, the
following two conditions must be met:

• The calling process must be the same one that initiated the transaction with a
begin()

• The calling process must have no transaction replies outstanding

If either condition is not true, the call fails and an exception is thrown.

setRollbackOnly() and rollback() are used to indicate an abnormal condition and to
roll back any call descriptors to their original state.

• Use setRollbackOnly() if further processing or cleanup is needed before rolling
back the transaction.

Chapter 5
Defining a Transaction

5-3

• Use rollback() if no further processing or cleanup is required before rolling back
the transaction.

5.4 Oracle WebLogic Tuxedo Connector Transaction Rules
You must follow certain rules while in transaction mode to insure successful
completion of a transaction. The basic rules of etiquette that must be observed while in
a transaction mode follow:

• You must propagate the transaction to Oracle Tuxedo using a TuxedoConnection
object after you initiate a transaction with a begin().

• tpterm() closes a connection to an object and prevents future operations on this
object.

• Processes that are participants in the same transaction must require replies for
their requests.

• Requests requiring no reply can be made only if the flags parameter of tpacall() is
set to TPNOREPLY.

• A service must retrieve all asynchronous transaction replies before calling
commit().

• The initiator must retrieve all asynchronous transaction replies before calling
begin().

• The asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is, replies expected for requests
made with a tpacall() suppressing the transaction but not the reply.

• If a transaction has not timed out but is marked abort-only, further communication
should be performed with the TPNOTRAN flag set so that the work done as a
result of the communication has lasting effect after the transaction is rolled back.

• If a transaction has timed out:

– the descriptor for the timed out call becomes stale and any further reference to
it will return TPEBADDESC.

– further calls to tpgetrply() or tprecv() for any outstanding descriptors will return
the global state of transaction time-out by setting tperrono to TPETIME.

– asynchronous calls can be make with the flags parameter of tpacall() set to
TPNOREPLY | TPNOBLOCK | TPNOTRAN.

• Once a transaction has been marked abort-only for reasons other than time-out, a
call to tpgetrply() will return whatever represents the local state of the call, that is, it
can either return success or an error code that represents the local condition.

• Once a descriptor is used with tpgetrply() to retrieve a reply, it becomes invalid
and any further reference to it will return TPEBADDESC.

• Once a descriptor is used with tpsend() or tprecv() to report an error condition, it
becomes invalid and any further reference to it will return TPEV_DISCONIMM.

• Once a transaction is aborted, all outstanding transaction call descriptions (made
without the TPNOTRAN flag) become stale, and any further reference to them will
return TPEBADDESC.

• Oracle WebLogic Tuxedo Connector does not guarantee that all calls for a
particular transaction Id are routed to a particular server instance when load
balancing. Load balancing is performed on a per call basis.

Chapter 5
Oracle WebLogic Tuxedo Connector Transaction Rules

5-4

5.5 Example Transaction Code
The following provides a code example for a transaction:

Example 5-1 Example Transaction Code

public class TransactionSampleBean implements SessionBean {

.....

public int transaction_sample () {

 int ret = 0;
 try {
 javax.naming.Context myContext = new InitialContext();
 TransactionManager tm = (javax.transaction.TransactionManager)
 myContext.lookup("javax.transaction.TransactionManager");

// Begin Transaction
 tm.begin ();

 TuxedoConnectionFactory tuxConFactory = (TuxedoConnectionFactory)
 ctxt.lookup("tuxedo.services.TuxedoConnection");

// You could do a local JDBC/XA-database operation here
// which will be part of this transaction.
.....

// NOTE 1: Get the Tuxedo Connection only after
// you begin the transaction if you want the
// Tuxedo call to be part of the transaction!

// NOTE 2: If you get the Tuxedo Connection before
// the transaction was started, all calls made from
// that Tuxedo Connection are out of scope of the
// transaction.

 TuxedoConnection myTux = tuxConFactory.getTuxedoConnection();

// Do a tpcall. This tpcall is part of the transaction.
 TypedString depositData = new TypedString("somecharacters,5000.00");

 Reply depositReply = myTux.tpcall("DEPOSIT", depositData, 0);

// You could also do tpcalls which are not part of
// transaction (For example, Logging all attempted
// operations etc.) by setting the TPNOTRAN Flag!
 TypedString logData =
 new TypedString("DEPOSIT:somecharacters,5000.00");

 Reply logReply = myTux.tpcall("LOGTRAN", logData,
 ApplicationToMonitorInterface.TPNOTRAN);

// Done with the Tuxedo Connection. Do tpterm.
 myTux.tpterm ();

// Commit Transaction...
 tm.commit ();

Chapter 5
Example Transaction Code

5-5

// NOTE: The TuxedoConnection object which has been
// used in this transaction, can be used after the
// transaction only if TPNOTRAN flag is set.
}
 catch (NamingException ne) {
 System.out.println ("ERROR: Naming Exception looking up JNDI: " + ne);
 ret = -1;
}
 catch (RollbackException re) {
 System.out.println("ERROR: TRANSACTION ROLLED BACK: " + re);
 ret = 0;
}
 catch (TPException te) {
 System.out.println("ERROR: tpcall failed: TpException: " + te);
 ret = -1;
}
 catch (Exception e) {
 log ("ERROR: Exception: " + e);
 ret = -1;
}

 return ret;
}

Chapter 5
Example Transaction Code

5-6

6
Oracle WebLogic Tuxedo Connector
JATMI Conversations

This chapter describes how to define and manage Oracle Tuxedo conversations in
your applications. Tuxedo conversations are a supported method for message
exchange between Oracle WebLogic Server and Oracle Tuxedo applications.
This chapter includes the following sections:

• Overview of Oracle WebLogic Tuxedo Connector Conversational Communication

• Oracle WebLogic Tuxedo Connector Conversation Characteristics

• Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives

• Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers

• Sending and Receiving Messages

• Ending a Conversation

• Executing a Disorderly Disconnect

• Understanding Conversational Communication Events

• Oracle WebLogic Tuxedo Connector Conversation Guidelines

Note:

See Writing Conversational Clients and Servers in Programming a Tuxedo
ATMI Application in C at http://docs.oracle.com/cd/E13203_01/tuxedo/
tux100/pgc/pgconv.html.

6.1 Overview of Oracle WebLogic Tuxedo Connector
Conversational Communication

Oracle WebLogic Tuxedo Connector supports Oracle Tuxedo conversations as a
method to exchange messages between Oracle WebLogic Server and Oracle Tuxedo
applications. In this form of communication, a virtual connection is maintained between
the client and the server and each side maintains information about the state of the
conversation. The process that opens a connection and starts a conversation is the
originator of the conversation. The process with control of the connection is the
initiator; the process without control is called the subordinate. The connection remains
active until an event occurs to terminate it.

During conversational communication, a half-duplex connection is established
between the initiator and the subordinate. Control of the connection is passed between
the initiator and the subordinate. The process that has control can send messages (the
initiator); the process that does not have control can only receive messages (the
subordinate).

6-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgconv.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgconv.html

6.2 Oracle WebLogic Tuxedo Connector Conversation
Characteristics

Oracle WebLogic Tuxedo Connector JATMI conversations have the following
characteristics:

• Data is passed using TypedBuffers. The type and sub-type of the data must match
one of the types and sub-types recognized by the service.

• The logical connection between the conversational client and the conversational
server remains active until it is terminated.

• Any number of messages can be transmitted across a connection between a
conversational client and the conversational server.

• A Oracle WebLogic Tuxedo Connector conversational client initiates a request for
service using tpconnect rather than a tpcall or tpacall.

• Oracle WebLogic Tuxedo Connector conversational clients and servers use the
JATMI primitives tpsend to send data and tprecv to receive data.

• A conversational client only sends service requests to a conversational server.

• Conversational servers are prohibited from making calls to tpforward.

6.3 Oracle WebLogic Tuxedo Connector JATMI
Conversation Primitives

Use the following Oracle WebLogic Tuxedo Connector primitives when creating
conversational clients and servers that communicate between Oracle WebLogic
Server and Oracle Tuxedo:

Table 6-1 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational
service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across a open connection to an Oracle Tuxedo
application.

6.4 Creating Oracle WebLogic Tuxedo Connector
Conversational Clients and Servers

The following sections provide information on how to create conversational clients and
servers.

Chapter 6
Oracle WebLogic Tuxedo Connector Conversation Characteristics

6-2

6.4.1 Creating Conversational Clients
Follow the steps outlined in Developing Oracle WebLogic Tuxedo Connector Client
EJBs to create Oracle WebLogic Tuxedo Connector conversational clients. The
following section provide information on how to use tpconnect to open a connection
and start a conversation.

6.4.1.1 Establishing a Connection to an Oracle Tuxedo Conversational Service
A Oracle WebLogic Tuxedo Connector conversational client must establish a
connection to the Oracle Tuxedo conversational service. Use the JATMI primitive
tpconnect to open a connection and start a conversation. A successful call returns an
object that can be used to send and receive data for a conversation.

