Oracle® Fusion Middleware
Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server

12¢ (12.2.1.3.0)
E80412-03
July 2020

ORACLE"

Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server,
12¢ (12.2.1.3.0)

E80412-03
Copyright © 2007, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility Xiv

Conventions Xiv

1 Introduction and Roadmap

1.1 What Is the WebLogic Diagnostics Framework? 1-1

1.2 Document Scope and Audience 1-2

1.3 Guide to This Document 1-2

1.4 Related Documentation 1-4

1.5 Samples and Tutorials 1-4
1.5.1 Avitek Medical Records Application (MedRec) and Tutorials 1-4
1.5.2 WLDF Samples Available for Download 1-5

1.6 What's New in This Guide 1-5

2 Overview of the WLDF Architecture

2.1 Overview of the WebLogic Diagnostics Framework 2-1
2.2 Data Creation, Collection, and Instrumentation 2-2
2.3 Archive 2-3
2.4 Policies and Actions 2-4
2.5 Data Accessor 2-5
2.6 Monitoring Dashboard and Request Performance Pages 2-5

2.6.1 Monitoring Dashboard 2-6

2.6.2 Diagnostics Request Performance Page 2-6
2.7 Diagnostic Image Capture 2-6
2.8 How It All Fits Together 2-7
2.9 WLDF Support for Multitenancy 2-8

3 Using the Built-in Diagnostic System Modules

3.1 Overview 3-1
3.1.1 Types of Built-in Diagnostic System Modules 3-2

ORACLE iii

3.1.2 Data Collected by Built-in Diagnostic System Modules 3-2
3.2 Configuring a Built-in Diagnostic Module 3-3
3.3 Accessing Data Collected by a Built-in Diagnostic System Module 3-4
3.3.1 Using the Monitoring Dashboard 3-4
3.3.2 Using the Metrics Log Table in the Administration Console 3-5
3.4 Creating a Custom Diagnostic System Module Based on a Built-in 3-6
4 Using WLDF with Java Flight Recorder
4.1 About Java Flight Recorder 4-1
4.2 Using Java Flight Recorder with Oracle HotSpot 4-2
4.3 Key Features of WLDF Integration with Java Flight Recorder 4-3
4.4 Java Flight Recorder Use Cases 4-4
4.4.1 Diagnosing a Critical Failure — The "Black Box" 4-5
4.4.2 Profiling During Performance Testing or in Production 4-5
4.4.3 Real-Time Application Diagnostics and Reporting 4-5
4.5 Obtaining the Flight Recording File 4-6
4.6 Analyzing Java Flight Recorder Data 4-7
4.6.1 Java Flight Recorder Graphical User Interface 4-7
4.6.2 Analyzing Execution Flow — A Sample Walkthrough 4-9
4.6.2.1 Displaying Event Data for a Product Subcomponent 4-9
4.6.2.2 Viewing the Event Log to Display Details 4-10
4.6.2.3 Tracking Execution Flow by Analyzing an Operative Set 4-12
4.6.2.4 Expanding the Operative Set and Viewing Correlated Diagnostic
Data 4-14
4.6.3 Changing the Location of Temporary JFR Files 4-16
5 Understanding WLDF Configuration
5.1 Configuration MBeans and XML 5-1
5.2 Tools for Configuring WLDF 5-2
5.3 How WLDF Configuration Is Partitioned 5-2
5.3.1 Server-Level Configuration 5-2
5.3.2 Application-Level Configuration 5-3
5.4 Configuring Diagnostic Image Capture and Diagnostic Archives 5-3
5.5 Configuring Diagnostic Image Capture for Java Flight Recorder 5-4
5.6 Configuring Diagnostic System Modules 5-5
5.6.1 About the Resource Descriptor 5-6
5.6.2 WLDF Runtime Control 5-7
5.6.3 Creating a Diagnostic System Module Based on a Configured Resource
Descriptor 5-8
ORACLE v

5.6.4 Creating a Diagnostic System Module Based on an External Resource

Descriptor 5-9

5.6.5 Targeting a Diagnostic System Module to a Server or Cluster 5-10

5.6.6 Dynamically Activating or Deactivating Diagnostic System Modules 5-11

5.6.7 Using WLST to Activate and Deactivate Diagnostic System Modules 5-11

5.6.7.1 Example 5-12

5.6.8 More Information About Configuring Diagnostic System Modules 5-15

5.7 Configuring Diagnostic Modules for Applications 5-15

5.8 WLDF Configuration MBeans and Their Mappings to XML Elements 5-16
6 Configuring and Capturing Diagnostic Images

6.1 How to Initiate Image Captures 6-1

6.2 Configuring Diagnostic Image Captures 6-1

6.2.1 Configuring WLDF Diagnostic Volume 6-2

6.2.1.1 Low Volume Setting 6-3

6.2.1.2 Medium Volume Setting 6-4

6.2.1.3 High Volume Setting 6-4

6.2.2 WLST Commands for Generating an Image Capture 6-5

6.3 How Diagnostic Image Capture Is Persisted in the Server's Configuration 6-5

6.4 Content of the Captured Image File 6-6

6.4.1 Data Included in the Diagnostics Image Capture File 6-7

6.4.2 WLST Online Commands for Downloading Diagnostics Image Captures 6-8

7 Configuring Diagnostic Archives

7.1 Configuring the Archive 7-1

7.2 Configuring a File-Based Store 7-1

7.3 Configuring a JDBC-Based Store 7-2

7.3.1 Creating WLDF Tables in the Database 7-2

7.3.1.1 Apache Derby 7-2

7.3.1.2 Oracle Database 7-4

7.3.1.3 MySQL 7-7

7.3.2 Configuring JDBC Resources for WLDF 7-8

7.4 Retiring Data from the Archives 7-9

7.4.1 Configuring Data Retirement at the Server Level 7-9
7.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic

Archives 7-10

7.4.3 Sample Configuration 7-10

ORACLE Y

8 Configuring the Harvester for Metric Collection

8.1 Harvesting, Harvestable Data, and Harvested Data 8-1
8.2 Harvesting Data from the Different Harvestable Entities 8-2
8.3 Configuring the Harvester 8-2
8.3.1 Configuring the Harvester Sampling Period 8-3
8.3.2 Configuring the Types of Data to Harvest 8-3
8.3.3 Specifying Type Names for WebLogic Server MBeans and Custom
MBeans 8-4
8.3.4 Harvesting from the Domain Runtime MBean Server 8-4
8.3.5 When Configuration Settings Are Validated 8-5
8.3.6 Sample Configurations for Different Harvestable Types 8-5
8.4 Harvester Performance Considerations 8-6
O Configuring Policies and Actions
9.1 Policies and Actions 9-1
9.2 Overview of Policies and Actions Configuration 9-2
9.3 Sample Policies and Actions Configuration 9-4

10 Configuring Policies

10.1 How Policies Are Configured 10-1
10.1.1 Rule Type 10-2
10.1.2 Expression Language 10-3
10.1.3 Policy Expression 10-4
10.1.4 Actions 10-4
10.1.5 Policy Schedule 10-4
10.1.6 Alarm Options 10-7
10.1.7 Severity Option 10-8
10.1.8 Enablement Option 10-8

10.2 Configuring Scheduled Policies 10-8
10.2.1 Configuring Calendar Based Policies 10-9
10.2.2 Configuring Smart Rule Based Policies 10-9

10.2.2.1 Types of Diagnostic Data that Smart Rules Evaluate 10-10
10.2.2.2 Smart Rule Example 10-11
10.2.3 Chaining Policies 10-11

10.3 Configuring Log Policies 10-12

10.4 Configuring Instrumentation Policies 10-13

10.5 Creating Complex Policy Expressions Using WLDF Java EL Extensions 10-14
10.5.1 Writing Collected Metrics Policy Expressions Using Beans 10-15

10.5.1.1 Accessing MBean Data in Collected Metrics 10-15

ORACLE vi

10.5.1.2 Working with Complex MBean Attributes 10-16
10.5.1.3 Performing Bulk Queries on Collected Metrics from MBeans 10-17
10.5.2 Writing Collected Metrics Policy Expressions Using Functions 10-19
10.5.2.1 Examining Trends in Metric Values over Time 10-20
10.5.2.2 Extracting and Examining Collected Metrics in Policy
Expressions 10-22
10.5.2.3 Lifecycle of Data Collection 10-23
11 Configuring Actions
11.1 Actions Overview 11-1
11.1.1 Types of Actions 11-1
11.1.2 Variables for Customizable Actions 11-2
11.1.3 Action Timeout 11-3
11.2 Configuring JMX Actions 11-4
11.3 Configuring JMS Actions 11-4
11.4 Configuring SNMP Actions 11-5
11.5 Configuring Log Actions 11-6
11.6 Configuring REST Actions 11-6
11.7 Configuring SMTP Actions 11-7
11.8 Configuring Image Actions 11-8
11.9 Configuring Elastic Actions 11-9
11.9.1 Elastic Scaling Operations Cannot Be Cancelled After Starting 11-10
11.9.2 Limiting Server Shutdown Time During Scale Down Operations 11-10
11.10 Configuring Script Actions 11-11
11.11 Configuring Heap Dump Actions 11-12
11.12 Configuring Thread Dump Actions 11-13
12 Configuring Instrumentation
12.1 Concepts and Terminology 12-1
12.1.1 Instrumentation Scope 12-2
12.1.2 Configuration and Deployment 12-2
12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations 12-2
12.1.4 Diagnostic Monitor Types 12-2
12.1.5 Diagnostic Actions 12-4
12.2 Instrumentation Configuration Files 12-4
12.3 XML Elements Used for Instrumentation 12-6
12.3.1 <Instrumentation> XML Elements 12-6
12.3.2 <wildf-instrumentation-monitor> XML Elements 12-7
12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor
Types 12-10
ORACLE Vi

12.4 Configuring Server-Scoped Instrumentation 12-10
12.5 Configuring Application-Scoped Instrumentation 12-12
12.5.1 Comparing System-Scoped to Application-Scoped Instrumentation 12-12
12.5.2 Overview of the Steps Required to Instrument an Application 12-13
12.5.3 Creating a Descriptor File for a Delegating Monitor 12-14
12.5.4 Creating a Descriptor File for a Custom Monitor 12-15
12.5.4.1 Defining Pointcuts for Custom Monitors 12-16
12.5.4.2 Annotation-based Pointcuts 12-18
12.6 Creating Request Performance Data 12-19
13 Configuring the Dyelnjection Monitor to Manage Diagnostic
Contexts
13.1 Contents, Life Cycle, and Configuration of a Diagnostic Context 13-1
13.1.1 Context Life Cycle and the Context ID 13-2
13.1.2 Dyes, Dye Flags, and Dye Vectors 13-2
13.1.3 Where Diagnostic Context Is Configured 13-3
13.2 Overview of the Process 13-3
13.3 Configuring the Dye Vector via the Dyelnjection Monitor 13-4
13.3.1 Dyes Supported by the Dyelnjection Monitor 13-5
13.3.2 PROTOCOL Dye Flags 13-7
13.3.3 THROTTLE Dye Flag 13-7
13.3.4 When Diagnostic Contexts Are Created 13-7
13.4 Configuring Delegating Monitors to Use Dye Filtering 13-8
13.5 How Dye Masks Filter Requests to Pass to Monitors 13-10
13.5.1 Dye Filtering Example 13-10
13.6 Using Throttling to Control the Volume of Instrumentation Events 13-12
13.6.1 Configuring the THROTTLE Dye 13-12
13.6.2 How Throttling is Handled by Delegating and Custom Monitors 13-14
13.7 Using weblogic.diagnostics.context 13-14
14 Accessing Diagnostic Data With the Data Accessor
14.1 Data Stores Accessed by the Data Accessor 14-1
14.2 Accessing Diagnostic Data Online 14-2
14.2.1 Accessing Data Using the Administration Console 14-2
14.2.2 Accessing Data Programmatically Using Runtime MBeans 14-2
14.2.3 Using WLST to Access Diagnostic Data Online 14-3
14.2.4 Using the WLDF Query Language with the Data Accessor 14-3
14.3 Accessing Diagnostic Data Offline 14-3
14.4 Accessing Diagnostic Data Programmatically 14-4
ORACLE viii

14.5 Resetting the System Clock Can Affect How Data Is Archived and Retrieved 14-8

15 Deploying WLDF Application Modules

15.1 Deploying a Diagnostic Module as an Application-Scoped Resource 15-1
15.2 Using Deployment Plans to Dynamically Control Instrumentation

Configuration 15-3
15.3 Using a Deployment Plan: Overview 15-4
15.4 Creating a Deployment Plan Using weblogic.PlanGenerator 15-4
15.5 Sample Deployment Plan for Diagnostics 15-5
15.6 Enabling Java HotSwap 15-6
15.7 Deploying an Application with a Deployment Plan 15-6
15.8 Updating an Application with a Modified Plan 15-6

16 Using the Monitoring Dashboard

16.1 Running the Monitoring Dashboard 16-1
16.2 Scope of the Diagnostic Information Displayed 16-1
16.3 About the Monitoring Dashboard Interface 16-2
16.3.1 View List 16-3
16.3.2 Metric Browser 16-4
16.3.3 View Display Panel 16-6
16.4 Understanding How Metrics Are Collected and Presented 16-8
16.4.1 About Metrics and Chart Types 16-8
16.4.1.1 Current Time Range Charts 16-8
16.4.1.2 Custom Time Range Charts 16-9

16.4.2 Sequence in which Metrics Data is Displayed 16-9
16.4.3 Notes about Metric Data Retention 16-10
16.5 The Parts of a Chart 16-10

17 Configuring and Using WLDF Programmatically

17.1 How WLDF Generates and Retrieves Data 17-1
17.2 Mapping WLDF Components to Beans and Packages 17-2
17.3 Programming Tools 17-4
17.3.1 Configuration and Runtime APIs 17-4
17.3.1.1 Configuration APIs 17-4
17.3.1.2 Runtime APIs 17-5

17.4 WLDF Packages 17-6
17.5 Programming WLDF: Examples 17-6
17.5.1 Example: DiagnosticContextExample.java 17-6
17.5.2 Example: HarvesterMonitor.java 17-7

ORACLE iX

17.5.2.1 Notification Listeners 17-7
17.5.2.2 HarvesterMonitor.java 17-8

17.5.3 Example: IMXAccessorExample.java 17-13

18 Using Debug Patches
18.1 Dynamic Application of Debug Patches 18-1
18.2 Specifying the Debug Patch Directory 18-1
18.3 Configuring the WLDF Debug Patch Agent 18-1
18.4 WLST Commands for Debug Patches 18-2
18.4.1 Dynamically Activating a Debug Patch 18-3
18.4.2 Dynamically Deactivating Debug Patches 18-3
A Smart Rule Reference

A.1 About the Parameters You Specify for Smart Rules A-1
A.2 Cluster Scope Smart Rules A-3
A.2.1 ClusterLowThroughput A-4
A.2.2 ClusterHighProcessCpulLoadAverage A-6
A.2.3 ClusterHighThroughput A-8
A.2.4 ClusterLowPendingUserRequests A-9
A.2.5 ClusterHighStuckThreads A-11
A.2.6 ClusterLowQueuelLength A-13
A.2.7 ClusterHighPendingUserRequests A-14
A.2.8 ClusterLowProcessCpulLoadAverage A-16
A.2.9 ClusterHighldleThreads A-18
A.2.10 ClusterLowSystemLoadAverage A-19
A.2.11 ClusterHighQueuelLength A-21
A.2.12 ClusterLowHeapFreePercent A-23
A.2.13 ClusterHighSystemLoadAverage A-24
A.2.14 ClusterHighHeapFreePercent A-26
A.2.15 ClusterLowSystemCpulLoadAverage A-28
A.2.16 ClusterLowldleThreads A-29
A.2.17 ClusterGenericMetricRule A-31
A.2.18 ClusterHighSystemCpulLoadAverage A-33
A.3 Server Scope Smart Rules A-35
A.3.1 ServerLowldleThreads A-37
A.3.2 ServerHighThroughput A-38
A.3.3 ServerGenericMetricRule A-39
A.3.4 ServerLowPendingUserRequests A-41
A.3.5 ServerLowProcessCpulLoadAverage A-42

ORACLE

A.3.6 ServerHighSystemLoadAverage A-43
A.3.7 ServerLowQueuelLength A-45
A.3.8 ServerLowThroughput A-46
A.3.9 ServerHighQueuelLength A-47
A.3.10 ServerHighSystemCpulLoadAverage A-49
A.3.11 ServerHighPendingUserRequests A-50
A.3.12 ServerLowSystemCpulLoadAverage A-51
A.3.13 ServerHighHeapFreePercent A-53
A.3.14 ServerHighStuckThreads A-54
A.3.15 ServerHighProcessCpulLoadAverage A-55
A.3.16 ServerLowSystemLoadAverage A-57
A.3.17 ServerLowHeapFreePercent A-58
A.3.18 ServerHighldleThreads A-60
B WLDF Beans and Functions Reference
B.1 WLDF Beans Reference B-1
B.1.1 clusterRuntime B-1
B.1.2 domainRuntime B-2
B.1.3 instrumentationEvent B-4
B.1.4 log B-6
B.1.5 partition B-7
B.1.6 platform B-8
B.1.7 resource B-9
B.1.8 runtime B-9
B.2 Functions Reference B-10
B.2.1 wis:tableChanges B-11
B.2.2 wils:tableAverages B-11
B.2.3 wis:extract B-11
B.2.4 wils:average B-12
B.2.5 wils:changes B-13
B.2.6 wis:aliveServersCount B-13
C WLDF Query Language
C.1 Components of a Query Expression C-1
C.2 Supported Operators C-1
C.3 Operator Precedence C-3
C.4 Numeric Relational Operations Supported on String Column Types C-3
C.5 Supported Numeric Constants and String Literals C-4
C.6 About Variables in Expressions C-4
ORACLE Xi

C.7 Creating Policy Expressions C-5
C.7.1 Creating Log Event Policy Expressions C-5
C.7.2 Creating Instrumentation Event Policy Expressions C-6
C.7.3 Creating Harvester Policy Expressions C-7

C.8 Creating Data Accessor Queries C-8
C.8.1 Data Store Logical Names C-8
C.8.2 Data Store Column Names C-9

C.9 Creating Log Filter Expressions C-11

C.10 Building Complex Expressions c-11

WLDF Instrumentation Library

D.1 Diagnostic Monitor Library D-1

D.2 Diagnostic Action Library D-9
D.2.1 TraceAction D-10
D.2.2 DisplayArgumentsAction D-11
D.2.3 TraceElapsedTimeAction D-11
D.2.4 TraceMemoryAllocationAction D-12
D.2.5 StackDumpAction D-12
D.2.6 ThreadDumpAction D-13
D.2.7 MethodInvocationStatisticsAction D-14

D.2.7.1 Instrumenting an Application with
MethodInvocationStatisticsAction and Querying the Results D-15
D.2.7.2 Configuring the Harvester to Collect
MethodInvocationStatisticsAction Data D-20
D.2.7.3 Configuring Policies Based on MethodInvocationStatistics Metrics D-22
D.2.7.4 Using JMX to Collect Data D-22
D.2.8 MemoryAllocationStatisticsAction D-22

Using Wildcards in Expressions

E.1 Using Wildcards in Harvester Instance Names E-1
E.1.1 Examples E-1

E.2 Specifying Complex and Nested Harvester Attributes E-2
E.2.1 Examples E-3

E.3 Using the Accessor with Harvested Complex or Nested Attributes E-4

E.4 Using Wildcards in Policy Instance Names E-5

E.5 Specifying Complex Attributes in Harvester Policies E-5

WebLogic Scripting Tool Examples

F.1 WLST Commands for Diagnostics F-1

ORACLE

Xii

F.2 Example: Dynamically Creating Dyelnjection Monitors F-2
F.3 Example: Configuring a Policy and a JMX Action F-4
F.4 Example: Writing a IMXWatchNotificationListener Class F-7
F.5 Example: Registering MBeans and Attributes For Harvesting F-9
F.6 Example: Setting the WLDF Diagnostic Volume F-13
F.7 Example: Capturing a Diagnostic Image F-13
F.8 Example: Retrieving a JFR File from a Diagnostic Image Capture F-15

G WLDF Query Language-Based Policies
G.1 Types of Policies G-1
G.2 Policy Configuration Options G-2
G.3 Configuring Harvester Policies Using the WLDF Query Language G-2
G.4 Configuring Log Policies Using the WLDF Query Language G-4
G.5 Configuring Instrumentation Policies Using the WLDF Query Language G-4
Glossary

ORACLE Xiii

Preface

Preface

This preface describes the document accessibility features and conventions used in
this guide—Configuring and Using the Diagnostics Framework for Oracle WebLogic
Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. cont pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/

t opi ¢/ | ookup?ct x=acc& d=i nf o or visit htt p: / / wmw. or acl e. coni pl s/t opi ¢/ | ookup?
ct x=accé&i d=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE Xiv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

The WebLogic Diagnostics Framework (WLDF) is a monitoring and diagnostic
framework that defines and implements a set of services that run within WebLogic
Server processes and participate in the standard server life cycle. Using WLDF, you
can create, collect, analyze, archive, and access diagnostic data generated by a
running server and the applications deployed within its containers.This data provides
insight into the run-time performance of servers and applications and enables you to
isolate and diagnose faults when they occur.

* What Is the WebLogic Diagnostics Framework?
» Document Scope and Audience

* Guide to This Document

* Related Documentation

e Samples and Tutorials

* What's New in This Guide

1.1 What Is the WebLogic Diagnostics Framework?

ORACLE

The WebLogic Diagnostics Framework (WLDF) is a suite of services and APIs that
provide the ability to collect and surface metrics that provide visibility into server
and application performance.Independent Software Vendors (ISVs) can use these
APIs, using standard interfaces such as WLST, REST, and JMX, to develop custom
monitoring and diagnostic tools for integration with WLDF.

The suite of services, components, and APIs provided by WLDF for collecting and
analyzing data includes the following:

e Integration with Oracle HotSpot—If WebLogic Server is configured with Oracle
HotSpot, WLDF can generate diagnostic information about WebLogic Server that
is captured in the Java Flight Recorder file.

e Built-in diagnostic system modules—A set of diagnostic modules available out-
of-the-box that you can enable dynamically to capture basic performance data
about the JVM, the WebLogic Server run time, and primary WebLogic Server
subsystems, including JDBC data sources, messaging, and Java EE containers,
such as servlets, EJBs, and resource adapters. The built-in diagnostic modules
can also be cloned and modified, providing a simple way to create custom
diagnostic system modules.

e Monitoring Dashboard—Graphically presents the current and historical operating
state of WebLogic Server and hosted applications, including information gathered
by the built-in diagnostic system modules. The Monitoring Dashboard, which is
accessed from the WebLogic Server Administration Console, provides a set of
tools for organizing and displaying diagnostic data into views, which surface
some of the more critical run-time WebLogic Server performance metrics and the
change in those metrics over time.

1-1

Chapter 1
Document Scope and Audience

» Diagnostic Image Capture—Creates a diagnostic snapshot from the server that
can be used for post-failure analysis. The diagnostic image capture includes Java
Flight Recorder data, if it is available, that can be viewed in Java Mission Control.

» Archive—Captures and persists data events, log records, and metrics from server
instances and applications.

* Instrumentation—Adds diagnostic code to WebLogic Server instances and the
applications running on them to execute diagnostic actions at specified locations
in the code. The Instrumentation component provides the means for associating
a diagnostic context with requests so they can be tracked as they flow
through the system. The WebLogic Server Administration Console includes
a Request Performance page, which shows real-time and historical views of
method performance information that has been captured through the WLDF
instrumentation capabilities, serving as a tool that can help identify performance
problems in applications.

* Harvester—Captures metrics from run-time MBeans, including WebLogic Server
MBeans and custom MBeans, which can be archived and later accessed for
viewing historical data.

» Policies and Actions—Provides the means for monitoring server and application
states and sending notifications based on criteria set in the policies.

* Logging services—Manage logs for monitoring server, subsystem, and application
events. The WebLogic Server logging services are documented separately from
the rest of the WebLogic Diagnostics Framework. See Related Documentation.

WLDF provides a set of standardized application programming interfaces (APIs) that
enable dynamic access and control of diagnostic data, as well as improved monitoring
that provides visibility into the server. These APIs can be accessed using the JMX and
the WebLogic Scripting Tool (WLST), as described in Configuring and Using WLDF
Programmatically.

WLDF enables dynamic access to server data through standard interfaces, and the
volume of data accessed at any given time can be modified without shutting down and
restarting the server.

1.2 Document Scope and Audience

This document describes and tells how to configure and use the monitoring and
diagnostic services provided by WLDF.

WLDF provides features for monitoring and diagnosing problems in running WebLogic
Server instances and clusters and in applications deployed to them. Therefore,

the information in this document is directed both to system administrators and to
application developers. It also contains information for third-party tool developers who
want to build tools to support and extend WLDF.

It is assumed that readers are familiar with Web technologies and the operating
system and platform where WebLogic Server is installed.

1.3 Guide to This Document

This document is organized as follows:

e This chapter, "Introduction and Roadmap", provides an overview of WLDF
components and describes the audience for this guide.

ORACLE 1-2

ORACLE

Chapter 1
Guide to This Document

Overview of the WLDF Architecture provides a high-level view of the WLDF
architecture.

Using the Built-in Diagnostic System Modules describes the built-in system
diagnostic modules, which are provided by the WebLogic Diagnostics Framework
(WLDF) as a simple and easy-to-use mechanism for performing basic health and
performance monitoring of a WebLogic Server instance

Using WLDF with Java Flight Recorder describes the WLDF integration features
with Java Flight Recorder, describes basic usage scenarios, and provides a
sample walkthrough of using Java Mission Control to examine WebLogic Server
events captured in a Java Flight Recorder file.

Understanding WLDF Configuration provides an overview of how WLDF features
are configured for servers and applications.

Configuring and Capturing Diagnostic Images describes how to configure and
use the WLDF Diagnostic Image Capture component to capture a snapshot of
significant server configuration settings and the server state.

Configuring Diagnostic Archives describes how to configure and use the WLDF
Diagnostic Archive component to persist diagnostic data to a file store or
database.

Configuring the Harvester for Metric Collection describes how to configure and
use the WLDF Harvester component to harvest metrics from run-time MBeans,
including WebLogic Server MBeans and custom MBeans.

Configuring Policies and Actions provides an overview of WLDF policies and
actions.

Configuring Policies describes how to configure policies to monitor server
instances and applications for specific conditions and execute actions when those
conditions are met.

Configuring Actions describes how to configure actions that can be executed by
policies.

Configuring Instrumentation describes how to add diagnostic instrumentation code
to WebLogic Server classes and to the classes of applications running on the
server.

Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts describes
how to use the Dyelnjection monitor and how to use dye filtering with diagnostic
monitors.

Accessing Diagnostic Data With the Data Accessor tells how to use the WLDF
Data Accessor component to retrieve diagnostic data.

Deploying WLDF Application Modules explains how to configure and manage
instrumentation for an application as a diagnostics application module.

Using the Monitoring Dashboard explains how to graphically present the current
and historical operating state of WebLogic Server and hosted applications using,
in part, diagnostic data captured by WLDF.

Configuring and Using WLDF Programmatically provides an overview of how you
can use the JMX API and the WebLogic Scripting Tool (WLST) to configure and
use WLDF components.

Using Debug Patches describes how to apply debug patches dynamically,
allowing you to capture diagnostic information using a patch that is activated and
deactivated without requiring a server restart.

1-3

Chapter 1
Related Documentation

Smart Rule Reference contains a comprehensive reference of all smart rules
provided in WLDF are used as policy predicates, typically for elastic scaling
operations in dynamic clusters.

WLDF Beans and Functions Reference provides a reference for the beans
provided by WLDF, and Java EL functions, that can be used in collected metrics
policy expressions to obtain access to common WebLogic Server JMX data
sources.

WLDF Query Language describes the WLDF query language that is used for
constructing expressions to query diagnostic data using the Data Accessot,
constructing watch rules, and constructing rules for filtering logs.

WLDF Instrumentation Library describes the predefined diagnostic monitors and
diagnostic actions that are included in the WLDF Instrumentation Library.

Using Wildcards in Expressions discusses how to use wildcards in WLDF
expressions.

WebLogic Scripting Tool Examples provides examples of how to perform WLDF
monitoring and diagnostic activities using the WebLogic Scripting Tool.

WLDF Query Language-Based Policies explains how to configure policies with
expressions that use the deprecated WLDF query language.

Glossary is a glossary of terms used in WLDF.

1.4 Related Documentation

Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server
describes how to use WLDF logging services to monitor server, subsystem, and
application events.

Configure the WebLogic Diagnostics Framework in the Oracle WebLogic Server
Administration Console Online Help describes how to use the visual tools in the
WebLogic Server Administration Console to configure WLDF.

Monitoring Partitions in Using WebLogic Server Multitenant describes how to
monitor partitions in WebLogic Server Multitenant.

The WLDF system resource descriptor conforms to the webl ogi c-
di agnosti cs. xsd schema, available at http://xmlIns.oracle.com/weblogic/weblogic-
diagnostics/1.0/weblogic-diagnostics.xsd.

1.5 Samples and Tutorials

In addition to this document, we provide a variety of samples and tutorials that show
WLDF configuration and use.

1.5.1 Avitek Medical Records Application (MedRec) and Tutorials

ORACLE

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
recommended best practices. MedRec is optionally installed in the WebLogic Server

1-4

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

Chapter 1
What's New in This Guide

distribution and is available by selecting the Complete Installation type. By default,
Medrec is configured post-installation in the ORACLE_HOVE/ user _pr oj ect s/ domai ns/
medr ec directory, where ORACLE_HOME represents the Oracle home directory on your

machine. See Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

1.5.2 WLDF Samples Available for Download

Additional WLDF samples for download can be found at ht t p: / / www. or acl e. conl
t echnet wor k/ i ndexes/ sanpl ecode/ i ndex. ht nl . These examples are distributed
as . zi p files that you can unzip into an existing WebLogic Server samples directory

structure. These samples include Oracle-certified ones, as well as samples submitted
by fellow developers.

1.6 What's New in This Guide

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

ORACLE 1-5

http://www.oracle.com/technetwork/indexes/samplecode/index.html
http://www.oracle.com/technetwork/indexes/samplecode/index.html

Overview of the WLDF Architecture

WebLogic Diagnostics Framework (WLDF) consists of various components that work

together to collect, archive, and access diagnostic information about a WebLogic
Server instance and the application it hosts.This chapter provides an overview of

the WLDF architecture, describes its components, and illustrates how all components
work together to collect and access diagnostic information about a WebLogic Server
and the application it hosts.

" Note:

Concepts are presented in this section in a way to help you understand how

WLDF works. Some of this differs from the way WLDF is surfaced in its

configuration and run-time APIs and in the WebLogic Server Console. If you

want to start configuring and using WLDF right away, you can safely skip this

discussion and start with Using the Built-in Diagnostic System Modules.

The following topics summarize WLDF and its architectural components:

Overview of the WebLogic Diagnostics Framework

Data Creation, Collection, and Instrumentation

Archive

Policies and Actions

Data Accessor

Monitoring Dashboard and Request Performance Pages
Diagnostic Image Capture

How It All Fits Together

WLDF Support for Multitenancy

2.1 Overview of the WebLogic Diagnostics Framework

The WLDF components interact with each other to process data at the server
level. WLDF consists of the following components:

ORACLE

Data creators (data publishers and data providers that are distributed across
WLDF components)

Data collectors (the Logger and the Harvester components)
Archive component
Accessor component

Instrumentation component

2-1

Chapter 2
Data Creation, Collection, and Instrumentation

» Policies and Actions component
* Image Capture component
* Monitoring Dashboard

Data creators generate diagnostic data that is consumed by the Logger and the
Harvester. Those components coordinate with the Archive to persist the data, and they
coordinate with the Policies and Actions subsystem to provide automated monitoring.
The Accessor interacts with the Logger and the Harvester to expose current diagnostic
data and with the Archive to present historical data. The Image Capture facility
provides the means for capturing a diagnostic snapshot of a key server state. The
relationship among these components is shown in Figure 2-1.

Figure 2-1 Major WLDF Components

Instrumentation PD“.CIES and
Actions
Data Crestors Data Collectors:
Data L
Publizhers By ger
Acceszor
Data
Providers Harvester
monitoring
Dashiboard
Image Capture Archive

All of the framework components operate at the server level and are only aware

of server scope. All the components exist entirely within the server process and
participate in the standard server lifecycle. All artifacts of the framework are configured
and stored on a per server basis.

2.2 Data Creation, Collection, and Instrumentation

Diagnostic data is collected from a number of logically classified sources.The sources
are logically classified as either data providers, data creators that are sampled at
regular intervals to harvest current values, or data publishers, data creators that
synchronously generate events.

Data providers and data publishers are distributed across components, and the
generated data can be collected by the Logger or the Harvester, as shown in

Figure 2-2.

ORACLE 2-2

Chapter 2
Archive

Figure 2-2 Relationship of Data Creation Components to Data Collection
Components

Server Codebaze

Catalog
Logoging

Logger

-0
-0

Drebugging —

Instrumentation

Archiver
Monitars

[]

MBean Server

WLE Runtime
MBeans

Harvester

Custom
MBeans

Figure 2-2 shows that invocations of the server logging infrastructure serve as inline
data publishers, and that the generated data is collected as events. (The logging
infrastructure can be invoked through the catalog infrastructure, the debugging model,
or directly through the Logger.)

The Instrumentation component creates monitors and inserts them at well-defined
points in the flow of execution. These monitors publish data directly to the Archive.

Components registered with the MBean Server may also make themselves known as
data providers by registering with the Harvester. Collected data is then exposed to
both the Policies and Actions system for automated monitoring and to the Archive for
persistence.

2.3 Archive

ORACLE

The Archive component of WLDF captures the state of the system and archives it for
future access in diagnosing critical faults in the system. It creates a historical archive
using several persistent components.

The past state is often critical in diagnosing faults in a system. This requires that

the state be captured and archived for future access, creating a historical archive. In
WLDF, the Archive meets this need with several persistence components. Both events
and harvested metrics can be persisted and made available for historical review.

Traditional logging information, which is human readable and intended for inclusion

in the server log, is persisted through the standard logging appenders. New event
data that is intended for system consumption is persisted into an event store using an
event archiver. Metric data is persisted into a data store using a data archiver. The
relationship of the Archive to the Logger and the Harvester is shown in Figure 2-3.

2-3

Chapter 2
Policies and Actions

The Archive provides access interfaces so that the Accessor may expose any of the
persisted historical data.

Figure 2-3 Relationship of the Archive to the Logger and the Harvester

Logger Archive
Fitters i Log e Log Storage
Appenders o d d
Instrumentation

Manitars e Evert Archive | Event Stu:uragellw
Harvester

Harvest Data

Loay ._
Tahle Archive = Data Stu:uragellw

2.4 Policies and Actions

ORACLE

The Policies and Actions component of WLDF is used to create automated monitors

that observe specific diagnostic states and send notifications based on configured
rules.

A policy can monitor log data, event data from the Instrumentation component, or
metric data from a data provider that is harvested by the Harvester. The Policy
Manager is capable of managing policies that are composed of a number of policy
expressions. These relationships are shown in Figure 2-4.

Figure 2-4 Relationship of the Logger and the Harvester to the Policies and
Actions System

Logger

Policy Appender

Policies and Actions

Instrumenitation))
Policy - Action

Monitors
Policy
Expression

Harvester

‘F

Harvest —
Table

2-4

Chapter 2
Data Accessor

One or more actions can be configured for use by a policy. By default, every policy
logs an event in the server log. SMTP, SNMP, JMX, elastic, REST, script, log, and JMS
actions are also supported.

2.5 Data Accessor

The Data Accessor component of WLDF provides access to all the data collected by
WLDF, including log, event, and metric data. It interacts with the Archive component to
get historical data including logged event data and persisted metrics.

When accessing data in a running server, a JMX-based access service is used. The
Accessor provides for data lookup by type, by component, and by attribute. It permits
time-based filtering and, in the case of events, filtering by severity, source and content.

Tools may need to access data that was persisted by a currently inactive server. In this
case, an offline Accessor is also provided. You can use it to export archived data to an
XML file for later access. To use the Accessor in this way, you must use the WebLogic
Scripting Tool (WLST) and must have physical access to the machine.

The relationship of the Accessor to the Harvester and the Archive is shown in
Figure 2-5.

Figure 2-5 Relationship of the Online and Offline Accessors to the Archive

Accessar Archive
Liog
Histarical — Appenders
Event Archive

Offline Accessor

Data

Histarical — Archive

2.6 Monitoring Dashboard and Request Performance Pages

ORACLE

The WebLogic Server Administration Console displays the Monitoring Dashboard
and Diagnostics Request Performance pages. The diagnostics data collected is
visually represented in these pages. The Monitoring Dashboard displays the current
and historical operating state of WebLogic Server and hosted applications. The
Diagnostics Request Performance page shows real-time and historical views of
method performance information.

The following sections provide more information about the web pages that visually
display the diagnostic data:

e Monitoring Dashboard

» Diagnostics Request Performance Page

2-5

Chapter 2
Diagnostic Image Capture

2.6.1 Monitoring Dashboard

The Monitoring Dashboard displays the current and historical operating state of
WebLogic Server and hosted applications by providing visualizations of metric runtime
MBean attributes, which surface some of the more critical runtime performance metrics
and the change in those metrics over time. Historical operating state is represented by
collected metrics that have been persisted into the Archive. To view collected metrics
from the Archive, you must configure the Harvester to capture the data you want to
monitor.

The Monitoring Dashboard displays metric information in a series of views. A view
is a collection of one or more charts that display metrics. The Monitoring Dashboard
includes a predefined set of built-in views of available runtime metrics for all running
WebLogic Server instances in the domain. Built-in views surface some of the more
critical runtime WebLogic Server performance metrics and serve as examples of the
Monitoring Dashboard's graphic capabilities.

Custom views are available only to the user who creates them. Custom views are
automatically persisted and can be accessed again when you restart the Monitoring
Dashboard sessions. See Using the Monitoring Dashboard.

2.6.2 Diagnostics Request Performance Page

The Diagnostics Request Performance page of the WebLogic Server Administration
Console shows real-time and historical views of method performance information

that is captured using the Instrumentation component. To view request performance
information, you must first configure the Instrumentation component to make that data
available. See Creating Request Performance Data.

2.7 Diagnostic Image Capture

ORACLE

The Diagnostic Image Capture component captures the key server state as a
diagnostic image. The diagnostic image is a diagnostic snapshot of the server state
used in diagnosing problems.

Diagnostic Image Capture support gathers the most common sources of the key
server state used in diagnosing problems. It packages that state into a single artifact
which can be made available to support technicians, as shown in Figure 2-6. The
diagnostic image is in essence a diagnostic snapshot or dump from the server,
analogous to a UNIX core dump.

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder is
enabled, the diagnostic image capture includes all available Java Flight Recorder data
from all producers. Furthermore, if WLDF is configured to generate WebLogic Server
diagnostic information captured by Java Flight Recorder, the JFR file includes that
information as well. The JFR file can be extracted from the diagnostic image capture
and viewed in Java Mission Control. See Using WLDF with Java Flight Recorder.

Image Capture support includes:

* On-demand capture, which is the creation of a diagnostic image capture by means
of an operation or command issued from the WebLogic Server Administration
Console, WLST script, or IMX application.

2-6

Chapter 2
How It All Fits Together

* Image action, which is automatically creating a diagnostic image capture in
response to the triggering of an associated Harvester policy, Log policy, or
Instrumentation policy expression. For example, a Harvester policy that monitors
runtime MBean attributes in a running server can execute an image action if the
metrics harvested from specific runtime MBean instances indicate a performance
issue. Data in the diagnostic image capture can be analyzed to determine the
likely causes of the issue.

For more information about diagnostic image capture, see:
» Configuring and Capturing Diagnostic Images

» Configuring Image Actions

Figure 2-6 Diagnostic Image Capture

Image
Action

Imange Capiure

Image Source —{lmade Manager

’

¥

Image Artifact

oF

2.8 How It All Fits Together

ORACLE

The components of the WLDF work together to collect data and diagnose faults in
running server.

Figure 2-7 shows how all the parts of WLDF fit together.

2-7

Chapter 2
WLDF Support for Multitenancy

Figure 2-7 Overall View of the WebLogic Diagnostics Framework

Iy
1 config Smart Policies and Actions
:I.|
Rules —
N Palicy |¢ Action
|| Descriptor Expressian N] Policy
Bezns Express'inn
Dista Crestars Collectors
=
=]
& Data Logoer Harvester
| & Publishers L on
E
=
= Data i <tori
o e Archive il
I Providers Histarical
T e
WLDF Flight ‘\" Image Capture
- Recorder Evert | 3 ¥
Producers
w | Image Source Log Appenders Data Archiver
o n
= Jawva Flight
= Recorder | *
o
g)
=] |: Flight Recorder |4 ! Image Manager Ewert Archiver
Image Source _/J I
oo, = I
v h) b ¥
Image Arifact Image Artifac L
. " - . o Event Drata
weith Flight withiout Flight Storane Storane Storacs
Recorder Data Recorder Data o g 4

2.9 WLDF Support for Multitenancy

ORACLE

Oracle WebLogic Server supports multitenancy, which provides a sharable
infrastructure for use by multiple organizations. These organizations are a conceptual
grouping of your own choosing, which you can think of as tenants. Tenants have
access to domain partitions, which provide an isolated slice of the WebLogic domain’s
configuration and runtime infrastructure.

WebLogic Server MT support includes several diagnostic and monitoring capabilities
for monitoring and debugging applications and resources deployed in domain
partitions, including the following:

* WebLogic Server MT allows configuration of levels for j ava. util .| oggi ng loggers
that are used by applications deployed to a partition. In a MT environment,
partition users can configure logger levels within the scope of the partition without
affecting other partitions.

» Partition scoped log events to Server log and from partition deployed
resources like JMS, SAF, and servlet resources, are made available to partition
administrators from the WLDF Data Accessor.

» A partition user can set debug flags on WebLogic Server components so that
debug messages can be broadcast on behalf of work performed for that partition,
without affecting other partitions.

* The Harvester, and Policies and Actions components, can be defined within a
resource group or resource group template deployed to a partition.

* Applications deployed within a partition may be instrumented using WLDF
instrumentation.

2-8

ORACLE

Chapter 2
WLDF Support for Multitenancy

* Image capture can be initiated either manually by a partition scope user, or by a

policy configured in a partition scope diagnostic system module. Only the content
specific to the partition is included in the generated diagnostic image.

* WebLogic Server supports the ability to monitor resource consumption

management (RCM) metrics within a partition scope.

* WLDF provides integration with the Java Flight Recorder which enables WebLogic

Server events to be included in the JFR flight recording. The JFR flight recording,
which includes events from the JVM and from any other event producer, such

as WebLogic Server and Oracle Dynamic Monitoring System (DMS), can include
partition-idandpartition-nane attributes to distinguish data among partitions.

Note:

The data from JFR is not visible or accessible to the MT Administrator.

See Monitoring and Debugging Partitions in Using WebLogic Server Multitenant.

2-9

Using the Built-in Diagnhostic System
Modules

The built-in diagnostic system modules are provided by the WebLogic Diagnostics
Framework (WLDF) as a simple and easy-to-use mechanism for performing basic
health and performance monitoring of a WebLogic Server instance.

e Overview
e Configuring a Built-in Diagnostic Module
» Accessing Data Collected by a Built-in Diagnostic System Module

e Creating a Custom Diagnostic System Module Based on a Built-in

3.1 Overview

The WLDF built-in diagnostic modules collect data from key WebLogic Server run-
time MBeans that monitor the main components of a server instance.Those main
components are:

e JVM
e WebLogic Server run time
e JDBC, JMS, transaction, and logging services

e Java EE containers hosting servlets, EJBs, and Connector Architecture resource
adapters

When configured in a WebLogic Server instance, the built-in diagnostic modules

are particularly useful for providing a low-overhead, historical record of server
performance. As server workload changes over time, or the performance
characteristics change as a result of updates made to the server's configuration, you
can examine the data collected by the built-ins to obtain details about performance
changes. For example, if you notice a slowdown in the response time of one or more
deployed applications, you can use the Monitoring Dashboard or the Metrics Log
table in the WebLogic Server Administration Console to examine the data collected
by the built-ins for performance bottlenecks associated with one or more WebLogic
Server subsystems. Then using other diagnostic tools, such as custom diagnostic
modules, policies and actions, or Java Flight Recorder, you can drill down further into
details about those bottlenecks to pinpoint specific causes and test the effectiveness of
solutions.

In WebLogic domains configured to run in production mode, a built-in diagnostic
module is enabled by default in each server instance. (In domains configured to run

in development mode, built-ins are disabled by default.) However, a built-in diagnostic
module can be enabled or disabled for a server instance easily and dynamically, using
either the WebLogic Server Administration Console or WLST.

Data collected by the built-in diagnostic modules can be accessed easily, using tools
such as the Metrics Log table in the WebLogic Server Administration Console or the

ORACLE 3-1

Chapter 3
Overview

Monitoring Dashboard. The data can also be accessed programmatically using JMX,

WLST, or REST.

3.1.1 Types of Built-in Diagnostic System Modules

WLDF provides three built-in diagnostic system module types:

* Low— Captures the most important data from key WebLogic Server runtime
MBeans (enabled by default in production mode).

e Medi um— Captures additional attributes from the WebLogic Server runtime
MBeans captured by Low, and also includes data from additional runtime MBeans.

* H gh — Captures the most verbose data from attributes on the WebLogic Server
runtime MBeans captured by Medi um and also includes data from a larger number

of runtime MBeans.

The built-in diagnostic system module type configured

for a server instance is specified in the

WL.DFSer ver Di agnost i cMBean. W.DFBUi | ti nSyst enResour ceType=stri ng MBean
attribute, where st ri ng can be set to one of Low, Medi um Hi gh, or None.

3.1.2 Data Collected by Built-in Diagnostic System Modules

When you enable a built-in diagnostic module in a WebLogic Server instance,
WLDF begins collecting data from key WebLogic Server run-time MBeans to obtain
information, such as the following:

ORACLE

Data Category

Example of Information Collected

JVM statistics

Amount of available free memory and JVM processor load on host
machine.

Thread statistics

Threads being held by a request and the number of pending user
requests.

JDBC subsystem
statistics

Examples of information collected may include:

Number of connections currently in use by applications.

Average amount of time taken to create a physical connection to
the database.

Number of leaked connections (that is, connections reserved from
the data source but not returned to the data source).

Number of available and idle database connections.

Cumulative, running count of requests for a connection from a
data source.

JMS subsystem
statistics

Examples of information collected may include statistics about:

WebLogic JMS consumers and producers, such as number of
messages pending by a consumer or producer.

JMS destinations, such as current number of messages in the
destination, and number of pending messages in the destination.

The current number of connections to WebLogic Server.

Logging subsystem
statistics

The number of log messages that the WebLogic Server instance has
generated.

3-2

Chapter 3
Configuring a Built-in Diagnostic Module

Data Category Example of Information Collected

JTA subsystem Examples of information collected may include:
¢ Number of active transactions on the server.

* Total number of seconds that transactions were active for all
committed transactions.

Java EE container Examples of information collected may include statistics about:
statistics < EJBs, such as the EJB cache, EJB pool, and EJB transaction
statistics.

e Servlets, such as the average amount of time all invocations of a
servlet have executed since the servlet was created.

< Note:

The specific configuration of each built-in diagnostic module is internal to
WebLogic Server and subject to change in a future release.

3.2 Configuring a Built-in Diagnostic Module

ORACLE

You can configure a built-in diagnostic module to collect data from key WebLogic
Server runtime MBeans. Use the WebLogic Server Administration Console or WLST
command to configure the diagnostic module.

Using the WebLogic Server Administration Console, you can perform the following
steps to configure the built-in diagnostic module:

1. Select Built-in Diagnostic Modules in the Diagnostics area of the WebLogic
Server Administration Console home page.

Diagnostics

* Log Files

® Diaynuslic Modules

» Diagnostic Images

* Reguest Performance
» Archives

* Context

* SMNMP

2. In the Summary of Built-in Diagnostic Modules page, select the server instance for
which you want to configure a built-in diagnostics module.

3. Inthe Settings for server-name page, select the built-in diagnostics module type
you want to configure: Low, Medi um or H gh.

#%] Built-in Module: Low =
Mone
Save Low
High

3-3

Chapter 3
Accessing Data Collected by a Built-in Diagnostic System Module

By default, once you select a built-in diagnostics module for a server instance, it
is automatically activated and begins collecting the data in the Archive. From the
Summary of Built-in Diagnostic Modules page, you can later deactivate the built-in
module if desired by setting it to None.

Note:

Although WebLogic Server allows you to target multiple diagnostic system
modules to a server instance, only one built-in diagnostic module type may
be activated at any time.

For more information about configuring built-in system diagnostic modules in the
WebLogic Server Administration Console, see the following topics in Oracle WebLogic
Server Administration Console Online Help.

* Activate a built-in diagnostic system module
* Select a built-in diagnostics system module

» Disable a built-in diagnostic system module

3.3 Accessing Data Collected by a Built-in Diagnostic
System Module

The built-in diagnostic modules collect data from the WebLogic Server. The collected
data is visually represented as graph in the Monitoring Dashboard and as Metric Log
tables in the Administration Console.

The following sections describe the different ways you can access the data collected
by a built-in diagnostic system module:

e Using the Monitoring Dashboard

e Using the Metrics Log Table in the Administration Console

3.3.1 Using the Monitoring Dashboard

ORACLE

The Monitoring Dashboard is a good choice for viewing the data collected by the
built-in diagnostic system modules. The Metric Browser simplifies selecting the specific
MBean attributes you want to graph, and the tools available for customizing views and
drilling down on data of interest are easy to use.

The Monitoring Dashboard does not provide a means to select the data collected

by a particular diagnostic system module, including any of the built-ins. However,

for a given server instance, you can easily select the runtime MBean instance and
corresponding metrics you want to display. See Using the Monitoring Dashboard, for
complete details about the Monitoring Dashboard.

To view data collected by a built-in module:

1. Launch the Monitoring Dashboard, which you can do from the WebLogic Server
Administration Console or separately in a Web browser. See Running the
Monitoring Dashboard.

3-4

Chapter 3
Accessing Data Collected by a Built-in Diagnostic System Module

In the Monitoring Dashboard, create a custom view, as described in Create custom
views in the Oracle WebLogic Server Administration Console Online Help.

Navigate to the Metric Browser and select the following:

* The server instance for which you want to display data collected by the built-in
diagnostic system module.

* The Collected Metrics Only button.

* The MBean type and instance corresponding to the runtime MBean for which
the data was collected.

Create a chart.

Open the Chart Properties dialog box, select Custom (only applies to collected
metrics), and specify the time range during which the data you wish to view was
collected.

In the Metric Browser, select the metrics you want to display.

3.3.2 Using the Metrics Log Table in the Administration Console

You can access data collected by the built-in diagnostic system modules in the Metrics
Log table, which is displayed by selecting the log file name HarvestedDataArchive in
the Summary of Log Files console page.

ORACLE

Log Files
View Showing 1 to @ of @ Pravious | Next
Hame «% Type Server
O | DataSourceLog Data Source Profile Log examplasServer
(2] DomainLog Domain Log examplasServer
O | EventsDatatrchive Instrumentation examplasServer
(&) | HarvestedDataArchive Metric Data examplasServer
@] HTTPAccessLog HTTP Access examplesServer
O | IMSMessagelog/examplesIMSServer 1MS Log examplesServer
@] JMSMessagelog/WeeelMSServer JMS Log examplasServer
O | IMSSAFMessagelog/ReliableWseeSAFAgent IMS SAF Agent Log examplasServer
O ServerLog Server Log examplasServer
View Showing 1 to 9 of 9 Previous | Next

To display the metrics collected by a built-in diagnostic module in the Metrics Log table
of the WebLogic Server Administration Console, complete the following steps:

1.

Select HarvestedDataArchive in the Summary of Log Files console page, and
click View.

In the Metrics Log console page, click Customize this table.

To constrain the table to display only metrics collected by a built-in diagnostic
module, enter a string in the WLDF Query Expression field that specifies that
built-in, such as the following:

¢ W.DFMODULE ='W df -server-1 ow — Specifies metrics collected by the Low
built-in diagnostic module.

3-5

Chapter 3
Creating a Custom Diagnostic System Module Based on a Built-in

W.DFMODULE LI KE 'w df - server-% — Specifies metrics collected by any of
the built-in diagnostic modules.

4. In the Available column display box, select WLDF Module, and click the right
arrow to move it to the Chosen box.

Column Display:

Available: Chosen:
D Timestamp D Date
D Type » D Instance Name
® O attribute
O value
3
&
5. Click Apply.

If the Archive contains a large amount of data, you can filter the Metrics Log table
further by adding expressions to the WLDF query string. For example:

e (W.DFMODULE LIKE 'W df-server-%) AND (NAME LI KE ' %Nane=exanpl es-
demo%) restricts the number of metrics displayed to harvested attributes with an
instance name that includes the string exanpl es- deno.

° (W.DFMODULE LIKE "w df-server-%) AND (TYPE LIKE ' %Ser vl et Runti ne%)
restricts the number of metrics displayed to harvested attributes of the
ServletRuntimeMBean.

 (WDFMODULE LIKE 'W df-server-%) AND (TYPE LI KE ' %JMSDest i nati on%
AND ATTRNAME = ' MessagesCurrent Count') restricts the number
of metrics displayed to harvested instances of the
JMBDest i nati onRunt i meMBean. MessagesCur r ent Count attribute.

For more information about WLDF query expressions, see WLDF Query Language.

3.4 Creating a Custom Diagnostic System Module Based on
a Built-in

You can use one of the built-in diagnostic modules as the starting point and create
customized diagnostic modules to suit your requirements. Using the built-in diagnostic
modules simplifies the process of creating new diagnostic modules.

From the Create a Diagnostics System Module page of the WebLogic Server
Administration Console, you can select Use a built-in diaghostic system module
as a template, and then select the particular built-in module upon which you want to
base your new diagnostic module.

Vould you like o use 3 built-in dizgnostic system module as template?
Use a built-in diagnostic system module as template

Built-in diagnostic system module: Low v

OK Cancel

ORACLE 3-6

ORACLE

Chapter 3
Creating a Custom Diagnostic System Module Based on a Built-in

After you select the particular built-in module you want to use as a template, and click
OK, you can navigate to the Settings for module-name page and make the following
customizations as appropriate:

The Collected Metrics tab displays the set of metrics configured for the particular
built-in you are using as a template. By default, all the metrics configured in the
built-in are enabled in your custom diagnostic module:

— To delete a configured metric, select it and click Delete.

— To add a metric not configured with the built-in used as a template, click New,
and use the Create a Metric assistant to specify the metric.

For more information about customizing the metrics configured for your diagnostic
system module, see Configure metric collection for a diagnostic system module in
Oracle WebLogic Server Administration Console Online Help.

The Policies and Actions tab displays a set of policies and actions that are
configured but not actually enabled in the built-in module you are using for a
template. The set of policies and actions available represent those that cover
typical server-level situations for which actions are generally desirable when
certain state criteria thresholds are met. You can delete, or add to the set of
policies and actions as appropriate. You may also update threshold values to suit
your situations.

" Note:

If you use one or more policies and actions that are configured in

the built-in module, you must make sure that they are enabled in
your diagnostic system module. In the Policies and Actions tab of the
WebLogic Server Administration Console, select Enabled then click
Save.

For more information about targeting and activating diagnostic system modules, see
Configuring Diagnostic System Modules.

3-7

Using WLDF with Java Flight Recorder

The integration of the WebLogic Diagnostics Framework (WLDF) with Java Flight
Recorder enables WebLogic Server events to be propagated to the Java Flight
Recorder for inclusion in a common data set for runtime or post-incident analysis.The
Flight Recording data is also included in WLDF diagnostic image captures, which
enables you to capture flight recording snapshots based on WLDF policies. You

can use this capability to capture and analyze, in a single view, the runtime system
information for both the JVM and the Fusion Middleware components running on it.
This chapter also explains common usage scenarios that show how this integration
can provide for a comprehensive performance analysis and diagnostic foundation for
production systems based on WebLogic Server.

e About Java Flight Recorder

e Using Java Flight Recorder with Oracle HotSpot

* Key Features of WLDF Integration with Java Flight Recorder
» Java Flight Recorder Use Cases

* Obtaining the Flight Recording File

* Analyzing Java Flight Recorder Data

4.1 About Java Flight Recorder

ORACLE

Java Flight Recorder is a performance monitoring and profiling tool that records
diagnostic information on a continuous basis. The Java Flight Recorder is available
even when there is a catastrophic failure such as a system crash.

Java Flight Recorder is available in Oracle HotSpot. When WebLogic Server is
configured with HotSpot, Java Flight Recorder is not enabled by default. See Using
Java Flight Recorder with Oracle HotSpot for information about how to enable Java
Flight Recorder with WebLogic Server.

< Note:

For the most current information about configurations supported in this
release of WebLogic Server, see Oracle Fusion Middleware Supported
System Configurations on the Oracle Technology Network.

Java Flight Recorder maintains a buffer of diagnostics and profiling data, called a
flight recording or a JFR file, that you can access whenever you need it. The flight
recording functions in a manner similar to an aircraft "black box" in which new data is
continuously added and older data is stripped out, as shown in Figure 4-1.

4-1

4.2 Using

ORACLE

Chapter 4
Using Java Flight Recorder with Oracle HotSpot

Figure 4-1 Circular Flight Recording Buffer

Mew data \

L

Time

Flight Recording

\ Old data

The data contained in the JFR file includes events from the JVM and from any other
event producer, such as WebLogic Server and Oracle Dynamic Monitoring System
(DMS). The JFR file can be analyzed at any time, using Java Mission Control, to
examine the details of system execution flow that occurred leading up to an event.

The amount of additional processing overhead that results when Java Flight Recorder
is enabled, and also configure WLDF to generate WebLogic Server diagnostics to be
captured by Java Flight Recorder, is minimal. This makes it ideal to be used on a full
time basis, especially in production environments where it adds the greatest value.

Java Flight Recorder provides the following key benefits:

» Designed to run continuously — When Java Flight Recorder is configured to
run full-time, with both JVM and WLDF events captured in the flight recording,
diagnostic data is always available at the time an event occurs, including a system
crash. This ensures that a record of diagnostic data leading up to the event is
available, allowing you to diagnose the event without having to recreate it.

« Comprehensive data — Java Flight Recorder combines data generated by tools
such as the Runtime Analyzer and the Latency Analysis Tool and presents it in
one place.

* Integration with event providers — HotSpot includes a set of APIs that allow Java
Flight Recorder to monitor additional system components, including WebLogic
Server, Oracle Dynamic Monitoring System (DMS), and other Oracle products.

For more information about Java Flight Recorder, see Java Flight Recorder Runtime
Guide at the following location:

http://docs.oracle.com/javacomponents/index.html

Java Flight Recorder with Oracle HotSpot

Java Flight Recorder is available with Oracle Hotspot. If WebLogic Server is
configured with Oracle HotSpot, Java Flight Recorder is disabled by default. Enable
the Java Flight Recorder to capture the WLDF diagnostic data.

To enable Java Flight Recorder, you must specify the following JVM options in the
WebLogic Server instance in which the JVM runs:

- XX: +Unl ockCommer ci al Feat ures - XX: +Fl i ght Recor der

4-2

http://docs.oracle.com/javacomponents/index.html

Chapter 4
Key Features of WLDF Integration with Java Flight Recorder

< Note:

The sequence in which you specify JVM options to Hotspot is very
important. The options are processed from left to right, and option values
are overwritten if there are duplicates. Therefore, note the following:

« HotSpot does not recognize the Fl i ght Recor der option unless it is
preceded by the Unl ockConmer ci al Feat ur es option.

e If you specify only the FI i ght Recor der option, or you specify
Fl i ght Recor der before specifying Unl ockConmmer ci al Feat ur es, the
HotSpot JVM does not start.

4.3 Key Features of WLDF Integration with Java Flight
Recorder

WLDF integration with Java Flight Recorder provides several useful features, including
having WebLogic Server events captured in the flight recording, the ability to throttle
the volume of data captured, tools for downloading diagnostic image captures, and
more.

The key features provided by WLDF to leverage integration with Java Flight Recorder
include the following:

* WLDF diagnostic data captured in a flight recording

WLDF can be configured to generate diagnostic data about WebLogic Server
events that is captured in the flight recording. Captured events include those from
components such as: web applications; EJBs; JDBC, JTA, and JMS resources;
resource adapters; and WebLogic web services.

* WLDF diagnostic volume control

The ability to generate WebLogic Server event data for the Flight Recording

is controlled by the WLDF diagnostic volume configuration. This control also
determines the amount of WebLogic Server event data that is captured by Java
Flight Recorder, and can be adjusted to include more, or less, data for each
WebLogic Server event that is generated. See Configuring WLDF Diagnostic
Volume.

¢ Note:

— By default, the WLDF diagnostic volume is set to Low.

— The WLDF diagnostic volume setting does not affect explicitly
configured diagnostic modules or the built-in diagnostic modules.

» Automatic throttling of generated events under load

As processing load rises on a given WebLogic Server instance, WLDF
automatically begins throttling the number of incoming WebLogic Server requests

ORACLE 4.3

Chapter 4
Java Flight Recorder Use Cases

that are selected for event generation and recording into the JFR file. The degree
of throttling is adjusted continuously as system load rises and falls.

Throttling provides three key benefits:

— The overhead of capturing events generated by WLDF for Java Flight
Recorder remains minimized, which is especially important when systems are
under load.

— The time interval encompassed in the flight recording buffer is maximized,
giving you a better historical record of data.

— Throttling has the effect of sampling incoming WebLogic Server requests,
maintaining high performance while still providing an accurate overall view of
system activity under load.

Note:

Throttling affects only the Flight Recording data that is captured by
WLDF. It does not affect data captured by other event producers, such
as the JVM.

» WLDF diagnostic image capture support for JFR files

WLDF diagnostic image capture automatically includes the JFR file, if one has
been generated by Java Flight Recorder. The JFR file includes data generated by
all active event producers, including WebLogic Server. An image captured using
the Policies and Actions component may contain the JFR file, if available.

WLST commands for downloading the contents of diagnostic image captures

WLST includes a set of commands for downloading the contents of diagnostic
image captures, described in WLST Online Commands for Downloading
Diagnostics Image Captures. Although these commands are generally useful for
listing, copying, and downloading all entries contained in the diagnostic image
capture, they can also be used for obtaining the JFR file, if available. Once
obtained from the diagnostic image capture, the JFR file can be viewed in Java
Mission Control.

4.4 Java Flight Recorder Use Cases

ORACLE

Java Flight Recorder helps to resolve important diagnostic issues such as diagnosing
critical failure, and examining and reporting runtime data. When a critical failure
occurs, the data captured by Java Flight Recorder is useful for failure analysis.
Likewise, capturing data at specific time and at runtime help to diagnose data after
and before a particular event.

This section summarizes the three common business cases of using the Java Flight
Recorder to resolve diagnostic issues:

» Diagnosing a Critical Failure — The "Black Box"
» Profiling During Performance Testing or in Production
* Real-time Application Diagnostics and Reporting (RADAR)

For more information about scenarios using Java Flight Recorder, see also About Java
Flight Recorder in Java Flight Recorder Runtime Guide, available at the following URL:

4-4

Chapter 4
Java Flight Recorder Use Cases

http://docs. oracl e. com j avaconponent s/ i ndex. ht m

4.4.1 Diagnosing a Critical Failure — The "Black Box"

When a "catastrophic" failure occurs, the content of the Java Flight Recorder buffer
can be made available for post-failure analysis in a manner analogous to the use

of an aircraft's black box. Examples of such failures include a JVM crash or an out-of-
memory error (OOME) resulting in an application terminating.

When these situations arise, the flight recording contains the following information,
which can be helpful in determining the cause of the failure:

* JVM core dump, including metadata about the Java Flight Recorder configuration
at the time of the crash. Furthermore, depending on the disk storage parameters
that are set, the Java Flight Recorder data buffer might contain a certain amount of
data.

* WebLogic Server events, captured by WLDF, that preceded the failure.

Java Flight Recorder uses a combination of memory and disk to store its buffer.

The most recent data is stored in memory and is flushed out to disk as it "ages".

In this way, the on-disk data can be available even after a power failure or similar
catastrophic event; only the most recent data will be unavailable (for example, the data
that had not yet been flushed to disk). The text dump file will contain metadata about
the Java Flight Recorder configuration at the time of the crash, including the path

to the data buffer file when applicable. For more information about using Java Flight
Recorder, see the Java Flight Recorder Runtime User Guide at the following location:

http://docs. oracl e. com j avaconponent s/ i ndex. ht m

4.4.2 Profiling During Performance Testing or in Production

Profiling involves capturing data beginning at a specific point in time so that, later, you
can analyze the events that were generated after that point. In contrast to real-time
diagnostics reporting, described in the following section, profiling involves analyzing
the diagnostic data generated after a particular event occurs, as opposed to the data
that precedes it.

Profiling with Java Flight Recorder optimizes the ability to perform deep analysis of
lock contention and causes of latency.

4.4.3 Real-Time Application Diagnostics and Reporting

ORACLE

It is particularly useful to examine diagnostic data generated during run time when

a particular event occurs for the purposes of understanding the system activity that
preceded the event; for example, system activity occurring moments before a serious
error message is generated. By using the diagnostic capabilities available in WLDF in
conjunction with Java Flight Recorder, you can capture a large amount of system-wide
diagnostic data the moment a problem occurs. You can then leverage the capabilities
of Java Mission Control to quickly correlate that event with other system activity

and process execution data within the "snapshot in time" that the JFR file provides,
enabling you to quickly isolate likely causes of the problem.

One WLDF feature that is particularly useful in conjunction with Java Flight Recorder is
the image action. An image action generates a diagnostic image capture in response
to the triggering of a policy that is configured in a diagnostic system module. The

4-5

http://docs.oracle.com/javacomponents/index.html
http://docs.oracle.com/javacomponents/index.html

Chapter 4
Obtaining the Flight Recording File

policy monitors the server environment for one or more specific conditions, and when
those conditions occur, the policy can automatically executes an image action. When
Flight Recorder is enabled, the diagnostic image capture automatically includes the
JFR file. The JFR file can then be extracted from the diagnostic image capture and
examined immediately in Java Mission Control or stored for later analysis. An image
action, used when WLDF data is captured by Java Flight Recorder, is particularly well
suited for real-time diagnosis of intermittent problems.

Image action is part of the Policies and Actions system in WLDF. To set up an

image action, you create one or more individual policies. A policy includes a Java

EL expression to specify the event for the policy to detect. For example, the following
log policy expression detects the server log message with severity level Criti cal and
ID BEA-149618:

| og.severityString == "Critical' && 1o0g.nmessageld == ' BEA- 149618

Policies can monitor any of the following:

 Runtime MBean instances in the local runtime MBean server

A scheduled policy can execute an image action if runtime MBean attributes detect
a performance issue, such as high memory utilization rates or problems with open
socket connections to the server.

* Messages published to the server log

A log policy can execute an image action if a specific message, severity level, or
string is issued.

* Event generated by the WLDF Instrumentation component

An event policy can execute an image action if an instrumentation service
generates a particular event.

See the following topics:
» Configuring Policies and Actions
e Configuring Image Actions

The following sections explain how to obtain the JFR file from the diagnostic image
capture and provide an example of using Java Mission Control to examine the
WebLogic Server events contained in the JFR file:

e Obtaining the Flight Recording File
* Analyzing Java Flight Recorder Data

4.5 Obtaining the Flight Recording File

ORACLE

The diagnostic image capture is a single Java Flight Recorder (JFR) file that contains
individual images produced by different server subsystems. The JFR file is included in
the diagnostic image as Fl i ght Recording.jfr.

A diagnostic image capture can be generated on-demand — for example, from the
WebLogic Server Administration Console, Fusion Middleware Control, WLST, or a
JMX application — or it can be generated as the result of an image action. For
information about how to generate a diagnostic image captures and configure the
location in which they are created, see Configure and capture diagnostic images in
Oracle WebLogic Server Administration Console Online Help.

4-6

Chapter 4
Analyzing Java Flight Recorder Data

To view the contents of the JFR file, you first need to extract it from the diagnostic
image capture as described in Configuring and Capturing Diagnostic Images. Once
you have extracted the JFR file, you can view its contents in Java Mission Control.

For an example WLST script that retrieves the JFR file from a diagnostic image file
and saves it to a local directory, see Example: Retrieving a JFR File from a Diagnostic
Image Capture.

4.6 Analyzing Java Flight Recorder Data

You can extract the JFR file from the diagnostic image capture and use Java Mission
Control to examine the contents of the JFR file. JFR provides graphical user interface
which gives view of all the event information recorded in the JFR file.

The following sections highlight some of the capabilities of Java Mission Control's
graphical user interface, which provides a lot of tooling support for drilling down into
the diagnostic data generated not only by WLDF for WebLogic Server events, but also
from all other available event producers, including HotSpot:

» Java Flight Recorder Graphical User Interface
* Analyzing Execution Flow — A Sample Walkthrough
e Changing the Location of Temporary JFR Files

For complete details about the Java Mission Control interface, see Java Mission
Control User's Guide at the following location:

http://docs. oracl e. com j avaconponent s/ i ndex. ht m

< Note:

Flight Recorder data may include partition-idand partition-nane in
captured JFR events, but only the partition user may have access to the
JFR data containing the information corresponding to the partition for that
user. See Monitoring and Debugging Partitions in Using Oracle WebLogic
Server Multitenant.

4.6.1 Java Flight Recorder Graphical User Interface

ORACLE

Java Mission Control includes the Java Flight Recorder graphical user interface, which
allows users who are running a Java Flight Recorder-compliant version of Oracle
HotSpot to view JVM recordings, current recording settings, and runtime parameters.
The JFR interface includes the Events Type View, which gives you direct access to
event information that has been recorded in the JFR file, such as event producers

and types, event logging and graphing, event by thread, event stack traces, and event
histograms.

The Overview tab in the Java Flight Recorder interface is useful for analyzing a
system's general health because it can reveal behavior that might indicate bottlenecks
or other sources of poor system performance. Figure 4-2 shows an example of the
Overview tab in the Events Type View.

Note the following regarding the information shown in Figure 4-2:

4-7

http://docs.oracle.com/javacomponents/index.html

ORACLE

Chapter 4
Analyzing Java Flight Recorder Data

The Events Type View is available by selecting the Events tab group icon.

The name of the Java Flight Recorder file appears at the top of the Overview tab.
Note that the Java Flight Recorder is always named Fl i ght Recording.jfr,itis
useful to rename it descriptively after downloading it from the diagnostic image
capture.

The Event Types Browser, on the left side, is a tree that shows the available event
types in a recording. It works in conjunction with the Events tab group to provide a
means to select events or groups of events in a recording that might be of interest
to you and to obtain more granular information about them.

As you select and deselect entries in the Event Types Browser, the information
displayed in the Overview tab is filtered dynamically. For example, by selecting
only WebLogic Server, event data from all non-WebLogic event producers is
filtered out.

The range navigator, which is the graph displayed below the Overview tab title, is
a time line that shows all events in a recording that pertain to the data displayed
on the selected tab. A set of buttons are available for adjusting the range of data
that is displayed, which can simplify the process of drilling down into the details of
Java Flight Recorder data.

The Producers section identifies each event producer that generated the data that
is displayed. Metrics are included for each producer, indicating the volume of event
activity generated by each as a proportion of the total set of event data displayed.

The Event Types section lists all events represented in the Overview tab, along
with key metric data about each event.

4-8

Chapter 4
Analyzing Java Flight Recorder Data

Figure 4-2 Example Overview Page of Java Flight Recorder File in Java Mission Control

i, Orade Java Mission Control
File Edit Window Help

TeEvent.” = 0O

=[G weblogic Server -]
#H-[F]&= Connector
[+ [Fi= Deployment
HHE=Ep
= 1dbe
= FE ms
eafl o [Y
= [Log
= [l serviet
A senist Async Ac
A serviet Check Ac
B serde: Context
[serviet Context
F B serviet Execute
[servet Fiter
] serviet Invacatic
I serviet Request
A sendet Request
M serviet Request
H] sendet Request
BB servet Request
B. Sendet Request
FB seriet Resoors
A serviet Respons
Al servet Stale Re:
Al web Apphcation
—EA [web Applcation
i o P ‘h_l..l

=10 x|
PR FlightRecorder.jfr £7 i
¥ Overview
=iy B Events B Dperative Sat Interval: 2min 245 (all) ﬁmd-rnnzesclctbcn
General
i
Nercr l
= Al L
3 10/6/15 7:35:05 AM A 10/6{15 7:38:30 AM
Code
&‘ Producers 7]
Threads @
£ Filter Column |Producer 'i [[] show Orly Operative Set
1o
; Producer | Total | Caunt |
; ‘*m [wiLoF Medium Diagn... imin 235 3EEms 1,470
i .'JI'IEZF Low Diagnostic. .. 46 5 276 ms 916
: B \o10F righ Diagnosti... 2 ms 395 s 335
_Weblogic [E wioF Base Producer as 1
EX
Events
Event Types @
Filter Celumn IEventTypc '! - O show Only Operative Set
Event Type | Tota | Cnmt[:]
[E1 £28 Business Methad Invoke ilg 867 ms 141
[38 Pool Manager Pre Invoke bs 141
[_]|E® Business Method Pre Inwvoke | Os 141
[£38 Business Method Post ... 0s 141
[£ Ponl Manager Post Inw.... 0= 141
[F1 F 7 Rusiness Methnd Past ... 7 me 95 1a1 7l
$% Overvien |G Log| = Grach| 4@ 11vaads| " Stack Traces | i Histogram

4.6.2 Analyzing Execution Flow — A Sample Walkthrough

This section shows an example of the steps that a developer or support engineer
might use to identify the event activity associated with a particular request in a Web
application hosted on WebLogic Server. This example is not meant to recommend

a specific way to diagnose performance problems, but simply shows how the Java
Flight Recorder graphical user interface can be used to greatly simplify the process of
locating and analyzing performance issues.

The following examples are shown in this section:

» Displaying Event Data for a Product Subcomponent

* Viewing the Event Log to Display Details

e Tracking Execution Flow by Analyzing an Operative Set

* Expanding the Operative Set and Viewing Correlated Diagnostic Data

4.6.2.1 Displaying Event Data for a Product Subcomponent

When you start Java Mission Control and open a JFR file, you can use the Event
Types View to quickly select the specific events you want to analyze. As you select
and deselect items in the Event Types Browser (which is available in the Event Types

ORACLE

4-9

Chapter 4
Analyzing Java Flight Recorder Data

View), the information displayed in the Java Flight Recorder graphical user interface is
updated instantly to show information about only the selected event types.

Figure 4-3 shows the Event Types Browser with only servlet event types selected.

Figure 4-3 Event Types Browser

& IVM Browser | i Event Types |

B-E = weblogic Server =]
#-[JE Connector
#-[JZ Deployment
w0 Eb
w-[1G Jdbe
#-[JE ms
=[G ita
D[E’ Log
=-FG serviet
""" B serviet Async Action
""" D Servlet Check Access
""" B serviet Context Execute
""" [servlet Context Handle Throwable
""" B serviet Execute
""" D Servlet Filter
""" D Servlet Invocation
""" B serviet Request
""" Servlet Request Cancel
""" Servlet Request Dispatch
""" E Servlet Request Overload
""" ! Servlet Request Run
---- . Servlet Request Run Begin
Servlet Response Send
ervlet Response Write Headers
""" B serviet Stale Resource
""" . Web Application Load
""" D Web Application Unload
H-[M = webservices
-[Z [ECIoMapping =]

4.6.2.2 Viewing the Event Log to Display Details

ORACLE

To view details about the events logged by one or more event types, select the
Log tab, which is available at the bottom of the Java Flight Recorder graphical user
interface. An example of the Log tab for servlet event types is shown in Figure 4-4.

4-10

ORACLE

Chapter 4
Analyzing Java Flight Recorder Data

Figure 4-4 Servlet Event Log

Event Log @
Filter Column |E\tentT‘.rpe "l) [show Only Operative Set
Event Type Start Time | End Time | Duration | Thread I e |
Serviet Request Run Begin 106715 7:36:53.82... 10/6/15 7:36:53.82... 0s [ACTIVE] ExecuteThread: "1... 62
10/6/15 7:36:53.82... | 10/6/15 7:36: 385ms 629 s | [ACTIVE] ExecuteThread: 'L... | 62 [
Serviet Context Exacute 10/6/15 7:36:53.82... 10/6/15 7:36:54.21... 385ms 87ps [ACTIVE] ExecuteThread: ‘L., 62
Serviet Invocation 10/6/15 7:36:53.82... 10/6f15 7:36:54.21... | 3B4ms671ps [ACTIVE] ExecuteThread: 'L... 62
Serviet Filter 10/6f15 7:36:53.82... = 10/6/15 7:36:54.21... 3B4ms279ps [ACTIVE] ExecuteThread: "L... 62
Serviet Filter 10/6/15 7:36:53.82... 10/6/15 7:36:54.21... 383ms430ps [ACTIVE] ExecuteThread: '1... 62
Serviet Execute 10/6/15 7:36:53.82... 10/6/15 7:36:54.21... = 383ms 404 ps [ACTIVE] ExecuteThread: "1... 62
Servlet Request Dispatch 10/6f15 7:36:54.16... 10/6/15 7:36:54.20... 39ms 975 ps | [ACTIVE] ExecuteThread: 'L.., 62 =
«| »
Event Attributes @
Mame | value [«
(L) start Time 10/6/15 7:36:53.825 AM
Q_]‘ End Time 10/6/15 7:36:54.211 AM
€Y puration 385 ms 629 us
<B¥ User ID <WLS Kernel>
<0F Return Value
<Hr Method Name runinternal
<0 Class Name weblogic.serviet.internal. ServietRequestimpl
<E* Transaction ID NfA
<8 Partition Id 0
<@” Partition Name DOMAIN
<@ RID 0 e
{0 EcID afch3boe-fh65-488d-9 1ce-92b5a 2f6f142-00000 178
<O Serviet Name Faces Servlet
<Hx URI Imedrec/adminfviewNewlyReaisteredPatient. action :..I

When using the Log tab, you can view details about events as follows:

* You can click on individual column heads in the Event Log table to modify the sort
order of the events. For example, by clicking the Duration column, you can quickly
identify the events that took the longest time to execute.

* When you select an event in the Event Log table, details about that event
are displayed in the Event Attributes table. For example, Figure 4-4 shows the
following attributes:

— Event start, end, and duration times
— User ID of person who issued the request on the servlet
— Method, class name, and URI of invoked servlet

— Partition ID and name — Note that events generated on behalf of a server
or domain scope resource are tagged with a partition-id of 0, and the
partition-name of DOVAI N.

— Relationship ID (RID), which distinguishes the work done in one thread on one
process, from work done by any other threads on this and other processes on
behalf of the same request. See Understanding ECIDs and RIDs in Correlating
Messages in Administering Oracle Fusion Middleware.

— Execution context ID (ECID)

Different event types have different attributes. For example, if this were a JDBC event,
you could scroll among the attributes to see the SQL statement, the JDBC connection
pool used, and the stack from which it was called. The interface makes it easy to scan
for unexpected behavior that can be analyzed in deeper detail.

4-11

Chapter 4
Analyzing Java Flight Recorder Data

< Note:

The value of the ECID is a unique identifier that can be used to correlate
individual events as being part of the same request execution flow. For
example, events that are identified as being related to a particular request
typically have the same ECID value, as shown in Tracking Execution Flow
by Analyzing an Operative Set. However, the format of the ECID string itself
is determined by an internal mechanism that is subject to change; therefore,
you should not have or place any dependencies on that format.

4.6.2.3 Tracking Execution Flow by Analyzing an Operative Set

The Java Flight Recorder graphical user interface in Java Mission Control allows you
to analyze the run-time trail of system activity that occurs as the result of a particular

event. In this example, the run-time trail is analyzed by first defining an operative set.
An operative set is any set of events that you choose to work in Java Mission Control.

In the example shown in this section, an operative set is created for the events

that have the same execution context ID (ECID) attribute as the servlet invocation
event selected in the Event Log table, shown in Figure 4-5. The operative set is then
analyzed to see the execution flow that resulted from that servlet invocation. (Note
that this operative set could be expanded to include events that match on different
attributes as well; for example, events containing a specific SQL statement but not
necessarily the same ECID.)

Figure 4-5 Operative Set Defined by Execution Context ID (ECID)

Event Log @

Filter Column IE\rentTy'pe j O show Cnly Operative Set

| JavaT... | Q5 Thr... |ﬂ
28132

End Time | Duration | Thread
10/6/15 7:36:53.82... 0= [ACTIVE] ExecuteTh... &2

10/6/15 7:36:54.21... | 385ms 629 ps | [ACTIVE] ExecuteTh. ..

Start Time |
10/6/15 7:36:53.82...
10/8/15 7:36

Event Type |
Servlet Reguest Run ...

Serviet Request Run

Servlet Context Exec...

10/6/15 7:36:53.82...

10/6/15 7:36:54.21...

385 ms 87 us

[ACTIVE] ExecuteTh...

62

25132

Servlet Invocation 10/6/15 7:36:53.82... 10/6/15 7:36:54.21... 384ms671ps [ACTIVE] ExecuteTh... 62 28132 o
Servlet Filter 10/8/15 7:36:53.82... 10/6/15 7:36:54.21... 334ms 279 ps [ACTIVE] ExecuteTh... 62 28132
Servlet Filter 10/8/15 7:36:53.82... 10/6/15 7:36:54.21... 383ms430ps [ACTIVE] ExecuteTh... G2 28132
Servlet Execute 106415 7:36:53.82... 10/6/15 7:36:54.21... 383 ms404ps [ACTIVE] ExecuteTh... 62 28132
Servlet Request Disp... 10/8/15 7:36:54.16... 10/6/15 7:36:54.20... 39ms 575 ps [ACTIVE] ExecuteTh... 62 28132
Servlet Execute 10/6/15 7:36:54.16... 10/6/15 7:36:54.20... 39ms 654 ps [ACTIVE] ExecuteTh... 62 23132
Servlet Execute 10/8/15 7:38:54.18... 10/8/15 7:38:54.20... 38 ms 170 ps | [ACTIVE] ExecuteTh... 62 28132
Servlet Stale Resource 10/8/15 7:36:54.18... 10/6/15 7:36:54.18... 219 ps 638 nz [ACTIVE] ExecuteTh... 62 28132
Servlet Stale Resource 10615 7:36:54.18... 10/6/15 7:36:54. 18... S1ps 736 ns | [ACTIVE] ExecuteTh... 62 28132
Servlet Stale Resource 10/6/15 7:36:54.18... 10/6/15 7:36:54.18... 78 ps 975ns | [ACTIVE] ExecuteTh... 62 23132
Servlet Stale Resource 10/6/15 7:36:54.18... 10/6/15 7:36:54.18... 83 ps 788 ns | [ACTIVE] ExecuteTh... 62 28132 LI

ORACLE

This operative set is defined by right-clicking the desired event in the Event Log, and
then selecting Operative Set > Add matching ECID > ecid. See Figure 4-6.

