Oracle® Fusion Middleware
Developing and Securing RESTful Web
Services for Oracle WebLogic Server

ORACLE"

Oracle Fusion Middleware Developing and Securing RESTful Web Services for Oracle WebLogic Server, 12¢
(12.2.1.3.0)

E80428-02
Copyright © 2013, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Documentation Accessibility Vil
Conventions Vii
What's New in This Guide
New and Changed Features for Release 12c (12.2.1.x) viii
New and Changed Features for Release 12c (12.2.1) viii
New and Changed Features for Release 12c (12.1.3) iX
New and Changed Features for Release 12c (12.1.2) iX
Introduction to RESTful Web Services
1.1 Introduction to the REST Architectural Style 1-1
1.2 What are RESTful Web Services? 1-2
1.3 Standards Supported for RESTful Web Service Development on WebLogic
Server 1-2
1.4 Roadmap for Implementing RESTful Web Services 1-3
1.5 Learn More About RESTful Web Services 1-4
Developing RESTful Web Services
2.1 About RESTful Web Service Development 2-1
2.1.1 Summary of Tasks to Develop RESTful Web Services 2-2
2.1.2 Example of a RESTful Web Service 2-3
2.2 Defining the Root Resource Class 2-3
2.3 Defining the Relative URI of the Root Resource and Subresources 2-3
2.3.1 How to Define the Relative URI of the Resource Class (@Path) 2-4
2.3.2 How to Define the Relative URI of Subresources (@Path) 2-5
2.3.3 What Happens at Runtime: How the Base URI is Constructed 2-5
2.4 Mapping Incoming HTTP Requests to Java Methods 2-6
2.4.1 About the Jersey Bookmark Sample 2-7
2.4.2 How to Transmit a Representation of the Resource (@GET) 2-8

ORACLE

2.4.3 How to Create or Update the Representation of the Resource (@PUT) 2-9
2.4.4 How to Delete a Representation of the Resource (@DELETE) 2-10
2.45 How to Create, Update, or Perform an Action on a Representation of the
Resource (@POST) 2-10
2.5 Customizing Media Types for the Request and Response Messages 2-11
2.5.1 How To Customize Media Types for the Request Message
(@Consumes) 2-11
2.5.2 How To Customize Media Types for the Response Message
(@Produces) 2-12
2.5.3 What Happens At Runtime: How the Resource Method Is Selected for
Response Messages 2-13
2.6 Extracting Information From the Request Message 2-13
2.6.1 How to Extract Variable Information from the Request URI
(@PathParam) 2-14
2.6.2 How to Extract Request Parameters (@QueryParam) 2-14
2.6.3 How to Define the DefaultValue (@DefaultValue) 2-15
2.6.4 Enabling the Encoding Parameter Values (@Encoded) 2-15
2.7 Building Custom Response Messages 2-16
2.8 Mapping HTTP Request and Response Entity Bodies Using Entity Providers 2-19
2.9 Accessing the Application Context 2-20
2.10 Building URIs 2-21
2.11 Using Conditional GETs 2-22
2.12 Accessing the WADL 2-23
2.13 More Advanced RESTful Web Service Tasks 2-23
3 Developing RESTful Web Service Clients
3.1 Summary of Tasks to Develop RESTful Web Service Clients 3-1
3.2 Example of a RESTful Web Service Client 3-2
3.3 Invoking a RESTful Web Service from a Standalone Client 3-2
4 Building, Packaging, and Deploying RESTful Web Service
Applications
4.1 Building RESTful Web Service Applications 4-1
4.2 Packaging RESTful Web Service Applications 4-1
4.2.1 Packaging With an Application Subclass 4-2
4.2.2 Packaging With a Servlet 4-2
4.2.2.1 How to Package the RESTful Web Service Application with
Servlet 3.0 4-3
4.2.2.2 How to Package the RESTful Web Service Application with
Pre-3.0 Servlets 4-5
4.2.3 Packaging as a Default Resource 4-6
ORACLE Y

4.3 Deploying RESTful Web Service Applications 4-7

5 Securing RESTful Web Services and Clients

5.1 About RESTful Web Service Security 5-1
5.2 Securing RESTful Web Services and Clients Using OWSM Policies 5-1
5.3 Securing RESTful Web Services Using web.xml 5-2
5.4 Securing RESTful Web Services Using SecurityContext 5-3
5.5 Securing RESTful Web Services Using Java Security Annotations 5-4

6 Testing RESTful Web Services

7 Monitoring RESTful Web Services and Clients

7.1 About Monitoring RESTful Web Services 7-1
7.2 Monitoring RESTful Web Services Using Enterprise Manager Fusion
Middleware Control 7-2
7.3 Monitoring RESTful Web Services Using the Administration Console 7-2
7.4 Monitoring RESTful Web Services Using WLST 7-2
7.5 Enabling the Tracing Feature 7-6
7.6 Disabling RESTful Web Service Application Monitoring 7-6
7.6.1 Disabling Monitoring for a RESTful Web Service Application Using
Jersey Property 7-7
7.6.2 Disabling Monitoring for a RESTful Web Service Application Using
WebLogic Configuration MBean 7-8
7.6.3 Disabling RESTful Web Service Application Monitoring for a WebLogic
Domain 7-9
7.7 Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service
Application 7-10
8 Using Server-Sent Events in WebLogic Server
8.1 Overview of Server-Sent Events (SSE) 8-1
8.2 Understanding the WebLogic Server-Sent Events API 8-1
8.3 Sample Applications for Server-Sent Events 8-2

A Compatibility with Earlier Jersey/JAX-RS Releases

A.1 Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI) A-1
A.1.1 Example of a RESTful Web Service Client A-2
A.1.2 Creating and Configuring a Client Instance A-2
A.1.3 Creating a Web Resource Instance A-4

ORACLE Y

A.1.4 Sending Requests to the Resource

Al41l
A.1.4.2
A.14.3
Al44
A.1.45
A.1.4.6

How to Build Requests

How to Send HTTP Requests

How to Pass Query Parameters
How to Configure the Accept Header
How to Add a Custom Header

How to Configure the Request Entity

A.1.5 Receiving a Response from a Resource

A151
A.152

How to Access the Status of Request
How to Get the Response Entity

A.1.6 More Advanced RESTful Web Service Client Tasks
A.2 Support for Jersey 1.18 (JAX-RS 1.1 RI) Deployments Packaged with Pre-3.0

Servlets

ORACLE

A-5
A-6
A-7
A-7
A-8

A-9
A-9
A-9
A-9

A-10

Vi

Preface

This preface describes the document accessibility features and conventions used in
this guide— Developing and Securing RESTful Web Services for Oracle WebLogic
Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nf o or visit htt p: // ww. or acl e. coml pl s/t opi ¢/ | ookup?ct x=acc&i d=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE' vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New in This Guide

What's New In This Guide

Learn about the new and changed features of RESTful web services and get links to
additional information. This document was released initially in Oracle Fusion
Middleware 12c Release 1 (12.1.1).

New and Changed Features for Release 12¢ (12.2.1.X)

There are no updates to this guide for the Oracle Fusion Middleware 12c (12.2.1.x)
release.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

New and Changed Features for Release 12¢ (12.2.1)

ORACLE

For the Oracle Fusion Middleware Release 12c¢ (12.2.1) release, RESTful web
services includes several new and changed features that are described in this
document. These include the following:

e Provides support for Jersey 2.x (JAX-RS 2.0 RI) by default in this release.
Registration as a shared library with WebLogic Server is no longer required.

e Provides enhanced monitoring of RESTful web services in the WebLogic
Administration Console, including enhanced runtime statistics for your RESTful
applications and resources, detailed deployment and configuration data, global
execution statistics, and resource and resource method execution statistics. See
Monitoring RESTful Web Services and Clients.

e Includes the ability to disable RESTful web services monitoring at the individual
application level, or globally at the domain level. See Disabling RESTful Web
Service Application Monitoring.

e Reflects support for the Jersey 2.21.1 JAX-RS 2.0 RI.

e Supports securing Jersey 2.x (JAX-RS 2.0 RIl) web services using Oracle Web
Services Manager (OWSM) security policies. See Securing RESTful Web Services
and Clients Using OWSM Policies.

e Adds support for Java EE 7.

e The Jersey 1.x client APl is deprecated. It is recommended that you update your
RESTful client applications to use the JAX-RS 2.0 client APIs at your earliest
convenience.

* Removes support for the Jersey 1.x (JAX-RS 1.1. RI) server APIs. You should use
the corresponding standard JAX-RS 2.0 or Jersey 2.x APls instead.

viii

What's New in This Guide

¢ Note:

Support for the Jersey 1.18 (JAX-RS 1.1RI) client APIs are deprecated in
this release of WebLogic Server but are maintained for backward
compatibility. See Develop RESTful Web Service Clients Using Jersey
1.18 (JAX-RS 1.1 RI).

Oracle recommends that you update your RESTful client applications to
use the JAX-RS 2.0 client APIs at your earliest convenience.

New and Changed Features for Release 12¢ (12.1.3)

Oracle Fusion Middleware Release 12¢ (12.1.3) includes two new and changed
features for RESTful web services that are described in this document.

Reflects support of the Jersey 2.5.1 Java API for RESTful Web Services (JAX-RS)
2.0 Reference Implementation (RI) as a pre-built shared library.

Reflects support for the Jersey 1.18 JAX-RS 1.1. RI.

New and Changed Features for Release 12¢ (12.1.2)

Oracle Fusion Middleware 12c¢ (12.1.2) includes two new and changed features for
RESTful web services that are described in this document.

ORACLE

Secure RESTful web services using Oracle Web Services Manager (OWSM)
policies. See Securing RESTful Web Services and Clients Using OWSM Policies.

New standalone web service client JAR files that support basic RESTful web
service client-side functionality and Oracle Web Services Manager (OWSM)
security policy support. See Invoking a RESTful Web Service from a Standalone
Client.

Introduction to RESTful Web Services

RESTful web services are Java EE web services that you develop to conform to the
Representational State Transfer (REST) architectural style using Java API for RESTful
Web Services (JAX-RS).

e Introduction to the REST Architectural Style

* What are RESTful Web Services?

e Standards Supported for RESTful Web Service Development on WebLogic Server
* Roadmap for Implementing RESTful Web Services

* Learn More About RESTful Web Services

1.1 Introduction to the REST Architectural Style

REST describes any simple interface that transmits data over a standardized interface
(such as HTTP) without an additional messaging layer, such as Simple Object Access
Protocol (SOAP). REST is an architectural style—not a toolkit—that provides a set of
design rules for creating stateless services that are viewed as resources, or sources of
specific information (data and functionality). Each resource can be identified by its
unigue Uniform Resource Identifiers (URIS).

A client accesses a resource using the URI and a standardized fixed set of methods,
and a representation of the resource is returned. A representation of a resource is
typically a document that captures the current or intended state of a resource. The
client is said to transfer state with each new resource representation.

Table 1-1 defines a set of constraints defined by the REST architectural style that must
be adhered to in order for an application to be considered "RESTful."

Table 1-1 Constraints of the REST Architectural Style
]

Constraint

Description

Addressability

Identifies all resources using a uniform resource identifier (URI). In the English
language, URIs would be the equivalent of a noun.

Uniform interface

Enables the access of a resource using a uniform interface, such as HTTP methods
(GET, POST, PUT, and DELETE). Applying the English language analogy, these
methods would be considered verbs, describing the actions that are applicable to the
named resource.

Client-server architecture Separates clients and servers into interface requirements and data storage

requirements. This architecture improves portability of the user interface across
multiple platforms and scalability by simplifying server components.

ORACLE

1-1

Chapter 1
What are RESTful Web Services?

Table 1-1 (Cont.) Constraints of the REST Architectural Style
]

Constraint Description

Stateless interaction Uses a stateless communication protocol, typically Hypertext Transport Protocol
(HTTP). All requests must contain all of the information required for a particular
request. Session state is stored on the client only.
This interactive style improves:
e Visibility—Single request provides the full details of the request.
* Reliability—Eases recovery from partial failures.
« Scalability—Not having to store state enables the server to free resources

quickly.
Cacheable Enables the caching of client responses. Responses must be identified as cacheable

or non-cacheable. Caching eliminates some interactions, improving efficiency,
scalability, and perceived performance.

Layered system

Enables client to connect to an intermediary server rather than directly to the end
server (without the client's knowledge). Use of intermediary servers improve system
scalability by offering load balancing and shared caching.

1.2 What are RESTful Web Services?

RESTful web services are services that are built according to REST principles and, as
such, are designed to work well on the Web.

RESTful web services conform to the architectural style constraints defined in

Table 1-1. Typically, RESTful web services are built on the HTTP protocol and
implement operations that map to the common HTTP methods, such as GET, POST,
PUT, and DELETE to retrieve, create, update, and delete resources, respectively.

1.3 Standards Supported for RESTful Web Service
Development on WebLogic Server

ORACLE

The JAX-RS provides support for creating web services according to REST
architectural style. JAX-RS uses annotations to simplify the development of RESTful
web services. By simply adding annotations to your web service, you can define the
resources and the actions that can be performed on those resources. JAX-RS is part
of the Java EE 7 full profile, and is integrated with Contexts and Dependency Injection
(CDI) for the Java EE Platform (CDI), Enterprise JavaBeans (EJB) technology, and
Java Servlet technology.

WebLogic Server supports the following JAX-RS API and Reference Implementation
(RD):

* JAX-RS 2.0Rev a
e Jersey 2.22.4

1-2

Chapter 1
Roadmap for Implementing RESTful Web Services

Note:

Jersey 2.x (JAX-RS 2.0 RI) support is provided by default in this release of
WebLogic Server. Registration as a shared library is no longer required.

The Jersey 1.x server-side APIs are no longer supported. You should use
the corresponding standard JAX-RS 2.0 or Jersey 2.x APIs instead. The
Jersey 1.x client APl is deprecated. It is recommended that you update your
RESTful client applications to use the JAX-RS 2.0 client APIs at your earliest
convenience.

The Jersey 2.x (JAX-RS 2.0 RI) includes the following functionality:

Jersey
JAX-RS API

JSON processing and streaming

Table 1-2 lists key features delivered with Jersey 2.x (JAX-RS 2.0 RI).

Table 1-2 Key Features in Jersey 2.x (JAX-RS 2.0 RI)
|

Key Feature

Description

Client API

Communicate with RESTful web services in a standard way. The Client API facilitates
the consumption of a web service exposed via HTTP protocol and enables developers
to concisely and efficiently implement portable client-side solutions that leverage
existing and well established client-side HTTP connector implementations.

For complete details, see:

e Client APl in Jersey 2.22 User Guide
e Accessing REST Resources with the JAX-RS Client APl in Java EE 7 Tutorial

Asynchronous
communication

Invoke and process requests asynchronously.

For complete details, see:

e Asynchronous Services and Clients in the Jersey 2.22 User Guide
e Advanced Features of the Client APl in Java EE 7 Tutorial

Filters and interceptors

Using filters, modify inbound and outbound requests and responses., such as header
information. Using interceptors, modify entity input and output streams. Filters and
interceptors can be used on both the client and server side.

For complete details, see Filters and Interceptors in the Jersey 2.22 User Guide.

For more information about JAX-RS and samples, see Learn More About RESTful
Web Services.

1.4 Roadmap for Implementing RESTful Web Services

Review a roadmap of common tasks for developing, packaging and deploying,
securing, and monitoring RESTful web services and clients. These tasks are listed in
Table 1-3.

ORACLE

1-3

https://jersey.github.io/documentation/2.22/client.html
https://docs.oracle.com/javaee/7/tutorial/jaxrs-client.htm#BABEIGIH
https://jersey.github.io/documentation/2.22/async.html
https://docs.oracle.com/javaee/7/tutorial/jaxrs-client003.htm#BABCDDGH
https://jersey.github.io/documentation/2.22/filters-and-interceptors.html

Chapter 1
Learn More About RESTful Web Services

Table 1-3 Roadmap for Implementing RESTful Web Services and Clients

|
Task More Information

Develop RESTful web services. Developing RESTful Web Services

Develop clients to invoke the RESTful web ~ Summary of Tasks to Develop RESTful Web Service Clients
services.

Package and deploy RESTful web services. ¢ Packaging With an Application Subclass
e Packaging With a Servlet
e Packaging as a Default Resource

Secure RESTful web services. e Securing RESTful Web Services Using web.xml
e Securing RESTful Web Services Using SecurityContext
e Securing RESTful Web Services Using Java Security
Annotations

Test RESTful web services. Testing RESTful Web Services

Monitor RESTful web services. Monitoring RESTful Web Services and Clients

(Optional) Migrate existing applications from Migration Guide in Jersey 2.22 User Guide
Jersey 1.x to 2.x.

1.5 Learn More About RESTful Web Services

Additional information about RESTful web services is available from resources such as
the Community Wiki for Project Jersey, jcp.org, the JSR-339 JAX-RS 2.0 Specification,
and more. These resources are listed in Table 1-4.

Table 1-4 Resources for More Information

Resource Link

Jersey User Guide Jersey 2.22 User Guide

Jersey API Javadoc Jersey 2.22 API Documentation

Community Wiki for Project https://jersey.github.io/

Jersey

JSR-339 JAX-RS 2.0 https://jcp.org/en/jsr/detail ?i d=339

Specification

JAX-RS API Javadoc https://jax-rs-spec.java.net/nonav/ 2. 0-rev-al api docs/i ndex. ht m
JAX-RS Project https://jax-rs-spec.java.net/

RESTful Web Services Sample Application and Code Examples in Understanding Oracle WebLogic Server.
(JAX-RS) sample

The Java EE 7 Tutorial— http://docs. oracl e. contjavaee/ 7/tutorial /jaxrs. htm

Building RESTful Web
Services With JAX-RS

"Representational State http://ww.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
Transfer (REST)" in

Architectural Styles and

the Design of Network-

based Software

Architectures (Dissertation

by Roy Fielding)

ORACLE 1-4

https://jersey.github.io/documentation/2.22/migration.html
https://jersey.github.io/documentation/2.22/index.html
https://jersey.github.io/apidocs/2.22/jersey/index.html
https://jersey.github.io/
https://jcp.org/en/jsr/detail?id=339
https://jax-rs-spec.java.net/nonav/2.0-rev-a/apidocs/index.html
https://jax-rs-spec.java.net/
http://docs.oracle.com/javaee/7/tutorial/jaxrs.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Developing RESTful Web Services

To develop Java EE web services that conform to the Representational State Transfer
(REST) architectural style using Java API for RESTful Web Services (JAX-RS), you
perform tasks such as defining the root resource class, mapping incoming HTTP
requests to Java methods, customizing media types for requests and responses, and
more.

e About RESTful Web Service Development

» Defining the Root Resource Class

» Defining the Relative URI of the Root Resource and Subresources

e Mapping Incoming HTTP Requests to Java Methods

e Customizing Media Types for the Request and Response Messages
e Extracting Information From the Request Message

e Building Custom Response Messages

e Mapping HTTP Request and Response Entity Bodies Using Entity Providers
e Accessing the Application Context

e Building URIs

» Using Conditional GETs

e Accessing the WADL

* More Advanced RESTful Web Service Tasks

2.1 About RESTful Web Service Development

ORACLE

JAX-RS is a Java programming language API that uses annotations to simplify the
development of RESTful web services. JAX-RS annotations are runtime annotations.
When you deploy the Java EE application archive containing JAX-RS resource
classes to WebLogic Server, as described in Building, Packaging, and Deploying
RESTful Web Service Applications , the runtime configures the resources, generates
the helper classes and artifacts, and exposes the resource to clients.

