Oracle® Fusion Middleware
Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server

ORACLE"

Oracle Fusion Middleware Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server,
12¢ (12.2.1.3.0)

E80410-01
Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility Vil

Conventions Vi

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1

1.2 Guide to This Document 1-1

1.3 Related Documentation 1-2

1.4 Logging Samples and Tutorials 1-2
1.4.1 Avitek Medical Records Application (MedRec) and Tutorials 1-2
1.4.2 Log4j Integration in MedRec 1-2
1.4.3 Logging Examples in the WebLogic Server Distribution 1-2

1.5 New and Changed Logging Features in This Release 1-3

2 Understanding WebLogic Logging Services

2.1 What You Can Do With WebLogic Logging Services 2-1
2.2 How WebLogic Logging Services Work 2-1
2.2.1 Components and Environment 2-2
2.2.2 Terminology 2-2
2.2.3 Overview of the Logging Process 2-3
2.2.4 Server Log Files and Domain Log Files 2-4
2.2.5 How a Server Instance Forwards Messages to the Domain Log 2-4
2.3 Server and Subsystem Logs 2-6
2.3.1 Server Log 2-6
2.3.2 Subsystem Logs 2-7
2.4 Log Message Format 2-8
2.4.1 Log File Format Compatibility with Previous WebLogic Server Versions 2-9
2.4.2 Format of Output to Standard Out and Standard Error 2-9
2.5 Message Attributes 2-9
2.6 Message Severity 2-11
2.7 Viewing WebLogic Server Logs 2-12

ORACLE iii

ORACLE

2.8 Server Logging Bridge 2-13

2.9 Configuring java.util.logging Logger Levels 2-13

2.9.1 Configuring java.util.logging Logger Levels Using WLST 2-14

2.10 Best Practices 2-14

3 Configuring WebLogic Logging Services

3.1 Configuration Scenarios 3-1

3.2 Overview of Logging Services Configuration 3-1

3.2.1 Using Log Severity Levels 3-2

3.2.2 Using Log Filters 3-3

3.3 Logging Configuration Tasks: Main Steps 3-3

3.4 Log4j and the Commons Logging API 3-4

3.4.1 About Log4j 3-4

3.4.1.1 Loggers 3-4

3.4.1.2 Appenders 3-4

3.4.1.3 Layouts 3-5

3.5 How to Use Log4j with WebLogic Logging Services 3-5
3.5.1 Using WLST to Configure and Enable Log4j for WebLogic Server

Logging 3-6

3.6 How to Use the Commons API with WebLogic Logging Services 3-7

3.6.1 Specifying Severity Level for Loggers 3-8

3.6.1.1 Specifying Severity Level for WebLogic Server Subsystem

Loggers 3-9

3.6.1.2 Specifying the Severity Level for Commons Logging APl Loggers 3-9

3.7 Rotating Log Files 3-10

3.7.1 Specifying the Location of Archived Log Files 3-11

3.7.2 Notification of Rotation 3-11

3.8 Redirecting JVM Output 3-12

3.8.1 Configuring WebLogic Server to Redirect the JVM Output 3-13

3.9 Redirecting Standard Error and Standard Output 3-14

3.10 Preventing Excessive Logging 3-15

4 Filtering WebLogic Server Log Messages

4.1 The Role of Logger and Handler Objects 4-1

4.2 Filtering Messages by Severity Level or Other Criteria 4-3

4.3 Setting the Severity Level for Loggers and Handlers 4-3

4.3.1 Setting the Level for Loggers 4-4

4.3.2 Setting the Level for Handlers 4-4

4.3.2.1 Example: Setting the Level for Handlers 4-5

4.3.2.2 Example: Setting the Severity Level for the Stdout Handler 4-5

4.4 Setting a Filter for Loggers and Handlers 4-6
4.4.1 Filtering Domain Log Messages 4-7
4.5 Setting a Severity Level and Filter on a Log4j Appender 4-8

5 Subscribing to Messages

5.1 Overview of Message Handlers 5-1
5.2 Creating and Subscribing a Handler: Main Steps 5-2
5.3 Example: Subscribing to Messages in a Server JVM 5-4

5.3.1 Example: Implementing a Handler Class 5-4

5.3.2 Example: Subscribing to a Logger Class 5-6
5.4 Example: Implementing a Log4j Appender Class 5-7
5.5 Comparison of Java Logging Handlers with JMX Listeners 5-10

ORACLE Y

ORACLE"

Vi

Preface

This preface describes the document accessibility features and conventions used in

this guide—Configuring Log Files and Filtering Log Messages for Oracle WebLogic
Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nf o or visit htt p: // ww. or acl e. coml pl s/t opi ¢/ | ookup?ct x=acc&i d=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with
an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code in
examples, text that appears on the screen, or text that you enter.

ORACLE vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

WebLogic Server logging services is used to monitor server, subsystem, and
application events. You can configure WebLogic Server to write messages to log files
and listen for the log messages that WebLogic Server broadcasts. You can also view
log messages through the WebLogic Server Administration Console.

This chapter includes the following sections:

e Document Scope and Audience
* Guide to This Document

* Related Documentation

e Logging Samples and Tutorials

 New and Changed Logging Features in This Release

1.1 Document Scope and Audience

This document describes how you use WebLogic Server logging services to monitor
server, subsystem, and application events. It explains how you configure WebLogic
Server to write messages to log files and listen for the log messages that WebLogic
Server broadcasts. It also describes how to view log messages through the WebLogic
Server Administration Console.

This document is a resource for system administrators who configure WebLogic
logging services and monitor server and subsystem events, and for Java Platform,
Enterprise Edition (Java EE) application developers who want to integrate their
application logs with WebLogic Server logs. This document is relevant to all phases of
a software project, from development through test and production phases.

This document does not address application logging or localization and
internationalization of log message catalogs. For links to information on these topics,
see Related Documentation.

It is assumed that the reader is familiar with Java EE and Web technologies, object-
oriented programming techniques, and the Java programming language.

1.2 Guide to This Document

ORACLE

The document is organized as follows:

* Introduction and Roadmap describes the scope of this guide and lists related
documentation.

* Understanding WebLogic Logging Services discusses the logging process, log
files, and log messages.

* Configuring WebLogic Logging Services describes basic configuration scenarios
and tasks.

1-1

Chapter 1
Related Documentation

» Filtering WebLogic Server Log Messages describes how to specify which types of
messages WebLogic Server writes to its logs and to standard out.

* Subscribing to Messages describes how WebLogic Server instantiates and
subscribes a set of message handlers that receive and print log messages.

1.3 Related Documentation

The corporate Web site provides all documentation for WebLogic Server. Specifically,
View and configure logs in Oracle WebLogic Server Administration Console Online
Help describes how to view and configure log files that a WebLogic Server instance
generates, and Using Message Catalogs with WebLogic Server in Adding WebLogic
Logging Services to Applications Deployed on Oracle WebLogic Server describes how
you can use WebLogic Server message catalogs, non-catalog logging, and servlet
logging to produce log messages from your application or a remote Java client, and
describes WebLogic's support for internationalization and localization of log messages.

1.4 Logging Samples and Tutorials

In addition to this document, Oracle provides a variety of logging code samples that
show logging configuration and API use.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOVE\ user _pr oj ect s\ domai ns\ medr ec
directory, where ORACLE_HOME is the directory you specified as Oracle Home when you
installed Oracle WebLogic Server. For more information, see Sample Applications and
Code Examples in Understanding Oracle WebLogic Server.

1.4.2 Log4j Integration in MedRec

The MedRec domain installed with WebLogic Server is configured to enable Log4j
logging. Several action classes and MedRec utility classes use the

webl ogi c. | oggi ng. | 0g4j . Log4j Loggi ngHel per class to create a new logger, access a
Log4j Appender, and register the Appender with the logger. Classes extending the
base classes then use the logger to write informational messages to the WebLogic
Server log file.

1.4.3 Logging Examples in the WebLogic Server Distribution

ORACLE

WebLogic Server optionally installs APl code examples in ORACLE_HOVE\ Wl ser ver

\ sanpl es\ server, where ORACLE_HOME represents the directory in which you installed
WebLogic Server. For more information about the WebLogic Server code examples,
see Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

1-2

Chapter 1
New and Changed Logging Features in This Release

1.5 New and Changed Logging Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

ORACLE 1-3

Chapter 1

New and Changed Logging Features in This Release

ORACLE" 1-4

Understanding WebLogic Logging Services

WebLogic logging services provide facilities for writing, viewing, filtering, and listening
for log messages. These log messages are generated by WebLogic Server instances,
subsystems, and Java EE applications that run on WebLogic Server or in client JVMs.

* What You Can Do With WebLogic Logging Services
* How WebLogic Logging Services Work

e Server and Subsystem Logs

* Log Message Format

* Message Attributes

* Message Severity

* Viewing WebLogic Server Logs

e Server Logging Bridge

» Configuring java.util.logging Logger Levels

» Best Practices

2.1 What You Can Do With WebLogic Logging Services

WebLogic Server subsystems use logging services to provide information about
events such as the deployment of new applications or the failure of one or more
subsystems. A server instance uses them to communicate its status and respond to
specific events. For example, you can use WebLogic logging services to report error
conditions or listen for log messages from a specific subsystem.

Each WebLogic Server instance maintains a server log. Because each WebLogic
Server domain can run concurrent, multiple instances of WebLogic Server, the logging
services collect messages that are generated on multiple server instances into a
single, domain-wide message log. The domain log provides the overall status of the
domain. See Server Log Files and Domain Log Files.

2.2 How WebLogic Logging Services Work

ORACLE

Learn about the WebLogic Server logging environment and the logging process.
e Components and Environment

e Terminology

» Overview of the Logging Process

e Server Log Files and Domain Log Files

* How a Server Instance Forwards Messages to the Domain Log

2-1

Chapter 2
How WebLogic Logging Services Work

2.2.1 Components and Environment

There are two basic components in any logging system: a component that produces
log messages and another component to distribute (publish) messages. WebLogic
Server subsystems use a message catalog feature to produce messages and the Java
Logging APIs to distribute them, by default. Developers can also use message
catalogs for applications they develop.

The message catalog framework provides a set of utilities and APIs that your
application can use to send its own set of messages to the WebLogic server log. The
framework is ideal for applications that need to localize the language in their log
messages, but even for those applications that do not need to localize, it provides a
rich, flexible set of tools for communicating status and output.

See Using Message Catalogs with WebLogic Server in Adding WebLogic Logging
Services to Applications Deployed on Oracle WebLogic Server.

In addition to using the message catalog framework, your application can use the
following mechanisms to send messages to the WebLogic server log:

* webl ogi c. | oggi ng. NonCat al ogLogger APIs

With NonCat al ogLogger , instead of calling messages from a catalog, you place the
message text directly in your application code. See Using the NonCatalogLogger
APIs in Adding WebLogic Logging Services to Applications Deployed on Oracle
WebLogic Server.

e Server Logging Bridge

WebLogic Server provides a mechanism by which your logging application can
have its messages redirected to WebLogic logging services without the need to
make code changes or implement any of the propriety WebLogic Logging APIs.
See Server Logging Bridge.

Use of either the NonCat al ogLogger APIs or Server Logging Bridge is suitable for
logging messages that do not need to be internationalized or that are internationalized
outside the WebLogic 118n framework.

To distribute messages, WebLogic Server supports Java based logging by default.
The Loggi ngHel per class provides access to the java. util .| oggi ng. Logger object used
for server logging. This lets developers take advantage of the Java Logging APIs to
add custom handlers, filters, and formatters. See the j ava. util .| oggi ng API
documentation at htt p: // docs. oracl e. conl j avase/ 8/ docs/ api /j ava/ uti | /| oggi ng/
package- summary. ht ni .

Alternatively, you can configure WebLogic Server to use the Jakarta Project Log4j
APIs to distribute log messages. See Log4j and the Commons Logging API.

2.2.2 Terminology

To understand the WebLogic Logging services, you must understand the following
terminology associated with it:

* Logger - A Logger object logs messages for a specific subsystem or application
component. WebLogic logging services use a single instance of
java.util.logging. Logger for logging messages from the Message Catalogs,
NonCat al ogLogger, and the Debugging system.

ORACLE 2-2

http://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html

Chapter 2
How WebLogic Logging Services Work

* Handler - A class that extends j ava. util .| oggi ng. Handl er and receives log
requests sent to a logger. Each Logger instance can be associated with a number
of handlers to which it dispatches log messages. A handler attaches to a specific
type of a log message; for example, the File Handler for the server log file.

* Appender - An appender is Log4j terminology for a handler, in this case, an
instance of a class that implements or g. apache. | og4j . Appender and is registered
with an or g. apache. | 0g4j . Logger to receive log events.

2.2.3 Overview of the Logging Process

ORACLE

WebLogic Server subsystems or application code send log requests to Logger objects.
These Logger objects allocate LogRecor d objects which are passed to Handl er objects
for publication. Both loggers and handlers use severity levels and (optionally) filters to
determine if they are interested in a particular LogRecor d object. When it is necessary to
publish a LogRecor d object externally, a handler can (optionally) use a formatter to
localize and format the log message before publishing it to an 1/O stream.

Figure 2-1 shows the WebLogic Server logging process: WebLogic Catalog APIs or
Commons Logging APIs are used for producing messages; Java Logging (default) and
Log4j are options for distributing messages.

Figure 2-1 WebLogic Server Logging Process

WWLS Subsystem ‘ Java EE App
Produce J ‘J" \
Messages Msg Catalog MonCatalog Commons
Logger Logger Logging AP

SEMVErR
Distribute Logger
Ilessages \l{

Stduut‘ File ‘Dumain Log ‘ ¥ Log | memaory
Handler | Handler | Broadcaster Broadcaster Handler

Figure 2-1 illustrates the following process:

1. The client, in this case, a WebLogic Server subsystem or Java EE application,
invokes a method on one of the generated Catalog Loggers or the Commons
Logging implementation for WebLogic Server.

a. When WebLogic Server message catalogs and the NonCat al ogLogger generate
messages, they distribute their messages to the server Logger object.

b. The Jakarta Commons Logging APIs define a factory API to get a Logger
reference which dispatches log requests to the server Logger object.

The server Logger object can be an instance of j ava. util .| oggi ng. Logger or
org. apache. | og4j . Logger .

2-3

Chapter 2
How WebLogic Logging Services Work

2. The server Logger object publishes the messages to any message handler that has
subscribed to the Logger.

For example, the Stdout Handler prints a formatted message to standard out and
the File Handler writes formatted output to the server log file. The Domain Log
Broadcaster sends log messages to the domain log, which resides on the
Administration Server, and the JMX Log Broadcaster sends log messages to JMX
listeners on remote clients.

2.2.4 Server Log Files and Domain Log Files

Each WebLogic Server instance writes all messages from its subsystems and
applications to a server log file that is located on the local host computer. By default,
the server log file is located in the | ogs directory below the server instance root
directory; for example, DOVAI N_NAME\ ser ver s\ SERVER_NAME\ | ogs\ SERVER NAME. | og, where
DOVAI N_NAME is the name of the directory in which you located the domain and

SERVER NAME is the name of the server.

In addition to writing messages to the server log file, each server instance forwards a
subset of its messages to a domain-wide log file. By default, servers forward only
messages of severity level Noti ce or higher. While you can modify the set of messages
that are forwarded, servers can never forward messages of the Debug severity level.
See Forward messages to the domain log in Oracle WebLogic Server Administration
Console Online Help.

