Oracle® Fusion Middleware

Developing Custom Management Utilities
Using JMX for Oracle WebLogic Server

12c (12.2.1.3.0)
E80434-01
August 2017

ORACLE"

Oracle Fusion Middleware Developing Custom Management Utilities Using JMX for Oracle WebLogic Server,
12¢ (12.2.1.3.0)

E80434-01
Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility Vil
Conventions Vi

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1
1.2 Guide to this Document 1-1
1.3 Related Documentation 1-2
1.4 New and Changed Features in This Release 1-2

2 Understanding WebLogic Server MBeans

2.1 Basic Organization of a WebLogic Server Domain 2-1
2.2 Separate MBean Types for Monitoring and Configuring 2-1
2.3 The Life Cycle of WebLogic Server MBeans 2-2
2.4 WebLogic Server MBean Data Model 2-3
2.4.1 Containment and Reference Relationships 2-3
2.4.1.1 Containment Relationship 2-3

2.4.1.2 Reference Relationship 2-5

2.4.2 WebLogic Server MBean Object Names 2-5
2.4.3 MBeanServerinvocationHandler 2-7

2.5 MBean Servers 2-8
2.5.1 Connecting to MBean Servers 2-9
2.5.1.1 Local Connections to MBean Servers 2-9

2.5.1.2 Remote Connections to MBean Servers 2-9

2.5.2 Using the Platform MBean Server 2-10
2.5.3 Service MBeans 2-11

2.6 Security for WebLogic Server MBeans 2-12
2.6.1 Additional Security Resources for Some Attributes and Operations 2-12

ORACLE iii

3 Overview of WebLogic Server Subsystem MBeans

3.1 Domain and Server Logging Configuration 3-1
3.2 JMS Server and JMS System Module Configuration 3-3
3.3 JDBC Resource Configuration 3-8

4 Accessing WebLogic Server MBeans with JIMX

4.1 Set Up the Classpath for Remote Clients 4-1
4.2 Make Remote Connections to an MBean Server 4-2

4.2.1 Example: Connecting to the Domain Runtime MBean Server 4-3

4.2.2 Best Practices: Choosing an MBean Server 4-5

4.2.3 Remote Connections Using Only JDK Classes 4-7
4.3 Make Local Connections to the Runtime MBean Server 4-8
4.4 Make Local Connections to the Domain Runtime MBean Server 4-9
4.5 Navigate MBean Hierarchies 4-10
4.6 Example: Printing the Name and State of Servers 4-11
4.7 Example: Monitoring Servlets 4-12

5 Managing a Domain's Configuration with IMX

5.1 Editing MBean Attributes: Main Steps 5-1
5.1.1 Start an Edit Session 5-2
5.1.2 Change Attributes or Create New MBeans 5-3
5.1.3 Save Changes to the Pending Configuration Files 5-3
5.1.4 Activate Your Saved Changes 5-3
5.1.5 Example: Changing the Administration Port 5-4
5.1.6 Exception Types Thrown by Edit Operations 5-7

5.2 Listing and Undoing Changes 5-7
5.2.1 List Unsaved Changes 5-7
5.2.2 List Unactivated Changes 5-8
5.2.3 List Changes in the Current Activation Task 5-9
5.2.4 Undoing Changes 5-10

5.3 Tracking the Activation of Changes 5-10
5.3.1 Listing the Status of the Current Activation Task 5-11
5.3.2 Listing All Activation Tasks Stored in Memory 5-11
5.3.3 Purging Completed Activation Tasks from Memory 5-12

5.4 Managing Locks 5-12

5.5 Best Practices: Recommended Pattern for Editing and Handling Exceptions 5-13

5.6 Setting and Getting Encrypted Values 5-16
5.6.1 Set the Value of an Encrypted Attribute (Recommended Technique) 5-16
5.6.2 Set the Value of an Encrypted Attribute (Compatibility Technique) 5-17

ORACLE iv

ORACLE

5.6.3 Back Up an Encrypted Value 5-18
6 Managing Security Realms with IMX
6.1 Understanding the Hierarchy of Security MBeans 6-1
6.1.1 Base Provider Types and Mix-In Interfaces 6-1
6.1.2 Security MBeans 6-2
6.2 Choosing an MBean Server to Manage Security Realms 6-9
6.3 Working with Existing Security Providers 6-10
6.3.1 Discovering Available Services 6-11
6.3.1.1 Example: Adding Users to a Realm 6-13
6.4 Modifying the Realm Configuration 6-15
7 Using Notifications and Monitor MBeans
7.1 Best Practices: Listening Directly Compared to Monitoring 7-1
7.2 Best Practices: Listening for WebLogic Server Events 7-2
7.3 Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics 7-4
7.4 Listening for Notifications from WebLogic Server MBeans: Main Steps 7-6
7.4.1 Creating a Notification Listener 7-6
7.4.1.1 Listening from a Remote JVM 7-8
7.4.1.2 Best Practices: Creating a Notification Listener 7-8
7.4.2 Configuring a Notification Filter 7-8
7.4.2.1 Creating a Custom Filter 7-9
7.4.3 Registering a Notification Listener and Filter 7-9
7.4.4 Packaging and Deploying Listeners on WebLogic Server 7-11
7.4.5 Example: Listening for The Registration of Configuration MBeans 7-12
7.5 Using Monitor MBeans to Observe Changes: Main Steps 7-15
7.5.1 Monitor MBean Types and Notification Types 7-15
7.5.1.1 Errors and the MonitorNotification Type Property 7-17
7.5.2 Creating a Notification Listener for a Monitor MBean 7-17
7.5.3 Registering the Monitor and Listener 7-18
7.5.3.1 Example: Registering a CounterMonitorMBean and Its Listener 7-19
8 Configuring WebLogic Server JMX Services
8.1 Determining the JMX Services Available in a Domain 8-1
8.2 Example: Using WebLogic Scripting Tool to Make a Domain Read-Only 8-1

ORACLE"

Vi

Preface

This preface describes the document accessibility features and conventions used in

this guide—Developing Custom Management Utilities Using JMX for Oracle WebLogic
Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?

ctx=acc&id=docacc.
Access to Oracle Support
Oracle customers that have purchased support have access to electronic support

through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/

lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.
italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.
monospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

This document describes creating JMX clients that monitor and modify WebLogic
Server resources. To integrate third-party management systems with the WebLogic
Server management system, WebLogic Server provides standards-based interfaces
that are fully compliant with the Java Management Extensions (JMX) specification.
Software vendors can use these interfaces to monitor WebLogic Server MBeans, to
change the configuration of a WebLogic Server domain, and to monitor the distribution
(activation) of those changes to all server instances in the domain. While JMX clients
can perform all WebLogic Server management functions without using Oracle's
proprietary classes, Oracle recommends that remote JMX clients use WebLogic
Server protocols (such as T3) to connect to WebLogic Server instances.

The following sections describe the contents and organization of this guide—
Developing Custom Management Utilities Using JMX for Oracle WebLogic Server.

e Document Scope and Audience
e Guide to this Document
* Related Documentation

 New and Changed Features in This Release

1.1 Document Scope and Audience

This document is a resource for software vendors who develop JMX-compatible
management systems. It also contains information that is useful for business analysts
and system architects who are evaluating WebLogic Server or considering the use of
JMX for a particular application.

It is assumed that the reader is familiar with Java EE and general application
management concepts. This document emphasizes a hands-on approach to
developing a limited but useful set of IMX management services. For information on
applying JMX to a broader set of management problems, refer to the JIMX specification
or other documents listed in Related Documentation.

1.2 Guide to this Document

ORACLE

* This chapter, Introduction and Roadmap, introduces the organization of this guide.

* Understanding WebLogic Server MBeans, describes the JMX services that you
use to monitor and manage WebLogic Server MBeans and introduces the data
model that organizes WebLogic Server MBeans.

* Overview of WebLogic Server Subsystem MBeans, introduces the MBeans that
can be used to monitor and manage various subsystems of WebLogic Server.

* Accessing WebLogic Server MBeans with JMX, provides instructions and
examples for accessing WebLogic Server MBeans from a JMX client.

* Managing a Domain's Configuration with JIMX, provides instructions and examples
for managing a WebLogic Server domain's configuration through JMX.

1-1

Chapter 1
Related Documentation

* Managing Security Realms with JMX, describes the hierarchy of security MBeans,
how to choose an MBean server to manage security realms, how to work with
existing security providers, and how to modify realm configuration.

» Using Notifications and Monitor MBeans, describes working with notifications and
listeners to listen for changes in WebLogic Server MBean attributes.

» Configuring WebLogic Server JMX Services, describes how to specify which IMX
services are available in a domain.

1.3 Related Documentation

The Oracle Technology Network includes a Web site that provides links to books,
white papers, and additional information on JMX: htt p: // www. or acl e. conl t echnet wor k/
j aval javasel t ech/ j avananagenent - 140525. ht ni .

WebLogic Server supports JMX 1.4 by leveraging the JMX implementation in the JDK
on which it is running. To view the JMX 1.4 specification, download it from http://
docs. oracl e. conl j avase/ 7/ docs/ t echnot es/ gui des/ j mx/

To view the IMX Remote API 1.0 specification, download it from http://jcp. org/
about Java/ communi t yprocess/final /jsr160/index. htn .

You can view the API reference for the j avax. nanagenent * packages from: http://
docs. oracl e. conl j avase/ 7/ docs/ api / over vi ew sunmary. ht nl .

For guidelines on developing other types of management services for WebLogic
Server applications, see the following documents:

* Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic
Server describes WebLogic support for internationalization and localization of log
messages, and shows you how to use the templates and tools provided with
WebLogic Server to create or edit message catalogs that are locale-specific.

» Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
describes how system administrators can collect application monitoring data that
has not been exposed through JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see the
following documents:

» Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

» Developing Manageable Applications Using JMX for Oracle WebLogic Server
describes how to create and register custom MBeans.

1.4 New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

ORACLE 1-2

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/
http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://docs.oracle.com/javase/7/docs/api/overview-summary.html
http://docs.oracle.com/javase/7/docs/api/overview-summary.html

Understanding WebLogic Server MBeans

This chapter describes the MBeans that WebLogic Server provides that you can use to
configure, monitor, and manage WebLogic Server resources, and also explains how
WebLogic Server distributes and maintains these MBeans.

This chapter includes the following sections:

e Basic Organization of a WebLogic Server Domain

e Separate MBean Types for Monitoring and Configuring
e The Life Cycle of WebLogic Server MBeans
WebLogic Server MBean Data Model

* MBean Servers

e Security for WebLogic Server MBeans

The MBean Reference for Oracle WebLogic Server provides a detailed reference for
all WebLogic Server MBeans.

2.1 Basic Organization of a WebLogic Server Domain

A WebLogic Server administration domain is a collection of one or more servers and
the applications and resources that are configured to run on the servers. Each domain
must include a special server instance that is designated as the Administration
Server. The simplest domain contains a single server instance that acts as both
Administration Server and host for applications and resources. This domain
configuration is commonly used in development environments. Domains for production
environments usually contain multiple server instances (Managed Servers) running
independently or in groups called clusters. In such environments, the Administration
Server does not host production applications. For more information about domains,
refer to Understanding Oracle WebLogic Server Domains in Understanding Domain
Configuration for Oracle WebLogic Server.

2.2 Separate MBean Types for Monitoring and Configuring

ORACLE

All WebLogic Server MBeans can be organized into one of the following general types
based on whether the MBean monitors or configures servers and resources:

* Run-time MBeans contain information about the run-time state of a server and its
resources. They generally contain only data about the current state of a server or
resource, and they do not persist this data. When you shut down a server
instance, all run-time statistics and metrics from the run-time MBeans are
destroyed.

* Configuration MBeans contain information about the configuration of servers and
resources. They represent the information that is stored in the domain's XML
configuration documents.

» Configuration MBeans for system modules contain information about the
configuration of services such as JDBC data sources and JMS topics that have

2-1

Chapter 2
The Life Cycle of WebLogic Server MBeans

been targeted at the system level. Instead of targeting these services at the
system level, you can include services as modules within an application. These
application-level resources share the life cycle and scope of the parent application.
However, WebLogic Server does not provide MBeans for application modules.
See Supported Deployment Units in Deploying Applications to Oracle WebLogic
Server.

2.3 The Life Cycle of WebLogic Server MBeans

The life cycle of a run-time MBean follows that of the resource for which it exposes
run-time data. For example, when you start a server instance, the server instantiates a
Server Runt i meMBean and populates it with the current run-time data. Each resource
updates the data in its run-time MBean as its state changes. The resource destroys its
run-time MBeans when it is stopped.

For a configuration MBean, the life cycle is as follows:

1. Each server in the domain has its own copy of the domain's configuration
documents (which consist of a confi g. xnl file and subsidiary files). During a
server's startup cycle, it contacts the Administration Server to update its
configuration files with any changes that occurred while it was shut down. Then it
instantiates configuration MBeans to represent the data in the configuration
documents. (See Figure 2-1.)

Note:

By default, a Managed Server will start even if it cannot contact the
Administration Server to update its configuration files. This default setting
creates the possibility that Managed Servers across the domain might run with
inconsistent configurations. For information about changing this default, see
Starting a Managed Server When the Administration Server Is Not Accessible
in Administering Server Startup and Shutdown for Oracle WebLogic Server.

Figure 2-1 Initializing Configuration MBeans on Administration Server

config. xml —

WeblLogic ServerInstance

=domain= ServerlMBean

Neme="MedRecSerwver"
= ServVers

<pame=MedRecServer<,/nane > ListenPort="7011"

=listen-port>
7011

=flisten-port>

=fservers

= fdomain:>

The configuration MBeans enable each server instance in the domain to have an
identical in-memory representation of the domain's configuration.

ORACLE 2-2

Chapter 2
WebLogic Server MBean Data Model

2. To control changes to the domain's configuration, JMX clients have read-only
access to these configuration MBeans.

The Administration Server maintains a separate, editable copy of the domain's
configuration documents in the domain's conf i g/ pendi ng directory. It uses the data
in these pending documents to instantiate a set of configuration MBeans that JMX
clients can modify. After a JMX client modifies one of these configuration MBeans,
the client directs the Administration Server to save the modifications in the pending
configuration documents. Then the client starts a transactional process that
updates the read-only configuration documents and configuration MBeans for all
server instances in the domain.

See Managing Configuration Changes in Understanding Domain Configuration for
Oracle WebLogic Server.

3. Configuration MBeans are destroyed when you shut down the server instance that
hosts them.

2.4 WebLogic Server MBean Data Model

The JMX specification does not impose a model for organizing MBeans. However,
because the configuration of a WebLogic Server domain is specified in an XML
document, WebLogic Server organizes its MBeans into a hierarchical model that
reflects the XML document structure.

For example, the root of a domain's configuration document is <donmai n> and below the
root are child elements such as <server> and <cl ust er >. Each domain maintains a
single MBean of type Donai nMBean to represent the <donai n> root element. Within

Domai nMBean, JMX attributes provide access to the MBeans that represent child
elements such as <server> and <cl ust er >.

The following sections describe the patterns that WebLogic Server MBeans use to
model the underlying XML configuration:

» Containment and Reference Relationships
* WebLogic Server MBean Object Names

« MBeanServerinvocationHandler

2.4.1 Containment and Reference Relationships

MBean attributes that provide access to other MBeans represent one of following
types of relationships:

* Containment, which reflects a parent-child relationship between the corresponding
XML elements in the domain's configuration document.

» Reference, which reflects a sibling or other non-ancestor, non-descendant
relationship.

2.4.1.1 Containment Relationship

The XML excerpt in Example 2-1 illustrates a containment relationship between
<domai n> and <server > and <domai n> and <cl ust er >.

ORACLE 2-3

Chapter 2
WebLogic Server MBean Data Model

Example 2-1 Containment Relationship in XML

<domai n>
<server>
<nane>MySer ver </ nane>
</ server>
<cluster>
<name>MWd ust er </ name>
</cluster>
</ domai n>

To reflect this relationship, Domai nMBean has two attributes, Servers and C usters. The
value of the Servers attribute is an array of object names

j avax. managenent . Obj ect Name[]) for all Server MBeans that have been created in the
domain. The value of the C ust er s attribute is an array of object names for all

C ust er MBeans.

Another aspect of the containment relationship is expressed in a set of MBean
operations that follow the design pattern for Java bean factory methods: for each
contained (child) MBean, the parent MBean provides a creat eChi | d and dest royChi | d
operation, where Chi | d is the short name of the MBean's type. (The short name is the
MBean's unqualified type name without the MBean suffix. For example, cr eat eSer ver).

Note:

JMX clients cannot use j avax. managenent . MBeanSer ver . creat e() Or register()
to create and register instances of WebLogic Server MBeans because
WebLogic Server does not make its MBean implementation classes publicly
available.

If you create and register custom MBeans (MBeans you have created to
manage your applications), you will have access to your own implementation
files and you can use the standard MBeanSer ver. create() Or register()
methods. Custom MBeans are not part of the WebLogic Server data model
and do not participate in its factory method model.

In some cases, an MBean's factory methods are not public because of dependencies
within a server instance. In these cases the parent manages the life cycle of its
children. For example, each Server MBean must have one and only one child LogMBean to
configure the server's local log file. The factory methods for LogMBean are not public,
and Ser ver MBean maintains the life cycle of its LogMBean.

With a containment relationship, the parent MBean also contains a | ookupChi | d
operation. If you know the user-supplied name that was used to create a specific
server or resource, you can use the lookup operation in the parent MBean to get the
object name. For example, Donai nMBean includes an operation named

| ookupServers(String nane), which takes as a parameter the name that was used to
create a server instance. If you named a server Ms1, you could pass a String object
that contains Ms1 to the | ookupSer ver s method and the method would return the object
name for MS1.

ORACLE 2.4

Chapter 2
WebLogic Server MBean Data Model

2.4.1.2 Reference Relationship

The XML excerpt in Example 2-2 illustrates a reference relationship between <server >
and <cl ust er>.

Example 2-2 Reference Relationship in XML

<domai n>
<server>
<name>M Ser ver </ name>
<cl uster>WM/C uster</cluster>
</ server>
<cl uster>
<name>MyC ust er </ nane>
</cluster>
</ domai n>

While a server logically belongs to a cluster, the <server> and <cl ust er> elements in
the domain's configuration file are siblings. To reflect this relationship, Server MBean has
a duster attribute whose value is the object name (j avax. managenent . Obj ect Name) of
the d ust er MBean to which the server belongs.

MBeans in a reference relationship do not provide factory methods.

2.4.2 WebLogic Server MBean Object Names

ORACLE

All MBeans must be registered in an MBean server under an object name of type
j avax. managenent . Qoj ect Name. WebLogic Server follows a convention in which object
names for child MBeans contain part of its parent MBean object name.

Note:

If you learn the WebLogic Server naming conventions, you can understand
where an MBean instance resides in the data hierarchy by observing its object
name. However, if you use containment attributes or lookup operations to get
object names for WebLogic Server MBeans, your JMX applications do not
need to construct or parse object names.

WebLogic Sever naming conventions encode its MBean object names as follows:

com bea: Nane=nane, Type=t ype[, TypeC Par ent MBean=NaneCf Par ent MBean)]
[, TypeCt Par ent MBean1=NaneCf Par ent MBeanl] . ..

In the preceding MBean object name convention:

e com bea: is the IMX domain name.

For WebLogic Server MBeans, the JMX domain is always com bea. If you create
custom MBeans for your applications, name them with your own JMX domain.

* Nanme=nane, Type=t ype[, Type Par ent MBean=NameCf Par ent MBean]
[, TypeCf Par ent MBean1=NaneCf Par ent MBeanl] ... represents a set of IMX key
properties.

2-5

ORACLE

Chapter 2
WebLogic Server MBean Data Model

The order of the key properties is not significant, but the name must begin with

com bea: .

Table 2-1 describes the key properties that WebLogic Server encodes in its MBean

object names.

Table 2-1 WebLogic Server MBean Object Name Key Properties

This Key Property

Specifies

Nane=namne

The string that you provided when you created the resource that
the MBean represents. For example, when you create a server,
you must provide a name for the server, such as MS1. The
Server MBean that represents MS1 uses Nane=Ms1 in its IMX
object name.

If you create an MBean, you must specify a value for this Nane
component that is unique amongst all other MBeans in a domain.

Type=t ype

For configuration MBeans and run-time MBeans, the short name
of the MBean's type. The short name is the unqualified type
name without the MBean suffix. For example, for an MBean that is
an instance of the Ser ver Runt i meMBean, use Server Runt i ne.

For MBeans that manage services targeted at the system level,
the fully qualified name of the MBean's type including any Bean
or MBean suffix. For example, for an MBean that manages a
system-level JDBC data source, use

webl ogi c. j 2ee. descri pt or. w . JDBCDat aSour ceBean.

2-6

Chapter 2
WebLogic Server MBean Data Model

Table 2-1 (Cont.) WebLogic Server MBean Object Name Key Properties

This Key Property

Specifies

TypeC Par ent MBean=

NameOf Par ent MBean

To create a hierarchical namespace, WebLogic Server MBeans
use one or more instances of this attribute in their object names.
The levels of the hierarchy are used to indicate scope. For
example, a LogMBean at the domain level of the hierarchy
manages the domain-wide message log, while a LogMBean at a
server level manages a server-specific message log.

WebLogic Server child MBeans with implicit creator methods use
the same value for the Nanme property as the parent MBean. For
example, the LogMBean that is a child of the MedRecSer ver

Server MBean uses Nane=MedRecSer ver in its object name:

medr ec: Name=MedRecSer ver, Type=Log, Ser ver =MedRecSer ver

WebLogic Server cannot follow this convention when a parent
MBean has multiple children of the same type.

Some MBeans use multiple instances of this component to
provide unique identification. For example, the following is the
object name for an EJBConponent Runt i me MBean in the MedRec
sample application:

medr ec: Appl i cati onRunti me=MedRecSer ver _MedRecEAR,
Nane=MedRecSer ver _MedRecEAR Sessi on
EJB, Server Runti me=MedRecSer ver, Type=EJBConponent Runt i me

The Appl i cati onRunti me=MedRecSer ver _MedRecEAR key
property indicates that the EJB instance is a module within the
MedRec enterprise application and a child of the
MedRecSer ver _MedRecEAR ApplicationRuntimeMBean. The
Server Runti me=MedRecSer ver key property indicates that the
EJB instance is currently deployed on a server named
MedRecServer and a child of the MedRec Ser ver
ServerRuntimeMBean.

Locat i on=server name

When you access run-time MBeans or configuration MBeans
through the Domain Runtime MBean Server, the MBean object
names include a Locat i on=ser ver name key property which
specifies the name of the server instance on which that MBean is
located. See MBean Servers.

Singleton MBeans, such as Donmai nRunt i meMBean and
Server Li f eCycl eRunt i neMBean exist only on the Administration
Server and do not need to include this key property.

2.4.3 MBeanServerlnvocationHandler

If you use the MBeanSer ver I nvocat i onHandl er to create a proxy for the MBean, as shown

here:

Intf proxy = (Intf)

MBeanSer ver | nvocat i onHandl er. newPr oxyl nst ance(nbs,

ORACLE

name,
Intf.class,
fal se);

2-7

Chapter 2
MBean Servers

you should include the WLS extension MBeanSer ver | nvocat i onHandl er instead of
j avax. management . MBeanSer ver | nvocat i onHandl er, as shown here:

i mport webl ogi c. management . j nx. MBeanSer ver I nvocat i onHandl er;

This ensures that return exceptions are handled correctly.

2.5 MBean Servers

At the core of any JMX agent is the MBean server, which acts as a container for

MBeans.

The JVM for an Administration Server maintains three MBean servers provided by
Oracle and optionally maintains the platform MBean server, which is provided by the
JDK itself. The JVM for a Managed Server maintains only one Oracle MBean server
and the optional platform MBean server.

Table 2-2 describes each MBean server.

Table 2-2 MBean Servers in a WebLogic Server Domain

This MBean server

Creates, registers, and provides access to...

Domain Runtime MBean
Server

MBeans for domain-wide services. This MBean server also acts
as a single point of access for MBeans that reside on Managed
Servers. You can register your own (custom) MBeans in this
MBean server (see Registering Custom MBeans in the Domain
Runtime MBean Server in Developing Manageable Applications
Using JMX for Oracle WebLogic Server).

If your JMX client accesses WebLogic Server MBeans in this
MBean server by constructing object names, the client must add
a Locati on=server nanme key property to the MBean object name.
See WebLogic Server MBean Object Names.

Only the Administration Server hosts an instance of this MBean
server.