The following sections provide more information about RESTful web service
development:

e Summary of Tasks to Develop RESTful Web Services
* Example of a RESTful Web Service

For information about developing RESTful web services using Oracle JDeveloper, see
Creating RESTful Web Services and Clients in Developing Applications with Oracle
JDeveloper.

2-1

Chapter 2
About RESTful Web Service Development

2.1.1 Summary of Tasks to Develop RESTful Web Services

Table 2-1 summarizes a subset of the tasks that are required to develop RESTful web
service using JAX-RS annotations. For more information about advanced tasks, see
More Advanced RESTful Web Service Tasks.

" Note:

Table 1-2.

In addition to the development tasks described in Table 2-1, you may wish to
take advantage of features available with Jersey 2.x (JAX-RS 2.0 RI) when
developing your RESTful web services. For a list of key features, see

Table 2-1 Summary of Tasks to Develop RESTful Web Services
|

Task

More Information

Define the root resource class.

Defining the Root Resource Class

Define the relative URI of the root resource class and its
methods using the @at h annotation.

If you define the @at h annotation using a variable, you
can assign a value to it using the @at hPar am
annotation.

Defining the Relative URI of the Root Resource and
Subresources

Map incoming HTTP requests to your Java methods
using @¥ET, @OST, @UT, or @ELETE, to get, create,
update, or delete representations of the resource,
respectively.

Mapping Incoming HTTP Requests to Java Methods

Customize the request and response messages, as
required, to specify the MIME media types of
representations a resource can produce and consume.

Customizing Media Types for the Request and
Response Messages

Extract information from the request.

Extracting Information From the Request Message

Build custom response messages to customize
response codes or include additional metadata.

Building Custom Response Messages

Access information about the application deployment
context or the context of individual requests.

Accessing the Application Context

Build new or extend existing resource URIs.

Building URIs

Evaluate one or more preconditions before processing a
GET request, potentially reducing bandwidth and
improving server performance.

Using Conditional GETs

Access the WADL.

Accessing the WADL

Optionally, create a class that extends
javax.ws.rs.core. Application to define the
components of a RESTful web service application
deployment and provides additional metadata.

Packaging With an Application Subclass

Secure your RESTful web services.

Securing RESTful Web Services and Clients

ORACLE

2-2

Chapter 2
Defining the Root Resource Class

2.1.2 Example of a RESTful Web Service

Example 2-1 provides a simple example of a RESTful web service. In this example:

e The hell oWrl d class is a resource with a relative URI path defined as / hel | owor | d.
At runtime, if the context root for the WAR file is defined as http://exanpl es. com
the full URI to access the resource is htt p: // exanpl es. com hel | owor | d. See
Defining the Relative URI of the Root Resource and Subresources.

e The sayHel | o method supports the HTTP GET method. See Mapping Incoming
HTTP Requests to Java Methods.

e The sayHel | o method produces content of the MIME media type text/ pl ai n. See
Customizing Media Types for the Request and Response Messages.

Additional examples are listed in Learn More About RESTful Web Services.
Example 2-1 Simple RESTful Web Service

package sanpl es. hel | owor| d;

import javax.ws.rs.CET,;
import javax.ws.rs. Path;
import javax.ws.rs.Produces;

/1 Specifies the path to the RESTful service
@ath("/hel l oworld")
public class helloWrld {

/1 Specifies that the method processes HTTP GET requests

@ET

@r oduces("text/plain")

public String sayHel lo() {
return "Hello World!'";

}
}

2.2 Defining the Root Resource Class

A root resource class is a Plain Old Java Object (POJO) that meets specific annotation
requirements. The root resource class must satisfy one or both of the following
statements:

e Is annotated with @at h. See Defining the Relative URI of the Root Resource and
Subresources.

* Has at least one method annotated with @at h or with a request method
designator, such as @«T, @OST, @UT, or @ELETE. A resource method is a method in
the resource class that is annotated using a request method designator. See
Mapping Incoming HTTP Requests to Java Methods.

2.3 Defining the Relative URI of the Root Resource and
Subresources

Add the j avax. ws. rs. Pat h annotation at the class level of the resource to define the
relative URI of the RESTful web service. Such classes are referred to as root resource

ORACLE' 2.3

Chapter 2
Defining the Relative URI of the Root Resource and Subresources

classes. You can add @at h on methods of the root resource class as well, to define
subresources to group specific functionality.

The following sections describe how to define the relative URI of the root resource and
subresources:

* How to Define the Relative URI of the Resource Class (@Path)
* How to Define the Relative URI of Subresources (@Path)

* What Happens at Runtime: How the Base URI is Constructed

2.3.1 How to Define the Relative URI of the Resource Class (@Path)

The @at h annotation defines the relative URI path for the resource, and can be
defined as a constant or variable value (referred to as "URI path template™). You can
add the @at h annotation at the class or method level.

To define the URI as a constant value, pass a constant value to the @at h annotation.
Preceding and ending slashes (/) are optional.

In Example 2-2, the relative URI for the resource class is defined as the constant
value, / hel | owor | d.

Example 2-2 Defining the Relative URI as a Constant Value

package sanpl es. hel | owor| d;
import javax.ws.rs.Path;

/1 Specifies the path to the RESTful service
@Path(*/helloworld™)
public class hellowrld {. . .}

To define the URI as a URI path template, pass one or more variable values enclosed
in braces in the @at h annotation. Then, you can use the j avax. ws. rs. Pat hPar am
annotation to extract variable information from the request URI, defined by the @at h
annotation, and initialize the value of the method parameter, as described in How to
Extract Variable Information from the Request URI (@PathParam).

In Example 2-3, the relative URI for the resource class is defined using a variable,
enclosed in braces, for example, / user s/ { user nane} .

Example 2-3 Defining the Relative URI as a Variable Value

package sanpl es. hel | oworl d;
import javax.ws.rs.Path;

/1 Specifies the path to the RESTful service
@Path("*/users/{username}")
public class hellowrld {. . .}

}

To further customize the variable, you can override the default regular expression of
"[*M+?" by specifying the expected regular expression as part of the variable definition.
For example:

@at h("users/{usernane: [a-zA-Z][a-zA-Z 0-9]}")

In this example, the user name variable will match only user names that begin with one
uppercase or lowercase letter followed by zero or more alphanumeric characters or

ORACLE 2.4

Chapter 2
Defining the Relative URI of the Root Resource and Subresources

the underscore character. If the username does not match the requirements, a 404
(Not Found) response will be sent to the client.

See the @at h annotation in the Java EE 7 Specification APIs.

2.3.2 How to Define the Relative URI of Subresources (@Path)

Add the j avax. ws. rs. Pat h annotation to the method of a resource to define a
subresource. Subresources enable users to group specific functionality for a resource.

In Example 2-4, if the request path of the URI is users/ i st, then the get User Li st
subresource method is matched and a list of users is returned.

Example 2-4 Defining a Subresource

package sanpl es. hel | owor| d;

i mport javax.ws.rs.GET;
import javax.ws.rs.Path;

/1 Specifies the path to the RESTful service
@ath("/users")
public class UserResource {

| @eT
@Path(*/list")
public String getUserList() {

}
}

2.3.3 What Happens at Runtime: How the Base URI is Constructed

The base URI is constructed as follows:

htt p: // myHost Nane/ cont ext Pat h/ servl et URI / r esour ceURl

* nyHost Name—DNS name mapped to the Web Server. You can replace this with
host : port which specifies the name of the machine running WebLogic Server and
the port used to listen for requests.

* cont ext Pat h—Name of the standalone Web application. The Web application name
is specified in the META- | NF/ appl i cati on. xnl deployment descriptor in an EAR file
or the webl ogi c. xmi deployment descriptor in a WAR file. If not specified, it defaults
to the name of the WAR file minus the . war extension. See context-root in
Developing Web Applications, Serviets, and JSPs for Oracle WebLogic Server.

e servl et URI—Base URI for the servlet context path. This path is configured as part
of the packaging options defined in Table 4-1. Specifically, you can define the
servlet context path by:

— Updating the web. xni deployment descriptor to define the servlet mapping.

— Adding ajavax.ws.rs. Appl i cati onPat h annotation to the class that extends
javax.ws.rs. core. Application, if defined.

If the servlet context path is configured using both options above, then the servlet
mapping takes precedence. If you do not configure the servlet context path in your

ORACLE 2-5

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/Path.html

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

configuration using either of the options specified above, the WebLogic Server
provides a default RESTful web service application context path, resour ces. See
Building, Packaging, and Deploying RESTful Web Service Applications .

e resour ceURI —@pat h value specified for the resource or subresource. This path may
be constructed from multiple resources and subresources @at h values.

In Example 2-2, at runtime, if the context path for the WAR file is defined as rest and
the default URI for the servlet (resour ces) is in effect, the base URI to access the
resource is http://myServer: 7001/ rest/resources/ hel | oworl d.

In Example 2-3, at runtime, the base URI will be constructed based on the value
specified for the variable. For example, if the user entered j ohnsni t h as the username,
the base URI to access the resource is http://nmyServer: 7001/ rest/resour ces/ users/
johnsmi th.

2.4 Mapping Incoming HTTP Requests to Java Methods

JAX-RS uses Java annotations to map an incoming HTTP request to a Java method.
Table 2-2 lists the annotations available, which map to the similarly named HTTP
methods.

Table 2-2 javax.ws.rs Annotations for Mapping HTTP Requests to Java Methods

Annotation

Description Idempotent

@xET

Transmits a representation of the resource identified by the URI to the client. Yes
The format might be HTML, plain text, JPEG, and so on. See How to
Transmit a Representation of the Resource (@GET).

@ur

Creates or updates the representation of the specified resource identified by Yes
the URI. See How to Create or Update the Representation of the Resource

(@PUT).

@ELETE

Deletes the representation of the resource identified by the URI. See Howto Yes
Delete a Representation of the Resource (@DELETE).

@osT

Creates, updates, or performs an action on the representation of the No
specified resource identified by the URI. See How to Create, Update, or
Perform an Action on a Representation of the Resource (@POST).

@HEAD

Returns the response headers only, and not the actual resource (thatis, no Yes
message body). This is useful to save bandwidth to check characteristics of

a resource without actually downloading it. See the @HEAD annotation in the

Java EE 7 Specification APIs.

The HEAD method is implemented automatically if not implemented explicitly.
In this case, the runtime invokes the implemented GET method, if present,
and ignores the response entity, if set.

@PTI ONS

Returns the communication options that are available on the request/ Yes
response chain for the specified resource identified by the URI. The Al | ow
response header will be set to the set of HTTP methods supported by the
resource and the WADL file is returned. See the @PTI ONS annotation in the

Java EE 7 Specification APIs.

The OPTI ONS method is implemented automatically if not implemented
explicitly. In this case, the Al | ow response header is set to the set of HTTP
methods supported by the resource and the WADL describing the resource
is returned.

ORACLE

2-6

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/HEAD.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/OPTIONS.html

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

Table 2-2 (Cont.) javax.ws.rs Annotations for Mapping HTTP Requests to Java Methods

Annotation

Description Idempotent

@t t pMet hod

Indicates that the annotated method should be used to handle HTTP N/A
requests. See the @t t pMet hod annotation in the Java EE 7 Specification

APIs.

The following sections provide more information about the JAX-RS annotations used
for mapping HTTP requests to Java methods.

About the Jersey Bookmark Sample

How to Transmit a Representation of the Resource (@GET)

How to Create or Update the Representation of the Resource (@PUT)
How to Delete a Representation of the Resource (@DELETE)

How to Create, Update, or Perform an Action on a Representation of the Resource
(@POST)

2.4.1 About the Jersey Bookmark Sample

The examples referenced in the following sections are excerpted from the bookmark
sample that is delivered with Jersey 2.x (JAX-RS 2.0 RI). The bookmark sample
provides a Web application that maintains users and the browser bookmarks that they
set.

The following table summarizes the resource classes in the sample, their associated
URI path, and the HTTP methods demonstrated by each class.

Table 2-3 About the Jersey Bookmark Sample

Resource Class URI Path HTTP Methods Demonstrated
User sResour ce [users GET

User Resour ce /users/{userid} GET, PUT, DELETE

Bookmar ksResour ce | users/{userid}/bookmarks GET, POST

Bookmar kResour ce

/users/{userid}/bookmarks/{bm d} GET. PUT, DELETE

ORACLE

The bookmark sample, and other Jersey samples, can be accessed in one of the
following ways:

Accessing the bookmark sample at htt ps://repol. maven. or g/ maven2/ or g/
gl assfish/jersey/ exanpl es/ booknar k/

Browsing the bookmark sample source code on GitHub: htt ps://git hub. comf
jerseyljerseyltreel master/exanpl es/ booknar k

Browsing the Maven repositories for all Jersey examples, including a WebLogic
Server-specific example bundle for each version, at: https://repol. maven. or g/
maven2/ or g/ gl assfi sh/j ersey/ bundl es/j er sey- exanpl es/

2-7

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/HttpMethod.html
https://repo1.maven.org/maven2/org/glassfish/jersey/examples/bookmark/
https://repo1.maven.org/maven2/org/glassfish/jersey/examples/bookmark/
https://github.com/jersey/jersey/tree/master/examples/bookmark
https://github.com/jersey/jersey/tree/master/examples/bookmark
https://repo1.maven.org/maven2/org/glassfish/jersey/bundles/jersey-examples/
https://repo1.maven.org/maven2/org/glassfish/jersey/bundles/jersey-examples/

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

2.4.2 How to Transmit a Representation of the Resource (QGET)

The j avax. ws. rs. GET annotation transmits a representation of the resource identified by
the URI to the client. The format or the representation returned in the response entity-
body might be HTML, plain text, JPEG, and so on. See the @&ET annotation in the Java
EE 7 Specification APIs.

In Example 2-5, the annotated Java method, get Bookmar kAsJsonAr r ay, from the
Bookmar ksResour ce class in the Jersey bookmark sample, will process HTTP GET
requests. See About the Jersey Bookmark Sample.

Example 2-5 Mapping the HTTP GET Request to a Java Method (BookmarksResource Class)

import javax.ws.rs.GET;
inport javax.ws.rs. Produces;
inport javax.ws.rs. Path;

public class BookmarksResource {

@ath("{bmd: .+}")
publi ¢ Bookmar kResour ce get Bookmar k(@at hParan{"bmi d") String bmd) {
return new Booknar kResource(urilnfo, em
user Resour ce. get UserEntity(), bnmid);

}
@GET

@r oduces(Medi aType. APPLI CATI ON_JSON)

public JSONArray get BooknmarksAsJsonArray() {
JSONArray uri Array = new JSONArray();
for (BookmarkEntity bookmarkEntity : getBookmarks()) {
Uri Builder ub = urilnfo. get Absol ut ePat hBui | der();
URI bookmarkUri = ub.
pat h(bookmar kEnt i ty. get Bookmar kEntityPK().getBmid()).
bui 1'd();
uri Array. put (bookmarkUri.toASCIIString());
}

return uriArray;

In Example 2-6, the annotated Java method, get Booknar k, from the Booknar kResour ce
class in the Jersey bookmark sample, will process HTTP GET requests. This example
shows how to process the JSON object that is returned. See About the Jersey
Bookmark Sample.

Example 2-6 Mapping the HTTP GET Request to a Java Method (BookmarkResource Class)

import javax.ws.rs.GET;

i mport javax.ws.rs. Produces;

i mport javax.ws.rs. Path;

public class Bookmar kResource {

@GET

@r oduces(Medi aType. APPLI CATI ON_JSON)

ORACLE 2-8

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/GET.html

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

public JSONObj ect get Bookmark() {
return asJson();

}
public JSONObj ect asJson() {
try {
return new JSONObj ect ()
.put("userid", bookmarkEntity.get BookmarkEntityPK().getUserid())
. put ("sdesc", bookmarkEntity. get Sdesc())
.put ("l desc", bookmarkEntity.getLdesc())
.put("uri", bookmarkEntity.getUri());
} catch (JSONException je){
return nul l;
}
}

}

2.4.3 How to Create or Update the Representation of the Resource

(@PUT)

The j avax. ws. rs. PUT annotation creates or updates the representation of the specified
resource identified by the URI. See the @UT annotation in the Java EE 7 Specification
APIs.

In Example 2-7, the annotated Java method, put Bookmar k, from the Booknar kResour ce
class in the Jersey bookmark sample, will process HTTP PUT requests and update the
specified bookmark. See About the Jersey Bookmark Sample.

Example 2-7 Mapping the HTTP PUT Request to a Java Method

import javax.ws.rs.PUT;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;
public class BookmarkResource {
@PUT
@onsunes(Medi aType. APPLI CATI ON_JSON)

public void put Bookmark(JSONCbj ect jsonEntity) throws JSONException {

bookmar kEntity. set Ldesc(j sonEntity.getString("ldesc"));
bookmar kEntity. set Sdesc(j sonEntity. getString("sdesc"));
bookmar kEnti ty. set Updat ed(new Date());

Transact i onManager . manage(new Transacti onal (en) {

public void transact() {

em mer ge(bookmar KEntity);

130N

ORACLE 2-9

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/PUT.html

Chapter 2
Mapping Incoming HTTP Requests to Java Methods

2.4.4 How to Delete a Representation of the Resource (@DELETE)

The j avax. ws. rs. DELETE annotation deletes the representation of the specified resource
identified by the URI. The response entity-body may return a status message or may
be empty. See the @ELETE annotation in the Java EE 7 Specification APIs.

In Example 2-8, the annotated Java method, del et eBooknar k, from the Bookmar kResour ce
class in the Jersey bookmark sample, will process HTTP DELETE requests, and
delete the specified bookmark. See About the Jersey Bookmark Sample.

Example 2-8 Mapping the HTTP DELETE Request to a Java Method

import javax.ws.rs.DELETE;
import javax.ws.rs.Produces;
import javax.ws.rs. Path;

public class BookmarkResource {

@DELETE
public void del et eBookmark() {

Transact i onManager . manage(new Transacti onal (en) {
public void transact() {
UserEntity userEntity = bookmarkEntity. getUserEntity();
user Entity. get Bookmar kEntityCol | ection().remove(bookmarkEntity);

em merge(userEntity);
em renove(bookmarkEntity);

130N
}

2.4.5 How to Create, Update, or Perform an Action on a
Representation of the Resource (@POST)

The j avax. ws. rs. POST annotation creates, updates, or performs an action on the
representation of the specified resource identified by the URI. See the @0OST annotation
in the Java EE 7 Specification APIs.