The domain log file provides a central location from which to view the overall status of
the domain. The domain log resides in the Administration Server | ogs directory. The
default name and location for the domain log file is DOVAI N_NAVE\ ser ver s

\ ADM N_SERVER NAME\ | ogs\ DOMAI N_NAME. | og, where DOVAI N_NAME is the name of the
directory in which you located the domain and ADM N_SERVER NAME is the name of the
Administration Server. See Change domain log file name and location in Oracle
WebLogic Server Administration Console Online Help.

The timestamp for a record in the domain log is the timestamp of the server where the
message originated. Log records in the domain log are not written in the order of their
timestamps; the messages are written as soon as they arrive. It may happen that a
Managed Server remains out of contact with the Administration Server for some period
of time. In that case, the messages are buffered locally and sent to the Administration
Server once the servers are reconnected.

2.2.5 How a Server Instance Forwards Messages to the Domain Log

To forward messages to the domain log, each server instance broadcasts its log
messages. A server broadcasts all messages and message text except for messages
of the Debug severity level.

The Administration Server listens for a subset of these messages and writes them to
the domain log file. To listen for these messages, the Administration Server registers a
listener with each Managed Server. By default, the listener includes a filter that allows
only messages of severity level Noti ce and higher to be forwarded to the
Administration Server. (See Figure 2-2.)

ORACLE 2.4

ORACLE

Chapter 2
How WebLogic Logging Services Work

Figure 2-2 WebLogic Server and Domain Logs

/ Managed Server \
server
Serser .
Logger Log File
Al messages
Dornain Log
Broadcaster

All messages

f Administration Server \\

EXcept DERUG
Filter -’ Damain
\\ // M— Logoer
Server
Logoer SErEN
Filter | Log File
‘ Dornain Log
[I

\\ Broadcaster _/

For any given WebLogic Server instance, you can override the default filter and create
a log filter that causes a different set of messages to be written to the domain log file.
For information about setting up a log filter for a WebLogic Server instance, see
Create log filters in Oracle WebLogic Server Administration Console Online Help.

If the Administration Server is unavailable, Managed Servers continue to write
messages to their local server log files. However, by default, when the servers are
reconnected, not all the messages written during the disconnected period are
forwarded to the domain log file. A Managed Server keeps a specified number of
messages in a buffer so they can be forwarded to the Administration Server when the
servers are reconnected.

The number of messages kept in the buffer is configured by the LogMBean attribute
Donai nLogBr oadcast er Buf f er Si ze. Domai nLogBr oadcast er Buf f er Si ze controls the
frequency with which log messages are sent from the Managed Server to the domain
server. With the development default of 1, there is not batching of log messages; only
the last logged message is forwarded to the Administration Server domain log. For
example, if the Administration Server is unavailable for two hours and then is restored,
the domain log will not contain any messages that were generated during the two
hours. See MSI Mode and the Domain Log File in Administering Server Startup and
Shutdown for Oracle WebLogic Server. In production mode, the default buffer size on
the Managed Server is 10. When the buffer reaches its capacity, the messages in the
buffer are flushed by sending them to the domain log on the Administration Server. For
performance reasons, it is recommended that you set this value to 10 or higher in
production. A higher value will cause the buffer to be broadcast to the domain log less
frequently.

If you have configured a value greater than 1, that number of messages will be
forwarded to the domain log when the Managed Server is reconnected to the
Administration Server.

2-5

Chapter 2
Server and Subsystem Logs

Note:

This can result in a domain log file that lists messages with earlier timestamps
after messages with later timestamps. When messages from the buffer of a
previously disconnected Managed Server are flushed to the Administration
Server, those messages are simply appended to the domain log, even though
they were generated before the previous messages in the domain log.

2.3 Server and Subsystem Logs

Each subsystem within WebLogic Server generates log messages to communicate its
status.

For example, when you start a WebLogic Server instance, the Security subsystem
writes a message to report its initialization status. To keep a record of the messages
that its subsystems generate, WebLogic Server writes the messages to log files.

e Server Log

e Subsystem Logs

2.3.1 Server Log

The server log records information about events such as the startup and shutdown of

servers, the deployment of new applications, or the failure of one or more subsystems.
The messages include information about the time and date of the event as well as the
ID of the user who initiated the event.

You can view and sort these server log messages to detect problems, track down the
source of a fault, and track system performance. You can also create client
applications that listen for these messages and respond automatically. For example,
you can create an application that listens for messages indicating a failed subsystem
and sends E-mail to a system administrator.

The server log file is located on the computer that hosts the server instance. Each
server instance has its own server log file. By default, the server log file is located in
the | ogs directory below the server instance root directory; for example, DOVAI N_NAMVE
\ server s\ SERVER NAME\ | ogs\ SERVER NAME. | og, where DOMAI N_NAME is the name of the
directory in which you located the domain and SERVER_NAME is the name of the server.
See Change server log file name and location in Oracle WebLogic Server
Administration Console Online Help.

To view messages in the server log file, you can log on to the WebLogic Server host
computer and use a standard text editor, or you can log on to any computer and use
the log file viewer in the WebLogic Server Administration Console. See View server
logs in Oracle WebLogic Server Administration Console Online Help.

ORACLE 2-6

Chapter 2
Server and Subsystem Logs

Note:

Oracle recommends that you do not modify log files by editing them manually.
Modifying a file changes the timestamp and can confuse log file rotation. In
addition, editing a file might lock it and prevent updates from WebLogic
Server, as well as interfere with the Accessor.

For information about the Diagnostic Accessor Service, see Accessing
Diagnostic Data With the Data Accessor in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

In addition to writing messages to a log file, each server instance prints a subset of its
messages to standard out. Usually, standard out is the shell (command prompt) in
which you are running the server instance. However, some operating systems enable
you to redirect standard out to some other location. By default, a server instance prints
only messages of a Not i ce severity level or higher to standard out. (A subsequent
section, Message Severity describes severity levels.) You can modify the severity
threshold so that the server prints more or fewer messages to standard out.

If you use Node Manager to start a Managed Server, the messages that would
otherwise be output to st dout or stderr when starting a Managed Server are instead
displayed in the WebLogic Server Administration Console and written to a single log
file for that server instance, SERVER_NAME. out . The server instance's output log is
located in the same | ogs directory, below the server instance root directory, along with
the WebLogic Server SERVER NAME. | og file; for example, DOVAI N NAMVE\ ser ver s

\ SERVER _NAME\ | ogs\ SERVER NAME. out , where DOMAI N_NAME is the name of the directory in
which you located the domain and SERVER NAME is the name of the server.

Node Manager writes its own startup and status messages to a single log file, NM_HOVE/
nodenanager . | og, where NM_HOMVE designates the Node Manager root directory, by
default, DOVAI N_HOVE/ nodenanager . See Node Manager Configuration and Log Files in
Administering Node Manager for Oracle WebLogic Server.

2.3.2 Subsystem Logs

ORACLE

The server log messages and log file communicate events and conditions that affect
the operation of the server or the application. Some subsystems maintain additional
log files to provide an audit of the subsystem's interactions under normal operating
conditions. The following list describes each of the additional log files:

e The HTTP subsystem keeps a log of all HTTP transactions in a text file. The
default location and rotation policy for HTTP access logs is the same as the server
log. You can set the attributes that define the behavior of HTTP access logs for
each server or for each virtual host that you define. See Setting Up HTTP Access
Logs in Administering Server Environments for Oracle WebLogic Server and
Enable and configure HTTP logs in Oracle WebLogic Server Administration
Console Online Help.

e Each server has a transaction log which stores information about committed
transactions coordinated by the server that may not have been completed.
WebLogic Server uses the transaction log when recovering from system crashes
or network failures. You cannot directly view the transaction log - the file is in a
binary format.

2-7

Chapter 2
Log Message Format

The Transaction Manager uses the default persistent store to store transaction log
files. Using the WebLogic Server Administration Console, you can change where
the default store is located. See Configure the default persistent store for
Transaction Recovery Service migration in Oracle WebLogic Server Administration
Console Online Help.

The WebLogic Auditing provider records information from a number of security
requests, which are determined internally by the WebLogic Security Framework.
The WebLogic Auditing provider also records the event data associated with these
security requests, and the outcome of the requests. Configuring an Auditing
provider is optional. The default security realm (myrealm) does not have an
Auditing provider configured. See Configuring the WebLogic Auditing Provider in
Administering Security for Oracle WebLogic Server.

All auditing information recorded by the WebLogic Auditing provider is saved in
W._HOMVE\ DOVAI N_NANE\ ser ver s\ SERVER_NAME\ | ogs\ Def aul t Audi t Recor der . | og. Although
an Auditing provider is configured per security realm, each server writes auditing
data to its own log file in the server directory.

The JDBC subsystem records various events related to JDBC connections,
including registering JDBC drivers and SQL exceptions. The events related to
JDBC are now written to the server log, such as when connections are created or
refreshed or when configuration changes are made to JDBC objects. See
Monitoring WebLogic JDBC Resources in Administering JDBC Data Sources for
Oracle WebLogic Server.

JMS logging is enabled by default when you create a JMS server, however, you
must specifically enable it on message destinations in the JIMS modules targeted
to this JMS server (or on the JMS template used by destinations).

JMS server log files contain information on basic message life cycle events, such
as message production, consumption, and removal. When a JMS destination
hosting the subject message is configured with message logging enabled, then
each of the basic message life cycle events will generate a message log event in
the JMS message log file.

The message log is located in the | ogs directory, below the server instance root
directory, DOVAI N_NAME\ ser ver s\ SERVER _NAME\ | ogs\ j msSer ver s\ SERVER_NAMEJMSSer ver
\j ms. messages. | og, where DOMAI N_NAME is the name of the directory in which you
located the domain and SERVER NAME is the name of the server.

After you create a JMS server, you can change the default name of its log file, as
well as configure criteria for moving (rotating) old log messages to a separate file.
See Configure topic message logging in Oracle WebLogic Server Administration
Console Online Help and Monitoring JMS Statistics and Managing Messages in
Administering JMS Resources for Oracle WebLogic Server.

2.4 Log Message Format

ORACLE

When a WebLogic Server instance writes a message to the server log file, the first line
of each message begins with #### followed by the message attributes. Each attribute
is contained between angle brackets.

Here is an example of a message in the server log file:

#H##<Sept 22, 2004 10:46:51 AM EST> <Noti ce> <\WebLogi cServer> <MyConput er >
<exanpl esServer ><mai n> <<W.S Ker nel >> <> <nul | > <1080575211904> <BEA- 000360> <Server
started in RUNNING node>

2-8

Chapter 2
Message Attributes

In this example, the message attributes are: Locale-formatted Timestamp, Severity,
Subsystem, Machine Name, Server Name, Thread ID, User ID, Transaction ID,
Diagnostic Context ID, Raw Time Value, Message ID, and Message Text. (A
subsequent section, Message Attributes describes each attribute.)

If a message is not logged within the context of a transaction, the angle brackets for
Transaction ID are present even though no Transaction ID is present.

If the message includes a stack trace, the stack trace is included in the message text.

WebLogic Server uses the host computer's default character encoding for the
messages it writes.

2.4.1 Log File Format Compatibility with Previous WebLogic Server

Versions

To support multitenancy in WebLogic Server 12.2.1 and later, the shared logs for
several WebLogic Server components, such as the server log, domain log, domain
scope JDBC log, and the harvested data archive, include two additional fields to
distinguish messages generated on behalf of partitions:

e partition-id
* partition-name

The addition of these fields to the file format of shared logs may cause a compatibility
issue with scripts that are created with an earlier version of WebLogic Server and that
depend on the legacy log file format. To configure the logging service to revert to the
legacy log format used in earlier versions of WebLogic Server, set the

Domai nMBean. LogFor mat Conpat i bi | i t yEnabl ed attribute to true. In WebLogic Server
12.2.1 and later, the default value of this attribute is f al se.

2.4.2 Format of Output to Standard Out and Standard Error

When a WebLogic Server instance writes a message to standard out, the output does
not include the #### prefix and does not include the Server Name, Machine Name,
Thread ID, User ID, Transaction 1D, Diagnostic Context ID, and Raw Time Value
fields.

Here is an example of how the message from the previous section would be printed to
standard out:

<Sept 22, 2004 10:51:10 AM EST> <Notice> <\WebLogi cServer> <BEA-000360> <Server
started in RUNNING node>

In this example, the message attributes are: Locale-formatted Timestamp, Severity,
Subsystem, Message ID, and Message Text.

2.5 Message Attributes

ORACLE

The messages for all WebLogic Server instances contain a consistent set of attributes.
Table 2-1 lists the server log message attributes. In addition, if your application uses
WebLogic logging services to generate messages, its messages also contain these
attributes.

2-9

ORACLE

Chapter 2
Message Attributes

Table 2-1 Server Log Message Attributes

Attribute

Description

Locale-formatted

Time and date when the message originated, in a format that is specific to

Timestamp the locale. The Java Virtual Machine (JVM) that runs each WebLogic
Server instance refers to the host computer operating system for
information about the local time zone and format.

Severity Indicates the degree of impact or seriousness of the event reported by the
message. See Message Severity.

Subsystem Indicates the subsystem of WebLogic Server that was the source of the

message; for example, Enterprise Java Bean (EJB) container or Java
Messaging Service (JMS).

Machine Name
Server Name

Identifies the origins of the message:
e Server Nane is the name of the WebLogic Server instance on which

Thread ID the message was generated.
e Machi ne Nare is the DNS name of the computer that hosts the server
instance.
e Thread I Dis the ID that the JVM assigns to the thread in which the
message originated.
Log messages that are generated within a client JVM do not include these
attributes. For example, if your application runs in a client JVM and it uses
the WebLogic logging services, the messages that it generates and sends
to the WebLogic client log files will not include these attributes.
User ID The user ID under which the associated event was executed.

To execute some pieces of internal code, WebLogic Server authenticates
the ID of the user who initiates the execution and then runs the code under
a special Kernel Identity user ID.

Java EE modules such as EJBs that are deployed onto a server instance
report the user ID that the module passes to the server.

Log messages that are generated within a client JVM do not include this
field.

Transaction ID

Present only for messages logged within the context of a transaction.

Diagnostic
Context ID

Context information to correlate messages coming from a specific request
or application.

Raw Time Value

The timestamp in milliseconds.

Message ID

A unique six-digit identifier.
All message IDs that WebLogic Server system messages generate start
with BEA- and fall within a numerical range of 0-499999.

Your applications can use a Java class called NonCat al ogLogger to
generate log messages instead of using an internationalized message
catalog. The message ID for NonCat al ogLogger messages is always
000000.

See Writing Messages to the WebLogic Server Log in Adding WebLogic
Logging Services to Applications Deployed on Oracle WebLogic Server.

Message Text

A description of the event or condition.

2-10

Chapter 2
Message Severity

2.6 Message Severity

The severity attribute of a WebLogic Server log message indicates the potential impact
of the event or condition that the message reports.Table 2-2 lists the severity levels of
log messages from WebLogic Server subsystems, starting from the lowest level of
impact to the highest.