The following table describes tpconnect parameters:

Table 6-2 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

svc Character pointer to a conversational service name. If you do not
specify a svc, the call will fail and TPException is set to
TPEV_DISCONIMM.

data Pointer to the data buffer. When establishing a connection, you can
send data simultaneously by setting the data parameter to point to a
buffer. The type and subtype of the buffer must be recognized by the
service being called. You can set the value of data to NULL to specify
that no data is to be sent.

flags Use flags or combinations of flags as required by your application
needs. Valid flag values are:

TPSENDONLY: specifies that the control is being retained by the
originator. The called service is subordinate and can only receive data.
Do not use in combination with TPRECVONLY.

TPRECVONLY: specifies that control is being passed to the called
service.The originator becomes subordinate and can only receive data.
Do not use in combination with TPSENDONLY.

TPNOTRAN: specifies that when svc is invoked and the originator is
transaction mode, svc is not part of the originator's transaction. A call
remains subject to transaction timeouts. If svc fails, the originator's
transaction is unaffected.

TPNOBLOCK: specifies that a request is not sent if a blocking condition
exists. If TPNOBLOCK is not specified, the originator blocks until the
condition subsides, a transaction timeout occurs, or a blocking timeout
occurs.

TPNOTIME: specifies that the originator will block indefinitely and is
immune to blocking timeouts. If the originator is in transaction mode,
the call is subject to transaction timeouts.

6.4.1.2 Example TuxedoConversationBean.java Code
The following provides a code example to use tpconnect to start a conversation:

Chapter 6
Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers

6-3

Example 6-1 Example Conversation Code

.

.

.
Context ctx;
Conversation myConv;
TuxedoConnection myTux;
TuxedoConnectionFactory tcf;
.
.
.
ctx = new InitialContext();
tcf = (TuxedoConnectionFactory) ctx.lookup ("tuxedo.services.TuxedoConnection");
myTux = tcf.getTuxedoConnection();
flags =ApplicationToMonitorInterface.TPSENDONLY;
myConv = myTux.tpconnect("CONNECT_SVC",null,flags);
.
.
.

6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational
Servers

Follow the steps outlined in Developing Oracle WebLogic Tuxedo Connector Service
EJBs, to create Oracle WebLogic Tuxedo Connector conversational servers.

6.5 Sending and Receiving Messages
Once a conversational connection is established between a Oracle WebLogic Server
application and an Oracle Tuxedo application, the communication between the initiator
(sends message) and subordinate (receives message) is accomplished using send
and receive calls. The following sections describe how Oracle WebLogic Tuxedo
Connector applications use the JATMI primitives tpsend and tprecv:

• Sending Messages

• Receiving Messages

6.5.1 Sending Messages
Use the JATMI primitive tpsend to send a message to an Oracle Tuxedo application.

The following table describes tpsend parameters:

Table 6-3 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

data Pointer to the buffer containing the data sent with this conversation.

Chapter 6
Sending and Receiving Messages

6-4

Table 6-3 (Cont.) Oracle WebLogic Tuxedo Connector JATMI tpconnect
Parameters

Parameter Description

flags The flag can be one of the following:

TPRECVONLY: specifies that after the initiator's data is sent, the
initiator gives up control of the connection. The initiator becomes
subordinate and can only receive data.

TPNOBLOCK: specifies that the request is not sent if a blocking
condition exists. If TPNOBLOCK is not specified, the originator blocks until
the condition subsides, a transaction timeout occurs, or a blocking
timeout occurs.

TPNOTIME: specifies that an initiator is willing to block indefinitely and
is immune from blocking timeouts. The call is subject to transaction
timeouts.

6.5.2 Receiving Messages
Use the JATMI primitive tprecv to receive messages from an Oracle Tuxedo
application.

The following table describes tprecv parameters:

Table 6-4 Oracle WebLogic Tuxedo Connector JATMI tprec Parameters

Parameter Description

flags The flag can be one of the following:

TPNOBLOCK: specifies that tprecv does not wait for a reply to arrive.
If a reply is available, tprecv gets the reply and returns. If this flag is
not specified and a reply is not available, tprecv waits for one of the
following to occur: a reply, a transaction timeout, or a blocking timeout.

TPNOTIME: specifies that tprecv waits indefinitely for a reply. With this
flag, tprecv is immuned from blocking timeouts but is still subject to
transaction timeouts.

A flag value of 0 specifies that the initiator blocks until the condition
subsides or a timeout occurs.

6.6 Ending a Conversation
A conversation between Oracle WebLogic Server and Oracle Tuxedo ends when the
server process successfully completes its tasks. The following sections describe how a
conversation ends:

• Oracle Tuxedo Application Originates Conversation

• Oracle WebLogic Tuxedo Connector Application Originates Conversation

• Ending Hierarchical Conversations

Chapter 6
Ending a Conversation

6-5

6.6.1 Oracle Tuxedo Application Originates Conversation
An Oracle WebLogic Server conversational server ends a conversation by a
successful call to return. A TPEV_SVCSUCC event is sent to the Oracle Tuxedo client
that originated connection to indicate that the service finished successfully. The
connection is then disconnected in an orderly manner.

6.6.2 Oracle WebLogic Tuxedo Connector Application Originates
Conversation

An Oracle Tuxedo conversational server ends a conversation by a successful call to
tpreturn. A TPEV_SVCSUCC event is sent to the Oracle WebLogic Tuxedo Connector
client that originated connection to indicate that the service finished successfully. The
connection is then disconnected in an orderly manner.

6.6.3 Ending Hierarchical Conversations
The order in which an conversation ends is important to gracefully end hierarchal
conversations.

Assume there are two active connections: A-B and B-C. If B is a Oracle WebLogic
Tuxedo Connector application in control of both connections, a call to return has the
following effect: the call fails and a TPEV_SVCERR event is posted on all open
connections, and the connections are closed in a disorderly manner.

In order to terminate both connections in an orderly manner, the application must
execute the following sequence:

1. B calls tpsend with TPRECVONLY to transfer control of the B-C connection to the
Oracle Tuxedo application C.

2. C calls departure with rval set to TPSUCCESS, TPFAIL, or TPEXIT.

3. B calls return and posts an event (TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

Conversational services can make request/response calls. Therefore, in the preceding
example, the calls from B to C may be executed using tpacall() or tpcall() instead of
tpconnect. Conversational services are not permitted to make calls to tpforward.

6.7 Executing a Disorderly Disconnect
Oracle WebLogic Server conversational clients or servers execute a disorderly
disconnect is through a call to tpdiscon. This is the equivalent of "pulling the plug" on a
connection.

A call to tpdiscon:

• Immediately tears down the connection and generates a TPEV_DISCONIMM at
the other end of the connection. Any data that has not yet reached its destination
may be lost. If the conversation is part of a transaction, the transaction must be
rolled back.

• Can only be called by the initiator of the conversation.

Chapter 6
Executing a Disorderly Disconnect

6-6

6.8 Understanding Conversational Communication Events
Oracle WebLogic Tuxedo Connector JATMI uses five events to manage
conversational communication. The following table lists the events, the functions for
which they are returned, and a detailed description of each.

Table 6-5 Oracle WebLogic Tuxedo Connector Conversational Communication
Events

Event Received by Description

TPEV_SENDONLY Tuxedo tprecv Control of the connection has passed; this
Oracle Tuxedo process can now call tpsend

TPEV_SENDONLY JATMI tprecv Control of the connection has passed; this
JATMI process can now call tpsend

TPEV_DISCONIM
M

Tuxedo tprecv,
tpsend, tpreturn

The connection has been torn down and no
further communication is possible. The JATMI
tpdiscon posts this event in the originator of
the connection. The originator sends it to all
open connections when tpreturn is called.
Connections are closed in a disorderly
manner and if a transaction exists, it is
aborted.

TPEV_DISCONIM
M

JATMI tprecv,
tpsend, return

The connection has been torn down and no
further communication is possible. The
Oracle Tuxedo tpdiscon posts this event in
the originator of the connection. The
originator sends it to all open connections
when return is called. Connections are
closed in a disorderly manner and if a
transaction exists, it is aborted.

TPEV_SVCERR Tuxedo tpsend or
JATMI tpsend

Received by the originator of the connection
indicating that the subordinate program
issued a tpreturn (Oracle Tuxedo) or return
(JATMI) and ended without control of the
connection.

TPEV_SVCERR Tuxedo tprecv or
JATMI tprecv

Received by the originator of the connection
indicating that the subordinate program
issued a successful tpreturn (Oracle
Tuxedo) or a successful return (JATMI)
without control of the connection, but an error
occurred before the call completed.

TPEV_SVCSUCC Tuxedo tprecv Received by the originator of the connection,
indicating that the subordinate service
finished successfully; that is, return was
successfully called.

TPEV_SVCSUCC JATMI tprecv Received by the originator of the connection,
indicating that the subordinate service
finished successfully; that is, tpreturn was
called with TPSUCCESS.