4-12

ORACLE

Chapter 4
Analyzing Java Flight Recorder Data

Figure 4-6 Defining an Operative Set by Matching ECID

Event Log @
Filter Column IE\rentType LI [show Only Operative Set
Event Type I Start Time | End Time | Duration | Thread | Java Th... | 05 Thre... |i|

Servlet RequestRun ... = 10/6/15 7:36:53.825... = 10/6/15 7:36:53.825... 05 [ACTIVE] ExecuteThr... 62 28132

10/6/15 7:36:54.211... | 385ms 629 ps | [ACTIVE] ExecuteThr... 62
ServietContex S0rt Column 10/6/157:36:54.210... 385ms87ps [ACTIVE] ExecuteThr... 62 28132
ServietInvacs Visible Columns * | 10j6/157:36:54.210... 384me671ps | [ACTIVE] ExecuteThr... &2 8132
Serv!et Fi!her 2 Copy Ctlac 10{6.{15 7:36:54.210... 384ms 279 ps EACTIVE! ExecuteThr... 62 28132 ;I
Event Attribul Clipboard Settings 4 @
s Add Selection I
e —

(1) Start Time 10/6f15 75 e ML

@ End Time 10/6/15 7: Remove S.elechon

':\‘ Duration 385ms B2 Set Selection

4B User In <WISKery ClEET

<E> Return Value ted Events # Wwith (thread)=[ACTIVE] ExecuteThread: '13' for queue: ‘weblogic. kernel.Def

<Er Method Name runlnterna™—— ?

<Er Class Mame weblogic.servlet.internal. ServietReque Viith Subsystem=Serviet

<@ Transaction ID M/A With Partition Id=0

<H* Partition Id 0

<@ Partition Name DOMAIN With Partition Mame=DOMAIN

¢ RID 0 CID=afch3bee-fb65-488d-9 1ce-02b5a2f6F142-0...

£l ECID afch3bce-fba5-488d-9 10e-92b5a2faf1

<@ Servlet Name Faces Serviet With URI=/medrec/adminfviewNewlyRegisteredPatie. ..

<E* URI fmedrec/adminfviewNewlyRegisteredP Viith Transaction ID=N/A

<@ Subsystem Serviet

»2 Event Thread [ACTIVE] ExecuteThread: '13 for quer With RID=0

With Servlet Name =Faces Servlet

B Overview IE;'E Log‘ g Graph| ¥ Threads| % Stack Traces | [[‘ Histogram|

The operative set is then displayed by selecting Show Only Operative Set above the
event log table, shown in Figure 4-7. Note how the operative set is indicated in the
range navigator.

Figure 4-7 Displaying an Operative Set

Operative Set highlighted in light blue

10/5/15 7:36:06 &AM \-._..-/ _l _l _l il _l 10/5/15 7:38:30 AM

Event Log @
Filter Column IEventType j | ‘ Show Only Operative Set
Event Type | Start Time | End Time | Duration I Thread | Java Thr... | 05 Thre... |A

Servlet Request Run Begin | 10/6/15 7:36:53.825 AM ~ 10/6/15 7:36:53.825 AM 05 [ACTIVE] ExecuteThre. .. 62 23132

Servlet Request Run 10/6/15 7:36:53.825 AM | 10/6/15 7:36:54,211AM | 385 ms 629 ps | [ACTIVE] ExecuteThre. ..

Servlet Context Execute 10/6/15 7:36:53.825 AM 10/6/15 7:36:54.210 AM 385ms 87 ps | [ACTIVE] ExecuteThre. .. 62 23132
Servlet Invocation 10/6/15 7:36:53.826 AM 10/6/15 7:36:54.210 AM 384ms 671ps | [ACTIVE] ExecuteThre... 62 23132
Servlet Filter 10/6/15 7:36:53.826 AM | 10/6/15 7:36:54.210 AM 384ms 279 us | [ACTIVE] ExecuteThre... 62 28132 LI

The runtime trail of execution flow that results from the request that generated

the servlet invocation event can be viewed by including additional event types. For
example, Figure 4-8 shows the operative set when all WebLogic Server event types
are added, using the Event Type Browser, and listing the events in chronological order.
(You can sort the events chronologically by selecting the Start Time column head.)

4-13

Figure 4-8 Adding all WebLogic Server Events to Operative Set

Chapter 4
Analyzing Java Flight Recorder Data

Event Log @
Filter Column IE\rentType 'l Show Only Operative Set

Event Type Start Time | End Time | Duration | Thread | JavaTh... | OS:I

Servlet Context Execute 10/6/15 7:36:53.825... 10/6/15 7:36:54.210... 385ms 87 ps [ACTIVE] ExecuteThr... 62

Servlet Invocation 10/6/15 7:36:53.826... 10/6/15 7:36:54.210... 384ms 671ps [ACTIVE] ExecuteThr... 62

Servlet Filter 10615 7:36:53.826... 10/6/15 7:36:54.210... 384ms 279 ps [ACTIVE] ExecuteThr. .. 62

Servlet Filter 10615 7:36:53.827... 10/8/15 7:36:54.210... 333ms 430 ps [ACTIVE] ExecuteThr. .. 62

Servlet Execute 10/6/15 7:36:53.827... 10/6/15 7:36:54.210... 383 ms 404 ps |[AC'I'I1.I'E] ExecuteThread: '13' for gueue: 'weblo

EJBE Business Method Invoke 10615 7:36:53.828... 10/6/15 7:36:54. 166... 337ms 185 ps [ACTIVE] ExecuteThr... 62

EJE Business Method Invoke 10815 7:36:53.830... 10515 7:36:53.831... 1ms 481ps [ACTIVE] ExecuteThr... 62

EJB Business Method Invoke 10/6/15 7:36:53.834... 10/6/15 7:36:54. 117... 283ms 15 ps [ACTIVE] ExecuteThr... 62

EJE PoolManager Create 10/6/15 7:36:53.834... 10/6/15 7:36:53.839... 4ms 395 ps [ACTIVE] ExecuteThr. .. 62

EJE Business Method Invoke 10/6f15 7:36:53.840... 10/8/15 7:36:54.117... 277ms 135ps [ACTIVE] ExecuteThr... 62

EJB FoolManager Create 10/6/15 7:36:53.840... 10/8/15 7:36:53.895... 55ms 352 ps [ACTIVE] ExecuteThr... 62

EJB Business Method Invoke 10/6/15 7:36:53.856... 10/6/15 7:36:53.879... 22ms 608 ps [ACTIVE] ExecuteThr... 62

EJB PoolManager Create 10615 7:36:53.856... 10/56/15 7:36:53.861... 4ms 455 ps [ACTIVE] ExecuteThr... 62

EJE Business Method Invoke 10/6f15 7:36:53.862... 10/5/15 7:36:53.867... S5ms 628 ps | [ACTIVE] ExecuteThr. .. 62

EJB PoolManager Create 10/6/15 7:36:53.862... 10/6/15 7:36:53.865... 3ms 591 ps [ACTIVE] ExecuteThr. .. 62

EJBE Business Method Invoke 10615 7:36:53.897... 10/6/15 7:36:53.898... 1ms 172 ps [ACTIVE] ExecuteThr... 62

EJE Business Method Invoke 10615 7:36:53.899... 10/5/15 7:36:53.906... &ms 545 ps [ACTIVE] ExecuteThr. .. 62

EJB Business Method Invoke 10/6/15 7:36:53.899... 10/6/15 7:36:53.901... 1ms 612 ps [ACTIVE] ExecuteThr... 62

EJE Business Method Invoke 10/6/15 7:36:53,913... 10/6/15 7:36:53.928... 15ms 90 ps [ACTIVE] ExecuteThr... 62

EJE FoolManager Create 10/6f15 7:36:53.913... 10/8/15 7:36:53.918... 4ms 725 ps [ACTIVE] ExecuteThr. .. 62

JDBC Transaction Iz Same RM 10/6/15 7:36:54.035... 10/6/15 7:36:54.035... 0s [ACTIVE] ExecuteThr... 62

JDBC Transaction Is Same RM 10/6/15 7:36:54,103... 10/6/15 7:36:54.103... 0s [ACTIVE] ExecuteThr... 62

JTA Transaction Start 10/6f15 7:36:54.104... 10/5/15 7:36:54.104... 0s [ACTIVE] ExecuteThr... 62

JTA Transaction Start 10/6/15 7:36:54.123... 10/6/15 7:36:54.123... 0s [ACTIVE] ExecuteThr... 62

JDEC Transaction Start 10/6/15 7:36:54,124... 10/6/15 7:36:54.124... 0s [ACTIVE] ExecuteThr...

1

62 -
3

In this example, note a portion of the execution flow shown in the Event Log:

1. The servlet URI is invoked.
2. The servlet uses an EJB, which requires access to the database.

3. A JDBC connection is obtained and a transaction is started.

4.6.2.4 Expanding the Operative Set and Viewing Correlated Diagnostic Data

The operative set can be further analyzed by constraining the time interval of

the execution flow and adding correlated events from additional producers. By
constraining the time interval for displayed events, you can add events to the Event
Log that occurred simultaneously with the operative set. This allows you to see
additional details about the execution context that can help diagnose performance
issues.

The time interval can be constrained by using the range selection bars in the range
navigator. You can grab these bars with your pointer and drag them inward or outward
to change the range of events displayed in the Event Log. The range selection bars
are activated when you hover your pointer over either end of the navigator, as shown
in Figure 4-9.

ORACLE 4-14

Chapter 4
Analyzing Java Flight Recorder Data

Figure 4-9 Range Navigator Selection Bars

Events from additional producers, such as HotSpot, can be selected in the Event
Types Browser. Note that JVM events do not have ECID attributes, so they cannot be
included among the WLDF events in the operative set. So to view the JVM events, you
need to de-select Show Only Operative Set.

At this point the events that are displayed in the Event Log are those that occurred
during the selected time interval but not correlated otherwise. Figure 4-10 shows
drilling down into JDBC activity by selecting only JDBC events and JVM events. The
Event Log is updated and listed in chronological order to show the JVM activity that
occurred simultaneously to the flow of the JDBC events in the selected time interval.

Figure 4-10 Adding JVM Events to JDBC Event Log

B Events O Cperative Set Interval: 2 s 847 ms (selected) [synchronize Selection

10/6/15 7:36:53 AM 10/6/15 7:36:55 AM

ol A S el

Event Log @

Filter Column IEventType 'l

[show Only Operative Set

ORACLE

Event Type

Start Time |

End Time |

Duration | Thread

| Java ‘l

Java Monitor Wait

10/8/15 7:36:52.998...

10/6/15 7:36:53.198...

199 ms 430 ps

weblogic. timers., TimerThread

Java Monitor Wait 10/5/15 7:36:52.999... 10/5/15 7:36:53.298... 299 ms 820 ps [STANDBY] ExecuteThread: '4 ... J
JDBC Transaction Start 10/6/15 7:36:53.155... 10/86/15 7:36:53.155... 0z [ACTIVE] ExecuteThread: ‘&' fo...
JDBC Connection Prepare 10/8/15 7:36:53,157.,, 10/8/15 7:36:53,166... 9ms 238 ps [ACTIVE] ExecuteThread: ‘&' fo...
JDEBC Statement Creation 10/56/15 7:36:53.166... 10/5/15 7:36:53.166... 4915 370 ns [ACTIVE] ExecuteThread: ‘&' fo...
JDBC Statement Execute Begin 10/8/15 7:36:53.167... 10/86/15 7:36:53.167... 0s [ACTIVE] ExecuteThread: ‘&' fo...
JDBC Statement Execute 10/8/15 7:36:53,167.,, 10/8/15 7:36:53,169... 1ms 722ps [ACTIVE] ExecuteThread: '8 fo...
JDBC Connection Close 10/56/15 7:36:53.170... 10/5/15 7:36:53.170... 23ps 257 ns | [ACTIVE] ExecuteThread: '8 fo...
JDBC Transaction End 10/8/15 7:36:53.177... 10/86/15 7:36:53.177... 0s [ACTIVE] ExecuteThread: ‘&' fo...
JDBC Transaction Commit 10815 7:36:53.180... 10/5/15 7:36:53.180... 0s [ACTIVE] ExecuteThread: ‘&' fo...
JDBC Connection Release 10/5/15 7:36:53.181... 10/5/15 7:36:53.181... 40ps 903 ns [ACTIVE] ExecuteThread: '8' fo...
{Java Monitor Wait 10/6/15 7:36:53. 198... | 10/6{15 7:36:53.645... 446 ms 810 s weblogic.imers. TmerThread |
Java Monitor Wait 10815 7:36:53.198... 10/5/15 7:36:53.338... 139 ms 451 ps [ACTIVE] ExecuteThread: '13' f...
CPU Load 10/6/15 7:36:53.244... 10/6/15 7:36:53.244... Os NjA

Java Thread Statistics 10/6/15 7:36:53.244... 10/6/15 7:36:53.244... 0s NfA

Class Loading Statistics 10/6/15 7:36:53.244... 10/5/15 7:36:53.244... Os NfA

Compiler Statistics 10/6/15 7:36:53.244... 10/6/15 7:36:53.244... Os NjA

Java Monitor Wait 10/6/15 7:36:53.280.., 10/6/15 7:36:53.554... 273ms 842 ps [ACTIVE] ExecuteThread: '8' fo...
Exception Statistics 10/6/15 7:36:53.287... 10/5/15 7:36:53.287... 0s JFR request timer

Java Monitor Wait 10/6/15 7:36:53.287... 10/86/15 7:36:54.287... 1s JFR request timer

Java Monitor Wait 10/6/15 7:36:53.300.., 10/6/15 7:36:53.582... 281 ms 964 ps [STANDBY] ExecuteThread: '4 ...
Method Profiling Sample 10/56/15 7:36:53.342... 10/5/15 7:36:53.342... 0s [ACTIVE] ExecuteThread: '13' f...
WM Operation 10/6/15 7:36:53.366... 10/6/15 7:36:53.414... 43ms92ps WM Thread

Garbage Collection 10815 7:36:53.366.,, 10/8/15 7:36:53.414... 43ms 25ps NfA

Young Garbage Collection 10/56/15 7:36:53.366... 10/5/15 7:36:53.414... 43ms 25ps NfA

4]

4-15

Chapter 4
Analyzing Java Flight Recorder Data

4.6.3 Changing the Location of Temporary JFR Files

ORACLE

The temporary JFR files created in the operating system's t enp directory are
managed directly by the JVM. WLDF does not control these files. (By default,

WLDF temporary files related to Java Flight Recorder are placed in the DOVAI N_HOVE/
servers/ SERVER_NAME/ server/| ogs/ di agnosti c_i nages directory.)

However, you can change the location in which the JVM places its temporary files by
using the following command-line option when starting Java Flight Recorder, where
pat h represents the preferred location:

- XX: Fl'i ght Recor der Opt i ons=r eposi t ory=pat h

For more information about Java Flight Recorder configuration settings, see Java
Flight Recorder Runtime Guide at the following location:

http://docs. oracl e. com j avaconponent s/ i ndex. ht m

4-16

http://docs.oracle.com/javacomponents/index.html

Understanding WLDF Configuration

The WebLogic Diagnostics Framework (WLDF) provides several features for
generating, gathering, analyzing, and persisting diagnostic data from WebLogic Server
instances and from applications deployed to them.For server-scoped diagnostics,
some WLDF features are configured as part of the configuration for a server in

a domain. Other features are configured as system resource descriptors that can

be targeted to servers (or clusters). For application-scoped diagnostics, diagnostic
features are configured as resource descriptors for the application.

» Configuration MBeans and XML

* Tools for Configuring WLDF

* How WLDF Configuration Is Partitioned

» Configuring Diagnostic Image Capture and Diagnostic Archives

» Configuring Diagnostic Image Capture for Java Flight Recorder

» Configuring Diagnostic System Modules

e Configuring Diagnostic Modules for Applications

* WLDF Configuration MBeans and Their Mappings to XML Elements

For general information about WebLogic Server domain configuration, see
Understanding Oracle WebLogic Server Domains in Understanding Domain
Configuration for Oracle WebLogic Server.

5.1 Configuration MBeans and XML

WLDF is configured using configuration MBeans (Managed Beans), and the
configuration is persisted in the XML configuration files. The configuration MBeans

are instantiated at startup, based on the configuration settings in confi g. xm . When
you modify a configuration by changing the values of MBean attributes, those changes
are persisted in the XML files.

Configuration MBean attributes map directly to configuration XML elements. For
example, the Enable attribute of the WLDFInstrumentationBean maps directly to the
<enabled> sub-element of the <instrumentation> element in the resource descriptor
file (configuration file) for a diagnostic module. If you change the value of the MBean
attribute, the content of the XML element is changed when the configuration is saved.
Conversely, if you were to edit an XML element in the configuration file directly (which
is not recommended), the change to an MBean value would take effect after the next
session is started.

For more information about WLDF Configuration MBeans, see WLDF Configuration
MBeans and Their Mappings to XML Elements. For general information about how
MBeans are implemented and used in WebLogic Server, see Understanding WebLogic
Server MBeans in Developing Custom Management Ultilities Using JMX for Oracle
WebLogic Server.

ORACLE 5-1

Chapter 5
Tools for Configuring WLDF

5.2 Tools for Configuring WLDF

You can configure the WLDF in several ways such as using the built-in diagnostic
modules, WebLogic Administration Console, WebLogic Scripting Tool (WLST), JMX
and WLDF configuration beans, and editing the XML configuration files.

Refer to the following sections for more information about the tools:

Use the built-in diagnostic system modules, which provide a simple and easy-to-
use mechanism for performing basic health and performance monitoring of a
WebLogic Server instance. See Using the Built-in Diagnostic System Modules.

Use the WebLogic Server Administration Console to configure WLDF for server
instances and clusters. See Configure the WebLogic Diagnostics Framework in
the Oracle WebLogic Server Administration Console Online Help.

Write scripts to be run in the WebLogic Scripting Tool (WLST). For specific
information about using WLST with WLDF, see WebLogic Scripting Tool
Examples. Also see Introduction in Understanding the WebLogic Scripting Tool
for general information about using WLST.

Configure WLDF programmatically using JMX and the WLDF configuration
MBeans. See Configuring and Using WLDF Programmatically for specific
information about programming WLDF. See MBean Reference for Oracle
WebLogic Server and browse or search for specific MBeans for programming
reference.

Edit the XML configuration files directly. This documentation explains many
configuration tasks by showing and explaining the XML elements in the
configuration files. The XML is easy to understand, and you can edit the
configuration files directly, although it is recommended that you do not. (If you
have a good reason to edit the files directly, you should first generate the XML files
by configuring WLDF in the WebLogic Server Administration Console. Doing so
provides a blueprint for valid XML.)

¢ Note:

If you make changes to a configuration by editing configuration files, you
must restart the server for the changes to take effect.

5.3 How WLDF Configuration Is Partitioned

You can use WLDF to perform diagnostics tasks for server instances, clusters, and for
applications.

5.3.1 Server-Level Configuration

You configure the following WLDF components as part of a server instance in a
domain. The configuration settings are controlled using MBeans and are persisted in
the domain's confi g. xn file.

ORACLE

Diagnostic Image Capture

5-2

Chapter 5
Configuring Diagnostic Image Capture and Diagnostic Archives

» Diagnostic Archives

See Configuring Diagnostic Image Capture and Diagnostic Archives.

You configure the following WLDF components as the parts of one or more diagnostic
system modules that can be deployed to one or more server instances or clusters.
These configuration settings are controlled using beans and are persisted in one or
more diagnostic resource descriptor files (configuration files) that can be targeted to
one or more server instances or clusters.

e Harvester (for collecting metrics)
e Policies and Actions
e Instrumentation

See Configuring Diagnostic System Modules.

5.3.2 Application-Level Configuration

You can use the WLDF Instrumentation component with applications, as well as at

the server level. The Instrumentation component is configured in a resource descriptor
file deployed with the application in the application's archive file. See Configuring
Diagnostic Modules for Applications.

5.4 Configuring Diagnostic Image Capture and Diagnostic

Archives

ORACLE

Configure the Diagnostic Image Capture and Diagnostic Archive components in the
config. xn file for a domain. The server configuration details are defined in the
<server-di agnosti c-confi g > element of the XML configuration file.

The <server-di agnosti c- confi g> element is a child of the <server > elementin a
domain, as shown in Example 5-1.

Example 5-1 Sample WLDF Configuration Information in the config.xml File for
a Domain

<domai n>
<server>
<name>nyser ver </ nane>
<server-diagnostic-config>
<image-dir>logs/diagnostic_images</image-dir>
<image-timeout>3</image-timeout>
<diagnostic-store-dir>data/store/diagnostics</diagnostic-store-dir>
<diagnostic-data-archive-type>FileStoreArchive
</diagnostic-data-archive-type>
</server-diagnostic-config>
</server>
<I-- Qther server elements to configure other servers in this domain -->
<I-- Qther domain-based configuration elenents, including references to
W.DF system resources, or diagnostic system nodules. -->
</ domai n>

5-3

Chapter 5
Configuring Diagnostic Image Capture for Java Flight Recorder

< Note:

If WebLogic Server is configured with Oracle HotSpot, and Java Flight
Recorder is enabled, the diagnostic image capture can optionally include

a Java Flight Recorder file, also called a JFR file, that includes WebLogic
Server events. The JFR file can then be viewed in Java Mission Control. See
Using WLDF with Java Flight Recorder.

See the following topics:
» Configuring and Capturing Diagnostic Images

» Configuring Diagnostic Archives

5.5 Configuring Diagnostic Image Capture for Java Flight

Recorder

ORACLE

The JFR file contains data for all events procedures that are enabled. When WebLogic
Server is configured with a supported version of Oracle HotSpot and Java Flight
Recorder is enabled, the JFR file is automatically included in the diagnostic image
capture.

The amount of WebLogic Server event data that is included in the JFR file is
determined by the configuration of the WLDF diagnostic volume.

" Note:
Note the following:

* If WebLogic Server is configured with Oracle HotSpot, Java Flight
Recorder is disabled by default unless HotSpot is started using the
JVM parameters described in Using Java Flight Recorder with Oracle
HotSpot.

e By default, the WLDF diagnostic volume is set to Low.

e For the most current information about configurations supported in this
release of WebLogic Server, including HotSpot support, see Oracle
Fusion Middleware Supported System Configurations on the Oracle
Technology Network.

To include WebLogic Server event data in the JFR file:

1. Ensure that WebLogic Server is configured with Oracle HotSpot, which installed
separately from WebLogic Server.

See Planning the Oracle WebLogic Server Installation in Installing and Configuring
Oracle WebLogic Server and Coherence.

2. Ensure that Java Flight Recorder is enabled.

In a default installation of Oracle HotSpot with WebLogic Server, Java Flight
Recorder is disabled. For information about enabling Java Flight Recorder with

5-4

Chapter 5
Configuring Diagnostic System Modules

HotSpot and WebLogic Server, see Using Java Flight Recorder with Oracle
HotSpot.

3. Setthe WLDF diagnostic volume as appropriate. For general use, Oracle
recommends the default setting of Low. However, you can increase the volume
of WebLogic Server event data that is generated, as appropriate, by setting the
volume to Medi umor Hi gh.

Note that the WLDF diagnostic volume setting has no impact on data recorded for
other event producers, such as the JVM.

See Configure WLDF diagnostic volume in Oracle WebLogic Server
Administration Console Online Help.

" Note:

If the WLDF diagnostic volume is set to O f , and Java Flight Recorder has
not been explicitly disabled, the JFR file continues to include JVM event data
and is always included in the diagnostic image capture.

5.6 Configuring Diagnostic System Modules

ORACLE

To configure and use the Instrumentation, Harvester, and Policies and Actions
components at the server level, you must first create a system resource called

a diagnostic system module, which will contain the configurations for all those
components. The configuration of diagnostic system module is defined in a resource
descriptor.

The diagnostic system module created at the server level contains the configurations
for the components. When creating a diagnostic system module, note the following:

e Diagnostic system modules are globally available for targeting to servers and
clusters configured in a domain.

e In a given domain, you can create multiple diagnostic system modules with distinct
configurations.

e You can target multiple diagnostic system modules to any given server or cluster.

e WLDF Runtime Control allows you to dynamically enable or disable a diagnostic
system module without changing the domain configuration.

e Runtime control also allows you to deploy, activate, deactivate, and undeploy
a diagnostic system module on-the-fly that is not defined in the domain
configuration.

The following sections described the configuration of diagnostic system modules:

* About the Resource Descriptor
* WLDF Runtime Control

» Creating a Diagnostic System Module Based on a Configured Resource
Descriptor

» Creating a Diagnostic System Module Based on an External Resource Descriptor

* Targeting a Diagnostic System Module to a Server or Cluster

5-5

Chapter 5
Configuring Diagnostic System Modules

Dynamically Activating or Deactivating Diagnostic System Modules
Using WLST to Activate and Deactivate Diagnostic System Modules

More Information About Configuring Diagnostic System Modules

5.6.1 About the Resource Descriptor

A diagnostic system module has a corresponding resource descriptor that defines the
diagnostic module's configuration. A resource descriptor can be either configured or
external.

ORACLE

A configured resource descriptor is one that is defined as part of the domain
configuration, and exists as a file in the DOVAI N_HOVE/ conf i g/ di agnosti cs
directory. A configured resource descriptor is referenced by the domain
config.xnm file, and the corresponding diagnostic system module:

— Is persisted in the domain configuration.
— Is available to all servers and clusters in the domain.
— Can be targeted to a server or cluster through the domain configuration.

— Can be activated or deactivated dynamically using Runtime Control,
regardless of whether it is explicitly targeted to a server or cluster.

Any dynamic changes made to the activation state of the diagnostic system
module are not persisted across server restarts.

An external resource descriptor is one that is not referenced by the domain
config.xm file; that is, it is defined outside the domain configuration. The
diagnostic system module that is configured by an external resource descriptor
may be deployed and activated on a server using Runtime Control. However, this
diagnostic system module:

— Is not persisted in the domain configuration (that is, it is not referenced by the
domain confi g. xn file.

— Can be deployed, activated, and deactivated only dynamically.

— Cannot have its deployment and activation state persisted in the domain
configuration.

— Remains in memory only until the server or cluster on which it is activated is
shut down.

— Cannot be automatically available on server restart.

An external resource descriptor may exist in a file located outside the

DOMAI N_HOVE/ confi g/ di agnosti cs directory, or may be passed as a String object
using the WLDF Runtime Control API (see Creating a Diagnostic System Module
Based on an External Resource Descriptor).

Note:

The configuration of a diagnostic module conforms to the di agnosti cs. xsd
schema, available at htt p: // xm ns. oracl e. com webl ogi ¢/ webl ogi c-
di agnosti cs/ 1. 0/ webl ogi c- di agnost i cs. xsd.

5-6

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

Chapter 5
Configuring Diagnostic System Modules

Except for the name and list of targets for the diagnostic system module, all
configuration information for a diagnostic system module is contained in its resource
descriptor file. Example 5-2 shows portions of the descriptor file for a diagnostic
system module named nyDi agnost i cMbdul e.

Example 5-2 Sample Structure of a Diagnostic System Module Descriptor File,
MyDiagnosticModule.xml

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi:schenaLocation="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c-di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<nanme>MyDiagnosticModule</ nane>
<i nstrument ation>
<I-- Configuration elenents for zero or nore diagnostic monitors -->
</instrunentation>
<harvest er >
<I-- Configuration elenents for harvesting netrics fromzero or nore
MBean types, instances, and attributes -->
</ harvester>
<wat ch-notification>
<I-- Configuration elenents for one or nore policies and one or nore
actions-->
</wat ch-noti fication>
</w df -resource>

5.6.2 WLDF Runtime Control

ORACLE

WLDF Runtime Control allows you to control the activation or deactivation of
diagnostics system modules dynamically at run time without making a change to the
domain configuration. This allows you to perform specific, targeted diagnostic analysis
tasks, and optionally of limited duration, without interfering with the operation of the
server instances themselves.

You can use Runtime Control to do the following:

* Dynamically activate and deactivate diagnostic system modules that are persisted
in the domain configuration without restarting the servers or clusters to which they
are targeted.

» Dynamically deploy, activate, deactivate, and undeploy diagnostic system modules
that are configured by an external resource descriptor.

5-7

Chapter 5
Configuring Diagnostic System Modules

< Note:
Note the following:

* Changes applied to diagnostic system modules using Runtime Control,
whether defined by configured or external resource descriptors, are not
persisted. When a server instance is restarted, that server returns to its
configured state, and any changes prior to that restart that were made
using Runtime Control are lost.

e If you use the Runtime Control to activate a diagnostic system
module that is based on an external resource descriptor (see
Creating a Diagnostic System Module Based on an External Resource
Descriptor), the diagnostic resource name that you specify in the
creat eSyst emResour ceControl () command to create that diagnostic
system module is used as the WLDF Module name in Harvester records
in the archive.

5.6.3 Creating a Diagnostic System Module Based on a Configured
Resource Descriptor

ORACLE

You create a diagnostic system module based on a configured resource descriptor
using either the WebLogic Server Administration Console or the WebLogic Scripting
Tool (WLST). It is created as a WLDFResourceBean, and the configuration is
persisted in a resource descriptor file named DI AG MODULE. xn1 , where DI AG MODULE is
the name of the diagnostic system module. You can specify a name for the descriptor
file, but it is not required. If you do not provide a file name, a file name is generated
based on the value in the descriptor file's <name> element. The file is created by default
in the DOVAI N_HOME\ conf i g\ di agnosti cs directory, and a reference to the module is
added to the domain's confi g. xnl file.

Note:

Oracle recommends that you do not write XML configuration files directly.
But if you have a valid reason to do so, you should first create a diagnostic
module from the Console. That way, you can start with the valid XML that the
Console creates. For instructions, see Create diagnostic system modules in
the Oracle WebLogic Server Administration Console Online Help.

The confi g. xn file can contain references to multiple diagnostic system modules, in
one or more <wldf-system-resource> elements. The <wldf-system-resource> element
includes the name of the diagnostic system module file and the list of servers and
clusters to which the module is targeted.

For example, Example 5-3 shows a confi g. xnl file with a module named

nmyDi agnost i cModul e targeted to the server nyserver and another module named
newDi aghost i cMbd targeted to servers nyserver and ManagedSer ver 2. Note that
nmyDi agnost i cMbdul e and newDi agnost i cMbd are both targeted to nyser ver.

5-8

Chapter 5
Configuring Diagnostic System Modules

Example 5-3 Sample WLDF Configuration Information in the config.xml File for
a Domain

<domnai n>
<l-- Oher domain-level configuration elenents -->
<wl df - syst em resour ce
xm ns="http://xm ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnostics">
<name>myDiagnosticModule</name>
<target>myserver</target>
<descriptor-file-name>diagnostics/MyDiagnosticModule.xml
</descriptor-file-name>
<descri pti on>M di agnosti ¢ nodul e</ descri pti on>
</ wl df - system resource>
<wl df - syst em r esour ce>
<name>newDiagnosticMod</name>
<target>myserver,ManagedServer2</target>
<descriptor-file-name>diagnostics/newDiagnosticMod.xml
</descriptor-file-name>
<description>A di agnostic nodul e for nmy managed servers</description>
</ wl df - system resource>
<l-- Oher WDF systemresource configurations -->
</ domai n>

The relationship of the confi g. xnl file and the MyDi agnosti cMbdul e. xnl file is shown
in Figure 5-1.

Figure 5-1 Relationship of config.xml to System Descriptor File

Domainconfig Directory Domain'config'diagnostics Directorny

Mylliagno=sticModule.xmil

fodule =name:=

For instructions on creating a diagnostic system module that is persisted in the
domain, see Create diagnostic system modules in the Oracle WebLogic Server
Administration Console Online Help.

5.6.4 Creating a Diagnostic System Module Based on an External
Resource Descriptor

WLDF provides the following API that you can use to pass an external resource
descriptor and create a diagnostic system module on-the-fly. You can use this API to
dynamically create and activate a diagnostic system module for a server, but neither

ORACLE 5-9

Chapter 5
Configuring Diagnostic System Modules

its deployment nor activation state is persisted when the servers or clusters on which it
was activated are rebooted. This API is provided by the following MBeans:

e webl ogi c. managenent . runti ne. W.DFCont r ol Runt i meMBean
* webl ogi c. managenent . runti me. W.DFSyst enResour ceCont r ol Runt i meMBean

Using this API, you can pass the resource descriptor as a String object on-the-fly. For
ease-of-use, WLDF also provides the following WLST commands, which you can use
with a resource descriptor file that exists externally to the domain configuration:

e createSystenResourceControl () — Creates (deploys) a diagnostics system
module on-the-fly using a specified descriptor file.

» destroySystenResour ceControl () — Destroys (undeploys) a diagnostics system
module previously created on-the-fly.

Externally configured diagnostic system modules that are deployed and activated in a
server or cluster are automatically destroyed when that server or cluster is shut down.

If you activate a diagnostic system module that is based on an external

resource descriptor, the diagnostic resource name that you specify in the

creat eSyst enResour ceCont rol command is used as the module name. For example,
this is the name that appears in the WLDF Module column when displaying the
contents of the Harvester archive in the WebLogic Server Administration Console.
For more information about the cr eat eSyst enResour ceCont rol command, see
Diagnostics Commands in WLST Command Reference for WebLogic Server.

For an example of using WLST to create, activate, and destroy a diagnostic system
module that is based on an external resource descriptor, see Using WLST to Activate
and Deactivate Diagnostic System Modules.

5.6.5 Targeting a Diagnostic System Module to a Server or Cluster

A diagnostic system module can be targeted by the domain confi g. xm file to zero,
one, or more servers or clusters. In addition, a given server can have multiple modules
targeted to it simultaneously. Typically you create multiple modules that monitor
different aspects of your system. You can then choose which modules to target to

a server or cluster, based on what you want to monitor at that time.

Because you can target the same module to multiple servers or clusters, you can write
general purpose modules that you want to use across a domain.

You can change the target of a diagnostic module without restarting the server
instances to which it is targeted or untargeted. This gives you considerable flexibility in
writing and using diagnostic monitors that address a specific diagnostic goal, without
interfering with the operation of the server instances themselves.

For information about how to use the WebLogic Server Administration Console to
target a diagnostic system module that is persisted in the domain configuration,
see Target and untarget diagnostic system modules in Oracle WebLogic Server
Administration Console Online Help.

ORACLE 5-10

Chapter 5
Configuring Diagnostic System Modules

< Note:

You cannot use the WebLogic Server Administration Console to target
diagnostic system modules that are configured by an external descriptor.
However, you can use WLST as described in Using WLST to Activate and
Deactivate Diagnostic System Modules.

5.6.6 Dynamically Activating or Deactivating Diagnostic System

Modules

After you configure a diagnostic system module, you can activate or deactivate it
without making a configuration change or rebooting the server instance to which it

is targeted. This capability gives you control over the operative state of diagnostic
system modules without restarting the targeted server or cluster instance or making a
change to the domain configuration.

Because the domain configuration and all resource files are replicated to all servers
in the domain, all configured WLDF resources are available for dynamic activation
and deactivation on all servers in the domain. Note that if you dynamically activate or
deactivate a diagnostics system module, and restart the targeted server, the module's
activation state is reverted to whatever is configured in the domain.

For information about using this capability in the WebLogic Server Administration
Console for diagnostic system modules that are persisted in the domain configuration,
see Dynamically activate or deactivate a diagnostic system module in Oracle
WebLogic Server Administration Console Online Help. (Note that you cannot use

the WebLogic Server Administration Console to dynamically activate or deactivate
diagnostic system modules that are configured by an external descriptor.)

You can also use WLST to dynamically activate or deactivate diagnostic system
modules, including those configured by an external descriptor, as described in Using
WLST to Activate and Deactivate Diagnostic System Modules.

5.6.7 Using WLST to Activate and Deactivate Diagnostic System

Modules

ORACLE

You can also use WLST to dynamically activate or deactivate a diagnostic system
module. This capability is provided by the WLST commands listed and described in
Table 5-1:

Table 5-1 WLST Commands to Dynamically Activate and Deactivate Diagnostic
Modules

___|
Command Summary

Enables a diagnostic system module on a WebLogic

enabl eSyst enResour ce .
Server instance.

Disables a diagnostic system module on a WebLogic

di sabl eSyst enResour ce .
Server instance.

5-11

5.6.7.1 Example

ORACLE

Chapter 5
Configuring Diagnostic System Modules

Table 5-1 (Cont.) WLST Commands to Dynamically Activate and Deactivate
Diagnostic Modules

___|
Command Summary

creat eSyst enResour ceCont r ol

Creates a diagnostics system module from an external
diagnostic descriptor file. Note that the diagnostics
system module remains in memory only until the server
is shut down and is not deployed the next time the
server is restarted.

dest r oySyst enResour ceCont r ol

Destroys, or undeploys, a diagnostics system module
configured in an external diagnostic descriptor without
changing the domain configuration.

|i st SystenResourceControl s

Lists the diagnostic system modules currently
configured on a WebLogic Server instance.

For complete details about these WLST commands, see Diagnostics Commands in
WLST Command Reference for WebLogic Server.

This section gives an example of the steps for using WLST to dynamically activate and
deactivate the following diagnostic system modules:

Modul e- 0, configured in the domain and defined by the resource descriptor file
Modul e- 0- 3905. xnl located in the DOVAI N_HOVE/ conf i g/ di agnosti cs directory

Modul e- 1, configured in the domain and defined by the resource descriptor file
Modul e- 0- 3905. xnl located in the DOVAI N_HOVE/ conf i g/ di agnosti cs directory

Ext ernal - 1, not a part of the domain configuration, but defined by the
external resource descriptor ext er nal - w df . This external resource descriptor
is configured in the file ext ernal -w df . xm , which is external to the domain
configuration.

These examples assume the following has been set up:

The domain confi g. xnl file references two diagnostic system modules that are
part of the domain configuration, as follows:

<wl df - systemresour ce>
<name>Modul e- 0</ name>
<descriptor-file-name>di agnosti cs/ Modul e- 0- 3905. xnl </ descri ptor-fil e- nane>
<descri ption></description>

</ W df - system resour ce>

<wl df - syst emresour ce>
<nanme>Modul e- 1</ name>
<descriptor-file-name>di agnosti cs/ Modul e- 1- 3904. xnl </ descri ptor-fil e- nane>
<descri ption></description>

</ W df - system resour ce>

The server name shown in these examples is nyser ver.

The external descriptor file ext ernal -w df . xm is located in the domain's root
directory, W _donai n. It contains the following lines for configuring the diagnostic
system module named Ext er nal - 1:

5-12

Chapter 5
Configuring Diagnostic System Modules

<?xm version="1.0" encodi ng=" UTF-8' 7>

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"

xm ns: sec="http://xm ns. oracl e. conf webl ogi ¢/ security"

xm ns:wl s="http://xm ns. oracl e. conl webl ogi ¢/ security/w s"

xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schena- i nst ance"

xsi:schenaLocation="http://xn ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs

http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs/ 1. 0/ webl ogi c- di agnosti c¢s. xsd" >
<name>Ext er nal - 1</ nane>

<harvest er>

<enabl ed>t r ue</ enabl ed>

<sanpl e- peri 0d>10000</ sanpl e- peri od>

<harvest ed-type>
<name>webl ogi c. managenent . runt i ne. Server Runt i mreMBean</ name>
<harvest ed-attribut e>Overal | Heal t hSt at e. ReasonCodeSunmar y</ harvest ed-attri but e>
<harvested-attribute>Overal | Heal t hSt at e. St at e</ harvest ed-attri bute>
<namespace>Ser ver Runt i me</ nanespace>

</ harvest ed-type>

</ harvester>
</w df -resource>

ORACLE

Step 1: List Diagnostic System Modules

The following WLST command, shown in bold, lists the diagnostic system modules
that are currently configured:

W s:/w _domai n/ Server 1> listSystemResourceControls()

Ext er nal Enabl ed Name
fal se fal se Modul e- 0
fal se fal se Modul e- 1

The preceding command shows that Modul e- 0 and Mbdul e- 1 are configured in the
domain (that is, they are referenced from confi g. xm and are not configured by
external resource descriptors), but that they have not been activated.

Step 2: Activate Module-0
The following WLST command activates Mdul e- 0:

W s: / nydomai n/ server Confi g> enableSystemResource("Module-0")

You can also supply a server name to all of the WLDF system resource runtime control
functions. If you do not specify a server name, the enabl eSyst enResour ce() command
defaults to the server instance to which WLST is currently connected. (However,

by default, all configured WLDF system resources are available for runtime control
operations on all servers in the domain.)

W s:/ nydomai n/ server Confi g> enableSystemResource("Module-0", Server="myserver-®)
Step 3: Verify that Module-0 is Activated
The following WLST command shows that Modul e- 0 is now activated:

w s: / nydonai n/ server Confi g> | i st Syst enResour ceControl s()

Ext er nal Enabl ed Name
fal se true Modul e-0
fal se fal se Modul e- 1

5-13

ORACLE

Chapter 5
Configuring Diagnostic System Modules

Step 4: Activate Module-1

The following WLST commands activate Mdul e- 1 and verify the activation state of all
diagnostic system modules:

w s: / nydomai n/ server Confi g> enableSystemResource(*Module-1*, Server="myserver®)
W s: / nydonmai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Nane
fal se true Modul e- 0
fal se true Modul e- 1

Step 5: Deactivate Configured Diagnostic Modules

The following WLST commands deactivate all diagnostic system modules that are
configured in the domain and verify their state:

w s: / nydomai n/ server Confi g> disableSystemResource("Module-0")
w s: / nydomai n/ server Confi g> disableSystemResource(""Module-1")
w s: / nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Name
fal se fal se Modul e-0
fal se fal se Modul e- 1

Step 6: Create a Diagnostic System Module from an External Resource
Descriptor File

The external resource descriptor needs to be accessible by the WLST client.

The following WLST command creates and deploys the diagnostic system module
Ext ernal - 1 from the external resource descriptor in the file ext ernal -w df . xm , and
verifies its activation state. ()

w s: / nydomai n/ server Confi g> createSystemResourceControl ("external-wldf",
"external-wldf.xml*")
W s:/ nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Name

fal se fal se Modul e-0
true fal se ext ernal -w df
fal se fal se Modul e- 1

Note that the External column identifies Ext er nal - 1 as being configured by an external
resource descriptor.

Step 7: Activate External-1

Because the cr eat eSyst enResour ceCont rol () command only deploys the diagnostic
system module, the following WLST command activates it. The subsequent command
verifies the diagnostic system module's activation state.

w s: / nydomai n/ server Confi g> enableSystemResource("'external-wldf'")
W s: / nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Name

fal se fal se Modul e- 0
true true ext ernal - w df
fal se fal se Modul e- 1

5-14

Chapter 5
Configuring Diagnostic Modules for Applications

Step 8: Deactivate External-1

The following WLST commands deactivate Ext er nal - 1 and verify its deactivation
status:

w s: / nydomai n/ server Confi g> disableSystemResource("'external-wldf')
W s: / nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Nane

fal se fal se Modul e- 0
true fal se ext ernal - w df
fal se fal se Modul e- 1

Step 9: Destroy External-1

The following WLST command destroys the diagnostic system module that is
configured by an external resource descriptor:

w s: / nydomai n/ server Confi g> destroySystemResourceControl ("external-wldf'™")

Step 10: Verify Original State of Configured Diagnostic Modules

The following WLST command verifies that the domain's configuration is reverted to its
original state, showing only the two diagnostic system modules whose configuration is
persisted in the confi g. xn file:

W s:/ nydomai n/ server Confi g> listSystemResourceControls()

Ext er nal Enabl ed Name
fal se fal se Modul e-0
fal se fal se Modul e- 1

5.6.8 More Information About Configuring Diagnostic System Modules

See the following sections for detailed instructions about configuring WLDF system
modules:

e Configuring the Harvester for Metric Collection
e Configuring Policies and Actions
e Configuring Instrumentation

e Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts

5.7 Configuring Diagnostic Modules for Applications

ORACLE

WLDF supports the ability to configure instrumentation of an application by means

of a diagnostic application module. A diagnostic application module is similar to

a diagnostic system module, with the exception that you configure it in an XML
descriptor file that you package with the application archive file. A diagnostic
application module deployed this way is available only to the application in which that
module is enclosed. This ensures that the application can be reliably deployed into
new environments with access to all required resources in the diagnostic module.
You configure and deploy application-scoped instrumentation as a diagnostic module,
which is similar to a diagnostic system module. However, an application module is
configured in an XML descriptor (configuration) file named webl ogi c-

di agnosti cs. xm , which is packaged with the application archive in the

5-15

Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

ARCHI VE_PATH META- | NF directory for the deployed application. For example,
C:\Oracl e\ M ddl ewar e\ Oracl e_Hone\ user _proj ect s\ appl i cations\ nedrec\di st\ st
andal one\ expl oded\ medr ec\ META- | NF\ webl ogi c- di agnosti cs. xni .

< Note:

The Dyelnjection monitor, which is used to configure diagnostic context (a
way of tracking requests as they flow through the system), can be configured
only at the server level. But once a diagnostic context is created, the

context attached to incoming requests remains with the requests as they
flow through the application. For information about the diagnostic context,
see Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts.

For more information about configuring and deploying diagnostic modules for
applications, see:

» Configuring Application-Scoped Instrumentation

» Deploying WLDF Application Modules

5.8 WLDF Configuration MBeans and Their Mappings to
XML Elements

ORACLE

The set of WLDF configuration MBeans, along with the diagnostic system module
beans for WLDF objects, are organized into a specific hierarchy in a WebLogic
domain.

Figure 5-2 shows the hierarchy of the WLDF configuration MBeans and the diagnostic
system module beans for WLDF objects in a WebLogic Server domain.

5-16

ORACLE

Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

Figure 5-2 WLDF Configuration Bean Tree

ServerMBean

WLDFServerDiagnosticMBean

WLDFDataRetirementByAgeMBean

WLDFSystemResourceVIBean

JavaBean representations
WLDFResourceBean of WLDF descriptor elements

WLDFHarvesterBean

WLDFInstrumentationBean

WLDFWatchNotificationBean

The following WLDF MBeans configure WLDF at the server level. They map to XML
elements in the confi g. xm configuration file for a domain:

WLDFServerDiagnosticMBean controls configuration settings for the Data Archive
and Diagnostic Images components for a server. It also controls whether
diagnostic context for a diagnostic module is globally enabled or disabled.
(Diagnostic context is a way to uniquely identify requests and track them as they
flow through the system. See Configuring the Dyelnjection Monitor to Manage
Diagnostic Contexts.)

This MBean is represented by a <server-diagnostic-config> child element of the
<server> element in the confi g. xn file for the server's domain.

WLDFDataRetirementByAgeMBean specifies how data retirement for a WLDF
archive is performed based on the age of records in that archive.

WLDFSystemResourceMBean contains the name of a descriptor file for a
diagnostic module in the DOVAI N_HOVE/ confi g/ di agnosti ¢s directory and the
names of one or more the target servers on which that module is deployed.

This MBean is represented by a <wldf-system-resource> element in the
config.xm file for the domain.

5-17

ORACLE

Chapter 5
WLDF Configuration MBeans and Their Mappings to XML Elements

< Note:

You can create multiple diagnostic system modules in a domain. The
configurations for the modules are saved in multiple descriptor files in the
confi g/ di agnosti cs directory for the domain. The domain's confi g. xn
file, therefore, can contain the multiple <wldf-system-resource> elements
that represent those modules.

WLDFResourceBean contains the configuration settings for a diagnostic system
module. This bean is represented by a <wldf-resource> element in a

DI AG MODULE. xml diagnostics descriptor file in the domain's confi g/ di agnosti cs
directory. (See Figure 5-1 and Example 5-2.) The WLDFResourceBean contains
configuration settings for the following components:

— Harvester: The WLDFHarvesterBean is represented by the <harvester>
element in a DI AG_MODULE. xni file.

— Instrumentation: The WLDFInstrumentationBean is represented by the
<instrumentation> element in a DI AG_ MCDULE. xni file.

— Policies and Actions: The WLDFWatchNotificationBean is represented by the
<watch-notification> element in a DI AG_MODULE. xni file.

If a WLDFResourceBean is linked from a WLDFSystemResourceMBean,

the settings for WLDF components apply to the targeted server. If a
WLDFResourceBean is contained within a webl ogi c- di agnosti cs. xm descriptor
file which is deployed as part of an application archive, you can configure

only the Instrumentation component, and the settings apply only to that
application. In the latter case, the WLDFResourceMBean is not a child of a
WLDFSystemResourceMBean.

5-18

Configuring and Capturing Diagnostic
Images

You can use the Diagnostic Image Capture component of the WebLogic Diagnostics
Framework (WLDF) to create a diagnostic shapshot or dump of a server's internal
runtime state at the time of the capture. The captured information is useful for
analyzing the cause of a server failure.If WebLogic Server is configured with Oracle
HotSpot, and Java Flight Recorder is enabled, the diagnostic image capture includes
WebLogic Server diagnostic data that can be viewed in Java Mission Control. See
Using Java Flight Recorder with Oracle HotSpot.

* How to Initiate Image Captures
» Configuring Diagnostic Image Captures
» How Diagnostic Image Capture Is Persisted in the Server's Configuration

* Content of the Captured Image File

6.1 How to Initiate Image Captures

The Diagnostic Image Capture component gathers the most common sources of key
server state used in diagnosing problems, and packages that state into a single file or
diagnostic image. You can initiate the image capture of a server using the WebLogic
Administration Console or WLST command.

A diagnostic image capture can be initiated by:

* A configured policy. See Configuring Actions.

* Arequest initiated by a user in the WebLogic Server Administration Console (and
requests initiated from third-party diagnostic tools). See Configure and capture
diagnostic images in the Oracle WebLogic Server Administration Console Online
Help.

* Adirect API call, using JIMX. See Example 6-1.
* WLST command

6.2 Configuring Diagnostic Image Captures

ORACLE

When you initiate the capture of diagnostic image, you can configure the capture
details such as the destination location of the image capture, WLDF diagnostic
volume, and how often an image must be captured during server failures.

Because the diagnostic image capture is meant primarily as a post-failure analysis
tool, there is little control over what information is captured. Available configuration
options are:

e The destination for the image

» For a specific capture, a destination that is different from the default destination

6-1

Chapter 6
Configuring Diagnostic Image Captures

* Alockout, or timeout, period, to control how often an image is taken during a
sequence of server failures and recoveries

* WLDF diagnostics volume, which determines the volume of WebLogic Server
event information that is captured in the Java Flight Recorder file.

As with other WLDF components, you can configure Diagnostic Image Capture using
the WebLogic Server Administration Console (see Configure and capture diagnostic
images in the Oracle WebLogic Server Administration Console Online Help), the
WebLogic Scripting Tool (WLST), or programmatically.

The following example shows a simple policy expression that returns true when the
value of HeapFr eePer cent attribute of JVMRunt i neMBean is less than 20:

W s. runtime. serverRuntinme. JVMRunti nme. heapFreePercent < 20

See Configuring Scheduled Policies and Configuring Image Actions. Also, see
Configure Policies and Actions in the Oracle WebLogic Server Administration Console
Online Help.

6.2.1 Configuring WLDF Diagnostic Volume

If WebLogic Server is configured with Oracle HotSpot, and the Java Flight Recorder is
enabled, the Java Flight Recorder data is automatically also captured in the diagnostic
image capture. This data can be extracted from the diagnostic image capture and
viewed in Java Mission Control. If Java Flight Recorder is not enabled, or if WebLogic
Server is configured with a different JVM, the Java Flight Recorder data is not
captured in the diagnostics image capture.

" Note:

When WebLogic Server is configured with HotSpot, by default Java Flight
Recorder is disabled. For information about how to enable it, see Using Java
Flight Recorder with Oracle HotSpot.

The volume of Java Flight Recorder data that is captured can be configured from the
WebLogic Server Administration Console, which allows you to specify the following

settings:

Volume Setting Description

O f Disables the collection of data in the Java Flight Recorder diagnostic
image.

Low Enabled by default. For information about data that is collected, see
Low Volume Setting.

Medi um Captures a moderate amount of data. See Medium Volume Setting.

H gh Captures in-depth data. See High Volume Setting.

ORACLE 6-2

< Note:

WebLogic Server.

For information about how to set the diagnostic volume, see Configure WLDF
diagnostics volume in the Oracle WebLogic Server Administration Console Online
Help. For an example using WLST, see Example: Setting the WLDF Diagnostic

Volume.

6.2.1.1 Low Volume Setting

ORACLE

The Low diagnostic volume setting is enabled by default. With this setting, basic
information is generated and captured, and log messages with the "emergency",

"alert", or "critical" levels are recorded.

The specific set of events for which diagnostic data is collected using
the diagnostic volume settings is subject to change in future releases of

Chapter 6
Configuring Diagnostic Image Captures

In the current release of WebLogic Server, the following events are captured at the Low

setting:

Throttl el nformation

W.DF Loggi ng Snapshot

W.DF LogRecord Snapshot

W.DF W.LogRecord Snapshot

Connect or Activate Endpoint

Connect or Deactivate Endpoi nt

Connect or | nbound Transaction Rol | back
Connect or Qut bound Connection C osed
Connect or Qut bound Connection Error
Connect or Qut bound Destroy Connection
Connect or Qut bound Regi ster Resource
Connect or Qut bound Rel ease Connection
Connect or Qut bound Reserve Connection
Connect or Qut bound Transaction Rol | back
Connect or Qut bound Unregi ster Resource
Depl oyment Conpl et e

Depl oyment Do Cancel

Depl oyment Do Prepare

Depl oyment Cperation

EJB Busi ness Method I nvoke

EJB Busi ness Method Post |nvoke

EJB Busi ness Method Pre |nvoke

JDBC Connection Rol | back

JDBC St at ement Execute

JDBC Statenent Execute Begin

JDBC Transaction Rol | back

Servl et Invocation

Servl et Request Run

Servl et Request Run Begin

Wb Application Load

Wb Application Unl oad

Webservi ces JAXRPC O ient Request
\Webservi ces JAXRPC Cli ent Response
\Webservi ces JAXRPC Di spatch

\Webservi ces JAXRPC Request

\Webservi ces JAXRPC Response

\Webservi ces JAXWS Endpoi nt

6-3

Chapter 6
Configuring Diagnostic Image Captures

\Webservi ces JAXWS Request
Webservi ces JAXWS Resource

6.2.1.2 Medium Volume Setting

With the Medi umdiagnostic volume setting, additional information is captured, and
messages with the "error" level and above are recorded. For example, User IDs
are captured by the Medi umand Hi gh volume settings (capturing them imposes a
performance overhead not appropriate for the Low setting).

In the current release of WebLogic Server, the following events are captured at the
Medi umsetting, in addition to those captured at the Low setting:

Connect or | nbound Transaction Conmm t
Connect or | nbound Transaction Start
Connect or Qutbound Transaction Comm t
Connect or CQutbound Transaction Start
EJB Home Create

EJB Home Renove

EJB Pool Manager Create

EJB Pool Manager Post I|nvoke

EJB Pool Manager Pre Invoke

JDBC Connection d ose

JDBC Connection Commit

JDBC Connection Create Statenent
JDBC Connection Get Vendor Connection
JDBC Connection Prepare

JDBC Connection Rel ease

JDBC Connection Reserve

JDBC Data Source Get Connection
JDBC Driver Connect

JDBC Statenment Creation

Servl et Execute

Servl et Request Dispatch

Servl et Request

Servlet Filter

Servl et Async Action

Servl et Context Execute

Servl et Response Wite Headers

Servl et Response Send

Servl et Stale Resource

Servl et Check Access

JMS BE Consumer Log

6.2.1.3 High Volume Setting

ORACLE

With the Hi gh diagnostic volume setting, in-depth information is captured, and
messages with the "error” level and above are recorded. Stack traces are also
captured with the H gh setting, but only for events for which a stack trace add value
(for example, stack traces where application code would normally be visible are
generated, but stack traces that only show internal code and that do not vary at all
are not generated).

In the current release of WebLogic Server, the following events are captured at the
H gh setting in addition to those captured at the Medi umsetting:

EJB Dat abase Access
EJB Busi ness Method Post |nvoke Cl eanup
EJB Pool Manager Renove

6-4

Chapter 6
How Diagnostic Image Capture Is Persisted in the Server's Configuration

EJB Replicated Session Manager
EJB Ti mer Manager

JDBC Transaction Conmit

JDBC Transaction End

JDBC Transaction Get XA Resource
JDBC Transaction |Is Sane RM
JDBC Transaction Prepare

JDBC Transaction Start

JTA Transaction Commit

JTA Transaction End

JTA Transaction Prepared

JTA Transaction Prepare

JTA Transaction Start

Servl et Request Overl oad

Servl et Request Cancel

Servl et Context Handl e Throwabl e

6.2.2 WLST Commands for Generating an Image Capture

Example 6-1 shows an example of WLST commands for generating an image capture.
Example 6-1 Sample WLST Commands for Generating a Diagnostic Image

url="t3://1ocal host: 7001’

user name=' syst eni

passwor d=' passwor d'

server='nyserver'

ti meout =120

connect (usernane, password, url)

serverRuntime()

cd(' W.DFRunt i me/ W.DFRunt i me/ WLDFI mageRunt i ne/ | mage')
argTypes = jarray.array(['java.lang.Integer'],java.lang.String)
argValues = jarray.array([tinmeout],]java.lang. Qbject)
i nvoke(' capturel mage', argVal ues, argTypes)

6.3 How Diagnostic Image Capture Is Persisted in the
Server's Configuration

ORACLE

The configuration for Diagnostic Image Capture is persisted in the confi g. xnl file for a
domain.

In the confi g. xm file, the image capture is described under the <ser ver - di agnost i c-
confi g> subelement of the <ser ver > element for the server, as shown in Example 6-2:

Example 6-2 Sample Diagnhostic Image Capture Configuration

<domai n>
<I-- Qher domain configuration elenents -->
<server>
<name>nyser ver </ nane>
<server-di agnosti c-config>
<i mage- di r>| ogs\ di agnosti c_i nages</ i mage-di r >
<i mage-ti neout >2</ i mage-ti meout >
</ server-diagnostic-config>
<I-- OQther configuration details for this server -->
</ server>
<I-- Qher server configurations in this donain-->
</ domai n>

6-5

Chapter 6
Content of the Captured Image File

< Note:

Oracle recommends that you do not edit the confi g. xm file directly.

6.4 Content of the Captured Image File

ORACLE

The Diagnostic Image Capture component captures and combines the images
produced by the different server subsystems into a single . zi p file. In addition to
capturing the most common sources of the server state, this component captures
images from all the server subsystems including, for example, images produced by the
JMS, JDBC, EJB, and JNDI subsystems.

The most common sources of a server state are captured in a diagnostic image
capture, including:

* Configuration

* Log cache state

e Java Virtual Machine (JVM)
e Work Manager state

* JNDI state

* Most recent harvested data

If WebLogic Server is configured with Oracle HotSpot, and Java Flight Recorder

is enabled, the diagnostic image capture includes a Java Flight Recorder image,

Fl i ght Recordi ng.j fr, that can be viewed in Java Mission Control. The contents

of the Java Flight Recorder image contains all available data from the Java Flight
Recorder, and the volume of data produced by WLDF depends on the diagnostics
volume setting. When Java Flight Recorder is enabled, data is always provided by the
JVM, and optionally includes data provided by WebLogic Server. Data from additional
Oracle components, such as Oracle Dynamic Monitoring System (DMS), may be
included in the Java Flight Recorder image as well.

6-6

Chapter 6
Content of the Captured Image File

< Note:
Note the following:

* Adiagnostic image is a heavyweight artifact meant to serve as a server-
level state dump for the purpose of diagnosing significant failures. It
enables you to capture a significant amount of important data in a
structured format and then to provide that data to support personnel for
analysis.

e If a non-WebLogic event producer in the WebLogic Server environment,
such as DMS, has configured Java Flight Recorder to record data, the
WLDF diagnostic image capture includes a Java Flight Recorder image
file with the recorded data even if the WLDF diagnostics volume is set to
Of.

* When WebLogic Server is configured with HotSpot, Java Flight Recorder
is not enabled by default. For information about how to enable it, see
Using Java Flight Recorder with Oracle HotSpot.

6.4.1 Data Included in the Diagnostics Image Capture File

Each image is captured as a single file for the entire server. The default location is
SERVER NAME\ | ogs\ di agnosti c_i nages. Each image instance has a unique name, as
follows:

di agnosti c_i mage_DOVAI N_SERVER YYYY_MM DD HH MM SS. zi p

The contents of the file include at least the following information:

» Creation date and time of the image
* Source of the capture request

* Name of each image source included in the image and the time spent processing
each of those image sources

* JVM and OS information, if available
 Command line arguments, if available
* WebLogic Server version including patch and build number information

If WLDF is configured with Oracle HotSpot, as described in Configuring Diagnostic
Image Capture for Java Flight Recorder, the image also contains the Java Flight
Recorder file, Fl i ght Recordi ng. j fr. The JFR file can be extracted as described in
WLST Online Commands for Downloading Diagnostics Image Captures, and viewed in
Java Mission Control. See Analyzing Java Flight Recorder Data.

Figure 6-1 shows the contents of an image file. You can open most of the files in
this . zi p file with a text editor to examine the contents.

ORACLE .

Figure 6-1 An Image File

File Edit View Favorites Tools Help

d =m v w =

Add Extract Test Copy Move

Name

] APPLICATION.xml

jCIu;ter‘xml

! E|cor\figuration.zip

'] CONNECTORxmI

j Deployment.xml

B FlightRecording.jfr

j HarvesterimageSource.xml
image summary

jInstrumentationlmageSource‘me
JDBC.txt

L IMS xml

1 INDI_IMAGE_SOURCE xml

CTAXmI

ZvMxml
Logging.txt

jMamagementRuntimeImageSource.xml

jPathService.xml

| PERSISTENT_STORExml

] SAFxmI

jWatchSource‘xml
WORK_MANAGER txt

Chapter 6
Content of the Captured Image File

6.4.2 WLST Online Commands for Downloading Diagnostics Image

Captures

Table 6-1 WLST Commands for Downloading Image Captures

WLST online provides the following commands for downloading diagnostic image

captures from the server to which WLST is connected:

Command

Summary

capt ur eAndSaveDi agnosti cl mage

Captures a diagnostic image and downloads it locally.

get Avai | abl eCapt ur edl mages

Returns a list of diagnostic images that have been created in the
image destination directory configured on the server.

saveDi agnosti cl mageCaptureFil e

Downloads a specified diagnostic image capture file.

saveDi agnosti cl mageCapt ureEntryFile

Downloads a specific entry within a diagnostic image capture.
This command is particularly useful for obtaining the Java Flight

Recorder diagnostics data for viewing in Java Mission Control.

ORACLE

For information about these commands, and examples of using them, see Diagnostics
Commands in WLST Command Reference for WebLogic Server. For examples of
WLST scripts that return a list of diagnostic images and retrieve JFR files in them, see

WebLogic Scripting Tool Examples.

6-8

Configuring Diagnostic Archives

The Archive component captures and persists all data events, log records, and metrics
collected by the WebLogic Diagnostics Framework (WLDF) from server instances and
applications running on them. You can subsequently access archived diagnostic data
in online mode (that is, on a running server), or in off-line mode using the WebLogic
Scripting Tool (WLST).

This chapter explains how to configure the Archive, and also how to configure WLDF
to archive diagnostic data to a file store or a Java Database Connectivity (JDBC) data
source:

e Configuring the Archive

* Configuring a File-Based Store

* Configuring a JDBC-Based Store
e Retiring Data from the Archives

You can also specify when and under what conditions old data will be removed from
the archive, as described in Retiring Data from the Archives.

7.1 Configuring the Archive

You can configure the diagnostic archive on a per-server basis. The configuration is
persisted in the confi g. xm file for a domain, under the <server - di agnosti c- confi g>
element for the server.

Example configurations for file-based stores and JDBC-based stores are shown in
Example 7-1 and Example 7-7.

< Note:

Resetting the system clock while diagnostic data is being written to the
archive can produce unexpected results. See Resetting the System Clock
Can Affect How Data Is Archived and Retrieved.

7.2 Configuring a File-Based Store

ORACLE

WLDF supports the ability to use a file-based store for the Archive. If you choose
the use of a file-based store, the only configuration option you must set is the
location of the directory where the store is to be maintained. The default directory
is DOVAI N_HOVE/ ser ver s/ SERVER NAME/ dat a/ st or e/ di agnost i cs.

When you save to a file-based store, WLDF uses the WebLogic Server persistent
store. See Using the WebLogic Persistent Store in Administering the WebLogic
Persistent Store.

7-1

Chapter 7
Configuring a JDBC-Based Store

An example configuration for a file-based store is shown in Example 7-1.

Example 7-1 Sample Configuration for File-based Diagnostic Archive (in
config.xml)

<domai n>
<l-- Oher domain configuration elenents -->
<server>
<name>nyser ver </ nane>
<server-di agnosti c-config>
<di agnosti c- st ore-di r>dat a/ st or e/ di agnosti cs</ di agnosti c-store-dir>
<di agnosti c- dat a- ar chi ve-type>Fi | eSt or eAr chi ve
</ di agnosti c- dat a- ar chi ve-type>
</ server-di agnostic-confi g>
</server>
<l-- Oher server configurations in this domain -->
</ domai n>

7.3 Configuring a JDBC-Based Store

WLDF supports the ability to create the Archive in a JDBC-based store.To use a JDBC
store, the appropriate tables must exist in a database, and JDBC must be configured
to connect to that database. For information about how to configure JDBC using

the WebLogic Server Administration Console, see Configure database connectivity

in Oracle WebLogic Server Administration Console Online Help. For additional
information about JDBC configuration, see Administering JDBC Data Sources for
Oracle WebLogic Server.

¢ Note:

If you install multiple WLDF schemas in the same database, you need to
provide a way to distinguish among them when accessing the diagnostic
archives. You can do this when you configure the diagnostic archive for a
server instance by specifying the schema name to use for accessing JDBC-
based archive tables in that database. See Configuring JDBC Resources for
WLDF.

7.3.1 Creating WLDF Tables in the Database

If they do not already exist, you must create the database tables used by WLDF to
store data in a JDBC-based store. Two tables are required:

* The wis_events table stores data generated from WLDF Instrumentation events.
* The wlis_hvst table stores data generated from the WLDF Harvester component.

The SQL Data Definition Language (DDL) used to create tables may differ for different
databases, depending on the SQL variation supported by the database.

7.3.1.1 Apache Derby

Example 7-2 shows the DDL that you can use to create the wis_events and wls_hvst
tables in Apache Derby.

ORACLE 7-2

Chapter 7
Configuring a JDBC-Based Store

Example 7-2 DDL Definition of the WLDF Tables for Apache Derby

-- WLDF Instrunentation and Harvester archive DDLs using Derby
AUTCCOW T CFF;

-- DDL for creating ws_events table for instrumentation events
DROP TABLE wl s_events;

CREATE TABLE W s_events (
RECORDI D | NTEGER NOT NULL GENERATED ALWAYS AS | DENTI TY (START WTH 1, | NCREMENT BY 1),
TI MESTAMP Bl G NT defaul t NULL,
CONTEXTI D varchar (128) defaul t NULL,
TXI D varchar (32) default NULL,
USERI D varchar (32) default NULL,
TYPE var char (64) default NULL,
DOVAI N var char (64) default NULL,
SERVER varchar (64) defaul t NULL,
SCOPE var char (64) default NULL,
MODULE var char (64) default NULL,
MONI TOR var char (64) default NULL,
FI LENAME var char (64) defaul t NULL,
LI NENUM | NTEGER def aul t NULL,
CLASSNAME var char (250) defaul t NULL,
METHODNAME var char (64) defaul t NULL,
METHODDSC var char (4000) defaul t NULL,
ARGUMENTS cl ob(100000) default NULL,
RETVAL var char (4000) defaul t NULL,
PAYLQAD bl ob(100000),
CTXPAYLOAD VARCHAR(4000),
DYES BI G NT defaul t NULL,
THREADNAME var char (250) defaul t NULL

)
-- DDL for creating ws_events table for instrumentation events
DROP TABLE w s_hvst;

CREATE TABLE W s_hvst (
RECORDI D | NTEGER NOT NULL GENERATED ALWAYS AS | DENTI TY (START WTH 1, | NCREMENT BY 1),
TI MESTAMP Bl G NT defaul t NULL,
DOVAI N var char (64) default NULL,
SERVER varchar (64) defaul t NULL,
TYPE var char (64) default NULL,
NAME var char (250) defaul t NULL,
ATTRNAME var char (64) default NULL,
ATTRTYPE | NTEGER defaul t NULL,
ATTRVALUE VARCHAR(4000),
W.DFMODULE VARCHAR(250) defaul t NULL

)
COWM T;

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

ORACLE 7-3

Chapter 7
Configuring a JDBC-Based Store

7.3.1.2 Oracle Database

Example 7-3 shows the DDL that you can use to create the wis_events table in Oracle
database.

Example 7-3 DDL Definition of the wis_events Table for Oracle Database

SET SERVEROUTPUT ON;

DECLARE
vCr Number ;
vSQL VARCHAR2(2000) ;
veurr VARCHAR2(256);

BEG N

SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
dbns_out put. put _Iine(' Current Schema: '||vcurrSchema);

SELECT COUNT(*)

INTO vCir

FROM user _t abl es

VWHERE t abl e_nane = 'W.S_EVENTS';

IF vCr = 0 THEN
dbns_out put. put _line(' Creating WS _EVENTS table');
vSQ : = ' CREATE TABLE "W.S_EVENTS" (
"RECORDI D' NUMBER(20, 0) DEFAULT NULL,
"TI MESTAMP" NUMBER(20, 0) DEFAULT NULL,
" CONTEXTI D' VARCHAR2(250 BYTE) DEFAULT NULL,
"TXI D' VARCHAR2(250 BYTE) DEFAULT NULL,
"USERI D' VARCHAR2(250 BYTE) DEFAULT NULL,
"TYPE' VARCHAR2(250 BYTE) DEFAULT NULL,
"DOMVAI N' VARCHAR2(250 BYTE) DEFAULT NULL,
"SERVER' VARCHAR2(250 BYTE) DEFAULT NULL,
"SCOPE" VARCHAR2(250 BYTE) DEFAULT NULL,
"MODULE" VARCHAR2(250 BYTE) DEFAULT NULL,
"MONI TOR' VARCHAR2(250 BYTE) DEFAULT NULL,
"FI LENAVE' VARCHAR2(250 BYTE) DEFAULT NULL,
"LI NENUM' NUMBER(10, 0) DEFAULT NULL,
" CLASSNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
" METHODNAME" VARCHAR2(250 BYTE) DEFAULT NULL,
"METHODDSC' VARCHAR2(4000 BYTE) DEFAULT NULL,
" ARGUMENTS" CLOB DEFAULT NULL,
"RETVAL" VARCHAR2(4000 BYTE) DEFAULT NULL,
"PAYLOAD' BLOB DEFAULT NULL,
" CTXPAYLOAD' VARCHAR2(4000 BYTE) DEFAULT NULL,
"DYES' NUMBER(20, 0) DEFAULT NULL,
" THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL
)"
EXECUTE | MVEDI ATE vSQ;
vSQ : = ' CREATE UNI QUE | NDEX W.S_EVENTS_RECORD | DX ON W.S_EVENTS(RECORDI D) ;
EXECUTE | MVEDI ATE vSQL;
vSQ : = ' CREATE | NDEX W.S_EVENTS_TS | DX ON W.S_EVENTS(TI MESTAMP) ' ;
EXECUTE | MVEDI ATE vSQ;
END | F;

SELECT COUNT(*)

INTO vCir

FROM user _t ab_col ums

VWHERE t abl e_nane = 'W.S_EVENTS' AND col um_name = ' THREADNAME' ;

ORACLE 7-4

Chapter 7
Configuring a JDBC-Based Store

IF vQr = 0 THEN
dbns_out put. put _Ii ne(' Creating THREADNAME col umm in W.S_EVENTS table');
vSQ := "ALTER TABLE W.S_EVENTS ADD(" THREADNAME" VARCHAR2(250 BYTE) DEFAULT NULL)';
EXECUTE | MVEDI ATE vSQL;

END I F;

SELECT COUNT(*) INTO vCtr FROM user_sequences
VWHERE sequence_name = ' SEQ W.S_EVENTS_RECORDI D' ;

IF vGtr = 0 THEN
vSQL : = ' CREATE SEQUENCE SEQ WLS_EVENTS_RECORDI D M NVALUE 1 MAXVALUE 99999999999999999999
START WTH 1 | NCREMENT BY 1 NOCACHE';
EXECUTE | MVEDI ATE vSQL;
END | F;

SELECT COUNT(*) |NTO vCtr FROM user_triggers
WHERE t abl e_nane = ' W.S_EVENTS';

IF vCr 0 THEN
vSQL : = ' CREATE OR REPLACE TRI GGER TRG W.S_EVENTS_| NSERT
BEFORE | NSERT ON WL.S_EVENTS
REFERENCI NG NEW AS newRow
FOR EACH ROW
BEG N
I F :newRow. RECORDI D IS NULL THEN
SELECT SEQ W.S_EVENTS_RECORDI D. next val | NTO : newRow. RECORDI D FROM DUAL;
END | F;
END; ' ;
EXECUTE | MVEDI ATE vSQL;
END I F;

END;
/

Example 7-4 shows the DDL that you can use to create the wis_hvst table in Oracle
database.

Example 7-4 DDL Definition of the wis_hvst Table for Oracle Database

SET SERVEROUTPUT ON;

DECLARE
vCr Number ;
vSQL VARCHAR2(1000) ;
veurr Schema VARCHAR2(256) ;
BEG N

SELECT sys_context('userenv', 'current_schema') into vcurrSchema from dual;
dbns_out put . put _Iine(' Current Schema: '||vcurrSchema);

SELECT COUNT(*)
INTO vCir
FROM user _t abl es
WHERE t abl e_name = "W.S HVST';

IF vCr = 0 THEN
dbns_out put. put _line(' Creating WS HVST table');
vSQ := ' CREATE TABLE "W.S_HVST"

(
" RECORDI D' NUMBER(20, 0) NOT NULL,

ORACLE e

Chapter 7
Configuring a JDBC-Based Store

"TI MESTAMP" NUMBER(20, 0) DEFAULT NULL,
"DOVAI N' VARCHAR2(250 BYTE) DEFAULT NULL,
"SERVER' VARCHAR2(250 BYTE) DEFAULT NULL,
"TYPE' VARCHAR2(250 BYTE) DEFAULT NULL,
"NAVE" VARCHAR2(250 BYTE) DEFAULT NULL,
" ATTRNAVE" VARCHAR2(250 BYTE) DEFAULT NULL,
" ATTRTYPE" NUMBER(10, 0) DEFAULT NULL,
" ATTRVALUE" VARCHAR2(4000 BYTE) DEFAULT NULL,
"W.DFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL
)
EXECUTE | MVEDI ATE vSQL;
vSQL : = ' CREATE UNI QUE | NDEX W.S_HVST_RECORD | DX ON W.S_HVST(RECORDI D) ;
EXECUTE | MVEDI ATE vSQL;
vSQL : = ' CREATE | NDEX W.S_HVST_TS I DX ON W.S_HVST(TI MESTAVP) ' ;
EXECUTE | MVEDI ATE vSQL;
END | F;

SELECT COUNT(*)
I NTO vCtr FROM user _tab_col umms
WHERE tabl e_nane = 'W.S HVST' AND col um_nanme = ' W.DFMODULE' ;

IF vQr = 0 THEN
dbns_out put. put _line(' Creating W.DFMODULE col um in W.S_HVST table');
vSQ := "ALTER TABLE W.S_HVST ADD("W.DFMODULE" VARCHAR2(250 BYTE) DEFAULT NULL)';
EXECUTE | MVEDI ATE vSQL;

END I F;

SELECT COUNT(*) INTO vCtr FROM user_sequences
WHERE sequence_nane = ' SEQ W.S HVST _RECORDI D ;

IF vCtr = 0 THEN
VSQL : = ' CREATE SEQUENCE SEQ W.S_HVST RECORDI D M NVALUE 1 MAXVALUE 99999999999999999999
START WTH 1 | NCREMENT BY 1 NOCACHE ;
EXECUTE | MVEDI ATE vSQL;
END | F;

SELECT COUNT(*) |NTO vCtr FROM user_triggers
VWHERE t abl e_nane = 'W.S_HVST';

IF vCr 0 THEN

vSQL : = ' CREATE OR REPLACE TRI GGER TRG WL.S_HVST_I NSERT

BEFORE | NSERT ON W.S_HVST

REFERENCI NG NEW AS newRow

FOR EACH ROW

BEG N

I F :newRow. RECORDI D IS NULL THEN
SELECT SEQ W.S HVST_RECORDI D. next val | NTO : newRow. RECORDI D FROM DUAL;

END | F;
END; * ;

EXECUTE | MVEDI ATE vSQL;
END I F;

END;
/

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

ORACLE 7-6

Chapter 7
Configuring a JDBC-Based Store

7.3.1.3 MySQL

ORACLE

Example 7-5 shows the DDL that you can use to create the wis_events table in
MySQL database.

Example 7-5 DDL Definition of the wis_events Table in MySql Database

DROP PROCEDURE i f exists create_alter_w s_events
/

CREATE PROCEDURE create_alter_wW s_events()

| anguage sql

BEG N

CREATE TABLE | F NOT EXI STS W.S_EVENTS
(

RECORDI D Bl G NT AUTO_| NCREMENT PRI MARY KEY,
TI MESTAMP Bl G NT NOT NULL,
CONTEXTI D VARCHAR(250) defaul t NULL,
TXI D VARCHAR(250) defaul t NULL,
USERI D VARCHAR(250) defaul t NULL,
TYPE VARCHAR(250) defaul t NULL,
DOVAI N VARCHAR(250) defaul t NULL,
SERVER VARCHAR(250) defaul t NULL,
SCOPE VARCHAR(250) default NULL,
MODULE VARCHAR(250) defaul t NULL,
MONI TOR VARCHAR(250) defaul t NULL,
FI LENAME VARCHAR(250) default NULL,
LI NENUM | NT UNSI GNED def aul t NULL,
CLASSNAME VARCHAR(250) defaul t NULL,
METHODNAME VARCHAR(250) defaul t NULL,
METHODDSC VARCHAR(4000) defaul t NULL,
ARGUMENTS TEXT(100000) defaul t NULL,
RETVAL VARCHAR(4000) defaul t NULL,
PAYLOAD BLOB(100000),
CTXPAYLOAD VARCHAR(4000),
DYES Bl G NT UNSI GNED def aul t NULL,
THREADNAME VARCHAR(250) defaul t NULL,
| NDEX(TI MESTANP)

E

I'F NOT EXI STS(
SELECT * FROM "information_schema’ . COLUWS
WHERE COLUWN_NAME=' THREADNAME' AND TABLE NAME='W.S EVENTS') THEN
ALTER TABLE "W.S EVENTS' ADD " THREADNAME var char (250) default NULL;
END | F;

END
/

CALL create_alter_w s_events()
/

DROP PROCEDURE i f exists create_alter_w s_events
/

Example 7-6 shows the DDL that you can use to create the wls_hvst table in MySQL
database.

7-7

Chapter 7
Configuring a JDBC-Based Store

Example 7-6 DDL Definition of wis_hvst Table in MySql Database

DROP PROCEDURE i f exists create_alter_w s_hvst
/

CREATE PROCEDURE create_alter_w s_hvst ()
| anguage sql
BEG N
CREATE TABLE | F NOT EXI STS W.S_HVST
(
RECORDI D Bl G NT AUTO_| NCREMENT PRI MARY KEY,
TI MESTAMP Bl G NT NOT NULL,
DOVAI N VARCHAR(250) defaul t NULL,
SERVER VARCHAR(250) defaul t NULL,
TYPE VARCHAR(250) default NULL,
NAMVE VARCHAR(250) default NULL,
SCOPE VARCHAR(250) defaul t NULL,
ATTRNAVE VARCHAR(250) defaul t NULL,
ATTRTYPE | NT defaul t NULL,
ATTRVALUE VARCHAR(4000) default NULL,
W.DFMODULE VARCHAR(250) defaul t NULL,
| NDEX(TI NESTAVP)

)

I F NOT EXI STS(
SELECT * FROM "infornmation_schema’ . COLUWS'
WHERE COLUWN_NAME=" W.DFMODULE' AND TABLE NAME='W.S HVST') THEN
ALTER TABLE "W.S HVST" ADD "W.DFMODULE' var char (250) default NULL;
END I F;

END
/

CALL create_alter_w s_hvst()
/

DROP PROCEDURE i f exists create_alter_ws_hvst
/

Consult the documentation for your database or your database administrator for
specific instructions for creating these tables for your database.

7.3.2 Configuring JDBC Resources for WLDF

ORACLE

After you create the tables in your database, you must configure JDBC to access the
tables. (See Administering JDBC Data Sources for Oracle WebLogic Server.) Then, as
part of your server configuration, you specify that JDBC resource as the data store to
be used for a server's archive.

If multiple WLDF JDBC archive schemas exist in the same database, you can

specify the particular schema to use for accessing JDBC-based archive tables in

that database. There is no default value for a schema name: If you do not specify

one, no schema name is applied when WLDF validates the runtime table, and no
schema name is used for the SQL statements. You specify the schema name in

the WLDFSer ver Di agnost i cMBean. Di agnost i cJDBCSchenmaNane attribute, which you can
access from the Diagnostic Archives: Configuration page in the WebLogic Server
Administration Console. See Configure diagnostic archives in Oracle WebLogic Server
Administration Console Online Help.

7-8

Chapter 7
Retiring Data from the Archives

An example configuration for a JDBC-based store is shown in Example 7-7.

Example 7-7 Sample configuration for JDBC-based Diagnostic Archive (in
config.xml)

<domai n>
<l-- Other domain configuration elenents -->
<server>
<name>nyser ver </ nane>
<server-di agnosti c-config>
<di agnosti c- dat a- ar chi ve-t ype>JDBCAr chi ve
</ di agnosti c- dat a- ar chi ve-type>
<di agnosti c-j dbc-resour ce>JDBCResour ce</ di agnosti c-j dbc-resour ce>
<server-di agnosti c-config>
</server>
<l-- Oher server configurations in this domain -->
</ domai n>

If you specify a JDBC resource but it is configured incorrectly, or if the required tables
do not exist in the database, WLDF uses the default file-based persistent store.

7.4 Retiring Data from the Archives

To maintain the archived data, you must delete the old archived data periodically.
WLDF includes a configuration-based data retirement feature for doing this. The data
can be deleted based on the size of the data and time period when it was created.

You can configure size-based data retirement at the server level and age-based
retirement at the individual archive level, as described in the following sections:

e Configuring Data Retirement at the Server Level

» Configuring Age-Based Data Retirement Policies for Diagnostic Archives

* Sample Configuration

7.4.1 Configuring Data Retirement at the Server Level

You can set the following data retirement options for a server instance:

e The preferred maximum size of the server instance's data store (<preferred-store-
size-limit>) and the interval at which it is checked, on the hour, to see if it exceeds
that size (<store-size-check-period>).

When the size of the store is found to exceed the preferred maximum, an
appropriate number of the oldest records in the store are deleted to reduce the
size below the specified threshold. This is called "size-based data retirement."

Note:

Size-based data retirement can be used only for file-based stores. These
options are ignored for database-based stores.

 Enable or disable data retirement for the server instance.

For file-based diagnostic stores, this enables or disables the size-based data
retirement options discussed above. For both file-based stores and database-

ORACLE o

Chapter 7
Retiring Data from the Archives

based stores, this also enables or disables any age-based data retirement policies
defined for individual archives in the store. See Configuring Age-Based Data
Retirement Policies for Diagnostic Archives.

7.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic

Archives

The data store for a server instance can contain the following types of diagnostic data
archives whose records can be retired using the data retirement feature:

e Harvested metrics data (logical name: HarvestedDataArchive)
» Instrumentation events data (logical name: EventsDataArchive)

e Custom data (user-defined name)

" Note:

WebLogic Server log files are maintained both at the server level and the
domain level. Data is retired from the current log using the log rotation
feature. See Configuring WebLogic Logging Services in Configuring Log
Files and Filtering Log Messages for Oracle WebLogic Server.

Age-based policies apply to individual archives. The data store for a server
instance can have one age-based policy for the HarvestedDataArchive, one for the
EventsDataArchive, and one each for any custom archives.

When records in an archive exceed the age limit specified for records in that archive,
those records are deleted.

7.4.3 Sample Configuration

ORACLE

Data retirement configuration settings are persisted in the confi g. xm configuration file
for the server's domain, as shown in Example 7-8.