In Example 2-9, the annotated Java method, post For m from the Booknar ksResour ce
class in the Jersey bookmark sample, will process HTTP POST requests, and update
the specified information. See About the Jersey Bookmark Sample.

Example 2-9 Mapping the HTTP POST Request to a Java Method

import javax.ws.rs.POST;
inport javax.ws.rs.Produces;

public class BookmarksResource {
@POST
@onsunes(Medi aType. APPLI CATI ON_JSON)

public Response post For n(JSONChbj ect booknmark) throws JSONException {

ORACLE 2-10

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/DELETE.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/POST.html

Chapter 2
Customizing Media Types for the Request and Response Messages

final BookmarkEntity bookmarkEntity = new
Bookmar kEnt i t y(get Bookmar kI d(bookmar k. get String("uri")),

user Resour ce. get UserEntity().getUserid());

bookmar kEntity. set Uri (bookmark. get String("uri"));

bookmar kEnti ty. set Updat ed(new Date());

bookmar kEnti ty. set Sdesc(booknark. get String("sdesc"));

bookmar kEnti ty. set Ldesc(booknark. get String("ldesc"));

user Resour ce. get UserEntity(). get Booknmar kEntityCol | ection().add(bookmarkEntity);

Transact i onManager . manage(new Transacti onal (en) {
public void transact() {

em mer ge(user Resour ce. get UserEntity());

30K

URI bookmarkUri = urilnfo.get Absol ut ePat hBui | der ().
pat h(bookmar KEnt i ty. get Bookmar kEntit yPK(). getBmid()).
build();

return Response. creat ed(bookmarkUri). build();

}

2.5 Customizing Media Types for the Request and
Response Messages

To customize the media types for request and response messages, add the
javax.ws.rs. Consunes Or j avax. ws. rs. Produces annotation at the class level of the
resource. This task is described in the following sections:

e How To Customize Media Types for the Request Message (@Consumes)
e How To Customize Media Types for the Response Message (@Produces)

e What Happens At Runtime: How the Resource Method Is Selected for Response
Messages

2.5.1 How To Customize Media Types for the Request Message
(@Consumes)

The j avax. ws. rs. Consumes annotation enables you to specify the MIME media types of
representations a resource can consume that were sent from the client. The @onsunes
annotation can be specified at both the class and method levels and more than one
media type can be declared in the same @onsunes declaration.

If there are no methods in a resource that can consume the specified MIME media
types, the runtime returns an HTTP 415 Unsupported Media Type error.

See the @onsunes annotation in the Java EE 7 Specification APIs.

In Example 2-10, the @onsunes annotation defined for the Java class, hel | oWr| d,
specifies that the class produces messages using the text/pl ai n MIME media type.

ORACLE 2-11

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/Consumes.html

Chapter 2
Customizing Media Types for the Request and Response Messages

Example 2-10 Customizing the Media Types for the Request Message Using @Consumes

package sanpl es. consunes;

import javax.ws.rs.Consumes;
i mport javax.ws.rs. POST;
i mport javax.ws.rs. Path;

@ath("/ hel | owor | d")
public class helloWrld {

@QsT

@Consumes(""text/plain™)

public void post Message(String nessage) {
/] Store the nessage

}

}

2.5.2 How To Customize Media Types for the Response Message
(@Produces)

The j avax. ws. rs. Produces annotation enables you to specify the MIME media types of
representations a resource can produce and send back to the client. The @r oduces
annotation can be specified at both the class and method levels and more than one
media type can be declared in the same @ oduces declaration.

If there are no methods in a resource that can produce the specified MIME media
types, the runtime returns an HTTP 406 Not Accept abl e error.

See the @roduces annotation in the Java EE 7 Specification APIs.

In Example 2-11, the @r oduces annotation specified for the Java class, SoneResour ce,
specifies that the class produces messages using the text/pl ai n MIME media type.
The doGet AsPl ai nText method defaults to the MIME media type specified at the class
level. The doGet AsHt i method overrides the class-level setting and specifies that the
method produces HTML rather than plain text.

Example 2-11 Customizing the Media Types for the Response Using @Produces

package sanpl es. produces;
import javax.ws.rs.Produces;
inport javax.ws.rs. Path;

@at h("/ myResour ce")
@Produces("'text/plain™)
public class SoneResource {
@EET
public String doGet AsPlainText() { ... }

@ET

@Produces("text/html™)
public String doGetAsHm () { ... }

ORACLE 2-12

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/Produces.html

Chapter 2
Extracting Information From the Request Message

2.5.3 What Happens At Runtime: How the Resource Method Is
Selected for Response Messages

If a resource class is capable of producing more that one MIME media type, then the
resource method that is selected corresponds to the acceptable media type declared
in the Accept header of the HTTP request. In Example 2-11, if the Accept header is
Accept: text/htm, then the doGet AsPl ai nText method is invoked.

If multiple MIME media types are included in the @r oduces annotation and both are
acceptable to the client, the first media type specified is used. In Example 2-11, if the
Accept header is Accept: application/htm, application/text, then the doGet AsHt m
method is invoked and the appl i cation/ ht i MIME media type is used as it is listed
firstin the list.

2.6 Extracting Information From the Request Message

The javax. ws. rs package defines a set of annotations that enable you extract
information from the request message to inject into parameters of your Java method.
These annotations are listed and described in Table 2-4.

Table 2-4 javax.ws.rs Annotations for Extracting Information From the Request Message

Annotation Description

@eanPar am Inject aggregated request parameters into a single bean. See the @eanPar amannotation in
the Java EE 7 Specification APIs.
For additional usage information, see Parameter Annotations (@*Param) in the Jersey 2.21
User Guide.

@ooki ePar am Extract information from the HTTP cookie-related headers to initialize the value of a method
parameter. See the @ooki ePar amannotation in the Java EE 7 Specification APIs.

@ef aul t Val ue Define the default value of the request metadata that is bound using one of the following
annotations: @ooki ePar am @or nPar am @eader Par am @t ri xPar am @at hPar am or
@uer yParam See How to Define the DefaultValue (@DefaultValue).

@ncoded Enable encoding of a parameter value that is bound using one of the following annotations:
@or mPar am @vat ri xPar am @at hPar am or @uer yPar am See Enabling the Encoding
Parameter Values (@Encoded).

@ or nmPar am Extract information from an HTML form of the type appl i cati on/ x- ww« f or m ur | encoded.
See the @or nPar amannotation in the Java EE 7 Specification APIs.

@1eader Par am Extract information from the HTTP headers to initialize the value of a method parameter.
See the @eader Par amannotation in the Java EE 7 Specification APIs.

@t ri xParam Extract information from the URI path segments to initialize the value of a method
parameter. See the @t ri xPar amannotation in the Java EE 7 Specification APIs.

@at hPar am Define the relative URI as a variable value (referred to as "URI path template"). See How to
Extract Variable Information from the Request URI (@PathParam).

@uer yPar am Extract information from the query portion of the request URI to initialize the value of a
method parameter. See How to Extract Request Parameters (@QueryParam).

ORACLE 2-13

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/BeanParam.html
https://jersey.java.net/documentation/2.21/user-guide.html#d0e2168
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/CookieParam.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/FormParam.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/HeaderParam.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/MatrixParam.html

Chapter 2
Extracting Information From the Request Message

2.6.1 How to Extract Variable Information from the Request URI
(@PathParam)

Add the j avax. ws. rs. Pat hPar amannotation to the method parameter of a resource to
extract the variable information from the request URI and initialize the value of the
method parameter. You can define a default value for the variable value using the
@ef aul t Val ue annotation, as described in How to Define the DefaultValue
(@DefaultValue).

In Example 2-12, the @at hPar amannotation assigns the value of the user nane variable
that is defined as part of the URI path by the @at h annotation to the user Nane method
parameter.

Example 2-12 Extracting Variable Information From the Request URI

package sanpl es. hel | owor| d;

inport javax.ws.rs. CET,;
inport javax.ws.rs. Path;
inport javax.ws.rs. Produces;
import javax.ws.rs.PathParam;

/1 Specifies the path to the RESTful service
@at h("/users")
public class hellovrld {

. @IT
@at h("/{usernanme}")

@roduces("text/xm")
public String getUser(@PathParam(*'username'™) String userNane) {

}
}

2.6.2 How to Extract Request Parameters (@QueryParam)

Add the j avax. ws. rs. Quer yPar amannotation to the method parameter of a resource to
extract information from the query portion of the request URI and initialize the value of
the method parameter.

The type of the annotated method parameter can be any of the following:
* Primitive type (i nt, char, byte, and so on)

* User-defined type

» Constructor that accepts a single String argument

e Static method named val ueGf or front ring that accepts a single String argument
(for example, i nt eger. val uef (String))

o Li st <T>, Set <T>, or Sort edSet <T>

If the @uer yPar amannotation is specified but the associated query parameter is not
present in the request, then the parameter value will set as an empty collection for
Li st, Set or SortedSet, the Java-defined default for primitive types, and NULL for all
other object types. Alternatively, you can define a default value for the parameter using

ORACLE 2-14

Chapter 2
Extracting Information From the Request Message

the @ef aul t Val ue annotation, as described in How to Define the DefaultValue
(@DefaultValue).

See the @uer yPar amannotation in the Java EE 7 Specification APIs.

In Example 2-13, if the st ep query parameter exists in the query component of the
request URI, the value will be assigned to the st ep method parameter as an integer
value. If the value cannot be parsed as an integer value, then a 400 (Cient Error)
response is returned. If the st ep query parameter does not exist in the query
component of the request URI, then the value is set to NULL.

Example 2-13 Extracting Request Parameters (@QueryParam)

inmport javax.ws.rs.Path;
import javax.ws.rs.CET;
import javax.ws.rs.QueryParam;

@at h("smot h")
@ET
public Response smoot h(@QueryParam(*'step™) int step)
{...}
}

2.6.3 How to Define the DefaultValue (@DefaultValue)

Add the j avax. ws. rs. Def aul t Val ue annotation to define the default value of the request
metadata that is bound using one of the following annotations: @ooki ePar am

@or mPar am, @eader Par am, @vht ri xPar am @at hPar am or @uer yPar am See the

@ef aul t Val ue annotation in the Java EE 7 Specification APIs.

In Example 2-14, if the st ep query parameter does not exist in the query component of
the request URI, the default value of 2 will be assigned to the st ep parameter.

Example 2-14 Defining the Default Value (@DefaultValue)

inport javax.ws.rs. Path;
import javax.ws.rs.CET;
import javax.ws.rs.QueryParam;

@at h("smot h")
@BET
public Response smoot h(@DefaultValue('2") @ueryParanm("step") int step)
{...}
}

2.6.4 Enabling the Encoding Parameter Values (@Encoded)

Add the j avax. ws. rs. Encoded annotation at the class or method level to enable the
encoding of a parameter value that is bound using one of the following annotations:
@or nPar am @t ri xPar am @Pat hPar am or @uer yPar am If specified at the class level,
parameters for all methods in the class will be encoded. See the @ncoded annotation in
the Java EE 7 Specification APIs.

In Example 2-15, the @ncoded annotation enables the encoding of parameter values
bound using the @at hPar amannotation.

ORACLE 2-15

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/QueryParam.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/DefaultValue.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/Encoded.html

Example 2-15
package sanpl es.
i mport javax.ws
i mport javax.ws
i mport javax.ws
i mport javax.ws

import javax.ws.

Chapter 2
Building Custom Response Messages

Encoding Parameter Values

hel | owor | d;

.rs. GET;
.rs. Path;
.1s. Produces;
. 1's. Pat hPar am

rs.Encoded;

/'l Specifies the path to the RESTful service

@at h("/users")
public class hel

H@ET

lovrld {

@Pat h("/{usernane}")

@roduces("t

@Encoded

ext/xm")

public String getUser(@athParan("usernane") String userNane) {

}
}

2.7 Buildi

ng Custom Response Messages

Instead of the default response codes, you can customize the response codes
returned or include additional metadata information in the response.

By default, JAX-RS responds to HTTP requests using the default response codes
defined in the HTTP specification, such as 200 X for a successful GET request and
201 CREATED for a successful PUT request.

For example, you might want to include the Locat i on header to specify the URI to the
newly created resource. You can modify the response message returned using the
javax. ws.rs. core. Response class.

An application can extend the Response class directly or use one of the static Response
methods to create a javax.ws.rs.core.Response.ResponseBuilder instance and build
the Response instance. The methods you can use are defined in Table 2-5. For more
information, see the Response methods in the Java EE 7 Specification APIs.

Table 2-5 Creating a Response Instance Using the ResponseBuilder Class
]

Method Description

created() Creates a new ResponseBui | der instance and sets the Locat i on header to the
specified value.

fromResponse() Creates a new ResponseBui | der instance and copies an existing response.

noCont ent ()

Creates a new ResponseBui | der instance and defines an empty response.

not Accept abl e()

Creates a new ResponseBui | der instance and defines a unacceptable response.

not Modi fi ed()

Creates a new ResponseBui | der instance and returns a not-modified status.

ok()

Creates a new ResponseBui | der instance and returns an OK status.

ORACLE

2-16

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/core/Response.html

Chapter 2
Building Custom Response Messages

Table 2-5 (Cont.) Creating a Response Instance Using the ResponseBuilder Class

Method

Description

seeQO her ()

Creates a new ResponseBui | der instance for a redirection.

serverError()

Creates a new ResponseBui | der instance and returns a server error status.

status()

Creates a new ResponseBui | der instance and returns the specified status.

t enpor aryRedi rect ()

Creates a new ResponseBui | der instance for a temporary redirection.

Once you create a ResponseBui | der instance, you can call the methods defined in
Table 2-6 to build a custom response. Then, call the bui | d() method to create the final
Response instance. See the Response. ResponseBui | der methods in the Java EE 7
Specification APIs.

Table 2-6 ResponseBuilder Methods for Building a Custom Response
|

Method Description
allow) Sets the list of allowed methods for the resource.
bui 1 d() Creates the Response instance from the current ResponseBui | der instance.

cacheControl ()

Sets the cache control.

cl one()

Create a copy of the ResponseBui | der to preserve its state.

cont ent Locati on()

Sets the content location.

cooki e() Add cookies to the response.

encodi ng() Sets the message entity content encoding.
entity() Defines the entity.

expires() Sets the expiration date.

header () Adds a header to the response.

| anguage() Sets the language.

| ast Modi fied() Set the last modified date.

link() Adds a link header.

[inks() Adds one or more link headers.

[ocation() Sets the location.

new nst ance()

Creates a new ResponseBui | der instance.

replaceAll () Replaces all existing headers with the newly supplied headers.

status() Sets the status.

tag() Sets an entity tag.

type() Sets the response media type.

variant () Set representation metadata.

variants() Add a Vary header that lists the available variants.
Example 2-16 shows how to build a Response instance using ResponseBui | der. In this
example, the standard status code of 200 K is returned and the media type of the

ORACLE’ 2.17

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/core/Response.ResponseBuilder.html

Chapter 2
Building Custom Response Messages

response is set to text/htnl . A call to the bui | d() method creates the final Response

instance.
Example 2-16 Building a Custom Response

inport javax.ws.rs. Path;

inport javax.ws.rs. CET,;

inport javax.ws.rs. PathParam

import javax.ws.rs.core.Response;

import javax.ws.rs.core.ResponseBuilder;

@ath("/content")
public class getDocs {
@ET
@ath("{id}")
public Response get HTM.Doc(@&at hParn("id") int docld)
{
Docunment document = ...;
ResponseBuilder response = Response.ok(document);
response.type("text/html™);
return response.build();

If you wish to build an HTTP response using a generic type, to avoid type erasure at
runtime you need to create a j avax. ws. rs. core. Generi cEntity object to preserve the
generic type. See the Generi cEntity methods in the Java EE 7 Specification APIs.

Example 2-17 provides an example of how to build an HTTP response using

Generi cEnti ty to preserve the generic type.

Example 2-17 Building a Custom Response Using a Generic Type

import javax.ws.rs. Path;

import javax.ws.rs.CET;

import javax.ws.rs. Pat hParam

import javax.ws.rs.core. Response;

import javax.ws.rs.core. ResponseBui | der;
jJavax.ws.rs.core.GenericEntity;

@ath("/content")
public class getDocs {
@ET
@ath("{id}")
public Response get HTM_Doc(@at hParm("id") int docld)
{
Docunent docunment = ...;
List<String> list = new ArrayList<String>();

GenericEntity<List<String>> entity = new GenericEntity<List<String>>(list) {};

ResponseBui | der response = Response. ok(document);
response.entity(entity);
return response. build();

ORACLE

2-18

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/core/GenericEntity.htmll

Chapter 2
Mapping HTTP Request and Response Entity Bodies Using Entity Providers

2.8 Mapping HTTP Request and Response Entity Bodies
Using Entity Providers

HTTP request and response entity bodies automatically support a set of Java types
that can be utilized by your RESTful web service. These Java types are listed in
Table 2-7.

Table 2-7 Java Types Supported for HTTP Request and Response Entity Bodies

Java Type Supported Media Types

byte[] All media types (*/*)

java.lang. String All media types (*/*)

java.io.lnputStream All media types (*/*)

java.io. Reader All media types (*/*)

java.io.File All media types (*/*)

j avax. activation. Dat aSour ce All media types (*/*)

j avax. xm . transform Source XML media types (t ext/ xm , appl i cation/xm , and appl i cati on/*
+xm) and JSON media types (appl i cation/json, application/*
+ son)

j avax. xm . bi nd. JAXBEl enent and XML media types (t ext/ xm , appl i cation/ xm , and appl i cation/*

application-supplied JAXB classes +xm)

Ml tival uedMap<String, String> Form content (appl i cati on/ x- www f or m ur | encoded)

St reani ngQut put All media types (*/*), MessageBodyW i t er only

If your RESTful web service utilizes a type that is not listed in Table 2-7, you must
define an entity provider, by implementing one of the interfaces defined in Table 2-8, to
map HTTP request and response entity bodies to method parameters and return

types.

Table 2-8 Entity Providers for Mapping HTTP Request and Response Entity Bodies to Method
Parameters and Return Types

.___|]
Entity Provider Description

javax.ws.rs.ext.Message Maps an HTTP request entity body to a method parameter for an HTTP request.

BodyReader Optionally, you can use the @onsunes annotation to specify the MIME media types
supported for the entity provider, as described in Customizing Media Types for the
Request and Response Messages.