Chapter 6
Understanding Conversational Communication Events

6-7

Table 6-5 (Cont.) Oracle WebLogic Tuxedo Connector Conversational
Communication Events

Event Received by Description

TPEV_SVCFAIL Tuxedo tpsend or
JATMI tpsend

Received by the originator of the connection
indicating that the subordinate program
issued a tpreturn (Oracle Tuxedo) or return
(JATMI) and ended without control of the
connection. The service completed with
status of TPFAIL or TPEXIT and the data is
set to null.

TPEV_SVCFAIL Tuxedo tprecv or
JATMI tprecv

Received by the originator of the connection
indicating that the subordinate program
finished unsuccessfully. The service
completed with status of TPFAIL or TPEXIT.

6.9 Oracle WebLogic Tuxedo Connector Conversation
Guidelines

Use the following guidelines while in conversation mode to insure successful
completion of a conversation:

• Use the JATMI conversational primitives as defined in the Oracle WebLogic
Tuxedo Connector Conversation interface and ApplicationToMonitorInterface
interface.

– Always use a flag.

– Only use flags defined in the Oracle WebLogic Tuxedo Connector JATMI.

• Oracle WebLogic Tuxedo Connector does not have a parameter that can be used
to limit the number of simultaneous conversations to prevent overloading the
Oracle WebLogic Server network.

• If Oracle Tuxedo exceeds the maximum number of possible conversations
(defined by the MAXCONV parameter), TPEV_DISCONIMM is the expected Oracle
WebLogic Tuxedo Connector exception value.

• A tprecv to an unauthorized Oracle Tuxedo service results in a
TPEV_DISCONIMM exception value.

• If a Oracle WebLogic Tuxedo Connector client is connected to an Oracle Tuxedo
conversational service which does tpforward to another conversational service,
TPEV_DISCONIMM is the expected Oracle WebLogic Tuxedo Connector
exception value.

• Conversations may be initiated within a transaction. Start the conversation as part
of the program statements in transaction mode. See Oracle WebLogic Tuxedo
Connector JATMI Transactions.

• If an Oracle WebLogic Tuxedo Connector remote domain experiences a
TPENOENT, the remote domain will send back a disconnect event message and
be caught on the Oracle WebLogic Tuxedo Connector application tprecv as a
TPEV_DISCONIMM exception.

Chapter 6
Oracle WebLogic Tuxedo Connector Conversation Guidelines

6-8

7
Using FML with Oracle WebLogic Tuxedo
Connector

This chapter describes how Oracle WebLogic Tuxedo Connector uses the Field
Manipulation Language (FML).
This chapter includes the following sections:

• Overview of FML

• The Oracle WebLogic Tuxedo Connector FML API

• FML Field Table Administration

• tBridge XML/FML32 Translation

• Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation

• MBSTRING Usage

7.1 Overview of FML

Note:

See Programming a Tuxedo ATMI Application Using FML at http://
docs.oracle.com/cd/E13203_01/tuxedo/tux100/fml/fml01.html.

FML is a set of java language functions for defining and manipulating storage
structures called fielded buffers. Each fielded buffer contains attribute-value pairs in
fields. For each field:

• The attribute is the field's identifier.

• The associated value represents the field's data content.

• An occurrence number.

There are two types of FML:

• FML16 based on 16-bit values for field lengths and identifiers. It is limited to 8191
unique fields, individual field lengths of 64K bytes, and a total fielded buffer size of
64K bytes.

• FML32 based on 32-bit values for the field lengths and identifiers. It allows for
about 30 million fields, and field and buffer lengths of about 2 billion bytes.

7-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/fml/fml01.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/fml/fml01.html

7.2 The Oracle WebLogic Tuxedo Connector FML API

Note:

The Oracle WebLogic Tuxedo Connector implements a subset of FML
functionality. See FML32 Considerations.

The FML application program interface (API) is documented in the weblogic.wtc.jatmi
package included in the Javadocs for WebLogic Server Classes.

7.3 FML Field Table Administration
Field tables are generated in a manner similar to Oracle Tuxedo field tables. The field
tables are text files that provide the field name definitions, field types, and identification
numbers that are common between the two systems. To interoperate with an Oracle
Tuxedo system using FML, the following steps are required:

1. Copy the field tables from the Oracle Tuxedo system to Oracle WebLogic Tuxedo
Connector environment.

For example: Your Oracle Tuxedo distribution contains a bank application example
called bankapp. It contains a file called bankflds that has the following structure:

#Copyright (c) 1990 Unix System Laboratories, Inc.
#All rights reserved
#ident "@(#) apps/bankapp/bankflds $Revision: 1.3 $"
Fields for database bankdb
name number type flags comments
ACCOUNT_ID 110 long - -
ACCT_TYPE 112 char - -
ADDRESS 109 string - -
.
.
.

2. Converted the field table definition into Java source files. Use the mkfldclass utility
supplied in the weblogic.wtc.jatmi package. This class is a utility function that
reads a FML32 Field Table and produces a Java file which implements the FldTbl
interface. There are two instances of this utility:

• mkfldclass

• mkfldclass32

Use the correct instance of the command to convert the bankflds field table into
FML32 java source. The following example uses mkfldclass.

java weblogic.wtc.jatmi.mkfldclass bankflds

The resulting file is called bankflds.java and has the following structure:

import java.io.*;
import java.lang.*;
import java.util.*;

Chapter 7
The Oracle WebLogic Tuxedo Connector FML API

7-2

import weblogic.wtc.jatmi.*;

public final class bankflds
 implements weblogic.wtc.jatmi.FldTbl
{
 /** number: 110 type: long */
 public final static int ACCOUNT_ID = 33554542;
 /** number: 112 type: char */
 public final static int ACCT_TYPE = 67108976;
 /** number: 109 type: string */
 public final static int ADDRESS = 167772269;
 /** number: 117 type: float */
.
.
.

3. Compile the resulting bankflds.java file using the following command:

javac bankflds.java

The result is a bankflds.class file. When loaded, the Oracle WebLogic Tuxedo
Connector uses the class file to add, retrieve and delete field entries from an
FML32 field.

4. Add the field table class file to your application CLASSPATH.

5. Update your WTCServer MBean.

• Update the WTCResources MBean to reflect the fully qualified location of the field
table class file.

• Use the keywords required to describe the FML buffer type: fml16 or fml32.

• You can enter multiple field table classes in a comma separated list.

For example:

<wtc-resources>
 <name>BankappResources</name>
 <fld-tbl16-class>my.bankflds</fld-tbl16-class>
 <fld-tbl16-class>your.bankflds</fld-tbl16-class>
 <fld-tbl16-class>more.bankflds</fld-tbl16-class>
</wtc-resources>

6. Restart your Oracle WebLogic Server to load the field table class definitions.

7.3.1 Using the DynRdHdr Property for mkfldclass32 Class
Oracle WebLogic Tuxedo Connector provides a property that provides an alternate
method to compile FML tables. You may need to use the DynRdHdr utility if:

• You are using very large FML tables and the .java method created by the
mkfldclass32 class exceeds the internal Java Virtual Machine limit on the total
complexity of a single class or interface.

• You are using very large FML tables and are unable to load the class created
when compiling the .java method.

Use the following steps to use the DynRdHdr property when compiling your FML tables:

1. Convert the field table definition into Java source files.

java -DDynRdHdr=Path_to_Your_FML_Table weblogic.wtc.jatmi.mkfldclass32 userTable

Chapter 7
FML Field Table Administration

7-3

The arguments for this command are defined as follows:

Attribute Description

-DDynRdHdr Oracle WebLogic Tuxedo Connector property used
to compile an FML table.

Path_to_Your_FML_Table Path name of your FML table. This may be either a
fully qualified path or a relative path that can be
found as a resource file using the server's
CLASSPATH.

weblogic.wtc.jatmi.mkfldclass32 This class is a utility function that reads an FML32
Field Table and produces a Java file which
implements the FldTbl interface.

userTable Name of the .java method created by the
mkfldclass32 class.

2. Compile the userTable file using the following command:

javac userTable.java

3. Add the userTable.class file to your application CLASSPATH.

4. Update the WTCResources MBean to reflect the fully qualified location of the
userTable.class file.

5. Target your WTC server. The userTable.class is loaded when the WTCServer
service starts.

Once you have created the userTable.class file, you can modify the FML table and
deploy the changes without having to manually create an updated userTable.class.
When the WTC server is started, Oracle WebLogic Tuxedo Connector will load the
updated FML table using the location specified in the Resources tab of your WTC
server configuration. If the Path_to_Your_FML_Table attribute changes, you will need to
use the preceding procedure to update your userTable.java and userTable.class files.

7.4 Using TypedFML32 Constructors
Two new constructors for TypedFML32 are available to improve performance. The
following topic provides explanation as to when to use these constructors.

The constructors are defined in the Javadocs for WebLogic Server Classes.

7.4.1 Gaining TypedFML32 Performance Improvements
To gain TypedFML32 performance improvements, you can choose to give size hints to
TypedFML32 constructors. There are two parameters that are available to those
constructor:

• A parameter that hints for maximum number of fields. This includes all the
occurrences.