Table 2-2 Message Severity

__|
Severit Meaning

y
Used for messages from the Diagnostic Action Library. Upon enabling diagnostic
Trace jnstrumentation of server and application classes, Tr ace messages follow the
request path of a method.
See Diagnostic Action Library in Configuring and Using the Diagnostics Framework
for Oracle WebLogic Server.
A debug message was generated.
Debug
| nf Used for reporting normal operations; a low-level informational message.
nfo
Not An informational message with a higher level of importance.
ice
. A suspicious operation or configuration has occurred but it might not affect normal
Varnin - gperation.
g
A user error has occurred. The system or application can handle the error with no
Brrorinterrupti imi i i
ption and limited degradation of service.
o A system or service error has occurred. The system can recover but there might be
OI” tIC 4 momentary loss or permanent degradation of service.
a
Al A particular service is in an unusable state while other parts of the system continue
ert to function. Automatic recovery is not possible; the immediate attention of the
administrator is needed to resolve the problem.
The server is in an unusable state. This severity indicates a severe system failure or
Emer ge ;
panic.
ncy

WebLogic Server subsystems generate many messages of lower severity and fewer
messages of higher severity. For example, under normal circumstances, they generate
many | nf o messages and no Emer gency messages.

If your application uses WebLogic logging services, it can use an additional severity
level, Debug. See Writing Debug Messages in Adding WebLogic Logging Services to
Applications Deployed on Oracle WebLogic Server.

ORACLE 2-11

Chapter 2
Viewing WebLogic Server Logs

2.7 Viewing WebLogic Server Logs

Figure 2-3 Log
ORACLE

Oracle WLS Console

Change Center

¥iew changes and ¢

Configuration editing is enabled. FLture
changas will automatically ba ackivzted as wou

modify, add or delete i

The WebLogic Server Administration Console provides a log viewer for all the log files
in a domain. The log viewer can find and display the messages based on any of the
following message attributes: date, subsystem, severity, machine, server, thread, user
ID, transaction ID, context ID, timestamp, message ID, or message.lt can also display
messages as they are logged or search for past log messages. (See Figure 2-3.)

Viewer

WeblLogic Server® Administration Console

@ Home Log Qut Preferences Record Help

estarts Harne =Surnrnaty of Diagnostics =Summary of Log Files

Ssummary of Log Ales

tems in this domain,

Domain Struckure
medrec-spring
'Envirunment
;““Deplnyments
'Services
;““Securitv Realms

Each server in a comain mainkains several logs to archive messages from its subsystems, .,
domain-wide log bak summarizes messages from the individual server logs.

This page leks wou view all the logs in the darmain which are accessible fram the WeblLogic

[Customize this table

'Internperabilit\; Log Files
E"Diagnnstics i
;L“Lug Files Wigt J
;L“Diagnostic Maodules o
;““Diagnostic Irmages T Type ‘!
i““.ﬂ.rchives) | DomainLog Darmain Log I["(
roriZonkext
LopMp O EventsDatabrchive Instrumentar}
) | Harvestedlatanrchrve Metric Uatéj
How do I... =) | HTTPACcesslag HTTP .t\c;fJ
» Wiew and configure logs 0 | JMaMessageLogiMedHec M= 5erver s LDIJ
* Change server log file name and location O | M5SAFMessageLog/Wsrmigent JI‘\"!"_‘J
* Enable and configure HTTP logs Ehrgewermg ‘,Jj
e

ORACLE

=
T
=

!

For information about viewing, configuring, and searching message logs, see the
following topics in Oracle WebLogic Server Administration Console Online Help:

View and configure logs

View server logs

View the domain log

For a detailed description of log messages in WebLogic Server message catalogs, see
Error Messages. This index of messages describes all of the messages emitted by
WebLogic subsystems and provides a detailed description of the error, a possible
cause, and a recommended action to avoid or fix the error. To view available details,
click on the appropriate entry in the Range column (if viewing by range) or the
Subsystem column (if viewing by subsystem).

2-12

Chapter 2
Server Logging Bridge

2.8 Server Logging Bridge

The Server Logging Bridge is attached to the root logger of the logger tree by default
with the Java API or Log4j Logging implementation.If WebLogic Server is using the
default j ava. util .| oggi ng implementation and the application is using Log4j APIs, then
to redirect the application log messages to the server log do the configuration and set
up as follows:

1. Add the following lines to the | og4j . properti es file:

| 0g4j . root Logger =ser ver
| og4j . appender . server =webl ogi c. | oggi ng. | 0g4j . Server Loggi ngAppender

2. Obtain a copy of the I og4j . j ar file. WebLogic Server does not provide a Log4j
version in its distribution, but you can download one from Apache at the following
location:
http://logging.apache.org/log4j/

3. Copythelog4j.jar file and the W._HOVE/ server/lib/w | og4j.|ar file to the
server classpath, which you can do simply by copying both files into the
DOVAI N_NAME/ | i b directory. There, they will be added to the server classpath
dynamically during server startup.

If you place these . j ar files elsewhere, make sure that both are placed in the
same directory and that you update the server classpath to include this directory

If WebLogic Server is configured to use the Log4j API as its logging implementation
and the application is using j ava. uti | . | oggi ng, then configure the | oggi ng. properti es
to redirect the messages from j ava. util .| oggi ng to the server log as follows:

» Specify the handlers to create in the root logger:
handl ers = webl ogi c. | oggi ng. Server Loggi ngHandl er
e Set the default logging level for new Fi | eHandl er instances

webl ogi c. | oggi ng. Server Loggi ngHandl er. | evel = ALL

Note:

See Server Logging Bridge in Upgrading Oracle WebLogic Server for
important instructions about configuration changes that may be necessary
when upgrading a WebLogic domain in which the Server Logging Bridge is
configured.

2.9 Configuring java.util.logging Logger Levels

ORACLE

WebLogic Server supports configuring j ava. util .| oggi ng. Logger levels for named
loggers in the JDK Loghanager from within the WebLogic Server logging configuration.
You can configure java. util .| oggi ng levels for named loggers using the

Pl at f or mLogger Level s attribute in the LogMBean. This configuration applies to
java.util.logging. Logger instances in the JDK's default global LogManager .

2-13

http://logging.apache.org/log4j/

Chapter 2
Best Practices

Note:

This configuration is persisted as part of the WebLogic logging configuration
and is not included in the | oggi ng. properties file.

If your WebLogic domain includes Oracle JRF and is configured to use Oracle
Diagnostic Logging (ODL), the j ava. util .| oggi ng levels set on the

LogMBean. Pl at f or nLogger Level s attribute are ignored. For more information about ODL
logging, see Managing Log Files and Diagnostic Data in Administering Oracle Fusion
Middleware.

To configure WebLogic Server loggers, use the Logger Severi ti es attribute on the
LogMBean. See Table 2-2. These loggers are not available in the JDK's default global
LogManager .

For information about how to configure the java. util .| oggi ng logger levels using the
WebLogic Server Administration Console, see Configure j ava. util .| oggi ng logger
levels in Oracle WebLogic Server Administration Console Online Help.

2.9.1 Configuring java.util.logging Logger Levels Using WLST

The following example demonstrates using WLST to configure j ava. util .| oggi ng
logger levels:

w s: / mydomai n/ server Config> edit()

w s:/ mydomai n/edit> startEdit()

w s:/mydomain/edit !> cd ('/Servers/myserver/Log/ myserver')

w s: / mydomai n/ edi t/ Servers/ nyserver/Log/ myserver !> props = java.util.Properties()
W s: / mydomai n/ edi t/ Servers/ nyserver/Log/ myserver !> props. put ("foo.bar","I NFO'")

wl s: / mydomai n/ edi t/ Servers/ nyserver/ Log/ myserver !>

wl s: / mydomai n/ edi t/ Servers/ nyserver/ Log/ myserver !>

cno. set Pl at f or mLogger Level s(props)

w s: / mydomai n/ edi t/ Servers/ myserver/Log/ myserver !> save()

Saving all your changes ...

Saved al | your changes successfully.

wl s:/ mydomai n/ edi t/ Servers/ myserver/Log/ myserver !> activate()

Activating all your changes, this may take a while ...

The edit |ock associated with this edit session is released once the activation is
conpl et ed.

Activation conpl eted

2.10 Best Practices

ORACLE

Learn the recommendations for using WebLogic logging services with Java Logging or
Log4j.

If you are using Log4j for application logging, the | og4j . properti es file can use the
generic overrides feature in WebLogic Server to have this file inserted into your
existing deployment plan directory structure. The generic overrides feature provides a
convenient means to insert, or make changes to, specific resource types used by an
application and to continue using the existing ClassLoader and resource loading rules
and behaviors for the application, without having to revise the application JAR files.

See Generic File Loading Overrides in Deploying Applications to Oracle WebLogic
Server.

2-14

Configuring WebLogic Logging Services

You can configure the logging output to receive log messages for specific events. Use
WebLogic Server Administration Console, WLST commands or the Java Logging APIs
to configure the logging output.

This chapter describes WebLogic Server logging scenarios and basic configuration
tasks:

e Configuration Scenarios

e Overview of Logging Services Configuration

* Logging Configuration Tasks: Main Steps

e Log4j and the Commons Logging API

* How to Use Log4j with WebLogic Logging Services

» How to Use the Commons API with WebLogic Logging Services
e Rotating Log Files

e Redirecting JVM Output

For detailed instructions on filtering and subscribing to messages, see Filtering
WebLogic Server Log Messages and Subscribing to Messages.

3.1 Configuration Scenarios

WebLogic Server system administrators and developers configure logging output and
filter log messages to troubleshoot errors or to receive natification for specific
events.The following tasks describe some logging configuration scenarios:

e Stop Debug and I nfo messages from going to the log file.

* Allow I nf o level messages from the HTTP subsystem to be published to the log
file, but not to standard out.

e Specify that a handler publishes messages that are War ni ng severity level or
higher.

* Track log information for individual servers in a cluster.

3.2 Overview of Logging Services Configuration

ORACLE

In the logging process, a logging request is dispatched to subscribed handlers or
appenders. Volume control of logging is provided through the LogMBean interface.
WebLogic Server provides handlers for sending log messages to standard out, the
server log file, broadcasting messages to the domain log, remote clients, and a
memory buffer for tail viewing log events in the WebLogic Server Administration
Console. You can achieve volume control for each type of handler by filtering log
messages based on severity level and other criteria. The LogMBean, described in
MBean Reference for Oracle WebLogic Server, defines attributes for setting the
severity level and specifying filter criteria for WebLogic Server handlers.

3-1

Chapter 3
Overview of Logging Services Configuration

In earlier versions of WebLogic Server, system administrators and developers had
only programmatic access to loggers and handlers. In this release of WebLogic
Server, you can configure handlers using MBeans, eliminating the need to write code
for most basic logging configurations. The WebLogic Server Administration Console
and WebLogic Server Scripting Tool (WLST) provide an interface for interacting with
logging MBeans. Additionally, you can specify LogMBean parameters on the command
line using Dwebl ogi c. | og. at tri but e- nane=val ue; for example,

Dwebl ogi c. | og. St dout Severi t y=Debug. See Message Output and Logging in Command
Reference for Oracle WebLogic Server.

For advanced usage scenarios and for configuring loggers, you use the Java Logging
APIs.

Setting the severity level on a handler is the simplest type of volume control; for
example, any message of a lower severity than the specified threshold severity level,
will be rejected. For example, by default, the Stdout Handler has a Noti ce threshold
severity level. Therefore, | nf o and Debug level messages are not sent to standard out.

Configuring a filter on a handler lets you specify criteria for accepting log messages for
publishing; for example, only messages from the HTTP and JDBC subsystems are
sent to standard out.

Note:

The java. util .l oggi ng. Loggi ngPer ni ssi on class, described at http://

docs. oracl e. coni j avase/ 8/ docs/ api / javal uti | /| oggi ng/ Loggi ngPer mi ssi on. htm ,
is required for a user to change the configuration of a logger or handler. In
production environments, we recommend using the Java Security Manager
with j ava. uti | .| oggi ng. Loggi ngPer ni ssi on enabled for the current user.

See Using the Java Security Manager to Protect WebLogic Resources in
Developing Applications with the WebLogic Security Service, and the Java
Logging Overview at http:// docs. oracl e. con j avase/ 8/ docs/ t echnot es/ gui des/
| oggi ng/ overvi ew. htm .

3.2.1 Using Log Severity Levels

ORACLE

Each log message has an associated severity level. The level gives a rough guide to
the importance and urgency of a log message. WebLogic Server has predefined
severities, ranging from Trace to Emer gency, which are converted to a log level when
dispatching a log request to the logger. A log level object can specify any of the
following values, from lowest to highest impact:

Trace, Debug, I nfo, Noti ce, Warning, Error, Critical, Alert, Energency

You can set a log severity level on the logger and the handler. When set on the logger,
none of the handlers receive an event which is rejected by the logger. For example, if
you set the log level to Not i ce on the logger, none of the handlers will receive I nfo
level events. When you set a log level on the handler, the restriction only applies to
that handler and not the others. For example, turning Debug off for the File Handler
means no Debug messages will be written to the log file, however, Debug messages will
be written to standard out.

3-2

http://docs.oracle.com/javase/8/docs/api/java/util/logging/LoggingPermission.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/LoggingPermission.html
http://docs.oracle.com/javase/8/docs/technotes/guides/logging/overview.html
http://docs.oracle.com/javase/8/docs/technotes/guides/logging/overview.html

Chapter 3
Logging Configuration Tasks: Main Steps

For the description of supported severity levels, see webl ogi c. | oggi ng. Severities in
Java API Reference for Oracle WebLogic Server.

You set log levels for handlers and loggers using the WebLogic Server Administration
Console, WLST, or the command line. See Specifying Severity Level for Loggers.
Loggers and handlers can also be configured through the API. See Setting the
Severity Level for Loggers and Handlers.

3.2.2 Using Log Filters

To provide more control over the messages that a Logger object publishes, you can
create and set a filter. A filter is a class that uses custom logic to evaluate the log
record content which you use to accept or reject a log message; for example, to filter
out messages of a certain severity level, from a particular subsystem, or according to
specified criteria. The Logger object publishes only the log messages that satisfy the
filter criteria. You can create separate filters for the messages that each server
instance writes to its server log file, standard out, memory buffer, or broadcasts to the
domain-wide message log.

You can associate a filter with loggers and handlers. You configure filters for handlers
using the WebLogic Server Administration Console, WLST, or the command line.
There are LogFi | t er MBean attributes to define filters for Stdout, Log File, Log
Broadcaster, and Memory Handlers, or you can implement custom filtering logic
programmatically. The LogFi | t er MBean, described in the MBean Reference for Oracle
WebLogic Server, defines the filtering criteria based on user ID and subsystem. Filters
for loggers are configured only through the API.

See Setting a Filter for Loggers and Handlers.

3.3 Logging Configuration Tasks: Main Steps

ORACLE

You can configure and filter log messages that the WebLogic Server generates. You
can use the WebLogic Server Administration Console, WebLogic Scripting Tool, or the
Java APIs.

The following steps summarize how you can configure and filter the log messages.
Related documentation and later sections in this guide describe these steps in more
detail.

1. Use the WebLogic Server Administration Console to manage log files and
configure the following logging options:

a. Domain and server log file name and location, rotation pattern, location of
archived log files, and number of log files stored. See View and configure logs
in Oracle WebLogic Server Administration Console Online Help.

b. Types of messages that the server sends to standard out. See Specify
messages for standard out in Oracle WebLogic Server Administration Console
Online Help.

c. Which messages a server instance sends to the domain log. See Forward
messages to the domain log in Oracle WebLogic Server Administration
Console Online Help.

d. Log files for HTTP requests. See Enable and configure HTTP logs in Oracle
WebL ogic Server Administration Console Online Help.

e. Specify the logging implementation (Java Logging or Log4j). See How to Use
Log4j with WebLogic Logging Services.

