Oracle® Fusion Middleware
Developing Applications with the WebLogic
Security Service

12c (12.2.1.3.0)
E80422-03
Januar y 2018

ORACLE"

Oracle Fusion Middleware Developing Applications with the WebLogic Security Service, 12¢ (12.2.1.3.0)
E80422-03
Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Documentation Accessibility X
Conventions X
Introduction and Roadmap
1.1 Document Scope 1-1
1.2 Audience for This Guide 1-1
1.3 Guide to this Document 1-2
1.4 Related Information 1-3
1.5 Security Samples and Tutorials 1-4
1.5.1 Security Examples in the WebLogic Server Distribution 1-4
1.6 New and Changed Security Features in This Release 1-4
WebLogic Security Programming Overview
2.1 What Is Security? 2-1
2.2 Administration Console and Security 2-2
2.3 Types of Security Supported by WebLogic Server 2-2
2.3.1 Authentication 2-2
2.3.2 Authorization 2-2
2.3.3 Java EE Security 2-3
2.4 Security APIs 2-3
2.4.1 JAAS Client Application APIs 2-3
2.4.1.1 Java JAAS Client Application APIs 2-3
2.4.1.2 WebLogic JAAS Client Application APIs 2-4
2.4.2 SSL Client Application APIs 2-4
2.4.2.1 Java SSL Client Application APIs 2-4
2.4.2.2 WebLogic SSL Client Application APIs 2-5
2.4.3 Other APIs 2-5

ORACLE

3 Securing Web Applications

3.1 Authentication With Web Browsers
3.1.1 User Name and Password Authentication
3.1.2 Digital Certificate Authentication
3.2 Multiple Web Applications, Cookies, and Authentication
3.2.1 Using Secure Cookies to Prevent Session Stealing
3.2.1.1 Configuring the Session Cookie as a Secure Cookie

3.2.1.2 Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID

3.3 Developing Secure Web Applications
3.3.1 Developing BASIC Authentication Web Applications

3.3.1.1 Using HttpSessionListener to Account for Browser Caching of

Credentials

3.3.2 Understanding BASIC Authentication with Unsecured Resources

3.3.2.1 Setting the enforce-valid-basic-auth-credentials Flag

3.3.2.2 Using WLST to Check the Value of enforce-valid-basic-auth-

credentials
3.3.3 Developing FORM Authentication Web Applications
3.3.4 Using Identity Assertion for Web Application Authentication
3.3.5 Using Two-Way SSL for Web Application Authentication
3.3.6 Providing a Fallback Mechanism for Authentication Methods
3.3.6.1 Configuration
3.3.7 Developing Swing-Based Authentication Web Applications
3.3.8 Deploying Web Applications
3.4 Using Declarative Security With Web Applications
3.5 Web Application Security-Related Deployment Descriptors
3.5.1 web.xml Deployment Descriptors
3.5.1.1 auth-constraint
3.5.1.2 security-constraint
3.5.1.3 security-role
3.5.1.4 security-role-ref
3.5.1.5 user-data-constraint
3.5.1.6 web-resource-collection
3.5.2 weblogic.xml Deployment Descriptors
3.5.2.1 externally-defined
3.5.2.2 run-as-principal-name
3.5.2.3 run-as-role-assignment
3.5.2.4 security-permission
3.5.2.5 security-permission-spec
3.5.2.6 security-role-assignment
3.6 Using Programmatic Security With Web Applications
3.6.1 getUserPrincipal

ORACLE

3-1
3-2

3-5
3-5
3-5
3-6
3-7
3-7

3-11
3-12
3-12

3-13
3-13
3-18
3-19
3-19
3-20
3-20
3-21
3-22
3-22
3-22
3-23
3-23
3-25
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-31
3-32
3-32
3-33
3-33

3.6.2 isUserIlnRole 3-34
3.7 Using the Programmatic Authentication API 3-35
3.7.1 Change the User's Session ID at Login 3-36

4 Using JAAS Authentication in Java Clients

4.1 JAAS and WebLogic Server 4-1
4.2 JAAS Authentication Development Environment 4-2
4.2.1 JAAS Authentication APIs 4-3
4.2.2 JAAS Client Application Components 4-6
4.2.3 WebLogic LoginModule Implementation 4-7
4.2.4 JVM-Wide Default User and the runAs() Method 4-8
4.3 Writing a Client Application Using JAAS Authentication 4-9
4.4 Using JNDI Authentication 4-12
4.5 Java Client JAAS Authentication Code Examples 4-13

5 Using SSL Authentication in Java Clients

5.1 JSSE and WebLogic Server 5-1
5.2 Using JNDI Authentication 5-2
5.3 SSL Certificate Authentication Development Environment 5-4
5.3.1 SSL Authentication APIs 5-4
5.3.2 SSL Client Application Components 5-7
5.4 Writing Applications that Use SSL 5-8
5.4.1 Communicating Securely From WebLogic Server to Other WebLogic
Servers 5-8
5.4.2 Writing SSL Clients 5-8
5.4.2.1 SSLClient Sample 5-9
5.4.2.2 SSLSocketClient Sample 5-10
5.4.3 Using Two-Way SSL Authentication 5-11
5.4.3.1 Two-Way SSL Authentication with JNDI 5-11
5.4.3.2 Writing a User Name Mapper 5-16
5.4.3.3 Using Two-Way SSL Authentication Between WebLogic Server
Instances 5-16
5.4.3.4 Using Two-Way SSL Authentication with Servlets 5-18
5.4.4 Using a Custom Host Name Verifier 5-18
5.4.5 Using a Trust Manager 5-20
5.4.6 Using the CertPath Trust Manager 5-21
5.4.7 Using a Handshake Completed Listener 5-22
5.4.8 Using an SSLContext 5-23
5.4.9 Using URLs to Make Outbound SSL Connections 5-23

ORACLE Y

5.5 SSL Client Code Examples 5-25

6 Securing Enterprise JavaBeans (EJBS)

6.1 Java EE Architecture Security Model 6-1
6.1.1 Declarative Security 6-1
6.1.1.1 Declarative Authorization Via Annotations 6-2

6.1.2 Programmatic Security 6-2
6.1.3 Declarative Versus Programmatic Authorization 6-3

6.2 Using Declarative Security With EJBs 6-3
6.2.1 Implementing Declarative Security Via Metadata Annotations 6-4
6.2.1.1 Security-Related Annotation Code Examples 6-4

6.2.2 Implementing Declarative Security Via Deployment Descriptors 6-5

6.3 EJB Security-Related Deployment Descriptors 6-6
6.3.1 ejb-jar.xml Deployment Descriptors 6-6
6.3.1.1 method 6-6

6.3.1.2 method-permission 6-7

6.3.1.3 role-name 6-8

6.3.1.4 run-as 6-8

6.3.1.5 security-identity 6-9

6.3.1.6 security-role 6-9

6.3.1.7 security-role-ref 6-9

6.3.1.8 unchecked 6-10

6.3.1.9 use-caller-identity 6-11

6.3.2 weblogic-ejb-jar.xml Deployment Descriptors 6-11
6.3.2.1 client-authentication 6-12

6.3.2.2 client-cert-authentication 6-12

6.3.2.3 confidentiality 6-13

6.3.2.4 externally-defined 6-13

6.3.2.5 identity-assertion 6-15

6.3.2.6 iiop-security-descriptor 6-16

6.3.2.7 integrity 6-16

6.3.2.8 principal-name 6-17

6.3.2.9 role-name 6-17
6.3.2.10 run-as-identity-principal 6-18
6.3.2.11 run-as-principal-name 6-19
6.3.2.12 run-as-role-assignment 6-19
6.3.2.13 security-permission 6-21
6.3.2.14 security-permission-spec 6-21
6.3.2.15 security-role-assignment 6-22
6.3.2.16 transport-requirements 6-23

ORACLE vi

6.4 Using Programmatic Security With EJBs 6-23
6.4.1 getCallerPrincipal 6-23
6.4.2 isCallerInRole 6-24

Using Network Connection Filters

7.1 The Benefits of Using Network Connection Filters 7-1

7.2 Network Connection Filter API 7-1
7.2.1 Connection Filter Interfaces 7-2

7.2.1.1 ConnectionFilter Interface 7-2
7.2.1.2 ConnectionFilterRulesListener Interface 7-2
7.2.2 Connection Filter Classes 7-3
7.2.2.1 ConnectionFilterimpl Class 7-3
7.2.2.2 ConnectionEvent Class 7-3

7.3 Guidelines for Writing Connection Filter Rules 7-3
7.3.1 Connection Filter Rules Syntax 7-4
7.3.2 Types of Connection Filter Rules 7-4
7.3.3 How Connection Filter Rules are Evaluated 7-5

7.4 Configuring the WebLogic Connection Filter 7-6

7.5 Developing Custom Connection Filters 7-6

Using Java Security to Protect WebLogic Resources

8.1 Using Java EE Security to Protect WebLogic Resources 8-1

8.2 Using the Java Security Manager to Protect WebLogic Resources 8-2
8.2.1 Setting Up the Java Security Manager 8-2

8.2.1.1 Modifying the weblogic.policy file for General Use 8-3
8.2.1.2 Setting Application-Type Security Policies 8-4
8.2.1.3 Setting Application-Specific Security Policies 8-5
8.2.2 Using Printing Security Manager 8-5
8.2.2.1 Printing Security Manager Startup Arguments 8-6
8.2.2.2 Starting WebLogic Server With Printing Security Manager 8-7
8.2.2.3 Writing Output Files 8-7

8.3 Using the Java Authorization Contract for Containers 8-7

8.3.1 Comparing the WebLogic JACC Provider with the WebLogic
Authentication Provider 8-9
8.3.2 Enabling the WebLogic JACC Provider 8-9

SAML APIs

9.1 SAML API Description 9-1

9.2 Custom POST Form Parameter Names 9-4

ORACLE

Vii

9.3 Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties 9-5
9.3.1 Overview of Creating a Custom SAML Name Mapper 9-5
9.3.2 Do You Need Multiple SAMLCredentialAttributeMapper

Implementations? 9-6

9.3.3 Classes, Interfaces, and Methods 9-6

9.3.3.1 SAMLAttributeStatementinfo Class 9-6

9.3.3.2 SAMLCredentialAttributeMapper Interface 9-9

9.3.4 Example Custom SAMLCredentialAttributeMapper Class 9-10
9.3.5 Make the Custom SAMLCredentialAttributeMapper Class Available in

the Console 9-14

9.4 Configuring SAML SSO Attribute Support 9-15
9.4.1 What Are SAML SSO Attributes? 9-15
9.4.2 New API's for SAML Attributes 9-16
9.4.3 SAML 2.0 Basic Attribute Profile Required 9-16
9.4.4 Passing Multiple Attributes to SAML Credential Mappers 9-16
9.4.5 How to Implement SAML Attributes 9-17
9.4.6 Examples of the SAML 2.0 Attribute Interfaces 9-19

9.4.6.1 Example Custom SAML 2.0 Credential Attribute Mapper 9-19
9.4.6.2 Custom SAML 2.0 Identity Asserter Attribute Mapper 9-21
9.4.7 Examples of the SAML 1.1 Attribute Interfaces 9-23
9.4.7.1 Example Custom SAML 1.1 Credential Attribute Mapper 9-23
9.4.7.2 Custom SAML 1.1 Identity Asserter Attribute Mapper 9-25
9.4.8 Make the Custom SAML Credential Attribute Mapper Class Available in
the Console 9-26
9.4.9 Make the Custom SAML Identity Asserter Class Available in the
Console 9-27
10 Using CertPath Building and Validation

10.1 CertPath Building 10-1
10.1.1 Instantiate a CertPathSelector 10-1
10.1.2 Instantiate a CertPathBuilderParameters 10-2
10.1.3 Use the JDK CertPathBuilder Interface 10-3
10.1.4 Example Code Flow for Looking Up a Certificate Chain 10-4

10.2 CertPath Validation 10-4
10.2.1 Instantiate a CertPathValidatorParameters 10-4
10.2.2 Use the JDK CertPathValidator Interface 10-5
10.2.3 Example Code Flow for Validating a Certificate Chain 10-6

11 Using JASPIC for a Web Application
11.1 Overview of Java Authentication Service Provider Interface for Containers
(JASPIC) 11-1

ORACLE

viii

11.2 Do You Need to Implement an Authentication Configuration Provider?
11.3 Do You Need to Implement a Principal Validation Provider?

11.4 Implement a SAM

11.5 Configure JASPIC for the Deployed Web Application

A Deprecated Security APIs

11-2
11-2
11-3
11-4

ORACLE"

Preface

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing Applications with the WebLogic Security Service.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nf o or visit htt p:// ww. or acl e. com pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Developing
Applications with the WebLogic Security Service:
This chapter includes the following sections:

Document Scope

Audience for This Guide

Guide to this Document
Related Information

Security Samples and Tutorials

New and Changed Security Features in This Release

1.1 Document Scope

This document explains how to use the WebLogic Server security programming
features.

ORACLE

See Related Information for a description of other WebLogic Server security
documentation.

1.2 Audience for This Guide

This document is intended for the following audiences:

Application Developers

Java programmers who focus on developing client applications, adding security to
Web applications and Enterprise JavaBeans (EJBs). They work with other
engineering, Quality Assurance (QA), and database teams to implement security
features. Application developers have in-depth/working knowledge of Java
(including Java Platform, Enterprise Edition (Java EE) components such as
servlets/JSPs and JSEE) and Java security.

Application developers use the WebLogic security and Java security application
programming interfaces (APIs) to secure their applications. Therefore, this
document provides instructions for using those APIs for securing Web
applications, Java applications, and Enterprise JavaBeans (EJBS).

Security Developers

Developers who focus on defining the system architecture and infrastructure for
security products that integrate into WebLogic Server and on developing custom
security providers for use with WebLogic Server. They work with application
architects to ensure that the security architecture is implemented according to
design and that no security holes are introduced. They also work with WebLogic
Server administrators to ensure that security is properly configured. Security
developers have a solid understanding of security concepts, including

1-1

Chapter 1
Guide to this Document

authentication, authorization, auditing (AAA), in-depth knowledge of Java
(including Java Management eXtensions (JMX), and working knowledge of
WebLogic Server and security provider functionality.

Security developers use the Security Service Provider Interfaces (SSPIs) to
develop custom security providers for use with WebLogic Server. This document
does not address this task; for information on how to use the SSPIs to develop
custom security providers, see Overview of the Development Process in
Developing Security Providers for Oracle WebLogic Server.

Server Administrators

Administrators who work closely with application architects to design a security
scheme for the server and the applications running on the server, to identify
potential security risks, and to propose configurations that prevent security
problems. Related responsibilities may include maintaining critical production
systems, configuring and managing security realms, implementing authentication
and authorization schemes for server and application resources, upgrading
security features, and maintaining security provider databases. WebLogic Server
administrators have in-depth knowledge of the Java security architecture, including
Web application and EJB security, Public Key security, and SSL.

Application Administrators

Administrators who work with WebLogic Server administrators to implement and
maintain security configurations and authentication and authorization schemes,
and to set up and maintain access to deployed application resources in defined
security realms. Application administrators have general knowledge of security
concepts and the Java Security architecture. They understand Java, XML,
deployment descriptors, and can identify security events in server and audit logs.

While administrators typically use the WebLogic Server Administration Console to
deploy, configure, and manage applications when they put the applications into
production, application developers may also use the WebLogic Server
Administration Console to test their applications before they are put into
production. At a minimum, testing requires that applications be deployed and
configured. This document does not cover some aspects of administration as it
relates to security, rather, it references Administering Security for Oracle
WebLogic Server, Securing Resources Using Roles and Policies for Oracle
WebLogic Server, and Oracle WebLogic Server Administration Console Online
Help for descriptions of how to use the WebLogic Server Administration Console
to perform security tasks.

1.3 Guide to this Document

This document is organized as follows:

ORACLE

WebLogic Security Programming Overview discusses the need for security, and
the WebLogic Security application programming Interfaces (APIs).

Securing Web Applications describes how to implement security in Web
applications.

Using JAAS Authentication in Java Clients describes how to implement JAAS
authentication in Java clients.

Using SSL Authentication in Java Clients describes how to implement SSL and
digital certificate authentication in Java clients.

1-2

Chapter 1
Related Information

Securing Enterprise JavaBeans (EJBs) describes how to implement security in
Enterprise JavaBeans.

Using Network Connection Filtersdescribes how to implement network connection
filters.

Using Java Security to Protect WebLogic Resourcesdiscusses using Java security
to protect WebLogic resources.

SAML APIs describes the WebLogic SAML APIs.

Using CertPath Building and Validation describes how to build and validate
certification paths.

Using JASPIC for a Web Application describes how to use the Java Authentication
Service Provider Interface for Containers (JASPIC) with a Web application.

Deprecated Security APIs provides a list of webl ogi c. securi ty packages in which
APIs have been deprecated.

Note:

This document does not supply detailed information for developers who
want to write custom security providers for use with WebLogic Server. For
information on developing custom security providers, see Developing
Security Providers for Oracle WebLogic Server.

1.4 Related Information

In addition to this document, Developing Applications with the WebLogic Security
Service, the following documents provide information on the WebLogic Security
Service:

ORACLE

Understanding Security for Oracle WebLogic Server—This document summarizes
the features of the WebLogic Security Service and presents an overview of the
architecture and capabilities of the WebLogic Security Service. It is the starting
point for understanding the WebLogic Security Service.

Securing a Production Environment for Oracle WebLogic Server— This document
highlights essential security measures for you to consider before you deploy
WebLogic Server into a production environment.

Developing Security Providers for Oracle WebLogic Server—This document
provides security vendors and application developers with the information needed
to develop custom security providers that can be used with WebLogic Server.

Administering Security for Oracle WebLogic Server—This document explains how
to configure security for WebLogic Server.

Securing Resources Using Roles and Policies for Oracle WebLogic Server—This
document introduces the various types of WebLogic resources, and provides
information that allows you to secure these resources using WebLogic Server.

Oracle WebLogic Server Administration Console Online Help—This document
describes how to use the WebLogic Server Administration Console to perform
security tasks.

1-3

Chapter 1
Security Samples and Tutorials

» Java API Reference for Oracle WebLogic Server —This document includes
reference documentation for the WebLogic security packages that are provided
with and supported by the WebLogic Server software.

1.5 Security Samples and Tutorials

In addition to the documents listed in Related Information, Oracle provides a variety of
code samples for developers.

1.5.1 Security Examples in the WebLogic Server Distribution

WebLogic Server optionally installs APl code examples in the EXAMPLES_HOVE\ st ¢

\ exanpl es directory, where EXANMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured and can be found at ORACLE_HOME
\w server\ sanpl es\ server. For more information about the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

The following examples illustrate WebLogic security features:

e Java Authentication and Authorization Service
e Outbound and Two-way SSL

The security tasks and code examples provided in this document assume that you are
using the WebLogic security providers that are included in the WebLogic Server
distribution, not custom security providers. The usage of the WebLogic security APIs
does not change if you elect to use custom security providers, however, the
management procedures of your custom security providers may be different.

Note:

This document does not provide comprehensive instructions on how to
configure WebLogic Security providers or custom security providers. For
information on configuring WebLogic security providers and custom security
providers, see Configuring Security Providers in Administering Security for
Oracle WebLogic Server.

1.6 New and Changed Security Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

ORACLE 1-4

WebLogic Security Programming Overview

WebLogic Server supports the ability to incorporate standard Java EE security
technologies such as the Java Authentication and Authorization Service (JAAS), Java
Secure Sockets Extensions (JSSE), Java Cryptography Architecture and Java
Cryptography Extensions (JCE), and Java Authentication Service Provider Interface
for Containers (JASPIC) in hosted applications, such as web applications, web
services, Enterprise JavaBeans, and more, and includes support for implementing
declarative and programmatic authorization in those applications.

* What Is Security?

* Administration Console and Security

» Types of Security Supported by WebLogic Server
e Security APIs

2.1 What Is Security?

ORACLE

Security refers to techniques for ensuring that data stored in a computer or passed
between computers is not compromised.Most security measures involve proof material
and data encryption. Proof material is typically a secret word or phrase that gives a
user access to a particular application or system. Data encryption is the translation of
data into a form that cannot be interpreted without holding or supplying the same
secret.

Distributed applications, such as those used for electronic commerce (e-commerce),
offer many access points at which malicious people can intercept data, disrupt
operations, or generate fraudulent input. As a business becomes more distributed the
probability of security breaches increases. Accordingly, as a business distributes its
applications, it becomes increasingly important for the distributed computing software
upon which such applications are built to provide security.

An application server resides in the sensitive layer between end users and your
valuable data and resources. Oracle WebLogic Server provides authentication,
authorization, and encryption services with which you can guard these resources.
These services cannot provide protection, however, from an intruder who gains access
by discovering and exploiting a weakness in your deployment environment.

Therefore, whether you deploy WebLogic Server on the Internet or on an intranet, it is
a good idea to hire an independent security expert to go over your security plan and
procedures, audit your installed systems, and recommend improvements.

Another good strategy is to read as much as possible about security issues and
appropriate security measures. The document Securing a Production Environment for
Oracle WebLogic Serverhighlights essential security measures for you to consider
before you deploy WebLogic Server into a production environment. The document
Securing Resources Using Roles and Policies for Oracle WebLogic Serverintroduces
the various types of WebLogic resources, and provides information that allows you to
secure these resources using WebLogic Server. For the latest information about
securing Web servers, Oracle also recommends reading the Security Improvement
Modules, Security Practices, and Technical Implementations information (http://

2-1

http://www.cert.org/

Chapter 2
Administration Console and Security

wwmvy, cert . or g/) available from the CERT™ Coordination Center operated by Carnegie
Mellon University.

Oracle suggests that you apply the remedies recommended in our security advisories.
In the event of a problem with an Oracle product, Oracle distributes an advisory and
instructions with the appropriate course of action. If you are responsible for security
related issues at your site, please register to receive future notifications.

2.2 Administration Console and Security

You can use the WebLogic Server Administration Console to define and edit
deployment descriptors for Web Applications, EJBs, Java EE Connectors, and
Enterprise Applications.This document, Developing Applications with the WebLogic
Security Service, does not describe how to use the WebLogic Server Administration
Console to configure security. For information on how to use the WebLogic Server
Administration Console to define and edit deployment descriptors, see Securing
Resources Using Roles and Policies for Oracle WebLogic Server and Administering
Security for Oracle WebLogic Server.

2.3 Types of Security Supported by WebLogic Server

WebLogic Server supports security mechanisms such as authentication, authorization,
and Java EE security in deployed applications.

e Authentication
* Authorization

e Java EE Security

2.3.1 Authentication

Authentication is the mechanism by which callers and service providers prove that
they are acting on behalf of specific users or systems. Authentication answers the
guestion, "Who are you?" using credentials. When the proof is bidirectional, it is
referred to as mutual authentication.

WebLogic Server supports username and password authentication and certificate
authentication. For certificate authentication, WebLogic Server supports both one-way
and two-way SSL (Secure Sockets Layer) authentication. Two-way SSL authentication
is a form of mutual authentication.

In WebLogic Server, Authentication providers are used to prove the identity of users or
system processes. Authentication providers also remember, transport, and make
identity information available to various components of a system (via subjects) when
needed. You can configure the Authentication providers using the Web application and
EJB deployment descriptor files, or the WebLogic Server Administration Console, or a
combination of both.

2.3.2 Authorization

Authorization is the process whereby the interactions between users and WebLogic
resources are controlled, based on user identity or other information. In other words,
authorization answers the question, "What can you access?"

ORACLE 2-2

http://www.cert.org/

Chapter 2
Security APIs

In WebLogic Server, a WebLogic Authorization provider is used to limit the interactions
between users and WebLogic resources to ensure integrity, confidentiality, and
availability. You can configure the Authorization provider using the Web application
and EJB deployment descriptor files, or the WebLogic Server Administration Console,
or a combination of both.

WebLogic Server also supports the use of programmatic authorization (also referred to
in this document as programmatic security) to limit the interactions between users and
WebLogic resources.

2.3.3 Java EE Security

For implementation and use of user authentication and authorization, WebLogic
Server utilizes the security services of the Java EE Development Kit. Like the other
Java EE components, the security services are based on standardized, modular
components. WebLogic Server implements these Java security service methods
according to the standard, and adds extensions that handle many details of application
behavior automatically, without requiring additional programming.

2.4 Security APIs

WebLogic Server supports and implements several security packages and classes.
You use these packages to secure interactions between WebLogic Server and client
applications, Enterprise JavaBeans (EJBs), and Web applications.

The following topics are covered in this section:
* JAAS Client Application APIs

e SSL Client Application APIs
e Other APIs

Note:

Several of the WebLogic security packages, classes, and methods are
deprecated in this release of WebLogic Server. For more detailed information
on deprecated packages and classes, see Deprecated Security APIs.

2.4.1 JAAS Client Application APIs

You use Java APIs and WebLogic APIs to write client applications that use JAAS
authentication.

The following topics are covered in this section:

* Java JAAS Client Application APIs
* WebLogic JAAS Client Application APIs

2.4.1.1 Java JAAS Client Application APIs

ORACLE

You use the following Java APIs to write JAAS client applications. The APIs are
available at http: //docs. oracl e. conl j avase/ 7/ docs/ api /i ndex. htni .

2-3

http://docs.oracle.com/javase/7/docs/api/index.html

Chapter 2
Security APIs

javax.naming
javax.security.auth
javax.security.auth.callback
javax.security.auth.login

javax.security.auth.spi

For information on how to use these APIs, see JAAS Authentication APIs.

2.4.1.2 WebLogic JAAS Client Application APIs

You use the following WebLogic APIs to write JAAS client applications:

weblogic.security
weblogic.security.auth

weblogic.security.auth.callback

For information on how to use these APIs, see JAAS Authentication APIs.

2.4.2 SSL Client Application APIs

You use Java and WebLogic APIs to write client applications that use SSL
authentication:

The following topics are covered in this section:

Java SSL Client Application APIs
WebLogic SSL Client Application APls

2.4.2.1 Java SSL Client Application APIs

You use the following Java APIs (available from http://docs. oracl e. conl j avase/ 7/
docs/ api /i ndex. ht m) to write SSL client applications:

ORACLE

java.security
java.security.cert
javax.crypto
javax.naming
javax.net
javax.security
javax.servlet

javax.servet.http

WebLogic Server also supports the javax.net.SSL API (http://docs. oracl e. con
javase/ 7/ docs/ api / i ndex. ht m), but Oracle recommends that you use the
webl ogi c. security. SSL package when you use SSL with WebLogic Server.

For information on how to use these APIs, see SSL Authentication APIs.

2-4

http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html

Chapter 2
Security APIs

2.4.2.2 WebLogic SSL Client Application APIs

You use the following WebLogic APIs to write SSL client applications.

ORACLE

weblogic.net.http

weblogic.security.SSL

For information on how to use these APIs, see SSL Authentication APIs.

2.4.3 Other APIs

Additionally, you use the following APIs to develop WebLogic Server applications:

webl ogi c. security.jacc

This API provides the Rol eMapper interface. If you implement the Java
Authorization Contract for Containers (JACC), you can use this package with the
javax.security.jacc package (http://docs. oracl e. conl j avaee/ 7/ api / j avax/ securi ty/
jacc/ package- sunmary. ht m). See Using the Java Authorization Contract for
Containers for information about the WebLogic JACC provider. See http://

docs. oracl e. cont j avaee/ 7/ api / j avax/ securi ty/j acc/ package-frame. htmi for
information on developing a JACC provider.

webl ogi c. security. net

This API provides interfaces and classes that are used to implement network
connection filters. Network connection filters allow or deny connections to Oracle
WebLogic Server based on attributes such as the IP address, domain, or protocol
of the initiator of the network connection. For more information about how to use
this API, see Using Network Connection Filters.

webl ogi c. security. pk

This API provides interfaces and classes to build and validate certification paths.
See Using CertPath Building and Validation for information on using this API to
build and validate certificate chains.

See the java.security.cert package (http://docs. oracl e. cont j avase/ 7/ docs/ api /
javal security/ cert/package-summary. ht i) for additional information on certificates
and certificate paths.

webl ogi c. security. providers. san

This API provides interfaces and classes that are used to perform mapping of user
and group information to Security Assertion Markup Language (SAML) assertions,
and to cache and retrieve SAML assertions.

SAML is an XML-based framework for exchanging security information. WebLogic
Server supports SAML V2.0 and V1.1, including the Browser/Post and Browser/
Artifact profiles. SAML authorization is not supported.

For more information about SAML, see http: // www. oasi s- open. or g.
webl ogi c. security. service

This API includes interfaces, classes, and exceptions that support security
providers. The WebLogic Security Framework consists of interfaces, classes, and
exceptions provided by this API. The interfaces, classes, and exceptions in this
API should be used in conjunction with those in the webl ogi c. securi ty. spi
package. For more information about how to use this API, see Security Providers

2-5

http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-frame.html
http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-frame.html
http://docs.oracle.com/javase/7/docs/api/java/security/cert/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/security/cert/package-summary.html
http://www.oasis-open.org

ORACLE

Chapter 2
Security APIs

and WebLogic Resources in Developing Security Providers for Oracle WebLogic
Server.

webl ogi c. security. services

This API provides the server-side authentication class. This class is used to
perform a local login to the server. It provides login methods that are used with
CallbackHandlers to authenticate the user and return credentials using the default
security realm.

webl ogi c. security. spi

This package provides the Security Service Provider Interfaces (SSPIs). It
provides interfaces, classes, and exceptions that are used for developing custom
security providers. In many cases, these interfaces, classes, and exceptions
should be used in conjunction with those in the webl ogi c. securi ty. servi ce API.
You implement interfaces, classes, and exceptions from this package to create
runtime classes for security providers. For more information about how to use the
SSPIs, see Security Services Provider Interfaces (SSPIs) in Developing Security
Providers for Oracle WebLogic Server.

webl ogi c. servl et. security

This API provides a server-side API that supports programmatic authentication
from within a servlet application. For more about how to use this API, see Using
the Programmatic Authentication API.

2-6

Securing Web Applications

WebLogic Server supports the Java EE architecture security model for securing Web
applications, which includes support for declarative authorization (also referred to as
declarative security) and programmatic authorization (also referred to as programmatic
security).

* Authentication With Web Browsers

* Multiple Web Applications, Cookies, and Authentication

» Developing Secure Web Applications

» Using Declarative Security With Web Applications

* Web Application Security-Related Deployment Descriptors
» Using Programmatic Security With Web Applications

» Using the Programmatic Authentication API

" Note:

You can use deployment descriptor files and the WebLogic Server
Administration Console to secure Web applications. This document describes
how to use deployment descriptor files. For information on using the WebLogic
Server Administration Console to secure Web applications, see Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

WebLogic Server supports the use of the H: t pSer vl et Request . i sUser I nRol e and

Ht t pSer vl et Request . get User Pri nci pal methods and the use of the security-role-ref
element in deployment descriptors to implement programmatic authorization in Web
applications.

3.1 Authentication With Web Browsers

ORACLE

Web browsers can connect to WebLogic Server over either a HyperText Transfer
Protocol (HTTP) port or an HTTP with SSL (HTTPS) port. WebLogic Server uses
encryption and digital certificate authentication when Web browsers connect to the
server using the HTTPS port.

The benefits of using an HTTPS port versus an HTTP port are two-fold. With HTTPS
connections:

e All communication on the network between the Web browser and the server is
encrypted. None of the communication, including the user name and password, is
in clear text.

* As a minimum authentication requirement, the server is required to present a
digital certificate to the Web browser client to prove its identity.

3-1

Chapter 3
Authentication With Web Browsers

If the server is configured for two-way SSL authentication, both the server and client
are required to present a digital certificate to each other to prove their identity.

3.1.1 User Name and Password Authentication

ORACLE

WebLogic Server performs user name and password authentication when users use a
Web browser to connect to the server via the HTTP port. In this scenario, the browser
and an instance of WebLogic Server interact in the following manner to authenticate a
user (see Figure 3-1):

1.

A user invokes a WebLogic resource in Oracle WebLogic Server by entering the
URL for that resource in a Web browser. The HTTP URL contains the HTTP listen
port, for example, http://nyserver: 7001.

The Web server in Oracle WebLogic Server receives the request.

Note:

Oracle WebLogic Server provides its own Web server but also supports the
use of Apache Server, Microsoft Internet Information Server, and Java
System Web Server as Web servers.

The Web server determines whether the WebLogic resource is protected by a
security policy. If the WebLogic resource is protected, the Web server uses the
established HTTP connection to request a user name and password from the user.

When the user's Web browser receives the request from the Web server, it
prompts the user for a user name and password.

The Web browser sends the request to the Web server again, along with the user
name and password.

The Web server forwards the request to the Web server plug-in. Oracle WebLogic
Server provides the following plug-ins for Web servers:

» Apache-WebLogic Server plug-in

e Java System Web Server plug-in

* Internet Information Server (IIS) plug-in

The Web server plug-in performs authentication by sending the request, via the
HTTP protocol, to Oracle WebLogic Server, along with the authentication data
(user name and password) received from the user.

Upon successful authentication, Oracle WebLogic Server proceeds to determine
whether the user is authorized to access the WebLogic resource.

Before invoking a method on the WebLogic resource, the WebLogic Server
instance performs a security authorization check. During this check, the server
security extracts the user's credentials from the security context, determines the
user's security role, compares the user's security role to the security policy for the
requested WebLogic resource, and verifies that the user is authorized to invoke
the method on the WebLogic resource.

If authorization succeeds, the server fulfills the request.

3-2

Chapter 3
Authentication With Web Browsers

Figure 3-1 Secure Login for Web Browsers

WeblLogic Server

Web
Browser

Security Realm

Web Server Users, Groups,
Security Roles,
and Security

I Policies

WebLogic
Resources

Web Server Serviet
Plug-in Engine

Mote: Username/Password authentication can be required for HTTP and one-way S50 authertication.
HTTPS connections can be configured for one-way or two-way S50 authertication.

3.1.2 Digital Certificate Authentication

WebLogic Server uses encryption and digital certificate authentication when Web
browser users connect to the server via the HTTPS port. In this scenario, the browser
and WebLogic Server instance interact in the following manner to authenticate and
authorize a user (see Figure 3-1):

1.

2.

ORACLE

A user invokes a WebLogic resource in Oracle WebLogic Server by entering the
URL for that resource in a Web browser. The HTTPS URL contains the SSL listen
port, for example, https://nyserver: 7002.

The Web server in Oracle WebLogic Server receives the request.

" Note:

Oracle WebLogic Server provides its own Web server but also supports the
use of Apache Server, Microsoft Internet Information Server, and Java
System Web Server as Web servers.

The Web server checks whether the WebLogic resource is protected by a security
policy. If the WebLogic resource is protected, the Web server uses the established
HTTPS connection to request a user name and password from the user.

When the user's Web browser receives the request from Oracle WebLogic Server,
it prompts the user for a user name and password. (This step is optional.)

The Web browser sends the request again, along with the user name and
password. (Only supplied if requested by the server.)

WebLogic Server presents its digital certificate to the Web browser.

The Web browser checks that the server's name used in the URL (for example,
nyserver) matches the name in the digital certificate and that the digital certificate
was issued by a trusted third party, that is, a trusted CA

3-3

ORACLE

8.

10.

11.

12.

Chapter 3
Authentication With Web Browsers

If two-way SSL authentication is in force on the server, the server requests a
digital certificate from the client.

Note:

Even though WebLogic Server cannot be configured to enforce the full two-
way SSL handshake with 1.0 Web Server proxy plug-ins, proxy plug-ins
can be configured to provide the client certificate to the server if it is
needed. To do this, configure the proxy plug-in to export the client
certificate in the HTTP Header for WebLogic Server. For instructions on
how to configure proxy plug-ins to export the client certificate to WebLogic
Server, see the configuration information for the specific plug-in in Using
Web Server Plug-Ins with Oracle WebLogic Server.

The version 1.1 plug-ins provide two-way SSL support for verifying client
identity. Two-way SSL is automatically enforced when WebLogic Server
requests the client certificate during the handshake process. See Configure
Two-Way SSL Between the Plug-In and WebLogic Server in Using Oracle
WebLogic Server Proxy Plug-Ins 12.2.1.2.

The Web server forwards the request to the Web server plug-in. If secure proxy is
set (this is the case if the HTTPS protocol is being used), the Web server plug-in
also performs authentication by sending the request, via the HTTPS protocol, to
the WebLogic resource in Oracle WebLogic Server, along with the authentication
data (user name and password) received from the user.

Note:

When using two-way SSL authentication, you can also configure the server
to do identity assertion based on the client's certificate, where, instead of
supplying a user name and password, the server extracts the user name
and password from the client's certificate.

Upon successful authentication, Oracle WebLogic Server proceeds to determine
whether the user is authorized to access the WebLogic resource.

Before invoking a method on the WebLogic resource, the server performs a
security authorization check. During this check, the server extracts the user's
credentials from the security context, determines the user's security role,
compares the user's security role to the security policy for the requested WebLogic
resource, and verifies that the user is authorized to invoke the method on the
WebLogic resource.

If authorization succeeds, the server fulfills the request.

See the following topics:

Configuring SSL
Installing and Configuring the Apache HTTP Server Plug-In
Installing and Configuring the Microsoft IIS Plug-In

3-4

Chapter 3
Multiple Web Applications, Cookies, and Authentication

3.2 Multiple Web Applications, Cookies, and Authentication

By default, WebLogic Server assigns the same cookie name (JSESSI ONI D) to all Web
applications. When you use any type of authentication, all Web applications that use
the same cookie name use a single sign-on for authentication. Once a user is
authenticated, that authentication is valid for requests to any Web Application that
uses the same cookie name. The user is not prompted again for authentication.

If you want to require separate authentication for a Web application, you can specify a
unigue cookie name or cookie path for the Web application. Specify the cookie name
using the Cooki eName parameter and the cookie path with the Cooki ePat h parameter,
defined in the webl ogi c. xm <sessi on-descri pt or > element. See session-descriptor in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

If you want to retain the cookie name and still require independent authentication for
each Web application, you can set the cookie path parameter (Cooki ePat h) differently
for each Web application.

However, note that a common Web security problem is session stealing. WebLogic
Server provides two features, or methods, that Web site designers can use to prevent
session stealing, described in Using Secure Cookies to Prevent Session Stealing.

3.2.1 Using Secure Cookies to Prevent Session Stealing

Session stealing happens when an attacker manages to get a copy of your session
cookie, generally while the cookie is being transmitted over the network. This can only
occur when the data is being sent in clear-text; that is, the cookie is not encrypted.
WebLogic Server provides two features for securing session cookies.

e Configuring the Session Cookie as a Secure Cookie
e Using the AuthCookie WL_AUTHCOOKIE_JSESSIONID

Note:

These two features work correctly when the SSL request is terminated at
WebLogic Server. Proxy architectures that terminate the SSL connection at a
Web server plug-in or hardware load balancer can enable the

Wbl ogi cPl ugi nEnabl ed attribute for these features to work, but doing so exposes
the session cookie behind the proxy.

3.2.1.1 Configuring the Session Cookie as a Secure Cookie

ORACLE

You can prevent session stealing by configuring the application to use HTTPS. When
communication with WebLogic Server is secured by SSL, you can have WebLogic
Server make the session cookie secure by specifying the <cooki e- secur e> element in
the webl ogi c. xmi deployment descriptor and setting its value to t rue. A secure cookie
indicates to the Web browser that the cookie should be sent using only a secure
protocol, such as SSL.

Note that it is possible for an application with code running in the browser — for
example, an applet — to make non-HTTP outbound connections. In such connections,

3-5

Chapter 3
Multiple Web Applications, Cookies, and Authentication

the browser sends the session cookie. However, by specifying the <cooki e- ht t p- onl y>
element in webl ogi c. xm , you constrain the browser to send the cookie only over an
HTTP connection — the cookie is made inaccessible to applications or other protocols
running in the browser. So if you specify <cooki e- ht t p- onl y> in conjunction with

<cooki e- secur e>, you ensure that session cookies are sent only over HTTPS.

For more information about the <cooki e- secur e> and <cooki e- htt p- onl y> elements, see
weblogic.xml Deployment Descriptor Elements in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

3.2.1.2 Using the AuthCookie _"WL_AUTHCOOKIE_JSESSIONID

WebLogic Server allows a user to securely access HTTPS resources in a session that
was initiated using HTTP, without loss of session data. To enable this feature, add
Aut hCooki eEnabl ed="t rue" to the WebServer element in config. xm :

<WebServer Name="nyserver" AuthCooki eEnabl ed="true"/>

Setting Aut hCooki eEnabl ed to t r ue, which is the default setting, causes the WebLogic
Server instance to send a new secure cookie, W._AUTHCOOKI E_JSESSI ONI D, to the
browser when authenticating via an HTTPS connection. Once the secure cookie is set,
the session is allowed to access other security-constrained HTTPS resources only if
the cookie is sent from the browser.

Thus, WebLogic Server uses two cookies: the JSESSI ONIl D cookie and the
_W._AUTHCOOKI E_JSESSI ONI D cookie. By default, the JSESSI ONI D cookie is never secure,
but the _W._AUTHCOOKI E_JSESSI ONI D cookie is always secure. A secure cookie is only
sent when an encrypted communication channel is in use. Assuming a standard
HTTPS login (HTTPS is an encrypted HTTP connection), your browser gets both
cookies.

For subsequent HTTP access, you are considered authenticated if you have a valid
JSESSI ONI D cookie, but for HTTPS access, you must have both cookies to be
considered authenticated. If you only have the JSESSI ONIl D cookie, you must re-
authenticate.

With this feature enabled, once you have logged in over HTTPS, the secure cookie is
only sent encrypted over the network and therefore can never be stolen in transit. The
JSESSI ONI D cookie is still subject to in-transit hijacking. Therefore, a Web site designer
can ensure that session stealing is not a problem by making all sensitive data require
HTTPS. While the HTTP session cookie is still vulnerable to being stolen and used, all
sensitive operations require the _W._AUTHCOOKI E_JSESSI ONI D, which cannot be stolen, so
those operations are protected.

You can also specify a cookie name for JSESSI ONI D or _W._ AUTHCOOKI E_JSESSI ONI D using
the Cooki eName parameter defined in the webl ogi ¢c. xni deployment descriptor's
<sessi on- descri pt or> element, as follows:

<sessi on-descri pt or >
<cooki e- name>FOOAPP| D</ cooki e- nanme>
</ sessi on-descri pt or >

In this case, Weblogic Server will not use JSESSI ONI D and _W._ AUTHCOOKI E_JSESSI ONI D,

but FOOAPPI D and _W._AUTHCOOKI E_FOOAPPI D to serve the same purpose, as shown in
Table 3-1.

ORACLE 3-6

Chapter 3
Developing Secure Web Applications

Table 3-1 WebLogic Server Cookies

User-Specified in Deployment HTTP Session HTTPS Session
Descriptor
No - uses the JSESSI CNI Ddefault jqpeq gy p _VI_AUTHCOOKI E_JSESSI ONI D

Yes - specified as FOOAPPI D FOOAPPI D _W._AUTHOOOKI E_FOOAPPI D

3.3 Developing Secure Web Applications

WebLogic Server supports three types of authentication for Web browsers: BASIC,
FORM, and CLIENT-CERT.

The following sections cover the different ways to use these types of authentication:
» Developing BASIC Authentication Web Applications

» Understanding BASIC Authentication with Unsecured Resources

* Developing FORM Authentication Web Applications

» Using Identity Assertion for Web Application Authentication

* Using Two-Way SSL for Web Application Authentication

* Providing a Fallback Mechanism for Authentication Methods

» Developing Swing-Based Authentication Web Applications

* Deploying Web Applications

3.3.1 Developing BASIC Authentication Web Applications

With basic authentication, the Web browser pops up a login screen in response to a
WebLogic resource request. The login screen prompts the user for a user name and
password. Figure 3-2 shows a typical login screen.