Example 7-8 Data Retirement Configuration Settings in config.xml

<domai n>
<I-- other domain configuration settings -->
<server>
<nanme>MedRecSer ver </ nane>
<I-- other server configuration settings -->
<server-di agnosti c-confi g>
<di agnosti c- st or e- di r >dat a/ st or e/ di agnost i cs</ di agnosti c- st ore-dir>
<di agnost i c- dat a- ar chi ve-t ype>Fi | eSt or eAr chi ve
</ di agnost i c- dat a- ar chi ve-t ype>
<dat a-retirement-enabl ed>true</ data-retirenent-enabl ed>
<preferred-store-size-1imt>120</preferred-store-size-limt>
<store-si ze- check- peri od>1</ st or e- si ze- check- peri od>
<wl df - dat a-reti renent - by- age>
<name>Har vest edDat aRet i r enent Pol i cy</ name>
<enabl ed>t r ue</ enabl ed>
<ar chi ve- name>Har vest edDat aAr chi ve</ ar chi ve- nane>
<retirenent-tinme>l</retirenent-time>
<retirenent-period>24</retirenent-period>
<retirenent-age>45</retirenent-age>

7-10

ORACLE

Chapter 7
Retiring Data from the Archives

</w df -data-retirement-by-age>
<w df - dat a-reti renent - by- age>
<name>Event sDat aRet i r ement Pol i cy</ name>
<enabl ed>t r ue</ enabl ed>
<ar chi ve- name>Event sDat aAr chi ve</ ar chi ve- nane>
<retirement-tine>10</retirenment-tinme>
<retiremnent-period>24</retirement-period>
<retirenent-age>72</retirenent-age>
</w df -data-retirement-by-age>
</ server-di agnosti c-confi g>
</ server>
</ donmai n>

7-11

Configuring the Harvester for Metric
Collection

The Harvester component of the WebLogic Diagnostics Framework (WLDF) gathers
metrics from attributes on qualified MBeans instantiated in a running server. The
Harvester can also collect metrics from WebLogic Server MBeans and from custom
MBeans.

This chapter includes the following sections about the Harvester and how to configure
it:

* Harvesting, Harvestable Data, and Harvested Data
e Harvesting Data from the Different Harvestable Entities
* Configuring the Harvester

e Harvester Performance Considerations

8.1 Harvesting, Harvestable Data, and Harvested Data

ORACLE

Harvesting metrics is the process of gathering data that is useful for monitoring the
system state and performance.Metrics are exposed to WLDF as attributes on qualified
MBeans. The Harvester gathers values from selected MBean attributes at a specified
sampling rate. Therefore, you can track potentially fluctuating values over time.

Data must meet certain requirements in order to be harvestable, and it must meet
further requirements in order to be harvested:

* Harvestable data is data that can potentially be harvested from harvestable
entities, including MBean types, instances, and attributes. To be harvestable, an
MBean must be registered in the local WebLogic Server Runtime MBean server.
Only simple type attributes of an MBean can be harvestable.

* Harvested data is data that is currently being harvested. To be harvested, the data
must meet all the following criteria:

— The data must be harvestable.
— The data must be configured to be harvested.

— For custom MBeans, the MBean must be currently registered with the JIMX
server.

— The data must not throw exceptions while being harvested.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data and
harvested data. The information returned by this MBean is a snapshot of a potentially
changing state. For a description of the information about the data provided by

this MBean, see the description of the WLDFHarvesterRuntimeMBean in the Oracle
WebLogic Server MBean Reference.

You can use the WebLogic Server Administration Console, the WebLogic Scripting
Tool (WLST), or JMX to configure the Harvester to collect and archive the metrics that
the server MBeans and the custom MBeans contain.

8-1

Chapter 8
Harvesting Data from the Different Harvestable Entities

8.2 Harvesting Data from the Different Harvestable Entities

You can configure the Harvester to harvest data from named MBean types, instances,
and attributes.In all cases, the Harvester collects the values of attributes of MBean
instances, as explained in Table 8-1.

Table 8-1 Sources of Harvested Data from Different Configurations

When this entity is configured to Data is collected from...
be harvested as...

A type (only) All harvestable attributes in all instances of the specified
type

An attribute of a type The specified attribute in all instances of the specified

(type + attribute(s)) type

An instance of a type All harvestable attributes in the specified instance of the

(type + instance(s)) specified type

An attribute of an instance of atype The specified attribute in the specified instance of the
(type + instance(s) + attribute(s)) specified type

All WebLogic Server runtime MBean types and attributes are known at startup.
Therefore, when the Harvester configuration is loaded, the set of harvestable
WebLogic Server entities is the same as the set of WebLogic Server runtime MBean
types and attributes. As types are instantiated, those instances also become known
and thus harvestable.

The set of harvestable custom MBean types is dynamic. A custom MBean must be
instantiated before its type can be known. (The type does not exist until at least one
instance is created.) Therefore, as custom MBeans are registered with and removed
from the MBean server, the set of custom harvestable types grows and shrinks. This
process of detecting a new type based on the registration of a new MBean is called
type discovery.

When you configure the Harvester through the WebLogic Server Administration
Console, the Console provides a list of harvestable entities that can be configured.
The list is always complete for WebLogic Server MBeans, but for custom MBeans,
the list contains only the currently discovered types. See Configure metrics to collect
in a diagnostic system module in the Oracle WebLogic Server Administration Console
Online Help.

8.3 Configuring the Harvester

ORACLE

The Harvester is configured, and metrics are collected, in the scope of a diagnostic
module targeted to one or more server instances. The Harvester configuration
includes the sampling period, the type of data to harvest, and the type names for
WebLogic Server MBeans and custom MBeans.

Example 8-1 shows Harvester configuration elements in a WLDF system

resource descriptor file, nyW.DF. xnl . This sample configuration harvests from the
ServerRuntimeMBean, the WLDFHarvesterRuntimeMBean, and from a custom (that
is, non-WebLogic Server) MBean. The text following the listing explains each element
in the listing.

8-2

Chapter 8
Configuring the Harvester

Example 8-1 Sample Harvester Configuration (in DIAG_MODULE.xml)

<wl df -resource xm ns="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnostics"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" >
<name>nyW.DF</ name>
<harvest er>
<enabl ed>t r ue</ enabl ed>
<sanpl e- peri 0d>5000</ sanpl e- peri od>
<har vest ed- t ype>
<name>webl ogi c. managenent . runt i ne. Ser ver Runt i mreMBean</ nanme>
</ harvest ed-type>
<har vest ed- t ype>
<nanme>webl ogi c. managenent . runt i me. W.DFHar vest er Runt i neMBean</ nane>
<harvest ed- attri but e>Tot al Sanpl i ngTi me</ harvested-attribute>
<harvest ed- at t ri but e>Curr ent Snapshot El apsedTi nme
</ harvested-attribute>
</ harvest ed-type>
<har vest ed- t ype>
<nanme>nyMBeans. MySi npl eSt andar d</ name>
<har vest ed- i nst ance>nyCust onDomai n: Name=ny Cust onVBeanl
</ harvest ed- i nst ance>
<har vest ed- i nst ance>nyCust onDomai n: Name=ny Cust oniVBean?2
</ harvest ed- i nst ance>
</ harvest ed-type>
</ harvester>
<L-- e O her elenents ----- -- >
</w df -resource>

8.3.1 Configuring the Harvester Sampling Period

The <sample-period> element sets the sample period for the Harvester, in
milliseconds. For example:

<sanpl e- peri 0d>5000</ sanpl e- peri od>

The sample period specifies the time between each cycle. For example, if the
Harvester begins execution at time T, and the sample period is /, then the next harvest
cycle begins at T+/. If a cycle takes A seconds to complete and if A exceeds /, then
the next cycle begins at T+A. If this occurs, the Harvester tries to start the next cycle
sooner, to ensure that the average interval is .

8.3.2 Configuring the Types of Data to Harvest

ORACLE

One or more <harvested-type> elements determine the types of data to harvest. Each
<harvested-type> element specifies an MBean type from which metrics are to be
collected. Optional sub-elements specify the instances and/or attributes to be collected
for that type. Set these options as follows:

* The optional <harvested-instance> element specifies that metrics are to be
collected only from the listed instances of the specified type. In general, an
instance is specified by providing its JIMX ObjectName in JMX canonical form.
However, you can use pattern-matching to specify instance names in non-
canonical form, as described in Using Wildcards in Harvester Instance Names.

* If no <harvested-instance> is present, all instances that are present at the time of
each harvest cycle are collected.

* The optional <harvested-attribute> element specifies that metrics are to be
collected only for the listed attributes of the specified type. An attribute is specified

8-3

Chapter 8
Configuring the Harvester

by providing its name. The first character should be capitalized. For example, an
attribute defined with getter method get Foo() is named Foo.

The <harvested-attribute> element also supports an expression syntax for "drilling
down" into attributes that are complex or aggregate objects, such as lists, maps,
simple POJOs (Plain Old Java Objects), and various nestings of these types. See
Specifying Complex and Nested Harvester Attributes, for details on this syntax.
However, note that the result of these expressions must be a simple intrinsic type
(i nt, bool ean, String, and so on) in order to be harvested.

* If no <harvested-attribute> is present, all harvestable attributes defined for the type
are collected.

e Attribute and instance lists can be combined in a type.

8.3.3 Specifying Type Names for WebLogic Server MBeans and
Custom MBeans

The Harvester supports WebLogic Server MBeans and custom MBeans. WebLogic
Server MBeans are those that come packaged as part of the WebLogic Server.
Custom MBeans can be harvested as long as they are registered in the local runtime
MBean server.

There is a difference in how WebLogic Server and customer types are specified.
For WebLogic Server types, the type name is the name of the Java interface
that defines the MBean. For example, the server runtime MBean's type name is
weblogic.management.runtime.ServerRuntimeMBean.

For custom MBeans, the Harvester follows these rules:

» If the MBean is not a ModelMBean, the type name is the implementing class
name. (See Example 8-1.)

» If the MBean is a ModelMBean, the type name is the value of the MBean
Descriptor field DiagnosticTypeName.

If neither of these conditions is satisfied (if the MBean is a ModelMBean and there is
no value for the MBean Descriptor field DiagnosticTypeName) then the MBean cannot
be harvested.

8.3.4 Harvesting from the Domain Runtime MBean Server

ORACLE

The <harvested-type> element supports a <namespace> attribute that lets you harvest
metrics from MBeans registered in the Domain Runtime MBean Server. However,
Oracle recommends that you limit the usage to harvesting only Domain Runtime-
specific MBeans, such as the ServerLifeCycleRuntimeMBean. Harvesting of remote
managed server MBeans through the Domain Runtime MBean Server is possible,

but is discouraged for performance reasons. It is a best practice to use the resident
Harvester in each managed server to capture metrics related to that managed server
instance.

The <namespace> attribute can have one of two values:

e ServerRuntime
¢ DomainRuntime

If the <namespace> attribute is omitted, it defaults to ServerRuntime.

8-4

Chapter 8
Configuring the Harvester

< Note:

Harvesting from the Domain Runtime MBean server is available only on the
Administration Server. Attempts to harvest Domain Runtime MBeans on a
Managed Server are ignored. See Example 8-5.

8.3.5 When Configuration Settings Are Validated

WLDF attempts to validate configuration as soon as possible. Most configuration is
validated at system startup and whenever a dynamic change is committed. However,
due to limitations in JMX, custom MBeans cannot be validated until instances of those
MBeans have been registered in the MBean server.

8.3.6 Sample Configurations for Different Harvestable Types

ORACLE

In Example 8-2, the <harvested-type> element in the DI AG_ MODULE. xm configuration
file specifies that the ServerRuntimeMBean is to be harvested. Because no
<harvested-instance> subelement is present, all instances of the type will be collected.
However, because there is always only one instance of the server runtime MBean,
there is no need to provide a specific list of instances. And because there are no
<harvested-attribute> subelements present, all available attributes of the MBean are
harvested for each of the two instances.

Example 8-2 Sample Configuration for Collecting All Instances and All
Attributes of a Type (in DIAG_MODULE.xml)

<harvest ed-t ype>
<name>webl ogi c. managenent . runti ne. Ser ver Runt i neMBean</ nanme>
</ harvest ed-type>

In Example 8-3, the <harvested-type> element in the DI AG MODULE. xm configuration
file specifies that the WLDFHarvesterRuntimeMBean is to be harvested. As above,
because there is only one WLDFHarvesterRuntimeMBean, there is no need to provide
a specific list of instances. The subelement <harvested-attribute> specifies that only
two of the available attributes of the WLDFHarvesterRuntimeMBean will be harvested:
TotalSamplingTime and CurrentSnapshotElapsedTime.

Example 8-3 Sample Configuration for Collecting Specified Attributes of All
Instances of a Type (in DIAG_MODULE.xml)

<harvest ed-type>
<name>webl ogi c. managenent . runt i me. W.DFHar vest er Runt i meMBean</ nane>
<harvest ed- attri but e>Tot al Sanpl i ngTi ne</ harvested-attribute>
<harvest ed-attribut e>Current Snapshot El apsedTi nme
</ harvested-attribute>
</ harvest ed- t ype>

In Example 8-4, the <harvested-type> element in the DI AG MODULE. xm configuration
file specifies that a single instance of a custom MBean type is to be harvested.
Because this is a custom MBean, the type name is the implementation class. In

this example, the two <harvested-instance> elements specify that only two instances
of this type will be harvested. Each instance is specified using the canonical
representation of its JMX ObjectName. Because no instances of <harvested-attribute>
are specified, all attributes will be harvested.

8-5

Chapter 8
Harvester Performance Considerations

Example 8-4 Sample Configuration for Collecting All Attributes of a Specified
Instance of a Type (in DIAG_MODULE.xml)

<har vest ed- t ype>
<nanme>nyMBeans. MySi npl eSt andar d</ name>
<har vest ed- i nst ance>nyCust onDomai n: Name=ny Cust onVBeanl
</ harvest ed-i nst ance>
<har vest ed- i nst ance>nyCust onDomai n: Name=ny Cust oniVBean?2
</ harvest ed-i nst ance>

</ harvest ed-t ype>

In Example 8-5, the <harvested-type> element in the DI AG_ MODULE. xmi configuration
file specifies that the ServerLifeCycleRuntimeMBean is to be harvested. The
<namespace> attribute specifies that this is a DomainRuntime MBean, so this
configuration will only be honored on the administration server (see the note in
Harvesting from the DomainRuntime MBeanServer). The subelement <harvested-
attribute> specifies that only the StateVal attribute will be harvested.

Example 8-5 Sample configuration for Collecting Specified Attributes of the
ServerLifeCycleMBean Type (in DIAG_MODULE.xml)

<harvest ed-t ype>
<name>webl ogi c. managenent . runti me. Server Li f eCycl eRunt i meMBean</ nane>
<namespace>Domai nRunt i me</ nanespace>
<known- t ype>t r ue</ known- t ype>
<harvest ed-attribut e>St at eVal </ harvested-attribute>
</ harvest ed-t ype>

8.4 Harvester Performance Considerations

Because the Harvester tracks all MBeans that are registered in the local WebLogic
Server Runtime MBean server, applications that create a high volume of transient
MBeans can create performance issues in WLDF.Here, a transient MBean is an
MBean with a very short life span that can be registered and unregistered very quickly,
typically within the space of a few milliseconds. Such MBeans can create a load
stress in the Harvester and the Policies and Actions system, which tracks MBean
registrations. This performance problem is particularly a risk when high-volume JMS
applications are not coded according to recommended best practices.

When JMS connections are not cached properly, a scenario can develop in which
hundreds of connections (and consequently, the corresponding connection, producer,
and consumer runtime MBeans) are created and destroyed every second when the
system is operating under heavy load. This situation can cause load stress on both the
Harvester and the Policies and Actions system.

To avoid this problem, make sure your JMS applications conform to the best coding
practices described in Cache and Re-use Client Resources in Tuning Performance
of Oracle WebLogic Server. As a result, you will not only obtain better WLDF
performance, but you will also improve your JMS and overall server performance.

ORACLE 8-6

Configuring Policies and Actions

The Policies and Actions component of the WebLogic Diagnostics Framework (WLDF)
provides the means for monitoring server and application states and then executing
actions based on criteria set in the policies.Policies and actions are configured as part
of a diagnostic module that is targeted to one or more server instances in a domain.

Note:

As of WebLogic Server 12.2.1, the terms watch and notification are
replaced by policy and action, respectively. However, the definition of these
terms has not changed.

The following sections give an overview of the Policies and Actions component, and
also provide an example of a Policies and Actions configuration:

e Policies and Actions
e Overview of Policies and Actions Configuration

* Sample Policies and Actions Configuration

9.1 Policies and Actions

ORACLE

You can configure policies to analyze log records, data events, and harvested metrics.

A policy identifies a situation that you want to trap for monitoring or diagnostic
purposes.

A policy includes:
* A policy expression (with the exception of calendar-based policies)

The default language for policy expressions is the WLDF query language;
however, the WLDF query language is deprecated. You can also use Java
Expression Language (EL) for policy expressions.

e An alarm setting
e One or more action handlers

You can also configure policies to enable elasticity in dynamic clusters; that is, to
automatically scale a dynamic cluster up or down by a specific number of server
instances. You can define policies to enable two broad categories of elasticity:

» Calendar-based scaling — Scaling operations on a dynamic cluster that are
executed on a particular date and time.

* Policy-based scaling — Scaling operations on a dynamic cluster that are executed
in response to changes in demand.

9-1

Chapter 9
Overview of Policies and Actions Configuration

< Note:

To configure an elastic scaling policy for a dynamic cluster, you must create
a domain-scope diagnostic system module in which you define the scaling
policy, and then target that diagnostic module to the Administration Server.

For more information about enabling elasticity in WebLogic Server, including
instructions for downloading and running a demonstration example, see Policy-Based
Scaling in Configuring Elasticity in Dynamic Clusters for Oracle WebLogic Server.

An action is an operation that is executed when a policy expression evaluates to true.
WLDF supports the following types of actions:

e Scaling a dynamic cluster

* Java Management Extensions (JMX)

* Java Message Service (JMS)

e Simple Mail Transfer Protocol (SMTP), for example, e-mail
* Simple Network Management Protocol (SNMP)

» Diagnostic image

 Log
e REST
e Script

* Heap dump
e Thread dump

You must associate a policy with an action for a useful diagnostic activity to occur;
for example, to notify an administrator about specified states or activities in a running
server.

Policies and actions are configured separately from each other. An action can be
associated with multiple policies, and a policy can be associated with multiple actions.
This provides the flexibility to recombine and re-use policies and actions, according to
current needs.

9.2 Overview of Policies and Actions Configuration

ORACLE

A complete policy and action configuration includes settings for one or more policies,
one or more actions, and any underlying configurations required for the action media;
for example, the SNMP configuration required for an SNMP-based action.

The main elements required for configuring policies and actions in a WLDF system
resource descriptor file, DI AG MODULE. xm , are shown in Example 9-1. As the listing
shows, the base element for defining policies and actions is <watch-notification>.
Policies are defined in <watch> elements, and actions are defined in elements named
for each of the types of action; for example, <jms-natification>, <jmx-notification>,
<smtp-notification>, and <image-notification>.

9-2

Chapter 9
Overview of Policies and Actions Configuration

Example 9-1 A Skeleton Policy and Action Configuration (in
DIAG_MODULE.xml)

<w df - resour ce>
N Ot her systemresource configuration elenments ----- -- >
<wat ch-noti fication>
<l og- wat ch- severity>
<l-- Threshol d severity for a log watch to be evaluated further
(This can be narrowed further at the watch level.) -->
</l og-wat ch-severity>
<w df - resour ce>
N O her systemresource configuration elenments ----- -- >
<wat ch-noti fication>
<l og- wat ch- severity>
<l-- Threshol d severity for a log policy to be evaluated further
(This can be narrowed further at the policy level.) -->
</l og-wat ch-severity>

N Policy configuration elenents: ----- -- >
<wat ch>
<I-- A policy expression -->
</ wat ch>
<wat ch>
<I-- Apolicy expression -->
</ wat ch>

<l-- Any other policy configurations -->

N Action configuration elenents: ----- -- >
<l-- The followi ng action configuration el enents show one of each
type of supported actions. However, not all types are
required in any one systemresource configuration, and nultiples
of any type are permtted. -->
<jms-notification>
<I-- Configuration for a JM5-based action; requires a
corresponding JVS configuration via a jns-server elenent and a
j ms-systemresource el enent -->
</jms-notification>

<j mx-notification>
<l-- Configuration for a JW-based action -->
</jmx-notification>
<smtp-notification>
<l-- Configuration for an SMIP-based action; requires a
correspondi ng SMIP configuration via a mail-session elenment -->
</sntp-notification>
<snnp-noti fication>
<l-- Configuration for an SNVWP-based action; requires a
correspondi ng SNWP agent configuration via an snnp-agent
el ement -->
</snnp-notification>
<i mage-notification>
<l-- Configuration for an image-based action -->
</image-notification>
<wat ch-noti fication>
N O her configuration elenments ----- -- >
</w df -resource>

ORACLE 9-3

Chapter 9
Sample Policies and Actions Configuration

< Note:

While the notification media must be configured so they can be used by
the actions that depend on them, those configurations are not part of the
configuration of the diagnostic module itself. That is, they are not configured
in the <wldf-resource> element in the diagnostic module's configuration file.

Each policy and action can be individually enabled and disabled by setting
<enabled>true</enabled> or <enabled>false</enabled> for the individual policy or
action. In addition, the entire policy and action facility can be enabled and disabled
by setting <enabled>true</enabled> or <enabled>false</enabled> for all policies and
actions. The default value is <enabled>true</enabled>.

The <watch-notification> element contains a <log-watch-severity> sub-element, which
affects how actions are executed by log policies.

If the maximum severity level of the log messages that triggered the policy do not at
least equal the provided severity level, then the resulting actions are not executed.
Note that this only applies to actions executed by log policies. Do not confuse this
element with the <severity> element defined on policies. The <severity> element
assigns a severity to the policy itself, whereas the <log-watch-severity> element
controls which actions are executed by log-type policies.

For information about how to configure policies and actions using the WebLogic Server
Administration Console, see Configure policies and actions in Oracle WebLogic Server
Administration Console Online Help.

9.3 Sample Policies and Actions Configuration

A set of policies and actions is configured in a diagnostic module file named
DI AG_ MODULE. xm .

Example 9-2 shows a complete configuration. The details of this example are
explained in the following topics:

* Configuring Policies
* Configuring Actions

Example 9-2 Sample Policies and Actions Configuration (in
DIAG_MODULE.xml)

<?xm version="1.0" encodi ng=" UTF-8' 7>
<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schenmaLocation="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<name>nyw df 1</ name>
<l-- Instrumentation nust be configured and enabled for instrumentation
policies -->
<i nstrument ation>
<enabl ed>t r ue</ enabl ed>
<wl df -i nstrument ati on-noni t or >
<name>Dyel nj ect i on</ name>
<descri ption>Dye Injection nonitor</description>
<dye- mask xsi:nil="true"></dye- mask> <properties>ADDR1=127. 0. 0. 1</

ORACLE 9-4

ORACLE

Chapter 9
Sample Policies and Actions Configuration

properties>

</W df -i nstrument ati on- noni t or >
</instrunentation>
<l-- Harvesting does not have to be configured and enabl ed for harvester
policies. However, configuring the Harvester can provi de advantages
for exanple the data will be archived. -->
<harvest er >
<nane>nyw df 1</ name>
<sanpl e- peri 0d>20000</ sanpl e- peri od>
<harvest ed-type>
<name>webl ogi c. managenent . runt i ne. Ser ver Runt i mreMBean</ name>
</ harvest ed-type>
<harvest ed-type>
<name>webl ogi c. managenent . runt i me. W.DFHar vest er Runt i meMBean</ nane>
</ harvest ed-type>
</ harvester>
<l-- Al policies and actions are defined under the
wat ch-notification el ement -->
<wat ch-notification>
<enabl ed>t r ue</ enabl ed>
<l og- wat ch- severity>l nfo</| og-wat ch-severity>
<I-- A harvester policy configuration -->
<wat ch>
<nanme>nyWat ch</ nane>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Harvester</rul e-type>
<rul e- expressi on>${ com bea: Nane=nyser ver, Type=Server Runti ne//

Socket sOpenedTot al Count} > ; = 1</rul e- expressi on>

<al arm t ype>Aut omat i cReset </ al arm t ype>
<al armreset - peri 0d>60000</ al ar m r eset - peri od>
<noti fication>nyMil Notif, myJMXNotif, mySNMPNoti f</notification>
</ wat ch>
<l-- An instrunentation policy configuration -->
<wat ch>
<nane>nyWat ch2</ nane>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Event Dat a</rul e-type>
<rul e- expressi on>
(MONI TOR LI KE ' JDBC After_Execute') AND
(DOMAI N = ' MedRecDonai n') AND
(SERVER = ' medrec-adminServer') AND
((TYPE = ' ThreadDunpAction') OR (TYPE = TraceEl apsedTi meAction')) AND
(SCOPE = ' MedRecEAR)
</rul e-expressi on>
<notification>JMKNotiflnstr</notification>
</ wat ch>
<l-- Alog policy configuration -->
<wat ch>
<nanme>nyLogWat ch</ nane>
<rul e-type>Log</rul e-type>
<rul e- expressi on>M5@ D=' BEA- 000360" </ r ul e- expr essi on>
<severity>l nfo</severity>
<noti fication>nyMil Notif2</notification>
</ wat ch>
<l-- AJMX notification -->
<jmx-notification>
<name>nyJMXNot i f </ nane>
</jnmx-notification>
<l-- Two SMIP actions -->
<sntp-notification>
<name>nyMai | Not i f </ name>

9-5

Chapter 9
Sample Policies and Actions Configuration

<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ nai | - sessi on-j ndi - nane>
<subj ect>This is a harvester alert</subject>
<reci pi ent >user nane@nui | servi ce. conx/reci pi ent >
</sntp-notification>
<sntp-notification>
<name>nyMai | Not i f 2</ nane>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ nai | - sessi on-j ndi - nane>
<subj ect>This is a log al ert</subject>
<reci pi ent >user nane@nui | servi ce. conx/reci pi ent >
</sntp-notification>
<l-- An SNWP notification -->
<snmp-notification>
<name>ny SNVPNot i f </ name>
<enabl ed>t r ue</ enabl ed>
</ snnp-notification>
</wat ch-notification>
</w df -resour ce>

ORACLE 9-6

Configuring Policies

The WebLogic Diagnostics Framework (WLDF) provides three main types of policies,
which are differentiated by the sorts of data each can monitor. The policy types are:

* Scheduled policies, which monitor diagnostic data that is generated by runtime
MBeans according to a specific schedule. These policies can also be used to
execute an action at a specific time or on a schedule.

* Log policies, which monitor messages generated into the server or domain logs.

* Instrumentation policies, also known as Event Data policies, which monitor
events generated by the WLDF Instrumentation component.

This chapter explains how to configure each policy type and includes the following
sections:

e How Policies Are Configured

e Configuring Scheduled Policies

e Configuring Log Policies

e Configuring Instrumentation Policies

e Creating Complex Policy Expressions Using WLDF Java EL Extensions

For information about how to create a policy using the WebLogic Server Administration
Console, see Create policies for a diagnostic system module in Oracle WebLogic
Server Administration Console Online Help.

10.1 How Policies Are Configured

ORACLE

There are several components of a policy that you configure, such as the type,
expression, corresponding actions to be executed when the policy is evaluated to true,
and more.

You can use any of the following tools to configure policies for diagnostic system
modules:

* WebLogic Server Administration Console
* Fusion Middleware Control

e WLST

e REST

o JMX application

This chapter refers primarily to using the WebLogic Server Administration Console or
WLST.

The following table summarizes the attributes, elements, and options that you
configure when creating a policy, and also identifies any requirements each
configuration item has for specific policy types.

10-1

Chapter 10
How Policies Are Configured

Item Description Policy Requirement
Rule Type Attribute that determines the policy's type. Must be specified for log and
The default is Har vest er . instrumentation policies. Optional for
scheduled policies.
Expression Attribute that establishes the language Use EL in all policy types. The WLDF
Language used in the policy expression. The query language is supported, but
two supported languages are Java deprecated.
Expression Language (EL), and WLDF
query language (deprecated).
Policy Expression that identifies a situation Optional for scheduled policies, but
Expression or condition that you want to trap for required for all others.
monitoring or diagnostic purposes. The |t 5 scheduled policy does not
expression can analyze log records, data jhclude an expression, the policy
events, or MBean metrics, depending on gways executes the associated
the rule type setting. actions according to the Policy
Schedule.
Actions One or more operations that are executed Optional.
when a policy expression is evaluated to
true.
Policy A calendar-based schedule that Required for all scheduled
Schedule determines when a scheduled policy is policies. Not available for log or
evaluated. instrumentation policies.
Alarm Options that determine whether, or when, Optional for all policy types.
Options a policy can be evaluated again after it
has been evaluated to t r ue.
The default is None, which enables the
policy to always be evaluated again.
Severity Log message severity value that, when Optional for all policy types.
Option the policy is evaluated to t r ue, is:
1. Specified for the log message that is
generated in the logging system.
2. Passed to the actions that are
configured with the policy.
The default is Not i ce.
Enablement Flags that either enable or disable a Optional for all policy types.
Option policy from being evaluated.

The default is enabl ed.

10.1.1 Rule Type

When creating a policy, you must define its type in its rule type attribute. Policies with
different rule types differ in two ways:

ORACLE

* The syntax for specifying the conditions being monitored are unique to the rule

type.

* Log and instrumentation policies are triggered in real time, whereas scheduled
policies are triggered by settings on the W.DFSchedul eBean interface, described in
Policy Schedule.

The way to define the rule type depends on the tool you use to create the policy:

10-2

Chapter 10
How Policies Are Configured

» If you are using the WebLogic Server Administration Console or Fusion

Middleware Control, the rule type is determined by the policy type you are
creating. For each of the policy types you can choose in either console, the
following table identifies the corresponding rule type and W.DFWat chBean. Rul eType
attribute value that is defined for that policy:

Policy Type ... Rule Type WLDFWatchBean.RuleType Value
Smart Rule Harvester Har vest er

Calendar Based Harvester Har vest er

Collected Harvester Har vest er

Metrics

Server Log Log Log

Domain Log Log Domai nLog

Event Data Instrumentation Event Dat a

For information about choosing a policy type using the WebLogic Server
Administration Console, see Create policies for a diagnostic system module in
Oracle WebLogic Server Administration Console Online Help.

» If you are using WLST, REST, or JMX to configure a policy, you set the
W.DFWat chBean. Rul eType attribute as follows:

Policy Type Rule Type Attribute

Scheduled policy Har vest er

Log policy Log — for server log monitoring
Domai nLog — for domain log monitoring

Instrumentation Event Dat a — for instrumentation event monitoring

10.1.2 Expression Language

ORACLE

Policy expressions can be created using either of the following languages:

e Java Expression Language (EL) (recommended)
e WLDF query language (deprecated in WebLogic Server 12.2.1)

See Java EL tutorials at https://docs.oracle.com/javaee/7/tutorial/jsf-el.htm#GJIDDD.
For more information about Java (EL), see the JSR-000341 Expression Language 3.0
specification at https://jcp.org/aboutJava/communityprocess/final/jsr341/index.html.

If you have diagnostic system modules created with a previous release of WebLogic
Server, WLDF supports expressions that use the WLDF query language. If you are
creating new policies for either an existing or a new diagnostic system module, Oracle
strongly recommends using Java EL as the policy expression language.

10-3

https://docs.oracle.com/javaee/7/tutorial/jsf-el.htm#GJDDD
https://jcp.org/aboutJava/communityprocess/final/jsr341/index.html

Chapter 10
How Policies Are Configured

< Note:

The policies described in this chapter are Java EL based. For information
about configuring policies that use the WLDF query language, see WLDF
Query Language-Based Policies.

10.1.3 Policy Expression

A policy expression encapsulates all information necessary for specifying a rule that,
when evaluated to t r ue, causes the associated actions to be executed. When you use
Java EL as the expression language, you can construct a policy expression that uses
the following out-of-the-box resources to set the conditions that determine whether to
fire an associated action:

e Beans

A bean is a Java object that represents the data available for a policy expression
to use, such as metrics from MBeans, log event information, or structured

data surfaced by other beans. Beans are accessed in policy expressions using
standard JavaBean conventions.

e Functions

Functions are a set of operations that are provided either by EL itself, or by WLDF,
that can be utilized from policy expressions to transform or evaluate data.

e Smart rules

Smart Rules are special set of functions that encapsulate more complex logic

and monitoring capabilities, and have specialized support in both the WebLogic
Server Administration Console and Fusion Middleware Control. They can be used
by themselves, or with other expression components as part of a larger, more
complex expression.

10.1.4 Actions

Each policy can be associated with one or more actions that are executed whenever
the policy evaluates to t r ue. See Configuring Actions.

10.1.5 Policy Schedule

ORACLE

All scheduled policies must be configured with a schedule. Scheduling allows policies
to be evaluated according to a calendar schedule, at a specific time, after a duration of
time, or at timed intervals.

You configure a policy schedule by setting attributes on the W.DFSchedul eBean
interface, which is a property of the W.DF\Wat chBean. You can set these attributes using
the WebLogic Server Administration Console, WLST, REST, or a JMX application.
When you are configuring new policies, the WebLogic Server Administration Console
and Fusion Middleware Control provide convenient assistants and workflows for
configuring common scheduling scenarios.

10-4

4

Note:

Chapter 10
How Policies Are Configured

The W.DFSchedul eBean is used for policy evaluation only when:

e The configured policy rule type is " Harvester".

e The configured expression language for the policy is "EL".

Note also that although scheduled policies that use the W.DFSchedul eBean
for scheduling are configured as Harvester types, the WLDF Harvester
component is not used for scheduling.

Table 10-1 lists the attributes of the W.DFSchedul eBean and their default values, which
are the same as for the j avax. ej b. Schedul eExpr essi on interface. In addition, the
syntax for specifying a value, range, list, or interval for a specific unit of time is

also the same as that described for the Schedul eExpr essi on interface. See http://
docs. oracl e. conl j avaee/ 7/ api / j avax/ ej b/ Schedul eExpression. htm .

Table 10-1 WLDFScheduleBean Attributes and Default Values
]

Attribute Description

Default

Allowable Values and Examples

second One or more Allowable values: 0 to 59
seconds within Can be a value, range, list, or interval. To specify every n seconds of the
a minute minute, specify "*/n".
For example:
- second = "30" — (value) run policy every 30 seconds within the
minute
- second = "10, 20, 30" — (list) run policy on seconds 10, 20 and 30
within the minute
e second = "1-10" — (range) run policy on each of seconds 1
through 10 within the minute
e second = "30/ 10" — (interval) run policy every 10 seconds within
the minute, starting at second 30
e second = "*/5" — (interval) run policy every 5 seconds within the
minute
i nut e One or more " Allowable values: 0 to 59
minutes within Can be a value, range, list, or interval. To specify every n minutes of the
an hour hour, specify "*/n".
For example:
e nminute = "30" — (value) run policy every 30 minutes
mnute = "*/2" — (interval) run policy every two minutes of the
hour
hour One or more . Allowable values: 0 to 23
gours within a Can be a value, range, list, or interval.
a
y For example:
e hour="16" — (value) run policy at 16:00.
e hour = "*" — (range) run policy at every hour within a day.
ORACLE 10-5

http://docs.oracle.com/javaee/7/api/javax/ejb/ScheduleExpression.html
http://docs.oracle.com/javaee/7/api/javax/ejb/ScheduleExpression.html

Chapter 10
How Policies Are Configured

Table 10-1 (Cont.) WLDFScheduleBean Attributes and Default Values

Attribute Description Default

Allowable Values and Examples

One or more "

Allowable values:

dayOf Ve .
k days within a « 0to 7, where 0 and 7 represent Sunday. For example,
week dayOf Week="3"
e Sun, Mon, Tue, d, Thu, Fri, Sat . For example, dayOf Week="NMon"
Can be a value, range, or list. For example:
e dayOfWeek = "3" — run policy on Wednesday
o dayOr\Week = "Mon-Fri" — run policy each day from Monday to
Friday
o dayOf\Week = "Mon, Wed, Fri" — run policy on Monday,
Wednesday, and Friday
dayOf Mon One or more . Allowable values:
th days gvithin a . 1to31
mont . Last
e -Tto-1
e {lst, 2nd, 3rd, 4t h, 5t h, Last } {Sun, Mon, Tue, \\d, Thu, Fri , Sat}
Last represents the last day of the month.
- X (where X is in the range 7 to 1) means X days before the last day of the
month.
1st, 2nd, and so on, specified with a day of the week identifies a single
occurrence of that day within the month.
Can be a value, range, or list. For example:
e dayOrMonth = "1" — run policy on first day of the month
e dayOiMonth = "-3" — run policy on the third day before the end of
the month
e dayO'Month = "2nd Mon" — run policy on the second Monday of
the month
e dayOMonth = "1st Fri, 3rd Fri" — run policy on the first and
third Friday of the month
« dayO'Month = "1 to 10" — run policy on each of the first 10 days
of the month
mont h One or more " Allowable values:
months within a . 1to12.
year - Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Cct , Nov, Dec
Can be a value, range, or list. For example:
e nmonth = "7" — run policy on the 7th month of the year
e« nonth = "Feb" — run policy in February
e nmonth = "1 - 3" — run policy on the first three months of the year
e« nmonth = "Jan, Apr, Jul, Oct" — run policy in January, April,
July, and October
year A specific N Allowable values: a four-digit calendar year.
calendar year You can specify one value. For example:
e year = "2015" — run policy in 2015
ti mezone Time zone for null Defaults to the local VM time zone. You may use this attribute to specify a
the schedule non-default time zone ID in whose context the schedule specification is to
be evaluated.
ORACLE 10-6

Chapter 10
How Policies Are Configured

10.1.6 Alarm Options

A policy that has been evaluated to t r ue is referred to as having been triggered. For
policies that are run repeatedly, an alarm determines when a policy can be evaluated
again after it has been triggered. If a policy is configured with an alarm, a triggered
policy is not evaluated again until the alarm is reset. For policies that are evaluated
repeatedly, you can optionally define a minimum time that must transpire after a policy
has been triggered before the policy can be evaluated again.

An alarm is important to configure for a policy that is run repeatedly to prevent the
associated actions from being executed too frequently, such as generating a flood
of emails or IMX notifications. For example, if you have a scheduled policy that
executes a scale up action on a dynamic cluster, you should set an alarm that
delays evaluating the policy again until the dynamic cluster is fully scaled up and is
processing incoming requests. This delay is referred to as the alarm reset period.
Without a proper alarm reset period, the scale up action could be executed again
prematurely and counterproductively.

To configure an alarm for a policy, you specify the following:

e The alarm type
e The alarm reset period

The following table lists and describes each of the available alarm types:

Alarm Type Description

None Allows the policy to be triggered whenever possible. This is the default.

Allows the policy to be triggered whenever possible, except that
subsequent occurrences cannot occur any sooner than the interval
specified in the alarm reset period.

Aut omat i cReset

Allows the policy to be triggered only once. After it is triggered, you
must manually reset it to fire again. You can reset an alarm using

a run-time MBean operation, either programmatically or with WLST.
For example, you can use the r eset Wat chAl ar moperation on the
WLDFWat chNot i fi cat i onRunt i meMBean.

Manual Reset

Note the following alarm state behaviors:

* When the alarm type is Aut omat i cReset , a policy enters the alarm state when
triggered and stays in that state until the time interval specified by the alarm reset
period has expired.

e If a policy is configured with a Manual Reset alarm, the policy enters the alarm state
when triggered, and remains in that state until you manually reset it.

* When a policy is in the alarm state, the policy is not evaluated again until the alarm
is reset.

* If a policy's alarm type is None, the configured action can be executed every time
that the policy is triggered. The alarm state is never set in these cases.

ORACLE 10-7

Chapter 10
Configuring Scheduled Policies

10.1.7 Severity Option

Whenever a policy is triggered, a message is automatically generated in the logging
system. The severity option is an optional value you can configure that:

1. Gets assigned as the severity value of the log message generated in the logging
system.

2. Is also passed to the actions that are configured with the policy.

The severity option must be one that is defined for the WebLogic logging service
in the webl ogi c. | oggi ng. Severities class. The accepted values are | nf 0, Not i ce,
Vrning, Error, Critical, Al ert, and Emer gency. The default is Not i ce.

10.1.8 Enablement Option

Each policy can be individually enabled and disabled by using the Enabl ed attribute on
that policy. The value you specify for this attribute is t rue or f al se. When disabled, a
policy is not evaluated and its configured actions are not executed.

However, note that the W.DFWat chNot i fi cat i onBean, which is the parent of all policy
and action configurations in a diagnostic system module, also has an Enabl ed
attribute. If the value of the W.DFWat chNot i fi cati onBean. Enabl ed attribute is f al se,
all individual policies in the diagnostic system modules are disabled regardless of
whether its policies are individually configured as enabled.

10.2 Configuring Scheduled Policies

ORACLE

Scheduled policies monitor diagnostic data that consists of data coming from
MBeans within the WebLogic Server Runtime MBean Server, including the read-only
configuration MBeans in the WebLogic Server Runtime MBean Server.These values,
called metrics, originate from common WebLogic Server JMX data sources such as
the following:

* WebLogic Server Runtime MBean Server
* Domain Runtime MBean Server
e JVM platform MBean server

Scheduled policies are useful for monitoring run-time state information in the
WebLogic Server environment. Examples of diagnostic data that is useful to monitor
using scheduled policies are:

» Changes over time in average JVM heap usage

If the average amount of free heap reaches a particular threshold that is defined in
the policy expression, the configured action is executed, such as sending an email
to the system administrator.

» Data from multiple services that are considered together, such as response-
time metrics reported by a load balancer and message-backlog metrics from a
message queue

If the combination of data meets a particular set of criteria defined in the policy
expression, the policy can fire a scaling action

10-8

Chapter 10
Configuring Scheduled Policies

The following sections explain how to configure, and show examples of, the three
scheduled policy types:

» Configuring Calendar Based Policies
» Configuring Smart Rule Based Policies
e Creating Complex Policy Expressions Using WLDF Java EL Extensions

See also Chaining Policies for information about how to create a policy expression that
can reference the state of other policies defined within the same WLDF module as the
beans. Policy chaining allows the state of one policy to be part of the expression of
another.

10.2.1 Configuring Calendar Based Policies

The simplest type of scheduled policy is the calendar based policy. You can use a
calendar based policy to fire any associated actions according to the policy's schedule.

Calendar-based policies are simply scheduled policies with no associated expression.
This enables purely schedule-driven action execution; that is, the ability to
unconditionally perform a set of actions on a specified schedule. If no expression is
provided, when the scheduled time occurs, the policy treats the empty expression as a
true result and executes the associated actions.

" Note:

Calendar based policies are supported only for policies that: have the
following configuration attributes:

e The rule type specified as ' Harvester’

e The expression language specified as ' EL'

The following example shows the configuration of a calendar based policy using
WLST. This policy fires a scale up action at 3:00 a.m. on December 26.

cal endar Scal eUp=wn. | ookupWat ch("' Chri st masRet ur nsScal eUp\Wat ch')

i f cal endar Scal eUp == None:
print "Creating scale-up for the post-Christmas returns rush on Dec 26 at 3ani
cal endar Scal eUp=wn. cr eat eWat ch(' Chri st masRet ur nsScal eUpVat ch')

cal endar Scal eUp. set Rul eType("' Harvester")

cal endar Scal eUp. set Expr essi onLanguage(' EL")

cal endar Scal eUp. get Schedul e() . set Hour (' 3")

cal endar Scal eUp. get Schedul e().setM nute(' 0')

cal endar Scal eUp. get Schedul e() . set Second(' 0')

cal endar Scal eUp. get Schedul e() . set DayCOf Mont h(' 26")

cal endar Scal eUp. get Schedul e() . set Mont h(' Dec')

cal endar Scal eUp. set Enabl ed(f al se)

cal endar Scal eUp. addNot i fi cati on(scal eUp)

10.2.2 Configuring Smart Rule Based Policies

Smart rules are prepackaged functions that greatly simplify the creation of policy
expressions. The WebLogic Server Administration Console and Fusion Middleware

ORACLE 10-9

Chapter 10
Configuring Scheduled Policies

Control, in particular, each contain a smart rule editor to greatly simplify the task of
configuring a smart rule for the policy you are creating.

Smart rules perform a number of complex operations, but surface only a small number
of configuration parameters that you set. Details about the specific low level metrics
that are collected, how they are used, and so on, are hidden, thereby making them
easy to use. Smart rules return only a Boolean value, which determines whether the
policy is evaluated to t r ue.

You use a smart rule as a predicate in policy expression by simply specifying the
parameters required by that smart rule. For example, to evaluate whether a particular
increase exists in the average thread pool queue length in the local server, you create
a policy that specifies the Ser ver H ghQueueLengt h smart rule as the policy expression
and provide the following parameters:

* The sampling period for collecting the value of the
Thr eadPool Runt i meMBean. QueuelLengt h attribute

e Duration, or the most recent window of time, in which samples are retained

e Athreshold value that establishes the maximum acceptable number of threads in
the queue

The smart rule takes responsibility for sampling the appropriate metrics over
the specified time interval, computing averages, comparing threshold values, and
determining whether the smart rule evaluates to t r ue.

" Note:

Smart rules are supported for use only in scheduled policies that are
configured with Java EL as the expression language.

10.2.2.1 Types of Diagnostic Data that Smart Rules Evaluate

ORACLE

Smart rules can monitor trends in metrics in a server or cluster over time, including:

* Average system throughput

* Process CPU load

* Pending user request count

* Idle or stuck thread count

* Incoming request queue size

* System load average

e JVM free heap size

* Any metric value visible from JMX, such as custom MBean values

You can use smart rules as building blocks in policy expressions. In the simplest case,
a single smart rule can be used by itself in a policy expression. You can also combine
a smart rule with others, as well as with other EL constructs, to form more complex
expressions.

For example, you can construct a policy that sends an email notification if all of the
following conditions occur simultaneously in a server instance or cluster:

10-10

Chapter 10
Configuring Scheduled Policies

* Low JVM free heap percentage
* High number of stuck threads
* High incoming requests queue size

For details about all the smart rules provided by WLDF, see Smart Rule Reference.

10.2.2.2 Smart Rule Example

The ClusterLowHeapFreePercent smart rule compares the average free heap

across all Managed Servers in a cluster by monitoring the value of the

JVMRunt i meMBean. HeapFr eePer cent attribute. A policy expression that uses this smart
rule will be evaluated to t r ue if a minimum percentage of Managed Servers in the
cluster have an average free heap that is less than a particular threshold value.

The O ust er LowHeapFr eePer cent smart rule takes the following input parameters:

e Cluster name

e Sampling period — The frequency with which the value of the HeapFr eePer cent
metric is collected

* Retention window — A sliding window of time during which samples are retained.
For example, the most recent five minutes.

e percentFreeLi mt — A value that represents the low free heap percentage
threshold.

e percentServersLinmt — A percentage of Managed Servers in the cluster that
must have an average free heap that is less than per cent Freeli nit to cause the
expression to evaluate to t r ue.

The following is an example configuration of the O ust er LowHeapFr eePer cent smart
rule:

W s: C ust er LowHeapFr eePercent ("myCl uster","30 seconds","10 m nutes", 20, 60)

For every Managed Server in nyd ust er, this smart rule collects the value of the
HeapFr eePer cent every 30 seconds, retaining the most recent 10 minutes of data, and
evaluates to t r ue if at least 60 per cent of the Managed Servers in myC ust er have an
average free heap percentage that is less than 20 per cent.

This smart rule could be configured to fire an action when it evaluates to t r ue,

such as sending an email to the system administrator to report that a low free heap
condition exists in the cluster. The system administrator can then take remedial action
as necessary.

You can use smart rules in conjunction with scaling actions, described in Configuring
Elastic Actions, to configure policy based scaling of a dynamic cluster. This capability
enables automated elasticity in that cluster. For more information, including a demo
that you can download and run, see Policy-Based Scaling in Configuring Elasticity in
Dynamic Clusters for Oracle WebLogic Server.

10.2.3 Chaining Policies

Within the same diagnostics system module, the expression in one policy can
reference other policies as beans within that expression. In this way, complex policy
expressions can be reused and "chained" together to allow the state of one policy to

ORACLE 10-11

Chapter 10
Configuring Log Policies

be part of the expression of another. This allows more complex, interrelated policies to
be written, while keeping such policy configurations more readable and maintainable.

To allow access to policy states within an expression, you can use the resource bean
within the global bean name space for each policy. The r esour ce bean supports a Map
attribute named wat ches, where each key in the map is the name of a policy defined
within the same diagnostics system module.

Each value in the policy's map is a bean representing the named policy. These policy
beans support a simple Boolean alarm attribute, which has the following semantics:

e If the policy is configured with an alarm type other than None, the alarm attribute
returns t r ue if the policy is currently in the alarm state.

* If no alarm type is configured on the policy, the alarm attribute yields the most
recently evaluated result.

» If the alarm attribute on a policy bean is accessed before the named policy has
successfully completed an evaluation cycle, a Not EnoughDat aExcept i on is thrown.
This occurrence also has the effect of invalidating the expression during that
evaluation cycle: the policy isn't disabled, but it is effectively a non-result when it
occurs.

10.3 Configuring Log Policies

Use log policies to monitor the occurrence of specific messages or strings in the
server or domain log. Policies of this type are triggered as a result of a log message
containing the specified data being issued.

When creating a log policy, you can use the log bean in a policy expression to obtain
access to data to log message fields. See log for details about the available log bean
attributes.

The following example looks for a log message indicating that the server is entering
the RUNNING state:

w=cno. cr eat eWat ch(" Server LogRunni ngSt at e")

w. set Expr essi onLanguage(' EL')

w. set Rul eType(' Log")

w. set Rul eExpressi on("l og. nessagel d == ' BEA-000365' and
| og. | ogMessage. contai ns(' RUNNING) ")

You can also use java methods and field accessors to access the data in log, since the
log bean is a simple JavaBean object. An equivalent policy expression of the above
example is:

w=cnp. cr eat eWat ch(" Server LogRunni ngSt at e2")

w. set Expr essi onLanguage(' EL')

w. set Rul eType(' Log")

w. set Rul eExpressi on("| 0g. get Messagel d(). cont ai ns(' 000365"') &&
| 0g. get LogMessage().contai ns(' RUNNING)")

ORACLE 10-12

Chapter 10
Configuring Instrumentation Policies

< Note:

Any log policies that search for the RUNNING state message ID should
search for message ID BEA- 000365, and not BEA- 000360. The message ID
BEA- 000360 is issued immediately before the state change to RUNNING,
and BEA- 000365 is issued immediately afterward. WLDF does not start rule
evaluation until the server is in the RUNNING state. Therefore, such log
policies are able to find only message ID BEA- 000365.

10.4 Configuring Instrumentation Policies

ORACLE

You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are evaluated as a result of an event being posted

by the Instrumentation component, which occurs when code that matches a deployed
Instrumentation monitor is exercised.

Instrumentation policy expressions utilize a single bean named

i nstrument ati onEvent . This bean provides access to the data that is captured in

an Instrumentation event. As with Log, DomainLog, and Collected Metrics policies,

you can access data in the Instrumentation event using JavaBean conventions in the
policy expression. See the set of fields that are accessible on the instrumentationEvent
bean.

The following example shows how to access data in an Instrumentation policy using
the i nst runment at i onEvent bean:

i nstrument ati onEvent . payl oad > 100000000 && instrumentationEvent. nonitor
== ' Servl et _Around_Service'

This policy triggers when the monitor event is of type “Servlet_Around_Service”

and the payload value (in this case, the execution time of the servlet recorded by

the Servlet_Around_Service monitor) is greater than 100000000 nanoseconds (100
milliseconds). You can also use java methods and field accessors to access data in

i nstrument ati onEvent, since the i nst runent ati onEvent bean is a simple JavaBean
object . An equivalent policy expression of the example above can be given as:

i nstrument ati onEvent . get Payl oad() > 100000000 &&
i nstrument ati onEvent. get Moni tor (). equal s(* Servl et Around_Service')

Example 10-1 shows an example configuration for an Instrumentation policy.

Example 10-1 Sample Configuration for an Instrumentation Policy (in
DIAG_MODULE.xml)

<wat ch-noti fication>
<wat ch>
<name>nyl nst Wat ch</ name>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Event Dat a</ rul e-type>
<rul e- expressi on>i nstrument ati onEvent . payl oad > 100000000 &anp; &anp;
i nstrumentati onEvent. nonitor == 'Servlet_Around_Service' </rul e-expressi on>
<expressi on- | anguage>EL</ expr essi on- | anguage>
<al armt ype>Manual Reset </ al arm type>
<notification>nySMIPNoti fication</notification>
</ wat ch>

10-13

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

<sntp-notification>
<nane>nySMIPNot i fi cati on</ nane>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ mai | - sessi on-j ndi - name>
<subj ect xsi:nil="true"></subject>
<body xsi:nil="true"></body>
<r eci pi ent >user nane@nmi | servi ce. conx/ reci pi ent >
</sntp-notification>
</wat ch-notification>

10.5 Creating Complex Policy Expressions Using WLDF
Java EL Extensions

ORACLE

Oracle expects that the library of smart rules packaged with WLDF are sufficient for
meeting the needs of creating scheduled policies that evaluate runtime performance
data in a server or cluster. However, if you have a specific scheduled policy need
that cannot be satisfied by a smart rule, WLDF also provides a set of extensions to
Java EL. These extensions are intended for use in policies that evaluate very specific
characteristics or trends in metrics collected from runtime MBean servers in your
WebLogic domain.

The contents of this section are targeted to developers who are knowledgeable of
complex programming techniques. Experience with Java EL is highly recommended.

Using WLDF Beans and Functions

WLDF leverages Java EL as the language for writing policy expressions. Java EL is a
standard, extensible, and robust scripting language. WLDF has adopted and extended
Java EL to provide access to WebLogic diagnostic data and events for writing policy
expressions. WLDF provides a set of functions and JavaBean objects for writing policy
expressions that use the following diagnostic data and events:

e WebLogic Runtime MBean data
e WebLogic Logging events
e WebLogic Instrumentation events

You can utilize all the features available within Java EL in conjunction with these
WLDF extensions to write policy expressions. Collected metrics based policies, which
are a type of scheduled policy, can use WLDF-provided beans and functions within
their policy expressions. These beans are JavaBean objects that can obtain access to
common WebLogic Server JMX data sources, such as the following:

* WebLogic Server Runtime MBean Server
e Domain Runtime MBean Server
e JVM platform MBean server

The following sections explain how to configure collected metrics based policies using
beans and functions:

* Writing Collected Metrics Policy Expressions Using Beans

* Writing Collected Metrics Policy Expressions Using Functions

10-14

Chapter 10

Creating Complex Policy Expressions Using WLDF Java EL Extensions

10.5.1 Writing Collected Metrics Policy Expressions Using Beans

Table 10-2 summarizes the beans provided by WebLogic Server. For complete
reference information about each of these beans, see WLDF Beans Reference.

Table 10-2 Beans Provided by WebLogic Server

Name Prefix Scope Summary
runtime w s Only available from partition Provides access to MBeans in the local
scope diagnostic system WebLogic Server Runtime MBean Server.
module deployments and These MBeans include both the read-only
partitions configuration MBean and RuntimeMBean
instances.
domainRuntime w s Administration Server Provides access to MBeans on the Domain
Runtime MBean Server (Administration Server
only).
clusterRuntime w s Administration Server Provides domain-wide access to cluster
member data (Administraton Server only).
platform w s Administration Server or Provides access to the JVM's platform MBean
Managed Server server.
Note that in the majority of cases, the
pl at f or mbean is functionally equivalent to
the runt i me bean: WebLogic Server uses the
JVM's platform MBean server to contain the
WebLogic run-time MBeans by default.
partition w s Partition scope WLDF Provides access to partition scope metrics.
diagnostic system module Thjs pean is available only to policies that are
deployments. configured in a diagnostic system module that
is deployed in the same partition to which this
bean is scoped.
resource n/a Administration Server, Provides access to beans and state information

Managed Server, and
partitions

within a diagnostic system module deployment.

Access is restricted to policies that are
configured within the same diagnostic system
module.

10.5.1.1 Accessing MBean Data in Collected Metrics

ORACLE

The beans described in Table 10-2 provide access to WebLogic Server Runtime
MBean metrics. In policy expressions that use Java EL, metric data from each of
these runtime MBeans is accessed using a WLDF-provided bean using the following

syntax:

w s. bean-nanme. attribute-or-operation.attribute-or-operation..

All EL-based policy expressions that use the WLDF beans must begin with the

namespace prefix W s . The prefix wl s is similar to a namespace that contains

all the WLDF beans that can be used in the policy expressions. Beans and their
attributes and methods are accessed using standard JavaBean conventions. The
following example shows a simple policy expression that returns t r ue when the value
of HeapFr eePer cent attribute of JVMRunt i neMBean is less than 20:

10-15

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

w s. runtime. serverRuntime. JVMRunt i ne. heapFr eePercent < 20

The preceding policy expression example accesses the value of HeapFr eePer cent in
the following sequence:

1. Theruntine bean is accessed from the wl s bean namespace.

The runt i me bean provides an entry point into the metrics collected by the local
runtime MBean and also into the read-only configuration MBean data in the
WebLogic Server Runtime MBean Server.

2. The serverRunti ne attribute is accessed from the runt i ne bean.

The server Runt i e attribute of the runt i ne bean corresponds directly to the
Server Runt i mreMBean instance in the local running server instance wherever the
expression is being evaluated.

3. The JVMRunti me attribute, which corresponds to the JVMRunt i meMBean instance
under the local Ser ver Runt i meMBean, is accessed from the server Runti ne bean.

4. The heapFreePer cent attribute is accessed from the returned JVMRunt i ne
instance.

From the runt i me bean, runtime metrics and monitoring data are available through
the server Runt i ne attribute, and the domai n attribute provides access to the current
configuration data in the local read-only DomainMBean tree. This access allows
policies to examine the current in-memory configuration within a policy expression.

MBeans that are accessed as bean attributes from the WLDF-provided expression
beans have read-only access to most of the attributes and some operations available
to the expression as defined in the MBean Reference for Oracle WebLogic Server,
with some exceptions for security purposes.

¢ Note:

There are slight differences in syntax between JMX and JavaBean
conventions when accessing attributes. For example, JavaBean conventions
for accessing the JMX attribute HeapFr eePer cent require using “camel-
case” syntax. When using JMX, the attribute is accessed by the name
HeapFr eePer cent . However, in EL expressions, the same attribute is
accessed as heapFr eePer cent .

10.5.1.2 Working with Complex MBean Attributes

ORACLE

Some MBean attributes return complex objects; for example, the Heal t hSt at e attribute
of the Server Runt i meMBean. Such attributes can be accessed using JavaBean
conventions. In the following example, the policy expression returns t r ue if the health
state of the server is a non-zero value:

W s.runtine.serverRuntinme. healthState.state =0

Working with Array Attributes

Many WLDF bean attributes return arrays of child MBeans. To work with collections,
such as arrays, Java EL provides the st r eamoperator to convert arrays and lists
into stream objects that can be fed into other Java EL and WLDF functions and
operators. In the following example, the policy expression examines the state of alll

10-16

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

JDBCDat aSour ceRunt i meMBean instances in the local server instance, and returns t r ue
if any of them are in the Over | oaded state:

W s. runtine. serverRunti me. JDBCSer vi ceRunt i me. JDBCDat aSour ceRunt i meMBeans. s
treanm().anyMatch(ds -> ds.state == “Overl oaded")

The policy expression executes in the following sequence:

1. The JDBCSer vi ceRunt i meMBean child is accessed from the Ser ver Runt i mneMBean.

2. The array attribute JDBCDat aSour ceRunt i meMBeans is accessed from the
JDBCSer vi ceRunt i meMBean.

3. The Java EL streamoperator is utilized to convert the array to a stream so that it
can be used with WLDF and standard Java EL collection operations.

4. The anyMat ch collection operation is used to look for the Over | oaded state on any
of the returned JDBCDat aSour ceRunt i mreMBean instances.

5. If the anyMat ch operation matches the Over | oaded state, returns tr ue.

10.5.1.3 Performing Bulk Queries on Collected Metrics from MBeans

The MBeans defined in Table 10-2 are used in collected metrics policy expressions.
All of these beans support a query method that allows to perform a query for a set of
MBean attribute values against a homogeneous set of MBeans.

The method takes the following syntax:
query(target-list, object-name-pattern, attribute-expression)
The query method returns an iterable list of values that is obtained using the

attribut e- expressi on on each matching MBean instance.

Table 10-3 Method Parameters

|
Parameter Description

target-list This argument is applicable only for
domai nRunt i me bean which is available only for
policies executing on the Administration Server.
The bean supports an overloaded variant that takes
an array of targets.

Itis a list of servers or clusters in the domain. The
argument allows the policy expression to examine
MBean values across the domain in the same
expression.

obj ect - name- pattern This argument takes any valid JMX ObjectName
pattern that is specified as a string value enclosed
by single quote (') characters. For example:
' com bea: Type=Servl et Runti e, *'

ORACLE 10-17

ORACLE

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Table 10-3 (Cont.) Method Parameters

___|
Parameter Description

attribute-expression This argument is a quoted EL subexpression
that is used to access an attribute from each
of the MBeans matching the object-name-pattern
argument. The at t ri but e- expr essi on argument
can be either of the following types:
* A simple attribute available on the MBean.
e An attribute of a complex type that uses
a JavaBean-style expression to access the
values within that complex structure.
Note: It is expected that at t ri but e- expr essi on
ultimately resolves to a single scalar value, and not
a complex structure.

The values returned by the query method can be used as a part of the larger policy
expression that examines those values.

Note:

The intended use of the query method is to operate against a homogeneous
set of MBean instances, but there is no enforcement mechanism to ensure
that the specified MBeans must all be of the same type. Therefore, if you

do specify an obj ect - nane- pat t er n that encompasses MBeans of different
types, errors can result when the policy expression is evaluated.

Example 10-2 Examples of Using the query Method

Table 10-4 lists some examples of using the query method in policy expressions.

Note:

The examples show how to use the query method and are not complete
policy expressions.

Table 10-4 query Method Examples

___|
Example Description

w s. runtime. query(' com bea: Type=Serv The query method is used for all the

| et Runti me, *', instances of Ser vl et Runt i neMBean in the

' Execut i onTi neAver age') local server and returns the value of
Execut i onTi meAver age for each instance in
the returned iterable stream.

10-18

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Table 10-4 (Cont.) query Method Examples

]
Example Description

w s. donai nRunt i me. query(['clusterl'] The domai nRunti ne bean is used to query all
, values of Pendi ngUser Request Count across

' com bea: Type=Thr eadPool Runtinge, *', allinstances of Thr eadPool Runt i meMBean in

" Pendi ngUser Request Count ") the cluster cl ust er 1. Any values found are
returned in the | t er abl e set returned by the
method call.

The use of query method in policy expression and the result set are represented in the
following illustration:

Figure 10-1 Result Set of query in Policy Expression

Policy Expression

wis.runtime.query("com. bea: Type=SernvietRuntime,™,"ExecutionTima Average")

Raturns com.bea:Name=Sarviat3,
Type=ServlelRuntima,...
) |
Result Set
- S . 4
Sanviett Senviet2 Servietd
150 || || 150 150

The following is a complete example of a policy expression that uses the
query method to determine whether the St uckThr eadCount attribute on any
Wor kManager Runt i neMBean in the local WebLogic Server instance is greater than zero:

w s.runtime. query(' com bea: Type=Wr kManager Runti me, *'
" StuckThreadCount').strean().anyMatch(x -> x > 0)

The values of St uckThr eadCount for all instances of Wr kManager Runt i meMBean are
queried, and each value is examined to see if it is greater than zero, which indicates

a stuck thread in the server. The st reamcollection operation is part of the Java EL
standard, and is used for converting an iterable set into a stream that can be used with
Java EL collection operations, such as anyMat ch in the example.

10.5.2 Writing Collected Metrics Policy Expressions Using Functions

In addition to the bundled functions and collection operations that come with Java

EL by default, there are also a set of WLDF-provided functions for use within policy
expressions for common operations with metric data and for retaining a set of metrics
with history.

The set of WLDF-provided functions includes:

W s:tabl eChanges

ORACLE 10-19

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

* ws:tabl eAverages
W s:extract

W s:average

W s: changes
 ws:aliveServersCount

For complete details about each EL function provided by WLDF, see Functions
Reference.

Functions are invoked using the prefix W s:
w s: <function-call>

For example, W s: al i veServersCount (' cluster1') invokes the
al i veServersCount () function provided by WLDF for the cluster cl ust er 1.

Collection Operations

WLDF also provides a set of collection operations that can be invoked similar to
the collection operations provided by Java EL. The set of WLDF-provided collection
operations includes:

e tabl eAverages

e percenMatch

10.5.2.1 Examining Trends in Metric Values over Time

You can look for trends in metric data over time instead of assessing the instantaneous
values. Use the Wl s: extract function to extract a table of time series from a specified
set of input sources, based on a specified sampling rate schedule and time window.

The extract function has the following syntax:
w s: extract (sources, sanpling rate, retention w ndow)

The method returns an iterable set that consists of a two dimensional set of results.
The metric input to the function comes from multiple MBean instances during the
course of a specific interval of time defined by the ret enti on w ndow parameter. The
resulting data is similar to a table where each row is a set of values from a particular
MBean instance over the time window.

Parameters

Table 10-5 Parameters Description for extract() Function

|
Parameters Description

sources Set of metric sources, which can be identified as a
query method or as a quoted Java EL expression.

ORACLE 10-20

Chapter 10

Creating Complex Policy Expressions Using WLDF Java EL Extensions

Table 10-5 (Cont.) Parameters Description for extract() Function

Parameters

Description

sanmpling rate

String that identifies the frequency with which data is
collected. You can specify this string as hours, minutes,
or seconds. The syntax is flexible, allowing you to
specify 30 seconds, for example, as “30s”, “30sec”, or
“30 seconds”.

Note: The frequency only applies to the rate of
collection of the metric, and is independent of the overall
policy evaluation schedule.

retenti on wi ndow

String that identifies the retention window over which
to observe values from the sources input with syntax
identical to the sanpl i ng rat e parameter.

It implements the sliding window algorithm in which the
oldest data in the set is aged out when the array is full.

See retention window.

Example 10-3 Examples of Using the extract Function

Table 10-6 lists example usages of the extract function.

< Note:

The examples show how to invoke the extract function and are not
complete policy expressions.

Table 10-6 extract Function Examples

Example

Description

w s:extract("w s.runtine.serverR
untime. t hr eadPool Runti me. pendi ng
User Request Count ", "30s", "2ni)

w s:extract(w s.runtime. query("c

The extract function is invoked with an

EL expression as the first argument which
observes and collects the values of the

Pendi ngUser Request Count attribute on the

Thr eadPool Runt i meMBean at 30-second intervals
and retains them over a period of 2 minutes.

In this example, Thr eadPool Runt i meMBean is a
singleton, and only the local WebLogic Server
instance is monitored. Therefore, only a single row
of values is returned in the table of values.

The extract function is used with the result of a

om bea: Type=Thr eadPool Runti ne, *" query method invocation as input.

, "Pendi ngUser Request Count "),
"30s", "2nt)

ORACLE

10-21

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

Table 10-6 (Cont.) extract Function Examples
|

Example Description

w s: extract (w s. domai nRunti me. qu The extract function is used with the query
ery(['clusterl'], method of the domai nRunt i me bean to collect

' com bea: Type=Thr eadPool Runti ne, the value of Pendi ngUser Request Count attribute
*' ' Pendi ngUser Request Count'), on all Thr eadPool Runt i meMBean instances on
"30s', '2m) every server in ¢l ust er 1. The result set for

this call consists of a row of values for each
Thr eadPool Runt i meMBean instance in each active
server instance in ¢l uster1 .

10.5.2.2 Extracting and Examining Collected Metrics in Policy Expressions

The extract function returns a table of scalar values. You can use any collection
operation to examine or manipulate the result set. WLDF provides more collection
operations that are intended for use with the data returned from ext ract function, such
as tabl eAver ages and per cent Mat ch. The result of ext ract can then be fed into other
functions or operations as part of an overall policy expression.

In the following example of a policy expression, the ext ract function collects the
value for the Pendi ngUser Request Count attribute across the servers in cl uster1. The
result is combined with the t abl eAver ages and per cent Mat ch collection operations to
produce a boolean value.

w s: extract (w s. domai nRunti me. query({' clusterl'},

' com bea: Type=Thr eadPool Runti ne, *', ' Pendi ngUser Request Count'), '30s',

"2m). tabl eAverages(). strean(). percent Mat ch(pendi ngCount -> pendi ngCount >
100) > 0.75

This policy expression returns t r ue when the average value of the attribute
Pendi ngUser Request Count over the 2-minutes window is greater than 100 on 75%
of the servers in cl ust er 1. The policy expression executes in the following sequence:

1. The extract function creates a table of values for the attribute
Pendi ngUser Request Count , where each row is one set of values from a server
in cl ust er 1 over a 2-minutes window.

2. Thetabl eAver ages operation computes the average value over the 2-minutes
window for each row in the table returned by the extract function.

3. streamis a standard Java EL collection operation used to convert the vector result
of t abl eAver ages to a Java EL stream.

4. The percent Mat ch operation examines all the computed averages from
t abl eAver ages, and computes the percentage of values in that set that are greater
than 100.

5. The result of per cent Mat ch is a value between 0 and 1 and is compared with 0.75,
the desired threshold.

ORACLE 10-22

Chapter 10
Creating Complex Policy Expressions Using WLDF Java EL Extensions

10.5.2.3 Lifecycle of Data Collection

ORACLE

The extract function extracts data from a specified input source over a defined period
of time. When the extract function is first encountered in an expression by the WLDF
policy engine, it starts the collection of the desired metrics indicated in the policy
expression. Samples are collected by the policy engine until the policy using the
extract function is disabled or undeployed.

Policy expressions that use the extract function is not evaluated until enough data
has been collected for the desired metrics to satisfy the sliding window interval
specified in the invocation. If the function invocation specifies that a 5-minutes window
of data is required, then 5 minutes of data collection must take place from the moment
the policy is deployed before the expression can be successfully evaluated.

In the following example, the expression does not evaluate until 2 minutes of data for
the Pendi ngUser Request Count attribute is collected.

w s:extract(w s. runtime. query("com bea: Type=Thr eadPool Runti ne, *",
"Pendi ngUser Request Count"), "30s", "2n)

10-23

Configuring Actions

The WebLogic Diagnostics Framework (WLDF) provides several types of actions that
can be executed when a policy evaluates to t r ue, such as triggering an elastic scaling
action, sending a JMS natification, executing an external command line script, and
more.

* Actions Overview

* Configuring JMX Actions

* Configuring JMS Actions

e Configuring SNMP Actions

* Configuring Log Actions

* Configuring REST Actions

* Configuring SMTP Actions

* Configuring Image Actions

» Configuring Elastic Actions

* Configuring Script Actions

* Configuring Heap Dump Actions
* Configuring Thread Dump Actions

For information about how to create an action using the WebLogic Server
Administration Console, see Create actions for policies in a diagnostic system module
in Oracle WebLogic Server Administration Console Online Help.

11.1 Actions Overview

An action is an operation that is executed when a policy expression evaluates to
true. WLDF supports different types of action based on the delivery mechanism of the
notification.

Topics
The following sections contain background information pertaining to WLDF actions:

e Types of Actions
e Variables for Customizable Actions

e Action Timeout

11.1.1 Types of Actions

WLDF supports the following types of diagnostic actions, based on the delivery
mechanism:

» Java Management Extensions (JMX)

ORACLE 11-1

Chapter 11
Actions Overview

» Java Message Service (JMS)

* Simple Network Management Protocol (SNMP)
* Simple Mail Transfer Protocol (SMTP)

» Diagnostic image capture

» Elasticity framework

e REST

* WebLogic logging system

* WebLogic Scripting Tool (WLST)

* Heap dump

e Thread dump

In the configuration file for a diagnostic module, the different types of actions are
identified by the following elements in the confi g. xm file for the domain:

* <jmx-notification>

* <jms-notification>

* <snmp-notification>
e <smtp-notification>

* <image-notification>
* <scale-up-action>

* <scale-down-action>
e <rest-notification>

e <log-action>

e <script-action>

e <heap-dump-action>
e <thread-dump-action>

These action types all have <name> and <enabled> configuration options. The value
of <name> is used as the value in a <notification> element for a policy, to map the
policy to its corresponding action. The <enabled> element, when set to true, enables
that action. In other words, the action is executed when an associated policy evaluates
to true. Other than <name> and <enabled>, each action type is unique.

11.1.2 Variables for Customizable Actions

The log, SMTP, and REST action types support the generation of customized strings
that contain one or more of the variables listed in this topic.

When a triggered policy invokes one of these action types, each variable used in the
customized string that is generated by the action is replaced with the value shown in
the following table.

ORACLE 11-2

Chapter 11
Actions Overview

Table 11-1 Substitution Variables
]

Variable Name Value

Wt chNarme Name of policy that corresponds to the action

Wt chRul eType Policy type (for example, Har vest er, Log, or Event Dat a)

VWt chRul e Policy expression

Wt chTi me Timestamp identifying when the corresponding policy was triggered

Wt chSeveritylLeve Policy severity option
I

VWt chDat a Log message

Wt chAl ar nifype Specifies the policy alarm type, which can be None, Aut omat i cReset ,
or Manual Reset .

Wat chAl ar nReset Pe Alarm reset period configured on the
riod WL.DFWat chNot i fi cati onRunti meMBean.

Wt chDomai nName WebLogic domain name

\Wat chSer ver Nane Server instance name

Log, REST, and SMTP actions send different types of messages when executed. Each
of these actions, while different, has one or more properties that support the use of
one or more of the variables defined in . For example, an SMTP message body can be
specified as follows to include the policy name, expression, and timestamp indicating
when the policy was triggered:

"Test ${WatchName} with policy ${WatchRule} fired at ${WatchTine}."

For more information about using these substitution variables, see:

e Configuring Log Actions
e Configuring REST Actions
e Configuring SMTP Actions

11.1.3 Action Timeout

ORACLE

All WLDF actions support a timeout, which determines the time, in seconds, for the
action to complete execution. By default, the timeout is 0, which disables the action
timeout.

You can specify the action timeout using the W.DFNot i f i cat i onBean. Ti meout attribute.

You can also set the timeout when configuring an action in either the WebLogic Server
Administration Console or Fusion Middleware Control. See the following topics:

» Create actions for policies in a diagnostic system module in Oracle WebLogic
Server Administration Console Online Help

» Configure an action in Administering Oracle WebLogic Server with Fusion
Middleware Control

11-3

Chapter 11
Configuring JMX Actions

11.2 Configuring JMX Actions

WLDF issues JMX events when an associated policy is triggered for each defined JIMX
action. You can configure the JMX action to receive all the JMX notification and filter
the output as required.

For each defined JMX action, WLDF issues JMX events (notifications) whenever an
associated policy is triggered. Applications can register an action listener with the
server's W.DFWat chNot i fi cati onSour ceRunt i meMBean to receive all IMX notifications
and filter the provided output. You can also specify a JMX "notification type" string that
a JMX client can use as a filter.

Example 11-1 shows an example of a JMX action configuration.
Example 11-1 Example Configuration for a IMX Action

<w df -resource xm ns="http://xm ns. oracl e. conl webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xsi:schenmaLocation="http://xm ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<nanme>nyw df 1</ nane>
<wat ch-noti fication>
<l-- One or nore policy configurations -->
<jmx-notification>
<name>nyJMXNot i f </ nane>
<enabl ed>t r ue</ enabl ed>
</jm-notification>
<I-- Oher action configurations -->
</wat ch-notification>
</w df -resour ce>

Here is an example of a JMX action:

Notification nane: myj mx cal l ed. Count= 42.

Wt ch severity: Noti ce

Watch time: Jul 19, 2005 3:40:38 PM EDT

Wt ch Server Nane: nyserver

Wt ch Rul eType: Har vest er

Wt ch Rul e: ${com bea: Name=nyser ver, Type=Server Runti ne//
OpenSocket sCurrent Count} > 1

Wt ch Nane: mywat ch

Wt ch Donai nNane: nmydonai n

Wt ch Al ar nType: None

Wat ch Al armReset Peri od: 10000

11.3 Configuring JMS Actions

ORACLE

You can configure JMS actions to send JMS noatifications through the JMS topics or
gueues when the corresponding policy is triggered. You can define how the notification
must be delivered such as defining the destination and the connection factory.

In the system resource configuration file, the elements <dest i nati on-j ndi - nane> and
<connection-factory-j ndi - nane> define how the notification is to be delivered.

Example 11-2 shows two JMS actions that cause JMS notifications to be sent through
the provided topics and queues using the specified connection factory. For this to work

11-4

Chapter 11
Configuring SNMP Actions

properly, JIMS must be properly configured in the confi g. xml configuration file for the
domain, and the JMS resource must be targeted to this server.

Example 11-2 Example JMS Actions

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schenmaLocation="http://xn ns. oracl e. conf webl ogi ¢/ webl ogi c-di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<name>nyw df 1</ name>
<wat ch-notification>
<I-- One or nore policy configurations -->
<jnms-notification>
<name>nyJMsSTopi cNot i f </ name>
<desti nati on-j ndi - name>MyJMSTopi c</ desti nati on-j ndi - name>
<connection-factory-jndi - nane>webl ogi c. j ns. Connecti onFactory
</ connection-factory-jndi - nane>
</jms-notification>
<jns-notification>
<name>nyJMSQueueNot i f </ name>
<desti nati on-j ndi - name>MyJMSQueue</ dest i nati on-j ndi - name>
<connection-factory-j ndi - nane>webl ogi c. j ns. Connecti onFactory
</ connection-factory-jndi - nane>
</jnms-notification>
<I-- Qther action configurations -->
</wat ch-noti fication>
</w df -resour ce>

The content of the action message gives details of the policy and action.

11.4 Configuring SNMP Actions

Simple Network Management Protocol (SNMP) actions are used to post SNMP traps
when an associated policy is triggered. Provide the action name to define an SNMP
action.To define an SNMP action, provide the action name as shown in Example 11-3.
Generated traps contain the names of both the policy and action that caused the

trap to be generated. For an SNMP trap to work properly, SNMP must be properly
configured in the confi g. xm configuration file for the domain.

Example 11-3 An Example Configuration for an SNMP Action

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schenalLocation="http://xnm ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<nanme>nyw df 1</ nane>
<wat ch-noti fication>
<l-- One or nore policy configurations -->
<snnp-notification>
<name>ny SNVPNot i f </ name>
</ snnp-notification>
<l-- Oher action configurations -->
</wat ch-notification>
</w df -resour ce>

The trap resulting from the SNMP action configuration shown in Example 11-3 is
of type 85. It contains the following values (configured values are shown in angle
brackets "<>"):

ORACLE 11-5

Chapter 11
Configuring Log Actions

1.3.6.1.4.1.140.625.100.5 timestanp (e.g. Dec 9, 2004 6:46:37 PM EST
1.3.6.1.4.1.140. 625. 100. 145 donmi nNane (e.g. mydomain")
1.3.6.1.4.1.140.625.100. 10 serverNane (e.g. nyserver)
1.3.6.1.4.1.140. 625. 100. 120 <severity> (e.g. Notice)
1.3.6.1.4.1.140. 625. 100. 105 <name> [of watch] (e.

si npl eVebLogi cMBeanWat chRepeat i ngAft er Wai t)
.1.3.6.1.4.1.140.625.100. 110 <rule-type> (e.g. HarvesterRule)
.1.3.6.1.4.1.140. 625. 100. 115 <rul e- expressi on>
.1.3.6.1.4.1.140. 625. 100. 125 val ues which caused rule to

fire (e.g..State =
nul I, webl ogi c. managenent . runt i me. W.DFHar vest er Runt i meMBean.
Tot al Sanpl i ngTime = 886, . Enabl ed =
nul I, webl ogi c. managenent . runti me. Server Runt i meMBean.
OpenSocket sCurrent Count = 1,)

1. 1.4.1.140.625.100.130 <alarmtype> (e.g. None)

1. 4.1.140.625.100. 135 <al armreset-period> (e.g. 10000)

1. 4.1.140.625. 100. 140 <nanme> [of notification]

(e.g. mySNVPNot i f)

n
3.6.
3.6.1.
3.6.1.

11.5 Configuring Log Actions

You can create a log action to send a customized message to the server log.

The customized message can optionally include any of the variables described
in Variables for Customizable Actions. The following WLST example shows the
configuration of a log action:

wn=r es. get Wat chNot i fi cation()

acti onNane="nyacti on"
action = wn. | ookupLogAction(actionNane);
if action is None:
action = wn.createScriptAction(actionNang);
action. set Message("Message with substitution on server ${WatchServerName} in
domain ${WatchDomainName}");
action. set Subsyst emName(" Speci al LogActi on);
action. set Severity("Info");

When the preceding log action is executed, the custom message, shown in bold, uses
variables to identify:

e The WebLogic Server instance name, represented by the ${ Wat chSer ver Nane}
variable

e The WebLogic domain name, represented by the variable ${ Wat chDonai nNane}

11.6 Configuring REST Actions

ORACLE

You can use a REST action to send a notification to a REST endpoint that includes a
customized message in the notification payload. You can configure the REST endpoint
invocation for no authentication or basic authentication.

When configuring a REST action, you can create a customized set of notification
properties that can optionally use any of the variables described in Variables

for Customizable Actions. For example, the following WLST example shows the
configuration of a REST action that sends a customized message:

wn = res. get WatchNotification();

11-6

Chapter 11
Configuring SMTP Actions

#No Auth REST invocation

restl = wn.createRESTNotification('rl1")

rest 1. set Endpoi nt URL("http://| ocal host: 7001/ r est - no- aut h/ r esour ces/ wat ch-
l'istener")

customNotif = java.util.Properties()

customNot i f. put ("message”, "Policy ${WatchName} with rule ${WatchRule} fired.")
restl.set CustomNotificationProperties(customotif)

rest 1. set Enabl ed(true)

#Basi ¢ Auth REST invocation

rest2 = wn.createRESTNotification('r2")

rest2. set Endpoi nt URL("http:// | ocal host: 7001/ rest - basi c-aut h/ r esour ces/ wat ch-
l'istener")

rest2.set Ht pAut henti cati onMbde(' Basi c')

rest2.set Ht pAut henticati onUser Nane(' restuserl')

rest2.set Ht pAut henticati onPassword(' restuserl')

rest 2. set Enabl ed(true)

When the preceding REST action is executed, the REST endpoint is invoked with a
message, shown in bold, that identifies:

* The name of the triggered policy that executed the corresponding REST action,
represented by the ${ Wat chNane} variable

» The policy expression, represented by the ${ W\t chRul e} variable

11.7 Configuring SMTP Actions

ORACLE

Simple Mail Transfer Protocol (SMTP) actions are used to send messages (e-mail)
over the SMTP protocol in response to the triggering of an associated policy. You
provide a list of recipients to whom the message is distributed through the configured
SMTP session.

To define an SMTP action, first configure the SMTP session. That configuration is

persisted in the confi g. xm configuration file for the domain. In DI AG_MODULE. xnl ,

you provide the configured SMTP session using subelement <nai | - sessi on-j ndi -
name>, and provide a list of at least one recipient using subelement <r eci pi ent s>.

An optional subject and/or body can be provided using subelements <subject> and
<body> respectively. If these are not provided, they will be defaulted.

Example 11-4 shows an SMTP action that causes an SMTP (e-mail) message to be
distributed through the configured SMTP session, to the configured recipients. In this
action configuration, a custom subject and body are provided. If a subject or body are
not specified, defaults are provided, showing details of the policy and action.