Runtime MBean Server

MBeans that expose monitoring, run-time control, and the active
configuration of a specific WebLogic Server instance. You can
also register your own (custom) MBeans in this MBean server
(see Registering Custom MBeans in the Domain Runtime MBean
Server in Developing Manageable Applications Using JMX for
Oracle WebLogic Server).

In this release, the WebLogic Server Runtime MBean Server is
configured by default to be the platform MBean server. However,
you can configure WebLogic Server to create a separate MBean
Server and use it instead of the platform MBean Server. See
Using the Platform MBean Server.

Each server in the domain hosts an instance of this MBean
server.

Edit MBean Server

Pending configuration MBeans and operations that control the
configuration of a WebLogic Server domain. It exposes a

Confi gurati onManager MBean for locking, saving, and activating
changes.

Only the Administration Server hosts an instance of this MBean
server.

ORACLE

2-8

Chapter 2
MBean Servers

Table 2-2 (Cont.) MBean Servers in a WebLogic Server Domain
|

This MBean server Creates, registers, and provides access to...
The JVM's platform MBeans provided by the JDK that contain monitoring information
MBean server for the JVM itself. You can register custom MBeans in this

MBean server.

In this release, WebLogic Server uses the JVM's platform MBean
server to contain the WebLogic run-time MBeans by default. As
such, the platform MBean server provides access to platform
MXBeans, WebLogic run-time MBeans, and WebLogic
configuration MBeans that are on a single server instance. See
Using the Platform MBean Serverand Registering MBeans in the
JVM Platform MBean Server in Developing Manageable
Applications Using JMX for Oracle WebLogic Server.

2.5.1 Connecting to MBean Servers

JMX enables both local and remote access to MBean servers, but JIMX clients use
different APIs for the two types of access and WebLogic Server MBean servers
expose different capabilities to local clients and remote clients.

2.5.1.1 Local Connections to MBean Servers

JMX clients running within a WebLogic Server JVM can access the server's Runtime
MBean Server or Domain Runtime MBean Server directly through JNDI, and
authentication is required to access any MBeans that require roles. These are the only
WebLogic Server MBean servers that allow local access. When accessed from a local
client, the Runtime MBean Server or Domain Runtime MBean Server returns its

j avax. managenent . MBeanSer ver interface, which enables clients to access WebLogic
Server MBeans and to create, register, and access custom MBeans. See Make Local
Connections to the Runtime MBean Server and Make Local Connections to the
Domain Runtime MBean Server.

JMX clients can also access the local JVM's platform MBean server. Any local client
can access the MBeans in this MBean server. See Registering MBeans in the JVM
Platform MBean Server in Developing Manageable Applications Using JMX for Oracle
WebLogic Server.

2.5.1.2 Remote Connections to MBean Servers

ORACLE

Remote JMX clients (clients running in a different JVM from the MBean server) can
use the j avax. managenent . renot e APIs to access any WebLogic MBean server. Clients
must authenticate through the WebLogic Server security framework to do so (see
Security for WebLogic Server MBeans). When accessed from a remote client, a
WebLogic Server MBean server returns its j avax. management . MBeanSer ver Connect i on
interface, which enables clients to only access MBeans; remote clients cannot create
and register custom MBeans. See Make Remote Connections to an MBean Server.

You can enable remote access to the platform MBean server. See Registering
MBeans in the JVM Platform MBean Server in Developing Manageable Applications
Using JMX for Oracle WebLogic Server.

2-9

Chapter 2
MBean Servers

2.5.2 Using the Platform MBean Server

ORACLE

In this release of WebLogic Server, the WebLogic Server Runtime MBean Server is
configured by default to contain the platform MXBeans for the corresponding server.
The Domain Runtime MBean Server contains the platform MXBeans for all of the
servers in the domain. The MBean object names for the platform MXBeans will be the
same as those provided by the JVM except they will have the additional

Locati on=ser ver nane key property.

The WLST script in Example 2-3 illustrates using platform MXBeans to monitor the
resources of a running domain.

Using the platform MBean server for the Runtime MBean Server is controlled by the
Pl at f or mVBeanSer ver Used attribute in the JMX MBean. In previous releases, the default
value for the Pl at f or mvBeanSer ver Used attribut e was fal se so the platform MBean
server was not used unless explicitly enabled. In this release of WebLogic Server, the
default value for the PI at f or MMBeanSer ver Used attribute is t r ue for domains that are at
version 10.3.3.0 or higher. See Pl at f or n\vBeanSer ver Enabl ed in the MBean Reference
for Oracle WebLogic Server.

If desired, you can configure WebLogic Server to create a separate MBean Server and
use it instead of the platform MBean server by setting the Pl at f or mvBeanSer ver Enabl ed
attribute value to f al se using any of the administration tools listed in Summary of
System Administration Tools and APIs in Understanding Oracle WebLogic Server.
Using the WebLogic Server Administration Console, navigate to the Domain >
Configuration > General page > Advanced options and deselect the Pl at f or m MBean
Server Used check box. In WLST, start an edit session, navigate to the JMX directory
for the domain, use cr. set Pl at f or mvBeanSer ver Used(f al se) to change the value, and
then activate the changes.

For more information on the Platform MBean Server and Platform MXBean, see the
following JAVA SDK documentation:

e http://docs.oracl e.com javase/ 7/ docs/ t echnot es/ gui des/ managenent / nkbeans. ht n

* http://docs.oracle.contjavase/ 7/ docs/ api/j aval | ang/ nanagenent / package-
summary. ht

Example 2-3 Using Platform MXBeans

This WST script denonstrates how to use the Platform MXBeans to nonitor
the resources of a running WS donmain. It uses the domai nCust om command
to retrieve the menory usage for 2 servers in the domain. For information
about the available platformMXBeans, refer to the follow ng Iink:
http://docs. oracl e. confjavase/ 7/ docs/ api / j ava/ | ang/ managenent / package-
summary. ht

connect ()
domai nCust onf)
cd ("java.lang")
nonitor heap and thread usage once a minute for 5 nminutes
Xx=0
while x < 5:
Adnin Server
cd ("java.lang: Locati on=Admi nServer, type=Menory")
huAdm n = get (" HeapMenor yUsage")

2-10

http://docs.oracle.com/javase/7/docs/technotes/guides/management/mxbeans.html
http://docs.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/lang/management/package-summary.html

cd ("..")

cd ("java.lang: Location=Adni nServer, t ype=Thr eadi ng")

nuniThr eadsAdnmi n = get (" ThreadCount ")

print "Adm n server nemory usage = ", huAdm n.get("max"), " nunber threads: ",
nuniThr eadsAdni n

cd ("..")

il server

cd ("java.lang: Location=ni, t ype=Memory")

huML = get (" HeapMenor yUsage")

cd ("..")

cd ("java.lang: Location=nl, t ype=Threadi ng")

nuniThreadML = get (" ThreadCount ")

cd ("..")

print "ML server menory usage = ", huM.. get("max"), " number threads: ",
nuniThr eadML

Thr ead. sl eep(60000)

X =x+1

2.5.3 Service MBeans

Within each MBean server, WebLogic Server registers a service MBean under a
simple object name. The attributes and operations in this MBean serve as your entry
point into the WebLogic Server MBean hierarchies and enable JMX clients to navigate
to all WebLogic Server MBeans in an MBean server after supplying only a single
object name. See Table 2-3.

Chapter 2
MBean Servers

JMX clients that do not use the entry point (service) MBean must correctly construct
an MBean's object name to get and set the MBean's attributes or invoke its operations.
Because the object names must be unique, they are usually long and difficult to
construct from a client.

Table 2-3 Service MBeans

MBean Server

Service MBean

JMX object name:

The Domain Runtime
MBean Server

Donmai nRunt i neSer vi ceMBean

Provides access to MBeans for domain-wide services
such as application deployment, JMS servers, and
JDBC data sources. It also is a single point for
accessing the hierarchies of all run-time MBeans and
all active configuration MBeans for all servers in the
domain.

See DomainRuntimeServiceMBean in MBean
Reference for Oracle WebLogic Server.

com bea: Nanme=Donai nRunt i neSe
rvi ce, Type=webl ogi c.
managenent . mheanser vers.
domai nrunt i me. Domai nRunt i meS
ervi ceMBean

Runtime MBean
Servers

Runt i meSer vi ceMBean

Provides access to run-time MBeans and active
configuration MBeans for the current server.

See RuntimeServiceMBean in MBean Reference for
Oracle WebLogic Server.

com bea: Name=Runt i meSer vi ce,
Type=webl ogi c. managenent .
nmbeanservers. runtine.

Runt i meSer vi ceMBean

The Edit MBean Server

Edi t Servi ceMBean

Provides the entry point for managing the
configuration of the current WebLogic Server domain.

See EditServiceMBean in MBean Reference for
Oracle WebLogic Server.

com bea: Name=Edi t Ser vi ce,
Type=webl ogi c. managenent .
nbeanservers.edit.

Edi t Servi ceMBean

ORACLE

2-11

Chapter 2
Security for WebLogic Server MBeans

2.6 Security for WebLogic Server MBeans

To connect to a WebLogic Server MBean server, a JMX client must supply credentials
for a user who has been defined in the WebLogic Server domain's security realm.

To further secure the MBeans that have been registered in an MBean server,
WebLogic Server uses security roles and policies. A security role, like a security
group, grants an identity to a user. Unlike a group, however, membership in a role can
be based on a set of conditions that are evaluated at run time. A security policy is
another set of run-time conditions that specify which users, groups, or roles can
access a resource. Oracle provides a default set of roles and policies for WebLogic
Server MBeans. (See Default Security Policies for MBeans in the MBean Reference
for Oracle WebLogic Server.)

During the startup cycle for a WebLogic Server instance, the server creates a
collection of webl ogi c. security. servi ce. IMKResour ce objects, which are the in-memory
representations of the MBean security policies. When a JMX client attempts to get or
set an MBean attribute or invoke an operation, the MBean server asks the security
realm if the user has sufficient permission. The security realm first determines which
role the user is in. (Role assignments are determined at run time.) Then it uses the
default policies and any other policies that you have created to determine if the role is
allowed access.

You can use the WebLogic Server Administration Console to change the default
access permissions. For example, you can create roles for specific applications and
allow only specific roles to access the MBean instances that are associated with
specific applications. See Configure JMX Policies in the Oracle WebLogic Server
Administration Console Online Help.

2.6.1 Additional Security Resources for Some Attributes and

Operations

ORACLE

For MBean attributes and operations that represent particularly sensitive data or
actions, WebLogic Server provides additional security resource objects to limit which
users can access the data or action. For example, the Server Li f eCycl eRunt i meMBean's
shut down() operation is protected by a JMXResour ce object and a

webl ogi c. security. service. Server Resour ce object. For a complete list of attributes and
operations that are protected by multiple resources, see Administrative Resources and
Server Resources in Securing Resources Using Roles and Policies for Oracle
WebLogic Server .

The default configuration of roles and security policies for these attributes and
operations work together to create a consistent security scheme. You can, however,
make modifications that limit access in ways that you do not intend. See Maintaining a
Consistent Security Scheme in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

2-12

Overview of WeblLogic Server Subsystem
MBeans

This chapter describes the MBeans that can be used to manage various subsystems
of WebLogic Server, including domain and server logging, JMS servers and JMS
system module resources, and JDBC resources.

This chapter includes the following sections:

e Domain and Server Logging Configuration
e JMS Server and JMS System Module Configuration
« JDBC Resource Configuration

In addition, for a description of MBeans that can be used to manage WebLogic
Security, see Understanding the Hierarchy of Security MBeans.

3.1 Domain and Server Logging Configuration

ORACLE

Within a WebLogic Server domain, several MBeans configure logging services.
Table 3-1 introduces the MBeans and Figure 3-1 illustrates where the MBeans are
located in the configuration MBean hierarchy.

Table 3-1 MBeans for Domain and Server Logging

___|
This MBean... Configures...

e Threshold severity level and filter settings for logging output.

* Whether the server logging is based on a Log4j
implementation or the default Java Logging APIs.

* Whether to redirect the JVM stdout and stderr output to the
registered log destinations.

The Administration Server maintains an instance of LogMBean for

the domain-wide message log, and each server instance

maintains its own instance for its local server log.

See LogMBean in the MBean Reference for Oracle WebLogic

Server.

LogMBean

Log file names and the location, file-rotation criteria, and number
of files that a WebLogic Server instance uses to store log
messages.

See LogFileMBean in the MBean Reference for Oracle
WebLogic Server.

LogFi | eMBean

A log filter which determines which messages a server instance
sends to the registered log destinations. Each log filter is
represented by its own instance of LogFi | t er MBean.

LogFi | t er MBean

A log filter can be defined at the domain or server level.

See LogFilterMBean in the MBean Reference for Oracle
WebLogic Server.

3-1

ORACLE

Chapter 3
Domain and Server Logging Configuration

Table 3-1 (Cont.) MBeans for Domain and Server Logging

This MBean...

Configures...

Server MBean

Path prefix for the server's JTA transaction log files.

See ServerMBean in the MBean Reference for Oracle WebLogic
Server.

\ebSer ver MBean

Logging HTTP requests.

See WebServerMBean in the MBean Reference for Oracle
WebLogic Server.

Vi rt ual Host MBean

Logging HTTP requests for virtual hosts that you define.

See VirtualHostMBean in the MBean Reference for Oracle
WebLogic Server.

JMSSer ver MBean

Message log file for this IMS Server.

See JMSServerMBean in the MBean Reference for Oracle
WebLogic Server.

3-2

Chapter 3
JMS Server and JMS System Module Configuration

Figure 3-1 Logging MBeans

DomainMBean

LogMBean

—|DomainLogBroadcastFilterMBe:

LogFilterMBean

— LogFileFilterMBean

ServerMBean
— MemoryBufferFilterMBean
LogMBean
| StdoutFilterMBean
WebServerMBean

L WebServerLogMBean

VirtualHostMBean

L WebServerLogMBean

JMSServerMBean

— JMSMessagelLogFileMBean

3.2 JMS Server and JMS System Module Configuration

Within a WebLogic Server domain, multiple MBeans configure JMS servers and JMS
system module resources. JMS servers are persisted in the domain's config.xml file
and multiple JMS servers can be configured on the various WebLogic Server
instances in a cluster, as long as they are uniquely named. When a JMS system
module is created using JMX, WebLogic Server creates a JMS system module

ORACLE 3-3

Chapter 3
JMS Server and JMS System Module Configuration

descriptor file in the confi g\ j ns subdirectory of the domain directory, and adds a
reference to the module in the domain's config. xnl file as a JMSSyst enResour ce
element. This reference includes the path to the JMS system module file and a list of
target servers and clusters on which the system module is deployed.

Table 3-2 introduces the MBeans and Figure 3-2 illustrates where the MBeans are
located in the configuration MBean hierarchy.

Table 3-2 MBeans for JMS Servers and JMS System Module Resources

__|
This MBean... Configures...

A JMS server is configuration entity that acts as a management
container for targeted destination resources (queues and topics)
in a JMS system module. A JMS server's primary responsibility
for its destinations is to maintain information on what persistent
store is used for any persistent messages that arrive on the
destinations, and to maintain the states of durable subscribers
created on the destinations. As a container for targeted
destinations, any configuration or run-time changes to a JMS
server can affect all of its destinations.

See JMSServerMBean in the MBean Reference for Oracle
WebLogic Server.

JMSSer ver MBean

A JMS system resource is a resource whose definition is part of
the system configuration rather than an application. The
descriptor for the resource is linked through the WebLogic
configuration file, but resides in a separate descriptor file.

JMBSyst enResour ceMBean

See JMSSystemResourceMBean in the MBean Reference for
Oracle WebLogic Server.

Subdeployments enable administrators to deploy some
resources in a JMS module to a JMS server and other IMS
resources to a server instance or cluster. Standalone queues or
topics can only be targeted to a single JMS server. Whereas,
connection factories, uniform distributed destinations (UDDs),
and foreign servers can be targeted to one or more JMS servers,
one or more server instances, or to a cluster. Therefore,
standalone queues or topics cannot be associated with a
subdeployment if other members of the subdeployment are
targeted to multiple JMS servers. However, UDDs can be
associated with such subdeployments since the purpose of
UDDs is to distribute its members to multiple JMS servers in a
domain.

SubDepl oyment MBean

See SubDeploymentMBean in the MBean Reference for Oracle
WebLogic Server.

The top of the IMS module bean tree. JIMS modules all have a
JMSBean as their root bean (a bean with no parent).

See JMSBean in the MBean Reference for Oracle WebLogic
Server.

JMSBean

ORACLE 3-4

Chapter 3
JMS Server and JMS System Module Configuration

Table 3-2 (Cont.) MBeans for JMS Servers and JMS System Module Resources
|

This MBean...

Configures...

Desti nat i onKeyBean

Defines a unique sort order that destinations can apply to arriving
messages. By default messages are sorted in FIFO (first-in, first-
out) order, which sorts ascending based on each message's
uniqgue JMSMessagelD. However, you can configure destination
key to use a different sorting scheme for a destination, such as
LIFO (last-in, first-out).

See DestinationKeyBean in the MBean Reference for Oracle
WebLogic Server.

Di stribut edQueueBean

Defines a set of queues that are distributed on multiple IMS
servers, but which are accessible as a single, logical topic to
JMS clients. Distributed queues can help with load balancing and
distribution, and have many of the same properties as
standalone queues.

See DistributedQueueBean in the MBean Reference for Oracle
WebLogic Server.

Di stribut edTopi cBean

Defines a set of topics that are distributed on multiple IMS
servers, but which are accessible as a single, logical topic to
JMS clients. Distributed topics can help with load balancing and
distribution, and have many of the same properties as
standalone topics.

See DistributedTopicBean in the MBean Reference for Oracle
WebLogic Server.

For ei gnSer ver Bean

Defines foreign messaging providers or remote WebLogic Server
instances that are not part of the current domain. This is useful
when integrating with another vendor's JMS product, or when
referencing remote instances of WebLogic Server in another
cluster or domain in the local WebLogic JNDI tree.

See ForeignServerBean in the MBean Reference for Oracle
WebLogic Server.

JMSConnect i onFact or yBea
n

Defines a set of connection configuration parameters that are
used to create connections for JMS clients. Connection factories
can configure properties of the connections returned to the JMS
client, and also provide configurable options for default delivery,
transaction, and message flow control parameters.

See JMSConnectionFactoryBean in the MBean Reference for
Oracle WebLogic Server.

QueueBean

Defines a point-to-point destination type, which are used for
asynchronous peer communications. A message delivered to a
queue is distributed to only one consumer. Several aspects of a
queue's behavior can be configured, including thresholds,
logging, delivery overrides, and delivery failure options.

See QueueBean in the MBean Reference for Oracle WebLogic
Server.

ORACLE

3-5

Chapter 3
JMS Server and JMS System Module Configuration

Table 3-2 (Cont.) MBeans for JMS Servers and JMS System Module Resources
|

This MBean...

Configures...

Quot aBean

Controls the allotment of system resources available to
destinations. For example, the number of bytes a destination is
allowed to store can be configured with a Quota resource.

See QuotaBean in the MBean Reference for Oracle WebLogic
Server.

SAFRenot eCont ext Bean

Defines the URL of the remote server instance or cluster where a
JMS destination is exported from. It also contains the security
credentials to be authenticated and authorized in the remote
cluster or server.

See SAFRemoteContextBean in the MBean Reference for
Oracle WebLogic Server.

SAFEr r or Handl i ngBean

Defines the action to take when the SAF service fails to forward
messages to remote destinations. Configuration options include
an Error Handling Policy (Redirect, Log, Discard, or Always-
Forward), a Log Format, and sending Retry parameters.

See SAFErrorHandlingBean in the MBean Reference for Oracle
WebLogic Server.

SAFI nport edDest i nati ons
Bean

Defines a collection of imported store-and-forward (SAF)
destinations. A SAF destination is a representation of a queue or
topic in a remote server instance or cluster that is imported into
the local cluster or server instance, so that the local server
instance or cluster can send messages to the remote server
instance or cluster. All IMS destinations are automatically
exported by default, unless the Export SAF Destination
parameter on a destination is explicitly disabled. Each collection
of SAF imported destinations is associated with a remote SAF
context resource, and, optionally, a SAF error handling resource.

See SAFImportedDestinationsBean in the MBean Reference for
Oracle WebLogic Server.

Tenpl at eBean

Defines a set of default configuration settings for multiple
destinations. If a destination specifies a template and does not
explicitly set the value of a parameter, then that parameter will
take its value from the specified template.

See TemplateBean in the MBean Reference for Oracle
WebLogic Server.

Topi cBean

Defines a publish/subscribe destination type, which are used for
asynchronous peer communications. A message delivered to a
topic is distributed to all topic consumers. Several aspects of a
topic's behavior can be configured, including thresholds, logging,
delivery overrides, delivery failure, and multicasting parameters.

See TopicBean in the MBean Reference for Oracle WebLogic
Server.

ORACLE

3-6

ORACLE

Chapter 3
JMS Server and JMS System Module Configuration

Table 3-2 (Cont.) MBeans for JMS Servers and JMS System Module Resources
|

This MBean...

Configures...

Uni f or nDi stri but edQueue
Bean

Defines a uniformly configured distributed queue, whose
members have a consistent configuration of all distributed queue
parameters, particularly in regards to weighting, security,
persistence, paging, and quotas. These uniform distributed
queue members are created on JMS servers based on the
targeting of the uniform distributed queue. Uniform distributed
queues can help with message load balancing and distribution,
and have many of the same properties as standalone queues,
including thresholds, logging, delivery overrides, and delivery
failure parameters.

See UniformDistributedQueueBean in the MBean Reference for
Oracle WebLogic Server.

Uni fornDi stri but edTopi ¢
Bean

Defines a uniformly configured distributed topic, whose members
have a consistent configuration of all uniform distributed queue
parameters, particularly in regards to weighting, security,
persistence, paging, and quotas. These uniform distributed topic
members are created on JMS servers based on the targeting of
the uniform distributed topic. Uniform distributed topics can help
with message load balancing and distribution, and have many of
the same properties as standalone topics, including thresholds,
logging, delivery overrides, and delivery failure parameters.

See UniformDistributedTopicBean in the MBean Reference for
Oracle WebLogic Server.

3-7

Figure 3-2 JMS Server and JMS System Resource MBeans

Chapter 3
JDBC Resource Configuration

DomainMBean
ClusterlvBean
ServerlVBean
JMSServerMBean
JMSSy stemResourcelVBean
JMsBean SubdeploymentMBean

QueueHean

[estinationkeyBean

TopicBean

TemplateB ean

JMSConnectionFactoryBean

QuotaBean

CristributedQueuszBean

FareignServerBean

Cristributed TopicB ean

SAFRemoteC ontextBean

UniformD istributeddueueBean

SAFErrarHandlingBean

UniformD istributed TopicBean

SAFImportedD estinationsBean

3.3 JDBC Resource Configuration

When you create a JDBC resource (data source or multi-data source) using the
WebLogic Server Administration Console or using the WebLogic Scripting Tool
(WLST), WebLogic Server creates a JDBC module in the confi g/ j dbc subdirectory of

the domain directory, and adds a reference to the module in the domain's configuration
file (config. xnl).

Table 3-3 introduces the MBeans and Figure 3-3 illustrates where the MBeans are
located in the configuration MBean hierarchy.

ORACLE

3-8

ORACLE

Chapter 3
JDBC Resource Configuration

Table 3-3 MBeans for JIDBC Resources

This MBean...

Configures...

JDBCSyst enResour ceMBean

A container for the JavaBeans created from a data source
module. However, all IMX access for a JDBC data source is
through the JDBCSystemResourceMBean. You cannot directly
access the individual JavaBeans created from the data source
module.

See JDBCSystemResourceMBean in the MBean Reference for
Oracle WebLogic Server.

JDBCDat aSour ceBean

The top of the JDBC data source bean tree. JDBC data sources
all have a JDBCDataSourceBean as their root bean (a bean with
no parent).

See JDBCDataSourceBean in the MBean Reference for Oracle
WebLogic Server.

JDBCDx i ver Par ansBean

Contains the driver parameters of a data source. Configuration
parameters for the JDBC Driver used by a data source are
specified using a driver parameters bean.

See JDBCDriverParamsBean in the MBean Reference for Oracle
WebLogic Server.

JDBCConnect i onPool Param
sBean

Contains the connection pool parameters of a data source.
Configuration parameters for a data source's connection pool are
specified using the connection pool parameters bean.

See JDBCConnectionPoolBean in the MBean Reference for
Oracle WebLogic Server.