Figure 3-2 Authentication Login Screen

Uszername and Password Required |

E nter uzername for default at powiz: 7007

Ilzer Mame: I

Pazgword: I

k. I Cancel

ORACLE 3.7

ORACLE

Chapter 3
Developing Secure Web Applications

Note:

See Understanding BASIC Authentication with Unsecured Resources for
important information about how unsecured resources are handled.

To develop a Web application that provides basic authentication, perform these steps:

1. Create the web. xm deployment descriptor. In this file you include the following
information (see Example 3-1):

a.

b.

Define the welcome file. The welcome file name is wel cone. j sp.

Define a security constraint for each set of Web application resources, that is,
URL resources, that you plan to protect. Each set of resources share a
common URL. URL resources such as HTML pages, JSPs, and servlets are
the most commonly protected, but other types of URL resources are
supported. In Example 3-1, the URL pattern points to the wel core. j sp file
located in the Web application's top-level directory; the HTTP methods that
are allowed to access the URL resource, POST and GET; and the security
role name, webuser .

" Note:

When specifying security role names, observe the following
conventions and restrictions:

e The proper syntax for a security role name is as defined for an
Nmtoken in the Extensible Markup Language (XML)
recommendation available on the Web at: htt p: // ww. w3. or g/ TR/
REC- xm #NT- Nnt oken.

« Do not use blank spaces, commas, hyphens, or any characters in
this comma-separated list: \t, <>, #, |, & ~, 2, (), { }.

e Security role names are case sensitive.

e The suggested convention for security role names is that they be
singular.

Use the <l ogi n- confi g> tag to define the type of authentication you want to use
and the security realm to which the security constraints will be applied. In
Example 3-1, the BASIC type is specified and the realm is the default realm,
which means that the security constraints will apply to the active security realm
when the WebLogic Server instance boots.

Define one or more security roles and map them to your security constraints.
In our sample, only one security role, webuser, is defined in the security
constraint so only one security role name is defined here (see the <securi ty-
rol e> tag in Example 3-1). However, any number of security roles can be
defined.

2. Create the webl ogi c. xmi deployment descriptor. In this file you map security role
names to users and groups. Example 3-2 shows a sample weblogic.xml file that
maps the webuser security role defined in the <securi ty-rol e> tag in the web.xml
file to a group named myGroup. Note that principals can be users or groups, so

3-8

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Nmtoken

3.

String use
webl ogi c. s

ORACLE

Chapter 3
Developing Secure Web Applications

the <pri nci pal -t ag> can be used for either. With this configuration, WebLogic
Server will only allow users in myGroup to access the protected URL resource—
welcome.jsp.

Note:

Starting in version 9.0, the default role mapping behavior is to create empty
role mappings when none are specified in weblogic.xml. In version 8.x, if
you did not include a weblogic.xml file, or included the file but did not
include mappings for all security roles, security roles without mappings
defaulted to any user or group whose name matched the role name. For
information on role mapping behavior and backward compatibility settings,
see Understanding the Combined Role Mapping Enabled Setting in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Create a file that produces the Welcome screen that displays when the user enters
a user name and password and is granted access. Example 3-3 shows a sample
wel cone. j sp file. Figure 3-3 shows the Welcome screen.

]

Note:

In Example 3-3, notice that the JSP is calling an API
(request.getRemoteUser()) to get the name of the user that logged in. A
different API, weblogic.security.Security.getCurrentSubject(), could be used
instead. To use this API to get the name of the user, use it with the
SubjectUtils API as follows:

= webl ogi c. security. Subj ect Uil s. get User name

curity. Security.getCurrentSubject());

Figure 3-3 Welcome Screen

= Browser Bazed Authentication Example Welcome Page - Mic__. [Hi[=] E3

J File Edit “iew Favortes | Toolz Help |

- * L @ ”
Bau:k Eanward Stop Refresh

Address @ kittp: A localhost: 7001 AbasicauthAwelcome. jsp j & Go JLiﬂkS 2

N o ql [Search leSnnyU.-’-'-.ID Offers ~ 3

Browser Based Authentication
Example Welcome Page

Welcome Lee2!

Y

L@ Done l_l_ 25 Local intranet

B

3-9

ORACLE

Chapter 3
Developing Secure Web Applications

4. Start WebLogic Server and define the users and groups that will have access to

the URL resource. In the webl ogi c. xni file (see Example 3-2), the <pri nci pal - nane>
tag defines myGroup as the group that has access to the wel cone. j sp. Therefore,
use the WebLogic Server Administration Console to define the nyG oup group,
define a user, and add that user to the nyG oup group. For information on adding
users and groups, see Users, Groups, and Security Roles in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user defined in the previous step to

access the protected URL resource.
a. For deployment instructions, see Deploying Web Applications.
b. Open a Web browser and enter this URL:
http://local host: 7001/ basi caut h/ wel cone. j sp
c. Enter the user name and password. The Welcome screen displays.
Example 3-1 Basic Authentication web.xml File

<?xm version="1.0" encoding="UTF-8' ?>
<web-app xm ns="http://java.sun.com xm /ns/j2ee" xm ns:xsi="http:// ww.w3. org/ 2001/
XM.Schena-i nst ance" >
<web- app>
<wel cone-file-list>
<wel cone-fil e>wel cone. j sp</wel cone-file>
</wel come-file-list>
<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- name>Success</ web- r esour ce- name>
<url-pattern>/wel come.jsp</url-pattern>
<ht t p- met hod>CGET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- et hod>
</ web-resource-col | ecti on>
<aut h-constraint>
<r ol e- name>webuser </ r ol e- nanme>
</ aut h-constrai nt >
</security-constraint>
<l ogi n- confi g>
<aut h- met hod>BASI C</ aut h- met hod>
<real m name>def aul t </ r eal m name>
</l ogi n-confi g>
<security-rol e>
<rol e- name>webuser </ r ol e- nane>
</security-rol e>
</ web- app>

Example 3-2 BASIC Authentication weblogic.xml File

<?xm version='1.0" encodi ng="UTF-8' 7>
<webl ogi c- web-app xm ns="http://ww. bea. com ns/webl ogi ¢/ 90" xm ns: xsi="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance" >
<webl ogi c- web- app>
<security-rol e-assi gnment >
<rol e- name>webuser </ r ol e- name>
<princi pal - nanme>nmy G oup</ pri nci pal - nane>
</ security-rol e-assi gnnent >
</ webl ogi c- web- app>

3-10

Chapter 3
Developing Secure Web Applications

Example 3-3 BASIC Authentication welcome.jsp File

<htm >
<head>
<title>Browser Based Authentication Exanple W&l cone Page</title>
</ head>
<hl> Browser Based Authentication Exanple Wl cone Page </hl>
<p> Vel come <% request.get Renotelser() %
</ bl ockquot e>
</ body>
</htm >

3.3.1.1 Using HttpSessionListener to Account for Browser Caching of

Credentials

ORACLE

The browser caches user credentials and frequently re-sends them to the server
automatically. This can give the appearance that WebLogic Server sessions are not
being destroyed after logout or timeout. Depending on the browser, the credentials can
be cached just for the current browser session, or across browser sessions.

You can validate that a WebLogic Server's session was destroyed by creating a class
that implements the j avax. servl et. http. H t pSessi onLi st ener interface.
Implementations of this interface are notified of changes to the list of active sessions in
a web application. To receive notification events, the implementation class must be
configured in the deployment descriptor for the web application in web. xni .

To configure a session listener class:

1. Open the web. xm deployment descriptor of the Web application for which you are
creating a session listener class in a text editor. The web. xnl file is located in the
WEB-INF directory of your Web application.

2. Add an event declaration using the listener element of the web.xml deployment
descriptor. The event declaration defines the event listener class that is invoked
when the event occurs. For example:

<listener>
<listener-class>myApp. M/Sessi onLi st ener</ | i stener-cl ass>
</listener>

See Configuring an Event Listener Class in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server for additional information and
guidelines.

Example 3-4 Tracking the Session Count

package nyApp;

i mport javax.servlet.http. HtpSessionListener;

i mport javax.servlet.http. HtpSessionEvent;

public class MySessionListener inplements HttpSessionListener {
private static int sessionCount = 0;

public void sessionCreated(HtpSessi onEvent se) {

sessi onCount ++;

/1 Wite to a log or do sonme other processing.
}
public void sessionDestroyed(Ht tpSessi onEvent se) {

i f (sessionCount > 0)

sessionCount - - ;
//Wite to a log or do some other processing.

3-11

Chapter 3
Developing Secure Web Applications

}

Write and deploy the session listener class. The example shown in Example 3-4 uses
a simple counter to track the session count.

3.3.2 Understanding BASIC Authentication with Unsecured Resources

For WebLogic Server versions 9.2 and later, client requests that use HTTP BASIC
authentication must pass WebLogic Server authentication, even if access control is not
enabled on the target resource.

The setting of the Security Configuration MBean flag enforce-valid-basic-auth-
credentials determines this behavior. (The DomainMBean can return the new Security
Configuration MBean for the domain.) It specifies whether or not the system should
allow requests with invalid HTTP BASIC authentication credentials to access
unsecured resources.

Note:

The Security Configuration MBean provides domain-wide security configuration
information. The enforce-valid-basic-auth-credentials flag effects the entire
domain.

The enforce-valid-basic-auth-credentials flag is true by default, and WebLogic Server
authentication is performed. If authentication fails, the request is rejected. WebLogic
Server must therefore have knowledge of the user and password.

You may want to change the default behavior if you rely on an alternate authentication
mechanism. For example, you might use a backend web service to authenticate the
client, and WebLogic Server does not need to know about the user. With the default
authentication enforcement enabled, the web service can do its own authentication,
but only if WebLogic Server authentication first succeeds.

If you explicitly set the enforce-valid-basic-auth-credentials flag to false, WebLogic
Server does not perform authentication for HTTP BASIC authentication client requests
for which access control was not enabled for the target resource.

In the previous example of a backend web service that authenticates the client, the
web service can then perform its own authentication without WebLogic Server having
knowledge of the user.

3.3.2.1 Setting the enforce-valid-basic-auth-credentials Flag

ORACLE

To set the enforce-valid-basic-auth-credentials flag, perform the following steps:

1. Add the <enforce-val i d-basi c-aut h-credenti al s> element to confi g. xnl within the
<security-configuration> element.

<enforce-valid-basic-auth-credential s>fal se</ enforce-valid-basic-aut h-
credential s>
</ security-configuration>

2. Start or restart all of the servers in the domain.

3-12

Chapter 3
Developing Secure Web Applications

3.3.2.2 Using WLST to Check the Value of enforce-valid-basic-auth-credentials

The WebLogic Server Administration Console does not display or log the enforce-
valid-basic-auth-credentials setting. However, you can use WLST to check the value in
a running server. Remember that enforce-valid-basic-auth-credentials is a domain-
wide setting.

The WLST session shown in Example 3-5 demonstrates how to check the value of the

enforce-valid-basic-auth-credentials flag in a sample running server.

Example 3-5 Checking the Value of enforce-valid-basic-auth-credentials

ws:/of fline> connect (' weblogic', weblogic','t3://1ocal host:7001")
Connecting to t3://1ocal host: 7001 with userid weblogic ...

Successfully connected to Admin Server 'exanpl esServer' that belongs to donain

w _server'.
w s:/w _server/serverConfig> cd(' SecurityConfiguration")

ws:/w _server/serverConfig/ SecurityConfiguration> |s()

dr--

w _server

w s:/w _server/serverConfig/ SecurityConfiguration> cd('w _server")
ws:/w _server/serverConfig/ SecurityConfiguration/w _server> |s()

dr-- Defaul tReal m

dr-- Realns

-r-- AnonynousAdm nLookupEnabl ed fal se
-r-- ConpatibilityConnectionFiltersEnabl ed fal se
-r-- ConnectionFilter nul |
-r-- ConnectionFilterRul es nul |
-r-- ConnectionLogger Enabl ed fal se
-r-- Consol eFul | Del egat i onEnabl ed fal se
-r-- Credential R EEAR
-r-- Credential Encrypted *RrAKK
-r-- CrossDomai nSecurityEnabl ed fal se
-r-- DowngradeUnt rustedPrincipal s fal se
-r-- EnforceStrictURLPattern true
-r-- EnforceValidBasi cAuthCredential s fal se

3.3.3 Developing FORM Authentication Web Applications

When using FORM authentication with Web applications, you provide a custom login
screen that the Web browser displays in response to a Web application resource
request and an error screen that displays if the login fails. The login screen can be
generated using an HTML page, JSP, or servlet. The benefit of form-based login is
that you have complete control over these screens so that you can design them to
meet the requirements of your application or enterprise policy/guideline.

ORACLE

The login screen prompts the user for a user name and password. Figure 3-4 shows a
typical login screen generated using a JSP and Example 3-6 shows the source code.

3-13

Chapter 3
Developing Secure Web Applications

Figure 3-4 Form-Based Login Screen (login.jsp)

Y Security Webapp login page - Netscape -0 =|

File Edit WYiew Go Communicator Help

=

ﬁ@i\af&é‘dﬁi

Back Forward Reload Haome Search Metscape Print Security

<:;%,Instemth-hassagua e il Radio Feople ‘fellow Pages Dawrload

th Bookmarks \k LDDatiDnZI.-".-"|DDE|hDStZ?DU1 Szecurnity/login.jzp j ﬁv ‘What's Related

Please enter your
username and password:

TTzername;

Pazsword:

Subirnit |

& (== Documient: Done =| e O, AR B A 4

Figure 3-5 Login Error Screen

¥ Login failed - Netscape i -|O] x|

File Edit Wiew Go Communicator Help

=

<« 2 DA 4 o Hw s SN

Back Fomward Feload Haorme Search Metzcape Print Securit,

&InstantMessage debhd il Radio Feople ellow Pages Dawnloa

th Bookmarks A Ll:u:aticun:It:?l:ll:ﬂ.-’security.n’i_se-:urity_check j ﬁ"‘v\"hat's Related

Sorry, your username and
password were not
recognized.

Beturn to welcome page or logout

E|=“m‘=| Dacument: Done =l e R AP Bl ,;‘é

1. Create the web. xni deployment descriptor. In this file you include the following
information (see Example 3-8):

ORACLE 3-14

Chapter 3
Developing Secure Web Applications

a. Define the welcome file. The welcome file name is wel cone. j sp.

b. Define a security constraint for each set of URL resources that you plan to
protect. Each set of URL resources share a common URL. URL resources
such as HTML pages, JSPs, and servlets are the most commonly protected,
but other types of URL resources are supported. In Example 3-8, the URL
pattern points to /admin/edit.jsp, thus protecting the edi t . j sp file located in the
Web application's adni n sub-directory, defines the HTTP method that is
allowed to access the URL resource, GET, and defines the security role name,
admi n.

¢ Note:

Do not use hyphens in security role names. Security role names with
hyphens cannot be modified in the WebLogic Server Administration
Console. Also, the suggested convention for security role names is that
they be singular.

c. Define the type of authentication you want to use and the security realm to
which the security constraints will be applied. In this case, the FORMtype is
specified and no realm is specified, so the realm is the default realm, which
means that the security constraints will apply to the security realm that is
activated when a WebLogic Server instance boots.

d. Define one or more security roles and map them to your security constraints.
In our sample, only one security role, adni n, is defined in the security
constraint so only one security role name is defined here. However, any
number of security roles can be defined.

2. Create the webl ogi c. xmi deployment descriptor. In this file you map security role
names to users and groups. Example 3-9 shows a sample webl ogi c. xnl file that
maps the adni n security role defined in the <security-rol e> tag in the web.xml file
to the group supportGroup. With this configuration, WebLogic Server will only
allow users in the supportGroup group to access the protected WebLogic
resource. However, you can use the WebLogic Server Administration Console to
modify the Web application's security role so that other groups can be allowed to
access the protected WebLogic resource.

3. Create a Web application file that produces the welcome screen when the user
requests the protected Web application resource by entering the URL.
Example 3-10 shows a sample wel core. j sp file. Figure 3-3 shows the Welcome
screen.

Note:

In Example 3-3, notice that the JSP is calling an API
(request.getRemoteUser()) to get the name of the user that logged in. A
different API, weblogic.security.Security.getCurrentSubject(), could be used
instead. To use this API to get the name of the user, use it with the
SubjectUtils API as follows:

String userjname = webl ogi c. security. Subject Utils. get User nane
webl ogi c. sqcurity. Security. get Current Subject());

ORACLE 3-15

ORACLE

Chapter 3
Developing Secure Web Applications

4. Start WebLogic Server and define the users and groups that will have access to
the URL resource. In the webl ogi c. xni file (see Example 3-9), the <rol e- nane> tag
defines admin as the group that has access to the edit.jsp, file and defines the
user joe as a member of that group. Therefore, use the WebLogic Server
Administration Console to define the admin group, and define user joe and add joe
to the admin group. You can also define other users and add them to the group
and they will also have access to the protected WebLogic resource. For
information on adding users and groups, see Users, Groups, and Security Roles in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

5. Deploy the Web application and use the user(s) defined in the previous step to
access the protected Web application resource.

a. For deployment instructions, see Deploying Web Applications.
b. Open a Web browser and enter this URL:
http://hostname: 7001/ security/ wel come. j sp
c. Enter the user name and password. The Welcome screen displays.
Example 3-6 Form-Based Login Screen Source Code (login.jsp)

<htm >
<head>)
<title>Security WebApp login page</title>
</ head>
<body bgcol or="#cccccc">
<bl ockquot e>

<h2>Pl ease enter your user name and password: </h2>
<p>
<form net hod="POST" action="j _security_check">
<tabl e border=1>
<tr>
<t d>User nane: </t d>
<td><input type="text" name="j_usernanme"></td>
</[tr>
<tr>
<t d>Passwor d: </t d>
<td><i nput type="password" nane="j_password"></td>
</[tr>
<tr>
<td col span=2 al i gn=right><i nput type=submit
val ue="Submit"></td>
</[tr>
</tabl e>
</form
</ bl ockquot e>
</ body>
</htm>

Figure 3-5 shows a typical login error screen generated using HTML and Example 3-7
shows the source code.

Example 3-7 Login Error Screen Source Code

<htm >
<head>
<title>Login failed</title>
</ head>
<body bgcol or=#ffffff>

3-16

ORACLE

Chapter 3
Developing Secure Web Applications

<bl ockquot e>
<inmg src=/security/Button_Final _web.gif align=right>
<h2>Sorry, your user nane and password were not recognized. </ h2>
<p><h>
Return to wel cone page or
l ogout
</ b>
</ bl ockquot e>
</ body>
</htm >

To develop a Web application that provides FORM authentication, perform these
steps:

Example 3-8 FORM Authentication web.xml File

<?xm version='1.0" encodi ng="UTF-8' ?>
<web-app xm ns="http://java.sun.com xm /ns/j2ee" xm ns:xsi="http:// ww.w3. org/ 2001/
XM.Schema-i nst ance" >
<web- app>
<wel cone-file-list>
<wel conme-fil e>wel cone. j sp</wel come-file>
</wel come-file-list>
<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- name>Adni nPages</ web- r esour ce- nane>
<descri ption>
These pages are only accessible by authorized
adninistrators
</ description>
<url-pattern>/admin/edit.jsp</url-pattern>
<ht t p- met hod>GET</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h-constraint>
<descri pti on>
These are the roles who have access
</ description>
<rol e- name>
adnin
</rol e-name>
</ aut h-constrai nt >
<user - dat a- constr ai nt >
<descri ption>
This is how the user data nust be transmitted
</ description>
<transport - guar ant ee>NONE</ t r ansport - guar ant ee>
</ user - dat a- const r ai nt >
</security-constraint>
<l ogi n- confi g>
<aut h- met hod>FORMK/ aut h- met hod>
<forml ogi n-config>
<form | ogi n- page>/ | ogi n. j sp</ f orm | ogi n- page>
<formerror-page>/fail _login. htn </formerror-page>
</forml ogin-config>
</l ogi n-config>
<security-rol e>
<descri pti on>
An adni ni strator
</ description>
<rol e- name>
adnin

3-17

Chapter 3
Developing Secure Web Applications

</rol e-nane>
</security-role>
</ web- app>

Example 3-9 FORM Authentication weblogic.xml File

<?xm version='1.0" encodi ng=" UTF-8' ?>
<webl ogi c-web-app xm ns="http://ww. bea. con ns/ webl ogi ¢/ 90" xm ns: xsi ="http://
ww. W3. or g/ 2001/ XMLSchena- i nst ance" >
<webl ogi c- web- app>
<security-rol e-assi gnnent >
<rol e- name>adni n</ r ol e- name>
<pri nci pal - nane>suppor t G oup</ pri nci pal - name>
</ security-rol e-assi gnnent >
</ webl ogi c- web- app>

Example 3-10 Form Authentication welcome.jsp File

<htm >

<head>
<title>Security |ogin exanmple</title>

</ head>

<%
String bgcol or;
if ((bgcolor=(String)application.getAttribute("Background")) ==

null)

{

}
%
<body bgcol or =<%"\"" +bgcol or +"\"" %>
<bl ockquot e>
<ing src=Button_Final _web.gif align=right>
<hl> Security Login Exanple </hl>
<p> Wl cone <% request.get RenoteUser () %!
<p> If you are an adm nistrator, you can configure the background
col or of the Web Application.

 Configure background.
<%if (request.getRemoteUser() !=null) { %
<p> Cick here to l ogout.
<%} %
</ bl ockquot e>
</ body>
</htm >

bgcol or="#ccccec”;

3.3.4 Using Identity Assertion for Web Application Authentication

ORACLE

You use identity assertion in Web applications to verify client identities for
authentication purposes. When using identity assertion, the following requirements
must be met:

1. The authentication type must be set to CLIENT-CERT.

2. An Identity Assertion provider must be configured in the server. If the Web browser
or Java client requests a WebLogic Server resource protected by a security policy,
WebLogic Server requires that the Web browser or Java client have an identity.
The WebLogic Identity Assertion provider maps the token from a Web browser or
Java client to a user in a WebLogic Server security realm. For information on how
to configure an Identity Assertion provider, see Configuring ldentity Assertion
Providers in Administering Security for Oracle WebLogic Server.

3-18

Chapter 3
Developing Secure Web Applications

The user corresponding to the token's value must be defined in the server's
security realm; otherwise the client will not be allowed to access a protected
WebLogic resource. For information on configuring users on the server, see
Users, Groups, and Security Roles in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

3.3.5 Using Two-Way SSL for Web Application Authentication

You use two-way SSL in Web applications to verify that clients are whom they claim to
be. When using two-way SSL, the following requirements must be met:

1.
2.

The authentication type must be set to CLIENT-CERT.

The server must be configured for two-way SSL. For information on using SSL and
digital certificates, see Using SSL Authentication in Java Clients. For information
on configuring SSL on the server, see Configuring SSL in Administering Security
for Oracle WebLogic Server.

The client must use HTTPS to access the Web application on the server.

An Identity Assertion provider must be configured in the server. If the Web browser
or Java client requests a WebLogic Server resource protected by a security policy,
WebLogic Server requires that the Web browser or Java client have an identity.
The WebLogic Identity Assertion provider allows you to enable a user name
mapper in the server that maps the digital certificate of a Web browser or Java
client to a user in a WebLogic Server security realm. For information on how to
configure security providers, see Configuring WebLogic Security Providers in
Administering Security for Oracle WebLogic Server.

The user corresponding to the Subject's Distinguished Name (SubjectDN) attribute
in the client's digital certificate must be defined in the server's security realm;
otherwise the client will not be allowed to access a protected WebLogic resource.
For information on configuring users on the server, see Users, Groups, and
Security Roles in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

Note:

When you use SSL authentication, it is not necessary to use web.xml and
weblogic.xml files to specify server configuration because you use the
WebLogic Server Administration Console to specify the server's SSL
configuration.

3.3.6 Providing a Fallback Mechanism for Authentication Methods

The Servlet 3.0 specification (http://jcp. org/en/jsr/detail ?i d=315) allows you to
define the authentication method (BASIC, FORM, etc.) to be used in a Web
application. WebLogic Server provides an aut h- net hod security module that allows you
to define multiple authentication methods (as a comma separated list), so the
container can provide a fall-back mechanism. Authentication will be attempted in the
order the values are defined in the aut h- et hod list.

ORACLE

For example, you can define the following aut h- net hod list in the | ogi n- confi g element
of your web. xni file:

3-19

http://jcp.org/en/jsr/detail?id=315

Chapter 3
Developing Secure Web Applications

<l ogi n-confi g>
<aut h- met hod>CLI ENT- CERT, BASI C</ aut h- net hod>
</l ogi n-confi g>

Then the container will first try to authenticate by looking at the CLIENT-CERT value. If
that should fail, the container will challenge the user-agent for BASIC authentication.

If either FORM or BASIC are configured, then they must exist at the end of the list
since they require a round-trip communication with the user. However, both FORM
and BASIC cannot exist together in the list of aut h- net hod values.

3.3.6.1 Configuration

The aut h- met hod authentication security can be configured in two ways:

e Define a comma separated list of aut h- met hod values in the | ogi n-confi g element
of your web. xni file.

» Define the aut h-met hod values as a comma separated list on the Real mVBean and in
the I ogi n- confi g element of your web. xm use the REALM value, then the Web
application will pick up the authentication methods from the security realm.

WebLogic Java Management Extensions (JMX) enables you to access the
RealmMBean to create and manage the security resources. For more information, see
Overview of WebLogic Server Subsystem MBeans in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

3.3.7 Developing Swing-Based Authentication Web Applications

ORACLE

Web browsers can also be used to run graphical user interfaces (GUIs) that were
developed using Java Foundation Classes (JFC) Swing components.

For information on how to create a graphical user interface (GUI) for applications and
applets using the Swing components, see the Creating a GUI with JFC/Swing tutorial
(also known as The Swing Tutorial). You can access this tutorial on the Web at http://
docs. oracl e. conl j avase/ tutorial / ui swing/.

After you have developed your Swing-based GUI, refer to Developing FORM
Authentication Web Applications and use the Swing-based screens to perform the
steps required to develop a Web application that provides FORM authentication.

Note:

When developing a Swing-based GUI, do not rely on the Java Virtual Machine-
wide user for child threads of the swing event thread. This is not Java EE
compliant and does not work in thin clients, or in IIOP in general. Instead, take
either of the following approaches:

e Make sure an InitialContext is created before any Swing artifacts.

e Or, use the Java Authentication and Authorization Service (JAAS) to log in
and then use the Security.runAs() method inside the Swing event thread
and its children.

3-20

http://docs.oracle.com/javase/tutorial/uiswing/
http://docs.oracle.com/javase/tutorial/uiswing/

Chapter 3
Developing Secure Web Applications

3.3.8 Deploying Web Applications

To deploy a Web application on a server running in development mode, perform the
following steps:

ORACLE

1.

Note:

For more information about deploying Web applications in either development
of production mode, see Deploying Applications and Modules with
weblogic.deployer in Deploying Applications to Oracle WebLogic Server.

Set up a directory structure for the Web application's files. Figure 3-6 shows the
directory structure for the Web application named basi caut h. The top-level
directory must be assigned the name of the Web application and the sub-directory
must be named VEB- | NF.

Figure 3-6 Basicauth Web Application Directory Structure

hasicauth Directory
Welcome jsp

WEB-INF Subdirectory
o~ weh.xml
weblogic.xml

To deploy the Web application in exploded directory format, that is, not in the Java
archive (jar) format, simply move your directory to the appl i cati ons directory on
your server. For example, you would deploy the basi caut h Web application in the
following location:

ORACLE_HOVE\ user _pr oj ect s\ domai ns\ nydomai n\ appl i cati ons\ basi caut h

If the WebLogic Server instance is running, the application should auto-deploy.
Use the WebLogic Server Administration Console to verify that the application
deployed.

If the WebLogic Server instance is not running, the Web application should auto-
deploy when you start the server.

If you have not done so already, use the WebLogic Server Administration Console
to configure the users and groups that will have access to the Web application. To
determine the users and groups that are allowed access to the protected
WebLogic resource, examine the webl ogi c. xm file. For example, the webl ogi ¢. xn
file for the basi caut h sample (see Example 3-2) defines nyG oup as the only group
to have access to the wel cone. j sp file.

For more information on deploying secure Web applications, see Deploying
Applications and Modules with weblogic.deployer in Deploying Applications to Oracle
WebL ogic Server.

3-21

Chapter 3
Using Declarative Security With Web Applications

3.4 Using Declarative Security With Web Applications

WebLogic Server supports three different ways to implement declarative security web
applications. You can define policies and roles using the WebLogic Server
Administration Console; you can use the Java Authorization Contract for Containers
(JACC) to configure a Java permission-based security model; or you can configure
security entirely within the web application's deployment descriptor files.

For information about configuring declarative security using the console, see Manage
security for Web applications and EJBs in the Oracle WebLogic Server Administration
Console Online Help. For information about using JACC, see Using the Java
Authorization Contract for Containers. The topics that follow explain how to configure
security in web application's deployment descriptors.

Which of these three methods is used is defined by the JACC flags and the security
model. (Security models are described in Options for Securing EJB and Web
Application Resources in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.)

To implement declarative security in Web applications, you can use deployment
descriptors (web. xm and webl ogi c. xm) to define security requirements. The
deployment descriptors map the application's logical security requirements to its
runtime definitions. And at runtime, the servlet container uses the security definitions
to enforce the requirements. For a discussion of using deployment descriptors, see
Developing Secure Web Applications.

For information about how to use deployment descriptors and the ext ernal | y- def i ned
element to configure security in Web applications declaratively, see externally-defined.

WebLogic Server supports several deployment descriptor elements that are used in
the web. xni and webl ogi c. xni files to define security requirements in Web applications.

3.5 Web Application Security-Related Deployment
Descriptors

WebLogic Server supports several deployment descriptor elements that are used in
the web. xnl and webl ogi c. xmfiles to define security requirements in Web applications.

* web.xml Deployment Descriptors

* weblogic.xml Deployment Descriptors

3.5.1 web.xml Deployment Descriptors

The following web. xni security-related deployment descriptor elements are supported
by WebLogic Server:

* auth-constraint

* security-constraint
e security-role

e security-role-ref

e user-data-constraint

ORACLE 3-22

Chapter 3
Web Application Security-Related Deployment Descriptors

e web-resource-collection

3.5.1.1 auth-constraint

The optional aut h- const rai nt element defines which groups or principals have access
to the collection of Web resources defined in this security constraint.

Note:

Any resource that is protected by an aut h- const rai nt element should also be
protected by a Table 3-6 with a <t ransport - guar ant ee> of | NTEGRAL or
CONFI DENTI AL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when
the user is authenticated using the | NTEGRAL or CONFI DENTI AL transport
guarantee, thereby ensuring that all communication on the network between
the Web browser and the server is encrypted and that none of the
communication, including a user name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the
JSESSI ONI D cookie and the encrypted _W._AUTHCOOKI E_JSESSI ONI D cookie, as
described in Using Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within an aut h- const r ai nt
element.

Table 3-2 auth-constraint Element
]

Element Required/ Description
Optional

<description> Optional A text description of this security constraint.
Optional Defines which security roles can access resources

<rol e- name> . S ’ . .
defined in this <securi ty- const rai nt >. Security role

names are mapped to principals using the <security-
rol e-ref > element. See security-role-ref.

3.5.1.1.1 Used Within
The aut h-const rai nt element is used within the security-constrai nt element.
3.5.1.1.2 Example
See Example 3-11 for an example of how to use the aut h-constraint elementin a
web. xni file.

3.5.1.2 security-constraint

The security-constraint elementis used in the web. xnl file to define the access
privileges to a collection of resources defined by the web- resour ce-col | ecti on element.

ORACLE 3-23

Chapter 3
Web Application Security-Related Deployment Descriptors

Note:

Any resource that is protected by an aut h-const rai nt element should also be
protected by a Table 3-6 with a <transport - guar ant ee> of | NTEGRAL or
CONFI DENTI AL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when
the user is authenticated using the | NTEGRAL or CONFI DENTI AL transport
guarantee, thereby ensuring that all communication on the network between
the Web browser and the server is encrypted and that none of the
communication, including a user name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the
JSESSI ONI D cookie and the encrypted _W._AUTHCOOKI E_JSESSI ONI D cookie, as
described in Using Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within a security-constraint
element.

Table 3-3 security-constraint Element
|

Element Required/ Description
Optional
< Required Defines the components of the Web Application to which
web- resour ce- . . N)
; this security constraint is applied. See web-resource-
col I ection> h
collection.
<aut h- Optional Defines which groups or principals have access to the

collection of web resources defined in this security

constraint> X X
constraint. See auth-constraint.

Optional Defines defines how data communicated between the
client and the server should be protected. See user-
data-constraint.

<user - dat a-
constraint>

3.5.1.2.1 Example

Example 3-11 shows how to use the security-constraint element to defined security
for the SecureOrdersEast resource in a web. xnl file.

Example 3-11 Security Constraint Example

web. xm entries
<security-constraint>
<web-resour ce-col | ection>
<web-r esour ce- name>Secur eQr der sEast </ web- r esour ce- name>
<descri ption>
Security constraint for
resources in the orders/east directory
</ description>
<url-pattern>/orders/east/*</url-pattern>
<ht t p- net hod>POST</ ht t p- met hod>
<ht t p- net hod>CGET</ ht t p- net hod>
</ web-resource-col | ection>
<aut h-constraint>

ORACLE 3-24

Chapter 3
Web Application Security-Related Deployment Descriptors

<descri ption>
constraint for east coast sales

</ description>
<rol e- name>east </ r ol e- name>
<rol e- name>manager </ r ol e- name>

</ aut h-constraint >

<user - dat a- constrai nt >

<description>SSL not required</description>
<transport - guar ant ee>NONE</ t r anspor t - guar ant ee>

</ user-dat a-constraint>

</ security-constraint>

3.5.1.3 security-role

The security-rol e element contains the definition of a security role. The definition
consists of an optional description of the security role, and the security role name.

The following table describes the elements you can define within a security-role
element.

Table 3-4 security-role Element

Element Required/ Description
Optional
Optional A text description of this security role.

<descri ption>

Required The role name. The name you use here must have a
corresponding entry in the WebLogic-specific
deployment descriptor, webl ogi ¢. xm , which maps roles
to principals in the security realm. See security-role-

<rol e- nane>

assignment.
3.5.1.3.1 Example
See Example 3-14 for an example of how to use the security-rol e elementin a
web. xni file.

3.5.1.4 security-role-ref

The security-role-ref element links a security role name defined by <securi ty-rol e> to
an alternative role name that is hard-coded in the servlet logic. This extra layer of
abstraction allows the servlet to be configured at deployment without changing servlet
code.

The following table describes the elements you can define within a security-rol e-ref
element.

Table 3-5 security-role-ref Element

Element Required/ Description
Optional

<description> Optional Text description of the role.

ORACLE 3-25

Chapter 3
Web Application Security-Related Deployment Descriptors

Table 3-5 (Cont.) security-role-ref Element
|

Element Required/ Description
Optional

<rol e- nane> Required Deflngs the name of the security role or principal that is
used in the servlet code.

<rol e-1ink> Required Defines the name of the security role that is defined in a
<security-rol e> element later in the deployment
descriptor.

3.5.1.4.1 Example
See Example 3-17 for an example of how to use the security-rol e-ref elementin a
web. xm file.

3.5.1.5 user-data-constraint

The user-dat a- constrai nt element defines how data communicated between the client
and the server should be protected.

" Note:

Any resource that is protected by an aut h- const rai nt element should also be
protected by a Table 3-6 with a <transport - guar ant ee> of | NTEGRAL or
CONFI DENTI AL.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection when
the user is authenticated using the | NTEGRAL or CONFI DENTI AL transport
guarantee, thereby ensuring that all communication on the network between
the Web browser and the server is encrypted and that none of the
communication, including a user name and password, is in clear text.

Requiring SSL also means that WebLogic Server uses two cookies: the
JSESSI ONI D cookie and the encrypted _W._ AUTHCOOKI E_JSESSI ONI D cookie, as
described in Using Secure Cookies to Prevent Session Stealing.

The following table describes the elements you can define within a user - dat a-
constraint element.

Table 3-6 user-data-constraint Element
]

Element Required/ Description
Optional
Optional A text description.

<descri ption>

ORACLE 3-26

Chapter 3
Web Application Security-Related Deployment Descriptors

Table 3-6 (Cont.) user-data-constraint Element
|

Element Required/ Description
Optional
Required Specifies data security requirements for

<transport -

communications between the client and the server.
guar ant ee>

Range of values:

« NONE—The application does not require any
transport guarantees.

e INTEGRAL—The application requires that the data
be sent between the client and server in such a way
that it cannot be changed in transit.

* CONFIDENTIAL—The application requires that
data be transmitted so as to prevent other entities
from observing the contents of the transmission.

WebLogic Server establishes a Secure Sockets Layer

(SSL) connection when the user is authenticated using

the | NTEGRAL or CONFI DENTI AL transport guarantee.

3.5.1.5.1 Used Within
The user-dat a- constrai nt element is used within the security-constraint element.
3.5.1.5.2 Example
See Example 3-11 for an example of how to use the user - dat a- const rai nt elementin a
web. xn file.

3.5.1.6 web-resource-collection

The web-resour ce-col | ecti on element identifies a subset of the resources and HTTP
methods on those resources within a Web application to which a security constraint
applies. If no HTTP methods are specified, the security constraint applies to all HTTP
methods.

The following table describes the elements you can define within a web-r esour ce-
col I ection element.

Table 3-7 web-resource-collection Element
]

Element Required/ Description
Optional
Required The name of this web resource collection.

<web- r esour ce-
name>

<description> Optional Text description of the Web resource.

ORACLE 3-27

Chapter 3
Web Application Security-Related Deployment Descriptors

Table 3-7 (Cont.) web-resource-collection Element

Element Required/ Description
Optional
<url -patterns Required The mapping, or location, of the Web resource
collection.

URL patterns must use the syntax defined in the Java
Servlet Specification (http://jcp.org/en/jsr/detail ?
i d=315).

The pattern <ur| - pattern>/ </ url - pattern> applies the
security constraint to the entire Web application.

Optional The HTTP methods to which the security constraint
applies when clients attempt to access the Web
resource collection. If no HTTP methods are specified,
then the security constraint applies to all HTTP methods.

Specifying an HTTP method here limits the reach of the
security constraint. Unless you have a particular
requirement to specify an HTTP method, for security
reasons you should not set this element.

<ht t p- et hod>

3.5.1.6.1 Used Within

The web-resource-col | ection element is used within the security-constraint element.

3.5.1.6.2 Example

See Example 3-11 for an example of how to use the web- r esour ce- col | ecti on element
in aweb. xnl file.

3.5.2 weblogic.xml Deployment Descriptors

The following webl ogi c. xm security-related deployment descriptor elements are
supported by WebLogic Server:

ORACLE

externally-defined
run-as-principal-name
run-as-role-assignment
security-permission
security-permission-spec

security-role-assignment

For additional information on webl ogi c. xni deployment descriptors, see XML
Deployment Descriptors in Developing Applications for Oracle WebLogic Server.

For additional information on the webl ogi c. xnl elements, see weblogic.xml Deployment
Descriptor Elements in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

3-28

http://jcp.org/en/jsr/detail?id=315
http://jcp.org/en/jsr/detail?id=315

Chapter 3
Web Application Security-Related Deployment Descriptors

3.5.2.1 externally-defined

The ext ernal | y- defi ned element lets you explicitly indicate that you want the security
roles defined by the rol e- nane element in the web. xmi deployment descriptors to use
the mappings specified in the WebLogic Server Administration Console. The element
gives you the flexibility of not having to specify a specific security role mapping for
each security role defined in the deployment descriptors for a particular Web
application. Therefore, within the same security realm, deployment descriptors can be
used to specify and modify security for some applications while the WebLogic Server
Administration Console can be used to specify and modify security for others.

The role mapping behavior for a server depends on which security deployment model
is selected on the WebLogic Server Administration Console. For information on
security deployment models, see Options for Securing EJB and Web Application
Resources in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

Note:

When specifying security role names, observe the following conventions and
restrictions:

e The proper syntax for a security role name is as defined for an Nmtoken in
the Extensible Markup Language (XML) recommendation available on the
Web at: htt p: // www. w3. or g/ TR/ REC- xmi #NT- Nt oken.

Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, <>, #, |, & ~, 2, (), { }-

e Security role names are case sensitive.

e The suggested convention for security role names is that they be singular.

3.5.2.1.1 Used Within

The external | y-defi ned element is used within the security-rol e-assi gnnent element.

3.5.2.1.2 Example

Example 3-12 and Example 3-13 show by comparison how to use the ext ernal | y-
defined el ement in the webl ogi c. xni file. In Example 3-13, the specification of the
"webuser" ext ernal | y- def i ned element in the webl ogi c. xni means that for security to
be correctly configured on the get Recei pt s method, the principals for webuser will have
to be created in the WebLogic Server Administration Console.

Note:

If you need to list a significant number of principals, consider specifying groups
instead of users. There are performance issues if you specify too many users.

ORACLE 3-29

http://www.w3.org/TR/REC-xml#NT-Nmtoken

Chapter 3
Web Application Security-Related Deployment Descriptors

Example 3-12 Using the web.xml and weblogic.xml Files to Map Security Roles
and Principals to a Security Realm

web. xnl entries:
<web- app>

<security-rol e>
<r ol e- name>webuser </ r ol e- name>
</security-rol e>

</ web- app>
<webl ogi c. xnl entries:
<webl ogi c- web- app>
<security-rol e-assi gnnent >
<rol e- name>webuser </ rol e- name>
<pri nci pal - nane>ny G oup</ pri nci pal - nane>
<princi pal - nane>Bi | | </ pri nci pal - name>
<pri nci pal - nane>Mar y</ pri nci pal - name>
</ security-rol e-assi gnnent >
</ webl ogi c- web- app>

Example 3-13 Using the externally-defined tag in Web Application Deployment
Descriptors

web. xml entries:
<web- app>

<security-rol e>
<rol e- name>webuser </ r ol e- nane>
</security-rol e>

</ web- app>
<webl ogi c. xm entries:
<webl ogi c- web- app>
<security-rol e-assi gnment >
<r ol e- name>webuser </ r ol e- name>
<external | y-defined/ >
</security-rol e-assi gnnent >

For information about how to use the WebLogic Server Administration Console to
configure security for Web applications, see Securing Web Applications and EJBs in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

3.5.2.2 run-as-principal-name

The run-as- pri nci pal - name element specifies the name of a principal to use for a
security role defined by a run-as element in the companion web. xni file.

3.5.2.2.1 Used Within

The run-as- princi pal - nane element is used within a run- as-r ol e- assi gnnent element.

3.5.2.2.2 Example

ORACLE

For an example of how to use the run- as- pri nci pal - name element, see Example 3-14.

3-30

Chapter 3
Web Application Security-Related Deployment Descriptors

3.5.2.3 run-as-role-assignment

The run-as-rol e-assi gnment element maps a given role name, defined by a rol e- nane
element in the companion web. xni file, to a valid user name in the system. The value
can be overridden for a given servlet by the run- as- pri nci pal - nane element in the
servlet-descriptor. If the run- as-rol e- assi gnment element is absent for a given role
name, the Web application container chooses the first principal-name defined in the
security-rol e-assi gnment element.

The following table describes the elements you can define within a run-as-rol e-
assi gnnent element.

Table 3-8 run-as-role-assignment Element
|

Element Required/ Description
Optional
<rol e- nane> Required Specifies the name of a security role name specified in a

run-as element in the companion web. xm file.