Example 11-4 Sample Configuration for SMTP Action (in DIAG_MODULE.xml)

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi: schemalLocation="http://xn ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<name>nyw df 1</ name>
<wat ch-notification>
<l-- One or nore policy configurations -->
<sntp-notification>
<nanme>ny SMIPNot i f </ nane>
<mai | - sessi on-j ndi - name>MyMai | Sessi on</ nmai | - sessi on-j ndi - nane>
<subj ect>Critical Problem </subject>
<body>A systemissue occurred. Call Wnston ASAP.

11-7

Chapter 11
Configuring Image Actions

Ref erence nunmber 81767366662AG USA23. </ hody>
<reci pi ent s>adni ni strat or @ryConpany. conx/ reci pi ent s>
</sntp-notification>
<l-- Oher action configurations -->
</wat ch-notification>
</w df -resour ce>

The content of the action message gives details of the policy and action.

WLDF also supports customizing the subject and body elements in the sent email by
using any of the variables described in Variables for Customizable Actions.

The following WLST example shows the configuration of an SMTP action that contains
customized subject and body text. The subject and body of the message utilize
variables to specify the policy name and the timestamp indicating when the policy

was triggered:

snt p=wn. | ookupSMIPNot i fi cation('sntpl')
if smpis None:
snt p=wn. creat eSMIPNot i fi cation('sntpl")

snt p. set Mai | Sessi onJNDI Nanme(' t est. Mai | Session')

snt p. set Subj ect ("WatchRule ${WatchName} alert")

snt p. set Body("Test ${WatchName} with rule ${WatchRule} fired at ${WatchTime}.")
snt p. set Reci pi ents(["j ohn. sm th@ oo. coni'])

When the preceding SMTP action is executed, an email is generated with a custom
subject and body, shown in bold, that identifies:

* The name of the policy that executed the SMTP action, represented by the
variable ${ Wt chNane}. This variable is used in both the subject and body.

e The policy expression, represented by the ${ Wt chRul e} variable

* The timestamp identifying when the corresponding policy was triggered,
represented by the ${WatchTime} variable

11.8 Configuring Image Actions

ORACLE

An image action causes a diagnostic image to be generated in response to the
triggering of an associated policy. You can configure two options for image actions:
a directory and a lockout period.

The directory name indicates where the images will be generated. The lockout period
determines the number of seconds that must elapse before a new image can be
generated after the last one. This is useful for limiting the number of images that will
be generated when there is a sequence of server failures and recoveries.

You can specify the directory name relative to the DOVAI N_HOVE\ ser ver s\ SERVER NAME.
The default directory is DOVAI N_HOME\ ser ver s\ SERVER _NAME\ | ogs\ di agnosti c-
i mages.

Image file names are generated using the current timestamp (for example,
di agnostic_i mage_nmyserver 2005 08 09 13 40 34.zip), so an action can execute
many times, resulting in a separate image file each time.

The configuration is persisted in the DI AG MODULE. xm configuration file.
Example 11-5 shows an image action configuration that specifies that the

11-8

Chapter 11
Configuring Elastic Actions

lockout time will be two minutes and that the image will be generated to the
DOVAI N_HOVE\ ser ver s\ SERVER_NAME\ i mages directory.

Example 11-5 Sample Configuration for Image Action (in DIAG_MODULE.xml)

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schenmaLocation="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<name>nyw df 1</ name>
<wat ch-notification>
<I-- One or nore policy configurations -->
<i mage-notification>
<nanme>nyl mageNot i f </ name>
<enabl ed>t r ue</ enabl ed>
<i mage- | ockout >2</ i mage- | ockout >
<i mage- di r ect or y>i mages</ i mage- di rect ory>
</image-notification>
<I-- Qher action configurations -->
</wat ch-noti fication>
</w df -resource>

For more information about Diagnostic Images, see Configuring and Capturing
Diagnostic Images.

11.9 Configuring Elastic Actions

ORACLE

WLDF provides scale up and scale down elastic actions that can be performed on
dynamic clusters.

e scale up — Configured using the W.DFScal eUpAct i onBean
* scale down — Configured using the W.DFScal eDownAct i onBean

Each action bean has the following configuration attributes:

* clusterName — The name of the dynamic cluster that needs to be scaled

e scalingSi ze — The number of Managed Server instances by which the dynamic
cluster needs to be scaled up or down

The scale up and scale down actions attempt to scale the dynamic cluster specified

by the cl ust er Nane parameter, by the number of servers specified as the scal i ngSi ze
value. WLDF interacts with the elasticity framework to scale the dynamic cluster
accordingly.

¢ Note:
Note the following:

« To configure automated elasticity for a dynamic cluster, you must create
a domain-scope diagnostic system module in which you define the
scaling policy, along with its corresponding elastic action, and then target
that diagnostic module to the Administration Server.

e After a scale up or scale down action has been invoked, the scaling
action can't be subsequently cancelled.

11-9

Chapter 11
Configuring Elastic Actions

The following WLST snippet shows the commands for configuring a scale up action.
In this example, the dynamic cluster myCl ust er is scaled up by one Managed Server
instance:

wn=r es. get Wat chNot i fi cation()

scal eUp=wn. | ookupScal eUpAction(' scal eUp')
i f scal eUp == None:
print "Creating scale up action”
scal eUp=wn. cr eat eScal eUpAction(' scal eUp')
scal eUp. set Scal i ngSi ze(1)
scal eUp. set G ust er Nane(nyCl uster)

The following example shows the WLST commands for configuring a scale down
action on nyC uster:

wn=r es. get Wat chNot i fi cati on()

scal eDown=wn. | ookupScal eDownAct i on(' scal eDown')
i f scal eDown == None:
print "Creating scal e down action”
scal eDown=wn. cr eat eScal eDownAct i on(' scal eDown')
scal eDown. set Scal i ngSi ze(1)
scal eDown. set G ust er Nanme(myd ust er)

For complete details about using these elastic actions, see:

» Elastic Actions in Configuring Elasticity in Dynamic Clusters for Oracle WebLogic
Server

* Expanding or Reducing Dynamic Clusters in Administering Clusters for Oracle
WebLogic Server

11.9.1 Elastic Scaling Operations Cannot Be Cancelled After Starting

Note that the moment a scaling operation has begun, regardless of whether it is a
scale up or scale down operation, it cannot be cancelled. If you configure automated
elasticity in a dynamic cluster, such as with calendar-based or policy-based scaling,
the elasticity framework does not provide the means to cancel a scaling operation after
it has been initiated.

Consequently, if a postprocessor script (invoked by a script interceptor) fails, the
parts of the scaling operation that were completed can't be reverted. For more
information about script interceptors and postprocessor scripts, see Configuring the
Script Interceptor in Configuring Elasticity in Dynamic Clusters for Oracle WebLogic
Server.

11.9.2 Limiting Server Shutdown Time During Scale Down Operations

ORACLE

Shutting down servers during a scale down operation can take a significant amount of
time, especially if there are unreplicated sessions. Until unreplicated sessions time out,
which can potentially be a long time, the server will not be shut down.

To limit the length of time required to complete a scale down operation, you can
configure the following attributes on the Dynami cSer ver sMBean:

11-10

Chapter 11
Configuring Script Actions

Attribute Description

Dynami cd ust er Shut dow Timeout period, in seconds, to use while gracefully shutting down

nTi meout Seconds a dynamic server instance. If the dynamic server instance does
not shut down before the specified timeout period, then it will be
forcibly shut down.

The default value is 0.

| gnor eSessi onsDuri ngS Specifies whether to ignore inflight HTTP requests while shutting

hut down down dynamic server instances.

Wi t For Al | Sessi onsDur Specifies whether to wait for all persisted and nonpersisted inflight

i ngShut down HTTP sessions to complete before shutting down dynamic server
instances.

By specifying a timeout or ignoring inflight HTTP sessions during shutdown, the
shutdown time can be limited. However, note that remaining inflight HTTP sessions
may be lost.

11.10 Configuring Script Actions

ORACLE

You can use the script action to execute an external command-line script. The script
can be written in any scripting language.

To set the execution environment in which the script is run, you can configure the
following attributes of the W.DFScr i pt Act i onBean:

e PathToScri pt — The full path to the script, which must be located in the
DOMAI N_HOVE/ bi n/ scri pt s directory

e WorkingDirectory — The directory from which the WebLogic Server process was
run, which is typically the domain root directory.

e Environment — A map of environment variables to set for the child process
e Paranet ers — An array of parameters or command options to pass to the script

e Timeout — The time, in seconds, for the script action to complete execution. By
default, the timeout is 0, which disables the script action timeout.

When the script action is executed by a triggered policy, WLDF invokes the configured
script, which is run with the identity of the configured script. The script process
executes as a child process of the WebLogic Server process that spawned it.
Therefore, the script process has the same operating system identity as the WebLogic
Server process; however, it does not inherit any of the parent process environment.

The following example shows configuring a script action using WLST:

wn=r es. get Wat chNot i fi cati on()

acti onNane="nyaction"
action = wn. | ookupScri pt Action(actionNane);
if action is None:

action = wn.createScriptAction(actionNang);

action.setWrkingDirectory("sonedir");
action. setPathToScript ("nyScript.sh");
action. setParaneters(["paranl", "paran"]);
action. set Ti neout (300);

11-11

Chapter 11
Configuring Heap Dump Actions

11.11 Configuring Heap Dump Actions

ORACLE

You can use a heap dump action to capture heap dumps when certain runtime
conditions, defined by a policy expression, are met. Each heap dump is produced

in HPROF format, which you can analyze with tools such as the j map utility, which is
available in the JDK.

You create a heap dump action by configuring the W.DFHeapDunpAct i onBean and the
W.DFSer ver Di agnost i cMBean in a domain scope diagnostic system module — that is,
a diagnostic system modules that is deployed in the domain partition. You cannot
use this action in a diagnostic system module that is scoped to a partition. When
configuring a heap dump action, you can specify the following:

* Whether or not to include only objects that can be referenced (that is, not garbage-
collected, or awaiting garbage collection), which you specify in the Li veSet Onl y
attribute of the W.DFHeapDunpAct i onBean. The default value is t r ue.

e The location each server's diagnostic dumps directory where the heap dumps are
stored. You can specify this directory in the Di agnost i cDunpsDi r attribute of the
W.DFSer ver Di agnost i cMBean.

e The number of heap dump files that are retained, which prevents filling up the
file system with generated heap dumps. You can specify the number in the
MaxHeapDunpCount attribute of the W.DFSer ver Di agnost i cMBean. The default value
is 8.

The generated heap dump files are named using the following syntax:

HeapDunmp_$SERVER_$MODULE_$POLI CY_$ACTI ON_$t i mest anp. hpr of

In the preceding syntax:

* $SERVER represents the name of the WebLogic Server instance that generated the
heap dump.

e $MODULE represents the name of the diagnostics system module that contains the
action configuration.

e $PQOLI CY represents the name of the policy that executed the heap dump action.
e $ACTI ON represents the name of the W.DFHeapDunpAct i onBean.

e $timestanp represents time when the heap dump was generated, which takes the
form of yyyy_nm dd_HH MM SS.

Note:
Note the following:

e Heap dumps may contain sensitive information. Therefore, make sure
that you place appropriate access protections on the directories into
which heap dumps are generated.

e If a heap dump action is in progress, an attempt by another heap dump
action to generate a heap dump is rejected and a message is generated
in the server log.

11-12

Chapter 11
Configuring Thread Dump Actions

For information about how to create and configure a heap dump action using the
WebLogic Server Administration Console, see Create a heap dump action and
Configure a heap dump action in Oracle WebLogic Server Administration Console
Online Help.

The j map utility is described in the Java SE 8 documentation, available at htt p: //
docs. oracl e. conl j avase/ 8/ .

Example 11-6 An Example Configuration for a Heap Dump Action
The following WLST example shows the configuration of a heap dump action:

Start an edit session in edit tree
edit()

startEdit()

cd("/M")

i f cno.| ookupW.DFSyst enResour ce("nywl df ") == None:
print "Creating WDF resource"
cno. cr eat eWLDFSyst enmResour ce(" nyw df ")

cd("/W.DFSyst enResour ces/ myw df / W.DFResour ce/ myw df / Wat chNoti fi cati on/ nyw df ")

Create a heap dunp action

cno. cr eat eHeapDunpAct i on(' nyHeapDunp')

cd(" HeapDunpAct i ons/ nyHeapDunp")

Set it to capture a full heap, not just the live setLiveSetOnly - default is
“true”

cno. set Li veSet Onl y(f al se)

save()
activate()

11.12 Configuring Thread Dump Actions

ORACLE

You can use a thread dump action to capture a specific number of thread dumps,
separated by configured time interval, when the runtime conditions that are specified in
a corresponding policy are met. Each thread dump file is produced in an individual text
file.

You create a thread dump action by configuring the W.DFThr eadDunpAct i onBean and
the W.DFSer ver Di agnost i cMBean in a domain scope diagnostic system module — that
is, a diagnostic system modules that is deployed in the domain partition. You cannot
use this action in a diagnostic system module that is scoped to a partition. When
configuring a thread dump action, you specify the following:

* The number of thread dumps to be captured, which you specify in the
Thr eadDunpCount attribute of the W.DFThr eadDunpAct i onBean. The default value
is 3.

* The interval between successive thread dumps, which you specify in the
Thr eadDunpDel aySeconds attribute of the W.DFThr eadDunpAct i onBean. The default
value is 10 seconds.

* The location each server's diagnostic dumps directory where the thread dumps
are stored, which you can specify with the Di agnost i cDunpsDi r attribute of the
W.DFSer ver Di agnost i cMBean.

11-13

http://docs.oracle.com/javase/8/
http://docs.oracle.com/javase/8/

ORACLE

Chapter 11
Configuring Thread Dump Actions

* The number of thread dump files that are retained, which prevents filling up
the file system with generated thread dumps. You specify the number using the
MaxThr eadDunpCount attribute of the W.DFSer ver Di agnost i cMBean. The default
value is 100.

The generated thread dump files are named using the following syntax:

HeapDunmp_$SERVER _$MODULE_$POLI CY_$ACTI ON_$t i mest anp. hpr of

In the preceding syntax:

e $SERVER represents the name of the WebLogic Server instance that generated the
thread dump.

* $MODULE represents the name of the diagnostics system module that contains the
action configuration.

e $PQLI CY represents the name of the policy that executed the thread dump action.
* $ACTI ON represents the name of the W.DFThr eadDunpAct i onBean.

e $tinmestanp represents time when the thread dump was generated, which takes
the form of yyyy_mm dd_HH MM SS.

< Note:
Note the following:

e Thread dumps may contain sensitive information. Therefore, make sure
that you place appropriate access protections on the directories into
which thread dumps are generated.

< If a thread dump action is in progress, an attempt by another thread
dump action to generate a thread dump is rejected and a message is
generated in the server log.

For information about how to create and configure a thread dump action using the
WebLogic Server Administration Console, see Create a thread dump action and
Configure a thread dump action in Oracle WebLogic Server Administration Console
Online Help.

Example 11-7 An Example Configuration for a Thread Dump Action
The following WLST example shows the configuration of a thread dump action:

Start an edit session in edit tree
edit()

startEdit()

cd("/")

i f cno. | ookupW.DFSyst enResour ce("nywl df ") == None:

print "Creating W.DF resource"

cno. cr eat eWLDFSyst emResour ce(" myw df ")
cd("W.DFSyst enResour ces/ nyw df / W.DFResour ce/ nyw df / Wat chNot i fi cation/ mywl df ")
Create a Thread Dunp action

cno. creat eThr eadDunpAct i on(' nyThr eadDunp')
cd(" Thr eadDunpAct i ons/ nyThr eadDunp")

11-14

Chapter 11
Configuring Thread Dump Actions

set it to capture 5 dunps at 30 second intervals
cno. set Thr eadDunpCount (5)
cno. set Thr eadDunpDel ay Seconds(30)

save()
activate()

ORACLE 11-15

Configuring Instrumentation

The Instrumentation component of the WebLogic Diagnostics Framework (WLDF)
provides a mechanism for adding diagnostic code to WebLogic Server instances and
the applications running on them.The key features provided by WLDF Instrumentation
are:

» Diagnostic monitors. A diagnostic monitor is a dynamically manageable unit of
diagnostic code that is inserted into server or application code at specific locations.
You define monitors by scope (system or application) and type (standard,
delegating, or custom).

- Diagnostic actions. A diagnostic action is the action a monitor takes when it is
triggered during program execution.

» Diagnostic context. A diagnostic context is contextual information, such as
unique request identifier and flags that indicate the presence of certain request
properties such as originating IP address or user identity. The diagnostic context
provides a means for tracking program execution and for controlling when
monitors trigger their diagnostic actions. See Configuring the Dyelnjection Monitor
to Manage Diagnostic Contexts.

WLDF provides a library of predefined diagnostic monitors and actions. You can also
create application-scoped custom monitors in which you control the locations in the
application where diagnostic code is inserted.

The following sections introduce the Instrumentation components and explain how to
configure them and also the different kinds of diagnostic monitors and actions:

e Concepts and Terminology

* Instrumentation Configuration Files

* XML Elements Used for Instrumentation

» Configuring Server-Scoped Instrumentation

* Configuring Application-Scoped Instrumentation

* Creating Request Performance Data

12.1 Concepts and Terminology

ORACLE

Learn a comprehensive list of common terms and some basic concepts that apply to
the Instrumentation component of WLDF.

* Instrumentation Scope

* Configuration and Deployment

* Joinpoints, Pointcuts, and Diagnostic Locations
» Diagnostic Monitor Types

» Diagnostic Actions

12-1

Chapter 12
Concepts and Terminology

12.1.1 Instrumentation Scope

You can provide instrumentation services at the system level (servers and

clusters) and at the application level. Many concepts, services, configuration

options, and implementation features are the same for both levels. However,

there are differences, which are discussed throughout this document. The term
server-scoped instrumentation refers to instrumentation configuration and features
specific to WebLogic Server instances and clusters. By contrast, application-scoped
instrumentation refers to configuration and features specific to applications deployed
on WebLogic Server instances. The scope is built in to each diagnostic monitor; you
cannot modify a monitor's scope.

12.1.2 Configuration and Deployment

Server-scoped instrumentation for a server or cluster is configured and deployed as
part of a diagnostic module, an XML configuration file located in the DOVAI N_HOVE/
confi g/ di agnosti cs directory, and linked from confi g. xn .

Application-scoped instrumentation is also configured and deployed as a diagnostics
module, in this case an XML configuration file named webl ogi ¢c- di agnosti cs. xnl ,
which is packaged with the application archive in the ARCH VE_PATH META- | NF
directory for the deployed application.

12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations

Instrumentation code is inserted (or woven) into server and application code at
precise locations. The following terms are used to describe these locations:

* Ajoinpoint is a specific location in a class; for example, the entry point, or exit
point, or both, of a method or a call site within a method.

* A pointcut is an expression that specifies a set of joinpoints, for example all
methods related to scheduling, starting, and executing work items. The XML
element that specifies a pointcut is <pointcut>. Pointcuts are described in Defining
Pointcuts for Custom Monitors.

* A diagnostic location is the position relative to a joinpoint where the diagnostic
activity will take place. Diagnostic locations are Before, After, and Around. The
XML element that identifies a diagnostic location is <location-type>.

12.1.4 Diagnostic Monitor Types

ORACLE

A diagnostic monitor is categorized by its scope and its type. The scope is

either server-scoped or application-scoped. The type is determined by the monitor's
pointcut, diagnostic location, and actions. For example, Servlet_Around_Service is an
application-scoped delegating monitor that can be used to trigger diagnostic actions at
the entry to and exit from specific servlet and JSP methods.

There are three types of diagnostic monitors:

e A standard monitor performs specific, predefined diagnostic actions at specific,
predefined pointcuts and locations. These actions, pointcuts, and locations are
hard-coded in the monitor. You can enable or disable the monitor, but you cannot
modify its behavior.

12-2

Chapter 12
Concepts and Terminology

The only standard server-scoped monitor is the Dyelnjection monitor, which you
can use to create diagnostic context and to configure dye injection at the server
level. See Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts.

The only standard application-scoped monitor is HttpSessionDebug, which you
can use to inspect an HTTP Session object.

* A delegating monitor has its scope, pointcuts, and locations hard-coded in the
monitor, but you select the actions that the monitor performs. That is, the monitor
delegates its actions to the ones you select. Delegating monitors are either server-
scoped or application-scoped.

A delegating monitor by itself is incomplete. To have a delegating monitor perform
useful work, you must assign at least one action to it.

Not all actions are compatible with all monitors. When you configure a delegating
monitor from the WebLogic Server Administration Console, you can choose only
those actions that are appropriate for the selected monitor. If you configure a
delegating monitor using WLST or by editing a descriptor file manually, you must
make sure that the actions are compatible with that monitor. WLDF validates a
delegating monitor when its XML configuration file is loaded at deployment time.

See WLDF Instrumentation Library, for a list of the delegating monitors and
actions provided by the WLDF Instrumentation Library.

* A custom monitor is a special case of delegating monitor that:
— Is available only for application-scoped instrumentation
— Does not have a predefined pointcut or location

To configure a custom monitor, you assign it a name, define the pointcut and

the diagnostics location that the monitor uses, and assign actions from the set of
predefined diagnostic actions. The <pointcut> and <location type> elements are
mandatory for a custom monitor.

Table 12-1 summarizes the differences among the types of monitors.

Table 12-1 Diagnostic Monitor Types
|

Monitor Type Scope Pointcut Location Action

Standard monitor Server Fixed Fixed Fixed

Delegating monitor Server or Fixed Fixed Configurable
Application

Custom monitor Application Configurable Configurable Configurable

You can restrict when a diagnostic action is triggered by setting a dye mask on a

monitor. This mask determines the dye flags in the diagnostic context that trigger

actions. See <wldf-instrumentation-monitor> XML Elements, for information about
setting a dye mask for a monitor.

Note:

Diagnostic context, dye injection, and dye filtering are described in
Configuring the Dyelnjection Monitor to Manage Diagnostic Contexts.

ORACLE 12-3

Chapter 12
Instrumentation Configuration Files

12.1.5 Diagnostic Actions

Diagnostic actions execute diagnostic code that is appropriate for the associated
delegating or custom monitor (standard monitors have predefined actions). For a
delegating or custom monitor to perform any useful work, you must configure at least
one action for that monitor.

The WLDF diagnostics library provides the following actions, which you can attach to a
monitor by including the action's name in an <action> element of the DI AG MODULE. xm
configuration file:

» DisplayArgumentsAction

* MethodInvocationStatisticsAction
* MemoryAllocationStatisticsAction
e StackDumpAction

e ThreadDumpAction

e TraceAction

» TraceElapsedTimeAction

e TraceMemoryAllocationAction

Actions must be correctly matched with monitors. For example, the TraceElapsedTime
action is compatible with a delegating or custom monitor whose diagnostic location
type is Around. See WLDF Instrumentation Library, for more information.

12.2 Instrumentation Configuration Files

ORACLE

Instrumentation is configured as part of a diagnostics descriptor, which is an XML
configuration file whose name and location depend on whether you are implementing
system-level (server-scoped) or application-level (application-scoped) instrumentation.

The Instrumentation component is configured as follows:

» System-level instrumentation configuration is stored in one or more diagnostics
descriptors in the following directory:

DOVAI N_HOMVE/ confi g/ di agnosti cs

This directory can contain multiple system-level diagnostic descriptor files. File
names are arbitrary but must be terminated with . xn ; for example, myDi ag. xm .
Each file can contain configuration information for one or more of the following
deployable diagnostic components:

— Harvester
— Instrumentation
— Policies and Actions

The configuration of one or more diagnostic monitors can be defined in an
<instrumentation> section in the descriptor file. Server-scoped instrumentation can
be enabled, disabled, and reconfigured without restarting the server.

12-4

ORACLE

Chapter 12
Instrumentation Configuration Files

Only one WLDF system resource (and hence one system-level diagnostics
descriptor file) can be active for a server or cluster at any given time. The active
descriptor is linked to and targeted from the following configuration file:

DOVAI N_HOME/ confi g/ config. xm

See Configuring Diagnostic System Modules. For general information about the
creation, content, and parsing of configuration files in WebLogic Server, see
Domain Configuration Files in Understanding Domain Configuration for Oracle
WebLogic Server.

Application-level instrumentation configuration is packaged within an application's
archive in the following location:

META- | NF/ webl ogi c- di agnosti cs. xnl

Because instrumentation is the only diagnostics component that is deployable
to applications, this descriptor can contain only instrumentation configuration
information.

Note:

For instrumentation to be available for an application, instrumentation
must be enabled on the server to which the application is deployed.
(Server-scoped instrumentation is enabled and disabled in the
<instrumentation> element of the diagnostics descriptor for the server.

You can enable and disable diagnostic monitors without redeploying an
application. However, you may need to redeploy the application after modifying
other instrumentation features; for example, defining pointcuts or adding or
removing monitors. Whether you need to redeploy depends on how you configure
the instrumentation and how you deploy the application. There are three options:

— Define and change the instrumentation configuration for the application
directly, without using a JSR-88 deployment plan

— Configure and deploy the application using a deployment plan that has
placeholders for instrumentation settings

— Enable the HotSwap feature when starting the server, and deploy using a
deployment plan that has placeholders for instrumentation settings

For more information about these choices, see Using Deployment Plans to
Dynamically Control Instrumentation Configuration.

For more information about deploying and modifying diagnostic application
modules, see Deploying WLDF Application Modules.

The diagnostics XML schema is located at:

http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs/ 1. 0/ webl ogi c-
di agnosti cs. xsd

Each diagnostics descriptor file must begin with the following lines:

<w df -resource xm ns="http://xm ns. oracl e. conm webl ogi ¢/ webl ogi c- di agnosti cs"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance" >

12-5

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

Chapter 12
XML Elements Used for Instrumentation

For an overview of WLDF resource configuration, see Understanding WLDF
Configuration .

12.3 XML Elements Used for Instrumentation

You can configure instrumentation and diagnostic monitors using the XML elements
such as <l nstrunent ati on>and <w df -i nst runent ati on- moni t or >.

This section provides descriptor fragments and tables that summarize information
about the XML elements used to configure:

» <Instrumentation> XML Elements, describes the top-level elements used within an
<instrumentation> element.

» <wldf-instrumentation-monitor> XML Elements, describes the elements used
within a <wldf-instrumentation-monitor> element.

* Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types,
identifies the instrumentation elements that apply to each monitor.

12.3.1 <Instrumentation> XML Elements

Table 12-2 describes the <instrumentation> elements in the DI AG_ MODULE. xnl file. The
following configuration fragment illustrates the use of those elements:

<wl df - resour ce>
<name>MyDi agnost i cModul e</ nane>
<instrumentation>
<enabl ed>t r ue</ enabl ed>
<I'-- The follow ng <include> el ement would apply only to an
application-scoped Instrunentation descriptor -->
<i ncl ude>f 0o. bar. com *</i ncl ude>
<I-- &t;wdf-instrumentation-nonitoré> elenents to define diagnostic
monitors for this diagnostic nodule -->
<linstrumentation>
<l-- Cther elements to configure this diagnostic nodule -->
</w df -resour ce>

Table 12-2 <instrumentation> XML Elements in the DIAG_MODULE.xml
Configuration File

Element Description
<instrumentation> The element that begins an instrumentation configuration.
<enabled> If true, instrumentation is enabled. If false, no instrumented code is

inserted in classes in this instrumentation scope, and all diagnostic
monitors within this scope are disabled. The default value is false.

You must enable instrumentation at the server level to enable
instrumentation for the server and for any applications deployed to
it. You must further enable instrumentation at the application level
to enable instrumentation for the application (that is, in addition to
enabling the server-scoped instrumentation).

ORACLE 12-6

Chapter 12
XML Elements Used for Instrumentation

Table 12-2 (Cont.) <instrumentation> XML Elements in the DIAG_MODULE.xml
Configuration File

___|
Element Description

<include> An optional element specifying the list of classes where instrumented
code can be inserted. Wildcards (*) are supported. You can specify
multiple <include> elements. If specified, a class must satisfy an
<include> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<include> or <exclude> patterns are applied to the application scope
as awhole.

Note: You can also specify <include> and <exclude> patterns for
specific diagnostic monitors. See the entries for <include> and
<exclude> in Table 12-1.

As classes are loaded, they must pass an include/exclude pattern
check before any instrumentation code is inserted. Even if a class
passes the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors included in the
configuration descriptor. An application-scoped delegating monitor
from the library has its own predefined classes and pointcuts. A
custom monitor specifies its own pointcut expression. Therefore,

a class can pass the include/exclude checks and still not be
instrumented.

Note: Instrumentation is inserted in applications at class load time. A
large application that is loaded often may benefit from a judicious use
of <include> elements, <exclude> elements, or both. You can probably
ignore these elements for small applications or for medium-to-large
applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where instrumented
code cannot be inserted. Wildcards (*) are supported. You can
specify multiple <exclude> elements. If specified, classes satisfying an
<exclude> pattern are not instrumented.

Applies only to application-scoped instrumentation. See the preceding
description of the <include> element.

12.3.2 <wldf-instrumentation-monitor> XML Elements

Diagnostic monitors are defined in <wldf-instrumentation-monitor> elements, which are
children of the <instrumentation> element in the following descriptor:

e The DI AG_ MODULE. xnml descriptor for server-scoped instrumentation

e The META- | NF/ webl ogi c- di agnosti ¢s. xm descriptor for application-scoped
instrumentation

The following fragment shows the configuration for a delegating monitor and a
custom monitor in an application. (You could modify this fragment for server-scoped
instrumentation by replacing the application-scoped monitors with server-scoped
monitors.)

<instrumentation>
<enabl ed>t r ue</ enabl ed>
<w df -i nst runent ati on- noni t or >
<name>Servl et _Bef ore_Servi ce</ nane>
<enabl ed>t r ue</ enabl ed>
<dye- mask>USER1</ dye- mask>

ORACLE 12-7

ORACLE

Chapter 12
XML Elements Used for Instrumentation

<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<action>TraceAction</action>

</w df -instrunentation-nonitor>

<w df - i nst runent ati on- noni t or >
<nane>MyCust om\bni t or </ nane>
<enabl ed>t r ue</ enabl ed>
<action>TraceAction</action>
<l ocation-type>before</|ocation-type>

<pointcut>call(* comfoo.bar.* get*(...));</pointcut>
</w df -instrunentation-nonitor>
</instrunentation>

Note that the Servlet_Before Service monitor sets a dye mask and enables dye
filtering. This will be useful only if instrumentation is enabled at the server level and
the Dyelnjection monitor is enabled and properly configured. See Configuring the
Dyelnjection Monitor to Manage Diagnostic Contexts, for information about configuring
the Dyelnjection monitor.

Table 12-3 describes the <wldf-instrumentation-monitor> elements.

Table 12-3 <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

Element Description

<wldf-instrumentation- The element that begins a diagnostic monitor configuration.

monitor>

<enabled> If true, the monitor is enabled. If false, the monitor is disabled. You
enable or disable each monitor separately. The default value is
true.

<name> The name of the monitor. For standard and delegating

monitors, use the names of the predefined monitors in WLDF

Instrumentation Library, For custom monitors, an arbitrary string
that identifies the monitor. The name for a custom monitor must
be unique; that is, it cannot duplicate the name of any monitor in

the library.
<description> An optional element describing the monitor.
<action> An optional element, which applies to delegating and custom

monitors. If you do not specify at least one action, the monitor will
not generate any information. You can specify multiple <action>
elements. An action must be compatible with the monitor type. For
the list of predefined actions for use by delegating and custom
monitors, see WLDF Instrumentation Library.

<dye-filtering-enabled> An optional element. If true, dye filtering is enabled for the
monitor. If false, dye-filtering is disabled. The default value is false.

In order to use dye filtering, the Dyelnjection monitor must be
configured appropriately at the server level.

<dye-mask> An optional element. If dye filtering is enabled, the dye
mask, when compared with the values in the diagnostic
context, determines whether actions are taken. See Configuring
the Dyelnjection Monitor to Manage Diagnostic Contexts, for
information about dyes and dye filtering.

<properties> An optional element. Sets name=value pairs for dye flags.
Currently applies only to the Dyelnjection monitor.

12-8

Chapter 12
XML Elements Used for Instrumentation

Table 12-3 (Cont.) <wldf-instrumentation-monitor> XML Elements in the
DIAG_MODULE.xml or weblogic-diagnostics.xml file

__|
Element Description

<location-type> An optional element, whose value is one of before, after, or
around. The location type determines when an action is triggered
at a pointcut: before the pointcut, after the pointcut, or both before
and after the pointcut.

Applies only to custom monitors; standard and delegating
monitors have predefined location types. A custom monitor must
define a location type and a pointcut.

<pointcut> An optional element. A pointcut element contains an expression
that defines joinpoints where diagnostic code will be inserted.
Applies only to custom monitors; standard and delegating

monitors have predefined pointcuts. A custom monitor must define
a location type and a pointcut.

Pointcut syntax is documented in Defining Pointcuts for Custom
Monitors.

<include> An optional element specifying the list of classes where
instrumented code can be inserted. Wildcards (*) are supported.
You can specify multiple <include> elements. If specified, a class
must satisfy an <include> pattern for it to be instrumented.

Applies only to application-scoped instrumentation. Any specified
<include> or <exclude> patterns are applied only to the monitor
defined in the parent <wldf-instrumentation-monitor> element.

Note: You can also specify <include> and <exclude> patterns
for an entire instrumented application scope. See the entries for
<include> and <exclude> in Table 12-1.

As classes are loaded, they must pass an include/exclude pattern
check before any instrumentation code is inserted. Even if a class
passes the include/exclude pattern checks, whether or not it is
instrumented depends on the diagnostic monitors included in the
configuration descriptor. An application-scoped delegating monitor
from the library has its own predefined classes and pointcuts. A
custom monitor specifies its own pointcut expression. Therefore

a class can pass the include/exclude checks and still not be
instrumented.

Note: Instrumentation is inserted in applications at class load
time. A large application that is loaded often may benefit from
a judicious use of <include> and/or <exclude> elements. You
can probably ignore these elements for small applications or for
medium-to-large applications that are loaded infrequently.

<exclude> An optional element specifying the list of classes where
instrumented code cannot be inserted. Wildcards (*) are
supported. You can specify multiple <exclude> elements. If
specified, classes satisfying an <exclude> pattern are not
instrumented.

Applies only to diagnostic monitors in application-scoped
instrumentation. See the <include> description, above.

Note the following additional information about the <dye-filtering-enabled> and <dye-
mask> elements:

ORACLE 12-9

Chapter 12
Configuring Server-Scoped Instrumentation

* When a Dyelnjection monitor is enabled and configured for a server or a cluster,
you can use dye filtering in downstream delegating and custom monitors to inspect
the dyes injected into a request's diagnostic context by that Dyelnjection monitor.

* The configuration of the Dyelnjection monitor determines which bits are set in
the 64-bit dye vector associated with a diagnostic context. When the <dye-filtering-
enabled> attribute is enabled for a monitor, its diagnostic activity is suppressed
if the dye vector in a request's diagnostic context does not match the monitor's
configured dye mask. If the dye vector matches the dye mask (a bitwise AND), the
application can execute its diagnostic actions:

(dye_vector & dye_mask == dye_mask)

Thus, the dye filtering mechanism allows monitors to take diagnostic actions only
for specific requests, without slowing down other requests. See Configuring the
Dyelnjection Monitor to Manage Diagnostic Contexts, for detailed information about
diagnostic contexts and dye vectors.

12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to
Monitor Types

Table 12-4 identifies the <wldf-instrumentation-monitor> elements that apply to each
monitor type. An X indicates that an element applies to the corresponding monitor; N/A
indicates that it does not.

Table 12-4 Mapping Instrumentation XML Elements to Monitor Types

Element Standard Delegating Custom
<wldf-instrumentation-monitor> X X X
<name> X X X
<description> X X X
<enabled> X X X
<action> N/A X X
<dye-filtering-enabled> N/A X X
<dye-mask> N/A X X
<properties> x1 N/A N/A
<location-type> N/A N/A X
<pointcut> N/A N/A X

1 Currently used only by the Dyelnjection monitor to set name=value pairs for dye flags.

12.4 Configuring Server-Scoped Instrumentation

ORACLE

You can configure instrumentation as part of diagnostic descriptor file to implement
the system-level instrumentation. You can define the configuration of one or more
server-scope diagnostic monitors in the descriptor file.

To enable instrumentation at the server level, and to configure server-scoped monitors,
perform the following steps:

1. Decide how many WLDF system resources you want to create.

12-10

Chapter 12
Configuring Server-Scoped Instrumentation

You can have multiple DI AG_ MODULE. xm diagnostic descriptor files in a domain. In
addition, for each server or cluster in a domain, you can deploy multiple diagnostic
descriptor files simultaneously. However, one reason for creating more than one
file is for flexibility. For example, you could have five diagnostic descriptor files

in the DOVAI N_HOME/ confi g/ di agnost i ¢s directory. Each file contains a different
instrumentation (and perhaps Harvester and Policies and Actions) configuration.
You then deploy the descriptor file that corresponds to the particular monitors you
want active.

2. Decide which server-scoped monitors you want to include in a configuration:

» If you plan to use dye filtering on a server, or on any applications deployed on
that server, configure the Dyelnjection monitor.

» If you plan to use one or more of the server-scoped delegating monitors,
decide which monitors to use and which actions to associate with each
monitor.

3. Create and configure the configuration file(s).

* If you use the WebLogic Server Administration Console to create the
DI AG_ MODULE. xni file (recommended), for delegating monitors the console
displays only the actions that are compatible with the monitor. If you create
a configuration file with an editor or with the WebLogic Scripting Tool (WLST),
you must correctly match actions to monitors.

» See the Domain Configuration Files in Understanding Domain Configuration
for Oracle WebLogic Server for information about configuring confi g. xm .

4. Validate and deploy the descriptor file. For server-scoped instrumentation, you
can add and remove monitors and enable or disable monitors while the server is
running.

Example 12-1 contains a sample server-scoped instrumentation configuration file
that enables instrumentation and configures the Dyelnjection standard monitor and
the Connector_Before_Work delegating monitor. A single <instrumentation> element
contains all instrumentation configuration for the module. Each diagnostic monitor is
defined in a separate <wldf-instrumentation-monitor> element.

Example 12-1 Sample Server-Scoped Instrumentation (in DIAG_MODULE.xml)

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi: schenmalLocation="http://xn ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<instrunentation>
<enabl ed>t r ue</ enabl ed>
<w df -i nst runent ati on-noni t or>
<nane>Dyel nj ect i on</ nane>
<descri ption>lnject USERL and ADDRl dyes</description>
<enabl ed>t r ue</ enabl ed>
<properties>USERL=webl ogi ¢
ADDR1=127. 0. 0. 1</ properties>
</w df -instrumentation-nonitor>
<w df -i nst runent ati on-noni tor>
<name>Connect or _Bef or e_Wr k</ nane>
<enabl ed>t r ue</ enabl ed>
<action>TraceAction</action>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<dye- mask>USERL</ dye- mask>
</w df -instrumentati on-noni t or>

ORACLE 12-11

Chapter 12
Configuring Application-Scoped Instrumentation

</instrunmentation>
</w df -resource>

12.5 Configuring Application-Scoped Instrumentation

Instrumentation is the only component that is deployable to applications. It must be
enabled on the server to which the application is deployed. You can enable and
disable diagnostic monitors without redeploying an application.

At the application level, WLDF instrumentation is configured as a deployable module,
which is then deployed as part of the application.

The following sections provide information you need to configure application-scoped
instrumentation:

* Comparing System-Scoped to Application-Scoped Instrumentation
* Overview of the Steps Required to Instrument an Application

» Creating a Descriptor File for a Delegating Monitor

» Creating a Descriptor File for a Custom Monitor

» Defining Pointcuts for Custom Monitors

e Annotation-based Pointcuts

< Note:

Application classes and libraries that are put on the system classpath are
not instrumented. Application class instrumentation works only on classes
that are loaded by application classloaders. If application classes are put

on the system classpath, either deliberately or inadvertently, they will be
loaded by the system classloader. As a result no deployment time weaving is
performed on those classes.

12.5.1 Comparing System-Scoped to Application-Scoped
Instrumentation

ORACLE

Instrumenting an application is similar to instrumenting at the system level, but with the
following differences:

e Applications can use standard, delegating, and custom monitors.

— The only server-scoped standard monitor is Dyelnjection. The only
application-scoped standard monitor is HttpSessionDebug. See the entry for
HttpSessionDebug in Diagnostic Monitor Library.

— Delegating monitors are either server-scoped or application-scoped.
Applications must use the application-scoped delegating monitors.

— All custom monitors are application-scoped.

e The server's instrumentation settings affect the application. In order to enable
instrumentation for an application, instrumentation must be enabled for the server
on which the application is deployed. If server instrumentation is enabled at

12-12

Chapter 12
Configuring Application-Scoped Instrumentation

the time of deployment, instrumentation will be available for the application. If
instrumentation is not enabled on the server at the time of deployment, enabling
instrumentation in an application will have no effect.

Application instrumentation is configured with a webl ogi c- di agnosti cs. xn
descriptor file. You create a META- | NF/ webl ogi ¢- di agnosti cs. xn file, configure
the instrumentation, and put the file in the application's archive. When the archive
is deployed, the instrumentation is automatically inserted when the application is
loaded.

You can use a deployment plan to dynamically update configuration elements
without redeploying the application. See Using Deployment Plans to Dynamically
Control Instrumentation Configuration.

The XML descriptors for application-scoped instrumentation are defined in the same
way as for server-scoped instrumentation. You can configure instrumentation for an
application solely by using the delegating monitors and diagnostic actions available
in the WLDF Instrumentation Library. You can also create your own custom monitors;
however, the diagnostic actions that you attach to these monitors must be taken from
the WLDF Instrumentation Library.

Table 12-5 compares the function and scope of system and application diagnostic
modules.

Table 12-5 Comparing System and Application Modules

Module Type Add or Add or Modify with Modify with Modify with Enable/Disable
Remove Remove JMX JSR-88 (hon- Console Dye Filtering
Objects Objects with Remotely remote) and Dye Mask
Dynamically Console Dynamically
System Yes Yes Yes No Yes Yes
Module (via IMX)
Application Yes, when Yes No Yes Yes Yes
Module HotSwap is (via plan)
enabled
No, when
HotSwap is
not enabled:

module must
be redeployed

12.5.2 Overview of the Steps Required to Instrument an Application

ORACLE

" Note:

As of WebLogic Server 10.3, you are not required to create a webl ogi c-

di agnosti cs. xm file in the application's META- | NF directory, as was the
case in previous WebLogic Server releases. However, you can still use this
method to initially configure diagnostic monitors for your application.

To implement a diagnostic monitor for an application, perform the following steps:

12-13

3.
4.

Chapter 12
Configuring Application-Scoped Instrumentation

Make sure that instrumentation is enabled on the server. See Configuring Server-
Scoped Instrumentation.

Create a well formed META- | NF/ webl ogi c- di agnosti cs. xm descriptor file for the
application. If you want to add any monitors that will be automatically enabled
each time the application is deployed:

* Enable the <instrumentation> element: <enabled>true</enabled>.

e Add and enable at least one diagnostic monitor, with appropriate actions
attached to it. (A monitor will generate diagnostic events only if the monitor
is enabled and actions that generate events are attached to it.).

See Creating a Descriptor File for a Delegating Monitor, and Creating a Descriptor
File for a Custom Monitor, for samples of well-formed descriptor files.

See Defining Pointcuts for Custom Monitors, for information about creating a
pointcut expression.

Put the descriptor file in the application archive.

Deploy the application. See Deploying WLDF Application Modules.

Keep the following points in mind:

The diagnostic monitors defined in webl ogi c- di agnosti cs. xnl is listed on the
Deployments: <server_name>: Configuration: Instrumentation page of the
WebLogic Server Administration Console.

If the META- | NF/ webl ogi c- di agnosti cs. xm descriptor in the application archive
defines a monitor, it cannot be removed using the WebLogic Server Administration
Console. However, it can be disabled or enabled using the WebLogic Server
Administration Console.

You can add additional monitors from the WebLogic Server Administration
Console. Any monitors you add from the WebLogic Server Administration Console
will not be persisted to webl ogi c- di agnosti cs. xn ; they will be saved in the
application's deployment plan. Any monitors that were added in this way can be
deleted using the WebLogic Server Administration Console.

Application classes and libraries that are put on the server's classpath are not
instrumented. Application class instrumentation works only on classes that are
loaded by application classloaders.

If application classes are put on the system classpath, either deliberately or
inadvertently, they will be loaded by the system classloader. As a result no
deployment time weaving is performed on those classes.

12.5.3 Creating a Descriptor File for a Delegating Monitor

The following example shows a well-formed META- | NF/ webl ogi c- di agnosti cs. xm
descriptor file for an application-scoped delegating monitor. At a minimum, this file
must contain the lines shown in bold. In this example, there is only one monitor
defined (Servlet_Before_Service). However, you can define multiple monitors in the
descriptor file.

ORACLE

<wldf-resource xmIns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"

xmIns:xsi="http://ww.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns._oracle.com/weblogic/weblogic-diagnostics/1.0/

weblogic-diagnostics.xsd">

<instrumentation>
<enabl ed>t r ue</ enabl ed>

12-14

Chapter 12
Configuring Application-Scoped Instrumentation

<w df -i nst runent ati on- noni t or >
<nane>Ser vl et _Bef ore_Servi ce</ name>
<enabl ed>t r ue</ enabl ed>
<dye- mask>USER1</ dye- mask>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<action>TraceAction</action>

</w df -i nstrunentation-nonitor>

</instrunentation>
</wldf-resource>

The Servlet_Before_Service monitor is an application-scoped monitor selected from
the WLDF monitor library. It is hard coded with a pointcut that sets joinpoints at method
entry for several servlet or JSP methods. Because the application enables dye filtering
and sets the USERL flag in its dye mask, the TraceAction action will be invoked only
when the dye vector in the diagnostic context passed to the application also has its
USER1 flag set.

The dye vector is set at the system level via the Dyelnjection monitor as per the
Dyelnjection monitor configuration when the request enters the server. For example, if
the Dyelnjection monitor is configured with property USER1=weblogic and the request
was originated by user weblogic, the USER1 dye flag in the dye vector will be set.

Therefore, the Servlet_Before_Service monitor in this application is essentially
quiescent until it inspects a dye vector and finds the USERL1 flag set. This filtering
reduces the amount of diagnostic data generated, and ensures that the generated
data is of interest to the administrator.

12.5.4 Creating a Descriptor File for a Custom Monitor

ORACLE

The following is an example of a well-formed META- | NF/ webl ogi c- di agnosti ¢s. xni
file for a custom monitor. At a minimum, the file must contain the lines shown in bold.

Example 12-2 Sample Custom Monitor Configuration (in DIAG_MODULE.xml)

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource xmIns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns_oracle.com/weblogic/weblogic-diagnostics/1.0/
weblogic-diagnostics.xsd">
<instrumentation>
<enabl ed>t r ue</ enabl ed>
<wW df -i nst runent ati on-noni t or >
<name>MyCust omvbni t or </ nanme>
<enabl ed>t r ue</ enabl ed>
<action>TraceAction</action>
<l ocati on-type>before</|ocation-type>
<poi ntcut>cal |l (* comfoo.bar.* get* (...));</pointcut>
</w df -i nstrument ati on- noni t or >
</instrunentation>
</wldf-resource>

The <name> for a custom monitor is an arbitrary string chosen by the developer.
Because this monitor is custom, it has no predefined locations when actions should

be invoked; the descriptor file must define the location type and pointcut expression.

In this example, the TraceAction action will be invoked before (<location-type>before</
location-type) any methods defined by the pointcut expression is invoked. Table 12-6
shows how the pointcut expression from Example 12-2 is parsed. (Note the use of
wildcard characters.)

12-15

Chapter 12
Configuring Application-Scoped Instrumentation

Table 12-6 Description of a Sample Pointcut Expression

]
Pointcut Expression Description

call(): Trigger any defined actions when
the methods whose joinpoints are defined by
the remainder of this pointcut expression are
invoked.

call(* comfoo.bar.* get* (...))

*: Return value. The wildcard indicates that

call(* comfoo.bar.* get* (...))
the methods can have any type of return value.

com.foo.bar.*: Methods from class

cal I (* com.foo.bar.* get* (...) : o
com.foo.bar and its sub-packages are eligible.

~

get*: Any methods whose name starts with

call(* comfoo.bar.* get* (...)) ’ At
the string get is eligible.

(- -.): The ellipsis indicates that the methods

call(* comfoo.bar.* get* (...))
can have any number of arguments.

This pointcut expression matches all methods in all classes in package com.foo.bar
and its sub-packages. The methods can return values of any type, including void,
and can have any number of arguments of any type. Instrumentation code will be
inserted before these methods are called, and, just before those methods are called,
the TraceAction action will be invoked.

See Defining Pointcuts for Custom Monitors, for a description of the grammar used to
define pointcuts.

12.5.4.1 Defining Pointcuts for Custom Monitors

ORACLE

Custom monitors provide more flexibility than delegating monitors because you
create pointcut expressions to control where diagnostics actions are invoked. As with
delegating monitors, you must select actions from the action library.

A joinpoint is a specific, well-defined location in a program. A pointcut is an expression
that specifies a set of joinpoints. This section describes how you define expressions
for pointcuts using the following pointcut syntax.

You can specify two types of pointcuts for custom monitors:

e call: Take an action when a method is invoked.
e execution: Take an action when a method is executed.
The syntax for defining a pointcut expression is as follows:

pointcutExpr := orExpr ('OR orExpr) *
orExpr := andExpr ('AND andExpr) *
andExpr := 'NOT" ? ternExpr
ternExpr := exec_pointcut | call_pointcut | '(' pointcutExpr ')
exec_pointcut := "execution' '(' modifiers?
returnSpec
cl assSpecW t hAnnot at i ons
met hodSpec ' (' paraneterList ')’

call _pointcut :="'call' '"(' returnSpec
cl assSpec

12-16

ORACLE

Chapter 12
Configuring Application-Scoped Instrumentation

met hodSpec ' (' paraneterList ')’

modifiers := nodifier ('OR nodifier) * nodifier := 'public' | '"protected |
"private' | 'static'

returnSpec := '*' | typeSpec

cl assSpecWthAnnotations := '@ IDENTIFIER ('OR IDENTIFIER) * | classSpec
classSpec := "+ ? classO MethodPattern | '*'

typeSpec := "% ? (primtiveType | classSpec) ('[]')*

met hodSpec : = classO Met hodPattern

paraneterList := param(',' param) *

param:= typeSpec | '...'

primtiveType := "byte' | 'char' | 'boolean' | 'short' | "int'" | "float"' |
"long' | 'double' | 'void

classOrMet hodPattern := '*' 2 IDENTIFIER "*' 2 | '*'

The following rules apply:

* The asterisk wildcard character (*) can be used in class types and method names.

* An ellipsis (...) in the argument list signifies a variable number of arguments of any
types beyond the argument.

* A percent character (% prefix designates the value of a non-static class
instantiation, parameter, or return specification as not containing nor exposing
sensitive information. The use of this operator is particularly useful with the
DisplayArgumentsAction action, which captures method arguments or return
values. If this prefix character is not explicitly used, an asterisk string is substituted
for the value that is returned; this behavior ensures that sensitive data in
your application is not inadvertently transmitted when an instrumentation event
captures input arguments to, or return values from, a joinpoint.

¢ Note:

The %operator cannot be applied to an ellipsis or to a wildcarded type
within a pointcut expression.

* Anplus sign (+) prefix to a class type identifies all subclasses, sub-interfaces or
concrete classes implementing the specified class/interface pattern.

* A pointcut expression specifies a pattern to identify matching joinpoints. An
attempt to match a joinpoint against it will return a boolean, indicating a valid
match (or not).

* Pointcut expressions can be combined with AND, OR and NOT boolean operators
to build complex pointcut expression trees.

For example, the following pointcut matches method executions of all public initialize
methods in all classes in package com.foo.bar and its sub-packages. The initialize
methods may return values of any type, including void, and may have any number of
arguments of any types.

execution(public * comfoo.bar.* initialize(...))

The following pointcut matches the method calls (call sites) on all classes that directly
or indirectly implement the com.foo.bar.MylInterface interface (or a subclass, if it
happens to be a class). The method names must start with get, be public, and return
an int value. The method must accept exactly one argument of type java.lang.String:

12-17

Chapter 12
Configuring Application-Scoped Instrumentation

call (int +comfoo.bar. MInterface get*(java.lang.String))

The following example shows how to use boolean operators to build a pointcut
expression tree:

call (void comfoo. bar.* set*(java.lang.String)) OR
call (* comfoo.bar.* get*())

The following example illustrates how the previous expression tree would be rendered
as a <pointcut> element in a configuration file:

<poi ntcut >cal | (void com foo. bar.* set*(java.lang.String)) OR
call (* comfoo.bar.* get*())</pointcut>

12.5.4.2 Annotation-based Pointcuts

ORACLE

You can use JDK-style annotations in class and method specifiers of execution points.
A class or method specifier starting with @is interpreted as an annotation name.

When used as a class specifier, the annotation matches all classes that are annotated
with it. While performing the match, only annotation names are considered. Annotation
attributes are ignored.

For example, consider the following pointcut:

execution(public void @ervice @nvocation (...)

The preceding pointcut matches methods that:

e Are public method

* Return void

* Are contained in a class that is annotated with @Service
* Have a method annotated with @Invocation

e Contain any number of arguments.

Note:

Annotation-based specifiers can be used only with execution pointcuts.
They cannot be used with call pointcuts.

Annotation-based class and method specifiers can use the following wildcard
characters:

* The asterisk wildcard (*) matches everything.

e The asterisk wildcard (*) at the beginning matches class/interface or method
names that end with the given string. For example, * Bean matches with
webl ogi c. managenent . confi gurati on. Server MBean.

e The asterisk wildcard (*) at the end matches class/interface or method names
that end with the given string. For example, weblogic.* matches all classes and
interfaces that are in weblogic and its sub-packages.

* You can specify a pointcut based on names of inner classes. For example:

12-18

Chapter 12
Creating Request Performance Data

public class Foo {
class Bar {
public int getValue() {...}
}

}

You can define a pointcut that covers the get Val ue method of the inner class Bar
using the following specification:

execution (public int Foo$Bar getValue(...));

You can also use wildcard characters as follows. The following pointcut matches only
the getter methods in the inner class Bar of class Foo:

execution (* Foo$Bar get*(...));

You can also use leading and trailing wildcard characters. The following examples also
match the getter methods in class Foo$Bar :

execution (* Foo$Ba* get*(...));
execution (* *oo$Bar get*(...));
execution (* *oo$Ba* get*(...));

12.6 Creating Request Performance Data

You can display request performance data in the WebLogic Server Administration
Console for configured server-scoped or application-scoped instrumentation. In the
console, the Request Performance page displays information about the real-time and
historical views of method performance.

To create request performance data, the following criteria must be met:

ORACLE

A WLDF system resource must be created and targeted to the server. Create the
system resource as described in Instrumentation Configuration Files . You can do
this using the WebLogic Server Administration Console or the WebLogic Scripting
Tool (WLST).

Instrumentation in the targeted WLDF system resource must be enabled.

Application instrumentation must be enabled with a webl ogi c- di agnosti cs. xm
descriptor, which you create in the application's META- | NF directory, as described in
Instrumentation Configuration Files .

Application instrumentation descriptors must use TraceElapsedTimeAction
diagnostic actions attached to Around diagnostic monitor types. For example, a
descriptor could contain the following:

<instrumentation>
<enabl ed>t r ue</ enabl ed>
<wl df -i nstrunentati on-nonitor>
<name>Connect or _Around_| nbound</ nane>
<action>TraceEl apsedTi meActi on</ acti on>
</wW df -instrunentati on-nonitor>
</instrunentation>

12-19

ORACLE

Chapter 12
Creating Request Performance Data

< Note:

WebLogic Server does not require the webl ogi c- di agnosti cs. xm
descriptor to be bundled in your application's archive in order to make
instrumentation changes to a deployed application.

— If your application uses a deployment plan, and you enable
Oracle HotSwap before deploying your application, you can make
instrumentation changes at run time without redeploying your
application.

— If your deployed application does not have a deployment plan
and you modify the application's instrumentation configuration, the
WebLogic Server Administration Console automatically creates a
deployment plan for you and prompts you for the location in which to
save it.

— If Oracle HotSwap is not enabled in your deployment plan, or if you
do not use a deployment plan, changes to some instrumentation
settings require redeployment.

See Deploying WLDF Application Modules.

See WLDF Instrumentation Library, for a list of "Around" type monitors.

For information about creating and analyzing request performance data in the
WebLogic Server Administration Console, see Analyze request performance in the
Oracle WebLogic Server Administration Console Online Help.

12-20

Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts

The Instrumentation component of the WebLogic Diagnostics Framework (WLDF) also
provides a way to uniquely identify requests, such as HTTP or RMI requests, and track
them as they flow through the system.You can configure WLDF to check for certain
characteristics of every request that enters the system, such as the originating user

or client address, and attach a diagnostic context to that request. This feature allows
you to take measurements of specific requests, such as elapsed time, to get an idea of
how all requests are being processed as they flow through the system.

The diagnostic context consists of two pieces: a unique Context ID, and a 64-bit dye
vector that represents the characteristics of the request. The Context ID associated
with a given request is recorded in the Event Archive and can be used to:

e Throttle instrumentation event generation, that is determine how often events are
generated when specified conditions are met

e Associate log records with a request

» Filter searches of log or event records using the WLDF Accessor component (see
Accessing Diagnostic Data With the Data Accessor).

This chapter includes the following sections:

» Contents, Life Cycle, and Configuration of a Diagnostic Context
* Overview of the Process

» Configuring the Dye Vector via the Dyelnjection Monitor

» Configuring Delegating Monitors to Use Dye Filtering

* How Dye Masks Filter Requests to Pass to Monitors

e Using Throttling to Control the Volume of Instrumentation Events
* Using weblogic.diagnostics.context

For an example of how to use WLST to create a Dyelnjection monitor dynamically, see
Example: Dynamically Creating Dyelnjection Monitors.

13.1 Contents, Life Cycle, and Configuration of a Diagnostic

Context

ORACLE

A diagnostic context contains a unique Context ID and a 64-bit dye vector. The dye
vector contains flags which are set to identify the characteristics of the diagnostic
context associated with a request.

Currently, 32 bits of the dye vector are used, one for each available dye flag (see
Table 13-1).

e Context Life Cycle and the Context ID

13-1

Chapter 13
Contents, Life Cycle, and Configuration of a Diagnostic Context

» Dyes, Dye Flags, and Dye Vectors

* Where Diagnostic Context Is Configured

13.1.1 Context Life Cycle and the Context ID

The diagnostic context for a request is created and initialized when the request

enters the system (for example, when a client makes an HTTP request). The
diagnostic context remains attached to the request, even as the request crosses
thread boundaries and Java Virtual Machine (JVM) boundaries. The diagnostic context
lives for the duration of the life cycle of the request.

Every diagnostic context is identified by a Context ID that is unique in the domain.
Because the Context ID travels with the request, it is possible to determine the events
and log entries associated with a given request as it flows through the system.

13.1.2 Dyes, Dye Flags, and Dye Vectors

ORACLE

Contextual information travels with a request as a 64-bit dye vector, where each bit is
a flag to identify the presence of a dye. Each dye represents one attribute of a request;
for example, an originating user, an originating client IP address, access protocol, and
S0 on.

When a dye flag for a given attribute is set, it indicates that the attribute is present.
When the flag is not set, it indicates the attribute is not present.

For example, consider a configuration where:

» the flag ADDRL1 is configured to indicate a request that originated from IP address
127.0.0.1.

» the flag ADDR2 is configured to indicate a request that originated from IP address
127.0.0.2.

* the flag USERL1 is configured to indicate a request that originated from user
admin@avitek.com.

If a request from IP address 127.0.0.1 enters the system from a user other than
admin@avitek.com, the ADDR1 flag in the dye vector for the request is set. The
ADDR2 and USER1 dye flags remain unset.

If a request from admin@avitek.com enters the system from an IP address other than
127.0.0.1 or 127.0.0.2, the USER1 flag in the dye vector for the request is set. The
ADDR1 and ADDR?2 dye flags remain unset.

If a request from admin@avitek.com from IP address 127.0.0.2 enters the system,
both the USER1 and ADDR?2 flags in the dye vector for this request are set. The
ADDRL1 flag remains unset.

Diagnostic and monitoring features that take advantage of the diagnostic context can
examine the dye vector to determine if one or more attributes are present (that is, the
associated flag is set). In the example above, you could configure a diagnostic monitor
to trace every request that is dyed with ADDR1; that is, every request originating from
IP address 127.0.0.1. You could also configure a diagnostic monitor that traces every
request that is dyed with both ADDR1 and USER1,; that is, every request originating
from user admin@avitek.com at IP address 127.0.0.1 (requests from other users at
127.0.0.1 would not be traced).

13-2

Chapter 13
Overview of the Process

The dye vector also contains a THROTTLE dye, which is used to set how often
incoming requests are dyed. For more information about this special dye, see
THROTTLE Dye Flag.

For a list of the available dyes and the attributes they represent, see Dyes Supported
by the Dyelnjection Monitor. The process of configuring dye vectors and using them is
discussed throughout the rest of this chapter.

13.1.3 Where Diagnostic Context Is Configured

Diagnostic context is configured as part of a diagnostic module. You use the
Dyelnjection monitor at the server level to configure the diagnostic context. The
Dyelnjection monitor is a standard diagnostic monitor, so you cannot modify its
behavior. The joinpoints where the Dyelnjection monitor is woven into the code are
those locations where a request can enter the system.

The diagnostic action is to check every request against the Dyelnjection monitor's
configuration, then create and attach a diagnostic context to the request, setting the
dye flags as appropriate. If the dye flags that are set for a request match the dye flags
that are configured for a downstream diagnostic monitor, an event with the request's
associated Context ID is added to the Event Archive. So, for example, if a request
has only the USER1 and ADDRL1 dye flags set, and there is a diagnostic monitor
configured to trace requests with both the USER1 and ADDRL flags set (but no other
flags set), an event is added to the Event Archive.

For information about diagnostic monitor types, pointcuts (which define the joinpoints),
and diagnostic actions, see Configuring Instrumentation.

13.2 Overview of the Process

ORACLE

The Dyelnjection monitor examines the request to see if any of the configured dye
values in the dye vector match attributes of the request. You can configure the
Dyelnjection monitor to identify the requests and track their flow. The tracking of
the requests helps to see how the requests are processed as they flow through the
system.

This overview describes the configuration and use of context in a server-scoped
diagnostic module.

1. Configure a dye vector via the Dyelnjection Module. See Configuring the Dye
Vector via the Dyelnjection Monitor.

2. When any request enters the system, WLDF creates and instantiates a diagnostic
context for the request. The context includes a unique Context ID and a dye
vector.

3. The Dyelnjection monitor, if enabled at the server level within a WLDF diagnostic
module, examines the request to see if any of the configured dye values in the dye
vector match attributes of the request. For example, it checks to see if the request
originated from the user associated with USER1 or USER2, and it checks to see if
the request came from the IP address associated with ADDR1 or ADDR2.

4. For each dye value that matches a request attribute, the Dyelnjection
monitor sets the associated dye bits within the diagnostic context. For
example, if the Dyelnjection monitor is configured with USERL=webl ogi c,
USER2=admi n@vi t ek. com ADDR1=127. 0. 0. 1, ADDR2=127. 0. 0. 2, and the request

13-3

Chapter 13
Configuring the Dye Vector via the Dyelnjection Monitor

originated from user weblogic at IP address 127.0.0.2, it will set the USER1 and
ADDR?2 dye bits within the dye vector.

5. As the request flows through the system, the diagnostic context (which includes
the dye vector) flows with it as well. This 64-bit dye vector contains only flags,
not values. So, in this example, the dye vector contains only two flags that are
explicitly set (USER1 and ADDR?2). It does not contain the actual user name and
IP address associated with USER1 and ADDR2.

Note:

All dye vectors also contain one of the implicit PROTOCOL dyes, as
explained in Configuring the Dye Vector via the Dyelnjection Monitor.

6. The administrator configures a diagnostic monitor (either application-scoped or
server-scoped) to be active within downstream code, setting the monitor's dye
mask as USER1 and ADDR2. See Configuring Delegating Monitors to Use Dye
Filtering, for more information.

7. The diagnostic monitor will perform its associated action(s) if the dye flags that are
set in the diagnostic context's dye vector match the dye mask of the diagnostic
monitor. See How Dye Masks Filter Requests to Pass to Monitors, for more
details. In this example, the monitor will perform its action(s) if the USER1 and
ADDR?2 flags are set in the dye vector. In addition, an event associated with the
request will be written to the Event Archive.

13.3 Configuring the Dye Vector via the Dyelnjection Monitor

ORACLE

You configure the Dye Vector through the Dyelnjection monitor to monitor the requests
in a system. Every request is checked against the configuration of the Dyelnjection
monitor, and a diagnostic context is created and attached to the request.

To create diagnostic contexts for all requests coming into the system, you must:

1. Create and enable a diagnostic module for the server (or servers) you want to
monitor.

2. Enable Instrumentation for the diagnostic module.

3. Configure and enable the Dyelnjection monitor for the module. (Only one
Dyelnjection monitor can be used with a diagnostic module at any one time.)

You configure the Dyelnjection monitor by assigning values to dyes. The available dye
flags are described in Table 13-1.

For example, you could set the flags as follows: USERL=webl ogi c,

USER2=adm n@vi t ek. com ADDR1=127. 0. 0. 1, ADDR2=127. 0. 0. 2, and so forth.
Basically, you want to set the values of one or more flags to the user(s), IP address(es)
whose requests you want to monitor.

For example, to monitor all requests initiated by a user named adnm n@vi t ek from a
client at IP address 127.0.0.1, assign the value adm n@vi t ek to USERL and assign the
value 127.0.0.1 to ADDRL.

In the WebLogic Server Administration Console, you assign values to dyes by typing
them into the Properties field of the Settings for Dyelnjection page. For instructions,

13-4

Chapter 13
Configuring the Dye Vector via the Dyelnjection Monitor

see Configure diagnostic monitors in a diagnostic system module in the Oracle
WebLogic Server Administration Console Online Help.

Figure 13-1 Setting Dye Values in the Administration Console

Settings for DyeInjection

Configuration

NAYAYAYAYAVAYAVAYAVAYAYAS
AVAVEANVEVEVEVEAVEVEVEAVEVE VN

Properties: ADDR1=127.0.0.1
U3ERl=adminfavitek.com

These settings appear in the descriptor file for the diagnostic module, as shown in the
following code listing.

Example 13-1 Sample Dyelnjection Monitor Configuration, in
DIAG_MODULE.xml

<w df - resour ce>
<name>MyDi agnost i cModul e</ nane>
<i nstrumentation>
<enabl ed>t r ue</ enabl ed>
<w df -i nst runent ati on-nonitor>
<nanme>Dyel nj ect i on</ name>
<enabl ed>t r ue</ enabl ed>
<dye- mask xsi:nil="true"></dye-nmask>
<properties>ADDR1=127.0.0.1
USER1=adm n@vi t ek</ properties>
</w df -instrumentati on-moni t or >
<l-- Other elenents to configure instrumentation -->
<instrumentation>
<l-- Oher elements to configure this diagnostic nonitor -->
<wl df - resour ce>

13.3.1 Dyes Supported by the Dyelnjection Monitor

The dyes available in the dye vector are listed and explained in the following table.

ORACLE 13-5

ORACLE

Chapter 13
Configuring the Dye Vector via the Dyelnjection Monitor

Table 13-1 Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description

ADDR1 Use the ADDR1, ADDR2, ADDR3 and ADDR4 dyes to specify the IP

ADDR2 addresses of clients that originate requests. These dye flags are set

ADDR3 in the diagnostic context for a request if the request originated from
an IP address specified by the respective property (ADDR1, ADDR?2,

ADDR4 ADDR3, ADDR4) of the Dyelnjection monitor.
These dyes cannot be used to specify DNS names.

CONNECTOR1 Use the CONNECTOR1, CONNECTOR2, CONNECTOR3 and

CONNECTOR?2 CONNECTORA4 dyes to identify characteristics of connector drivers.

CONNECTOR3 These dye flags are set by the connector drivers to identify request
properties specific to their situations. You do not configure these

CONNECTOR4 directly in the WebLogic Server Administration Console or in the
descriptor files. The connector drivers can assign values to these dyes
(using the Connector API), so information about the connections can
be carried in the diagnostic context.

COOKIE1 COOKIE1, COOKIE2, COOKIE3 and COOKIE4 are set in the

COOKIE?2 diagnostic context for an HTTP/S request, if the request contains the

COOKIE3 cookie named weblogic.diagnostics.dye and its value is equal to the
value of the respective property (COOKIE1, COOKIE2, COOKIE3,

COOKIE4 COOKIE4) of the Dyelnjection monitor.

DYE_O DYE_O to DYE_7 are available only for use by application developers.

DYE 1 See Using weblogic.diagnostics.context .

DYE_2

DYE_3

DYE_4

DYE 5

DYE_6

DYE_7

PROTOCOL_HTTP
PROTOCOL_IIOP
PROTOCOL_JRMP
PROTOCOL_RMI
PROTOCOL_SOAP
PROTOCOL_SSL
PROTOCOL_T3

The Dyelnjection monitor implicitly identifies the protocol used for a
request and sets the appropriate dye(s) in the dye vector, according to
the protocol(s) used.

PROTOCOL_HTTP is set in the diagnostic context of a request if the
request uses HTTP or HTTPS protocol.

PROTOCOL_IIOP is set in the diagnostic context of a request if it uses
Internet Inter-ORB Protocol (110P).

PROTOCOL_JRMP is set in the diagnostic context of a request if it
uses the Java Remote Method Protocol (JRMP).

PROTOCOL_RMI is set in the diagnostic context of a request if it uses
the Java Remote Method Invocation (RMI) protocol.

PROTOCOL_SSL is set in the diagnostic context of a request if it uses
the Secure Sockets Layer (SSL) protocol.

PROTOCOL_T3 is set in the diagnostic context of a request if the
request uses T3 or T3s protocol

THROTTLE

The THROTTLE dye is set in the diagnostic context of a request if
it satisfies requirements specified by THROTTLE_INTERVAL and/or
THROTTLE_RATE properties of the Dyelnjection monitor.

13-6

Chapter 13
Configuring the Dye Vector via the Dyelnjection Monitor

Table 13-1 (Cont.) Request Protocols for Supported Diagnostic Context Dyes

Dye Flags Description
USER1 Use the USER1, USER2, USER3 and USER4 dyes to specify the user
USER2 names of clients that originate requests. These dye flags are set in

USER3 the diagnostic context for a request if the request was originated by
a user specified by the respective property (USER1, USER2, USERS3,
USER4 USERA4) of the Dyelnjection monitor.

13.3.2 PROTOCOL Dye Flags

You must explicitly set the values for the dye flags USERn, ADDRn,

COOKIEn, and CONNECTORn. in the Dyelnjection monitor. However, the

flags PROTOCOL_HTTP, PROTOCOL_IIOP, ROTOCOL_JRMP, PROTOCOL_RMI,
PROTOCOL_SOAP, PROTOCOL_SSL, and PROTOCOL_T3 are set implicitly by
WLDF. When the Dyelnjection monitor is enabled, every request is injected with the
appropriate protocol dye. For example, every request that arrives via HTTP is injected
with the PROTOCOL_HTTP dye.

13.3.3 THROTTLE Dye Flag

The THROTTLE dye flag can be used to control the volume of incoming requests that
are dyed. THROTTLE is configured differently from the other flags, and WLDF uses it
differently. See Using Throttling to Control the Volume of Instrumentation Events, for
more information.

13.3.4 When Diagnostic Contexts Are Created

ORACLE

When the Dyelnjection monitor is enabled in a diagnostic module, a diagnostic
context is created for every incoming request. The Dyelnjection monitor is enabled

by default when you enable instrumentation in a diagnostic module. This ensures

that a diagnostic Context ID is available so that events can be correlated. Even if

no properties are explicitly set in the Dyelnjection monitor, the diagnostic context for
every request will contain a unique Context ID and a dye vector with one of the implicit
PROTOCOL dyes.

If the Dyelnjection monitor is disabled, no diagnostic contexts will be created for any
incoming requests.

13-7

Chapter 13
Configuring Delegating Monitors to Use Dye Filtering

13.4 Configuring Delegating Monitors to Use Dye Filtering

ORACLE

You can use the Dyelnjection monitor as a mechanism to restrict when a delegating or
custom diagnostic monitor in the diagnostic module is triggered. This process is called
dye filtering.

Note:

For information about how to implement a diagnostic monitor for an
application (such as a web application), see Overview of the Steps Required
to Instrument an Application.

Each monitor can have a dye mask, which specifies a selection of the dyes from
the Dyelnjection monitor. When dye filtering is enabled for a diagnostic monitor, the
monitor's diagnostic action is triggered and a diagnostic event is generated only for
those requests that meet the criteria set by the mask.

Figure 13-2 shows an example of diagnostic events that were generated when a
configured diagnostic action was triggered. Notice that the Context ID is the same for
all of the events, indicating that they are related to the same request. You can use
this Context ID to query for log records that are associated with the request. Note
that the user ID associated with a request may not always be the same as the USER
value you configured in the Dyelnjection monitor; as a request is processed through
the system, the user associated with the request may change to allow the system to
perform certain functions (for example, the User ID may change to kernel).

Figure 13-2 Example of Diaghostic Events Associated with a Request

Date ¢ | Context ID User ID | Type Monitor Class Method
O6I20108 | 54 3ph54e27dBcc3a 30c36M2:11aa5c7b97a: TraceElapsedTimeAction-
25'952'55 2F2-00000000000000b5 turmel [g2 Senlet_Around_Session | javax.serviet hitp HitpSenetRequest | getSession
B?Eg’gg 513bb54e27d6cc3a 30c3eM2 1 1aabe7bo7a | | | TraceElapsedTimedtion | o et HitnSenietRaquast | cats
509 o 7/2-00000000000000bb urme After-1 erviet_Around_sSession | javax.senvle’ p.| poenvietRequest | getsession
06120108 | 4 3ph54e27d6oc3a 3036211 1aa5c7baTa: TraceElapsedTimeAction-
2;25318 72-00000000000000bb turmel Before-2 Senvlet_Around_Service |jsp_sernviet __index _jspSenvice
06/20/08

o 513bb54e27d6cc3a:30c3eff2:11aa5c7b97a- . .
g;.;}‘ls et turmel | TraceAction Senlet_Defore_Service |jsp_serviet_ index _ispSenice
08120008 | 53154607 dBcc3a 30c36M2113a5¢7b97a - TraceElapsedTimeAdtion-
g;:;S:‘IE Z12-00000000000000b5 turmel [g Senlet_Around_Session | javax.senviethttp. HttpSenletRequest | getSession
06120108 | 543ph54e27dBcc3a:30c3eM2:11aa5c7ba7a: TraceElapsedTimeaction-
2;25318 712-00000000000000bb turmel After-3 Senvlet_Around_Session | javax.senviet hitp. HitpSenvletRequest | getSession
BSE?SS 513bbS4e27dfceda 30c3efiz 113a8CTbTar |y oy | TraceBlapsedTimeAdion-| ooyt aroung_session | javax seniethtio. HipSession setattribute
aas 19| 712-0000000000000000 Before-4 L = Javax. p-Hitp
08120008 | 5354657 g5 cc3a 3003621 1235¢7bIT TraceElapsedTimeAction-
31:253:18 Z/2-00000000000000bb turmel After-4 Senvlet_Around_Session | javax.senvlet hitp. HitpSession setattribute
06120108 | 54 3ph54e27dcc3a 30c36M2:11aa5c7b97a: TraceElapsedTimeAction-
31'253'18 2F2-00000000000000b5 turmel [=5 Senlet_Around_Service |jsp_semviet__index _ispSenice
B?’gg’gg 513bb54e27d6cc3a 30c3eM2 1 1aae7bo7a | | | TraceElapsedTimedtion | o et HitnSenteequest | gets
552 N 7f2-00000000000000bb Lurmel Before-5 erviet_Around_session | Javax.senvle’ Pl paendetRequest | getsession

Example configuration

13-8

ORACLE

Chapter 13
Configuring Delegating Monitors to Use Dye Filtering

Consider a Servlet_Around_Service application-scoped diagnostic monitor that has a
TraceElapsedTimeAction action attached to it. Without dye filtering, any request that is
handled by Servlet_Around_Service will trigger a TraceElapsedTimeAction. However,
you could use dye filtering to trigger TraceElapsedTimeAction only for requests that
originated from user admin@avitek.com at IP address 127.0.0.1.

1. Configure the Dyelnjection monitor so that USER1=admin@avitek.com and
ADDR1=127.0.0.1, and enable the Dyelnjection monitor. For instructions, see
Configure diagnostic monitors in a diagnostic system module in the Oracle
WebLogic Server Administration Console Online Help.

2. Configure a dye mask and enable dye filtering for the Servlet_Before_ Service
diagnostic monitor. In the WebLogic Server Administration Console:

a. Add the Servlet_Around_Service monitor from the WLDF instrumentation
library to your application as described in Configure instrumentation for
applications in the Oracle WebLogic Server Administration Console Online
Help.

b. After adding the monitor, click Save on the Settings for <application_name>
page.

c. Click the Servlet_Around_Service link to display the Settings for
Servlet_Around_Service page.

d. Select the Enabled check box to enable the monitor.

e. Under Actions, move TraceElapsedTimeAction from the Available list to the
Chosen list.

f. Inthe Dye Mask section, move USER1 and ADDR1 from the Available list to
the Chosen list.

g. Select the EnableDyeFiltering check box.
h. Click Save.
3. Redeploy the application.

Configurations added via the WebLogic Server Administration Console are not
persisted to the webl ogi c- di agnosti cs. xnl file in the application's META- | NF directory
or to the DI AG_MODULE. xni file; they are saved in the application's deployment plan.

You can also manually update your DI AG MODULE. xni file to add diagnostic monitors,
as shown in Example 13-2, but this is not recommended. It is better to change the
configuration via the WebLogic Server Administration Console on a running server.
Any changes you make to DI AG_ MODULE. xml will not take effect until you redeploy the
application.

Example 13-2 Sample Configuration for Using Dye Filtering in a Delegating
Monitor, in DIAG_MODULE.xml

<wl df -resour ce>
<name>MyDi agnost i chbdul e</ nane>
<i nstrumentation>
<enabl ed>t r ue</ enabl ed>
<wl df -i nstrunent ati on-noni tor>
<nanme>Dyel nj ect i on</ name>
<enabl ed>t r ue</ enabl ed>
<properties>ADDR1=127. 0. 0. 1 USERl=adni n@vi t ek. conx/ properties>
</W df -instrunent ati on-nonitor>
<wl df -i nstrunment ati on-nonitor>
<name>Servl et _Around_Servi ce</ nane>

13-9

Chapter 13
How Dye Masks Filter Requests to Pass to Monitors

<dye- mask>ADDR1 USER1</dye- mask>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<acti on>TraceEl apsedTi meActi on</ acti on>
</W df -i nstrument ati on- noni t or >
<l-- Qther elenents to configure instrumentation -->
</instrunentation>
<I-- Oher elenents to configure this diagnostic nonitor -->
<wl df - resour ce>

With this configuration, the TraceElapsedTimeAction action will be triggered for the
Servlet_Around_Service diagnostic monitor only for those requests that originate from
IP address 127.0.0.1 and user admin@avitek.com.

The flags that are enabled in the diagnostic monitor must exactly match the bits set
in the request's dye vector for an action to be triggered and an event to be written to
the Event Archive. For example, if the diagnostic monitor has both the USER1 and
ADDRL flags enabled, and only the USER1 flag is set in the request's dye vector, no
action will be triggered and no event will be generated.

Note:

When configuring a diagnostic monitor, do not enable multiple flags of the
same type. For example, don't enable both the USER1 and USER2 flags,
as the dye vector for a given request will never have both the USER1 and
USER?2 flags set.

13.5 How Dye Masks Filter Requests to Pass to Monitors

A dye vector attached to a request can contain multiple dyes, and a dye mask
attached to a delegating monitor can contain multiple dyes.

For a delegating monitor's dye mask to allow a monitor to take action on a request, all
of the following must be true:

» Dye filtering for the delegating or custom diagnostic monitor is enabled in
the application's webl ogi c- di agnost i cs. xm descriptor, or is enabled via the
WebLogic Server Administration Console.

* The request's dye vector contains all of the dyes that are defined in the monitor's
dye mask. (The dye vector can also contain dyes that are not in the dye mask.)

13.5.1 Dye Filtering Example

ORACLE

Figure 13-3 illustrates how dye filtering works, using a diagnostic module with three
diagnostic monitors:

* The Dyelnjection monitor is configured as follows:

ADDR1=127.0.0.1
USER1=webl ogi ¢

* The Servlet_Around_Service monitor is configured with a dye mask containing
only ADDRL1.

13-10

ORACLE

S

Entry
IP=127.0.0.1 /
User = guest -

Chapter 13
How Dye Masks Filter Requests to Pass to Monitors

The EJB_Around_SessionEjbBusinessMethods monitor is configured with a dye
mask containing USER1 only.

Figure 13-3 Dye Filtering Example

Dyelnjection Monitor '(EJB_Around_SessionEjbBusmesstethods 5.

ADDR1=127.0.0.1 Dye_mask: USER1 Me Event
USER1=weblogic

|
NNV
1. \.\HH‘\,,—/‘J'"

SessionEJB

4,

Dye_wvector:
ADDRY

Senviel_Around_Service 3.
[rhye_mask: ADDR1 I Event

A request initiated by user guest from IP address 127.0.0.1 enters the system. The
user guest does not match the value for USER1 in the Dyelnjection monitor, so
the request is not dyed with the dye vector USER1. The originating IP address
(127.0.0.1) matches the value for ADDR1 defined in the Dyelnjection monitor, so
the request is dyed with the dye vector ADDRL1.

Dye_vector:
ADDR1

The request (dyed with ADDR1) enters the Servlet component, where

the diagnostic monitor Servlet_Around_Service is woven into the code.
(Servlet_Around_Service triggers diagnostic actions at the entry of and exit of
certain servlet and JSP methods.) Dye monitoring is enabled for the monitor, and
the dye mask is defined with the single value ADDR1.

When the request enters or exits a method instrumented with
Servlet_Around_Service, the diagnostic monitor checks the request for dye vector
ADDR1, which it finds. Therefore, the monitor triggers a diagnostic action, which
generates a diagnostic event, for example, writing data to the Events Archive.

The request enters the SessionEJB component, where the diagnostic

monitor EJB_Around_SessionEjbBusinessMethods is woven into the code.
(EJB_Around_SessionEjbBusinessMethods triggers diagnostic actions at the entry
and exit of all SessionBean methods). Dye monitoring is enabled for the monitor,
and the dye mask is defined with the single value USERL1.

When the request enters or exits a SessionBean method (instrumented with
EJB_Around_SessionEjbBusinessMethods), the diagnostic monitor checks the
request for dye vector USER1, which it does not find. Therefore, the monitor does
not trigger a diagnostic action, and therefore does not generate a diagnostic event.

13-11

Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

13.6 Using Throttling to Control the Volume of
Instrumentation Events

You can use throttling to control the number of requests that the monitors process in a
diagnostic module.

Throttling is configured using the THROTTLE dye, which is defined in the Dyelnjection
monitor.

" Note:

The USERn and ADDRn dyes allow inspection of requests from specific
users or IP addresses. However, they do not provide a means to look at
arbitrary user transactions. The THROTTLE dye provides that functionality
by allowing sampling of requests.

13.6.1 Configuring the THROTTLE Dye

Unlike other dyes in the dye vector, the THROTTLE dye is configured through two
properties.

e THROTTLE_INTERVAL sets an interval (in milliseconds) after which a new
incoming request is dyed with the THROTTLE dye.