For example:

@onsunmes("appl i cati on/ x- ww« f or m ur| encoded")

@r ovi der

public class FornReader inplenments MessageBodyReader <NameVal uePair> { ... }

ORACLE 2-19

Chapter 2
Accessing the Application Context

Table 2-8 (Cont.) Entity Providers for Mapping HTTP Request and Response Entity Bodies to
Method Parameters and Return Types

___|]
Entity Provider Description

javax.ws.rs. ext.Message Maps the return value to an HTTP response entity body for an HTTP response.

BodyW i t er Optionally, you can use the @r oduces annotation to specify the MIME media types
supported for the entity provider, as described in Customizing Media Types for the
Request and Response Messages.

For example:

@roduces("text/htm ")
@rovi der
public class FormWiter inplements
MessageBodyW it er <Hasht abl e<String, String>> { ... }

Note:

Jersey JSON provides a set of JAX-RS MessageBodyReader and
MessageBodyW i ter providers distributed with the Jersey JSON extension
modules. See JSON in the Jersey 2.22 User Guide.

The following code excerpt provides an example of a class that contains a method
(get O ass) that returns a custom type, and that requires you to write an entity provider.

public class Cassl

{
public String hello() { return "Hello"; }

public C ass2 getC ass(String nane) { return new O ass2(); };

}

public class Cass2

{
public Cass2() { }

}

2.9 Accessing the Application Context

The j avax. ws.rs. core. Cont ext annotation enables you to access information about the
application deployment context and the context of individual requests. Table 2-9
summarizes the context types that you can access using the @ont ext annotation. For
more information, see the @ont ext annotation in the Java EE 7 Specification APIs.

Table 2-9 Context Types

Use this context type . .. To...
Ht t pHeader s Access HTTP header information.
Provi ders Lookup Provider instances based on a set of search criteria.

ORACLE 2-20

https://jersey.github.io/documentation/2.22/media.html#json
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/core/Context.html

Chapter 2
Building URIs

Table 2-9 (Cont.) Context Types

Use this context type . .. To...

Request

Determine the best matching representation variant and to evaluate whether the
current state of the resource matches any preconditions defined. See Using
Conditional GETSs.

Securi t yCont ext

Access the security context and secure the RESTful web service. See Securing
RESTful Web Services Using SecurityContext.

Uilnfo

Access application and request URI information. See Building URIs.

2.10 Building URIs

ORACLE

You can use javax.ws.rs. core. Ui | nf o to access application and request URI
information.

Specifically, Uri | nf o can be used to return the following information:

* Deployed application's base URI
* Request URI relative to the base URI
* Absolute path URI (with or without the query parameters)

Using Uri I nf o, you can return a URI or j avax. ws. rs. core. Uri Bui | der instance.
Uri Bui | der simplifies the process of building URIs, and can be used to build new or
extend existing URIs.

The Uri Bui | der methods perform contextual encoding of characters not permitted in
the corresponding URI component based on the following rules:

e application/x-wwformurl encoded media type for query parameters, as defined in
"Forms" in the HTML specification at the following URL: http: // www. w3. or g/ TR/
htm 4/interact/forns. ht M #h-17.13.4.1

* RFC 3986 for all other components, as defined at the following URL: http://
wawy. i etf.org/rfc/rfc3986.txt

Example 2-18 shows how to obtain an instance of Uri | nf o using @ont ext and use it to
return an absolute path of the request URI as a Uri Bui | der instance. Then, using

Uri Bui | der build a URI for a specific user resource by adding the user ID as a path
segment and store it in an array. In this example, the Uri I nf o instance is injected into a
class field. This example is excerpted from the bookmark sample, as described in
About the Jersey Bookmark Sample.

Example 2-18 Building URIs

import javax.ws.rs. Path;

i mport javax.ws.rs.GET;

i mport javax.ws.rs. Produces;

import javax.ws.rs.core.UriBuilder;
import javax.ws.rs.core._Urilnfo;
import javax.ws.rs.core.Context;

@ath("/users/")
public class UsersResource {

@Context Urilnfo urilnfo;

2-21

http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/html4/interact/forms.html#h-17.13.4.1
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

Chapter 2
Using Conditional GETs

@ET

@roduces("application/json")
public JSONArray getUsersAsJsonArray() {
JSONArray uri Array = new JSONArray();
for (UserEntity userEntity : getUsers()) {
UriBuilder ub = urilnfo.getAbsolutePathBuilder();

URI userUri = ub
.path(userEntity.getUserid())
.buildQ);

uriArray.put(userUri.toASCIIString());
}

return uriArray;

}

2.11 Using Conditional GETs

A conditional GET enables you to evaluate one or more preconditions before
processing a GET request. If the preconditions are met, a Not Mdified (304)
response can be returned rather than the normal response, potentially reducing
bandwidth and improving server performance.

JAX-RS provides the j avax. ws. rs. core. Request contextual interface enabling you to
perform conditional GETs. You call the eval uat ePrecondi ti ons() method and pass a
javax.ws.rs.core. EntityTag, the last modified timestamp (as a j ava. uti | . Dat e object),
or both. The values are compared to the | f - None- Mat ch or | f - Not - Modi fi ed headers,
respectively, if these headers are sent with the request.

If headers are included with the request and the precondition values match the header
values, then the eval uat ePrecondi ti ons() methods returns a predefined

ResponseBui | der response with a status code of Not Mbdified (304). If the precondition
values do no match, the eval uat ePrecondi ti ons() method returns null and the normal
response is returned, with 200, K status.

Example 2-19 shows how to pass the EntityTag to the eval uat ePrecondi ti ons() method
and build the response based on whether the preconditions are met.

Example 2-19 Using Conditional GETs

@at h("/ enmpl oyee/ {j oi ni ngdat e}")
public class Enployee {
Dat e j oi ni ngdat e;
public Enpl oyee(@at hParan("j oi ni ngdate") Date joiningdate, @Context Request req,
@ontext Uilnfo ui) {
this.joiningdate = joiningdate;

this.tag = conputeEntityTag(ui.getRequestUri());

ORACLE 2-22

Chapter 2
Accessing the WADL

if (req.getMthod().equal s("GET")) {
Response.ResponseBuilder rb = reqg.evaluatePreconditions(tag);
/1 Preconditions net
if (rb = null) {
return rb.build();
1

/1 Preconditions not net
rb = Response.ok();
rb.tag(tag);

return rb.build();

}

2.12 Accessing the WADL

The Web Application Description Language (WADL) is an XML-based file format that
describes your RESTful web services application. By default, a basic WADL is

generated at runtime and can be accessed from your RESTful web service by issuing
a GET on the /appl i cation. wadl resource at the base URI of your RESTful application.

For example:

GET http://<path_to_REST app>/application.wadl

Alternatively, you can use the OPTI ONS method to return the WADL for particular
resource.

Example 2-20 shows an example of a WADL for the simple RESTful web service
shown in Example 2-1.

Example 2-20 Example of a WADL

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<application xmns="http://research. sun. com wadl / 2006/ 10" >
<doc xmns:jersey="http://jersey.dev.java.net/"
jersey: generat edBy="Jersey: 0.10-ea- SNAPSHOT 08/27/2008 08: 24 PM'/>
<resources base="http://local host:9998/">
<resource path="/hel | oworld">
<net hod name="CET" id="sayHel | 0">
<response>
<representation nedi aType="text/plain"/>
</ response>
</ met hod>
</resource>
</resour ces>
</ application>

2.13 More Advanced RESTful Web Service Tasks

The Jersey 2.22 User Guide provides information about more advanced RESTful web
service development tasks. See this guide, available at https://jersey. github.io/
docunment ati on/ 2. 22/ i ndex. ht nl , for the following topics:

e Context and Dependency Injection (CDI)
* Enterprise Java Beans (EJB)
« JSON

ORACLE 2-23

https://jersey.github.io/documentation/2.22/index.html
https://jersey.github.io/documentation/2.22/index.html
https://jersey.github.io/documentation/2.22/user-guide.html#deployment.javaee.cdi
https://jersey.github.io/documentation/2.22/user-guide.html#deployment.javaee.ejb
https://jersey.github.io/documentation/2.22/user-guide.html#json

Chapter 2
More Advanced RESTful Web Service Tasks

« XML

ORACLE 2.24

https://jersey.github.io/documentation/2.22/user-guide.html#xml

Developing RESTful Web Service Clients

You can develop Java EE web service clients that conform to the Representational
State Transfer (REST) architectural style using the Jersey 2.x Java API for RESTful
Web Services (JAX-RS) 2.0 reference implementation (RI).

" Note:

Support for the Jersey 1.18 (JAX-RS 1.1RI) client APIs are deprecated in this
release of WebLogic Server but are maintained for backward compatibility.
See Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1
RI)

Oracle recommends that you update your RESTful client applications to use
the Jersey 2.x (JAX-RS 2.0 RI) client APIs as described in this chapter at
your earliest convenience.

This chapter includes the following sections:

e Summary of Tasks to Develop RESTful Web Service Clients
* Example of a RESTful Web Service Client

* Invoking a RESTful Web Service from a Standalone Client

3.1 Summary of Tasks to Develop RESTful Web Service
Clients

Some of the tasks required to develop a RESTful web service client include creating
the client class, targeting a web resource, identifying resources on the target, and
more. The following table summarizes a subset of the tasks that are required to
develop RESTful web service clients using Jersey 2.x (JAX-RS 2.0 RI).

Table 3-1 Summary of Tasks to Develop RESTful Web Service Clients

Task More Information

Create and configure an instance of the Creating and configuring a Client instance in Jersey 2.22

javax.ws.rs.client.dient class. User Guide

Target the Web resource. Targeting a web resource in Jersey 2.22 User Guide

Identify resources on WebTarget. Identifying resource on WebTarget in Jersey 2.22 User
Guide

Invoke an HTTP request. Invoking a HTTP request in Jersey 2.22 User Guide

ORACLE 3-1

https://jersey.github.io/documentation/2.22/client.html#d0e4279
https://jersey.github.io/documentation/2.22/client.html#d0e4463
https://jersey.github.io/documentation/2.22/client.html#d0e4531
https://jersey.github.io/documentation/2.22/client.html#d0e4607

Chapter 3
Example of a RESTful Web Service Client

For information about developing RESTful web service clients using Oracle
JDeveloper, see Creating RESTful Web Services and Clients in Developing
Applications with Oracle JDeveloper.

3.2 Example of a RESTful Web Service Client

You can learn more about how to create a RESTful web service client by viewing an
example.The following is a simple example that shows how a client can be used to call
the RESTful web service defined in Example 2-1. In this example:

e The dient instance is created and a WebTar get defined.

e The resource path is defined to access the Web resource.

e The Invocation. Bui | der is used to send a get request to the resource.

* The response is returned as a String value.
Example 3-1 Simple RESTful Web Service Client Using Jersey 2.x (JAX-RS 2.0

RI)

package sanpl es. helloworld.client;

i mport javax.

i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.

public class

rs.client.dient;
rs.client.CdientBuilder;
rs.client.lnvocation;
rs.client.WebTarget;
rs.core. Medi aType;
rs.core. Response;

555555

hel | oWor | dd i ent {

public static void main(String[] args) {
Client client = CientBuilder.newdient();
\ebTarget target = client.target("http://Iocal host: 7101/ restservice");
\ebTar get resourceVWebTar get;
resour ce\bTarget = target. path("resources/hell oworld");
| nvocati on. Bui | der invocati onBuil der;
i nvocationBui | der = resourceVebTar get. request (
Medi aType. TEXT_PLAI N_TYPE) ;
Response response = invocationBuil der.get();
System out. println(response. get Status());
System out. println(response.readEntity(String.class));

For complete details, see Client APl in Jersey 2.22 User Guide.

3.3 Invoking a RESTful Web Service from a Standalone

Client

When invoking a RESTful web service from an environment that does not have Oracle
Fusion Middleware or WebLogic Server installed locally, and without the entire set of

ORACLE

3-2

https://jersey.github.io/documentation/2.22/client.html

ORACLE

Chapter 3
Invoking a RESTful Web Service from a Standalone Client

Oracle Fusion Middleware or WebLogic Server classes in the CLASSPATH, you can
use the standalone client JAR file when invoking the web service.

The standalone RESTful web service client JAR supports basic JAX-RS client-side
functionality and OWSM security policies.

To use the standalone RESTful web service client JAR file with your client application,
perform the following steps:

1.

Create a Java SE client using your favorite IDE, such as Oracle JDeveloper. See
Developing and Securing Web Services in Developing Applications with Oracle
JDeveloper.

Copy the file ORACLE_HOVE/ or acl e_conmon/ nodul es/ cl i ent s/

comoracle.jersey.fmw client.jar from the computer hosting Oracle Fusion
Middleware to the client computer, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle Fusion Middleware.

For example, you might copy the file into the directory that contains other classes
used by your client application.

Add the JAR file to your CLASSPATH.

Note:

Ensure that your CLASSPATH includes the JAR file that contains the Ant
classes (ant . j ar) as a subset are used by the standalone client JAR
files. This JAR file is typically located in the i b directory of the Ant
distribution.

Configure your environment for Oracle Web Services Manager (OWSM) policies.
This step is optional, required only if you are attaching OWSM security policies to
the RESTful web services client.

The configuration steps required vary based on the type of policy being attached.
Examples are provided below. For additional configuration requirements, see
Configuring Java SE Applications to Use OPSS in Securing Applications with
Oracle Platform Security Services.

Example: Basic Authentication

For example, to support basic authentication using the or acl e/
wss_http_token_client_policy security policy, perform the following steps:

a. Copythejps-config-jse.xn and audit-store.xnl files from the domai n_hone/
confi g/ f mmconfi g directory, where domai n_hone is the name and location of the
domain, to a location that is accessible to the RESTful client.

b. Create a wallet (cwal | et . sso) in the same location that you copied the files in
step 2 that defines a map called oracl e. wsm securi ty and the credential key
name that the client application will use (for example, webl ogi c- csf - key).

The location of the file cwal | et . sso is specified in the configuration file j ps-
config-jse.xn with the element <ser vi cel nst ance>. See Using File Credential
Stores in Securing Applications with Oracle Platform Security Services.

c. Onthe Java command line, pass the following property defining the JPS
configuration file copied in step 1:

-Doracl e. security.]ps.config=<pat hToConfi gFi | e>

3-3

ORACLE

Chapter 3
Invoking a RESTful Web Service from a Standalone Client

See About Java SE Application Security in Securing Applications with Oracle
Platform Security Services.

Example: SSL

For example, to support SSL policies, perform the following steps:

a.

Copy the j ps-config-jse. xni and audit-store.xnl files from the domai n_hone/
confi g/ f mmconfi g directory, where domai n_hone is the name and location of the
domain, to a location that is accessible to the RESTful client.

On the Java command line, pass the following properties defining the JPS
configuration file copied in step 1:

Define the JPS configuration file copied in step 1:

-Doracl e. security.jps.config=<pathToConfigFil e>

See About Java SE Application Security in Securing Applications with Oracle
Platform Security Services.

Define the trust store containing the trusted certificates:

- Dj avax. net. ssl.trust Store=<trustStore>

See Setting Up One-Way SSL to the LDAP Security Store in Administering
Oracle Fusion Middleware.

Define the trust store password:

- Dj avax. net. ssl . trust St or ePasswor d=<passwor d>

3-4

Building, Packaging, and Deploying
RESTful Web Service Applications

Oracle WebLogic Server provides the components and utilities you need to package
and deploy Java EE web services that conform to the Representational State Transfer
(REST) architectural style using the Jersey 2.x Java API for RESTful Web Services
(JAX-RS) 2.0 reference implementation (RI).

e Building RESTful Web Service Applications
e Packaging RESTful Web Service Applications
* Deploying RESTful Web Service Applications

4.1 Building RESTful Web Service Applications

You can build your RESTful web service and client applications using the compilation
tools, such as Apache Ant, Maven, or your favorite IDE, such as Oracle
JDeveloper.See Overview of WebLogic Server Application Development in Developing
Applications for Oracle WebLogic Server. For more information about JDeveloper, see
Building Java Projects in Developing Applications with Oracle JDeveloper.

4.2 Packaging RESTful Web Service Applications

All RESTful web service applications must be packaged as part of a web application. If
your web service is implemented as an EJB, it must be packaged and deployed within
a WAR.

Table 4-1 summarizes the specific packaging options available for RESTful web
service applications.

Table 4-1 Packaging Options for RESTful Web Service Applications

Packaging Option Description

Application subclass Define a class that extends j avax. ws. rs. core. Appl i cati on to define the
components of a RESTful web service application deployment and provide additional
metadata. You can add a j avax. ws. rs. Appl i cat i onPat h annotation to the subclass
to configure the servlet context path.

See Packaging With an Application Subclass.

Servlet Update the web. xm deployment descriptor to configure the servlet and mappings.
The method used depends on whether your Web application is using Servlet 3.0 or
earlier. See Packaging With a Servlet.

Default resource If you do not configure the servlet context path in your configuration using either of the
options specified above, the WebLogic Server provides a default RESTful web service
application servlet context path, r esour ces. See Packaging as a Default Resource.

ORACLE 4-1

Chapter 4
Packaging RESTful Web Service Applications

4.2.1 Packaging With an Application Subclass

In this packaging scenario, you create a class that extends

javax.ws.rs. core. Appl i cation to define the components of a RESTful web service
application deployment and provides additional metadata. See

javax.ws.rs.core. Application in the Java EE 7 Specification APIs.

Within the Appl i cati on subclass, override the get asses() and get Si ngl et ons()
methods, as required, to return the list of RESTful web service resources. A resource
is bound to the Appl i cati on subclass that returns it.

Note that an error is returned if both methods return the same resource.

Use the j avax. ws. rs. Appl i cati onPat h annotation to define the base URI pattern that
gets mapped to the servlet. For more information about how this information is used in
the base URI of the resource, see What Happens at Runtime: How the Base URI is
Constructed. See the @\ppl i cati onPat h annotation in the Java EE 7 Specification APIs.

For simple deployments, no web. xni deployment descriptor is required. For more
complex deployments, for example to secure the web service or specify initialization
parameters, you can package a web. xni deployment descriptor with your application,
as described in Packaging With a Servlet.

Example 4-1 provides an example of a class that extends

javax.ws.rs. core. Appl i cation and uses the @ppl i cationPat h annotation to define the
base URI of the resource.

Example 4-1 Example of a Class that Extends javax.ws.rs.core.Application

inport javax.ws.rs.core.Application;
javax.ws.rs. ApplicationPat h;

@\ppl i cationPath("resources")
public class MyApplication extends Application {
public Set<C ass<?>> getd asses() {
Set < ass<?>> s = new HashSet <C ass<?>>();
s. add(Hel | oWor| dResour ce. cl ass);
return s;

Alternatively, use the following API to scan for root resource and provider classes for a
specified classpath or a set of package names:

e org. glassfish.jersey. server.ResourceConfig, as described in JAX-RS Application
Model in Jersey 2.22 User Guide

4.2.2 Packaging With a Servlet

The following sections describe how to package the RESTful web service application
with a servlet using the web. xm deployment descriptor, based on whether your Web
application is using Servlet 3.0 or earlier.