Required Specifies a principal for the security role name defined

<run-as- ; . 4 :
in arun-as element in the companion web. xm file.

princi pal - nane>

3.5.2.3.1 Example:

Example 3-14 shows how to use the run-as-rol e- assi gnnent element to have the
SnoopSer vl et always execute as a user j oe.

Example 3-14 run-as-role-assignment Element Example

web. xm :
<servl et >
<servl et - name>SnoopSer vl et </ servl et - name>
<servl et-cl ass>extra. SnoopServl et </ servl et-cl ass>
<run-as>
<rol e- name>r unasr ol e</rol e- nane>
</run-as>
</servlet>
<security-rol e>
<r ol e- name>r unasr ol e</r ol e- nane>
</security-rol e>
webl ogi c. xm :
<webl ogi c- web- app>
<run-as-rol e-assi gnnent >
<rol e- name>r unasr ol e</ r ol e- nane>
<run-as- princi pal - name>j oe</ run- as- pri nci pal - name>
</run-as-rol e-assi gnment >
</ webl ogi c- web- app>

3.5.2.4 security-permission

The securi ty-perni ssi on element specifies a security permission that is associated
with a Java EE Sandbox.

ORACLE 3-31

Chapter 3
Web Application Security-Related Deployment Descriptors

3.5.2.4.1 Example

For an example of how to used the securi t y- per ni ssi on element, see Example 3-15.

3.5.2.5 security-permission-spec

The security-permission-spec element specifies a single security permission based on
the Security policy file syntax. Refer to the following URL for the implementation of the
security permission specification:

http://docs. oracl e. contjavase/ 7/ docs/ t echnot es/ gui des/ security/
Pol i cyFi | es. ht nl #Fi | eSynt ax

Note:

Disregard the optional codebase and signedBy clauses.

3.5.2.5.1 Used Within

The security-permission- spec element is used within the securi ty- perni ssi on element.

3.5.2.5.2 Example

Example 3-15 shows how to use the security-permission-spec element to grant
permission to the j ava. net . Socket Per ni ssi on class.

Example 3-15 security-permission-spec Element Example

<webl ogi c- web- app>
<security-perm ssion>
<descri pti on>Optional explanation goes here</description>
<security-pern ssion-spec>
<l--
A single grant statenent following the syntax of
http://java.sun.conlj2se/1.5.0/docs/ gui de/ security/PolicyFiles.htm #FileSyntax,
without the "codebase" and "signedBy" clauses, goes here. For exanple:
>
grant {
perm ssion java. net.Socket Pernission "*", "resolve";
B
</ security-pernission-spec>
</ security-perm ssion>
</ webl ogi c- web- app>

In Example 3-15, permission j ava. net . Socket Per ni ssi on is the permission class name,
"*" represents the target name, and resolve indicates the action (resolve host/IP name
service lookups).

3.5.2.6 security-role-assignment

The security-rol e-assi gnment element declares a mapping between a security role
and one or more principals in the WebLogic Server security realm.

ORACLE 3-32

http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

Chapter 3
Using Programmatic Security With Web Applications

Note:

For information on using the security-role-assignment element in a weblogic-
application.xml deployment descriptor for an enterprise application, see
Enterprise Application Deployment Descriptor Elements in Developing
Applications for Oracle WebLogic Server.

3.5.2.6.1 Example

3.6 Using

Example 3-16 shows how to use the security-rol e-assi gnment element to assign
principals to the Payrol | Adni n role.

" Note:

If you need to list a significant number of principals, consider specifying groups
instead of users. There are performance issues if you specify too many users.

Example 3-16 security-role-assignment Element Example

<webl ogi c- web- app>
<security-rol e-assi gnment >
<r ol e- name>Payr ol | Adni n</r ol e- name>
<pri nci pal - nanme>Tanya</ pri nci pal - name>
<pri nci pal - nanme>Fr ed</ pri nci pal - name>
<princi pal - name>syst enx/ pri nci pal - nane>
</security-rol e-assi gnnent >
</ webl ogi c- web- app>

Programmatic Security With Web Applications

You can write your servlets to access users and security roles programmatically in
your servlet code by using the following methods:

javax.servlet. http. HtpServl et Request . get User Pri nci pal and

javax.servlet.http. HtpServl et Request.isUserlnRol e(String role).

* getUserPrincipal

e isUserInRole

3.6.1 getUserPrincipal

ORACLE

You use the get User Pri nci pal () method to determine the current user of the Web
application. This method returns a W.SUser Princi pal if one exists in the current user. In
the case of multiple W.SUser Pri nci pal s, the method returns the first in the ordering
defined by the Subj ect . get Princi pal s().iterator() method. If there are no W.SUser
Princi pal s, then the get User Pri nci pal () method returns the first non-W.SG oup

Princi pal . If there are no Princi pal s or all Princi pal s are of type W.SG oup, this method
returns nul | . This behavior is identical to the semantics of the

webl ogi c. security. Subj ect Wil s. get User Princi pal () method.

3-33

Chapter 3
Using Programmatic Security With Web Applications

For more information about how to use the get User Pri nci pal () method, see http://
wwwv. or acl e. coni t echnet work/ j aval j avaee/t ech/i ndex. htni .

3.6.2 isUserIinRole

ORACLE

The javax.servlet.http. HtpServl et Request.isUserlnRol e(String rol e) method returns
a boolean indicating whether the authenticated user is granted the specified logical
security "role." If the user has not been authenticated, this method returns false.

The i sUser I nRol e() method maps security roles to the group names in the security
realm. Example 3-17 shows the elements that are used with the <servl et > element to
define the security role in the web. xm file.

Note:

When specifying security role names, observe the following conventions and
restrictions:

e The proper syntax for a security role name is as defined for an Nmtoken in
the Extensible Markup Language (XML) recommendation available on the
Web at: http://wwmv. w3. or g/ TR/ REC- xm #NT- Nnt oken.

* Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, <>, #, [, & ~, 2, (), { }-

e Security role names are case sensitive.

e The suggested convention for security role names is that they be singular.

For example, if the client has successfully logged in as user Bi | | with the security role
of manager, the following method would return true:

request . i sUserl nRol e(" manager")

Example 3-18 provides an example.
Example 3-17 IsUserlnRole web.xml and weblogic.xml Elements

Begin web. xm entries:
<servl et>
<security-role-ref>
<rol e-name>user - r ol enane</ r ol e- name>
<rol e-1ink>rol enane-1ink</role-link>
</security-role-ref>
</servlet>
<security-rol e>

<rol e-name>r ol enane- | i nk</rol e- name>
</security-role>

Begi n webl ogi c. xnl entries:
<security-rol e-assi gnnent >
<rol e- name>r ol ename- | i nk</r ol e- name>

<pri nci pal - name>gr oupnane</ pri nci pal >
<pri nci pal - name>user nane</ pri nci pal >

3-34

http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.w3.org/TR/REC-xml#NT-Nmtoken

Chapter 3
Using the Programmatic Authentication API

</ security-rol e-assi gnnent >

The string rol e is mapped to the name supplied in the <r ol e- name> element, which is
nested inside the <security-rol e-ref > element of a <ser vl et > declaration in the web. xm
deployment descriptor. The <r ol e- name> element defines the name of the security role
or princi pal (the user or group) that is used in the servlet code. The <rol e-1i nk>
element maps to a <rol e- nane> defined in the <security-rol e- assi gnment > element in
the webl ogi c. xm deployment descriptor.

Example 3-18 Example of Security Role Mapping

Servl et code:
out.println("ls the user a Manager? " +
request . i sUserlnRol e("manager"));
web. xm entries:
<servl et >

<rol e- name>manager </ r ol e- name>
<rol e-link>ngr</role-link>

</ servlet>
<security-rol e>
<rol e- name>ngr </ rol e- nane>
</security-rol e>
webl ogi c. xm entries:
<security-rol e-assi gnnent >
<rol e- name>ngr </ r ol e- nane>
<pri nci pal - nane>bost onManager s</ pri nci pal - name>
<princi pal - nane>Bi | | </ pri nci pal - name>
<pri nci pal - nane>Ral ph</ pri nci pal - name>
</security-role-ref>

3.7 Using the Programmatic Authentication API

ORACLE

WebLogic Server provides a server-side
webl ogi c. servl et. security. Servl et Aut henti cation API that supports programmatic
authentication from within a servlet application.

You can use the webl ogi c. servl et. security. Servl et Aut henti cati on API to authenticate
and log in the user. Once the login is completed, it appears as if the user logged in
using the standard mechanism.

You have the option of using either of two WebLogic-supplied classes with the

Servl et Aut hent i cati on API, the webl ogi c. security. Si npl eCal | backHandl er class or the
webl ogi c. security. URLCal | backHandl er class. For more information on these classes,
see Java API Reference for Oracle WebLogic Server.

Example 3-19 shows an example that uses Si npl eCal | backHandl er . Example 3-20
shows an example that uses URLCal | backHandl er .

Example 3-19 Programmatic Authentication Code Fragment Using the
SimpleCallbackHandler Class

Cal | backHandl er handl er = new Si npl eCal | backHand| er (user nane,
password) ;
Subj ect mySubj ect =
webl ogi c. security.services. Authentication.logi n(handler);

3-35

Chapter 3
Using the Programmatic Authentication API

webl ogi c. servlet.security. Servl et Aut henti cation. runAs(mySubject, request);
/1 \Were request is the httpservletrequest object.

Example 3-20 Programmatic Authentication Code Fragment Using the
URLCallbackHandler Class

Cal | backHandl er handl er = new URLCal | backHandl er (user nane,
password);
Subj ect mySubject =
webl ogi c. security. services. Aut henti cation. | ogin(handl er);
webl ogi c. servl et.security. Servl et Aut henti cation. runAs(nySubject, request);
/1 \Were request is the httpservletrequest object.

3.7.1 Change the User's Session ID at Login

ORACLE

When an HttpSession is created in a servlet, it is associated with a unique ID. The
browser must provide this session ID with its request in order for the server to find the
session data again.

In order to avoid a type of attack called "session fixation," you should change the
user's session ID at login. To do this, call the gener at eNewSessi onl D method of
webl ogi c. servlet.security. Servl et Aut henti cation after you call the | ogi n method.

The gener at eNewSessi onl D method moves all current session information into a
completely different session ID and associates this session with this new ID.

Note:

The session itself does not change, only its identifier.

It is possible that legacy applications might depend on the session ID remaining the
same before and after login. Calling gener at eNewSessi onl D would break such an
application. Oracle recommends that you do not build this dependency into your
application. However, if you do, or if you are dealing with a legacy application of this
type, Oracle recommends that you use SSL to protect all access to the application.

Note that, by default, the WebLogic container automatically regenerates IDs for non-
programmatic logins.

See Servl et Aut hent i cat i on for additional information about the gener at eNewSessi onl DY)
method.

3-36

Using JAAS Authentication in Java Clients

4.1 JAAS

ORACLE

WebLogic Server provides support for using JAAS authentication in Java clients.
Learn how to implement this type of authentication.

* JAAS and WebLogic Server

* JAAS Authentication Development Environment

* Writing a Client Application Using JAAS Authentication
e Using JNDI Authentication

* Java Client JAAS Authentication Code Examples

The sections refer to sample code which is included in the WebLogic Server
distribution at:

EXAMPLES_HOME\ st c\ exanpl es\ securi ty\j aas

The EXAMPLES_HOME directory can be found at ORACLE_HOVE\ wi ser ver \ sanpl es\ server .

The j aas directory contains aninstructions. htnl file, ant build files, a
sanpl e_j aas. confi g file, and the following Java files:

° Basedient.java

* BaseCdientConstants.java

* Sanpl eAction.java

e Sanpl eCal | backHandl er. j ava
e SanpleCient.java

°* TradeResult.java

* TraderBean.java

You will need to look at the examples when reading the information in the following

sections.

and WebLogic Server

The Java Authentication and Authorization Service (JAAS) is a standard extension to

the security in the Java EE Development Kit. JAAS provides the ability to enforce
access controls based on user identity. WebLogic Server provides JAAS as an

alternative to the JNDI authentication mechanism. There are certain considerations

when using JAAS authentication.

WebLogic Server clients use the authentication portion of the standard JAAS only. The

JAAS LoginContext provides support for the ordered execution of all configured

authentication provider LoginModule instances and is responsible for the management

of the completion status of each configured provider.

Note the following considerations when using JAAS authentication for Java clients:

4-1

Chapter 4
JAAS Authentication Development Environment

WebLogic Server clients can either use the JNDI login or JAAS login for
authentication, however JAAS login is the preferred method.

While JAAS is the preferred method of authentication, the WebLogic-supplied
LoginModule (webl ogi c. security. aut h. | ogi n. User namePasswor dLogi nkbdul) only
supports username and password authentication. Thus, for client certificate
authentication (also referred to as two-way SSL authentication), you should use
JNDI. To use JAAS for client certificate authentication, you must write a custom
LoginModule that does certificate authentication.

Note:

If you write your own LoginModule for use with WebLogic Server clients,
have it call weblogic.security.auth.Authenticate.authenticate() to perform
the login.

To perform a JAAS login from a remote Java client (that is, the Java client is not a
WebLogic Server client), you may use the WebLogic-supplied LoginModule to
perform the login. However, if you elect not to use the WebLogic-supplied
LoginModule but decide to write your own instead, you must have it call the

webl ogi c. security. aut h. Aut henti cat e. aut henti cat e() method to perform the login.

If you are using a remote, or perimeter, login system such as Security Assertion
Markup Language (SAML), you do not need to call

webl ogi c. security. auth. Aut henti cat e. aut henticate(). You only need to call the
aut henti cat e() method if you are using WebLogic Server to perform the logon.

Note:

WebLogic Server provides full container support for JAAS authentication
and supports full use of JAAS authentication and authorization in
application code.

Within WebLogic Server, JAAS is called to perform the login. Each Authentication
provider includes a LoginModule. This is true for servlet logins as well as Java
client logins via JNDI or JAAS. The method WebLogic Server calls internally to
perform the JAAS logon is webl ogi c. securi ty. aut h. Aut henti cati on. aut henti cat e() .
When using the Authenticate class, webl ogi c. securi ty. Si npl eCal | backHandl er may
be a useful helper class.

While WebLogic Server does not protect any resources using JAAS authorization
(it uses WebLogic security), you can use JAAS authorization in application code to
protect the application's own resources.

For more information about JAAS, see the JAAS documentation at http://
www. or acl e. com t echnet wor k/ j aval/ j avase/ j aas/index. htm .

4.2 JAAS Authentication Development Environment

ORACLE

WebLogic Server uses the JAAS classes to reliably and securely authenticate to the
server. JAAS implements a Java version of the Pluggable Authentication Module

(PAM) framework, which permits applications to remain independent from underlying
authentication technologies. Therefore, the PAM framework allows the use of new or

4-2

http://www.oracle.com/technetwork/java/javase/jaas/index.html
http://www.oracle.com/technetwork/java/javase/jaas/index.html

Chapter 4
JAAS Authentication Development Environment

updated authentication technologies without requiring modifications to a Java
application.

WebLogic Server uses JAAS for remote Java client authentication, and internally for
authentication. Therefore, only developers of custom Authentication providers and
developers of remote Java client applications need to be involved with JAAS directly.
Users of Web browser clients or developers of within-container Java client applications
(for example, those calling an EJB from a servlet) do not require direct use or
knowledge of JAAS.

" Note:

In order to implement security in a WebLogic client you must install the
WebLogic Server software distribution kit on the Java client.

The following topics are covered in this section:

* JAAS Authentication APIs
e JAAS Client Application Components

* WebLogic LoginModule Implementation

4.2.1 JAAS Authentication APIs

To implement Java clients that use JAAS authentication on WebLogic Server, you use
a combination of Java EE application programming interfaces (APIs) and WebLogic
APlIs.

Table 4-1 lists and describes the Java API packages used to implement JAAS
authentication. The information in Table 4-1 is taken from the Java API documentation
and annotated to add WebLogic Server specific information. For more information on
the Java APls, see the Javadocs at http://docs. oracl e. cont j avase/ 7/ docs/ api /

index. htmi and http://docs. oracl e. confj avaee/ 7/ api / .

Table 4-1 lists and describes the WebLogic APIs used to implement JAAS
authentication. See Java API Reference for Oracle WebLogic Server.

Table 4-1 Java JAAS APIs

__|
Java JAAS API Description

javax.security.auth.Subject The Subj ect class represents the source of the request, and can
(http://docs. oracle.com be an individual user or a group. The Subj ect object is created

j avasel/ 7/ docs/ api / only after the subject is successfully logged in.

i ndex. htm)

ORACLE 4.3

http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html

ORACLE

Chapter 4
JAAS Authentication Development Environment

Table 4-1 (Cont.) Java JAAS APIs

Java JAAS API

Description

javax.security.auth.login.Lo
ginContext (http://

docs. oracl e. conl

j avase/ 7/ docs/ api /

i ndex. htm)

The Logi nCont ext class describes the basic methods used to
authenticate Subj ect s and provides a way to develop an
application independent of the underlying authentication
technology. A Confi gur ati on specifies the authentication
technology, or LoginModule, to be used with a particular
application. Therefore, different LoginModules can be plugged in
under an application without requiring any modifications to the
application itself.

After the caller instantiates a Logi nCont ext , it invokes the | ogi n
method to authenticate a Subj ect . This | ogi n method invokes the
| ogi n method from each of the LoginModules configured for the
name specified by the caller.

If the | ogi n method returns without throwing an exception, then
the overall authentication succeeded. The caller can then retrieve
the newly authenticated Subj ect by invoking the get Subj ect
method. Principals and credentials associated with the Subj ect
may be retrieved by invoking the Subj ect 's respective

get Princi pal s, get Publ i cCredenti al s, and

get Privat eCredenti al s methods.

To log the Subj ect out, the caller invokes the | ogout method. As
with the | ogi n method, this | ogout method invokes the | ogout
method for each LoginModule configured for this Logi nCont ext .

For a sample implementation of this class, see Writing a Client
Application Using JAAS Authentication.

javax.security.auth.login.Co
nfiguration (http://

docs. oracl e. cont

j avase/ 7/ docs/ api /

i ndex. htm)

This is an abstract class for representing the configuration of
LoginModules under an application. The Confi gur ati on specifies
which LoginModules should be used for a particular application,
and in what order the LoginModules should be invoked. This
abstract class needs to be subclassed to provide an
implementation which reads and loads the actual configuration.

In WebLogic Server, use a login configuration file instead of this
class. For a sample configuration file, see Writing a Client
Application Using JAAS Authentication. By default, WebLogic
Server uses the configuration class, which reads from a
configuration file.

javax.security.auth.spi.Logi
nModule (http://

docs. oracl e. conf

j avase/ 7/ docs/ api /

i ndex. htm)

Logi nMWbdul e describes the interface implemented by
authentication technology providers. Logi nMdul es are plugged in
under applications to provide a particular type of authentication.

While application developers write to the Logi nCont ext API,
authentication technology providers implement the LoginModule
interface. A configuration specifies the LoginModule(s) to be used
with a particular login application. Therefore, different
LoginModules can be plugged in under the application without
requiring any modifications to the application itself.

Note: WebLogic Server provides an implementation of the
LoginModule (webl ogi c. security. auth. | ogin.

User nanePasswor dLogi nMbdul e). Oracle recommends that you
use this implementation for JAAS authentication in WebLogic
Server Java clients; however, you can develop your own
LoginModule.

4-4

http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html

ORACLE

Chapter 4
JAAS Authentication Development Environment

Table 4-1 (Cont.) Java JAAS APIs

Java JAAS API

Description

javax.security.auth.
callback.Callback (http://
docs. oracl e. coml

j avase/ 7/ docs/ api /

i ndex. htm)

Implementations of this interface are passed to a

Cal | backHandl er, allowing underlying security services to interact
with a calling application to retrieve specific authentication data,
such as usernames and passwords, or to display information such
as error and warning messages.

Cal I back implementations do not retrieve or display the
information requested by underlying security services. Cal | back
implementations simply provide the means to pass such requests
to applications, and for applications to return requested
information to the underlying security services.

javax.security.auth.
callback.CallbackHandler
(http://docs.oracl e.com
j avasel/ 7/ docs/ api /

i ndex. htm)

An application implements a Cal | backHandl er and passes it to
underlying security services so that they can interact with the
application to retrieve specific authentication data, such as
usernames and passwords, or to display information such as error
and warning messages.

Cal | backHandl er s are implemented in an application-dependent
fashion.

Underlying security services make requests for different types of
information by passing individual Cal | backs to the

Cal | backHandl er. The Cal | backHandl er implementation decides
how to retrieve and display information depending on the

Cal | backs passed to it. For example, if the underlying service
needs a username and password to authenticate a user, it uses a
NameCal | back and Passwor dCal | back. The Cal | backHandl er can
then choose to prompt for a username and password serially, or
to prompt for both in a single window.

Table 4-2 WebLogic JAAS APIs

WebLogic JAAS API

Description

weblogic.security.auth.Auth
enticate

An authentication class used to authenticate user credentials.

The WebLogic implementation of the LoginModule,
(webl ogi c. security.auth.login.

User nanePasswor dLogi nMbdul e, uses this class to authenticate a
user and add Pri nci pal s to the Subj ect . Developers who write
LoginModules must also use this class for the same purpose.

weblogic.security.auth.Call
back.ContextHandlerCallba
ck

Underlying security services use this class to instantiate and pass
a Cont ext Handl er Cal | back to the i nvokeCal | back method of a
Cal | backHandl er to retrieve the ContextHandler related to this
security operation. If no ContextHandler is associated with this
operation, the

javax. security.auth. cal | back. UnsupportedCal | backexcepti o
n is thrown.

This callback passes the ContextHandler to LoginModule.login()
methods.

weblogic.security.auth.Call
back.GroupCallback

Underlying security services use this class to instantiate and pass
a GroupCal | back to the i nvokeCal | back method of a
Cal | backHandl er to retrieve group information.

4-5

http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html

Chapter 4
JAAS Authentication Development Environment

Table 4-2 (Cont.) WebLogic JAAS APIs

___|
WebLogic JAAS API Description

weblogic.security.auth.Call Underlying security services use this class to instantiate and pass

back.URLCallback a URLCal | back to the i nvokeCal | back method of a

Cal | backHandl er to retrieve URL information.

The WebLogic implementation of the Logi nModul e,
(webl ogi c. security.auth.login.
User nanePasswor dLogi nMbdul e, uses this class.

Note: Application developers should not use this class to retrieve
URL information. Instead, they should use the
weblogic.security.URLCallbackHandler.

weblogic.security.Security ~ This class implements the WebLogic Server client r unAs

methods. Client applications use the r unAs methods to associate
their Subj ect identity with the Pri vi | egedActi on or
Privil egedExcepti onActi on that they execute.

For a sample implementation, see Writing a Client Application
Using JAAS Authentication.

weblogic.security. URLCallb The class used by application developers for returning a
ackHandler user nane, passwor d and URL. Application developers should use

this class to handle the URLCal | back to retrieve URL information.

4.2.2 JAAS Client Application Components

At a minimum, a JAAS authentication client application includes the following
components:

ORACLE

Java client

The Java client instantiates a Logi nCont ext object and invokes the login by calling
the object's | ogi n() method. The I ogi n() method calls methods in each
LoginModule to perform the login and authentication.

The LoginContext also instantiates a new empty j avax. security. aut h. Subj ect
object (which represents the user or service being authenticated), constructs the
configured LoginModule, and initializes it with this new Subj ect and

Cal | backHandl er .

The LoginContext subsequently retrieves the authenticated Subject by calling the

LoginContext's get Subj ect method. The LoginContext uses the

webl ogi c. security. Security. runAs() method to associate the Subj ect identity with

the Privil egedAction or Privil egedExcepti onActi on to be executed on behalf of the
user identity.

LoginModule

The LoginModule uses the Cal | backHandl er to obtain the user name and password
and determines whether that name and password are the ones required.

If authentication is successful, the LoginModule populates the Subject with a
Principal representing the user. The Principal the LoginModule places in the
Subject is an instance of Pri nci pal , which is a class implementing the
java.security. Principal interface.

4-6

Chapter 4
JAAS Authentication Development Environment

You can write LoginModule files that perform different types of authentication,
including username/password authentication and certificate authentication. A client
application can include one LoginModule (the minimum requirement) or several
LoginModules.

Note:

Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic
Server applications do not associate the Subject with the client actions.
You can use the doAs methods to implement Java EE security in WebLogic
Server applications, but such usage is independent of the need to use the
Security.runAs() method.

» Callbackhandler

The Cal | backHandl er implements the

javax.security.auth. cal | back. Cal | backHandl er interface. The LoginModule uses
the Cal | backHandl er to communicate with the user and obtain the requested
information, such as the username and password.

* Configuration file

This file configures the LoginModule(s) used in the application. It specifies the
location of the LoginModule(s) and, if there are multiple LoginModules, the order in
which they are executed. This file enables Java applications to remain
independent from the authentication technologies, which are defined and
implemented using the LoginModule.

* Action file
This file defines the operations that the client application will perform.
e ant build script (bui d. xm)

This script compiles all the files required for the application and deploys them to
the WebLogic Server applications directories.

For a complete working JAAS authentication client that implements the components
described here, see the JAAS sample application in EXAMPLES_HOVE\ sr ¢\ exanpl es
\'security\jaas, where EXAMPLES_HOME represents the directory in which the WebLogic
Server code examples are configured and can be found at ORACLE_HOVE\ wi ser ver

\ sanpl es\ server . For more information about the WebLogic Server code examples, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

For more information on the basics of JAAS authentication, see JAAS Authentication
Tutorial available at htt p: // docs. oracl e. conl j avase/ 7/ docs/ t echnot es/ gui des/ securi ty/
jaas/tutorials/CGeneral AcnOnly. htm .

4.2.3 WebLogic LoginModule Implementation

The WebLogic implementation of the Logi nMbdul e class
(User nanePasswor dLogi nModul e. cl ass) is provided in the WebLogic Server distribution in
the webl ogi c. j ar file, located in the W._HOME\ server\ i b directory.

ORACLE 47

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/tutorials/GeneralAcnOnly.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/tutorials/GeneralAcnOnly.html

Chapter 4
JAAS Authentication Development Environment

Note:

WebLogic Server supports all callback types defined by JAAS as well as all
callback types that extend the JAAS specification.

The WebLogic Server User nanePasswor dLogi nhbdul e checks for existing system user
authentication definitions prior to execution, and does nothing if they are already
defined.

For more information about implementing JAAS LoginModules, see the LoginModule
Developer's Guide at http://docs. oracl e. conl j avase/ 7/ docs/ t echnot es/ gui des/
security/jaas/ JAASLMDevCui de. ht m

4.2.4 IVM-Wide Default User and the runAs() Method

The first time you use the WebLogic Server implementation of the LoginModule

(webl ogi c. security. aut h. | ogi n. User namePasswor dLogi nMbdul e) to log on, the specified
user becomes the machine-wide default user for the JVM (Java virtual machine).
When you execute the webl ogi c. security. Security. runAs() method, it associates the
specified Subj ect with the current thread's access permissions and then executes the
action. If a specified Subj ect represents a non-privileged user (users who are not
assigned to any groups are considered non-privileged), the JVM-wide default user is
used. Therefore, it is important make sure that the runAs() method specifies the
desired Subj ect . You can do this using one of the following options:

e Option 1: If the client has control of mai n(), implement the wrapper code shown in
Example 4-1 in the client code.

e Option 2: If the client does not have control of mai n() , implement the wrapper code
shown in Example 4-1 on each thread's run() method.

Example 4-1 runAs() Method Wrapper Code

inport java.security.PrivilegedAction;
import javax.security.auth. Subject;
i mport webl ogi c. security. Security;

public class client
{
public static void main(String[] args)
{
Security. runAs(new Subject(),
new PrivilegedAction() {
public Object run() {
1
[I1f inmplementing in client code, main() goes here.
1
return null;

ORACLE 4-8

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Chapter 4
Writing a Client Application Using JAAS Authentication

4.3 Writing a Client Application Using JAAS Authentication

To use JAAS in a WebLogic Server Java client for authentication, you implement the
Logi nvbdul e and the Cal | backHandl er classes, write a configuration file that specifies
which LoginModule classes to use, and perform other tasks.

Perform the following procedure to use JAAS in a WebLogic Server Java client to
authenticate a subject:

1. Implement Logi nMbdul e classes for the authentication mechanisms you want to use
with WebLogic Server. You will need a LoginModule class for each type of
authentication mechanism. You can have multiple LoginModule classes for a
single WebLogic Server deployment.

¢ Note:

Oracle recommends that you use the implementation of the LoginModule
provided by WebLogic Server
(weblogic.security.auth.login.UsernamePasswordLoginModule) for
username/password authentication. You can write your own LoginModule
for username/password authentication, however, do not attempt to modify
the WebLogic Server LoginModule and reuse it. If you write your own
LoginModule, you must have it call the
weblogic.security.auth.Authenticate.authenticate() method to perform the
login. If you use a remote login mechanism such as SAML, you do not
need to call the authenticate() method. You only need to call authenticate()
if you are using WebLogic Server to perform the logon.

The webl ogi c. securi ty. aut h. Aut henti cat e class uses a JNDI Environment object
for initial context as described in Table 4-1.

2. Implement the Cal | backHand! er class that the LoginModule will use to
communicate with the user and obtain the requested information, such as the
username, password, and URL. The URL can be the URL of a WebLogic cluster,
providing the client with the benefits of server failover. The WebLogic Server
distribution provides a Sanpl eCal | backHandl er which is used in the JAAS client
sample. The Sanpl eCal | backHandl er . j ava code is available as part of the
distribution in the directory EXAMPLES_HOVE\ st ¢\ exanpl es\ security\jaas. The
EXAMPLES_HOME directory can be found at ORACLE_HOVE\ wi ser ver\ sanpl es\ server.

¢ Note:

Instead of implementing your own CallbackHandler class, you can use
either of two WebLogic-supplied CallbackHandler classes,
weblogic.security.SimpleCallbackHandler or
weblogic.security.URLCallbackHandler. For more information on these
classes, see Java API Reference for Oracle WebLogic Server.

3. Write a configuration file that specifies which LoginModule classes to use for your
WebLogic Server and in which order the LoginModule classes should be invoked.

ORACLE 4.9

Chapter 4
Writing a Client Application Using JAAS Authentication

See the following sample configuration file used in the JAAS client sample
provided in the WebLogic Server distribution.

/** Login Configuration for the JAAS Sanple Application **/
Sanpl e {
webl ogi c. security.auth. | ogin. User nanePasswor dLogi nMbdul e
requi red debug=fal se;
¥
4. In the Java client, write code to instantiate a Logi nCont ext . The Logi nCont ext
consults the configuration file, sanpl e_j aas. confi g, to load the default LoginModule
configured for WebLogic Server. See the following sample Logi nCont ext
instantiation.

import javax.security.auth.login.LoginContext;

Logi nCont ext | ogi nContext = null;
try

Il Create LoginContext; specify usernanme/password | ogin nodul e
| ogi nCont ext = new Logi nCont ext (" Sanpl e",
new Sanpl eCal | backHandl er (usernane, password, url));

Note:

If you use another means to authenticate the user, such as an ldentity
Assertion provider or a remote instance of WebLogic Server, the default
LoginModule is determined by the remote source.

5. Invoke the | ogi n() method of the Logi nCont ext instance. The | ogi n() method
invokes all the loaded LoginModules. Each LoginModule attempts to authenticate
the subject. If the configured login conditions are not met, the Logi nCont ext throws
a Logi nExcept i on. See the following example of the | ogi n() method.

import javax.security.auth.login.LoginContext;

import javax.security.auth.login.LoginException;

import javax.security.auth.login.FailedLogi nExcepti on;

i mport javax.security.auth.login.Account Expi redExcepti on;

i mport javax.security.auth.login.Credential ExpiredException;

/**
* Attenpt authentication
*/
try

/1 1f we return without an exception, authentication succeeded
| ogi nCont ext . | ogin();

cat ch(Fai | edLogi nException fle)
{

Systemout. printIn("Authentication Failed, " +
fle.get Message());
Systemexit(-1);
}
cat ch(Account Expi redExcepti on aee)

{

ORACLE 4-10

ORACLE

Chapter 4
Writing a Client Application Using JAAS Authentication

Systemout. printin("Authentication Failed: Account Expired");
Systemexit(-1);

cat ch(Credenti al Expi redException cee)

{
Systemout. printin("Authentication Failed: Credentials
Expired");
Systemexit(-1);
}
cat ch(Exception e)
{

Systemout. println("Authentication Failed: Unexpected
Exception, " + e.getMssage());
e.printStackTrace();
Systemexit(-1);
}

Write code in the Java client to retrieve the authenticated Subject from the

Logi nCont ext instance using the j avax. security. aut h. Subj ect . get Subj ect () method
and call the action as the Subject. Upon successful authentication of a Subject,
access controls can be placed upon that Subject by invoking the

webl ogi c. security. Security.runAs() method. The runAs() method associates the
specified Subject with the current thread's access permissions and then executes
the action. See the following example implementation of the get Subj ect () and
runAs() methods.

/**
* Retrieve authenticated subject, perform Sanpl eAction as Subject
*/

Subj ect subject = |oginCont ext. get Subj ect();

Sanpl eActi on sanpl eAction = new Sanpl eAction(url);

Security. runAs(subject, sanmpleAction);

Systemexit(0);

" Note:

Use of the JAAS javax.security.auth.Subject.doAs methods in WebLogic
Server applications do not associate the Subject with the client actions.
You can use the doAs methods to implement Java EE security in WebLogic
Server applications, but such usage is independent of the need to use the
Security.runAs() method.

Write code to execute an action if the Subject has the required privileges. Oracle
provides a sample implementation, Sanpl eActi on, of the
javax.security.PrivilegedAction class that executes an EJB to trade stocks. The
Sanpl eActi on. j ava code is available as part of the distribution in the directory
EXAMPLES_HOME\ st c\ exanpl es\ securi ty\j aas, where EXAMPLES_HOMVE represents the
directory in which the WebLogic Server code examples are configured, and can be
found at ORACLE_HOMVE\ wi ser ver\ sanpl es\ server.

Invoke the | ogout () method of the Logi nCont ext instance. The | ogout () method
closes the user's session and clear the Subj ect . See the following example of the
I ogi n() method.

i mport javax.security.auth.login.LoginContext;

4-11

Chapter 4
Using JNDI Authentication

try

{
Systemout. printin("logging out...");
| ogi nCont ext . | ogout ();

}

Note:

The LoginModule.logout() method is never called for a WebLogic
Authentication provider or a custom Authentication provider, because once
the Principals are created and placed into a Subject, the WebLogic Security
Framework no longer controls the lifecycle of the Subject. Therefore, code
that creates the JAAS LoginContext to log in and obtain the Subject should
also call the LoginContext to log out. Calling LoginContext.logout() results
in the clearing of the Principals from the Subject.

4.4 Using JNDI Authentication

ORACLE

Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. To do this, a Java client establishes a connection with Oracle
WebLogic Server by getting a JNDI I ni ti al Cont ext .and uses I ni ti al Context to look up
the resources it needs in the Oracle WebLogic Server JNDI tree.

" Note:

JAAS is the preferred method of authentication, however, the WebLogic
Authentication provider's LoginModule supports only user name and password
authentication. Thus, for client certificate authentication (also referred to as
two-way SSL authentication), you should use JNDI. To use JAAS for client
certificate authentication, you must write a custom Authentication provider
whose LoginModule does certificate authentication. For information on how to
write LoginModules, see http://docs. oracl e. cont j avase/ 7/ docs/ t echnot es/

gui des/ securi ty/jaas/ JAASLMDevCQui de. ht ni .

To specify a user and the user's credentials, set the JNDI properties listed in
Table 4-1.

Table 4-3 JNDI Properties for Authentication

. ___|
Property Meaning

Provides an entry point into the Oracle WebLogic Server
environment. The class
weblogic.jndi.WLInitialContextFactory is the JNDI SPI for
Oracle WebLogic Server.

I NI TI AL_CONTEXT_FACTORY

4-12

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASLMDevGuide.html

Chapter 4
Java Client JAAS Authentication Code Examples

Table 4-3 (Cont.) INDI Properties for Authentication

__|
Property Meaning

Specifies the host and port of the WebLogic Server that
provides the name service. For example: t 3://webl ogi c:
7001.

PROVI DER_URL

Specifies the identity of the user when that user

SECURI TY_PRI NG PAL authenticates to the default (active) security realm.

Specifies the credentials of the user when that user

SECURI TY_CREDENTI ALS authenticates to the default (active) security realm.

These properties are stored in a hash table that is passed to the I ni ti al Cont ext
constructor. Example 4-2 illustrates how to use JNDI authentication in a Java client
running on WebLogic Server.

" Note:

For information on JNDI contexts and threads and how to avoid potential JNDI
context problems, see JNDI Contexts and Threads and How to Avoid Potential
JNDI Context Problems in Developing JNDI Applications for Oracle WebLogic
Server.

In versions of WebLogic Server prior to 9.0, when using protocols other than
IIOP with JNDI, the first user is "sticky" in the sense that it becomes the default
user when no other user is present. This is not a good practice, as any
subsequent logins that do not have a username and credential are granted the
identify of the default user.

In version 9.0, this is no longer true and there is no default user.

To return to the previous behavior, the
weblogic.jndi.WLContext. ENABLE_DEFAULT_USER field must be set, either
via the command line or through the InitialContext interface.

Example 4-2 Example of Authentication

Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c.jndi.WInitial ContextFactory");
env. put (Cont ext . PROVI DER_URL, "t3://webl ogi c: 7001");
env. put (Cont ext . SECURI TY_PRI NCI PAL, "javaclient");
env. put (Cont ext . SECURI TY_CREDENTI ALS, "javaclient password");
ctx = new Initial Context(env);

4.5 Java Client JAAS Authentication Code Examples

The WebLogic Server product provides a complete working JAAS authentication
sample.The sample provided by WebLogic Server is located in EXAMPLES HOME\ sr ¢

\ exanpl es\ securi ty\j aas, where EXAMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured and can be found at ORACLE_HOME

ORACLE 4-13

Chapter 4
Java Client JAAS Authentication Code Examples

\wl server\ sanpl es\ server. For a description of the sample and instructions on how to
build, configure, and run this sample, see the package. htnl file in the sample directory.
You can modify this code example and reuse it.

ORACLE 4-14

Using SSL Authentication in Java Clients

The Java Secure Socket Extension (JSSE) is a set of packages that support and
implement the SSL and TLS protocols. WebLogic Server provides Secure Sockets
Layer (SSL) support for encrypting data transmitted between WebLogic Server clients
and servers, Java clients, Web browsers, and other servers. Learn how to implement
SSL and digital certificate authentication in Java clients.

e JSSE and WebLogic Server

* Using JNDI Authentication

e SSL Certificate Authentication Development Environment
e Writing Applications that Use SSL

e SSL Client Code Examples

The sections refer to sample code which is optionally included in the WebLogic Server
distribution at:

EXAMPLES_HOME\ st c\ exanpl es\ security\sslclient

The EXAMPLES_HOME directory can be found at ORACLE_HOVE\ wi ser ver \ sanpl es\ server
\ exanpl es.

The ssl client directory contains aninstructions. htm file, ant build files, and the
following Java and JavaServer Pages (. sp) files:

° MlListener.java

* Null edHost nameVerifier.java
* Null edTrust Manager.j ava

e SSLdient.java

e SSLdientServlet.java

e SSLSocketdient.java

* SnoopServlet.jsp

You will need to look at the examples when reading the information in the following
sections.

5.1 JSSE and WebLogic Server

ORACLE

There are certain restrictions when using SSL in WebLogic server-side applications.

The JSSE implementation of WebLogic Server can be used by WebLogic clients, but
is not required. Other JSSE implementations can be used for their client-side code
outside the server as well.

5-1

Chapter 5
Using JNDI Authentication

Note:

JSSE is the only SSL implementation that is supported. The Certicom-based
SSL implementation is removed and is no longer supported in WebLogic
Server.

The following restrictions apply when using SSL in WebLogic server-side applications:

* The use of other (third-party) JSSE implementations to develop WebLogic Server
applications is not supported. The SSL implementation that WebLogic Server uses
is static to the server configuration and is not replaceable by customer
applications.

* The WebLogic implementation of JSSE does support JCE Cryptographic Service
Providers (CSPs); however, due to the inconsistent provider support for JCE,
Oracle cannot guarantee that untested providers will work out of the box. Oracle
has tested WebLogic Server with the following providers:

— The default JCE provider (SunJCE provider). See http://docs. oracl e. con
javase/ 7/ docs/ t echnot es/ gui des/ securi ty/ crypt o/ HowTol npl AProvi der. ht i and
http://docs. oracl e. contjavase/ 7/ docs/ t echnot es/ gui des/ security/ crypto/
CryptoSpec. ht m for information about the SunJCE provider.

— The RSA JCE provider.
— The nCipher JCE provider.

Other providers may work with WebLogic Server, but an untested provider is not
likely to work out of the box. For more information on using the JCE providers
supported by WebLogic Server, see Using JCE Providers with WebLogic Server in
Administering Security for Oracle WebLogic Server.

WebLogic Server uses the HTTPS port for Secure Sockets Layer (SSL) encrypted
communication; only SSL can be used on that port.

" Note:

In order to implement security in a WebLogic client, you must install the
WebLogic Server software distribution kit on the Java client.

Note:

Although JSSE supports Server Name Indication (SNI) in its SSL
implementation, WebLogic Server does not support SNI.

5.2 Using JNDI Authentication

Java clients use the Java Naming and Directory Interface (JNDI) to pass credentials to
WebLogic Server. A Java client establishes a connection with Oracle WebLogic Server

ORACLE 5-2

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/HowToImplAProvider.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/HowToImplAProvider.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html

Chapter 5
Using JNDI Authentication

by getting a JNDI I ni ti al Cont ext. The Java client then uses the I ni ti al Cont ext to look
up the resources it needs in the Oracle WebLogic Server JNDI tree.

Note:

JAAS is the preferred method of authentication; however, the Authentication
provider's LoginModule supports only username and password authentication.
Thus, for client certificate authentication (also referred to as two-way SSL
authentication), you should use JNDI. To use JAAS for client certificate
authentication, you must write a custom Authentication provider whose
LoginModule does certificate authentication.

To specify a user and the user's credentials, set the JNDI properties listed in
Table 5-1.

Table 5-1 JNDI Properties Used for Authentication

. __|
Property Meaning

Provides an entry point into the Oracle WebLogic Server environment.
The class weblogic.jndi.WLInitialContextFactory is the INDI SPI for
Oracle WebLogic Server.

I NI TI AL_CONTEXT_FACT
CRY

Specifies the host and port of the WebLogic Server that provides the
name service. For example: t 3s://webl ogi c: 7002.

(t3s is a WebLogic Server proprietary version of SSL.)

PROVI DER_URL

Specifies the identity of the user when that user authenticates to the

SECLR! TY_PRI NCI PAL default (active) security realm.

Specifies the credentials of the user when that user authenticates to

SECURI TY_CREDENTI ALS the default (active) security realm.

These properties are stored in a hash table which is passed to the I ni ti al Cont ext
constructor.

Example 5-1 demonstrates how to use one-way SSL certificate authentication in a
Java client. For a two-SSL authentication code example, see Example 5-4.

" Note:

For information on JNDI contexts and threads and how to avoid potential JNDI
context problems, see JNDI Contexts and Threads and How to Avoid Potential
JNDI Context Problems in Developing JNDI Applications for Oracle WebLogic
Server.