If the THROTTLE_INTERVAL is greater than 0, the Dyelnjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request if the last request
dyed with THROTTLE arrived at least THROTTLE_| NTERVAL before the new request.
For example, if THROTTLE_INTERVAL=3000, the Dyelnjection monitor waits at
least 3000 milliseconds before it will dye an incoming request with THROTTLE.

e THROTTLE_RATE sets the rate (in terms of the number of incoming requests) by
which new incoming requests are dyed with the THROTTLE dye.

If THROTTLE_RATE is greater than 0, the Dyelnjection monitor sets the
THROTTLE dye flag in the dye vector of an incoming request when the number of
requests since the last request dyed with THROTTLE equals THROTTLE RATE. For
example, if THROTTLE_RATE = 6, every sixth request is dyed with THROTTLE.

You can use THROTTLE_INTERVAL and THROTTLE_RATE together. If either
condition is satisfied, the request is dyed with the THROTTLE dye.

If you assign a value to either THROTTLE_INTERVAL or THROTTLE_RATE (or both,
or neither), you are configuring the THROTTLE dye. A THROTTLE configuration
setting in the WebLogic Server Administration Console is shown in Figure 13-4.

ORACLE 13-12

ORACLE

Chapter 13
Using Throttling to Control the Volume of Instrumentation Events

Figure 13-4 Configuring the THROTTLE Dye

Settings for DyeInjection

Configuration

NAYAYAYAYAVAYAVAYAVAYAYAS
AVAVEANVEVEVEVEAVEVEVEAVEVE VN

Properties: THROTTLE INTERVAL=3000
THROTTLE_RATE= §

Example 13-3 shows the resulting configuration in the descriptor file for the diagnostics
module.

Example 13-3 Sample THROTTLE Configuration in the Dyelnjection Monitor, in
DIAG_MODULE.xml

<w df - resour ce>
<name>MyDi agnost i cMobdul e</ nane>
<i nstrumentation>
<w df -i nst runent ati on-nonitor>
<nanme>Dyel nj ect i on</ name>
<properties>
THROTTLE_I NTERVAL=3000
THROTTLE_RATE=6
</ properties>
</w df -instrumentati on-moni t or >
</instrunentation>
<l-- Oher elements to configure this diagnostic nonitor -->
</ W df -resour ce>

Example 13-4 shows the configuration for a JDBC_Before_Start_Internal delegating
monitor where the THROTTLE dye is set in the dye mask for the monitor.

Example 13-4 Sample Configuration for Setting THROTTLE in a Dye Mask of a
Delegating Monitor, in DIAG_MODULE.xml

<wl df - resour ce>
<name>MyDi agnost i cModul e</ nane>
<instrunentation>
<w df -i nstrunent ati on-nonitor>
<nanme>JDBC Before_Start_I nternal </ name>
<enabl ed>t r ue</ enabl ed>
<dye- mask>THROTTLE</ dye- mask>
</w df -instrunmentati on-noni tor>
</instrunentation>
<l-- Oher elements to configure this diagnostic nonitor -->
</w df -resource>

13-13

Chapter 13
Using weblogic.diagnostics.context

13.6.2 How Throttling is Handled by Delegating and Custom Monitors

Dye masks and dye filtering provide a mechanism for restricting which requests are
passed to delegating and custom monitors for handling, based on properties of the
requests. The presence of a property in a request is indicated by the presence of a
dye, as discussed in Configuring the Dye Vector via the Dyelnjection Monitor. One of
those dyes can be the THROTTLE dye, so that you can filter on THROTTLE, just like
any other dye.

The items in the following list explain how throttling is handled:

e If dye filtering for a delegating or custom monitor is enabled and that monitor has
a dye mask, filtering is performed based on the dye mask. That mask may include
the THROTTLE dye, but it does not have to. If THROTTLE is included in a dye
mask, then THROTTLE must also be included in the request's dye vector for the
request to be passed to the monitor. However, if THROTTLE is not included in
the dye mask, all qualifying requests are passed to the monitor, whether their dye
vectors include THROTTLE or not.

e If dye filtering for a delegating or custom monitor is not enabled and neither
THROTTLE property is set in the Dyelnjection monitor, dye filtering will not take
place and throttling will not take place.

e If dye filtering for a delegating or custom monitor is not enabled and
THROTTLE is configured in the Dyelnjection monitor, delegating monitors
ignore dye masks but do check for the presence of the THROTTLE dye in
all requests. Only those requests dyed with THROTTLE are passed to the
delegating monitors for handling. Therefore, by setting a THROTTLE_RATE
and/or THROTTLE_INTERVAL in the Dyelnjection monitor, you reduce the
number of requests handled by all delegating monitors. You do not have to
configure dye masks for all your delegating monitors to take advantage of
throttling.

e If dye filtering for a delegating or custom monitor is enabled and the only dye set in
a dye mask is THROTTLE, only those requests that are dyed with THROTTLE are
passed to the delegating monitor. This behavior is the same as when dye filtering
is not enabled and THROTTLE is configured in the Dyelnjection monitor.

13.7 Using weblogic.diagnostics.context

ORACLE

The weblogic.diagnostics.context package provides applications with access to a
diagnostic context.

An application can use the weblogic.diagnostics.context.DiagnosticContextHelper
APIs to perform the following functions:

* Inspect a diagnostics context's immutable context ID.
* Inspect the settings of the dye flags in a context's dye vector.
» Retrieve an array of valid dye flag names.

e Set, or unset, the DYE_0 through DYE_7 flags in a context's dye vector. (Note
that there is no way to set these flag bits via XML. You can configure Dyelnjection
monitor <properties> to set the non-application-specific flag bits via XML, but
setDye() is the only method for setting DYE_O through DYE_7 in a dye vector.)

» Attach a payload (a String) to a diagnostic context, or read an existing payload.

13-14

Chapter 13
Using weblogic.diagnostics.context

An application cannot:

e Setany flags in a dye vector other than the eight flags reserved for applications.

» Prevent another application from setting the same application flags in a dye vector.
A well-behaved application can test whether a dye flag is set before setting it.

» Prevent another application from replacing a payload. A well-behaved application
can test for the presence of a payload before adding one.

" Note:

The diagnostic context payload can be viewed by other code in the same
execution context; it can flow out of the process along with the Wor k
instance; and it can be overwritten by other code running in the same
execution context. Therefore, you should ensure the following behavior in
your applications:

e Avoid including any sensitive data in the payload that, for example, could
be returned by the get Payl oad() method.

« Do not create a dependency on any particular data being available in
the context payload. For example, applications should not rely on a
particular context ID being present. If an application uses the contents
of the payload, the application should first verify that the contents match
what is expected.

A monitor, or another application, that is downstream from the point where an
application has set one or more of the DYE_O through DYE_7 flags can set a dye
mask to check for those flags, and take an action when the flag(s) are present in a
context's dye vector. If a payload is attached to the diagnostics context, any action
taken by that monitor will result in the payload being archived, and thus available
through the accessor component.

Example 13-5 is a short example which (implicitly) creates a diagnostic context, prints
the context ID, checks the value of the DYE_O flag, and then sets the DYE_O flag.

Example 13-5 Example: DiaghosticContextExample.java

package webl ogi c. di agnosti cs. exanpl es;
i mport webl ogi c. di agnosti cs. cont ext. Di agnost i cCont ext Hel per;
public class DiagnosticContextExanple {
public static void main(String args[]) throws Exception {
Systemout. println("\nContextld=" +
Di agnost i cCont ext Hel per. get Contextld());
Systemout. println("i sDyedWth(DYE_0)=" +
Di agnost i cCont ext Hel per. i sDyedW t h(Di agnosti cCont ext Hel per. DYE_0));
Di agnost i cCont ext Hel per. set Dye(Di agnosti cCont ext Hel per. DYE 0, true);
Systemout. println("i sDyedWth(DYE_0)=" +
Di agnost i cCont ext Hel per. i sDyedW t h(Di agnosti cCont ext Hel per. DYE_0)) ;

ORACLE 13-15

Accessing Diagnostic Data With the Data
Accessor

The Data Accessor component of the WebLogic Diagnostics Framework (WLDF)
accesses diagnostic data from various sources, including log records, data events,
and harvested metrics.Using the Data Accessor, you can:

» Perform data lookups by type, component, and attribute

« Perform time-based filtering and, when accessing events, filtering by severity,
source, and content

» Access diagnostic data in tabular form

You can also use the Data Accessor online (when a server is running) and offline
(when a server is not running).

« Data Stores Accessed by the Data Accessor
e Accessing Diagnostic Data Online
e Accessing Diagnostic Data Offline
» Accessing Diagnostic Data Programmatically

* Resetting the System Clock Can Affect How Data Is Archived and Retrieved

14.1 Data Stores Accessed by the Data Accessor

ORACLE

The Data Accessor retrieves diagnostic information from other WLDF components.
Captured information is segregated into logical data stores, called diagnostic data
stores, which are separated by the types of diagnostic data. For example, server logs,
HTTP logs, and harvested metrics are captured in separate data stores.

WLDF maintains diagnostic data on a per-server basis. Therefore, the Data Accessor
provides access to data stores for individual servers.

Diagnostic data stores can be modeled as tabular data. Each record in the table
represents one item, and the columns describe characteristics of the item. Different
data stores may have different columns. However, most data stores have some of the
same columns, such as the time when the data was collected.

The Data Accessor can retrieve the following information about data stores used by
WLDF for a server:

e Alist of supported data store types, including:
— HarvestedDataArchive
— EventsDataArchive
— ServerlLog
— DomainLog
— HTTPAccessLog

14-1

Chapter 14
Accessing Diagnostic Data Online

— DataSourcelLog
— WebAppLog
— ConnectorLog
— JMSMessagelog
- JMSSAFMessagelog
- CUSTOM
* Alist of available data store instances

* The layout of each data store (information that describes the columns in the data
store)

You can use the WLDFAccessRuntimeMBean to discover such data stores, determine
the nature of the data they contain, and access their data selectively using a query.

For complete documentation about WebLogic logs, see Understanding WebLogic
Logging Services in Configuring Log Files and Filtering Log Messages for Oracle
WebLogic Server.

14.2 Accessing Diagnostic Data Online

Data Accessor provides access to data stores for individual servers. You can access
diagnostic data from a running server.

You can access the data using one of the following ways:

* WebLogic Server Administration Console
« JMXAPIs

* WebLogic Scripting Tool (WLST)

* WLDF query language

14.2.1 Accessing Data Using the Administration Console

You do not use the Data Accessor explicitly in the WebLogic Server Administration
Console, but information collected by the Accessor is displayed, for example, in the
Summary of Log Files page. See View and Configure Logs in the Oracle WebLogic
Server Administration Console Online Help.

14.2.2 Accessing Data Programmatically Using Runtime MBeans

ORACLE

The Data Accessor provides the following runtime MBeans for discovering data stores
and retrieving data from them:

* Use the WLDFAccessRuntimeMBean to do the following:
— Get the logical names of the available data stores on the server.

— Look up a WLDFDataAccessRuntimeMBean to access the data from a
specific data source, based on its logical name. The different data stores are
uniquely identified by their logical names.

See WLDFAccessRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

14-2

Chapter 14
Accessing Diagnostic Data Offline

* Use the WLDFDataAccessRuntimeMBean to retrieve data stores based on a
search condition, or query. You can optionally specify a time interval with the
guery, to retrieve data records within a specified time duration. This MBean
provides metadata about the columns of the data set and the earliest and latest
timestamp of the records in the data store.

Data Accessor runtime MBeans are currently created and registered lazily. So,
when a remote client attempts to access them, they may not be present and an
InstanceNotFoundException may be thrown.

The client can retrieve the WLDFDataAccessRuntime's attribute of the
WLDFAccessRuntime to cause all known data access runtimes to be created, for
example:
bj ect Nane obj Nane =
new Cbj ect Nane("com bea: Server Runti me=" + serverNane +
", Nane=Accessor," +
"Type=WL.DFAccessRuntime, " +
"W.DFRunt i me=W.DFRunt i ne");
rnbs. get Attribute(obj Nane, "W.DFDat aAccessRuntines");

See WLDFDataAccessRuntimeMBean in the MBean Reference for Oracle
WeblLogic Server.

14.2.3 Using WLST to Access Diagnostic Data Online

Use the WLST export Di agnost i cDat aFr onSer ver () command to access diagnostic
data from a running server. For the syntax and examples of this command, see
Diagnostics Commands in the WLST Command Reference for WebLogic Server.

14.2.4 Using the WLDF Query Language with the Data Accessor

To query data from data stores, use the WLDF query language. For Data Accessor
guery language syntax, see WLDF Query Language.

14.3 Accessing Diagnostic Data Offline

You can use the WLST export Di agnosti cDat a() command to access historical
diagnostic data from an offline server. For the syntax and examples of this command,
see Diagnostics Commands in the WLST Command Reference for WebLogic Server.

" Note:

You can use exportDiagnosticData to access archived data only from the
machine on which the data is persisted.

You cannot discover data store instances using the offline mode of the Data
Accessor. You must already know what they are.

ORACLE 14-3

Chapter 14
Accessing Diagnostic Data Programmatically

14.4 Accessing Diagnostic Data Programmatically

ORACLE

You can use the JMX API to access diagnostic data stored by WLDF.Example 14-1
shows the source Java code for a utility that uses the Accessor to query the different
archive data stores.

Example 14-1 Sample Code to Use the WLDF Accessor

/*

* W.Accessor. java

*

* Denonstration utility that allows query of the different ARCV data stores
* via the W.DF Accessor.

*

*/

i nport javax.nam ng. Cont ext ;

i nport webl ogi c. jndi.Environnent;

inport java.util.Hashtable;

inport java.util.lterator;

inport java.util.Properties;

i nport webl ogi c. managenent . Managenent Excepti on;

i nport webl ogi c. managenent. runti me. W.DFAccessRunt i meMBean;
i nport webl ogi c. managenent . runti me. W.DFDat aAccessRunt i meMBean;
i nport webl ogi c. di agnosti cs. accessor. Col unml nf o;

i nport webl ogi c. di agnosti cs. accessor. Dat aRecor d;

inport java.io.File;

inport java.io.FilelnputStream

inport java.io.FileNotFoundException;

inport java.io. | OException;

i nport javax. nanagenent. MBeanSer ver Connecti on;

i nport javax. nanagenent.renote. JMXConnect or;

i mport j avax. managenent.renote. JMXConnect or Fact ory;

i nport javax. nanagenent.renote. JMXServi ceURL;

i nport javax. nanagenent. Cbj ect Nane;

i nport webl ogi c. managenent . nbeanservers. runti ne. Runti neServi ceMBean;
i nport webl ogi c. managenent. runti me. Server Runt i meMBean;

i nport webl ogi c. managenent . j mx. MBeanSer ver | nvocat i onHandl er;

i nport webl ogi c. managenent . confi gurati on. Server MBean;

/**

* Denonstration utility that allows query of the different ARCV data stores
* via the W.DF Accessor. The class | ooks up the appropriate accessor and
* executes the query given the specified query paraneters.

To see information about it's usage, compile this file and run

ECE

j ava W.Accessor usage
*/
public class WAccessor {

/** Creates a new instance of W.Accessor */

public W.Accessor(Properties p) {
initialize(p);

/**

* Retrieve the specfied W.DFDat aAccessRunti meMBean instance for querying.

14-4

Chapter 14
Accessing Diagnostic Data Programmatically

*/
publ i ¢ W.DFDat aAccessRunti meMBean get Accessor(String accessor Type)
throws Throwabl e

{

Il Get the runtinme MBeanServer Connection
MBeanSer ver Connection runti meMBS = this. get Runti meMBeanSer ver Connecti on();

/'l Lookup the runtine service for the connected server
bj ect Nane rt Svcbj Name = new bj ect Name(Runt i meSer vi ceMBean. OBJECT_NAME) ;
Runti meServi ceMBean rtService = null;

rtService = (RuntimeServi ceMBean)
MBeanSer ver | nvocat i onHandl er. newPr oxyl nst ance(
runti neMBS, rtSvcCbj Nare
);

/1 Walk the Runtine tree to the desired accessor instance.
Server RuntimeMBean srt = rtService. get ServerRuntine();

W.DFDat aAccessRunt i neMBean ddar =
srt. get W.DFRunti ne() . get W.DFAccessRunti me().
| ookupWLDFDat aAccessRunt i ne(accessor Type) ;

return ddar;

}
/**

* Execute the query using the given paraneters, and display the fornatted

* records.
*/
public void queryEventData() throws Throwabl e

{
String |ogical Nane = "Event sDat aArchi ve";
W.DFDat aAccessRunt i meMBean accessor = get Accessor (accessor Type);

Col umlnfo[] colinfo = accessor. get Col ums();
inform("Query string: " + queryString);

int recordsFound = 0;
Iterator actuallt =
accessor.retrieveDat aRecor ds(begi nTime, endTime, queryString);
while (actual It.hasNext()) {
Dat aRecord rec = (DataRecord)actual I't.next();
inform("Record[" + recordsFound + "]: {");
bj ect[] values = rec. getVal ues();
for (int colno=0; colno < values.length; col no++) {
inform("[" + colno + "] "
+ colinfo[col no].get Col umName() +
" (" + colinfo[colno].getCol umTypeName() + "): "o+
val ues[col no]);
}
inform"}");
inform("");
recor dsFound++;
}
inforn("Found " + recordsFound + " results");

}
/**

* Main nmethod that inplenents the tool.
* @aramargs the conmand |ine argunents

ORACLE 14-5

ORACLE

Chapter 14
Accessing Diagnostic Data Programmatically

*/
public static void main(String[] args) {
try {
W.Accessor acsr = new W.Accessor (handl eArgs(args));
acsr. queryEvent Data();
} catch (UsageException uex) {
usage();
} catch (Throwable t) {
i nform("Caught exception, " + t.getMessage(), t);
inform"");
usage();
}
}

public static class UsageException extends Exception {}

/**

* Process the command |ine arguments, which are provided as name/val ue pairs.
*/
public static Properties handl eArgs(String[] args) throws Exception
{

Properties p = checkForDefaul ts();

for (int i =0; i <args.length; i++) {

if (args[i].equal slgnoreCase("usage"))
t hrow new UsageException();

String[] nvpair = new String[2];
int token = args[i].indexOf('=");
if (token < 0)
throw new Exception("lnvalid argument, " + args[i]);
nvpair[0] = args[i].substring(0,token);
nvpair[1] = args[i].substring(token+l);
p. put(nvpair[0], nvpair[1]);

}
return p;
}
/**
* Look for a default properties file
*/

public static Properties checkForDefaults() throws |COException {
Properties defaults = new Properties();
try {
File defaul tprops = new File("accessor-defaul ts. properties");
Fil el nput Stream defaul tsI' S = new Fil el nput St ream(def aul t props);
[1inform"loading options from accessor-defaults.properties");
defaul ts. | oad(defaul tslS);
} catch (FileNot FoundException fnfex) {
/linform("No accessor-defaults.properties found");
}
return defaul ts;
}
public static void infornm(String s) {
Systemout. println(s);
}
public static void inform(String s, Throwable t) {
Systemout. println(s);
t.printStackTrace();

}

private MBeanServer Connection get Runti meMBeanSer ver Connecti on()

14-6

Chapter 14
Accessing Diagnostic Data Programmatically

throws | CException
/] construct jnx service url

[l "service:jm:[url]/jndi/[nbeanserver-jndi-name]"
JMXSer vi ceURL serviceURL =
new JMXSer vi ceURL(
"service:jmx:" + getServerUl () +
"/jndi/" + RuntineServi ceMBean. MBEANSERVER JNDI _NAME

)i

/'l specify the user and pwd. Al so specify webl ogic provide package
inforn("user nane [" + usernane + "]");
inform("password [" + password + "]");
Hasht abl e h = new Hasht abl e();
h. put (Cont ext . SECURI TY_PRI NCl PAL, usernane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent. renmote");
/1 get jnmx connector
JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);

i nforn("Using JMX Connector to connect to " + serviceURL);
return connector. get MBeanSer ver Connection();

}

private void initialize(Properties p) {
serverUrl = p.getProperty("url","t3://1ocal host:7001");
username = p.getProperty("user”,"webl ogic");
password = p.getProperty("pass", "password");
queryString = p.getProperty("query","SEVERI TY I N
("Error',"Warning','Critical',"'Emergency')");
accessor Type = p. getProperty("type", "ServerLog");

try {
begi nTi me = Long. par seLong(p. get Property("begin","0"));

String end = p.getProperty("end");
endTime = (end==null) ? Long. MAX_ VALUE : Long. parseLong(end);
} catch (Nunber For mat Exception nfex) {
throw new Runti meException("Error formatting time bounds", nfex);

}
}
private static void usage() {
inform("");
inform("");
infornm("Usage: ");
inform("");
inform(" java W.Accessor [options]");
inform("");
i nfornm("where [options] can be any conbination of the follow ng: ");
inform("");
i nforn(" usage Prints this text and exits");
i nforn(" url =<url > default: 't3://local host:7001'");
inform" user =<user name> default: 'weblogic'");
inform" pass=<passwor d> default: 'password'");
inform" begi n=<begi n-ti mest anp> default: 0");
inform" end=<end-ti mest anp> default: Long. MAX VALUE");
i nforn(" query=<query-string> default: \"SEVERITY IN

("Error',"Varning',' Critical',' Emergency')\"");

ORACLE 14-7

Chapter 14
Resetting the System Clock Can Affect How Data Is Archived and Retrieved

inform" t ype=<accessor-type> default: 'ServerlLog'");

inform("");

i nforn("Exanmple:");

inform("");

inform" java W.Accessor user=system pass=gunby1234 url=http://
nmyhost : 8000 \\");

i nforn(" query=\"SEVERITY = '"Error'\" begi n=1088011734496
type=ServerLog");

inform("");

inform("");

inform("");

inform("All properties (except \"usage\") can all be specified inafile");
inform("in the current working directory. The file nust be naned: ");

inform("");

inform" \"accessor-defaults. properties\"");

inform("");

inforn("Each property specified in the defaults file can still be ");
infornm("overridden on the command-line as shown above");

inform("");

}

[** Getter for property serverUrl.

* @eturn Value of property serverUl.
*/

public java.lang. String getServerUl () {
return serverUrl;

}

/** Setter for property serverUrl.
* @aram serverUrl New value of property serverUrl.

*

*/

public void setServerUl (java.lang.String serverUl) {
this.serverUrl = serverUl;

}

protected String serverName = null;

protected String usernane = null;

protected String password = null;

protected String queryString = "";

private String serverUl = "t3://1ocal host:7001";
private String accessorType = null;

private | ong endTime = Long. MAX_VALUE;
private |ong beginTinme = 0;

private W.DFAccessRunti meMBean dar = nul | ;

}

14.5 Resetting the System Clock Can Affect How Data Is
Archived and Retrieved

Resetting the system clock to an earlier time while diagnostic data is being written to
the WLDF Archive or logs can cause unexpected results when you query that data
based on a timestamp.For example, consider the following sequence of events:

ORACLE 14-8

ORACLE

5.

Chapter 14
Resetting the System Clock Can Affect How Data Is Archived and Retrieved

At 2:00 p.m., a diagnostic event is archived as RECORD_200, with a timestamp of
2:00:00 PM.

At 2:30 p.m., a diagnostic event is archived as RECORD_230, with a timestamp of
2:30:00 PM.

At 3:00 p.m., the system clock is reset to 2:00 p.m.

At 2:15 p.m. (after the clock was reset), a diagnostic event is archived as
RECORD_215, with a timestamp of 2:15:00 PM.

You issue a query to retrieve records generated between 2:00 and 2:20 p.m.

The query will not retrieve RECORD_215, because the 2:30:00 PM timestamp of
RECORD_230 ends the query.

14-9

Deploying WLDF Application Modules

The WebLogic Diagnostics Framework (WLDF) supports the ability to configure and
manage instrumentation for an application by configuring and deploying a diagnostics
application module as resource that is scoped to that application.The configuration

of the diagnostics application module is persisted in a descriptor file that you deploy
with the application. A diagnostic application module deployed in this way is available
only to the application in which it is enclosed. Using application-scoped diagnostic
application modules ensures that an application always has access to the required
resources and simplifies the process of deploying the application in new environments.

" Note:
Note the following:

* Only the Instrumentation component can be used with applications (see
Configuring Application-Scoped Instrumentation).

e For instrumentation to be available for an application, instrumentation
must be enabled on the server to which the application is deployed.
(Server-scoped instrumentation is enabled and disabled in the
<i nstrument ati on> element of the diagnostics descriptor for the server.)

e You can deploy an application using a deployment plan, which permits
dynamic configuration updates.

The following sections explain how to deploy diagnostic application modules:

* Deploying a Diagnostic Module as an Application-Scoped Resource

» Using Deployment Plans to Dynamically Control Instrumentation Configuration
* Using a Deployment Plan: Overview

» Creating a Deployment Plan Using weblogic.PlanGenerator

e Sample Deployment Plan for Diagnostics

* Enabling Java HotSwap

» Deploying an Application with a Deployment Plan

e Updating an Application with a Modified Plan

15.1 Deploying a Diagnostic Module as an Application-
Scoped Resource

To deploy a diagnostic module as an application-scoped resource, you configure the
module in a descriptor file named webl ogi c- di agnosti cs. xnl . You then package the

ORACLE 15-1

Chapter 15
Deploying a Diagnostic Module as an Application-Scoped Resource

descriptor file with the application archive in the ARCH VE_PATH META- | NF directory for
the deployed application.

For example:

C:\Oracl e\ M ddl ewar e\ Oracl e_Hore\ user _proj ect s\ appl i cati ons\ medr ec\ di st\standal on
e\ expl oded\ medr ec\ META- | NF\ webl ogi c- di agnosti cs. xm

You can deploy the diagnostic module in both exploded and unexploded archives.

¢ Note:

If the EAR archive contains WAR, RAR or EJB modules that have the
webl ogi c- di agnosti cs. xm descriptors in their META- | NF directory, those
descriptors are ignored.

You can use any of the standard WebLogic Server tools provided for controlling
deployment, including the WebLogic Administrative Console or the WebLogic Scripting
Tool (WLST).

For information about creating modules and deploying applications, see Deploying
Applications to Oracle WebLogic Server.

Because of the different ways that diagnostic application modules and diagnostic
system modules are deployed, there are some differences in how you can reconfigure
them and when those changes take place, as shown in Table 15-1. The details of

how to work with diagnostic application modules is described throughout this section.
See Configuring Instrumentation, for information about working with diagnostic system
modules.

Table 15-1 Comparing System and Application Modules

Monitor Add/Remove Add/Remove Modify with Modify with Modify with
Type Objects Objects with JMX JSR-88 (hon- Console
Dynamically Console Remotely remote)
System Yes Yes Yes No Yes - via IMX
Module
Application Yes, when Yes No Yes Yes - via plan
Module HotSwap! is
enabled
No, when
HotSwap is
not enabled:

module must
be redeployed

1 See Using Deployment Plans to Dynamically Control Instrumentation Configuration, for information about
HotSwap.

ORACLE 15-2

Chapter 15
Using Deployment Plans to Dynamically Control Instrumentation Configuration

15.2 Using Deployment Plans to Dynamically Control
Instrumentation Configuration

WebLogic Server supports deployment plans, as specified in the Java EE Deployment
Specification API (JSR-88). With deployment plans, you can modify the configuration
of an application after it is built, without having to modify the application archives.

For complete documentation on using deployment plans in WebLogic Server, see
Configuring Applications for Production Deployment in Deploying Applications to
Oracle WebLogic Server.

If you want to reconfigure an application that was deployed without a deployment
plan, you must undeploy, unarchive, reconfigure, re-archive, and then redeploy the
application. With a configuration plan, you can dynamically change many configuration
options simply by updating the plan, without modifying the application archive.

If you enable a feature called Java HotSwap (see Enabling Java HotSwap) before
deploying your application with a deployment plan, you can dynamically update all
instrumentation settings without redeploying the application. If you do not enable
HotSwap, or if you do not use a deployment plan, changes to some instrumentation
settings require redeployment, as shown in Table 15-2.

Table 15-2 When Application Instrumentation Configuration Changes Take

Effect

__|

Scenario | Settings to Use => Add and remove Attach and Enable and

monitors detach actions disable

monitors

Application deployed with a Dynamic Dynamic Dynamic

deployment plan, HotSwap enabled

Application deployed with a Must redeploy Dynamic Dynamic

deployment plan, HotSwap not application®

enabled

Application deployed without a Must redeploy Must redeploy Must redeploy

deployment plan application application application

1 If HotSwap is not enabled, you can "remove" a monitor, but that just disables it. The instrumentation code
is still woven into the application code. You cannot re-enable it through a modified plan.

You can use a deployment plan to dynamically update configuration elements without
redeploying the application.

* <enabled>
e <dye-filtering-enabled>
e <dye-mask>

e <action>

ORACLE 15-3

Chapter 15
Using a Deployment Plan: Overview

15.3 Using a Deployment Plan: Overview

You can use a deployment plan to dynamically control the configuration options of an
application-scoped diagnostic module.

The general process for creating and using a deployment plan is as follows:

1. Create a well-formed webl ogi c- di agnosti cs. xm descriptor file for the
application.

Oracle recommends that you create an empty descriptor. This provides full
flexibility for dynamically modifying the configuration. It is possible to create
monitors in the original descriptor file and then use a deployment plan to override
the settings. However, you will be unable to completely remove monitors without
redeploying. If you add monitors using a deployment plan to an empty descriptor,
all such monitors can be removed. For information about configuring diagnostic
application modules, see Configuring Application-Scoped Instrumentation.

The schema for webl ogi c- di agnosti cs. xm is available
athttp://xm ns. oracl e. com webl ogi c/ webl ogi c- di agnosti cs/ 1. 0/ webl ogi c-
di agnosti cs. xsd.

2. Place the descriptor file webl ogi c- di agnosti cs. xm , in the top-level META- | NF
directory of the appropriate archive.

3. Create a deployment plan, for example by using weblogic.PlanGenerator. See
Creating a Deployment Plan Using weblogic.PlanGenerator.

4. Start the server, optionally enabling Java HotSwap. See Enabling Java HotSwap.

5. Deploy the application using the deployment plan. See Deploying an Application
with a Deployment Plan).

6. When needed, edit the plan and update the application with the plan. See
Updating an Application with a Modified Plan.

15.4 Creating a Deployment Plan Using
weblogic.PlanGenerator

ORACLE

The PlanGenerator tool inspects all Java EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant
WebLogic Server deployment properties that configure external resources for the
application.

You can use the weblogic.PlanGenerator tool to create an initial deployment plan, and
interactively override specific properties of the webl ogi c- di agnosti cs. xn descriptor.

To create the plan, use the following syntax:

java webl ogi c. Pl anGenerator -plan output-plan.xm [options]
application-path

For example:

java webl ogi c. Pl anGenerator -plan foo.plan -dynamics /test/apps/ mywar

15-4

http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

Chapter 15
Sample Deployment Plan for Diagnostics

< Note:

The -dynamics options specifies that the plan should be generated to include
only those options that can be dynamically updated.

For more information about creating and using deployment plans, see Configuring
Applications for Production Deployment in Deploying Applications to Oracle WebLogic
Server.

For more information about using PlanGenerator, see weblogic.PlanGenerator
Command Line Reference and Exporting an Application for Deployment to New
Environments in Deploying Applications to Oracle WebLogic Server

15.5 Sample Deployment Plan for Diagnostics

You can create a simple deployment plan for diagnostics using PlanGenerator.

Example 15-1 shows a simple deployment plan generated using
weblogic.PlanGenerator. (For readability, some information has been removed.) The
plan enables the Servlet Before Service monitor and attaches to it the actions
DisplayArgumentsAction and StackDumpAction.

Example 15-1 Sample Deployment Plan

<?xm version="1.0" encodi ng=" UTF-8' 7>
<depl oynment - pl an xm ns="http://xm ns. oracl e. conl webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schena- i nst ance"
gl obal -vari abl es="fal se">
<appl i cati on-name>j sp_expr _root </ appl i cati on- nane>

<vari abl e-definition>
<I-- Add two additional actions to Servlet_Before_Service monitor -->
<vari abl e>
<name>WLDFI nst runent at i onMoni t or _Servl et _Before_Servi ce_Actions_113050559713922</ nane>
<val ue>"Di spl ayAr gunent sAction", " St ackDunpAct i on" </ val ue>
</vari abl e>
<-- Enable the Servlet_Before_Service nonitor -->
<variabl e>
<name>WLDFI nst rument at i onMoni t or _Servl et _Bef ore_Servi ce_Enabl ed_113050559713927</ nane>
<val ue>t rue</ val ue>
</vari abl e>
</variabl e-definition>

<nmodul e-overri de>

<modul e- nane>j spExpr essi onWar </ nodul e- name>

<nmodul e-type>war </ nodul e-type>

<nmodul e-descriptor external ="fal se">
<r oot - el ement >webl ogi c- web- app</r oot - el ement >
<uri >WEB- | NF/ webl ogi ¢. xn </ uri >

</ modul e- descri pt or >

<nmodul e-descriptor external ="fal se">

<root - el ement >web- app</ r oot - el enent >

<uri >WEB- | NF/ web. xm </ uri >

</ modul e- descri pt or >

<nmodul e-descriptor external ="fal se">
<root - el ement >Wl df - resour ce</ r oot - el enent >

ORACLE 15-5

Chapter 15
Enabling Java HotSwap

<uri >META- | NF/ webl ogi c- di agnosti cs. xm </ uri >
<vari abl e- assi gnnment >
<name>WLDFI nst runent ati onMoni t or _Servl et _Before_Servi ce_Actions_113050559713922</ nane>
<xpat h>/w df -resource/instrunmentation/w df -i nstrunentation-nonitor/
[name="Servl et _Before_Service"]/action</xpat h>
</vari abl e- assi gnnent >
<vari abl e- assi gnnent >
<name>WLDFI nst runent ati onMoni t or _Servl et _Before_Servi ce_Enabl ed_113050559713927</ nane>
<xpat h>/ wl df -resource/instrunmentation/w df -i nstrunentati on-nonitor/
[name="Ser vl et _Bef ore_Servi ce"]/ enabl ed</ xpat h>
</vari abl e- assi gnnent >
</ modul e- descri pt or >
</ modul e-overri de>
<config-root xsi:nil="true"></config-root>
</ depl oynent - pl an>

For a list and documentation of diagnostic monitors and actions that you can specify in
the deployment plan, see WLDF Instrumentation Library.

15.6 Enabling Java HotSwap

You can enable Java HotSwap to update the configuration of the application with the
modified deployment plan values.

To enable Java HotSwap, start the server with the following command line switch:

-j avaagent : $W._HOWE/ server/|ib/ di agnosti cs-agent.j ar

15.7 Deploying an Application with a Deployment Plan

To take advantage of the dynamic control provided by a deployment plan, you must
deploy the application with the plan.

You can use any of the standard WebLogic Server tools for controlling deployment,
including the WebLogic Server Administration Console or the WebLogic Scripting Tool
(WLST). For example, the following WLST command deploys an application with a
corresponding deployment plan.

w s: / nydonai n/ server Confi g> depl oy(' myApp', './myApp.ear', 'nyserver',
"nostage', './plan.xm")

After deployment, the effective diagnostic monitor configuration is a combination of
the original descriptor, combined with the overridden attribute values from the plan.
If the original descriptor did not include a monitor with the given name and the

plan overrides an attribute of such a monitor, the monitor is added to the set of
monitors to be used with the application. This way, if your application is built with

an empty webl ogi c- di agnosti cs. xm descriptor, you can add diagnostic monitors to
the application during or after the deployment process without having to modify the
application archive.

15.8 Updating an Application with a Modified Plan

You can change configuration settings by modifying the deployment plan and then
updating or redeploying the application, depending on whether HotSwap is enabled.

ORACLE 15-6

ORACLE

Chapter 15
Updating an Application with a Modified Plan

See Enabling Java HotSwap to see when you can simply update the application and
when you must redeploy it. You can use any of the standard WebLogic Server tools for
updating or redeploying, including the WebLogic Server Administration Console or the
WebLogic Scripting Tool (WLST).

If you enabled HotSwap, you can update the configuration for the application with
the modified plan values by updating the application with the plan. For example, the
following WLST command updates an application with a plan:

w s: / nydomai n/ server Confi g> updat eAppl i cati on(' Bi gApp',
" ¢:/nyapps/ Bi gApp/ newPl an/ pl an. xm ', stageMde=" STAGE' ,
t est Mbde="fal se')

If you did not enable HotSwap, you must redeploy the application for certain changes
to take effect. For example, the following WLST command redeploys an application
using a plan:

w s: / nydomai n/ server Confi g> redepl oy(' myApp' 'c:/myapps/plan.xm")

15-7

Using the Monitoring Dashboard

Monitoring Dashboard provides views and tools for graphically presenting diagnostic
data about servers and applications running on them.The underlying functionality for
generating, retrieving, and persisting diagnostic data is provided by the WebLogic
Diagnostics Framework (WLDF). The Monitoring Dashboard provides additional tools
for presenting that data in charts and graphs.

* Running the Monitoring Dashboard

* Scope of the Diagnostic Information Displayed

» About the Monitoring Dashboard Interface

e Understanding How Metrics Are Collected and Presented
* The Parts of a Chart

16.1 Running the Monitoring Dashboard

You can launch the Monitoring Dashboard from the WebLogic Server Administration
Console, or you can run it separately in a web browser.

The Monitoring Dashboard is always displayed in its own tab, or window, depending
on the preferences you have set for your browser. You do not need to be logged in to
the WebLogic Server Administration Console to use the Monitoring Dashboard; but if
you are not logged in, you are prompted for your username and password credentials.

See Launch the Monitoring Dashboard in Oracle WebLogic Server Administration
Console Online Help.

16.2 Scope of the Diagnostic Information Displayed

ORACLE

The diagnostic data displayed by the Monitoring Dashboard consists of runtime
MBean attributes with numeric or Boolean values that are useful to measure, either
as their current values or as their changes over time. These values, referred to in
the Monitoring Dashboard as metrics, originate from one or more runtime MBean
instances from one or more servers in the domain.

The Monitoring Dashboard obtains metrics from two sources:

« Directly from active runtime MBean instances — these metrics are sometimes
called polled metrics in this chapter.

* From the Archive that have been collected by the Harvester — these metrics are
also known as collected metrics to distinguish them from metrics whose values
are obtained directly from active runtime MBean instances and returned to the
Monitoring Dashboard.

16-1

Chapter 16
About the Monitoring Dashboard Interface

16.3 About the Monitoring Dashboard Interface

The Monitoring Dashboard includes two main panels. Use the explorer panel to select
the view you want to display, and use the view display panel to see charts of the metric
values that have been captured in that view.

The Monitoring Dashboard has two main panels: the explorer panel and the view
display panel, as shown in the following figure.

Figure 16-1 Monitoring Dashboard Panels

View Displa
Explorer Panel play
Panel
L v
r A4 J
OrACLE WeblLogic Server® Administration Console i Preferences |Help Logout O
P | Q 7 @ | welcome, weblogic | Connected to: medrec
View List | Meatric Brewser MedRec Local Network Channell http] Server Channel on MedRecServer 4

@ x o MedRecGlobalDataSourceXs Prepared Statement Cache v

=123 Buit-in Yigws
| M5 Runtime
=] M Runtime Heap
=il MedrecServer
| Thread Pool Runtime
EI[23 My views
MedRer Local Metwark Ch

11z
1 Ar—f—
10
9
3
10:24:00 10:25:00 10:26:00 10:27:00 10:28:00 10:29:00
Current Size w I ——F i
Hit Court ¥ -
& piss Count ¥ ‘ « »
: . |

The explorer panel provides access to the following:

* View List — Set of existing built-in and custom views. It also contains controls for
creating, copying, renaming, and deleting views. See View List.

* Metric Browser — Provides a means to navigate to and select the specific MBean
instance attributes whose metric values you want to display in a chart in a view.
See Metric Browser.

ORACLE 16-2

Chapter 16
About the Monitoring Dashboard Interface

16.3.1 View List

To display a view, select it from the View List, shown in Figure 16-2.

Figure 16-2 Built-in and Custom Views Displayed in the View List
WView List
menu button

¥iew List

x(-)

¢ | EED Buitin views S

IMS Runkirme

WM Runtirne Heap
Thread Moal Runkime
Lo B £ examplesserver
Builtin views -< Application Work Managers on examplesServer
Defaulk3ecurefhttps] Server Channel on exampless
DefaultSecure[https][1] Server Chanmel on example

DefaultSecurefiops] Server Channel on examplesSe

__ Defaulk3ecurefiops][1] Server Channel on example
EI7) My wiews
Custom views {Copy of Default[http] Server Channel on examplesSer:
Server Channel v
< >

Views are presented in two primary categories:
e Built-in views

The built-in views are a set of predefined views of available runtime metrics for
all running WebLogic Server instances in the domain. These views surface some
of the more critical runtime WebLogic Server performance metrics and serve as
examples of the Monitoring Dashboard's view and charting capabilities.

Note the following about built-in views:

— Built-in views are dynamic. For example, if four servers are running, the set of
available built-in views and its charts are related to those four servers. If five
servers are running, then the set of built-in views and its charts expands for
each additional server. In addition, if the number of running server instances
changes while you are using dashboard (for example, a server is started or
stopped), and you want to see the new built-in views for the current set of
running server instances, refresh the view list by selecting Refresh from the
View List menu.

— Built-in views are automatically available with every WebLogic Server
installation and can be used by every user logged into WebLogic Server
Administration Console or Monitoring Dashboard.

— You cannot modify a built-in view, but you can copy it. Once copied, the view
can be modified, renamed, saved, and deleted.

e Custom views

ORACLE 16-3

Chapter 16
About the Monitoring Dashboard Interface

A custom view is any view created by a user. Custom views are available only
to the user who created them. Custom views are automatically persisted for the
user and are in effect only for that user account and only in the current domain.
(However, note that polled metric values that are displayed in custom views are
not persisted if you close the Monitoring Dashboard window, just as they are not
persisted for built-in views either.)

No custom views are available by default.

See the following topics in Oracle WebLogic Server Administration Console Online
Help:

* Work with views in the Monitoring Dashboard
e Start and stop views

* Create custom views

e Copy a view

 Delete a view

16.3.2 Metric Browser

Charts display metrics, which are attributes of MBean instances. Metrics can be either
of the following:

e Metrics whose values are obtained from active MBean instances in a running
WebLogic Server instance.

The running server instances are polled at regular intervals, and the charts that
display the metric values that are returned are continually updated (see Current
Time Range Charts).

* Collected metrics whose values are obtained from the Archive.

Collected metrics have been previously captured by the WLDF Harvester and
placed in the Archive, and they provide a record of past state. Charts that display
only collected metrics are not updated (see Custom Time Range Charts).

You use the Metric Browser to select the metrics that you want to add to a chart. The
Metric Browser, shown in Figure 16-3, displays:

* Currently registered WebLogic MBean types
* Currently registered instances of MBean types
» Attributes of the listed registered instances

As a convenience for selecting metrics that have been collected by the Harvester,
the Metric Browser includes the Collected Metrics Only button. When you select this
button, the Metric Browser displays only collected metrics.

To see metrics for all runtime MBean types regardless of whether instances of them
are currently active, select Include All Types. To determine whether a metric was
collected by the Harvester, select the metric, or leave the mouse positioned over it. A
note window is displayed that provides information about the metric, including whether
or not it is a collected metric (that is, collected by the Harvester).

ORACLE 16-4

Chapter 16
About the Monitoring Dashboard Interface

Figure 16-3 Metric Browser

Metric Browser

SEIYErs:
tMedRecSener | Go

[collected Metrics only
Hinclude al Types
Types:

fittar

3K

@Compilatinnlmpl
@ConnectDrService
(CJETBComponant
@ EJEPonl

Instances:

Hitar b4

i AdministratorRepositoryImpl, medrec

[j AdministratorRepositoryImpl, physician
[:i AdministratorServiceImpl, medrec

[ﬁ AdministratorServiceImpl, physician w

Matrics:
Hitar b4
£ DestrovedTatalCounk (Jang) s
¢ IdleBeansCount (int}

4% MissTotalZount (long)
¢ PooledBeansCurrentCaunt (ink)

i

To use the Metric Browser, select the server instance containing the metric values you
want to display. The Metric Browser can optionally constrain the list of MBean types,
registered instances, and metrics that are displayed to only those for which metric data
has been collected, or display all MBean types for the server even if they have no
active instances.

In addition, you do not need to find a metric by first selecting its MBean type and then
the instance in which it exists. You can select a metric in any order; for example, you
can start by first selecting a metric, or by first selecting the MBean instance if you
prefer. In addition, you can apply filters to each list to further constrain the items that
are displayed.

You can select and filter in any order. Selecting an item in one list may make a
selection in another and may also constrain other lists. Note the following behavior:

« Initially the Types list box shows all MBean types (as determined by the settings
of the Collected Metrics Only and Include All Types checkboxes), the Instances
list box shows all MBean instances, and the Metrics list box shows all metrics.

* Selecting a specific MBean type causes the MBean instances list to be
constrained to instances of that type and the metrics list to be constrained to
metrics of that type.

» Selecting (hone) in the Types list specifies that no type is selected, which causes
the entries in the Instances and Metrics lists to be unconstrained.

* Selecting a specific MBean instance, either before or after making any other
selection, causes:

ORACLE 16-5

Chapter 16
About the Monitoring Dashboard Interface

— The corresponding MBean type in the Types list box to become selected.

— The entries in the Metrics list to become constrained to only those metrics for
that MBean instance.

» Selecting a specific entry in the Metrics list box, either before or after making any
other selection, causes:

— The specific MBean type to which the metric corresponds to become selected
in the Types list.

— The Instances list to be constrained to the MBean instances to which the
metric corresponds.

* When you enter a filter string into any of the list boxes, you constrain the list
contents to include only the items that match the filter. The behaviors described in
the preceding items that are used in combination with the filter result in a behavior
similar to a "logical and.”

The effect of these behaviors is to reinforce the relationships among MBean types,
MBean instances, and metrics. Each MBean instance is of a specific MBean type, and
each metric corresponds to a particular MBean type. The MBean type determines both
all the instances of that type as well as all the metrics that the type has.

For information about using the Metric Browser, see the following topics in Oracle
WebLogic Server Administration Console Online Help:

* Work with the Metric Browser
e Select the server to monitor
e Display items in the Metric Browser

e Display summary notes about MBean instances and metrics in the Metric Browser

16.3.3 View Display Panel

ORACLE

A view is a collection of one or more charts that display captured metric values,
as shown in Figure 16-4. Only one view is displayed at a time in the Monitoring
Dashboard; however, multiple views can be running simultaneously.

16-6

ORACLE

Chapter 16
About the Monitoring Dashboard Interface

Figure 16-4 View Containing Four Charts

MyMedRec Local Network Channel[http] Server Channel on MedRecServer 1 =

Connections A Connections as Radial & -
1

4

3

2

1
0

102600 112700 11:22:00 112900 1130000 11:21:00 11:32:00

O Connections Count ¥ I » r\l O Connections Count

Bytes Sent/Received / - Accept / -
Eytes
3,000,000 100
2,500,000
2,000,000 | 7

1,500,000 | =]

1,000,000

500,000 =

1} 1}
110900 11:10:00 11:11:00 11:12:00 11:13:00 111400 11:15:00 11:33:00 11300 11:35:00 11:36:00 11:37:00
Eytes Received Count Accept Count *

Bytes Sent Count v

Each chart in the view contains a legend, labels, and controls for identifying and
displaying the data. The following chart styles can be included in a view:

e Time-series charts, such as a line plot or bar graph that show changes in each
metric's value over a period of time

e Gauges, which show the current or most recent value of a metric along with the
following statistics that have been collected for the metric's values:

— Minimum

— Maximum

— Average

— Standard deviation

Charts can show the metrics for a current time range, meaning that the chart is
updated continually as the Monitoring Dashboard obtains new values for the metric
at regular intervals. Or, for charts for which you specify a custom time range that has
already passed, charts can display collected metrics obtained from the Archive that
were captured by the Harvester.

For information about displaying and starting views, and arranging charts in them, see
the following topics in Oracle WebLogic Server Administration Console Online Help:

» Display or create views, charts, and metrics: main steps
* Work with views in the Monitoring Dashboard

o Display views

e Start and stop views

For general details about Monitoring Dashboard charts, see The Parts of a Chart.

16-7

Chapter 16
Understanding How Metrics Are Collected and Presented

16.4 Understanding How Metrics Are Collected and

Presented

The Monitoring Dashboard displays metrics from two sources: realtime polled metrics,
and metrics previously harvested and stored in the Archive.

Realtime, polled metric values are obtained at regular intervals from running WebLogic
Server instances and returned to the Monitoring Dashboard. To view these metrics

in the Monitoring Dashboard, it is not necessary to configure the Harvester. When

a view is started with charts that contain one or more real-time, polled metrics,

the runtime MBean instances corresponding to those metrics are polled at each
configured interval, and the requested metric values are returned to the Monitoring
Dashboard. A polled metric is stored only once in the Monitoring Dashboard, even

if that metric has been added to multiple charts or multiple views. The runtime

MBean instance corresponding to that metric is also polled only once at each interval,
regardless of the number of charts or views in which its metric values are displayed.
So when an updated value for a metric arrives in the Monitoring Dashboard, all
charts containing that metric are updated simultaneously. This enables the Monitoring
Dashboard to minimize the performance overhead on your system and maximize its
overall efficiency.

To be able to view collected metrics, you must first configure the Harvester to
collect the data you want to monitor and have it available in the Archive. In a view
with one or more custom time range charts containing collected metrics, the values
for those metrics that correspond to the specific custom time ranges are fetched
once from the Archive and displayed in those charts. Note that collected metrics
data is also available for programmatic access, and it is written to a standard log,
Har vest edDat aAr chi ve, which you can view using the standard WebLogic Server
Administration Console as well as the Monitoring Dashboard. For information about
configuring the Harvester to collect metrics, see Configuring the Harvester for Metric
Collection.

16.4.1 About Metrics and Chart Types

The way in which the Monitoring Dashboard presents metrics depends upon the chart
in which they are displayed. After you add a chart to a view, you can use the Chart
Properties dialog box to specify either of the following time ranges:

¢ Current
¢ Custom

The following sections provide key information about how metrics are presented in
each chart type.

16.4.1.1 Current Time Range Charts

ORACLE

This is the default time range for charts in the Monitoring Dashboard. Use this time
range for displaying real-time, polled metrics, which can be displayed only in current
time range charts. These charts are updated at regular intervals, which by default

is every 20 seconds. (The sample interval can be customized in the Dashboard
Preferences dialog box.)

16-8

Chapter 16
Understanding How Metrics Are Collected and Presented

When you add a metric to a current time range chart, the Monitoring Dashboard
fetches a small number of historical values for that metric from the Archive, if they are
available. Note the following about metric values obtained from the Archive for current
time range charts:

* The number of values fetched is derived from the amount of time over which
the stored samples can range, in which the sample interval is multiplied by the
maximum samples for the chart. (The default sampling interval is 20 seconds and
the default sample maximum is 100, which yields a time range of 2000 seconds, or
approximately 33.3 minutes.)

» If the sampling interval used by the Harvester is different from the one configured
for the Monitoring Dashboard, some distortion may be evident in the graphing of
that metric.

16.4.1.2 Custom Time Range Charts

Charts configured with a custom time range display collected metrics only. When you
specify a custom time range for a chart and add a collected metric, the Monitoring
Dashboard fetches the metric's values from the Archive that match the specified time
range. These charts are static: once the Monitoring Dashboard displays collected
metrics in a custom time range chart, the values of those metrics are never updated.

Note the following:

* Custom time range charts never include real-time, polled metric values.

* As a convenience for creating custom time range charts, the Metric Browser
includes a button labeled Collected Metrics Only. When you select this button,
the Metric Browser displays only collected metrics.

16.4.2 Sequence in which Metrics Data is Displayed

ORACLE

If the Harvester is configured to collected runtime MBean metrics, collection can begin
independently of whether the Monitoring Dashboard is running. This section shows the
sequence of activity that occurs when the Monitoring Dashboard collects and displays
metrics in current time range and custom time range charts.

1. If the Harvester is configured to collect data for a metric, it starts to harvest that
data after the server is started. The data is persisted in the Archive.

2. When the Monitoring Dashboard is launched, the list of available built-in and
custom views is displayed. However, the real-time polling of metric values directly
by JMX does not begin until one or more views are started.

3. When a view containing a current time range chart is started:

e The Monitoring Dashboard begins polling the runtime MBean instances
corresponding to the metrics contained in the chart.

» If the Harvester has collected data for this metric in the Archive, that data
added to the chart immediately. The number of samples that the Monitoring
Dashboard obtains from the Archive corresponds to the time range for the
chart.

» If the Harvester was not configured to harvest data for this metric, no historical
data is retrieved from the Archive for the metric and therefore none is
displayed.

16-9

Chapter 16
The Parts of a Chart

When a view containing a custom time range chart is created, the Monitoring
Dashboard fetches from the Archive the set of values for the metric that match the
custom time range specified for that chart. Once the values are displayed in the
chart, the chart is never updated. The view in which a custom time range chart has
been added does not need to be started in order to have the values of its collected
metrics displayed.

As polled data values for a metric arrive in the Monitoring Dashboard, the new
values are added to the chart. The oldest values obtained from the Archive, if
available, are purged.

The chart always displays the most current data. The maximum samples for a
chart determines how many samples can be saved for metrics, in both current and
custom time range charts. After a chart reaches its maximum samples threshold,
the oldest metric values are removed as newest arrive.

16.4.3 Notes about Metric Data Retention

If you exit from the Monitoring Dashboard, either by closing the Monitoring Dashboard
window or by logging out, the browser prompts you to confirm your choice because

all metric values captured by the Monitoring Dashboard during the session will be lost.
Exiting from the Monitoring Dashboard has no effect on collected metrics persisted in
the Archive. However, note that the Archive may have a data retirement policy in effect
that limits how long data is retained there. See Retiring Data from the Archives.

16.5 The Parts of a Chart

A chart contains several key parts, including the chart name, viewport, X- and Y- axes
for plotting data, a legend for each displayed metric, view controls, and more.

A chart consists of the following:

ORACLE

Chart name

Chart viewport, which shows the data values of one or more metrics that are
displayed according to the chart type. The type can be a time-series chart that
plots individual data points over a specified time span, or a gauge that shows the
current or most recent value of a metric along with statistics indicating maximum,
minimum, average, and standard deviation values.

X- and Y-axes for plotting diagnostic data

— For time-series charts, data point plots against a time-based X-axis. You can
zoom in or out to see a larger or smaller time segment in the viewport.

— The Y-axis has a range and, by default, the range is automatically set to
include all the data points in the chart.You can optionally configure minimum
and maximum values for the Y-axis.

A legend for each metric that includes the name of the metric and the colored
marker symbol that is used for that metric in the chart viewport.

The metric legend includes a button that, when selected, provides access to
operations that can be performed with the metric, such as:

— Changing the name that is displayed for the metric in the chart, as well as the
shape and color used for the metric data points displayed in the chart viewport

16-10

Chapter 16
The Parts of a Chart

— Copying or moving the metric to another chart, moving the legend within the
current chart, or deleting the metric from the chart

e Chart series overview

The chart series overview, which is available for time-series charts, indicates the
portion of metrics data currently visible in the chart in relation to the whole set

of data that has been collected for the corresponding metrics for the represented
period of time. You can "drag-select" in either the viewport or the chart series
overview to zoom in or out of the chart's data.

The display of the chart series overview can optionally be suppressed, which can
be useful for reducing the number of Ul artifacts that are displayed simultaneously
in the Monitoring Dashboard and also improving performance on slower systems
or browsers.

For information about customizing the display settings for the chart series
overview, see Set dashboard preferences in Oracle WebLogic Server
Administration Console Online Help.

* Buttons for panning the and zooming the data displayed on the chart's X-axis.
These buttons are part of the chart series overview, so the display properties set
for the chart series overview also apply to these buttons.

* Optional Y-axis units label
* Chart menu, available by selecting the chart menu button

You can use the chart menu to add metrics, change the chart type, pan and zoom
data shown in the viewport, and set various chart properties.

» Edit tool

Select the edit tool to modify the chart name, Y-axis units label, and names used to
identify each metric added to the chart.

Figure 16-5 shows each of these parts as they appear in a line plot chart.

Figure 16-5 Parts of a Chart

Edit tool

/

[WEL NN | ocal Network Channel Chart menu button

Y-aXiS UNItS e | Biytes sent

label 20,000,000
15,000,000 (4 Chart viewport
Y-axis —?
10.000.000 ‘.\\\
5,000,000 [T—= Metric data points
X-axis e 0
) 12:48:30 12145140 12:48:50 12:49:00 12:949: 10 12:49:20 12:49:30 12:49:40 12:49:50 12:50:00 Chart series
Metric legend e @ pytessentCount@Medre Lacal ¥ I — | = overview
| 2 8 8 3 - Pan and zoom
controls

Metric legend button

A gauge chart, shown in Figure 16-6, contains the following additional information
about each metric that has been added to it:

e Minimum and maximum values

ORACLE 16-11

ORACLE

Chapter 16
The Parts of a Chart

* Average value

e Standard deviation

Figure 16-6 Data Values Shown in Gauge Chart Types

Bytes Sent/Received v
Eiyhes

Current value

13/' ///
Average value 550

50

E00

Minimum value i

\

Eivtes Received Count =
Maximum value
Bwhes Sent Count

St’m(hr(l deviation

To display the numeric values indicated by each of these artifacts associated with a
particular metric in a gauge chart, position the mouse pointer over that metric's marker
symbol, indicated in Figure 16-6 by the label Current value.

For information about how to create, modify, and work with charts in the Monitoring
Dashboard, see the following topics in Oracle WebLogic Server Administration
Console Online Help:

Work with metrics in charts

Add charts to a view

Choose the chart type

Display summary information about metrics in charts
Pan and zoom the metrics data shown in a chart
Reset gauge statistics

Copy or move charts

Set chart time range

Control the Y-axis range

Display thresholds in charts

16-12

Configuring and Using WLDF
Programmatically

As an alternative to using the WebLogic Server Administration Console or Fusion
Middleware Control to enable, configure, and monitor the WebLogic Diagnostics
Framework (WLDF), you can also use the JMX API or the WebLogic Scripting Tool
(WLST) to perform these tasks programmatically.

* How WLDF Generates and Retrieves Data

* Mapping WLDF Components to Beans and Packages
* Programming Tools

WLDF Packages

* Programming WLDF: Examples

In addition to the information provided in the preceding sections, see the following for
additional information about how to develop and deploy JMX applications and to use
WLST:

» Developing Applications for Oracle WebLogic Server

* Developing Manageable Applications Using JMX for Oracle WebLogic Server

» Developing Custom Management Utilities Using JMX for Oracle WebLogic Server
» Deploying Applications to Oracle WebLogic Server

* Understanding the WebLogic Scripting Tool

17.1 How WLDF Generates and Retrieves Data

ORACLE

The process WLDF uses to generate and retrieve diagnostic data largely depends on
how its main components are configured.

In general, diagnostic data is generated and retrieved by WLDF components following
this process:

* The WLDF XML descriptor file settings for the Harvester, Instrumentation, Image
Capture, and Policies and Actions components determine the type and amount of
diagnostic data generated while a server is running.

* The diagnostic context and instrumentation settings filter and monitor this data as
it flows through the system. Data is harvested, actions are executed, events are
generated, and configured notifications are sent.

* The Archive component stores the data.
e The Accessor component retrieves the data.

Configuration is primarily an administrative task, accomplished either through the
WebLogic Server Administration Console or through WLST scripts. Deployable
descriptor modules, XML configuration files, are the primary method for configuring
diagnostic resources at both the system level (servers and clusters) and at

17-1

Chapter 17
Mapping WLDF Components to Beans and Packages

the application level. (For information about configuring WLDF resources, see
Understanding WLDF Configuration.)

Output retrieval via the Accessor component can be either an administrative or a
programmatic task.

17.2 Mapping WLDF Components to Beans and Packages

ORACLE

When you create diagnostic system modules using the WebLogic Server
Administration Console or WLST, WebLogic Server creates MBeans (managed beans)
for each module. You can access these MBeans using JMX or WLST. Because

WLST is a JMX client; any task you can perform using WLST you can also perform
programmatically through JMX.

Table 17-1 lists the beans and packages associated with WLDF and its components.
Figure 17-1 groups the beans by type.

Table 17-1 Mapping WLDF Components to Beans and Packages

]
Component Beans | Packages

WLDF WLDFServerDiagnosticMBean
WLDFSystemResourceMBean
WLDFBean (abstract)
WLDFResourceBean
WLDFRuntimeMBean

Diagnostic Image WLDFImageNotificationBean
WLDFImageCreationTaskRuntimeMBean
WLDFImageRuntimeMBean

Instrumentation WLDFInstrumentationBean
WLDFInstrumentationMonitorBean
WLDFInstrumentationRuntimeMBean

Diagnostic Context Package: weblogic.diagnostics.context
DiagnosticContextHelper
DiagnosticContextConstants

Harvester WLDFHarvesterBean
WLDFHarvestedTypeBean
WLDFHarvesterRuntimeMBean

Policies and Actions ~ WLDFNotificationBean
WLDFWatchNotificationBean
WLDFJMSNotificationBean
WLDFJMXNotificationBean
WLDFSMTPNotificationBean
WLDFSNMPNotificationBean
WLDFWatchNotificationRuntimeMBean
Package: weblogic.diagnostics.watch
JMXWatchNotification
WatchNotification

17-2

ORACLE

Table 17-1

Chapter 17
Mapping WLDF Components to Beans and Packages

(Cont.) Mapping WLDF Components to Beans and Packages

Component Beans | Packages

Archive WLDFArchiveRuntimeMBean
WLDFDbstoreArchiveRuntimeMBean
WLDFFileArchiveRuntimeMBean
WLDFWIstoreArchiveRuntimeMBean

Accessor WLDFAccessRuntimeMBean
WLDFDataAccessRuntimeMBean

Runtime Control WLDFControlRuntimeMBean
WLDFSystemResourceControlRuntimeMBean

Figure 17-1 WLDF Configuration MBeans, Runtime MBeans, and System

Module Beans

P

WebLogic Diagnostic Framework

Domain Configuration MBeans

VWLDFSystemResourceMBean) [VWLDFServerDiagnosticMBean

System Module MBeans

WLOFBean (abstract)

VWLDFInstrumentationBean VWLDFMctificationBean

WLDFHarvestedTypeBean

WLDFInstrumentationMonitorBean WLDFResourceBean

VWLDFHarvesterBean

WLDFJMSHNotificationBean WLDFSMTFHMatificationBean

b AN A
T T

VWLDFImag

VT Y Ty

ellotificationBean

o A A A
Y =Y
A A A S A

VWLDFJMXMotificationBean) [WLDFSHNMPHotificationBean

[VWLDFWatchBean) [VWLDFWatchMotificationBean)

Runtime MBeans

WLDFAccessRuntimeMBean

'\-"-'LDFFiIeﬁrchi*'eRuntime["'IBeanj [VWLDFInstrumentationRuntime
) Y ! MBean

WLDOFArchiveRuntimeMBean

WLDFHarvesterRuntimeMBean WLDOFRuntimeMBean

WLDOFImageCreationTaskRuntime WLDF ContrelRuntimeMBean

cessRuntimeMBean MBean

VWLDFDbstoreArchiveRuntime

WLDFWatchMotification

Wl i {1 .
WLDFImageRuntimeMBean RuntimeMBean

MBean

VWLDFWlstoreArchiveRuntime

WLDFDataRetirementTaskRuntime

IMBean IMBean IMBean

E
[
[‘u“-.-‘L DFDataAc
[
[
[v

VWLDFHarvesterManagerRuntime

WLDFSystemResourceControl
RuntimeMBean

VWLDFWatchManagerRuntime

IMBean IMBean

A A A T A A
YT =YY o Y
A A A AN A L

[WLDFEditableArchiveRuntime

oA A A A

P

WLDFWatchMotificationSourceRuntimelBean

17-3

Chapter 17
Programming Tools

17.3 Programming Tools

WLDF supports the use of multiple tools, such as WLST, JMX, and REST, for
performing tasks programmatically.

For example, you can use these tools to do the following:

e Create and modify diagnostic descriptor files to configure the WLDF Harvester,
Instrumentation, and Policies and Actions components at the server level.

e Use JMX to access WLDF operations and attributes.

» Use JMX to create custom MBeans that contain harvestable data. You can then
configure the Harvester to collect that data and configure policies and actions to
monitor the values.

e Write Java programs that perform the following tasks:
— Capture natifications using JMX listeners.
— Capture notifications using JMS.

— Retrieve archived data through the Accessor. (The Accessor, as are the
other components, is surfaced as JMX; you can use WLST or straight IMX
programming to retrieve diagnostic data.)

17.3.1 Configuration and Runtime APIs

The configuration and runtime APIs configure and monitor WLDF. Both the
configuration and runtime APIs are exposed as MBeans.

* The configuration MBeans and system module Beans create and configure WLDF
resources, and determine their runtime behavior.

* The runtime MBeans monitor the runtime state and the operations defined for the
different components.

You can use the APIs to configure, activate, and deactivate data collection; to
configure policies, actions, alarms, and diagnostic image captures; and to access data.

17.3.1.1 Configuration APIs

The Configuration APIs define interfaces that are used to configure the following
WLDF components:

» Data Collectors: You can use the configuration APIs to configure and control
Instrumentation, Harvesting, and Image Capture.

— For the Instrumentation component, you can enable, disable, create, and
destroy server-level instrumentation and instrumentation monitors.

ORACLE 17-4

ORACLE

Chapter 17
Programming Tools

Note:

The configuration APIs do not support configuration of
application-level instrumentation. However, configuration changes
for application-level instrumentation can be effected using Java
Specification Request (JSR) 88 APIs.

For the Harvester component, you can add and remove types to be harvested,
specify which attributes and instances of those types are to be harvested, and
set the sample period for the Harvester.

For the Diagnostic Image Capture component, you can set the name and path
of the directory in which the image capture is to be stored and the events
image capture interval, that is, the time interval during which recently archived
events are captured in the diagnostic image.

* Policies and Actions: You can use the configuration APIs to enable, disable,
create, and destroy policies and actions. You can also use the configuration APIs

to:

Set the policy type, policy expressions, and severity for policies
Set alarm type and alarm reset period for actions
Configure a policy to execute a diagnostic image capture

Add and remove actions from policies

* Archive: Set the archive type and the archive directory

17.3.1.2 Runtime APIs

The runtime APIs define interfaces that are used to monitor the runtime state of
the WLDF components. Instances of these APIs are instantiated on instances of
individually managed servers. These APIs are defined as runtime MBeans, so JMX
clients can easily access them.

The runtime APls encapsulate all other runtime interfaces for the individual WLDF
components. These APIs are included in the weblogic.management.runtime package.

You can use the runtime APIs to monitor the following WLDF components:

» Data Collectors—You can use the runtime APIls to monitor the Instrumentation,
Harvester, and the Image Capture components.

For the Instrumentation component, you can monitor joinpoint count statistics,
the number of classes inspected for instrumentation monitors, the number of
classes modified, and the time it takes to inspect a class for instrumentation
monitors.

For the Harvester component, you can query the set of harvestable types,
harvestable attributes, and harvestable instances (that is, the instances that
are currently harvestable for specific types). And, you can also query which
types, attributes, and instances are currently configured for harvesting. The
sampling interval and various runtime statistics pertaining to the harvesting
process are also available.

For the Image Capture component, you can specify the destination and
lockout period for diagnostic images and initiate image captures.

17-5

Chapter 17
WLDF Packages

* Policies and Actions: You can use the runtime APIs to monitor the Policies and
Actions and Archive components.

— For the Policies and Actions component, you can reset policy alarms and
monitor statistics about policy expression evaluations and policies triggered,
including information about the analysis of alarms, events, log records, and
harvested metrics.

e Archive: You can monitor information about the archive, such as file name and
archive statistics.

» Data Accessor—You can use the runtime APIs to retrieve the diagnostic data
persisted in the different archives. The runtime APIs also support data filtering by
allowing you to specify a query expression to search the data from the underlying
archive. You can monitor information about column type maps (a map relating
column names to the corresponding type names for the diagnostic data), statistics
about data record counts and timestamps, and cursors (cursors are used by
clients to fetch data records).

17.4 WLDF Packages

WLDF provides two packages you can use to perform select operations
programmatically.

» weblogic.diagnostics.context contains:

— DiagnosticContextConstants, which defines the indices of dye flags supported
by the WebLogic diagnostics system.

— DiagnosticContextHelper, which provides applications limited access to the
diagnostic context.

» weblogic.diagnostics.watch contains:

— JMXWatchNatification, an extended JMX notification object which includes
additional information about the natification. This information is contained
in the referenced WatchNotification object returned from method
getExtendedInfo.

— WatchNotification, which defines an action for a policy.

17.5 Programming WLDF: Examples

WLDF provides a number of beans and packages you can use to access and modify
information about a running server. The following examples show how to use these
components:

* Example: DiagnosticContextExample.java
* Example: HarvesterMonitor.java
* Example: IMXAccessorExample.java

In addition, see the WLST and JMX examples in WebLogic Scripting Tool Examples.

17.5.1 Example: DiagnosticContextExample.java

The following example uses the DiagnosticContextHelper class from the
weblogic.diagnostics.context package to get and set the value of the DYE_O flag.

ORACLE 17-6

Chapter 17
Programming WLDF: Examples

(For information about diagnostic contexts, see Configuring the Dyelnjection Monitor to
Manage Diagnostic Contexts.)

To compile and run the program:

1. Copy the DiagnosticContextExample.java example (Example 17-1) to a directory
and compile it with:

javac -d . DiagnosticContextExanple.java

This will create the ./weblogic/diagnostics/examples directory and populate it with
DiagnosticContextExample.class.

2. Run the program. The command syntax is:

java webl ogi c. di agnosti cs. exanpl es. Di agnost i cCont ext Exanpl e

Sample output is similar to:

java webl ogi c. di agnosti cs. exanpl es. Di agnost i cCont ext Exanpl e

Cont ext | d=5b7898f 93bf 010ce: 40305614: 1048582ef d4: - 8000- 0000000000000001
i sDyedWt h(DYE_0) =f al se

i sDyedWt h(DYE_0) =t rue

Example 17-1 Example: DiagnosticContextExample.java

package webl ogi c. di agnosti cs. exanpl es;
i mport webl ogi c. di agnosti cs. cont ext. Di agnost i cCont ext Hel per;
public class DiagnosticContextExanple {
public static void main(String args[]) throws Exception {
Systemout. println("Contextld=" +
Di agnost i cCont ext Hel per. get Contextld());
Systemout. println("i sDyedWth(DYE_0)=" +
Di agnost i cCont ext Hel per. i sDyedW t h(Di agnosti cCont ext Hel per. DYE_0));
Di agnost i cCont ext Hel per. set Dye(Di agnosti cCont ext Hel per. DYE_0, true);
Systemout. println("i sDyedWth(DYE_0)=" +
Di agnost i cCont ext Hel per. i sDyedW t h(Di agnosti cCont ext Hel per. DYE_0));
}

}

17.5.2 Example: HarvesterMonitor.java

The HarvesterMonitor program uses the Harvester JMX notification to identify when
a harvest cycle has occurred. It then retrieves the new values using the Accessor.
All access is performed through JMX. A description of notification listeners and the
HarvesterMonitor.java code are provided in the following sections:

* Notification Listeners
e HarvesterMonitor.java

For information about the Harvester component, see Configuring the Harvester for
Metric Collection.

17.5.2.1 Notification Listeners

ORACLE

Notification listeners provide an appropriate implementation for a particular transport
medium. For example, SMTP notification listeners provide the mechanism to establish
an SMTP connection with a mail server and send an e-mail with the notification
instance that it receives. JMX, SNMP, JMS and other types of listeners provide their
respective implementations as well.

17-7

17.5.2.2 HarvesterMonitor.java

ORACLE

< Note:

Chapter 17
Programming WLDF: Examples

You can develop plug-ins that propagate events generated by the WebLogic
Diagnostics Framework using transport mediums other than SMTP, JMX,
SNMP, or JMS. One approach is to use the JMX NotificationListener
interface to implement an object, and then propagate the notification
according to the requirements of the selected transport medium.

Table 17-2 describes each natification listener type that is provided with WebLogic
Server and the relevant configuration settings for each type.

Table 17-2 Notification Listener Types

Notification Medium

Description

Configuration Parameter
Requirements

JMS Propagated via JMS Message Required: Destination JNDI
queues or topics. name.
Optional: Connection factory
JNDI name (use the default
JMS connection factory if not
present).
JMX Propagated via standard JMX None required. Uses predefined
notifications. singleton for posting the event.
SMTP Propagated via regular e-mail. Required: MailSession JNDI
name and Destination e-mail.
Optional: Subject and body (if
not specified, use default)
SNMP Propagated via SNMP traps and None required, but the

the WebLogic Server SNMP
Agent.

SNMPTrapDestination MBean
must be defined in the
WebLogic SNMP agent.

By default, all notifications executed from policies are stored in the server log file in
addition to being executed through the configured medium.

To compile and run the HarvesterMonitor program:

1. Copy the HarvesterMonitor.java example (Example 17-2) to a directory and

compile it with:

javac -d .

Har vest er Moni tor.java

This creates the . / webl ogi ¢/ di agnost i cs/ exanpl es directory
and populates it with Har vest er Moni tor . cl ass and
Har vest er Moni t or $Har vest Cycl eHandl er. cl ass.

2. Start the monitor. The command syntax is:

java HarvesterMonitor <server> <port> <uname> <pw> [<types>]

17-8

Chapter 17
Programming WLDF: Examples

You need access to a WebLogic Server instance, and know the server's name,
port number, administrator's login name, and the administrator's password.

You can provide an optional list of harvested type names. If provided, the program
displays only the values for those types. However, for each selected type, the
monitor displays the complete set of collected values; there is no way to constrain
the values that are displayed for a selected type.

Only values that are explicitly configured for harvesting are displayed. Values
collected solely to support policies (implicit values) are not displayed.

The following command requires that '." is in the CLASSPATH variable, and that
you run the command from the directory where you compiled the program. The
command connects to the nyserver server, at port 7001, as user webl ogi ¢ (and
also the password, shown as password):

java webl ogi c. di agnosti cs. exanpl es. Harvest er Moni tor nyserver 7001
webl ogi ¢ password

See Example 17-3 for an example of output from the HarvesterMonitor.
Example 17-2 Example: HarvesterMonitor.java

package webl ogi c. di agnosti cs. exanpl es;

i mport webl ogi c. managenent . nbeanservers. runti ne. Runti meServi ceMBean;
i nport javax.managenent. *;

i nport javax.nmanagenent.renote.*;

i nport j avax. nani ng. Cont ext ;

inport java.util.*;

public class Harvesterhnitor {

private static String accessorRunti meMBeanNane;
private static ObjectNane accessor Runti neMBeanQObj ect Name;
private static String harvRunti neMBeanNane;
private static ObjectNane harvRunti neMBeanCObj ect Name;
private static MBeanServerConnection rnbs;
private static ObjectName get Cbj ect Name(String object NaneStr) {
try { return new Obj ect Name(get Canoni cal Nane(obj ect NameStr)); }
catch (RuntineException x) { throw x; }
catch (Exception x) { x.printStackTrace(); throw new
Runt i meException(x); }
}

private static String getCanoni cal Name(String objectNameStr) {
try { return new bject Name(obj ect NaneStr). get Canoni cal Name(); }
catch (RuntineException x) { throw x; }
catch (Exception x) { x.printStackTrace(); throw new
Runt i neException(x); }
}

private static String serverNane;
private static int port;
private static String userNane;
private static String password,
private static Arraylist typesToMonitor = null;
public static void main(String[] args) throws Exception {
if (args.length < 4) {
System out. printl n(
"Usage: java webl ogic. di agnosti cs. harvester. HarvesterMnitor " +
"<serverName> <port> <user Name> <password> [<types>]" +
webl ogi c. utils.PlatfornConstants. ECL +
" where <types> (optional) is a comma-separated list " +
"of types to monitor.");
Systemexit(1);

ORACLE 17-9

ORACLE

Chapter 17
Programming WLDF: Examples

}
serverNane = args[0];
port = Integer.parselnt(args[1]);

userName = args[2];
password = args[3];
accessor Runti meMBeanNane = get Canoni cal Nang(
"com bea: ServerRunti ne=" + serverNane +
", Nane=Har vest edDat aAr chi ve, Type=W.DFDat aAccessRunti me" +
", W.DFAccessRunt i me=Accessor, W.DFRunt i me=W.DFRunt i me") ;
accessor Runt i meMBean(hj ect Narme =
get Obj ect Name(accessor Runt i meMBeanNane) ;
har vRunt i meMBeanName = get Canoni cal Nang(
"com bea: Server Runti me=" + serverNane +
", Nane=W.DFHar vest er Runt i me, Type=W.DFHar vest er Runti ne" +
", W.DFRunt i me=WLDFRunti ne");
har vRunt i nreMBeanObj ect Name = get Obj ect Name(har vRunt i meMBeanNane) ;
if (args.length > 4) {
String typesStr = args[4];
typesToMonitor = new Arraylist();
int index;
while ((index = typesStr.indexCf(",")) > 0) {
String typeName = typesStr.substring(0,index).trin();
t ypesTolMoni t or. add(t ypeNane) ;
typesStr = typesStr.substring(index+1);
}
typesToMoni tor. add(typesStr.trin());
}
rnmbs = get Runti neMBeanSer ver Connection();
new HarvesterMnitor().new Harvest Cycl eHandl er();
whi l e(true) {Thread. sl eep(100000);}

static protected String JNDI = "/jndi/";
static public MBeanServerConnection getRunti meMBeanServer Connecti on()

}

throws Exception {
JMXSer vi ceURL servi ceURL;
serviceURL =

new JMXServi ceURL("t 3",

"l ocal host",

port,

JNDI + Runti nmeServi ceMBean. MBEANSERVER _JNDI _NAME) ;
System out. println("ServerName=" + serverNang);
Systemout. println("URL=" + serviceURL);

Hasht abl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, user Nane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent. remote");
JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);
return connector. get MBeanSer ver Connection();

cl ass Harvest Cycl eHandl er i nplenents NotificationListener {

/1 used to track harvest cycles

private int timestanplndex;

private int domainl ndex;

private int serverlndex;

private int typelndex;

private int instNamel ndex;

private int attrNamel ndex;

private int attrTypel ndex;

private int attrVal uel ndex;

I ong | ast Sanpl eTine = SystemcurrentTimeM | lis();

17-10

Chapter 17
Programming WLDF: Examples

Har vest Cycl eHandl er () throws Exception{
Systemout. println("Harvester monitor started...");
try {
set UpRecor dl ndi ces();
rnbs. addNot i fi cati onLi stener (harvRunti meMBeanhj ect Nane,
this, null, null);
}
catch (javax.managenent. | nstanceNot FoundException x) {
Systemout. println("Cannot find JW data. " +
"I's the server nane correct?");
Systemexit(1);
}
}

private void setUpRecordl ndices() throws Exception {
Map col urml ndexMap = (Map)rnbs. get Attri but e(
accessor Runti meMBeanhj ect Nane, " Col uml ndexMap");
tinestanpl ndex =
((I'nteger)col uml ndexMap. get (" TI MESTAMP")) . i nt Val ue();
donai nl ndex =
((I'nteger)col uml ndexMap. get (" DOMAI N')). i nt Val ue();
serverlndex =
((1'nteger)col uml ndexMap. get ("SERVER")). i nt Val ue();
typel ndex =
((I'nteger)col uml ndexMap. get ("TYPE")).intVal ue();
i nst Nanel ndex =
((I'nteger)col uml ndexMap. get ("NAVE")) . i nt Val ue();
attrNanel ndex =
((I'nteger)col uml ndexMap. get ("ATTRNAVE")) . i nt Val ue();
attrTypel ndex =
((I'nteger)col uml ndexMap. get (" ATTRTYPE")) . i nt Val ue();
attrVal uel ndex =
((I'nteger)col uml ndexMap. get (" ATTRVALUE")) . i nt Val ue();
}
publi ¢ synchronized void handl eNotification(Notification notification,
bj ect handback) {

Systemout.printIn("\n------------mm ")
I ong thisSanpl eTime = SystemcurrentTimeM I 1is()+1;
try {

String |astTypeName = nul | ;
String lastlnstName = null;
String cursor = (String)rnbs.invoke(accessorRunti meMBeanQbj ect Nane,
"openCursor",
new Obj ect[]{new Long(l ast Sanpl eTi ne),
new Long(thi sSanpl eTine), null},
new String[]{ "java.lang.Long",
"java.lang.Long", "java.lang.String" });
whil e (((Bool ean)rnbs. invoke(accessor Runti meMBeanChj ect Nane,
"hasMor eDat a",
new Object[]{cursor},
new String[]{"java.lang.String"})).bool eanVal ue()) {
(bject[] os = (Object[])rnbs.invoke(accessorRunti neMBeanObj ect Nanre,
"fetch",
new Object[]{cursor},
new String[]{"java.lang.String"});
for (int i =0; i os.length; i++) {
bj ect[] values = (Chject[])os[i];
String typeName = (String)val ues[typel ndex];
String instName = (String)val ues[instNanel ndex];
String attrName = (String)val ues[attrNanel ndex];
if (!'typeNane.equal s(Iast TypeNane)) {
if (typesToMnitor != null &&

AN

ORACLE 17-11

ORACLE

Chapter 17
Programming WLDF: Examples

I'typesToMonitor. contai ns(typeNane)) continue;
Systemout. printin("\nType " + typeNane);
| ast TypeName = typeNane;
}
if ('instNanme.equal s(lastlnstNane)) {
Systemout.printin("\n Instance " + instNane);
| ast I nst Nane = i nst Nang;
}
bj ect attrValue = val ues[attrVal uel ndex];
Systemout. println(" - "+ attrNane + "=" + attrValue);
}
}
| ast Sanpl eTi ne = thi sSanpl eTi ne;
}
catch (Exception e) {e.printStackTrace();}
}
}
}

Example 17-3 contains sample output from the Har vest er Moni t or program:
Example 17-3 Sample Output from HarvesterMonitor

Ser ver Nane=nyser ver
URL=service:jmx:t3://1ocal host: 7001/ ndi / webl ogi c. managenent . nbeanservers. runti ne
Harvester nonitor started...
Type webl ogi ¢c. nenagenent. runti ne. W.DFHar vest er Runt i meMBean
I nstance
com bea: Nane=W.DFHar vest er Runt i me, Ser ver Runt i me=nryser ver, Type=W.DFHar vest er Runtim
e, W.DFRunt i me=W.DFRunt i me

- Total Sanpl i ngTi me=202048863

- Current Snapshot El apsedTi ne=1839619
Type webl ogi c. nanagenent. runti ne. Server Runt i neMBean

I nstance com bea: Nane=nyserver, Type=Server Runti ne

- RestartRequired=fal se

- ListenPortEnabl ed=true

- ActivationTi ne=1118319317071

- ServerStartupTi me=40671

- Serverd asspath= [del eted I ong classpath |isting]

- Current Machi ne=

- Socket sOpenedTot al Count =1

- Stat e=RUNNI NG

- RestartsTot al Count =0

- Admi nServer=true

- Admi nServer Li st enPort=7001

- ClusterMaster=fal se

- StateVal =2

- CurrentDirectory=C: \testdonmain\.

- Adm nSer ver Host =10. 40. 8. 123

- OpenSocket sCur rent Count =1

- ShuttingDown=f al se

- SSLLi st enPort Enabl ed=f al se

- Admi ni strationPort Enabl ed=f al se

- Admi nServer Li st enPort Secur e=f al se

- Registered=true

17-12

Chapter 17
Programming WLDF: Examples

17.5.3 Example: JIMXAccessorExample.java

ORACLE

The following example program uses JMX to print log entries to standard out. All
access is performed through JMX. (For information about the Accessor component,
see Accessing Diagnostic Data With the Data Accessor.)