* How to Package the RESTful Web Service Application with Servlet 3.0
* How to Package the RESTful Web Service Application with Pre-3.0 Servlets

ORACLE 4-2

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/core/Application.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/ApplicationPath.html
https://jersey.github.io/documentation/2.22/deployment.html#environmenmt.appmodel
https://jersey.github.io/documentation/2.22/deployment.html#environmenmt.appmodel

Chapter 4
Packaging RESTful Web Service Applications

The web. xm file is located in the WEB- | NF directory in the root directory of your
application archive. For more information about the web. xni deployment descriptor, see
web.xml Deployment Descriptor Elements in Developing Web Applications, Servlets,
and JSPs for Oracle WebLogic Server.

4.2.2.1 How to Package the RESTful Web Service Application with Servlet 3.0

To package the RESTful Web Service application with Servlet 3.0, update the web. xni
deployment descriptor to define the elements defined in the following sections. The
elements vary depending on whether you include in the package a class that extends
javax.ws.rs.core. Application.

Packaging the RESTful Web Service Application Using web.xml With Application

Subclass

Packaging the RESTful Web Service Application Using web.xml Without
Application Subclass

For more information about any of the elements, see servlet in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

4.2.2.1.1 Packaging the RESTful Web Service Application Using web.xml With Application

Subclass

If a class that extends j avax. ws. rs. core. Appl i cati on is packaged with web. xnl , then
define the elements as described in Table 4-2. For an example, see Example 4-2.

Table 4-2 Packaging the RESTful Web Service Application Using web.xml With Application

Subclass

Element

Description

<servl et - name>

Set this element to the fully qualified name of the class that extends
javax.ws.rs.core. Application. You can specify multiple servlet entries to define multiple
Appl i cati on subclass names.

<servl et-cl ass>

Not required.

<init-paran>

Not required.

<servl et - mappi ng>

Set as the base URI pattern that gets mapped to the servlet.
If not specified, one of the following values are used, in order of precedence:

e @\pplicationPat h annotation value defined in the j avax. ws. rs. core. Application
subclass. For example:

package test;
@\ppl i cationPath("res")
public class M/JaxRsApplication extends java.ws.rs.core. Application

See Packaging With an Application Subclass.
* The value resour ces. This is the default base URI pattern for RESTful web service
applications. See Packaging as a Default Resource.
If both the <ser vl et - mappi ng> and @ppl i cati onPat h are specified, the <servl et -
mappi ng> takes precedence.

For more information about how this information is used in the base URI of the resource,
see What Happens at Runtime: How the Base URI is Constructed.

ORACLE

4-3

Chapter 4
Packaging RESTful Web Service Applications

The following example demonstrates how to update the web. xni file if a class that
extends j avax. ws. rs. core. Appl i cati on is packaged with web. xni .

Example 4-2 Updating web.xml for Serviet 3.0 If Application Subclass is in Package
<web- app>
<servlet>

<servl et - name>or g. f 00. rest. MyAppl i cati on</ servl et - nane>
</servlet>

.<.s;ervl et - mappi ng>
<servl et - name>or g. f 00. rest. MyAppl i cati on</ servl et - nane>
<url-pattern>/resources</url-pattern>
</ servl et - mappi ng>
</ \Neb ;’lep>
4.2.2.1.2 Packaging the RESTful Web Service Application Using web.xml Without
Application Subclass

If a class that extends j avax. ws. rs. core. Appl i cati on is not packaged with web. xn ,
then define the elements as described in Table 4-3.

" Note:

In this scenario, you cannot support multiple RESTful web service
applications.

Table 4-3 Packaging the RESTful Web Service Application Using web.xml Without Application
Subclass

Element Description
<servl et - name> Set this element to the desired servlet name.
<servl et-class> Set this element to or g. gl assfi sh. jersey. servl et. Servl et Cont ai ner to delegate all

Web requests to the Jersey servlet.

<init-paranp Not required.

<servl et - mappi ng> Set as the base URI pattern that gets mapped to the servlet. If not specified, this value
defaults to r esour ces. See Packaging as a Default Resource.

For more information about how this information is used in the base URI of the resource,
see What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web. xni file if a class that
extends j avax. ws. rs. core. Appl i cati on is not packaged with web. xm .

Example 4-3 Updating web.xml for Servlet 3.0 If Application Subclass is Not in Package

<web- app>
<servl et>
<servl et-nane>Jersey Vb Application</servlet-nane>
<servl et-class>org. gl assfish.jersey.servlet. Servl et Contai ner</servl et-cl ass>
</ servlet>
<servl et - mappi ng>
<servl et-nane>Jersey Vb Application</servlet-nanme>

ORACLE 4-4

Chapter 4
Packaging RESTful Web Service Applications

<url-pattern>/*</url-pattern>
</ servl et - mappi ng>

</ web- app>

4.2.2.2 How to Package the RESTful Web Service Application with Pre-3.0

Servlets

Table 4-4 describes the elements to update in the web. xni deployment descriptor to
package the RESTful web service application with a pre-3.0 servlet.

Table 4-4 Packaging the RESTful Web Service Application with Pre-3.0 Servilets
|

Element

Description

<servl et - name>

Set this element to the desired servilet name.

<servl et-cl ass>

Set this element to or g. gl assfi sh. jersey. servl et. Servl et Cont ai ner to delegate all
Web requests to the Jersey servlet.

<init-paran>

Set this element to define the class that extends the j avax. ws. rs. core. Appl i cati on:

<init-parane
<par am nanme>
javax.ws.rs. Application
</ par am nane>
<par am val ue>
Appl i cati onSubcl assNane
</ param val ue>
</init-paran

Alternatively, you can specify the packages to be scanned for resources and providers, as
follows:

<init-parane
<par am nanme>
jersey.config.server. provider. packages
</ par am nane>
<par am val ue>
projectl
</ param val ue>
</init-paran
<init-parane
<par am nanme>
jersey.config.server. provider.scanning.recursive
</ par am nane>
<par am val ue>
fal se
</ param val ue>
</init-paranm

ORACLE

4-5

Chapter 4
Packaging RESTful Web Service Applications

Table 4-4 (Cont.) Packaging the RESTful Web Service Application with Pre-3.0 Servlets

Element

Description

<servl et - mappi ng>

Set as the base URI pattern that gets mapped to the servlet.
If not specified, one of the following values are used, in order of precedence:

e @pplicationPat h annotation value defined in the j avax. ws. rs. core. Appl i cation
subclass. For example:

package test;
@\ppl i cationPath("res")
public class MyJaxRsApplication extends java.ws.rs.core. Application

See Packaging With an Application Subclass.
e The value resour ces. This is the default base URI pattern for RESTful web service
applications. See Packaging as a Default Resource.
If both the <ser vl et - mappi ng> and @\ppl i cati onPat h are specified, the <servl et -
mappi ng> takes precedence.

For more information about how this information is used in the base URI of the resource,
see What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web. xni file if a class that
extends j avax. ws. rs. core. Appl i cati on is not packaged with web. xm .

Example 4-4 Updating web.xml for Pre-3.0 Servlets

<web- app>
<servlet>

<servl et-name>Jersey Wb Application</servl et-nane>
<servl et-cl ass>org. gl assfish.jersey.servlet. Servl et Contai ner</servl et-class>

<init-paranp

<par am name>j er sey. confi g. server. provi der. packages</ par am nane>
<par am val ue>or g. f 00. myr esour ces, or g. bar. ot herresour ces</ par am val ue>

</init-paranm
<init-paranp

<par am name>j er sey. confi g. server. provi der. scanni ng. r ecur si ve</ par am nanme>
<par am val ue>f al se</ param val ue>

</init-paranm

</servlet>

</ web- app>

4.2.3 Packaging as a Default Resource

By default, WebLogic Server defines a default RESTful web service application
context path, resour ces. The default RESTful web service application context path is
used if the following are true:

ORACLE

You did not update the web. xnl deployment descriptor to include a Servlet
mapping, as described in Packaging With a Servlet.

The @ppl i cati onPat h annotation is not defined in the
javax.ws.rs. core. Appl i cation subclass, as described in Packaging With an
Application Subclass.

4-6

Chapter 4
Deploying RESTful Web Service Applications

< Note:

If a servlet is already registered at the default context path, then a warning is
issued.

For example, if the relative URI of the root resource class for the RESTful web service
application is defined as @at h(' / hel | owor| d') and the default RESTful web service
application context path is used, then the RESTful web service application resource
will be available at:

http://<host>: <port >/ <cont ext Pat h>/ r esour ces/ hel | oworl d

4.3 Deploying RESTful Web Service Applications

ORACLE

Application deployment refers to the process of making an application or module
available for processing client requests in a WebLogic domain. For information about
deploying a web application, see Understanding WebLogic Server Deployment in
Deploying Applications to Oracle WebLogic Server.

4-7

Securing RESTful Web Services and

Clients

Oracle WebLogic Server fully supports the means to secure Java EE web services
that conform to the Representational State Transfer (REST) architectural style using
Java API for RESTful Web Services (JAX-RS) reference implementation (RI).

e About RESTful Web Service Security

e Securing RESTful Web Services and Clients Using OWSM Policies
e Securing RESTful Web Services Using web.xml

e Securing RESTful Web Services Using SecurityContext

e Securing RESTful Web Services Using Java Security Annotations

5.1 About RESTful Web Service Security

You can secure your RESTful web services so that they can support authentication,
authorization, or encryption. You can use one of the following methods:

e Attaching Oracle Web Services Manager (OWSM) policies. See Securing RESTful
Web Services and Clients Using OWSM Policies.

e Updating the web. xm deployment descriptor to access information about the
authenticated users. See Securing RESTful Web Services Using web.xml.

* Using the javax. ws.rs. core. SecurityCont ext interface to access security-related
information for a request. See Securing RESTful Web Services Using
SecurityContext.

e Applying annotations to your JAX-RS classes. See Securing RESTful Web
Services Using Java Security Annotations.

For information about developing RESTful web service clients using Oracle
JDeveloper, see How to Attach Policies to RESTful Web Services and Clients in
Developing Applications with Oracle JDeveloper.

5.2 Securing RESTful Web Services and Clients Using
OWSM Palicies

ORACLE

Only a subset of OWSM security policies are supported for RESTful web services.For
information, see Which OWSM Policies Are Supported for RESTful Web Services in
Securing Web Services and Managing Policies with Oracle Web Services Manager.
You can attach OWSM security policies to RESTful web services using one of the
following methods:

* Programmatically, at design time, as described in Attaching Policies to RESTful
Web Services and Clients at Design Time in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

5-1

Chapter 5
Securing RESTful Web Services Using web.xml

» Post-deployment, both directly and globally, using:

— Fusion Middleware Control, as described in About Attaching Policies to Web
Services and Clients Using Fusion Middleware Control in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

— WLST, as described in About Attaching Policies to Web Services and Clients
Using WLST in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

Example 5-1 provides an example of using WLST to attach the oracl e/

htt p_basi c_aut h_over _ssl _service_pol i cy policy to a RESTful service. See Attaching
Policies Directly Using WLST in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

Example 5-1 Securing RESTful Web Services Using OWSM Policies With WLST

C\ O acl e\ M ddl ewar e\ or acl e_common\ cormon\ bi n> wlst.cmd

w s:/of fline> connect("weblogic","password"”,"t3://myAdminServer.example.com:7001")
Connecting to t3://nyAdninServer.exanpl e.com 7001" with userid weblogic ...
Successfully connected to Admin Server "Adm nServer" that belongs to domain "my_domain".

Varning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

w s: / my_domai n/ server Confi g> beginWSMSession()
Location changed to domainRuntinme tree. This is a read-only tree with Donmai nMBean as the root.
For nore help, use hel p(' domai nRuntine')

Session started for modification.
w s: / my_domai n/ server Confi g> selectWSMPolicySubject(“weblogic/my_domain/jaxrs_pack®,
"#jaxrs_pack.war®, "REST-Resource(Jersey)")

The policy subject is selected for nodification.

w s: / my_domai n/ server Confi g> attachWSMPolicy("oracle/http_basic_auth_over_ssl_service_policy")
Policy reference "oracl e/ http_basic_auth_over_ssl_service_policy" added.

w s: / my_domai n/ server Confi g> commitWSMSession()

The policy set for subject "/weblogic/ny_domain/jaxrs_pack|#j axrs_pack. war | REST- Resour ce(Jersey)" was
saved successfully.

5.3 Securing RESTful Web Services Using web.xml

You secure RESTful web services using the web. xnl deployment descriptor as you
would for other Java EE Web applications. For complete details, see:

» Developing Secure Web Applications in Developing Applications with the
WebLogic Security Service.

e Securing Web Applications in The Java EE 7 Tutorial.

For example, to secure your RESTful web service using basic authentication, perform
the following steps:

1. Define a <security-constraint> for each set of RESTful resources (URIs) that you
plan to protect.

ORACLE 5-2

https://docs.oracle.com/javaee/7/tutorial/security-webtier002.htm#GKBAA

Chapter 5
Securing RESTful Web Services Using SecurityContext

2. Use the <l ogi n- confi g> element to define the type of authentication you want to
use and the security realm to which the security constraints will be applied.

3. Define one or more security roles using the <security-rol e> tag and map them to
the security constraints defined in step 1. See security-role in Developing
Applications with the WebLogic Security Service.

4. To enable encryption, add the <user - dat a- const r ai nt > element and set the
<transport - guar ant ee> subelement to CONFI DENTI AL. See user-data-constraint in
Developing Applications with the WebLogic Security Service.

Example 5-2 Securing RESTful Web Services Using Basic Authentication

The following example demonstrates how to secure a Jersey 2.x (JAX-RS 2.0)
RESTful web service using basic authentication.

<web- app>
<servlet>
<servl et - nane>Rest Ser vl et </ servl et - nane>

<servl et-class>org. gl assfish.jersey.servlet. Servl et Cont ai ner</servl et-class>

</servlet>
<servl et - mppi ng>
<servl et - nane>Rest Ser vl et </ servl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
<security-constraint>
<web-resour ce-col | ection>
<web- r esour ce- name>Or der s</ web- r esour ce- nane>
<url-pattern>/orders</url-pattern>
<ht t p- met hod>GET</ ht t p- et hod>
<ht t p- met hod>POST</ ht t p- et hod>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<rol e- name>admi n</ r ol e- name>
</ aut h-constraint >
</ security-constraint>
<l ogi n-config>
<aut h- met hod>BASI C</ aut h- net hod>
<real m nane>def aul t </ r eal m name>
</l ogi n-confi g>
<security-rol e>
<rol e-name>adm n</rol e- nane>
</security-rol e>
</ web- app>

5.4 Securing RESTful Web Services Using SecurityContext

The j avax. ws.rs. core. Securi t yCont ext interface provides access to security-related
information for a request. The Securit yCont ext provides functionality similar to
javax.servlet.http. H t pServl et Request , enabling you to access the following security-
related information:

e java.security.Principal object containing the name of the user making the
request.

» Authentication type used to secure the resource, such as BASI C_AUTH, FORM AUTH,
and CLI ENT_CERT_AUTH.

* Whether the authenticated user is included in a particular role.

ORACLE 5-3

Chapter 5
Securing RESTful Web Services Using Java Security Annotations

* Whether the request was made using a secure channel, such as HTTPS.

You access the Securi t yCont ext by injecting an instance into a class field, setter
method, or method parameter using the j avax. ws. rs. core. Cont ext annotation.

For more information, see the following topics in the Java EE 7 Specification APIs:
e SecurityContext interface
° @ontext annotation

Example 5-3 shows how to inject an instance of Securit yCont ext into the sc method
parameter using the @ont ext annotation, and check whether the authorized user is
included in the adni n role before returning the response.

Example 5-3 Securing RESTful Web Service Using SecurityContext

package sanpl es. hel | oworl d;

i mport javax.ws.rs.CET;

inport javax.ws.rs. Path;

i mport javax.ws.rs. Produces;

import javax.ws.rs.core.SecurityContext;
import javax.ws.rs.core.Context;

@ath("/statel ess")
@t at el ess(nanme = "JaxRSSt at el essEJB")
public class StlsEIJBApp {

@EET

@roduces("text/plain;charset=UTF-8")

@ath("/hello")

public String sayHel | o(@Context SecurityContext sc) {
if (sc.isUserInRole(admin™)) return "Hello Wrld!'";
t hrow new SecurityException("User is unauthorized.");

}

5.5 Securing RESTful Web Services Using Java Security
Annotations

The javax. annot ati on. securi ty package provides annotations that you can use to
secure your RESTful web services.These annotations are defined in Table 5-1.

Table 5-1 Annotations for Securing RESTful Web Services

Annotation Description

@enyAl | Specifies that no security roles are allowed to invoke the specified methods.

@ermtAll Specifies that all security roles are allowed to invoke the specified methods.

@0l esAl | owed Specifies the list of security roles that are allowed to invoke the methods in the application.

Before you can use the annotations defined in Table 5-1, you must register the roles-
allowed feature, as described in Securing JAX-RS resources with standard
javax.annotation.security annotations in the Jersey 2.22 User Guide.

ORACLE 5-4

http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/core/SecurityContext.html
http://docs.oracle.com/javaee/7/api/index.html?javax/ws/rs/core/Context.html
https://jersey.github.io/documentation/2.22/security.html#annotation-based-security
https://jersey.github.io/documentation/2.22/security.html#annotation-based-security

Chapter 5
Securing RESTful Web Services Using Java Security Annotations

Example 5-4 shows how to define the security roles that are allowed, by default, to
access the methods defined in the hel | oWr 1 d class. The sayHel | o method is annotated
with the @l esAl | ows annotation to override the default and only allow users that
belong to the ADM N security role.

Example 5-4 Securing RESTful Web Service Using Java Security Annotations

package sanpl es. hel | oworl d;

inport javax.ws.rs. CET,;

inport javax.ws.rs. Path;

inport javax.ws.rs.Produces;

import javax.annotation.Security.RolesAllowed;

@at h("/ hel | owor | d")
@RolesAllowed({""ADMIN*, "ORG1"})
public class hellovrld {

@ET

@at h("sayHel | 0")

@r oduces("text/plain")

@olesAl lows(""ADMIN'™)

public String sayHel lo() {
return "Hello Wrld!";

}
}

See also:

e Specifying Authorized Users by Declaring Security Roles in The Java EE 7
Tutorial

e javax.annotation. security Javadoc

ORACLE 5-5

https://docs.oracle.com/javaee/7/tutorial/security-javaee002.htm#GJGCQ
http://docs.oracle.com/javaee/7/api/index.html?javax/annotation/security/package-summary.html

Testing RESTful Web Services

After you have deployed a Web application that contains a RESTful web service to

WebLogic Server, you can test your application. This chapter describes how to test
Java EE web services that conform to the Representational State Transfer (REST)

architectural style using Java API for RESTful Web Services (JAX-RS).