Example 5-1 Example One-Way SSL Authentication Using JNDI

Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c.jndi. WInitial ContextFactory");

ORACLE 5.3

Chapter 5
SSL Certificate Authentication Development Environment

env. put (Cont ext . PROVI DER_URL, "t3s://webl ogic:7002");

env. put (Cont ext . SECURI TY_PRI NCI PAL, "javaclient");

env. put (Cont ext . SECURI TY_CREDENTI ALS, "javaclientpassword");
Context ctx = new Initial Context(env);

5.3 SSL Certificate Authentication Development
Environment

To implement SSL authentication in WebLogic Server, you can use a combination of
Java application programming interfaces (APIs) and WebLogic APIs. There are certain
components of SSL client application such as, HosthameVerifier and TrustManager,
that facilitate the implementation of SSL in WebLogic Server.

The following topics are covered in this section:

* SSL Authentication APIs
e SSL Client Application Components

5.3.1 SSL Authentication APIs

ORACLE

To implement Java clients that use SSL authentication on WebLogic Server, use a
combination of Java application programming interfaces (APIs) and WebLogic APIs.

Table 5-1 lists and describes the Java APIs packages used to implement certificate
authentication. The information in Table 5-1 is taken from the Java API documentation
and annotated to add WebLogic Server specific information. For more information on
the Java APIls, see the Javadocs at htt p://docs. oracl e. conl j avase/ 7/ docs/ api /

index. htmi and http://docs. oracl e. confj avaee/ 7/ api /.

Table 5-3 lists and describes the WebLogic APIs used to implement certificate
authentication. See Java API Reference for Oracle WebLogic Server.

Table 5-2 Java Certificate APIs

___|
Java Certificate APIs Description

javax.crypto (http:// This package provides the classes and interfaces for cryptographic

docs. oracl e. conl operations. The cryptographic operations defined in this package
javase/ 7/ docs/ api/ include encryption, key generation and key agreement, and Message
i ndex. htm) Authentication Code (MAC) generation.

Support for encryption includes symmetric, asymmetric, block, and
stream ciphers. This package also supports secure streams and
sealed objects.

Many classes provided in this package are provider-based (see the
java.security. Provider class). The class itself defines a
programming interface to which applications may be written. The
implementations themselves may then be written by independent third-
party vendors and plugged in seamlessly as needed. Therefore,
application developers can take advantage of any number of provider-
based implementations without having to add or rewrite code.

javax.net (http:// This package provides classes for networking applications. These
docs. oracl e. conl classes include factories for creating sockets. Using socket factories
javase/ 7/ docs/ api/ you can encapsulate socket creation and configuration behavior.

i ndex. htm)

5-4

http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html

ORACLE

Chapter 5
SSL Certificate Authentication Development Environment

Table 5-2 (Cont.) Java Certificate APIs

Java Certificate APIs

Description

javax.net.SSL
(http://

docs. oracl e. com

j avase/ 7/ docs/ api /
i ndex. htm)

While the classes and interfaces in this package are supported by
WebLogic Server, Oracle recommends that you use the

webl ogi c. securi ty. SSL package when you use SSL with WebLogic
Server.

java.security.cert
(http://

docs. oracl e. com

j avasel/ 7/ docs/ api /

This package provides classes and interfaces for parsing and
managing certificates, certificate revocation lists (CRLs), and
certification paths. It contains support for X.509 v3 certificates and X.
509 v2 CRLs.

i ndex. htm)
java.security.KeyStore This class represents an in-memory collection of keys and certificates.
(http:// It is used to manage two types of keystore entries:

docs. oracl e. conl
j avase/ 7/ docs/ api /
i ndex. htm)

. Key Entry

This type of keystore entry holds cryptographic key information,
which is stored in a protected format to prevent unauthorized
access.

Typically, a key stored in this type of entry is a secret key, or a
private key accompanied by the certificate chain for the
corresponding public key.

Private keys and certificate chains are used by a given entity for
self-authentication. Applications for this authentication include
software distribution organizations that sign JAR files as part of
releasing and/or licensing software.

e Trusted Certificate Entry

This type of entry contains a single public key certificate belonging
to another party. It is called a trusted certificate because the
keystore owner trusts that the public key in the certificate indeed
belongs to the identity identified by the subject (owner) of the
certificate.

This type of entry can be used to authenticate other parties.

java.security.PrivateK
ey (http://

docs. oracl e. conf

j avase/ 7/ docs/ api /

i ndex. htm)

A private key. This interface contains no methods or constants. It
merely serves to group (and provide type safety for) all private key
interfaces.

Note: The specialized private key interfaces extend this interface. For
example, see the DSAPr i vat eKey interface in
java.security.interfaces.

java.security.Provider
(http://

docs. oracl e. conf

j avase/ 7/ docs/ api /

i ndex. htm)

This class represents a "Cryptographic Service Provider" for the Java

Security API, where a provider implements some or all parts of Java

Security, including:

e Algorithms (such as DSA, RSA, MD5 or SHA-1).

* Key generation, conversion, and management facilities (such as
for algorithm-specific keys).

Each provider has a name and a version number, and is configured in

each runtime it is installed in.

To supply implementations of cryptographic services, a team of
developers or a third-party vendor writes the implementation code and
creates a subclass of the Provi der class.

5-5

http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html

ORACLE

Chapter 5
SSL Certificate Authentication Development Environment

Table 5-2 (Cont.) Java Certificate APIs
|

Java Certificate APIs

Description

javax.servlet.http.Http
ServletRequest
(http://

docs. oracl e. conf

j avaeel 7/ api /

i ndex. htm)

This interface extends the Ser vl et Request interface to provide request
information for HTTP servlets.

The servlet container creates an Ht t pSer vl et Request object and
passes it as an argument to the servlet's service methods (doGet ,
doPost, and so on.).

javax.servlet.http.Http
ServletResponse
(http://

docs. oracl e. com

j avaeel 7/ api /

i ndex. htm)

This interface extends the Ser vl et Response interface to provide
HTTP-specific functionality in sending a response. For example, it has
methods to access HTTP headers and cookies.

The servlet container creates an Ht t pSer vl et Request object and

passes it as an argument to the servlet's service methods (doGet ,
doPost , and so on.).

javax.servlet.ServletO
utputStream (http: //
docs. oracl e. com

j avaeel 7/ api /

i ndex. htm)

This class provides an output stream for sending binary data to the
client. A Servl et Qut put St r eamobject is normally retrieved via the
Servl et Response. get Qut put Strean() method.

This is an abstract class that the servlet container implements.
Subclasses of this class must implement the
java.io.Qutput Streamwite(int) method.

javax.servlet.ServletR
esponse (http://
docs. oracl e. cont

j avaeel 7/ api /

i ndex. htm)

This class defines an object to assist a servlet in sending a response
to the client. The servlet container creates a Ser vl et Response object
and passes it as an argument to the servlet's service methods (doGet ,
doPost , and so on.).

Table 5-3 WebLogic Certificate APIs
|

WebLogic Certificate
APls

Description

weblogic.net.http.Http
sURLConnection

This class is used to represent a HTTP with SSL (HTTPS) connection
to a remote object. Use this class to make an outbound SSL
connection from a WebLogic Server acting as a client to another
WebLogic Server.

weblogic.security.SSL.
HostnameVerifier

During an SSL handshake, hostname verification establishes that the
hostname in the URL matches the hostname in the server's
identification; this verification is necessary to prevent man-in-the-
middle attacks.

WebLogic Server provides a certificate-based implementation of
HostnameVerifier which is used by default, and which verifies that the
URL hostname matches the CN field value of the server certificate.

You can replace this default hostname verifier with a custom hostname
verifier by using the Advanced Options pane under the WebLogic
Server Administration Console SSL tab; this will affect the default for
SSL clients running on the server using the WebLogic SSL APIs. In
addition, WebLogic SSL APIs such as Ht t psURLConnect i on, and
SSLCont ext allow the explicit setting of a custom HostnameVerifier.

weblogic.security.SSL.
TrustManager

This interface permits the user to override certain validation errors in
the peer's certificate chain and allow the handshake to continue. This
interface also permits the user to perform additional validation on the
peer certificate chain and interrupt the handshake if need be.

5-6

http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html
http://docs.oracle.com/javaee/7/api/index.html

Chapter 5
SSL Certificate Authentication Development Environment

Table 5-3 (Cont.) WebLogic Certificate APIs

WebLogic Certificate Description
APIs

weblogic.security.SSL. This class makes use of the configured CertPathValidation providers to
CertPathTrustManage perform extra validation; for example, revocation checking.

By default, CertPathTrustManager is installed but configured not to call
the CertPathValidators (controlled by the SSLMBean attributes
InboundCertificateValidation and OutboundCertificateValidation).

Applications that install a custom TrustManager will replace
CertPathTrustManager. An application that wants to use a custom
TrustManager, and call the CertPathProviders at the same time, can
delegate to a CertPathTrustManager from its custom TrustManager.

weblogic.security.SSL. This class holds all of the state information shared across all sockets

SSLContext created under that context.

weblogic.security.SSL. This class provides the API for creating SSL sockets.
SSLSocketFactory

weblogic.security.SSL. This class defines context element names. SSL performs some built-in
SSLValidationConstan validation before it calls one or more CertPathValidator objects to

ts

perform additional validation. A validator can reduce the amount of
validation it must do by discovering what validation has already been
done.

5.3.2 SSL Client Application Components

At a minimum, an SSL client application includes the following components:

Java client
Typically, a Java client performs these functions:

— Initializes an SSLCont ext with client identity, trust, a Host naneVerifier, and a
Trust Manager .

— Loads a keystore and retrieves the private key and certificate chain

— Uses an SSLSocketFactory

— Uses HTTPS to connect to a JSP served by an instance of WebLogic Server
HostnameVerifier

The HostnameVerifier implements the webl ogi c. security. SSL. Host naneVeri fi er
interface.

HandshakeCompletedListener

The HandshakeCompletedListener implements the

javax. net. ssl . HandshakeConpl et edLi st ener interface. It is used by the SSL client to
receive notifications about the completion of an SSL handshake on a given SSL
connection.

TrustManager

The TrustManager implements the webl ogi c. security. SSL. Trust Manager interface.

For a complete working SSL authentication client that implements the components
described here, see the SSLClient sample application in EXAVPLES_HOME\ sr ¢\ exanpl es

ORACLE

5-7

Chapter 5
Writing Applications that Use SSL

\security\sslclient, where EXAMPLES_HOMVE represents the directory in which the
WebLogic Server code examples are configured and can be found at ORACLE_HOME
\wW server\sanpl es\server.

For more information on JSSE authentication, see Java Secure Socket Extension
(JSSE) Reference Guide available at http://docs. oracl e. com j avase/ 7/ docs/
technot es/ gui des/ security/jsse/ JSSERef Gui de. htmi .

5.4 Writing Applications that Use SSL

When you write an application that uses SSL, consider how the application will be
used and the special requirements it has for secure communication, such as whether
the application is hosted on a WebLogic Server instance acting as a client to another
WebLogic Server instance. Other considerations include whether you need to use two-
way SSL, a custom host name verifier, a Trust Manager, or other security artifacts.

e Communicating Securely From WebLogic Server to Other WebLogic Servers
* Writing SSL Clients

* Using Two-Way SSL Authentication

e Using a Custom Host Name Verifier

* Using a Trust Manager

e Using an SSLContext

» Using URLs to Make Outbound SSL Connections

5.4.1 Communicating Securely From WebLogic Server to Other
WebLogic Servers

You can use a URL object to make an outbound SSL connection from a WebLogic
Server instance acting as a client to another WebLogic Server instance. The

webl ogi c. net. http. Ht t psURLConnect i on class provides a way to specify the security
context information for a client, including the digital certificate and private key of the
client.

The webl ogi c. net. http. Ht t psURLConnect i on class provides methods for determining the
negotiated cipher suite, getting/setting a hostname verifier, getting the server's
certificate chain, and getting/setting an SSLSocket Fact ory in order to create new SSL
sockets.

The SSLClient code example uses the webl ogi c. net. htt p. Ht t psURLConnect i on class to
make an outbound SSL connection. The SSLClient code example is available in the
exanpl es. security.sslclient package in EXAMPLES_HOVE\ st c\ exanpl es\ security

\'ssl client, where EXAMPLES_HOME represents the directory in which the WebLogic
Server code examples are configured and can be found at ORACLE_HOVE\ wi ser ver

\ sanpl es\ server.

5.4.2 Writing SSL Clients

This section uses examples to show how to write various types of SSL clients.
Examples of the following types of SSL clients are provided:

e SSLClient Sample

ORACLE 5-8

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

Chapter 5
Writing Applications that Use SSL

e SSLSocketClient Sample
» Using Two-Way SSL Authentication

5.4.2.1 SSLClient Sample

ORACLE

The SSLClient sample demonstrates how to use the WebLogic SSL library to make
outgoing SSL connections using URL and URLConnect i on objects. It shows both how to
do this from a stand-alone application as well as from a servlet in WebLogic Server.

Note:

WebLogic Server acting as an SSL client uses the server's identity certificate
for outgoing SSL connections. Applications running on WebLogic Server and
using the previously described SSL APIs do not share the server's identity
certificates by default, only the trust.

Example 5-2 shows code fragments from the SSLClient example; the complete
example is located in the EXAMPLES_HOVE\ st ¢\ exanpl es\ security\sslclient directory in
the SSLd i ent . j ava file.

The EXAMPLES_HOME directory can be found at ORACLE_HOMVE\ wi ser ver \ sanpl es\ ser ver.
Example 5-2 SSLClient Sample Code Fragments

package exanpl es.security.sslclient;

inport java.io.*;
import java.net.URL;
inport java.security.Provider;
import javax.servlet.ServletCQutputStream
. .}*
* This method contains an exanmple of howto use the URL and
* URLConnection objects to create a new SSL connection, using
* WebLogic SSL client classes.
*|
public void w sURLConnect (String host, String port,
String sport, String query,
Qut put St ream out)
throws Exception {

URL W sUrl = null;
try {
w sUrl = new URL("http", host, Integer.valueCf(port).intValue(),
query);
webl ogi c. net. http. H t pURLConnecti on connection =
new webl ogi c. net. http. H t pURLConnection(w sUrl);
tryConnection(connection, out);

}

wsUrl = new URL("https", host, Integer.valueCf(sport).intValue(),
query);
webl ogi c. net. http. Ht psURLConnection sconnection =
new webl ogi c. net. http. Ht t psURLConnection(w sUrl);

5-9

Chapter 5
Writing Applications that Use SSL

5.4.2.2 SSLSocketClient Sample

ORACLE

The SSLSocketClient sample demonstrates how to use SSL sockets to go directly to
the secure port to connect to a JSP served by an instance of WebLogic Server and
display the results of that connection. It shows how to implement the following
functions:

* Initializing an SSLCont ext with client identity, a Host naneVerifier, and a Trust Manager
* Loading a keystore and retrieving the private key and certificate chain

* Using an SSLSocket Fact ory

e Using HTTPS to connect to a JSP served by WebLogic Server

* Implementing the j avax. net. ssl . HandshakeConpl et edLi st ener interface

* Creating a dummy implementation of the webl ogi c. security. SSL. Host naneVeri fi er
class to verify that the server the example connects to is running on the desired
host

Example 5-3 shows code fragments from the SSLSocketClient example; the complete
example is located in the EXAMPLES_HOVE\ st ¢\ exanpl es\ security\sslclient directory in
the SSLSocket O i ent . j ava file. (The SSLClientServlet example in the ssl client directory
is a simple servlet wrapper of the SSLClient example.) The EXANMPLES _HOME directory can
be found at ORACLE_HOVE\ wi ser ver\ sanpl es\ server .

Example 5-3 SSLSocketClient Sample Code Fragments

package exanpl es.security.sslclient;

import java.io.*;

i mport java.security.KeyStore;

i mport java.security. PrivateKey;

import java.security.cert.Certificate;

i mport javax. net.ssl.HandshakeConpl et edLi st ener;
i mport javax. net.ssl.SSLSocket ;

i mport webl ogi c. security. SSL. Host naneVeri fier;

i mport webl ogi c. security. SSL. SSLCont ext ;

i mport webl ogi c. security. SSL. SSLSocket Fact ory;

i mport webl ogi c. security. SSL. Trust Manager ;

SSLCont ext ssl Ctx = SSLContext.getlnstance("https");
File KeyStoreFile = new File ("nykeystore");

/1 Open the keystore, retrieve the private key, and certificate chain
KeyStore ks = KeyStore. getlnstance("jks");
ks. | oad(new Fil el nput St rean("nykeystore"), null);
PrivateKey key = (PrivateKey)ks. get Key("nykey",
"testkey".toCharArray());

Certificate [] certChain = ks.getCertificateChain("nmykey");
ssl Gt x. | oadLocal I dentity(certChain, key);
Host nameVerifier hVerifier = null;
if (argv.length < 3)

hVerifier = new Nul | edHost nameVerifier();
el se

hVerifier = (HostnameVerifier)

C ass. forNane(argv[2]).new nstance();

ssl Gt x. set Host nameVeri fier (hVerifier);
Trust Manager tManager = new Nul | edTrust Manager () ;

5-10

Chapter 5
Writing Applications that Use SSL

ssl Ct x. set Trust Manager (t Manager) ;
Systemout. println(" Creating new SSLSocket Factory with SSLContext");
SSLSocket Fact ory ssl SF = (SSLSocket Fact ory)
ssl Gt x. get Socket Factory();
Systemout. printIn(" Creating and opening new SSLSocket with
SSLSocket Fact ory");
/'l using createSocket (String hostnane, int port)
SSLSocket ssl Sock = (SSLSocket) ssl SF. createSocket (argv[O0],
new | nteger(argv[1]).intValue());
Systemout. printin(" SSLSocket created");
HandshakeConpl et edLi st ener nlistener = null;
mLi stener = new MyListener();
ssl Sock. addHandshakeConpl et edLi st ener (new MyLi stener());

5.4.3 Using Two-Way SSL Authentication

When using certificate authentication, Oracle WebLogic Server sends a digital
certificate to the requesting client. The client examines the digital certificate to ensure
that it is authentic, has not expired, and matches the Oracle WebLogic Server instance
that presented it.

With two-way SSL authentication (a form of mutual authentication), the requesting
client also presents a digital certificate to Oracle WebLogic Server. When the instance
of WebLogic Server is configured for two-way SSL authentication, requesting clients
are required to present digital certificates from a specified set of certificate authorities.
Oracle WebLogic Server accepts only digital certificates that are signed by trusted
certificate authorities.

For information on how to configure WebLogic Server for two-way SSL authentication,
see the Configuring SSL in Administering Security for Oracle WebLogic Server.

The following sections describe the different ways two-way SSL authentication can be
implemented in WebLogic Server.

* Two-Way SSL Authentication with JNDI
* Using Two-Way SSL Authentication Between WebLogic Server Instances

* Using Two-Way SSL Authentication with Servlets

5.4.3.1 Two-Way SSL Authentication with JNDI

When using JNDI for two-way SSL authentication in a Java client, you can use either
of the following methods in the WebLogic JNDI Envi ronnent class:

* loadLocal | dentity()— This method loads an array of certificates and a private key
for the local identity onto the current thread for client authentication.

e setSSLCont ext () — This method sets SSLContext onto the current thread for client
authentication.

Note:

setSSLOientCertificate() and set SSLA i ent KeyPasswor d() have been
deprecated in this release.

ORACLE 5-11

Chapter 5
Writing Applications that Use SSL

You can use | oadLocal I dentity(certs, privateKey) to pass a client’s identity certificate
to the server when the server is configured for two-way SSL. This method takes two
parameters: an X509Certificate array and a private key associated with the certificate.
In most cases, the certificate chain array consists of just one element.

Example 5-4 demonstrates how to use the | oadLocal | dentity() method for two-way
SSL authentication in a Java client.

Example 5-4 Example of a Two-Way SSL Authentication Client That Uses JNDI
Environment loadLocalldentity Method

i mport javax. naming. Cont ext;

i mport javax.naming.lnitial Context;

i mport javax. nami ng. Nani ngExcepti on;

i mport java.security.KeyStore;

i mport webl ogi c. j ndi . Environnment;

i mport webl ogi c. security. PEM nput Stream
i mport java.io.lnputStream

i mport java.io.FilelnputStream

public class SSLINDI O i ent

{
public static void main(String[] args) throws Exception
{
Context context = null;
try {

Envi ronnent env = new Environnent();

/'l set connection paraneters

env. set ProviderUrl ("t3s://1ocal host:7002");

Il The next two set methods are optional if you are using
/1 a User NameMapper interface.

env. set SecurityPrincipal ("systenl);

env. set SecurityCredential s("webl ogic");

Il Read the certificate & private key entry froma JKS file
/1 This exanple assumes the private key and certificate chain were stored to
the keystore with
Il setKeyEntry(String alias, Key key, char[] password, Certificate[] chain)
KeyStore ks = KeyStore. getlnstance(KeyStore. get Defaul t Type());
Il For sinplicity, this exanple just uses a hardcoded password for the keystore
char[] keyStorePassword = "a keystore password". getBytes();
java.io.FilelnputStreamfis = null;
try {
fis = newjava.io.FilelnputStrean("full _path_to_keystore_ file");
ks.load(fis, keyStorePassword);

} finally {
if (fis!=null) {
fis.close();
}
1

Il The private key password that was used to store the private key entry
Il This exanpl e uses a hardcoded private key password for sinplicity
char[] privateKeyPassword = "a private key entry password". getBytes();
KeySt ore. Prot ecti onPar anet er passwor dPr ot Param = new

KeySt or e. Passwor dProt ecti on(pri vat eKeyPassword) ;

Il get my private key
KeyStore. PrivateKeyEntry pkEntry = (KeyStore. PrivateKeyEntry)

ORACLE 5-12

ORACLE

ks. get

}
fi

}
}
}

Chapter 5
Writing Applications that Use SSL

Entry("privateKeyAlias", passwordProtParan);
PrivateKey privateKey = pkEntry. getPrivateKey();
Certificate[] certs = pkEntry.getCertificateChain();

env. | oadLocal I dentity(certs, privateKey);

env. setlnitial ContextFactory(Environment. DEFAULT | NI TI AL_CONTEXT_FACTCRY) ;
context = env.getlnitial Context();

Obj ect nmyEJB = (Chject) context.lookup("nyEJB");

nal ly {
if (context !'=null) context.close();

To use set SSLCont ext (SSLCont ext ssl ctx), you pass an SSLContext, with a client
certificate created from trustManager and keyManager, to the server using JNDI when
the server is configured for two-way SSL. See Class SSLContext in Java™ Platform,
Standard Edition 7 API Specification.

4

Note:

Invoking the set SSLCont ext method requires the WebLogic thin T3 client
(W thint3client.jar).

set SSLCont ext () takes precedence over the current private key and certificate
loading, | oadLocal | dentity(Certificate[] certs, PrivateKey privateKey) or
setSSLA ientCertificate(lnputStrean]] chain). Thatis, if ssl Context is
configured at the same time as client certificate and privateKey, ssl Cont ext is
used.

Example 5-5demonstrates how to use the set SSLCont ext () method for two-way SSL
authentication in a Java client.

Example 5-5 Example of a Two-Way SSL Authentication Client That Uses JNDI
Environment setSSLContext Method

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

java.security.*;

java. net.*;

j avax. nam ng. Cont ext ;

j avax. net.ssl.*;
java.security.cert.X509Certificate;
java.security.cert.CertificateException;
j avax. security. aut h. Subj ect;

webl ogi c. j ndi . Envi ronnent ;

webl ogi . j ndi . api . Server Envi ronment ;
webl ogi c. security. auth. Authenticate;

public class JNDI SSLContext O i ent

{

private static javax.net.ssl.SSLContext msslContext = null;

public static void main(String[] args) {

5-13

http://docs.oracle.com/javase/7/docs/api/index.html?javax/net/ssl/SSLContext.html

ORACLE

Chapter 5
Writing Applications that Use SSL

try {
KeyStore keystore;

keystore = KeyStore. getlnstance("W ndows- My", " SunMSCAPI");
keystore.load(null, null);
KeyManager Factory knf =

KeyManager Fact ory. get | nst ance(KeyManager Fact ory. get Def aul t Al gorithm());
knf.init(keystore, null);
KeyManager[] keyManagers = knf.get KeyManagers();

KeyStore truststore;
truststore = KeyStore. getlnstance("W ndows- ROOT", "SunMSCAPI");
truststore.load(null, null);
Trust Manager Factory tnf =
Trust Manager Fact ory. get I nst ance(" Sunx509");
tnf.init(truststore);
Trust Manager[] trustManagers = tnf.get Trust Managers();

m ssl Context = SSLCont ext. get|nstance("TLS");
m ssl Cont ext . i nit (keyManagers, trustManagers, new
Secur eRandon()) ;

webl ogi c. j ndi . api. ServerEnvironnment env = new Environment();
env.setProviderUl (url); //e.g t3s://host:port

env. set SecurityPrincipal ("systent);

env. set SecurityCredential s("webl ogi ¢c");

env. set SSLCont ext (m ssl Cont ext) ;

env. setlnitial ContextFactory("weblogic.jndi.WlInitial ContextFactory");
Context context = env.getlnitial Context();
Subj ect soggetto =
webl ogi c. security. Security. get Current Subject();
oj ect ejbCbj = context.lookup("ejh");
} catch (Exception e) {

} finally {
if (context !=null) context.close();
}

" Note:

Security provider plug-ins are loaded from the system classpath. The system
classpath must specify the implementation of a custom
weblogic.security.providers.authentication.UserNameMapper interface.

If you have not configured an Identity Assertion provider that performs certificate-
based authentication, a Java client running in a JVM with an SSL connection can
change the Oracle WebLogic Server user identity by creating a new JNDI

I'nitial Context and supplying a new user name and password in the JNDI

SECURI TY_PRI NCI PAL and SECURI TY_CREDENTI ALS properties. Any digital certificates passed
by the Java client after the SSL connection is made are not used. The new Oracle
WebLogic Server user continues to use the SSL connection negotiated with the initial
user's digital certificate.

5-14

ORACLE

Chapter 5
Writing Applications that Use SSL

If you have configured an Identity Assertion provider that performs certificate-based
authentication, Oracle WebLogic Server passes the digital certificate from the Java
client to the class that implements the User NaneMapper interface and the User NameMapper
class maps the digital certificate to a Oracle WebLogic Server user name. Therefore, if
you want to set a new user identity when you use the certificate-based identity
assertion, you cannot change the identity. This is because the digital certificate is
processed only at the time of the first connection request from the JVM for each

Envi ronnent .

" Note:

Multiple, concurrent, user logins to WebLogic Server from a single client JVM
when using two-way SSL and JNDI is not supported. If multiple logins are
executed on different threads, the results are undeterminable and might result
in one user's requests being executed on another user's login, thereby allowing
one user to access another user's data. WebLogic Server does not support
multiple, concurrent, certificate-based logins from a single client JVM. For
information on JNDI contexts and threads and how to avoid potential JNDI
context problems, see JNDI Contexts and Threads and How to Avoid Potential
JNDI Context Problems in Developing JNDI Applications for Oracle WebLogic
Server.

When the JNDI get I ni tial Context () method is called, the Java client and Oracle
WebLogic Server execute mutual authentication in the same way that a Web browser
performs mutual authentication to get a secure Web server connection. An exception
is thrown if the digital certificates cannot be validated or if the Java client's digital
certificate cannot be authenticated in the default (active) security realm. The
authenticated user object is stored on the Java client's server thread and is used for
checking the permissions governing the Java client's access to any protected
WebLogic resources.

When you use the WebLogic JNDI Envi ronnent class, you must create a new

Envi ronment object for each call to the get I ni ti al Cont ext () method. Once you specify a
User object and security credentials, both the user and their associated credentials
remain set in the Envi ronnent object. If you try to reset them and then call the JNDI

get I nitial Context () method, the original user and credentials are used.

When you use two-way SSL authentication from a Java client, Oracle WebLogic
Server gets a unique Java Virtual Machine (JVM) ID for each client JVM so that the
connection between the Java client and Oracle WebLogic Server is constant. Unless
the connection times out from lack of activity, it persists as long as the JVM for the
Java client continues to execute. The only way a Java client can negotiate a new SSL
connection reliably is by stopping its JVM and running another instance of the JVM.

The code in Example 5-4 generates a call to the WebLogic Identity Assertion provider
that implements the webl ogi c. securi ty. provi ders. aut henti cati on. User NameMapper
interface. The class that implements the User NameMapper interface returns a user object
if the digital certificate is valid. Oracle WebLogic Server stores this authenticated user
object on the Java client's thread in Oracle WebLogic Server and uses it for
subsequent authorization requests when the thread attempts to use WebLogic
resources protected by the default (active) security realm.

5-15

Chapter 5
Writing Applications that Use SSL

5.4.3.2 Writing a User Name Mapper

When using two-way SSL, WebLogic Server verifies the digital certificate of the Web
browser or Java client when establishing an SSL connection. However, the digital
certificate does not identify the Web browser or Java client as a user in the WebLogic
Server security realm. If the Web browser or Java client requests a WebLogic Server
resource protected by a security policy, WebLogic Server requires the Web browser or
Java client to have an identity. To handle this requirement, the WebLogic Identity
Assertion provider allows you to enable a user name mapper that maps the digital
certificate of a Web browser or Java client to a user in a WebLogic Server security
realm. The user name mapper must be an implementation the

webl ogi c. security. provi ders. aut henti cati on. User NaneMapper interface.

You have the option of the using the default implementation of the
webl ogi c. security. provi ders. aut henti cati on. User NaneMapper interface,
Def aul t User NaneMapper | npl , or developing your own implementation.

The WebLogic Identity Assertion provider can call the implementation of the
User NaneMapper interface for the following types of identity assertion token types:

» X.509 digital certificates passed via the SSL handshake
» X.509 digital certificates passed via CSIv2
e X.501 distinguished names passed via CSIv2

If you need to map different types of certificates, write your own implementation of the
User NameMapper interface.

To implement a User NameMapper interface that maps a digital certificate to a user name,
write a User NameMapper class that performs the following operations:

1. Instantiates the User NaneMapper implementation class.
2. Creates the User NaneMapper interface implementation.

3. Uses the mapCertificateToUser Nane() method to map a certificate to a user name
based on a certificate chain presented by the client.

4. Maps a string attribute type to the corresponding Attribute Val ue Asserti on field
type.
Security provider plug-ins are loaded from the system classpath. The system

classpath must specify the implementation of the
weblogic.security.providers.authentication.UserNameMapper interface.

5.4.3.3 Using Two-Way SSL Authentication Between WebLogic Server

Instances

ORACLE

You can use two-way SSL authentication in server-to-server communication in which
one WebLogic Server instance is acting as the client of another WebLogic Server
instance. Using two-way SSL authentication in server-to-server communication
enables you to have dependable, highly-secure connections, even without the more
common client/server environment.

Example 5-6 shows an example of how to establish a secure connection from a servlet
running in one instance of WebLogic Server to a second WebLogic Server instance
called server 2. webl ogi c. com

5-16

ORACLE

Chapter 5
Writing Applications that Use SSL

* setProvi der URL—specifies the URL of the Oracle WebLogic Server instance acting
as the SSL server. The WebLogic Server instance acting as SSL client calls this
method. The URL specifies the t3s protocol which is a WebLogic Server
proprietary protocol built on the SSL protocol. The SSL protocol protects the
connection and communication between the two WebLogic Servers instances.

e setSSLdientCertificate—specifies the private key and certificate chain to use for
the SSL connection. You use this method to specify an input stream array that
consists of a private key (which is the first input stream in the array) and a chain of
X.509 certificates (which make up the remaining input streams in the array). Each
certificate in the chain of certificates is the issuer of the certificate preceding it in
the chain.

e set SSLServer Name—specifies the name of the Oracle WebLogic Server instance
acting as the SSL server. When the SSL server presents its digital certificate to the
WebLogic Server acting as the SSL client, the name specified using the
set SSLSer ver Name method is compared to the common name field in the digital
certificate. In order for hostname verification to succeed, the names must match.
This parameter is used to prevent man-in-the-middle attacks.

» set SSLRoot CAFi nger pri nt —specifies digital codes that represent a set of trusted
certificate authorities, thus specifying trust based on a trusted certificate
fingerprint. The root certificate in the certificate chain received from the WebLogic
Server instance acting as the SSL server has to match one of the fingerprints
specified with this method in order to be trusted. This parameter is used to prevent
man-in-the-middle attacks. It provides an addition to the default level of trust,
which for clients running on WebLogic Server is that specified by the WebLogic
Server trust configuration.

¢ Note:

For information on JNDI contexts and threads and how to avoid potential
JNDI context problems, see JNDI Contexts and Threads and How to Avoid
Potential INDI Context Problems in Developing JNDI Applications for
Oracle WebLogic Server.

Example 5-6 Establishing a Secure Connection to Another WebLogic Server
Instance

FilelnputStream[] f = new FilelnputStreani3];
f[0] = new Fil el nput St rean(" denokey. pent') ;
f[1] = new Fil el nput St ream(" denocert. pent');
f[2] = new Fil el nput Strean("ca. pent');
Environnent e = new Environnment ();
e.setProvi der URL("t 3s://server2.webl ogi c. com 443");
e.setSSLCientCertificate(f);
e. set SSLSer ver Name(" server 2. webl ogi c. cont);
e. set SSLRoot CAFi nger pri nt s("ac45e2d1ce492252acc27ee5c345¢ef 26") ;

e.setlnitial ContextFactory
("webl ogic.jndi.Wlnitial ContextFactory");
Context ctx = new Initial Context(e.getProperties())

In Example 5-6, the WebLogic JNDI Envi ronnent class creates a hash table to store
the following parameters:

5-17

Chapter 5
Writing Applications that Use SSL

5.4.3.4 Using Two-Way SSL Authentication with Servlets

To authenticate Java clients in a servlet (or any other server-side Java class), you
must check whether the client presented a digital certificate and if so, whether the
certificate was issued by a trusted certificate authority. The servlet developer is
responsible for asking whether the Java client has a valid digital certificate. When
developing servlets with the WebLogic Servlet API, you must access information about
the SSL connection through the get Attribute() method of the HTTPSer vl et Request
object.

The following attributes are supported in WebLogic Server servlets:

* javax.servlet.request.X509Certificate
e java.security.cert.X509Certificate []—returns an array of the X.509 certificate.

e javax.servlet.request.cipher_sui t e—returns a string representing the cipher suite
used by HTTPS.

* javax.servlet.request.key_si ze— returns an integer (0, 40, 56, 128, 168)
representing the bit size of the symmetric (bulk encryption) key algorithm.

* webl ogic.servlet.request.SSLSession

* javax.net.ssl.SSLSessi on—returns the SSL session object that contains the cipher
suite and the dates on which the object was created and last used.

You have access to the user information defined in the digital certificates. When you
get the j avax. servl et.request. X509Cer ti fi cat e attribute, it is an array of type
java.security.cert.X509Certificate. You simply cast the array to that type and
examine the certificates.

A digital certificate includes information, such as the following:

* The name of the subject (holder, owner) and other identification information
required to verify the unique identity of the subject.

* The subject's public key
* The name of the certificate authority that issued the digital certificate
e A serial number

* The validity period (or lifetime) of the digital certificate (as defined by a start date
and an end date)

5.4.4 Using a Custom Host Name Verifier

A host name verifier validates that the host to which an SSL connection is made is the
intended or authorized party. A host name verifier is useful when a WebLogic client or
a WebLogic Server instance is acting as an SSL client to another application server. It
helps prevent man-in-the-middle attacks.

ORACLE 5-18

ORACLE

Chapter 5
Writing Applications that Use SSL

Note:

Demonstration digital certificates are generated during installation so they do
contain the host name of the system on which the WebLogic Server software
installed. Therefore, you should leave host name verification on when using the
demonstration certificates for development or testing purposes.

By default, WebLogic Server, as a function of the SSL handshake, compares the CN
field of the SSL server certificate Subject DN with the host name in the URL used to
connect to the server. If these names do not match, the SSL connection is dropped.

The dropping of the SSL connection is caused by the SSL client, which validates the
host name of the server against the digital certificate of the server. If anything but the
default behavior is desired, you can either turn off host name verification or register a
custom host name verifier. Turning off host name verification leaves the SSL
connections vulnerable to man-in-the-middle attacks.

You can turn off host name verification in the following ways:

e Inthe WebLogic Server Administration Console, specify None in the Hosthame
Verification field that is located on the Advanced Options pane under the Keystore
& SSL tab for the server (for example, nyserver).

* On the command line of the SSL client, enter the following argument:

- Dwebl ogi c. security. SSL. i gnor eHost naneVeri fi cati on=true

You can write a custom host name verifier. The

webl ogi c. security. SSL. Host naneVeri fi er interface provides a callback mechanism so
that implementers of this interface can supply a policy on whether the connection to
the URL's host name should be allowed. The policy can be certificate-based or can
depend on other authentication schemes.

To use a custom host name verifier, create a class that implements the
webl ogi c. security. SSL. Host naneVeri fi er interface and define the methods that capture
information about the server's security identity.

Note:

This interface takes new style certificates and replaces the
weblogic.security.SSL.HostnameVerifierJSSE interface, which is deprecated.

Before you can use a custom host name verifier, you need to specify the class for your
implementation in the following ways:

* Inthe WebLogic Server Administration Console, set the SSL.HostName Verifier
field on the SSL tab under Server Configuration to the name of a class that
implements this interface. The specified class must have a public no-arg
constructor.

* Onthe command line, enter the following argument:

- Dwebl ogi c. security. SSL. host naneVeri fi er=host nameveri fi er

5-19

Chapter 5
Writing Applications that Use SSL

The value for host naneveri fi er is the name of the class that implements the custom
host name verifier.

Example 5-7 shows code fragments from the NulledHostnameVerifier example; the
complete example is located in the EXAMPLES_HOVE\ st c\ exanpl es\ securi ty\ ssl cli ent
directory in the Nul | edHost naneVeri fi er. j ava file. The EXAMPLES_HOME directory can be
found at ORACLE_HOME\ Wi ser ver \ sanpl es\ server. This code example contains a

Nul | edHost naneVeri fi er class which always returns true for the comparison. The
sample allows the WebLogic SSL client to connect to any SSL server regardless of the
server's host name and digital certificate SubjectDN comparison.

Example 5-7 Hostname Verifier Sample Code Fragment

public class Nul | edHost naneVerifier inplenents
webl ogi c. security. SSL. Host nameVerifier {
public bool ean verify(String urlHostname, javax.net.ssl.SSLSession session) {
return true;

}
}

5.4.5 Using a Trust Manager

ORACLE

The webl ogi c. security. SSL. Trust Manager interface provides the ability to:

e Ignore specific certificate validation errors

e Perform additional validation on the peer certificate chain

Note:

This interface takes new style certificates and replaces the
weblogic.security.SSL.TrustManagerJSSE interface, which is deprecated.

When an SSL client connects to an instance of WebLogic Server, the server presents
its digital certificate chain to the client for authentication. That chain could contain an
invalid digital certificate. The SSL specification says that the client should drop the
SSL connection upon discovery of an invalid certificate. You can use a custom
implementation of the Trust Manager interface to control when to continue or discontinue
an SSL handshake. Using a trust manager, you can ignore certain validation errors,
optionally perform custom validation checks, and then decide whether or not to
continue the handshake.

Use the webl ogi c. security. SSL. Trust Manager interface to create a trust manager. The
interface contains a set of error codes for certificate verification. You can also perform
additional validation on the peer certificate and interrupt the SSL handshake if need
be. After a digital certificate has been verified, the webl ogi c. security. SSL. Trust Manager
interface uses a callback function to override the result of verifying the digital
certificate. You can associate an instance of a trust manager with an SSL context
through the set Trust Manager () method.

You can only set up a trust manger programmatically; its use cannot be defined
through the WebLogic Server Administration Console or on the command-line.

5-20

Chapter 5
Writing Applications that Use SSL

Note:

Depending on the checks performed, use of a trust manager may potentially
impact performance.

Example 5-8 shows code fragments from the NulledTrustManager example; the
complete example is located in the EXAMPLES_HOVE\ st ¢\ exanpl es\ securi ty\ssl client
directory in the Nul | edTr ust Manager . j ava file. The EXAMPLES_HOME directory can be found
at ORACLE_HOME\ wi ser ver \ sanpl es\ server . The SSLSocketClient example uses the
custom trust manager. The SSLSocketClient shows how to set up a new SSL
connection by using an SSL context with the trust manager.

Example 5-8 NulledTrustManager Sample Code Fragments

package exanpl es.security.sslclient;

i mport webl ogi c. security. SSL. Trust Manager ;
import java.security.cert.X509Certificate;

public class Nul | edTrust Manager inplenents Trust Manager{
public bool ean certificateCallback(X509Certificate[] o, int validateErr) {
Systemout.printIn(" --- Do Not Use In Production ---\n" +
" By using this NulledTrustManager, the trust in" +
" the server's identity is completely lost.\n" +
T CRIGRICRETPEPEERELRES ")
for (int i=0; i<o.length; i++)
Systemout.printIn(" certificate " +i +" -- " + o[i].toString());
return true;
1
}

5.4.6 Using the CertPath Trust Manager

ORACLE

The CertPathTrustManager, webl ogi c. security. SSL. Cert Pat hTr ust Manager , makes use
of the default security realm's configured CertPath validation providers to perform extra
validation such as revocation checking.

By default, application code using outbound SSL in the server has access only to the
built-in SSL certificate validation. However, application code can specify the
CertPathTrustManager in order to access any additional certificate validation that the
administrator has configured for the server. If you want your application code to also
run the CertPath validators, the application code should use the
CertPathTrustManager.

There are three ways to use this class:

e The Trust Manager calls the configured CertPathValidators only if the
administrator has set a switch on the SSLMBean stating that outbound SSL should
use the validators. That is, the application completely delegates validation to
whatever the administrator configures. You use the
set UseConf i gur edSSLVal i dati on() method for this purpose. This is the default.

* The Trust Manager always calls any configured CertPathValidators. You use the
set Bui | tinSSLVal i dati onAndCert Pat hval i dat or s() method for this purpose.

5-21

Chapter 5
Writing Applications that Use SSL

» The Trust Manager never calls any configured CertPathValidators. You use the
set Bui | tinSSLVal i dati onOnl y() method for this purpose.

5.4.7 Using a Handshake Completed Listener

The j avax. net. ssl . HandshakeConpl et edLi st ener interface defines how an SSL client
receives notifications about the completion of an SSL protocol handshake on a given
SSL connection. Example 5-9 shows code fragments from the MyListener example;
the complete example is located in the EXAMPLES_HOVE\ sr c\ exanpl es\ securi t y\ ssl cl i ent
directory in the MyLi st ener. j ava file. The EXAMPLES _HOME directory can be found at
ORACLE_HOVE\ W server\ sanpl es\ server.

Example 5-9 MyListener (HandshakeCompletedListener) Sample Code
Fragments

package exanpl es.security.sslclient;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

"~ publ
{

java.io.File;

java.io.|OException;

java.io.|nputStream

java.io. Qutput Stream
java.io.FilelnputStream

j avax. net . ssl . HandshakeConpl et edLi st ener;;
java.util.Hashtabl e;

j avax. net.ssl . SSLSessi on;

ic class MListener inplenments HandshakeConpl et edLi st ener

public void handshakeConpl et ed(j avax. net. ssl . HandshakeConpl et edEvent

{

}
}

ORACLE

event)

SSLSessi on session = event. get Sessi on();
Systemout. println("Handshake Conpleted with peer " +

sessi on. get Peer Host ()) ;
Systemout.printIn(" cipher: " + session.getC pherSuite());
Certificate[] certs = null;

try
{

certs = session. getPeerCertificates();
}
catch (SSLPeerUnverifiedException puv)
{

certs = null;
}
if (certs !=null)
{

Systemout.printIn(" peer certificates:");

for (int z=0; z<certs.length; z++)

Systemout. printlIn(" certs["+z+"]: " + certs[z]);

}
el se
{

Systemout.println("No peer certificates presented");
}

5-22

Chapter 5
Writing Applications that Use SSL

5.4.8 Using an SSLContext

The SSLCont ext class is used to programmatically configure SSL and to retain SSL
session information. Each instance can be configured with the keys, certificate chains,
and trusted CA certificates that will be used to perform authentication. SSL sockets
created with the same SSLContext and used to connect to the same SSL server could
potentially reuse SSL session information. Whether the session information is actually
reused depends on the SSL server.