• A parameter for the total number of field IDs used in the buffer.

Chapter 7
Using TypedFML32 Constructors

7-4

For instance, a field table used by the buffer contains 20 field IDs, and each field can
occur 20 times. In this case, the first parameter should be 400 for the maximum
number of fields. The second parameter should be 20 for the total number of field IDs.

TypeFML32 mybuffer = new TypeFML32(400, 20);

Note:

This usually works well with any size of buffer; however, it does not work well
with extremely small buffers.

If you have an extremely small buffer, use those constructor without hints. An example
of an extremely small buffer is a buffer with less than 16 total occurrences. If the buffer
is extremely large, for example contains more than 250000 total field occurrences,
then the application should consider splitting it into several buffers smaller than
250000 total field occurrences.

7.5 tBridge XML/FML32 Translation

Note:

The data type specified must be FLAT or NO. If any other data type is
specified, the redirection fails.

The TranslateFML element of the WTCtBridgeRedirect MBean is used to indicate if
FML32 translation is performed on the message payload. There are two types of
FML32 translation: FLAT and NO.

7.5.1 FLAT
The message payload is translated using the Oracle WebLogic Tuxedo Connector
internal FML32/XML translator. Fields are converted field-by-field values without
knowledge of the message structure (hierarchy) and repeated grouping.

In order to convert an FML32 buffer to XML, the tBridge pulls each instance of each
field in the FML32 buffer, converts it to a string, and places it within a tag consisting of
the field name. All of these fields are placed within a tag consisting of the service
name. For example, an FML32 buffer consisting of the following fields:

NAME JOE
ADDRESS CENTRAL CITY
PRODUCTNAME BOLT
PRICE 1.95
PRODUCTNAME SCREW
PRICE 2.50

The resulting XML buffer would be:

<FML32>
 <NAME>JOE</NAME>
 <ADDRESS>CENTRAL CITY</ADDRESS>

Chapter 7
tBridge XML/FML32 Translation

7-5

 <PRODUCTNAME>BOLT</PRODUCTNAME>
 <PRODUCTNAME>SCREW</PRODUCTNAME>
 <PRICE>1.95</PRICE>
 <PRICE>2.50</PRICE>
</FML32>

7.5.2 NO
No translation is used.

For JMS to Oracle Tuxedo, the tBridge maps a JMS TextMessage into an Oracle
Tuxedo TypedBuffer (TypedString) and vice versa depending on the direction of the
redirection. JMS BytesMessage are mapped into Oracle Tuxedo TypedBuffer
(TypedCarray) and vice versa.

For Oracle Tuxedo to JMS, passing an FML/FML32 buffer behaves as if translateFML
is set to FLAT. Therefore, in this case, setting translateFML to NO has no effect and if the
Oracle Tuxedo buffer is of type FML/FML32, the translation takes place automatically.

7.5.3 FML32 Considerations
Remember to consider the following information when working with FML32:

• For XML input, the root element is required but ignored.

• For XML output, the root element is always <FML32>.

• The field table names must be loaded as described in FML Field Table
Administration.

• The tBridge translator is capable of only "flat" or linear grouping. This means that
information describing FML32 ordering is not maintained, therefore buffers that
contain a series of repeating data could be presented in an unexpected fashion.
For example, consider a FML32 buffer that contains a list of parts and their
associated price. The expectation would be PART A, PRICE A, PART B, PRICE
B, etc. however since there is no structural group information contained within the
tBridge, the resulting XML could be PART A, PART B, etc., PRICE A, PRICE B,
etc.

• When translating XML into FML32, the translator ignores STRING values. For
example, <STRING></STRING> is skipped in the resulting FML32 buffer. All other
types cause WTC to log an error resulting in translation failure.

• Embedded FML is not supported in this release.

• Embedded VIEW fields within FML32 buffers are supported in this release.

• TypedCArray is supported for FML/FML32 to XML conversion. Select from the
following list of supported field types:

– SHORT

– LONG

– CHAR

– FLOAT

– DOUBLE

– STRING

– CARRAY

Chapter 7
tBridge XML/FML32 Translation

7-6

– INT (FML32)

– DECIMAL (FML32)

• If you need to pass binary data, encode to a field type of your choice and decode
the XML on the receiving side.

• If you need to use CARRAY fields in an XML input buffer, you must first encode
the content using base64. You must decode the base64 data after it is received
and before it is processed by an application.

7.6 Using the XmlFmlCnv Class for XML to and From FML/
FML32 Translation

An alternative option to using the tBridge to automatically translate XML buffers to and
from FML/FML32 is to use the XmlFmlCnv class which supports ordering, grouping and
beautifying functionality. The following code listing is an example that uses the
XmlFmlCnv class for conversion to and from XML buffer formats.

import weblogic.wtc.jatmi.TypedFML32;
import weblogic.wtc.jatmi.FldTbl;
import weblogic.wtc.gwt.XmlFmlCnv;

public class xml2fml
{
 public static void main(String[] args) {
 String xmlDoc = "<XML><MyString>hello</MyString></XML>";
 TypedFML32 fmlBuffer = new TypedFML32(new MyFieldTable());
 XmlFmlCnv c = new XmlFmlCnv();
 fmlBuffer = c.XMLtoFML32(xmlDoc, fmlBuffer.getFieldTables());
 String result = c.FML32toXML(fmlBuffer);
 System.out.println(result);
}
}

See Class XmlFmlCnv.

7.6.1 Limitations of XmlFmlCnv Class
The FLD_MBSTRING field in FML32 is not supported by the XmlFmlCnv.FML32toXML method
in this release.

7.7 MBSTRING Usage
A TypedMBString object can be used almost identically as a TypedString object in a
WTC application code. The only difference is that TypedMBString has a codeset
encoding name associated to the string data.

This section includes the following topics.

• Sending MBSTRING Data to an Oracle Tuxedo Domain

• Receiving MBSTRING Data from an Oracle Tuxedo Domain

• Using FML with Oracle WebLogic Tuxedo Connector

Chapter 7
Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation

7-7

7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain
When an Oracle Tuxedo message that contains an MBSTRING data is sent to another
Oracle Tuxedo domain, TypedMBString uses the conversion function of
java.lang.String class to convert between Unicode and an external encoding. The
TypedMBString has a codeset encoding name associated to the string data.

When a TypedMBString object is created by a WTC application code, the encoding
name is set to null. The null value of the encoding name means that the default
encoding name is used for Unicode string to byte array conversion while sending the
MBSTRING data to a remote domain. By default, the Java's default encoding name for
byte array string is used for the default encoding name.You can specify encoding or
accept the default encoding. The following order defines the order of precedence for
TypedMBString.

1. Specify the encoding name by setMBEncoding() method.

2. Specify the encoding name through the setDefaultMBEncoding() method of
weblogic.wtc.jatmi.MBEncoding class.

3. Specify the encoding name through the RemoteMBEncoding attribute of the
WTCResourcesMBean.

4. MBENCODINGPROPERTY system property value.

5. Accept the Java default encoding name.

7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain
When an Oracle Tuxedo message that contains an MBSTRING data is received from
a remote domain, the following actions take place.

1. WTC determines the encoding of the MBSTRING data by the codeset tcm in the
received message.

2. WTC creates a TypedMBString object.

A TypedMBString object can be used almost identically as a TyepdString object in
WTC application code. However, the TypedMBString has a codeset encoding
name associated to the string data.

3. WTC passes the TypedMBString object to the WTC application code. The
application code knows the encoding of the received MBSTRING data by the
instance method getMBEncoding().

7.7.3 Using FML with Oracle WebLogic Tuxedo Connector
FLD_MBSTRING is a field type added to TypedFML32. In this case, a TypedMBString
object is passed to the TypedFML32 method as the associated object type of
FLD_MBSTRING. You can specify the encoding name used for the MBSTRING
conversion for a FLD_MBSTRING field.

The following order defines the order of precedence for TypedFML32.

1. Specify the encoding name by setMBEncoding() method of the TypedMBString
object for the field.

2. Specify the encoding name by setMBEncoding() method of the TypedFML32 object.

Chapter 7
MBSTRING Usage

7-8

3. Specify the encoding name through the setDefaultMBEncoding() method of
weblogic.wtc.jatmi.MBEncoding class.

4. Specify the encoding name through the RemoteMBEncoding attribute of the
WTCResourcesMBean.

5. MBENCODINGPROPERTY system property value.

6. Accept the Java default encoding name.

Note:

The following methods must be updated when using FLD_MBSTRING:
Fldtype(), Fchg(), Fadd(), Fget(), and Fdel().

The on-demand encoding methods and auto-conversion methods needed in
Oracle Tuxedo, such as Fmbpack32() and Fmbunpack32() are not needed by
Oracle WebLogic Tuxedo Connector.