3-3

Chapter 3
Log4j and the Commons Logging API

f. Specify message destination and configure filtering log messages by severity
level or other criteria. See Filter log messages in Oracle WebLogic Server
Administration Console Online Help. See also Specifying Severity Level for
Loggers.

2. Alternatively, configure log message filtering on the message handler using the
WebLogic Scripting Tool. See Configuring Existing Domains in Understanding the
WebL ogic Scripting Tool.

3. Filter log messages published by the logger using the Java APIs. See Filtering
Messages by Severity Level or Other Criteria.

3.4 Log4j and the Commons Logging API

Log4j is a predecessor to the Java Logging APIs. It is an open source tool developed
for putting log statements in your application.

Application developers who want to use the WebLogic Server message catalogs and
logging services as a way for their applications to produce log messages must know
XML and the Java APIls. Many developers and system administrators use Log4j. The
Log4j Java logging facility was developed by the Jakarta Project of the Apache
Foundation. You can learn more about Log4j at The Log4j Project at http://

| oggi ng. apache. org/ | og4j /.

WebLogic Server supports Log4j as a configuration option for WebLogic logging
services. See How to Use Log4j with WebLogic Logging Services.

The Jakarta Commons Logging APIs provide an abstraction layer that insulates users
from the underlying logging implementation, which can be Log4j or Java Logging APIs.
WebLogic Server provides an implementation of the Commons LogFact ory interface,
letting you issue requests to the server Logger using this API. See How to Use the
Commons API with WebLogic Logging Services.

3.4.1 About Log4]

This section describes the following three main components of Log4j:

* Loggers

* Appenders

e Layouts
3.4.1.1 Loggers

Log4j defines a Logger class. An application can create multiple loggers, each with a
unique name. In a typical usage of Log4j, an application creates a Logger instance for
each application class that will emit log messages. Loggers exist in a namespace
hierarchy and inherit behavior from their ancestors in the hierarchy.

You can set the Severity level for each Logger at any level in the hierarchy. See
Specifying Severity Level for Loggers.

3.4.1.2 Appenders

Log4j defines appenders (handlers) to represent destinations for logging output.
Multiple appenders can be defined. For example, an application might define an
appender that sends log messages to standard out, and another appender that writes

ORACLE 3-4

http://logging.apache.org/log4j/
http://logging.apache.org/log4j/

Chapter 3
How to Use Log4j with WebLogic Logging Services

log messages to a file. Individual loggers might be configured to write to zero or more
appenders. One example usage would be to send all logging messages (all levels) to
a log file, but only Error level messages to standard out.

3.4.1.3 Layouts

Log4j defines layouts to control the format of log messages. Each layout specifies a
particular message format. A specific layout is associated with each appender. This
lets you specify a different log message format for standard out than for file output, for
example.

3.5 How to Use Log4j with WebLogic Logging Services

ORACLE

WebLogic logging services use an implementation based on the Java Logging APIs by
default. However, you can reconfigure WebLogic logging services to use Log4j
instead.To use Log4j instead of the default Java Logging, complete the following
steps:

1. Obtain a copy of the | og4;j . j ar file. WebLogic Server does not provide a Log4j
version in its distribution, but you can download one from Apache at the following
location:

http://1o0ggi ng. apache. org/ | og4j/

2. Copy the | og4j.jar file and the W._HOME/ server/|ib/w | og4j.jar file to the server
classpath, which you can do simply by copying both files into the DOVAI N_NAVE/ i b
directory.There, they will be added to the server classpath dynamically during
server startup.

If you place these . j ar files elsewhere, make sure that both are placed in the same
directory and that you update the server classpath to include this directory.

3. Configure WebLogic Server to use Log4j logging using one of the following
methods:

e The - Dnebl ogi c. | og. Log4j Loggi ngEnabl ed=t r ue option in the Java command that
starts WebLogic Server. See weblogic.Server Configuration Options in
Command Reference for Oracle WebLogic Server.

e A WLST script that enables the LogMBean. i sLog4j Loggi ngEnabl ed attribute. See
Using WLST to Configure and Enable Log4j for WebLogic Server Logging.

When Log4j is enabled, you get a reference to the or g. apache. | og4j . Logger that the
server is using from the webl ogi c. | oggi ng. | 0g4j . Log4j Loggi ngHel per class.

With a Log4j Logger reference, you can attach you own custom appender to receive
the server log events; for example, you might attach an appender that sends the
server log events to Syslog or the Windows Event Viewer. Additionally, you can use
the Logger reference to issue log requests to WebLogic logging services; this requires
that the Log4j libraries be available to your deployed application.

If your application has no requirement to interact with WebLogic logging services,
package the Log4j libraries in the application's LI B directory. The server logging will
continue to use the default Java Logging implementation.

For a Log4j code example that demonstrates using the Log4j Logger, see Using WLST
to Configure and Enable Log4j for WebLogic Server Logging.

3-5

http://logging.apache.org/log4j/

Chapter 3
How to Use Log4j with WebLogic Logging Services

3.5.1 Using WLST to Configure and Enable Log4j for WebLogic Server

Logging

ORACLE

This section explains how to use WLST to configure and enable Log4j logging instead
of the default Java Logging. Java Logging is the default for client and server-side
logging; Log4j is available only for server-side and not client-side logging.

The following example shows setting the value of the Log4j Loggi ngEnabl ed property to
enable logging to a Log4j Logger in the Administration Server. Note that after you run
such a script, restart the server for the settings to take effect.

For more information about i sLog4j Loggi ngEnabl ed, see LogMBean in MBean Reference
for Oracle WebLogic Server.

#i nvoke W.ST

C:\>java webl ogi c. W.ST

#connect WLST to an Administration Server

ws:/of fline> connect (' usernane',"' password')

#navigate to the witable MBean configuration tree

w s: / mydomai n/ server Config> edit()

w s:/ mydomai n/edit> startEdit()

#set cmo to the server log config

ws:/ mydomai n/edit !> cd("Servers/nyserver/Log/ nyserver")

#set log4j logging to true

wl s:/ mydomai n/ edi t/ Servers/ myserver/Log/ myserver !> cno. set Log4j Loggi ngEnabl ed(t rue)
#save and activate the changes

wl s: / mydomai n/ edi t/ Servers/ nyserver/Log/ myserver !> save()

wl s: / mydomai n/ edi t/ Servers/ myserver/Log/ myserver !> activate()

You can enable Log4j for the server Logger as well as the domain Logger, which
resides only on the Administration Server. The domain Log4j Logger reference is
provided by invoking the

webl ogi c. | oggi ng. | 0g4j . Log4j Loggi ngHel per . get Log4j Domai nLogger () method. The
following example shows configuring the server Logger to use Log4j and the domain
Logger to use the default Java Logger .

i mport org.apache. | og4j . Logger;
i mport webl ogi c. | oggi ng. | 0g4j . Log4j Loggi ngHel per;
i mport webl ogi c. | oggi ng. Logger Not Avai | abl eExcepti on;
/**
* This exanpl e shows how to use the Log4j server Logger.
*/
public class MyLog4j Test {
public void testW.SLog4j () {
try {
Logger |ogger = Log4j Loggi ngHel per. get Log4j Server Logger () ;
| ogger . addAppender (nyAppender); // The Appender is configured using either the
log4j props file or other custom mechani sm
| ogger.info("Test |og message");
} catch(Logger Not Avai | abl eException lex) {
Systemerr.printIn("Unable to get a reference to the log4j Logger: "+
| ex. get Message())
}
}
}

3-6

Chapter 3
How to Use the Commons API with WebLogic Logging Services

The following is a Log4j logging configuration example that shows how to specify a
severity level for Stdout and a filter for messages going to the server log file in the
config.xnl file.

<con: | og>
<con: name>nedr ec</ con: nanme>
<con: fil e-name>nedrec. | og</con: fil e- name>
<con:rotation-type>bySi ze</con:rotation-type>
<con: fil e-mn-size>20000</con:fil e-nin-size>
<con: | 0g4j - | oggi ng- enabl ed>f al se</ con: | 0g4j - | oggi ng- enabl ed>
</con: | og>
<con: | og>
<con: name>MedRecSer ver </ con: name>
<con:rotation-type>bySi ze</con:rotation-type>
<con: fil e-mn-size>20000</con:fil e-nin-size>
<con: st dout - severi t y>Debug</ con: st dout - severity>
<con: stdout-filter>MFilter</con:stdout-filter>
<con: | 0g4j - | oggi ng- enabl ed>t rue</ con: | og4j -1 oggi ng- enabl ed>
</con: | og>
<con:log-filter>
<con: name>MFi | t er </ con: name>
<con: subsyst em name>HTTP</ con: subsyst em name>
<con: subsyst em name>l | OP</ con: subsyst em name>
<con: subsyst em name>JDBC</ con: subsyst em name>
<con: subsyst em name>JMS</ con: subsyst em name>
</con:log-filter>

You have programmatic access to the Log4j Logger and its appenders (handlers) and
layouts (formatters) for configuration purposes. See Setting a Severity Level and Filter
on a Log4j Appender.

See Using the WebLogic Scripting Tool in Understanding the WebLogic Scripting Tool.

3.6 How to Use the Commons API with WebLogic Logging

Services

ORACLE

WebLogic logging services provide the Commons LogFact ory and Log interface
implementations that direct requests to the underlying logging implementation being
used by WebLogic logging services.

To use Commons Logging, put the WebLogic-specific Commons classes, $W._HOVE/
nodul es/ com bea. cor e. webl ogi ¢c. commons. | oggi ng_1. 3. 0. 0. j ar, together with the
commons- | oggi ng. j ar file in one of the following locations:

e APP-INF/LIB or VEB- | NF/ LI B directory
* DOMVAI N_NAME/ LI B directory
* server CLASSPATH

Note:

WebLogic Server does not provide a Commons logging version in its
distribution.

Example 3-1 illustrates how to use the Commons interface by setting the appropriate
system property.

3-7

Chapter 3
How to Use the Commons API with WebLogic Logging Services

Note:

When you use the or g. apache. commons. | oggi ng. LogFact ory system property to
implement the Commons interface as described here, you are implementing it
for all application instances running on the server. For information on how to
implement Commons logging for specific application instances, without
affecting other applications, use the JDK service discovery mechanism or
commons- | oggi ng. properti es mechanism to specify the LogFact ory as described
at http://comons. apache. or g/ | oggi ng/ api docs/ or g/ apache/ commons/ | oggi ng/
LogFact ory. ht nl #get Factory() .

1. Set the system property or g. apache. conmons. | oggi ng. LogFact ory to
webl ogi ¢. | oggi ng. conmons. LogFact oryl npl .

This LogFact ory creates instances of webl ogi c. | oggi ng. conmons. LogFact oryl npl that
implement the or g. apache. commons. | oggi ng. Log interface.

2. From the LogFact ory, get a reference to the Commons Log object by name.

This name appears as the subsystem name in the log file.

3. Use the Log object to issue log requests to WebLogic logging services.

The Commons Log interface methods accept an object. In most cases, this will be a
string containing the message text.

The Commons Logbj ect takes a message ID, subsystem name, and a string
message argument in its constructor. See or g. apache. conmons. | oggi ng at http://
conmons. apache. or g/ | oggi ng/ api docs/index. htm .

4. The webl ogi c. | oggi ng. commons. Logl npl log methods direct the message to the
server log.

Example 3-1 Commons Code Example

i mport org. apache. comons. | oggi ng. LogFact ory;
i mport org. apache. commons. | oggi ng. Log;

public class MyCommonsTest {
public void test W.SComonsLoggi ng() {
Syst em set Property(LogFact ory. FACTORY_PROPERTY,
“webl ogi c. | oggi ng. commons. LogFact oryl npl ");
Log clog = LogFactory. getFactory().getlnstance("MComonsLogger");
/1 Log String objects
cl og. debug("Hey this is comon debug");
clog.fatal ("Hey this is comon fatal", new Exception());
clog.error("Hey this is comon error", new Exception());
clog.trace("Dont |eave your footprints on the sands of tine");
}
}

3.6.1 Specifying Severity Level for Loggers

WebLogic Server provides a hierarchical Logger tree that lets you specify the Severity
level for:

ORACLE 3-8

http://commons.apache.org/logging/apidocs/org/apache/commons/logging/LogFactory.html#getFactory()
http://commons.apache.org/logging/apidocs/org/apache/commons/logging/LogFactory.html#getFactory()
http://commons.apache.org/logging/apidocs/index.html
http://commons.apache.org/logging/apidocs/index.html

Chapter 3
How to Use the Commons API with WebLogic Logging Services

* Generated Message Catalog Logger classes from the XML 118N catalog using
webl ogi c. i 18ngen.

e Instances of the Commons Logging APIs when the WebLogic Server
implementation of the Commons or g. apache. commons. | oggi ng. LogFact ory interface
is enabled.

All Loggers inherit their Severity level from the nearest parent in the tree. You can,
however, explicitly set the Severity level of a Logger, thereby overriding the level that
is set for the nearest parent. You can set the Severity level for loggers from the
WebLogic Server Administration Console, WLST, or the command line.

3.6.1.1 Specifying Severity Level for WebLogic Server Subsystem Loggers

If you are using the Message Catalog Loggers, the Severity level for messages
coming from a specific subsystem are determined by the Severity level of the root
Logger. You can override the root Logger Severity level for individual subsystem
Loggers such as the DeploymentService Logger, Security Logger, or EJB Logger. For
example, suppose the root Logger severity level is Criti cal , and you want to set the
Severity Level to Noti ce for the Security subsystem logger and to War ni ng for the EJB
subsystem logger. You can do this from the WebLogic Server Administration Console,
WLST, or from the command line:

e From the WebLogic Server Administration Console, create the following entries in
the Logger severities properties box of the Logging > General tab for the server.
Note that each string is entered on an individual line in this properties box; that is,
press the Enter key after each string, then click Save.

Security=Notice
EJB=V\r ni ng

e Via WLST, use the set command to set the value of the Logger SeverityProperties
attribute of the LogMBean. See Configuring Logging in Understanding the WebLogic
Scripting Tool.

e From the command line, specify the following parameter in the startup command:
- Dwebl ogi c. Log. Logger SeverityProperties="Security=Notice; EJB=Var ni ng"
For a complete index of all subsystem names, see Error Messages. The

subsystem name is case-sensitive and must be entered exactly as shown in the
Subsystem column of the index.

3.6.1.2 Specifying the Severity Level for Commons Logging API Loggers

ORACLE

If you are using the Commons Logging API, logger names follow the Java package dot
notation naming convention. For example, logger names could be a. b. FooLogger or

a. b. c. Barl ogger, corresponding to the name of the classes in which they are used. In
this case, each dot-separated identifier appears as a node in the Logger tree. For
example, there will be a child node named "a" under the root Logger, a child node
named "b" whose parent is "a", and so on.

You can configure the Severity for a package or for any Logger at any level in the tree.
For example, if you specify the Severity level for package a. b=I nf o, then Debug and
Trace messages coming from all child nodes of package a. b will be blocked. You can,
however, override the Severity level of a parent node by explicitly setting a value for a
child node. For example, if you specify the Severity level for logger

3-9

Chapter 3
Rotating Log Files

a. b. FooLogger =Debug, all log messages from FooLogger will be allowed, while Debug and
Trace messages will still be filtered for other child nodes under a. b.