For more information on session caching see SSL Session Behavior in Administering
Security for Oracle WebLogic Server. To associate an instance of a trust manager
class with its SSL context, use the

webl ogi c. security. SSL. SSLCont ext . set Tr ust Manager () method.

You can only set up an SSL context programmatically; not by using the WebLogic
Server Administration Console or the command line. A Java new expression or the

get I nstance() method of the SSLCont ext class can create an SSLCont ext object. The
get I nstance() method is static and it generates a new SSLCont ext object that
implements the specified secure socket protocol. An example of using the SSLCont ext
class is provided in the SSLSocket O i ent . j ava sample in EXAMPLES_HOME\ sr ¢\ exanpl es
\security\sslclient, where EXAMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured and can be found at ORACLE_HOME

\w server\sanpl es\ server. The SSLSocketClient example shows how to create a new
SSL socket factory that will create a new SSL socket using SSLCont ext .

Example 5-10 shows a sample instantiation using the get I nst ance() method.
Example 5-10 SSL Context Code Example

i mport webl ogi c. security. SSL. SSLCont ext ;
SSLcontext sslctx = SSLCont ext. getlnstance ("https")

5.4.9 Using URLs to Make Outbound SSL Connections

ORACLE

You can use a URL object to make an outbound SSL connection from a WebLogic
Server instance acting as a client to another WebLogic Server instance. WebLogic
Server supports both one-way and two-way SSL authentication for outbound SSL
connections.

For one-way SSL authentication, you use the j ava. net. URL, j ava. net . URLConnect i on,
and j ava. net. HTTPURLConnect i on classes to make outbound SSL connections using URL
objects. Example 5-11 shows a si npl eURL class that supports both HTTP and HTTPS
URLs and that only uses these Java classes (that is, no WebLogic classes are
required). To use the si mpl eURL class for one-way SSL authentication (HTTPS) on
WebLogic Server, all that is required is that "webl ogi c. net " be defined in the system
property for j ava. prot ocol s. handl er. pkgs.

" Note:

Because the simpleURL sample shown in Example 5-11 defaults trust and
hostname checking, this sample requires that you connect to a real Web server
that is trusted and that passes hostname checking by default. Otherwise, you
must override trust and hostname checking on the command line.

5-23

Chapter 5
Writing Applications that Use SSL

Example 5-11 One-Way SSL Authentication URL Outbound SSL Connection
Class That Uses Java Classes Only

i mport java.net.URL;
i mport java. net.URLConnecti on;
i mport java.net.Ht tpURLConnecti on;
i mport java.io.|CException;
public class sinpleURL
{
public static void main (String [] argv)
{
if (argv.length I'= 1)
{
Systemout. printIn("Please provide a URL to connect to");
Systemexit(-1);

set upHandl er ();
connect ToURL(argv[0]);
}
private static void setupHandler()
{
java.util.Properties p = System getProperties();
String s = p.getProperty("java. protocol . handl er. pkgs");
if (s ==null)
s = "weblogic.net";
else if (s.indexCf("weblogic.net") == -1)
s += "|webl ogic. net";
p. put ("java. protocol . handl er. pkgs", s);
Syst em set Properties(p);
}
private static void connect TOURL(String theURLSpec)
{
try
{
URL theURL = new URL(theURLSpec);

URLConnection url Connection = theURL. openConnection();
Ht t pURLConnecti on connection = nul | ;
if (!(urlConnection instanceof HttpURLConnection))
{
Systemout. printIn("The URL is not using HTTP/HTTPS. " +
t heURLSpec) ;
return;
}
connection = (H tpURLConnection) url Connecti on;
connect i on. connect () ;
String responseStr = "\t\t" +
connection. get ResponseCode() + " -- " +
connection. get ResponseMessage() + "\n\t\t" +
connection. get Content ().getC ass().getName() + "\n";
connect i on. di sconnect () ;
System out. println(responseStr);

}
catch (1 OException ioe)

{
Systemout. printIn("Failure processing URL: " + theURLSpec);
i oe.printStackTrace();
}
}
}

ORACLE 5-24

Chapter 5
SSL Client Code Examples

For two-way SSL authentication, the webl ogi c. net . htt p. Ht t psURLConnect i on class
provides a way to specify the security context information for a client, including the
digital certificate and private key of the client. Instances of this class represent an
HTTPS connection to a remote object.

The SSLClient sample code demonstrates using the WebLogic URL object to make an
outbound SSL connection (see Example 5-12). The code example shown in
Example 5-12 is excerpted from the SSLd i ent . j ava file in the EXAMPLES_HOVE\ st ¢

\ exanpl es\ securi ty\sslclient directory. The EXAVPLES_HOME directory can be found at
ORACLE_HOVE\ Wl ser ver\ sanpl es\ server.

Example 5-12 WebLogic Two-Way SSL Authentication URL Outbound SSL
Connection Code Example

w sUrl = new URL("https", host, Integer.valueC(sport).intValue(),
query);
webl ogi c. net. http. Ht psURLConnecti on sconnection =
new webl ogi c. net. http. H t psURLConnecti on(w sUrl);

InputStream[] ins = new | nputStreanf?2];
ins[0] = new FilelnputStream"clientkey.pen);
ins[1] = new FilelnputStream"client2certs.pent);
String pwd = "clientkey";
sconnection. | oadLocal Identity(ins[0], ins[1], pwd.toCharArray());

5.5 SSL Client Code Examples

ORACLE

The WebLogic Server product provides a complete working SSL authentication
sample.The sample provided by WebLogic Server is located in EXAVPLES HOMVE\ sr ¢

\ exanpl es\ securi ty\ssl client, where EXAVPLES_HOME represents the directory in which
the WebLogic Server code examples are configured and can be found at ORACLE_HOME
\w server\sanpl es\ server. For a description of the sample and instructions on how to
build, configure, and run this sample, see the package. htnl file in the sample directory.
You can modify this code example and reuse it.

5-25

Securing Enterprise JavaBeans (EJBs)

WebLogic Server supports the Java EE architecture security model for securing
Enterprise JavaBeans (EJBs), which includes support for declarative authorization
(also referred to in this document as declarative security) and programmatic
authorization (also referred to in this document as programmatic security).

» Java EE Architecture Security Model

* Using Declarative Security With EJBs

» EJB Security-Related Deployment Descriptors
* Using Programmatic Security With EJBs

" Note:

You can use metadata annotations, deployment descriptor files, the
WebLogic Server Administration Console, and JACC to secure EJBs. For
information on using the WebLogic Server Administration Console to
secure EJBs, see Options for Securing Web Application and EJB
Resources in Securing Resources Using Roles and Policies for Oracle
WebLogic Server. For information on JACC, see Using the Java
Authorization Contract for Containers.

6.1 Java EE Architecture Security Model

Enterprise tier and web tier applications are made up of components that are deployed
into various containers. These components are combined to build a multitier enterprise
application. Security for components is provided by their containers. A container
provides two kinds of security: declarative and programmatic.

See Overview of Java EE Security in The Java EE Tutorial, Release 7 for complete
details about the Java EE security architecture.

6.1.1 Declarative Security

ORACLE

The Java EE Tutorial, Release 7 states that declarative security expresses an
application component's security requirements by using either deployment descriptors
or annotations.

A deployment descriptor is an XML file that is external to the application and that
expresses an application's security structure, including security roles, access control,
and authentication requirements.

Annotations, also called metadata, are used to specify information about security
within a class file. When the application is deployed, this information can be either
used by or overridden by the application deployment descriptor. Annotations save you
from having to write declarative information inside XML descriptors. Instead, you

6-1

https://docs.oracle.com/javaee/7/tutorial/security-intro001.htm#BNBWK

Chapter 6
Java EE Architecture Security Model

simply put annotations on the code, and the required information gets generated. For
this tutorial, annotations are used for securing applications wherever possible.

6.1.1.1 Declarative Authorization Via Annotations

As of EJB 3.x, to make the deployer's task easier, the application developer can define
security roles. Developers can specify security metadata annotations directly in the
EJB bean class to identify the roles that are allowed to invoke all, or a subset, of the
EJB's methods.

As stated in the Securing an Enterprise Bean Using Declarative Security section of the
The Java EE Tutorial, Release 7, "Declarative security enables the application
developer to specify which users are authorized to access which methods of the
enterprise beans and to authenticate these users with basic, or user name/password,
authentication. Frequently, the person who is developing an enterprise application is
not the same person who is responsible for deploying the application. An application
developer who uses declarative security to define method permissions and
authentication mechanisms is passing along to the deployer a security view of the
enterprise beans contained in the EJB JAR. When a security view is passed on to the
deployer, he or she uses this information to define method permissions for security
roles. If you don't define a security view, the deployer will have to determine what each
business method does to determine which users are authorized to call each method."

At deployment time, the deployer then creates these security roles if they do not
already exist and maps users to these roles using the WebLogic Server Administration
Console to update the security realm. For details, see Manage Security Roles in the
Oracle WebLogic Server Administration Console Online Help. The deployer can also
map any security roles to users using the webl ogi c- ej b-j ar. xni deployment descriptor.

" Note:

Deployment descriptor elements always override their annotation counterparts.
In the case of conflicts, the deployment descriptor value overrides the
annotation value.

6.1.2 Programmatic Security

ORACLE

The Java EE Tutorial, Release 7 states that for an enterprise bean, code embedded in
a business method that is used to access a caller's identity programmatically and that
uses this information to make security decisions. Programmatic security is useful when
declarative security alone is not sufficient to express the security model of an
application. The API for programmatic security consists of methods of the EJBCont ext
interface and the Ht t pSer vl et Request interface. These methods allow components to
make business-logic decisions based on the security role of the caller or remote user.

In the section Accessing an Enterprise Bean Caller's Security Context, The Java EE
Tutorial, Release 7 states that, in general, ssecurity management should be enforced
by the container in a manner that is transparent to the enterprise bean's business
methods. The security API described in this section should be used only in the less
frequent situations in which the enterprise bean business methods need to access the
security context information, such as when you want to restrict access to a particular
time of day.

6-2

https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#GJGDI
https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#GJGCR

Chapter 6
Using Declarative Security With EJBs

The j avax. ej b. EJBCont ext interface provides two methods that allow the bean provider
to access security information about the enterprise bean's caller:

e getCallerPrincipal allows the enterprise bean methods to obtain the current caller
principal's name. The methods might, for example, use the name as a key to
information in a database.

e isCallerlnRol eallows the developer to code the security checks that cannot be
easily defined using method permissions. Such a check might impose a role-
based limit on a request, or it might depend on information stored in the database.

The enterprise bean code can use the i sCal | er I nRol e method to test whether the
current caller has been assigned to a given security role. Security roles are
defined by the bean provider or the application assembler and are assigned by the
deployer to principals or principal groups that exist in the operational environment.

6.1.3 Declarative Versus Programmatic Authorization

6.2 Using

ORACLE

Programmatic security is used by security-aware applications when declarative
security alone is not sufficient to express the security model of the application. When
choosing the security model that works best for you, consider who is responsible for
managing security in your organization. Developers are most familiar with the
application components they build, but they might not necessarily be familiar with the
deployment environment in which those components run. In addition, as security
policies change, it is more economical to reconfigure security declaratively instead of
rebuilding, retesting, and redeploying applications, which may be necessary when
making programmatic security updates.

As described in Declarative Authorization Via Annotations, to make the deployer's task
easier, the application developer can specify security metadata annotations directly in
the EJB bean class to identify the roles that are allowed to invoke all, or a subset, of
the EJB's methods. However, deployment descriptor elements always override their
annotation counterparts, which gives the deployer final control.

Declarative Security With EJBs

You can implement declarative security using the security providers via the
Administration Console, or by using Java Authorization Contract for Containers
(JACC). You also use deployment descriptors and metadata annotations for
implementing declarative security.

There are three ways to implement declarative security:

1. Security providers via the WebLogic Server Administration Console, as described
in Securing Resources Using Roles and Policies for Oracle WebLogic Server.

2. Java Authorization Contract for Containers (JACC), as described in Using the Java
Authorization Contract for Containers.

3. Deployment descriptors and metadata annotations, which are discussed in this
section.

Which of these three methods is used is defined by the JACC flags and the security
model. (Security models are described in Options for Securing EJB and Web
Application Resources in Securing Resources Using Roles and Policies for Oracle
WebLogic Server)

6-3

Chapter 6
Using Declarative Security With EJBs

6.2.1 Implementing Declarative Security Via Metadata Annotations

As described in What Was New and Changed in EJB 3.0, you are no longer required
to create the deployment descriptor files (such as ej b-j ar. xnl). You can now use
metadata annotations in the bean file itself to configure metadata.

You can still use XML deployment descriptors in addition to, or instead of, the
metadata annotations if you so choose.

Note:

Deployment descriptor elements always override their annotation counterparts.
In the case of conflicts, the deployment descriptor value overrides the
annotation value.

To use metadata annotations:

1. Use the metadata annotations feature and create an annotated EJB bean file.

2. At deployment time, the deployer must then create these security roles if they do
not already exist and map users to these roles using the WebLogic Server
Administration Console to update the security realm. See Manage Security Roles
in the Oracle WebLogic Server Administration Console Online Help.

The annotations are part of the javax.security.annotation package. The following
security-related annotations are available:

e javax.annotation.security.DeclareRoles — Explicitly lists the security roles that will
be used to secure the EJB.

e javax.annotation.security.RolesAllowed — Specifies the security roles that are
allowed to invoke all the methods of the EJB (when specified at the class-level) or
a particular method (when specified at the method-level.)

e javax.annotation.security.DenyAll — Specifies that the annotated method can not
be invoked by any role.

e javax.annotation.security.PermitAll — Specifies that the annotated method can be
invoked by all roles.

e javax.annotation.security.RunAs — Specifies the role which runs the EJB. By
default, the EJB runs as the user who actually invokes it.

6.2.1.1 Security-Related Annotation Code Examples

ORACLE

The section Securing Access to the EJB in Developing Enterprise JavaBeans for
Oracle WebLogic Server provides an example of a simple stateless session EJB that
uses all of the security-related annotations.

The section Specifying Authorized Users by Declaring Security Roles in the Java EE 7
Tutorial also discusses how to use annotations to specify the method permissions for
the methods of a bean class, with accompanying code examples.

6-4

http://docs.oracle.com/javaee/6/api/javax/annotation/security/package-tree.html
https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#GJGCQ
https://docs.oracle.com/javaee/7/tutorial/index.html
https://docs.oracle.com/javaee/7/tutorial/index.html

Chapter 6
Using Declarative Security With EJBs

6.2.2 Implementing Declarative Security Via Deployment Descriptors

ORACLE

To implement declarative security in EJBs you can use deployment descriptors (gj b-
jar.xm and webl ogi c-ej b-j ar. xnl) to define the security requirements. Example 6-1
shows examples of how to use the ej b-j ar. xm and webl ogi c-ej b-j ar. xnl deployment
descriptors to map security role names to a security realm. The deployment
descriptors map the application's logical security requirements to its runtime
definitions. And at runtime, the EJB container uses the security definitions to enforce
the requirements.

To configure security in the EJB deployment descriptors, perform the following steps
(see Example 6-1):

1. Use atext editor to create ej b-j ar. xm and webl ogi c-ej b-j ar. xnl deployment
descriptor files.

2. Intheejb-jar.xn file, define the security role name, the EJB name, and the
method name (see bold text).

Note:

The proper syntax for a security role name is as defined for an Nmtoken in
the Extensible Markup Language (XML) recommendation available on the
Web at: http: // wwv. w3. or g/ TR/ REC- xm #NT- Nnt oken.

When specifying security role names, observe the following conventions
and restrictions:

e Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, <>, #, |, & ~, 2, (), {}.

e Security role names are case sensitive.

e The suggested convention for security role names is that they be
singular.

For more information on configuring security in the ejb-jar.xml file, see the
Enterprise JavaBeans Specification, Version 2.0 which is at this location on
the Internet: http: // www. or acl e. conf t echnet wor k/ j ava/ docs- 135218. ht ni .

3. In the WebLogic-specific EJB deployment descriptor file, webl ogi c-ej b-jar. xni ,
define the security role name and link it to one or more principals (users or groups)
in a security realm.

For more information on configuring security in the webl ogi c-ej b-jar. xnl file, see
weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

Example 6-1 Using ejb-jar.xml and weblogic-ejb-jar.xml Files to Map Security
Role Names to a Security Realm

ejb-jar.xm entries:

<assenbl y-descri pt or >
<security-rol e>
<rol e- nane>nanger </ r ol e- nane>
</security-rol e>

6-5

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.oracle.com/technetwork/java/docs-135218.html

Chapter 6
EJB Security-Related Deployment Descriptors

<security-rol e>
<rol e- nane>east </ r ol e- name>
</security-rol e>
<net hod- per m ssi on>
<r ol e- name>nanager </ r ol e- nane>
<rol e- nane>east </ r ol e- name>
<net hod>
<ej b- nanme>account sPayabl e</ ¢j b- nane>
<net hod- nane>get Recei pt s</ net hod- name>
</ met hod>
</ met hod- per mi ssi on>

</ assenbl y-descri pt or>

webl ogic-ejb-jar.xn entries:
<security-rol e-assi gnment >
<rol e- name>manager </ r ol e- name>
<princi pal - nane>al </ pri nci pal - nane>
<pri nci pal - nane>geor ge</ pri nci pal - name>
<pri nci pal - nane>r al ph</ pri nci pal - name>
</ security-rol e-assi gnnent >

6.3 EJB Security-Related Deployment Descriptors

WebLogic Server supports several deployment descriptor elements that are used in
the ej b-jar. xm and webl ogi c-¢j b-j ar. xnl files to define security requirements in EJBs.

* ejb-jar.xml Deployment Descriptors

* weblogic-ejb-jar.xml Deployment Descriptors

6.3.1 ejb-jar.xml Deployment Descriptors

The following ej b-j ar. xm deployment descriptor elements are used to define security
requirements in WebLogic Server:

* method

* method-permission
* role-name

° run-as

* security-identity

e security-role

e security-role-ref

e unchecked

e use-caller-identity

6.3.1.1 method

The net hod element is used to denote a method of an enterprise bean's home or
component interface, or, in the case of a message-driven bean, the bean's onMessage
method, or a set of methods.

ORACLE 6-6

Chapter 6
EJB Security-Related Deployment Descriptors

The following table describes the elements you can define within an net hod element.

Table 6-1 method Element
]

Element Required/ Description
Optional
Optional A text description of the method.

<descri ption>

Required Specifies the name of one of the enterprise beans

<€j b- name> declared in the ej b-j ar. xni file.

Optional Allows you to distinguish between a method with the
same signature that is multiply defined across both the
home and component interfaces of the enterprise
bean.

<net hod-intf>

Required Specifies a name of an enterprise bean method or the
asterisk (*) character. The asterisk is used when the
element denotes all the methods of an enterprise
bean's component and home interfaces.

<net hod- name>

Optional Contains a list of the fully-qualified Java type names of

<net hod- par ans>
P the method parameters.

6.3.1.1.1 Used Within

The net hod element is used within the net hod- per mi ssi on element.

6.3.1.1.2 Example

For an example of how to use the net hod element, see Example 6-1.

6.3.1.2 method-permission

The net hod- per ni ssi on element specifies that one or more security roles are allowed to
invoke one or more enterprise bean methods. The net hod- per mi ssi on element consists
of an optional description, a list of security role names or an indicator to state that the
method is unchecked for authorization, and a list of method elements.

The security roles used in the et hod- per ni ssi on element must be defined in the
security-rol e elements of the deployment descriptor, and the methods must be
methods defined in the enterprise bean's component and/or home interfaces.

The following table describes the elements you can define within a met hod- per ni ssi on
element.

Table 6-2 method-permission Element
|

Element Required/ Description
Optional
Optional A text description of this security constraint.

<descri pti on>

ORACLE .

Chapter 6
EJB Security-Related Deployment Descriptors

Table 6-2 (Cont.) method-permission Element

Element Required/ Description
Optional

Required The rol e- nane element or the unchecked element must
be specified.

The r ol e- nane element contains the name of a security
role. The name must conform to the lexical rules for an
NMTOKEN.

The unchecked element specifies that a method is not
checked for authorization by the container prior to
invocation of the method.

<rol e-name> or
<unchecked>

Required Specifies a method of an enterprise bean's home or
component interface, or, in the case of a message-
driven bean, the bean's onMessage method, or a set of
methods.

<net hod>

6.3.1.2.1 Used Within

The net hod- per ni ssi on element is used within the assenbl y-descri ptor element.

6.3.1.2.2 Example

For an example of how to use the net hod- per ni ssi on element, see Example 6-1.

6.3.1.3 role-name

The role-name element contains the name of a security role. The name must conform
to the lexical rules for an NMTOKEN.

6.3.1.3.1 Used Within

The role-name element is used within the net hod- per ni ssi on, run-as, security-role,
and security-role-ref elenents.

6.3.1.3.2 Example

For an example of how to use the rol e- name element, see Example 6-1.

6.3.1.4 run-as

The run- as element specifies the run-as identity to be used for the execution of the
enterprise bean. It contains an optional description, and the name of a security role.

6.3.1.4.1 Used Within

The run-as element is used within the security-identity element.

6.3.1.4.2 Example

For an example of how to use the run- as element, see Example 6-8.

ORACLE 6-8

Chapter 6
EJB Security-Related Deployment Descriptors

6.3.1.5 security-identity

The security-identity element specifies whether the caller's security identity is to be
used for the execution of the methods of the enterprise bean or whether a specific run-
as identity is to be used. It contains an optional description and a specification of the
security identity to be used.

The following table describes the elements you can define within an security-identity
element.

Table 6-3 security-identity Element
|

Element Required/ Description
Optional
<descripti on> Optional A text description of the security identity.
<use-cal | er - Required Tlhe uset- cal It%r-l dent.fl. té/ element or the run-as
i denti ty> or element must be specified.
<run-as> The use-cal | er-identity element specifies that the
caller's security identity be used as the security identity
for the execution of the enterprise bean's methods.
The run-as element specifies the run-as identity to be
used for the execution of the enterprise bean. It contains
an optional description, and the name of a security role.
6.3.1.5.1 Used Within
The security-identity elementis used within the entity, message-driven, and session
elements.
6.3.1.5.2 Example
For an example of how to use the security-identity element, see Example 6-3 and
Example 6-8.

6.3.1.6 security-role

The security-rol e element contains the definition of a security role. The definition
consists of an optional description of the security role, and the security role name.

6.3.1.6.1 Used Within

The security-rol e element is used within the assenbl y- descri ptor element.

6.3.1.6.2 Example

For an example of how to use the assenbl y-descri ptor element, see Example 6-1.

6.3.1.7 security-role-ref

The security-rol e-ref element contains the declaration of a security role reference in
the enterprise bean's code. The declaration consists of an optional description, the

ORACLE 6-9

Chapter 6
EJB Security-Related Deployment Descriptors

security role name used in the code, and an optional link to a security role. If the
security role is not specified, the Deployer must choose an appropriate security role.

The value of the rol e- nane element must be the String used as the parameter to the
EJBCont ext. i sCal |l erl nRol e(String rol eNane) method or the
Htt pSer vl et Request . i sUser I nRol e(String rol e) method.

6.3.1.7.1 Used Within

The security-rol e-ref elementis used within the entity and sessi on elements.

6.3.1.7.2 Example

For an example of how to use the security-role-ref element, see Example 6-2.

Example 6-2 Security-role-ref Element Example

<! DOC<webl ogi c-ej b-jar xm ns="http://ww. bea. coni ns/ webl ogi c/ 90"
xm ns: xsi ="http: //ww. w3. or g/ 2001/ XM.Schena- i nst ance”
xsi: schemalLocation="http://ww:. bea. com ns/ webl ogi ¢/ 90
http://ww. bea. com ns/webl ogi ¢/ 90/ webl ogi c-ej b-j ar. xsd">
<ejb-jar>

<enterprise-beans>

<sessi on>
<ej b- nanme>Securi t ySLEJB</ ej b- nane>
<home>webl ogi . ej b20. security. SecuritySLHome</ hone>
<r enot e>webl ogi c. ej b20. security. SecuritySL</renot e>
<ej b- cl ass>webl ogi c. ej b20. security. SecuritySLBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
<security-role-ref>
<rol e- name>r ol enamedi fffronl i nk</rol e- nane>
<rol e-link>rol el21SL</rol e-1ink>

</security-role-ref>
<security-role-ref>

<rol e- name>r ol eFor Renot es</ r ol e- name>

<rol e-link>rol eFor Renot es</rol e-| i nk>
</security-role-ref>
<security-role-ref>

<rol e- nanme>r ol eFor Local AndRenot e</ r ol e- nanme>

<rol e-link>rol eFor Local AndRenot e</rol e-1i nk>
</security-role-ref>

</ sessi on>

</ enterprise-beans>
</ejb-jar>

6.3.1.8 unchecked

The unchecked element specifies that a method is not checked for authorization by the
container prior to invocation of the method.

6.3.1.8.1 Used Within

The unchecked element is used within the net hod- per ni ssi on element.

ORACLE 6-10

Chapter 6
EJB Security-Related Deployment Descriptors

6.3.1.8.2 Example

For an example of how to use the unchecked element, see Example 6-1.

6.3.1.9 use-caller-identity

The use-cal I er-identity element specifies that the caller's security identity be used as
the security identity for the execution of the enterprise bean's methods.

6.3.1.9.1 Used Within

The use-cal I er-identity element is used within the security-identity element.

6.3.1.9.2 Example

For an example of how to use the use-cal | er-i dentity element, see Example 6-3.

Example 6-3 use-caller-identity Element Example

<ejb-jar>
<enterpri se-beans>

<sessi on>
<ej b- name>Securi t yEJB</ €] b- name>
<home>webl ogi c. ej b20. Securi t ySLHonme</ hone>
<r enot e>webl ogi ¢. ej b20. SecuritySL</renot e>
<l ocal - home>

webl ogi c. ej b20. SecurityLocal SLHome

</l ocal - home>
<l ocal >webl ogi c. ej b20. Securi tyLocal SL</| ocal >
<ej b- cl ass>webl ogi c. ej b20. Securi t ySLBean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>

</ sessi on>

<nessage-driven>
<ej b- name>Securi t yEJB</ €] b- name>
<ej b- cl ass>webl ogi c. ej b20. Securi t ySLBean</ ej b- cl ass>
<transaction-type>Cont ai ner</transaction-type>
<security-identity>

<use-cal l er-identity/>

</security-identity>

</ message-driven>

</enterprise-bheans>
</ejb-jar>

6.3.2 weblogic-ejb-jar.xml Deployment Descriptors

ORACLE

The following webl ogi c- ej b-j ar. xnl deployment descriptor elements are used to define
security requirements in WebLogic Server:

* client-authentication

* client-cert-authentication
* confidentiality

* externally-defined

* identity-assertion

6-11

Chapter 6
EJB Security-Related Deployment Descriptors

* liop-security-descriptor

* integrity

e principal-name

* role-name

* run-as-identity-principal

* run-as-principal-name

* run-as-role-assignment

* security-permission

* security-permission-spec
e security-role-assignment

e transport-requirements

6.3.2.1 client-authentication

The client-aut henti cati on element specifies whether the EJB supports or requires
client authentication.

The following table defines the possible settings.

Table 6-4 client-authentication Element
]

Setting Definition
none Client authentication is not supported.
suppor t ed Client authentication is supported, but not required.
r equir ed Client authentication is required.
6.3.2.1.1 Example

For an example of how to use the client - aut henti cati on element, see Example 6-6.

6.3.2.2 client-cert-authentication

The client-cert-authentication element specifies whether the EJB supports or
requires client certificate authentication at the transport level.

The following table defines the possible settings.

Table 6-5 client-cert-authentication Element

|
Setting Definition

none Client certificate authentication is not supported.

ORACLE 6-12

Chapter 6
EJB Security-Related Deployment Descriptors

Table 6-5 (Cont.) client-cert-authentication Element
|

Setting Definition
suppor t ed Client certificate authentication is supported, but not required.
requir ed Client certificate authentication is required.

6.3.2.2.1 Example
For an example of how to use the client-cert-authenticati on element, see
Example 6-10.

6.3.2.3 confidentiality

The confidentiality element specifies the transport confidentiality requirements for
the EJB. Using the confidential ity element ensures that the data is sent between the
client and server in such a way as to prevent other entities from observing the
contents.

The following table defines the possible settings.

Table 6-6 confidentiality Element

___|
Setting Definition

none Confidentiality is not supported.

suppor t ed Confidentiality is supported, but not required.

r equi red Confidentiality is required.

6.3.2.3.1 Example

For an example of how to use the confidentiality element, see Example 6-10 .

6.3.2.4 externally-defined

The external | y-defi ned element lets you explicitly indicate that you want the security
roles defined by the rol e- nane element in the webl ogi c-ej b-j ar. xni deployment
descriptors to use the mappings specified in the WebLogic Server Administration
Console. The element gives you the flexibility of not having to specify a specific
security role mapping for each security role defined in the deployment descriptors for a
particular Web application. Therefore, within the same security realm, deployment
descriptors can be used to specify and modify security for some applications while the
WebLogic Server Administration Console can be used to specify and modify security
for others.

ORACLE 6-13

ORACLE

Chapter 6
EJB Security-Related Deployment Descriptors

Note:

Starting in version 9.0, the default role mapping behavior is to create empty role
mappings when none are specified. In version 8.1, EJB required that role
mappings be defined in the weblogic-ejb-jar.xml descriptor or deployment
would fail. With 9.0, EJB and WebApp behavior are consistent in creating
empty role mappings.

For information on role mapping behavior and backward compatibility settings,
see the section Understanding the Combined Role Mapping Enabled Setting in
Securing Resources Using Roles and Policies for Oracle WebLogic Server.
The role mapping behavior for a server depends on which security deployment
model is selected on the WebLogic Server Administration Console. For
information on security deployment models, see Options for Securing EJB and
Web Application Resources in Securing Resources Using Roles and Policies
for Oracle WebLogic Server.

When specifying security role names, observe the following conventions and
restrictions:

* The proper syntax for a security role name is as defined for an Nt oken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http:// ww. w3. or g/ TR/ REC- xn #NT- Nnt oken.

» Do not use blank spaces, commas, hyphens, or any characters in this comma-
separated list: \t, <>, #, |, & ~, 2, (), {}-

e Security role names are case sensitive.
* The suggested convention for security role hames is that they be singular.

Example 6-4 and Example 6-5 show by comparison how to use the ext ernal | y- def i ned
element in the webl ogi c-ej b-jar. xnl file. In Example 6-5, the specification of the
"manager" ext ernal | y- defi ned element in the webl ogi c- ej b-j ar. xm means that for
security to be correctly configured on the get Recei pt s method, the principals for
manager will have to be created in the WebLogic Server Administration Console.

Example 6-4 Using the ejb-jar.xml and weblogic-ejb-jar.xml Deployment
Descriptors to Map Security Roles in EJBs

ejb-jar.xm entries:

<assenbl y-descri pt or >
<security-rol e>
<rol e- name>manger </ r ol e- name>
</security-rol e>
<security-rol e>
<rol e- name>east </ r ol e- name>
</security-rol e>
<net hod- per mi ssi on>
<r ol e- name>nanager </ r ol e- name>
<rol e- name>east </ r ol e- name>
<nmet hod>
<ej b- name>account sPayabl e</] b- nanme>
<net hod- nane>get Recei pt s</ net hod- name>
</ met hod>
</ met hod- per ni ssi on>

6-14

http://www.w3.org/TR/REC-xml#NT-Nmtoken

Chapter 6
EJB Security-Related Deployment Descriptors

</ assenbl y-descri ptor>

webl ogi c-ej b-jar.xm entries
<security-rol e-assi gnment >
<rol e- name>manager </ r ol e- name>
<pri nci pal - nane>j oe</ pri nci pal - nane>
<princi pal - nane>Bi | | </ pri nci pal - name>
<pri nci pal - name>Mar y</ pri nci pal - name>

</ security-rol e-assi gnnent >

Example 6-5 Using the externally-defined Element in EJB Deployment
Descriptors for Role Mapping

ejb-jar.xm entries

<assenbl y-descri pt or >
<security-rol e>
<rol e- name>nanger </ r ol e- name>
</security-rol e>
<security-rol e>
<rol e-name>east </ rol e- name>
</security-rol e>
<met hod- per m ssi on>
<rol e- name>manager </ r ol e- name>
<rol e-name>east </ rol e- name>
<met hod>
<ej b- name>account sPayabl e</ ej b- name>
<nmet hod- nane>get Recei pt s</ met hod- name>
</ met hod>
</ net hod- per nm ssi on>

</ assenbl y-descri pt or>
webl ogi c-ej b-jar.xn entries
<security-rol e-assi gnnent >
<r ol e- name>nmanager </ r ol e- nane>
<external | y-defined/>
</ security-rol e-assi gnnent >
For more information on using the WebLogic Server Administration Console to
configure security for EJBs, see Options for Securing EJB and Web Application

Resources in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

6.3.2.5 identity-assertion

Theidentity-assertion element specifies whether the EJB supports identity assertion.

The following table defines the possible settings.

ORACLE 6-15

Chapter 6
EJB Security-Related Deployment Descriptors

Table 6-7 identity-assertion Element

___|
Setting Definition

none Identity assertion is not supported

support ed Identity assertion is supported, but not required.

r equi red Identity assertion is required.

6.3.2.5.1 Used Within

The identity-assertion element is used with the i i op-security-descriptor element.

6.3.2.5.2 Example

For an example of how to the i dentity-asserti on element, see Example 6-6.

6.3.2.6 iiop-security-descriptor

Theiiop-security-descriptor element specifies security configuration parameters at
the bean-level. These parameters determine the IIOP security information contained in
the interoperable object reference (IOR).

6.3.2.6.1 Example

For an example of how to use the i i op-security-descriptor element, see
Example 6-6.

Example 6-6 iiop-security-descriptor Element Example

<webl ogi c-ent er pri se- bean>
<iiop-security-descriptor>
<transport-requi renent s>
<confidentiality>supported</confidentiality>
<integrity>supported</integrity>
<client-cert-authorization>
support ed
</client-cert-authentication>
</transport-requirements>
<client-authentication>supported<client-authentication>
<identity-assertion>supported</identity-assertion>
</iiop-security-descriptor>
</ webl ogi c-ent erpri se- bean>

6.3.2.7 integrity

Theintegrity element specifies the transport integrity requirements for the EJB. Using
the integrity element ensures that the data is sent between the client and server in
such a way that it cannot be changed in transit.

The following table defines the possible settings.

ORACLE 6-16

Chapter 6
EJB Security-Related Deployment Descriptors

Table 6-8 integrity Element
|

Setting Definition
none Integrity is not supported.
suppor t ed Integrity is supported, but not required.
r equi r ed Integrity is required.
6.3.2.7.1 Used Within

The integrity element is used within the transport-requi rement s element.

6.3.2.7.2 Example

For an example of how to use the i ntegrity element, see Example 6-10.

6.3.2.8 principal-name

The princi pal - name element specifies the name of the principal in the WebLogic Server
security realm that applies to role name specified in the security-role-assignment
element. At least one pri nci pal is required in the security-rol e-assi gnnent element.
You may define more than one pri nci pal - nane for each role name.

Note:

If you need to list a significant number of principals, consider specifying groups
instead of users. There are performance issues if you specify too many users.

6.3.2.8.1 Used Within

The nk, 2"{>L" -nane element is used within the security-rol e-assi gnnent element.

6.3.2.8.2 Example

For an example of how to use the pri nci pal - nane element, see Example 6-1.

6.3.2.9 role-name

The rol e-nane element identifies an application role name that the EJB provider placed
in the companion ej b-j ar. xm file. Subsequent principal-name elements in the stanza
map WebLogic Server principals to the specified r ol e- nane.

6.3.2.9.1 Used Within

The rol e-nane element is used within the security-rol e-assi gnment element.

ORACLE 6-17

Chapter 6
EJB Security-Related Deployment Descriptors

6.3.2.9.2 Example

For an example of how to use the rol e- nane element, see Example 6-1.

6.3.2.10 run-as-identity-principal

The run-as-identity-princi pal element specifies which security principal name is to
be used as the run-as principal for a bean that has specified a security-identity run-as
role-name in its ejb-jar deployment descriptor. For an explanation of how of run-as
role-names to are mapped to run-as-identity-principals (or run-as-principal-names, see
run-as-role-assignment.

" Note:

Deprecated: The run-as-identity-principal element is deprecated in the
WebLogic Server 8.1. Use the run-as-principal-name element instead.

6.3.2.10.1 Used Within

The run-as-identity-principal elementis used within the run-as-rol e-assi gnment
element.

6.3.2.10.2 Example

ORACLE

For an example of how to use the run-as-i dentity-princi pal element, see
Example 6-7.

Example 6-7 run-as-identity-principal Element Example

ebj-jar.xm:
<ejb-jar>

<enterprise-beans>
<sessi on>
<ej b- nane>Cal | er 2EJB</ ¢j b- name>
<home>webl ogi c. ej b11. security. Cal | er BeanHone</ hone>
<renot e>webl ogi c. ej b11. security. Cal | er BeanRenot e</ r enot >
<ej b- cl ass>webl ogi c. ej b11. security. Cal | er Bean</ ¢j b- cl ass>
<sessi on-type>St at ef ul </ sessi on- t ype>
<transaction-type>Contai ner</transaction-type>
<ej b-ref ><ej b-ref - nane>Cal | ee2Bean</ ej b- r ef - name>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<honme>webl ogi c. ej b11. security. Cal | eeBeanHonme</ hone>
<renot e>webl ogi c. ej b11. security. Cal | eeBeanRenot e</ r emot e>
</ejb-ref>
<security-role-ref>
<rol e- name>user s1</rol e- name>
<rol e-link>usersl</rol e-link>
</security-role-ref>
<security-identity>
<run-as>
<rol e- name>user s2</ r ol e- nane>
</run-as>
</security-identity>
</ sessi on>

6-18

Chapter 6
EJB Security-Related Deployment Descriptors

</ enterprise-beans>
</ejb-jar>
wobl ogi c-ej b-jar. xm
<webl ogi c-ej b-jar>
<webl ogi c-ent er pri se- bean>
<ej b- name>Cal | er 2EJB</ €] b- name>
<reference-descri ptor>
<ej b-reference-description>
<ej b-ref - name>Cal | ee2Bean</ ej b- r ef - name>
<j ndi - name>security. Cal | ee2Bean</j ndi - nane>
</ ej b-reference-description>
</reference-descriptor>
<run-as-identity-principal >wsUser 3</run-as-identity-principal >
</ webl ogi c-ent erpri se- bean>
<security-rol e-assi gnment >
<rol e- name>user </ r ol e- name>
<princi pal - nane>wsUser 2</ pri nci pal - nane>
<princi pal - nane>wsUser 3</ pri nci pal - nane>
<princi pal - nane>wsUser 4</ pri nci pal - nane>
</ security-rol e-assi gnnent >
</ webl ogi c-ej b-j ar>

6.3.2.11 run-as-principal-name

The run- as- pri nci pal - name element specifies which security principal name is to be
used as the run-as principal for a bean that has specified a security-identity run-as
role-name in its ejb-jar deployment descriptor. For an explanation of how the run-as
role-names map to run-as-principal-names, see run-as-role-assignment.

6.3.2.11.1 Used Within

The run-as- pri nci pal - nane element is used within the run- as-rol e-assi gnnent element.

6.3.2.11.2 Example

For an example of how to use the run-as- pri nci pal - name element, see Example 6-8.

6.3.2.12 run-as-role-assignment

The run-as-rol e-assi gnnent element is used to map a given security-identity run-as
role-name that is specified in the ej b-j ar. xm file to a run-as- pri nci pal - nane specified
in the webl ogi c-ej b-jar. xm file. The value of the run- as- pri nci pal - name element for a
given role-name is scoped to all beans in the ej b-j ar. xnl file that use the specified
role-name as their security-identity. The value of the run- as- pri nci pal - name element
specified in webl ogi c-ej b-jar. xm file can be overridden at the individual bean level by
specifying a run- as- pri nci pal - name element under that bean's webl ogi c- ent er pri se-
bean element.

ORACLE 6-19

Chapter 6
EJB Security-Related Deployment Descriptors

Note:

For a given bean, if there is no run-as-principal-name element specified in
either a run-as-role-assignment element or in a bean specific run-as-principal-
name element, then the EJB container will choose the first principal-name of a
security user in the weblogic-enterprise-bean security-role-assignment element
for the role-name and use that principal-name as the run-as-principal-name.

6.3.2.12.1 Example

For an example of how to use the run-as-role-assignment element, see Example 6-8.
Example 6-8 run-as-role-assignment Element Example

In the ejb-jar.xm file
/1 Beans "A EJB with_runAs_role_X' and "B_EJB with_runAs_rol e_X"
/] specify a security-identity run-as role-name "runAs_rol e_X'
/1 Bean "C_EJB with_runAs_role_Y" specifies a security-identity
/1 run-as role-nane "runAs_role_Y".
<ej b-jar>
<ent er pri se- beans>
<sessi on>
<ej b- name>Secur i t yEIB</ e] b- name>
<home>webl ogi c. ej b20. Securi t ySLHonme</ home>
<renot e>webl ogi c. ej b20. SecuritySL</renot e>
<l ocal - home>
webl ogi c. ej b20. SecurityLocal SLHonme
</l ocal - home>
<l ocal >webl ogi c. ej b20. Securi tyLocal SL</| ocal >
<ej b- cl ass>webl ogi c. ej b20. Securi t ySLBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
</ sessi on>
<nessage-driven>
<ej b- name>Secur i t yEIB</ e] b- nanme>
<ej b- cl ass>webl ogi c. ej b20. Securi t ySLBean</ ej b- cl ass>
<transaction-type>Cont ai ner</transaction-type>
<security-identity>
<run-as>
<rol e-name>runAs_rol e_X</rol e- nane>
</run-as>
</security-identity>
<security-identity>
<run-as>
<rol e-name>runAs_rol e_Y</rol e- nane>
</run-as>
</security-identity>
</ message- driven>
</ enterprise-beans>
</ejb-jar>

webl ogic-ejb-jar file

<webl ogi c-ej b-jar>
<webl ogi c- ent er pri se- bean>
<ej b-name>A_EJB_wi t h_runAs_r ol e_X</ ej b- nane>
</ webl ogi c-ent er pri se- bean>
<webl ogi c- ent er pri se- bean>

ORACLE 6-20

Chapter 6
EJB Security-Related Deployment Descriptors

<ej b-name>B_EJB_wi t h_runAs_rol e_X</ ej b- nane>
<run-as- princi pal - nane>Joe</ run- as- pri nci pal - nane>
</ webl ogi c-ent er pri se- bean>
<webl ogi c-ent er pri se- bean>
<ej b-name>C _EJB wi th_runAs_rol e_Y</ ¢] b- name>
</ webl ogi c-ent er pri se- bean>
<security-rol e-assi gnment >
<rol e- name>runAs_rol e_Y</rol e- name>
<princi pal - nane>Har ry</ pri nci pal - name>
<pri nci pal - nane>John</ pri nci pal - name>
</ security-rol e-assi gnnent >
<run-as-rol e-assi gnnent >
<rol e- name>runAs_r ol e_X</rol e- name>
<run-as- princi pal - name>Fr ed</ r un- as- pri nci pal - nane>
</run-as-rol e-assi gnnent >
</ webl ogi c-ej b-j ar>

Each of the three beans shown in Example 6-8 will choose a different principal name
to run as.