Contains the basic usage parameters of a data source.

JDBCDat aSour ceParamsBea qnfiguration parameters for the basic usage of a data source

n are specified using a data source parameters bean.
See JDBCDataSourceParamsBean in the MBean Reference for
Oracle WebLogic Server.
Contains the XA-related parameters of a data source.

JDBCXAPar anmsBean

Configuration parameters for a data source's XA-related
behavior are specified using a XA parameters bean.

See JDBCXAParamsBean in the MBean Reference for Oracle
WebLogic Server.

3-9

Figure 3-3 JDBC Resource MBeans

Chapter 3

JDBC Resource Configuration

DomainMBean

ORACLE

JDBC SystemResourceMBean

JDBCDataSourceBean

JDBCDriverParamsBean

JDBCConnectionPoolParamsBean

— JDBCDriverParamsBean

— JDBCDriverParamsBean

3-10

Accessing WebLogic Server MBeans with

JMX

This chapter describes how to access WebLogic Server MBeans from a JMX client. It
explains how to set up the classpath for remote clients; how to make local and remote
connections to MBean servers; and how to navigate MBean hierarchies.

This chapter includes the following sections:

e Set Up the Classpath for Remote Clients

* Make Remote Connections to an MBean Server

* Make Local Connections to the Runtime MBean Server

» Make Local Connections to the Domain Runtime MBean Server
* Navigate MBean Hierarchies

* Example: Printing the Name and State of Servers

* Example: Monitoring Servlets

4.1 Set Up the Classpath for Remote Clients

ORACLE

If your JIMX client runs in its own JVM (that is, a JVM that is not a WebLogic Server
instance), include the following JAR file in the client's classpath:

W._HOMVE\server\lib\w jnxclient.jar

where, W_HOME is the directory in which you installed WebLogic Server.

The w jnxclient.jar library contains Oracle's implementation of the HTTP and IIOP
protocols. With Oracle's implementation, JMX clients send login credentials with their
connection request and the WebLogic Server security framework authenticates the
clients. Only authenticated clients can access MBeans that are registered in a
WebLogic Server MBean server. The IIOP protocol is a standard protocol and is
therefore, not an optimized method of communicating with the WebLogic Server.
Choose this library only when you require to use the 11OP or IIOPS protocol.

Oracle also provides another library, wi t hi nt 3cl i ent. j ar, for remote access. This
library enables connectivity over the T3 or T3S protocol to access MBeans for a
WebLogic Server instance or domain. The T3 protocol is an optimized, high-
performance protocol for interoperating with WebLogic Server. Oracle recommends
that you use the T3 protocol whenever possible.

To use the wi thint3client.jar, include the wi thint3client.jar in the classpath of your
client. A foreign server hosted application can use the withint3client.jar to actas a
remote client to a WebLogic Server instance. To provide access to remote services
such as JMS, servlets, EJBs, and start-up classes, deploy any necessary application
code along with the w thint 3client.jar to your application server. See Understanding
the WebLogic Thin T3 Client.

4-1

Chapter 4
Make Remote Connections to an MBean Server

Note:

While Oracle recommends that you use its implementation of the HTTP and
IIOP protocols, JMX clients can use the IIOP protocol that is defined in the
standard JDK. See Remote Connections Using Only JDK Classes. If T3
protocol is specified, it is automatically converted by the client to use IIOP.

Note:

Due to changes in the JDK, WLS no longer supports JMX with just the
wclient.jar. To use JMX, you must use either the “full client" (webl ogi c. j ar)
orw jnxclient.

4.2 Make Remote Connections to an MBean Server

ORACLE

Each WebLogic Server domain includes three types of MBean servers, each of which
provides access to different MBean hierarchies. See MBean Servers.

To connect to a WebLogic MBean server:

1. Describe the address of the MBean server by constructing a
j avax. managenent . r enot e. JMXSer vi ceURL object.

Pass the following parameter values to the constructor (see JMXSer vi ceURL in the
Java SE 8 API Specification at http://docs. oracl e. cont j avase/ 8/ docs/ api / j avax/
managenent / r enot e/ JMXSer vi ceURL. ht m):

* One of the following values as the protocol for communicating with the MBean
server:

t3, t3s, http, https, iiop, iiops
» Listen address of the WebLogic Server instance that hosts the MBean server
e Listen port of the WebLogic Server instance

e Absolute INDI name of the MBean server. The JNDI name must start with /
jndi/ and be followed by one of the JNDI names described in Table 4-1.

Table 4-1 JNDI Names for WebLogic MBean Servers

|
MBean Server JNDI Name

Domain Runtime MBean webl ogi c. managenent . nbeanser vers. donai nrunt i me
Server

Runtime MBean Server webl ogi c. management . nbeanservers. runti ne

Edit MBean Server webl ogi c. managenent . nbeanservers. edi t

4-2

http://docs.oracle.com/javase/8/docs/api/javax/management/remote/JMXServiceURL.html
http://docs.oracle.com/javase/8/docs/api/javax/management/remote/JMXServiceURL.html

Chapter 4
Make Remote Connections to an MBean Server

2. Construct a j avax. managenent . r enot e. JMKConnect or object. This object contains

methods that JMX clients use to connect to MBean servers.

The constructor method for JMXConnect or is:

j avax. managenent . r enot e. JMXConnect or Fact ory.
connect or (JMXSer vi ceURL serviceURL, Map<String, ?> environnment)

Pass the following parameter values to the constructor (see JMXConnect or Fact ory in
the Java SE 8 API Specification at http: // docs. oracl e. conl j avase/ 8/ docs/ api /
j avax/ managenent / r enot e/ JMKConnect or Fact ory. ht nl):

e The JMXServi ceURL object you created in the previous step.
* A hash map that contains the following name-value pairs:

j avax. nam ng. Cont ext . SECURI TY_PRI NCI PAL, admi n- user - nane
j avax. nam ng. Cont ext . SECURI TY_CREDENTI ALS, admi n- user - password

j avax. managenent . r enot e. JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. mnagenent . r enot e"

The webl ogi ¢c. managenent . renot e package defines the protocols that can be used to
connect to the WebLogic MBean servers. Remote JMX clients must include the
classes in this package on their classpath. See Set Up the Classpath for Remote
Clients.

Optionally include the following name-value pair in the hash map:

jmx.renote. x.request.waiting.tineout, mlliseconds

where ni | | i seconds is a j ava. | ang. Long object that contains the number of
milliseconds that your JMX client waits for the invocation of an MBean-server
method to return. If a method does not return by the end of the time-out period, the
client moves to its next set of instructions. By default, a client waits indefinitely for a
method to return; if the MBean server is unable to complete an invocation, the JMX
client will hang indefinitely.

Connect to the WebLogic MBean server by invoking the
JMXConnect or . get MBeanSer ver Connect i on() method.

The method returns an object of type j avax. management . MBeanSer ver Connect i on.

The MBeanSer ver Connect i on object is your connection to the WebLogic MBean
server. You can use it for local and remote connections. See MBeanSer ver Connect i on
in the Java SE 8 API Specification at http://docs. oracl e. conl j avase/ 8/ docs/ api /

j avax/ managenent / MBeanSer ver Connecti on. ht nl .

Oracle recommends that when your client finishes its work, close the connection to
the MBean server by invoking the JMXConnect or. ¢l ose() method.

4.2.1 Example: Connecting to the Domain Runtime MBean Server

Note the following about the code in Example 4-1:

ORACLE

The class uses global variables, connecti on and connect or, to represent the
connection to the MBean server. The i ni t Connecti on() method, which assigns the
value to the connection and connect or variables, should be called only once per
class instance to establish a single connection that can be reused within the class.

4-3

http://docs.oracle.com/javase/8/docs/api/javax/management/remote/JMXConnectorFactory.html
http://docs.oracle.com/javase/8/docs/api/javax/management/remote/JMXConnectorFactory.html
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html

ORACLE

Chapter 4
Make Remote Connections to an MBean Server

The ini t Connection() method takes the username and password (along with the
server's listen address and listen port) as arguments that are passed when the
class is instantiated. Oracle recommends this approach because it prevents your
code from containing unencrypted user credentials. The String objects that
contain the arguments will be destroyed and removed from memory by the JVM's
garbage collection routine.

Because the client sets the j nx. renot e. x. request . wai ti ng. ti neout environment
parameter to 10000, all of its invocations of MBean server methods will time out if
the method does not return within 20000 milliseconds of being invoked.

When the class finishes its work, it invokes JMXConnect or. cl ose() to close the
connection to the MBean server. (See JMXConnect or in the Java SE 7 API
Specification at http:// docs. oracl e. con j avase/ 7/ docs/ api / j avax/ managenent /
renot e/ JIMXConnect or . htmi .)

Example 4-1 Connecting to the Domain Runtime MBean Server

public class MyConnection {

private static MBeanServerConnection connection;

private static JMXConnector connector;

private static final ObjectNanme service;

/*

* Initialize connection to the Domain Runtime MBean Server.

*|

public static void initConnection(String hostname, String portString,
String username, String password) throws | OException,
Mal f or medURLException {

String protocol = "t3";

Integer portinteger = Integer.valueO (portString);

int port = portlnteger.intValue();

String jndiroot = "/jndi/";

String nserver = "webl ogi c. managenent . mheanser vers. domai nrunti ne";
JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostnane, port,
jndiroot + nserver);

Hasht abl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renote");
h. put ("j mx. renote. x. request.waiting.timeout”, new Long(10000));
connector = JMXConnect or Fact ory. connect (servi ceURL, h);
connection = connector. get MBeanSer ver Connecti on();

}

public static void main(String[] args) throws Exception {
String hostnane = args[0];
String portString = args[1];
String usernane = args[2];
String password = args[3];

MyConnection ¢c= new MyConnection();
i ni t Connection(hostnane, portString, username, password);

connector. close();

4-4

http://docs.oracle.com/javase/7/docs/api/javax/management/remote/JMXConnector.html
http://docs.oracle.com/javase/7/docs/api/javax/management/remote/JMXConnector.html

Chapter 4
Make Remote Connections to an MBean Server

4.2.2 Best Practices: Choosing an MBean Server

A WebLogic Server domain maintains three types of MBean servers, each of which
fulfills a specific function. Access MBeans through the MBean server that supports the
task you are trying to complete:

ORACLE

To modify the configuration of the domain, use the Edit MBean Server.

To monitor changes to the pending hierarchy of configuration MBeans, use the
Edit MBean Server.

To monitor only active configuration MBeans (and not run-time MBeans), use a
Runtime MBean Server.

Monitoring through a Runtime MBean Server requires less memory and network
traffic than monitoring through the Domain Runtime MBean Server. (WebLogic
Server does not initialize the Domain Runtime MBean Server until a client
requests a connection to it.)

In most cases, all server instances in the domain have the same set of
configuration data and it therefore does not matter whether you monitor the
Runtime MBean Server on the Administration Server or on a Managed Server.
However, if you make a change that a server cannot consume until it is restarted,
the server will no longer accept any changes and its configuration data could
become outdated. In this case, monitoring this server's Runtime MBean Server
indicates only the configuration for the specific server instance. To understand the
process of changing a WebLogic Server domain and activating the changes, see
Managing Configuration Changes in Understanding Domain Configuration for
Oracle WebLogic Server.

If your client monitors run-time MBeans for multiple servers, or if your client runs in
a separate JVM, Oracle recommends that you connect to the Domain Runtime
MBean Server on the Administration Server instead of connecting separately to
each Runtime MBean Server on each server instance in the domain.

If you register a JMX listener and filter with an MBean in the Domain Runtime
MBean Server, the JMX filter runs in the same JVM as the MBean it monitors. For
example, if you register a filter with an MBean on a Managed Server, the filter runs
on the Managed Server and forwards only messages that satisfy the filter criteria
to the listener.

In general, code that uses the Domain Runtime MBean Server is easier to
maintain and is more secure for the following reasons:

— Your code only needs to construct a single URL for connecting to the Domain
Runtime MBean Server on the Administration Server. Thereafter, the code can
look up values for all server instances and optionally filter the results.

— If your code uses the Runtime MBean Server to read MBean values on
multiple server instances, it must construct a URL for each server instance,
each of which has a unique listen address/listen port combination.

— You can route all administrative traffic in a WebLogic Server domain through
the Administration Server's secured administration port, and you can use a
firewall to prevent connections to Managed Server administration ports from
outside the firewall.

The trade off for directing all IMX requests through the Domain Runtime MBean
Server is a slight degradation in performance due to network latency and

4-5

Chapter 4
Make Remote Connections to an MBean Server

increased memory usage. Connecting directly to each Managed Servers's
Runtime MBean Server to read MBean values eliminates the network hop that the
Domain Runtime MBean Server makes to retrieve a value from a Managed
Server. However, for most network topologies and performance requirements, the
simplified code maintenance and enhanced security that the Domain Runtime
MBean Server enables is preferable.

Note:

When JMX notifications are added to MBeans, the Domain Runtime MBean

Server can consume large amounts of memory. When JMX notifications are
used, two cases exist that cause the Administration Server to keep copies of
all IMX object names registered in all Runtime MBean Servers running in all
Managed Servers in the domain:

— At the WebLogic Server level, to simulate the unregister MBean
notifications when a Managed Server shuts down.

— At the JDK JMX client notification layer.

The likelihood of encountering this issue grows when both of the following
conditions exist:

— EM Fusion Middleware Control is being used to manage large domains,
as it adds natification listeners to the Domain Runtime MBean Server.

— Fusion Middleware products that significantly increase the number of JIMX
runtime MBeans are included in the domain. This would include any
product with MBeans that are registered in WebLogic Server Runtime
MBean Server instances running in the domain; that is, in the
Administration Server as well as all Managed Servers. (These products
include Coherence, SOA Suite, OSB, and so on.)

To eliminate this particular scaling issue, disable the managed- ser ver -
notifications-enabl ed attribute. This configuration attribute disables the ability
to define notifications on MBeans that are contained in the Managed Servers
Runtime MBean Servers (these MBeans contain a Locat i on=key in the
ObjectName).

If Managed Server notifications are disabled, then the two sets of
ObjectNames for MBeans contained in the WebLogic Server and JDK
components will not be kept. Notifications listeners can still be defined on the
MBeanServerDelegate and on MBeans contained in the local Domain Runtime
MBean Server. However, notifications listeners cannot be added to the non-
local MBeans.

The managed- server-notifi cations-enabl ed attribute can be set using WLST as
follows:

edit()

startEdit()

cd(" IJMX/ domai n- name")

cno. set ManagedServer Not i fi cati onsEnabl ed(f al se)
activate()

ORACLE 4-6

Chapter 4
Make Remote Connections to an MBean Server

Figure 4-1 Domain Runtime MBean Server versus Runtime MBean Server

JH Client -
- (nntrecurﬁmended} I

: T e T e

-—_

WEeanserverconnection| | MBeanServerComnect j-_‘:'nq MMBeanServerConnect ion
L - — - - - - — J o - - - - - - — M|
N 4
. !
: !
Administration Serve 4 _ Managed Server !

b : {
» Funtirme MBean Server I

Comain RBuntime MBean Server /
Managed Server i,

(Runtime flBean Senrer>

4.2.3 Remote Connections Using Only JDK Classes

Oracle recommends that you use WebLogic Server classes to connect from remote
JMX clients. However, it is possible for remote JMX clients to connect to a WebLogic
Server JMX agent using only the classes in the JDK. To do so:

1. Ifwjmxclient.jar andwclient.jar are notin the client classpath:

a. Enable the IIOP protocol for the WebLogic Server instance that hosts your
MBeans.

b. Configure the default IIOP user to be a WebLogic Server user with
Administrator privileges.

See Enable and Configure IIOP in Oracle WebLogic Server Administration
Console Online Help.

Ifwjnxclient.jar andw client.jar are in the client classpath, there is no need to
enable the default IIOP user. Go to Step 2.

¢ Note:

wiclient.jar isincluded inw jnxclient.jar's MANIFEST ClassPath entry, so
wiclient.jar andw jnmxclient.jar need to be in the same directory, or both
jars need to be specified on the classpath.

Ensure that webl ogic.jar orw fullclient.jar is notincluded in the classpath if
w jmxclient.jar is included. Only the thin client w jmxclient.jar/wclient.jar
or the thick clientw ful I client.jar should be used, but not a combination of
both.

2. Inyour JMX client, construct a j avax. managenent . JMXConnect or object as follows:

ORACLE 47

Chapter 4
Make Local Connections to the Runtime MBean Server

String hostname = "W.S-host"
int port = WS-port

String protocol = "iiop";
String jndiroot= new String("/jndi/iiop://" + hostname + ":" +
port + "/");

String nserver = "MBean-server-JNDl -nanme";

JMXServi ceURL serviceURL = new JMXServi ceURL(protocol, hostname, port,
jndiroot + mserver);

Hasht abl e h = new Hashtabl e();

h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);

h. put (Cont ext . SECURI TY_CREDENTI ALS, password);

connector = JMXConnect or Fact ory. connect (servi ceURL, h);

where W.S-host and W.S-port are the listen address and listen port of a WebLogic
Server instance and MBean- ser ver - JNDI - nane is one of the values listed in
Table 4-1.

Note that the hash table you create does not include the name of a protocol package.
By leaving this value as null, the JMX client uses the protocol definitions from the
com sun. j nx. renot e. prot ocol package, which is in the JDK.

4.3 Make Local Connections to the Runtime MBean Server

ORACLE

Local clients can access a WebLogic Server instance's Runtime MBean Server
through the JNDI tree instead of constructing a JMXSer vi ceURL object.

Note:

Local clients can also access a WebLogic Server's Domain Runtime MBean
Server through the JNDI tree, as described in Make Local Connections to the
Domain Runtime MBean Server.

When accessed from JNDI, the Runtime MBean Server returns its

j avax. management . MBeanSer ver interface. This interface contains all the methods in the
MBeanSer ver Connect i on interface plus additional methods such as regi st er MBean() ,
which a local process can use to register custom MBeans. (See MBeanSer ver in the
Java SE 8 API Specification at http:// docs. oracl e. cont j avase/ 8/ docs/ api / j avax/
nmanagenent / MBeanSer ver . htm .)

If the classes for the JMX client are located in a Java EE module, such as an EJB or
Web application, then the JNDI name for the Runtime MBeanServer is:

j ava: conp/ webl ogi ¢/ j m/runti me

For example:

Initial Context ctx = new Initial Context();
server = (MBeanServer)ctx. | ookup("java: conp/ webl ogi ¢/ j mx/ runtime");

If the classes for the JMX client are not part of a Java EE module, then the JNDI name
for the Runtime MBean Server is:

j ava: conp/j mx/runtine

4-8

http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServer.html
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServer.html

Chapter 4
Make Local Connections to the Domain Runtime MBean Server

Note:

The Java EE specification does not allow application severs to create JNDI
bindings automatically in j ava: conp/ env nanespace. Thus, starting WebLogic
Server 12.2.1, the following new bindings replaces the existing

j ava: conp/ env/ j nx bindings:

e java: conp/ webl ogi ¢/j m/runtime replaces j ava: conp/ env/ j mx/ runti me

e java: conp/ webl ogi ¢/ j mx/ domai nRunt i me replaces j ava: conp/ env/ j mx/
donai nRunt i me

e java: conp/ webl ogi ¢/ j mk/ edi t replaces j ava: conp/ env/j nx/ edit

The j ava: conp/ env/j mx/ runti me, j ava: conp/ env/ j nx/ donai nRunt i me, and

j ava: conp/ env/ j mx/ edi t binds still exists. However, if you try to list them using
JNDI interfaces, you cannot see them. Applications that access these
deprecated bindings can find the bindings by performing a lookup of the object
bound there.

4.4 Make Local Connections to the Domain Runtime MBean

Server

ORACLE

Local clients can also access a WebLogic Server instance's Domain Runtime MBean
Server through the JNDI tree instead of constructing a JMXSer vi ceURL object.

When accessed from JNDI, the Domain Runtime MBean Server returns its

j avax. management . MBeanSer ver interface. This interface contains all the methods in the
MBeanSer ver Connect i on interface plus additional methods such as regi st er MBean() ,
which a local process can use to register custom MBeans, and other methods such as
get MBeanCount (), i nstatiate(), and get C assLoader (). (See MBeanSer ver in the Java SE
8 API Specification at htt p: // docs. or acl e. con j avase/ 8/ docs/ api / j avax/ management /
MBeanServer. htni)

Note:

As a best practice, Oracle recommends that you use the Domain Runtime
MBean Server only for MBeans that perform domain-wide operations. You
should ensure that any MBean processing and network activity do not slow
down the Administration Server and prevent it from processing administration
operations.

If the classes for the JMX client are located in a Java EE module, such as an EJB or
Web application, then the JNDI name for the Domain Runtime MBeanServer is:

j ava: conp/ webl ogi ¢/ j mx/ domai nRunt i me

For example:

Initial Context ctx = new Initial Context();
server = (MBeanServer)ctx. | ookup("java: conp/ webl ogi c/j mx/ domai nRunti me");

4-9

http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServer.html
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServer.html

Chapter 4
Navigate MBean Hierarchies

If the classes for the JMX client are not part of a Java EE module, then the JNDI name
for the Domain Runtime MBean Server is:

java: conp/ j mx/ domai nRunt i me

The Domain Runtime MBean Server is present only on the Administration Server.
Because the ct x. | ookup() call returns a reference to the local MBeanServer, the
lookup method can only be called when running on the Administration Server. If called
when running on a Managed Server, a NameNot Found exception is thrown.

4.5 Navigate MBean Hierarchies

ORACLE

WebLogic Server organizes its MBeans in a hierarchical data model. (See WebLogic
Server MBean Data Model.) In this model, all parent MBeans include attributes that
contain the object names of their children. You use the child's object name in standard
JMX APIs to get or set values of the child MBean's attributes or invoke its methods.

To navigate the WebLogic Server MBean hierarchy:

1. Initiate a connection to an MBean server.

See the previous section, Make Remote Connections to an MBean Server.
Initiating the connection returns an object of type
j avax. managenent . MBeanSer ver Connect i on

2. Obtain the object name for an MBean at the root of an MBean hierarchy by
invoking the MBeanSer ver Connect i on.get At t ri but e(Obj ect Nane obj ect - name, String
attribute) method where:

* obj ect - nane represents the object name of the service MBean that is registered
in the MBean server. (See Service MBeans.)

Table 2-3 describes the type of service MBeans that are available in each type
of MBean server.

e attribute represents the name of a service MBean attribute that contains the
root MBean.

3. Successively invoke code similar to the following:

bj ect Nanme on =
MBeanSer ver Connecti on. get Attri but e(obj ect-nane, attribute)

In the preceding syntax:

* obj ect-nanme represents the object name of the current node (MBean) in the
MBean hierarchy.

e attribute represents the name of an attribute in the current MBean that
contains one or more instances of a child MBean. If the attribute contains
multiple children, assign the output to an object name array, Obj ect Nang[] .

To determine an MBean's location in an MBean hierarchy, refer to the MBean's
description in MBean Reference for Oracle WebLogic Server. For each MBean, the
MBean Reference for Oracle WebLogic Server lists the parent MBean that contains
the current MBean's factory methods. For an MBean whose factory methods are not
public, the MBean Reference for Oracle WebLogic Server lists other MBeans from
which you can access the current MBean.

4-10

Chapter 4
Example: Printing the Name and State of Servers

4.6 Example: Printing the Name and State of Servers

ORACLE

The code example in Example 4-2 connects to the Domain Runtime MBean Server
and uses the Domai nRunt i neSer vi ceMBean to get the object name for each

Ser ver Runti meMBean in the domain. Then it retrieves and prints the value of each
server's Server Runti meMBean Nane and St at e attributes.

Note the following about the code in Example 4-2:

* In addition to the connecti on and connect or global variables, the class assigns the
object name for the WebLogic Server service MBean to a global variable. Methods
within the class will use this object name frequently, and once it is defined it does
not need to change.

e The printServerRunti nes() method gets the value of the Domai nRunt i neSer vi ceMBean
Server Runt i nes attribute, which contains an array of all Ser ver Runt i meMBean
instances in the domain. (See DomainRuntimeServiceMBean in MBean Reference
for Oracle WebLogic Server.)