You can specify the severity level for a package or Logger from the WebLogic Server
Administration Console, WLST, or the command line:

e From the WebLogic Server Administration Console, enter the following semicolon-
separated string in the Logger severities properties box of the Logging > General
tab page for the server.

a. b=l nf 0; a. b. FooLogger =Debug

e Via WLST, use the set command to set the value of the Logger SeverityProperties
attribute of the LogMBean. See Configuring Logging in Understanding the WebLogic
Scripting Tool.

* From the command line, specify the following parameter in the startup command:

- Dwebl ogi c. Log. Logger Severi tyProperties="a. b=l nfo; a. b. FooLogger =Debug"

3.7 Rotating Log Files

The log messages are accumulated in predefined numbered log files. Whenever the
file grows in size from the set size, depending on whether it is in development or
production mode, the server rotates its server log file.

By default, when you start a WebLogic Server instance in development mode, the
server automatically renames (rotates) its local server log file as SERVER NAME. | og. n.
For the remainder of the server session, log messages accumulate in SERVER _NAME. | og
until the file grows to a size of 500 kilobytes.

Each time the server log file reaches this size, the server renames the log file and
creates a new SERVER NAME. | og to store new messages. By default, the rotated log files
are numbered in order of creation fi | enamennnnn, where fi | ename is the name
configured for the log file. You can configure a server instance to include a time and
date stamp in the file name of rotated log files; for example, server - nane- %yyy% %mbs
%ld% %h% %ms | og.

By default, when you start a server instance in production mode, the server rotates
its server log file whenever the file grows to 5000 kilobytes in size. It does not rotate
the local server log file when you start the server. For more information about
changing the mode in which a server starts, see Change to production mode in the
Oracle WebLogic Server Administration Console Online Help.

You can change these default settings for log file rotation. For example, you can
change the file size at which the server rotates the log file or you can configure a
server to rotate log files based on a time interval. You can also specify the maximum
number of rotated files that can accumulate. After the number of log files reaches this
number, subsequent file rotations delete the oldest log file and create a new log file
with the latest suffix.

Note:

WebLogic Server sets a threshold size limit of 2,097,152 kilobytes before it
forces a hard rotation to prevent excessive log file growth.

ORACLE 3-10

Chapter 3
Rotating Log Files

For information about setting up log file rotation, see Rotate log files in Oracle
WebLogic Server Administration Console Online Help.

To cause the immediate rotation of the server, domain, or HTTP access log file, use
the LogRunt i me. f or ceLogRot ati on() method. See LogRunt i neMBean in MBean Reference
for Oracle WebLogic Server.

The WLST commands in Example 3-2 cause the immediate rotation of the server log
file.

Example 3-2 Log Rotation on Demand

#i nvoke W.ST

C:\>java webl ogi c. W.ST

#connect W.ST to an Administration Server

ws:/of fline> connect (' usernane',"' password')

#navigate to the ServerRuntinme MBean hierarchy

wl s: / mydomai n/ server Confi g> serverRuntine()

wl s: / mydomai n/ server Runti ne>l s()

#navigate to the server LogRuntimeMean

w s: / mydomai n/ server Runti me> cd(' LogRunti me/ nyserver')
wl s: / mydomai n/ server Runt i ne/ LogRunt i me/ myserver> |s()

-r-- Nane nyserver
-r-- Type LogRunti ne
-r-x forcelLogRotation java.lang. Void :

#force the inmediate rotation of the server log file
w s: / mydomai n/ server Runt i me/ LogRunt i ne/ nyserver> cno. f or ceLogRot at i on()
w s: / mydomai n/ server Runt i me/ LogRunt i ne/ nyserver>

The server immediately rotates the file and prints the following message:

<Mar 2, 2005 3:23:01 PM EST> <Info> <Log Managenent> <BEA-170017> <The log file
C:\ di abl odomai n\ servers\nyserver\|ogs\nyserver.log will be rotated. Reopen the
log file if tailing has stopped. This can happen on some platforms |ike Wndows. >
<Mar 2, 2005 3:23:01 PM EST> <Info> <Log Managenent> <BEA-170018> <The log file
has been rotated to C \diabl odomai n\servers\nyserver\|ogs\nyserver.|og00001. Log
messages will continue to be logged in C\diabl odomai n\servers\nyserver\logs
\nyserver.|og. >

3.7.1 Specifying the Location of Archived Log Files

By default, the rotated files are stored in the same directory where the log file is stored.
You can specify a different directory location for the archived log files by using the
WebLogic Server Administration Console or setting the LogFi | eRot ati onDi r property of
the LogFi | eMBean from the command line. See LogFi | eMBean in the MBean Reference for
Oracle WebLogic Server.

The following command specifies the directory location for the archived log files using
the - Dwebl ogi c. | 0og. LogFi | eRot ati onDi r Java startup option:

java -Dwebl ogic.log. LogFil eRotationDir=c:\foo
- Dwebl ogi c. managenent . user nane=i nst al | adni ni strat or
- Dwebl ogi c. management . passwor d=i nst al | admi ni strator webl ogi c. Server

3.7.2 Notification of Rotation

When the log file exceeds the rotation threshold that you specify, the server instance
prints a log message that states that the log file will be rotated. Then it rotates the log

ORACLE 3-11

Chapter 3
Redirecting JVM Output

file and prints an additional message that indicates the name of the file that contains
the old messages.

For example, if you set up log files to rotate by size and you specify 500K as the
minimum rotation size, when the server determines that the file is greater than 500K in
size, the server prints the following message:

<Sept 20, 2004 1:51:09 PM EST> <Info> <Log Managenent> <Machi neNane>
<MedRecServer> <ExecuteThread: '2' for queue: 'weblogic.kernel.System > <<W.S
Kernel >> <> <> <1095692939895> <BEA-170017> <The log file

C\Oracle\M ddl ewar e\ W server _12. 1\ sanpl es\ domai ns\ nmedr ec\ ser ver s\ MedRecSer ver\ | ogs
\medrec.log will be rotated.

Reopen the log file if tailing has stopped. This can happen on sonme platforms |ike
W ndows. >

The server immediately rotates the file and prints the following message:

<Sept 20, 2004 1:51:09 PM EST> <Info> <Log Managenent > <Machi neNane>

<MedRecServer> <ExecuteThread: '2' for queue: 'webl ogic.kernel.Systeni >

<<WS Kernel >> <> <> <1095692939895> <BEA-170018> <The log file has been rotated

to C\Oacle\Mddl eware\w server _12. 1\ sanpl es\ domai ns\ medr ec\ ser ver s\ MedRecSer ver

\l ogs\ medrec. | 0g00001.

Log nmessages will continue to be logged in C\Oracle\M ddl eware\w server_12. 1\ sanpl es
\ domai ns\ nedr ec\ ser ver s\ MedRecSer ver\ | ogs\ nedrec. | og. >

Note that the severity level for both messages is | nfo. The message ID for the
message before rotation is always BEA- 170017 and the ID for the message after rotation
is always BEA- 170018.

File systems such as the standard Windows file system place a lock on files that are
open for reading. On such file systems, if your application is tailing the log file, or if you
are using a command such as the DOS tail -f command in a command prompt, the
tail operation stops after the server has rotated the log file. The tail -f command
prints messages to standard out as lines are added to a file. For more information,
enter hel p tail ina DOS prompt.

To remedy this situation for an application that tails the log file, you can create a JIMX
listener that notifies your application when the server emits the log rotation message.
When your application receives the message, it can restart its tailing operation. To see
an example of a JMX listener, see Subscribing to Messages.

3.8 Redirecting JVM Output

The JVM in which a WebLogic Server instance runs sends messages to standard error
and standard out. Server as well as application code write directly to these streams
instead of using the logging mechanism. However, you can use a configuration option
to redirect the JVM output to all registered log destinations, such as the server terminal
console and the server log file.

When this redirect is enabled, a log entry appears as a message of Noti ce severity.
Note that redirecting the JVM output does not capture output from native code; for
example, thread dumps from the JVM are not captured.

ORACLE 3-12

Chapter 3
Redirecting JVM Output

Note:

Redirecting JVM standard out and standard error messages to the WebLogic
logging service by enabling the LogMBean attributes, as described in this
section, has two key disadvantages you should be aware of:

* JVM messages are redirected asynchronously. In the event of an overload
situation, these messages may be dropped.

* Redirecting JVM messages to the WebLogic logging service in high
volume can have a significantly negative impact on system performance
and is therefore not recommended.

As a best practice for storing JVM standard out and standard error messages
in a log file, Oracle recommends using one of the supported logging APIs
instead. Using a logging API ensures that even during times of peak system
load, messages are not lost, including the times when those messages are
generated in high volume.

3.8.1 Configuring WebLogic Server to Redirect the JVM Output

To configure WebLogic Server to redirect JVM standard out or standard error
messages to the WebLogic logging service, you can do one of the following:

ORACLE

In the webl ogi c. Server command that starts WebLogic Server, include either or
both of the following options, as desired:

— -Dwebl ogi c. | 0g. Redi rect St dout ToSer ver LogEnabl ed=t r ue

This option redirects JVM standard out messages to the WebLogic logging
service.

— - Dwebl ogic.log. Redirect St derr ToSer ver LogEnabl ed=t r ue

This option redirects JVM standard error messages to the WebLogic logging
service.

See weblogic.Server Configuration Options in Command Reference for Oracle
WebLogic Server.

After the Administration Server has started, you can use the WebLogic Server
Administration Console to redirect the JVM standard out or standard error
messages. See Redirect JVM output in Oracle WebLogic Server Administration
Console Online Help.

Use WLST to set either or both of the following attribute values of the LogMBean and
restart the server:

— Redirect St dout ToSer ver LogEnabl ed=t r ue—Redirects the JVM standard out
messages to the WebLogic logging service.

— Redirect StderrToServer LogEnabl ed=t r ue—Redirects the JVM standard error
messages to the WebLogic logging service.

The WLST commands in the following example redirect the JVM standard out
messages in the Administration Server to the server logging destinations.

C:\>java webl ogi c. W.ST
ws:/of fline> connect (' usernane',"' password')

3-13

Chapter 3
Redirecting Standard Error and Standard Output

wl s: / mydomai n/ server Config> edit()

ws:/ mydomai n/edit> startEdit()

ws:/ mydomai n/edit !> cd("Servers/nyserver/Log/ nyserver")

w s: / mydomai n/ edi t/ Servers/ nyserver/ Log/ nyserver !>

cno. set Redi rect St dout ToSer ver LogEnabl ed(true)

w s: / mydomai n/ edi t/ Servers/ nyserver/Log/ nyserver !> save()

wl s: / mydomai n/ edi t/ Servers/ nyserver/Log/ nyserver !> activate()

See Navigating MBeans (WLST Online) inUnderstanding the WebLogic Scripting
Tool. For more information about the Redi rect St dout ToSer ver LogEnabl ed and

Redi rect St der r ToSer ver LogEnabl ed attributes, see LogMBean in the MBean Reference
for Oracle WebLogic Server.

3.9 Redirecting Standard Error and Standard Output

The webl ogi c. Rot ati ngFi | eRedi rect or is a standalone utility tool for redirecting
standard error and standard output streams to a rotating log file.Use the following
command to run the utility:

j ava webl ogi c. Rotati ngFi | eRedirector [options]

The options include:

e -hel p: Prints help about supported options and flags
e -verbose: Prints additional output during execution

 -config Config Properties File: (Optional) Properties file which specifies the log
rotation file parameters as key-value pairs. If not specified, the rotation parameters
are defaulted.

e -configQverride: Override of a key-value config property pair. This is useful if the
same confi g. properties is shared for multiple servers and only the
baseLogFileName needs to be different for each server. Multiple overrides can be
specified, for example

-configOverride baseLogFi | eName=${ SERVER _NAME}. out -configQOverride
rot at edFi | eCount =10

The following table lists the properties that can be configured and the default values.

Table 3-1 Properties and Default Values
|

Property Name Default Value Comments
baseLogFi | eNane redirect.log baseLogFilePath is valid for
OR WebLogic Server versions

12.2.1 and later. Use
baseLogFileName for earlier
versions.

baseLogFi | ePath

Specifies the log file to which
stdin will be redirected.

| ogFi | eRotationDir null When not specified rotated
log files are created in the
same directory as the base
log file.

ORACLE 3-14

Chapter 3
Preventing Excessive Logging

Table 3-1 (Cont.) Properties and Default Values

Property Name Default Value Comments

nunber OFFi | esLim ted false Specifies whether to limit the
number of old rotated files on
disk.

buf f er Si zeKB 8 Buffer size of the output

stream in KB before the
contents are flushed to the

disk.

rotateLogOnSt art upEnabl ed true Rotate the log file from
previous run if it exists on
start up.

rot at edFi | eCount 7 Used in conjunction with

nunber Of Fi | esLimi t ed.
Specifies the number of old
rotated logs to keep.

rotationSize 500 Size limit when rotation
occurs, specified in KB.

rotationTime 00:00 Specifies the start time for
the rotation when using time
based rotation.

rotationTi meSpan 24 The interval in hours to rotate
the log files. Defaults to 24
hours.

rotationType bySize Valid values are either bySize
or byTime.

Example 3-3 Using the Utility
An example of confi g. properti es file contents:

rotationSi ze=100
baseLogFi | ePat h=f 0o. | og

The utility is executed as follows:

{JAVA HOVE}/ bin/java ${JAVA VM ${MVEM ARGS} ${JAVA OPTI ONS} - Dwebl ogi c. Nane=$

{ SERVER_NAME} webl ogi c. Server 2>$DOMAI N_HOVE/ | ogs/ nps/ ${ SERVER_NAME} _st derr. | og

| ${JAVA _HOME}/bin/java - Xms128m - Xmx256m - cp $W._HOVE/ server/|i b/ webl ogi c. j ar
webl ogi c. RotatingFi | eRedi rector -configQverride baselLogFil ePat h=$DOVAI N_HOVE/ | ogs/
nps/ ${ SERVER _NAME} _st dout . | og -config $DOVAI N_HOVE/ bt _st dout . prop &

3.10 Preventing Excessive Logging

Depending on the situation, log messages may become generated at a very high
frequency, and often with the same message. This can flood the system with log

ORACLE 3-15

ORACLE

Chapter 3
Preventing Excessive Logging

messages and put excessive load on the system. Excessive logging can occasionally
occur due to a number of reasons. For example, a network outage can cause several
components to log messages on repeated connection retries, or an incorrect
configuration can result in a component emitting log messages repeatedly. Excessive
logging can create a humber of problems, such as:

» System performance is reduced.

* Log files fill up, and are rotated frequently, increasing the risk of losing useful
messages.

e Captured standard out (st dout) files grow indefinitely.

» Messages from Managed Servers are broadcast to the domain log, which floods
the domain log broadcaster and thereby creating another bottleneck.

e Threads become stuck.

To prevent this problem, the WebLogic logging service provides a feature that
monitors the domain for the presence of excessive logging. Log monitoring, which is
enabled by default, works by counting the number of messages generated during a
specified period of time. If messages are generated at a rate above a set threshold,
the logging service inspects individual messages to determine if a specific message is
being logged repeatedly. If so, the logging service suppresses, or throttles, that
message to reduce the overall rate of logging. Throttling is automatically disabled
when the overall message generation volume falls.

A message that is being logged repeatedly is identified by its signature, which consists
of the following parameters:

* The logger name that is generating the message
¢ The message ID

* A portion of the beginning of the message, which is established by the
LogMoni t ori ngThrot t | eMessagelLengt h attribute. (The default value is 50, which limits
the portion of the message that is evaluated to the first 50 characters.)