To compile and run the program:

1. Copy the IMXAccessorExample.java example (Example 17-4) to a directory and
compile it with:

javac -d . JMXAccessor Exanpl e. j ava

This creates the . / webl ogi ¢/ di agnost i cs/ exanpl es directory and populates it
with JIMXAccessor Exanpl e. cl ass.

2. Start the program. The command syntax is:

java webl ogi c. di agnosti cs. exanpl e. JIMXAccessor <l ogi cal Name> <query>

You need access to a WebLogic Server instance, and have the server's name, port
number, administrator's login name, and the administrator's password.

The | ogi cal Narre is the name of the log. Valid names

are: Harvest edDat aArchi ve, Event sDat aAr chi ve, Server Log, Donai nLog,
HTTPAccessLog, Servl et Accessor Hel per. WEBAPP_LOG, RAUt i | . CONNECTOR_LOG,
JMBMessagelog, and CUSTOM

Construct the query using the syntax described in WLDF Query Language. For the
JMXAccessor Exanpl e program, an empty query (an empty pair of double quotation
marks, ") returns all entries in the log.

The following command requires that "." is in the CLASSPATH variable, and that
you run the command from the directory where you compiled the program. The
program uses the IIOP (Internet Inter-ORB Protocol) protocol to connect to port
7001, as user webl ogi ¢, with a password shown as password, and prints all
entries in the Ser ver Log to standard out:

java webl ogi c. di agnosti cs. exanpl es. JIMXAccessor Exanpl e ServerLog ""

You can modify the example to use a username/password combination for your
site.

Example 17-4 JMXAccessorExample.java

package webl ogi c. di agnosti cs. exanpl es;

i mport java.io.lOException;

i nport java.net. Ml f or medURLExcept i on;

inport java.util.Hashtable;

inport java.util.lterator;

i nport j avax. managenent. MBeanSer ver Connect i on;

i nport javax. managenent. Mal f or medCbj ect NaneExcept i on;

i nport javax. management . Obj ect Name;

i nport j avax. managenent. renot e. JMXConnect or;

i nport j avax. managenent.renot e. JMXConnect or Fact ory;

i nport j avax. managenent.renote. JMXServi ceURL;

i nport javax.nam ng. Cont ext;

public class JMXAccessor Exanpl e {
private static final String JNDI = "/jndi/";
public static void main(String[] args) {

17-13

Chapter 17
Programming WLDF: Examples

try {
if (args.length !=2) {
Systemerr.printIn("lncorrect invocation. Correct usage is:\n" +
"java webl ogi c. di agnosti cs. exanpl es. JMXAccessor Exampl e " +
"<l ogi cal Nane> <query>");
Systemexit(1);
}
String |ogical Name = args[0];
String query = args[1];
MBeanSer ver Connecti on mbeanServer Connection =
| ookupMBeanSer ver Connection();
bj ect Name service = new

bj ect Name(webl ogi c. managenent . nbeanservers. runti ne. Runti neServi ceMBean. OBJECT_NA

ME) ;
bj ect Nane serverRuntinme =
(Obj ect Name) nbeanServer Connection. get Attribute(service,
"ServerRuntine");
bj ect Name wi df Runtime =
(Obj ect Name) mbeanServer Connection. get Attribute(serverRunting,
"W.DFRunti me");
bj ect Name wi df AccessRuntinme =
(Obj ect Name) mbeanServer Connection. get Attribute(w df Runti ne,
"W.DFAccessRuntinme");
bj ect Name wi df Dat aAccessRuntinme =
(Obj ect Name) mbeanServer Connecti on. i nvoke(w df AccessRunt i ne,
"| ookupW.DFDat aAccessRuntime", new Cbject[] {logical Nanme},
new String[] {"java.lang.String"});
String cursor =
(String) mbeanServer Connection.invoke(w df Dat aAccessRunt i ng,
"openCursor", new Object[] {query},
new String[] {"java.lang.String"});
int fetchedCount = O;
do {
oject[] rows =
(Object[]) mbeanServer Connection.invoke(w df Dat aAccessRunt i ne,
"fetch", new Qbject[] {cursor},
new String[] {"java.lang.String"});
fetchedCount = rows. | ength;
for (int i=0; i<rows.length; i++) {
StringBuffer sb = new StringBuffer();
(bject[] cols = (Qhject[]) rows[i];
for (int j=0; j<cols.length; j++) {
sbh. append("Index " +j + "=" + cols[j].toString() +" ");
}
Systemout.printin("Found row = " + sh.toString());
}
} while (fetchedCount > 0);
nbeanSer ver Connecti on. i nvoke(w df Dat aAccessRunti e,
"closeCursor", new Object[] {cursor},
new String[] {"java.lang.String"});
} catch(Throwabl e th) {
th.printStackTrace();
Systemexit(1);
}
}

private static MBeanServer Connection | ookupMBeanServer Connection ()
throws Exception {
/'l construct JMX service URL
JMXSer vi ceURL servi ceURL;
servi ceURL = new JMXServi ceURL("iiop", "localhost", 7001,

ORACLE 17-14

Chapter 17
Programming WLDF: Examples

JNDI + "webl ogi c. management . nbeanservers. runtine");
/'l Specify the user, password, and WebLogi c provi der package
Hasht abl e h = new Hasht abl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, "webl ogi c");
h. put (Cont ext . SECURI TY_CREDENTI ALS, " password");
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent. remote");
/1 Get jnmx connector
JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);
/1 return MBean server connection class
return connector. get MBeanSer ver Connection();
} /1 End - | ookupMBeanServer Connecti on

}

ORACLE 17-15

Using Debug Patches

The WebLogic Diagnostics Framework (WLDF) supports the ability for you to apply
debug patches dynamically, allowing you to capture diagnostic information using a
patch that you can activate and deactivate without the need of a server restart.

e Dynamic Application of Debug Patches

e Specifying the Debug Patch Directory

e Configuring the WLDF Debug Patch Agent
e WLST Commands for Debug Patches

18.1 Dynamic Application of Debug Patches

Dynamic application of debug patches allows you to avoid the server restarts while
applying instrumented debug patches to gather additional information about an error.

Debug patches, packaged as JAR files, are generated through My Oracle Support
(https://support.oracle.com) and used to gather additional information about an
error when it occurs in a production environment. Typically, the debug patch JAR files
are added to the classpath and all server instances must be restarted for the JAR files
to take effect. This can present problems, as it might not be possible to restart the
server instances in a production environment due to scheduling and other constraints.
Additionally, after the server instances are restarted, in-memory states are lost and the
problem may disappear or take awhile to reappear. Also, when these debug patches
are no longer needed, they can be deactivated without server restarts.

When dynamically applying debug patches, WebLogic Server uses Java HotSwap to
replace the loaded classes with the versions provided in the debug patch JAR files.
See Enabling Java HotSwap.

18.2 Specifying the Debug Patch Directory

Debug patch JAR files are picked up from a specific directory called the debug patch
directory.

This directory is specified domain-wide using the DebugPat chDi r ect or y attribute of the
DebugPat chesMBean. By default, the debug_pat ches directory under the DOVAI N_HOVE
directory is used as the debug patch directory.

This feature is available to users with administrative privileges in the domain. Only
authorized users are able to post debug patch JAR files in the debug patch directory.
This directory must be properly protected with file system permissions.

18.3 Configuring the WLDF Debug Patch Agent

ORACLE

To apply debug patches dynamically, the target WebLogic Server instances must be
started on the command line with the WLDF debug patch agent.

18-1

https://support.oracle.com/

Chapter 18
WLST Commands for Debug Patches

The WLDF debug patch agent handles the following:

» Replaces the loaded classes with the instrumented classes from the debug patch

JAR.

» Makes sure that the replacement classes in the debug patch JAR have the same
shape as the original classes. If any of the classes do not meet this requirement,
none of the classes in the debug patch JAR are swapped in and an error message

is logged.

» Logs informational messages to indicate the start and completion of debug patch
activation or deactivation.

« Allows only properly authenticated users with administrative privileges to apply a

debug patch.

To specify the WLDF debug patch agent on the command line, update your startup
script to include the following:

-javaagent : $W._HOWE/ server/|i b/ debugpat ch- agent . j ar

< Note:

New startup scripts will automatically include the debug- agent . j ar on the
command line unless the di sabl eDebugPat ches option is specified on the
startup script command line.

18.4 WLST Commands for Debug Patches

WLDF provides a set of WLST commands you can use to list, activate, and deactivate

ORACLE

dynamic debug patches.

Table 18-1 summarizes the list of WLST commands used with debug patches.

Table 18-1 WLST Commands Used With Debug Patches
|

Command

Summary

activat eDebugPat ch

Activates a debug patch on the specified targets.

deacti vat eAl | DebugPat
ches

Deactivates all debug patches on the specified targets.

deacti vat eDebugPat che
S

Deactivates a debug patch on the specified targets.

I'i st DebugPat ches Lists the active and available debug patches on the specified
targets.

[i st DebugPat chTasks Lists the debug patch (activated or deactivated) tasks from the
specified targets.

pur geDebugPat chTasks Purges the debug patch (activated or deactivated) tasks on the

specified targets.

showDebugPat chl nf o

Displays details about a debug patch on the specified targets.

18-2

Chapter 18
WLST Commands for Debug Patches

18.4.1 Dynamically Activating a Debug Patch

Example 18-1, Example 18-2, and Example 18-3 demonstrate how to use the
activat eDebugPat ch command to activate a debug patch on the desired targets.
Note that if a specified debug patch is not available in the debug patch directory

on a target, a warning is issued and WebLogic Server will attempt to proceed and
activate the debug patch on the remaining targets. If one of the classes in the debug
patch fails to replace the original class on a target, the entire debug patch JAR file is
rejected on that target and WebLogic Server will attempt to activate the debug patch
on the remaining targets. Additionally, several debug patches may be activated over
time and each debug patch will overlay the original classes and previously activated
debug patches. If a class is contained in multiple activated debug patches, the class
in the debug patch that was last activated has precedence. The acti vat eDebugPat ch
command returns an array of tasks, each element corresponding to the activation
activity on an affected target server instance.

Example 18-1 Activating a Debug Patch on Two Managed Servers

Connected to adnmin server: Activate debug-patch-01.jar on nanaged servers
M5l and Ms2
tasks=act i vat eDebugPat ch(Pat ch=' debug- patch-01.jar', Target="Ms1, M52")

Example 18-2 Activating a Debug Patch on a Server Instance and a Cluster

Connected to admin server: Activate debug-patch-01.jar on nyserver and all
nmenbers of cluster Custer-0
tasks=act i vat eDebugPat ch(Pat ch=' debug- patch-01.jar', Target="nyserver,Custer-0")

Example 18-3 Activating a Debug Patch on an Application Targeted to a
Cluster

Connected to adnmin server: Activate debug-patch-03.jar on application 'medrec

targeted to cluster Custer-1

tasks=act i vat eDebugPat ch(Pat ch=" debug- patch-03.jar', Target='"Cluster-1",
Application="medrec')

18.4.2 Dynamically Deactivating Debug Patches

ORACLE

Example 18-4, Example 18-5, and Example 18-6 demonstrate how to use the
deact i vat eDebugPat ches command to deactivate debug patches. To specify more
than one debug patch, use a comma-separated list. If a specified debug patch

is not active on a target, a warning is issued and the command continues. If no
debug patches are specified, all active patches are deactivated on the specified
targets and the original classes are activated. After successful deactivation, all
targets are left in the same state they were in prior to running this command. The
deact i vat eDebugPat ches command returns an array of tasks.

Example 18-4 Deactivating Debug Patches on a Managed Server

Connected to MSl: deactivate debug-patch-01.jar
t asks=deact i vat eDebugPat ches(Pat ches=' debug- patch-01.jar")

Example 18-5 Deactivating Debug Patches on All Members of a Cluster

Connected to adnmin server: de-activate debug-patch-01.jar
and debug-patch-02.jar on all menbers of cluster Cluster-0

18-3

Chapter 18
WLST Commands for Debug Patches

t asks=deact i vat eDebugPat ches(Pat ches=' debug- pat ch-01. j ar, debug- patch-02.jar",
Target =" Cluster-0")

Example 18-6 Deactivating Debug Patches on an Application Targeted to a
Cluster

Connected to admn server: de-activate debug-patch-03.jar on application

'medrec’ targeted to cluster Cluster-1

tasks=deact i vat eDebugPat ches(Pat ches=' debug- patch-03.jar', Target="Custer-1',
Appl i cation='"nedrec')

ORACLE 18-4

Smart Rule Reference

Smart rules are prepackaged functions provided by the WebLogic Diagnostics
Framework (WLDF) that simplify the creation of policy expressions.When used in
scheduled policy expressions, as described in Configuring Smart Rule Based Policies,
smart rules can execute elastic actions on dynamic clusters, as well as be used in
conjunction with any WLDF action. For example, a smart rule that monitors stuck
threads in a cluster can be used to execute an SMTP action that sends an email to the
system administrator.

The smart rules are organized into the following two categories:

e Cluster Scope Smart Rules — Rules that are applied to every active Managed
Server instance in a dynamic cluster. All cluster scope smart rules must be defined
in policies that are run on the Administration Server.

e Server Scope Smart Rules — Rules that are applied only to the local WebLogic
Server instance on which the associated policies are run. You can execute policies
containing server scope smart rules on the Administration Server or any individual
Managed Server in the domain.

A.1 About the Parameters You Specify for Smart Rules

ORACLE

All smart rules involve the collection of metric values, which is the process of gathering
data needed for monitoring system state and performance.Metrics are exposed to
WLDF as attributes on qualified MBeans. Smart rules cause WLDF to gather values
from selected MBean attributes at a specified sampling rate and retain those values
for a specified duration of time. This allows you to track trends in metric changes in a
server or cluster over time.

When you configure a smart rule, you always specify the following parameters:

e sampling rate
* retention window

e threshold value

< Note:

Sampling rates and retention windows are completely independent of
policy schedules. A policy schedule determines only when a smart rule

is evaluated; the policy schedule does not determine the sampling rate or
retention window.

sampling rate

The sampling rate is the frequency with which a metric value is collected. For example,
a sampling rate of 30 seconds means that the value of an MBean attribute is collected
every 30 seconds.

A-1

ORACLE

Appendix A
About the Parameters You Specify for Smart Rules

Each smart rule has a default sampling rate. When you are configuring a smart

rule using either the WebLogic Server Administration Console or Fusion Middleware
Control, you can accept the default sampling rate that is provided in the configuration
assistant. However, when you configure a smart rule using WLST, REST, or JMX, you
need to explicitly specify the sampling rate.

The sampling rate is a St ri ng value that can be specified using the following syntax:

armount [uni t]

In the preceding syntax:

e anmount represents an integer.

* unit]represents seconds, m nut es, or hour s. Each can be abbreviated to the first
letter. For example: seconds can be abbreviated to s.

The default sampling rate time unit is seconds.
* You may include a space character between amount and uni t.
For example, any of the following can be used to specify 30 seconds:
. "30"
e "30 seconds"
e "30snds"
e "30s"

retention window

The retention window is the period of time during which collected samples are retained
in an internal buffer for evaluation. For example, a retention window of 5 minutes
causes the samples collected during the previous 5 minutes to be retained. As each
new sample is collected, the oldest sample is removed.

Smart rules function by calculating the average value of a particular metric that

has been collected over the period of time corresponding to the retention window.
Obtaining average values allows you to obtain a more representative view of changes,
and trends in those changes, that are occurring in a server, cluster, or operational
environment of WebLogic Server.

The retention window you specify is a St ri ng value that uses the same syntax as the
sampling rate:

armount [uni t]

The time unit can be seconds, mi nut es, or hour s, and each can be abbreviated. The
default time unit in smart rule retention windows is m nut es, which can be abbreviated
to m For example, any of the following can be used to specify 10 minutes:

e 10"

e "10 nminutes"
e "10nts"

e "10nt

A-2

Appendix A
Cluster Scope Smart Rules

threshold value

The threshold value is an arbitrary value against which the average value of all metrics
collected during a retention window is compared. If the average value meets the smart
rule's comparison criteria for the threshold value, the smart rule can be evaluated to
true, assuming all other conditions set in the smart rule are met.

For example, if you want a smatrt rule to be evaluated as t r ue if the average number
of idle threads in a cluster is greater than or equal to a specific number, you can enter
that number as the threshold value in the ClusterHighldleThreads smart rule, which
monitors a cluster for a high idle thread count. In this context, the threshold value you
specify for this smart rule is referred to as the high threshold value because the
cluster is monitored to measure whether the average number of idle threads is greater
than or equal to that threshold.

By contrast, if you want a smart rule to be evaluated as t r ue if the average free heap
in a cluster falls below a certain amount, you enter that amount as the threshold value
in the ClusterLowHeapFreePercent smart rule, which monitors a cluster for a low free
heap. In this context, this threshold value yo specify for this smart rule is referred to
as the low threshold value because the cluster is monitored to measure whether the
average free heap amount is less than that threshold.

Note that smart rules vary with regard to how the average collected metric value must
compare to the threshold value. Some smart rules require that the average collected
value must be greater than or equal to the threshold; some require that the average
must be greater than the threshold; some require the average to be less than or equal
to the threshold; and so on.

A.2 Cluster Scope Smart Rules

A cluster scope smart rule is one that is applied to all active nodes in a cluster, and
that must be executed from a policy on the Administration Server.The set of cluster
scope smatrt rules provided by WLDF are listed and summarized in Table A-2. For
each smart rule, Table A-2 identifies the following:

* The specific metric, typically an MBean attribute, that is sampled

* The condition that causes the smart rule to be evaluated to t r ue if, over the course
of the retention window, the number of servers with an average metric value that
meets specific comparison criteria against the threshold value is greater than or
equal to a specified percentage of all servers in the cluster.

Table A-1 Summary or Administration Server Scope Smart Rules

Smart Rule Metric Condition Required for Evaluation to true
ClusterLowThroughp Thr oughput metric of the The average Thr oughput value is less than the

ut Thr eadPool Runt i meMBean low threshold value.

ClusterHighProcessC ProcessCpuLoad value of the The average ProcessCpulLoad value is greater
puLoadAverage java. | ang: t ype=Qper at i ngSyst em than or equal to the high threshold value.

MXBean

ClusterHighThroughp Thr oughput metric of the The average Thr oughput value is greater than or
ut Thr eadPool Runt i meMBean equal to the high threshold value.
ORACLE A-3

Appendix A
Cluster Scope Smart Rules

Table A-1 (Cont.) Summary or Administration Server Scope Smart Rules

Smart Rule

Metric

Condition Required for Evaluation to true

ClusterLowPendingU

Pendi ngUser Request Count value of

The average Pendi ngUser Request Count value

serRequests the Thr eadPool Runt i meMBean is less than the low threshold value.
ClusterHighStuckThr St uckThr eadCount value of the The average St uckThr eadCount value is greater
eads Thr eadPool Runt i meMBean than or equal to the high threshold value.

ClusterLowQueuelLen
gth

QueueLengt h value of the
Thr eadPool Runti meMBean

The average QueuelLengt h value is less than the
low threshold value.

ClusterHighPendingU
serRequests

Pendi ngUser Request Count value of
the Thr eadPool Runt i meMBean

The average Pendi ngUser Request Count value
is greater than or equal to the high threshold value.

ClusterLowProcessC
puLoadAverage

ProcessCpuLoad value of the
j ava. |l ang: t ype=Qper ati ngSyst em
MXBean

The average ProcessCpuLoad value is less than
the low threshold value.

ClusterHighldleThrea
ds

Execut eThr eadl dl eCount value of
the Thr eadPool Runt i mneMBean

The average Execut eThr eadl dl eCount value is
greater than or equal to the high threshold value.

ClusterLowSystemLo
adAverage

Syst emLoadAver age value of the
j ava.lang: t ype=Cper ati ngSyst em
MXBean

The average Syst enlLoadAver age value is less
than the low threshold value.

ClusterHighQueuelLe
ngth

QueueLengt h value of the
Thr eadPool Runt i mreMBean

The average QueuelLengt h value is greater than
or equal to the high threshold value.

ClusterLowHeapFree
Percent

HeapFr eePer cent value of the
JVMRunt i neMBean

The average HeapFr eePer cent value is less than
the low threshold value.

ClusterHighSystemLo
adAverage

Syst emLoadAver age value of the
j ava.lang: t ype=Cper ati ngSyst em
MXBean

The average Syst enLoadAver age value is
greater than or equal to the high threshold value.

ClusterHighHeapFree
Percent

HeapFr eePer cent value of the
JVMRunt i meMBean

The average HeapFr eePer cent value is greater
than or equal to the high threshold value.

ClusterLowSystemCp
uLoadAverage

Syst enCpuLoad value of the
j ava. |l ang: t ype=Cper ati ngSyst em
MXBean

The average Syst enCpulLoad value is less than
the low threshold value.

ClusterLowldleThrea
ds

Execut eThr eadl dl eCount value of
the Thr eadPool Runt i meMBean

The average Execut eThr ead! dl eCount value is
less than the low threshold value.

ClusterGenericMetric
Rule

Specified MBean attribute value

Any metric visible through JMX satisfies the
specified comparison criteria with the threshold
value. (This smart rule is a general form of cluster
scope rule.)

ClusterHighSystemC
puLoadAverage

Syst enCpuLoad value of the
j ava. |l ang: t ype=Qper ati ngSyst em
MXBean

The average Syst enCpulLoad value is greater
than or equal to the high threshold value.

A.2.1 ClusterLowThroughput

The O ust er LowThr ougput smart rule measures whether the average throughput
in a cluster is decreasing, as indicated by the average value of the
ThreadPool Runt i meMBean. Thr oughput attribute in each Managed Server.You can use

ORACLE

A-4

Appendix A
Cluster Scope Smart Rules

this rule to determine whether cluster capacity can be safely reduced; for example, by
executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an

average Thr eadPool Runt i meMBean. Thr oughput value that satisfies the low threshold
comparison criteria is greater than or equal to the specified percentage of all servers in
the cluster.

To use this smart rule, specify:

* The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Thr oughput attribute

* Low Throughput threshold value

» Percentage of servers in the cluster with an average Thr oughput value that must
be less than the low Thr oughput threshold value in order for the rule to evaluate to
true

Syntax

W s: C ust er LowThr oughput (" cl ust er Name", "period", "duration", throughputLlinit,
percent ServersLimit)

Parameter Description

cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for Thr oughput values, expressed as a St ri ng.
For example, 30s specifies that this metric is sampled every 30
seconds.

¢ The default time unit is seconds.
* The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Retention window during which collected samples are retained,
expressed as a St ri ng.
e The default time unit is minutes.
e The default value is 10m

See retention window for more information about specifying this
parameter.

t hroughput Li mi t Value established as the low threshold value of the
Thr eadPool Runt i meMBean. Thr oughput attribute.

per cent ServersLimt Percentage of servers in the cluster with an average Thr oughput
value that must be less than the value of the t hr oughput Li i t
parameter in order for the smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

ORACLE A-5

Appendix A
Cluster Scope Smart Rules

Parameter Value

cl ust er Name myCl ust er
period 30
duration 15

t hroughput Li mi t 5

per cent ServersLim t 75

The smatrt rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowThr oughput ("myd uster", "30 seconds","15 m nutes", 5, 75)

If configured with a scale down action, this example smart rule does the following:

1. Samples the value of the Thr oughput metric from each Managed Server instance
in myd ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following
condition evaluates to t r ue:

The average Throughput value, over the last 15 minutes, is less than 5 on at least
75 per cent of the Managed Servers in the cluster.

A.2.2 ClusterHighProcessCpuLoadAverage

The O ust er Hi ghProcessCpuLoadAver age smart rule measures an increase in system
load across the cluster, as indicated by the average value of the ProcessCpuLoad
attribute in each Managed Server. You can use this rule to determine whether cluster
capacity needs to be increased; for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
ProcessCpulLoad value that satisfies the threshold comparison criteria is greater than or
equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

e The sampling rate and retention window for the operating system's
ProcessCpulLoad value

* High ProcessCpuLoad threshold value

e Percentage of servers in the cluster with an average Pr ocessCpulLoad value that
must be greater than or equal to the high ProcessCpuLoad threshold value in order
for the rule to evaluate to t r ue

ORACLE A-6

Appendix A
Cluster Scope Smart Rules

< Note:

The value of the ProcessCpuLoad metric is platform-specific and

is not available on all platforms. The MXBean attribute from

which this metric originates is described at ht t ps: // docs. or acl e. com

j avase/ 8/ docs/j rel api / managenent / ext ensi on/ com sun/ managenent /
Oper at i ngSyst emXBean. ht ni #get ProcessCpuLoad- - .

Syntax

W s: Cl ust er H ghProcessCpuLoadAver age(" cl ust er Name", "period", "duration”,
procCpuLoadLi mt, percentServersLimt)

Parameter Description
cl ust er Namre Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for Pr ocessCpulLoad values, expressed as a

St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

* The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Retention window during which collected samples are retained,
expressed as a Stri ng.
e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

procCpuLoadLi mi t Value established as the high threshold value of the
ProcessCpuLoad metric.

per cent ServersLimt Percentage of servers in the cluster with an average
ProcessCpuLoad value that must be greater than or equal to the
value of the pr ocCpuLoadLi i t parameter in order for the smart
rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 10
procCpuLoadLi mi t 0.8

per cent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

ORACLE A7

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

Appendix A
Cluster Scope Smart Rules

w s: C ust er H ghProcessCpuLoadAver age("nyC uster”,"30 seconds", "10
m nut es", 0. 8, 60)

If configured with a scale up action, this smart rule does the following:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates totrue:

The average ProcessCpulLoad value, over the last 10 minutes, is greater than or
equal to 0.8 on at least 60 per cent of the Managed Servers in the cluster.

A.2.3 ClusterHighThroughput

ORACLE

The d ust er H ghThr oughput smart rule measures an increase in system

throughput across the cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Thr oughput attribute in each Managed Server.You can use
this rule to determine whether cluster capacity needs to be increased; for example, by
executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. Thr oughput value that satisfies the threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

e The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Thr oughput metric

e High Throughput threshold value

* Percentage of servers in the cluster whose average Thr oughput value during the
sampling period must be greater than or equal to the high Thr oughput threshold
value in order for the rule to evaluate to t r ue

Syntax

W s: C ust er H ghThr oughput (" cl ust er Name", "period", "duration", throughputLimnt,
percent ServersLinit)

Parameter Description

cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for Thr oughput values, expressed as a Stri ng.
For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

A-8

Appendix A
Cluster Scope Smart Rules

Parameter

Description

duration

Period of time for which collected samples are retained,
expressed as a St ri ng.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

t hroughput Li mi t

Value established as the high threshold value of the Thr oughput
attribute.

per cent ServersLimt

Percentage of servers in the cluster with an average Thr oughput
value that must be greater than or equal to the value of the

t hr oughput Li mi t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 10

t hroughput Li mi t 100
percent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghThr oughput ("nmyCl uster”, "30 seconds","10 mi nutes", 100, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the Thr oughput metric from each Managed Server instance
in myd ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition

evaluates to t r ue:

The average Throughput value, over the last 10 minutes, is greater than or equal
to 100 on at least 60 per cent of the Managed Servers in the cluster.

A.2.4 ClusterLowPendingUserRequests

The d ust er LowPendi ngUser Request s smart rule measures a reduction in pending
requests across the cluster as indicated by the average value of the

Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute in each Managed
Server.You can use this rule to determine whether cluster capacity can be reduced;
for example, by executing a scale down action.

Target: Administration Server

ORACLE

A-9

Appendix A
Cluster Scope Smart Rules

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. Pendi ngUser Request Count value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in
the cluster.

To use this smart rule, specify:

* The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count metric

* Low Pendi ngUser Request Count threshold value

» Percentage of servers in the cluster with an average Pendi ngUser Request Count
value that must be less than the low Pendi ngUser Request Count threshold value in
order for the rule to evaluate to t r ue

Syntax

W s: C ust er LowPendi ngUser Request s("cl ust er Nane", "period", "duration",
pendi ngRequest sLi mt, percentServersLinit)

Parameter Description
cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for Pendi ngUser Request Count values, expressed

as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

e The default time unit is seconds.

* The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

pendi ngRequestsLinmit Value established as the low threshold value of the
Pendi ngUser Request Count attribute.

per cent ServersLimt Percentage of servers in the cluster with an average
Pendi ngUser Request Count value that must be less than the
value of the pendi ngRequest sLi mi t parameter in order for the
smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smatrt rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myCl ust er

ORACLE A-10

Appendix A
Cluster Scope Smart Rules

Parameter Value
period 30
duration 10

pendi ngRequestsLinmit 5
per cent ServersLimt 75

The smatrt rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowPendi ngUser Request s("myCl uster", "30 seconds","10 m nutes", 5, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the Pendi ngUser Request Count metric from each Managed
Server instance in nyd ust er every 30 seconds over a retention window of 10
minutes.

2. Atthe end of the retention window, fires a scale down action if the following
condition evaluates to t r ue:

The average Pendi ngUser Request Count value, over the last 10 minutes, is less
than 5 on at least 75 per cent of the Managed Servers in the cluster.

A.2.5 ClusterHighStuckThreads

ORACLE

The O ust er Hi ghSt uckThr eads smart rule measures whether the number of stuck
threads is rising and may soon become deadlocked, as indicated by the average
value of the Thr eadPool Runt i meMBean. St uckThr eadCount attribute in each Managed
Server.You can use this rule to determine whether cluster capacity needs to be
increased; for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with

an average Thr eadPool Runt i meMBean. St uckThr eadCount value that satisfies the
threshold comparison criteria is greater than or equal to the specified percentage of all
servers in the cluster.

To use this smart rule, specify:

e The sampling rate and retention window for the
Thr eadPool Runt i meMBean. St uckThr eadCount attribute

e High St uckThr eadCount threshold value

e Percentage of servers in the cluster with an average
Thr eadPool Runt i meMBean. St uckThr eadCount value that must be greater than or
equal to the high St uckThr eadCount threshold value in order for the rule to
evaluate totrue

Syntax

W s: C ust er H ghSt uckThr eads(" cl ust er Nane", "period", "duration",
stuckThreadsLinit, percentServersLimit)

A-11

ORACLE

Appendix A
Cluster Scope Smart Rules

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for St uckThr eadCount values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,

expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

stuckThreadsLim t

Value established as the high threshold value of the
St uckThr eadCount attribute.

per cent ServersLim t

Percentage of servers in the cluster with an average

St uckThr eadCount value that must be greater than or equal to
the value of the st uckThr eadsLi mi t parameter in order for the
smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 10
stuckThreadsLi nit 5

per cent ServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghSt uckThreads("myCl uster", "30 seconds","10 mi nutes", 5, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the St uckThr eadCount metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition

evaluates to t r ue:

The average St uckThr eadCount value, over the last 10 minutes, is greater than or
equal to 5 on at least 60 per cent of the Managed Servers in the cluster.

A-12

Appendix A
Cluster Scope Smart Rules

A.2.6 ClusterLowQueueLength

The O ust er LowQueueLengt h smart rule measures a decrease in system

load across the cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Queuelengt h attribute in each Managed Server.You can use
this rule to determine whether cluster capacity can be safely reduced; for example, by
executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. QueuelLengt h value that satisfies the threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

e The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Queuelengt h metric

e Low Queuelengt h threshold value

» Percentage of servers in the cluster with an average QueuelLengt h value that must
be less than the low QueueLengt h threshold value in order for the rule to evaluate
totrue

Syntax

W s: C ust er LowQueueLengt h("cl ust er Nane", "period", "duration", queuelLengthLimt,
percent ServersLinit)

Parameter Description

cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.

period Sampling rate for QueueLengt h values, expressed as a St ri ng.
For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
* The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
¢ The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

queuelLengt hLim t Value established as the low threshold value of the QueuelLengt h
attribute.

ORACLE A-13

Appendix A
Cluster Scope Smart Rules

Parameter Description

per cent ServersLimt Percentage of servers in the cluster with an average
QueueLengt h value that must be less than the value of the
queuelLengt hLi m t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 15
queueLengt hLim t 5

per cent ServersLimt 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowQueueLengt h("myCl uster","30 seconds","15 mi nutes", 5, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the QueuelLengt h metric from each Managed Server instance
in myd ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following
condition evaluates to t r ue:

The average Queuelengt h value, over the last 15 minutes, is less than 5 on at
least 75 per cent of the Managed Servers in the cluster.

A.2.7 ClusterHighPendingUserRequests

ORACLE

The O ust er H ghPendi ngUser Request s smart rule measures an increase in
system load across the cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute in each Managed
Server.You can use this rule to determine whether cluster capacity needs to be
increased; for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. Pendi ngUser Request Count value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of all servers in
the cluster.

To use this smart rule, specify:

A-14

Appendix A
Cluster Scope Smart Rules

* The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count metric

e High Pendi ngUser Request Count threshold value

* Percentage of servers in the cluster with an average Pendi ngUser Request Count
value that must be greater than or equal to the high Pendi ngUser Request Count
threshold value in order for the rule to evaluate to t r ue

Syntax

W s: C ust er Hi ghPendi ngUser Request s("cl ust er Name", "period", "duration",
pendi ngRequest sLimt, percentServersLimit)

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Pendi ngUser Request Count values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

e The default time unit is seconds.

* The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration

Period of time for which collected samples are retained,
expressed as a St ri ng.

¢ The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

pendi ngRequest sLi mi t

Value established as the high threshold value of the
Pendi ngUser Request Count attribute.

per cent ServersLim t

Percentage of servers in the cluster with an average

Pendi ngUser Request Count value that must be greater than or
equal to the value of the pendi ngRequest sLi ni t parameter in
order for the smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myC ust er
period 30
duration 10

pendi ngRequestsLinit 100

per cent ServersLimit 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er Hi ghPendi ngUser Request s("nyC uster”, "30 seconds","10 ninutes", 100, 60)

ORACLE

A-15

Appendix A
Cluster Scope Smart Rules

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the Pendi ngUser Request Count metric from each Managed
Server instance in nyd ust er every 30 seconds over a retention window of 10
minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates totrue:

The average Pendi ngUser Request Count value, over the last 10 minutes, is greater
than or equal to 100 on at least 60 per cent of the Managed Servers in the cluster.

A.2.8 ClusterLowProcessCpuLoadAverage

The O ust er LowPr ocessCpuLoadAver age smart rule measures a reduction of system
CPU load across a cluster, as indicated by the average value of the ProcessCpulLoad
attribute in each Managed Server.You can use this rule to determine whether cluster
capacity needs to be decreased; for example, by executing a scale down action.
Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
ProcessCpulLoad value that satisfies the threshold comparison criteria is greater than or
equal to the specified percentage of all servers in the cluster.

Note that the value of ProcessCpuLoad is platform specific and is not available on all
platforms.

To use this smart rule, specify:

e The sampling rate and retention window for the j ava. | ang: t ype=Qper at i ngSyst em
ProcessCpulLoad metric

e Low ProcessCpuLoad threshold value

» Percentage of servers in the cluster with an average Pr ocessCpulLoad value that
must be less than the low ProcessCpulLoad threshold value in order for the rule to
evaluate to t rue

Note:

The value of the ProcessCpulLoad metric is platform-specific and

is not available on all platforms. The MXBean attribute from

which this metric originates is described at ht t ps: // docs. or acl e. com

j avase/ 8/ docs/ j r el api / managenent / ext ensi on/ conl sun/ managenent /
Oper at i ngSyst emXBean. ht ni #get ProcessCpulLoad.

Syntax

W s: C ust er LowPr ocessCpuLoadAver age("cl ust er Nane", "period", "duration",
procCpulLoadLi mt, percentServersLimt)

ORACLE A-16

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad

ORACLE

Appendix A
Cluster Scope Smart Rules

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Pr ocessCpulLoad values, expressed as a

St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration

Period of time for which collected samples are retained,
expressed as a St ri ng.

¢ The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

procCpulLoadLi mi t

Value established as the low threshold value of the
ProcessCpulLoad attribute.

per cent ServersLim t

Percentage of servers in the cluster with an average
ProcessCpuLoad value that must be less than the value of the
procCpuLoadLi mit parameter in order for the smart rule to be
evaluated as tr ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myCl ust er
period 30
duration 15
procCpuLoadLi mi t 0.2

per cent ServersLimit 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowPr ocessCpuLoadAver age("myCl uster”,"30 seconds","10 mi nutes", 0. 2, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following
condition evaluates to t r ue:

The average ProcessCpulLoad value, over the last 15 minutes, is less than 0.2 on
at least 75 per cent of the Managed Servers in the cluster.

A-17

Appendix A
Cluster Scope Smart Rules

A.2.9 ClusterHighldleThreads

The O ust er Hi ghl dl eThr eads smart rule measures an increase in the number
of idle threads in a cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute in each Managed
Server.You can use this rule to determine whether cluster capacity can be safely
reduced; for example, by executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount value that satisfies the threshold
comparison criteria is greater than or equal to the specified percentage of servers in
the cluster.

To use this smart rule, specify:

* The sampling rate and retention window for the
Thr eadPool Runt i mreMBean. Execut eThr eadl dl eCount metric

e High Execut eThr eadl dl eCount threshold value

» Percentage of Managed Servers in the cluster with an average
Execut eThr eadl dl eCount value that must be greater than or equal to the high
Execut eThr eadl dl eCount threshold value in order for the rule to evaluate to t r ue

Syntax

W s: C ust er Hi ghl dl eThr eads(" cl ust er Name", “period", "duration”,
i dl eThreadsLimt, percentServersLimt)

Parameter Description
cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for Execut eThr eadl dl eCount values, expressed

as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

i dl eThreadsLimt Value established as the high threshold value of the
Execut eThr eadl dl eCount attribute.

ORACLE A-18

Appendix A
Cluster Scope Smart Rules

Parameter Description

per cent ServersLimt Percentage of servers in the cluster with an average
Execut eThr eadl dl eCount value that must be greater than or
equal to the value of the i dl eThr eadsLi ni t parameter in order
for the smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 10

i dl eThreadsLimt 20

per cent ServersLimt 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er Hi ghl dl eThreads("nmyC uster”,"30 seconds","10 ninutes", 20, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the Execut eThr eadl dl eCount metric from each Managed
Server instance in nyd ust er every 30 seconds over a retention window of 10
minutes.

2. Atthe end of the retention window, fires a scale down action if the following
condition evaluates to t r ue:

The average Execut eThr eadl dl eCount value, over the last 10 minutes, is greater
than or equal to 20 on at least 75 per cent of the Managed Servers in the cluster.

A.2.10 ClusterLowSystemLoadAverage

ORACLE

The O ust er LowSyst emLoadAver age smart rule measures a decrease in system load
across a cluster, as indicated by the average value of the Syst enLoadAver age attribute
in each Managed Server.You can use this rule to determine whether cluster capacity
needs to be decreased; for example, by executing a scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Syst emLoadAver age value that satisfies the threshold comparison criteria is equal to or
greater than the specified percentage of all servers in the cluster.

Note that the value of Syst enLoadAver age is system dependent.

To use this smart rule, specify:

A-19

Appendix A
Cluster Scope Smart Rules

* The sampling rate and retention window for the j ava. | ang: t ype=Cper at i ngSyst em
Syst enLoadAver age metric

* Low Syst enloadAver age threshold value

* Percentage of Managed Servers in the cluster with an average
Syst enLoadAver age value that must be less than the low Syst enloadAver age
threshold value in order for the rule to evaluate tot r ue

Note:

Syntax

The value of the Syst enLoadAver age metric is platform-specific

and is not available on all platforms. The MXBean

attribute from which this metric originates is described

athttp://docs. oracl e. conljavase/ 8/ docs/ api / j aval | ang/ managenent /
Oper at i ngSyst emXBean. ht mi #get Syst enLoadAver age- - .

W s: C ust er LowSyst enLoadAver age("cl ust er Nane", "period", "duration", loadLimt,

percent ServersLinit)

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Syst enLoadAver age values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration

Period of time for which collected samples are retained,
expressed as a St ri ng.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

| oadLi m t

Value established as the low threshold value of the
Syst enLoadAver age attribute.

per cent ServersLim t

Percentage of servers in the cluster with an average

Syst emLoadAver age value that must be less than the value
of the | oadLi mi t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

ORACLE

A-20

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

Appendix A
Cluster Scope Smart Rules

Parameter Value

cl ust er Name myCl ust er
period 30
duration 15

| oadLim t 0.2

per cent ServersLim t 75

The smatrt rule that uses the preceding parameters is expressed as follows:

W s: Cl ust er LowSyst emLoadAver age("myCl uster", "30 seconds","15 m nutes", 0. 2, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the Syst enmLoadAver age metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following
condition evaluates to t r ue:

The average Syst enLoadAver age value, over the last 15 minutes, is less than 0.2
on at least 75 per cent of the Managed Servers in the cluster.

A.2.11 ClusterHighQueueLength

ORACLE

The O ust er H ghQueuelLengt h smart rule measures an increase in system

load across the cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Queuelengt h attribute in each Managed Server.You can use
this rule to determine whether the cluster capacity needs to be increased; for example,
by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
Thr eadPool Runt i meMBean. QueuelLengt h value that satisfies the threshold comparison
criteria is greater than or equal to the specified percentage of all servers in the cluster.

To use this smart rule, specify:

* The sampling rate and retention window for the
Thr eadPool Runt i meMBean. QueuelLengt h metric

* High QueuelLengt h threshold value

e Percentage of Managed Servers in the cluster with an average QueuelLengt h value
that must be greater than or equal to the high QueueLengt h threshold value in
order for the rule to evaluate to t r ue

Syntax

W s: C ust er H ghQueueLengt h(" cl ust er Name", "period", "duration",
queuelLengthLim t, percentServersLinit)

A-21

ORACLE

Appendix A
Cluster Scope Smart Rules

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for QueueLengt h values, expressed as a St ri ng.
For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration

Period of time for which collected samples are retained,
expressed as a St ri ng.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

queuelengt hLi mi t

Value established as the high threshold value of the
Queuelengt h attribute.

per cent ServersLim t

Percentage of servers in the cluster with an average

QueueLengt h value that must be greater than or equal to the
value of the queueLengt hLi m t parameter in order for the smart
rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Nane myC uster
period 30
duration 10
queueLengt hLimit 100

per cent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghQueueLengt h("nmyC uster", "30 seconds","10 m nutes", 100, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the QueuelLengt h metric from each Managed Server instance
in myC ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition

evaluates to t r ue:

The average Queuelengt h value, over the last 10 minutes, is greater than or equal
to 100 on at least 60 per cent of the Managed Servers in the cluster.

A-22

Appendix A
Cluster Scope Smart Rules

A.2.12 ClusterLowHeapFreePercent

The O ust er LowHeapFr eePer cent smart rule measures an increase in heap

stress across a cluster, as indicated by the average value of the

JVMRunt i neMBean. HeapFr eePer cent attribute in each Managed Server.You can use
this rule to determine whether the cluster capacity needs to be increased; for example,
by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
JVMRunt i meMBean. HeapFr eePer cent value that satisfies the threshold comparison
criteria is greater than or equal to a specific percentage of all servers in the cluster.

To use this smart rule, specify:

e The sampling rate and retention window for the
JVMRunt i meMBean. HeapFr eePer cent metric

e Low HeapFreePer cent threshold value

* Percentage of Managed Servers in the cluster with an average HeapFr eePer cent
value during the sampling period that must be less than the low HeapFr eePer cent
threshold value in order for the rule to evaluate to t r ue

Syntax

W s: C ust er LowHeapFr eePer cent ("cl ust er Nane", "period", "duration",
percent FreeLimt, percentServersLimt)

Parameter Description
cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for HeapFr eePer cent values, expressed as a

St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
¢ The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

percent FreeLim t Value established as the low threshold value of the
HeapFr eePer cent attribute.

ORACLE A-23

Appendix A
Cluster Scope Smart Rules

Parameter Description

per cent ServersLimt Percentage of servers in the cluster with an average
HeapFr eePer cent value that must be less than the value of the
per cent Freeli mi t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 10
percent FreelLim t 20

per cent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowHeapFr eePer cent ("myCl uster","30 seconds","10 m nutes", 20, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the HeapFr eePer cent metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates to tr ue:

The average HeapFr eePer cent value, over the last 10 minutes, is less than 20 on
at least 60 per cent of the Managed Servers in the cluster.

A.2.13 ClusterHighSystemLoadAverage

ORACLE

The O ust er H ghSyst enLoadAver age smart rule measures an increase on system load
across a cluster, as indicated by the average value of the Syst enLoadAver age attribute
in each Managed Server.You can use this rule to determine if cluster capacity needs to
be increased; for example, by executing a scale up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an
average j ava. | ang: t ype=Cper at i ngSyst em Syst enLoadAver age value that satisfies
the threshold comparison criteria is greater than or equal to the specified percentage
of all servers in the cluster.

Note that the value of the Syst enLoadAver age is system dependent.

To use this smart rule, specify:

A-24

Appendix A
Cluster Scope Smart Rules

* The sampling rate and retention window for the j ava. | ang: t ype=Cper at i ngSyst em
Syst enlLoadAver age metric

* High Syst enLoadAver age threshold value

* Percentage of Managed Servers in the cluster with an average
Syst enLoadAver age value that must be greater than or equal to the high
Syst enLoadAver age threshold value in order for the rule to evaluate to t r ue

¢ Note:

Syntax

The value of the Syst enLoadAver age metric is platform-specific

and is not available on all platforms. The MXBean

attribute from which this metric originates is described

athttp://docs. oracl e. contjavase/ 8/ docs/ api / j aval | ang/ managenent /
Oper at i ngSyst emXBean. ht mi #get Syst enLoadAver age- - .

W s: C ust er H ghSyst emLoadAver age("cl ust er Name", "period", "duration", loadLinmt,

percent ServersLinit)

Parameter

Description

cl ust er Nane

Name of target dynamic cluster, expressed as a St ri ng.

period

Sampling rate for Syst enLoadAver age values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration

Period of time for which collected samples are retained,
expressed as a St ri ng.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

| oadLi m t

Value established as the high threshold value of the
Syst enLoadAver age attribute.

per cent ServersLim t

Percentage of servers in the cluster with an average

Syst emLoadAver age value that must be greater than or equal
to the value of the | oadLi nmi t parameter in order for the smart
rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

ORACLE

A-25

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

Appendix A
Cluster Scope Smart Rules

Parameter Value

cl ust er Name myCl ust er
period 30
duration 5

| oadLi mi t 0.8

per cent ServersLim t 60

The smatrt rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghSyst enLoadAver age("nyC uster","30 seconds","5 m nutes", 0. 8, 60)

When configured with a scale up action, this smart rule does the following:

1. Samples the value of the Syst enmLoadAver age metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates to t r ue:

The average Syst enLoadAver age value, over the last 5 minutes, is greater than or
equal to 0.8 on at least 60 per cent of the Managed Servers in the cluster.

A.2.14 ClusterHighHeapFreePercent

The C ust er H ghHeapFr eePer cent smart rule measures a reduction in heap

stress across a dynamic cluster, as indicated by the average value of the

JVMRunt i meMBean. HeapFr eePer cent attribute in each Managed Server.You can use
this rule to determine if cluster capacity can be reduced; for example, by executing a
scale down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
JVM free heap percentage value that satisfies the threshold comparison criteria is
greater than or equal to a specified percentage of all servers in the cluster.

To use this smart rule, specify:
* The sampling rate and retention window for the JVM free heap percentage metric
* High JVM free heap threshold value

* Percentage of Managed Servers in the cluster with an average JVM free heap
value that must be greater than or equal to the high JVM free heap threshold value
in order for the rule to evaluate to t r ue

Syntax

W s: C ust er H ghHeapFr eePer cent (" cl ust er Name", "period", "duration”,
percent FreeLimt, percentServersLimt)

Parameter Description

cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.

ORACLE A-26

ORACLE

Appendix A
Cluster Scope Smart Rules

Parameter

Description

period

Sampling rate for JVM free heap percentage values, expressed as
a String. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration

Period of time for which collected samples are retained,
expressed as a Stri ng.

e The default time unit is seconds.

* The default value is 10m

See retention window for more information about specifying this
parameter.

percent FreeLim t

Value established as the high threshold value of the JVM free
heap percentage.

per cent ServersLimt

Percentage of servers in the cluster with an average JVM free
heap percentage that must be greater than or equal to the

per cent Freeli mi t parameter in order for the smart rule to be
evaluated as tr ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 5

percent FreeLim t 60

per cent ServersLim t 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghHeapFr eePer cent ("nyC uster”,"30 seconds","5 m nutes", 60, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the JVM free heap percentage metric from each Managed
Server instance in nyd ust er every 30 seconds over a retention window of 5

minutes.

2. Atthe end of the retention window, fires a scale down action if the following
condition evaluates to t r ue:

The average JVM free heap percentage value, over the last 5 minutes, is greater
than or equal to 60 on at least 75 per cent of the Managed Servers in the cluster.

A-27

Appendix A
Cluster Scope Smart Rules

A.2.15 ClusterLowSystemCpuLoadAverage

ORACLE

The O ust er LowSyst enCpuLoadAver age smart rule measures a reduction of the system
CPU load average across a cluster, as indicated by the average value of the

Syst enCpulLoad attribute in each Managed Server.You can use this rule to determine
whether cluster capacity needs to be decreased; for example, by executing a scale
down action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with

an average j ava. | ang: t ype=Cper at i ngSyst em Syst enCpuLoad value satisfies the
threshold comparison criteria is greater than or equal to a specified percentage of
all servers in the cluster.

Note that the value of the Syst enCpuLoad metric is platform-specific and is not
available on all platforms.

To use this smart rule, specify:

* The sampling rate and retention window for the j ava. | ang: t ype=Cper at i ngSyst em
Syst enCpuLoad metric

* Low SystenCpuLoad threshold value

e Percentage of Managed Servers in the cluster with an average Syst enCpulLoad
value that must be below the low Syst enCpuLoad threshold value in order for the
rule to evaluate to t r ue

Note:

The value of the Syst enCpuLoad metric is platform-specific and

is not available on all platforms. The MXBean attribute from

which this metric originates is described at ht t ps: // docs. or acl e. com

j avase/ 8/ docs/ j rel api / managenent/ ext ensi on/ com sun/ managenent /
Oper at i ngSyst emXBean. ht ml #get Syst enCpulLoad- - .

Syntax

W s: C ust er LowSyst emCpuLoadAver age(" cl ust er Name", "period", "duration",
syst enCpuLoadLi mit, percentServersLinit)

Parameter Description
cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for Syst enCpuLoad values, expressed as a

String. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

A-28

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

ORACLE

Appendix A
Cluster Scope Smart Rules

Parameter

Description

duration

Period of time for which collected samples are retained,
expressed as a St ri ng.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

syst enCpuLoadLi mi t

Value established as the low threshold value of the
Syst enCpuload attribute.

per cent ServersLimt

Percentage of servers in the cluster with an average

Syst enCpuLoad value that must be less than the value of the
syst enCpuLoadLi m t parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 15

syst enCpuLoadLi mi t 0.2
percent ServersLimt 75

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er LowSyst emCpuLoadAver age("nyCd uster”,"30 seconds","15 ninutes", 0.2, 75)

When configured with a scale down action, this smart rule does the following:

1. Samples the value of the Syst enCpuLoad metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires a scale down action if the following
condition evaluates to t r ue:

The average Syst enCpulLoad value, over the last 15 minutes, is less than 0.2 on at
least 75 per cent of the Managed Servers in the cluster.

A.2.16 ClusterLowldleThreads

The C ust er Lowl dl eThr eads smart rule measures an increase in load

stress across the cluster, as indicated by the average value of the

Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute in each Managed
Server.You can use this rule to determine whether cluster capacity needs to be
increased; for example, by executing a scale up action.

Target: Administration Server

A-29

Appendix A
Cluster Scope Smart Rules

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average

Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount value that satisfies the threshold
comparison criteria is greater than or equal to a specified percentage of all servers in

the cluster.

To use this smart rule, specify:

* The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount metric

e Low Execut eThr eadl dl eCount threshold value

» Percentage of Managed Servers in the cluster whose average
Execut eThr ead! dl eCount value is less than the low Execut eThr eadl dl eCount
threshold value in order for the rule to evaluate to t r ue

Syntax

W s: C uster Lowl dl eThreads("cl ust er Nane", "period", "duration",
idl eThreadsLimt", percentServerLimt")

Parameter Description
cl ust er Narre Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for Execut eThr eadl dl eCount values, expressed

as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a Stri ng.
e The default time unit is minutes.
* The default value is 10m

See retention window for more information about specifying this
parameter.

i dl eThreadsLim t Value established as the low Execut eThr eadl! dl eCount
threshold value.

per cent ServersLimt Percentage of servers in the cluster with an average
Execut eThr eadl dl eCount value that must be less than the
value of the i dl eThr eadsLi m t parameter in order for the smart
rule to be evaluated as t r ue.

This parameter is expressed as a f | oat .

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
cl ust er Name myCl ust er
period 30

ORACLE A-30

Appendix A
Cluster Scope Smart Rules

Parameter Value
duration 10
i dl eThreadsLimt 5

per cent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C usterLow dl eThreads("myCl uster","30 seconds","10 mi nutes", 5, 60)

When configured with a scale up action, this example smart rule:

1. Samples the value of the Execut eThr eadl dl eCount metric from each Managed
Server instance in nyd ust er every 30 seconds over a retention window of 10
minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates to t r ue:

The average Execut eThr eadl dl eCount value, over the last 10 minutes, is less
than 5 on at least 60 per cent of the Managed Servers in the cluster.

A.2.17 ClusterGenericMetricRule

ORACLE

The O ust er Generi cMet ri cRul e smart rule is typically used to observe trends in JIMX
metrics that are published through the Server Runtime MBean Server and that are not
provided through the other cluster scope smart rules.

Target: Administration Server

Description

This smart rule allows you to view the average value of any metric obtained through
JMX within a specific time interval, and compare that average value to a specified
threshold value by using a specified comparison operator for each Managed Server
in the cluster. If the percentage of servers matching the comparison criteria meets or
exceeds the specified limit, the overall condition of the rule is satisfied and this rule
returns t r ue.

To use this smart rule, specify:
e Dynamic cluster name
e Avalid IMX Obj ect Nane or Qbj ect Nane pattern

* An attribute name, or attribute expression (as an EL expression), where the
expression is an attribute expression relative to each MBean.

For example, if the MBean is the Ser ver Runt i meMBean,

" OpenSocket sCurrent Count ' obtains the value of the

Server Runt i neMBean. QpenSocket sCur rent Count attribute. In contrast,

"Heal thState. State' accesses the St at e value of the Heal t hSt at e child object.

e Avalid boolean comparison operator

e Athreshold value against which the selected attribute is compared

A-31

Appendix A
Cluster Scope Smart Rules

» Percentage of Managed Servers in the cluster whose average attribute value
during the sampling period must meet the threshold value in order for the rule to
evaluate to true

e The sampling rate and retention window for the metric on each Managed Server
instance in the cluster

e Period of time during which samples are collected

Syntax

W s: Cl usterGenericMetricRul e("clusterName", "instancePattern", "attribute",
"operation", threshol dVal ue, percentServersLimt, "period", "duration")

Parameter Description

cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.

i nstancePattern A valid JMX Cbj ect Nane or (bj ect Nane pattern
attribute A Java EL expression that retrieves a value on each MBean

instance that matches i nst ancePat t er n, where the expression
is an attribute expression relative to each MBean.

For example, if the MBean is the Ser ver Runt i neMBean,
the expression ' GQpenSocket sCur rent Count' obtains the
value of the OpenSocket sCur r ent Count attribute of

the Ser ver Runt i meMBean. By contrast, the expression
"Heal thState. State' obtains the St at e value of the
Heal t hSt at e child object of that MBean.

operation A boolean comparison operator: <, <=, ==, >=, or >.

t hreshol dVval ue Threshold value against which the value of the attri but e
parameter is compared.

per cent ServersLim t Percentage of servers in the cluster with an average attribute
value that must satisfy the comparison criteria with the value of
the t hr eshol dVal ue parameter in order for the smart rule to be
evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

period Sampling rate for metric values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30
seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a Stri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

Example

The smart rule shown in this example uses the following input parameters:

ORACLE A-32

Appendix A
Cluster Scope Smart Rules

Parameter Value

cl ust er Name myCl ust er

i nstancePattern j ava.lang: t ype=Cper ati ngSyst em
attribute ProcessCpuLoad

operation >=

t hreshol dVal ue 0.9

per cent ServersLimt 75

period 30

duration 10

The smatrt rule that uses the preceding parameters is expressed as follows:

W s: Cl usterCGenericMetricRul e("nmyd uster”,"java.l ang: t ype=0peratingSysteni',"Proces
sCpuLoad", ">=",0.9, 75,"30 seconds","10 m nutes")

This example smatrt rule:

1. Samples the value of the ProcessCpuLoad metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 10 minutes.

2. At the end of the retention window, this smart rule evaluates to t r ue in the
following condition:

The average value of ProcessCpuLoad on the Qper at i ngSyst eniMXBean, over the
last 10 minutes, is greater than or equal to 0.9 on at least 75 per cent of the
Managed Servers in the cluster.

A.2.18 ClusterHighSystemCpuLoadAverage

ORACLE

The O ust er H ghSyst enCpuLoadAver age smart rule measures an increase on system
load across the cluster, as indicated by the average value of the operating system
Syst enCpulLoad attribute in each Managed Server.You use this rule to determine
whether cluster capacity needs to be increased; for example, by executing a scale
up action.

Target: Administration Server

Description

This smart rule evaluates to t r ue if the number of Managed Servers with an average
java. |l ang: t ype=Qper at i ngSyst em Syst enCpuLoad value that satisfies the threshold
comparison criteria is greater than or equal to a specified percentage of all servers in
the cluster.

Note that the value of Syst enCpulLoad is platform-specific and is not available on all
platforms.

To use this smart rule, specify:

e The sampling rate and retention window for the j ava. | ang: t ype=Cper at i ngSyst em
Syst enCpuLoad metric

* High Syst enCpuLoad threshold value

A-33

Appendix A
Cluster Scope Smart Rules

* Percentage of Managed Servers in the cluster with an average Syst enCpulLoad
value that is greater than or equal to the high Syst enCpulLoad threshold value in
order for the rule to evaluate to t r ue

¢ Note:

Syntax

The value of the Syst enCpuLoad metric is platform-specific and

is not available on all platforms. The MXBean attribute from

which this metric originates is described at ht t ps: // docs. or acl e. conl

j avase/ 8/ docs/ j r el api / managenent / ext ensi on/ con sun/ managenent /
Oper at i ngSyst emXBean. ht mi #get Syst enCpulLoad- - .

W s: C ust er H ghSyst enCpuLoadAver age(" cl ust er Nane", "period", "duration",
systenCpuLoadLi mi t, percentServersLinit)

Parameter Description
cl ust er Name Name of target dynamic cluster, expressed as a St ri ng.
period Sampling rate for Syst enCpuLoad values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.
duration Period of time for which collected samples are retained,

expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

syst enCpuLoadLi mi t

Value established as the high threshold value of the
Syst enCpuload attribute.

per cent ServersLimt

Percentage of servers in the cluster with an average

Syst enCpuLoad value that must be greater than or equal to the
value of the syst enCpuLoadLi mi t parameter in order for the
smart rule to be evaluated as t r ue.

This parameter is expressed as a f | oat value between 0.0 and
100.0

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

cl ust er Name myCl ust er
period 30
duration 5

ORACLE

A-34

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

Appendix A
Server Scope Smart Rules

Parameter Value

syst enCpuLoadLi mi t 0.8
per cent ServersLimt 60

The smart rule that uses the preceding parameters is expressed as follows:

W s: C ust er H ghSyst enCpuLoadAver age("myCl uster","30 seconds","5 ninutes", 0.8, 60)

When configured with a scale up action, this example smart rule:

1. Samples the value of the Syst enCpuLoad metric from each Managed Server
instance in myCl ust er every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires a scale up action if the following condition
evaluates to t r ue:

The average Syst enCpulLoad value, over the last 5 minutes, is greater than or
equal to 0.8 on at least 60 per cent of the Managed Servers in the cluster.

A.3 Server Scope Smart Rules

A server scope smart rule is one that is applied only to the local WebLogic Server
instance on which the policies associated with that smart rule are run. You can
execute policies containing server scope smart rules on the Administration Server
or any individual Managed Server in the domain.The set of server scope smart
rules packaged with the WebLogic Diagnostics Framework (WLDF) are listed and
summarized in Table A-2.

Table A-2 Summary of Managed Server Scope Smart Rules

After the retention window, the ...returns trueif...
following smart rule . ..

ServerLowldleThreads The average
Thr eadPool Runt i meMBean. Execut eThr eadl dl eC
ount value on the local server is equal to or less than
the low threshold value.

ServerHighThroughput The average
Thr eadPool Runt i meMBean. Thr oughput value on
the local server is greater than or equal to the high
threshold value.

ServerGenericMetricRule The average value of a metric visible through JIMX
within the local JVM satisfies the comparison criteria
with the threshold value.

ServerLowPendingUserRequests The average
Thr eadPool Runt i meMBean. Pendi ngUser Request
Count value on the local server is less than the low
threshold value.

ServerLowProcessCpulLoadAverage The average value of the Pr ocessCpuLoad metric of
the j ava. | ang: t ype=Qper at i ngSyst emMXBean
on the local server is less than the low threshold
value.

ORACLE A-35

ORACLE

Appendix A
Server Scope Smart Rules

Table A-2 (Cont.) Summary of Managed Server Scope Smart Rules

After the retention window, the
following smart rule . ..

...returns trueif...

ServerHighSystemLoadAverage

The average value of the

Syst enLoadAver age metric from the

j ava. |l ang: t ype=Qper at i ngSyst emMXBean on
the local server is greater than or equal to the high
threshold value.

ServerLowQueuelength The average
Thr eadPool Runt i meMBean. QueueLengt h value on
the local server is less than the low threshold value.
ServerLowThroughput The average

Thr eadPool Runt i meMBean. Thr oughput value on
the local server is less than the low threshold value.

ServerHighQueuelLength

The average

Thr eadPool Runt i meMBean. QueuelLengt h value on
the local server is greater than or equal to the high
threshold value.

ServerHighSystemCpuLoadAverage

The average Syst enCpulLoad attribute of the

j ava. |l ang: t ype=Qper at i ngSyst emMXBean on
the local server is greater than or equal to the high
threshold value.

ServerHighPendingUserRequests

The average

Thr eadPool Runt i meMBean. Pendi ngUser Request
Count value on the local server is greater than or
equal to the high threshold value.

ServerLowSystemCpulLoadAverage

The average Syst enCpulLoad attribute of the
j ava. |l ang: t ype=Qper at i ngSyst emMXBean on
the local server is less than the low threshold value.

ServerHighHeapFreePercent

The average percentage of free heap on the local
server is greater than or equal to the high threshold
value.

ServerHighStuckThreads

The average

Thr eadPool Runt i meMBean. St uckThr eadCount
value on the local server is greater than or equal to
high threshold value.

ServerHighProcessCpulLoadAverage

The average ProcessCpulLoad value of the

j ava. |l ang: t ype=Qper at i ngSyst emMXBean on
the local server is greater than or equal to the high
threshold value.

ServerLowSystemLoadAverage

The average Syst enlLoadAver age value of the
j ava. |l ang: t ype=Qper at i ngSyst emMXBean on
the local server is less than the low threshold value.

ServerLowHeapFreePercent

The average percentage of free heap on the local
server is less than the low threshold value.

ServerHighldleThreads

The average

Thr eadPool Runt i meMBean. Execut eThr eadl dl eC
ount value on the local server is greater than or
equal to the high threshold value.

A-36

Appendix A
Server Scope Smart Rules

A.3.1 ServerLowldleThreads

ORACLE

The Server Low dl eThr eads smart rule detects if the average number of
idle threads is below the specified threshold within the local server in
which the rule is running, as indicated by the average value of the

Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns t r ue if the average value of the
Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute is equal to or less than
the specified threshold value.

To use this smart rule, specify:

e The sampling rate and retention window for the
Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount metric

* Low Execut eThr eadl dl eCount threshold value

Syntax

W s: Server Low dl eThreads("peri od", "duration", idleThreadsLinit)

Parameter Description

period Sampling rate for Execut eThr eadl dl eCount values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

i dl eThreadsLi m t Value established as the low threshold value of the
Execut eThr eadl dl eCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 5

i dl eThreadsLimt 0.8

A-37

Appendix A
Server Scope Smart Rules

The smart rule that uses the preceding parameters is expressed as follows:

w s: ServerLow dl eThreads("30 seconds”,"10 ni nutes",5)

This example smatrt rule:

1. Samples the value of the Execut eThr eadl dl eCount metric from the local server
instance every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Execut eThr eadl dl eCount value, over the last 5 minutes, is less than
or equal to 0.8 on this server instance.

A.3.2 ServerHighThroughput

ORACLE

The Server H ghThr oughput smart rule determines whether an increase in throughput
exists within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns t r ue if the average value of the
ThreadPool Runt i meMBean. Thr oughput attribute over the specified retention window is
greater than or equal to the high threshold value.

To use this smart rule, specify:

* The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Thr oughput attribute.

e High Thr oughput threshold value

Syntax

W s: Server H ghThr oughput (" period", "duration", throughputLimt)

Parameter Description

period Sampling rate for Thr oughput values, expressed as a Stri ng.
For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

t hr oughput Li mi t Value established as the high threshold value of the Thr oughput
attribute.

A-38

Appendix A
Server Scope Smart Rules

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10

t hroughput Li mi t 100

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghThroughput ("30 seconds","10 ninutes", 100)

This example smart rule:

1. Samples the value of the Thr oughput metric from the local server instance every
30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Throughput value, over the last 10 minutes, is greater than or equal
to 100 on this server instance.

A.3.3 ServerGenericMetricRule

ORACLE

The Server Generi cMetri cRul e smart rule is a general server scope smart rule that
you can use to observe trends of any JMX metric that is published through the Server
Runtime MBean Server and that is not provided by the other server scope smart
rules.This smart rule allows you to collect the average value of the metric across a
recent time interval and compare it to a threshold value using a specified comparison
operator.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns t r ue if the average value of the metric meets or exceeds the
specified threshold value.

To use this smatrt rule, specify:

e Avalid IMX bj ect Nane or Qbj ect Nane pattern

e A Java EL expression that retrieves a value on each matching MBean instance,
where the expression is an attribute expression relative to each MBean.

e A boolean comparison operator using the specified comparison operator
e Athreshold value against which the selected attribute is compared

e The sampling rate and retention window of the metric.

Syntax

W s: Server GenericMetricRul e("instancePattern", "attribute", "operation",
threshol dVal ue, "period", "duration")

A-39

ORACLE

Appendix A
Server Scope Smart Rules

Parameter

Description

i nst ancePattern

A valid JMX Cbj ect Nane or (bj ect Nane pattern

attribute

A Java EL expression that retrieves a value on each MBean
instance that matches i nst ancePat t er n, where the expression
is an attribute expression relative to each MBean.

For example, if the MBean is the Ser ver Runt i neMBean,
the expression ' GpenSocket sCur rent Count' obtains the
value of the OpenSocket sCur r ent Count attribute of

the Ser ver Runt i meMBean. By contrast, the expression
"Heal thState. State' obtains the St at e value of the
Heal t hSt at e child object of that MBean.

operation

A boolean comparison operator: <, <=, ==, >=, or >.

t hr eshol dVval ue

A threshold value with which to compare the selected attribute
using the specified comparison operator.

period

Sampling rate for metric values, expressed as a St ri ng. For
example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration

Period of time for which collected samples are retained,
expressed as a Stri ng.

e The default time unit is seconds.

e The default value is 10m

See retention window for more information about specifying this
parameter.

Example

The smart rule shown in this example uses the following input parameters:

Parameter

Value

i nst ancePattern

j ava.lang: t ype=Cper ati ngSyst em

attribute ProcessCpuLoad
operation >=

t hreshol dVval ue 0.9

period 30

duration 10

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server Generi cMetri cRul e("java. | ang: t ype=Qper ati ngSystent, " ProcessCpuLoad", " >=
",0.9,"30 seconds","10 m nutes")

The smart rule:

1. Samples the value of the ProcessCpuLoad metric on the targeted server instance
every 30 seconds over a retention window of 10 minutes.

A-40

Appendix A
Server Scope Smart Rules

2. At the end of the retention window, this smart rule evaluates to t r ue in the
following condition:

The average value of ProcessCpuLoad on the Qper at i ngSyst envMXBean, over the
last 10 minutes, is greater than or equal to 0.9 on this server instance.

A.3.4 ServerLowPendingUserRequests

The Server LowPendi ngUser Request s smart rule determines whether the average
number of pending user requests within the local server in which the rule is running,
as indicated by the value of the Thr eadPool Runt i meMBean. Pendi ngUser Request Count
attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This smart rule returns t r ue if the average value of the
ThreadPool Runt i meMBean. Pendi ngUser Request Count attribute over the specified
retention window is less than the low threshold value.

To use this smart rule, specify:

* The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute.

* Low Pendi ngUser Request Count threshold value

Syntax

W s: Server LowPendi ngUser Request s("period", "duration", pendingRequestsLinit)

Parameter Description

period Sampling rate for Pendi ngUser Request Count values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

pendi ngRequest sLinmit Value established as the low threshold value of the
Pendi ngUser Request Count attribute.

Example

The smart rule shown in this example uses the following input parameters:

ORACLE A-41

Appendix A
Server Scope Smart Rules

Parameter Value
period 30
duration 15
pendi ngRequest sLi mi t 5

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowPendi ngUser Request s("30 seconds","15 ninutes", 5)

This example smatrt rule:

1. Samples the value of the Pendi ngUser Request Count metric from the local server
instance every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, evaluates to t r ue if the following condition
exists:

The average Pendi ngUser Request Count value, over the last 15 minutes, is less
than 5 on this server instance.

A.3.5 ServerLowProcessCpulLoadAverage

ORACLE

The Ser ver LowPr ocessCpuLoadAver age smart rule determines whether a reduction
exists in the average system load within the local server instance in which the rule is
running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the ProcessCpuLoad metric of the
j ava. | ang: t ype=Qper at i ngSyst emMXBean over the specified time interval is less
than a specified threshold value.

" Note:

The value of the ProcessCpulLoad metric is platform-specific and

is not available on all platforms. The MXBean attribute from

which this metric originates is described at htt ps: // docs. or acl e. com

j avase/ 8/ docs/j rel api / managenent / ext ensi on/ com sun/ managenent /
Oper at i ngSyst emXBean. ht mi #get ProcessCpuLoad- - .

To use this smart rule, specify:
* The sampling rate and retention window of the Pr ocessCpulLoad attribute.

e Low ProcessCpulLoad threshold value

Syntax

W s: Server LowPr ocessCpuLoadAver age(" peri od", "duration", processCpuLoadLimit)

A-42

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

Appendix A
Server Scope Smart Rules

Parameter Description

period Sampling rate for Pr ocessCpulLoad values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m
See retention window for more information about specifying this
parameter.

processCpulLoadLi mi t Value established as the low threshold value of the
ProcessCpulLoad attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15
processCpuLoadLi mi t 0.2

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowPr ocessCpuLoadAver age(" 30 seconds","15 nminutes", 0. 2)

This example smatrt rule:

1. Samples the value of the ProcessCpulLoad metric from the local server instance
every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average ProcessCpulLoad value, over the last 15 minutes, is less than 0.2 on
this server instance.

A.3.6 ServerHighSystemLoadAverage

ORACLE

The Server H ghSyst emLoadAver age smart rule determines whether a reduction exists
on the average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

A-43

ORACLE

Appendix A
Server Scope Smart Rules

Description

This rule returns t r ue if the average value of the Syst enm_oadAver age metric from
the j ava. | ang: t ype=Qper at i ngSyst emMXBean on the local server instance over
specified interval is greater than or equal to a specific high threshold value.

To use this smart rule, specify:

* The sampling rate and retention window of the Syst en_LoadAver age attribute.

» High Syst enLoadAver age threshold value

Note:

The value of the Syst enLoadAver age metric is platform-specific

and is not available on all platforms. The MXBean

attribute from which this metric originates is described

athttp://docs. oracl e. contjavase/ 8/ docs/ api / j aval | ang/ managenent /
Oper at i ngSyst emXBean. ht ml #get Syst enLoadAver age- - .

Syntax

W s: Server H ghSyst em_oadAver age("period", "duration", |oadLinit)

Parameter Description

period Sampling rate for Syst em_oadAver age values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

| oadLi mt Value established as the high threshold value of the
Syst emLoadAver age attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 5

| oadLi mi t 0.8

A-44

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

Appendix A
Server Scope Smart Rules

The smart rule that uses the preceding parameters is expressed as follows:

w s: Server H ghSyst em_oadAver age("30 seconds","5 minutes", 0. 8)

This example smart rule:

1. Samples the value of the Syst enLoadAver age metric on the local server instance
every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Syst enLoadAver age value, over the last 5 minutes, is greater than or
equal to 0.8 collected on this server instance.

A.3.7 ServerLowQueuelLength

ORACLE

The Server LowQueuelLengt h smart rule determines whether a reduction exists in the
average thread pool queue length within the local server in which the rule is running,
as indicated by the value of the Thr eadPool Runt i meMBean. QueuelLengt h metric.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the
Thr eadPool Runt i meMBean. Queuelengt h attribute on the local server instance over
specified interval is less than a specific low threshold value.

To use this smart rule, specify:

* The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Queuelengt h attribute.

e Low Queuelengt h threshold value

Syntax

W s: Server LowQueuelLengt h("period", "duration", queuelLengthLinit)

Parameter Description

period Sampling rate for QueueLengt h values, expressed as a St ri ng.
For example, 30s specifies that this metric is sampled every 30
seconds.

¢ The default time unit is seconds.
e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

A-45

Appendix A
Server Scope Smart Rules

Parameter Description

queueLengt hLimi t Value established as the low threshold value of the QueuelLengt h
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15
queuelLengt hLim t 5

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowQueuelLengt h("30 seconds”,"15 m nutes", 5)

This example smart rule:

1. Samples the value of the QueueLengt h metric from the local server instance every
30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Queuelengt h value, over the last 15 minutes, is less than 5 on this
server instance.

A.3.8 ServerLowThroughput

ORACLE

The Server LowThr oughput smart rule determines whether a decrease exists in the
average throughput within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the
Thr eadPool Runt i meMBean. Thr oughput attribute on the local server over the specified
interval is less than the specified low threshold value.

To use this smart rule, specify:

e The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Thr oughput attribute.

e Low Throughput threshold value

Syntax

W s: Server LowThr oughput ("period", "duration", throughputLinit)

A-46

Appendix A
Server Scope Smart Rules

Parameter Description

period Sampling rate for Thr oughput values, expressed as a Stri ng.
For example, 30s specifies that this metric is sampled every 30
seconds.

e The default time unit is seconds.
e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

t hroughput Li mi t Value established as the low threshold value of the Thr oughput
attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15

i dl eThreadsLim t 5

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowThr oughput ("30 seconds", "15 mi nutes", 5)

This example smatrt rule:

1. Samples the value of the Thr oughput metric from the local server instance every
30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Throughput value, over the last 15 minutes, is less than 5 on this
server instance.

A.3.9 ServerHighQueueLength

ORACLE

The Server H ghQueuelengt h smart rule determines whether an increase exists in the
average thread pool queue length within the local server in which the rule is running,
as indicated by the value of the Thr eadPool Runt i neMBean. QueuelLengt h attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

A-47

ORACLE

Appendix A
Server Scope Smart Rules

Description

This rule returns t r ue if the average value of the
Thr eadPool Runt i meMBean. QueuelLengt h attribute over a specific time interval is greater
than or equal to a specific high threshold value.

To use this smart rule, specify:

* The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Queuelengt h attribute.

* High QueuelLengt h threshold value

Syntax

W s: Server H ghQueuelLengt h("period", "duration", queueLengthLimit)

Parameter Description

period Sampling rate for QueuelLengt h values, expressed as a St ri ng.
For example, 30s specifies that this metric is sampled every 30
seconds.

¢ The default time unit is seconds.
* The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

queueLengt hLim t Value established as the high threshold value of the
Queuelengt h attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10
queuelLengt hLim t 100

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghQueueLengt h("30 seconds","10 m nutes", 100)

This example smatrt rule:

1. Samples the value of the QueueLengt h metric from the local server instance every
30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

A-48

Appendix A
Server Scope Smart Rules

The average Queuelengt h value, over the last 10 minutes, is greater than or equal
to 100 on this server instance.

A.3.10 ServerHighSystemCpuLoadAverage

ORACLE

The Server H ghSyst enCpuLoadAver age smart rule determines whether an increase
exists in the average system CPU load within the local server in which the rule is
running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the Syst enCpulLoad attribute of the
j ava. l ang: t ype=Qper at i ngSyst emMXBean over a specific time interval is greater
than or equal to a specific high threshold.

" Note:

The value of the Syst enCpuLoad metric is platform-specific and

is not available on all platforms. The MXBean attribute from

which this metric originates is described at ht t ps: // docs. or acl e. con!

j avase/ 8/ docs/ j r el api / managenent / ext ensi on/ conl sun/ managenent /
Oper at i ngSyst emXBean. ht mi #get Syst enCpulLoad- - .

To use this smart rule, specify:
e The sampling rate and retention window of the Syst enCpuLoad attribute.

* High Syst enCpuLoad threshold value

Syntax
W s: Server H ghSyst enCpuLoadAver age("peri od", "duration", systenCpulLoadLinit)

Parameter Description

period Sampling rate for Syst enCpulLoad values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

A-49

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

Appendix A
Server Scope Smart Rules

Parameter Description

syst enCpuLoadLi mi t Value established as the high threshold value of the
Syst enCpulLoad attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10

syst enCpuLoadLi mi t 0.8

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghSyst enCpuLoadAver age(" 30 seconds","10 nminutes", 0. 8)

This example smart rule:

1. Samples the value of the Syst enCpuLoad metric from the local server instance
every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Syst enCpulLoad value, over the last 10 minutes, is greater than or
equal to 0.8 on this server instance.

A.3.11 ServerHighPendingUserRequests

ORACLE

The Ser ver H ghPendi ngUser Request s smart rule determines whether an
increase exists in the number of pending user requests within the local
server in which the rule is running, as indicated by the value of the

Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute over a specific interval
is greater than or equal to a specific threshold value.

To use this smart rule, specify:

e The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Pendi ngUser Request Count attribute.

* High Pendi ngUser Request Count threshold value

Syntax

W s: Server H ghPendi ngUser Request s("period", "duration", pendingRequestsLimit)

A-50

Appendix A
Server Scope Smart Rules

Parameter Description

period Sampling rate for Pendi ngUser Request Count values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

pendi ngRequestsLinmit Value established as the high threshold value of the
Pendi ngUser Request Count attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10

pendi ngRequestsLinmit 100

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghPendi ngUser Request s("30 seconds","10 mi nutes", 100)

This example smatrt rule:

1. Samples the value of the Pendi ngUser Request Count metric from the local server
instance every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Pendi ngUser Request Count value, over the last 10 minutes, is greater
than or equal to 100 on this server instance.

A.3.12 ServerLowSystemCpuLoadAverage

ORACLE

The Ser ver LowSyst enCpuLoadAver age smart rule determines whether a reduction
exists in the average system CPU load within the local server in which the rule is
running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

A-51

Appendix A
Server Scope Smart Rules

Description

This rule returns t r ue if the average value of the Syst enCpuLoad metric of the
j ava. l ang: t ype=Qper at i ngSyst emMXBean over a specific interval is less than the
specified low threshold value.

" Note:

The value of the Syst enCpuLoad metric is platform-specific and

is not available on all platforms. The MXBean attribute from

which this metric originates is described at htt ps: // docs. or acl e. com

j avase/ 8/ docs/j rel api / managenent / ext ensi on/ com sun/ managenent /
Oper at i ngSyst emXBean. ht mi #get Syst enCpulLoad- - .

To use this smart rule, specify:

* The sampling rate and retention window of the Syst enCpuLoad attribute.

e Low Syst enCpulLoad threshold value

Syntax

W s: Server LowSyst enCpuLoadAver age(" period", "duration", systenCpuLoadLimit)

Parameter Description

period Sampling rate for Syst enCpulLoad values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

syst enCpuLoadLi mi t Value established as the low threshold value of the
Syst enCpulLoad attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15

syst enCpuLoadLi mi t 0.8

ORACLE A-52

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getSystemCpuLoad--

Appendix A
Server Scope Smart Rules

The smart rule that uses the preceding parameters is expressed as follows:

w s: Server LowSyst enCpuLoadAver age(" 30 seconds","15 ninutes", 0. 8)

This example smart rule:

1. Samples the value of the Syst enCpuLoad metric from the local server instance
every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Syst enCpulLoad value, over the last 15 minutes, is less than 0.8 on
this server instance.

A.3.13 ServerHighHeapFreePercent

ORACLE

The Server H ghHeapFr eePer cent smart rule determines whether an increase in heap
stress exists within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average JVMRunt i neMBean. HeapFr eePer cent value over
the specific time interval is greater than or equal to the specified high threshold value.

To use this smart rule, specify:

* The sampling rate and retention window of the
JVMRunt i meMBean. HeapFr eePer cent attribute.

* High JVM free heap percentage threshold value

Syntax

W s: Server H ghHeapFr eePer cent ("period”, "duration", percentFreeLimt)

Parameter Description

period Sampling rate for JVM free heap percentage values, expressed as
a String. For example, 30s specifies that this metric is sampled
every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

per cent FreelLim t Value established as the high threshold of the JVM free heap
percentage, specified as a f | oat value between 0.0 and 100.0

A-53

Appendix A
Server Scope Smart Rules

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10
percent FreelLim t 60

The smart rule that uses the preceding parameters is expressed as follows:

w s: Server H ghHeapFr eePer cent ("30 seconds","10 mi nutes", 60)

This example smart rule:

1. Samples the value of the JVM free heap percentage from the local server instance
every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average JVM free heap value, over the last 10 minutes, is greater than or
equal to 60 per cent on this server instance.

A.3.14 ServerHighStuckThreads

The Server Hi ghSt uckThr eads smart rule determines whether an increase exists

on server stress based on the average number of stuck threads within the

local server in which the rule is running, as indicated by the value of the

Thr eadPool Runt i meMBean. St uckThr eadCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the
Thr eadPool Runt i meMBean. St uckThr eadCount attribute over a specific time interval is
greater than or equal to the specified threshold value.

To use this smatrt rule, specify:

e The sampling rate and retention window of the
Thr eadPool Runt i meMBean. St uckThr eadCount attribute.

e High St uckThreadCount threshold value

Syntax

w s: Server Hi ghSt uckThreads("period", "duration", stuckThreadsLimit)

ORACLE A-54

Appendix A
Server Scope Smart Rules

Parameter Description

period Sampling rate for St uckThr eadCount values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.

e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

st uckThreadsLi mt Value established as the high threshold value of the
St uckThr eadCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 10

st uckThreadsLi m t 5

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server H ghSt uckThreads("30 seconds","10 nminutes",5)

This example smatrt rule:

1. Samples the value of the St uckThr eadCount metric from the local server instance
every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average St uckThr eadCount value, over the last 10 minutes, is greater than or
equal to 5 on this server instance.

A.3.15 ServerHighProcessCpuLoadAverage

ORACLE

The Server H ghProcessCpuLoadAver age smart rule determines whether an decrease
exists in the average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

A-55

Appendix A
Server Scope Smart Rules

Description

This rule returns t r ue if the average Pr ocessCpulLoad value of the
j ava. | ang: t ype=Qper at i ngSyst emMXBean over the specified interval is greater than
or equal to the specified threshold.

" Note:

The value of the ProcessCpulLoad metric is platform-specific and

is not available on all platforms. The MXBean attribute from

which this metric originates is described at htt ps: // docs. or acl e. com

j avase/ 8/ docs/j rel api / managenent / ext ensi on/ com sun/ managenent /
Oper at i ngSyst emXBean. ht ni #get ProcessCpuLoad- - .