Example 4-2 Example: Print the Name and State of Servers

inport java.io.|CException;

inport java.net.Mal formedURLException;

inport java.util.Hashtable;

i nport javax. managenent. MBeanSer ver Connecti on;

i nport j avax. managenent. Mal f or medChj ect NaneExcepti on;
i nport j avax. managenent. Cbj ect Nang;

i nport j avax. managenent. renot e. JMXConnect or;

i nport javax. managenent . r enot e. JMXConnect or Fact ory;

i nport javax. managenent. remote. JMXSer vi ceURL;

i nport javax. naming. Cont ext;

public class PrintServerState {

private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectNane service;

/1 Initializing the object nane for Donai nRunti nmeServi ceMBean
/] so it can be used throughout the class.
static {
try {
servi ce = new (bj ect Nang(
"com bea: Nanme=Domai nRunt i meSer vi ce, Type=webl ogi ¢c. managenent .
mbeanser vers. donai nrunti ne. Domai nRunt i meSer vi ceMBean") ;
}catch (Mal for medChj ect NaneException e) {
throw new AssertionError(e.get Message());
1
}

/*
* Initialize connection to the Domain Runtime MBean Server
*|
public static void initConnection(String hostname, String portString,
String username, String password) throws | OException,
Mal f or medURLException {
String protocol = "t3";
Integer portinteger = Integer.valueO (portString);
int port = portlnteger.intValue();

4-11

Chapter 4
Example: Monitoring Servlets

String jndiroot = "/jndi/";
String nmserver = "webl ogi c. mnagenent . nbeanservers. domai nrunti me";
JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostnane,
port, jndiroot + nserver);
Hasht abl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renote");
connector = JMXConnect or Fact ory. connect (servi ceURL, h);
connection = connect or. get MBeanSer ver Connecti on();

}

/*

* Print an array of ServerRuntinmeMBeans.

* This MBean is the root of the runtime MBean hierarchy, and

* each server in the domain hosts its own instance.

*|

public static ojectName[] getServerRuntines() throws Exception {
return (CbjectNane[]) connection. getAttribute(service,

"ServerRuntimes");

}

/*
* |terate through ServerRunti neMBeans and get the name and state
*/
public void printNaneAndState() throws Exception {
bj ect Name[] serverRT = get ServerRuntimes();
Systemout. printin("got server runtines");
int length = (int) serverRT.length;

for (int i =0; i <length; i++) {
String name = (String) connection.getAttribute(serverRT[i],
“Name")
String state = (String) connection.getAttribute(serverRT[i],
"State");
Systemout. println("Server name: " + nane + ". Server state: "
+ state);
1

}

public static void main(String[] args) throws Exception {
String hostnane = args[0];
String portString = args[1];
String usernane = args[2];
String password = args[3];

PrintServerState s = new PrintServerState();

i ni t Connection(hostnane, portString, usernanme, password);
s. print NaneAndState();

connector. cl ose();

}
}

4.7 Example: Monitoring Servlets

Each servlet in a Web application provides instance of Ser vl et Runt i meMBean which
contains information about the servlet's run-time state. (See ServletRuntimeMBean in
MBean Reference for Oracle WebLogic Server.)

In the WebLogic Server data model, the path to a Servl et Runti nreMBean is as follows:

ORACLE 4-12

ORACLE

5.

Chapter 4
Example: Monitoring Servlets

The Domain Runtime MBean Server (for all servlets on all servers in the domain),
or the Runtime MBean Server on a specific server instance.

Donai nRunt i meSer vi ceMBean Or Runt i meSer vi ceMBean, Ser ver Runt i mes attribute.
Ser ver Runt i meMBean, Appl i cati onRunt i nes attribute.

Appl i cati onRunti meMBean, Conponent Runt i mes attribute.

The Conponent Runt i nes attribute contains many types of component run-time
MBeans, one of which is WebAppConponent Runt i neMBean. When you get the value of
this attribute, you use the child MBean's Type attribute to get a specific type of
component run-time MBean.

ViebAppConponent Runt i meMBean, Ser vl et Runti mes attribute.

Example 4-3 Monitoring Servlets

inmport java.io.|CException;
import java.net. Ml formedURLException;
inmport java.util.Hashtable;

i nport j avax. managenent. MBeanServer Connecti on;

i mport j avax. managenent. Mal f or medChj ect NaneExcepti on;
i nport j avax. managenent. Qbj ect Nane;

i mport j avax. managenent. renot e. JMXConnect or;

i nport javax. managenent. renmot e. JMXConnect or Fact ory;

i mport javax. managenent.remot e. JMXSer vi ceURL;

i mport javax. naming. Cont ext;

public class MnitorServlets {

private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectNanme service;

/1 Initializing the object nane for Domai nRuntinmeServiceMBean
/] so it can be used throughout the class.
static {
try {
service = new (bj ect Name(
"com bea: Nanme=Domai nRunt i meSer vi ce, Type=webl ogi c. managenment . nbeanser
vers. domai nrunt i me. Domai nRunt i meSer vi ceMBean") ;
}catch (Mal for medChj ect NaneException e) {
t hrow new AssertionError(e.get Message());
}
}

/*
* Initialize connection to the Domain Runtime MBean Server
*|
public static void initConnection(String hostname, String portString,
String usernanme, String password) throws | CException,
Mal f or medURLException {
String protocol = "t3";
Integer portinteger = Integer.val ueO(portString);
int port = portlnteger.intValue();
String jndiroot = "/jndi/";
String mserver = "webl ogi c. managenent . mheanser vers. domai nrunti me";

JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostnane,

port, jndiroot + nserver);
Hasht abl e h = new Hashtabl e();

4-13

Chapter 4
Example: Monitoring Servlets

h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);

h. put (Cont ext . SECURI TY_CREDENTI ALS, password);

h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renote");

connector = JMXConnect or Fact ory. connect (servi ceURL, h);

connection = connect or. get MBeanSer ver Connecti on();

}

/*
* Get an array of ServerRuntinmeMBeans
*/
public static CojectName[] getServerRuntines() throws Exception {
return (CbjectNane[]) connection. getAttribute(service,
"ServerRuntimes");

}

/*
* Get an array of \WWebAppConponent Runti meMBeans
*/
public void getServletData() throws Exception {
bj ect Nae[] serverRT = get ServerRuntimes();
int length = (int) serverRT.length;
for (int i =0; i <length; i++) {
bj ect Nae[] appRT =
(nj ect Nae[]) connection.getAttribute(serverRT[i],
"ApplicationRuntimes");
int appLength = (int) appRT.length;
for (int x = 0; x < appLength; x++) {
Systemout.println("Application name: " +
(String)connection.getAttribute(appRT[x], "Nane"));
oj ect Name[] conpRT =
(nj ect Nane[]) connection.getAttribute(appRT[x],
" Conponent Runti nes");
int conpLength = (int) conpRT.|ength;
for (int y =0; y < conpLength; y++) {
Systemout.printIn(" Conponent name: " +
(String)connection.getAttribute(conpRT[y], "Nane"));
String conponent Type =
(String) connection.getAttribute(conpRT[y], "Type");
System out. println(conmponent Type.toString());
i f (conponent Type.toString().equal s("WbAppConponent Runtine")){
bj ect Name[] servl etRTs = (Cbject Nang[])
connection. getAttribute(conpRT[y], "Servlets");
int servletlLength = (int) servletRTs.length;
for (int z =0; z < servletLength; z++) {

Systemout. println(" Servlet nane: " +
(String)connection.getAttribute(servletRTs[z],
"Narre"))

Systemout. println(" Servlet context path: " +

(String)connection.getAttribute(servletRTs[z],
"Cont ext Path"));
Systemout. println(" Invocation Total Count : " +
(nj ect)connection. get Attribute(servletRTs[z],
"I nvocationTotal Count"));

ORACLE 4-14

Chapter 4
Example: Monitoring Servlets

public static void main(String[] args) throws Exception {
String hostnane = args[0];
String portString = args[1];
String usernane = args[2];
String password = args[3];

MonitorServliets s = new MnitorServlets();

i nit Connection(hostnane, portString, usernanme, password);
s.get ServletData();

connector. cl ose();

}
}

The code in Example 4-3 navigates the hierarchy described in the previous
paragraphs and gets values of Servl et Runt i meMBean attributes.

ORACLE 4-15

Chapter 4

Example: Monitoring Servlets

ORACLE" 4-16

Managing a Domain's Configuration with

JMX

ORACLE

This chapter describes how to use JMX to manage a WebLogic Server domain's
configuration. It explains how to edit MBean attributes; how to list and undo changes;
how to track the activation of changes; and how to set and get encrypted MBean
attribute values. It also includes best practices for editing and handling exceptions.
This chapter includes the following sections:

Editing MBean Attributes: Main Steps

Listing and Undoing Changes

Tracking the Activation of Changes

Managing Locks

Best Practices: Recommended Pattern for Editing and Handling Exceptions

Setting and Getting Encrypted Values

To understand the process of changing a WebLogic Server domain and activating the
changes, see Managing Configuration Changes in Understanding Domain
Configuration for Oracle WebLogic Server.

5.1 Editing MBean Attributes: Main Steps

To edit MBean attributes:

1. Start an Edit Session.

All edits to MBean attributes occur within the context of an edit session, and within
each WebLogic Server domain only one edit session can be active at a time. Once
a user has started an edit session, WebLogic Server locks other users from
accessing the pending configuration MBean hierarchy. See Managing Locks.

Change Attributes or Create New MBeans.

Changing an MBean attribute or creating a new MBean updates the in-memory
hierarchy of pending configuration MBeans. If you end your edit session before
saving these changes, the unsaved changes will be discarded.

Save Changes to the Pending Configuration Files.

When you are satisfied with your changes to the in-memory hierarchy, save them to
the domain's pending configuration files. Any changes that you save remain in the
pending configuration files until they have been activated or explicitly reverted. If
you end your edit session before activating the saved changes, you or someone
else can activate them in a subsequent edit session.

You can iteratively make changes and save changes before activating them. For
example, you can create and save a server. Then you can configure the new
server's listen port and listen address and save those changes. Organizing your
code in this way can facilitate correcting any validation errors.

5-1

ORACLE

4.

Chapter 5
Editing MBean Attributes: Main Steps

Activate Your Saved Changes.

When you activate your changes, WebLogic Server copies the saved, pending
configuration files to all servers in the domain. Each server evaluates the changes
and indicates whether it can consume them. If it can, then it updates its active
configuration files and in-memory hierarchy of configuration MBeans.

Restart any server instances that have been updated with changes that require a
server restart.

For an example of editing MBeans and activating the edits, see Example: Changing
the Administration Port.

5.1.1 Start an Edit Session

To start an edit session:

1.

Initiate a connection to the Edit MBean Server.

The connection returns an object of type j ava. management . MBeanSer ver Connect i on.
See Make Remote Connections to an MBean Server.

Get the object name for Confi gur ati onManager MBean.

Conf i gur ati onManager MBean provides methods to start and stop edit sessions, and
save, undo, and activate configuration changes. (See ConfigurationManagerMBean
in MBean Reference for Oracle WebLogic Server.)

Each domain has only one instance of Confi gur ati onManager MBean and it is
contained in the Edi t Servi ceMBean Conf i gur at i onManager attribute. Edi t Ser vi ceMBean
is your entry point for all edit operations. It has a simple, fixed object name and
contains attributes and operations for accessing all other MBeans in the Edit
MBean Server.

To get the Confi gur ati onManager MBean object name, use the following method:

MBeanSer ver Connect i on. get Att ri but e(
(bj ect Name obj ect-name, String attribute)

In the preceding method syntax:

e obj ect - nane represents the literal
"com bea: Name=Edi t Servi ce, Type=webl ogi c. managenment . mbeanservers. edit. Edit Se
rvi ceMBean", which is the object name of Edi t Servi ceMBean.

e attribute represents the literal " Confi gurati onManager ", which is the name of
the attribute in Edi t Ser vi ceMBean that contains Conf i gur at i onManager MBean.

Start an edit session.

To start an edit session, invoke the Confi gur ati onManager MBean st art Edi t (i nt
wai t Time, int timeout) operation, where:

* waitTine represents the number of milliseconds Confi gur ati onManager MBean
waits to establish a lock on the edit MBean hierarchy. You cannot establish a
lock if other edits are in progress unless you have administrator privileges (see
Managing Locks).

e tineout represents the number of milliseconds you have to complete your edit
session. If the time expires before you save or activate your edits, all of your
unsaved changes are discarded.

5-2

Chapter 5
Editing MBean Attributes: Main Steps

The start Edi t operation returns either of the following:

e If it cannot establish a lock on the edit tree within the amount of time that you
specified, it throws
webl ogi ¢. managenent . nbeanservers. edi t. Edi t Ti medQut Excepti on.

» If it successfully locks the edit tree, it returns an object name for Dorai nMBean,
which is the root of the edit MBean hierarchy.

5.1.2 Change Attributes or Create New MBeans

To change the attribute values of existing MBeans, create new MBeans, or delete
MBeans:

1. Navigate the hierarchy of the edit tree and retrieve an object name for the MBean
that you want to edit. To create or delete MBeans, retrieve an object name for the
MBean that contains the appropriate factory methods.

See Make Remote Connections to an MBean Server.

2. To change the value of an MBean attribute, invoke the
MBeanSer ver Connect i on.set Attri but e(obj ect-nane, attribute) method, where:

e obj ect - nane represents the object name of the MBean that you want to edit.

e attribute represents ajavax. managenent. Attribut e object, which contains the
name of the MBean attribute that you want to change and its new value.

To create an MBean, invoke the MBean's create method. For example, the factory
method to create an instance of Server MBean is creat eServer (String nanme) in

Domai nMBean. In MBean Reference for Oracle WebLogic Server, each MBean
describes the location of its factory methods. (See ServerMBean.)

3. (Optional) If you organize your edits into multiple steps, consider validating your
changes after each step by invoking the Confi gur ati onManager MBean val i dat e()
operation.

The validate method verifies that all unsaved changes satisfy dependencies
between MBean attributes and makes other checks that cannot be made at the
time that you set the value of a single attribute.

If it finds validation errors, the val i date() operation throws an exception of type
webl ogi c. managenent . mbeanser vers. edi t. Val i dati onExcepti on. See Exception Types
Thrown by Edit Operations.

Validating is optional because the save() operation also validates changes before
saving.

5.1.3 Save Changes to the Pending Configuration Files

Save your changes by invoking the Confi gur ati onManager MBean save() operation.

5.1.4 Activate Your Saved Changes

To activate your saved changes throughout the domain:

1. Invoke the Confi gurati onManager MBean acti vate(l ong timeout) operation where
timeout specifies how many milliseconds the operation has to complete.

ORACLE 5-3

Chapter 5
Editing MBean Attributes: Main Steps

The acti vat e operation returns an object name for an instance of
Acti vati onTaskMBean, which contains information about the activation request. See
Listing and Undoing Changes.

When the act i vat e operation succeeds or times out, it releases your lock on the
editable MBean hierarchy.

2. Close your connection to the MBean server by invoking JMXConnect or . cl ose() .

5.1.5 Example: Changing the Administration Port

ORACLE

The code example in Example 5-1 changes the context path that you use to access
the WebLogic Server Administration Console for a domain. This behavior is defined by
the Donai nMBean Consol eCont ext Pat h attribute.

Note the following about the code example:

* For information on how the class connects to the Edit MBean Server, see Make
Remote Connections to an MBean Server.

e To simplify the code for learning purposes, exception handling in Example 5-1 is
minimal. See Best Practices: Recommended Pattern for Editing and Handling
Exceptions.

Example 5-1 Example: Changing the Administration Console's Context Path

import java.io.|CException;
import java.net. Ml formedURLException;
import java.util.Hashtable;

i nport javax.managenent.Attribute;

i nport j avax. managenent. MBeanSer ver Connecti on;

i nport j avax. managenent. Mal f or medChj ect NaneExcepti on;
i mport javax. management . Cbj ect Naneg;

i nport j avax. managenent.renot e. JMXConnect or;

i nport javax. managenent. renmot e. JMXConnect or Fact ory;

i mport javax. managenent. remot e. JMXSer vi ceURL;

i nport javax. naming. Cont ext;

public class EditWSMeans {
private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectNane service;

[/ Initializing the object name for Edit ServiceMBean
/] so it can be used throughout the class.
static {
try {
servi ce = new Obj ect Nang(
"com bea: Nane=Edi t Servi ce, Type=webl ogi c. nanagenent . mheanser vers.
edit. Edit Servi ceMBean");
} catch (Ml formedCbj ect NaneException e) {
t hrow new AssertionError(e.get Message());

* Methods to start an edit session.
* NOTE: Error handling is nminimal to help you see the
* main steps in editing MBeans. Your code shoul d

5-4

ORACLE

Chapter 5
Editing MBean Attributes: Main Steps

* include logic to catch and process exceptions.

K o e m e e e m e e e e e e e e e e e m e e e e e e e m e ———
*|

/*

* Initialize connection to the Edit MBean Server.

*|

public static void initConnection(String hostname, String portString,
String username, String password) throws | CException,
Mal f or medURLException {

String protocol = "t3";

Integer portlnteger = Integer.valueCf (portString);

int port = portlnteger.intValue();

String jndiroot = "/jndi/";

String nmserver = "webl ogi c. mnagenent . nheanservers.edit";

JMXSer vi ceURL serviceURL = new JMXServi ceURL(protocol, hostnane, port,
jndiroot + nserver);

Hasht abl e h = new Hashtabl e();

h. put (Cont ext. SECURI TY_PRI NCI PAL, usernane);

h. put (Cont ext . SECURI TY_CREDENTI ALS, password);

h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renote");
connector = JMXConnect or Fact ory. connect (servi ceURL, h);
connection = connect or. get MBeanSer ver Connecti on();

}

/**
* Start an edit session.
*|
public ObjectNane startEditSession() throws Exception {
I/ Get the object name for ConfigurationManager MBean.
bj ect Name cfgMgr = (Ohbj ect Name) connection. get Attribute(service,
"ConfigurationManager");

Il I'nstruct MBeanServerConnection to invoke
/1 ConfigurationManager.startEdit(int waitTime int timeout).
Il The startEdit operation returns a handl e to Donmai nMBean, which is
Il the root of the edit hierarchy.
bj ect Name domai nConf i gRoot = ((hj ect Nare)
connection.invoke(cfgMWr,"startEdit",
new Object[] { new I nteger(60000),
new | nteger (120000) }, new String[] { "java.lang.Integer",
"java.lang. I nteger" });
i f (domainConfigRoot == null) {
/1 Couldn't get the Iock
throw new Exception("Somebody else is editing already");

1
return domai nConfi gRoot ;

/**

* Modify the Domai nMBean's Consol eContextPath attribute.
*/

5-5

Chapter 5
Editing MBean Attributes: Main Steps

public void editConsol eCont ext Pat h(Chj ect Name cfgRoot) throws Exception {

Il The calling method passes in the object name for Donai nMBean.

/1 This method only needs to set the value of an attribute

/1 in Domai nMBean.

Attribute adminport = new Attribute("Consol eContextPath", new String(
"secureConsol eContext"));

connection. set Attribute(cfgRoot, adminport);

Systemout. println("Changed the Administration Console context path to " +
"secureConsol eContext");

*/
public CbjectNane activate() throws Exception {
I/ Get the object name for ConfigurationManager MBean.
bj ect Name cfgMgr = (Obj ect Name) connection. get Attribute(service,
"ConfigurationManager");
/1 Instruct MBeanServerConnection to invoke
/1 ConfigurationManager.activate(long tineout).
/1 The activate operation returns an ActivationTaskMBean.
/1 You can use the ActivationTaskMBean to track the progress
/1 of activating changes in the donain.
bj ect Name task = (Cbj ect Nane) connection.invoke(cfgWr, "activate",
new (oject[] { new Long(120000) }, new String[] { "java.lang.Long" });
return task;

}

public static void main(String[] args) throws Exception {
String hostnane = args[0];
String portString = args[1];
String usernane = args[2];
String password = args[3];

Edi t W.SMBeans ewb = new Edit W.SMBeans() ;

I/ Initialize a connection with the MBean server.
i ni t Connection(hostnane, portString, usernanme, password);

Il CGet an object nane for the Configuration Manager.
bj ect Name cfgMgr = (Obj ect Name) connection. get Attribute(service,
"ConfigurationManager");

/1 Start an edit session.

Obj ect Name cf gRoot = ewb. start Edit Session();
Il Edit the server |og MBeans.

ewb. edi t Consol eCont ext Pat h(cf gRoot) ;

/] Save and activate.
connection.invoke(cfgWr, "save", null, null);
ewb. activate();

/] Cose the connection with the MBean server.
connector. cl ose();

ORACLE 5-6

Chapter 5
Listing and Undoing Changes

5.1.6 Exception Types Thrown by Edit Operations

Table 5-1 describes all of the exception types that WebLogic Server can throw during
edit operations. When WebLogic Server throws such an exception, the MBean server
wraps the exception in j avax. managenent . MBeanExcept i on. (See MBeanExcept i on in the
Java SE 7 API Specification at http://docs. oracl e. cont j avase/ 7/ docs/ api / j avax/
managenent / MBeanExcept i on. htm .)

Table 5-1 Exception Types Thrown by Edit Operations

|
Exception Type Thrown When

o) The request to start an edit session times out.
Edi t Ti medQut Excepti on

You attempt to edit MBeans without having a lock or when an
administrative user cancels your lock and starts an edit
session.

Not Edi t or Excepti on

You set an MBean attribute's value to the wrong data type,
outside an allowed range, not one of a specified set of values,
or incompatible with dependencies in other attributes.

Val i dati onExcepti on

5.2 Listing and Undoing Changes

The following sections describe working with changes that you have made during an
edit session:

e List Unsaved Changes

e List Unactivated Changes

e List Changes in the Current Activation Task
* Undoing Changes

WebLogic Server describes changes in a Change object, which is of type

j avax. management . opennbean. Conposi t eType. See Conposi t eType in the Java SE 8 API
Specification at htt p: // docs. or acl e. cont j avase/ 8/ docs/ api / j avax/ managenent /
openmhean/ Conposi t eType. htm .

Through JMX, you can access information about the changes to a domain's
configuration that have occurred during the current server session only. WebLogic
Server maintains an archive of configuration files, but the archived data and
comparisons of archive versions is not available through JMX.

5.2.1 List Unsaved Changes

ORACLE

For each change that you make to an MBean attribute, WebLogic Server creates a
Change object which contains information about the change. You can access these
objects from the Confi gur ati onManager MBean Changes attribute until you save the
changes. See ConfigurationManagerMBean in MBean Reference for Oracle WebLogic
Server.

Any unsaved changes are discarded when your edit session ends.

5-7

http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanException.html
http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanException.html
http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/CompositeType.html
http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/CompositeType.html

Chapter 5
Listing and Undoing Changes

To list unsaved changes:

1. Start an edit session and change at least one MBean attribute.

2. Get the value of the Confi gur ati onManager MBean Changes attribute and assign the
output to a variable of type Qbj ect[].

3. For each object in the array, invoke bj ect . toString() to output a description of the
change.

Because Change is a j avax. managenent . opennbean. Conposi t eType, you can also cast
each item in the array as a Conposi t eType and invoke Conposi t eType methods on the
change. See Conposi t eType in the Java SE 8 API Specification at http://

docs. oracl e. conl j avase/ 8/ docs/ api / j avax/ managenment / opennbean/ Conposi t eType. htmi .

Example 5-2 Example Method that Lists Unsaved Changes

public void |istUnsaved() throws Exception {
bj ect Name cfgMgr = (Cbj ect Name) connection. get Attribute(service,
" Confi gurationManager");
Object[] list = (Cbject[])connection.getAttribute(cfgMr, "Changes");
int length = (int) list.length;
for (int i =0; i <length; i++) {
Systemout. println("Unsaved change: " + list[i].toString());

}
}

The code in Example 5-2 creates a method that lists unsaved changes. It assumes
that the calling method has already established a connection to the Edit MBean
Server.

5.2.2 List Unactivated Changes

When anyone saves changes, WeblLogic Server persists the changes in the pending
configuration files. The changes remain in these files, even across multiple editing
sessions, unless a user who has started an edit session invokes the

Conf i gur ati onManager MBean undoUnact i vat edChanges() operation, which reverts all
unactivated changes from the pending files.

The Confi gurati onManager MBean Unact i vat edChanges attribute contains Change objects for
both unsaved changes and changes that have been saved but not activated. (There is
no attribute that contains only saved but unactivated changes.) See
ConfigurationManagerMBean Unactivated Changes in MBean Reference for Oracle
WebLogic Server.

To list changes that you have saved in the current editing session but not activated, or
changes that your or others have saved in previous editing sessions but not activated:

1. Start an edit session and change at least one MBean attribute.

2. Get the value of the Confi gur ati onManager MBean Unact i vat edChanges attribute and
assign the output to a variable of type Obj ect[].