* A_EJB_with_runAs_role_X

This bean's run-as role-name is runAs_rol e_X. The jar-scoped <run-as-rol e-

assi gnnent > mapping will be used to look up the name of the principal to use. The

<run-as-rol e-assi gnnent > mapping specifies that for <role-name> runAs_rol e_X we
are to use <run-as- princi pal - nane> Fred. Therefore, Fred is the principal name that
will be used.

e B_EJB_with_runAs_role_X

This bean's run-as role-name is also runAs_r ol e_X. This bean will not use the jar
scoped <run- as-rol e- assi gnment > to look up the name of the principal to use
because that value is overridden by this bean's <webl ogi c-ent er pri se- bean> <run-
as- princi pal - nane> value Joe. Therefore Joe is the principal name that will be used.

e C_EJB with_runAs_role_Y

This bean's run-as role-name is runAs_rol e_Y. There is no explicit mapping of
runAs_rol e_Y to a run-as principal name, that is, there is no jar scoped <r un- as-

rol e-assi gnment > for runAs_rol e_Y nor is there a bean scoped <r un- as- pri nci pal -
nane> specified in this bean's <webl ogi c- ent er pri se- bean>. To determine the
principal name to use, the <security-rol e-assi gnment > for <r ol e- name> runAs_r ol e_Y
is examined. The first <pri nci pal - nanme> corresponding to a user that is not a Group
is chosen. Therefore, Harry is the principal name that will be used.

6.3.2.13 security-permission

The security-per ni ssi on element specifies a security permission that is associated
with a Java EE Sandbox.

6.3.2.13.1 Example

For an example of how to use the securi ty- per i ssi on element, see Example 6-9.

6.3.2.14 security-permission-spec

The security-per ni ssi on-spec element specifies a single security permission based on
the Security policy file syntax.

ORACLE 6-21

Chapter 6
EJB Security-Related Deployment Descriptors

See the implementation of the security permission specification:

http://docs. oracl e. contjavase/ 7/ docs/ t echnot es/ gui des/ security/
Pol i cyFi | es. ht m #Fi | eSynt ax

Note:

Disregard the optional codebase and signedBy clauses.

6.3.2.14.1 Used Within

The security-per ni ssi on-spec element is used within the securi ty- per ni ssi on element.

6.3.2.14.2 Example

For an example of how to use the securi t y- per ni ssi on- spec element, see
Example 6-9.

Example 6-9 security-permission-spec Element Example

<webl ogi c-ej b-jar>
<security-permni ssion>
<description>Optional explanation goes here</description>
<security-pernission-spec>
<!
A single grant statement followi ng the syntax of
http://java.sun.com j2se/1.5.0/docs/ gui de/ security/PolicyFiles.htm #Fi | eSyntax,
wi thout the codebase and signedBy clauses, goes here. For exanple:
-->
grant {
perm ssion java. net. Socket Permi ssion *, resol ve;
b
</ security-pernission-spec>
</ security-pernission>
</webl ogi c-ej b-j ar>

In Example 6-9, per ni ssi on java. net. Socket Per mi ssi on is the permission class name,
"*" represents the target name, and resol ve (resolve host/IP name service lookups)
indicates the action.

6.3.2.15 security-role-assignment

ORACLE

The security-rol e-assi gnment element maps application roles in the ej b-j ar. xnl file to
the names of security principals available in WebLogic Server.

" Note:

For information on using the security-role-assignment element in a weblogic-
application.xml deployment descriptor for an enterprise application, see
Enterprise Application Deployment Descriptor Elements in Developing
Applications for Oracle WebLogic Server.

6-22

http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html#FileSyntax
http://docs.oracle.com/javase/7/docs/technotes/guides/security/PolicyFiles.html#FileSyntax

Chapter 6
Using Programmatic Security With EJBsS

6.3.2.15.1 Example

For an example of how to use the security-rol e-assi gnnent element, see
Example 6-1.

6.3.2.16 transport-requirements

The transport-requirements element defines the transport requirements for the EJB.

6.3.2.16.1 Used Within

The transport-requirenents element is used within the i i op-security-descri ptor
element.

6.3.2.16.2 Example

6.4 Using

For an example of how to use the transport-requirenents element, see Example 6-10.

Example 6-10 transport-requirements Element Example

<webl ogi c-ent er pri se- bean>
<iiop-security-descriptor>
<transport-requirenments>
<confidentiality>supported</confidentiality>
<integrity>supported</integrity>
<client-cert-authorization>
support ed
</client-cert-authentication>
</transport-requirenents>
</iiop-security-descriptor>
<webl ogi c-ent er pri se- bean>

Programmatic Security With EJBs

WebLogic Server supports the use of the j avax. ej b. EJBCont ext .get Cal | er Pri nci pal ()
and the j avax. ej b. EJBCont ext . i sCal | er I nRol ¢() methods to implement programmatic
security in EJBs.

» getCallerPrincipal

* sCallerinRole

6.4.1 getCallerPrincipal

ORACLE

Use the get Cal | er Pri nci pal () method to determine the caller of the EJB. The

j avax. ej b. EJBCont ext .get Cal | er Pri nci pal () method returns a W.SUser Pri nci pal if one
exists in the Subj ect of the calling user. In the case of multiple W.SUser Pri nci pal s, the
method returns the first in the ordering defined by the

Subj ect . get Princi pal s().iterator() method. If there are no W.SUser Princi pal s, then
the get Cal | er Pri nci pal () method returns the first non-W.SG oup Pri nci pal . If there are
no Princi pal s or all Princi pal s are of type W.SG oup, this method returns

webl ogi c. security. W.SPri nci pal s. get AnonynousUser Pri nci pal (). This behavior is similar
to the semantics of webl ogi c. security. Subject Uil s. get User Princi pal () except that
Subj ect Uil s. get User Principal () returns a null whereas

EJBCont ext .get Cal | er Pri nci pal () returns W.SPri nci pal s. get AnonnyousUser Pri nci pal ().

6-23

Chapter 6
Using Programmatic Security With EJBs

For more information about how to use the get Cal | er Pri nci pal () method, see http://
wwwv. or acl e. coni t echnet work/ j aval j avaee/t ech/i ndex. htni .

6.4.2 isCallerInRole

ORACLE

TheisCal l erl nRol e() method is used to determine if the caller (the current user) has
been assigned a security role that is authorized to perform actions on the WebLogic
resources in that thread of execution. For example, the method

javax. ej b. EJBCont ext . i sCal | er | nRol e("adni n") will return true if the current user has

adni n privileges.

For more information about how to use the i sCal | er I nRol e() method, see http://
wwwv. or acl e. coni t echnet wor k/ j aval j avaee/t ech/i ndex. htni .

6-24

http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index.html

Using Network Connection Filters

Network connection filters can be used to protect WebLogic resources on individual
servers, server clusters, or an entire internal network. Learn how to implement network
connection filters in WebLogic Server.

e The Benefits of Using Network Connection Filters
* Network Connection Filter API

* Guidelines for Writing Connection Filter Rules

» Configuring the WebLogic Connection Filter

» Developing Custom Connection Filters

7.1 The Benefits of Using Network Connection Filters

Network connection filters act as a firewall that can be used to allow or deny access to
servers in your WebLogic domain based on certain protocols, network addresses and
DNS node names.Security roles and security policies let you secure WebLogic
resources at the domain level, the application level, and the application-component
level. Connection filters let you deny access at the network level. Thus, the network
connection filters provide an additional layer of security at the network level.
Connection filters can be used to protect server resources on individual servers, server
clusters, or an entire internal network.

Connection filters are particularly useful for controlling access through the
Administration port. Depending on your network firewall configuration, you might be
able to use a connection filter to further restrict administration access. A typical use is
to restrict access to the Administration port to only the servers and machines in the
domain. Even if an attacker gets access to a machine inside the firewall, they will not
be able to perform administration operations unless they are on one of the permitted
machines.

Network connection filters are a type of firewall in that they can be configured to filter
on protocols, IP addresses, and DNS node names. For example, you can deny any
non-SSL connections originating outside of your corporate network. This would ensure
that all access from systems on the Internet would be secure.

7.2 Network Connection Filter API

ORACLE

Connection filter rules allow you to limit the number of network connections that are
accepted. Learn how to create effective connection filter rules and how they are
evaluated.

The webl ogi c. security. net API package provides interfaces and classes for
developing network connection filters. It also includes a class, Connecti onFil terlnpl,
which is a ready-to-use implementation of a network connection filter. See Java API
Reference for Oracle WebLogic Server for complete reference information on the
network connection filter API.

7-1

Chapter 7
Network Connection Filter API

This section covers the following topics:

» Connection Filter Interfaces

* Connection Filter Classes

7.2.1 Connection Filter Interfaces

To implement connection filtering, write a class that implements the connection filter
interfaces. The following webl ogi c. securi ty. net interfaces are provided for
implementing connection filters:

» ConnectionFilter Interface

» ConnectionFilterRulesListener Interface

7.2.1.1 ConnectionFilter Interface

This interface defines the accept () method, which is used to implement connection
filtering. To program the server to perform connection filtering, instantiate a class that
implements this interface and then configure that class in the WebLogic Server
Administration Console. This interface is the minimum implementation requirement for
connection filtering.

¢ Note:

Implementing this interface alone does not permit the use of the WebLogic
Server Administration Console to enter and modify filtering rules to restrict
client connections; you must use some other form (such as a flat file, which is
defined in the WebLogic Server Administration Console) for that purpose. To
use the WebLogic Server Administration Console to enter and modify filtering
rules, you must also implement the ConnectionFilterRulesListener interface.
For a description of the ConnectionFilterRulesListener interface, see
ConnectionFilterRulesListener Interface.

7.2.1.2 ConnectionFilterRulesListener Interface

The server uses this interface to determine whether the rules specified in the
WebLogic Server Administration Console in the Connecti onFi | t er Rul es field are valid
during startup and at runtime.

Note:

You can implement this interface or just use the WebLogic connection filter
implementation, weblogic.security.net.ConnectionFilterimpl, which is provided
as part of the WebLogic Server product.

This interface defines two methods that are used to implement connection filtering:
set Rul es() and checkRul es() . Implementing this interface in addition to the

ORACLE 7-2

Chapter 7
Guidelines for Writing Connection Filter Rules

Connecti onFi | ter interface allows the use of the WebLogic Server Administration
Console to enter filtering rules to restrict client connections.

Note:

In order to enter and edit connection filtering rules on the WebLogic Server
Administration Console, you must implement the ConnectionFilterRulesListener
interface; otherwise some other means must be used. For example, you could
use a flat file.

7.2.2 Connection Filter Classes

Two webl ogi c. security. net classes are provided for implementing connection filters:

e ConnectionFilterimpl Class

e ConnectionEvent Class

7.2.2.1 ConnectionFilterimpl Class

This class is the WebLogic connection filter implementation of the Connecti onFi | t er
and Connecti onFi | ter Rul esLi st ener interfaces. Once configured using the WebLogic
Server Administration Console, this connection filter accepts all incoming connections
by default, and also provides static factory methods that allow the server to obtain the
current connection filter. To use this connection to deny access, simply enter
connection filter rules using the WebLogic Server Administration Console.

This class is provided as part of the WebLogic Server product. To configure this class
for use, see Configuring the WebLogic Connection Filter.

7.2.2.2 ConnectionEvent Class

This is the class from which all event state objects are derived. All events are
constructed with a reference to the object, that is, the source that is logically deemed
to be the object upon which a specific event initially occurred. To create a new
Connect i onEvent instance, applications use the methods provided by this class:

get Local Address(), get Local Port (), get Renot eAddr ess(), get Remot ePort (), and
hashcode() .

7.3 Guidelines for Writing Connection Filter Rules

There are certain guidelines for writing connection filter rules. If you do not specify
connection rules, then all connections are accepted.

Depending on how you implement connection filtering, connection filter rules can be
written in a flat file or input directly on the WebLogic Server Administration Console.

The following sections provide information and guidelines for writing connection filter
rules:

e Connection Filter Rules Syntax

* Types of Connection Filter Rules

ORACLE 7.3

Chapter 7
Guidelines for Writing Connection Filter Rules

How Connection Filter Rules are Evaluated

7.3.1 Connection Filter Rules Syntax

The syntax of connection filter rules is as follows:

Each rule must be written on a single line.
Tokens in a rule are separated by white space.

A pound sign (#) is the comment character. Everything after a pound sign on a line
is ignored.

Whitespace before or after a rule is ignored.

Lines consisting only of whitespace or comments are skipped.

The format of filter rules differ depending on whether you are using a filter file to enter
the filter rules or you enter the filter rules on the WebLogic Server Administration
Console.

When entering the filter rules on the WebLogic Server Administration Console,
enter them in the following format:

target Address | ocal Address |ocal Port action protocols
When specifying rules in the filter file, enter them in the following format:

target Address action protocols

— target Address specifies one or more systems to filter.

— local Address defines the host address of the WebLogic Server instance. (If
you specify an asterisk (*), the match returns all local IP addresses.)

— local Port defines the port on which the WebLogic Server instance is listening.
(If you specify an asterisk (*), the match returns all available ports on the
server).

— action specifies the action to perform. This value must be al | ow or deny.

— protocol s is the list of protocol names to match. The following protocols may
be specified: http, https, t3, t3s, | dap, | daps, iiop, iiops, and com (Although
the gi op, gi ops, and dcomprotocol names are still supported, their use is
deprecated as of release 9.0; you should use the equivalentii op, iiops, and
comprotocol names.)

" Note:

The SecurityConfigurationMBean provides a
CompatibilityConnectionFiltersEnabled attribute for enabling
compatibility with previous connection filters.

— If no protocol is defined, all protocols will match a rule.

7.3.2 Types of Connection Filter Rules

Two types of filter rules are recognized:

ORACLE

7-4

Chapter 7
Guidelines for Writing Connection Filter Rules

 Fastrules

A fast rule applies to a hostname or IP address with an optional netmask. If a
hostname corresponds to multiple IP addresses, multiple rules are generated (in
no particular order). Netmasks can be specified either in numeric or dotted-quad
form. For example:

di al up-555-1212. pa. exanpl e. net 127.0.0.1 7001 deny t3 t3s #http(s) K
192. 168. 81. 0/ 255. 255.254.0 127.0.0.1 8001 allow #23-bit netmask
192.168.0.0/16 127.0.0.1 8002 deny #like /255.255.0.0

Hostnames for fast rules are looked up once at startup of the WebLogic Server
instance. While this design greatly reduces overhead at connect time, it can result
in the filter obtaining out of date information about what addresses correspond to a
hostname. Oracle recommends using numeric IP addresses instead.

e Slow rules

A slow rule applies to part of a domain name. Because a slow rule requires a
connect-time DNS lookup on the client-side in order to perform a match, it may
take much longer to run than a fast rule. Slow rules are also subject to DNS
spoofing. Slow rules are specified as follows:

*.script-kiddiez.org 127.0.0.1 7001 deny

An asterisk only matches at the head of a pattern. If you specify an asterisk
anywhere else in a rule, it is treated as part of the pattern. Note that the pattern will
never match a domain name since an asterisk is not a legal part of a domain
name.

7.3.3 How Connection Filter Rules are Evaluated

When a client connects to WebLogic Server, the rules are evaluated in the order in
which they were written. The first rule to match determines how the connection is
treated. If no rules match, the connection is permitted.

To further protect your server and only allow connections from certain addresses,
specify the last rule as:

0.0.0.0/0 * * deny

With this as the last rule, only connections that are allowed by preceding rules are
allowed, all others are denied. For example, if you specify the following rules:

<Remote | P Address> * * allow https
0.0.0.0/0 * * deny

Only machines with the Remote IP Address are allowed to access the instance of
WebLogic Server running connection filter. All other systems are denied access.

ORACLE 7-5

Chapter 7
Configuring the WebLogic Connection Filter

Note:

The default connection filter implementation interprets a target address of O
(0.0.0.0/0) as meaning "the rule should apply to all IP addresses." By design,
the default filter does not evaluate the port or the local address, just the action.
To clearly specify restrictions when using the default filter, modify the rules.

Another option is to implement a custom connection filter.

7.4 Configuring the WebLogic Connection Filter

WebLogic Server provides an out-of-the-box network connection filter, which you can
configure using the WebLogic Server Administration Console.For information about
how to configure connection filters, see Configure connection filtering in the Oracle
WebLogic Server Administration Console Online Help.

7.5 Developing Custom Connection Filters

ORACLE

If you do not want to use the WebLogic connection filter and want to develop you own,
you can use the application programming interface (API) provided in the
webl ogi c. security. net package to do so.

For a description of the webl ogi c. security. net package, see Network Connection Filter
API.

To develop custom connection filters with Oracle WebLogic Server, perform the
following steps:

1. Write a class that implements the Connecti onFi | ter interface (minimum
requirement).

Or, optionally, if you want to use the WebLogic Server Administration Console to
enter and modify the connection filtering rules directly, write a class that
implements both the Connecti onFi | ter interface and the

Connect i onFi | ter Rul esLi st ener interface.

2. If you choose the minimum requirement in step 1 (only implementing the
Connecti onFi | ter interface), enter the connection filtering rules in a flat file and
define the location of the flat file in the class that implements the Connecti onFi | ter
interface. Then use the WebLogic Server Administration Console to configure the
class in WebLogic Server. For instructions for configuring the class in the
WebLogic Server Administration Console, see Using Connection Filters in
Administering Security for Oracle WebLogic Server.

3. If you choose to implement both interfaces in step 1, use the WebLogic Server
Administration Console to configure the class and to enter the connection filtering
rules. For instructions on configuring the class in the WebLogic Server
Administration Console, see Using Connection Filters in Administering Security for
Oracle WebLogic Server.

Note that if connection filtering is implemented when a Java or Web browser client
tries to connect to a WebLogic Server instance, The WebLogic Server instance
constructs a Connect i onEvent object and passes it to the accept () method of your
connection filter class. The connection filter class examines the Connecti onEvent object

7-6

ORACLE

Chapter 7
Developing Custom Connection Filters

and accepts the connection by returning, or denies the connection by throwing a
Fi |t er Excepti on.

Both implemented classes (the class that implements only the Connecti onFi | ter
interface and the class that implements both the Connecti onFil ter interface and the
Connect i onFi | t er Rul esLi st ener interface) must call the accept () method after gathering
information about the client connection. However, if you only implement the

Connecti onFi | ter interface, the information gathered includes the remote IP address
and the connection protocol: http, https, t3, t 3s, | dap, | daps, iiop, iiops, or com If you
implement both interfaces, the information gathered includes the remote IP address,
remote port number, local IP address, local port number and the connection protocol.

7-7

Using Java Security to Protect WebLogic
Resources

To protect WebLogic resources, WebLogic Server supports the use of Java security
artifacts, such as, Java EE security, Java Security Manager, and Java Authorization
Contract for Containers (JACC).

» Using Java EE Security to Protect WebLogic Resources
» Using the Java Security Manager to Protect WebLogic Resources

» Using the Java Authorization Contract for Containers

8.1 Using Java EE Security to Protect WebLogic Resources

You can use Java EE security to protect URL (Web), Enterprise JavaBeans (EJBS),
and Connector components. Additionally, WebLogic Server extends the connector
model of specifying additional security policies in the deployment descriptor to the URL
and EJB components.

The connector specification provides for deployment descriptors to specify additional
security policies using the <securi ty- perni ssi on> tag (see Example 8-1):

Example 8-1 Security-Permission Tag Sample

<security-pernission>

<description> Optional explanation goes here </description>
<security-pernission-spec>

<l--

A single grant statement following the syntax of
http://java.sun.con j2se/ 1. 4.2/ docs/ gui de/ security/PolicyFil es.htm #Fi | eSynt ax
without the "codebase" and "signedBy" clauses goes here. For exanple:
-->

grant {

permission java.net. Socket Permission "*", "resol ve";

b

</ security-pernission-spec>

</ security-pernission>

Besides support of the <securi ty-perni ssi on>tag in therar. xnl file, WebLogic Server
adds the <securi t y- per mi ssi on> tag to the webl ogi c. xm and webl ogi c-ej b-jar. xni files.
This extends the connector model to the two other application types, Web applications
and EJBs, provides a uniform interface to security policies across all component types,
and anticipates future Java EE specification changes.

ORACLE 8-1

Chapter 8
Using the Java Security Manager to Protect WebLogic Resources

Note:

Java EE has requirements for Java security default permissions for different
application types (see the Java EE specification) as does the Java EE
Connector Architecture specification.

8.2 Using the Java Security Manager to Protect WebLogic
Resources

You can set up the Java Security Manager to be used with WebLogic Server to
provide additional protection for resources running in a Java Virtual Machine (JVM).
You can also use Printing Security Manager which is an enhancement to the Java
Security Manager.

Using a Java Security Manager is an optional security step. The following sections
describe how to use the Java Security Manager with WebLogic Server:

e Setting Up the Java Security Manager
e Using Printing Security Manager

For more information on Java Security Manager, see the Java Security Web page at
http://docs. oracl e. com javase/ 7/ docs/ t echnot es/ gui des/ security/index. htn .

8.2.1 Setting Up the Java Security Manager

When you run WebLogic Server, WebLogic Server can use the Java Security
Manager, which prevents untrusted code from performing actions that are restricted by
the Java security policy file.

The JVM has security mechanisms built into it that allow you to define restrictions to
code through a Java security policy file. The Java Security Manager uses the Java
security policy file to enforce a set of permissions granted to classes. The permissions
allow specified classes running in that instance of the JVM to permit or not permit
certain runtime operations. In many cases, where the threat model does not include
malicious code being run in the JVM, the Java Security Manager is unnecessary.
However, when untrusted third-parties use WebLogic Server and untrusted classes
are being run, the Java Security Manager may be useful.

To use the Java Security Manager with WebLogic Server, specify the -

D ava. security. policy and - Dj ava. securi ty. manager arguments when starting
WebLogic Server. The -Dj ava. securi ty. pol i cy argument specifies a filename (using a
relative or fully-qualified pathname) that contains Java security policies. If you're using
Java Security Manager with WebLogic Server, then you must also specify the -

Dwebl ogi c. Name argument when starting WebLogic Server from the command line using
the java webl ogi c. Server command. For example:

java - Dwebl ogi c. Name=ser ver - nane
-Dj ava. security. manager
-Dj ava. security. policy[=]=fil ename
webl ogi c. Server

ORACLE 8-2

http://docs.oracle.com/javase/7/docs/technotes/guides/security/index.html

Chapter 8
Using the Java Security Manager to Protect WebLogic Resources

WebLogic Server provides a sample Java security policy file, which you can edit and
use. The file is located at W._HOVE\ ser ver\ | i b\ webl ogi c. poli cy.

Note:

This sample policy file is not complete and is not sufficient to start WebLogic
Server without first being modified. In particular, you will need to add various
permissions based on your configuration in order for WLS and all applications
to work properly.

Pay particular attention if you apply patches. If you apply patches that include
code with system privileges, you may need to make associated changes to
webl ogi ¢. pol i cy or to any custom Java policy file you are using.

For example, to successfully start WebLogic Server and deploy an application via the
WebLogic Server Administration Console, you might need to add permissions such as
the following to weblogic.policy:

permission java.util.PropertyPermission '*', 'read';

pernission java.lang. RuntinmePernission '*';

pernmission java.io.FilePermssion ' <<ALL FILES>>', 'read,wite';
permi ssion javax.managenent. MBeanPernission '*', '*';

If you enable the Java Security Manager but do not specify a security policy file, the
Java Security Manager uses the default security policies defined in the j ava. pol i cy file
in the $JAVA HOVE\jre\lib\security directory.

Define security policies for the Java Security Manager in one of the following ways:
* Modifying the weblogic.policy file for General Use
e Setting Application-Type Security Policies

e Setting Application-Specific Security Policies

8.2.1.1 Modifying the weblogic.policy file for General Use

To use the Java Security Manager security policy file with your WebLogic Server
deployment, you must specify the location of the webl ogi c. pol i cy file to the Java
Security Manager when you start WebLogic Server. To do this, you set the following
arguments on the Java command line you use to start the server:

° java.security.mnager tells the JVM to use a Java security policy file.

* java.security.policy tells the JVM the location of the Java security policy file to
use. The argument is the fully qualified name of the Java security policy, which in
this case is webl ogi c. pol i cy.

For example:

java...-Djava.security. mnager \
-Djava. security. policy==c:\webl ogi c\ webl ogi c. policy

ORACLE 8-3

Chapter 8
Using the Java Security Manager to Protect WebLogic Resources

Note:

Be sure to use == instead of = when specifying the java.security.policy
argument so that only the weblogic.policy file is used by the Java Security
Manager. The == causes the weblogic.policy file to override any default
security policy. A single equal sign (=) causes the weblogic.policy file to be
appended to an existing security policy.

If you have extra directories in your CLASSPATH or if you are deploying applications in
extra directories, add specific permissions for those directories to your webl ogi c. pol i cy
file.

Oracle recommends taking the following precautions when using the webl ogi c. pol i cy
file:

* Make a backup copy of the webl ogi c. pol i cy file and put the backup copy in a
secure location.

e Set the permissions on the webl ogi c. pol i cy file via the operating system such that
the administrator of the WebLogic Server deployment has write and read
privileges and no other users have access to the file.

" Note:

The Java Security Manager is partially disabled during the booting of
Administration and Managed Servers. During the boot sequence, the
current Java Security Manager is disabled and replaced with a variation of
the Java Security Manager that has the checkRead() method disabled.
While disabling this method greatly improves the performance of the boot
sequence, it also minimally diminishes security. The startup classes for
WebLogic Server are run with this partially disabled Java Security Manager
and therefore the classes need to be carefully scrutinized for security
considerations involving the reading of files.

For more information about the Java Security Manager, see the Javadoc for the
java.lang.SecurityManager class, available at http: //docs. oracl e. com j avase/ 7/
docs/ api / javal | ang/ SecurityManager. htnl .

8.2.1.2 Setting Application-Type Security Policies

ORACLE

Set default security policies for servlets, EJBs, and Java EE Connector Architecture
resource adapters in the Java security policy file. The default security policies for
servlets, EJBs, and resource adapters are defined in the Java security policy file under
the following codebases:

e Servlets—"file:/webl ogi c/application/defaul t s/ Wb"
e EJBs—"file:/webl ogic/application/defaul ts/EJB"

* Resource adapters—"fil e:/webl ogi ¢/ appl i cati on/ def aul t s/ Connect or"

8-4

http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html
http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html

Chapter 8
Using the Java Security Manager to Protect WebLogic Resources

Note:

These security policies apply to all servlets, EJBs, and resource adapters
deployed in the particular instance of WebLogic Server.

8.2.1.3 Setting Application-Specific Security Policies

Set security policies for a specific servlet, EJB, or resource adapter by adding security
policies to their deployment descriptors. Deployment descriptors are defined in the
following files:

e Servlets—uebl ogi c. xn
e EJBs—webl ogi c-€j b-j ar. xn

* Resource adapters—rar. xm

" Note:

The security policies for resource adapters follow the Java EE standard
while the security policies for servlets and EJBs follow the WebLogic
Server extension to the Java EE standard.

Example 8-2 shows the syntax for adding a security policy to a deployment descriptor:

Note:

The <security-permission-spec> tag cannot currently be added to a weblogic-
application.xml file, you are limited to using this tag within a weblogic-ejb-
jar.xml, rar.xml, or weblogic.xml file. Also, variables are not supported in the
<security-permission-spec> attribute.

Example 8-2 Security Policy Syntax

<security-pernission>
<description>
Al low getting the J2EEJ2SETest 4 property
</ description>
<security-pernission-spec>

grant {
permission java.util.PropertyPernission "wel conme. J2EEJ2SETest 4", "read";

B

</ security-pernission-spec>
</ security-pernission>

8.2.2 Using Printing Security Manager

Printing Security Manager is an enhancement to the Java Security Manager. You can
use Printing Security Manager to identify all of the required permissions for any Java
application running under Java Security Manager. Unlike The Java Security Manager,

ORACLE 8-5

Chapter 8
Using the Java Security Manager to Protect WebLogic Resources

which identifies needed permissions one at a time, the Printing Security Manager
identifies all of the needed permissions without intervention.

For more information on Java Security Manager, see the Java Security Web page at
http://docs. oracl e. conjavase/ 7/ docs/ t echnot es/ gui des/ security/ overvi ew
j soverview htm .

Note:

Do not use Printing Security Manager in production environments. It is intended
solely for development to identify missing permissions.

It does not prevent untrusted code operations.

8.2.2.1 Printing Security Manager Startup Arguments

To use the Java Security Manager with WebLogic Server, you specify two arguments
when starting WebLogic Server:

* -Djava.security. mnager=webl ogi c. security. psm PrintingSecurityMnager

The -0 ava. securi ty. mnager argument tells WebLogic Server which Java Security
Manager to start, in this case the Printing Security Manager.

e -Djava.security.policy

The -0 ava. securi ty. pol i cy argument specifies a file name (using a relative or
fully-qualified path name) that contains Java 2 security policies. WebLogic Server
provides a sample Java security policy file, which you can edit and use. The file is
located at W._HOVE\ server\ | i b\ webl ogi c. pol i cy.

By default, the st art WebLogi ¢ script already includes the - Dj ava. security. policy
property, which is set to W._HOVE/ ser ver/ | i b/ webl ogi c. pol i cy, SO you do not need
to specify it unless you want to use another Java security policy file.

" Note:

This sample policy file is not complete and is not sufficient to start WebLogic
Server without first being modified. In particular, you will need to add various
permissions based on your configuration in order for WLS and all applications
to work properly.

See the following sections:

* Modifying the weblogic.policy file for General Use
e Setting Application-Type Security Policies
e Setting Application-Specific Security Policies

ORACLE 8-6

http://docs.oracle.com/javase/7/docs/technotes/guides/security/overview/jsoverview.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/overview/jsoverview.html

Chapter 8
Using the Java Authorization Contract for Containers

8.2.2.2 Starting WebLogic Server With Printing Security Manager

To start WebLogic Server with the Printing Security Manager from a UNIX shell, pass
the following argument to the startWebLogic.sh script in DOMAIN_HOME. This
example uses the default weblogic.policy Java policy file from startWeblogic.sh.

start Vbl ogi c. sh
-Dj ava. security. manager =webl ogi c. securi ty. psm Printi ngSecurityMnager

For a Windows system without a UNIX shell, first set the startup options in
JAVA_OPTIONS, and then use the st art WbLogi c. cnd script in DOMAIN_HOME to
start WebLogic Server. This example uses the default weblogic.policy Java policy file
from st art Wbl ogi c. cnd.

$ set JAVA OPTI ONS=-
Dj ava. security. manager =webl ogi c. security. psm PrintingSecurityManager

$ DOVAI N_HOME\ st ar t Wbl ogi c. cn

8.2.2.3 Writing Output Files

Printing Security Manager generates output that lists which code source needs which
permissions. It also generates a policy grant that you can copy and paste into the
policy file.

By default, output is to System.out. You can configure output files via two arguments:

° -Doracl e.webl ogi c. security. manager.printing.file=psm perns.txt

Dor acl e. webl ogi c. security. manager. printing.generated. grants.file=psmgrants.tx
t

The value of the first system argument is a file to which Printing Security Manager
writes all missing-permission messages. The value of the second argument is a file to
which Printing Security Manager writes the missing policy grants.

For example, for a Windows system without a UNIX shell, add the argument to
JAVA_OPTIONS:

$ set JAVA OPTI ONS=-
Dj ava. security. manager =webl ogi c. security. psm PrintingSecurit yManager
- Dor acl e. webl ogi c. security. manager. printing.file=psm perns.txt

$ start Wbl ogic. cnd

If you do not specify the full path for the output files, they are created in
DOMAIN_HOME.

8.3 Using the Java Authorization Contract for Containers

ORACLE

The Java Authorization Contract for Containers (JACC) provides an alternate
authorization mechanism for the EJB and servlet containers in a WebLogic Server
domain. You can enable the WebLogic JACC provider by specifying certain system
property-value pairs.

8-7

Chapter 8
Using the Java Authorization Contract for Containers

JACC is part of Java EE. JACC extends the Java permission-based security model to
EJBs and servlets. JACC is defined by JSR-115 (http://www. j cp. org/en/jsr/detail ?
i d=115).

As shown in Table 8-2, when JACC is configured, the WebLogic Security framework
access decisions, adjudication, and role mapping functions are not used for EJB and
servlet authorization decisions.

WebLogic Server implements a JACC provider which, although fully compliant with
JSR-115, is not as optimized as the WebLogic Authorization provider. The Java JACC
classes are used for rendering access decisions. Because JSR-115 does not define
how to address role mapping, WebLogic JACC classes are used for role-to-principal

mapping.

Note:

The JACC classes used by WebLogic Server do not include an implementation
of a Policy object for rendering decisions but instead rely on the

java.security. Policy (http://docs. oracle.confjavase/ 7/ docs/ api / j aval
security/Policy.htnl) object.

This section discusses the following topics:

e Comparing the WebLogic JACC Provider with the WebLogic Authentication
Provider

* Enabling the WebLogic JACC Provider

Table 8-2 shows which providers are used for role mapping when JACC is enabled.

Table 8-1 When JACC is Enabled
]

Status Provider used for EJB/ Provider used for all EJBI/Serviet Roles
Serviet Authorization other Authorization and and Policies Can be
and Role Mapping Role Mapping Viewed and Modified

by the WebLogic
Server
Administration
Console
JACC is enabled JACC provider WebLogic Security No
Framework providers

JACC is not WebLogic Security WebLogic Security Yes, depending on

enabled Framework providers Framework providers settings

ORACLE 8-8

http://www.jcp.org/en/jsr/detail?id=115
http://www.jcp.org/en/jsr/detail?id=115
http://docs.oracle.com/javase/7/docs/api/java/security/Policy.html
http://docs.oracle.com/javase/7/docs/api/java/security/Policy.html

Chapter 8
Using the Java Authorization Contract for Containers

Note:

In a domain, either enable JACC on all servers or on none. The reason is that
JACC is server-specific, while the WebLogic Security Framework is realm/
domain specific. If you enable JACC, either by using the WebLogic JACC
provider or (recommended) by creating your own JACC provider, you are
responsible for keeping EJB and servlet authorization policies synchronized
across the domain. For example, applications are redeployed each time a
server boots. If a server configured for JACC reboots without specifying the
JACC options on the command line, the server uses the default WebLogic
Authorization provider for EJB and servlet role mapping and authorization
decisions.

8.3.1 Comparing the WebLogic JACC Provider with the WebLogic
Authentication Provider

The WebLogic JACC provider fully complies with JSR-115; however, it does not
support dynamic role mapping, nor does it address authorization decisions for
resources other than EJBs and servlets. For better performance, and for more
flexibility regarding security features, Oracle recommends using SSPI-based
providers.

Table 8-2 compares the features provided by the WebLogic JACC provider with those
of the WebLogic Authorization provider.

Table 8-2 Comparing the WebLogic JACC Provider with the WebLogic
Authorization Provider

]
WebLogic JACC Provider WebLogic Authorization Provider

Implements the JACC specification (JSR-115) Value-added security framework

Addresses only EJB and servlet deployment/ Addresses deployment/authorization decisions
authorization decisions

Uses the j ava. security. Pol i cy object to Allows for multiple authorization/role providers

render decisions

Static role mapping at deployment time Dynamic role mapping

Java EE permissions control access Entitlements engine controls access

Role and role-to-principal mappings are Roles and role-to-principal mappings are

modifiable only through deployment modifiable through deployment descriptors

descriptors and the WebLogic Server Administration
Console

8.3.2 Enabling the WebLogic JACC Provider

In the command that starts WebLogic Server, you can enable the WebLogic JACC
provider by specifying the following system property/value pairs:

* Property:

javax. security.jacc. PolicyConfigurationFactory. provider

ORACLE 8-9

Chapter 8
Using the Java Authorization Contract for Containers

Value:

webl ogi c. security.jacc.sinpleprovider.PolicyConfigurationFactoryl npl
* Property:

javax. security.jacc.policy.provider

Value:

webl ogi c. security.jacc.sinpl eprovider. Si npl eJACCPol i cy
* Property:

webl ogi ¢. security.jacc. Rol eMapper Fact ory. provi der

Value:

webl ogi c. security.jacc. sinpl eprovider. Rol eMapper Fact oryl npl

¢ Note:

If the system properties, -

Dj avax. security.jacc. Pol i cyConfi gurationFactory. provi der and -

Dj avax. security.jacc. policy. provider are specified, then WebLogic Server
automatically initializes the default Rol eMapper Fact ory property. Therefore, you
do not need to specify the webl ogi c. security.jacc. Rol eMapper Fact ory. provi der
system property to enable the WebLogic JACC provider.

For example, assuming a properly configured webl ogi c. pol i cy file, the following
command line enables the WebLogic JACC provider:

./startWebLogic.sh -Djavax. security.jacc. policy. provider=\

webl ogi c. security.jacc.sinpleprovider. Si npl eJACCPol i cy \

-Dj avax. security.jacc. PolicyConfigurationFactory. provider=\

webl ogi c. security.jacc.sinpleprovider.PolicyConfigurationFactorylnpl \

ORACLE 8-10

SAML APIs

WebLogic Server supports the use of Security Assertion Markup Language (SAML)
APIs. SAML is an XML-based protocol for exchanging security information between
software entities on the Web. SAML security is based on the interaction of asserting
and relying parties.SAML provides single sign-on capabilities; users can authenticate
at one location and then access service providers at other locations without having to
log in multiple times.

WebLogic Server supports SAML versions 2.0 and 1.1. The WebLogic Server
implementation:

e Supports the HTTP POST and HTTP Artifact bindings for the Web SSO profile for
SAML 1.1. For SAML 2.0, WebLogic Server adds the HTTP Redirect binding for
the Web SSO profile.

e Supports SAML authentication and attribute statements (does not support SAML
authorization statements)

For a general description of SAML and SAML assertions in a WebLogic Server
environment, see Security Assertion Markup Language (SAML) in Understanding
Security for Oracle WebLogic Server.

For information on configuring a SAML credential mapping provider, see Configuring a
SAML Credential Mapping Provider for SAML 1.1 and Configuring a SAML 2.0
Credential Mapping Provider for SAML 2.0 in Administering Security for Oracle
WebLogic Server.

For access to the SAML specifications, go to htt p: / / ww. oasi s- open. or g. Also see the
Technical Overview of the OASIS Security Assertion Markup Language (SAML) V1.1
(http://ww. oasi s- open. or g/ commi t t ees/ downl oad. php/ 6628/ sst c- sani -t ech-

overvi ew 1. 1-draft-05. pdf) and Security Assertion Markup Language (SAML) 2.0
Technical Overview (http: //ww. oasi s- open. or g/ conmi t t ees/ downl oad. php/ 11511/ sst c-
sani -t ech- overvi ew 2. 0-draft- 03. pdf).

This chapter includes the following sections:

* SAML API Description

e Custom POST Form Parameter Names

» Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties
* Configuring SAML SSO Attribute Support

9.1 SAML API Description

ORACLE

Learn about the WebLogic SAML APIs that you can use to implement SAML in
WebLogic Server.

Table 9-1 lists the WebLogic SAML APIs. Table 9-2 lists the WebLogic SAML 2.0
APIs. See the Javadoc for details.

9-1

http://www.oasis-open.org
http://www.oasis-open.org/committees/download.php/6628/sstc-saml-tech-overview-1.1-draft-05.pdf
http://www.oasis-open.org/committees/download.php/6628/sstc-saml-tech-overview-1.1-draft-05.pdf
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf
http://www.oasis-open.org/committees/download.php/11511/sstc-saml-tech-overview-2.0-draft-03.pdf

ORACLE

Chapter 9
SAML API Description

Table 9-1 WebLogic SAML APIs
|

WebLogic SAML API

Description

weblogic.security.providers
.saml

The WebLogic SAML package.

SAMLAssertionStore Interface that defines methods for storing and retrieving
assertions for the Artifact profile. This interface is deprecated in
favor of SAMLAssertionStoreV2.

SAMLAssertionStoreV2 The SAMLAssertionStoreV2 interface extends the

SAMLAssertionStore interface, adding methods to support
identification and authentication of the destination site requesting
an assertion from the SAML ARS.

Note that V2 refers to the second version of the WebLogic SAML
provider, not to version 2 of the SAML specification.

SAMLCredentialAttributeM
apper

Interface used to perform mapping from Subject to
SAMLAssertion attributes.

SAMLCredentialNameMap
per

Interface that defines methods used to map subject information to
fields in a SAML assertion.

SAMLIdentityAssertionAttri
buteMapper

Interface used to perform mapping from SAML Attribute
Statement to Attribute Principals.

SAMLIdentityAssertionNam
eMapper

Interface that defines methods used to map information from a
SAML assertion to user and group names.

SAMLUsedAssertionCache

Interface that defines methods for caching assertion IDs so that
the POST profile one-use policy can be enforced.

Classes implementing this interface must have a public no-arg
constructor.

SAMLNameMapperinfo

Instances of this class are used to pass user and group
information to and from the name mappers. The class also
defines several useful constants.

SAMLAssertionStoreV2.As
sertionInfo

The Assertioninfo class is returned by
SAMLAssertionStoreV2.retrieveAssertioninfo(). It contains the
retrieved assertion and related information. An implementation of
the SAMLAssertionStoreV2 interface would have to return this
class.

SAMLAttributelnfo

A class that represents a single attribute of a SAMLAssertion
AttributeStatement.

SAMLAttributeStatementinf
0]

A class that represents an AttributeStatement in a
SAMLAssertion.

SAMLNameMapperinfo

The SAMLNameMapperinfo is used to represent user name and
group information for SAML assertions.

SAMLCommonPartner Abstract representation of attributes common to a SAML 1.1
Partner.

SAMLRelyingParty Represents a SAML relying party entry in the SAML relying party
registry.

SAMLAssertingParty Represents a SAML asserting party entry in the LDAP asserting
party registry.

SAMLPartner Abstract representation of a SAML partner.

9-2

ORACLE

< Note:

classpath.

Chapter 9
SAML API Description

The SAML name mapper classes are required to be in the system classpath. If
you create a custom SAMLIdentityAssertionNameMapper,
SAMLCredentialNameMapper, SAMLAssertionStore, or
SAMLUsedAssertionCache, you must place the respective class in the system

Table 9-2 WebLogic SAML 2.0 APIs
|

WebLogic SAML 2.0 APIs

Description

com.bea.security.saml2.pro
viders

Provides interfaces and classes for the configuration, control, and
monitoring of SAML 2.0 security providers in a WebLogic security
realm.

SAML2Attributelnfo

A class that represents a single attribute of a SAML 2.0 Assertion
AttributeStatement.

SAML2AttributeStatementl
nfo

A class that represents an AttributeStatement in a SAML 2.0
Assertion.

SAML2CredentialAttribute
Mapper

Interface used to perform mapping from Subject to SAML 2.0
Assertion attributes.

SAML2CredentialNameMa
pper

Interface used to perform the mapping of user and group
information to SAML 2.0 assertions.

SAML2IdentityAsserterAttri
buteMapper

Interface used to perform mapping from SAML 2.0 Attribute
Statement to Attribute Principals.

SAML2IdentityAsserterNa
meMapper

Interface used to perform the mapping of user information
contained in a SAML 2.0 assertion to a local user name.