To use this smart rule, specify:

* The sampling rate and retention window of the Pr ocessCpulLoad attribute.

e High ProcessCpuLoad threshold value

Syntax

W s: Server H ghProcessCpuLoadAver age("period", "duration", processCpuLoadLinit)

Parameter Description

period Sampling rate for Pr ocessCpulLoad values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.
e The default time unit is seconds.
* The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

processCpulLoadLi mi t Value established as the high threshold value of the
ProcessCpuLoad attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 5

processCpuLoadLi mi t 0.8

ORACLE A-56

https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--
https://docs.oracle.com/javase/8/docs/jre/api/management/extension/com/sun/management/OperatingSystemMXBean.html#getProcessCpuLoad--

Appendix A
Server Scope Smart Rules

The smart rule that uses the preceding parameters is expressed as follows:

w s: Server Hi ghProcessCpuLoadAver age("30 seconds","5 minutes”, 0. 8)

This example smart rule:

1. Samples the value of the ProcessCpuLoad metric from the local server instance
every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average ProcessCpulLoad value, over the last 5 minutes, is greater than or
equal to 0.8 on this server instance.

A.3.16 ServerLowSystemLoadAverage

The Server LowSyst enlLoadAver age smart rule determines whether a reduction exists in
the average system load within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the value of the Syst enlLoadAver age metric of the
j ava. l ang: t ype=Qper at i ngSyst emMXBean over a specified interval is less than the
specified low threshold value.

< Note:

The value of the Syst enLoadAver age metric is platform-specific

and is not available on all platforms. The MXBean

attribute from which this metric originates is described

athttp://docs. oracl e. conljavase/ 8/ docs/ api / j ava/ | ang/ managemnent /
Oper at i ngSyst emXBean. ht mi #get Syst enLoadAver age- - .

To use this smart rule, specify:
* The sampling rate and retention window of the Syst en_oadAver age attribute.

e Low Syst enLoadAver age threshold value

Syntax

W s: Server LowSyst enmLoadAver age(" period", "duration", |oadLimt)

ORACLE A-57

http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--
http://docs.oracle.com/javase/8/docs/api/java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage--

Appendix A
Server Scope Smart Rules

Parameter Description

period Sampling rate for Syst enm_oadAver age values, expressed as a
St ring. For example, 30s specifies that this metric is sampled
every 30 seconds.

e The default time unit is seconds.
e The default value is 30s.

See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

| oadLi m t Value established as the low threshold value of the
Syst emLoadAver age attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 15

| oadLi m t 0.2

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowSyst emLoadAver age("30 seconds","15 minutes", 0. 2)

This example smatrt rule:

1. Samples the value of the Syst em_oadAver age metric from the local server instance
every 30 seconds over a retention window of 15 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Syst enLoadAver age value, over the last 15 minutes, is less than 0.2
on this server instance.

A.3.17 ServerLowHeapFreePercent

ORACLE

The Ser ver LowHeapFr eePer cent smart rule determines whether an increase exists in
heap stress within the local server in which the rule is running.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

A-58

ORACLE

Appendix A
Server Scope Smart Rules

Description

This rule returns tr ue if the average JVMRunt i meMBean. HeapFr eePer cent value over
the specified time interval is less than the specified low threshold value.

To use this smart rule, specify:

e The sampling rate and retention window of the
JVMRunt i meMBean. HeapFr eePer cent attribute.

* Low Java free heap percentage threshold value

Syntax

W s: Server LowHeapFr eePer cent ("period", "duration", percentFreeLinit)

Parameter Description

period Sampling rate for Java free heap percentage values, expressed as
a String. For example, 30s specifies that this metric is sampled
every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a Stri ng.
¢ The default time unit is seconds.
* The default value is 10m

See retention window for more information about specifying this
parameter.

percent FreeLim t Value established as the low threshold value of the Java free heap
percentage.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value
period 30
duration 5

per cent FreeLim t 20

The smart rule that uses the preceding parameters is expressed as follows:

W s: Server LowHeapFr eePer cent ("30 seconds","5 ninutes", 20)

This example smatrt rule:

1. Samples the value of the Java free heap percentage from the local server instance
every 30 seconds over a retention window of 5 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

A-59

Appendix A
Server Scope Smart Rules

The average Java free heap percentage value, over the last 5 minutes, is less
than 20 per cent on this server instance.

A.3.18 ServerHighldleThreads

The Server Hi ghl dl eThr eads smart rule determines whether a reduction in
average system load exists within the local server in which the rule is
running, by measuring an increase in idle threads as indicated by the

Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute.

You can target this smart rule on either a Managed Server or an Administration Server.

Group: Server

Description

This rule returns t r ue if the average value of the
ThreadPool Runt i meMBean. Execut eThr eadl dl eCount attribute over the specified
retention window is greater than or equal to the specified threshold value.

To use this smart rule, specify:

e The sampling rate and retention window of the
Thr eadPool Runt i meMBean. Execut eThr eadl dl eCount attribute.

» High Execut eThr eadl dl eCount threshold value

Syntax

W s: Server H ghl dl eThreads("period", "duration", idleThreadsLinit)

Parameter Description

period Sampling rate for Execut eThr eadl dl eCount values, expressed
as a String. For example, 30s specifies that this metric is
sampled every 30 seconds.
e The default time unit is seconds.
e The default value is 30s.
See sampling rate for more information about specifying this
parameter.

duration Period of time for which collected samples are retained,
expressed as a St ri ng.
e The default time unit is seconds.
e The default value is 10m

See retention window for more information about specifying this
parameter.

i dl eThreadsLim t Value established as the high threshold value of the
Execut eThr eadl dl eCount attribute.

Example

The smart rule shown in this example uses the following input parameters:

Parameter Value

period 30

ORACLE A-60

Appendix A
Server Scope Smart Rules

Parameter Value
duration 10
i dl eThreadsLimt 20

The smart rule that uses the preceding parameters is expressed as follows:

w s: Server Hi ghl dl eThreads("30 seconds", "10 m nutes", 20)

This example smatrt rule:

1. Samples the value of the Execut eThr eadl dl eCount metric from the local server
instance every 30 seconds over a retention window of 10 minutes.

2. Atthe end of the retention window, fires the associated action if the following
condition evaluates to t r ue:

The average Execut eThr eadl dl eCount value, over the last 10 minutes, is greater
than or equal to 20 on this server instance.

ORACLE A-61

WLDF Beans and Functions Reference

The WebLogic Diagnostics Framework (WLDF) provides a set of beans and functions
that can be used in collected metrics policy expressions to obtain access to common
WebLogic Server JMX data sources.

WLDF Beans Reference

Functions Reference

B.1 WLDF Beans Reference

WLDF includes several beans that can be used in collected metrics policy expressions
to access statistics that provide information about active cluster objects, MBeans,
instrument event fields, and more.

clusterRuntime
domainRuntime
instrumentationEvent
log

partition

platform

resource

runtime

B.1.1 clusterRuntime

The cl ust er Runt i ne bean provides cluster-wide access to statistics for active clusters

ORACLE

in the domain.

Attributes

Name Description

clusters Provides a map of beans that represent active cluster objects within
the domain, keyed by cluster name.
Type:interface java.util.Map

nane The name of the cluster.

Type: cl ass java.lang. String

B-1

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Appendix B
WLDF Beans Reference

Methods
Name Description
query Performs a query for a set of MBean attribute values based on an Object

Name pattern and an attribute expression.
Parameters:
« onPattern

A valid JMX Object Name, or Object Name pattern.
e attributePattern

A EL expression that is used to retrieve a value from each matching
MBean instance, where the expression is an attribute expression
relative to each MBean.
For example, if the MBean is the Ser ver Runt i meMBean,
the expression ' OpenSocket sCur rent Count' obtains the value
of the OpenSocket sCur r ent Count attribute. By contrast,
"Heal thState. State' obtains the St at e value of the Heal t hSt at e
child object.
Return values:
Returns a set of values matching the specified ObjectName pattern and
attribute expression. These results can be fed to the wis:extract function for
maintaining an in-memory history of values.

getCl usters

Provides a map of beans that represent active cluster objects within the
domain.

getAttribute

Obtains a single attribute value from an MBean source.

Parameters:

e objectNanmePattern
A JMX ObjectName or ObjectName pattern that must resolve to a
single MBean instance.

- attribute
The MBean attribute value to obtain.

Returns Values:

Returns the attribute value matching the specified JIMX ObjectName.

B.1.2 domainRuntime

The domai nRunt i me bean provides access to MBeans registered in the Domain
Runtime MBean Server.

ORACLE

Attributes

Name Description

domai n The root Domai nRunt i meMBean in the Domain Runtime MBean
Server.

name The bean name.

Type: cl ass java.lang. String

server Runti nes

Returns the array of active Ser ver Runt i meMBean instances in the
domain.

Type: cl ass
webl ogi c. managenent . runti me. Server Runt i neMBean|]

B-2

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Appendix B
WLDF Beans Reference

Methods
Name Description
query Performs a query for a set of MBean attribute values based on an Object Name
pattern and an attribute expression.
Parameters:
e onPattern
A valid JMX Object Name, or Object Name pattern)
- attributePattern
A EL expression that is used to retrieve a value from each matching MBean
instance, where the expression is an attribute expression relative to each
MBean.
For example, if the MBean is the Ser ver Runt i meMBean,
the expression ' OpenSocket sCur rent Count' obtains the value
of the OpenSocket sCur r ent Count attribute. By contrast,
"Heal thState. State' obtains the St at e value of the Heal t hSt at e child
object.
Return values:
Returns a set of values matching the specified Object Name pattern and
attribute expression. These results can be fed to the wis:extract function for
maintaining an in-memory history of values.
Executes a JMX query against a set of targets within the Domain Runtime
query MBean Server.
Parameters:
 targets
A list of server or cluster targets specified as a comma-delimited St ri ng
e onPattern
A valid JMX Object Name or Object Name pattern
e expression
A EL expression that is used to retrieve a value on each matching MBean
instance
Return values:
Returns a set of values matching the specified Object Name pattern and
attribute expression, across the specified target names.
The target names can be a valid WebLogic Server instance or cluster in the
domain.
These results can be fed to the wis:extract function for maintaining an in-memory
history of values.
| ookupSer ve Returns Fhe Ser ver Runt i neMBean for the named server instance, or nul | if
FRUNti me not specified.

Parameter:
e serverNane

The name of the Ser ver Runt i meMBean to look up
Return values:

Returns a value matching the specified Object Name pattern and attribute
expression.

ORACLE B-3

Appendix B
WLDF Beans Reference

Name

Description

get Attribu Obtains a single attribute value from an MBean source.
Parameters:

te

obj ect NanePat t ern

A JMX ObjectName or ObjectName pattern that must resolve to a single
MBean instance.

attribute
The MBean attribute value to obtain.

Returns Values:
Returns the attribute value matching the specified JIMX ObjectName.

B.1.3 instrumentationEvent

The i nstrunent ati onEvent bean provides access to instrumentation event fields in
instrumentation policy expressions.

Attributes

Name

Description

timeStanmp

The timestamp value associated with the event creation.
Type: cl ass java.l ang. Long

contextld

The diagnostic context ID associated with the instrumentation event.
Type: cl ass java.lang. String

txld

The JTA transaction ID associated with the instrumentation event.
Type: cl ass java.lang. String

userld

The user name associated with the request for which the instrumentation
event is generated.

Type: cl ass java.lang. String

event Type

The instrumentation event type.
Type: cl ass java.lang. String

domai n

The name of the current domain.
Type: cl ass java.lang. String

server

The name of the server on which the instrumentation event occurred.
Type: cl ass java.lang. String

scope

The instrumentation scope for this event.
Type: cl ass java.lang. String

modul e

The name of the module in which the instrumentation event rule is defined.
Type: cl ass java.lang. String

moni t or

The instrumentation monitor that generated the instrumentation event.
Type: cl ass java.lang. String

fileName

The source file name containing the code that generated the
instrumentation event.

Type: cl ass java.lang. String

ORACLE

B-4

http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Appendix B
WLDF Beans Reference

Name Description
| i neNunber The line number in the source file where the instrumentation event
originated.

Type: cl ass java.lang. | nteger

cl assNane The class name where the instrumentation event originated.
Type: cl ass java.lang. String

met hodName The method name where the instrumentation event originated.
Type: cl ass java.lang. String

met hodDesc The description of the method that generated the instrumentation event.
Type: cl ass java.lang. String

argunent s The arguments passed into the method that generated the instrumentation
event.

Type: cl ass java.lang. String

returnVval ue The return value for the method that generated the instrumentation event.
Type: cl ass java.lang. String

payl oad The payload associated with the instrumentation event.
Type cl ass java. |l ang. Obj ect

cont ext Payl oa The context payload associated with the instrumentation event.
d Type: cl ass java.lang. String

dyeVect or The dye vector associated with the instrumentation event.
Type: cl ass j ava. | ang. Long

t hr eadNane The name of the thread that generated the instrumentation event.
Type: cl ass java.lang. String

partitionld The partition ID associated with the instrumentation event.
Type: cl ass java.lang. String

partitionNane The partition name associated with the instrumentation event.
Type: cl ass java.lang. String

Example

The following are examples of using the i nstrunent ati onEvent bean in an EL policy
expression to access instrumentation event fields:

i nstrumentati onEvent. nonitor == "Servl et Around_Service'
i nstrumentati onEvent. getMnitor() == 'Servlet_Around_Service'

i nstrument ati onEvent. noni tor. contains(' Servlet_")

ORACLE B-5

http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

B.1.4 log

ORACLE

Appendix B
WLDF Beans Reference

Used in log policy expressions, the | og bean provides access to log message fields.

Attributes

Name Description

tinmestanmp The timestamp indicating when the log message was created.
Type: cl ass j ava. | ang. Long

formattedDate The formatted date string.
Type: cl ass java.lang. String

messagel d The message ID of the log entry.
Type: cl ass java.lang. String

machi neNane The machine name on which the log entry was created.
Type: cl ass java.lang. String

server Nanme The server name on which the log entry was created.
Type: cl ass java.lang. String

t hr eadNane The thread name in which the logged event was created.
Type: cl ass java.lang. String

userld The ID of the user who generated the logged event.

Type: cl ass java.lang. String

transactionld

The JTA transaction ID associated with the logged event.
Type: cl ass java.lang. String

severity

The severity level for the log message.
Type: cl ass java.lang. | nteger

severityString

The severity string for the log message.
Type: cl ass java.lang. String

subsystem The name of the subsystem that generated the log message.
Type: cl ass java.lang. String
| ogMessage The message content of the log entry.

Type: cl ass java.lang. String

di agnost i cCont ext
ld

The diagnostic context ID associated with the logged event.
Type: cl ass java.lang. String

suppl enental Attri
but es

The name-value pairs of supplemental attributes that are included in
the log entries.

Type: cl ass java. util.Properties

partitionld

The partition 1D associated with the logged event.
Type: cl ass java.lang. String

partitionNanme

The partition 1D associated with the logged event.
Type: cl ass java.lang. String

B-6

http://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Appendix B
WLDF Beans Reference

Example

The following are examples of using the | og bean in an EL policy expression to access
log message fields:

| 0g. | ogMessage. contai ns("Part of a message")
| 0g. get LogMessage().contains("Part of a message")
| 0og. messagel d == "BEA- 000365"

| 0g. messagel d. endsW t h(' 000365")

B.1.5 partition

The partition bean is a convenience mechanism for obtaining partition scope
metrics. This bean is available only to policies that are configured in a diagnostic
system module that is deployed in the same partition to which this bean is scoped.

Attributes
Name Description
ID The globally unique identifier associated with the named partition.
r oot The Partiti onMBean configuration root of the partition. Note that this is
the read-only Parti ti onMBean that is registered in the WebLogic Server
Runtime MBean Server.
Type:interface
webl ogi c. managenent . confi guration. Partiti onMBean
runtine The PartitionRunti meMBean root of the partition in which the diagnostic
system module is deployed.
Type: interface
webl ogi c. managenent . runti me. Partiti onRunti neMBean
Methods
Name Description
query Issues partition scoped JMX queries, filtered by the partition name.

Parameters:

« onPattern
A JMX Object Name or Object Name pattern

e attributePattern
EL expression for accessing a value within the set of MBeans returned
in the query set

Return values:

Returns a set of values matching the specified object name pattern and
attribute expression. These results can be fed to the wis:extract function for
maintaining an in-memory history of values.

ORACLE B-7

Appendix B
WLDF Beans Reference

Name Description

getAttribute Obtains a single attribute value from an MBean source.
Parameters:
- objectNanePattern

A JMX ObjectName or ObjectName pattern that must resolve to a
single MBean instance.

- attribute
The MBean attribute value to obtain.

Returns Values:

Returns the attribute value matching the specified JMX ObjectName.

B.1.6 platform

The pl at f or mbean obtain values from MBeans that are exposed through the JVM's
platform MBean server. (Note that WebLogic Server uses the JVM's platform MBean
server to contain the WebLogic run-time MBeans by default. As such, the platform
MBean server provides access to platform MXBeans, WebLogic run-time MBeans, and
WebLogic configuration MBeans that are on a single server instance.)

Attributes

Name Description

nane The name of the platform bean (" pl at f or mi')

Methods

Name Description

query Performs a query for a set of MBean attribute values based on an Object
Name pattern and an attribute expression.
Parameters:

e onPattern

A valid JMX Object Name, or Object Name pattern)
- attributePattern

A EL expression that is used to retrieve a value from each matching
MBean instance, where the expression is an attribute expression
relative to each MBean.

For example, if the MBean is the Ser ver Runt i meMBean,
the expression ' OpenSocket sCur rent Count ' obtains the value
of the QpenSocket sCur r ent Count attribute. By contrast,
"Heal thState. State' obtains the St at e value of the Heal t hSt at e
child object.
Return values:
A set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wis:extract function for
maintaining an in-memory history of values.

ORACLE B-8

Appendix B
WLDF Beans Reference

Name

Description

getAttribute

Obtains a single attribute value from an MBean source.
Parameters:
e objectNanePattern

A JMX ObjectName or ObjectName pattern that must resolve to a
single MBean instance.

- attribute
The MBean attribute value to obtain.

Returns Values:

Returns the attribute value matching the specified JMX ObjectName.

B.1.7 resource

The resour ce bean provides access to beans and state information within a diagnostic
system module deployment.Access is restricted to policies that are configured within
the same diagnostic system module. That is, this bean cannot obtain access to beans
and state information from policies that are configured in other diagnostic system
modules. This bean is used for policy-chaining.

Attributes

Name

Description

wat ches

A map of currently configured policies within the same diagnostic system
module deployment.

Type:interface java.util.Map

B.1.8 runtime

The runt i me bean provides access to MBeans registered in the WebLogic Server
Runtime MBean Server.

ORACLE

Attributes

Name Description

domai n The root Donmai nMBean in the local WebLogic Server Runtime MBean
Server.
Type: interface
webl ogi c. managenent . confi gurati on. Domai nMBean

nane The bean name.

Type: cl ass java.lang. String

server Runti ne

The root Ser ver Runt i neMBean in the local WebLogic Server Runtime
MBean Server.

Type:interface
webl ogi c. managenent . runt i me. Server Runt i meMBean

B-9

http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Methods

Appendix B
Functions Reference

Name

Description

query

Performs a query for a set of MBean attribute values based on an Object
Name pattern and an attribute expression.

Parameters:

« onPattern

A valid JMX Object Name, or Object Name pattern)
- attributePattern

A EL expression that is used to retrieve a value from each matching
MBean instance, where the expression is an attribute expression
relative to each MBean.
For example, if the MBean is the Ser ver Runt i meMBean,
the expression ' OpenSocket sCur rent Count' obtains the value
of the OpenSocket sCur r ent Count attribute. By contrast,
"Heal thState. State' obtains the St at e value of the Heal t hSt at e
child object.
Return values:
A set of values matching the specified Object Name pattern and attribute
expression. These results can be fed to the wis:extract function for
maintaining an in-memory history of values.

getAttribute

Obtains a single attribute value from an MBean source.
Parameters:
e objectNanePattern

A JMX ObjectName or ObjectName pattern that must resolve to a
single MBean instance.

e attribute
The MBean attribute value to obtain.

Returns Values:

Returns the attribute value matching the specified JIMX ObjectName.

B.2 Functions Reference

WLDF includes a set of functions that can be used in policy expressions to simplify the
extraction or querying of data.

ORACLE

wis:tableChanges

wis:tableAverages

wls:extract
wls:average

wls:changes

wlis:aliveServersCount

B-10

Appendix B
Functions Reference

B.2.1 wis:tableChanges

The wi s: t abl eChanges function takes a table of input values and generates an output
table of difference vectors, one for each input vector.

This function throws an I | | egal Ar gument Except i on if the input either:

¢ Is not a two-dimensional table

e Contains non-numeric values

Parameters
Name Description
i nput Tabl e The input table of numeric values, where each row is typically a time series

of values from the same metric instance.

B.2.2 wis:tableAverages

The w s: t abl eAver ages function performs a matrix reduction on an input table of
values, computing the average of each row in the table and producing a vector of
averages, one for each row in the table. Typically each row in the table represents a
time series of values from a particular metric instance.

This function throws an | | | egal Ar gunent Excepti on if the input either:

e Is not a two-dimensional table

e Contains non-numeric values

Parameters

Name Description

val uesTabl e The input table of numeric values, where each row is typically a time series
of values from the same metric instance.

B.2.3 wis:extract

The w s: extract function extracts a table of time series from a specified set of input
sources, based on a specified sampling rate schedule and time window. The input
source can be one of the following:

e The output from a query() operation from a JMX bean. For example:
w s. runtime. query(' com bea: Type=Servl et Runtime, *', 'ExecutionTi meAverage')
e An EL expression, as a Stri ng. For example:

w s. runtime. JVMRunt i me. heapFr eePer cent

ORACLE B-11

Appendix B
Functions Reference

Parameters

Name Decription

i nput Expressi The bean metric to be sampled.

on

schedul e The sampling rate of the metric, specified as a string, in hours, minutes, or
seconds (the default).

duration The required sampling window of the metric, specified as a string, in hours,

minutes, or seconds (the default)

The schedul e and dur ati on parameters can be specified in seconds, minutes, or
hours, and are specified as strings using the following syntax:

armount [uni t]

In the preceding syntax:

e anmount represents an integer.

» [unit] represents seconds, m nut es, or hour s. Each can be abbreviated to the first
letter. For example: seconds can be abbreviated to s.

* You may include a space character between anount and uni t.
For example, any of the following can be used to specify five seconds:

e 5seconds

e 5 sec
e bs
e b5snds

B.2.4 wls:average

ORACLE

The w s: aver age function computes an average value based on set of numeric
input values. This function returns the scalar average of the input vector, or

Doubl e. NaN if the input is empty. If the input contains any non-numeric values, an
Il egal Argunent Excepti on is thrown.

Note:

The W s: aver age function is different from the EL-provided aver age()
operation.

Parameters

Name Description

i nput Val ues A vector of numeric input values

B-12

Appendix B
Functions Reference

B.2.5 wis:changes

The w s: changes method takes a vector of input values of size n and produces a
vector of (at most) n-1 differences between successive values. For example, if the
input vectoris{ 3, 2, 5, 3, 7 },theresultingvectoris{ 1, -1, 3, -2, 4 }.
Note the following:

e ltis possible for a sequence to contain Doubl e. NaN, which are skipped in
subsequent computations.

e If an input value is non-numeric, an | | | egal Ar gument Excepti on is thrown.

Parameters
Name Description
i nput Val ues A input vector of numeric values

B.2.6 wis:aliveServersCount

The w s: al i veServer sCount function is a helper function that counts the number of
Managed Server instances that are in the RUNNI NG state in a given cluster.

Parameters
Name Description
cl ust er Name The name of the cluster containing the running server instances to be

counted.

ORACLE B-13

WLDF Query Language

The WebLogic Diagnostics Framework (WLDF) includes a query language for
constructing watch rule expressions, Data Accessor query expressions, and log filter
expressions.The syntax is a small and simplified subset of SQL syntax.

e Components of a Query Expression

e Supported Operators

* Operator Precedence

* Numeric Relational Operations Supported on String Column Types
» Supported Numeric Constants and String Literals

* About Variables in Expressions

* Creating Watch Rule Expressions

» Creating Data Accessor Queries

e Creating Log Filter Expressions

e Building Complex Expressions

C.1 Components of a Query Expression

A query expression may include operators, literals, and variables.The supported
variables differ for each type of expression.

e Supported Operators
* Supported Numeric Constants and String Literals
* About Variables in Expressions

The query language is case-sensitive.

C.2 Supported Operators

ORACLE

The WLDF query language supports a set of operators and, for each operator,
corresponding operator and operand types.These operators, and corresponding types
and operands, are listed and described in Table C-1.

Table C-1 WLDF Query Language Operators

Operator Operator Type Supported Operand Definition
Types
AND Logical binary Boolean Evaluates to true when both

expressions are true.

OR Logical binary Boolean Evaluates to true when either
expression is true.

C-1

Appendix C
Supported Operators

Table C-1 (Cont.) WLDF Query Language Operators
|

Operator

Operator Type

Supported Operand Definition
Types

NOT

Logical unary

Boolean Evaluates to true when the
expression is not true.

&

Bitwise binary

Numeric, Performs the bitwise AND

Dye flag function on each parallel pair
of bits in each operand. If
both operand bits are 1, the &
function sets the resulting bit to
1. Otherwise, the resulting bit is
set to 0.

Examples of both the & and the
| operators are:

1010 & 0010 = 0010
1010 | 0001 = 1011
(1010 & (1100 | 1101)) = 1000

Bitwise binary

Numeric, Performs the bitwise OR

Dye flag function on each parallel pair
of bits in each operand. If
either operand bit is 1, the |
function sets the resulting bit to
1. Otherwise, the resulting bit is
set to 0.

For examples, see the entry for
the bitwise & operator, above.

Relational

Numeric, String Equals

Relational

Numeric Not equals

Relational

Numeric Less than

Relational

Numeric Greater than

Relational

Numeric Less than or equals

Relational

Numeric Greater than or equals

Match

String Evaluates to true when a
character string matches a
specified pattern that can
include wildcards.

LIKE supports two wildcard
characters:

A percent sign (%) matches
any string of zero or more
characters

A period (.) matches any single
character

MATCHES

Match

String Evaluates to true when a
target string matches the
regular expression pattern in the
operand String.

ORACLE

C-2

Appendix C
Operator Precedence

Table C-1 (Cont.) WLDF Query Language Operators
|

Operator Operator Type Supported Operand Definition
Types
IN Search String Evaluates to true when the

value of a variable exists in a
predefined set, for example:

SUBSYSTEM IN ('A','B")

C.3 Operator Precedence

The WLDF query language has six levels of precedence among its operators.

The following list shows the levels of precedence among operators, from the
highest precedence to the lowest. Operators listed on the same line have equivalent
precedence:

0
NOT

1
2
3. &

4. =, 1=, <, >, <=, >= LIKE, MATCHES,IN
5. AND

6. OR

C.4 Numeric Relational Operations Supported on String
Column Types

ORACLE

Numeric relational operations can be performed on String column types when they
hold numeric values.For example, if STATUS is a String type, while performing
relational operations with a numeric operand, the column value is treated as a numeric
value.

For instance, in the following comparisons, the query evaluator attempts to convert the
string value to appropriate numeric value before comparison:

STATUS =100
STATUS =100
STATUS < 100
STATUS <= 100
STATUS > 100
STATUS >= 100

When the string value cannot be converted to a humeric value, the query fails.

C-3

Appendix C
Supported Numeric Constants and String Literals

C.5 Supported Numeric Constants and String Literals

The WLDF query language has two sets of rules: one set for numeric constants, and
another for string literals.

The rules for numeric constants are as follows:

e Numeric literals can be integers or floating point numbers.

e Numeric literals are specified the same as in Java. Some examples of numeric
literals are 2, 2.0, 12.856f, 2.1934E-4, 123456L and 2.0D.

The rules for string literals are as follows:

e String literals must be enclosed in single quotes.
* A percent character (%) can be used as a wildcard inside string literals.

* Anunderscore character (_) can be used as a wildcard to stand for any single
character.

* A backslash character (\) can be used to escape special characters, such as a
guote (") or a percent character (%).

* For watch rule expressions, you can use comparison operators to specify
threshold values for String, Integer, Long, Double, Boolean literals.

* The relational operators do a lexical comparison for Strings. See the
documentation for the java.lang.String.compareTo(String str) method.

C.6 About Variables in Expressions

ORACLE

Variables represent the dynamic portion of a query expression that is evaluated at run
time.You must use variables that are appropriate for the type of expression you are
constructing, as explained in the following sections:

e Creating Policy Expressions
» Creating Data Accessor Queries

» Creating Log Filter Expressions

C-4

Appendix C
Creating Policy Expressions

< Note:

When specifying a wildcard pattern in a variable for a policy expression
that matches custom MBean ObjectName instances, make sure the pattern
is sufficiently explicit. If you exclude an MBean type name and use an
ambiguous instance pattern, the following may result:

e Only WebLogic Server runtime MBean instances are matched to the
pattern.

e The desired custom MBean instances are ignored.

For example, the following ObjectName pattern does not explicitly declare
a type and uses an ambiguous ObjectName pattern that can match a
WebLogic Server runtime MBean instance:

${ServerRunti ne//com b*: Type=Server*, *}

The preceding pattern matches the WebLogic Server runtime MBean
instances, and causes any custom MBeans matching the same pattern to
be ignored.

C.7 Creating Policy Expressions

You can create policies based on log events, instrumentation events, and harvested
attributes.The variables supported for creating the expressions are different for each
type of policy, as described in the following sections:

e Creating Log Event Policy Expressions
e Creating Instrumentation Event Policy Expressions
e Creating Harvester Policy Expressions

For complete documentation about configuring and using WLDF policies, see:

» Configuring Policies and Actions

» Configuring Policies

C.7.1 Creating Log Event Policy Expressions

ORACLE

A log event policy expression is based upon the attributes of a log message from the
server log.

Variable names for log message attributes are listed and explained in Table C-2:

Table C-2 Variable Names for Log Event Policy Expressions

Variable Description Data Type

CONTEXTI D The request ID propagated with the request. String

DATE Date when the message was created. String

MACHI NE Name of machine that generated the log String
message.

C-5

Appendix C

Creating Policy Expressions

Table C-2 (Cont.) Variable Names for Log Event Policy Expressions

Variable Description Data Type

MESSACGE Message content of the log message. String

MSAE D ID of the log message (usually starts with String
"BEA=").

RECORDI D The number of the record in the log. Long

SERVER Name of server that generated the log String
message.

SEVERI TY Severity of log message. Values are | nf 0, String
Notice, Warning,Error,Critical,Alert,
and Emer gency.

SUBSYTEM Name of subsystem emitting the log message. String

THREAD Name of thread that generated the log String
message.

TI MESTAMP Timestamp when the log message was Long
created.

TXID JTA transaction ID of thread that generated the String
log message.

USERI D ID of the user that generated the log message. String

An example log event policy expression is:

(SEVERITY = 'Vérning') AND (MSG D = ' BEA-320012')

C.7.2 Creating Instrumentation Event Policy Expressions

An instrumentation event policy expression is based upon attributes of a data record
created by a diagnostic monitor action.

ORACLE

Variable names for instrumentation data record attributes are listed and explained in

Table C-3:

Table C-3 Variable Names for Instrumentation Event Policy Expressions

Variable Description Data Type

ARGUMENTS Arguments passed to the method that was String
invoked.

CLASSNAME Class name of joinpoint. String

CONTEXTI D Diagnostic context ID of instrumentation event. String

CTXPAYLOAD The context payload associated with this String
request.

DOVAI N Name of domain. String

DYES Dyes associated with this request. Long

FI LENAVE Source file name. String

LI NENUM Line number in source file. Integer

C-6

Appendix C
Creating Policy Expressions

Table C-3 (Cont.) Variable Names for Instrumentation Event Policy Expressions
|

Variable Description Data Type
METHODNANME Method name of joinpoint. String
METHODDSC Method arguments of joinpoint. String
MODULE Name of the diagnostic module. String
MONI TOR Name of the monitor. String
PAYLOAD Payload of instrumentation event. String
RECORDI D The number of the record in the log. Long
RETVAL Return value of joinpoint. String
SCOPE Name of instrumentation scope. String
SERVER Name of server that created the String
instrumentation event.
TI MESTAVP Timestamp when the instrumentation event Long
was created.
TXID JTA transaction ID of thread that created the String
instrumentation event.
TYPE Type of monitor. String
USERI D ID of the user that created the instrumentation String
event.

An example instrumentation event data policy expression is:

(USERID = "webl ogic')

C.7.3 Creating Harvester Policy Expressions

ORACLE

A Harvester policy expression is based upon one or more harvestable MBean
attributes. The expression can specify an MBean type, an instance, an attribute, or
an instance and an attribute.

Instance-based and type-based expressions can contain an optional namespace
component, which is the namespace of the metric being monitored by the policy.

It can be set to either Server Runtime or DomainRuntime. If omitted, it defaults to
ServerRuntime.

If the namespace component is included and set to DomainRuntime, you should

limit the usage to monitoring only DomainRuntime-specific MBeans, such as the
ServerLifeCycleRuntimeMBean. Monitoring remote Managed Server MBeans through
the DomainRuntime MBeanServer is possible, but is discouraged for performance
reasons. It is a best practice to use the resident policy in each Managed Server to
monitor metrics related to that Managed Server instance.

You can also use wildcards in instance names in Harvester policy expressions, as well
as specify complex attributes in Harvester policy expressions. See Using Wildcards in
Expressions.

The syntax for constructing a Harvester policy expression is as follows:

» To specify an attribute of all instances of a type, use the following syntax:

C-7

Appendix C
Creating Data Accessor Queries

${namespace//[type_nane]//attri bute_nane}

» To specify an attribute of an instance of a WebLogic type, use the following syntax:

${com bea: nanespace/ /i nstance_nane// attri bute_nane}

» To specify an attribute of an instance of a custom MBean type, use the following
syntax:

${domai n_nane: i nst ance_nane//attri but e_nane}

Note:

The domain_name is not required for a WebLogic Server domain name.

The expression must include the complete MBean object name, as shown in the
following example:

${ com bea: Nane=Har vest er Runt i e, Locat i on=nyserver, Type=Har vest er Runt i e,
Server Runti me=nyserver// Tot al Sanpl i ngCycl es} > 10

C.8 Creating Data Accessor Queries

Use the WLDF query language with the Data Accessor component to retrieve data
from data stores, including server logs, HTTP logs, and harvested metrics.The
variables used to build a Data Accessor query are based on the column names in
the data store from which you want to extract data.

A Data Accessor query contains the following:

e The logical name of a data store, as described in Data Store Logical Names.

e Optionally, the name(s) of one or more columns from which to retrieve data, as
described in Data Store Column Names.

When there is a match, all columns of matching rows are returned.

C.8.1 Data Store Logical Names

The logical name for a data store must be unique. It denotes a specific data store
available on the server. The logical name consists of a log type keyword followed by
zero or more identifiers separated by the forward-slash (/) delimiter. For example, the
logical name of the server log data store is simply ServerLog. However, other log types
may require additional identifiers, as shown in Table C-4.

ORACLE C-8

Appendix C
Creating Data Accessor Queries

Table C-4 Naming Conventions for Log Types

Log Type Optional Example
Identifiers
ConnectorLog Tfht?qJNDl name . ooctor Log/ ei s/
otthe 900ei saBl ackBoxXATxConnect or JNDI NAVE
connection
factory In this example, ei s/
900ei saBl ackBoxXATxConnect or JNDI NAME
is the INDI name of the connection factory
specified in the webl ogi c-ra. xm deployment
descriptor.
DataSourcelLog None Dat aSour ceLog
DomainLog None Donai nLog
EventsDataArchive None Event sDat aAr chi ve
HarvestedDataArchive None Har vest edDat aAr chi ve
HTTPAccessLog Virtual host HTTPAccessLog — For the default web
name server's access log.
HTTPAccessLog/ MyVi rt ual Host — For the
Virtual host named MyVirtualHost deployed to
the current server.
Note: In the case of HTTPAccessLog logs with
extended format, the number of columns are
user-defined.
JMSMessagelog The name of the
JMS Server. JMSMessagelLog/ MyJMSSer ver
JMSSAFMessagelLog The name of the JMSSAFMessagelog/ MySAFAgent
SAF agent.
ServerLog None Server Log
WebAppLog Web server VebAppLog/ My\iebSer ver /

name + Root
servlet context
name

M/Root Ser vl et Cont ext

C.8.2 Data Store Column Names

The column names included in a query are resolved for each row of data. A row is
added to the result set only if it satisfies the query conditions for all specified columns.
A query that omits column names returns all the entries in the log.

All column names from all WebLogic Server log types are listed in Table C-5.

ORACLE

C-9

ORACLE

Appendix C
Creating Data Accessor Queries

Table C-5 Column Names for Log Types

Log Type Column Names

ConnectorLog LINE, RECORDID

DataSourcelog RECORDID, DATASOURCE, PROFILETYPE, TIMESTAMP,
USER, PROFILEINFORMATION, SUPP_ATTRS, PARTITION_ID,
PARTITION_NAME

DomainLog CONTEXTID, DATE, MACHINE, MESSAGE, MSGID,
RECORDID, SERVER, SEVERITY, SUBSYSTEM, THREAD,
TIMESTAMP, TXID, USERID, SUPP_ATTRS, SEVERITY_VALUE,
PARTITION_ID, PARTITION_NAME

EventsDataArchive ARGUMENTS, CLASSNAME, CONTEXTID, CTXPAYLOAD,

DOMAIN, DYES, FILENAME, LINENUM, METHODNAME,
METHODDSC, MODULE, MONITOR, PAYLOAD, RECORDID,
RETVAL, SCOPE, SERVER, THREADNAME, TIMESTAMP, TXID,
TYPE, USERID, PARTITION_ID, PARTITION_NAME

HarvestedDataArchive

ATTRNAME, ATTRTYPE, ATTRVALUE, DOMAIN, NAME,
RECORDID, SERVER, TIMESTAMP, TYPE, WLDFMODULE,
PARTITION_ID, PARTITION_NAME

HTTPAccessLog AUTHUSER, BYTECOUNT, HOST, RECORDID, REMOTEUSER,
REQUEST, STATUS, TIMESTAMP

JDBCLog Same as DomainLog

JMSMessagelLog CONTEXTID, DATE, DESTINATION, EVENT,
JMSCORRELATIONID, IMSMESSAGEID, MESSAGE,
MESSAGECONSUMER, NANOTIMESTAMP, RECORDID,
SELECTOR, TIMESTAMP, TXID, USERID

JMSSAFMessagelog CONTEXTID, DATE, DESTINATION, EVENT,
JMSCORRELATIONID, IMSMESSAGEID, MESSAGE,
MESSAGECONSUMER, NANOTIMESTAMP, RECORDID,
SELECTOR, TIMESTAMP, TXID, USERID

ServerLog Same as DomainLog

WebAppLog Same as DomainLog

An example of a Data Accessor query is:

(SUBSYSTEM = ' Depl oyer') AND (MESSAGE LI KE ' %Fai | ed%)

In this example, the Accessor retrieves all messages that include the string "Failed"
from the Deployer subsystem.

The following example shows an API method invocation. It includes a query for
harvested attributes of the JDBC connection pool named MyPool , within an interval
between a ti meSt anpFr om(inclusive) and a ti meSt anpTo (exclusive):

W.DFDat aAccessRunt i neMBean. retri eveDat aRecor ds(ti meSt anpFrom
ti meStanpTo, "TYPE='JDBCConnect i onPool Runtine' AND NAME=' MyPool ' ")

For complete documentation about the WLDF Data Accessor, see Accessing
Diagnostic Data With the Data Accessor.

C-10

Appendix C
Creating Log Filter Expressions

C.9 Creating Log Filter Expressions

The query language can be used to filter what is written to the server log.The variables
used to construct a log filter expression represent the columns in the log are:

CONTEXTI D
DATE

MACH NE
MESSAGE
MSG D
RECORDI D
SEVERI TY
SUBSYSTEM
SERVER
THREAD

TI MESTAWP
TXID

USERI D

< Note:

These are the same variables that you use to build a Data Accessor
query for retrieving historical diagnostic data from existing server logs.

For complete documentation about the WebLogic Server logging services, see
Filtering WebLogic Server Log Messages in Configuring Log Files and Filtering Log
Messages for Oracle WebLogic Server.

C.10 Building Complex Expressions

You can build complex query expressions using subexpressions containing variables,
binary comparisons, and other complex subexpressions.There is no limit on levels of
nesting. The following rules apply:

ORACLE

Nest queries by surrounding subexpressions within parentheses, for example:
(SEVERITY = 'Wrning') AND (MSG D = ' BEA-320012")

Enclose a variable name within ${} if it includes special characters, as in an
MBean object name. For example:

${ nydomai n: Name=nyser ver,
Type=Server Runti ne/ / Socket sOpenedTot al Count} >= 1

Notice that the object name and the attribute name are separated by consecutive
forward slashes (/ /) in the policy variable name.

C-11

WLDF Instrumentation Library

The WebLogic Diagnostics Framework (WLDF) instrumentation library contains
diagnostic monitors and diagnostic actions.

» Diagnostic Monitor Library
e Diagnostic Action Library

For information about using items from the instrumentation library, see Configuring
Instrumentation.

D.1 Diagnostic Monitor Library

Diagnostic monitors are broadly classified as server-scoped and application-scoped
monitors.The former can be used to instrument WebLogic Server classes. You use
the latter to instrument application classes. Except for the Dyelnjection monitor, all
monitors are delegating monitors; that is, they do not have a built-in diagnostic action.
Instead, they delegate to actions attached to them to perform diagnostic activity.

All monitors are preconfigured with their respective pointcuts. However, the actual
locations affected by them may vary depending on the classes they instrument. For
example, the Servlet_Before_Service monitor adds diagnostic code at the entry of
servlet or java server page (JSP) service methods at different locations in different
servlet implementations.

For any delegating monitor, only compatible actions may be attached. The
compatibility is determined by the nature of the monitor.

The following table lists and describes the diagnostic monitors that can be used within
server scope; that is, in WebLogic Server classes. For the diagnostic actions that are
compatible with each monitor, see the Compatible Action Type column in Table D-1.

Table D-1 Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor Compatible Pointcuts
Type Action Type

Connector_Before_Inbound Before Stateless At entry of methods handling inbound
connections.
Connector_After_Inbound Server Stateless At exit of methods handling inbound
connections.
Connector_Around_Inbound Around Around At entry and exit of methods handling
inbound connections.
Connector_Before_Outbound Before Stateless At entry of methods handling outbound
connections.
Connector_After_Outbound After Stateless At exit of methods handling outbound
connections.
Connector_Around_Outbound Around Around At entry and exit of methods handling

outbound connections.

ORACLE D-1

Appendix D
Diagnostic Monitor Library

Table D-1 (Cont.) Diagnostic Monitors for Use Within Server Scope

Monitor Name Monitor Compatible Pointcuts
Type Action Type

Connector_Before_Tx Before Stateless Entry of transaction register,
unregister, start, rollback and commit
methods.

Connector_After_Tx After Stateless At exit of transaction register,
unregister, start, rollback and commit
methods.

Connector_Around_Tx Around Around At entry and exit of transaction register,
unregister, start, rollback and commit
methods.

Connector_Before_Work Before Stateless At entry of methods related to
scheduling, starting and executing
connector work items.

Connector_After_Work After Stateless At exit of methods related to
scheduling, starting and executing
connector work items.

Connector_Around_Work Around Around At entry and exit of methods related
to scheduling, starting and executing
connector work items.

Dyelnjection Before Built-in At points where requests enter the
server.

JDBC_Before_Commit_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Commit_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Connection_ Before Stateless Before calls to methods:

Internal Driver.connect
DataSource.getConnection

JDBC_After_Connection_ Internal Before Stateless JDBC subsystem internal code

JDBC_Before_Rollback_ Internal Before Stateless JDBC subsystem internal code

JDBC_After_Rollback_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Start_Internal Before Stateless JDBC subsystem internal code

JDBC_After_Start_Internal After Stateless JDBC subsystem internal code

JDBC_Before_Statement_ Before Stateless JDBC subsystem internal code

Internal

JDBC_After_Statement After Stateless JDBC subsystem internal code

Internal

JDBC_After_Reserve_Connection_Internal After Stateless After a JDBC connection is reserved
from the connection pool.

JDBC_After_Release_Connection_Internal After Stateless After a JDBC connection is released

back to the connection pool.

Table D-2 lists the diagnostic monitors that can be used within application scopes;
that is, in deployed applications. The Compatible Action Type column identifies the
diagnostic action type that is compatible with each monitor.

ORACLE

D-2

Appendix D
Diagnostic Monitor Library

Table D-2 Diagnostic Monitors for Use Within Application Scopes

__|]
Monitor Compatible

Monitor Name

Type

Action Type

Pointcuts

EJB_After_EntityEjbBusiness Methods

After

Stateless

At exits of all EntityBean methods,
which are not standard ejb methods.

EJB_Around_EntityEjbBusinessMethods

Around

Around

At entry and exits of all EntityBean
methods that are not standard ejb
methods.

EJB_After_EntityEjbMethods

After

Stateless

At exits of methods:
EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejpRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_Around_EntityEjbMethods

Around

Around

At exits of methods:
EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejpRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_After_EntityEjbSemantic Methods

After

Stateless

At exits of methods:
EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejpHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

EJB_Around_EntityEjbSemanticMethods

Around

Around

At entry and exits of methods:
EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejpbHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

EJB_After_SessionEjbMethods

After

Stateless

At exits of methods:
SessionBean.setSessionContext
SessionBean.ejpRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

ORACLE

D-3

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

__|]
Monitor Compatible

Monitor Name

Type

Action Type

Pointcuts

EJB_Around_SessionEjbMethods

Around

Around

At entry and exits of methods:
SessionBean.setSessionContext
SessionBean.ejpbRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

EJB_After_SessionEjbBusinessMethods

After

Stateless

At exits of all SessionBean methods,
which are not standard ejb methods.

EJB_Around_SessionEjb
BusinessMethods

Around

Around

At entry and exits of all SessionBean
methods, which are not standard ejb
methods.

EJB_After_SessionEjbSemanticMethods

After

Stateless

At exits of methods:

SessionBean.ejbCreateSessionBean.e
jbPostCreate

EJB_Around_SessionEjb
SemanticMethods

Around

Around

At entry and exits of methods:
SessionBean.ejbCreate
SessionBean.ejbPostCreate

EJB_Before_EntityEjbBusinessMethods

Before

Stateless

At entry of all EntityBean methods,
which are not standard ejb methods.

EJB_Before_EntityEjbMethods

Before

Stateless

At entry of methods:
EnitityBean.setEntityContext
EnitityBean.unsetEntityContext
EnitityBean.ejpbRemove
EnitityBean.ejbActivate
EnitityBean.ejbPassivate
EnitityBean.ejbLoad
EnitityBean.ejbStore

EJB_Before_EntityEjbSemanticMethods

Before

Stateless

At entry of methods:
EnitityBean.set*
EnitityBean.get*
EnitityBean.ejbFind*
EnitityBean.ejpHome*
EnitityBean.ejbSelect*
EnitityBean.ejbCreate*
EnitityBean.ejbPostCreate*

EJB_Before_SessionEjb
BusinessMethods

Before

Stateless

At entry of all SessionBean methods,
which are not standard ejb methods.

EJB_Before_SessionEjbMethods

Before

Stateless

At entry of methods:
SessionBean.setSessionContext
SessionBean.ejpRemove
SessionBean.ejbActivate
SessionBean.ejbPassivate

ORACLE

D-4

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

__|]
Monitor Compatible

Monitor Name

Type

Action Type

Pointcuts

EJB_Before_SessionEjb
SemanticMethods

Before

Stateless

At entry of methods:
SessionBean.ejbCreate
SessionBean.ejbPostCreate

HttpSessionDebug

Around

Built-in

getSession - Inspects returned HTTP
session

Before and after calls to methods:
getAttribute

setAttribute

removeAttribute

At inspection points, the approximate
session size is computed and stored
as the payload of a generated event.
The size is computed by flattening the
session to a byte-array. If an error

is encountered while flattening the
session, a negative size is reported.

JDBC_Before_CloseConnection

Before

Stateless

Before calls to methods:
Connection.close

JDBC_After_CloseConnection

After

Stateless

After calls to methods:
Connection.close

JDBC_Around_CloseConnection

Around

Around

Before and after calls to methods:
Connection.close

JDBC_Before_CommitRollback

Before

Stateless

Before calls to methods:
Connection.commit
Connection.rollback

JDBC_After_CommitRollback

After

Stateless

After calls to methods:
Connection.commit
Connection.rollback

JDBC_Around_CommitRollback

Around

Around

Before and after calls to methods:
Connection.commit
Connection.rollback

JDBC_Before_Execute

Before

Stateless

Before calls to methods:
Statement.execute*
PreparedStatement.execute*

JDBC_After_Execute

After

Stateless

After calls to methods:
Statement.execute*
PreparedStatement.execute*

JDBC_Around_Execute

Around

Around

Before and after calls to methods:
Statement.execute*
PreparedStatement.execute*

ORACLE

D-5

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor Compatible Pointcuts
Type Action Type
JDBC_Before_GetConnection Before Stateless Before calls to methods:
Driver.connect
DataSource.getConnection
JDBC_After_GetConnection After Stateless After calls to methods:
Driver.connect
DataSource.getConnection
JDBC_Around_GetConnection Around Around Before and after calls to methods:
Driver.connect
DataSource.getConnection
JDBC_Before_Statement Before Stateless Before calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand
JDBC_After_Statement After Stateless After calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand
JDBC_Around_Statement Around Around Before and after calls to methods:
Connection.prepareStatement
Connection.prepareCall
Statement.addBatch
RowSet.setCommand
JMS_Before_AsyncMessage Before Stateless At entry of methods:
Received MessageListener.onMessage
JMS_After_AsyncMessage After Stateless At exits of methods:
Received MessageListener.onMessage
JMS_Around_AsyncMessage Around Around At entry and exits of methods:
Received MessageListener.onMessage
JMS_Before_MessageSent Before Stateless Before call to methods:
QueSender send
JMS_After_MessageSent After Stateless After call to methods:
QueSender send
JMS_Around_MessageSent Around Around Before and after call to methods:
QueSender send
JMS_Before_SyncMessage Before Stateless Before calls to methods:
Received MessageConsumer.receive*
JMS_After_SyncMessage After Stateless After calls to methods:

Received

MessageConsumer.receive*

ORACLE

D-6

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name Monitor Compatible Pointcuts
Type Action Type
JMS_Around_SyncMessage Around Around Before and after calls to methods:
Received MessageConsumer.receive*
JMS_Before_TopicPublished Before Stateless Before call to methods:
TopicPublisher.publish
JMS_After_TopicPublished After Stateless After call to methods:
TopicPublisher.publish
JMS_Around_TopicPublished Around Around Before and after call to methods:
TopicPublisher.publish
JNDI_Before_Lookup Before Stateless Before calls to javax.naming.Context
lookup methods
Context.lookup*
JNDI_After_Lookup After Stateless After calls to javax.naming.Context
lookup methods:
Context.lookup*
JNDI_Around_Lookup Around Around Before and after calls to
javax.naming.Context lookup methods
Context.lookup*
JTA_Before_Commit Before Stateless At entry of methods:
UserTransaction.commit
JTA_After_Commit After Stateless At exits of methods:
advice UserTransaction.commit
JTA_Around_Commit Around Around At entry and exits of methods:
UserTransaction.commit
JTA Before_Rollback Before Stateless At entry of methods:
UserTransaction.rollback
JTA_After_Rollback After Stateless At exits of methods:
advice UserTransaction.rollback
JTA_Around_Rollback Around Around At entry and exits of methods:
UserTransaction.rollback
JTA_Before_Start Before Stateless At entry of methods:
UserTransaction.begin
JTA_After_Start After Stateless At exits of methods:
advice UserTransaction.begin
JTA Around_Start Around Around At entry and exits of methods:
UserTransaction.begin
MDB_Before_MessageReceived Before Stateless At entry of methods:
MessageDrivenBean.onMessage
MDB_After MessageReceived After Stateless At exits of methods:

MessageDrivenBean.onMessage

ORACLE

D-7

Appendix D
Diagnostic Monitor Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes

Monitor Name

Monitor Compatible

Type

Action Type

Pointcuts

MDB_Around_MessageReceived

Around

Around

At entry and exits of methods:
MessageDrivenBean.onMessage

MDB_Before_Remove

Before

Stateless

At entry of methods:
MessageDrivenBean.ejbRemove

MDB_After_Remove

After

Stateless

At exits of methods:
MessageDrivenBean.ejbRemove

MDB_Around_Remove

Around

Around

At entry and exits of methods:
MessageDrivenBean.ejbRemove

MDB_Before_SetMessageDriven
Context

Before

Stateless

At entry of methods:
MessageDrivenBean.setMessage
DrivenContext

MDB_After_SetMessageDriven
Context

After

Stateless

At exits of methods:

MessageDrivenBean.setMessageDrive
nContext

MDB_Around_SetMessageDriven
Context

Around

Around

At entry and exits of methods:

MessageDrivenBean.setMessageDrive
nContext

Servlet_Before_Service

Before

Stateless

At method entries of servlet/jsp
methods:

HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter

Servlet_After_Service

After

Stateless

At method exits of servlet/jsp methods:
HttpJspPage._jspService
Servlet.service

HttpServlet.doGet

HttpServlet.doPost

Filter.doFilter

Servlet_Around_Service

Around

Around

At method entry and exits of servlet/jsp
methods:

HttpJspPage._jspService
Servlet.service
HttpServlet.doGet
HttpServlet.doPost
Filter.doFilter

ORACLE

D-8

Appendix D
Diagnostic Action Library

Table D-2 (Cont.) Diagnostic Monitors for Use Within Application Scopes
]

Monitor Name Monitor Compatible
Type Action Type

Pointcuts

Servlet_Before_Session Before Stateless

Before calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute/
putValue
HttpSession.getAttribute/
getValue
HttpSession.removeAttribute/
removeValue
HttpSession.invalidate

Servlet_Around_Session Around Around

Before and after calls to servlet
methods:

HttpServletRequest.getSession
HttpSession.setAttribute/
putValue
HttpSession.getAttribute/
getValue
HttpSession.removeAttribute/
removeValue
HttpSession.invalidate

Servlet_After_Session After Stateless

After calls to servlet methods:
HttpServletRequest.getSession
HttpSession.setAttribute/
putValue
HttpSession.getAttribute/
getValue
HttpSession.removeAttribute/
removeValue
HttpSession.invalidate

Servlet_Before_Tags Before Stateless

Before calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

Servlet_After_Tags After Stateless

After calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

Servlet_Around_Tags Around Around

Before and after calls to jsp methods:
Tag.doStartTag
Tag.doEndTag

D.2 Diagnostic Action Library

WLDF includes a library of diagnostic actions that you can use with delegating
monitors.You can also use these diagnostic actions with custom monitors that you

ORACLE

D-9

Appendix D
Diagnostic Action Library

can define and use within applications. Each diagnostic action can be used only with
monitors with which they are compatible, as indicated by the Compatible Monitor Type
column. Some actions (for example, TraceElapsedTimeAction) generate an event
payload.

The diagnostic action library includes the following actions:

e TraceAction

o DisplayArgumentsAction

e TraceElapsedTimeAction

e TraceMemoryAllocationAction

e StackDumpAction

e ThreadDumpAction

* MethodInvocationStatisticsAction

* MemoryAllocationStatisticsAction

D.2.1 TraceAction

ORACLE

TraceAction is a stateless action that is compatible with Before and After monitor
types.

TraceAction generates a trace event at the affected location in the program execution.
The following information is generated:

e Timestamp

» Context identifier from the diagnostic context which uniquely identifies the request
* Transaction identifier, if available

* User identity

» Action type (that is, TraceAction)

e Domain

* Server name

* Instrumentation scope name (for example, application name)

» Diagnostic monitor name

* Module name

e Location in code from where the action was called. The location information
includes:

— Class name

— Method name

— Method signature
— Line number

— Thread name

» Payload carried by the diagnostic context, if any

D-10

Appendix D
Diagnostic Action Library

D.2.2 DisplayArgumentsAction

DisplayArgumentsAction is a stateless action that is compatible with Before and After
monitor types.

DisplayArgumentsAction generates an instrumentation event at the affected location in
the program execution to capture method arguments or a return value.

When executed, this action causes an instrumentation event that is dispatched to the
events archive. When attached to Before monitors, the instrumentation event captures
input arguments to the joinpoint (for example, method arguments). When attached to
After monitors, the instrumentation event captures the return value from the joinpoint.
The event carries the following information:

e Timestamp

» Context identifier from the diagnostic context that uniquely identifies the request
* Transaction identifier, if available

* User identity

e Action type (that is, DisplayArgumentsAction)

e Domain

* Server name

* Instrumentation scope name (for example, application name)

» Diagnostic monitor name

* Module name

e Location in code from where the action was called. The location information
includes:

— Class name
— Method name
— Method signature
— Line number
— Thread name
» Payload carried by the diagnostic context, if any
* Input arguments, if any, when attached to Before monitors

* Return value, if any, when attached to After monitors

D.2.3 TraceElapsedTimeAction

ORACLE

TraceElapsedTimeAction is an Around action that is compatible with Around monitor
types.

TraceElapsedTimeAction generates two events: one before and one after the location
in the program execution.

When executed, this action captures the timestamps before and after the execution
of an associated joinpoint. It then computes the elapsed time by computing the
difference. It generates an instrumentation event which is dispatched to the events

D-11

Appendix D
Diagnostic Action Library

archive. The elapsed time is stored as event payload. The event carries the following
information:

e Timestamp

» Context identifier from the diagnostic context that uniquely identifies the request
e Transaction identifier, if available

» User identity

» Action type (that is TraceElapsedTimeAction)

e Domain

e Server name

* Instrumentation scope name (for example, application name)

» Diagnostic monitor name

e Module name

» Location in code from where the action was called. This location information
consists of:

— Class name
— Method name
— Method signature
— Line number
— Thread name
» Payload carried by the diagnostic context, if any

- Elapsed time processing the joinpoint, as event payload, in nanoseconds

D.2.4 TraceMemoryAllocationAction

TraceMemoryAllocationAction uses the HotSpot ThreadMXBean API to trace the
number of bytes allocated by a thread during a method call. This action is very similar
to TraceElapsedTimeAction, with the exception that the memory allocated within a
method call is traced.

The TraceMemoryAllocationAction action:

» Creates an instrumentation event that is persisted.

e Can be used from delegating and custom monitors.

D.2.5 StackDumpAction

ORACLE

StackDumpAction is a stateless action that is compatible with Before and After monitor
types.

StackDumpAction generates an instrumentation event at the affected location in the
program execution to capture a stack dump.

When executed, this action generates an instrumentation event that is dispatched to
the events archive. It captures the stack trace as an event payload. The event carries
following information:

D-12

Appendix D
Diagnostic Action Library

e Timestamp

» Context identifier from the diagnostic context that uniquely identifies the request
* Transaction identifier, if available

* User identity

* Action type (that is, StackDumpAction)

e Domain

* Server name

* Instrumentation scope name (for example, application name)

» Diagnostic monitor name

* Module name

e Location in code from where the action was called. This location information
consists of:

— Class name
— Method name
— Method signature
— Line number
— Thread name
» Payload carried by the diagnostic context, if any

e Stack trace as an event payload

D.2.6 ThreadDumpAction

ORACLE

ThreadDumpAction is a stateless action that is compatible with Before and After
monitor types.

ThreadDumpAction generates an instrumentation event at the affected location in the
program execution to capture a thread dump, if the underlying VM supports it. JDK 8
and later (Oracle HotSpot) supports this action.

This action generates an instrumentation event that is dispatched to the events
archive. This action may be used only with HotSpot. It is ignored when used with other
JVMs. It captures the thread dump as event payload. The event carries the following
information:

e Timestamp

» Context identifier from the diagnostic context that uniquely identifies the request
* Transaction identifier, if available

* User identity

* Action type (that is, ThreadDumpAction)

e Domain

* Server name

* Instrumentation scope name (for example, application name)

» Diagnostic monitor name

D-13

Appendix D
Diagnostic Action Library

e Module name

e Location in code from where the action was called. This location information
consists of:

— Class name
— Method name
— Method signature
— Line number
— Thread name
» Payload carried by the diagnostic context, if any

e Thread dump as an event payload

D.2.7 MethodInvocationStatisticsAction

ORACLE

MethodInvocationStatisticsAction is an Around action that is compatible with Around
monitor types.

MethodInvocationStatisticsAction captures performance metrics around a joinpoint in
memory without persisting an event in the Archive for each invocation. The statistics
are collected and made available through the WLDFInstrumentationRuntimeMBean.
The collected statistics are also consumable by the Harvester and the Policies and
Actions components. This makes it possible to create watch rules that can combine
request information from the instrumentation system and metric information from other
run-time MBeans.

Some of the statistics that can be captured include the following:

* Number of invocations

* Average execution time (in nanoseconds)

e Standard deviation in observed execution time
e Minimum execution time

e Maximum execution time

The WLDFInstrumentationRuntimeMBean instance for a given scope exposes the
data collected from MethodInvocationStatisticsAction instances, which are attached to
configured Diagnostic Around monitors, using the MethodInvocationStatistics attribute.
The MethodInvocationStatistics attribute contains a hierarchy of Map objects, keyed as
shown in Figure D-1.

D-14

Appendix D
Diagnostic Action Library

Figure D-1 Structure of MethodInvocationStatistics Attribute

Class Top-level map. Keyed by full class name

L Method Method-level map. Keyed by method name

Overloaded methods have a single entry

Signature Signature-level map. Organizes overloaded

method instances. Keyed by signature

L, Statistics Statistics-level map. Keyed by statistics

name ("avg". "min", "max".)

The following semantics are used in the MethodInvocationStatistics attribute:

Met hodl nvocationStati stics::= Map<cl assNane, Met hodMap>

Met hodMap: : = Map<net hodNane, Met hodPar ansSi gnat ur eMap>

Met hodPar amsSi gnat ur eMap: : = Map<Met hodPar ansSi gnat ure, Met hodDat aMap>

Met hodDat aMap: : = <MetricName, Statistic>

MetricName:= min | max | avg | count | sum| sumof_squares | std_deviation

Because the MethodlInvocationStatisticsAction only captures information in memory,
and does not persist that information in the Archive, this action does not incur the
I/O overhead of other instrumentation actions. This makes this action a lightweight
mechanism for capturing performance statistics and helping identify bottlenecks in
your application. You can navigate through the map structures and identify the low
performing parts of your application.

D.2.7.1 Instrumenting an Application with MethodInvocationStatisticsAction and
Querying the Results

ORACLE

This section shows an example of instrumenting the Avitek Medical Records (MedRec)
sample application with a custom monitor that uses MethodInvocationStatisticsAction.
This example then shows using WLST online to query the performance

statistics that have been collected, which can be done by navigating the
WLDFInstrumentationRuntimeMBean instance associated with the instrumented
application.

WLST online provides simplified access to MBeans. While JMX APIs require you
to use JMX object names to interrogate MBeans, WLST enables you to navigate a
hierarchy of MBeans in a similar fashion to navigating a hierarchy of files in a file
system. See Navigating and Interrogating MBeans in Understanding the WebLogic
Scripting Tool.

The following subsections are included in this example:

e Configuring the Custom Monitor to Use MethodInvocationStatisticsAction

e Using WLST to Query Method Performance Statistics

D-15

Appendix D
Diagnostic Action Library

< Note:

Code examples demonstrating Java EE APIs and other WebLogic Server
features are provided with your WebLogic Server installation. To work
with these examples, select the custom installation option when installing
WebLogic Server, and select to install the Server Examples. See Code
Examples and Sample Applications in Understanding Oracle WebLogic
Server.

D.2.7.1.1 Configuring the Custom Monitor to Use MethodInvocationStatisticsAction

ORACLE

As of WebLogic Server 10.3, it is no longer necessary to create a webl ogi c-

di agnosti cs. xm file in the application's META- | NF directory to configure a custom
monitor. Instead, you can complete all the required steps from the WebLogic Server
Administration Console, as described in the following steps for instrumenting the
MedRec sample application:

1. Inthe Domain Structure pane of the WebLogic Server Administration Console,
select Deployments.

2. On the Summary of Deployments page, select Control, and click medrec in the
Deployments table.

The Settings for medrec page is displayed.
3. Select Configuration > Instrumentation.
4. In the Diagnostic Monitors in this Module table, click Add Custom Monitor.

5. In the Add Custom Monitors page, enter Met hodSt at shoni t or as the monitor
name. Optionally, you can enter a brief description.

6. Inthe Location Type selection box, select Around.

7. In the Pointcut text box, enter the following pointcut expression:

execution(public * combea.medrec.* *(...)) AND NOT
execution(public * combea. medrec.* get*(...)) OR
execution(public * combea. medrec.* set*(...)) OR
execution(public * combea.medrec.* _ W._*(...)));

This pointcut expression specifies joinpoints for all public methods in classes
within packages whose name starts with com.bea.medrec, but excludes the
following methods:

* All accessor methods
* Methods that begin with the string _ W.__

This pointcut expression encompasses a wide variety of public methods and
classes in MedRec, but ignores all getter and setter methods, as well as code
generated by WebLogic Server.

8. Below the pointcut expression text box, click OK.

9. On the Save Deployment Plan page, enter a new path for the deployment plan, or
accept the default location, and click OK.

D-16

Appendix D
Diagnostic Action Library

10. Select Configuration > Instrumentation, and click the name of the new custom
monitor, Met hodSt at sMoni t or, which is listed in the Diagnostic Monitors in this

Module table.
The Settings for MethodStatsMonitor page is displayed.

11. In the Actions table, assign MethodInvocationStatisticsAction to the custom
monitor, as shown in Figure D-2;

Figure D-2 Choosing MethodInvocationStatisticsAction for Custom

Monitor
Actions:
Available: Chosen:
[MemoryallocationStatistics [] MethodInvocationStatistics

[] TraceElapsedTimeAction
[] TraceMemoryAllocationAct %

4
&

12. Click Save, at the bottom of the Settings for MethodStatsMonitor page.
13. Apply the updated deployment plan to the MedRec application:
a. Inthe Domain Structure pane, select Deployments.

b. On the Summary of Deployments page, select Control, and click the selection
box adjacent to medrec in the Deployments table, as shown in Figure D-3:

Figure D-3 Selecting the MedRec Deployment

Deployments
Ingtall | | Update | | Delete Start v | | Stop v Showing 1to 50f 5 Previous | Mext
Deployment
1| name & State | Health | Type R
] ovser-starter A web
Ofm= @bm vser-starter Active |9 0K Application 100
O | fisf(1.2,1.2.8.0) Active Library 100
Ll ﬂijstl(ll.l.lﬂ.l} Active Library 100a
: Enterprise
E FRmedr Activ e
& gmedrec Active |9 OK Apphicatian | *
-) Enterprise
® = physicia Activ i
O & pgphysician Active |9 OK application | 199
Install | Update | | Delate ‘ Start ~ | | Stop v Showing 1to 50f 5 Previous | Mext

c. Click Update.

d. Inthe Update Application Assistant page, select Redeploy this application
using the following deployment files.

e. Click Next, then click Finish.

The MedRec application is now redeployed, and the custom monitor
Met hodSt at shoni t or is active.

ORACLE D-17

Appendix D
Diagnostic Action Library

< Note:

If Java HotSwap is not enabled, to add a new pointcut to the application's
configuration, you need to redeploy the application to enable a custom
monitor to be woven into the application code. (However, you can

modify most of an application's monitor configuration without requiring a
redeploy. This includes changes to the custom monitor's Actions, Properties,
EnableDyekFiltering, and Description attributes — that is, anything that does
not require bytecode weaving.

However, with HotSwap enabled, you can change any monitor attribute
and update the application without the need to redeploy it. See Using
Deployment Plans to Dynamically Control Instrumentation Configuration.

D.2.7.1.2 Using WLST to Query Method Performance Statistics

Once MedRec is redeployed, the MethodInvocationStatisticsAction begins capturing
method performance statistics as the instrumented code is executed. This section
shows how to generate statistics quickly and simply by navigating the MedRec patient
application with the custom monitor enabled. This section then shows how to examine
those statistics using WLST online.

To capture method performance statistics using the custom monitor configured for
MedRec and query the results using WLST, complete the following steps:

1.

Start the MedRec application, as described in Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

Log in as a patient, administrator, or physician, and perform a small number of
operations.

Invoke WLST online and navigate to the WLDFInstrumentationRuntimeMBean
instance, as shown in the following example steps:

a. Connect to the MedRec server:

w s:/of fline> connect('weblogic', ' password','local host:7011")
Connecting to t3://1ocal host: 7011 with userid weblogic ...
Successful Iy connected to Admin Server 'MedRecServer' that belongs to domain 'nedrec'.

ORACLE

b. Use the cd command to navigate to the WLDFInstrumentationRuntimeMBean
instance associated with the MedRec application:

cd(' serverRuntime: /W.DFRunt i me/ W.DFRunt i me/ W.DFI nst runent at i onRunt i nes/
medrec')

Location changed to serverRuntine tree. This is a read-only tree

with ServerRuntineMBean as the root.

For nore hel p, use hel p(serverRuntine)

Access specific values collected by MethodInvocationStatisticsAction by invoking
the following method on the WLDFInstrumentationRuntimeMBean:

public Chject getMethodlnvocationStatisticsData(String expr) throws
Managenent Excepti on;

Using WLST interactively, you can pass a lookup expression to this method.

The lookup expression specifies the particular subset of values that you are
interested in viewing. These values are obtained from the map structure created
by MethodInvocationStatisticsAction. For example, the following WLST command

D-18

Appendix D
Diagnostic Action Library

returns the average execution time (in nanoseconds) of all methods instrumented
by MethodInvocationStatisticsAction:

cno. get Met hodl nvocationStatisticsData("(combea% (*)(?)(avg)")
array(java.lang. Ooj ect, [3352.0, 3632.0, 145270.0, 4050.5, 8450.916666666666,
1798645. 75

583538. 0, 3610515.0, 1.9541031E7, 1.2796319E7, 3.07897E8, 4470.0, 3073.0
3073. 0,

2.4644752E7, 3492.5, 1051530.0, 2794.0, 390552. 3333333333, 3632.0, 2095.5,
189409. 33333333334,

2607. 6666666666665, 2793. 6666666666665, 4749.333333333333, 5308.0, 65930.0,
3. 3950405E7,

3353.0, 3911.5])

Note that if you display the entire set of data values that have been collected, a
large amount of information could be displayed in the WLST console, as shown in
Figure D-4:

Figure D-4 Displaying All Data Values Collected by
MethodInvocationStatisticsAction

Command Prompt - wist

wls: /medrec/serverRuntime /WLDFRunt ime /HLDFRunt ime AULDFInstrumentationRuntimes /medrec>
print cmo._getMethodlnvocationStatisticsd()
Kcom.bea.medrec .model.PatientfStatus=Cvalues={={count=1, sum=4749 .8, std_deviation=8.
. aug=474% _B_ sum_of_squares=2_2553B01E7, max=474%?,. min=47493%%_ com.bea._medrec.mode
1_Record={_persistence_new={org.eclipse.persistence.internal_descriptors.Persiszstencel
hject={count=1, sum=3353_.8, std_deviation=B.8, avg=3353.8, sum_of_squares=1_1242689E7
., max=3353, min=335333}_ com.bea_medrec.repository.impl.RecordRepositorylmpl={findRec
ordsByPatientId={java.lang.Long={count=1, sum=5_79B81772E7, std_deviation=B.8, avg=5.7
-~ sum_of _ =3.352615200739984E15, max=57981772, min=579@177233}, com.bea
i i —{1n1t={Jauax.serulet.FilterConf1g={count=1,
sum=4191 .8, std_deviation=B_B, avg=4191_8, sum_of_squares=1_75644B1E7?, max=4191, min
=4191%***. com.bea._medrec.model._Administrator={_perszistence_new={org.eclipse.persisten
ce.internal _descriptors._PersistenceObject={count=1, sum=2794_8, std_deviation=B_8, avu
g=2794_08, sum_of_squares=7806436 .0, max=2794, min=2794%3*, com_bea.medrec._.common.weh.
CacheControlPhaseListener={afterPhase={javax.faces.event.PhazseEvent={count=%?,. sum=6B0
h2 .8, std_deuiation=2B37.9947176417818, avg=6673 5555556558556, sum_of _squares=4_38287
B896EB, max=9778, min=3911%>_ bheforePhaze={javax.faces._event.PhazseEvent={coun
2 .B824612E7,. std_deviation= 4543391 564343776, avg=2224956 _BBBBBABERY?,. szum_of_squares=2
.38311827874586E14, max=158264%91,. min=2878473>%, com.bea.medrec. common.ueh PageContex
tImpl={addGlobalOnlyMeszage={java.lang_String={count=3, sum=49B6287 B, =td_deviation=
2293458 _68553232, avg=1635403 _B, sum_of_squares=2_38BA3377B58133E13, max=4878832, min=
131383, invalidateSession={={count=1, sum=719365.8, std_deviation=B.8, avg=719365.8,
sum_of_squares=5_17486BA3225E11, max=719365,. min=719365**, com.bea._.medrec.repositor
y_impl_PatientRepositorylmpl={findBylsernamefAndPasswordAndStatus={java.lang.5tring, ja
va.lang.String,.com.bea.medrec.model.Patient$8tatus={count=4, sum=1_.22686542E8, std_de
viation=2.7804933871654555E7, avg=3.86716355E7. sum_of_squares=6.8554542874A7772E15,
max=66129633, min=249528%9%3>, com.bea.medrec.web._controller._UiewingRecordSummaryConte
oller={viewRecordBSummary={={count=1, sum=1_5786214E8, std_deviation=B.8, avg=1.578621
4E8, zum_of_squares=2_46685158213796E16, max=157862148, min=157862148%>>, com.bea.med
rec.model.Patient$Gender={values={={count=1, sum=6146.8, std_deviation=0.8, avg=6146.
W, sum_of_squares=3._.7773316E7,. max=6146, min=6146%%*, com.bea._.medrec.web.controller.
azefluthenticationController={logout={={count=1, sum=386248B0_0, std_deviation=B_B_ avg
=3B62488_ B, sum_of_squares=7_37829376E12, max=3062408, min=3062488%%, login={={count=
» SUmM=2. 12179231E8, std_deviation=4_489884341763291E7, avg=5. 334483325E7 sum_of _squ
ares=1.983383529734122F16, max=118257838, min=9898464%3%, com.bea.medrec. model.ﬂddres

As an alternative, you can create a WLST script to invoke MethodlnvocationStatistics
and to format the collected data so that it is more easily read, as in Example D-1:

Example D-1 Using WLST to Invoke MethodinvocationStatistics and Display Results

inport sys
def getPositional Argument (pos, default):
val ue=None
try:
val ue=sys. ar gv[pos]
except:

val ue=def aul t
return val ue

ORACLE D-19

Appendix D
Diagnostic Action Library

url = getPositional Argunent (1, "t3://local host:7001")
user = getPositional Argument (2, "webl ogic")

password = get Positional Argument (3, "password")
appName = get Posi tional Argunent (4, "nyapp")

connect (user, password, url)
serverRuntine()
cd(' /W.DFRunt i me/ W.DFRunt i me/ W.DFI nst runent ati onRunti nes/' + appNane)

print "# Cass Method | Count | Mn | Max | Average | Std-dev |"
st at s=cno. get Met hodl nvocati onStati stics()
for className in stats. keySet():
cl assMap=st at s. get (cl assNang)
for methodName in classMap. keySet ():
met hodMap=cl assMap. get (net hodNane)
for sig in methodMap. keySet ():
str= classNane + " " + methodName + "(" + sig + ")"
si gMap=nret hodMap. get (si g)
count =si gMap. get (' count")
m n=si gMap. get (' mn')
max=si gMap. get (' max')
avg=si ghap. get (' avg')
std_devi ati on=si gMap. get (' std_devi ation')
print str, "|", count, "|", mn, "|", max, "|", avg, "|", std_deviation, "|"

The following shows the output produced by the WLST script shown in Example D-1:

Cass Method | Count | Mn | Max | Average | Std-dev |

jsp_servlet. _index _isStale() | 1| 1378000 | 1378000 | 1378000.0 | 0.0 |

jsp_servlet.__index _getBytes(java.lang.String) | 3 | 1000 | 754000 | 252666. 66666666666 | 354497.1399351795 |
jsp_servlet._ _index _staticlsStale(weblogic.servlet.jsp.StaleChecker) | 1| 861000 | 861000 | 861000.0 | 0.0 |
jsp_servlet. _index _jspService(javax.servlet.http.HtpServletRequest,javax.servlet.http.HtpServletResponse)
| 2] 70000 | 2113000 | 1091500.0 | 1021500.0 |

jsp_servlet.__index$M/Map cont ai nsKey(j ava.lang. Object) | 2 | 2000 | 101000 | 51500.0 | 49500.0 |
jsp_servlet.__index$M/Map contai nsVal ue(java.lang. Cbject) | 2 | 1000 | 2000 | 1500.0 | 500.0 |

D.2.7.2 Configuring the Harvester to Collect MethodInvocationStatisticsAction
Data

To configure the Harvester to collect data gathered by
MethodInvocationStatisticsAction instances, you must configure an instance of
WLDFHarvesterBean using the following attribute:

Name=webl ogi c. management . runt i me. W.DFI nst r unent at i onRunt i meMBean

The scope is selected by the instance configuration.

The attribute specification defines the data that is collected by the Harvester. You can
access the successive elements of the map by using the following notation:

Met hodl nvocati onStati sti cs(cl assNane) (met hodNane) (net hodPar anSi gnat ur e)
(metricNane)

In the preceding notation:

e cl assNane represents the fully qualified Java class hame. You can use the asterisk
(*) wildcard character in a class name.

ORACLE D-20

Appendix D
Diagnostic Action Library

» et hodNane selects a specific method from the given class. You can use the
asterisk (*) wildcard character in a method name.

» et hodPar anSi gnat ur e represents a string that is a comma-separated list of a
method's input argument types. Only the Java type names, without the argument
names, are included in the signature specification. As in the Java language, the
order of the parameters in the signature is significant.

This element also supports the asterisk (*) wildcard character, which can be used
to specify the entire list of input argument types for a given method. The asterisk
(*) wildcard character matches zero or more argument types at the position
following its occurrence in the met hodPar anfSi gnat ur e expression.

You can also use the question mark (?) wildcard character to match a single
argument type at any given position in the ordered list of parameter types.

Both of these wildcard characters can appear anywhere in the expression. See
MethodInvocationStatisticsAction Examples.

e netricNane represents the statistics to be harvested. You can use the asterisk (*)
wildcard character in this key to harvest all of the supported metrics.

MethodInvocationStatistics Examples
Consider a class with the following overloaded methods:

package. com f 00;

public interface Bar {
public void dolt();
public void dolt(int a);
public void doit(int a, String s)
public void dolt(Stringa, int b);
public void dolt(String a, String b);
public void dolt(String[] a);
public void doNot hing();
public void doNot hi ng(com foo0. Baz);

}

Table D-3 provides examples that show to use MethodInvocationStatisticsAction to
harvest various statistics.

Table D-3 MethodInvocationStatisticsAction Examples

The following MethodInvocationStatisticsAction ... causes the following to be harvested
instance configuration . ..

Met hodl nvocat i onSt ati sti cs(com foo. Bar) (*) (*) All statistics for all methods on com Foo. Bar .

(*)

Met hodl nvocat i onSt at i st i cs(com f 0. Bar) (dol t) () All statistics for the dol t () method that has no input
(*) arguments.

Met hodl nvocationStati stics(com foo. Bar)(dolt) All statistics for all dol t () methods.

() ()

Met hodl nvocati onStati stics(com foo. Bar) (dol t) Al statistics for the dol t (i nt) and dol t (i nt,
(int, *)(*) String) methods.

ORACLE D-21

Appendix D
Diagnostic Action Library

Table D-3 (Cont.) MethodIinvocationStatisticsAction Examples

The following MethodlnvocationStatisticsAction . .. causes the following to be harvested
instance configuration . . .

Met hodl nvocationStatistics(comfoo.Bar)(dolt)

(String[])(*)

Al statistics for the dol t (String[]) method.

Note that array parameters are specified by the use of
a pair of square brackets ([]) following the type name.
Space characters are insignificant for the Harvester.

Met hodl nvocationStati stics(com foo. Bar)(dolt)

(String, ?)(*)

Al statistics for dol t () methods that have two input
parameters and St r i ng as the first argument type. In
this example class, this instance configuration matches
the following methods:

e dolt(String, int)

e dolt(String, String)

Met hodl nvocationStati stics(com foo. Bar)

The nmi n and max execution time for the doNot hi ng()

(doNot hi ng) (com f 00. Baz) (i n, max) method that has the single input parameter of type

com f 0o. Baz.

" Note:

Using a wildcard character in the cl assNane specification can have a
negative impact on performance.

D.2.7.3 Configuring Policies Based on MethodInvocationStatistics Metrics

You can use the same syntax described in the previous sections to use
MethodInvocationStatistics metrics in a policy expression. You can create meaningful
watch rules that do not use a wildcard character in the Met ri cName element by
specifying whether you want the m n, max, avg, count, sum sum of _squares, or

st d_devi ati on variable for a given method.

D.2.7.4 Using JMX to Collect Data

When using straight JMX to collect data, you can

potentially impact server performance negatively if you invoke

the get Attri but e("Met hodl nvocationStatistics") method on the
WLDFInstrumentationRuntimeMBean. This occurs because, depending on the
instrumented classes, the nested map structure can contain a lot of data that involves
expensive serialization.

When you use JMX to collect data, Oracle recommends using the
get Met hodl nvocati onStati sticsData(String) method.

D.2.8 MemoryAllocationStatisticsAction

ORACLE

The MemoryAllocationStatisticsAction uses the HotSpot ThreadMXBean API API to
track the number of bytes allocated by a thread during a method call. Statistics are
kept in-memory on the memory allocations, and no instrumentation events are created
by this action.

D-22

ORACLE

Appendix D
Diagnostic Action Library

The MemoryAllocationStatisticsAction is very similar to the

existing MethodInvocationStatisticsAction. However, statistics tracked by
MemoryAllocationStatisticsAction are related to the memory allocated within a method
call.

The MemoryAllocationStatisticsAction does not create an instrumentation
event. When HotSpot is available, the statistics are available through the
WLDFInstrumentationRuntimeMBean.

The following statistics for each method are kept:

e count
e nmin
° max
e avg
* sum

e sumof_squares

e std_deviation

D-23

Using Wildcards in Expressions

The WebLogic Diagnostics Framework (WLDF) supports the ability to use wildcards
in expressions.WLDF allows for the use of wildcards in instance names within the
<harvested-instance> element, and also provides drill-down and wildcard capabilities
in the attribute specification of the <harvested-attribute> element.

WLDF also allows the same wildcard capabilities for instance names in Harvester
policies, as well as specifying complex attributes in Harvester policies.

This appendix includes the following sections:

e Using Wildcards in Harvester Instance Names

» Specifying Complex and Nested Harvester Attributes

* Using the Accessor with Harvested Complex or Nested Attributes
e Using Wildcards in Watch Rule Instance Names

» Specifying Complex Attributes in Harvester Policies

E.1 Using Wildcards in Harvester Instance Names

When specifying instance names within the <harvested-instance> element, you have
some flexibility with regards to the property list order.Specifically, you can:

» Express the instance name in non-canonical form, allowing you to specify the
property list of the ObjectName out of order.

* Express the ObjectName as a JMX ObjectName query pattern without concern as
to the order of the property list.

» Use zero or more asterisk (*) wildcard characters in any of the values in the
property list of an ObjectName, such as Name=*.