Chapter 7
MBSTRING Usage

7-9

Chapter 7

MBSTRING Usage

7-10

8
Oracle WebLogic Tuxedo Connector
JATMI VIEWs

This chapter describes how to use Oracle WebLogic Tuxedo Connector VIEW buffers.
This chapter includes the following sections:

• Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers

• How to Create a VIEW Description File

• How to Use the viewj Compiler

• How to Pass Information to and from a VIEW Buffer

• How to Use VIEW Buffers in JATMI Applications

• Using the XmlViewCnv Class for XML to and From View/View(32) Translation

8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW
Buffers

Note:

See Using a VIEW Typed Buffer in Programming a Tuxedo ATMI Application
Using C at http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/
pgbuf.html.

Oracle WebLogic Tuxedo Connector allows you to create a Java VIEW buffer type
analogous to an Oracle Tuxedo VIEW buffer type derived from an independent C
structure. This allows Oracle WebLogic Server applications and Oracle Tuxedo
applications to pass information using a common structure. Oracle WebLogic Tuxedo
Connector VIEW buffers do not support FML VIEWs or FML VIEWs/Java conversions.

8.2 How to Create a VIEW Description File

Note:

fbname and null fields are not relevant for independent Java and C structures
and are ignored by the Java and C VIEW compiler. You must include a value
(for example, a dash) as a placeholder in these fields.

8-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html

Your Oracle WebLogic Server application and your Oracle Tuxedo application must
share the same information structure as defined by the VIEW description. The
following format is used for each structure in the VIEW description file:

$ /* VIEW structure */
VIEW viewname
type cname fbname count flag size null

where

• The file name is the same as the VIEW name.

• You can have only one VIEW description per file.

• The VIEW description file is the same file used for both the Oracle WebLogic
Tuxedo Connector viewj compiler and the Oracle Tuxedo viewc compiler.

• viewname is the name of the information structure.

• You can include a comment line by prefixing it with the # or $ character.

• The following table describes the fields that must be specified in the VIEW
description file for each structure.

Table 8-1 VIEW Description File Fields

Field Description

type Data type of the field. Can be set to short, long, float, double,
char, string, carray, or dec_t (packed decimal).

cname Name of the field as it appears in the information structure.

fbname Ignored.

count Number of times field occurs.

flag Specifies any of the following optional flag settings:

• N—zero-way mapping
• C—generate additional field for associated count member

(ACM)
• L—hold number of bytes transferred for STRING and CARRAY

size For STRING and CARRAY buffer types, specifies the maximum length
of the value. This field is ignored for all other buffer types.

Chapter 8
How to Create a VIEW Description File

8-2

Table 8-1 (Cont.) VIEW Description File Fields

Field Description

null User-specified NULL value, or minus sign (-) to indicate the default
value for a field. NULL values are used in VIEW typed buffers to
indicate empty C structure members.

The default NULL value for all numeric types is 0 (0.0 for dec_t). For
character types, the default NULL value is `\0'. For STRING and
CARRAY types, the default NULL value is " ".

Constants used, by convention, as escape characters can also be
used to specify a NULL value. The VIEW compiler recognizes the
following escape constants: \ddd (where d is an octal digit), \0, \n, \t,
\v, \r, \f, \\, \', and \".

You may enclose STRING, CARRAY, and char NULL values in
double or single quotes. The VIEW compiler does not accept
unescaped quotes within a user-specified NULL value.

You can also specify the keyword NONE in the NULL field of a
VIEW member description, which means that there is no NULL
value for the member. The maximum size of default values for string
and character array members is 2660 characters.

8.2.1 Example VIEW Description File
The following provides an example VIEW description which uses VIEW buffers to send
information to and receive information from an Oracle Tuxedo application. The file
name for this VIEW is infoenc.

Example 8-1 Example VIEW Description

VIEW infoenc
#type cname fbname count flag size null
float amount AMOUNT 2 - - 0.0
short status STATUS 2 - - 0
int term TERM 2 - - 0
char mychar MYCHAR 2 - - -
string name NAME 1 - 16 -
carray carray1 CARRAY1 1 - 10 -
dec_t decimal DECIMAL 1 - 9 - #size ignored by viewj/viewj32
END

8.3 How to Use the viewj Compiler
To compile a VIEW typed buffer, run the viewj command, specifying the package name
and the name of the VIEW description file as arguments. The output file is written to
the current directory.

To use the viewj compiler, enter the following command:

java weblogic.wtc.jatmi.viewj [options] [package] viewfile

To use the viewj32 compiler, enter the following command:

java weblogic.wtc.jatmi.viewj32 [options] [package] viewfile

The arguments for this command are defined as follows:

Chapter 8
How to Use the viewj Compiler

8-3

Argument Description

options • -associated_fields:

Use to set AssociatedFieldHandling to true. This allows set and get
accessor methods to use the values of the associated length and count
fields if they are specified in the VIEW description file. If not specified,
the default value for AssociatedFieldHandling is false.

• -bean_names:

Use to create set and get accessor names that follow JavaBeans
naming conventions. The first character of the field name is changed to
upper case before the set or get prefix is added. The signature of
indexed set accessors for array fields changes from the default
signature of void setAfield(T value, int index) to void
setAfield(int index, T value).

• -compat_names:

Use to create set and get accessor names that are formed by taking
the field name from the VIEW description file and adding a set or get
prefix. Provides compatibility with releases prior to WebLogic Server
8.1 SP2. Default value is -compat_names if -bean_names or -
compat_names is not specified.

• -modify_strings:

Use to generate different Java code for encoding strings sent to Oracle
Tuxedo and decoding strings received from Oracle Tuxedo. Encoding
code adds a null character to the end of each string. Decoding code
truncates each string at the first null character received.

• -xcommon:

Use to generate output class as extending TypedXCommon instead of
TypedView.

• -xtype:

Use to generate output class as extending TypedXCType instead of
TypedView.

Note: -compat_names and -bean_names are mutually exclusive options.

package
The package name to be included in the .java source file.

Example: examples.wtc.atmi.simpview

viewfile
Name of the VIEW description file.

Example: Infoenc

For example:

• A VIEW buffer is compiled as follows:

java weblogic.wtc.jatmi.viewj -compat_names examples.wtc.atmi.simpview infoenc

• A VIEW32 buffer is compiled as follows:

java weblogic.wtc.jatmi.viewj32 -compat_names -modify_strings
examples.wtc.atmi.simpview infoenc

8.4 How to Pass Information to and from a VIEW Buffer
The output of the viewj and viewj32 command is a .java source file that contains set
and get accessor methods for each field in the VIEW description file. Use these set

Chapter 8
How to Pass Information to and from a VIEW Buffer

8-4

and get accessor methods in your Java applications to pass information to and from a
VIEW buffer.

The AssociatedFieldHandling flag is used to specify if the set and get methods use the
values of the associated length and count fields if they are specified in the VIEW
description file.

• set methods set the count for an array field and set the length for a string or carray
field.

• Array get methods return an array that is at most the size of the associated count
field.

• String and carray get methods return data that is at most the length of the
associated length field.

Use one of the following to set or get the state of the AssociatedFieldHandling flag:

• Use the -associated_fields option for the viewj and viewj32 compiler to set the
AssociatedFieldHandling flag to true.

• Invoke the void setAssociatedFieldHandling(boolean state) method in your Java
application to set the state of the AssociatedFieldHandling flag.

– If false, the set and get methods ignore the length and count fields.

– If true, the set and get methods use the values of the associated length and
count fields if they are specified in the VIEW description file.

– The default state is false.

• Invoke the boolean getAssociatedFieldHandling() method in your Java application
to return the current state of AssociatedFieldHandling.

8.5 How to Use VIEW Buffers in JATMI Applications
Use the following steps when incorporating VIEW buffers in your JATMI applications:

1. Create a VIEW description file for your application as described in How to Create a
VIEW Description File.

2. Compile the VIEW description file as described in How to Use the viewj Compiler.

3. Use the set and get accessor methods to pass information to and receive
information from a VIEW buffer as described in How to Pass Information to and
from a VIEW Buffer.

See the examples/wtc/atmi/simpview/ViewClient.java file in your Oracle WebLogic
Server distribution for an example of how a client uses accessors to pass
information to and from a VIEW buffer.

Please note that for this release, WTC samples are available on the BEA dev2dev
website in the Code Library.

4. Import the output of the VIEW compiler into your source code.

5. If necessary, compile the VIEW description file for your Oracle Tuxedo application
and include the output in your C source file as described in Using a VIEW Typed
Buffer in Programming a Tuxedo ATMI Application Using C at http://
docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html.

6. Configure a WTCServer MBean with a Resources Mbean that specifies the VIEW
buffer type (VIEW or VIEW32) and the fully qualified class name of the compiled

Chapter 8
How to Use VIEW Buffers in JATMI Applications

8-5

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html

Java VIEW description file. The class of the compiled Java VIEW description file
should be in your CLASSPATH.

7. Build and launch your Oracle Tuxedo application.

8. Build and launch your Oracle WebLogic Server Application.

8.5.1 How to Get VIEW32 Data In and Out of FML32 Buffers
A helper class is available to add and get VIEW32 data in and out of an FML32 buffer.
The class name is wtc.jatmi.FViewFld. This class assists programmers in developing
JATMI-based applications that use VIEW32 field type for FML32 buffers.