3. For each object in the array, invoke oj ect.toString() to output a description of the
change.

Because Change is a j avax. managenent . opennbean. Conposi t eType, you can also cast
each item in the array as a Conposi t eType and invoke Conposi t eType methods on the
change. See Conposi t eType in the Java SE 7 API Specification at http://

docs. oracl e. conl j avase/ 7/ docs/ api / j avax/ nanagenent / opennbean/ Conposi t eType. ht ni .

ORACLE 5-8

http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/CompositeType.html
http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/CompositeType.html
http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/CompositeType.html
http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/CompositeType.html

Chapter 5
Listing and Undoing Changes

Example 5-3 Example Method that Lists Unactivated Changes

public void listUnactivated() throws Exception {
Obj ect Name cf gMgr = (Obj ect Nane) connection. get Attribute(service,
"Configurati onManager");
Object[] list = (Object[])connection.getAttribute(cfgMr,
"Unact i vat edChanges");
int length = (int) list.length;
for (int i =0; i <length; i++) {
Systemout. printIn("Unactivated changes: " + list[i].toString());
}

}

The code in Example 5-3 creates a method that lists unactivated changes. It assumes
that the calling method has already established a connection to the Edit MBean
Server.

5.2.3 List Changes in the Current Activation Task

ORACLE

When you activate changes, WebLogic Server creates an instance of
Acti vati onTaskMBean, which contains one Change object for each change that is being
activated. You can access these Acti vati onTaskMBeans from either of the following:

e The ConfigurationManager MBean act i vat e() method returns an object name for the
Acti vationTaskMBean that describes the current activation task.

e The Confi gurati onManager MBean Conpl et edAct i vat i onTasks attribute can potentially
contain a list of all Acti vati onTaskMBean instances that have been created during
the current Administration Server instantiation. See Listing All Activation Tasks
Stored in Memory.

To list changes in the current activation task only:

1. Start an edit session.

2. Assign the output of the acti vat e operation to an instance variable of type
j avax. managenent . Cbj ect Nane.

3. Get the value of the Acti vati onTaskMBean Changes attribute. and assign the output to
a variable of type Obj ect[].

4. For each object in the array, invoke bj ect . toString() to output a description of the
change.

Because Change is a j avax. managenent . opennbean. Conposi t eType, you can also cast
each item in the array as a Conposi t eType and invoke Conposi t eType methods on the
change. See Conposi t eType in the Java SE 8 API Specification at http://

docs. oracl e. conl j avase/ 8/ docs/ api / j avax/ nanagenent / opennbean/ Conposi t eType. ht ni .

Example 5-4 Example Method that Lists Changes in the Current Activation
Task

public void activateAndLi st ()

throws Exception {

Obj ect Name cfgMgr = (Obj ect Nane) connection. get Attribute(service,
"ConfigurationManager");

Obj ect Name task = (Object Nane) connection.invoke(cfgWr, "activate",
new Goject[] { new Long(120000) }, new String[] { "java.lang.Long" });

Obj ect[] changes = (Chject[])connection.getAttribute(task, "Changes");

int i = (int) changes.|ength;

for (int i =0; i<i; i++) {

5-9

http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/CompositeType.html
http://docs.oracle.com/javase/8/docs/api/javax/management/openmbean/CompositeType.html

Chapter 5
Tracking the Activation of Changes

Systemout. println("Changes activated: " + changes[i].toString());
}
}

The code in Example 5-4 creates a method that lists all changes activated in the
current editing session. It assumes that the calling method has already established a
connection to the Edit MBean Server.

5.2.4 Undoing Changes

Conf i gur ati onManager MBean provides two operations for undoing changes made during
an editing session:

° undo
Reverts unsaved changes.
* undoUnacti vat edChanges

Reverts all changes, saved or unsaved, that have not yet been activated. If other
users have saved changes in a previous editing session but not activated those
changes, invoking the Confi gur at i onManager MBean undoUnact i vat edChanges()
operation reverts those changes as well.

After you invoke this method, the pending configuration files are identical to the
working configuration files that the active servers use.

To undo changes, start an edit session and invoke the Confi gur ati onManager MBean undo
or undoUnact i vat edChanges operation.

For example:

connection.invoke(cfgWr, "undo", null, null);

5.3 Tracking the Activation of Changes

ORACLE

In addition to maintaining a list of changes, each Acti vati onTaskMBean that WebLogic
Server creates when you invoke the act i vat e operation describes which user activated
the changes, the status of the activation task, and the time at which the changes were
activated.

The Administration Server maintains instances of Acti vati onTaskMBean in memory only;
they are not persisted and are destroyed when you shut down the Administration
Server. Because the Acti vati onTaskMBean instances contain a list of Change objects
(each of which describes a single change to an MBean attribute), they use a significant
amount of memory. To save memory, by default the Administration Server maintains
only a few of the most recent Acti vati onTaskMBean instances in memory. To change the
default, increase the value of the Confi gur ati onManager MBean

Conpl et edAct i vati onTasksCount attribute.

The following sections describe working with instances of Acti vati onTaskMBean:

e Listing the Status of the Current Activation Task
e Listing All Activation Tasks Stored in Memory

e Purging Completed Activation Tasks from Memory

5-10

Chapter 5
Tracking the Activation of Changes

5.3.1 Listing the Status of the Current Activation Task

When you invoke the act i vat e operation, WebLogic Server returns an
Acti vati onTaskMBean instance to represent the activation task.

The ActivationTaskMBean St at e attribute describes the status of the activation task. This
attribute stores an i nt value and Acti vati onTaskMBean defines constants for each of the
i nt values. See ActivationTaskMBean in MBean Reference for Oracle WebLogic
Server.

To list the status of the current activation task:

1. Start an edit session and change at least one MBean attribute.

2. Invoke the Confi gurati onManager MBean acti vat e(1 ong timeout) operation and assign
the output to a variable of type Acti vat i onTaskMBean.

3. Get the value of the Acti vati onTaskMBean St at e attribute.

5.3.2 Listing All Activation Tasks Stored in Memory

The Acti vationTaskMBean that the acti vat e operation returns describes only a single
activation task. The Administration Server keeps this Acti vati onTaskMBean in memory
until you purge it (see Purging Completed Activation Tasks from Memory) or the
number of activation tasks exceeds the value of the Confi gur ati onManager MBean

Conpl et edAct i vati onTasksCount attribute.

To access all Act i vati onTaskMBean instances that are currently stored in memory (see
Example 5-5):

1. Connect to the Edit MBean Server. (You do not need to start an edit session.)

2. Get the value of the Confi gurati onManager MBean Conpl et edAct i vati onTasks attribute
and assign the output to a variable of type Obj ect[].

3. (Optional) For each object in the array, get and print the value of
Acti vationTaskMBean attributes such as User and State.

See ActivationTaskMBean in MBean Reference for Oracle WebLogic Server.

4. (Optional) For each object in the array, get the value of the Changes attribute. Invoke
Obj ect.toString() to output the value of the Change object.

Example 5-5 Example Method that Lists All Activation Tasks in Memory

public void listActivated() throws Exception {
Obj ect Name cfgMgr = (Obj ect Nane) connection. get Attribute(service,
"ConfigurationManager");
Obj ectName[] Iist = (CObjectNanme[])connection.getAttribute(cfgMr,
"Conpl et edAct i vati onTasks");
Systemout. printIn("Listing conpleted activation tasks.");
int length = (int) Iist.length;
for (int i =0; i <length; i++) {
Systemout. printIn("Activation task " +i);
Systemout. printIn("User who started activation: " +
connection.getAttribute(list[i], "User"));
Systemout. printIn("Task state: " + connection.getAttribute(list[i],
"State"));
Systemout.printIn("Start time: " + connection.getAttribute(list[i],

ORACLE 5-11

Chapter 5
Managing Locks

"StartTime"));
bj ect[] changes = (Chject[])connection.getAttribute(list[i], "Changes");
int | = (int) changes.|ength;

for (int y =0,y <I; y+) {
Systemout. println("Changes activated: " + changes[y].toString());
1

}
}

5.3.3 Purging Completed Activation Tasks from Memory

Because the Acti vati onTaskMBean instances contain a list of Change objects (each of
which describes a single change to an MBean attribute), they use a significant amount
of memory.

If the Administration Server is running out of memory, you can purge completed
activation tasks from memory. Then decrease the value of the
Conf i gur ati onManager MBean Conpl et edAct i vati onTasksCount attribute.

To purge completed activation tasks from memory, connect to the Edit MBean Server
and invoke the Confi gur at i onManager MBean pur geConpl et edAct i vati onTasks operation.

For example:

connection.invoke(cfgWr, "purgeConpl etedActivationTasks", null, null);

5.4 Managing Locks

To prevent changes that could leave the pending configuration MBean hierarchy in an
inconsistent state, only one user at a time can edit MBeans. When a user invokes the
Confi gur ati onManager MBean st art Edi t operation, the Confi gur at i onManager MBean
prevents other users (locks) from starting edit sessions.

The following actions remove the lock:

e The Confi gurati onManager MBean act i vat e operation succeeds or times out.

You can use the Acti vati onTaskMBean wai t For TaskConpl et i on operation to block
until the activation process is complete.

e The Confi gurati onManager MBean st opEdi t operation succeeds.

e A user with administrator privileges invokes the Confi gur ati onManager MBean
cancel Edi t operation while another user has the lock.

For example, connecti on. i nvoke(cfgMyr, "cancel Edit", null, null);

* An edit session has been started under a user identity and another process starts
an edit session under the same user identity.

For example, if you use the WebLogic Server Administration Console to start an
edit session and shortly afterwards use the WebLogic Scripting Tool (WLST) to
start an edit session under the same user identity, the WLST session will remove
the lock from your WebLogic Server Administration Console session.

To prevent another process from starting an edit session under your user identity,
get an exclusive lock by passing a bool ean of value true to the startEdi t operation.
SeestartEdit(waitTinmelnMIlis, tineQutinMIlis, exclusive) inthe MBean
Reference for Oracle WebLogic Server.

ORACLE 5-12

Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

All unsaved changes are lost when the lock is removed.

5.5 Best Practices: Recommended Pattern for Editing and
Handling Exceptions

ORACLE

Oracle recommends that you organize your editing code into several try-catch blocks.
Such an organization will enable you to catch specific types of errors and respond
appropriately. For example, instead of abandoning the entire edit session if a change
is invalid, your code can save the changes, throw an exception and exit without
attempting to activate invalid changes.

JMX agents wrap all exceptions in a generic exception of type
j avax. management . MBeanExcept i on. A JMX client can use the
MBeanExcept i on. get Tar get Excepti on() to unwrap the wrapped exception.

Consider using the following structure (see the pseudo-code in Example 5-6):

* Atry block that connects to the Edit MBean Server, starts an edit session, and
makes and saves changes.

After this try block, one catch block for each of the following types of exception
wrapped within MBeanExcept i on:

— Edit Ti medQut Exception

This exception is thrown if the Confi gur ati onManager MBean start Edi t ()
operation cannot get a lock within the amount of time that you specify.

— Not Edi t or Excepti on

This exception is thrown if the edit session times out or an administrator
cancels your edit session. (See Managing Locks.)

— ValidationException

This exception is thrown if you set a value in an MBean that is the wrong data
type, outside an allowed range, not one of a specified set of values, or
incompatible with dependencies in other attributes.

Within the code that handles Val i dat i onExcepti on, include a try block that
either attempts to correct the validation error or stops the edit session by
invoking the Confi gurati onManager MBean st opEdi t () operation. If the try block
stops the edit session, its catch block should ignore the Not Edi t or Except i on.
This exception indicates that you no longer have a lock on the pending
configuration MBean hierarchy; however, because you want to abandon
changes and release your lock anyway, it is not an error condition for this
exception to be thrown.

* Atry block that activates the changes that have been saved.

The Confi gurationManager activate(long timeout) operation returns an instance of
Acti vati onTaskMBean, which contains information about the activation task. Oracle
recommends that you set the timeout period for activate() to a minute and then
check the value of the Activati onTaskMBean St at e attribute.

If St at e contains the constant STATE_COMM TTED, then your changes have been
successfully activated in the domain. You can use a ret ur n statement at this point
to end your editing work. The lock that you created with start Edit () releases after
the activation task succeeds.

5-13

Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

If St at e contains a different value, the activation has not succeeded in the timeout
period that you specified in acti vate(l ong timeout). You can get the value of the
ActivationTaskMBean Error attribute to find out why.

After this try block, one catch block to catch the following type of wrapped
exception:

Not Edi t or Excepti on
If this exception is thrown while trying to activate changes, your changes were not

activated because your edit session timed out or was cancelled by an
administrator.

e (Optional) A try block that undoes the saved changes.

If your class does not return in the activation try block, then your activation task
was not successful. If you do not want these saved changes to be activated by a
future attempt to activate changes, then invoke the Confi gur at i onManager MBean
undoUnact i vat edChanges() operation.

Otherwise, the pending configuration files retain your saved changes. The next
time any user attempts to activate saved changes, WebLogic Server will attempt to
activate your saved changes along with any other saved changes.

After this try block, one catch block to ignore the following type of wrapped
exception:

Not Edi t or Excepti on
e Atry block to stop the edit session.

If your activation attempt fails and you are ready to abandon changes, there is no
need to wait until your original timeout period to expire. You can stop editing
immediately.

After this try block, one catch block to ignore the following type of exception:
Not Edi t or Excepti on
e Throw the exception that is stored in the Acti vati onTaskMBean Error attribute.

Example 5-6 Code Outline for Editing and Exception Handling

try {
[llnitialize the connection and start the edit session

Obj ect Name domai nConfi gRoot = (Cbj ect Nane) connection. i nvoke(cfgMr,

"startEdit",
new Cbject[] { new Integer(30000), new Integer(300000) },
new String[] { "java.lang.Integer", "java.lang.Integer" });

/] Mdify the domain

/] Save your changes
connection.invoke(cfghWr, "save", null, null);

} catch (MBeanException e) {
Exception target Exception = e.get Target Exception();
if (targetException instanceof EditTimedQutException) {
/1 Could not get the lock. Notify user

t hr ow new MyAppCoul dNot St art Edi t Exception(e);

}
if (targetException instanceof NotEditorException) {

ORACLE 5-14

ORACLE

Chapter 5
Best Practices: Recommended Pattern for Editing and Handling Exceptions

t hrow new MyAppEdi t Sessi onFai | ed(e);
if (targetException instanceof ValidationException) {
try {
connection.invoke(cfgMyr, "stopEdit", null, null);
/1 A wapped Not EditorException here indicates that you no |onger have a
/1 1ock on the pending configurati on MBean hierarchy; however,
/'l because you want to abandon changes and rel ease your |ock anyway,
Il it is not an error condition for this exception to be thrown
/1 and you can safely ignore it.
} catch (MBeanException e) {

Exception target Exception = e.get Tar get Exception();
if (targetException instanceof NotEditorException) {

[lignore
}
1
t hrow new MyAppEdi t Changesl! nval i d(e);
}
el se {
t hrow MBeanException (e);
}
}
/| Changes have been saved, now activate them
try {
/] Activate the changes
ActivationTaskMBean task = (Cbhject Name) connection.invoke(cfgMr,
"activate",
new Cbject[] { new Long(60000) },
new String[] { "java.lang.Long" });
/] Everything worked, just return.
String status = (String) connection.getAttribute(task, "State");
if (status.equals("4"))
return;
[/ 1f there is an activation error, use ActivationTaskMBean. get Error
/] to get information about the error
failure = connection.getAttribute(task, "Error");
/1 1f you catch a wapped NotEditorException, your changes were not activated
/'l because your edit session ended or was cancel led by an admi nistrator.
[l Throw the wapped exception.

} catch (MBeanException e) {

Exception target Exception = e.get Target Exception();
if (targetException instanceof NotEditorException) {

t hrow new MyAppEdi t Sessi onFai | ed(e);
}

If your class executes the remaining lines, it is because activating your
saved changes failed.
Optional: You can undo the saved changes that failed to activate. If you
do not undo your saved changes, they will be activated the next tine
sonmeone attenpts to activate changes.
try {
{
connection.invoke(cfgMr, "undoUnactivatedChanges", null, null);
cat ch(MBeanException e) {
Exception target Exception = e.get Tar get Exception();
if (targetException instanceof NotEditorException) {

5-15

Chapter 5
Setting and Getting Encrypted Values

/11 e

1 t hrow new MyAppEdi t Sessi onFai | ed(e);
o}

11}

/] Stop the edit session
try {
connection.invoke(cfghMr, "stopEdit", null, null);
/1 1f your activation attenpt fails and you are ready to abandon
/'l changes, there is no need to wait until your original tineout
/] period to expire. You can stop editing i mediately
/1 and you can safely ignore any w apped Not EditorException.
} catch (MBeanException e) {
Exception target Exception = e.get Target Exception();
if (targetException instanceof NotEditorException) {
/lignore
}
}

/1 Qutput the information about the error that caused the activation to
[l fail.
t hrow new MyAppEdi t Sessi onFai | ed(connection. getAttribute(task, "Error"));

5.6 Setting and Getting Encrypted Values

To prevent unauthorized access to sensitive data such as passwords, some attributes
in WebLogic Server configuration MBeans are encrypted. The attributes persist their
values in the domain's confi g. xnl file as an encrypted string and represent the in-
memory value in the form of an encrypted byte array. The names of encrypted
attributes end with Encrypt ed. For example, the Ser ver MBean exposes the password that
is used to secure access through the IIOP protocol in an attribute named

Def aul t I 1 OPPasswor dEncrypt ed. To support backwards compatibility, and to enable
remote JMX clients to set passwords for WebLogic Server MBeans, each encrypted
attribute provides a less secure means to encrypt and set its value.

The following sections describe how to work with encrypted attributes:

» Set the Value of an Encrypted Attribute (Recommended Technique)
» Set the Value of an Encrypted Attribute (Compatibility Technique)
* Back Up an Encrypted Value

5.6.1 Set the Value of an Encrypted Attribute (Recommended

Technique)

ORACLE

To use this technique (see Example 5-7):

1. Inthe same WebLogic Server JVM that hosts the MBean attribute, write a value to
a byte array.

2. Pass the byte array to the webl ogi c. managenent . Encrypt i onHel per . encrypt (byte[])
method and pass its return value to the MBeanSer ver Connecti on. set Attri bute
method.

Avoid assigning the encrypted byte array to a variable because this causes the
unencrypted byte array to remain in memory until it is garbage collected and the
memory is reallocated.

5-16

Chapter 5
Setting and Getting Encrypted Values

3. Clear the original byte array using the
webl ogi ¢. management . Encrypti onHel per. cl ear () method.

Example 5-7 Example: Set the Value of an Encrypted Attribute (Recommended
Technique)

public void editDefaul tllOPPassword(QbjectNane cfgRoot) throws Exception {
/1 Get the ServerMBean from the Domai nMBean
Obj ect Name server = (Obj ect Nane) connection.invoke(cfgRoot,
"l ookupServer", new Cbject[] { "nyserver" },
new String[] { "java.lang. String" });
/'l Get new password fromstandard in. Assign it to a byte array.
Systemout. printIn("Enter new password and press enter: ");
byte userinput[] = new byte[10];
System in. read(userinput);
/] Encrypt the byte array and set it as the encrypted
/1 attribute val ue.
Attribute newpassword = new Attribute("Defaultll OPPasswordEncrypted",
webl ogi c. management . Encrypt i onHel per. encrypt (userinput));
connection.set Attribute(server, newpassword);
Systemout. println("New password is set to: " +
connection.get Attribute(server, "Default!|OPPasswordEncrypted"));
/] Cear the byte array.
webl ogi c. management . Encrypti onHel per. cl ear (userinput);

}

5.6.2 Set the Value of an Encrypted Attribute (Compatibility
Technique)

Prior to 9.0, JMX clients used a different technique for setting encrypted values. JMX
clients can continue to use this compatibility technique, and if you want to set
encrypted values from a remote JMX client, this is the only technique available. The
compatibility technique is less secure because it creates a Stri ng that contains your
unencrypted password. Even though WebLogic Server converts the String to an
encrypted byte array, the Stri ng will remain in memory until it is garbage collected and
the memory is reallocated.

To use the compatibility technique:

1. Write a value to a Stri ng.

2. Pass the String as a parameter to the MBeanSer ver Connecti on. set Att ri but e method,
but instead of setting the value of the encrypted attribute, set the value for the
corresponding non-encrypted attribute.

WebLogic Server converts the String to an encrypted byte array and sets it as
Cust onl dent i t yKeySt or ePassPhr aseEncr ypt ed. (It does not set a value for
Cust on dent i t yKeySt or ePassPhr ase).

For example, to set the Cust om dent i t yKeySt or ePassPhr aseEncrypt ed from a remote
JMX client, invoke the MBeanSer ver Connecti on. set Attri but e for an attribute named
Cust onl dent i t yKeySt or ePassPhrase.

For example:

public void editDefaul tllOPPassword((bject Nane cfgRoot, String password)
throws Exception {
/] Get the ServerMBean fromthe Donmai nMBean
oj ect Name server = ((Obj ect Name) connection.invoke(cfgRoot, "l ookupServer",

ORACLE 5-17

Chapter 5
Setting and Getting Encrypted Values

new Chject[]{"nyserver"},new String[]{"java.lang.String"});
Attribute newpassword = new Attribute("Default!|lOPPassword",
"nypassword");
connection. setAttribute(server, newpassword);

}

5.6.3 Back Up an Encrypted Value

ORACLE

To make a backup copy of a password, use the getter method of the MBean's
encrypted value to retrieve the encrypted byte array. Then write the value of the byte
array to a file. WebLogic Server does not provide APIs or other utilities for decrypting
values that it has encrypted.

If you need to restore the password value, you can load the saved value into a byte
array and pass it as a parameter to the MBeanSer ver Connect i on. set Att ri but e method
(see Set the Value of an Encrypted Attribute (Recommended Technique)).

Note:

Because each WebLogic Sever domain uses its own encryption algorithm, you
must back up and restore passwords separately for each domain even if the
unencrypted value for the password is the same for all domains.

Instead of backing up the same encrypted password for each domain, you can
use the getter method of an MBean's corresponding unencrypted value. This
getter unencrypts the password and copies into a String. The String will not
be erased from memory until it is garbage collected and the memory is
reallocated.

5-18

Managing Security Realms with JIMX

This chapter describes how to use JMX to manage security realms, which comprise
the mechanisms for protecting WebLogic resources. Each security realm consists of a
set of configured security providers, which are modular components that handle
specific aspects of security. You can create a JMX client that uses the providers in a
realm to add or remove security data such as users and groups. You can also create a
client that adds or removes providers and makes other changes to the realm
configuration.

This chapter includes the following sections:

e Understanding the Hierarchy of Security MBeans

e Choosing an MBean Server to Manage Security Realms
* Working with Existing Security Providers

* Modifying the Realm Configuration

For more information about WebLogic Security, see Understanding Security for Oracle
WebLogic Server.

6.1 Understanding the Hierarchy of Security MBeans

Like other subsystems, the WebLogic Server security framework organizes its MBeans
in a hierarchy that JMX clients can navigate without constructing JMX object nhames.
However, the set of MBean types that are available in a security realm depends on
which security providers you have installed in the realm, and the set of services that
each security provider enables depends on how the provider was created.

The root of the security realm hierarchy is the Real n\vBean. It contains all of the
providers that have been configured for the realm. For example, its Aut hori zers
attribute contains all authorization providers that have been configured for the realm.
WebLogic Server installs a default set of security providers; therefore, by default the
Real m\vBean Aut hori zer s attribute contains a Def aul t Aut hori zer MBean. However, you can
uninstall these default providers and replace them with any number of your own
providers or third-party providers. For information about the default security providers,
see Configuring WebLogic Security Providers and Configuring Authorization Providers
in Administering Security for Oracle WebLogic Server.

6.1.1 Base Provider Types and Mix-In Interfaces

ORACLE

Each security provider must extend a base provider type. For example,

Def aul t Aut hor i zer MBean extends Aut hor i zer MBean, and any custom or third-party
authorization provider also extends Aut hori zer MBean. If a JMX client gets the value of
the Real mVBean Aut hori zer s attribute, the MBean server returns all MBeans in the realm
that extend Aut hori zer MBean. The JMX client can iterate through the list of providers
and select one based on the value of its Nane attribute or other criteria.

6-1

ORACLE

Chapter 6
Understanding the Hierarchy of Security MBeans

Base provider types can be enhanced by extending a set of optional mix-in interfaces.
For example, if an authentication provider extends the User Edi t or MBean, then the
provider can add users to the realm.