To enable log monitoring, configure the following values on the LogMBean:

Attribute Description

Flag to indicate whether log monitoring is enabled. By

Loghbni t ori ngEnabl ed={tr ue| default, this value is set to t r ue.

fal se}

Timer interval, in seconds, during which the number of

Loghbni toringl nterval Secs=second essages logged is counted. The default is 30.

S

Threshold number of messages logged during the
specified time interval that either begins or stops
message throttling. The default is 1500.

LogMbni toringThrott! eThreshol d=v
al ue

Length of the initial portion of the log message that is

Loghbni toringThrottl eMessageLeng oy qjuated during the throttle period. The default is 50.

t h=val ue

3-16

ORACLE

Chapter 3
Preventing Excessive Logging

Attribute

Description

LogMbni t ori ngMaxThr ot t | eMessageS
i gnat ur eCount =val ue

Maximum number of uniqgue message signatures that
are monitored during the throttle interval. This value
provides a cap on the number of signatures that are
stored in an internal cache, which prevents the cache
from growing indefinitely and causing an

Qut O Meror yError .

3-17

Chapter 3

Preventing Excessive Logging

ORACLE" 3-18

Filtering WebLogic Server Log Messages

WebLogic logging services provide filtering options that give you the flexibility to
determine which messages are written to WebLogic Server log files and standard out,
and which are written to the log file and standard out that a client JVM maintains. Most
of these filtering features are implementations of the Java Logging APIs, which are
available in the java.util.logging package.

* The Role of Logger and Handler Objects

» Filtering Messages by Severity Level or Other Criteria

e Setting the Severity Level for Loggers and Handlers

e Setting a Filter for Loggers and Handlers

e Setting a Severity Level and Filter on a Log4j Appender

For related information, see:

» For information about setting up a log filter for a WebLogic Server instance, see
Create log filters in Oracle WebLogic Server Administration Console Online Help.

e Subscribing to Messages for information about creating and subscribing a
message handler.

4.1 The Role of Logger and Handler Objects

ORACLE

When WebLogic Server message catalogs and the NonCat al ogLogger generate
messages, they distribute their messages to a j ava. util .| oggi ng. Logger object. The
Logger object publishes the messages to any message handler that has subscribed to
the Logger .

WebLogic Server instantiates Logger and Handl er objects in three distinct contexts. See
Figure 4-1 for more details:

e Inclient JVMs that use WebLogic logging services. This client Logger object
publishes messages that are sent from client applications running in the client
JVM.

The following handlers subscribe to the Logger object in a client JVM:

— Consol eHandl er, which prints messages from the client JVM to the client's
standard out.

If you use the - Daebl ogi c. | og. St dout SeverityLevel Java startup option for the
client JIVM, WebLogic logging services create a filter for this handler that limits
the messages that the handler writes to standard out. See Writing Messages
from a Client Application in Adding WebLogic Logging Services to Applications
Deployed on Oracle WebLogic Server.

— FileStreanHand! er, which writes messages from the client JVM to the client's
log file.

4-1

ORACLE

Chapter 4
The Role of Logger and Handler Objects

In each instance of WebLogic Server. This server Logger object publishes
messages that are sent from subsystems and applications that run on a server
instance.

The following handlers subscribe to the server Logger object:
— Consol eHandl er, which makes messages available to the server's standard out.
— FileStreanHandl er, which writes messages to the server log file.

— Aninternal handler, which broadcasts messages to the domain log and JMX
clients, and publishes messages to the Administration Server.

The Administration Server maintains a domain Logger object in addition to a server
Logger object. The domain Logger object receives messages from each Managed
Server's Logger object.

The following handler subscribes to the domain Logger object:

— FileStreanHandl er, which writes messages to the domain log file.

Figure 4-1 WebLogic Logging Services Contexts

ConsoleHandler
[}J,fﬁpdf Lewvel
Logger : Filter
for client Lewvel Filter
log [} FileStreamHandler
— |
Lewvel
Filter
ConsoleHandler
Lewvel
ff/ff/{f Filter
Logger [} File3treamHandler
for local LEWEL Flltqz} P
server log
[Filter
InternalHandler
Logger _ FileStreamHandler
for dumainLEVElFllt{E Lewvel
lo
9 Filter

4-2

Chapter 4
Filtering Messages by Severity Level or Other Criteria

4.2 Filtering Messages by Severity Level or Other Criteria

When WebLogic Server message catalogs and the NonCat al ogLogger generate
messages, they convert the message severity to a webl ogi c. | oggi ng. W.Level object. A
W.lLevel object can specify any of the following values, from lowest to highest impact:

Trace, Debug, Info, Notice, Warning, Error, Critical, Alert, Emergency

By default, a Logger object publishes messages of all levels. To set the lowest-level
message that a Logger object publishes, you use a simple Logger . set Level API. When
a Logger object receives an incoming message, it checks the message level with the
level set by the set Level API. If the message level is below the Logger level, it returns
immediately. If the message level is above the Logger level, the Logger allocates a
W.LogRecor d object to describe the message.

For example, if you set a Logger object level to War ni ng, the Logger object publishes
only Warning, Error, Critical, Alert, or Ener gency messages.

To provide more control over the messages that a Logger object publishes, you can
also create and set a filter. A filter is a class that compares data in the W.LogRecord
object with a set of criteria. The Logger object publishes only the W.LogRecor d objects
that satisfy the filter criteria. For example, a filter can configure a Logger to publish only
messages from the JDBC subsystem. To create a filter, you instantiate a
java.util.logging.Filter object and use the Logger.setFilter API to set it for a Logger
object.

Instead of (or in addition to) setting the level and a filter for the messages that a Logger
object publishes, you can set the level and filters on individual message handlers.

For example, you can specify that a Logger publishes messages that are of the War ni ng
level or higher. Then you can do the following for each handler:

* For the Consol eHandl er, set a level and filter that selects only Al ert messages from
the JDBC, JMS, and EJB subsystems. This causes standard out to display only
Al ert messages from the JDBC, JMS, and EJB subsystems.

* Forthe Fil eStreantHandl er, set no additional level or filter criteria. Because the
Logger object has been configured to publish only messages of the \ar ni ng level or
higher, the log file will contain all messages from all subsystems that are of War ni ng
severity level or higher.

* Publish all messages of \ar ni ng severity level or higher to the domain-wide
message log on the Administration Server.

4.3 Setting the Severity Level for Loggers and Handlers

ORACLE

To filter the messages by severity level, you can set the severity level for a Handl er and
Logger object using the WebLogic Server Administration Console and WLST
commands.

The WebLogic Server Administration Console and WLST provide a way to set the
severity level for a Handl er object through standard MBean commands. To set the
Severity level for a Logger object, you can use the Logger API. You can also set the
Severity level for a Logger via the Administrator Console, WLST, or the command line;
see Specifying Severity Level for Loggers. To configure Logger and Handler severity

4-3

Chapter 4
Setting the Severity Level for Loggers and Handlers

level for WLS clients (such as EJB and Web Service clients), you must use the Java
Logging API.

4.3.1 Setting the Level for Loggers

To set the severity level for a Logger object, create a class that does the following:

. Invokes one of the following Loggi ngHel per methods:

e getdientLogger if the current context is a client JVM.

e getServerLogger if the current context is a server JVM and you want to retrieve
the Logger object that a server uses to manage its local server log.

e get Donmai nLogger if the current context is the Administration Server and you want
to retrieve the Logger object that manages the domain log.

The Logger Hel per method returns a Logger object. See the APl documentation for
the Logger class at http://docs. oracl e. com j avase/ 8/ docs/ api /j ava/ util /| oggi ng/
Logger. htni.

. Invokes the Logger. set Level (Level |evel) method.

To set the level of a WebLogic Server Logger object, you must pass a value that is
defined in the webl ogi c. | oggi ng. W.Level class. WebLogic Server maps the
java.util.logging. Level tothe appropriate WLevel . For a list of valid values, see
the description of the webl ogi c. | oggi ng. W.Level class in Java API Reference for
Oracle WebLogic Server.

For example:

set Level (W.Level . Alert)

4.3.2 Setting the Level for Handlers

ORACLE

To set the severity level for a Handl er object using the API, create a class that does the
following (See Example 4-1):

. Invokes one of the following Loggi ngHel per methods:

e getdientLogger if the current context is a client JVM.

e getServerLogger if the current context is a server JVM and you want to retrieve
the Logger object that a server uses to manage its local server log.

* get Domai nLogger if the current context is the Administration Server and you want
to retrieve the Logger object that manages the domain log.

The Logger Hel per method returns a Logger object. See the APl documentation for
the Logger class at http://docs. oracl e. con j avase/ 8/ docs/ api /j ava/ uti |/l oggi ng/
Logger. htni .

. Invokes the Logger . get Handl er s() method.

The method returns an array of all handlers that are registered with the Logger
object.

. Iterates through the list of handlers until it finds the Handl er object for which you

want to set a level.

Use Handl er. get O ass() . get Nane() to determine the type of handler to which the
current array index refers.

4-4

http://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/Logger.html

Chapter 4
Setting the Severity Level for Loggers and Handlers

4. Invokes the Handl er. set Level (Level |evel) method.

To set the level of a WebLogic Server Handl er object, you must pass a value that is
defined in the webl ogi c. | oggi ng. W.Level class. WebLogic Server maps the
java.util.logging. Level tothe appropriate WLevel . For a list of valid values, see
the description of the webl ogi c. | oggi ng. W.Level class in Java API Reference for
Oracle WebLogic Server.

For example:

set Level (W.Level . Alert)

4.3.2.1 Example: Setting the Level for Handlers

The following example demonstrate how to set level for handlers using API.
Example 4-1 Example: Setting Level for a Handler Object Using the API

inport java.util.logging.Logger;
inport java.util.logging.Handler;
i mport webl ogi c. | oggi ng. Loggi ngHel per;
i mport webl ogi c. | oggi ng. W.Level ;
public class LoglLevel {
public static void main(String[] argv) throws Exception {
Logger serverlogger = Loggi ngHel per. get Server Logger();
Handl er[] handl erArray = serverlogger. get Handl ers();
for (int i=0; i < handlerArray.length; i++) {
Handl er h = handl erArray[i];
i f(h. getC ass().getName().equal s
("webl ogi c. | oggi ng. Consol eHandl er")){
h.set Level (W.Level . Alert);

}

4.3.2.2 Example: Setting the Severity Level for the Stdout Handler

ORACLE

You can configure the severity level for a Handl er object through the LogMBean interface
using the WebLogic Server Administration Console or the command line:

* For information about setting a severity level, see Filter log messages in Oracle
WebL ogic Server Administration Console Online Help.

* The WLST commands in Example 4-2 set the severity level for the Stdout Handler
to I nfo.

See Using the WebLogic Scripting Tool in Understanding the WebLogic Scripting Tool.
For more information about set St dout Severity, see LogMBean in MBean Reference for
Oracle WebLogic Server.

Example 4-2 Setting the Severity Level for the Stdout Handler

C:\>java webl ogi c. W.ST

ws:/of fline> connect (' usernane',"' password')

w s: / mydomai n/ server Config> edit()

W s: / mydomai n/ edit> startEdit()

ws:/mydomai n/edit !> cd("Servers/nyserver/Log/ nyserver")

wl s: / mydomai n/ edi t/ Servers/ nyserver/Log/ myserver !> cno. set St dout Severity("Info")
w s:/ mydomai n/ edi t/ Servers/ nyserver/Log/ myserver !> save()

w s:/ mydomai n/ edi t/ Servers/ nyserver/Log/ myserver !> activate()

4-5

Chapter 4
Setting a Filter for Loggers and Handlers

4.4 Setting a Filter for Loggers and Handlers

ORACLE

When you set a filter on the Logger object, the filter specifies which messages the
object publishes; therefore, the filter affects all handlers that are registered with the
Logger object as well. When you set a filter on a Handl er, the filter affects only the
behavior of the specific handler.

The WebLogic Server Administration Console and WLST provide a way to set a filter
on the Handl er object through standard MBean commands. To set a filter on the Logger
object, you must use the Logger API. For client-side logging, the only way to set a filter
is through using the Java Logging API.

To set afilter:

1. Create a class that implements java. util .l ogging.Filter.

The class must include the Fil ter.isLoggabl e method and logic that evaluates
incoming messages. If the logic evaluates as true, the i sLoggabl e method enables
the Logger object to publish the message.

2. Place the filter object in the classpath of the JVM on which the Logger object is
running.

3. To set afilter for a Logger object, create a class that does the following:
a. Invokes one of the following Loggi ngHel per methods:
e getdientLogger if the current context is a client JVM.

» getServerLogger if the current context is a server JVM and you want to filter the
Logger object that a server uses to manage its local server log.

» get Domai nLogger if the current context is the Administration Server and you
want to filter the Logger object that manages the domain server log.

a. Invokes the Logger.setFilter(Filter newFilter) method.

4. To set afilter for a Handl er object using the API, create a class that does the
following:

a. Invokes one of the following Loggi ngHel per methods:
e getdientLogger if the current context is a client JVM.

e getServerLogger if the current context is a server JVM and you want to filter the
Logger object that a server uses to manage its local server log.

e get Donai nLogger if the current context is the Administration Server and you
want to filter the Logger object that manages the domain server log.

a. Iterates through the list of handlers until it finds the Handl er object for which
you want to set a level.

Use Handl er. get 0 ass() . get Name() to determine the type of handler to which
the current array index refers.

b. Invokes the Handl er.setFilter(Filter newFilter) method.

The following is an example class that rejects all messages from the Deployer
subsystem.

inmport java.util.logging.Logger;

inmport java.util.logging.Filter;
inmport java.util.logging.LogRecord;

4-6

Chapter 4
Setting a Filter for Loggers and Handlers

i mport webl ogi c. | oggi ng. W.LogRecor d;
i mport webl ogi c. | oggi ng. W.Level ;
public class MyFilter inplements Filter {
public bool ean isLoggabl e(LogRecord record) {
if (record instanceof W.LogRecord) {
W.LogRecord rec = (W.LogRecord)record,;
if (rec.getLoggerNane().equal s("Deployer")) {
return fal se;
} else {
return true;

} else {
return fal se;

}
}

You can configure a filter for a Handl er object through the LogMBean interface using the
WebLogic Server Administration Console or the command line:

* For information about setting up a log filter for a WebLogic Server instance, see
Create log filters in Oracle WebLogic Server Administration Console Online Help.

* The WLST commands in the following example creates and sets a filter on the
Domain Log Broadcaster.

C.\>java webl ogi c. W.ST

ws:/of fline> connect (' usernane',"' password')

w s: / mydomai n/ server Config> edit()

w s:/ mydomai n/edit> startEdit()

ws:/mydomai n/edit !> cro. createLogFilter('nyFilter")
ws:/mydomai n/edit !> cd("Servers/nyserver/Log/ nyserver")

w s: / mydomai n/ edi t/ Servers/ nyserver/ Log/ nyserver !>

cno. set Domai nLogBr oadcast Fi | t er (get MBean(' / LogFi | ters/nyFilter'))
w s: / mydomai n/ edi t/ Servers/ nyserver/Log/ myserver !> save()

w s: / mydomai n/ edi t/ Servers/ nyserver/Log/ myserver !> activate()

For more information about using WLST, see Using the WebLogic Scripting Tool in
Understanding the WebLogic Scripting tool. For more information about

set Domai nLogBr oadcast Fi | ter, see LogMBean in the MBean Reference for Oracle
WebLogic Server.