SAML2NameMapperinfo

The SAML2NameMapperinfo is used to represent user name and
group information contained in SAML 2.0 assertions.

com.bea.security.saml2.pro
viders.registry

Abstract interfaces for SAML 2.0 Identity Provider and Service
Provider partners and metadata.

BindingClientPartner

Binding Client partner is a partner that supports backend channel
communication.

IdPPartner

Abstract representation of a SAML 2.0 Identity Provider partner.

Endpoint

Abstract representation of a SAML 2.0 service endpoint.

IndexedEndpoint

This class represents the end point that could be indexed, like
Artifact Resolution Service's end point.

MetadataPartner Metadata partner contains contact information for the partner,
which is mainly required by the SAML 2.0 metadata profile.

Partner Abstract representation of a SAML 2.0 partner. This interface
defines mandatory information for a partner.

SPPartner Abstract representation of a SAML 2.0 Service Provider partner.

WebSSOldPPartner

Abstract representation of a SAML 2.0 Identity Provider partner
for Web SSO profile.

WebSSOPartner Abstract representation of a SAML 2.0 partner for Web SSO
profile.
WebSSOSPPartner Abstract representation of a SAML 2.0 Service Provider partner

for Web SSO profile.

9-3

Chapter 9
Custom POST Form Parameter Names

Table 9-2 (Cont.) WebLogic SAML 2.0 APIs

___|
WebLogic SAML 2.0 APIs Description

WSSIdPPartner Abstract representation of a SAML 2.0 Identity Provider partner
for WSS SAML Token profile.

WSSPartner Abstract representation of a SAML 2.0 partner for WSS SAML
Token profile.

WSSSPPartner Abstract representation of a SAML 2.0 Service Provider partner
for WSS SAML Token profile. It has no specific attributes/
methods.

9.2 Custom POST Form Parameter Names

When a custom POST form is specified for SAML POST profile handling, the
parameter names passed to the POST form depend on the particular SAML provider
that is configured. That is, the parameter names required by the SAML V1 provider are
different from those required by the SAML V2 provider.

* For the WebLogic Server 9.1 and higher, Federation Services implementation (in
effect when V2 providers are configured), see Table 9-3.

* For the WebLogic Server 9.0 SAML services implementation (in effect when V1
providers are configured), see Table 9-4.

The tables provide the parameter names and their data types (required for casting the
returned Java Obiject).

For both implementations, the SAML response itself is passed using the parameter
name specified by SAML:

SAMLResponse (String): The base64-encoded SAML Response element.

Table 9-3 SAML V2 Provider Custom POST Form Parameters

|
Parameter Description

TARGET (String) The TARGET URL specified as a query parameter on the
incoming Intersite Transfer Service (ITS) request.

SAML_AssertionConsumerURL The URL of the Assertion Consumer Service (ACS) at the
(String) destination site (where the form should be POSTed).

SAML_AssertionConsumerPara A Map containing name/value mappings for the assertion
ms (Map) consumer parameters configured for the relying party.
Names and values are Strings.

SAML_ITSRequestParams A Map containing name/value mappings for the query

(Map) parameters received with the ITS request. Names and values
are Strings. The Map may be empty. TARGET and Rich
Presence Information Data Format (RPID) parameters are
removed from the map before passing it to the form.

ORACLE 9-4

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

Table 9-4 SAML V1 Provider Custom POST Form Parameters

Parameter Description

targetURL (String) The TARGET URL specified as a query parameter on the
incoming ITS request.

consumerURL (String) The URL of the ACS at the destination site (where the form
should be POSTed).

9.3 Creating Assertions for Non-WebLogic SAML 1.1
Relying Parties

If you use the SAML 1.1 Credential Mapping Provider Version 2 to configure a source
site, but configure a third-party SAML relying party that is implemented on a non-
WebLogic Server platform, the SAML assertions generated by WebLogic Server might
not support all of the attributes required by the configured third-party SAML relying
party. In this case the relying party might be unable to work with the asserting party
because certain expected attributes of the assertion are not available. You can create
a custom SAML name mapper that maps subjects to the specific SAML 1.1 assertion
attributes required by your third-party SAML relying party.

This can be achieved by implementing the SAMLCredent i al Attri but eMapper interface,
which is provided by WebLogic Server. Details about the

SAM.Cr edenti al Attri but eMapper are available in the Java API Reference for Oracle
WebLogic Server.

The following sections explain how to create a custom SAML name mapper:

* Overview of Creating a Custom SAML Name Mapper

* Do You Need Multiple SAMLCredentialAttributeMapper Implementations?

* Classes, Interfaces, and Methods

* Example Custom SAMLCredentialAttributeMapper Class

* Make the Custom SAMLCredentialAttributeMapper Class Available in the Console

9.3.1 Overview of Creating a Custom SAML Name Mapper

ORACLE

To create a custom implementation of the SAM.Credent i al Attri but eMapper interface,
you must do the following:

» Use the following classes to describe the attribute data for an assertion:
— SAMLAttributeStatenmentlnfo
— SAMLAttributelnfo

* Also implement the SAMLCr edent i al NaneMapper interface. The
SAM.Cr edent i al Attri but eMapper and SAM.Cr edent i al NameMapper interfaces must both
be in the same implementation.

By also implementing the SAM_Cr edent i al NaneMapper interface, you can later use the
WebLogic Server Administration Console to set the NaneMapper O assNane attribute
to the class name of this SAMLCredent i al Attri but eMapper instance.

9-5

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

You configure the custom SAML name mapper in the active security realm, using
the User Name Mapper Class Name attribute of the SAML Credential Mapping
Provider Version 2.

9.3.2 Do You Need Multiple SAMLCredentialAttributeMapper
Implementations?

The name mapper class name you configure for a SAML Credential Mapping Provider
Version 2, as described in Make the Custom SAMLCredentialAttributeMapper Class
Available in the Console , is used as the default for that provider. However, you can
optionally set a name mapper class name specific to any or all of the relying parties
configured for the SAML Credential Mapping Provider Version 2. Setting the name
mapper class name in this manner overrides the default value. If the configured SAML
relying parties require different attributes, you can create multiple

SAM.Credent i al Attri but eMapper implementations.

9.3.3 Classes, Interfaces, and Methods

This section describes the new classes, interfaces, and methods that you must use
when creating your custom SAML name mapper implementation. See Example
Custom SAMLCredentialAttributeMapper Class, for example code.

9.3.3.1 SAMLAttributeStatementinfo Class

Example 9-1 shows the methods and arguments in the SAMLAt tri but eSt at enent | nf o
class. Embedded comments provide additional information and context.

Example 9-1 Listing of SAMLAttributeStatementinfo Class
/**
* Aclass that represents the attributes of an AttributeStatenent

* in a SAML Assertion
*/

class SAMLAttributeStatenentinfo {

/**

* Constructs a SAMLAttributeStatenentinfo with

* no attributes. The SAMLAttributeStatenent|nfo
represents a enpty SAMLAttributeStatenent. It is
expected that SAMLAttributelnfo elenments will be
added to this instance.

E I

Public SAMLAttributeStatenent!nfo();

/**
* Constructs a SAMLAttributeStatementinfo containing nultiple

* SAMLAttributelnfo el ements. The SAMLAttributeStatenentl|nfo
* represents a SAML AttributeStatement with multiple Attributes.

*

*

* @aramdata SAMLAttributelnfo
*/

public SAMLAttributeStatement|nfo(Collection data);

ORACLE 9-6

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

/**

* returns a Collection of SAMAttributelnfo el enents. The
* collection represents the Attributes contained by

* asingle AttributeStatenent of a SAML Assertion

*

* The returned Collection is imutable and may be enpty.
*

* @eturn Collection

*/

public Collection getAttributelnfo();

/**
* adds a Col lection of SAMLAttributelnfo instances to
* this SAMLAttributeStatenentinfo instance, to the
* end of the existing list, in the order that the
* param Col l ection iterates through the Collection.
*
* See SAMLAttributelnfo(String, String, Collection)
* for information on paraneter handling.
*
* @aram data
*
*/

public void setAttributelnfo(Collection data);
/**
* Adds a single SAMLAttributelnfo instance to this
* SAMLAttributeStatenentInfo instance, at the end of
* the existing list.
*
* See SAMLAttributelnfo(String, String, Collection)
* for information on paraneter handling.
*
* @araminfo
*

—

public void addAttributelnfo(SAMAttributelnfo info);

9.3.3.1.1 SAMLAttributelnfo Class

ORACLE

Example 9-2 shows the methods and arguments in the SAMLAt t ri but el nf o class.
Embedded comments provide additional information and context.

Example 9-2 Listing of SAMLAttributelnfo Class
/**

* Aclass that represents a single Attribute of a SAM. Assertion
* AttributeStatement.
*/

class SAMLAttributelnfo {

/**
* Constructs a SAMLAttributelnfo instance with all null fields
*/

public SAMLAttributelnfo();

/**

9-7

ORACLE

N e

o N

R

—

N .

—

*

*

*

*

*

*

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

Constructs a SAMLAttributelnfo instance representing the SAML 1.1
Attribute fields

null elenments of the Collection are ignored.

Elements with null 'name' or 'nanmespace' fields

are ignored; the resulting SAMLAttributelnfo will not
be included in a created SAMLAssertion. Null

attribute values are added as the enpty string (ie, "").
@aram nane String

@ar am namespace String

@aram val ues Col l ection of String val ues

public SAMAttributelnfo(String name, String namespace, Collection val ues;

*

Constructs a SAMLAttributelnfo instance representing the attribute fields
See SAMLAttributelnfo(String, String, Collection) for
information on parameter handling.

@aram nane String

@ar am namespace String
@aram val ue String

public SAMLAttributelnfo(String name, String nanmespace, String value);

*

sets the name and namespace of this attribute
See SAMLAttributelnfo(String, String, Collection) for
information on parameter handling.

@aram name String, cannot be null
@ar am nanmespace String, cannot be null

public void setAttributeName(String name, String nanmespace);

/**

returns the name of this attribute.
@eturn String
/

public String getAttributeNane();

/**

returns a String representing this attribute's nanespace
@eturn String
/

public String getAttributeNanespace();

*

sets a Collection of Strings representing this attribute's val ues
an enpty col lection adds no values to this instance, collection elenents
that are null are added as enpty strings.

@ar am val ues Col | ection
/

public void setAttributeVal ues(Col | ection val ues);

9-8

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

*

adds a single String value to the end

of this instance's Collection of elenments

See SAMLAttributelnfo(String, String, Collection) for
information on parameter handling.

@aram val ue String

R . R

—

public void addAttributeVal ue(String val ue);

/**

* returns a Collection of Strings representing this
* attribute's values, in the order they were added.
* |f this attribute has no values, the returned

* value is null.
*

* @eturn Collection
*/

public Collection getAttributeVal ues();
}

9.3.3.2 SAMLCredentialAttributeMapper Interface

The SAML Credential Mapping Provider Version 2 determines if the custom SAML
name mapper is an implementation of the attribute mapping interface and, if so, calls
the methods of the attribute mapping interface to obtain SAML attribute name/value
pairs to write to the generated SAML assertion. If the implementation does not support
the attribute mapping interface, attribute mapping is silently skipped.

The SAML Credential Mapping Provider Version 2 does not validate the attribute
names or values obtained from the custom attribute mapper. Attribute names and
values are treated as follows:

e Any attribute with a non-null attribute name and namespace is written to the SAML
assertion.

e An attribute with a null attribute name or namespace is ignored, and subsequent
attributes of the same Collection are processed normally.

e Any attribute with a null value is written to the SAMLAt t ri but el nf o instances with a
value of "". The resulting SAML assertion is written as the string
<AttributeVal ue></AttributeVal ue>.

Example 9-3 Listing of SAMLCredentialAttributeMapper Interface
/**

* Interface used to perform mapping of Subject to SAMLAssertions

* attributes.

<p>

To specify an instance of this interface to be used by the SAM
Credential Mapper, set the <tt>NanmeMapperC assNane</tt> attribute.
<p>

Cl asses inplementing this interface nust have a public no-arg
constructor and nust be in the system classpath.

@ut hor Copyright (c) 2008 by BEA Systens, Inc. All Rights Reserved.

I T R

ORACLE 9-9

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

public interface SAMLCredential AttributeMapper

{
/**
* Maps a <code>Subj ect</code> to a set of values used to construct a
* <code>SAM.At tri but eStat enent | nf o</ code> el ement for a SAM. assertion.
* The returned <code>Col | ecti on</code> contains
* SAMLAttributeStatementinfo el ements, each el enent
* of which will be used to
* construct a SAML <code>AttributeStatement</code> el ement for the SAM
* assertion.
*
* @aram subj ect The <code>Subj ect </ code> that shoul d be mapped.
* @aram handl er The <code>Cont ext Handl er </ code> passed to the SAM.
* Credential Mapper.
*
* @eturn A <code>Col | ection</code> of SAMLAttributeStatenmentinfo
* instances, or <code>nul | </code> if no mapping i s made.
*

/

public Collection mapAttributes(Subject subject, ContextHandler handler);

9.3.3.2.1 New Methods for SAMLNameMapperinfo Class

The SAMLCr edent i al NaneMapper calls new methods on the SAM.NaneMapper | nf o class to
get and set the authentication method attribute to be written to the SAML Assertion.

The new methods are shown in Example 9-4. Embedded comments provide additional
information and context.

Example 9-4 Listing of SAMLNameMapperinfo Class

public class SAM.NaneMapper | nfo
{

[existing definition]

/**
* Called by the SAML Credential Nanme Mapper inplenmentation to set
* the authentication method attribute to be witten to the SAM. Assertion.
* See SAML 1.1 Assertions and Protocols, Section 7.1 for possible

* val ues returned.
*

* (@aramval ue the Authentication Method
*/

public void setAuthenticationMethod(String val ue);

/**

* Called by the SAML Credential Mpper to retrive the authentication
* method attribute to be witten to the SAML Assertion. See SAML 1.1

* Assertions and Protocols, Section 7.1 for possible values returned.
*

* @eturn the Authentication Method
*/

public String getAuthenticationMethod();

9.3.4 Example Custom SAMLCredentialAttributeMapper Class

Example 9-5 shows an example implementation of the SAM.Cr edent i al NameMapper and
SAM.Credent i al Attri but eMapper interfaces.

ORACLE 9-10

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

While the SAMLCr edent i al NaneMapper example implementation maps user and group
information stored in the Subject, the SAM.Credent i al Attri but eMapper example
implementation maps attribute information stored in the ContextHandler.

This example does not show how the attributes are placed in the ContextHandler.

Note that you could implement the SAM.Cr edent i al At t ri but eMapper to map information
stored in the Subject rather than the ContextHandler.

Embedded comments provide additional information and context.

Example 9-5 Listing of Example Custom SAMLCredentialAttributeMapper
Class

inmport java.util.ArraylList;

import java.util.Collection;

import java.util.Set;

import javax.security.auth. Subject;

i mport webl ogi c. security. providers.sam . SAMLAttri but eSt at enent I nf o;
i mport webl ogi c. security. providers.sam . SAMLAttri but el nf o;

i mport webl ogi c. security. providers. sam . SAMLCr edent i al NameMapper ;

i mport webl ogi c. security. providers.sam . SAMLCredenti al Attri but eMapper;
i mport webl ogi c. security. providers. sam . SAVLNameMapper | nf o;

i mport webl ogi c. security. service. Cont ext Handl er;

i mport webl ogi c. security. service. Cont ext El enent ;

i mport webl ogi c. security. spi. W.SG oup;

i mport webl ogi c. security. spi. W.SUser;

[**

* @xcl ude
*

* The <code>Cust onSAMLAt tri but eMapper | npl </ code> cl ass i npl ement s
* name and attribute mapping for the SAML Credential Mapper.

*

* @uthor Copyright (c) 2004 by BEA Systems, Inc. All Rights Reserved.
*|

public class CustonSAM.Attribut eMapper!npl inplenments
SAMLCr edent i al NameMapper, SAMLCr edent i al At tri but eMapper

{

/**

* Your |ogging code here
*/

private final static String defaul t AuthMethod =
“urn:oasis:names:tc: SAM.: 1. 0: am unspeci fied";

private final static String SAM._CONTEXT_ATTRI BUTE_NAME =
"com bea. cont ext el enent. sanl . context. attribute.nane";

private String nameQualifier = null;
private String authMethod = defaul t Aut hMet hod;

public CustonBAMLAttri but eMapper | npl ()
{

}

/1 meke constructor public

[**

* Set the name qualifier value
*/

public synchronized void setNameQualifier(String nameQualifier) {

this.naneQualifier = naneQualifier;

}

ORACLE 9-11

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

[**

* Map a <code>Subj ect </ code> and return nmapped user and group
* info as a <code>SAM_NaneMapper | nf o</ code> obj ect .

*/
publ i c SAMLNaneMapper | nfo mapSubj ect (Subj ect subject, ContextHandl er handler) {
Il Provider checks for null Subject...
Set subjects = subject.getPrincipal s(WSUser.class);
Set groups = subject.getPrincipal s(\W.SG oup. cl ass);
String userName = null;
if (subjects == null || subjects.size() == 0) {
your | ogcode(" mapSubj ect: No valid W.SUser principals
found in Subject, returning null");
return null;
}
if (groups == null || groups.size() == 0) {
your | ogcode(" mapSubj ect: No valid W.SG oup pricipal s
found in Subject, continuing");
}
if (subjects.size() !'=1) {
your | ogcode(" mapSubj ect: Mre than one W.SUser
principal found in Subject, taking first user only");
}
user Name = ((W.SUser)subjects.iterator().next()).getName();
if (userName == null || userNane.equals("")) {
your | ogcode(" mapSubj ect: Usernane string is null or
enpty, returning null");
return null;
}
/1 Return mapping information...
your | ogcode(" mapSubj ect: Mpped subject: qualifier: " +
nameQualifier + ", name: " + userName + ", groups: " + groups);
return new SAM.NameMapper | nf o(nameQual i fier, userNane,
groups);
}
/**

* Map a <code>String</code> subject name and return mapped user and group
* info as a <code>SAM_NaneMapper | nf o</ code> obj ect .

*/
publ i c SAMLNaneMapper | nfo mapName(String nanme, ContextHandl er handler) {
your | ogcode(" mapNane: Mapped nane: qualifier: " +
nameQualifier + ", name: " + name);
return new SAM.NanmeMapper | nf o(nameQual i fier, name, null);
}
/**

* Returns the SAML AttributeNane for group information.
*

* @eturn The AttributeNane.

*/

public String get GroupAttrName() {
return SAMLNanmeMapper | nf 0. BEA_ GROUP_ATTR_NAME;

}

[**

* Returns the SAML AttributeNamespace for group information.

*

* @eturn The Attribut eNanespace.
*/

ORACLE 9-12

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

public String get G oupAttrNanespace() {
return SAMLNanmeMapper | nf o. BEA_ GROUP_ATTR_NAMESPACE;

}

/**
* set the auth nethod.
* @aram nethod String

*/
public void setAuthenticationMethod(String nethod)
{
if (method !'= null)
aut hMet hod = net hod;
}
/**

* get the auth nethod
* @eturn nethod String
*/

public String getAuthenticationMethod()
{

}

return aut hMet hod;

[**

* maps a Subject/Context to a Collection of SAMLAttributeStatenentlnfo
* instances.

*

* @eturn <code>Col | ecti on</code>

*/

public Collection mapAttributes(Subject subject, ContextHandl er handler)
{
your| ogcode(" mapAttributes: Subject: "+subject.toString()+",
Cont ext Handl er: "+handl er.toString());

oj ect el ement = handl er. get Val ue(SAML_CONTEXT_ATTRI BUTE_NAME) ;

your| ogcode(" mapAttributes: got el ement from ContextHandler");
your| ogcode(" mapAttributes: elenent is a:"+el enent.getd ass().getNanme());
TestAttribute[] tas = (TestAttribute[])el ement;

/*

* |oop through all test attributes and wite a SAMLAttributeStatenent!nfo
* for each one.

*/

ArrayList statementList = new ArrayList();
for (int k =0; k <tas.length; k+t+)
{
ArrayList al = null;
String[] values = tas[k].getValues();
if (values !'=null)
{
al = new ArrayList();
for (int i =0; i <values.length; i++)
if (values[i] !'=null)
al . add(val ues[i]);
el se al.add("");

SAMLAttributelnfo ai = new SAMLAttributel nfo(tas[k].getNane(),
tas[k] . get Namespace(), al);

SAMLAttributeStatementinfo asi = new
SAMLAttri but eSt at ement I nfo();

asi.addAttributelnfo(ai);

statement Li st. add(asi);

ORACLE 9-13

Chapter 9
Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties

}

return statenentlList;

}
}

9.3.5 Make the Custom SAMLCredentialAttributeMapper Class
Available in the Console

To have the SAML Credential Mapping Provider Version 2 use this

SAM.Credent i al Attri but eMapper instance, you use the WebLogic Server Administration
Console to set the existing NameMapper C assNane attribute to the class name of this
SAM.Credent i al Attri but eMapper instance.

That is, you use the Console control for the name mapper class name attribute to
specify the class name of the SAML.Credent i al At tri but eMapper in the active security
realm.

You can configure the user name mapper class name attribute in one of the following
ways:

e Once for the SAML Provider Version 2
* Individually for one or more relying parties

* Both for the SAML Credential Mapping Provider Version 2, and individually for
relying parties.

To use a custom user name mapper with the WebLogic SAML Credential Mapping
Provider Version 2:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. On the Security Realms page, select the name of the realm you are configuring
(for example, TestRealm).

3. Expand Providers > Credential Mapping and select the name of the SAML
Credential Mapping Provider Version 2.

4. Select the Provider Specific tab.

5. In the Default Name Mapper Class Name field, enter the class name of your
SAM.Cr edent i al Attri but eMapper implementation.

The class name must be in the system classpath.
6. Click Save.
7. To activate these changes, in the Change Center, click Activate Changes.

When you configure a SAML relying party, you can optionally set a name mapper
class specific to that relying party, which will override the default value you set here for
the default name mapper class name.

For details about how to set a name mapper class name in the WebLogic Server
Administration Console, see Configure a custom user name mapper in Oracle
WebLogic Server Administration Console Online Help..

ORACLE 9-14

Chapter 9
Configuring SAML SSO Attribute Support

9.4 Configuring SAML SSO Attribute Support

A SAML assertion is a piece of data produced by a SAML authority regarding either an
act of authentication performed on a subject, attribute information about the subject, or
authorization data applying to the subject with respect to a specified resource. You can
configure SAML SSO attributes to be used with SAML 2.0 and SAML 1.1.

This section describes the following topics:

* What Are SAML SSO Attributes?

* New API's for SAML Attributes

e SAML 2.0 Basic Attribute Profile Required

e Passing Multiple Attributes to SAML Credential Mappers
e How to Implement SAML Attributes

e Examples of the SAML 2.0 Attribute Interfaces

e Examples of the SAML 1.1 Attribute Interfaces

e Make the Custom SAML Credential Attribute Mapper Class Available in the
Console

e Make the Custom SAML Identity Asserter Class Available in the Console

9.4.1 What Are SAML SSO Attributes?

ORACLE

The SAML specification (see htt p: // ww. oasi s- open. or g) allows additional, unspecified
information about a particular subject to be exchanged between SAML partners as
attribute statements in an assertion. A SAML attribute assertion is therefore a
particular type of SAML assertion that conveys site-determined information about
attributes of a Subject.

In previous versions of WebLogic Server, the SAML 1.1 Credential Mapping provider
supported attribute information, stored in the Subject, that specified the groups to
which the identity contained in the assertion belonged

In this release, WebLogic Server enhances the SAML 1.1 and 2.0 Credential Mapping
provider and Identity Assertion provider mechanisms to support the use of a custom
attribute mapper that can obtain additional attributes (other than group information) to
be written into SAML assertions, and to then map attributes from incoming SAML
assertions.

To do this:

e The SAML credential mapper (on the SAML Identity Provider site) determines how
to package the attributes based on the existence of this custom attribute mapper.

e The SAML identity asserter (on the SAML Service Provider site) determines how
to get the attributes based on the configuration of the custom name mapper.

e The Java Subject is used to make the attributes extracted from assertions
available to applications. This requires that the SAML Authentication provider be
configured and the virtual user be enabled on a SAML partner.

9-15

http://www.oasis-open.org

Chapter 9
Configuring SAML SSO Attribute Support

9.4.2 New API's for SAML Attributes

This release includes the following new SAML attribute API's for SAML 2.0:
* SAM2Attributel nfo
e SAML2AttributeStatenent|nfo
° SAM.2Credenti al Attri but eMapper
e SAM.2l dentityAsserterAttributeMapper
For SAML 1.1 you can instead use the following existing SAML attribute API's:
e SAMAttributelnfo
e SAMAttributeStatement!nfo
e SAM.Credenti al NaneMapper
SAMLCr edenti al Attri but eMapper
e SAM.IdentityAssertionAttributeMapper

Subsequent sections describe the use of these SAML attribute API's.

9.4.3 SAML 2.0 Basic Attribute Profile Required

SAML 1.1 does not prescribe the name format of the SAML attribute.

However, only the SAML 2.0 Basic Attribute Profile is supported for SAML 2.0. Only
attributes with the urn: oasi s: names: t ¢: SAM.: 2. 0: at t r name- f or mat : basi ¢ name format in
SAML2At t ri but el nf o are written into a SAML 2.0 assertion.

The urn: oasi s: nanes: tc: SAM.: 2. 0: at t rname- f or mat : basi ¢ name format is the default, so
you need not set it.

If you do set the name format, you must specify ur n: oasi s: names: t ¢c: SAM.:
2.0:attrname-format:basic in the SAM.2. Attri butel nfo. set Attri but eNaneFor mat method,
as follows:

SAML2Attributelnfo attrinfo = new SAML2Attri but el nf o(

"AttributeWthSingleValue", "ValueOrAttributeWthSingleVal ue");
attrinfo.setAttributeNameFormat ("urn:oasis: names:tc: SAM.: 2. 0: attrname-format: basic");
attrs.add(attrlnfo);

9.4.4 Passing Multiple Attributes to SAML Credential Mappers

ORACLE

When the configured attribute mapper is called, it returns

Col | ecti on<SAML2At t ri but eSt at ement | nf 0>. You can specify multiple attribute
statements, each containing multiple attributes, each possibly having multiple attribute
values.

An example of doing this is as follows:

private Col |l ecti on<SAML2Attri buteStatement|nfo> getAttributeStatement!nfo(
Subj ect subject, ContextHandl er handlers) {
Col l ection<SAML2Attributelnfo> attrs = new ArrayLi st <SAML2Attributel nfo>();

SAML2Attributelnfo attrlinfo = new SAML2Attri but el nf o(
"AttributeWthSingleValue", "ValueCrAttributeWthSingleval ue");

9-16

Chapter 9
Configuring SAML SSO Attribute Support

attrinfo.setAttributeNaneFormat ("urn:oasis: nanes:tc: SAM.: 2. 0: attrnane-format: basic");
attrs.add(attrinfo);

ArrayList<String> v = new ArrayList<String>();

v. add("Val uelCf AttributeWthMl tipleval ue");

v. add("Val ue2Cf Attri buteWthMl ti pl eval ue");

v. add("Val ue3Cf Attri buteWthMl tipl eval ue");

SAML2Attributelnfo attrlinfol = new SAML2Attributel nfo(
"AttributeWthmltipleValue", v);

attrinfol. set Attribut eNameFor mat ("urn: oasis: names:tc: SAM.: 2. 0: att rnane-
format: basic");

attrs.add(attrlnfol);

SAML2Attributelnfo attrlinfo2 = new SAML2Attributel nfo(
"AttributeWthlnvalidNaneFormat",

"Val ueCf Attri buteWthl nval i dNameFor mat Val ue");

attrinfo2. set Attribut eNameFor mat ("urn: oasis: names:tc: SAM.: 2. 0: att rnane-
format: unspecified");

attrs.add(attrlnfo2);

SAML2Attributelnfo attrlnfo3 = new SAML2Attri butel nfo(
"AttributeWthNullValue", "null");

attrinfo3.set AttributeNameFor mat ("urn: oasis: names:tc: SAM.: 2. 0: att rnane-
format: basic");

attrs.add(attrlnfo3);

Col l ecti on<SAML2AttributeStatenent|Info> attrStatenents = new
ArrayLi st <SAML2Attri but eStat enent | nfo>();

attrStatements. add(new SAML2Attri but eStatementInfo(attrs));
attrStatements. add(new SAML2Attri buteStatementInfo(attrsl));
return attrStatenents;

}

9.4.5 How to Implement SAML Attributes

ORACLE

This section walks through the process you follow to implement SAML attributes.

" Note:

This section uses the SAML 2.0 interface names for the purpose of example.
SAML 1.1 usage is similar except for different interface names for the mapper-
and partner-related classes, as well as the attribute and method names used
for the mapper configuration.

From the SAML credential mapping (Identity Provider) site:
1. Instantiate the SAML2Attri but el nfo and SAML2At tri but eSt at enent | nf o classes.
Implement the SAM_L2Cr edent i al Attri but eMapper interface.

Also implement the SAM.2Cr edent i al NaneMapper interface in the same
implementation. (The SAML2Cr edent i al Attri but eMapper and
SAM.2Cr edent i al NaneMapper interfaces must both be in the same implementation.)

9-17

ORACLE

Chapter 9
Configuring SAML SSO Attribute Support

By implementing the SAM.2Cr edent i al NanmeMapper interface, you can then use the
WebLogic Server Administration Console to set the NaneMapper O assNane attribute
to the class name of your SAM.2Cr edent i al Attri but eMapper instance.

Use the WebLogic Server Administration Console to configure your new custom
attribute mapper on a SAML provider, or on each individual partner, using the
NanmeMapper G assNane attribute of the SAML Credential Mapping provider to identify
it. See Make the Custom SAML Credential Attribute Mapper Class Available in the
Console .

The SAML Credential Mapping provider determines if the configured custom name
mapper is an implementation of the attribute mapping interface and, if so, calls
your custom attribute mapping interface to obtain attribute values to write to the
generated SAML assertions.

The SAML Credential Mapping provider does not validate the attribute names or
values obtained from your custom attribute mapper.

Any attribute with a non-null attribute name is written to the attribute statements in
the SAML assertion. An attribute with a null or empty attribute name is ignored,
and subsequent attributes are processed.

If an attribute has multiple values, each value appears as an <Attri but eVal ue>
element of a single <Attri but e> in SAML attribute statements.

For SAML 1.1, attributes with a null value are written to the SAML assertion as an
empty string (").

For SAML 2.0, null or empty attribute values are handled based on Assertions and
the Protocols for the OASIS SAML V2.0 March 2005 (http: // docs. oasi s- open. or g/
security/san /v2. 0/ san - core- 2. 0- 0s. pdf).

An attribute with a name format other than urn: oasi s: names: t c: SAM.: 2. 0: at t r nane-
f ormat : basi ¢ is skipped.

From the SAML Identity Assertion (Service Provider) site:

1.

Implement the SAML2I dent i t yAsserter Attri but eMapper and

SAM.2I dent i t yAsser t er NaneMapper interfaces in the same implementation. (The
SAML2I dentityAsserterAttribut eMapper and SAM.2I dentit yAssert er NameMapper
interfaces must both be in the same implementation.)

By implementing the SAM_2I dent i t yAssert er NameMapper interface, you can then use
the WebLogic Server Administration Console to set the NameMapper O assNane
attribute to the class name of your SAM.2| dent i t yAsserter Attri but eMapper instance.

Use the WebLogic Server Administration Console to configure the SAML Identity
Assertion provider, as described in Make the Custom SAML Identity Asserter
Class Available in the Console. Set the NaneMapper O assNane attribute to the class
name of your custom SAM.2I denti t yAsserter Attri but eMapper instance.

The SAML Identity Assertion provider processes <Attri but eSt at enent > elements of
the incoming SAML assertions and constructs a collection of SAML attribute
statements.

The SAML Identity Assertion provider determines if the configured custom name
mapper implements the SAM.2I dent i t yAsserter Attri but eMapper interface. If it does,
the SAML Identity Assertion provider calls the mapAt t ri but el nf o method to obtain
the SAML assertion's attributes.

9-18

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

Chapter 9
Configuring SAML SSO Attribute Support

Your mapAt tri but el nfo method takes a Col | ecti on of SAMLAt tri but eSt at enent | nf o
instances that represent the attributes of attribute statements in a SAML Assertion,
and maps the desired attributes in any application specific way.

4. The SAML IdentityAssertion provider makes the attributes from a SAML assertion
available to consumers via the Java Subject. This requires that the SAML
Authentication provider be configured and the virtual user be enabled on a SAML
partner.

The attributes returned by the mapper are stored as subject principals or private
credentials, depending on the class type of the mapped attributes. Specifically, if
the mapper returns a collection of Pri nci pal objects, the mapped attributes are
stored into the subject principal set. Otherwise, the subject private credential set is
used to carry the mapped attributes.

The consuming code needs to know the class type of the object that the mapper
uses to represent attributes added to the subject, as shown in Example 9-7.

5. The SAML Identity Assertion provider checks the Cont ext Handl er and attribute
mapper. (This walk through assumes the presence of the attribute mapper as
stated in Step 4).

Note:

If both the Cont ext Handl er and attribute mapper are present and configured,
the attributes are instead made available to Web services via the

Cont ext Handl er, as described in Securing WebLogic Web Services for
Oracle WebLogic Server.

9.4.6 Examples of the SAML 2.0 Attribute Interfaces

This section provides examples of implementing the SAML 2.0 attribute interfaces that
allow writing additional attributes into SAML assertions.

9.4.6.1 Example Custom SAML 2.0 Credential Attribute Mapper

ORACLE

Example 9-6 shows an example of a single class that implements both the
SAM.2Cr edent i al NaneMapper interface and the SAM_.2Credent i al At tri but eMapper interface.

Example 9-6 SAML 2.0 Credential Attribute Mapper

public class CustonSAM.2Credenti al AttributeMapperlnpl inplenents
SAML2Cr edent i al NameMapper, SAM.2Credenti al Attri but eMapper {
private String nameQualifier = null;

public Collection<SAML2Attri buteStatement|nfo> mapAttributes(
Subj ect subject, ContextHandl er handler) {
return get AttributeStatenent!nfo(subject, handler);
}
/**
* same as SAM.2NanmeMapper | npl
*/
public SAM.2NanmeMapper | nfo mapNane(String name, ContextHandl er handler) {
Syst em out
.println("CustonSAML2Cr edent i al Attri but eMapper | npl : map

Name: Mapped nane: qualifier: "

9-19

ORACLE

Chapter 9
Configuring SAML SSO Attribute Support

+ naneQualifier + ", name: " + name);
return new SAM.2NanmeMapper | nf o(nanmeQual i fier, name, null);

}

/**
* sane as SAM.2NaneMapper | npl
*/
public synchronized void set NameQual ifier(String nameQualifier) {
this.nameQualifier = nameQualifier;
}

/**
* same as SAM.2NaneMapper | npl
*
/
publ i c SAM_.2NanmeMapper | nf o mapSubj ect (Subj ect subj ect,
Cont ext Handl er handl er) {

/'l Provider checks for null Subject...

Set subjects = subject.getPrincipal s(WSUser.class);
Set groups = subject.getPrincipal s(W.SG oup. cl ass);
String userName = nul l;

Set<String> groupStrings = new java. util.HashSet();

if (subjects == null || subjects.size() == 0) {
Syst em out
.println("CustonSAM.2Cr edenti al Attri but eMappe
r1npl:mapSubject: No valid W.SUser pricipals found in Subject, returning null");
return nul l;
}

if (groups == null || groups.size() == 0) {
Syst em out
.println("CustonSAM.2Cr edenti al Attri but eMappe
r1npl:mapSubject: No valid W.SG oup pricipals found in Subject, continuing");
}
el se{
java.util.lterator<W.SGoup> it = groups.iterator();
whi | e(it.hasNext()){
W.SGoup wg = it.next();
groupStrings. add(wg. get Name());
}
}

if (subjects.size() !'=1) {
Syst em out
.println("CustonSAM.2Cr edenti al Attri but eMappe
r1npl: mapSubj ect: Mre than one W.SUser principal found in Subject, taking first
user only");
}

userNanme = ((W.SUser) subjects.iterator().next()).getNanme();
if (userName == null || userName.equal s("")) {
Syst em out
.println("CustonSAM.2Cr edenti al Attri but eMappe
r1npl:mapSubject: Usernane string is null or enpty, returning null");
return nul l;
}

/1 Return mapping information...
Syst em out

9-20

Chapter 9
Configuring SAML SSO Attribute Support

TRACE. i nf o(" Cust onSAML2Cr edent i al Attri but eMapper | npl : mapSubj ect: Mapped subj ect:
qualifier: "

naneQual i fier

", nanme: "

user Nane

", groups: "

groups);

+ + 4+ + +

SAML2NarmeMapper I nfo sant 2NameMapper I nfo = new
SAML2NanmeMapper | nf o(naneQual i fier, userNane, groupStrings);
/' SAML2NaneMapper | nfo sam 2NameMapper I nfo = new
SAML2NaneMapper | nf o(nameQual i fier, userNane, groups);

return new SAM.2NaneMapper | nf o(nanmeQual i fier, userName, groups);

}

private Col |l ecti on<SAML2Attri but eSt at ement | nfo> get AttributeStatenent!nfo(
Subj ect subj ect, ContextHandl er handlers) {
Col l ection<SAML2Attributelnfo> attrs = new ArrayLi st <SAML2Attributelnfo>();

SAML2Attributelnfo attrinfo = new SAML2Attri but el nf o(

"AttributeWthSingleValue", "ValueOrAttributeWthSingleval ue");
attrinfo.setAttributeNaneFormat ("urn:oasis: nanes:tc: SAM.: 2. 0: attrnane-format: basic");
attrs.add(attrlnfo);

ArrayList<String> v = new ArrayList<String>();

v. add("Val uelCf AttributeWthMltipleval ue");

v. add("Val ue2Cf Attri buteWthMl ti pl eval ue");

v. add("Val ue3Cf Attri buteWthMl tipl eval ue");

SAML2Attributelnfo attrinfol = new SAML.2Attributel nfo(

"AttributeWthmltipleValue", v);

attrinfo.setAttributeNaneFormat ("urn: oasis: nanes:tc: SAM.: 2. 0: attrnane-format: basic");

attrs.add(attrlnfol);

Col l ecti on<SAML2Attri but eSt atenent I nfo> attrStatenents = new
ArrayLi st <SAML2Attri but eStat enent | nfo>();

attrStatements. add(new SAML2Attri but eStatementInfo(attrs));
attrStatenments. add(new SAML2Attri buteStatementInfo(attrsl));
return attrStatenents;

}
}

Use the WebLogic Server Administration Console to configure the User Name Mapper
class name to the fully-qualified class name of this mapper implementation, as
described in Make the Custom SAML Credential Attribute Mapper Class Available in
the Console .

The attributes encapsulated in the collection of SAML2At t ri but eSt at enent | nf o objects
returned by the custom mapper implementation are included in the generated
assertions by the SAML 2.0 Credential Mapping provider.

9.4.6.2 Custom SAML 2.0 Identity Asserter Attribute Mapper

Example 9-7 shows an example implementation of SAM_2| dent i t yAssert er NaneMapper
and SAM_2| dent i t yAsserter Attri but eMapper .

ORACLE 9-21

ORACLE

Chapter 9
Configuring SAML SSO Attribute Support

Example 9-7 Custom SAML 2.0 Identity Asserter Attribute Mapper

public class CustonSAM.2I dentityAsserterAttributeMapperlnpl inplenents

SAM_2I dent i t yAssert er NaneMapper, SAM.2I dentityAsserterAttribut eMapper {

/**

* same as SAM.2NaneMapper | npl

*/

public String mapNamel nf o(SAM_2NaneMapper I nfo info, ContextHandl er handler) {
Il Get the user nane ...

String userNane = info.getNane();

Syst em out

.println("CustonBAM 2] dentityAsserterAttributeMapper!npl: mapNanel nfo: returning
nane: "

+ user Nane) ;

return userNane;

}

}

public Collection<Object> mapAttributel nfol(

Col | ecti on<SAML2At tri but eSt at ement I nfo> attr St nt | nf os,

Cont ext Handl er cont ext Handl er) {

if (attrStntinfos == null || attrStntinfos.size() == 0) {

Syst em out

.println("Custon AAttributeMapperlnpl: attrStntinfos has no el enents");
return nul l;

}

Col | ection<Qhj ect> customAttrs = new ArrayLi st <Qhj ect>();

for (SAML2AttributeStatenentinfo stntinfo : attrStntinfos) {
Col | ection<SAML2Attributelnfo> attrs = stntinfo.getAttributelnfo();
if (attrs == null || attrs.size() ==0) {
Syst em out
.println("Custonm AAttributeMapperinpl: no attribute in statement: "
+ stntinfo.toString());
} else {
for (SAML2Attributelnfo attr : attrs) {
if (attr.getAttributeNanme().equal s("AttributeWthSingleVal ue")){
CustonPrinci pal customAttrl = new CustonPrincipal (attr
.getAttributeNane(), attr.getAttributeNameFormat (),
attr.getAttributeVal ues());
customAttrs. add(cust omittrl);
}el sef
String customAttr = new StringBuffer().append(
attr.getAttributeNane()).append(","). append(
attr.getAttributeVal ues()).toString();
customAttrs. add(cust omAttr);
}
}
}
}

return customAttrs;

}

public Collection<Principal > mapAttributelnfo(

Col | ecti on<SAML2At t ri but eSt at ement [nf o> attr St nt | nf os,

Cont ext Handl er cont ext Handl er) {

if (attrStmtinfos == null || attrStntinfos.size() == 0) {

Syst em out

.println("Custon AAttributeMapperlnpl: attrStntinfos has no el enents");

9-22

Chapter 9
Configuring SAML SSO Attribute Support

return nul l;

}
Col I ection<Principal > pal s = new ArrayLi st<Principal >();

for (SAML2AttributeStatementinfo stnmtinfo : attrStntinfos) {

Col l ection<SAML2Attributelnfo> attrs = stntinfo.getAttributelnfo();
if (attrs == null || attrs.size() == 0) {

Syst em out

.printIn("Custom AAttributeMapperinpl: no attribute in statenent: "
+ stntinfo.toString());

} else {

for (SAML2Attributelnfo attr : attrs) {

CustonPrincipal pal = new CustonPrincipal (attr
.getAttributeNane(), attr.getAttributeNameFornmat (),
attr.getAttributeVal ues());

pal s. add(pal);

}

}

}

return pals;

}

The SAML 2.0 IdentityAssertion provider makes the attributes from a SAML assertion
available to consumers via the subject.

Use the WebLogic Server Administration Console to configure the User Name Mapper
class name to the fully-qualified class name of this mapper implementation, as
described in Make the Custom SAML Identity Asserter Class Available in the Console.

If you are allowing virtual users to log in via SAML, you need to create and configure
an instance of the SAML Authentication provider. See Configuring the SAML
Authentication Provider.

If the virtual user is enabled and SAML Authenticator provider configured, the
attributes returned by the custom attribute mapper are added into the subject.

The attributes returned by the mapper are stored as subject principals or private
credentials, depending on the class type of the mapped attributes. Specifically, if the
mapper returns a collection of Pri nci pal objects, the mapped attributes are stored into
the subject principal set. Otherwise, the subject private credential set is used to carry
the mapped attributes. The example code shows both approaches.

Your application code needs to know the class type of the object that the mapper uses
to represent attributes added to the subject. Applications can retrieve the SAML
attributes from the subject private credential or principal set, given the class type that
the customer attribute mapper uses to represent the attributes.

9.4.7 Examples of the SAML 1.1 Attribute Interfaces

This section provides examples of implementing the SAML 1.1 attribute interfaces that
allow writing additional attributes into SAML assertions.