6.1.2 Security MBeans

WebLogic Server's Security MBeans configure security providers in a security realm.
The following tables describe the MBeans that configure different types of security

providers.

* Table 6-1 describes the MBeans that configure Authentication security providers,
as well as the abstract MBean classes that Authentication providers must extend.
In addition to the MBeans in this table, WebLogic Server includes configuration
MBeans for each out-of-the-box Authentication provider.

* Table 6-2 describes the MBeans that configure security providers, other than
Authentication security providers.

» Table 6-3 describes optional MBean mixin interfaces that security providers can
support for management and utility purposes.

For more information about configuring WebLogic security providers, see Configuring
WebLogic Security Providers and Configuring Authorization Providers in Administering
Security for Oracle WebLogic Server. Figure 6-1 illustrates where the MBeans are
located in the configuration MBean hierarchy.

Table 6-1 MBeans for Authentication Security Providers

This MBean...

Configures...

Aut henti cati onProvi der M
Bean

The base MBean for all MBean implementations that manage
Authentication providers. If your Authentication provider uses the
WebLogic Security SSPI to provide login services, then your
MBean must extend

webl ogi c. managenent . security. aut hentication. Aut henti cat
or . If your Authentication provider uses the WebLogic Security
SPI to provide identity-assertion services, then your MBean must
extend

webl ogi c. managenent . security. aut hentication. | dentityAss
erter.

See AuthenticationProviderMBean in the MBean Reference for
Oracle WebLogic Server.

Aut hent i cat or MBean

The SSPI MBean that all Authentication providers with login
services must extend. This MBean provides a Contr ol Fl ag to
determine whether the Authentication provider is a REQUIRED,
REQUISITE, SUFFICENT, or OPTIONAL part of the login
sequence.

See AuthenticatorMBean in the MBean Reference for Oracle
WebLogic Server.

I dentityAsserterMBean

The SSPI MBean that all Identity Assertion providers must
extend. This MBean enables an Identity Assertion provider to
specify the token types for which it is capable of asserting
identity.

See ldentityAsserterMBean in the MBean Reference for Oracle
WebLogic Server.

6-2

ORACLE

Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-1 (Cont.) MBeans for Authentication Security Providers

This MBean...

Configures...

Servl et Aut henti cati onFi
| t er MBean

The SSPI MBean that all Servlet Authentication Filter providers
must extend. This MBean is just a marker interface. It has no
methods on it.

See ServletAuthenticationFilterMBean in the MBean Reference
for Oracle WebLogic Server.

Table 6-2 MBeans for Other Security Providers

This MBean...

Configures...

Adj udi cat or MBean

The SSPI MBean that all Adjudication providers must extend.

See AdjudicatorMBean in the MBean Reference for Oracle
WebLogic Server.

Def aul t Adj udi cat or MBean

Configuration attributes for the WebLogic Adjudication provider.

See DefaultAdjudicatorMBean in the MBean Reference for
Oracle WebLogic Server.

Audi t or MBean

The SSPI MBean that all Auditing providers must extend.

See AuditorMBean in the MBean Reference for Oracle WebLogic
Server.

Def aul t Audi t or MBean

Configuration attributes for the WebLogic Auditing provider.

See DefaultAuditorMBean in the MBean Reference for Oracle
WebLogic Server.

Aut hori zer MBean

The SSPI MBean that all Authorization providers must extend.

See AuthorizerMBean in the MBean Reference for Oracle
WebLogic Server.

Depl oyabl eAut hori zer MBe
an

The SSPI MBean that must be extended by all Authorization
providers that can store policies created while deploying a Web
application or EJB.

See DeployableAuthorizerMBean in the MBean Reference for
Oracle WebLogic Server.

Def aul t Aut hori zer MBean

Configuration attributes for the WebLogic Authorization provider.

See DefaultAuthorizerMBean in the MBean Reference for Oracle
WebLogic Server.

Credenti al Mapper MBean

The SSPI MBean that all Credential Mapping providers must
extend.

See CredentialMapperMBean in the MBean Reference for
Oracle WebLogic Server.

Depl oyabl eCredent i al Map
per MBean

The SSPI MBean that must be extended by all Credential
Mapper providers that can store credential maps created while
deploying a component.

See DeployableCredentialMapperMBean in the MBean
Reference for Oracle WebLogic Server.

6-3

ORACLE

Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-2 (Cont.) MBeans for Other Security Providers
|

This MBean...

Configures...

Def aul t Credent i al Mapper
MBean

Configuration attributes for the WebLogic Credential Mapping
provider, a username/password Credential Mapping provider.

See DefaultCredentialMapperMBean in the MBean Reference for
Oracle WebLogic Server.

PKI Cr edent i al Mapper MBea
n

Configuration attributes for the PKI Credential Mapping provider,
a key pair Credential Mapping provider.

See PKICredentialMapperMBean in the MBean Reference for
Oracle WebLogic Server.

SAMLCr edent i al Mapper MBe
an

Configuration attributes for the SAML Credential Mapping
provider, a Security Assertion Markup Language Credential
Mapping provider.

See SAMLCredentialMapperMBean in the MBean Reference for
Oracle WebLogic Server.

Cert Pat hProvi der MBean

The base MBean for all certification path providers.

See CertPathProviderMBean in the MBean Reference for Oracle
WebLogic Server.

Cert Pat hBui | der MBean

The SSPI MBean that all certification path providers with
CertPathBuilder services must extend.

See CertPathBuilderMBean in the MBean Reference for Oracle
WebLogic Server.

Cert Pat hVal i dat or MBean

The SSPI MBean that all certification path providers with
CertPathValidator services must extend.

See CertPathValidatorMBean in the MBean Reference for Oracle
WebLogic Server.

CertificateRegistryMBea
n

Configures and manages the certificate registry. It is both a
builder and a validator. It supports building from the end
certificate, the end certificate's subject DN, the end certificate's
issuer DN and serial number, and the end certificate's subject
key identifier.

See CertificateRegistryMBean in the MBean Reference for
Oracle WebLogic Server.

VebLogi cCert Pat hProvi de
r MBean

The SSPI MBean that all certification path providers with
CertPathBuilder services must extend.

See WebLogicCertPathProviderMBean in the MBean Reference
for Oracle WebLogic Server.

Rol eMapper MBean

The base MBean for Role Mapping providers. A Role Mapping
provider for a non-deployable module must extend this MBean
directly. A Role Mapping provider for a deployable module must
extend the Depl oyabl eRol eMapper MBean.

See RoleMapperMBean in the MBean Reference for Oracle
WebLogic Server.

6-4

Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-2 (Cont.) MBeans for Other Security Providers
|

This MBean...

Configures...

Depl oyabl eRol eMapper MBe
an

The SSPI MBean that must be extended by Role Mapping
providers that can store roles created while deploying a Web
application or EJB.

See DeployableRoleMapperMBean in the MBean Reference for
Oracle WebLogic Server.

Def aul t Rol eMapper MBean

Configuration attributes for the WebLogic Role Mapping provider.

See DefaultRoleMapperMBean in the MBean Reference for
Oracle WebLogic Server.

Table 6-3 MBean Mixin Interfaces for Security Providers

This MBean...

Configures...

Cont ext Handl er MBean

Provides a set of attributes for ContextHandler support. An
Auditor provider MBean can optionally implement this MBean.

See ContextHandlerMBean in the MBean Reference for Oracle
WebLogic Server.

G oupEdi t or MBean

Provides a set of methods for creating, editing, and removing
groups. An Authentication provider MBean can optionally
implement this MBean.

See GroupEditorMBean in the MBean Reference for Oracle
WebLogic Server.

G oupMenber Li st er MBean

Provides a method for listing a group's members. An
Authentication provider MBean can optionally implement this
MBean.

See GroupMemberListerMBean in the MBean Reference for
Oracle WebLogic Server.

G oupMenber shi pHi erarch

Provides configuration attributes that are required to support the
Group Membership Hierarchy Cache. An Authentication provider

yCacheMBean MBean can optionally implement this MBean.
See GroupMembershipHierarchyCacheMBean in the MBean
Reference for Oracle WebLogic Server.
Provides a set of methods for reading data about groups. An
G oupReader MBean

Authentication provider MBean can optionally implement this
MBean.

See GroupReaderMBean in the MBean Reference for Oracle
WebLogic Server.

Menber G oupLi st er MBean

Provides a method for listing the groups that contain a member.
An Authentication provider MBean can optionally implement this
MBean.

See MemberGroupListerMBean in the MBean Reference for
Oracle WebLogic Server.

ORACLE

6-5

Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

This MBean...

Configures...

User Edi t or MBean

Provides a set of methods for creating, editing, and removing
users. An Authentication provider MBean can optionally
implement this MBean.

See UserEditorMBean in the MBean Reference for Oracle
WebLogic Server.

User Lockout Manager MBean

Lists and manages lockouts on user accounts. An Authentication
provider MBean can optionally implement this MBean.

See UserLockoutManagerMBean in the MBean Reference for
Oracle WebLogic Server.

User Passwor dEdi t or MBean

Provides two methods for changing a user's password. An
Authentication provider MBean can optionally implement this
MBean.

See UserPasswordEditorMBean in the MBean Reference for
Oracle WebLogic Server.

User Reader MBean

Provides a set of methods for reading data about users. An
Authentication provider MBean can optionally implement this
MBean.

See UserReaderMBean in the MBean Reference for Oracle
WebLogic Server.

User Rermover MBean

Provides a method for removing users. An Authentication
provider MBean can optionally implement this MBean.

See UserRemoverMBean in the MBean Reference for Oracle
WebLogic Server.

Rol eEdi t or MBean

Provides a set of methods for creating, editing, and removing
roles. A Role Mapping provider MBean can optionally implement
this MBean.

See RoleEditorMBean in the MBean Reference for Oracle
WebLogic Server.

Rol eLi st er MBean

Provides a set of methods for listing data about roles. A Role
Mapping provider MBean can optionally implement this MBean.

See RoleListerMBean in the MBean Reference for Oracle
WebLogic Server.

Rol eReader MBean

Provides a set of methods for reading roles. A Role Mapping
provider MBean can optionally implement this MBean.

See RoleReaderMBean in the MBean Reference for Oracle
WebLogic Server.

Pol i cyEdi t or MBean

Provides a set of methods for creating, editing, and removing
policies. An Authorization provider MBean can optionally
implement this MBean.

See PolicyEditorMBean in the MBean Reference for Oracle
WebLogic Server.

ORACLE

6-6

Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

___|
This MBean... Configures...

Provides a set of methods for listing data about policies. An
Authorization provider MBean can optionally implement this
MBean.

See PolicyListerMBean in the MBean Reference for Oracle
WebLogic Server.

Pol i cyLi st er MBean

Provides a set of methods for reading policies. An Authorization
provider MBean can optionally implement this MBean.

See PolicyReaderMBean in the MBean Reference for Oracle
WebLogic Server.

Pol i cyReader MBean

Provides a set of methods for creating, editing, and removing a
credential map that matches users, resources and credential
action to keystore aliases and the corresponding passwords. A
PKICredentialMapping provider MBean can optionally implement
this MBean.

See PKICredentialMapEditorMBean in the MBean Reference for
Oracle WebLogic Server.

PKI Cr edent i al MapEdi t or M
Bean

Provides a set of methods for reading a credential map that
matches users and resources to keystore aliases and their
corresponding passwords that can then be used to retrieve key
information or public certificate information from the configured
keystores. A PKICredentialMapping provider MBean can
optionally implement this MBean.

See PKICredentialMapReaderMBean in the MBean Reference
for Oracle WebLogic Server.

PKI Credent i al MapReader M
Bean

Provides a set of methods for creating, editing, and removing a
credential map that matches WebLogic users to remote
usernames and their corresponding passwords. A Credential
Mapping provider MBean can optionally extend this MBean.

See UserPasswordCredentialMapEditorMBean in the MBean
Reference for Oracle WebLogic Server.

User Passwor dCr edenti al M
apEdi t or MBean

Provides a set of methods for reading credentials and credential
mappings. Credential mappings match WebLogic users to
remote usernames and passwords. A Credential Mapping
provider MBean can optionally extend this MBean.

See UserPasswordCredentialMapExtendedReaderMBean in the
MBean Reference for Oracle WebLogic Server.

User Passwor dCr edenti al M
apExt endedReader MBean

Provides a set of methods for reading credentials and credential
mappings. Credential mappings match WebLogic users to
remote usernames and passwords. A Credential Mapping
provider MBean can optionally extend this MBean.

See UserPasswordCredentialMapReaderMBean in the MBean
Reference for Oracle WebLogic Server.

User Passwor dCr edenti al M
apReader MBean

ORACLE .

ORACLE

Chapter 6
Understanding the Hierarchy of Security MBeans

Table 6-3 (Cont.) MBean Mixin Interfaces for Security Providers

This MBean... Configures...
Provides a set of methods for importing provider specific data.

| mpor t MBean An optional mixin interface that any security provider may
extend.
See ImportMBean in the MBean Reference for Oracle WebLogic
Server
Provides a set of methods for exporting provider specific data.

Expor t MBean An optional mixin interface that any security provider may
extend.
See ExportMBean in the MBean Reference for Oracle WebLogic
Server

, Provides a general mechanism for returning lists. Derived
Li st er MBean

MBeans extend this interface to add methods that access the
data of the current object in the list. An optional mixin interface
that any security provider may extend.

See ListerMBean in the MBean Reference for Oracle WebLogic
Server

NareLi st er MBean

Defines a method used to return lists of names. An optional mixin
interface that any security provider may extend.

See NamelListerMBean in the MBean Reference for Oracle
WebLogic Server

LDAPSer ver MBean

Provides methods to get configuration parameters needed for
connecting to an external LDAP server. An optional mixin
interface that any security provider may extend.

See LDAPServerMBean in the MBean Reference for Oracle
WebLogic Server

Appl i cati onVersi oner MBe
an

The SSPI MBean that security providers extend to indicate that
the provider supports versionable applications. An optional mixin
interface that a RoleMapper, Authorizer, or CredentialMapper
provider MBean may extend.

See ApplicationerVersionMBean in the MBean Reference for
Oracle WebLogic Server

6-8

Figure 6-1 Security MBeans

DomainMBean

SecurityConfigurationMBean

R ealmMB ean

AdjudicatorMB ean

AuthorizerMB ean

Authenticatio nProviderMB ean

AuditorMBean

CertPathProviderMB ean

AuthenticatorMB ean

Chapter 6

Choosing an MBean Server to Manage Security Realms

ldentityAss erterlB ean

CredentialMapperMB ean

KeyStoreMBean

RolelMapperMB ean

UserLockoutManagerMBean

6.2 Choosing an MBean Server to Manage Security Realms

ORACLE

When using JMX to manage security realms, you must use two different MBean
servers depending on your task:

To set the value of a security MBean attribute, you must use the Edit MBean

Server.

To add users, groups, roles, and policies, or to invoke other operations in a

security provider MBean, you must use a Runtime MBean Server or the Domain

Runtime MBean Server.

In addition, to prevent the possibility of incompatible changes, you cannot invoke
operations in security provider MBeans if your client or another JMX client has an

edit session currently active.

For example, the value of the M ni munPasswor dLengt h attribute in
Def aul t Aut hent i cat or MBean is stored in the domain's configuration document. Because

6-9

Chapter 6
Working with Existing Security Providers

all modifications to this document are controlled by WebLogic Server, to change the
value of this attribute you must use the Edit MBean Server and acquire a lock on the
domain's configuration. The creat eUser operation in Def aul t Aut hent i cat or MBean adds
data to an LDAP server, which is not controlled by WebLogic Server. To prevent
incompatible changes between the Def aul t Aut hent i cat or MBean's configuration and the
data that it uses in the LDAP server, you cannot invoke the creat eUser operation if you
or other users are in the process of modifying the M ni nunPasswor dLengt h attribute. In
addition, because changing this attribute requires you to restart WebLogic Server, you
cannot invoke the creat eUser operation until you have restarted the server.

6.3 Working with Existing Security Providers

Because security providers can extend optional mix-in interfaces, not all security
providers can perform all tasks. This flexibility enables your organization's security
architect to design a realm for your security needs. The flexibility also makes the
design of your JMX clients dependent upon the design and configuration of each
realm.

For example, some realms might contain three types of Authentication providers:

* One that extends User Edi t or MBean to save administrative users to an LDAP server

* One that extends User Edi t or MBean to save customers to a database management
system

e One that does not extend User Edi t or MBean and is used only to authenticate existing
users

To work with the Authentication providers in this realm, your JMX client must be able
to determine which one can add users to the appropriate repository.

Table 6-4 discusses techniques for finding a security provider that is appropriate for
your task.

Table 6-4 Finding a Provider in the Realm

]
Technique Description

Find by name Each security provider instance is assigned a short name
when an administrator configures it for the realm. Your JMX
client can look up all providers of a specific type (such as all
Authentication providers) and choose the one that matches a
name.

If you use this technique, consider saving the name of the
security provider in a configuration file instead of hard-coding it
in your JMX client. The configuration file enables system
administrators to change the providers in the realm and update
the properties file instead of requiring you to update and
recompile the JMX client.

ORACLE 6-10

Chapter 6
Working with Existing Security Providers

Table 6-4 (Cont.) Finding a Provider in the Realm

__|
Technique

Description

Find by MBean type

If the system administrator always wants to use the same type
of provider for a task, then your JMX client can find the
provider MBean that is of the specified type.

For example, if the system administrator always wants to use

a SQLAut hent i cat or MBean to add customers to a realm, your

JMX client can find an instance of SQLAut hent i cat or MBean.

While this technique requires no user input, it assumes:

e There will always be an instance of
SQLAut hent i cat or MBean in the realm and this one
instance extends User Edi t or MBean.

e If there are multiple instances of SQLAut hent i cat or MBean,
all of them extend User Edi t or MBean and it does not
matter which instance is used.

See Discovering Available Services.

Use any provider that
extends the mix-in interface
you need

You can create a JMX client that learns about the class
hierarchy for each provider MBean instance and chooses an
instance that extends the mix-in interface you need for your
task. For example, your client can discover which
Authentication provider extends User Edi t or MBean. See
Discovering Available Services.

Use this technique if you know that your security realm will

contain only one MBean that extends the needed mix-in
interface, or if it does not matter which one you use.

6.3.1 Discovering Available Services

To create a JMX client that finds MBeans by type or mix-in interface:

ORACLE

1.

Connect to a WebLogic Server Runtime MBean Server. See Make Remote

Connections to an MBean Server.

All WebLogic Server instances maintain their own Runtime MBean Server, and
you can connect to any server's Runtime MBean Server.

Get all security provider MBeans of a specific type in the realm (for example, get

all Authentication provider MBeans):

a. Use either the Runti meServi ceMBean or Donai nRunt i meSer vi ceMBean to navigate
the following path through the WebLogic Server MBean hierarchy:

b. Domai nMBean to SecurityConfi gurati onMBean to Real mvBean.

See Make Remote Connections to an MBean Server.

c. Get the value of the Real nMBean attribute that contains instances of the security

provider type.

For example, to get all Authentication providers, get the value of the
Real m\vBean Aut hent i cati onProvi der s attribute.

For each security provider MBean in the Real mvBean attribute, get the name of the

MBean's class (see Example 6-1):

6-11

ORACLE

Chapter 6
Working with Existing Security Providers

a. Get the provider MBean's j avax. managenent . Model MBeanl nf o object.
Use MBeanSer ver Connect i on. get MBeanl nf o(Pr ovi der - MBean)
where Provi der - MBean is a provider MBean that you retrieved from Real mvBean.

b. Getthe MBean info's j avax. managenent . Descri pt or object, and then get the
value of the Descriptor's i nt er f aced assNane field.

4. Use the WebLogic Server MBean type service to find all security provider MBean

classes that extend a particular base type or mix-in interface (see Example 6-1):

a. Determine the fully-qualified interface name of the base type or mix-in
interface.

Each entry in the MBean Reference for Oracle WebLogic Server lists the fully-
qualified interface name of WebLogic Server provider MBeans. If you use a
third-party provider, refer to the third-party documentation for this information.

For example, the fully-qualified interface name of the User Edi t or MBean mix-in
interface is webl ogi c. management . securi ty. aut henti cati on. User Edi t or MBean.
(See UserEditorMBean in the MBean Reference for Oracle WebLogic Server.)

b. Construct the MBeanTypeServi ce MBean's object name.

The MBeanTypeServi ce MBean is always registered under the following
j avax. managenent . Cbj ect Nane:

com bea: Nanme=MBeanTypeSer vi ce, Type=webl ogi c. managenent . mheanser ver s. MBeanType
Service

c. Invoke the MBeanTypeServi ce MBean's get Subt ypes(j ava. | ang. String
beanl nt erf ace) operation, where beanl nt er f ace represents the fully-qualified
interface name that you determined in Step 1.

The operation returns an array of j ava. | ang. Stri ng objects.

5. Compare the output of the MBean type service with the class name of each
provider MBean instance (see Example 6-1).

6. If the provider MBean's class implements or extends the interface from step 4a,
invoke operations on the provider MBean.

Example 6-1 Example: Determine If a Provider MBean Instance Extends
UserEditorMBean Mix-In Interface

(hj ect Name MBTservice = new Cbj ect Nang(
"com bea: Nanme=MBeanTypeSer vi ce, Type=webl ogi c. managenent . mheanser vers.
MBeanTypeServi ce");

for (int p=0; atnProviders != null & p < atnProviders.length; p++) {
Mbdel MBeanl nfo info = (Mdel MBeanl nf o)
nmBeanSer ver Connect i on. get MBeanl nf o(at nProvi ders[p]);
Descriptor desc = info.get MBeanDescriptor();
String classNanme = (String)desc. getFiel dval ue("interfaceC assNanme");
String[] mba = (String[]) nBeanServerConnection.invoke(MBTservice,
"get Subt ypes", new Qbject[] {
"webl ogi c. managenent . security. aut henti cation. User Edi t or MBean" },
new String[] { "java.lang.String" });
bool ean i sEditor = fal se;
for (int i =0; i <nbalength; i++) {
if (nmba[i].equal s(classNane)){
userEditor = atnProviders[p];
isEditor = true;
br eak;

6-12

}

Chapter 6
Working with Existing Security Providers

1
if (isEditor = true) break;

}

6.3.1.1 Example: Adding Users to a Realm

ORACLE

The code example in Example 6-2 adds a user to a security realm and adds the user
to the Adni ni strat ors group by searching through all of the authentication providers in
the realm and using the first one that extends User Edi t or MBean.

Note the following about the code example:

The user name and password come from a JavaBean that was created from an
Apache Struts action.

The code does not need to lock the domain's configuration because it is not
modifying the configuration of the security MBean itself. Instead, it is invoking an
operation in the default Authorization provider which saves security data in an
LDAP server.