4.4.1 Filtering Domain Log Messages

ORACLE

To filter the messages that each Managed Server publishes to the domain log, you
can create a log filter for the domain log using WLST or WebLogic Server
Administration Console. For information about creating log filters using Administration
Console, see Create log filters in Oracle WebLogic Server Administration Console
Online Help.

Any Java Logging severity level or filter that you set on the Logger object that manages
a server instance's log file supersedes a domain log filter. For example, if the level of
the server Logger object is set to Wr ni ng, a domain log filter will receive only messages
of the War ni ng level or higher.

You can define a domain log filter which modifies the set of messages that one or
more servers send to the domain log. By default, all messages of severity Noti ce or
higher are sent.

4-7

Chapter 4
Setting a Severity Level and Filter on a Log4j Appender

Note:

Messages of severity Debug are never sent to the domain log, even if you use a
filter.

For information about configuring a domain log filter for a WebLogic Server instance
using the WebLogic Server Administration Console, see Filter log messages in Oracle
WebLogic Server Administration Console Online Help.

4.5 Setting a Severity Level and Filter on a Log4j Appender

ORACLE

The WebLogic Server Administration Console and WLST provide a way to set the
level for an Appender object through standard MBean commands.

To set the level for a Logger object, you can use the Logger API as described in this
section, or you can do so from the WebLogic Server Administration Console, WLST, or
the command line as described in Specifying Severity Level for Loggers.

To set the level for an Appender object using the API, create a class that does the
following:

1. Invokes the one of the following Log4j Loggi ngHel per methods (See Example 4-3).

e getLog4j ServerLogger if the current context is a server JVM and you want to
retrieve the Logger object that a server uses to manage its local server log.

e get Log4j Domai nLogger if the current context is the Administration Server and you
want to retrieve the Logger object that manages the domain log.

2. Invokes the | ogger. get Al | Appender s() method.

Enuneration e = | ogger. get Al | Appenders();

The method returns all the appenders that are registered with the Logger object.
3. lIterates through the list of appenders and gets each appender name.

4. Invokes the app. set Threshol d(W.Log4j Level |evel) method.

To set the level of a Log4j Appender object, you must pass a value that is defined in
the webl ogi c. | oggi ng. | og4j . W.Log4j Level class. WebLogic Server maps the

org. apache. | og4j . Level to the appropriate W.Level . For a list of valid values, see the
description of the webl ogi c. | oggi ng. W.Level class in Java APl Reference for Oracle
WebLogic Server.

Example 4-3 Example: Setting a Log4j Level and Filter

package webl ogi c. | oggi ng. exanpl es;

import java.util.Enumeration;

i mport org. apache. | og4j . Appender Skel et on;

i mport org.apache. | og4j . Logger;

i mport org.apache.log4j.spi.Filter;

i mport org.apache. | og4j . spi.Loggi ngEvent;

i mport webl ogi c. | oggi ng. Logger Not Avai | abl eExcepti on;
i mport webl ogi c. | oggi ng. NonCat al ogLogger ;

i mport webl ogi c. | oggi ng. Severities;

i mport webl ogi c. | oggi ng. | 0g4j . Appender Nanes;

i mport webl ogi c. | oggi ng. | og4j . Log4j Loggi ngHel per;

4-8

ORACLE

Chapter 4
Setting a Severity Level and Filter on a Log4j Appender

i mport webl ogi c. | oggi ng. | 0g4j . W.Log4j Level ;
i mport webl ogi c. | oggi ng. | 0g4j . W.Log4j LogEvent ;

/**

* This class sets a level and filter on a Log4j Appender.

*/

public class Log4jFilterExanplesStartup {
public static void main(String[] args) {
try {

}

}
}

/**

Systemout. printIn("Invoked the logd4j filter exanple startup class");
Logger |ogger = Log4j Loggi ngHel per. get Log4j Server Logger () ;
Enuneration e = | ogger.get Al l Appenders();
whi | e (e.hashoreEl ements()) {
Appender Skel eton app = (Appender Skel et on) e. nextEl enent();
String name = app. get Nane();
if (name == null) continue;
if (nane. equal s(Appender Names. LOG _FI LE_APPENDER)) {
/1 Set the threshold |evel of nmessages going to the log file to WARNING
Il This will result in NOTICE, |INFO DEBUG and TRACE nessages being
Il suppressed fromgoing to the server log file
app. set Threshol d(W.Log4j Level . WARN) ;
Systemout.printIn("Set WARNING | evel on the log file appender");
} else if (nane.equal s(Appender Names. STDOUT_APPENDER)) {
Il Set level to INFO on the stdout filter
app. set Threshol d(W.Log4j Level . I NFO);
Il First clear the existing filters on the appender
app. clearFilters();
Il Add a filter to block | NFO nessages fromthe HTTP subsystem
app. addFi I ter(new MFilter());
}
1
Il Now test the filter
NonCat al ogLogger nc = new NonCat al ogLogger ("M/FilterTest");
nc.info("INFO nessages will not be published to the file but to stdout");
nc. war ni ng(" WARNI NFG nmessages will be published to the file and stdout");

cat ch(Logger Not Avai | abl eException lex) {
Systemerr.printin("Log4j |ogger is not available on this server

* Deny messages fromthe HTTP subsystem of |evel |NFO
*|

private static class MFilter extends Filter {
public int decide(Loggi ngEvent event) {

}
}

}
return ACCEPT,;

if (event instanceof W.Log4jLogEvent) {
W.Log4j LogEvent w sEvent = (W.Log4j LogEvent)event;
if (w sEvent.getSubsysten().equal s("HTTP")
&& W sEvent. get Severity() == Severities.INFO ({
return DENY;

}

To set a filter, implement a class that extends or g. apache. | og4j . Fi | ter and adds the
filter to the Appender, invoke the app. addFi | ter (Filter newFilter) method.

Example 4-3 provides an example class that does the following:

4-9

Chapter 4
Setting a Severity Level and Filter on a Log4j Appender

» Publishes messages of the War ni ng level or higher in the server log.
e Publishes messages of the I nf o level or higher to standard out.

* Rejects I nf o messages from the HTTP subsystem.

ORACLE 4-10

Subscribing to Messages

WebLogic Server logging services provides the ability to create and subscribe a
message handler. When WebLogic Server message catalogs and the
NonCatalogLogger generate messages, they distribute their messages to a
java.util.logging. Logger object. The Logger object allocates a WLLogRecord object
to describe the message and publishes the WLLogRecord to any message handler
that has subscribed to the Logger.

e Overview of Message Handlers

e Creating and Subscribing a Handler: Main Steps

e Example: Subscribing to Messages in a Server JVM

e Example: Implementing a Log4j Appender Class

e Comparison of Java Logging Handlers with JIMX Listeners

For more information about WebLogic Server loggers and handlers, see The Role of
Logger and Handler Objects.

5.1 Overview of Message Handlers

ORACLE

WebLogic Server instantiates and subscribes a set of message handlers that receive
and print log messages.You can also create your own message handlers and
subscribe them to the WebLogic Server Logger objects (see Figure 5-1).

5-1

Chapter 5
Creating and Subscribing a Handler: Main Steps

Figure 5-1 Subscribing a Handler

ConsoleHandler
Level
Filter
[} FileStreamHandler
Logger LEVElFiltig Level
[} Filter

InternalHandler

MyHandler

Level

Filter

For example, if your application runs in a client JVM and you want the application to
listen for the messages that your application generates, you can create a handler and
subscribe it to the Logger object in the client VM. If your application receives a log
message that signals the failure of a specific subsystem, it can perform actions such
as:

* E-mail the log message to the WebLogic Server administrator.

e Shut down or restart itself or its subcomponents.

Note:

When creating your own message handlers, be careful to avoid executing
custom code which runs in the WebLogic Server process before the server
initialization has completed and the server has come to a running state. In
some cases, custom code can interfere with server services which are being
initialized. For example, custom log handlers that make an outbound RMI call
which use the Port abl eRenot ebj ect before the IIOP server service is
initialized, can cause server startup to fail.

5.2 Creating and Subscribing a Handler: Main Steps

ORACLE

A handler that you create and subscribe to a Logger object receives all messages that
satisfy the level and filter criteria of the logger. Your handler can specify additional

5-2

Chapter 5
Creating and Subscribing a Handler: Main Steps

level and filter criteria so that it responds only to a specific set of messages that the
logger publishes.
To create and subscribe a handler:

1. Create a handler class that includes the following minimal set of import
statements:

import java.util.logging.Handler;

i mport java.util.logging.LogRecord;
import java.util.logging.ErrorManager;
i mport webl ogi c. | oggi ng. W.LogRecor d;

i mport webl ogi c. | oggi ng. W.Level ;

i mport webl ogi c. | oggi ng. W.Er r or Manager ;
i mport webl ogi c. | oggi ng. Loggi ngHel per;

2. Inthe handler class, extend java. uti| .| oggi ng. Handl er .

3. Inthe handler class, implement the Handl er. publ i sh(LogRecord record) method.
This method:
a. Casts the LogRecor d objects that it receives as W.LogRecor d objects.
b. Applies any filters that have been set for the handler.

c. If the W.LogRecor d object satisfies the criteria of any filters, the method uses
W.LogRecor d methods to retrieve data from the messages.

d. Optionally writes the message data to one or more resources.
4. In the handler class, implement the Handl er. f| ush and Handl er . cl ose methods.

All handlers that work with resources should implement the f | ush method so that it
flushes any buffered output and the cl ose method so that it closes any open
resources.

When the parent Logger object shuts down, it calls the Handl er . ¢l ose method on all
of its handlers. The close method calls the f| ush method and then executes its
own logic.

5. Create a filter class that specifies which types of messages your Handl er object
should receive. See Setting a Filter for Loggers and Handlers.

6. Create a class that invokes one of the following Loggi ngHel per methods:
e getdientLogger if the current context is a client JVM.

e getServerLogger if the current context is a server JVM and you want to attach a
handler to the server Logger object.

e get Donmai nLogger if the current context is the Administration Server and you
want to attach a handler to the domain Logger object.

Loggi ngHel per . get Domai nLogger () retrieves the Logger object that manages the
domain log. You can subscribe a custom handler to this logger and process
log messages from all the servers in a single location.

7. In this class, invoke the Logger. addHandl er (Handl er myHandl er) method.

8. Optional. Invoke the Logger.setFilter(Filter nyFilter) method to set a filter.

ORACLE 5-3

Chapter 5
Example: Subscribing to Messages in a Server JVM

5.3 Example: Subscribing to Messages in a Server JVM

To subscribe to messages in a server JVM, create a handler that connects to a JDBC
data source and issues SQL statements that insert messages into a database
table. The example implements the following classes:

A Handl er class. See Example: Implementing a Handler Class.
AFilter class. See Setting a Filter for Loggers and Handlers.

A class that subscribes the handler and filter to a server's Logger class. See
Example: Subscribing to a Logger Class.

5.3.1 Example: Implementing a Handler Class

The example Handl er class in Example 5-1 writes messages to a database by doing
the following:

ORACLE

1.
2.

Extends java. util .| oggi ng. Handl er.

Constructs a j avax. nam ng. I ni ti al Context object and invokes the Cont ext . | ookup
method to look up a data source named nyPool Dat aSour ce.

Invokes the j avax. sql . Dat aSour ce. get Connect i on method to establish a connection
with the data source.

Implements the set Error Manager method, which constructs a
java.util.logging. ErrorMnager object for this handler.

If this handler encounters any error, it invokes the error manager's error method.
The error method in this example:

a. Prints an error message to standard error.

b. Disables the handler by invoking
Loggi ngHel per . get Server Logger () . renoveHandl er (MyJDBCHandl er. t hi s) .

Note:

Instead of defining the Error Manager class in a separate class file, the example
includes the Error Manager as an anonymous inner class.

For more information about error managers, see the API documentation for the
java.util.logging. ErrorManager class at http://docs. oracl e. conlj avase/ 8/
docs/ api/javal util/logging/ ErrorManager. htni .

Implements the Handl er . publ i sh(LogRecord record) method. The method does the
following:

a. Casts each LogRecor d object that it receives as a W.LogRecor d objects.

b. Calls anisLoggabl e method to apply any filters that are set for the handler. The
i sLoggabl e method is defined at the end of this handler class.

c. Uses WLlogRecord methods to retrieve data from the messages.

5-4

http://docs.oracle.com/javase/8/docs/api/java/util/logging/ErrorManager.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/ErrorManager.html

ORACLE

Chapter 5
Example: Subscribing to Messages in a Server JVM

For more information about W LogRecor d methods, see the description of the
webl ogi ¢. | oggi ng. W.LogRecor d class in Java APl Reference for Oracle
WebL ogic Server.

d. Formats the message data as a SQL prepar eSt at ement and executes the
database update.

The schema for the table used in the example is as follows:

Table 5-1 Schema for Database Table in Handler Example
|

Name Null? Type

MBG D n/a CHAR(25)
LOGLEVEL n/a CHAR(25)
SUBSYSTEM n/a CHAR(50)
MESSAGE n/a CHAR(1024)

Invokes a f | ush method to flush the connection.

Implements the Handl er. ¢l ose method to close the connection with the data
source.

When the parent Logger object shuts down, it calls the Handl er. cl ose method,
which calls the Handl er. f | ush method before executing its own logic.

Example 5-1 illustrates the steps described in this section.
Example 5-1 Implementing a Handler Class

inmport java.util.logging.Handler;
import java.util.logging.LogRecord;
inmport java.util.logging.Filter;

inmport java.util.logging.ErrorMnager;
i mport webl ogi c. | oggi ng. W.LogRecor d;

i mport webl ogi c. | oggi ng. W.Level ;

i mport webl ogi c. | oggi ng. W.Er r or Manager ;
i mport javax.naning.Initial Context;

i mport j avax. nani ng. Nam ngExcepti on;

i mport javax.sql.DataSource;

import java.sql.Connection;

import java.sql.SQ.Exception;

inport java.sql.Statement;

import java.sql.PreparedStatenent;

i mport webl ogi c. | oggi ng. Loggi ngHel per;
public class MyJDBCHandl er extends Handler {

private Connection con = null;

private PreparedStatement stmt = null;

public MyJDBCHandl er () throws NaningException, SQLException {
Initial Context ctx = new Initial Context();
Dat aSource ds = (DataSource)ctx. | ookup(" myPool Dat aSour ce");
con = ds. get Connection();
PreparedSt at ement stnt = con. prepar eSt at enent

5-5

Chapter 5
Example: Subscribing to Messages in a Server JVM

set Error Manager (new Error Manager () {
public void error(String nsg, Exception ex, int code) {
Systemerr.printIn("Error reported by MJDBCHandl er "
+ meg + ex.get Message());
//Removing any prior istantiation of this handler
Loggi ngHel per. get Server Logger () . r enoveHandl er (
MyJDBCHandl er . t hi s);
1
b

public void publish(LogRecord record) {

W.LogRecord rec = (W.LogRecord)record,;

if (!isLoggable(rec)) return;

try {
("I NSERT INTO nyserverLog VALUES (?, ?, ? ,?)");
stnt. set EscapeProcessi ng(true);
stn.setString(1, rec.getld());
stn.setString(2, rec.getLevel ().getLocalizedName());
stnt.setString(3, rec.getlLoggerNane());
stn.setString(4, rec.getMssage());
stnt. execut eUpdate();
flush();

} catch(SQLException sqgex) {
reportError("Error publihsing to SQ", sqgex,

Err or Manager . WRI TE_FAI LURE) ;
1

}
public void flush() {
try {
con.conmit();
} catch(SQLException sqgex) {
reportError("Error flushing connection of MyJDBCHandl er",
sqgex, ErrorManager. FLUSH FAI LURE);
}

public bool ean isLoggabl e(LogRecord record) {
Filter filter = getFilter();
if (filter '=null) {
return filter.isLoggabl e(record);
} else {
return true;

}
public void close() {
try {
con. cl ose();

} catch(SQLException sqgex) {
reportError("Error closing connection of MyJDBCHandl er",
sqgex, ErrorManager. CLOSE_FAI LURE);
1
}
}

5.3.2 Example: Subscribing to a Logger Class

The example Logger class in Example 5-2 does the following:

1. Invokes the Loggi ngHel per . get Server Logger method to retrieve the Logger object.

2. Invokes the Logger . addHandl er (Handl er nyHandl er) method.

ORACLE 5-6

Chapter 5
Example: Implementing a Log4j Appender Class

3. Invokes the Logger. get Handl er s method to retrieve all handlers of the Logger object.
4. Iterates through the array until it finds nmyHandl er .
5. Invokes the Handl er.setFilter(Filter nyFilter) method.