* Use zero or more asterisk (*) wildcard characters to replace any character
sequence in a canonical ObjectName string. In this case, you must ensure that
any properties of the ObjectName not substituted by a wildcard character are in
canonical form.

E.1.1 Examples

ORACLE

The instance specification in Example E-1 indicates that all instances of the
WorkManagerRuntimeMBean are to be harvested. This is equivalent to not providing
any instance-name qualification in the <harvested-type> declaration.

Example E-1 Harvesting All Instances of an MBean

<harvest ed-t ype>
<name>webl ogi c. managenent . runti ne. Wor kManager Runt i meMBean</ nang>
<harvested-instance>*<harvested-instance>
<known-t ype>t r ue</ known- t ype>
<harvest ed- at t ri but e>Pendi ngRequest s</ harvest ed-attri but e>

</ harvest ed-type>

E-1

Appendix E
Specifying Complex and Nested Harvester Attributes

Example E-2 shows a JMX ObjectName pattern as the <harvested-instance> value:
Example E-2 Using a JMX ObjectName Pattern

<harvest ed-t ype>
<name>com acne. Cust omvBean</ nane>
<harvested-instance>adomain:Type=MyType,*</harvested-instance>
<known- t ype>f al se</ known-t ype>

</ harvest ed-type>

In Example E-3, some of the values in the ObjectName property list contain wildcard
characters:

Example E-3 Using Wildcards in the Property List

<harvest ed-t ype>
<nanme>com acne. Cust omvBean</ nane>
<harvested-instance>adomain:Type=My*,Name=*,*</harvested-instance>
<known- t ype>f al se</ known-t ype>

</ harvest ed-type>

In Example E-4, all harvestable attributes of all instances of com.acme.CustomMBean
are to be harvested, but only those in which the instance name contains the string
Name=nybean.

Example E-4 Harvesting All Attributes of Multiple Instances

<harvest ed-t ype>
<name>coma. acme. Cust onvBean</ nane>
<harvest ed-i nst ance>* Nane=nybean*</ har vest ed- i nst ance>
<known- t ype>t r ue</ known- t ype>

</ harvest ed-type>

E.2 Specifying Complex and Nested Harvester Attributes

ORACLE

The Harvester provides the ability to access metric values nested within complex
attributes of an MBean.A complex attribute can be a map or list object, a simple
POJO, or different nestings of these types of objects. For example:

e an(hject.anAttribute
e arrayAttribute[1]

e mapAttribute(akey)

e alist[1] (akKey)

In addition, wildcard characters can be used for list indexes and map keys to specify
multiple elements within a collection of those types. The following wildcard characters
are available:

* You can use the asterisk (*) wildcard character to specify all key values for Map
attributes.

* You can use the percent (% wildcard character to replace parts of a Map key string
and identify a group of keys that match a particular pattern.

You can also specify a discrete set of key values by using a comma-separated list.
For example:

o alist[1](partial %ey%

E-2

Appendix E
Specifying Complex and Nested Harvester Attributes

o alist[*](keyl, key3, keyN)
e aList*

In the last example, where the asterisk (*) wildcard character is used for the index to a
list and as the key value to a nested map object, nested arrays of values are returned.

Embedding the asterisk (*) wildcard character in a comma-separated list of map keys
is equivalent to specifying all map keys. For example, the following two specifications
are equivalent:

o aList[*](keyl, *, keyN)
e aList*

" Note:

Leading or trailing spaces will be stripped from a map key unless the map
key is enclosed within quotation marks.

Using a map key pattern can result in a large number of elements being
scanned, returned, or both. The larger the number of elements in a map, the
bigger the impact is on performance.

The more complex the matching pattern is, the more processing time is
required.

E.2.1 Examples

To use drill-down syntax to harvest the nested State property of the HealthState
attribute on the ServerRuntime MBean, use the diagnostic descriptor shown in
Example E-5.

Example E-5 Using Drill-Down Syntax

<harvest er >
<sanpl e- peri 0d>10000</ sanpl e- peri od>
<harvest ed-t ype>
<name>webl ogi c. managenent . runti me. Ser ver Runt i mreMBean</ name>
<harvested-attribute>Heal thState. State</ harvested-attribute>
</ harvest ed-type>
</ harvester>

To harvest the elements of an array or list, the Harvester supports a subscript
notation in which a value is referred to by its index position in the array or list.

For example, to refer to the first element in the array attribute URLPat t er ns in the
ServletRuntimeMBean, specify URLPat t er ns[0] . Example E-6 shows referencing all
elements of URLPat t er ns using a wildcard character.

Example E-6 Using a Wildcard Character to Reference All Elements of an Array

<harvest er>
<sanpl e- peri 0d>10000</ sanpl e- peri od>
<harvest ed-type>
<nane>webl ogi c. management . runt i me. Ser vl et Runt i meMBean</ nane>
<harvested-attribute>URLPatterns[*]</harvested-attribute>

ORACLE E-3

Appendix E
Using the Accessor with Harvested Complex or Nested Attributes

</ harvest ed-type>
</ harvester>

To harvest the elements of a map, each individual value is referenced by the key
enclosed in parentheses. Multiple keys can be specified as a comma-delimited list, in
which case the values corresponding to specified keys in the map are harvested, as
shown in the following examples.

The following example shows the following

Harvesting the value from the map with key

<harvest ed-attri but e>M/Map(Foo) </ harvest ed-attri bute> E
00.

Harvesting the value from the map with keys

<harvest ed-attribut e>M/Map(Foo, Bar) </ harvest ed-attri but e>
Foo and Bar .

Using the percent (%) wildcard character with
a key specification to harvest all values from
the map if their keys start with Foo and end
with Bar .

<harvested-attribut e>M/Map(Foo%Bar) </ harvest ed-at tri but e>

Harvesting all values from a map by using

<harvested-attribute>M/Map(*)</harvested-attribute>))
the asterisk (*) wildcard character.

<har vest ed- at t ri but e>MyBeanM/Map(Foo) </ har vest ed- The MBean has a JavaBean attribute
attribute> MyBean, which has a nested map type

attribute MyMap. This example harvests this
value from the map that has the key Foo0.

E.3 Using the Accessor with Harvested Complex or Nested
Attributes

While a large number of complex or nested attributes can be specified as a single
expression in terms of the Harvester and Policy and Actions configuration, the actual
metrics are persisted in terms of each individually gathered metric.

For example, the attribute specification mymap(*). (a, b, ¢) maps to the following actual
nested attributes:

nmymap(keyl).
nmymap(keyl).
nmymap(keyl).
nymap(key2).
nymap(key2).
nymap(key2).

O T O O T

Each of the preceding six metrics are stored in a separate record in the
HarvestedDataArchive, with the shown attribute names stored in the ATTRNAME
column in each corresponding record. The values in the ATTRNAME column are the
values you must use in Accessor queries when retrieving them from the archive.

The following are examples of query strings:

NAME="f 00: Name=MyMBean" ATTRNAME="nymap(keyl).a"
NAME="f 00" Name=MyBean" ATTRNAME LI KE "nymap(% . a"
NAME="f ooName=MyMBean" ATTRNAME MATCHES "nymap\ ((.*?)\).a"

ORACLE E-4

Appendix E
Using Wildcards in Policy Instance Names

E.4 Using Wildcards in Policy Instance Names

Within Harvester policy expressions, you can use the asterisk (*) wildcard character
to specify portions of an ObjectName. This gives you the ability to watch for multiple
instances of a type.

For example, to specify the OpenSocketsCurrentCount attribute for all instances of the
ServerRuntimeMBean that begin with the name managed:

* The instance-name pattern can be a valid JMX ObjectName pattern, in which case
the property list order is not important. For example:

${ com bea: Name=managed*, Type=Ser ver Runti ne, *// OpenSocket Cur r ent Count }

This example is a valid IMX ObjectName pattern that can match:

— Any ObjectName that contains a Nane key with a value that starts with managed
— A Type key that exactly matches the value Server Runti me

— Any other property pairs

For more examples of valid JMX ObjectName patterns, see the ObjectName
API documentation at htt p: // docs. or acl e. com j avase/ 8/ docs/ api / j avax/
managenent / Cbj ect Nane. htmi .

e If the name is a pattern but is not a JIMX ObjectName pattern, WebLogic Server
does pattern-matching using the pattern as-is. For example:

${com bea: *Name=nmanaged*, Type=Ser ver Runti me, *// CpenSocket Curr ent Count }

This example is not a valid JIMX ObjectName pattern. This pattern is matched
using straight string substitution, where the pattern is matched as-is against the
canonical form of the ObjectName for any target MBean instance.

Note:

The ObjectName query pattern syntax supported by the Harvester is
determined by whatever is supported by the underlying JIMX implementation.
The preceding example demonstrates the syntax supported by JDK 5

and later. For information about the full syntax that is supported, see the
description of the j avax. managenent . Cbj ect Nane class corresponding to
the version of the JDK with which your installation of WebLogic Server is
configured.

E.5 Specifying Complex Attributes in Harvester Policies

ORACLE

You can specify complex attributes (a collection, an array type or an Object with
nested intrinsic attribute types) within Harvester policy expressions.There are several
ways to do this.

The following example shows a drill-down into a nested attribute in a complex type,
which is then checked to see if it is greater than O:

${ somedonai n: name=MyMean/ / conpl exAttri bute. nestedAttribute} > 0

E-5

http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

ORACLE

Appendix E
Specifying Complex Attributes in Harvester Policies

You can also use wildcard characters to specify multiple Map keys. The following
wildcard characters are available for specifying complex attributes:

* You can use an asterisk character (*) to specify all key values for Map attributes.

* You can use a percent character (% to replace parts of a Map key string and to
identify a group of keys that match a particular pattern.

In addition, you can use a comma-separated list to specify a discrete set of key values.

For example:

${[com bea. foo. BarCl ass]//aList[*]. (sone%artial Key% . (aVal ue, bvValue)} > 0

The rule in the preceding example examines all elements of the aLi st attribute on

all instances of com bea. f 00. Bar Q ass, drilling down into a nested map for all keys
starting with the text some and containing the text parti al Key afterwards. The returned
values are assumed to be Map instances, from which values for the keys aVal ue and
bVal ue are compared to determine if they are greater than 0.

When using the MethodInvocationStatistics attribute on the
WLDFInstrumentationRuntime type, the system needs to determine the type from
the variable. If the system cannot determine the type when validating the attribute
expression, the expression is not valid. For example, the following expression is not
valid:

${ com bea: Name=nyScope, * //Methodl nvocationStatistics.(...).(...)

You must explicitly declare the type in this situation, as shown in the following example
that shows drilling down into the nested map structure:

$(com bea: Nanme=hel | o, Type=W.DFI nst r unent at i onRunt i me, *//
Met hodl nvocationStatistics(*)(*)(*)(count)) >=1

E-6

WebLogic Scripting Tool Examples

The WebLogic Diagnostics Framework (WLDF) includes examples that show using
WLST and JMX to interact with WLDF components.

" Note:

The following examples are also included with the WebLogic Server code
examples:

* Example: Configuring a Policy and a JMX Action

e Example: Writing a JMXWatchNotificationListener Class

* Example: Registering MBeans and Attributes For Harvesting

These examples are bundled under the title "Configuring the Policies and
Actions System and Harvesting Data Using WLST". For information about
installing and configuring the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

This appendix includes the following sections:

WLST Commands for Diagnostics

Example:
Example:
Example:
Example:
Example:
Example:

Example:

Dynamically Creating Dyelnjection Monitors
Configuring a Policy and a JMX Action

Writing a JIMXWatchNotificationListener Class
Registering MBeans and Attributes For Harvesting
Setting the WLDF Diagnostic Volume

Capturing a Diagnostic Image

Retrieving a JFR File from a Diagnostic Image Capture

For information about running WebLogic Scripting Tool (WLST) scripts, see Running
WLST from Ant in Understanding the WebLogic Scripting Tool. For information about
developing JMX applications, see Understanding JMX in Developing Manageable
Applications Using JMX for Oracle WebLogic Server.

F.1 WLST Commands for Diagnostics

WLST includes a set of commands that you can use to retrieve diagnostic data and
manage diagnostic system resources.These commands are summarized in Table F-1.

ORACLE

F-1

Appendix F
Example: Dynamically Creating Dyelnjection Monitors

Table F-1 WLST Commands Used with WLDF
]

Command

Summary

capt ureAndSaveDi agnosti cl mage

Captures a diagnostics image and downloads it locally.

creat eSyst enResour ceCont r ol

Creates a diagnostics system resource control using specified
descriptor file that is not persisted in the domain configuration.
See Using WLST to Activate and Deactivate Diagnostic System
Modules.

dest r oySyst enResour ceCont r ol

Destroys an external diagnostics system resource control; that is,
one that is created in a server or cluster instance but that is not
persisted in the domain configuration. See Using WLST to Activate
and Deactivate Diagnostic System Modules.

di sabl eSyst enResour ce

Deactivates a diagnostic system resource control that is persisted
in the domain configuration. See Using WLST to Activate and
Deactivate Diagnostic System Modules.

dunpDi agnosti cDat a

Dumps the diagnostics data from a Harvester to a local file.

enabl eSyst enmResour ce

Activates a diagnostic resource control. See Using WLST to
Activate and Deactivate Diagnostic System Modules.

export Di agnosti cDat a

Execute a query against the specified log file.

export Di agnost i cDat aFr onSer ver

Executes a query on the server side and retrieves the exported
WLDF data.

get Avai | abl eCapt ur edl mages

Returns a list of the previously captured diagnostic images.

I'i st Syst enResour ceControl s

Lists the diagnostic system modules that are currently configured in
the domain. See Using WLST to Activate and Deactivate Diagnostic
System Modules.

mer geDi agnosti cData

Merges a set of data files that were previously generated by the
dunpDi agnosti cDat a() command.

saveDi agnosti cl mageCaptureFil e

Downloads the specified diagnostic image capture.

saveDi agnosti cl mageCapt ureEntryFil e

Downloads a specific entry from the diagnostic image capture.

For complete details about each of these commands, including additional examples,
see Diagnostics Commands in WLST Command Reference for WebLogic Server.

F.2 Example: Dynamically Creating Dyelnjection Monitors

You can create a Dyelnjection monitor dynamically using WLST.This demonstration
script shown in Example F-1does the following:

» Connects to a server (boots the server first if necessary).

* Looks up or creates a WLDF System Resource.

» Creates the Dyelnjection monitor.

ORACLE

F-2

Appendix F
Example: Dynamically Creating Dyelnjection Monitors

» Sets the dye criteria.

* Enables the monitor.

* Saves and activates the configuration.

* Enables the Diagnostic Context feature via the ServerDiagnosticConfigMBean.

The demonstration script in Example F-1 only configures the dye monitor, which injects
dye values into the diagnostic context. To fire events, you must implement downstream
diagnostic monitors that use dye filtering to fire on the specified dye criteria. An
example downstream monitor artifact is shown in Example F-2. This must be placed in
a file named webl ogi c- di agnosti cs. xm and placed into the META- | NF directory of a
application archive. It is also possible to create a monitor using a JSR-88 deployment
plan. See Deploying Applications to Oracle WebLogic Server.

Example F-1 Example: Using WLST to Dynamically Create Dyelnjection
Monitors (demoDyeMonitorCreate.py)

Script name: denmoDyelbnitorCreate. py

HHHHHH AR R R R R R R

Dermp script showing how to create a Dyelnjectionhnitor dynamcally

via W.ST. This script will:

- Connect to a server, booting it first if necessary

- Look up or create a W.DF System Resource

- Create the Dyelnjection Mnitor (DM

- Set the dye criteria

- Enabl e the monitor

- Save and activate

- Enable the Diagnostic Context functionality via the

Server Di agnosti cConfi g MBean

Note: This will only configure the dye nonitor, which will inject dye

values into the Diagnostic Context. To fire events requires the

exi stence of "downstrean! nonitors set to fire on the specified

dye criteria.

HHHHHH AR R R A R R R R R R

myDomai nDi r ect or y="donai n"

url="t3://1ocal host: 7001"

user ="webl ogi c"

passwor d="passwor d"

ny Ser ver Nane="nyserver"

myDomai n="nydonai n"

props="webl ogi c. Gener at eDef aul t Confi g=t rue, webl ogi c. Root Di r ect ory="
+myDomai nDi rectory

H o H H H H H H R H O HH R

try:
connect (user, password, url)
except:
start Server (adni nServer Name=nySer ver Nane, domai nNanme=nyDormai n,
user name=user, passwor d=passwor d, syst enPr operti es=props,
domai nDi r =nyDomai nDi rectory, bl ock="true")
connect (user, password, url)
Start an edit session
edit()
startEdit()
cd (/")
Look up or create the W.DF System resource.
w df Resour ceName = "nmyw df "
myW df Var = cno. | ookupSyst enResour ce(w df Resour ceNang)
i f myW df Var ==None:
print "Unable to find naned resource,\
creating W.DF System Resource: " + w df Resour ceNane
myW df Var =cno. cr eat eW.DFSyst enResour ce(w df Resour ceNarre)

ORACLE F3

Appendix F
Example: Configuring a Policy and a JMX Action

Target the System Resource to the denp server.
w df Server=cno. | ookupSer ver (server Nane)
myW df Var . addTar get (W df Server)
create and set properties of the Dyelnjection Mnitor (DM.
myw df Resour ce=nyW df Var . get W.DFResour ce()
myw df | nst =mywl df Resour ce. get | nst runent ati on()
myw df | nst . set Enabl ed(1)
moni t or =myw df | nst . cr eat e WLDFI nst rument at i onMoni t or (" Dyel nj ecti on")
moni t or . set Enabl ed(1)
Need to include new ines when setting properties
on the Dyelnjection nonitor.
monitor. set Properties("\nUSERL=l arry@el tics. com
\ nUSER2=br ady@at ri ots. com n")
moni t or. set DyeFi | t eri ngEnabl ed(1)
Enabl e the diagnostic context functionality via the
ServerDi agnosticConfi g.
cd("/ Servers/"+server Name+"/ Server Di agnosti cConfi g/ " +ser ver Name)
cno. set Di agnost i cCont ext Enabl ed(1)
save and di sconnect
save()
activate()
di sconnect ()
exit()

Example F-2 Example: Downstream Monitor Artifact

<?xm version="1.0" encodi ng="UTF-8"?>
<wl df -resource xm ns="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnost i cs"
xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<i nstrumentation>
<enabl ed>t r ue</ enabl ed>
<l-- Servlet Session Mnitors -->
<wl df -i nstrunent ati on- noni t or >
<nane>Ser vl et _Bef or e_Sessi on</ nane>
<enabl ed>t r ue</ enabl ed>
<dye- mask>USER1</ dye- mask>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<action>TraceActi on</acti on>
<act i on>St ackDunpAct i on</ acti on>
<act i on>Di spl ayAr gunent sActi on</ acti on>
<act i on>Thr eadDunpAct i on</ acti on>
</w df -i nst runent ati on- noni t or >
<wl df -i nstrunent ati on- noni t or >
<name>Servl et _After_Sessi on</name>
<enabl ed>t r ue</ enabl ed>
<dye- mask>USER2</ dye- mask>
<dye-filtering-enabl ed>true</dye-filtering-enabl ed>
<action>TraceActi on</acti on>
<act i on>St ackDunpAct i on</ acti on>
<act i on>Di spl ayAr gunent sActi on</ acti on>
<act i on>Thr eadDunpAct i on</ acti on>
</w df -i nstrunent ati on- noni t or >
<linstrumentation>
</w df -resour ce>

F.3 Example: Configuring a Policy and a JMX Action

You can use WLST to configure a policy and a JMX action using the WLDF Policies
and Actions component.The demonstration script shown in Example F-3 does the
following:

ORACLE F-4

ORACLE

Appendix F
Example: Configuring a Policy and a JMX Action

» Connects to a server and boots the server first if necessary.
* Looks up/creates a diagnostic system module.

» Creates a policy expression on the ServerRuntimeMBean for the
OpenSocketsCurrentCount attribute.

» Configures the actuion to use a JMXNotification medium.

Note:

This example is also included with the WebLogic Server code examples.
For information about installing and configuring these examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

This script can be used in conjunction with the following files and scripts:

The JMXWat chNot i fi cati onLi st ener. | ava class (see Example: Writing a
JMXWatchNotificationListener Class).

e The denpHar vest er. py script, which registers the OpenSocketsCurrentCount
attribute with the Harvester for collection (see Example: Registering MBeans and
Attributes For Harvesting).

To see these files work together, perform the following steps:
1. To run the policy configuration script (demo\t ch. py), type:
java webl ogi c. W.ST denoWat ch. py
2. To compile the JMX\Wat chNot i fi cationLi stener.java source, type:
javac JMXWat chNot i fi cationListener.java
3. Torun the JMXWat chNot i fi cati onLi st ener. cl ass file, type:

java JMXWat chNoti fi cati onLi stener

Note:

Be sure the current directory is in your class path, so it will find the class
file you just created.

4. To run the demoHar vest er. py script, type:
java webl ogi c. W.ST denoHar vester. py

When the denoHar vest er. py script runs, it executes the JMXNatification action for the
policy configured in step 1.

Example F-3 Example: Policy and JMXNotification (demoWatch.py)

Script name: demoWtch. py

HHRTHH R R R R e R R i
Demp script showing howto configure a policy and a JMXNotification

using the WDF Policies and Action franework.

The script will:

- Connect to a server, booting it first if necessary

F-5

ORACLE

Appendix F
Example: Configuring a Policy and a JMX Action

- Look up or create a W.DF System Resource

- Create a policy expression on the ServerRuntimeMBean for the
"OpenSocket sCurrent Count" attribute

- Configure the policy to use a JMXNotification medi um

#
#
#
#
#
This script can be used in conjunction with
- the JMXWat chNoti ficationListener.java class
- the dempHarvester.py script, which registers the
"OpenSocketsCurrentCount" attribute with the harvester for collection.
To see these work together:
1. Run the policy configuration script
java webl ogi c. W.ST denoWat ch. py
2. Conpile and run the JMXWat chNotificati onListener.java source code
javac JMXWat chNoti fi cati onLi stener.java
java JMX\Wat chNot i ficationLi stener
3. Run the denoHarvester.py script
java webl ogi c. W.ST denoHar vester. py
Wien the denpHarvester.py script runs, it fires the
JMXKNotification for the policy configured in step 1.
HHHH R R R R R R R R
myDomai nDi r ect or y="donai n"
url="t3://1ocal host: 7001"
user ="webl ogi c"
ny Ser ver Name="nyser ver"
myDonmai n="nydonai n"
props="webl ogi c. Gener at eDef aul t Confi g=t r ue\
webl ogi c. Root Di r ect or y="+nmyDomai nDi r ect ory
try:
connect (user, user, url)
except:
start Server (adni nServer Name=nySer ver Nane, domai nNane=nyDomai n,
user name=user, passwor d=passwor d, syst enPr operti es=props,
domai nDi r =nyDomai nDi rectory, bl ock="true")
connect (user, user, url)
edit()
startEdit()
Look up or create the W.DF System resource
w df Resour ceName = "myw df "
myW df Var = cno. | ookupSyst enResour ce(w df Resour ceNang)
i f nmyW df Var ==None:
print "Unable to find named resource"
print "creating WDF System Resource: " + w df Resour ceNane
myW df Var =cno. cr eat eW.DFSyst enResour ce(w df Resour ceNarre)
Target the System Resource to the denp server
w df Server=cno. | ookupSer ver (nySer ver Nange)
myW df Var . addTar get (w df Server)
cd("/W.DFSyst enResour ces/ myw df / W.DFResour ce/ myw df / Wat chNoti fi cati on/ myw df ")
wat ch=cno. cr eat eWat ch(" mywat ch")
wat ch. set Enabl ed(1)
j mxnot =cro. creat eJMXNot i fi cati on(" nyj nx")
wat ch. addNot i fi cation(j nxnot)
serverRuntine()
cd("/")
on=cno. get Cbj ect Nane() . get Canoni cal Nanme()
wat ch. set Rul eExpressi on("${"+on+"} > 1")
wat ch. get Rul eExpr essi on()
wat ch. set Rul eExpressi on("${"+on+"// OpenSocket sCurrent Count} > 1")
wat ch. set Al ar nReset Peri od(10000)
edit()
save()
activate()

F-6

Appendix F
Example: Writing a JMXWatchNotificationListener Class

di sconnect ()
exit()

F.4 Example: Writing a JMXWatchNotificationListener Class

You can use the JMX API to write a JIMXWatchNotificationListener.Example F-4 shows
an example.

" Note:

This example is also included with the WebLogic Server code examples.
For information about installing and configuring these examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Example F-4 Example: IMXWatchNotificationListener Class
(JMXWatchNotificationListener.java)

i nport javax.managenent. *;
i mport webl ogi c. di agnosti cs. wat ch. *;
i nport webl ogi c. di agnosti cs. wat ch. IMKWat chNot i fi cati on;
i nport javax.managenent. Notification;
i nport javax.managenent.renote. JMXSer vi ceURL;
i nport javax.managenent.renote. JMXConnect or Fact ory;
i nport javax.managenent.renote. JMXConnect or;
i nport javax. nanmi ng. Cont ext ;
inport java.util.Hashtable;
i nport webl ogi c. managenent . nbeanservers. runti ne. Runti meServi ceMBean;
public class JMXWat chNoti fi cationListener inplenents NotificationListener,
Runnabl e {

private MBeanServer Connection rnbs = null;

private String notifName = "nyjnmx";

private int notifCount = 0;

private String serverNane = "nyserver";

public JMXWat chNoti fi cationLi stener(String serverNane) {

}

public void register() throws Exception {

rnbs = get Runti neMBeanSer ver Connection();
addNot i fi cati onHandl er ();

public void handl eNotification(Notification notif, Cbject handback) {
synchroni zed (this) {
try {
if (notif instanceof JMXWatchNotification) {
Wt chNotification wNotif =
((IMXWat chNoti fication)notif).getExtendedlnfo();
not i f Count ++;

Systemout. println(" ")
Systemout. printIn("Notification nane: "+
notifName + " called. Count=" + notifCount + ".");
Systemout. println("Watch severity: "+
wiNot i f. get Wt chSeverityLevel ());
Systemout. println("Watch time: "+
wiNot i f. get Vt chTime());
System out. println("Watch Server Name: "+

wiNot i f. get Wt chSer ver Name()) ;

ORACLE £.7

ORACLE

Appendix F
Example: Writing a JMXWatchNotificationListener Class

Systemout. println("Watch Rul eType: "+
wNot i f. get Wat chRul eType());

Systemout. println("Watch Rul e: "+
wNot i f. get Wat chRul e());

Systemout. println("Watch Nane: "+
wiNot i f. get Vat chName()) ;

System out. println("Watch Domai nNare: "+
wNot i f. get Wat chDomai nName()) ;

Systemout. println("Watch Al arnflype: "+

wNot i f. get Wat chAl ar nType());
Systemout. println("Watch Al arnResetPeriod: " +
wiNot i f. get Wt chAl ar mReset Period());
Systemout. println(" ");

} catch (Throwable x) {
Systemout. println("Exception occurred processing JMX policy
action: " + notifName +"\n" + Xx);
X.printStackTrace();
}
}
}
private void addNotificationHandl er() throws Exception {
/*
* The JMX policy action listener registers with a Runtime MBean
* that matches the nanme of the corresponding policy bean.
* Each policy has its own Runtime MBean instance.
*/
(bj ect Nane onane =
new bj ect Name(
"com bea: ServerRunti me=" + serverNane + ", Nane=" +
JMXWat chNot i fi cati on. GLOBAL_JMX_NOTI FI CATI ON_PRODUCER NAME +
", Type=W.DFWat chJMXNot i fi cati onRuntine," +
"W.DFWat chNot i fi cati onRunti me=Wat chNotification," +
"W.DFRunt i me=W.DFRunt i ne"
)
Systemout. println("Adding notification handler for: " +
onane. get Canoni cal Nane());
rnbs. addNot i fi cati onLi stener(oname, this, null, null);
}
private void remveNotificationHandl er(String nane,
NotificationListener list) throws Exception {
(bj ect Nane onane =
new bj ect Name(
"com bea: ServerRunti me=" + serverNane + ", Nane=" +
JMXWat chNot i fi cati on. GLOBAL_JMX_NOTI FI CATI ON_PRODUCER NAME +
", Type=W.DFWat chJMXNot i fi cati onRuntine," +
"W.DFWat chNot i fi cati onRunti me=Wat chNotification," +
"W.DFRunt i me=W.DFRunt i ne"
)
Systemout. println("Renoving notification handler for: " +
onane. get Canoni cal Nane());
rnbs. renoveNot i ficationLi stener(onane, list);

public void run() {
try {
System out. println("VM shutdown, unregistering notification
listener");
renmoveNoti ficationHandl er (notifNanme, this);
} catch (Throwable t) {
System out. println("Caught exception in shutdown hook");
t.printStackTrace();

F-8

Appendix F
Example: Registering MBeans and Attributes For Harvesting

}
}
private String user = "webl ogic";
private String password = "password";
public MBeanServer Connection getRunti meMBeanServer Connecti on()
throws Exception {
String JNDI = "/jndi/";
JMXSer vi ceURL servi ceURL;
serviceURL =
new JMXServi ceURL("t3", "local host", 7001,
JNDI + Runti nmeServi ceMBean. MBEANSERVER _JNDI _NAME) ;
Systemout. println("URL=" + serviceURL);
Hasht abl e h = new Hasht abl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, user);
h. put (Cont ext . SECURI TY_CREDENTI ALS, passwor d) ;
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent. renmote");
JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);
return connector. get MBeanSer ver Connection();
}

public static void min(String[] args) {
try {
String serverNanme = "nyserver";
if (args.length > 0)
serverNane = args[0];
JMXWat chNot i fi cationLi stener |istener =
new JMXWat chNoti fi cati onLi st ener(serverName);
System out. println("Addi ng shutdown hook");
Runti ne. get Runti me() . addShut downHook(new Thread(li stener));
|istener.register();
/1 Sleep waiting for notifications
Thread. sl eep(Long. MAX_VALUE) ;
} catch (Throwabl e e) {
e.printStackTrace();
} /1 end of try-catch
} I/ end of main()
}

F.5 Example: Registering MBeans and Attributes For
Harvesting

ORACLE

You can use WLST to register MBeans and attributes for collection by the WLDF
Harvester.The script shown in Example F-5 does the following:

* Connects to a server and boots the server first if necessary.
* Looks up or creates a WLDF system resource.

* Sets the sampling frequency.

* Adds a type for collection.

* Adds an attribute of a specific instance for collection.

» Saves and activates the configuration.

» Displays a few cycles of the harvested data.

F-9

ORACLE

Appendix F
Example: Registering MBeans and Attributes For Harvesting

< Note:

This example is also included with the WebLogic Server code examples.
For information about installing and configuring these examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

Example F-5 Example: MBean Registration and Data Collection
(demoHarvester.py)

Script name: denoHarvester. py
HHHHHH R R A R R R

Demp script showi ng how register MBeans and attributes for collection
by the WDF Harvester Service. This script will:

- Connect to a server, booting it first if necessary

- Look up or create a W.DF System Resource

- Set the sanpling frequency

- Add a type for collection

- Add an attribute of a specific instance for collection

- Save and activate
HHEH R S R R R R R R R R R R
fromjava.util inport Date
fromjava.text inport SinpleDateFormt
fromjava.lang inport Long
inport jarray
HHEH R S R R R R R R R R R R R
Hel per functions for adding types/attributes to the harvester
configuration
HHHH R S R A R R R R R
def findHarvestedType(harvester, typeNane):
ht ypes=har vest er. get Har vest edTypes()
for ht in (htypes):
if ht.getNane() == typeNane:
return ht
return None
def addType(harvester, nbeanl nstance):
typeName = "webl ogi c. management . runtime. "\
+ nbeanl nstance. get Type() + "MBean"
ht =f i ndHar vest edType(harvester, typeNanme)
if ht == None:
print "Adding " + typeName + " to harvestables collection for "\
+ harvester. get Nang()
ht =har vest er. cr eat eHar vest edType(t ypeNane)
return ht;
def addAttributeToHarvestedType(harvestedType, targetAttribute):
currentAttributes = PyList()
current Attri but es. ext end(harvest edType. get Harvest edAttributes());
print "Current attributes: " + str(currentAttributes)
try:
currentAttributes.index(targetAttribute)
print "Attribute is already in set"
return
except Val ueError:
print targetAttribute + " not in |list, adding"
current Attributes. append(target Attribute)

newSet = jarray.array(currentAttributes, java.lang.String)
print "New attributes for type "\
+ harvestedType.getName() + ": " + str(newSet)

har vest edType. set Har vest edAt t ri but es(newSet)

F-10

ORACLE

Appendix F
Example: Registering MBeans and Attributes For Harvesting

return
def addTypeFor | nstance(harvester, nbeanlnstance)
typeNane = "webl ogi c. managenent. runtime. "\
+ nbeanl nst ance. get Type() + "MBean"
return addTypeByName(harvester, typeNanme, 1)
def addl nstanceToHar vest edType(harvester, nbeanl nstance):
harvest edType = addTypeFor | nstance(harvester, nbeanl nstance)
currentInstances = PyList()
currentlnstances. ext end(harvest edType. get Harvest edAttri but es())
on = nbeanl nst ance. get Obj ect Nanme() . get Canoni cal Nang()
print "Adding " + str(on) + " to set of harvested instances for type "\
+ harvest edType. get Name()

print "Current instances : " + str(currentlnstances)
for inst in currentlnstances
if inst == on

print "Found " + on + " in existing set"

return harvestedType
only get here if the target attribute is not in the set
current | nstances. append(on)
convert the new list back to a Java String array

newSet = jarray.array(currentlnstances, java.lang.String)
print "New instance set for type " + harvestedType. get Name()\
+ " " + str(newSet)

har vest edType. set Har vest edl nst ances(newSet)
return harvestedType
def addTypeByName(harvester, _typeNane, knownType=0)
ht =f i ndHar vest edType(harvester, _typeNane)
if ht == None
print "Adding " + _typeNane + " to harvestables collection for "\
+ harvester. get Nane()
ht =har vest er. cr eat eHar vest edType(_t ypeNane)
if knownType ==
print "Setting known type attribute to true for " + _typeNane
ht . set KnownType(knownType)
return ht;
def addAttributeForlnstance(harvester, nbeanlnstance, attributeNane)
typeNane = nbeanl nst ance. get Type() + "MBean"
ht = addl nstanceToHar vest edType(harvester, nbeanlnstance)
return addAttributeToHarvest edType(ht, attribut eName)
HHHH R S R R R R R R R R R R
Display the currently registered types for the specified harvester
HHHH R A R R R R R R R R R
def displ ayHarvest edTypes(harvester)
harvest edTypes = harvester. get Har vest edTypes()
print ""
print "Harvested types:"
print ""
for ht in (harvestedTypes)
print "Type: " + ht.getNane()
attributes = ht.getHarvestedAttributes()
if attributes != None
print " Attributes: " + str(attributes)
i nstances = ht.get Harvest edl nst ances()
print " Instances: " + str(instances)
print ""
return
HHHH R R R R A R R R R R
Main script flow-- create a W.DF System resource and add harvestabl es
BHHH R R R A R R R R R
myDomai nDi r ect or y="donai n"
url="t3://1ocal host: 7001"

F-11

ORACLE

Appendix F
Example: Registering MBeans and Attributes For Harvesting

user ="webl ogi c"
ny Ser ver Name="nyser ver"
myDomai n="nydonai n"
props="webl ogi c. Gener at eDef aul t Confi g=t rue, webl ogi c. Root Di r ect ory="
+nyDomai nDi rect ory
try:
connect (user, user, url)
except:
start Server (adni nServer Name=nySer ver Nane, domai nNanme=nyDormai n,
user name=user, passwor d=passwor d, syst enPr operti es=props
domai nDi r =nyDomai nDi rectory, bl ock="true")
connect (user, user, url)
start an edit session
edit()
startEdit()
cd("/")
Look up or create the W.DF System resource
w df Resour ceName = "myw df "
syst enResource = cno. | ookupSyst enResour ce(w df Resour ceNanre)
i f systenResour ce==None
print "Unable to find named resource,\
creating WDF System Resource: " + w df Resour ceNane
syst emResour ce=cno. cr eat eW.DFSyst enResour ce(w df Resour ceNane)
btain the harvester bean instance for configuration
print "Getting WDF Resource Bean from" + str(w df ResourceNane)
w df Resour ce = syst enResour ce. get W.DFResour ce()
print "CGetting Harvester Configuration Bean from" + w df ResourceNane
harvester = w df Resource. get Harvester ()
print "Harvester: " + harvester.getNane()
Target the WLDF System Resource to the deno server
w df Server=cno. | ookupSer ver (nyServer Nange)
syst enResour ce. addTar get (W df Server)
The harvester Jython wapper maintains refs to
the SystenResource objects
harvest er. set Sanpl ePeri od(5000)
harvester. set Enabl ed(1)
add an instance-based RT MBean attribute for collection
serverRuntine()
cd("/")
addAttribut eForl nstance(harvester, cno, "OpenSocketsCurrent Count")
have to return to the edit tree to activate
edit()
add a RT MBean type, all instances and attributes
with KnownType = "true"
addTypeByName(har vest er
"webl ogi c. managenent . runti me. W.DFI nst runent ati onRunt i neMBean", 1)
addTypeByName(har vest er
"webl ogi c. managenent . runti me. W.DFWat chNot i fi cati onRunti neMBean", 1)
addTypeByName(har vest er
"webl ogi c. managenent . runti me. W.DFHar vest er Runt i mreMBean", 1)

try:
save()
activate(bl ock="true")
except:
print "Error while trying to save and/or activate."
dunpSt ack()

display the data

di spl ayHar vest edTypes(harvester)
di sconnect ()

exit()

F-12

Appendix F
Example: Setting the WLDF Diagnostic Volume

F.6 Example: Setting the WLDF Diagnostic Volume

You can use WLST to configure the volume of Java Flight Recorder data that is
captured in a diagnostic image.By default, WLDF gathers data and record most events
in a WebLogic Server instance, unless specifically configured otherwise. Note that
even when WLDF diagnostic volume is set to O f , WLDF, and potentially the JVM

if flight recording is enabled, generate global events that have information about the
recording settings; for example, JVM metadata events that list active recordings, and
WLDF GloballnformationEvents that list the volume level for the domain, server, and
machine.

Example F-6 shows changing the WLDF diagnostic volume to Medi um

Example F-6 Setting WLDF Diagnostic Volume

connect ()

edit()

startEdit()

cd(" Servers/nyserver")

cd(" ServerDi agnosti cConfig")
cd("nyserver")

cno. set W.DFDi agnost i cVol une(" Medi unt')
save()

activate()

F.7 Example: Capturing a Diagnostic Image

ORACLE

You can use WLST to create a diagnostic image capture for a WebLogic Server
instance.(Note that you can also create a diagnostic image capture using the
WebLogic Server Administration Console or by executing an image action by means of
the Policies and Actions component.)

¢ Note:

If WebLogic Server is running in production mode, the server's SSL port
must be used when executing the commands included in this script.

Example F-7 show a sample WLST script that captures a diagnostic image. This
example does the following:

» Captures an diagnostic image after connecting, and then waits for the image task
to complete.

» Uses the get Avai | abl eCapt ur edl mages() command to obtain a list of available
diagnostic image files in the server's image directory.

* Loops through the list of available images in the diagnostic image capture
and saves each image file locally using the saveDi agnosti cl mageCapt ur eFi | e()
command.

Example F-7 Creating a Diagnhostic Image Capture

#
WLST script to capture a W.DF Di agnostic |mge and
retrieve the image files to a local dir.

F-13

Appendix F
Example: Capturing a Diagnostic Image

#

Usage:

#

java webl ogi c. W.ST capt urel mage. py [usernane] [passwd] [url] [output-dir]
#

where

#

username Usernanme to use to connect

passwd Password for connecting to server
url URL to connect to the server

output-dir Path to place saved entries

#

f

romjava.io inport File

Retrieve a positional argunent if it exists; if not,
the provided default is returned.

#
#
#
Parans:

pos The integer location in sys.argv of the paraneter

default The default value to return if the paraneter does not exi st
#
#
d

returns the value at sys.argv[pos], or the provided default if necesssary
ef getPositional Argunent (pos, default):
val ue=None
try:
val ue=sys. ar gv[pos]
except :
val ue=def aul t
return val ue

Credential argunents

unanme=get Posi ti onal Argunent (1, "webl ogic")
passwd=get Posi ti onal Argument (2, "password")

url =get Posi ti onal Argunent (3, "t3://local host:7001")
out put Di r=get Posi ti onal Argunent (4, ".")

connect (uname, passwd, url)
serverRuntine()
currentDrive=current Tree()

Capture a new di agnostic imge
try:
cd("serverRunti me: / W.DFRunt i me/ W.DFRunt i me/ W.DFI mageRunt i ne/ | nage")
t ask=cno. capt ur el mage()
Thr ead. sl eep(1000)
whil e task.isRunning():
Thr ead. sl eep(5000)
cno. reset | mageLockout () ;
finally:
currentDrive()

List the available diagnostic image files in the server's image capture dir
i mges=get Avai | abl eCapt ur edl mages()
if len(imges) > 0:
For each diagnostic image found, retrieve inage file, renaming it as
the user sees fit
for image in inages:
saveNane=out put Di r +Fi | e. separ at or +ser ver Name+' -' +i mage
saveDi agnost i cl mageCapt ur eFi | e(i mage, saveNane)

ORACLE F-14

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

F.8 Example: Retrieving a JFR File from a Diagnostic Image

Capture

ORACLE

You can use WLST to retrieve the Java Flight Recorder (JFR) file from each diagnostic
image capture that is located in the image destination directory on the server and copy
it to a local directory.The script shown in Example F-8 does the following:

» Connects to WebLogic Server, passing the required credentials.
» Creates a diagnostic image capture.

* Obtains a list of the available diagnostic image files in the server's configured
image directory.

» For each diagnostic image file, attempts to retrieve the JFR file and save it to a
local directory, ensuring that each file is renamed as necessary to avoid any from
being overwritten.

Note:

If WebLogic Server is running in production mode, the server's SSL port
must be used when executing the commands included in this script.

Example F-8 Retrieving a Diagnhostic Image Capture File

#

WLST script to capture a W.DF Di agnostic | mge and

save the FlightRecording.jfr entry locally

#

Usage:

#

java webl ogi c. W.ST capt urel mageEntry. py [username] [passwd] [url] [output-dir]
[i mage-suffix]

#

where

#

username Username to use to connect

passwd Password for connecting to server

url URL to connect to the server

output-dir Path to place saved entries

image-suffix Suffix to use to renane JFR inmage entries locally
#

i mport os.path
fromjava.io inport File

Retrieve a positional argument if it exists; if not,
the provided default is returned.

#
#
#
Parans:

pos The integer location in sys.argv of the paraneter

default The default value to return if the paraneter does not exi st
#
#
d

returns the value at sys.argv[pos], or the provided default if necesssary

ef getPositional Argunent (pos, default):
val ue=None

F-15

ORACLE

Appendix F
Example: Retrieving a JFR File from a Diagnostic Image Capture

try:

val ue=sys. ar gv[pos]
except:

val ue=def aul t
return val ue

Credential argunents

unanme=get Posi ti onal Argunent (1, "webl ogic")
passwd=get Posi ti onal Argument (2, "password")

url =get Posi ti onal Argunent (3, "t3://local host:7001")
out put Di r =get Posi ti onal Argunent (4, ".")

i mageSuf fi x=get Posi ti onal Argunent (5, " _WS")

connect (uname, passwd, url)
serverRuntine()
currentDrive=current Tree()

Capture a new diagnostic image capture file
try:
cd("serverRunti me: / W.DFRunt i me/ W.DFRunt i me/ W.DFI mageRunt i ne/ | nage")
t ask=cno. capt ur el mage()
Thr ead. sl eep(1000)
whil e task.isRunning():
Thr ead. sl eep(5000)
cno. reset | mageLockout () ;
finally:
currentDrive()

List the available diagnostic image captures in the server's inmge capture dir
i mges=get Avai | abl eCapt ur edl mages()
if len(imges) > 0:
For each image capture found, retrieve the JFR entry and save it to a | ocal
file, renaning it to avoid collisions in the event there are multiple
diagnostic imge capture files with JFR entries.
i =0
for image in inages:
saveNane=out put Di r +Fi | e. separ at or +" Fl i ght Recor di ng_" +i mageSuf fi x+"-"+str (i)
+ o jfr"
whi | e 0s. path. exi st s(saveNane) :
i +=1
saveNane=out put Di r +Fi | e. separ at or +" Fl i ght Recor di ng_" +i mageSuf fi x+"-"+str (i)
+jfr"
saveDi agnosti cl mageCapt ureEntryFi | e(i mage, ' Fl i ght Recording.jfr', saveNare)
i +=1

F-16

WLDF Query Language-Based Policies

The WebLogic Diagnostics Framework (WLDF) provides the WLDF query language for
creating policy expressions.

" Note:

The WLDF query language is deprecated in WebLogic Server as of version
12.2.1. Oracle recommends using Java Expression Language (EL) instead.
Diagnostic system modules containing policy expressions that use the WLDF
query language are supported for backward compatibility. For information
about using Java EL in policy expressions, see Configuring Policies.

* Types of Policies

* Policy Configuration Options

» Configuring Harvester Policies Using the WLDF Query Language
» Configuring Log Policies Using the WLDF Query Language

* Configuring Instrumentation Policies Using the WLDF Query Language

G.1 Types of Policies

ORACLE

WLDF supports policies that you can configure within the context of using the WLDF
guery language.

WLDF provides three main types of policies, based on what the policy can monitor:

e Harvester policies monitor the set of harvestable MBeans in the local runtime
MBean server.

e Log policies monitor the set of messages generated into the server or domain
logs.

e Instrumentation (or Event Data) policies monitor the set of events generated by
the WLDF Instrumentation component.

In the WLDF system resource configuration file for a diagnostic module, each type of
policy is defined in a <rule-type> element, which is a child of <watch>. For example:

<wat ch>

<rul e-type>Harvester</rul e-type>

<I-- Oher configuration el enents -->
</ wat ch>

Policies with different rule types differ in two ways:

* The rule syntax for specifying the conditions being monitored are unique to the
type.

G-1

Appendix G
Policy Configuration Options

* Log and instrumentation policies are triggered in real time, whereas Harvester
policies are triggered only after the current harvest cycle completes.

G.2 Policy Configuration Options

WLDF provides several tool options for configuring policies.

For information about policy configuration options, see How Policies Are Configured.

G.3 Configuring Harvester Policies Using the WLDF Query

Language

ORACLE

WLDF provides three main types of Harvester policies that can be configured with
WLDF query language-based expressions. Each policy type is based on what the
policy can monitor.

" Note:

If you define a policy to monitor an MBean (or MBean attributes) that the
Harvester is not configured to harvest, the policy will work. The Harvester
will implicitly harvest values to satisfy the requirements set in the defined
policy expressions. However, data harvested in this way (that is, implicitly for
a policy) is not archived. See Configuring the Harvester for Metric Collection.

Harvester policies are triggered in response to a harvest cycle. So, for Harvester
policies, the Harvester sample period defines a time interval between when a situation
is identified and when it can be reported though an action. On average, the delay is
SamplePeriod/2.

Example G-1 shows a configuration example of a Harvester policy that monitors
several runtime MBeans. When the policy expression (defined in the <rule-
expression> element) evaluates to true, six different actions are executed to generate
the following: a JMX natification, an SMTP noatification, an SNMP notification, an image
action, and JMS naotifications for both a topic and a queue.

The policy is a logical expression composed of four Harvester variables. The
expression has the form:

((A>=100) AND (B >0)) ORC OR D.equal s("active")
Each variable is of the form:
{entityName}//{attribut eNane}

In the preceding syntax, { entit yName} is the JMX ObjectName as registered in
the runtime MBean server or the type name as defined by the Harvester, and
{attributeNane} is the name of an attribute defined on that MBean type.

" Note:

The comparison operators are qualified in order to be valid in XML.

G-2

Appendix G
Configuring Harvester Policies Using the WLDF Query Language

Example G-1 Sample Harvester Policy Configuration (in DIAG_MODULE.xml)

<wl df -resource xm ns="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c- di agnostics"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://xn ns. oracl e. conf webl ogi c/ webl ogi c- di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd">
<nanme>nyw df 1</ nane>
<harvest er>
<l-- Harvesting does not have to be configured and enabl ed for harvester
policies. However, configuring the Harvester can provi de advantages;
for exanple the data will be archived. -->
<har vest ed- t ype>
<nanme>nyMBeans. MySi npl eSt andar d</ name>
<har vest ed- i nst ance>nyCust onDomai n: Name=ny Cust onVBeanl
</ harvest ed-i nst ance>
<har vest ed- i nst ance>nyCust onDomai n: Name=ny Cust onVBean?2
</ harvest ed-i nst ance>
</ harvest ed-type>
<l-- Oher Harvester configuration elenents -->
</ harvester>
<wat ch-noti fication>
<wat ch>
<nanme>si npl eVebLogi cMBeanWat chRepeat i ngAf t er Wi t </ nane>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Harvester</rul e-type>
<rul e- expressi on>
(${ nydomai n: Name=W.DFHar vest er Runt i ne, Ser ver Runt i ne=nyserver, Type=
W.DFHar vest er Runt i me, W.DFRunt i me=W.DFRunt i me/ / Tot al Sanpl i ngTi e}
> ; = 100
AND
${ nydomai n: Name=nyser ver, Type=
Server Runti me/ / OpenSocket sCurrent Count} > 0)
OoR
${ nydomai n: Name=W.DF\W\at chNot i fi cat i onRunt i me, Server Runti me=
myserver, Type=W.DFWat chNot i fi cati onRunti ne,
W.DFRunt i me=W.DFRunt i me/ / Enabl ed} = true
R
${ nyCust onDonai n: Nane=nyCust onmvBean3// State} =
"active')
</rul e-expressi on>
<severity>Wrni ng</severity>
<al armt ype>Aut omat i cReset </ al arm t ype>
<al armr eset - peri 0d>10000</ al ar m r eset - peri od>
<noti fication>nyJMXNoti f, nyl nageNotii f,
myJMSTopi cNot i f, myJMSQueueNot i f, mySNVPNot i f,
mySMIPNot i f </ noti fication>
</ wat ch>
<l-- Oher policy-action configuration elenments -->
</wat ch-notificati on>
</w df -resource>

This policy uses an alarm type of AutomaticReset, which means that it may be
triggered repeatedly, provided that the last time it was triggered was longer than the
interval set as the alarm reset period (in this case 10000 milliseconds).

The severity level provided, Warning, has no effect on the triggering of the policy, but
will be passed on through the actions.

ORACLE G-3

Appendix G
Configuring Log Policies Using the WLDF Query Language

G.4 Configuring Log Policies Using the WLDF Query

Language

Use log policies to monitor the occurrence of specific messages or strings in the
server or domain log. Policies of this type are triggered as a result of a log message
containing the specified data being issued.

The following example shows the configuration, in DI AG MODULE. xm , for a server log
policy:

<w df -resource xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- di agnosti cs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schenmaLocation="http://xnl ns. oracl e. conf webl ogi ¢/ webl ogi c-di agnosti cs/ 1. 0/
webl ogi c- di agnosti cs. xsd" >
<name>nyw df 1</ name>
<wat ch-notification>
<enabl ed>t r ue</ enabl ed>
<l og- wat ch- severity>l nf o</ | og-wat ch- severity>
<wat ch>
<nanme>nyLogWat ch</ nane>
<rul e-type>Log</rul e-type>
<rul e- expr essi on>M5A D=" BEA- 000360' </ r ul e- expressi on>
<severity>lnfo</severity>
<notification>nyMail Notif2</notification>
</ wat ch>
<sntp-notification>
<nanme>nyMai | Not i f 2</ name>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ mai | - sessi on-j ndi - nane>
<subj ect>This is a log al ert</subject>
<reci pi ent >user name@nmai | servi ce. conx/reci pi ent >
</sntp-notification>
</wat ch-notification>
</w df -resour ce>

In the preceding example, note how the <rule-type> of Log causes messages or
strings entered in the server log to be monitored. A <rule-type> of Domai nLog monitors
messages or strings in the domain log.

G.5 Configuring Instrumentation Policies Using the WLDF
Query Language

ORACLE

You use instrumentation policies to monitor the events from the WLDF Instrumentation
component. Policies of this type are triggered as a result of the event being posted.

The following example shows the configuration, in DI AG_ MODULE. xni , for an
instrumentation policy:

<wat ch-notification>
<wat ch>
<name>nyl nst Wat ch</ name>
<enabl ed>t r ue</ enabl ed>
<rul e-type>Event Dat a</rul e-type>
<rul e- expressi on>
(PAYLOAD > 100000000) AND (MONI TOR = ' Servl et Around_Service')

G-4

ORACLE

Appendix G
Configuring Instrumentation Policies Using the WLDF Query Language

</rul e-expressi on>
<alarmtype xsi:nil="true"></alarmtype>
<notification>nySMIPNot i fication</notification>
</ wat ch>
<sntp-notification>
<nane>nySMIPNot i fi cati on</ nane>
<enabl ed>t r ue</ enabl ed>
<mai | - sessi on-j ndi - name>nyMai | Sessi on</ nai | - sessi on-j ndi - name>
<subj ect xsi:nil="true"></subject>
<body xsi:nil="true"></body>
<r eci pi ent >user nane@nmi | servi ce. conx/ reci pi ent >
</sntp-notification>
</wat ch-notification>

G-5

Glossary

ORACLE

action

The operation that occurs as a result of the successful evaluation of a policy
expression. The WebLogic Diagnostics Framework supports these types of diagnostic
actions: Java Management Extensions (JMX), Java Message Service (JMS), Simple
Mail Transfer Protocol (SMTP), Simple Network Management Protocol (SNMP),
scaling, REST, script, and diagnostic image capture. See also diagnostic image.

" Note:

As of WebLogic Server 12.2.1, the term notification is replaced with action.
The definition is unchanged.

artifact

Any resulting physical entity, or data, generated and persisted to disk by the WebLogic
Diagnostics Framework that can be used later for diagnostic analysis. For example,
the diagnostic image file that is created when the server fails is an artifact. The
diagnostic image artifact is provided to support personnel for analysis to determine
why the server failed. The WebLogic Diagnostics Framework produces a number of
different artifacts.

bean
See WLDF bean.

context creation

If diagnostic monitoring is enabled, a diagnostic context is created, initialized,

and populated by WebLogic Server when a request enters the system. Upon

request entry, WebLogic Server determines whether a diagnostic context is

included in the request. If so, the request is propagated with the provided

context. If not, WebLogic Server creates a new context with a specific name
(weblogic.management.DiagnosticContext). The contextual data for the diagnostic
context is stored in the diagnostic context payload. Thus, within the scope of a request
execution, existence of the diagnostic context is guaranteed.

Glossary-1

ORACLE

Glossary

context payload

The actual contextual data for the diagnostic context is stored in the Context Payload.
See also context creation, diagnostic context, request dyeing.

data stores

Data stores are a collection of data, or records, represented in a tabular format.
Each record in the table represents a datum. Columns in the table describe various
characteristics of the datum. Different data stores may have different columns;
however, most data stores have some shared columns, such as the time when the
data item was collected.

In WebLogic Server, information captured by WebLogic Diagnostics Framework is
segregated into logical data stores, separated by the types of diagnostic data. For
example, Server logs, HTTP logs, and harvested metrics are captured in separate
data stores.

diagnostic action

Business logic or diagnostic code that is executed when a joinpoint defined by a
pointcut is reached. Diagnostic actions, which are associated with specific pointcuts,
specify the code to execute at a joinpoint. Put another way, a pointcut declares the
location and a diagnostic action declares what is to be done at the locations identified
by the pointcut.

Diagnostic actions provide visibility into a running server and applications. Diagnostic
actions specify the diagnostic activity that is to take place at locations, or pointcuts,
defined by the monitor in which it is implemented. Without a defined action, a
diagnostic monitor is useless.

Depending on the functionality of a diagnostic action, it may need a certain
environment to do its job. Such an environment must be provided by the monitor to
which the diagnostic action is attached; therefore, diagnostic actions can be used only
with compatible monitors. Hence, diagnostic actions are classified by type so that their
compatibility with monitors can be determined.

To facilitate the implementation of useful diagnostic monitors, a library of suitable
diagnostic actions is provided with the WebLogic Server product.

diagnostic context

The WebLogic Diagnostics Framework adds contextual information to all requests
when they enter the system. You can use this contextual information, referred to as the
diagnostic context, to reconstruct transactional events, as well correlate events based
on the timing of the occurrence or logical relationships. Using diagnostic context you
can reconstruct or piece together a thread of execution from request to response.

Various diagnostic components, for example, the logging services and diagnostic
monitors, use the diagnostic context to tag generated data events. Using the tags, the

Glossary-2

Glossary

diagnostic data can be collated, filtered and correlated by the WebLogic Diagnostics
Framework and third-party tools.

The diagnostic context also makes it possible to generate diagnostic information only
when contextual information in the diagnostic context satisfies certain criteria. This
capability enables you to keep the volume of generated information to manageable
levels and keep the overhead of generating such information relatively low. See also
context creation, context payload, request dyeing.

diagnostic image

An artifact containing key state from an instance of a server that is meant to serve as a
server-level state dump for the purposes of diagnosing significant failures. This artifact
can be used to diagnose and analyze problems even after the server has cycled.

diagnostic module

A diagnostic module is the definition the configuration settings that are to be applied to
the WebLogic Diagnostics Framework. The configuration settings determine the data
that is to be collected and processed; how the data is to be analyzed and archived; the
policies that are to be evaluated; the actions, notifications, and alarms that are to be
executed; and the operating parameters of the Diagnostic Image Capture component.
After a diagnostic module has been defined, or configured, it can be distributed to a
running server where the data is collected.

diagnostic monitor
A diagnostic monitor is a unit of diagnostic code that defines the following:

1. The locations in a program where the diagnostic code is added
2. The diagnostic actions that are executed at those locations

WebLogic Server provides a library of useful diagnostic monitors. You can integrate
these monitors into server and application classes. Once integrated, the monitors
take effect at server startup for server classes, and at application deployment and
redeployment for application classes.

dye filtering

The process of looking at the dye mask and making the decision as to whether or not
a diagnostic monitor should execute an action so as to generate a data event. Dye
filtering is dependent upon dye masks. You must define dye masks in order for dye
filtering to take place. See also dye mask, request dyeing.

ORACLE Glossary-3

ORACLE

Glossary

dye mask

The entity that contains a predefined set of conditions that are used by dye filtering
in diagnostic monitors to determine whether or not a data event should be generated.
See also dye filtering, request dyeing.

harvestable entities

A harvestable entity is any entity that is available for data consumption via the
Harvester. Once an entity is identified as a harvestable resource, the Harvester can
engage the entity in the data collection process.

Harvestable entities provide access to the following information: harvestable attributes,
values of harvestable attributes, metadata for harvestable attributes, and the name

of the harvestable entity. See also harvestable data, harvested data, Harvester's
configuration data set, MBean type discovery.

harvestable data

Harvestable data (types, instances, attributes) is the set of data that potentially
could be harvested when and if a harvestable entity is configured for harvesting.
Therefore, the set of harvestable data exists independent of what data is configured
for harvesting and of what data samples are taken.

The WLDFHarvesterRuntimeMBean provides the set of harvestable data for users.
For a description of the information about harvestable data provided by this MBean,
see the description of the weblogic.management.runtime.W.DFHar vest er Runt i meMBean
in the MBean Reference for Oracle WebLogic Server.

The WebLogic Diagnostics Framework makes runtime MBeans available as
harvestable only. In order for an MBean to be harvestable, it must be registered in the
local WebLogic Server runtime MBean server. See also harvestable entities, harvested
data, Harvester's configuration data set, MBean type discovery.

harvested data

A type, instance, or attribute is called harvested data if that data is currently being
harvested. To meet these criteria the data must: 1) be configured to be harvested, 2)
if applicable, it must have been discovered, and 3) it must not throw exceptions while
being harvested.

See also harvestable entities, harvestable data, Harvester's configuration data set.

Harvester's configuration data set

The set of data to be harvested as defined by the Harvester's configuration. The
configured data set can contain items that are not harvestable and items that are not
currently being harvested.

Glossary-4

ORACLE

Glossary

See also harvestable entities, harvestable data, Harvester's configuration data set.

joinpoint

A well defined point in the program flow where diagnostic code can be added. The
Instrumentation component allows identification of such diagnostic joinpoints with an
expression in a generic manner.

MBean (Managed Bean)

A Java object that provides a management interface for an underlying resource. An
MBean is part of Java Management Extensions (JMX).

In the WebLogic Diagnostics Framework, MBean classes are used to configure the
service and to monitor its runtime state. MBeans are registered with the MBean server
that runs inside WebLogic Server. MBeans are implemented as standard MBeans
which means that each class implements its own MBean interface.

MBean type discovery

For WebLogic Server entities, the set of harvestable types is known at system startup,
but not the complete set of harvestable instances. However, for user-defined MBeans,
the set of types can grow dynamically as more MBeans appear at run time. The
process of detecting a new type based on the registration of a new MBean is called
type discovery. MBean type discovery is only applicable to user-defined MBeans.

MBean type metadata

The set of harvestable attributes for a type (and its instances) is defined by the
metadata for the type. Since the WebLogic Server model is MBeans, the metadata is
provided through MBeanlinfos. Since WebLogic type information is always available,
the set of harvestable attributes for WebLogic Server types (and existing and potential
instances) is always available as well. However, for customer types, knowledge of the
set of harvestable attributes is dependent on the existence of the type. And, the type
does not exist until at least one instance is created. So the list of harvestable attributes
on a user defined type is not known until at least one instance of the type is registered.

It is important to be aware of latencies in the availability of information for custom
MBeans. Due to latencies, the WebLogic Server Administration Console cannot
provide complete lists of all harvestable data in its user selection lists for configuring
the Harvester. The set of harvestable data for WebLogic Server entities is always
complete, but the set of harvestable data for customer entities (and even the set of
entities itself) may not be complete.

metadata

Metadata is information that describes the information the WebLogic Diagnostics
Framework collects. Because the service collects diagnostic information from different
sources, the consumers of this information need to know what diagnostic information

Glossary-5

ORACLE

Glossary

is collected and available. To satisfy this need, the Data Accessor provides
functionality to programmatically obtain this metadata. The metadata made available
by means of the Data Accessor includes:

1. Alist of supported data store types. For example, SERVER_LOG, HTTP_LOG,
and HARVESTED_DATA.

2. Alist of available data stores.

3. The layout of each data store; that is, information about columns in the data store.

metrics

Monitoring system operation and diagnosing problems depends on having data from
running systems. Metrics are measurements of system performance. From these
measurements, support personnel can determine whether the system is in good
working order or a problem is developing.

In general, metrics are exposed to the WebLogic Diagnostics Framework as attributes
on qualified MBeans. In WebLogic Server, metrics include performance measurements
for the operating system, the virtual machine, the system runtime, and applications
running on the server.

pointcut

A well defined set of joinpoints, typically identified by some generic expression.
Pointcuts identify joinpoints, which are well-defined points in the flow of execution,
such as a method call or method execution site. The Instrumentation component
provides a mechanism to allow execution of specific diagnostic code at such
pointcuts. The Instrumentation component adds such diagnostic code to the server
and application code.

request dyeing

Requests can be dyed, or specially marked, to indicate that they are of special
interest. For example, in a running system, it may be desirable to send a specially
marked test request, which can be conditionally traced by the tracing monitors. This
allows creation of highly focused diagnostic information without slowing down other
requests.

Requests are typically marked when they enter the system by setting flags in the
diagnostic context. The diagnostic context provides a number of flags, 64 in all, that
can be independently set or reset.

See also context creation, context payload, diagnostic context.

smart rule

Out-of-the-box policy expression predicate that includes a number of configurable
parameters. Smart rules greatly simplify the creation of scaling policies by providing

Glossary-6

Glossary

templates in which you specify the conditions for executing a scaling action on a
dynamic cluster.

system image capture

Whenever a system fails, there is need to know its state when it failed. Therefore, a
means of capturing system state upon failure is critical to failure diagnosis. A system
image capture does just that. It creates, in essence, a diagnostic snapshot, or dump,
from the system for the express purpose of diagnosing significant failures.

In WebLogic Server, you can configure the WebLogic Diagnostics Framework provides
the First-Failure Notification feature to trigger system image captures automatically
when the server experiences an abnormal shutdown. You can also implement watches
to automatically trigger diagnostic image captures when significant failures occur and
you can manually initiate diagnostic image captures on demand.

policy

A policy encapsulates all of the information for a policy expression. This includes the
expression, the alarm settings for the policy, and the various action handlers that are
executed once a policy expression evaluates to true.

Note:

Note: As of WebLogic Server 12.2.1, the term watch is replaced with policy.
The definition is unchanged.

weaving time

The time it takes to inspect server and application classes and insert the diagnostic
byte code at well-defined locations, if necessary at class load time. The diagnostic
byte code enables the WebLogic Diagnostics Framework to take diagnostic actions.
Weaving time affects both the load time for server-level instrumented classes and
application deployment time for application-level classes.

WLDF bean

An annotated HK2 service that can be discovered at run time and inserted into the
Java EL objects that are used by policy expressions. Each bean provides a set of
attributes and operations that can present a set of domain-specific data that can be
used from policies.

ORACLE Glossary-7

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 What Is the WebLogic Diagnostics Framework?
	1.2 Document Scope and Audience
	1.3 Guide to This Document
	1.4 Related Documentation
	1.5 Samples and Tutorials
	1.5.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.5.2 WLDF Samples Available for Download

	1.6 What’s New in This Guide

	2 Overview of the WLDF Architecture
	2.1 Overview of the WebLogic Diagnostics Framework
	2.2 Data Creation, Collection, and Instrumentation
	2.3 Archive
	2.4 Policies and Actions
	2.5 Data Accessor
	2.6 Monitoring Dashboard and Request Performance Pages
	2.6.1 Monitoring Dashboard
	2.6.2 Diagnostics Request Performance Page

	2.7 Diagnostic Image Capture
	2.8 How It All Fits Together
	2.9 WLDF Support for Multitenancy

	3 Using the Built-in Diagnostic System Modules
	3.1 Overview
	3.1.1 Types of Built-in Diagnostic System Modules
	3.1.2 Data Collected by Built-in Diagnostic System Modules

	3.2 Configuring a Built-in Diagnostic Module
	3.3 Accessing Data Collected by a Built-in Diagnostic System Module
	3.3.1 Using the Monitoring Dashboard
	3.3.2 Using the Metrics Log Table in the Administration Console

	3.4 Creating a Custom Diagnostic System Module Based on a Built-in

	4 Using WLDF with Java Flight Recorder
	4.1 About Java Flight Recorder
	4.2 Using Java Flight Recorder with Oracle HotSpot
	4.3 Key Features of WLDF Integration with Java Flight Recorder
	4.4 Java Flight Recorder Use Cases
	4.4.1 Diagnosing a Critical Failure — The "Black Box"
	4.4.2 Profiling During Performance Testing or in Production
	4.4.3 Real-Time Application Diagnostics and Reporting

	4.5 Obtaining the Flight Recording File
	4.6 Analyzing Java Flight Recorder Data
	4.6.1 Java Flight Recorder Graphical User Interface
	4.6.2 Analyzing Execution Flow — A Sample Walkthrough
	4.6.2.1 Displaying Event Data for a Product Subcomponent
	4.6.2.2 Viewing the Event Log to Display Details
	4.6.2.3 Tracking Execution Flow by Analyzing an Operative Set
	4.6.2.4 Expanding the Operative Set and Viewing Correlated Diagnostic Data

	4.6.3 Changing the Location of Temporary JFR Files

	5 Understanding WLDF Configuration
	5.1 Configuration MBeans and XML
	5.2 Tools for Configuring WLDF
	5.3 How WLDF Configuration Is Partitioned
	5.3.1 Server-Level Configuration
	5.3.2 Application-Level Configuration

	5.4 Configuring Diagnostic Image Capture and Diagnostic Archives
	5.5 Configuring Diagnostic Image Capture for Java Flight Recorder
	5.6 Configuring Diagnostic System Modules
	5.6.1 About the Resource Descriptor
	5.6.2 WLDF Runtime Control
	5.6.3 Creating a Diagnostic System Module Based on a Configured Resource Descriptor
	5.6.4 Creating a Diagnostic System Module Based on an External Resource Descriptor
	5.6.5 Targeting a Diagnostic System Module to a Server or Cluster
	5.6.6 Dynamically Activating or Deactivating Diagnostic System Modules
	5.6.7 Using WLST to Activate and Deactivate Diagnostic System Modules
	5.6.7.1 Example

	5.6.8 More Information About Configuring Diagnostic System Modules

	5.7 Configuring Diagnostic Modules for Applications
	5.8 WLDF Configuration MBeans and Their Mappings to XML Elements

	6 Configuring and Capturing Diagnostic Images
	6.1 How to Initiate Image Captures
	6.2 Configuring Diagnostic Image Captures
	6.2.1 Configuring WLDF Diagnostic Volume
	6.2.1.1 Low Volume Setting
	6.2.1.2 Medium Volume Setting
	6.2.1.3 High Volume Setting

	6.2.2 WLST Commands for Generating an Image Capture

	6.3 How Diagnostic Image Capture Is Persisted in the Server's Configuration
	6.4 Content of the Captured Image File
	6.4.1 Data Included in the Diagnostics Image Capture File
	6.4.2 WLST Online Commands for Downloading Diagnostics Image Captures

	7 Configuring Diagnostic Archives
	7.1 Configuring the Archive
	7.2 Configuring a File-Based Store
	7.3 Configuring a JDBC-Based Store
	7.3.1 Creating WLDF Tables in the Database
	7.3.1.1 Apache Derby
	7.3.1.2 Oracle Database
	7.3.1.3 MySQL

	7.3.2 Configuring JDBC Resources for WLDF

	7.4 Retiring Data from the Archives
	7.4.1 Configuring Data Retirement at the Server Level
	7.4.2 Configuring Age-Based Data Retirement Policies for Diagnostic Archives
	7.4.3 Sample Configuration

	8 Configuring the Harvester for Metric Collection
	8.1 Harvesting, Harvestable Data, and Harvested Data
	8.2 Harvesting Data from the Different Harvestable Entities
	8.3 Configuring the Harvester
	8.3.1 Configuring the Harvester Sampling Period
	8.3.2 Configuring the Types of Data to Harvest
	8.3.3 Specifying Type Names for WebLogic Server MBeans and Custom MBeans
	8.3.4 Harvesting from the Domain Runtime MBean Server
	8.3.5 When Configuration Settings Are Validated
	8.3.6 Sample Configurations for Different Harvestable Types

	8.4 Harvester Performance Considerations

	9 Configuring Policies and Actions
	9.1 Policies and Actions
	9.2 Overview of Policies and Actions Configuration
	9.3 Sample Policies and Actions Configuration

	10 Configuring Policies
	10.1 How Policies Are Configured
	10.1.1 Rule Type
	10.1.2 Expression Language
	10.1.3 Policy Expression
	10.1.4 Actions
	10.1.5 Policy Schedule
	10.1.6 Alarm Options
	10.1.7 Severity Option
	10.1.8 Enablement Option

	10.2 Configuring Scheduled Policies
	10.2.1 Configuring Calendar Based Policies
	10.2.2 Configuring Smart Rule Based Policies
	10.2.2.1 Types of Diagnostic Data that Smart Rules Evaluate
	10.2.2.2 Smart Rule Example

	10.2.3 Chaining Policies

	10.3 Configuring Log Policies
	10.4 Configuring Instrumentation Policies
	10.5 Creating Complex Policy Expressions Using WLDF Java EL Extensions
	10.5.1 Writing Collected Metrics Policy Expressions Using Beans
	10.5.1.1 Accessing MBean Data in Collected Metrics
	10.5.1.2 Working with Complex MBean Attributes
	10.5.1.3 Performing Bulk Queries on Collected Metrics from MBeans

	10.5.2 Writing Collected Metrics Policy Expressions Using Functions
	10.5.2.1 Examining Trends in Metric Values over Time
	10.5.2.2 Extracting and Examining Collected Metrics in Policy Expressions
	10.5.2.3 Lifecycle of Data Collection

	11 Configuring Actions
	11.1 Actions Overview
	11.1.1 Types of Actions
	11.1.2 Variables for Customizable Actions
	11.1.3 Action Timeout

	11.2 Configuring JMX Actions
	11.3 Configuring JMS Actions
	11.4 Configuring SNMP Actions
	11.5 Configuring Log Actions
	11.6 Configuring REST Actions
	11.7 Configuring SMTP Actions
	11.8 Configuring Image Actions
	11.9 Configuring Elastic Actions
	11.9.1 Elastic Scaling Operations Cannot Be Cancelled After Starting
	11.9.2 Limiting Server Shutdown Time During Scale Down Operations

	11.10 Configuring Script Actions
	11.11 Configuring Heap Dump Actions
	11.12 Configuring Thread Dump Actions

	12 Configuring Instrumentation
	12.1 Concepts and Terminology
	12.1.1 Instrumentation Scope
	12.1.2 Configuration and Deployment
	12.1.3 Joinpoints, Pointcuts, and Diagnostic Locations
	12.1.4 Diagnostic Monitor Types
	12.1.5 Diagnostic Actions

	12.2 Instrumentation Configuration Files
	12.3 XML Elements Used for Instrumentation
	12.3.1 <Instrumentation> XML Elements
	12.3.2 <wldf-instrumentation-monitor> XML Elements
	12.3.3 Mapping <wldf-instrumentation-monitor> XML Elements to Monitor Types

	12.4 Configuring Server-Scoped Instrumentation
	12.5 Configuring Application-Scoped Instrumentation
	12.5.1 Comparing System-Scoped to Application-Scoped Instrumentation
	12.5.2 Overview of the Steps Required to Instrument an Application
	12.5.3 Creating a Descriptor File for a Delegating Monitor
	12.5.4 Creating a Descriptor File for a Custom Monitor
	12.5.4.1 Defining Pointcuts for Custom Monitors
	12.5.4.2 Annotation-based Pointcuts

	12.6 Creating Request Performance Data

	13 Configuring the DyeInjection Monitor to Manage Diagnostic Contexts
	13.1 Contents, Life Cycle, and Configuration of a Diagnostic Context
	13.1.1 Context Life Cycle and the Context ID
	13.1.2 Dyes, Dye Flags, and Dye Vectors
	13.1.3 Where Diagnostic Context Is Configured

	13.2 Overview of the Process
	13.3 Configuring the Dye Vector via the DyeInjection Monitor
	13.3.1 Dyes Supported by the DyeInjection Monitor
	13.3.2 PROTOCOL Dye Flags
	13.3.3 THROTTLE Dye Flag
	13.3.4 When Diagnostic Contexts Are Created

	13.4 Configuring Delegating Monitors to Use Dye Filtering
	13.5 How Dye Masks Filter Requests to Pass to Monitors
	13.5.1 Dye Filtering Example

	13.6 Using Throttling to Control the Volume of Instrumentation Events
	13.6.1 Configuring the THROTTLE Dye
	13.6.2 How Throttling is Handled by Delegating and Custom Monitors

	13.7 Using weblogic.diagnostics.context

	14 Accessing Diagnostic Data With the Data Accessor
	14.1 Data Stores Accessed by the Data Accessor
	14.2 Accessing Diagnostic Data Online
	14.2.1 Accessing Data Using the Administration Console
	14.2.2 Accessing Data Programmatically Using Runtime MBeans
	14.2.3 Using WLST to Access Diagnostic Data Online
	14.2.4 Using the WLDF Query Language with the Data Accessor

	14.3 Accessing Diagnostic Data Offline
	14.4 Accessing Diagnostic Data Programmatically
	14.5 Resetting the System Clock Can Affect How Data Is Archived and Retrieved

	15 Deploying WLDF Application Modules
	15.1 Deploying a Diagnostic Module as an Application-Scoped Resource
	15.2 Using Deployment Plans to Dynamically Control Instrumentation Configuration
	15.3 Using a Deployment Plan: Overview
	15.4 Creating a Deployment Plan Using weblogic.PlanGenerator
	15.5 Sample Deployment Plan for Diagnostics
	15.6 Enabling Java HotSwap
	15.7 Deploying an Application with a Deployment Plan
	15.8 Updating an Application with a Modified Plan

	16 Using the Monitoring Dashboard
	16.1 Running the Monitoring Dashboard
	16.2 Scope of the Diagnostic Information Displayed
	16.3 About the Monitoring Dashboard Interface
	16.3.1 View List
	16.3.2 Metric Browser
	16.3.3 View Display Panel

	16.4 Understanding How Metrics Are Collected and Presented
	16.4.1 About Metrics and Chart Types
	16.4.1.1 Current Time Range Charts
	16.4.1.2 Custom Time Range Charts

	16.4.2 Sequence in which Metrics Data is Displayed
	16.4.3 Notes about Metric Data Retention

	16.5 The Parts of a Chart

	17 Configuring and Using WLDF Programmatically
	17.1 How WLDF Generates and Retrieves Data
	17.2 Mapping WLDF Components to Beans and Packages
	17.3 Programming Tools
	17.3.1 Configuration and Runtime APIs
	17.3.1.1 Configuration APIs
	17.3.1.2 Runtime APIs

	17.4 WLDF Packages
	17.5 Programming WLDF: Examples
	17.5.1 Example: DiagnosticContextExample.java
	17.5.2 Example: HarvesterMonitor.java
	17.5.2.1 Notification Listeners
	17.5.2.2 HarvesterMonitor.java

	17.5.3 Example: JMXAccessorExample.java

	18 Using Debug Patches
	18.1 Dynamic Application of Debug Patches
	18.2 Specifying the Debug Patch Directory
	18.3 Configuring the WLDF Debug Patch Agent
	18.4 WLST Commands for Debug Patches
	18.4.1 Dynamically Activating a Debug Patch
	18.4.2 Dynamically Deactivating Debug Patches

	A Smart Rule Reference
	A.1 About the Parameters You Specify for Smart Rules
	A.2 Cluster Scope Smart Rules
	A.2.1 ClusterLowThroughput
	A.2.2 ClusterHighProcessCpuLoadAverage
	A.2.3 ClusterHighThroughput
	A.2.4 ClusterLowPendingUserRequests
	A.2.5 ClusterHighStuckThreads
	A.2.6 ClusterLowQueueLength
	A.2.7 ClusterHighPendingUserRequests
	A.2.8 ClusterLowProcessCpuLoadAverage
	A.2.9 ClusterHighIdleThreads
	A.2.10 ClusterLowSystemLoadAverage
	A.2.11 ClusterHighQueueLength
	A.2.12 ClusterLowHeapFreePercent
	A.2.13 ClusterHighSystemLoadAverage
	A.2.14 ClusterHighHeapFreePercent
	A.2.15 ClusterLowSystemCpuLoadAverage
	A.2.16 ClusterLowIdleThreads
	A.2.17 ClusterGenericMetricRule
	A.2.18 ClusterHighSystemCpuLoadAverage

	A.3 Server Scope Smart Rules
	A.3.1 ServerLowIdleThreads
	A.3.2 ServerHighThroughput
	A.3.3 ServerGenericMetricRule
	A.3.4 ServerLowPendingUserRequests
	A.3.5 ServerLowProcessCpuLoadAverage
	A.3.6 ServerHighSystemLoadAverage
	A.3.7 ServerLowQueueLength
	A.3.8 ServerLowThroughput
	A.3.9 ServerHighQueueLength
	A.3.10 ServerHighSystemCpuLoadAverage
	A.3.11 ServerHighPendingUserRequests
	A.3.12 ServerLowSystemCpuLoadAverage
	A.3.13 ServerHighHeapFreePercent
	A.3.14 ServerHighStuckThreads
	A.3.15 ServerHighProcessCpuLoadAverage
	A.3.16 ServerLowSystemLoadAverage
	A.3.17 ServerLowHeapFreePercent
	A.3.18 ServerHighIdleThreads

	B WLDF Beans and Functions Reference
	B.1 WLDF Beans Reference
	B.1.1 clusterRuntime
	B.1.2 domainRuntime
	B.1.3 instrumentationEvent
	B.1.4 log
	B.1.5 partition
	B.1.6 platform
	B.1.7 resource
	B.1.8 runtime

	B.2 Functions Reference
	B.2.1 wls:tableChanges
	B.2.2 wls:tableAverages
	B.2.3 wls:extract
	B.2.4 wls:average
	B.2.5 wls:changes
	B.2.6 wls:aliveServersCount

	C WLDF Query Language
	C.1 Components of a Query Expression
	C.2 Supported Operators
	C.3 Operator Precedence
	C.4 Numeric Relational Operations Supported on String Column Types
	C.5 Supported Numeric Constants and String Literals
	C.6 About Variables in Expressions
	C.7 Creating Policy Expressions
	C.7.1 Creating Log Event Policy Expressions
	C.7.2 Creating Instrumentation Event Policy Expressions
	C.7.3 Creating Harvester Policy Expressions

	C.8 Creating Data Accessor Queries
	C.8.1 Data Store Logical Names
	C.8.2 Data Store Column Names

	C.9 Creating Log Filter Expressions
	C.10 Building Complex Expressions

	D WLDF Instrumentation Library
	D.1 Diagnostic Monitor Library
	D.2 Diagnostic Action Library
	D.2.1 TraceAction
	D.2.2 DisplayArgumentsAction
	D.2.3 TraceElapsedTimeAction
	D.2.4 TraceMemoryAllocationAction
	D.2.5 StackDumpAction
	D.2.6 ThreadDumpAction
	D.2.7 MethodInvocationStatisticsAction
	D.2.7.1 Instrumenting an Application with MethodInvocationStatisticsAction and Querying the Results
	D.2.7.1.1 Configuring the Custom Monitor to Use MethodInvocationStatisticsAction
	D.2.7.1.2 Using WLST to Query Method Performance Statistics

	D.2.7.2 Configuring the Harvester to Collect MethodInvocationStatisticsAction Data
	D.2.7.3 Configuring Policies Based on MethodInvocationStatistics Metrics
	D.2.7.4 Using JMX to Collect Data

	D.2.8 MemoryAllocationStatisticsAction

	E Using Wildcards in Expressions
	E.1 Using Wildcards in Harvester Instance Names
	E.1.1 Examples

	E.2 Specifying Complex and Nested Harvester Attributes
	E.2.1 Examples

	E.3 Using the Accessor with Harvested Complex or Nested Attributes
	E.4 Using Wildcards in Policy Instance Names
	E.5 Specifying Complex Attributes in Harvester Policies

	F WebLogic Scripting Tool Examples
	F.1 WLST Commands for Diagnostics
	F.2 Example: Dynamically Creating DyeInjection Monitors
	F.3 Example: Configuring a Policy and a JMX Action
	F.4 Example: Writing a JMXWatchNotificationListener Class
	F.5 Example: Registering MBeans and Attributes For Harvesting
	F.6 Example: Setting the WLDF Diagnostic Volume
	F.7 Example: Capturing a Diagnostic Image
	F.8 Example: Retrieving a JFR File from a Diagnostic Image Capture

	G WLDF Query Language-Based Policies
	G.1 Types of Policies
	G.2 Policy Configuration Options
	G.3 Configuring Harvester Policies Using the WLDF Query Language
	G.4 Configuring Log Policies Using the WLDF Query Language
	G.5 Configuring Instrumentation Policies Using the WLDF Query Language

	Glossary
	action
	artifact
	bean
	context creation
	context payload
	data stores
	diagnostic action
	diagnostic context
	diagnostic image
	diagnostic module
	diagnostic monitor
	dye filtering
	dye mask
	harvestable entities
	harvestable data
	harvested data
	Harvester's configuration data set
	joinpoint
	MBean (Managed Bean)
	MBean type discovery
	MBean type metadata
	metadata
	metrics
	pointcut
	request dyeing
	smart rule
	system image capture
	policy
	weaving time
	WLDF bean