Example 6-2 Example: Adding Users to a Realm

public ActionForward createNewAdni n(Acti onMappi ng mappi ng,

ActionForm form

Ht t pServl et Request request,

Ht t pSer vl et Response response)

throws CientException, Exception {

| ogger.info("Create New Admin");

Creat eAdnmi nBean user = (CreateAdninBean) form
| ogger. debug(user.toString());

MBeanSer ver Connect i on nBeanSer ver Connection =
t hi s. get Domai nMBeanSer ver Connect i on(request);
Obj ect Name service = new
hbj ect Name(" com bea: Nane=Donai nRunt i neServi ce, "+
"Type=webl ogi c. managenment . nheanser vers. domai nrunti ne.
Domai nRunt i meSer vi ceMBean") ;
Obj ect Name domai nMBean =
(Ohj ect Nane) nBeanServer Connection. get Attribute(service,
" Domai nConfiguration");
Obj ect Name securityConfiguration =
(Chj ect Nane) nBeanServer Connection. get Attri but e(domai nMBean,
"SecurityConfiguration");
Obj ect Name def aul t Real m =
(Chj ect Nane) nBeanSer ver Connecti on.
getAttribute(securityConfiguration, "DefaultRealnl);
Obj ect Name[] atnProviders =
(nj ect Nane[]) nBeanServer Connection. get Attribute(defaul t Real m
"Aut henti cationProviders");

Obj ect Name userEditor = null;

Obj ect Name MBTservi ce = new Obj ect Nang(
"com bea: Nanme=MBeanTypeSer vi ce, Type=webl ogi c. managenent . mheanser vers.
MBeanTypeServi ce");

for (int p=20; atnProviders != null && p < atnProviders.length; p++) {
Mbdel MBeanl nfo info = (Mdel MBeanl nf 0)
nmBeanSer ver Connect i on. get MBeanl nf o(at nProvi ders[p]);
Descriptor desc = info.get MBeanDescriptor();
String classNane = (String)desc. getFieldValue("interfaceC assNane");

6-13

ORACLE

Chapter 6
Working with Existing Security Providers

String[] mba = (String[]) mBeanServerConnection.invoke(MBTservice,
"get Subt ypes", new Chject[] {
"webl ogi c. management . security. aut hentication. User Edi t or MBean" 1},
new String[] { "java.lang.String" });
bool ean isEditor = fal se;
for (int i =0; i <nba length; i++) {
if (mbafi].equal s(classNane)){
user Editor = atnProviders[p];
i sEditor = true;
br eak;

}
if (isEditor = true) break;
1

}

try {
mBeanSer ver Connect i on. i nvoke(

userEditor, "createUser",
new Object[] {user.getUsernane(), user.getPassword(),
"MedRec Admininistator"},
new String[] {"java.lang.String", "java.lang.String",
"java.lang. String"}

} catch (MBeanException ex) {
Exception e = ex. get Target Exception();
if (e instanceof AlreadyExistsException) {
| ogger.info("User, " + user.getUsernane() + ", already exists.");
ActionErrors errors = new ActionErrors();
errors.add("inval i dUser Narme",
new ActionError("invalid.usernane. al ready. exists"));
saveErrors(request, errors);
return mappi ng. findForward("create. new. adnmin");
} else {
| ogger. debug(e);
return mappi ng. findForward("create. new. admin");
1
}

try {
mBeanSer ver Connect i on. i nvoke(

user Editor, "addMenber ToG oup”,
new Object[] {"Adm nistrators", user.getUsernane()},
new String [] {"java.lang.String", "java.lang.String"}

mBeanSer ver Connect i on. i nvoke(
user Editor, "addMenber ToG oup”,
new Cbject[] {"MedRecAdnins", user.getUsernane()},
new String [] {"java.lang.String", "java.lang.String"}

} catch (MBeanException ex) {
Exception e = ex.get Target Exception();
if (e instanceof NameNot FoundException) {
I ogger.info("Invalid Goup Name.");
ex.printStackTrace();
return mappi ng. findForward("create. new. adnmin");
} else {
| ogger. debug(e);
return mappi ng. findForward("create. new. admin");

6-14

Chapter 6
Modifying the Realm Configuration

| ogger.info("MedRec Adm nistrator successfully created.");
return mappi ng. fi ndForward("create. new. adm n. successful ");

}

6.4 Modifying the Realm Configuration

ORACLE

While security provider MBeans handle specific aspects of security, such as
authentication and authorization, two other MBeans handle general, realm-wide and
domain-wide aspects of security:

* Real mMBean represents a security realm. JMX clients can use it to add or remove
security providers and to specify such behaviors as whether Web and EJB
containers call the security framework on every access or only when security is set
in the deployment descriptors.

e SecurityConfigurationMBean specifies domain-wide security settings such as
connection filters and URL-pattern matching behavior for security constraints,
servlets, filters, and virtual-hosts in the WebApp container and external security
policies.

These two MBeans persist their data in WebLogic Server configuration files.
Therefore, to modify attribute values in Real mvBean or Securi t yConfi gur ati onMBean, you
must use the Edit MBean Server and Confi gur at i onManager MBean as described in
Managing a Domain's Configuration with IMX.

6-15

Chapter 6

Modifying the Realm Configuration

ORACLE" 6-16

Using Notifications and Monitor MBeans

This chapter describes how to use JMX to monitor MBeans. JMX provides two ways to
monitor MBeans: MBeans can emit notifications when specific events occur (such as a
change in an attribute value), or a special type of MBean called a monitor MBean can
poll another MBean and periodically emit notifications to describe an attribute value.
You create Java classes called listeners that listen for these notifications and respond
appropriately. For example, your management utility can include a listener that
receives notifications when applications are deployed, undeployed, or redeployed. All
WebLogic Server configuration MBeans emit notifications when attribute values
change, and some run-time MBeans do.

This chapter includes the following sections:

e Best Practices: Listening Directly Compared to Monitoring

e Best Practices: Listening for WebLogic Server Events

e Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics
e Listening for Notifications from WebLogic Server MBeans: Main Steps

e Using Monitor MBeans to Observe Changes: Main Steps

7.1 Best Practices: Listening Directly Compared to
Monitoring

ORACLE

If the MBean that you want to monitor emits notifications, you can choose whether to
create a listener object that listens for changes in the MBean or a monitor MBean that
periodically polls the MBean and emits notifications only when its attributes change in
specific ways. The technique that you choose depends mostly on the complexity of the
situations in which you want to receive notifications.

If your requirements are simple, registering a listener directly with an MBean is the
preferred technique because the MBean pushes its notifications to your listener and
you are notified of a change almost immediately. However, the base classes that you
implement for a listener and optional filter (j avax. management . Noti fi cati onLi st ener and
NotificationFilter) provide few facilities for comparing values with thresholds and
other values. (See the j avax. management package in the Java SE 8 API Specification at
http://docs. oracl e. conf j avase/ 8/ docs/ api / j avax/ managenent / package- summary. htni .)

If your notification requirements are sufficiently complex, or if you want to monitor a
group of changes that are not directly associated with a single change in the value of
an MBean attribute, use a monitor MBean. (See the j avax. management . noni t or package
in the Java SE 8 API Specification at htt p: // docs. or acl e. cont j avase/ 8/ docs/ api / j avax/
nmanagenent / moni t or / package- summary. ht ni .) The monitor MBeans provide a rich set of
tools for comparing data and sending notifications only under specific circumstances.
However, the monitor periodically polls the observed MBean for changes in attribute
value and you are notified of a change only as frequently as the polling interval that

you specify.

7-1

http://docs.oracle.com/javase/8/docs/api/javax/management/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/package-summary.html

Chapter 7
Best Practices: Listening for WebLogic Server Events

7.2 Best Practices: Listening for WebLogic Server Events

ORACLE

The WebLogic Server JMX agent and WebLogic Server MBeans emit different types
of notification objects for different types of events. Many event types trigger multiple
MBeans to emit notifications at different points within the event process. Table 7-1
describes common event types and recommends the MBean with which a JIMX
monitoring application should register to listen for notifications.

Note:

Each JMX notification object contains an attribute named Type, which contains
a dot-delimited string. Do not confuse discussions of this Type attribute with a
notification's object type.

The Type attribute offers a way to categorize and filter notifications. For
example, if your custom MBeans emit notifications, JMX conventions suggest
that you set your notification object's Type attribute to a string that starts with
your company name: myconpany. nyapp. val uel ncreased.

All IMX notification objects extend the j avax. management . Noti fi cati on object
type. JIMX and WebLogic Server define additional notification object types,
such as j avax. managenent . At tri but eChangeNoti fi cati on. The additional object
types contain specialized sets of information that are appropriate for different
types of events. (See the list of Noti fi cati on subclasses for

j avax. managenent . Noti fi cati on in the Java SE 8 API Specification at http://
docs. oracl e. cont j avase/ 8/ docs/ api / j avax/ management / Noti fi cation. htn . Also
see weblogic.management.logging.WebLogicLogNotification in the Java API
Reference for Oracle WebLogic Server.)

7-2

http://docs.oracle.com/javase/8/docs/api/javax/management/Notification.html
http://docs.oracle.com/javase/8/docs/api/javax/management/Notification.html

ORACLE

Chapter 7
Best Practices: Listening for WebLogic Server Events

Table 7-1 Events and Notification Objects

Event

Listening Recommendation

A WebLogic Server
instance starts or stops

To receive a notification when a server starts or stops, register a
listener with each server's Server Li f eCycl eRunt i meMBean in the
Domain Runtime MBean Server and configure an
AttributeChangeNotificationFilter.

Each server in a domain provides its own

Server Li f eCycl eRunt i meMBean, which is available through the
Domain Runtime MBean Server even if the server itself is not

active. When you start a server instance, the server's

Server Li f eCycl eRunt i meMBean updates the value of its St at e
attribute and emits an At tri but eChangeNot i fi cati on.

For an example of such a listener and filter, see Listening for
Notifications from WebLogic Server MBeans: Main Steps.

Note: This recommendation assumes that you start a domain's
Administration Server before starting Managed Servers. If a
Managed Server starts before the Administration Server, a listener
in the Domain Runtime MBean Server (which runs only on the
Administration Server) will not be initialized at the time the
Managed Server's Ser ver Li f eCycl eRunt i neMBean changes its
state to RUNNI NG. If you cannot guarantee that the Administration
Server starts first, use the JMX timer service to periodically query
the Domain Runtime MBean Server for MBeans whose object
name contains the Type=Ser ver Runt i me key property. An MBean
that matches this query is a Ser ver Runt i meMBean, which each
server instance creates as part of its startup process. If the query
finds a newly created Ser ver Runt i meMBean, you know that a new
server instance has been started. See MBeanSer ver Connecti on
quer yNarres (see http://docs. oracl e. conl j avase/ 8/ docs/ api /
j avax/ managenent / MBeanSer ver Connect i on. ht m #quer yNames
9%28j avax. managenent . Obj ect Nane,

9%20j avax. managenent . Quer yExp9%29.

A WebLogic Server
resource is created or
destroyed

When you create a resource such as a server or a JDBC data
source, WebLogic Server registers the resource's configuration
MBean in the MBean server. When you delete a resource,
WebLogic Server unregisters the configuration MBean.

To listen for the registration and unregistration of MBeans, register
a listener with j avax. management . MBeanSer ver Del egat e, which
emits notifications of type

j avax. managenent . MBeanSer ver Noti fi cation

when MBeans are registered or unregistered.

If you register a listener with MBeanSer ver Del egat e in the Edit
MBean Server, you receive notifications when someone modifies
the pending MBean hierarchy.

If you register a listener in the Runtime MBean Server or the
Domain Runtime MBean Server, you receive notifications only
when pending changes have been successfully activated in the
domain. If you are interested solely in monitoring configuration
data (and are not interested in monitoring run-time statistics),
register your listener in only one Runtime MBean Server. See Best
Practices: Choosing an MBean Server.

See Example: Listening for The Registration of Configuration
MBeans.

7-3

http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html#queryNames%28javax.management.ObjectName,%20javax.management.QueryExp%29
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html#queryNames%28javax.management.ObjectName,%20javax.management.QueryExp%29
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html#queryNames%28javax.management.ObjectName,%20javax.management.QueryExp%29
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerConnection.html#queryNames%28javax.management.ObjectName,%20javax.management.QueryExp%29

Chapter 7
Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics

Table 7-1 (Cont.) Events and Notification Objects

Event Listening Recommendation

The configuration of a All configuration MBeans emit notifications of type
WebLogic Server AttributeChangeNotificati on when their attribute values
resource is modified change.

To receive this notification, register a listener with the MBean that
is in the Domain Runtime MBean Server or Runtime MBean
Server (see Best Practices: Choosing an MBean Server).

If you register an MBean in the Edit MBean Server, you receive
notifications when someone modifies the pending MBean
hierarchy.

If you register a listener in the Runtime MBean Server or the
Domain Runtime MBean Server, you receive notifications only
when pending changes have been successfully activated in the
domain. If you are interested solely in monitoring configuration
data (and are not interested in monitoring run-time statistics),
register your listener in only one Runtime MBean Server. See Best
Practices: Choosing an MBean Server.

The run-time state of a Some run-time MBeans emit notifications of type

WebLogic Server AttributeChangeNotificati on when their attribute values

resource changes change. To receive this notification, register a listener with the
MBean in the Domain Runtime MBean Server.

If a run-time MBean does not emit notifications, you can create a
monitor MBean that polls the run-time MBean. See Using Monitor
MBeans to Observe Changes: Main Steps.

A WebLogic Server When a WebLogic Server resource generates a log message, the
resource emits a log server's
message webl ogi ¢c. managenent . runti ne. LogBr oadcast er Runt i neMBean

emits a notification of type

webl ogi c. managenent . | oggi ng. WebLogi cLogNot i fi cati on, which
can be cast as the standard j avax. managenent . Noti ficati on
class.

To listen for log message notifications, register a listener with
LogBr oadcast er Runt i neMBean. You can listen for the standard
JMX naotifications, or if you want to retrieve detailed information
about the log messages, listen for WebLogi cLogNot i fi cati ons,
which contains methods that you can use to retrieve detailed
information. Listening for WebLogi cLogNot i fi cati ons requires you
to import this WebLogic Server class into your listener class.

To see a list of error messages that WebLogic Server resources
generate, refer to Error Messages.

See WebLogi cLogNoti fi cati on in the Java API Reference for
Oracle WebLogic Server.

7.3 Best Practices: Listening or Monitoring WebLogic Server
Runtime Statistics

WebLogic Server MBeans provide detailed statistics on the run-time state of its
services and resources. The statistics in Table 7-2 provide a general overview of the
performance of WebLogic Server. You can listen for changes to these statistics by

ORACLE 7-4

Chapter 7

Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics

creating a listener and registering it directly with the MBeans that contain the attributes
or you can configure monitor MBeans to periodically poll and report only the statistics
that you consider to be significant. (See Registering a Notification Listener and Filter,
and Registering the Monitor and Listener.)

Table 7-2 Commonly Monitored WebLogic Server Runtime Statistics

To track this statistic...

Listen or monitor this MBean attribute...

The current state of
server.

MBean Type: ServerLifeCycleRuntimeMBean
Attribute Name: St at e

Activity on the server's
listen ports.

MBean Type: ServerRuntimeMBean
Attribute Name: QpenSocket sCur r ent Count
MBean Type: ServerMBean

Attribute Name: Accept Backl og

Use these two attributes together to compare the current activity
on the server's listen ports to the total number of requests that
can be backlogged on the ports.

Memory and thread use.

MBean Type: ThreadPoolRuntimeMBean
Attribute Name: Execut eThr eadl dl eCount

Indicates the number of threads in a server's execute queue that
are taking up memory space but are not being used to process
data.

Memory and thread use

MBean Type: ThreadPoolRuntimeMBean
Attribute Name: Pendi ngUser Request Count

Indicates the number of user requests waiting in a server's
execute queue.

Memory and thread use

MBean Type: JVMRuntimeMBean
Attribute Name: HeapSi zeCur r ent

Indicates the amount of memory (in bytes) that is currently
available in the server's JVM heap.

Database connections

MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: Act i veConnect i onsCur r ent Count

Indicates the current number of active connections in a JDBC
connection pool.

Database connections

MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: Acti veConnecti onsH ghCount

The high water mark of active connections in a JDBC connection
pool. The count starts at zero each time the connection pool is
instantiated.

ORACLE

7-5

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Table 7-2 (Cont.) Commonly Monitored WebLogic Server Runtime Statistics

]
To track this statistic... Listen or monitor this MBean attribute...

Database connections MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: LeakedConnect i onCount

Indicates the total number of leaked connections. Leaked
connections are connections that have been checked out but
never returned to the connection pool via a cl ose() call; itis
important to monitor the total number of leaked connections, as a
leaked connection cannot be used to fulfill later connection
requests.

Database connections MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: Connect i onDel ayTi me
Indicates the average time to connect to a connection pool.

Database connections MBean Type: JDBCDataSourceRuntimeMBean
Attribute Name: Fai | ur esToReconnect Count

Indicates when the connection pool fails to reconnect to its data
store. Applications may notify a listener when this attribute
increments, or when the attribute reaches a threshold, depending
on the level of acceptable downtime.

7.4 Listening for Notifications from WebLogic Server
MBeans: Main Steps

To listen directly for the notifications that an MBean emits:

1. Create a listener class in your application. See Creating a Notification Listener.

2. Create an additional class that registers your listener and an optional filter with the
MBean whose notifications you want to receive. See Configuring a Notification
Filter and Registering a Notification Listener and Filter.

3. Package and deploy the listener and registration class. See Packaging and
Deploying Listeners on WebLogic Server.

7.4.1 Creating a Notification Listener

To create a notification listener:

1. Create a class that implements j avax. mnanagement . Noti fi cati onLi st ener .

See NotificationListener inthe Java SE 8 API Specification at http://
docs. oracl e. conl j avase/ 8/ docs/ api / j avax/ managenment / Not i fi cati onLi stener. htm .

2. Within the class, add a Not i fi cati onLi st ener. handl eNoti fication(Notification
notification, java.lang.bject handback) method.

ORACLE 7-6

http://docs.oracle.com/javase/8/docs/api/javax/management/NotificationListener.html
http://docs.oracle.com/javase/8/docs/api/javax/management/NotificationListener.html

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

Note:

Your implementation of this method should return as soon as possible to avoid
blocking its notification broadcaster.

3. (Optional) In most listening situations, you want to know more than the simple fact
that an MBean has emitted a notification object. For example, you might want to
know the value of the notification object's Type attribute, which is used to classify
the type of event that caused the notification to be emitted.

To retrieve information from a notification object, within your handl eNoti fi cati on
method invoke the object's methods. Because all notification types extend

j avax. managenent . Noti fi cati on, the following Noti fi cati on methods are available for
all notifications:

° getMessage()
* get SequenceNunber ()
° getTimeStam()

* getType()
* getUserData()

See Notification in the Java SE 8 API Specification at http: // docs. or acl e. con
j avase/ 8/ docs/ api / j avax/ nanagenent / Noti fication. htn .

Most notification types provide additional methods for retrieving data that is specific
to the notification. For example, j avax. managenent . Attri but eChangeNot i fication
provides get Newval ue() and get d dval ue(), which you can use to determine how the
attribute value has changed.

Example 7-1 Notification Listener

i mport javax.managenent. Notification;

i mport javax.managenent. NotificationFilter;

i mport javax.managenent. NotificationListener;

i mport javax.managenent. Attribut eChangeNotification;

public class MyListener inplenments NotificationListener {
public void handl eNotification(Notification notification, Cbject obj) {

if(notification instanceof AttributeChangeNotification) {
AttributeChangeNotification attributeChange =
(AttributeChangeNotification) notification;
Systemout. printIn("This notification is an
Attribut eChangeNotification");
Systemout. println("Cbserved Attribute: " +
attributeChange. get Attribut eName());

Systemout.printIn("Od Value: " + attributeChange. getd dVal ue())
Systemout. printIn("New Value: " + attributeChange. get Newal ue())

}

Example 7-1 is a simple listener that uses Attri but eChangeNot i fi cati on methods to
retrieve the name of an attribute with a changed value, and the old and new values.

ORACLE .

http://docs.oracle.com/javase/8/docs/api/javax/management/Notification.html
http://docs.oracle.com/javase/8/docs/api/javax/management/Notification.html

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

7.4.1.1 Listening from a Remote JVM

As of IMX 1.2, there are no special requirements for programming a listener that runs
in a different JVM from the MBean to which it is listening.

Once you establish a connection to the remote JMX agent (using

j avax. managenent . MBeanSer ver Connect i on), JMX takes care of sharing data between the
JVMs. See Registering a Notification Listener and Filter, for instructions on
establishing a connection from a remote JVM.

7.4.1.2 Best Practices: Creating a Notification Listener

Consider the following recommendations while creating your Noti fi cati onLi st ener
class:

Unless you use a notification filter, your listener receives all notifications (of all
notification types) from the MBeans with which it is registered.

Instead of using one listener for all possible notifications that an MBean emits, the
best practice is to use a combination of filters and listeners. While having multiple

listeners adds to the amount of time for initializing the JVM, the trade-off is ease of
code maintenance.

If your WebLogic Server environment contains multiple instances of MBean types
that you want to monitor, you can create one notification listener and then create
as many registration classes as MBean instances that you want to monitor.

For example, if your WebLogic Server domain contains three JDBC data sources,
you can create one listener class that listens for Attri but eChangeNot i fi cati ons.
Then, you create three registration classes. Each registration class registers the
listener with a specific instance of JDBCDat aSour ceRunt i meMBean.

While the handl eNot i fi cati on method signature includes an argument for a
handback object, your listener does not need to retrieve data from or otherwise
manipulate the handback object. It is an opaque object that helps the listener to
associate information regarding the MBean emitter.

Your implementation of the handl eNot i fi cati on method should return as soon as
possible to avoid blocking its notification broadcaster.

If you invoke a method from a specialized notification type, wrap the method calls
inanif statement to prevent your listener from invoking the method on notification
objects of all types.

7.4.2 Configuring a Notification Filter

As of JDK 1.5, the JDK includes two simple filter classes that you can configure to
forward notifications that match criteria that you specify. To configure one of the JDK's
filter classes:

ORACLE

1.

2.

In the class that registers your listener with an MBean create an instance of
j avax. managenent . NotificationFilterSupport or AttributeChangeNotificationFilter.

Invoke a filter class method to specify filter criteria.

See NotificationFilterSupport (http://docs. oracle.conljavase/ 8/ docs/ api/javax/
managenent / Not i fi cati onFi | t er Support. htm) or Attribut eChangeNotificationFilter

7-8

http://docs.oracle.com/javase/8/docs/api/javax/management/NotificationFilterSupport.html
http://docs.oracle.com/javase/8/docs/api/javax/management/NotificationFilterSupport.html

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

(http://docs. oracl e. con j avase/ 8/ docs/ api / j avax/ managenent /
Attribut eChangeNotificationFilter.htn) inthe Java SE 8 API Specification.

For example, the following lines of code configure an
Attribut eChangeNotificationFilter that forwards only attribute change notifications
and only if there is a change in an attribute named St at e:

AttributeChangeNotificationFilter filter =
new AttributeChangeNotificationFilter();
filter.enabl eAttribute("State");

7.4.2.1 Creating a Custom Filter

If the JDK's filter class is too simplistic for your needs, you can create more
sophisticated, custom filter classes. (See NotificationFilter inthe Java SE 8 API
Specification at htt p: // docs. or acl e. con j avase/ 8/ docs/ api / j avax/ managenent /
NotificationFilter.htm.) However, Oracle recommends that you use the JDK filter
classes whenever possible: using a custom filter complicates the packaging and
deployment of your listener and filter. See Packaging and Deploying Listeners on
WebLogic Server.

7.4.3 Registering a Notification Listener and Filter

ORACLE

After you implement a notification listener class, you create an additional class that
registers your listener (and optionally configures and registers a filter) with an MBean
instance.

To register a notification listener and filter with an MBean:

1. Initialize a connection to a Runtime MBean Server or the Domain Runtime MBean
Server.

See Make Remote Connections to an MBean Server.

2. To register with a WebLogic Server MBean, navigate the MBean hierarchy and
retrieve an object name for the MBean that you want to listen to. See Make Remote
Connections to an MBean Server.

To register with a custom MBean, create an Obj ect Nane that contains the MBean's
JMX object name. See j avax. nanagenent . Obj ect Nane in the Java SE 8 API
Specification at http://docs. oracl e. conl j avase/ 8/ docs/ api / j avax/ managenent /

bj ect Nane. htnl .

3. Instantiate the listener class that you created.

4. (Optional) Instantiate and configure one of the JDK's filter classes or instantiate a
custom class.

5. Register the listener and filter by passing the MBean's object name, listener class,
and filter class to the MBeanSer ver Connecti on. addNot i fi cati onLi st ener (Obj ect Nane
nane, CbjectName |istener, NotificationFilter filter, Object handback) method.