If you wanted your handler and filter to subscribe to the server's Logger object each
time the server starts, you could deploy this class as a WebLogic Server startup class.
For information about startup classes, see Use custom classes to configure servers in
the Oracle WebLogic Server Administration Console Online Help.

Example 5-2 Subscribing to a Logger Class

import java.util.logging.Logger;
import java.util.logging.Handler;
import java.util.logging.Filter;
i mport java.util.logging.LogRecord;
i mport webl ogi c. | oggi ng. Loggi ngHel per;
i mport webl ogi c. | oggi ng. Fi | eStreanHandl er;
i mport webl ogi c. | oggi ng. W.LogRecor d;
i mport webl ogi c. | oggi ng. W.Level ;
inport java.rm . RenmoteException;
i mport webl ogi c. j ndi . Environnent;
i mport javax. naming. Cont ext;
public class LogConfiglnpl {
public void configureLogger() throws RenoteException {
Logger |ogger = Loggi ngHel per. get Server Logger ();
try {
Handl er h = null;
h = new MyJDBCHandl er ();
| ogger . addHandl er (h);
h.setFilter(new MFilter());
} catch(Exception nmex) {
Systemerr.printin("Error adding MyJDBCHandl er to |ogger "
+ nmex. get Message());
| ogger . removeHand! er (h);
}
}
public static void main(String[] argv) throws Exception {
LogConfiglnpl inpl = new LogConfiglnpl();
i mpl . confi gureLogger ();

}

5.4 Example: Implementing a Log4j Appender Class

ORACLE

To implement a Log4j Appender class, you must first establish a connection to the
JDBC data source and then invoke the append(Loggi ngEvent event) method. The
example Appender class in Example 5-3 connects to a JDBC data source and issues
SQL statements that insert messages into a database table:

1. Extends Appender Skel t on.

2. Constructs a j avax. nani ng. I ni tial Cont ext object and invokes the Cont ext . | ookup
method to look up a data source named MyDat aSour ce.

3. Invokes the j avax. sql . Dat aSour ce. get Connect i on method to establish a connection
with the data source.

4. Implements the append(Loggi ngEvent event) method. The method does the
following:

5-7

Chapter 5
Example: Implementing a Log4j Appender Class

a. Casts each Loggi ngEvent object that it receives as a W.Log4j LogEvent .
b. Uses WLog4j LogEvent methods to retrieve data from the messages.

For more information about W.Log4j LogEvent methods, see the description of
the webl ogi c. | oggi ng. | 0g4j . W.Log4j LogEvent class in Java API Reference for
Oracle WebLogic Server.

c. Creates a SQL prepareStatenent and executes the database update whenever
a logging event arrives.

The schema for the table used in the example is as follows:

Table 5-2 Schema for Database Table in Log4j Appender Example
|

Name Null? Type
SERVERNANVE n/a CHAR(30)

MSG D n/a CHAR(20)
SEVERI TYLEVEL n/a CHAR(20)
LOGGERNAMVE n/a CHAR(100)
MESSAGE n/a VARCHAR(2048)
TI MESTAMP n/a LONG

5. Implements the cl ose method to close the connection with the data source.

Example 5-3 illustrates the steps described in this section.
Example 5-3 Log4j Appender Examples Startup

package webl ogi c. | oggi ng. exanpl es;

inport java.util.Enuneration;

i nport org. apache. | og4j . Appender Skel et on;

i mport org.apache. | og4j . PropertyConfigurator;

i mport org.apache. | og4j . Logger;

i mport org.apache. | og4j.spi.Filter;

i mport org.apache. | og4j . spi . Loggi ngEvent ;

i mport webl ogi c. | oggi ng. Logger Not Avai | abl eExcepti on;
i mport webl ogi c. | oggi ng. NonCat al ogLogger;

i mport webl ogi c. | oggi ng. Severities;

i mport webl ogi c. | oggi ng. | 0g4j . Appender Nanes;

i mport webl ogi c. | oggi ng. | 0g4j . Log4j Loggi ngHel per;
i mport webl ogi c. | oggi ng. | 0g4j . W.Log4j Level ;

i mport webl ogi c. | oggi ng. | og4j . W.Log4j LogEvent ;

i mport org. apache. | og4j . j dbc. JDBCAppender ;

import java.sql.Connection;

inmport java.sql.SQ.Exception;

i mport javax.naning.Initial Context;

ORACLE 5-8

Chapter 5
Example: Implementing a Log4j Appender Class

i mport webl ogi c. | oggi ng. | 0g4j . W.Log4j LogEvent ;
i mport webl ogi c. | oggi ng. Severities;
/**
* This class sets up a Log4j Appender as a listener to the
* Server Logger for log events.
*/
public class Log4j Appender Exanpl eStartup {
public static void main(String[] args) {
try {
Systemout. printin("Invoked the appender exanple startup class");
Logger serverlLogger = Log4jLoggi ngHel per. get Log4j Server Logger () ;
/1 Configure the JDBC appender
MyJDBCAppender j dbcAppender = new MyJDBCAppender () ;
/1 Now add the JDBC appender to the server |ogger
server Logger . addAppender (j dbcAppender) ;
Il Now test the filter
NonCat al ogLogger nc = new NonCat al ogLogger (" M/Appender Test ") ;
nc.info("Test |NFO nessage");
nc. war ni ng(" Test WARNI NG nessage");
} catch(Exception ex) {
Systemerr.printIn("Init failure " + ex.getMessage());
ex.printStackTrace();
}
1
private static class M/JDBCAppender extends Appender Skel eton {
private Connection connection;
private java.sql.PreparedStatenent stnt;
public MyJDBCAppender () throws javax.nam ng. Nam ngException, SQLException {
Initial Context ctx = new Initial Context();
j avax. sql . Dat aSource ds
= (javax. sql . DataSource) ctx.|ookup ("MDataSource");
connection = ds. get Connection();
Il Table schema creation SQL command
Il Create table SERVER LOG (server_name char(30),nsg_id char(20),
Il severity |evel char(20),!ogger_nanme char(100), message varchar(2048),
Il timestanp long);
stnt = connection. prepareStatenent ("1 NSERT | NTO SERVER _LOG VALUES
(2, 2,2, 2,2 ")
stnt. set EscapeProcessing(true);
connection. set Aut oConmi t (true);
}
Il Qverride execute nethod
public void append(Loggi ngEvent event) {
W.Log4j LogEvent W sEvent = (W.Log4j LogEvent) event;
try {
stnt.setString
stnt.setString
stnt.setString

1, wi sEvent.get ServerNane());

2, W sEvent.getld());

3, Severities.severityNunToString(w sEvent.getSeverity()));
4,

5,

—_—— ==

stnt.setString wl sEvent . get Subsysten());
stnt.setString(5 w sEvent.getMessage().toString());
stnt.setLong(6, W sEvent.getTimestanp());
stnt. execut eUpdate();

} catch (SQLException e) {
Systemerr.printin(e.toString());

}

publ i c bool ean requiresLayout() {
return fal se;

public void close() {
try {

ORACLE 5-9

Chapter 5
Comparison of Java Logging Handlers with JMX Listeners

stnt.close();
connection. cl ose();

} catch(SQ.Exception sqlex) {
Systemerr.printIn("Error closing JDBC appender");
sql ex. printStackTrace();

}

}
}
}

5.5 Comparison of Java Logging Handlers with JIMX

Listeners

ORACLE

You can use either Java Logging Handlers or a Java Management Extensions (JMX)
listener to receive log messages. You can use both the techniques depending on the
requirement.

Prior to WebLogic Server 8.1, the only technique for receiving messages from the
WebLogic logging services was to create a Java Management Extensions (JMX)
listener and register it with a LogBr oadcast er Runt i meMBean. With the release of
WebLogic Server 8.1, you can also use Java Logging handlers to receive (subscribe
to) log messages.

While both techniques - Java Logging handlers and JMX listeners - provide similar
results, the Java Logging APIs include a Format t er class that a Handl er object can use
to format the messages that it receives. JMX does not offer similar APIs for formatting
messages. For more information about formatters, see the APl documentation for the
Formatter class at http://docs. oracl e. conl j avase/ 8/ docs/ api/java/util /| oggi ng/
Formatter.htm .

In addition, the Java Logging Handl er APIs are easier to use and require fewer levels
of indirection than JMX APIs. For example, the following lines of code retrieve a Java
Logging Logger object and subscribe a handler to it:

Logger |ogger = Loggi ngHel per. get Server Logger ();
Handl er h = nul|;

h = new MyJDBCHandl er () ;

| ogger . addHandl er (h)

To achieve a similar result by registering a JMX listener, you must use lines of code
similar to Example 5-4. The code looks up the MBeanHone interface, looks up the
Renot eMBeanSer ver interface, looks up the LogBr oadcast er Runt i meMBean, and then
registers the listener.

Optimally, you would use Java Logging handlers to subscribe to log messages on your
local machine and JMX listeners to receive log messages from a remote machine. If
you are already using JMX for monitoring and you simply want to listen for log
messages, not to change their formatting or reroute them to some other output, use
JMX listeners. Otherwise, use the Java Logging handlers.

Example 5-4 Registering a JMX Listener

MBeanHone hone = nul | ;

Renot eMBeanServer rnbs = nul | ;

/[domai n vari abl es

String url = "t3://local host:7001";
String serverNane = "Serverl";
String username = "webl ogic";

5-10

http://docs.oracle.com/javase/8/docs/api/java/util/logging/Formatter.html
http://docs.oracle.com/javase/8/docs/api/java/util/logging/Formatter.html

ORACLE

Chapter 5

Comparison of Java Logging Handlers with JMX Listeners

String password = "webl ogic";
/1 Usi ng MBeanHorme to get MBeanServer.
try {

Environnent env = new Environnent();

env. set ProviderUrl (url);

env. set SecurityPrinci pal (usernane);

env. set SecurityCredential s(password);

Context ctx = env.getlnitial Context();

[/ Getting the Adnministration MBeanHore.

home = (MBeanHone) ctx. | ookup(MBeanHone. ADM N_JNDI _NAME) ;
Systemout.printIn("Got the Admin MBeanHone: " + hone);
rnbs = home. get MBeanServer () ;

} catch (Exception e) {

}
try {
[/lnstantiating your listener class.
MyLi stener |istener = new MyListener();
MFilter filter = new MFilter();
[/ Construct the WebLogi cObj ect Name of the server's
/11 0g broadcaster.
\ebLogi cbj ect Nane | ogBCOnane = new
VebLogi cbj ect Name(" TheLogBr oadcast er",
"LogBroadcast er Runti me", domai nNane, serverNane);
[/ Passing the nane of the MBean and your |istener class to the
//addNoti ficationListener method of MBeanServer.
rnbs. addNot i fi cati onLi stener (|l ogBCOnane, listener, filter, null);
} catch(Exception e) {
Systemout. println("Exception: " + e);
}
}

Systemout. println("Caught exception: " + e);

5-11

Chapter 5

Comparison of Java Logging Handlers with JMX Listeners

ORACLE" 5-12

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Logging Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.4.2 Log4j Integration in MedRec
	1.4.3 Logging Examples in the WebLogic Server Distribution

	1.5 New and Changed Logging Features in This Release

	2 Understanding WebLogic Logging Services
	2.1 What You Can Do With WebLogic Logging Services
	2.2 How WebLogic Logging Services Work
	2.2.1 Components and Environment
	2.2.2 Terminology
	2.2.3 Overview of the Logging Process
	2.2.4 Server Log Files and Domain Log Files
	2.2.5 How a Server Instance Forwards Messages to the Domain Log

	2.3 Server and Subsystem Logs
	2.3.1 Server Log
	2.3.2 Subsystem Logs

	2.4 Log Message Format
	2.4.1 Log File Format Compatibility with Previous WebLogic Server Versions
	2.4.2 Format of Output to Standard Out and Standard Error

	2.5 Message Attributes
	2.6 Message Severity
	2.7 Viewing WebLogic Server Logs
	2.8 Server Logging Bridge
	2.9 Configuring java.util.logging Logger Levels
	2.9.1 Configuring java.util.logging Logger Levels Using WLST

	2.10 Best Practices

	3 Configuring WebLogic Logging Services
	3.1 Configuration Scenarios
	3.2 Overview of Logging Services Configuration
	3.2.1 Using Log Severity Levels
	3.2.2 Using Log Filters

	3.3 Logging Configuration Tasks: Main Steps
	3.4 Log4j and the Commons Logging API
	3.4.1 About Log4j
	3.4.1.1 Loggers
	3.4.1.2 Appenders
	3.4.1.3 Layouts

	3.5 How to Use Log4j with WebLogic Logging Services
	3.5.1 Using WLST to Configure and Enable Log4j for WebLogic Server Logging

	3.6 How to Use the Commons API with WebLogic Logging Services
	3.6.1 Specifying Severity Level for Loggers
	3.6.1.1 Specifying Severity Level for WebLogic Server Subsystem Loggers
	3.6.1.2 Specifying the Severity Level for Commons Logging API Loggers

	3.7 Rotating Log Files
	3.7.1 Specifying the Location of Archived Log Files
	3.7.2 Notification of Rotation

	3.8 Redirecting JVM Output
	3.8.1 Configuring WebLogic Server to Redirect the JVM Output

	3.9 Redirecting Standard Error and Standard Output
	3.10 Preventing Excessive Logging

	4 Filtering WebLogic Server Log Messages
	4.1 The Role of Logger and Handler Objects
	4.2 Filtering Messages by Severity Level or Other Criteria
	4.3 Setting the Severity Level for Loggers and Handlers
	4.3.1 Setting the Level for Loggers
	4.3.2 Setting the Level for Handlers
	4.3.2.1 Example: Setting the Level for Handlers
	4.3.2.2 Example: Setting the Severity Level for the Stdout Handler

	4.4 Setting a Filter for Loggers and Handlers
	4.4.1 Filtering Domain Log Messages

	4.5 Setting a Severity Level and Filter on a Log4j Appender

	5 Subscribing to Messages
	5.1 Overview of Message Handlers
	5.2 Creating and Subscribing a Handler: Main Steps
	5.3 Example: Subscribing to Messages in a Server JVM
	5.3.1 Example: Implementing a Handler Class
	5.3.2 Example: Subscribing to a Logger Class

	5.4 Example: Implementing a Log4j Appender Class
	5.5 Comparison of Java Logging Handlers with JMX Listeners