No change to configuration is required. You still configure the VIEW32 class path
using the ViewTbl32Classes attribute in the WTCResources section of the WLS
configuration file.

The following access methods are available in this helper class.

• FViewFld(String vname, TypedView32 vdata);

• FviewFld(FviewFld to_b_clone);

• void setViewName(String vname)

• String getViewName();

• void setViewData(TypedView32 vdata)

• void TypedView32 getViewData();

Example 8-2 How to Add and Retrieve an Embedded TypedView32 buffer in a
TypedFML32 Buffer

String toConvert = new String("hello world");
TypedFML32 MyData = new TypedFML32(new MyFieldTable());
Long d1 = new Long(1234);
Float d2 = new Float(12.32);
MyView data = new myView();
FviewFld vfld;
data.setamount((float)100.96);
data.setstatus((short)3);
vfld = new FviewFld("myView", data);

try {
 myData.Fchg(MyFieldTable.FLD0, 0, toConvert);
 myData.Fchg(MyFieldTable.FLD1, 0, 1234);
 myData.Fchg(MyFieldTable.FLD2, 0, d2);
 myData.Fchg(MyFieldTable.myview, 0, vfld);
} catch (Ferror fe) {
 log("An error occurred putting data into the FML32 buffer. The error is " + fe);
}

try {
 myRtn = myTux.tpcall("FMLVIEW", myData, 0);
} catch(TPReplyException tre) {
….
}
TypedFML32 myDataBack = (TypedFML32)myRtn.getReplyBuffer();
 Integer myNewLong;
 Float myNewFloat;
 myView View;
 String myNewString;

Chapter 8
How to Use VIEW Buffers in JATMI Applications

8-6

try {
 myNewString = (String)myDataBack.Fget(MyFieldTable.FLD0, 0);
 myNewLong = (Integer)myDataBack.Fget(MyFieldTable.FLD1, 0);
 myNewFloat = (Float)myDataBack.Fget(MyFieldTable.FLD2, 0);
 vfld = (FviewFld)myDataBack.Fget(MyFieldTable.myview, 0);
 view = (myView)vfld.getViewData();
} catch (Ferror fe) {
 ….
}

The following code listing is an example FML Description(MyFieldTable) related to the
example in Example 8-2.

*base 20000
#name number type flags comments
FLD0 10 string - -
FLD1 20 long - -
FLD2 30 float - -
myview 50 view32 - defined in View description file

8.6 Using the XmlViewCnv Class for XML to and From View/
View(32) Translation

Use the XmlViewCnv class to perform XML to View /View(32) or View/View(32) to XML
translation. The following code listing is an example that uses the XmlViewCnv class for
conversion to and from XML buffer formats.

import examples.wtc.atmi.simpview.infoenc; // View class import
weblogic.wtc.gwt.XmlViewCnv;
import weblogic.wtc.jatmi.TypedBuffer;

public class xml2view
{
 public static void main(String[] args) {
 String xmlDoc =
 "<VIEW32><infoenc><amount>1000.0</amount><infoenc></VIEW32>";

 infoenc convertMe = new infoenc();
 convertMe = (infoenc) XmlViewCnv.XMLToView(
 xmlDoc,
 convertMe.getClass(),
 convertMe.getSubtype());

 convertMe = (infoenc) echo.Echo(convertMe);

 result = XmlViewCnv.ViewToXML(
 (TypedBuffer) convertMe,
 convertMe.getClass(),
 true);

 System.out.println(result);
 }
}

Chapter 8
Using the XmlViewCnv Class for XML to and From View/View(32) Translation

8-7

8.6.1 Translating Nested Views
Nested views are views which contains one or more members of type struct, which
are themselves a view. This section provides an example of converting a nested view
to XML.

The following is a nested view file:

VIEW file
VIEW MYVIEW1
#type Cname Fbname Count Flag Size null
long long1 - 1 - - 0
string string1 - 1 - 20 '\0`
END

VIEW MYVIEW2
#type Cname Fbname Count Flag Size null
long long1 - 1 - - 0
bool bool1 - 1 - - 0
signedchar schar1 - 1 - - 0
struct MYVIEW1 myview1 2 - - NONE
END

The translated XML string is:

<VIEW32>
 <MYVIEW2>
 <bool1>true</bool1>
 <long1>100</long1>
 <myview1><VIEW32><MYVIEW1>
 <string1>aa11</string1>
 <long1>100</long1>
 </MYVIEW1></VIEW32></myview1>
 <myview1><VIEW32><MYVIEW1>
 <string1>bb22</string1>
 <long1>100</long1>
 </MYVIEW1></VIEW32></myview1>
 <schar1>100</schar1>
 </MYVIEW2>
</VIEW32>

Chapter 8
Using the XmlViewCnv Class for XML to and From View/View(32) Translation

8-8

9
How to Create a Custom AppKey Plug-in

This chapter describes how to create custom AppKey generator plug-ins.
This chapter includes the following sections:

• How to Create a Custom Plug-In

• Example Custom Plug-in

9.1 How to Create a Custom Plug-In

Note:

You cannot customize Oracle Tuxedo AAA tokens.

1. Create your custom Java plug-in using the AppKey and UserRec interfaces. You
can provide any required initialization parameters or a property file using the param
parameter of the init method.

2. Compile your plug-in. Example:

javac exampleAppKey.java

3. Update your CLASSPATH to include the path to your compiled plug-in. Example:

export CLASSPATH=$CLASSPATH:/home/mywork

4. Start your server.

5. Configure your WTC server to use the Custom Plug-in. For more information, see
the Custom Plug-in in Administering WebLogic Tuxedo Connector for Oracle
WebLogic Server.

9.2 Example Custom Plug-in
The exampleAppKey.java file is an example of a custom plug-in. It utilizes a tpusrfile file
as the database to store the AppKey.

Example 9-1 exampleAppKey.Java Custom Plug-In

import java.io.*;
import java.lang.*;
import java.util.*;
import java.security.Principal;
import weblogic.wtc.jatmi.AppKey;
import weblogic.wtc.jatmi.UserRec;
import weblogic.wtc.jatmi.DefaultUserRec;
import weblogic.wtc.jatmi.TPException;
import weblogic.security.acl.internal.AuthenticatedSubject;
import weblogic.security.WLSPrincipals;

9-1

/**
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

/**
 * @exclude
 * Sample AppKey plug-in using TPUSRFILE as the database for APPKEY.
 * It is installed through "Custom" option.
 * The syntax for option custom plug parameter input contains the full
 * pathname to the <tpusrfile>
 *
 * @author BEA Systems, Inc.
 */
public class exampleAppKey implements AppKey {
 private String anon_user = null;
 private String tpusrfile = null;
 private File myfile;
 private HashMap userMap;
 private long l_time;
 private int dfltAppkey;
 private boolean allowAnon;
 private final static int USRIDX = 0;
 private final static int PWDIDX = 1;
 private final static int UIDIDX = 2;
 private final static int GIDIDX = 3;
 private final static int CLTIDX = 4;

 private final static byte[] tpsysadm_string = {
 (byte)'t', (byte)'p', (byte)'s', (byte)'y', (byte)'s',
 (byte)'a', (byte)'d', (byte)'m' };
 private final static byte[] tpsysop_string = {
 (byte)'t', (byte)'p', (byte)'s', (byte)'y', (byte)'s', (byte)'o',
 (byte)'p' };

 public void init(String param, boolean anonAllowed, int dfltAppKey)
 throws TPException {

 if (param == null) {
 System.out.println("Error: tpusrAppKey.init@param == null");
 throw new TPException(TPException.TPESYSTEM,
 "Invalid input parameter");
 }

 // get the tpusrfile name
 parseParam(param);

 myfile = new File(tpusrfile);
 if (myfile.exists() != true) {
 System.out.println("Error: exampleAppKey.init@file \"" + param
 + "\" does not exist");
 throw new TPException(TPException.TPESYSTEM,
 "Failed to find TPUSR file");
 }
 if (myfile.isFile() != true) {
 System.out.println("Error: exampleAppKey.init@the specified name \"" +
 param + "\" is not a file");
 throw new TPException(TPException.TPESYSTEM,
 "Invalid TPUSR file");
 }
 if (myfile.canRead() != true) {

Chapter 9
Example Custom Plug-in

9-2

 System.out.println("Error: exampleAppKey.init@file \"" + param +
 "\" is not readable");
 throw new TPException(TPException.TPESYSTEM,
 "Bad TPUSR file permission");
 }

 userMap = new HashMap();

 // create the cache
 if (createCache(tpusrfile) == -1) {
 System.out.println("Error: exampleAppkey.init@fail to create user cache");
 throw new TPException(TPException.TPESYSTEM,
 "fail to create user cache");
 }

 l_time = myfile.lastModified();
 anon_user = weblogic.security.WLSPrincipals.getAnonymousUsername();
 allowAnon = anonAllowed;
 dfltAppkey = dfltAppKey;