Table 6-1 lists the methods that can be employed to test your RESTful web service.

Table 6-1 Methods for Testing RESTful Web Services

Method

Description

Enterprise Manager Fusion Use the test interface provided with Enterprise Manager Fusion Middleware Control to
Middleware Control test the RESTful web service resource methods. See Introduction to Testing a

RESTful Web Service in Administering Web Services.

WebLogic Server

Navigate to the Testing tab for your application deployment in the WebLogic Server

Administration Console Administration Console to validate the application deployment and view the WADL

file. See Test RESTful Web Services in Oracle WebLogic Server Administration
Console Online Help.

ORACLE

6-1

Monitoring RESTful Web Services and
Clients

Oracle WebLogic Server supports a humber of ways to monitor Java EE web services
that conform to the Representational State Transfer (REST) architectural style using
Java API for RESTful Web Services (JAX-RS).

e About Monitoring RESTful Web Services

e Monitoring RESTful Web Services Using Enterprise Manager Fusion Middleware
Control

* Monitoring RESTful Web Services Using the Administration Console
e Monitoring RESTful Web Services Using WLST

« Enabling the Tracing Feature

e Disabling RESTful Web Service Application Monitoring

» Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service
Application

7.1 About Monitoring RESTful Web Services

WebLogic Server provides several runtime MBeans that capture runtime information
and let you monitor runtime statistics for your RESTful web service
applications.Application monitoring is useful when you need to identify the
performance hotspots in your JAX-RS application, observe execution statistics of
particular resources, or listen to application or request lifecycle events.

You can use the methods defined in Table 7-1 to monitor your RESTful web service
applications.

Table 7-1 Methods for Monitoring RESTful Web Services

L __|
Method Description

Fusion Middleware Control Enterprise Manager Access runtime information and monitor runtime
statistics, as described in Monitoring RESTful Web
Services Using Enterprise Manager Fusion Middleware
Control.

WebLogic Server Administration Console Access runtime information and monitor runtime
statistics, as described in Monitoring RESTful Web
Services Using the Administration Console.

WebLogic Scripting Tool (WLST) Access runtime information and monitor runtime
statistics, as described in Monitoring RESTful Web
Services Using WLST.

Logging filter Monitor how a request is processed and dispatched to
Jersey JAX-RS RI components, as described in
Enabling the Tracing Feature.

ORACLE 7-1

Chapter 7
Monitoring RESTful Web Services Using Enterprise Manager Fusion Middleware Control

In addition to the monitoring methods described in Table 7-1, Jersey 2.x (JAX-RS 2.0
RI) provides additional monitoring features, including support for event listeners and
statistics monitoring. See Monitoring Jersey Applications in the Jersey 2.22 User
Guide.

" Note:

RESTful web service monitoring is enabled by default. In some cases, this
may result in increased memory consumption. You can disable the
monitoring feature at the domain level, and at the application level. See
Disabling RESTful Web Service Application Monitoring.

7.2 Monitoring RESTful Web Services Using Enterprise
Manager Fusion Middleware Control

Using Enterprise Manager Fusion Middleware Control, you can monitor runtime
statistics for your RESTful Applications and resources, such as error and invocation
counts, execution times, and so on. For complete information, see Monitoring Web
Services in Administering Web Services.

7.3 Monitoring RESTful Web Services Using the
Administration Console

Using the WebLogic Server Administration Console, you can monitor enhanced
runtime statistics for your RESTful applications and resources, including detailed
deployment and configuration data, global execution statistics, and resource and
resource method execution statistics.

To monitor your deployed RESTful web services using the WebLogic Server
Administration Console, follow these steps:

1. Invoke the WebLogic Server Administration Console in your browser using the
following URL:

http://[host]:[port]/consol e

where:
* host refers to the computer on which WebLogic Server is running.

e port refers to the port number on which WebLogic Server is listening (default
value is 7001).

2. Follow the procedure described in Monitor RESTful Web services in Oracle
WebLogic Server Administration Console Online Help.

7.4 Monitoring RESTful Web Services Using WLST

You can use WLST to monitor the runtime MBeans that capture runtime information
and runtime statistics for your RESTful web service applications.These MBeans are
listed and described in Table 7-2.

ORACLE 7-2

https://jersey.github.io/documentation/2.22/monitoring_tracing.html#monitoring

ORACLE

Chapter 7
Monitoring RESTful Web Services Using WLST

Table 7-2 Runtime MBeans for Monitoring RESTful Web Services
|

Runtime MBean

Description

Excepti onMapper Stati stic
s

Displays monitoring information about the RESTful web service
application exception mapper executions. See
JaxRsExceptionMapperStatisticsRuntimeMBean in MBean
Reference for Oracle WebLogic Server.

JaxRsAppl i cation

Displays monitoring information for the RESTful web service
application. See JaxRsApplicationRuntimeBean in MBean
Reference for Oracle WebLogic Server.

Request Statistics

Displays monitoring information about requests executed by the
RESTful web service application. The statistics apply to all
requests handled by the application and are not bound to any
specific resource or resource method. See
JaxRsExecutionStatisticsRuntimeMBean in MBean Reference
for Oracle WebLogic Server.

Resour ceConfi g

Displays monitoring information about the RESTful web service
application resource configuration. See
JaxRsResourceConfigTypeRuntimeBean inMBean Reference
for Oracle WebLogic Server.

Note: The JaxRsResour ceConfi gTypeRunt i meBean is deprecated
in this release of WebLogic Server. You should use the
Properties and Appl i cationd ass attributes of the

JaxRsAppl i cati onRunti meMBean instead. See
JaxRsApplicationRuntimeBean inMBean Reference for Oracle
WebLogic Server.

ResponseStatistics

Displays monitoring information about responses created by the
RESTful web service application. The statistics apply to all
responses created by the application and are not bound to any
specific resource or resource method. See
JaxRsResponseStatisticsRuntimeMBean in MBean Reference
for Oracle WebLogic Server.

Root Resour ces

Displays monitoring information about the RESTful web service
resource. Any object that is managed by a container (such as
EJB) will have application scope. All other resources by default
will have request scope. See JaxRsResourceRuntimeMBeanin
MBean Reference for Oracle WebLogic Server.

Note: This MBean is deprecated in this release of WebLogic
Server. You should use RootResourcesByClass instead.

Root Resour cesByCl ass

Displays monitoring information for each resource class that is
deployed in the RESTful web service application. One resource
class can serve requests matched to different URIs. The array
contains resource classes that are registered in the resource
model plus resource classes of sub resources returned from sub
resource locators. See JaxRsResourceRuntimeMBean inMBean
Reference for Oracle WebLogic Server.

Root Resour cesbyURI

Displays monitoring information for each URI that is exposed in
the RESTful web service application. See
JaxRsUriRuntimeMBean in MBean Reference for Oracle
WebLogic Server.

Servl et

Displays monitoring information for the servlet that hosts the
RESTful web service application. See ServletRuntimeMBean in
MBean Reference for Oracle WebLogic Server.

7-3

Chapter 7
Monitoring RESTful Web Services Using WLST

To monitor RESTful web services using WLST, perform the steps provided in the
following procedure.

In this procedure, the example steps provided demonstrate how to monitor the JAX-
RS 2.0 Asynchronous Processing sample delivered with the WebLogic Server
Samples Server, described at Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

1.

Invoke WLST, as described in "Invoking WLST" in Understanding the WebLogic
Scripting Tool.

For example:
c:\ Oracl e\ oracl e_common\ common\ bi n> wist

Connect to the Administration Server instance, as described in connect in WLST
Command Reference for WebLogic Server.

For example:
ws:/of fline> connect(“weblogic®, "password®, "t3://localhost:8001")

Navigate to the server runtime MBean, as described in serverRuntime in WLST
Command Reference for WebLogic Server.

For example:

wl s: / sanpl es/ server Confi g> serverRuntime()

Location changed to serverRuntinme tree. This is a read-only tree
with ServerRuntimeMBean as the root.
For nore help, use hel p(' serverRuntine')

ORACLE

4.

wl s: /sanpl es/ server Runti me>
Navigate to the Web application component runtime MBean.
For example, to navigate to runtime MBean for the application named j axr s- async:

wl s/ sanpl es/ server Runti me> cd("ApplicationRuntimes/jaxrs-async")

w s: / sanpl es/ server Runti me/ Appl i cati onRunti nes/j axrs-async>
cd("ComponentRuntimes™)

wl s/ sanpl es/ server Runti me/ Appl i cati onRunti nes/j axr s/ Conponent Runti mes> cd
("AdminServer_/jaxrs-async")

Navigate to the application runtime MBean for the RESTful web service request
statistics.

For example:

w s: / sanpl es/ server Runti me/ Appl i cati onRunti nes/j axrs-async/ Conponent Runti nes> cd
("AdminServer_/jaxrs-async”

w s: / sanpl es_domai n/ server Runti me/ Appl i cati onRunti mes/j axrs-async/

Conponent Runt i mes/ Admi nServer _/j axrs-async>

cd ("JaxRsApplications/examples.javaee?.jaxrs.async.MessageApplication/
RequestStatistics/

examples. javaee7. jaxrs.async.MessageApplication_RequestStatistics")

Review the monitoring information displayed for the RESTful web service
application. See JaxRsApplicationRuntimeBean in MBean Reference for Oracle
WebL ogic Server.

For example:

wl s: / sanpl es/ server Runti me/ Appl i cati onRunti nes/j axrs-async/ Conponent Runti nes/
Admi nServer _/j axrs-async

7-4

ORACLE

[JaxRsAppl i cations/ exanpl es. j avaee7. j axrs. async. MessageAppl i cati on/

Request Statistics

[exanpl es. j avaee?. j axrs. async. MessageAppl i cati on_Request Stati stics>

IsQ
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.
.r-.

exanpl es. j avaee7.j axrs. async. MessageAppl i cati on_Request Stati sti

CS

-r--
-r--
-r--
-r--
-r--
-r--
-r--
-r--
-r--
-r--
-r--
-r--
-r--

JaxRsExecutionStatisticsRuntine

AvgTi neLast 15m
AvgTi nelLast 15s
AvgTi neLast 1h
AvgTi neLast 1m
AvgTi neLast 1s
AvgTi neTot al
MaxTi neLast 15m
MaxTi neLast 15s
MaxTi neLast 1h
MaxTi neLast 1m
MaxTi neLast 1s
MaxTi neTot al

M nTi neLast 15m
M nTi neLast 15s
M nTi neLast 1h
M nTi neLast Im
M nTi neLast 1s
M nTi neTot al
Nane

Request Count Last 15m
Request Count Last 15s
Request Count Last 1h
Request Count Last 1m
Request Count Last 1s
Request Count Tot al
Request Rat eLast 15m
Request Rat eLast 15s
Request Rat eLast 1h
Request Rat eLast 1m
Request Rat eLast 1s
Request Rat eTot al

Type

Chapter 7

Monitoring RESTful Web Services Using WLST

-1
-1
-1
-1
-1
0

-1
-1
-1
-1
-1
0

-1
-1
-1
-1
-1
0

coocoooooooo0o0

O OO o oo

w s: / sanpl es/ server Runti me/ Appl i cati onRunti nes/j axrs-async/ Conponent Runti nes/
Admi nServer _/j axrs-async

[JaxRsAppl i cations/ exanpl es. j avaee?. j axrs. async. MessageAppl i cati on/

Request Statistics

[exanpl es. j avaee7?. j axrs. async. MessageAppl i cati on_Request Stati stics>

Navigate to any of the other runtime MBeans described in Table 7-2 to view
additional monitoring information.

Exit WLST, as described in Exiting WLST in Understanding the WebLogic

Scripting Tool.

For example:

wl s: / sanpl es/ server Runti me/ Appl i cationRunti nes/j axrs-async/ Conponent Runti nes/
Admi nServer _/j axrs-async

[JaxRsAppl i cations/ exanpl es. j avaee?. j axrs. async. MessageAppl i cati on/

Request Statistics

[exanpl es. j avaee7. j axrs. async. MessageAppl i cati on_Request Stati stics>exit()
Exiting WebLogi ¢ Scripting Tool .

c:\>

7-5

Chapter 7
Enabling the Tracing Feature

7.5 Enabling the Tracing Feature

The Jersey tracing feature provides useful information that describes how a request is
processed and dispatched to Jersey JAX-RS RI components. Trace messages are
output in the same order as they occur, so the numbering is useful to reconstruct the
tracing order.

When enabled, the Jersey 2.x tracing facility collects useful information for individual
requests from all components of the JAX-RS server-side request processing pipeline.
The information collected may provide vital details for troubleshooting your Jersey or
JAX-RS application.

The tracing information for a single request is returned to the requesting client in the
HTTP headers of the response. In addition, the information is logged on the server-
side using a dedicated Java Logger instance.

For more information about enabling the Jersey 2.x tracing facility, see Tracing
Support in Jersey 2.22 User Guide.

7.6 Disabling RESTful Web Service Application Monitoring

ORACLE

You can disable monitoring for an individual Jersey 2.x Java API for RESTful Web
Services (JAX-RS) application, or globally for an entire WebLogic domain.

For example, you can disable monitoring in the following ways:

» Atthe application level, you can set a WebLogic Server-specific Jersey 2.x
application property, j ersey. confi g. w s. server. noni t ori ng. enabl ed. See Disabling
Monitoring for a RESTful Web Service Application Using Jersey Property.

* At both the application level and at the domain level, you can disable monitoring
using a WebLogic Configuration MBean,
WebAppConponent MBean. JaxRsMbni t or i ngDef aul t Behavi or . See Disabling Monitoring
for a RESTful Web Service Application Using WebLogic Configuration MBean and
Disabling RESTful Web Service Application Monitoring for a WebLogic Domain.

WebLogic Server uses the following algorithm to determine whether monitoring should
be enabled or disabled for each application.

1. WebLogic Server checks the JAX-RS application property
jersey.config.w s.server.nonitoring.enabl ed.

If it is set for the application, then WebLogic Server uses this value to determine if
monitoring should be enabled or disabled for the application. If this value is not
set, it proceeds to the next step.

2. WebLogic Server checks the configuration MBean
WebAppConponent MBean. JaxRsMoni t or i ngDef aul t Behavi or property for the individual
application.

If it is set for the application, then WebLogic Server uses this value to determine if
monitoring should be enabled or disabled for the application. If this value is not
set, it proceeds to the next step.

3. WebLogic Server checks the configuration MBean
ViebAppCont ai ner MBean. JaxRsMbni t or i ngDef aul t Behavi or property setting for the
domain.

7-6

https://jersey.github.io/documentation/2.22/monitoring_tracing.html#tracing
https://jersey.github.io/documentation/2.22/monitoring_tracing.html#tracing

Chapter 7
Disabling RESTful Web Service Application Monitoring

If it is set for the domain, then WebLogic Server uses this value to determine if
monitoring should be enabled or disabled for the application. If this value is not
set, it proceeds to the next step.

4. WebLogic Server uses the default setting, which is to enable JAX-RS monitoring
for the application if none of the configuration properties in the previous steps have
been set.

7.6.1 Disabling Monitoring for a RESTful Web Service Application
Using Jersey Property

Jersey 2.x supports the following WebLogic Server-specific property that you can use
to disable application monitoring for an individual RESTful web service application:

jersey.config.ws.server.monitoring. enabl ed

Setting this property to f al se disables monitoring in the application. You can set this
property programmatically in the JAX-RS application subclass code, or declaratively
via Servlet init parameters specified in the web. xnl as shown in the following examples.

For convenience, the property name is stored in the
webl ogi c. j axrs. server. bl ogi cSer ver Properti es. MONI TORI NG_ENABLED constant field.

Example 7-1 provides an example of how you can disable monitoring
programmatically in a RESTful web service application by extending the JAX-RS
Application class.

Example 7-1 Disable Application Monitoring Programmatically by Extending
the JAX-RS Application Class

ApplicationPath("/")
public class My/Application extends Application {

public Map<String, Object> getProperties() {
final Map<String, Chject> properties = new HashMap<>();
/| Disable JAX-RS Application nonitoring (and WS consol e monitoring) for this
internal application.

properties._put(weblogic.jaxrs.server._WeblogicServerProperties.MONITORING_ENABLED,
false);

return properties;

}
}

Example 7-2 provides an example of how you can disable monitoring
programmatically in a RESTful web service application by extending the JAX-RS
Jersey Resour ceConfi g class.

Example 7-2 Disable Application Monitoring Programmatically by Extending
the Jersey ResourceConfig Class

@\ppl i cationPath("/")
public class MyApplication extends ResourceConfig {

public MyApplication() {
...

/1 Disable JAX-RS Application nonitoring (and WS consol e monitoring) for this

ORACLE .

Chapter 7
Disabling RESTful Web Service Application Monitoring

internal application
property(weblogic. jaxrs.server.WeblogicServerProperties.MONITORING_ENABLED,
false);

}

...
}

Example 7-3 provides an example of how you can disable monitoring declaratively
using Servlet init parameters specified in the web. xni .

Example 7-3 Disable Application Monitoring Declaratively Using Servlet Init
Parameters in web.xml

<?xm version="1.0" encodi ng="1 SO 8859-1"?>
<web-app version="2.5"

xm ns="http://java. sun. com xm / ns/j avaee"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schen®- i nst ance"

xsi : schemalocation="http://java. sun. com xm /ns/javaee http://
j ava. sun. cont xm / ns/ j avaee/ web- app_2_5. xsd" >

<servl et >
<servl et - name>com exanpl es. MyAppl i cati on</ servl et - nane>

<init-param>
<param-name>jersey.config.wls.server.monitoring.enabled</param-name>
<param-value>false</param-value>

</init-param>

<l oad- on- st artup>1</I oad- on- st art up>
</servlet>

<servl et - mappi ng>
<servl et - name>com exanpl es. MyAppl i cati on</ servl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

7.6.2 Disabling Monitoring for a RESTful Web Service Application
Using WebLogic Configuration MBean

ORACLE

After you have deployed a RESTful web service application on WebLogic Server, you
can disable monitoring of the application by using WLST, for example, to set the
JaxRsMoni t ori ngDef aul t Behavi or property to f al se on its WebAppConponent MBean:

webAppConponent MBean. set JaxRsMoni t or i ngDef aul t Behavi or (" fal se")

This is a per-application property that is internally used by Jersey/WebLogic
integration code to determine the state of the default monitoring behavior in the JAX-
RS application:

» If set to true, monitoring for the JAX-RS application is enabled.
e If setto fal se, monitoring for the JAX-RS application is disabled.