9.4.7.1 Example Custom SAML 1.1 Credential Attribute Mapper

Example 9-8 shows an example of a single class that implements both the
SAM.Cr edent i al NameMapper interface and the SAMLCredent i al Attri but eMapper interface.

ORACLE 9-23

ORACLE

Chapter 9
Configuring SAML SSO Attribute Support

Example 9-8 SAML 1.1 Credential Attribute Mapper

public class CustonCredential AttributeMapper!npl inplenents
SAM_Cr edent i al NaneMapper, SAM.Credential Attri but eMapper {
private String nameQualifier = null;

public Collection<SAMLAttributeStatenment|nfo> mapAttributes(Subject subject,
Cont ext Handl er handl er) {
return AttributeStatenent|nfoGenerator.getlnfos(subject, handler);

}
public SAM_.NaneMapper | nfo mapSubj ect (Subj ect subject, ContextHandl er handler) {
/'l Provider checks for null Subject...
Set subjects = subject.getPrincipal s(W.SUser.cl ass);
Set groups = subject.getPrincipal s(\W.SG oup. cl ass);
String userNane = null;

userNanme = ((W.SUser) subjects.iterator().next()).getNane();

).
if (userName == null || userNane.equals("")) {
Syst em out

.println("CustonCredential AttributeMapper!npl: mapSubject: Username string
is null or enpty, returning null");
return null;

}

/1 Return mapping information...
Syst em out
.println("CustonCredential AttributeMapper!npl:mapSubject: Mapped subject:
qualifier: "
+ naneQualifier + ", name: " + userName + ", groups: " + groups);
return new SAM_NameMapper | nf o(naneQual i fi er, userName, groups);

.}

class AttributeStatenent!nfoGenerator {
static final String SAML_ATTR NAME_SAPCE = "urn: bea:security:sanl :attributes";

static Collection<SAMLAttributeStatenment!nfo> getlnfos(Subject subject,
Cont ext Handl er handl ers) {
SAMLAttributelnfo infol = new SAMLAttributelnfo("AttributeWthSingleVal ue",
SAML_ATTR _NAME_SAPCE, "Val ueOr Attribut eWthSingl evVal ue");

ArrayLi st<String> v2 = new ArrayList<String>();

v2. add("Val uelOr AttributeWthmltipl eval ue");

v2. add("Val ue2Or At tri but eWthml tipl eval ue");

SAM_Attributelnfo info2 = new SAMLAttributelnfo("AttributeWthMltipleVal ue",
SAM._ATTR_NAVE_SAPCE, v2);

SAMLAttributeStatementinfo stmtl = new SAMLAttributeStatenent|nfo();
stnt 1. addAttributel nfo(infol);
stnt 1. addAttributel nfo(info2);

ArrayLi st<SAMLAttributeStatenentInfo> result = new

ArrayLi st <SAMLAttri but eSt at enent | nf 0>();
resul t.add(stntl);

return result;

}

9-24

Chapter 9
Configuring SAML SSO Attribute Support

Use the WebLogic Server Administration Console to configure the User Name Mapper
class name to the fully-qualified class name of this mapper implementation, as
described in Make the Custom SAML Credential Attribute Mapper Class Available in
the Console .

The attributes encapsulated in the collection of SAMLAt t ri but eSt at enent | nf o objects
returned by the custom mapper implementation are included in the generated
assertions by the SAML 1.1 Credential Mapping provider.

9.4.7.2 Custom SAML 1.1 Identity Asserter Attribute Mapper

Example 9-9 shows an example implementation of SAM.I dent i t yAssert i onNaneMapper
and SAMLI dent i t yAssertionAttribut eMapper .

Example 9-9 Custom SAML 1.1 Identity Asserter Attribute Mapper

public class Custom dentityAssertionAttributeMapperlnpl inplements
SAMLI dent i t yAsserti onNaneMapper, SAM.IdentityAssertionAttributeMapper {

public String mapNanel nf o(SAMLNaneMapper|Info info, ContextHandl er handler) {
/1 Get the user nane ...
String userName = info.getNane();
Syst em out
.println("Custom dentityAssertionAttributeMpperlnpl: mapNanel nfo: returning
nane: "
+ user Name) ;
return userNane;

}

public void mapAttributel nfo(
Col | ecti on<SAMLAt tri but eStat enent | nfo> attrStntlnfos,
Cont ext Handl er cont ext Handl er) {

if (attrStntinfos == null || attrStntinfos.size() == 0) {
System out
.println("Custom AAttributeMapperlnpl: attrStntinfos has no el enents");
return;
}
bj ect obj =
cont ext Handl er . get Val ue(Cont ext El ement Di cti onary. SAML_ATTRI BUTE_PRI NCl PALS) ;
if (obj == null || !'(obj instanceof Collection)) {

Systemout. println("Custom AAttributeMapperinpl: can't get "
+ Cont ext El ement Di cti onary. SAML_ATTRI BUTE_PRI NCI PALS
+ " fromcontext handler");

return;

}

Col | ection<Principal > pals = (Col | ection<Principal >) obj;

for (SAMAttributeStatementinfo stntinfo : attrStmtlnfos) {

Col I ection<SAM_Attributelnfo> attrs = stntinfo.getAttributelnfo();
if (attrs == null || attrs.size() == 0) {

Syst em out

.printIn("Custom AAttributeMapperinpl: no attribute in statenment: "
+ stntinfo.toString());

} else {

for (SAMLAttributelnfo attr : attrs) {

CustonPrincipal pal = new CustonPrincipal (attr.getAttributeNane(),
attr.getAttributeNanespace(), attr.getAttributeVal ues());

ORACLE 9-25

Chapter 9
Configuring SAML SSO Attribute Support

pal s. add(pal);
}
1
}
1

The SAML 1.1 IdentityAssertion provider makes the attributes from a SAML assertion
available to consumers via the subject.

Use the WebLogic Server Administration Console to configure the User Name Mapper
class name to the fully-qualified class name of this mapper implementation, as
described in Make the Custom SAML Identity Asserter Class Available in the Console.

If you are allowing virtual users to log in via SAML, you need to create and configure
an instance of the SAML Authentication provider. See Configuring the SAML
Authentication Provider.

If the virtual user is enabled and SAML Authenticator provider configured, the
attributes returned by the custom attribute mapper are added into the subject.

The attributes returned by the mapper are stored as subject principals or private
credentials, depending on the class type of the mapped attributes. Specifically, if the
mapper returns a collection of Pri nci pal objects, the mapped attributes are stored into
the subject principal set. Otherwise, the subject private credential set is used to carry
the mapped attributes.

Your application code needs to know the class type of the object that the mapper uses
to represent attributes added to the subject. Applications can retrieve the SAML
attributes from the subject private credential or principal set, given the class type that
the customer attribute mapper uses to represent the attributes.

9.4.8 Make the Custom SAML Credential Attribute Mapper Class
Available in the Console

ORACLE

To have the SAML Credential Mapping provider use your

SAM_2Cr edent i al Attri but eMapper (SAML 2.0) or SAMLCredenti al Attri but eMapper (SAML

1.1) instance, you use the WebLogic Server Administration Console to set the existing
NaneMapper Cl assNane attribute to the class name of this SAM.2Credent i al Attri but eMapper
or SAML2Cr edent i al Attri but eMapper instance.

That is, you use the Console control for the name mapper class name attribute to
specify the class name of the SAML.2Cr edent i al Attri but eMapper or
SAM.Credent i al Attri but eMapper instance in the active security realm.

To use a custom user name mapper with the WebLogic SAML Credential Mapping
provider

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. On the Security Realms page, select the name of the realm you are configuring
(for example, TestRealm).

3. Expand Providers > Credential Mapping and select the name of the SAML 2.0
Credential Mapping provider, or the SAML Credential Mapping provider Version 2.

4. Select the Provider Specific tab.

9-26

Chapter 9
Configuring SAML SSO Attribute Support

5. In the Name Mapper Class Name (SAML 2.0) or Default Name Mapper Class
Name (SAML 1.1) field, enter the class name of your
SAM_2Cr edent i al Attri but eMapper or SAMLCredenti al Attri but eMapper implementation.

The class name must be in the system classpath.
6. Click Save.

7. To activate these changes, in the Change Center, click Activate Changes.

9.4.9 Make the Custom SAML Identity Asserter Class Available in the

Console

ORACLE

To have the SAML Identity Assertion provider use this

SAM.2I denti t yAsserter Attribut eMapper (SAML 2.0) or

SAM.I denti t yAssertionAttribut eMapper (SAML 1.1) instance, you use the WebLogic
Server Administration Console to set the existing NameMapper O assName attribute to the
class name of this SAML2I dent i t yAsserter Attri but eMapper or

SAMLI dent it yAssertionAttribut eMapper instance.

That is, you use the Console control for the name mapper class name attribute to
specify the class name of the SAM.2I dent i t yAsserter Attri but eMapper or
SAM.I dent i t yAssertionAttribut eMapper instance in the active security realm.

To use a custom user name mapper with the WebLogic SAML Identity Asserter
provider:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. On the Security Realms page, select the name of the realm you are configuring
(for example, TestRealm).

3. Expand Providers > Authentication and select the name of the SAML 2.0
Identity Asserter, or the SAML Identity Asserter Version 2.

4. Select the Provider Specific tab.

5. Inthe Name Mapper Class Name (SAML 2.0) or Default Name Mapper Class
Name (SAML 1.1) field, enter the class name of your
SAM_2] denti tyAsserter Attribut eMapper or SAMLI dentityAssertionAttri but eMapper
implementation.

The class name must be in the system classpath.
6. Click Save.
7. To activate these changes, in the Change Center, click Activate Changes.

For details about how to set a name mapper class name in the WebLogic Server
Administration Console, see Configure a custom user name mapper in the Oracle
WebLogic Server Administration Console Online Help.

9-27

Using CertPath Building and Validation

The WebLogic Security service provides the Certificate Lookup and Validation (CLV)
API that finds and validates X509 certificate chains. Use the CertPath providers
provided by WebLogic Server to build and validate certificate chains, or any custom
CertPath providers.

A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath
is also used to refer to the JDK architecture and framework that is used to locate and
validate certificate chains. The CLV framework extends and completes the JDK
CertPath functionality. CertPath providers rely on a tightly coupled integration of
WebLogic and JDK interfaces.

This chapter includes the following sections:

e CertPath Building

* CertPath Validation

* Instantiate a CertPathSelector

* Instantiate a CertPathBuilderParameters

* Use the JDK CertPathBuilder Interface

* Instantiate a CertPathValidatorParameters
* Use the JDK CertPathValidator Interface

10.1 CertPath Building

To use a CertPath Builder in your application, you must perform a sequence of steps
such as, instantiating a Cert Pat hSel ect or object, instantiating a

Cer t Pat hBui | der Par anet er s object, and implementing the JDK Cert Pat hBui | der
interface.

1. Instantiate a CertPathSelector
2. Instantiate a CertPathBuilderParameters
3. Use the JDK CertPathBuilder Interface

10.1.1 Instantiate a CertPathSelector

ORACLE

The Cert Pat hSel ect or interface (webl ogi c. security. pk. Cert Pat hSel ect or) contains the
selection criteria for locating and validating a certification path. Because there are
many ways to look up certification paths, a derived class is created for each type of
selection criteria.

Each selector class has one or more methods to retrieve the selection data and a
constructor.

The classes in webl ogi c. securi ty. pk that implement the Cert Pat hSel ect or interface,
one for each supported type of certificate chain lookup, are as follows:

10-1

Chapter 10
CertPath Building

» EndCertificateSelector — used to find and validate a certificate chain given its end
certificate.

* IssuerDNSerialNumberSelector — used to find and validate a certificate chain from
its end certificate's issuer DN and serial number.

* SubjectDNSelector — used to find and validate a certificate chain from its end
certificate's subject DN.

* SubjectKeyldentifierSelector — used to find and validate a certificate chain from its
end certificate's subject key identifier (an optional field in X509 certificates).

Note:

The selectors that are supported depend on the configured CertPath
providers. The configured CertPath providers are determined by the
administrator.

The WebLogic CertPath provider uses only the EndCertificateSelector
selector.

Example 10-1 shows an example of choosing a selector.
Example 10-1 Make a certificate chain selector

/1 you already have the end certificate

/1 and want to use it to | ookup and

/1 validate the corresponding chain

X509Certificate endCertificate = ...

/1 make a cert chain selector

Cert Pat hSel ector selector = new EndCertificateSel ector(endCertificate);

10.1.2 Instantiate a CertPathBuilderParameters

ORACLE

You pass an instance of Cert Pat hBui | der Par anet er s as the Cert Pat hPar amet er s object to
the JDK's Cert Pat hBui | der. bui | d() method.

The following constructor and method are provided:

e CertPathBuilderParameters

public CertPathBuil der Paramet ers(String real mNane,
Cert Pat hSel ect or sel ector,
X509Certificate[]
trust edCAs,
Cont ext Handl er cont ext)

Constructs a Cert Pat hBui | der Par anet er s object.

You must provide the realm name. To do this, get the domain's
SecurityConfigurationMBean. Then, get the SecurityConfigurationMBean's default
realm attribute, which is a realm MBean. Finally, get the realm MBean's name
attribute. You must use the runtime JMX MBean server to get the realm name.

You must provide the sel ector. You use one of the

webl ogi c. securi ty. pk. Cert Pat hSel ect or interfaces derived classes, described in
Instantiate a CertPathSelector to specify the selection criteria for locating and
validating a certification path.

10-2

Chapter 10
CertPath Building

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are
used. These are just a hint to the configured CertPath builder and CertPath
validators which, depending on their lookup/validation algorithm, may or may not
use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the
configured Cert Pat hBui | der and Cert Pat hval i dat ors may use to look up and
validate the chain. It is symmetrical with the context handler passed to other types
of security providers. Setting context to null indicates that there are no context
parameters.

e clone

(oj ect cl one()

This interface is not cloneable.

Example 10-2 shows an example of passing an instance of
Cert Pat hBui | der Par anet ers.

Example 10-2 Pass An Instance of CertPathBuilderParameters

/1 make a cert chain selector

Cert Pat hSel ector selector = new EndCertificateSel ector(endCertificate);
String realm= _;

/] create and populate a context handler if desired, or null

Cont ext Handl er context = _;

/1 pass in a list of trusted CAs if desired, or null

X509Certificate[] trustedCAs = _;

/'l make the parans

Cer t Pat hBui | der Parans paranms =

new Cert Pat hBui | der Paraneters(real m selector, context, trustedCAs);

10.1.3 Use the JDK CertPathBuilder Interface

ORACLE

The java. security.cert. CertPat hBui | der class is the base class for creating the
Cert Pat hBui | der object. To use the JDK Cert Pat hBui | der interface, do the following:

1. Call the static Cert Pat hBui | der. get | nst ance method to retrieve the CLV
framework's CertPathBuilder. You must specify W.SCer t Pat hBui | der as the
algorithm name that's passed to the call.

2. Once the Cert Pat hBui | der object has been obtained, call the "build" method on the
returned CertPathBuilder. This method takes one argument - a Cert Pat hPar anet er s
that indicates which chain to find and how it should be validated.

You must pass an instance of webl ogi c. securi ty. pk. Cert Pat hBui | der Par anet ers as
the Cert Pat hPar anet er s object to the JDK's CertPathBuilder.build() method, as
described in Instantiate a CertPathBuilderParameters.

3. If successful, the result (including the CertPath that was built) is returned in an
object that implements the Cert Pat hBui | der Resul t interface. The builder determines
how much of the CertPath is returned.

4. If not successful, the CertPathBuilder build method throws
InvalidAlgorithmParameterException if the params is not a WebLogic
Cer t Pat hBui | der Par anet er s, if the configured CertPathBuilder does not support the
selector, or if the realm name does not match the realm name of the default realm
from when the server was booted.

10-3

Chapter 10
CertPath Validation

The Cert Pat hBui | der build method throws Cert Pat hBui | der Except i on if the cert path
could not be located or if the located cert path is not valid

10.1.4 Example Code Flow for Looking Up a Certificate Chain

Example 10-3 Looking up a Certificate Chain

i mport webl ogi c. security. pk. Cert Pat hBui | der Paranet ers;
i mport webl ogi c. security. pk. CertPat hSel ector;

i mport webl ogi c. security.pk. EndCertificateSel ector;
i mport webl ogi c. security.service. Cont ext Handl er;
inport java.security.cert.CertPath;

inport java.security.cert.CertPathBuil der;

inport java.security.cert.X509Certificate;

/1 you already have the end certificate

/] and want to use it to | ookup and

/1 validate the corresponding chain
X509Certificate endCertificate = ...

/1 make a cert chain selector
Cert Pat hSel ector selector = new EndCertificateSel ector(endCertificate);

String realm= _;

/] create and populate a context handler if desired
Cont ext Handl er context = _;

/] pass in alist of trusted CAs if desired
X509Certificate[] trustedCAs = _;

/1 make the parans

Cert Pat hBui | der Parans params =

new Cert Pat hBui | der Paraneters(real m selector, context, trustedCAs);
/1 get the WS Cert Pat hBui | der

Cert Pat hBui | der builder =

Cert Pat hBui | der. get I nstance("W.SCer t Pat hBui | der");

/] use it to look up and validate the chain

CertPath certpath = builder.build(params).getCertPath();
X509Certificate[] chain =

certpath. getCertificates().toArray(new X509Certificate[0]);

10.2 CertPath Validation

To use a CertPath Validator in your application, you must instantiate a
Cert Pat hVval i dat or Par anet er s and use the JDK Cert Pat hval i dat or interface.

1. Instantiate a CertPathValidatorParameters

2. Use the JDK CertPathValidator Interface

10.2.1 Instantiate a CertPathValidatorParameters

ORACLE

You pass an instance of Cert Pat hVal i dat or Par anet er s as the Cert Pat hPar amet er s object
to the JDK's Cert Pat hval i dat or. val i date() method.

The following constructor and method are provided:

e CertPathValidatorParameters

10-4

Chapter 10
CertPath Validation

public CertPathValidatorParaneters(String real m\ane,
X509Certificate[] trustedCAs,
Cont ext Handl er context)

Constructs a CertPathValidatorParameters.

You must provide the realm name. To do this, get the domain's

SecurityConfi gurationMBean. Then, get the default realm attribute of the

Securi tyConfi gurati onMBean, which is a realm MBean. Finally, get the realm
MBean's name attribute. You must use the runtime JMX MBean server to get the
realm name.

Specify trusted CAs if you have them. Otherwise, the server's trusted CAs are
used. These are just a hint to the configured CertPath builder and CertPath
validators which, depending on their lookup/validation algorithm, may or may not
use these trusted CAs.

ContextHandler is used to pass in an optional list of name/value pairs that the
configured CertPathBuilder and CertPathValidators may use to look up and
validate the chain. It is symmetrical with the context handler passed to other types
of security providers. Setting context to null indicates that there are no context
parameters.

e clone

oj ect clone()

This interface is not cloneable.

Example 10-4 shows an example of passing an instance of
CertPathValidatorParameters.

Example 10-4 Pass an Instance of CertPathValidatorParameters

/1 get the WS CertPathValidator
CertPathVal i dator validator =
Cert Pat hVal i dat or . get I nst ance("W.SCer t Pat hVal i dat or");

String realm= _;

/1 create and popul ate a context handler if desired, or null
Cont ext Handl er context = _;

/1 pass in a list of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

/1 make the params (for the default security realm
Cert Pat hVal i dat or Par ans parans =
new Cert Pat hVal i dat or Parans(real m context, trustedCAs);

10.2.2 Use the JDK CertPathValidator Interface

ORACLE

The java. security.cert. CertPat hval i dator class is the base class for creating a
Cert Pat hval i dat or object. To use the JDK Cert Pat hval i dat or interface, do the following:

1. Call the static Cert Pat hVal i dat or. get | nst ance method to retrieve the CLV
framework's CertPathValidator. You must specify W.SCer t Pat hval i dat or as the
algorithm name that's passed to the call.

10-5

Chapter 10
CertPath Validation

2. Once the Cert Pat hval i dat or object has been obtained, call the val i dat e method on
the returned CertPathValidator. This method takes one argument - a
Cer t Pat hPar anet er s that indicates how it should be validated.

You must pass an instance of webl ogi c. securi ty. pk. Cert Pat hval i dat or Par anet er s
as the Cert Pat hPar anet er s object to the JDK's Cert Pat hval i dat or . val i dat e()
method, as described in Instantiate a CertPathValidatorParameters.

3. If successful, the result is returned in an object that implements the
Cert Pat hval i dat or Resul t interface.

4. If not successful, the Cert Pat hval i dat or . val i dat e() method throws
I nval i dAl gori t hnPar amet er Except i on if params is not a WebLogic
Cert Pat hval i dat or Par anet er s or if the realm name does not match the realm name
of the default realm from when the server was booted.

The CertPathValidator validate method throws Cert Pat hval i dat or Except i on if the
certificates in the CertPath are not ordered (the end certificate must be the first
cert) or if the CertPath is not valid.

10.2.3 Example Code Flow for Validating a Certificate Chain

ORACLE

Example 10-5 Performing Extra Validation

i mport webl ogi c. security. pk. CertPat hVal i dat or Par ans;
i mport webl ogi c. security.service. Cont ext Handl er;
inport java.security.cert.CertPath;

inport java.security.cert.CertPathValidator;

inport java.security.cert.X509Certificate;

/'l you already have an unvalidated X509 certificate chain
/1 and you want to get it validated
X509Certificate[] chain = ...

/1 convert the chain to a CertPath

CertPathFactory factory = CertPathFactory. getlnstance("X509");
ArrayList list = new ArrayList(chain.length);

for (int i =0; i <chain.length; i++) {

l'ist.add(chain[i]);

1

CertPath certPath = factory. generateCertPath(list);

/'l get the WS CertPathValidator
CertPathVal i dator validator =
CertPat hVal i dat or. get I nst ance(" W.SCer t Pat hVal i dat or");

String realm= _;

Il create and populate a context handler if desired, or null
Cont ext Handl er context = _;

/] pass in alist of trusted CAs if desired, or null
X509Certificate[] trustedCAs = _;

/'l make the parans (for the default security realm
Cert Pat hVal i dat or Par ans parans =
new Cert Pat hVal i dat or Parans(real m context, trustedCAs);

I/ use it to validate the chain
val i dator.validate(certPath, parans);

10-6

Using JASPIC for a Web Application

WebLogic Server supports the use of Java Authentication Service Provider Interface
for Containers (JASPIC) to configure an Authentication Configuration Provider for a
Web application and using that instead of the default WLS authentication mechanism
for that Web application. Learn how to configure JASPIC for the deployed web
application.

» Overview of Java Authentication Service Provider Interface for Containers
(JASPIC)

* Do You Need to Implement an Authentication Configuration Provider?
* Do You Need to Implement a Principal Validation Provider?

* Implement a SAM

* Configure JASPIC for the Deployed Web Application

This section assumes that you are familiar with a basic overview of JASPIC, as
described in JASPIC Security in Understanding Security for Oracle WebLogic Server.

11.1 Overview of Java Authentication Service Provider
Interface for Containers (JASPIC)

ORACLE

The JASPIC Authentication Configuration provider assumes responsibility for
authenticating the user credentials for a Web application and returning a subject. It
authenticates incoming Web application messages and returns the identity (the
expected subject) established as a result of the message authentication to WebLogic
Server.

The JASPIC programming model is described in the Java Authentication Service
Provider Interface for Containers (JASPIC) specification (http://wwmv. j cp. org/en/jsr/
det ai | ?i d=196). It defines a service provider interface (SPI) by which authentication
providers that implement message authentication mechanisms can be integrated in
server Web application message processing containers or runtimes.

WebLogic Server allows you to use JASPIC to delegate authentication for Web
applications to your configured Authentication Configuration providers. You do not
have to modify your Web application code to use JASPIC. Instead, you use the
WebLogic Server Administration Console or WLST to enable JASPIC for the Web
application post deployment.

For each of your deployed Web applications in the domain, determine whether you
want JASPIC to be disabled (the default), or select one of your configured
Authentication Configuration providers to authenticate the user credentials and return
a valid subject. If you configure an Authentication Configuration provider for a Web
application, it is used instead of the WLS authentication mechanism for that Web
application. You should therefore exercise care when you specify an Authentication
Configuration provider to make sure that it satisfies your security authentication needs.

11-1

http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196

Chapter 11
Do You Need to Implement an Authentication Configuration Provider?

11.2 Do You Need to Implement an Authentication
Configuration Provider?

If you have a specific requirement that is not addressed by the default WebLogic
Authentication provider, then you can implement your own Authentication
Configuration provider.

You can use either the default WebLogic Server Authentication Configuration provider,
or you can implement your own. To use the default WebLogic Server Authentication
Configuration provider and configure it, see the steps described in Securing JASPIC
Security.

As described in the Java Authentication Service Provider Interface for Containers
(JASPIC) specification (http: // www. j cp. org/ en/ j sr/ detai | ?i d=196), the Authentication
Configuration provider (called "authentication context configuration provider" in the
specification) is an implementation of the

javax. security. aut h. message. confi g. Aut hConf i gProvi der interface.

The Authentication Configuration provider provides a configuration mechanism used to
define the registered Server Authentication Modules (SAM's) and bindings to
applications that require protection from unauthenticated/authorized access.

11.3 Do You Need to Implement a Principal Validation

Provider?

ORACLE

Authentication providers rely on Principal Validation providers to sign and verify the
authenticity of principals (users and groups) contained within a subject. The Principal
Validation provider, thus, prevents malicious individuals from tampering with the
principals stored in a subject.

Principals are sent to the specified Principal Validation provider, which signs the
principals and then returns them to the client application via WebLogic Server.
Whenever the principals stored within the subject are required for other security
operations, the same Principal Validation provider will verify that the principals stored
within the subject have not been modified since they were signed.

Such verification provides an additional level of trust and may reduce the likelihood of
malicious principal tampering. The authenticity of the subject's principals is also
verified when making authorization decisions.

You must therefore use a Principal Validation provider as described in Principal
Validation Providers.

Whether you use the existing WebLogic Principal Validation provider or implement a
custom Principal Validation provider depends on the type of principals you are using:

e WebLogic Server principals — The WebLogic Principal Validation provider
includes implementations of the W.SUser and W.SG oup interfaces, named
W.SUser | npl and W.SG oupl npl . These are located in the
webl ogi ¢. security. princi pal package.

It also includes an implementation of the Pri nci pal Val i dat or SSPI called
Princi pal Val i dator I npl (located in the com bea. common. security. provi der package).

11-2

http://www.jcp.org/en/jsr/detail?id=196

Chapter 11
Implement a SAM

To use this class, make the Princi pal Val i dat or I npl class the runtime class for
your Principal Validation provider. See the Pri nci pal Val i dat or SSPI for usage
information.

e Custom Principals — If you have your own validation scheme and do not want to
use the WebLogic Principal Validation provider, or if you want to provide validation
for principals other than WebLogic Server principals, then you need to develop a
custom Principal Validation provider.

" Note:

If you add custom principals, you must add a Principal Validation provider
or authorization fails. The WebLogic Server security framework performs
principal validation as part of authorization. (The only exception is if you are
using JACC for authorization. Even in the case of JACC, if your Web
application or EJB accesses any other server resource (for example,
JDBC), WebLogic Server authorization and principal validation are used.)

In this case, you must also develop an Authentication provider. The

Aut hent i cati onProvi der V2 SSPI includes a method called get Pri nci pal Val i dat or in
which you specify the Principal Validation provider's runtime class. WebLogic
Server uses this method to get the Principal Validation provider. (In this use, the
other methods can return null.)

Both options are described in Principal Validation Providers in Developing Security
Providers for Oracle WebLogic Server.

11.4 Implement a SAM

ORACLE

A key step in adding an authentication mechanism to a compatible server-side
message processing runtime is acquiring a Server Authentication Module (SAM) that
implements the desired authentication mechanism.

You must implement your own SAM that works with the default WebLogic Server
Authentication Configuration provider, or with your own Authentication Configuration
provider.

The SAM represents the implementation of a server-side authentication provider that
is JASPIC-compliant. As described in the Java Authentication Service Provider
Interface for Containers (JASPIC) specification (htt p: // www. j cp. org/en/jsr/detail ?

i d=196), a SAM implements the j avax. securi ty. aut h. nessage. modul e. Ser ver Aut hModul e
interface and is invoked by WebLogic Server at predetermined points in the message
processing model.

" Note:

A sample SAM implementation is described in Adding Authentication
Mechanisms to the GlassFish Servlet Container. Although written from the
GlassFish Server perspective, the tips for writing a SAM, and the sample SAM
itself, are instructive.

11-3

http://www.jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/detail?id=196
http://blogs.oracle.com/enterprisetechtips/entry/adding_authentication_mechanisms_to_the
http://blogs.oracle.com/enterprisetechtips/entry/adding_authentication_mechanisms_to_the

Chapter 11
Configure JASPIC for the Deployed Web Application

11.5 Configure JASPIC for the Deployed Web Application

To configure JASPIC for your deployed Web application, you must add the jar for your
SAM to the system classpath using the command line, enable JASPIC in your domain
using the WebLogic Server Administration Console, and configure the desired
Authentication Configuration provider to specify the classname of the SAM.

ORACLE

Perform the following steps to configure JASPIC for a Web application:

1.

Add the jar for your SAM to the system classpath via the startup scripts or the
command line used to start the WebLogic Server instance.

If you also configured a custom Authentication Configuration provider, you must
add the jar for your custom Authentication Configuration provider to the system
classpath via the startup scripts or the command line used to start the WebLogic
Server instance.

Enable JASPIC in the domain, as described in Configuring JASPIC Security.

Configure the WebLogic Server Authentication Configuration provider or the
custom Authentication Configuration provider to specify the classname of the SAM
as described in Configuring JASPIC Security.

In the left pane of the Console, select Deployments.

A table that lists the deployments currently installed on WebLogic Server appears
in the right pane. The Type column specifies whether a deployment is an
Enterprise application, a Web application, or an EJB module.

In the right pane, click the name of the Web application you want to configure.
Select Security > JASPIC to view and change the JASPIC properties.

By default, JASPIC is disabled for Web applications. To enable JASPIC for this
Web application, select the correct Authentication Configuration providers from the
drop-down list.

Click Save to save any changes.
Save the changes to the deployment plan, as prompted.

Repeat steps 5 through 7 for any additional Web applications for which you want
to enable JASPIC.

10. Redeploy the Web application.

11. Restart WebLogic Server.

11-4

Deprecated Security APIs

Some or all of the Security interfaces, classes, and exceptions in the WebLogic
security packages, webl ogi c. security. service and webl ogi c. security. SSL, were
deprecated prior to the current release of WebLogic Server.For specific information on
the interfaces, classes, and exceptions deprecated in each package, see the Java AP/
Reference for Oracle WebLogic Server.

ORACLE A-1

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope
	1.2 Audience for This Guide
	1.3 Guide to this Document
	1.4 Related Information
	1.5 Security Samples and Tutorials
	1.5.1 Security Examples in the WebLogic Server Distribution

	1.6 New and Changed Security Features in This Release

	2 WebLogic Security Programming Overview
	2.1 What Is Security?
	2.2 Administration Console and Security
	2.3 Types of Security Supported by WebLogic Server
	2.3.1 Authentication
	2.3.2 Authorization
	2.3.3 Java EE Security

	2.4 Security APIs
	2.4.1 JAAS Client Application APIs
	2.4.1.1 Java JAAS Client Application APIs
	2.4.1.2 WebLogic JAAS Client Application APIs

	2.4.2 SSL Client Application APIs
	2.4.2.1 Java SSL Client Application APIs
	2.4.2.2 WebLogic SSL Client Application APIs

	2.4.3 Other APIs

	3 Securing Web Applications
	3.1 Authentication With Web Browsers
	3.1.1 User Name and Password Authentication
	3.1.2 Digital Certificate Authentication

	3.2 Multiple Web Applications, Cookies, and Authentication
	3.2.1 Using Secure Cookies to Prevent Session Stealing
	3.2.1.1 Configuring the Session Cookie as a Secure Cookie
	3.2.1.2 Using the AuthCookie _WL_AUTHCOOKIE_JSESSIONID

	3.3 Developing Secure Web Applications
	3.3.1 Developing BASIC Authentication Web Applications
	3.3.1.1 Using HttpSessionListener to Account for Browser Caching of Credentials

	3.3.2 Understanding BASIC Authentication with Unsecured Resources
	3.3.2.1 Setting the enforce-valid-basic-auth-credentials Flag
	3.3.2.2 Using WLST to Check the Value of enforce-valid-basic-auth-credentials

	3.3.3 Developing FORM Authentication Web Applications
	3.3.4 Using Identity Assertion for Web Application Authentication
	3.3.5 Using Two-Way SSL for Web Application Authentication
	3.3.6 Providing a Fallback Mechanism for Authentication Methods
	3.3.6.1 Configuration

	3.3.7 Developing Swing-Based Authentication Web Applications
	3.3.8 Deploying Web Applications

	3.4 Using Declarative Security With Web Applications
	3.5 Web Application Security-Related Deployment Descriptors
	3.5.1 web.xml Deployment Descriptors
	3.5.1.1 auth-constraint
	3.5.1.1.1 Used Within
	3.5.1.1.2 Example

	3.5.1.2 security-constraint
	3.5.1.2.1 Example

	3.5.1.3 security-role
	3.5.1.3.1 Example

	3.5.1.4 security-role-ref
	3.5.1.4.1 Example

	3.5.1.5 user-data-constraint
	3.5.1.5.1 Used Within
	3.5.1.5.2 Example

	3.5.1.6 web-resource-collection
	3.5.1.6.1 Used Within
	3.5.1.6.2 Example

	3.5.2 weblogic.xml Deployment Descriptors
	3.5.2.1 externally-defined
	3.5.2.1.1 Used Within
	3.5.2.1.2 Example

	3.5.2.2 run-as-principal-name
	3.5.2.2.1 Used Within
	3.5.2.2.2 Example

	3.5.2.3 run-as-role-assignment
	3.5.2.3.1 Example:

	3.5.2.4 security-permission
	3.5.2.4.1 Example

	3.5.2.5 security-permission-spec
	3.5.2.5.1 Used Within
	3.5.2.5.2 Example

	3.5.2.6 security-role-assignment
	3.5.2.6.1 Example

	3.6 Using Programmatic Security With Web Applications
	3.6.1 getUserPrincipal
	3.6.2 isUserInRole

	3.7 Using the Programmatic Authentication API
	3.7.1 Change the User's Session ID at Login

	4 Using JAAS Authentication in Java Clients
	4.1 JAAS and WebLogic Server
	4.2 JAAS Authentication Development Environment
	4.2.1 JAAS Authentication APIs
	4.2.2 JAAS Client Application Components
	4.2.3 WebLogic LoginModule Implementation
	4.2.4 JVM-Wide Default User and the runAs() Method

	4.3 Writing a Client Application Using JAAS Authentication
	4.4 Using JNDI Authentication
	4.5 Java Client JAAS Authentication Code Examples

	5 Using SSL Authentication in Java Clients
	5.1 JSSE and WebLogic Server
	5.2 Using JNDI Authentication
	5.3 SSL Certificate Authentication Development Environment
	5.3.1 SSL Authentication APIs
	5.3.2 SSL Client Application Components

	5.4 Writing Applications that Use SSL
	5.4.1 Communicating Securely From WebLogic Server to Other WebLogic Servers
	5.4.2 Writing SSL Clients
	5.4.2.1 SSLClient Sample
	5.4.2.2 SSLSocketClient Sample

	5.4.3 Using Two-Way SSL Authentication
	5.4.3.1 Two-Way SSL Authentication with JNDI
	5.4.3.2 Writing a User Name Mapper
	5.4.3.3 Using Two-Way SSL Authentication Between WebLogic Server Instances
	5.4.3.4 Using Two-Way SSL Authentication with Servlets

	5.4.4 Using a Custom Host Name Verifier
	5.4.5 Using a Trust Manager
	5.4.6 Using the CertPath Trust Manager
	5.4.7 Using a Handshake Completed Listener
	5.4.8 Using an SSLContext
	5.4.9 Using URLs to Make Outbound SSL Connections

	5.5 SSL Client Code Examples

	6 Securing Enterprise JavaBeans (EJBs)
	6.1 Java EE Architecture Security Model
	6.1.1 Declarative Security
	6.1.1.1 Declarative Authorization Via Annotations

	6.1.2 Programmatic Security
	6.1.3 Declarative Versus Programmatic Authorization

	6.2 Using Declarative Security With EJBs
	6.2.1 Implementing Declarative Security Via Metadata Annotations
	6.2.1.1 Security-Related Annotation Code Examples

	6.2.2 Implementing Declarative Security Via Deployment Descriptors

	6.3 EJB Security-Related Deployment Descriptors
	6.3.1 ejb-jar.xml Deployment Descriptors
	6.3.1.1 method
	6.3.1.1.1 Used Within
	6.3.1.1.2 Example

	6.3.1.2 method-permission
	6.3.1.2.1 Used Within
	6.3.1.2.2 Example

	6.3.1.3 role-name
	6.3.1.3.1 Used Within
	6.3.1.3.2 Example

	6.3.1.4 run-as
	6.3.1.4.1 Used Within
	6.3.1.4.2 Example

	6.3.1.5 security-identity
	6.3.1.5.1 Used Within
	6.3.1.5.2 Example

	6.3.1.6 security-role
	6.3.1.6.1 Used Within
	6.3.1.6.2 Example

	6.3.1.7 security-role-ref
	6.3.1.7.1 Used Within
	6.3.1.7.2 Example

	6.3.1.8 unchecked
	6.3.1.8.1 Used Within
	6.3.1.8.2 Example

	6.3.1.9 use-caller-identity
	6.3.1.9.1 Used Within
	6.3.1.9.2 Example

	6.3.2 weblogic-ejb-jar.xml Deployment Descriptors
	6.3.2.1 client-authentication
	6.3.2.1.1 Example

	6.3.2.2 client-cert-authentication
	6.3.2.2.1 Example

	6.3.2.3 confidentiality
	6.3.2.3.1 Example

	6.3.2.4 externally-defined
	6.3.2.5 identity-assertion
	6.3.2.5.1 Used Within
	6.3.2.5.2 Example

	6.3.2.6 iiop-security-descriptor
	6.3.2.6.1 Example

	6.3.2.7 integrity
	6.3.2.7.1 Used Within
	6.3.2.7.2 Example

	6.3.2.8 principal-name
	6.3.2.8.1 Used Within
	6.3.2.8.2 Example

	6.3.2.9 role-name
	6.3.2.9.1 Used Within
	6.3.2.9.2 Example

	6.3.2.10 run-as-identity-principal
	6.3.2.10.1 Used Within
	6.3.2.10.2 Example

	6.3.2.11 run-as-principal-name
	6.3.2.11.1 Used Within
	6.3.2.11.2 Example

	6.3.2.12 run-as-role-assignment
	6.3.2.12.1 Example

	6.3.2.13 security-permission
	6.3.2.13.1 Example

	6.3.2.14 security-permission-spec
	6.3.2.14.1 Used Within
	6.3.2.14.2 Example

	6.3.2.15 security-role-assignment
	6.3.2.15.1 Example

	6.3.2.16 transport-requirements
	6.3.2.16.1 Used Within
	6.3.2.16.2 Example

	6.4 Using Programmatic Security With EJBs
	6.4.1 getCallerPrincipal
	6.4.2 isCallerInRole

	7 Using Network Connection Filters
	7.1 The Benefits of Using Network Connection Filters
	7.2 Network Connection Filter API
	7.2.1 Connection Filter Interfaces
	7.2.1.1 ConnectionFilter Interface
	7.2.1.2 ConnectionFilterRulesListener Interface

	7.2.2 Connection Filter Classes
	7.2.2.1 ConnectionFilterImpl Class
	7.2.2.2 ConnectionEvent Class

	7.3 Guidelines for Writing Connection Filter Rules
	7.3.1 Connection Filter Rules Syntax
	7.3.2 Types of Connection Filter Rules
	7.3.3 How Connection Filter Rules are Evaluated

	7.4 Configuring the WebLogic Connection Filter
	7.5 Developing Custom Connection Filters

	8 Using Java Security to Protect WebLogic Resources
	8.1 Using Java EE Security to Protect WebLogic Resources
	8.2 Using the Java Security Manager to Protect WebLogic Resources
	8.2.1 Setting Up the Java Security Manager
	8.2.1.1 Modifying the weblogic.policy file for General Use
	8.2.1.2 Setting Application-Type Security Policies
	8.2.1.3 Setting Application-Specific Security Policies

	8.2.2 Using Printing Security Manager
	8.2.2.1 Printing Security Manager Startup Arguments
	8.2.2.2 Starting WebLogic Server With Printing Security Manager
	8.2.2.3 Writing Output Files

	8.3 Using the Java Authorization Contract for Containers
	8.3.1 Comparing the WebLogic JACC Provider with the WebLogic Authentication Provider
	8.3.2 Enabling the WebLogic JACC Provider

	9 SAML APIs
	9.1 SAML API Description
	9.2 Custom POST Form Parameter Names
	9.3 Creating Assertions for Non-WebLogic SAML 1.1 Relying Parties
	9.3.1 Overview of Creating a Custom SAML Name Mapper
	9.3.2 Do You Need Multiple SAMLCredentialAttributeMapper Implementations?
	9.3.3 Classes, Interfaces, and Methods
	9.3.3.1 SAMLAttributeStatementInfo Class
	9.3.3.1.1 SAMLAttributeInfo Class

	9.3.3.2 SAMLCredentialAttributeMapper Interface
	9.3.3.2.1 New Methods for SAMLNameMapperInfo Class

	9.3.4 Example Custom SAMLCredentialAttributeMapper Class
	9.3.5 Make the Custom SAMLCredentialAttributeMapper Class Available in the Console

	9.4 Configuring SAML SSO Attribute Support
	9.4.1 What Are SAML SSO Attributes?
	9.4.2 New API's for SAML Attributes
	9.4.3 SAML 2.0 Basic Attribute Profile Required
	9.4.4 Passing Multiple Attributes to SAML Credential Mappers
	9.4.5 How to Implement SAML Attributes
	9.4.6 Examples of the SAML 2.0 Attribute Interfaces
	9.4.6.1 Example Custom SAML 2.0 Credential Attribute Mapper
	9.4.6.2 Custom SAML 2.0 Identity Asserter Attribute Mapper

	9.4.7 Examples of the SAML 1.1 Attribute Interfaces
	9.4.7.1 Example Custom SAML 1.1 Credential Attribute Mapper
	9.4.7.2 Custom SAML 1.1 Identity Asserter Attribute Mapper

	9.4.8 Make the Custom SAML Credential Attribute Mapper Class Available in the Console
	9.4.9 Make the Custom SAML Identity Asserter Class Available in the Console

	10 Using CertPath Building and Validation
	10.1 CertPath Building
	10.1.1 Instantiate a CertPathSelector
	10.1.2 Instantiate a CertPathBuilderParameters
	10.1.3 Use the JDK CertPathBuilder Interface
	10.1.4 Example Code Flow for Looking Up a Certificate Chain

	10.2 CertPath Validation
	10.2.1 Instantiate a CertPathValidatorParameters
	10.2.2 Use the JDK CertPathValidator Interface
	10.2.3 Example Code Flow for Validating a Certificate Chain

	11 Using JASPIC for a Web Application
	11.1 Overview of Java Authentication Service Provider Interface for Containers (JASPIC)
	11.2 Do You Need to Implement an Authentication Configuration Provider?
	11.3 Do You Need to Implement a Principal Validation Provider?
	11.4 Implement a SAM
	11.5 Configure JASPIC for the Deployed Web Application

	A Deprecated Security APIs