 System.out.println("exampleAppKey installed!");

 return;
 }

 public void uninit() throws TPException {
 if (userMap != null) {
 userMap.clear();
 }
 return;
 }

 public UserRec getTuxedoUserRecord(AuthenticatedSubject subj) {
 Object[] obj = subj.getPrincipals().toArray();
 if (obj == null || obj.length == 0) {
 // a subject without principals is an anonymous user
 if (allowAnon) {
 return new DefaultUserRec(anon_user, dfltAppkey);
 }
 System.out.println("Error: exampleAppKey.
 getTuxedoUserRecord@return " +
 "anonymous user not allowed");
 return null;
 }

 // looping through all Principal names if necessary to get first user
 // name defined in tpuser file
 Principal user;
 String username;
 int key;
 UserRec rec;

 for (int i = 0; i < obj.length; i++) {
 user = (Principal)obj[i];
 username = user.getName();
 if (username.equals(anon_user)) {
 return new DefaultUserRec(anon_user, dfltAppkey);
 }
 if ((rec = (UserRec)userMap.get(username)) != null) {
 return rec;
 }

Chapter 9
Example Custom Plug-in

9-3

 }
 System.out.println("WARN: exampleAppKey.getTuxedoUserRecord@return " +
 "null UserRec");
 return null;
 }

 private int createCache(String fname) {
 FileInputStream fin;
 byte[] line;

 try {
 fin = new FileInputStream(fname);

 while ((line = readOneLine(fin)) != null) {
 DefaultUserRec newUser = parseOneLine(line);
 if (newUser != null) {
 userMap.put(newUser.getRemoteUserName(), newUser);
 }
 }
 fin.close();
 }
 catch (FileNotFoundException fnfe) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + fnfe);
 return -1;
 }
 catch (SecurityException se) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + se);
 return -1;
 }
 catch (IOException ioe) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + ioe);
 return -1;
 }
 catch (Exception e) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + e);
 return -1;
 }
 return 0;
 }

 private byte[] readOneLine(FileInputStream fh) {
 int len = 80;
 byte[] line = new byte[len];
 int inp = -1;
 int idx = 0;

 try {
 while ((inp = fh.read()) != -1) {
 if (idx == 0 && (inp == '\n' || inp == '\0')) {
 continue;
 }
 if (inp == '\n') {
 break;
 }
 if (idx == (len - 1)) {
 byte[] tmp = new byte[len + 80];
 System.arraycopy(line, 0, tmp, 0, len);
 line = tmp;
 len += 80;
 }
 line[idx] = (byte)inp;

Chapter 9
Example Custom Plug-in

9-4

 idx++;
 }
 }
 catch (Exception e) {
 System.out.println("Error: exampleAppKey.readOneLine@reason: " + e);
 return null;
 }

 if (inp == -1 && idx == 0) {
 return null;
 }

 byte[] tmp = new byte[idx];
 System.arraycopy(line, 0, tmp, 0, idx);

 return tmp;
 }

 private DefaultUserRec parseOneLine(byte[] line) {
 String name;
 int key = 0;
 DefaultUserRec usr;
 int firstCharacter;
 int i;
 int sidx;
 int fldlen;
 int fn;
 byte[] buid = null;
 byte[] bgid = null;
 byte[] clt = null;
 byte[] uname = null;

 firstCharacter = (int)line[0];
 if (firstCharacter == '#' || firstCharacter == '\n' ||
 firstCharacter == '!' || firstCharacter == '\0' ||
 firstCharacter == '\r') {
 return null;
 }
 fldlen = 0;
 sidx = 0;
 for (i = 0, fn = 0; i < line.length && fn <= CLTIDX; i++) {
 if (line[i] == (byte)':') {
 switch (fn) {
 case USRIDX:
 uname = new byte[fldlen];
 System.arraycopy(line, sidx, uname, 0, fldlen);
 break;
 case UIDIDX:
 buid = new byte[fldlen];
 System.arraycopy(line, sidx, buid, 0, fldlen);
 break;
 case GIDIDX:
 bgid = new byte[fldlen];
 System.arraycopy(line, sidx, bgid, 0, fldlen);
 break;
 case CLTIDX:
 if (line[sidx] == (byte)'T' &&
 line[sidx+1] == (byte)'P' &&
 line[sidx+2] == (byte)'C' &&
 line[sidx+3] == (byte)'L' &&
 line[sidx+4] == (byte)'T' &&

Chapter 9
Example Custom Plug-in

9-5

 line[sidx+5] == (byte)'N' &&
 line[sidx+6] == (byte)'M' &&
 line[sidx+7] == (byte)',') {
 sidx += 8;
 fldlen -= 8;
 }
 if (fldlen > 0) {
 clt = new byte[fldlen];
 System.arraycopy(line, sidx, clt, 0, fldlen);
 }
 break;
 default:
 break;
 } // end of switch
 fn++;
 fldlen = 0;
 sidx = i + 1;
 } // end of if
 else {
 fldlen++;
 }
 }

 // try to tolerate incomplete line
 if (fn <= CLTIDX && fldlen > 0) {
 switch (fn) {
 case USRIDX:
 uname = new byte[fldlen];
 System.arraycopy(line, sidx, uname, 0, fldlen);
 break;
 case UIDIDX:
 buid = new byte[fldlen];
 System.arraycopy(line, sidx, buid, 0, fldlen);
 break;
 case GIDIDX:
 bgid = new byte[fldlen];
 System.arraycopy(line, sidx, bgid, 0, fldlen);
 break;
 case CLTIDX:
 if (line[sidx] == (byte)'T' &&
 line[sidx+1] == (byte)'P' &&
 line[sidx+2] == (byte)'C' &&
 line[sidx+3] == (byte)'L' &&
 line[sidx+4] == (byte)'T' &&
 line[sidx+5] == (byte)'N' &&
 line[sidx+6] == (byte)'M' &&
 line[sidx+7] == (byte)',') {
 sidx += 8;
 fldlen -= 8;
 }
 clt = new byte[fldlen];
 System.arraycopy(line, sidx, clt, 0, fldlen);
 break;
 }
 }

 if (uname == null || buid == null || bgid == null) {
 return null;
 }

 name = new String(uname);

Chapter 9
Example Custom Plug-in

9-6

 if (clt != null) {
 if (Arrays.equals(tpsysadm_string, clt) == true) {
 key = TPSYSADM_KEY;
 }
 else if (Arrays.equals(tpsysop_string, clt) == true) {
 key = TPSYSOP_KEY;
 }
 }

 if (key == 0) {
 Integer u_val;
 Integer g_val;
 int uid = 0;
 int gid = 0;

 try {
 u_val = new Integer(new String(buid));
 g_val = new Integer(new String(bgid));
 uid = u_val.intValue();
 gid = g_val.intValue();
 uid &= UIDMASK;
 gid &= GIDMASK;
 key = uid | (gid << GIDSHIFT);
 }
 catch (NumberFormatException nfe) {
 System.out.println("Error: exampleAppKey.readOneLine@reason: " + nfe);
 return null;
 }
 }

 return new DefaultUserRec(name, key);
 }

 private void parseParam(String param) {
 String str;

 // trim the input
 tpusrfile = param.trim();

 return;
 }
}

Chapter 9
Example Custom Plug-in

9-7

Chapter 9

Example Custom Plug-in

9-8

10
Application Error Management

This chapter describes mechanisms used to manage and interpret error conditions in
your applications that occur when using Oracle WebLogic Tuxedo Connector.
This chapter includes the following sections:

• Testing for Application Errors

• Oracle WebLogic Tuxedo Connector Time-Out Conditions

• Guidelines for Tracking Application Events

10.1 Testing for Application Errors

Note:

To view an example that demonstrates how to test for error conditions, see
Example Transaction Code.

Your application logic should test for error conditions after the calls that have return
values and take suitable steps based on those conditions. In the event that a function
returned a value, you may invoke a functions that tests for specific values and
performs the appropriate application logic for each condition.

10.1.1 Exception Classes
The Oracle WebLogic Tuxedo Connector throws the following exception classes:

• Ferror: Exception thrown for errors occurring while manipulating FML.

• TPException: Exception thrown that represents a TPException failure.

• TPReplyException: Exception thrown that represents a TPException failure when
user data is associated with the exception thrown.

10.1.2 Fatal Transaction Errors
In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call commit().
Transactions fail for the following reasons:

• The initiator or participant of the transaction caused it to be marked for rollback.

• The transaction timed out.

• A commit() was called by a participant rather than by the originator of a
transaction.

10-1

10.2 Oracle WebLogic Tuxedo Connector Time-Out
Conditions

There are two types of time-out which can occur when using the Oracle WebLogic
Tuxedo Connector:

• Blocking time-out.

• Transaction time-out.