* If the property is not set, then the domain-level Web Application Container
property WebAppCont ai ner MBean. i sJaxRsMoni t ori ngDef aul t Behavi or ()) is used as a
fall-back.

7-8

Chapter 7
Disabling RESTful Web Service Application Monitoring

Note:

The value of this application-specific property (if set) overrides the value of
domain-level configuration property.

By default the value is not explicitly set.

7.6.3 Disabling RESTful Web Service Application Monitoring for a
WebLogic Domain

ORACLE

Application monitoring is enabled by default for all RESTful web service applications
deployed to a WebLogic domain. It is possible to reverse this default behavior in a
WebLogic domain and disable JAX-RS monitoring for all RESTful web service
applications deployed in the domain (unless overridden by an application-specific
configuration) by setting the JaxRsMoni t ori ngDef aul t Behavi or property on

WebAppCont ai ner MBean to f al se:

\\ebAppCont ai ner MBean. set JaxRsMoni t ori ngDef aul t Behavi or ("f al se")

This Web Application Container property is a domain-level property used by Jersey/
WebLogic integration code to determine the behavior of monitoring in JAX-RS
applications at the domain level:

e If settotrue (or not set), then JAX-RS monitoring is enabled (if not overridden by
properties set directly in an application). By default this property is not set explicitly
and monitoring is enabled.

» If settofal se, then monitoring for all JAX-RS applications is disabled by default for
the given domain.

Note:

You can override this domain-level setting in each JAX-RS application by
setting similar properties,

WebAppConponent MBean#i sJaxRsMoni t or i ngDef aul t Behavi or ()), at the application
level. See Disabling Monitoring for a RESTful Web Service Application Using
WebLogic Configuration MBean.

You can update the WebAppCont ai ner MBean. JaxRsMoni t or i ngDef aul t Behavi or property for
the domain using WLST commands before starting the domain, or before deploying
any applications, as shown in Example 7-4.

Example 7-4 provides a sample WLST script that disables JAX-RS monitoring for the
entire domain by default.

Example 7-4 Sample WLST Script for Disabling JAX-RS Monitoring at Domain
Level

connect (<user>, <password>)

edit()

startEdit()

cd("WebAppCont ai ner/ <domai n_nane>/ ")

7-9

Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

cno. set JaxRsMoni t ori ngDef aul t Behavi or (f al se)
activate()

Note:

You must restart the domain after you disable monitoring to ensure that all
previously deployed applications are redeployed with the new setting.

[Example 7-5 shows a section of the resulting domain configuration document at
DOVAI N_NAME/ confi g/ confi g. xm after you have changed the j ax-rs-nonit ori ng- def aul t -
behavi or setting to fal se.

Example 7-5 config.xml file with JAX-RS Monitoring Disabled at the Domain
Level

<?xm version='1.0" encodi ng="UTF-8' 7>
<domain ...>
<nanme>mydomain</ name>

<web- app- cont ai ner >
<jax-rs-monitoring-default-behavior>false
</jax-rs-monitoring-default-behavior>
</ web- app- cont ai ner >

</ donai n>

< Note:

Although it is possible to do so, Oracle does not recommend editing the
config.xnl file directly. See Domain Configuration Files in Understanding
Domain Configuration for Oracle WebLogic Server.

7.7 Enable Monitoring of Synthetic Jersey Resources in a
RESTful Web Service Application

ORACLE

When a RESTful web service application is deployed on WebLogic Server, the Jersey
runtime (to satisfy JAX-RS specification requirements) introspects all the application
resources and eventually extends the resource model of the application with additional
synthetic resources and/or resource methods. For example, synthetic resources and
resource methods are added to support:

e Resources exposing the WADL for the entire JAX-RS application, as well as a
partial WADL for any deployed resource.

« OPTIONS method handlers for each resource or resource method of the JAX-RS
application.

« HEAD method handlers for each resource or resource method of the JAX-RS
application.

Depending on the application, it is possible that quite a lot of additional synthetic
resources may get added to a deployed application. For performance reasons,

7-10

ORACLE

Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

WebLogic Server, by default, does not expose runtime MBeans for these extended
synthetic resources and resource methods.

You can, however, display information about these additional synthetic resources in
the WebLogic Server Administration Console by setting the following Jersey 2.x/JAX-
RS application property to true:

jersey.config.w s.server.nonitoring. extended. enabl ed

You can set this property programmatically in the JAX-RS application subclass code,
or declaratively via Servlet init parameters specified in the web. xnl as shown in the
following examples.

For convenience, the property name is stored in the
webl ogi c. j axrs. server. Wbl ogi cServer Properties. MONI TORI NG_EXTENDED ENABLED
constant field.

Example 7-6 provides an example of how you can enable monitoring for synthetic
resources programmatically in a JAX-RS application by extending the JAX-RS
Application class.

Example 7-6 Enable Synthetic Monitoring Programmatically by Extending the
JAX-RS Application Class

@\ppl i cationPath("/")
public class MApplication extends Application {

public Map<String, Object> getProperties() {
final Map<String, Object> properties = new HashMap<>();
/'l Expose MBeans for extended JAX-RS resources and resource nethods

properties.put(weblogic.jaxrs.server._WeblogicServerProperties.MONITORING_EXTENDED ENA
BLED, true);

return properties;

}
}

Example 7-7 provides an example of how you can enable monitoring of synthetic
resources programmatically in a JAX-RS/Jersey application by extending the JAX-RS
Jersey Resour ceConfi g class.

Example 7-7 Enable Synthetic Monitoring Programmatically by Extending the
Jersey ResourceConfig Class

@\ppl i cationPath("/")
public class M/Application extends ResourceConfig {

public MyApplication() {
/...

/| Expose MBeans for extended JAX-RS resources and resource nethods
property(weblogic. jaxrs.server._WeblogicServerProperties_MONITORING_EXTENDED ENABLED,

true);

}

...
}

7-11

ORACLE

Chapter 7
Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

Example 7-8 provides an example of how you can enable monitoring of synthetic
resources declaratively using Servlet init parameters specified in the web. xnl .

Example 7-8 Enable Synthetic Monitoring Declaratively Using Servlet Init
Parameters in web.xml

<?xm version="1.0" encodi ng="1 SO 8859-1"?>

<web-app version="2.5"

xm ns="http://java. sun. com xn / ns/j avaee"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schen®- i nst ance"

xsi : schemaLocation="http://java. sun.com xm /ns/javaee http://
j ava. sun. cont xm / ns/ j avaee/ web- app_2_5. xsd" >

<servlet>
<servl et - name>com exanpl es. MyAppl i cati on</ servl et - nane>

<init-param>
<param-name>jersey.config.wls.server.monitoring.extended.enabled</param-name>
<param-value>true</param-value>

</init-param>

<l oad- on- st artup>1</I oad- on-startup>
</servlet>

<servl et - mappi ng>
<servl et - name>com exanpl es. MyAppl i cati on</ servl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

7-12

Using Server-Sent Events in WebLogic

Server

Oracle WebLogic Server supports server-sent events through the integration of the
Jersey 2.x library.The Jersey 2.x library provides the Reference Implementation (RI) of
JSR-339 (JAX-RS 2.0: Java API for RESTful Web Services).

* Overview of Server-Sent Events (SSE)
* Understanding the WebLogic Server-Sent Events API

e Sample Applications for Server-Sent Events

8.1 Overview of Server-Sent Events (SSE)

Server-sent events enable servers to push data to web pages over standard HTTP or
HTTPS through a unidirectional client-server connection. In the server-sent events
communication model, the browser client establishes the initial connection, and the
server provides the data and sends it to the client. For general information about
server-sent events, see the Server-Sent Events W3C Candidate Recommendation.
Server-sent events are part of the HTML 5 specification, which also includes
WebSocket technology. Both communication models enable servers to send data to
clients unsolicited. However, server-sent events establish one-way communication
from server to clients, while a WebSocket connection provides a bidirectional, full-
duplex communication channel between servers and clients, promoting user
interaction through two-way communication. The following key differences exist
between WebSocket and server-sent events technologies:

e Server-sent events can only push data to the client, while WebSocket technology
can both send and receive data from a client.

e The simpler server-sent events communication model is better suited for server-
only updates, while WebSocket technology requires additional programming for
server-only updates.

e Server-sent events are sent over standard HTTP and therefore do not require any
special protocol or server implementation to work. WebSocket technology requires
the server to understand the WebSocket protocol to successfully upgrade an
HTTP connection to a WebSocket connection.

For more information about WebSocket technology, see Using the WebSocket
Protocol in WebLogic Server in Developing Applications for Oracle WebLogic Server.

8.2 Understanding the WebLogic Server-Sent Events AP

ORACLE

WebLogic Server supports server-sent events through the integration of the Jersey
2.X. The use of server-sent events through Jersey 2.x is supported only in JAX-RS

resources.For more information about server-sent events in Jersey 2.x, see Server-
Sent Events (SSE) Support in the Jersey 2.22 User Guide.

8-1

https://jcp.org/en/jsr/detail?id=339
http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/html5/
https://jersey.github.io/documentation/2.22/sse.html
https://jersey.github.io/documentation/2.22/sse.html

Chapter 8
Sample Applications for Server-Sent Events

The WebLogic Server Server-Sent Events API is in the package

org. gl assfish.jersey. medi a. sse. For information about the interfaces and classes
included in this package, see the API documentation for

org. gl assfish.jersey. nedia. sse in the Jersey 2.22 APl Documentation.

8.3 Sample Applications for Server-Sent Events

Sample applications for server-sent events are available through the Jersey project.
Refer to the following locations:

e https://github.comjersey/jersey/treel/ master/exanpl es/ server-sent-events-
jersey

e https://github.conjersey/jersey/treel/ master/exanpl es/sse-itemstore-jersey-
webapp

° https://github.conljersey/jersey/treel/ master/exanpl es/sse-twitter-aggregator

ORACLE 8-2

https://jersey.github.io/apidocs/2.22/jersey/index.html?org/glassfish/jersey/media/sse/package-summary.html
https://github.com/jersey/jersey/tree/master/examples/server-sent-events-jersey
https://github.com/jersey/jersey/tree/master/examples/server-sent-events-jersey
https://github.com/jersey/jersey/tree/master/examples/sse-item-store-jersey-webapp
https://github.com/jersey/jersey/tree/master/examples/sse-item-store-jersey-webapp
https://github.com/jersey/jersey/tree/master/examples/sse-twitter-aggregator

Compatibility with Earlier Jersey/JAX-RS
Releases

Some Jersey 1.x (JAX-RS 1.1 RI) features have been deprecated or are no longer
supported in Oracle WebLogic Server, but have been maintained for backward
compatibility.

» Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

e Support for Jersey 1.18 (JAX-RS 1.1 RI) Deployments Packaged with Pre-3.0
Servlets

A.1 Develop RESTful Web Service Clients Using Jersey
1.18 (JAX-RS 1.1 RI)

Support for several client packages, including the com sun. j ersey package, its nested
packages, and the webl ogi c. j axrs. api . cl i ent package, is deprecated in this release of
Oracle WebLogic Server.

< Note:

Oracle recommends that you update your RESTful client applications to use
the JAX-RS 2.0 client APIs at your earliest convenience. See Summary of
Tasks to Develop RESTful Web Service Clients.

The Jersey 1.x server-side APIs are no longer supported. You should use
the corresponding standard JAX-RS 2.0 or Jersey 2.x server APIs instead.

The following table summarizes a subset of the tasks that are required to develop
RESTful web service clients. For more information about advanced tasks, see More
Advanced RESTful Web Service Client Tasks

Table A-1 Summary of Tasks to Develop RESTful Web Service Clients
]

Task More Information

Create and configure an instance of the Creating and Configuring a Client Instance
webl ogi c.jaxrs.api.client.dient class.

Create an instance of the Web resource. Creating a Web Resource Instance

Send requests to the resource. For example, HTTP Sending Requests to the Resource
requests to GET, PUT, POST, and DELETE resource

information.

Receive responses from the resource. Receiving a Response from a Resource

ORACLE A-1

Appendix A
Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

For information about developing RESTful web service clients using Oracle
JDeveloper, see Creating RESTful Web Services and Clients in Developing
Applications with Oracle JDeveloper.

A.1.1 Example of a RESTful Web Service Client

The following simple example demonstrates how a RESTful web service client can be
used to call the RESTful web service defined in Example 2-1. In this example:

« The dient instance is created to access the client API. See Creating and
Configuring a Client Instance.

* The WbResour ce instance is created to access the Web resource. See Creating a
Web Resource Instance.

e Aget request is sent to the resource. See Sending Requests to the Resource.

* The response is returned as a String value. For more information about receiving
the response, see Receiving a Response from a Resource.

Additional examples are listed in Learn More About RESTful Web Services.

Example A-1 Simple RESTful Web Service Client Using Jersey 1.18 (JAX-RS
1.1 RI)

package sanpl es. helloworld.client;

i mport webl ogic.jaxrs.api.client.Cient;
import comsun.jersey.api.client.\WbResource;

public class helloWrlddient {
public helloWrldQient() {
super();

}

public static void main(String[] args) {
Client ¢ = dient.create();
\ebResour ce resource = c.resource("http://1ocal host: 7101/ RESTf ul Servi ce/
jersey/helloworld");
String response = resource. get(String.class);
System out. println(response);

}

A.1.2 Creating and Configuring a Client Instance

To access the Jersey JAX-RS RI client API, create an instance of the
webl ogi c. jaxrs. api.client.dient class.

" Note:

Alternatively, you can create an instance of the
comsun.jersey.api.client.dient class.

Optionally, you can pass client configuration properties, defined in Table A-2, when
creating the client instance by defining a

ORACLE A-2

Appendix A
Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

comsun. jersey. api.client.config.CientConfigand passing the information to the
creat e method. See the d i ent Confi g interface in the jersey-bundle 1.18 API.

Table A-2 RESTful Web Service Client Configuration Properties

__|]
Property Description

PROPERTY_BUFFER_RESPONSE ENTI TY_ON_EXCEPTI ON Boolean value that specifies whether the client should
buffer the response entity, if any, and close resources
when a Uni f orm nt er f aceExcept i on is thrown. This
property defaults to t r ue.

PROPERTY_CHUNKED_ENCODI NG_SI ZE Integer value that specifies the chunked encoding size.
A value equal to or less than 0 specifies that the default
chunk size should be used. If not set, then chunking will
not be used.

PROPERTY_CONNECT_TI MEQUT Integer value that specifies the connect timeout interval
in milliseconds. If the property is 0 or not set, then the
interval is set to infinity.

PROPERTY_FOLLOW REDI RECTS Boolean value that specifies whether the URL will
redirect automatically to the URI declared in 3xx
responses. This property defaults to t r ue.

PROPERTY_READ_TI MEQUT Integer value that specifies the read timeout interval in
milliseconds. If the property is O or not set, then the
interval is set to infinity.

Example A-2 provides an example of how to create a client instance.
Example A-2 Creating a Client Instance

i mport webl ogic.jaxrs.api.client.Cient;

public static void main(String[] args) {
Client ¢ = Cient.create();

Example A-3 provides an example of how to create a client instance and pass
configuration properties to the creat e method.

Example A-3 Creating and Configuring a Client Instance

i mport com sun.jersey.api.client.*;
i mport webl ogic.jaxrs.api.client.Cient;

public static void main(String[] args) {
CientConfig cc = new Defaul tCientConfig();
cc.getProperties().put(dientConfig. PROPERTY_FOLLOW REDI RECTS, true);
Client ¢ = dient.create(cc);

Alternatively, you can configure a client instance after the client has been created, by
setting properties on the map returned from the get Properti es method or calling a
specific setter method.

Example A-4 provides an example of how to configure a client after it has been
created. In this example:

* PROPERTY_FOLLOW REDI RECTS is configured by setting the property on the map
returned from the get Properti es method.

ORACLE A-3

https://jersey.github.io/apidocs/1.18/jersey/index.html?com/sun/jersey/api/client/config/ClientConfig.html

Appendix A
Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

e PROPERTY_CONNECT_TI MEQUT is configured using the setter method.
Example A-4 Configuring a Client Instance After It Has Been Created

i mport com sun.jersey.api.client.*;
i mport webl ogic.jaxrs.api.client.Cient;

public static void main(String[] args) {
Client ¢ = dient.create();
c.getProperties().put(dientConfig. PROPERTY_FOLLOWN REDI RECTS, true);
c. set Connect Ti meout (3000) ;

Example A-5 provides an example of how to configure a client instance to use basic
authentication.

Example A-5 Configuring a Client Instance to Use Basic Authentication

import javax.ws.rs.core. Medi aType;

import comsun.jersey.api.client.Cient;
import comsun.jersey.api.client.\WbResource;
import comsun.jersey.api.client.filter. HTTPBasi cAuthFilter;

Client ¢ = Cient.create();
c. addFi | ter(new HTTPBasi cAut hFi | ter ("webl ogi c", "webl ogicl"));
VebResour ce resource = c.resource("http://1ocal host: 7001/ management/t enant - moni t ori ng/
dat asour ces/ JDBCY20Dat a%20Sour ce-0") ;
String response = resource. accept("application/json").get(String.class); //application/xm
Il resource. accept (Medi aType. APPLI CATI ON_JSON_TYPE). get (Stri ng. cl ass);
Systemout. println(response);

A.1.3 Creating a Web Resource Instance

Before you can issue requests to a RESTful web service, you must create an instance
of com sun. j ersey. api . cl i ent. WebResour ce or

com sun. j ersey. api . cl i ent. Async\WebResour ce to access the resource specified by the
URI. The WhbResour ce or Async\WebResour ce instance inherits the configuration defined
for the client instance. For more information, see the following in the jersey-bundle
1.18 API:

* \MbResource

* AsyncWebResource

Note:

Because clients instances are expensive resources, if you are creating
multiple Web resources, it is recommended that you re-use a single client
instance whenever possible.

Example A-6 provides an example of how to create an instance to a Web resource
hosted at ht t p: // exanpl e. com hel | owor | d.

ORACLE A-4

https://jersey.github.io/apidocs/1.18/jersey/index.html?com/sun/jersey/api/client/WebResource.html
https://jersey.github.io/apidocs/1.18/jersey/index.html?com/sun/jersey/api/client/AsyncWebResource.html

Appendix A
Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

Example A-6 Creating a Web Resource Instance

i mport comsun.jersey.api.client.*;
i mport webl ogic.jaxrs.api.client.dient;

. public static void main(String[] args) {\

Client ¢ = Cient.create();
V\ebResour ce resource = c.resource("http://exanple.cont hel | oWorld");

Example A-7 provides an example of how to create an instance to an asynchronous
Web resource hosted at htt p:// exanpl e. con hel | owor | d.