10.2.1 Blocking vs. Transaction Time-out
Blocking time-out is exceeding the amount of time a call can wait for a blocking
condition to clear up. Transaction time-out occurs when a transaction takes longer
than the amount of timed defined for it in setTransactionTimeout(). By default, if a
process is not in transaction mode, blocking time-outs are performed. When the flags
parameter of a a communication call is set to TPNOTIME, it applies to blocking time-outs
only. If a process is in transaction mode, blocking time-out and the TPNOTIME flag are
not relevant. The process is sensitive to transaction time-out only as it has been
defined for it when the transaction was started. The implications of the two different
types of time-out follow:

• If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call
descriptor is still valid and may be used on a re-issue call. Further communication
in general is unaffected.

• In the case of transaction time-out, the call descriptor to an asynchronous
transaction reply (done without the TPNOTRAN flag) becomes stale and may no
longer be referenced. The only further communication allowed is the one case
described earlier of no reply, no blocking, and no transaction.

10.2.2 Effect on commit()
The state of a transaction if time-out occurs after the call to commit() is undetermined.
If the transaction timed out and the system knows that it was aborted,
setRollbackOnly() or rollback() returns with an error.

If the state of the transaction is in doubt, you must query the resource to determine if
any of the changes that were part of that transaction have been applied to it in order to
discover whether the transaction committed or aborted.

10.2.3 Effect of TPNOTRAN

Note:

A transaction can time-out while waiting for a reply that is due from a service
that is not part of that transaction.

Chapter 10
Oracle WebLogic Tuxedo Connector Time-Out Conditions

10-2

When a process is in transaction and makes a communications call with flags set to
TPNOTRAN, it prohibits the called service from becoming a participant of that transaction.
The success or failure of the service does not influence the outcome of that
transaction.

10.3 Guidelines for Tracking Application Events
You can track the execution of your applications by using System.out.println() to
write messages to the Oracle WebLogic Server trace log. Create a log() method that
takes a variable of type String and use the variable name as the argument to the call,
or include the message as a literal within quotation marks as the argument to the call.
In the following example, a series of messages are used to track the progress of a
tpcall().

Example 10-1 Example Event Logging

.

.

.
log("About to call tpcall");
try {
myRtn = myTux.tpcall("TOUPPER", myData, 0);
}
catch (TPReplyException tre) {
log("tpcall threw TPReplyExcption " + tre);
throw tre;
}
catch (TPException te) {
log("tpcall threw TPException " + te);
throw te;
}
catch (Exception ee) {
log("tpcall threw exception: " + ee);
throw new TPException(TPException.TPESYSTEM, "Exception: " + ee);
}
log("tpcall successfull!");
.
.
.
private static void
log(String s)
{System.out.println(s);}
.
.
.

Chapter 10
Guidelines for Tracking Application Events

10-3

Chapter 10

Guidelines for Tracking Application Events

10-4

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction to Oracle WebLogic Tuxedo Connector Programming
	1.1 Guide to this Document
	1.2 Developing Oracle WebLogic Tuxedo Connector Applications
	1.2.1 Developing Oracle WebLogic Tuxedo Connector Clients
	1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers
	1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo CORBA objects

	1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives
	1.4 Oracle WebLogic Tuxedo Connector TypedBuffers
	1.5 New and Changed WTC Features for this Release

	2 Developing Oracle WebLogic Tuxedo Connector Client EJBs
	2.1 Joining and Leaving Applications
	2.1.1 Joining an Application
	2.1.2 Leaving an Application

	2.2 Basic Client Operation
	2.2.1 Get an Oracle Tuxedo Object
	2.2.2 Perform Message Buffering
	2.2.3 Send and Receive Messages
	2.2.3.1 Request/Response Communication
	2.2.3.1.1 Using Synchronous Service Calls
	2.2.3.1.2 Using Deferred Synchronous Service Calls
	2.2.3.1.3 Using Asynchronous Calls

	2.2.3.2 Conversational Communication
	2.2.3.3 Enqueuing and Dequeuing Messages

	2.2.4 Close a Connection to an Oracle Tuxedo Object

	2.3 Example Client EJB

	3 Developing Oracle WebLogic Tuxedo Connector Service EJBs
	3.1 Basic Service EJB Operation
	3.1.1 Access Service Information
	3.1.2 Buffer Messages
	3.1.3 Perform the Requested Service
	3.1.3.1 Return Client Messages for Request/Response Communication
	3.1.3.2 Use tpsend and tprecv for Conversational Communication

	3.2 Example Service EJB

	4 Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability
	4.1 How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API
	4.1.1 Using CosNaming Service
	4.1.1.1 Example ToupperCorbaBean.java Code

	4.1.2 Using FactoryFinder
	4.1.2.1 WLEC to Oracle WebLogic Tuxedo Connector Migration
	4.1.2.2 Example Code

	4.2 How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector
	4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo Connector
	4.2.2 How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo Connector
	4.2.2.1 How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
	4.2.2.1.1 Assign env-entry-name
	4.2.2.1.2 Assign env-entry-type
	4.2.2.1.3 Assign env-entry-value

	4.2.2.2 How to Modify EJBs to Use FederationURL to Access an Object

	4.3 How to Use FederationURL Formats
	4.3.1 Using corbaloc URL Format
	4.3.1.1 Examples of corbaloc:tgiop
	4.3.1.2 Examples using -ORBInitRef
	4.3.1.3 Examples Using -ORBDefaultInitRef

	4.3.2 Using the corbaname URL Format
	4.3.2.1 Examples Using -ORBInitRef

	4.4 How to Manage Transactions for Oracle Tuxedo CORBA Applications

	5 Oracle WebLogic Tuxedo Connector JATMI Transactions
	5.1 Global Transactions
	5.2 JTA Transaction API
	5.2.1 Types of JTA Interfaces
	5.2.1.1 Transaction
	5.2.1.2 TransactionManager
	5.2.1.3 UserTransaction

	5.2.2 JTA Transaction Primitives

	5.3 Defining a Transaction
	5.3.1 Starting a Transaction
	5.3.1.1 Using TPNOTRAN

	5.3.2 Terminating a Transaction

	5.4 Oracle WebLogic Tuxedo Connector Transaction Rules
	5.5 Example Transaction Code

	6 Oracle WebLogic Tuxedo Connector JATMI Conversations
	6.1 Overview of Oracle WebLogic Tuxedo Connector Conversational Communication
	6.2 Oracle WebLogic Tuxedo Connector Conversation Characteristics
	6.3 Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives
	6.4 Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers
	6.4.1 Creating Conversational Clients
	6.4.1.1 Establishing a Connection to an Oracle Tuxedo Conversational Service
	6.4.1.2 Example TuxedoConversationBean.java Code

	6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational Servers

	6.5 Sending and Receiving Messages
	6.5.1 Sending Messages
	6.5.2 Receiving Messages

	6.6 Ending a Conversation
	6.6.1 Oracle Tuxedo Application Originates Conversation
	6.6.2 Oracle WebLogic Tuxedo Connector Application Originates Conversation
	6.6.3 Ending Hierarchical Conversations

	6.7 Executing a Disorderly Disconnect
	6.8 Understanding Conversational Communication Events
	6.9 Oracle WebLogic Tuxedo Connector Conversation Guidelines

	7 Using FML with Oracle WebLogic Tuxedo Connector
	7.1 Overview of FML
	7.2 The Oracle WebLogic Tuxedo Connector FML API
	7.3 FML Field Table Administration
	7.3.1 Using the DynRdHdr Property for mkfldclass32 Class

	7.4 Using TypedFML32 Constructors
	7.4.1 Gaining TypedFML32 Performance Improvements

	7.5 tBridge XML/FML32 Translation
	7.5.1 FLAT
	7.5.2 NO
	7.5.3 FML32 Considerations

	7.6 Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation
	7.6.1 Limitations of XmlFmlCnv Class

	7.7 MBSTRING Usage
	7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain
	7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain
	7.7.3 Using FML with Oracle WebLogic Tuxedo Connector

	8 Oracle WebLogic Tuxedo Connector JATMI VIEWs
	8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers
	8.2 How to Create a VIEW Description File
	8.2.1 Example VIEW Description File

	8.3 How to Use the viewj Compiler
	8.4 How to Pass Information to and from a VIEW Buffer
	8.5 How to Use VIEW Buffers in JATMI Applications
	8.5.1 How to Get VIEW32 Data In and Out of FML32 Buffers

	8.6 Using the XmlViewCnv Class for XML to and From View/View(32) Translation
	8.6.1 Translating Nested Views

	9 How to Create a Custom AppKey Plug-in
	9.1 How to Create a Custom Plug-In
	9.2 Example Custom Plug-in

	10 Application Error Management
	10.1 Testing for Application Errors
	10.1.1 Exception Classes
	10.1.2 Fatal Transaction Errors

	10.2 Oracle WebLogic Tuxedo Connector Time-Out Conditions
	10.2.1 Blocking vs. Transaction Time-out
	10.2.2 Effect on commit()
	10.2.3 Effect of TPNOTRAN

	10.3 Guidelines for Tracking Application Events