Example A-7 Creating an Asynchronous Web Resource Instance

import comsun.jersey.api.client.*;
i mport webl ogic.jaxrs.api.client.Cient;

public static void main(String[] args) {\

Client ¢ = dient.create();
Async\WebResour ce asyncResource = c.asyncResource("http://exanpl e.com hel | oWorld");

A.1.4 Sending Requests to the Resource

Use the WebResour ce or AsyncVWebResour ce instance to build requests to the associated
Web resource, as described in the following sections:

* How to Build Requests
* How to Send HTTP Requests
» How to Configure the Accept Header

* How to Pass Query Parameters

A.1.4.1 How to Build Requests

Requests to a Web resource are structured using the builder pattern, as defined by the
com sun. j ersey. api . client.Request Bui | der interface. The Request Bui | der interface is
implemented by com sun. j ersey. api . cl i ent. WebResour ce,

com sun. j ersey. api . cl i ent. Async\WebResour ce, and other resource classes.

You can build a request using the methods defined in Table A-3, followed by the HTTP
request method, as described in How to Send HTTP Requests. Examples of how to
build a request are provided in the sections that follow.

See the Request Bui | der methods in the jersey 1.18 bundle API.

Table A-3 Building a Request
]

Method Description

accept () Defines the acceptable media types. See How to Configure the Accept Header.
accept Language() Defines the acceptable languages using the accept Language method.

cooki e() Adds a cookie to be set.

ORACLE A-5

https://jersey.github.io/apidocs/1.18/jersey/index.html?com/sun/jersey/api/client/RequestBuilder.html

Appendix A
Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

Table A-3 (Cont.) Building a Request
]

Method Description

entity() Configures the request entity. See How to Configure the Request Entity.
header () Adds an HTTP header and value. See How to Configure the Accept Header.
type() Configures the media type. See How to Configure the Request Entity.

A.1.4.2 How to Send HTTP Requests

Table A-4 list the WebResour ce and AsyncWebResour ce methods that can be used to send
HTTP requests.

In the case of Async\WebResour ce, ajava. util.concurrent. Fut ure<V> object is returned,
which can be used to access the result of the computation later, without blocking
execution. See the Fut ur e<V> interface methods in the Java Platform, Standard Edition
6 API Specification.

Table A-4 WebResource Methods to Send HTTP Requests
]

Method Description

get () Invoke the HTTP GET method to get a representation of the resource.

head() Invoke the HTTP HEAD method to get the meta-information of the resource.

options() Invoke the HTTP OPTIONS method to get the HTTP methods that the JAX-RS
service supports.

post () Invoke the HTTP POST method to create or update the representation of the
specified resource.

put () Invoke the HTTP PUT method to update the representation of the resource.

del ete() Invoke the HTTP DELETE method to delete the representation of the resource.

If the response has an entity (or representation), then the Java type of the instance
required is declared in the HTTP method.

Example A-8 provides an example of how to send an HTTP GET request. In this
example, the response entity is requested to be an instance of String. The response
entity will be de-serialized to a Stri ng instance.

Example A-8 Sending an HTTP GET Request

i mport com sun. jersey. api.client.\WbResource;

public static void main(String[] args) {

VebResour ce resource = c.resource("http://exanple.cont hel | oWorld");
String response = resource. get(String.class);

ORACLE

Example A-9 provides an example of how to send an HTTP PUT request and put the
entity f oo: bar into the Web resource. In this example, the response entity is requested
to be an instance of com sun. j ersey. api . cl i ent. d i ent Response.

A-6

http://docs.oracle.com/javase/6/docs/api/index.html?java/util/concurrent/Future.html

Appendix A
Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

Example A-9 Sending an HTTP PUT Request

i mport com sun. jersey. api.client.\WbResource;
i mport com sun. jersey.api.client.dientResponse;

. public static void main(String[] args) {

VebResour ce resource = c.resource("http://exanple.conf hel | oVWorld");
CientResponse response = resource. put (CdientResponse. cl ass, "foo:bar");

If you wish to send an HTTP request using a generic type, to avoid type erasure at
runtime, you need to create a com sun. j ersey. api . cl i ent. Generi cType object to
preserve the generic type. See the Generi cType class in jersey-bundle 1.18 API.

Example A-10 provides an example of how to send an HTTP request using a generic
type using Generi cType to preserve the generic type.

Example A-10 Sending an HTTP GET Request Using a Generic Type
i mport com sun. jersey. api.client.\WbResource;
. public static void main(String[] args) {

\ebResour ce resource = c.resource("http://exanple.cont hel | oWorld");
List<String> |ist = resource.get(new GenericType<List<String>>() {});

A.1.4.3 How to Pass Query Parameters

You can pass query parameters in the GET request by defining a
javax.ws.rs.core. Ml tival uedvap and using the quer yPar ams method on the Web
resource to pass the map as part of the HTTP request.

For more information, see the Mil ti val uedvap interface in Java EE 6 API Specification.

Example A-11 provides an example of how to pass parameters in a GET request to a
Web resource hosted at http: // exanpl e. cont hel | owor | d, resulting in the following
request URI: http://exanpl e. conf base?par aml=val 1&par an2=val 2

Example A-11 Passing Query Parameters

i mport com sun. jersey. api.client.\WbResource;
import javax.ws.rs.core. Miltival uedvap;
i mport javax.ws.rs.core.Miltival uedMapl npl;

public static void main(String[] args) {
V\ebResour ce resource = c.resource("http://exanple.cont hel | oWorld");
Mul tival uedMap queryParans = new Mil tival uedMapl mpl ();
quer yPar ans. add(" paramtl”, "val 1");

quer yPar ans. add(" paran2", "val 2");
String response = resource. queryParams(queryParans). get (String.class);

A.1.4.4 How to Configure the Accept Header

Configure the Accept header for the request using the accept method on the Web
resource.

ORACLE e

https://jersey.github.io/apidocs/1.18/jersey/index.html?com/sun/jersey/api/client/GenericType.html
http://docs.oracle.com/javaee/6/api/index.html?javax/ws/rs/core/MultivaluedMap.html

Appendix A
Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

Example A-12 provides an example of how to specify t ext/ pl ai n as the acceptable
MIME media type in a GET request to a Web resource hosted at htt p: // exanpl e. com
hel | owor | d.

Example A-12 Configuring the Accept Header
import comsun.jersey.api.client.\WbResource;
public static void main(String[] args) {

\ebResource resource = c.resource("http://exanmple.con hel | oWorld");
String response = resource.accept("text/plain").get(String.class);

A.1.4.5 How to Add a Custom Header

Add a custom header to the request using the header method on the Web resource.

Example A-13 provides an example of how to add a custom header FOOwith the value
BAR N a GET request to a Web resource hosted at htt p: // exanpl e. con hel | owor | d.

Example A-13 Adding a Custom Header
i mport com sun. jersey. api.client.\WbResource;
public static void main(String[] args) {

\ebResour ce resource = c.resource("http://exanple.cont hel | oWorld");
String response = resource. header ("FOO', "BAR').get(String.class);

A.1.4.6 How to Configure the Request Entity

Configure the request entity and type using the entity method on the Web resource.
Alternatively, you can configure the request entity type only using the t ype method on
the Web resource.

Example A-14 provides an example of how to configure a request entity and type.
Example A-14 Configuring the Request Entity
import comsun.jersey.api.client.\WbResource;
. public static void main(String[] args) {

\ebResour ce resource = c.resource("http://exanple.cont hel | oWorld");
String response = resource. entity(request, MediaType. TEXT_PLAI N _TYPE). get (String.class);

Example A-15 provides an example of how to configure the request entity media type
only.

Example A-15 Configuring the Request Entity Media Type Only

import comsun.jersey.api.client.\WbResource;
public static void main(String[] args) {

\ebResour ce resource = c.resource("http://exanple.con hel | oWorld");
String response = resource.type(Medi aType. TEXT_PLAI N _TYPE). get (String. cl ass);

ORACLE A-8

Appendix A
Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)

A.1.5 Receiving a Response from a Resource

You define the Java type of the entity (or representation) in the response when you
call the HTTP method, as described in How to Send HTTP Requests.

If response metadata is required, declare the Java type
comsun. jersey. api.client.dientResponse as the response type. The d i ent Response
type enables you to access status, headers, and entity information.

The following sections describes the response metadata that you can access using the
dient Response. See d i ent Response class in jersey-bundle 1.18 API.

* How to Access the Status of Request

* How to Get the Response Entity

A.1.5.1 How to Access the Status of Request

Access the status of a client response using the get St at us method on the
d i ent Response object. For a list of valid status codes, see d i ent Response. Stat us in
Jersey-bundle 1.18 API.

Example A-16 provides an example of how to access the status code of the response.
Example A-16 Accessing the Status of the Request

import comsun.jersey.api.client.\WhResource;
inport comsun.jersey.api.client.CientResponse;

public static void main(String[] args) {
\ebResource resource = c.resource("http://exanmple.cont hel | oWorld");

CientResponse response = resource. get (Cient Response. cl ass);
int status = response. getStatus();

A.1.5.2 How to Get the Response Entity

Get the response entity using the get Entity method on the C i ent Response object.
Example A-17 provides an example of how to get the response entity.
Example A-17 Getting the Response Entity

import comsun.jersey.api.client.\WbResource;
import comsun.jersey.api.client.CientResponse;

public static void main(String[] args) {
\ebResour ce resource = c.resource("http://exanple.con hel | oWorld");

CientResponse response = resource. get (CientResponse. cl ass);
String entity = response.getEntity(String.class);

A.1.6 More Advanced RESTful Web Service Client Tasks

For more information about advanced RESTful web service client tasks, including
those listed below, see the Jersey 1.18 User Guide.

ORACLE A-9

https://jersey.github.io/apidocs/1.18/jersey/index.html?com/sun/jersey/api/client/ClientResponse.html
https://jersey.github.io/apidocs/1.18/jersey/index.html?com/sun/jersey/api/client/ClientResponse.Status.html

Appendix A
Support for Jersey 1.18 (JAX-RS 1.1 RI) Deployments Packaged with Pre-3.0 Servlets

* Adding new representation types
* Using filters

» Enabling security with HTTP(s) URLConnection

A.2 Support for Jersey 1.18 (JAX-RS 1.1 RI) Deployments
Packaged with Pre-3.0 Servlets

For backwards compatibility, deployments that reference a subset of servlet classes
are supported in this release of Oracle WebLogic Server.Refer to Table A-5, which
lists these servlet classes and describes the corresponding elements to update in the
web. xn deployment descriptor to package the RESTful web service application with a
pre-3.0 servlet.

Table A-5 Packaging the RESTful Web Service Application with Pre-3.0 Servlets

Element Description

<servl et - name> Set this element to the desired servlet name.

<servl et-cl ass> Set this element to one of the following classes to delegate all Web requests to the Jersey
servlet:

* weblogic.jaxrs.server.portable.servlet. Servl et Contai ner
e comsun.jersey.spi.container.servlet. ServletContainer

<init-paran> Set this element to define the class that extends the j avax. ws. rs. core. Appl i cati on:

<init-paran»
<par am nanme>
javax.ws.rs. Application
</ par am nane>
<par am val ue>
Appl i cationSubcl assNane
</ param val ue>
</init-paranm

Alternatively, you can declare the packages in your application, as follows:

<init-paran»
<par am nanme>
com sun. j ersey. config. property. packages
</ par am nane>
<par am val ue>
projectl
</ param val ue>
</init-paranm

ORACLE A-10

Appendix A
Support for Jersey 1.18 (JAX-RS 1.1 RI) Deployments Packaged with Pre-3.0 Servlets

Table A-5 (Cont.) Packaging the RESTful Web Service Application with Pre-3.0 Servilets

__|]
Element Description

<servl et - mappi ng> Set as the base URI pattern that gets mapped to the servlet.
If not specified, one of the following values are used, in order of precedence:

e @pplicationPat h annotation value defined in the j avax. ws. rs. core. Appl i cation
subclass. For example:

package test;
@\ppl i cationPath("res")
public class MyJaxRsApplication extends java.ws.rs.core. Application

See Packaging With an Application Subclass.
e The value resour ces. This is the default base URI pattern for RESTful web service
applications. See Packaging as a Default Resource.
If both the <ser vl et - mappi ng> and @\ppl i cati onPat h are specified, the <servl et -
mappi ng> takes precedence.
For more information about how this information is used in the base URI of the resource,
see What Happens at Runtime: How the Base URI is Constructed.

The following example demonstrates how to update the web. xni file if a class that
extends j avax. ws. rs. core. Appl i cati on is not packaged with web. xm .

Example A-18 Updating web.xml for Pre-3.0 Servlets

<web- app>
<servlet>
<servl et-name>Jersey Wb Application</servl et-nane>
<servl et-class>webl ogi c. jaxrs. server.portable. servlet. Servl et Cont ai ner</servl et-cl ass>
<init-paranp
<par am nane>com sun. j ersey. confi g. property. resour ceConfi gC ass</ par am name>
<par am val ue>com sun. j er sey. api . cor e. PackagesResour ceConf i g</ par am val ue>
</init-paranm
<init-paranp
<par am nane>com sun. j ersey. confi g. property. packages</ par am nane>
<par am val ue>org. f 00. rest; org. bar. rest </ param val ue>
</init-paranm

</servlet>

</ web- app>

ORACLE A-11

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What’s New in This Guide
	New and Changed Features for Release 12c (12.2.1.x)
	New and Changed Features for Release 12c (12.2.1)
	New and Changed Features for Release 12c (12.1.3)
	New and Changed Features for Release 12c (12.1.2)

	1 Introduction to RESTful Web Services
	1.1 Introduction to the REST Architectural Style
	1.2 What are RESTful Web Services?
	1.3 Standards Supported for RESTful Web Service Development on WebLogic Server
	1.4 Roadmap for Implementing RESTful Web Services
	1.5 Learn More About RESTful Web Services

	2 Developing RESTful Web Services
	2.1 About RESTful Web Service Development
	2.1.1 Summary of Tasks to Develop RESTful Web Services
	2.1.2 Example of a RESTful Web Service

	2.2 Defining the Root Resource Class
	2.3 Defining the Relative URI of the Root Resource and Subresources
	2.3.1 How to Define the Relative URI of the Resource Class (@Path)
	2.3.2 How to Define the Relative URI of Subresources (@Path)
	2.3.3 What Happens at Runtime: How the Base URI is Constructed

	2.4 Mapping Incoming HTTP Requests to Java Methods
	2.4.1 About the Jersey Bookmark Sample
	2.4.2 How to Transmit a Representation of the Resource (@GET)
	2.4.3 How to Create or Update the Representation of the Resource (@PUT)
	2.4.4 How to Delete a Representation of the Resource (@DELETE)
	2.4.5 How to Create, Update, or Perform an Action on a Representation of the Resource (@POST)

	2.5 Customizing Media Types for the Request and Response Messages
	2.5.1 How To Customize Media Types for the Request Message (@Consumes)
	2.5.2 How To Customize Media Types for the Response Message (@Produces)
	2.5.3 What Happens At Runtime: How the Resource Method Is Selected for Response Messages

	2.6 Extracting Information From the Request Message
	2.6.1 How to Extract Variable Information from the Request URI (@PathParam)
	2.6.2 How to Extract Request Parameters (@QueryParam)
	2.6.3 How to Define the DefaultValue (@DefaultValue)
	2.6.4 Enabling the Encoding Parameter Values (@Encoded)

	2.7 Building Custom Response Messages
	2.8 Mapping HTTP Request and Response Entity Bodies Using Entity Providers
	2.9 Accessing the Application Context
	2.10 Building URIs
	2.11 Using Conditional GETs
	2.12 Accessing the WADL
	2.13 More Advanced RESTful Web Service Tasks

	3 Developing RESTful Web Service Clients
	3.1 Summary of Tasks to Develop RESTful Web Service Clients
	3.2 Example of a RESTful Web Service Client
	3.3 Invoking a RESTful Web Service from a Standalone Client

	4 Building, Packaging, and Deploying RESTful Web Service Applications
	4.1 Building RESTful Web Service Applications
	4.2 Packaging RESTful Web Service Applications
	4.2.1 Packaging With an Application Subclass
	4.2.2 Packaging With a Servlet
	4.2.2.1 How to Package the RESTful Web Service Application with Servlet 3.0
	4.2.2.1.1 Packaging the RESTful Web Service Application Using web.xml With Application Subclass
	4.2.2.1.2 Packaging the RESTful Web Service Application Using web.xml Without Application Subclass

	4.2.2.2 How to Package the RESTful Web Service Application with Pre-3.0 Servlets

	4.2.3 Packaging as a Default Resource

	4.3 Deploying RESTful Web Service Applications

	5 Securing RESTful Web Services and Clients
	5.1 About RESTful Web Service Security
	5.2 Securing RESTful Web Services and Clients Using OWSM Policies
	5.3 Securing RESTful Web Services Using web.xml
	5.4 Securing RESTful Web Services Using SecurityContext
	5.5 Securing RESTful Web Services Using Java Security Annotations

	6 Testing RESTful Web Services
	7 Monitoring RESTful Web Services and Clients
	7.1 About Monitoring RESTful Web Services
	7.2 Monitoring RESTful Web Services Using Enterprise Manager Fusion Middleware Control
	7.3 Monitoring RESTful Web Services Using the Administration Console
	7.4 Monitoring RESTful Web Services Using WLST
	7.5 Enabling the Tracing Feature
	7.6 Disabling RESTful Web Service Application Monitoring
	7.6.1 Disabling Monitoring for a RESTful Web Service Application Using Jersey Property
	7.6.2 Disabling Monitoring for a RESTful Web Service Application Using WebLogic Configuration MBean
	7.6.3 Disabling RESTful Web Service Application Monitoring for a WebLogic Domain

	7.7 Enable Monitoring of Synthetic Jersey Resources in a RESTful Web Service Application

	8 Using Server-Sent Events in WebLogic Server
	8.1 Overview of Server-Sent Events (SSE)
	8.2 Understanding the WebLogic Server-Sent Events API
	8.3 Sample Applications for Server-Sent Events

	A Compatibility with Earlier Jersey/JAX-RS Releases
	A.1 Develop RESTful Web Service Clients Using Jersey 1.18 (JAX-RS 1.1 RI)
	A.1.1 Example of a RESTful Web Service Client
	A.1.2 Creating and Configuring a Client Instance
	A.1.3 Creating a Web Resource Instance
	A.1.4 Sending Requests to the Resource
	A.1.4.1 How to Build Requests
	A.1.4.2 How to Send HTTP Requests
	A.1.4.3 How to Pass Query Parameters
	A.1.4.4 How to Configure the Accept Header
	A.1.4.5 How to Add a Custom Header
	A.1.4.6 How to Configure the Request Entity

	A.1.5 Receiving a Response from a Resource
	A.1.5.1 How to Access the Status of Request
	A.1.5.2 How to Get the Response Entity

	A.1.6 More Advanced RESTful Web Service Client Tasks

	A.2 Support for Jersey 1.18 (JAX-RS 1.1 RI) Deployments Packaged with Pre-3.0 Servlets