Example 7-2 Registering a Listener with ServerLifeCycleRuntimeMBean

inport java.util.Hashtable;
inport java.io.|CException;
import java.net. Ml formedURLException;

i nport javax. managenent. MBeanSer ver Connecti on;

7-9

http://docs.oracle.com/javase/8/docs/api/javax/management/AttributeChangeNotificationFilter.html
http://docs.oracle.com/javase/8/docs/api/javax/management/AttributeChangeNotificationFilter.html
http://docs.oracle.com/javase/8/docs/api/javax/management/NotificationFilter.html
http://docs.oracle.com/javase/8/docs/api/javax/management/NotificationFilter.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

ORACLE

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

i mport javax. management . Cbj ect Naneg;

i nport j avax. managenent. Mal f or medChj ect NaneExcepti on;
i nport javax. managenent. renot e. JMXConnect or;

inport javax. managenent . renote. JMXConnect or Fact ory;

i nport javax. managenent. remot e. JMXSer vi ceURL;

i nport javax. naming. Cont ext;

i nport javax. managenent. Attribut eChangeNotificationFilter;

public class RegisterListener {

private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectNane service;
[/ Initializing the object name for Domai nRuntimeServi ceMBean
/] so it can be used throughout the class.
static {
try {
servi ce = new (bj ect Nang(
"com bea: Nane=Domai nRunt i meSer vi ce, Type=webl ogi c. managenent . mheanserv
ers. domai nrunti me. Domai nRunt i meSer vi ceMBean") ;
}catch (Mal for medChj ect NaneException e) {
throw new AssertionError(e.get Message());
1
}

/*
* Initialize connection to the Domain Runtime MBean Server
* each server in the domain hosts its own instance.
*|
public static void initConnection(String hostname, String portString,
String username, String password) throws | OException,
Mal f or medURLExcepti on {
String protocol = "t3";
Integer portlnteger = Integer.valueCf (portString);
int port = portlnteger.intValue();
String jndiroot = "/jndi/";
String nmserver = "webl ogi c. mnagenent . nbeanservers. domai nrunti me";
JMXServi ceURL serviceURL = new JMXServi ceURL(protocol, hostnanme, port,
jndiroot + nserver);
Hasht abl e h = new Hashtabl e();
h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);
h. put (Cont ext . SECURI TY_CREDENTI ALS, password);
h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renote");
connector = JMXConnect or Fact ory. connect (servi ceURL, h);
connection = connect or. get MBeanSer ver Connecti on();

}

/*
* Get an array of ServerlLifeCycl eRunti meMBeans
*|
public static ojectName[] getServerLCRuntimes() throws Exception {
bj ect Name domai nRT = (Cbj ect Nane) connection. getAttribute(service,
" Domai nRunt i me") ;
return (CbjectNane[]) connection. get Attribute(domainRT,
"ServerLifecycl eRuntinmes");

}

public static void main(String[] args) throws Exception {
String hostnane = args[0];
String portString = args[1];

7-10

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

String usernane
String password
try {
//1nstantiating your listener class.
MyLi stener |istener = new MyListener();
AttributeChangeNotificationFilter filter =
new AttributeChangeNotificationFilter();
filter.enabl eAttribute("State");

args[2];
args[3];

i ni t Connection(hostname, portString, username, password);
/I Passing the name of the MBeans and your listener class to the
/1addNoti ficationListener method of MBeanServer.
bj ect Name[] server LCRT = get Server LCRunti nes();
int length= (int) serverLCRT.|ength;
for (int i=0; i <length; i++) {
connection. addNoti ficationLi stener(serverLCRT[i], listener,
filter, null);
Systemout. println("\n[nyListener]: Listener registered with"
+serverLCRT[i]);

}

/| Keeping the remote client active.
Systemout. printIn("pausing........... ");
Systemin.read();

} catch(Exception e) {

Systemout. println("Exception: " + ¢e);

}
}
}

The example class registers the listener from Example 7-1 and the JDK's
AttributeChangeNotificationFilter with all ServerLifeCycl eRunti meMBeans in a domain.
The class does not pass a handback object.

In the example, webl ogi ¢ is a user who has permission to view and modify MBean
attributes. For information about permissions to view and modify MBeans, refer to
User, Groups, and Security Roles in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

The example class also includes some code that keeps the Regi st er Li st ener class
active and not exit the main program. Usually this code is not necessary because a
listener class runs in the context of some larger application that is responsible for
invoking the class and keeping it active. It is included here so you can easily compile
and see the example working.

7.4.4 Packaging and Deploying Listeners on WebLogic Server

ORACLE

You can package and deploy a JMX listener as a remote application, a WebLogic
Server startup class (which makes the listener available as soon as a server boots), or
within one of your other applications that you deploy on WebLogic Server.

If you use a filter from the JDK, you do not need to package the filter class. It is always
available through the JDK.

Table 7-3 describes how to package and deploy your listeners and any custom filters.

7-11

Chapter 7

Listening for Notifications from WebLogic Server MBeans: Main Steps

Table 7-3 Packaging and Deploying Listeners and Custom Filters

If you deploy Do this for the Do this for a custom filter...

the listener... listener...

As a remote Make the Make the filter's class available on the remote client's
application listener's class classpath.

available on the
remote client's
classpath.

Also add the filter class to the classpath of each server
instance that hosts the monitored MBeans by archiving
the class in a JAR file and copying the JAR in each
server's | i b directory. See Domain Directory Contents
in Understanding Domain Configuration for Oracle
WebLogic Server.

As a WebLogic
Server startup
class

Add the listener
class to the
server's
classpath by
archiving the
class in a JAR
file and copying
the JAR in the
serverslib
directory.

Add the filter class to the server's classpath by
archiving the class in a JAR file and copying the JAR in
the server's | i b directory. See Domain Directory
Contents in Understanding Domain Configuration for
Oracle WebLogic Server.

As part of an
application that
you deploy on
WebLogic
Server

Package the
listener class
with the
application.

Package the listener class with the application.

Also add the filter class to the classpath of each server
instance that hosts the monitored MBeans by doing
one of the following:

» Archiving the class in a JAR file and copying the
JAR in each server's | i b directory. See Domain
Directory Contents in Understanding Domain
Configuration for Oracle WebLogic Server.

e Using the JMX MLet service to make the filter
class available to the MBean server. See
j avax. managenent . | oadi ng. M_et in the Java SE 8
API Specification (htt p: // docs. oracl e. conf
j avase/ 8/ docs/ api / j avax/ nanagenent / | oadi ng/
M.et . ht m) and the JMX 1.4 specification, which
you can download from htt p: // docs. or acl e. conl
j avase/ 7/ docs/ t echnot es/ gui des/j mx/ .

7.4.5 Example: Listening for The Registration of Configuration MBeans

When you create a WebLogic Server resource, such as a server or a JDBC data
source, WebLogic Server creates a configuration MBean and registers it in the Domain
Runtime MBean Server.

ORACLE

To listen for these events, register a listener with
j avax. managenent . MBeanSer ver Del egat e, which emits a notification of type

j avax. managenent . MBeanSer ver Not i fi cati on each time an MBean is registered or
unregistered. See MBeanSer ver Del egat e in the Java SE 8 API Specification (http://
docs. oracl e. com j avase/ 8/ docs/ api / j avax/ management / MBeanSer ver Del egat eMBean. ht m)

Note the following about the example listener in Example 7-3:

7-12

http://docs.oracle.com/javase/8/docs/api/javax/management/loading/MLet.html
http://docs.oracle.com/javase/8/docs/api/javax/management/loading/MLet.html
http://docs.oracle.com/javase/8/docs/api/javax/management/loading/MLet.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/
http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerDelegateMBean.html
http://docs.oracle.com/javase/8/docs/api/javax/management/MBeanServerDelegateMBean.html

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

To provide information about which type of WebLogic Server MBean has been
registered, the listener looks at the object name of the registered MBean. All
WebLogic Server MBean object names contain a key property whose name is
"Type" and whose value indicates the type of MBean. For example, instances of
Ser ver Runt i meMBean contain the Type=Server Runti ne key property in their object
names.

All IMX notifications contain a Type attribute, whose value offers a way to
categorize and filter notifications. The Type attribute in MBeanSer ver Noti fi cati on
contains only one of two possible strings: "JMX.mbean.registered" or
"JMX.mbean.unregistered". JMX notifications also contain a get Type method that
returns the value of the Type attribute.

The listener in Example 7-3 invokes different lines of code depending on the value
of the Type attribute.

If a JDBCDat aSour ceRunt i meMBean has been registered, the listener passes the
MBeans' object name to a custom method. The custom method registers a listener
and configures a filter for the JDBCDat aSour ceRunt i neMBean; this MBean listener
emits messages when the MBean's Enabl ed attribute changes.

The implementation of the custom method is located in the registration class (not
the filter class) so that the method can reuse registration class's connection to the

MBean server. Such reuse is an efficient use of resources and eliminates the need
to store credentials and URLs in multiple classes.

Example 7-3 Example: Listening for MBeans Being Registered and
Unregistered

i nport javax.
i nport javax.
i nport javax.

i nport javax.

public class

managenent . Noti fication;

managenent . Noti ficati onLi stener;
managenent . MBeanServer Not i fi cati on;
managenent . Obj ect Nang;

Del egat eLi st ener inplements NotificationListener {

public void handl eNotification(Notification notification, Chject obj) {
if (notification instanceof MBeanServerNotification) {
MBeanSer ver Noti fication nmsnotification =
(MBeanServer Noti fication) notification;

Il Get the value of the MBeanServerNotification

/1 Type attribute, which contains either

/1 "JIMX nbean.registered" or "JMX nbean.unregistered"
String nType = nsnotification. getType();

/1 Get the object name of the MBean that was registered or
/'l unregistered
hj ect Name nbn = nsnotification. get MBeanName();

/1 oject nanmes for WebLogic Server MBeans al ways contain
Il a "Type" key property, which indicates the

/1 MBean's type (such as ServerRuntime or Log)

String key = nbn. get KeyProperty("Type");

if (nType. equal s("JMX mbean. regi stered")) {

ORACLE

Systemout.printIn("A" + key + " has been created.");

Systemout.printin("Full MBean nanme: " + nbn);
Systemout.printIn("Time: " + nsnotification.getTineStanp());

if (key.equal s("JDBCDat aSour ceRuntime")) {
/] Registers a listener with a ServerRunti neMBean.

7-13

ORACLE

Chapter 7
Listening for Notifications from WebLogic Server MBeans: Main Steps

/1 By defining the "registerw thServerRuntine" nethod
/] in the "ListenToDel egate" class, you can reuse the
/] connection that "ListenToDel egate" established,;
/] in addition to being an efficient way to use resources,
/] it elimnates the need to store credentials and URLs in
/1 multiple classes.
Li stenToDel egat e. r egi st er wi t hJDBCDat aSour ceRunt i me(nbn) ;
}
}
if (nType.equal s("JMX nbean. unregistered")) {
Systemout. println("An MBean has been unregistered");
Systemout.println("Server nane: " +
mbn. get KeyProperty("Nane"));
Systemout.printIn("Time: " + nsnotification.getTinmeStanp());
Systemout.printIn("Full MBean nane: "
+ nenotification. get MBeanNane());
}
1
1
}

Example 7-4 shows methods from a registration class. Note the following:

* The JMX object name for MBeanSer ver Del egat e is always
"JM npl enent ati on: t ype=MBeanSer ver Del egat e" .

e The mai n method configures an instance of
j avax. managenent . Noti fi cati onFil ter Support to forward notifications only if value of
the notification's Type attribute starts with "JMX.mbean.registered" or
"JMX.mbean.unregistered".

e The regi sterw t hJDBCDat aSour ceRunt i me method registers the listener in
Example 7-1 with the specified JDBCDat aSour ceRunt i neMBean instance. The method
also configures a j avax. nanagenent . Attri but eChangeNoti fi cati onFil ter, which
forwards only Attri but eChangeNot i fi cati ons that describe changes to an attribute
named Enabl ed.

To compile and run these methods, use the supporting custom methods from
Example 7-2 and run the resulting class as a remote JMX client.

Example 7-4 Example: Registering a Listener with MBeanServerDelegate

public static void main(String[] args) throws Exception {
String hostname = args[0];
String portString = args[1];
String usernanme = args[2];
String password = args[3];
bj ect Name del egate = new bj ect Name(
"JM npl ement ati on: t ype=MBeanSer ver Del egate");

try {

//1nstantiating your |istener class.

Start StopListener slistener = new Start StopListener();

NotificationFilterSupport filter = new NotificationFilterSupport();

filter.enabl eType("JMX. nbean. regi stered");

filter.enabl eType("JMX. nmbean. unregi stered");

/* Invoke a custom nmethod that establishes a connection to the
Donai n Runtime MBean Server and uses an instance of
MBeanSer ver Connection to represents the connection. The custom
met hod assigns the MBeanServer Connection to a class-wide, static
vari abl e named "connection".

* Ok k% %

7-14

}

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

*
/
i ni t Connection(hostnane, portString, usernanme, password);

/| Passing the name of the MBeans and your listener class to the
/1addNot i ficationLi stener method of MBeanServer.
connection. addNoti fi cationLi stener(del egate, slistener, filter,

null);
Systemout. printIn("\n[nyListener]: Listener registered ...");
/| Keeping the remote client active.
Systemout. printIn("pausing........... ");

Systemin.read();
} catch (Exception e) {
Systemout. println("Exception: " + €);

}

[l Called by the listener if it receives notification of a
/| JDBCDat aSour ceRunt i neMBean bei ng regi stered.
public static void registerw thJDBCDat aSour ceRunti nme(Cbj ect Name nbnane) {

}

try {
MyLi stener nylistener = new MyListener();
AttributeChangeNotificationFilter filter =
new AttributeChangeNotificationFilter();
filter.enabl eAttribute("Enabled");

connection. addNoti fi cati onLi st ener (nmbnane, nylistener,
filter, null);
} catch (Exception e) {
Systemout. println("Exception: " + €);

}

7.5 Using Monitor MBeans to Observe Changes: Main Steps

To configure and use monitor MBeans:

1. Choose the type of monitor MBean type that supports your monitoring needs. See

Monitor MBean Types and Notification Types.

Create a listener class that can listen for notifications from monitor MBeans. See
Creating a Notification Listener for a Monitor MBean.

Create a class that creates, registers and configures a monitor MBean, registers
your listener class with the monitor MBean, and then starts the monitor MBean.
See Registering the Monitor and Listener.

7.5.1 Monitor MBean Types and Notification Types

JMX provides monitor MBeans that are specialized to observe specific types of
changes:

ORACLE

St ri nghMoni t or MBean observes attributes whose value is a Stri ng.

Use this monitor to periodically observe attributes such as
ServerLi feCycl eRunt i meMBean St at e.

See j avax. managenent . noni t or. St ri nghbni tor in the Java SE 8 API Specification at
http://docs. oracl e. com j avase/ 8/ docs/ api / j avax/ managenent / noni t or/
StringMonitor. htnl, which implements St ri nghoni t or MBean.

7-15

http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/StringMonitor.html
http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/StringMonitor.html

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

* GaugeMbni t or MBean observes attributes whose value is a Nunber .

Use this monitor to observe an attribute whose value fluctuates as a result of
normal operations. Configure the gauge monitor to emit a natification if the value
of the attribute fluctuates outside a specific range. For example, you can use it to
monitor the Thr eadPool Runt i neMBean St andbyThr eadCount attribute to verify that the
number of unused but available threads in a server falls within an acceptable
range.

See j avax. managenent . noni t or. GaugeMoni t or in the Java SE 8 API Specification
(see http://docs. oracl e. conl j avase/ 8/ docs/ api / j avax/ management / noni t or /
Gaugehbni t or. ht m), which implements GaugeMbni t or MBean.

e Counter Moni t or MBean observes attributes whose value is a Nunber .

Use this monitor to observe an attribute whose value only increases as a result of
normal operation. Configure the counter monitor to emit a notification if the value
of the attribute crosses an upper threshold. You can also configure the counter
monitor to increase the threshold and then reset the threshold at a specified point.

For example, to track the overall number of hits on a server and to be notified each
time 100 additional hits have accumulated, use a counter monitor that observes
the Server Runt i meMBean Socket sOpenedTot al Count attribute.

See j avax. managenent . noni t or. Count er Moni t or in the Java SE 8 API Specification
(see http://docs. oracl e. conl j avase/ 8/ docs/ api / j avax/ management / noni t or /
Count er Moni t or . ht i), which implements Count er Moni t or MBean.

All monitor MBeans emit notifications of type

j avax. managenent . noni t or. Moni t or Noti fi cati on. When a monitor MBean generates a
notification, it describes the event that generated the notification by writing a specific
value into the notification's Type property. Table 7-4 describes the value of the Type
property that the different types of monitor MBeans encode. A filter or listener can use
the notification's get Type() method to retrieve the String in the Type property.

Table 7-4 Monitor MBeans and the MonitorNotification Type Property

A Monitor MBean of This Encodes This String in the MonitorNotification's Type
Type Property

j mx. moni tor. counter.threshol d when the value of the counter

Count er honi t or reaches or exceeds a threshold known as the comparison level.

j m. noni t or. gauge. hi gh if the observed attribute value is
increasing and becomes equal to or greater than the high
threshold value. Subsequent crossings of the high threshold
value do not cause further notifications unless the attribute value
becomes equal to or less than the low threshold value.

GaugeMoni t or

j m. noni t or. gauge. | owif the observed attribute value is
decreasing and becomes equal to or less than the low threshold
value. Subsequent crossings of the low threshold value do not
cause further notifications unless the attribute value becomes
equal to or greater than the high threshold value.

ORACLE 7-16

http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/GaugeMonitor.html
http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/GaugeMonitor.html
http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/CounterMonitor.html
http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/CounterMonitor.html

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Table 7-4 (Cont.) Monitor MBeans and the MonitorNotification Type Property
|

A Monitor MBean of This Encodes This String in the MonitorNotification's Type
Type Property

j m. nonitor.string. mt ches if the observed attribute value
matches the string to compare value. Subsequent matches of
the string to compare values do not cause further notifications
unless the attribute value differs from the string to compare
value.

jm.nonitor.string.differs if the attribute value differs from
the string to compare value. Subsequent differences from the
string to compare value do not cause further notifications unless
the attribute value matches the string to compare value.

Stringhonitor

7.5.1.1 Errors and the MonitorNotification Type Property

If an error occurs, all monitors encode one of the following values in the notification's
Type property:

* jmx. nonitor.error.nbean, which indicates that the observed MBean is not

registered in the MBean Server. The observed object name is provided in the
notification.

e jmx.nonitor.error.attribute, which indicates that the observed attribute does not
exist in the observed object. The observed object name and observed attribute
name are provided in the notification.

° jmx.nonitor.error.type, which indicates that the object instance of the observed
attribute value is nul | or not of the appropriate type for the given monitor. The
observed object name and observed attribute name are provided in the
notification.

° jm.nonitor.error.runtine, which contains exceptions that are thrown while trying
to get the value of the observed attribute (for reasons other than the cases
described above).

The counter and the gauge monitors can also encode j nx. nonitor. error. threshol d into
the Type property under the following circumstances:

» For a counter monitor, when the threshold, the offset, or the modulus is not of the
same type as the observed counter attribute.

» For a gauge monitor, when the low threshold or high threshold is not of the same
type as the observed gauge attribute.

7.5.2 Creating a Notification Listener for a Monitor MBean

ORACLE

When an observed attributes meets the criteria that you specify, a monitor MBean
emits a notification. There are no special requirements for creating a listener for a
Moni tor Noti fication. The steps are the same as those described in Creating a
Notification Listener, except:

* You listen for notifications of type Mni t or Noti fi cati on.

7-17

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Optionally, you can import the j avax. managenent . noni t or. Mbni t or Noti fi cati on class
and invoke its methods to retrieve additional information about the event that
generated the notification.

See Example 7-5.

Example 7-5 Listener for Monitor Notifications

i nport javax. managenent. Notification;

inport javax. managenent. NotificationListener;

i nport javax. managenent. nonitor. MnitorNotification;

public class MonitorListener inplements NotificationListener {

}

public void handl eNotification(Notification notification, Gbject obj) {
if(notification instanceof Notification) {
Notification notif = (Notification) notification;
Systemout. printIn("Notification type" + notif.getType());
Systemout. println("Mssage: " + notif.getMessage());

if (notification instanceof MonitorNotification) {
Moni torNotification m = (MnitorNotification) notification;
Systemout. printIn("Cbserved Attribute: " +
m. get ChservedAttribute());
Systemout.printIn("Trigger: " + m.getTrigger());
1
}

7.5.3 Registering the Monitor and Listener

Recall that to use a monitor MBean, you first must create and register an instance of
the monitor MBean in the MBean server. Then you register a listener with the monitor
MBean that you created. You can do all of this in a single class.

To register a monitor MBean, register your listener, and start the monitor MBean:

1.

ORACLE

Initialize a connection to the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server.

Create an oj ect Nare for your monitor MBean instance.

See j avax. managenent . Obj ect Nane in the Java SE 8 API Specification at http://
docs. oracl e. conl j avase/ 8/ docs/ api / j avax/ nanagenent / Cbj ect Nane. ht ni .

Oracle recommends that your object name starts with the name of your
organization and includes key properties that clearly identifies the purpose of the
monitor MBean instance.

For example, nyconpany: Name=Socket Moni t or, Type=Count er Moni t or

Create and register one of the monitor MBeans.

Use j avax. managenent . MBeanSer ver Connect i on. creat eMBean(String cl assname
bj ect Name nanme) method, where:

* classnane represents one of the following values:
— javax. managenent. noni t or. Count er Moni t or
— javax. managenent. noni t or. GaugeMoni t or

— javax. managenent. nonitor. Stringhbnitor

7-18

http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

* nane represents the object name that you created for the monitor MBean
instance.

Configure the monitor MBean by setting the value of its attributes.

For guidelines on which attributes to set, see the j avax. managenment . noni t ori ng
package in the Java SE 8 API Specification at http: //docs. oracl e. conl j avase/ 8/
docs/ api / j avax/ managenent / moni t or / package- sumrmary. htm .

To specify the MBean that your monitor MBean monitors (the observed MBean),
invoke the monitor MBean's addCbser vedObj ect (Cbj ect Name obj ect nane) and
addObservedAttribute(String attributenane) operations where.

e obj ect nane is the Obj ect Nane of the observed MBean

e attributenane is the name of the attribute in the observed MBean that you want
to monitor

A single instance of a monitor MBean can monitor multiple MBeans. Invoke the
addObser vedoj ect and addCoser vedAt tri but e operation for each MBean instance
that you want to monitor.

Instantiate the listener object that you created in Creating a Notification Listener for
a Monitor MBean.

Optionally instantiate and configure a filter.

Register the listener and optional filter with the monitor MBean. Do not register the
listener with the observed MBean.

Invoke the monitor MBean's addNot i fi cati onLi st ener (Noti fi cati onLi st ener
listener, NotificationFilter filter, Cbject handback) method.

Start the monitor by invoking the monitor MBean's start () operation.

7.5.3.1 Example: Registering a CounterMonitorMBean and Its Listener

ORACLE

Example 7-6 shows the mai n() method of a class that creates and configures a

Count er Moni t or MBean to observe the Socket sOpenedTot al Count attribute in each

Server Runt i meMBean instance in a domain. (See SocketsOpenedTotalCount in MBean
Reference for Oracle WebLogic Server.)

The code example connects to the Domain Runtime MBean Server so that it can
monitor multiple instances of Server Runti neMBean. Note the following:

Only one instance of Count er Moni t or MBean monitors all instances of

Ser ver Runti meMBean. The Domain Runtime MBean Server gives the

Count er Moni t or MBean federated access to instances of Server Runti neMBean that are
running in a different JVM.

Only one instance of your listener class and the filter class listens and filters
notifications from the Count er Moni t or MBean.

To compile and run this main method, use the supporting custom methods from
Example 7-2 and run the resulting class as a remote JMX client.

Example 7-6 Example: Registering a CounterMonitorMBean and Its Listener

public static void main(String[] args) throws Exception {

String hostname = args[0];
String portString = args[1];
String username = args[2];

7-19

http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/management/monitor/package-summary.html

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

String password = args[3];

try {
/* Invokes a custom method that establishes a connection to the
* Domain Runtime MBean Server and uses an instance of
* MBeanServer Connection to represents the connection. The custom
* method assigns the MBeanServerConnection to a class-wide, static
* variabl e naned "connection".
*/
i ni t Connection(hostnane, portString, usernanme, password);
//Creates and registers the nonitor Mean.
bj ect Name nonitorON =

new Obj ect Nane(" myconpany: Nane=mySocket Moni t or, Type=Count er Moni tor");

String classnane = "javax. managenent. noni t or. Count er Monitor";
Systemout. println("===> create nbean "+nonitorQON);
connecti on. creat eMBean(cl assnane, monitorON);

// Configure the monitor MBean.
Nurber initThreshold = new Long(2);
Nunber of fset = new Long(1);
connection. setAttribute(nonitorON,

new Attribute("InitThreshold", initThreshold));
connection.setAttribute(nonitorON, new Attribute("Cffset", offset));
connection. setAttribute(nonitorON,

new Attribute("Notify", new Bool ean(true)));

//Gets the object names of the MBeans that you want to nonitor.
bj ect Name[] serverRT = get ServerRuntimes();
int length= (int) serverRT.length;
for (int i=0; i <length; i++) {
/1 Sets each instance of ServerRuntinme MBean as a nonitored MBean.
Systemout. println("===> add observed nbean "+serverRT[i]);
connection.invoke(monitorON, "addChservedObject",
new Qbject[] { serverRT[i] },
new String[] { "javax.managenent.Chj ect Nane" });

Attribute attr = new Attribute("CbservedAttribute",
"Socket sOpenedTot al Count ") ;
connection.setAttribute(nmonitorON, attr);

}

Il Instantiates your listener class and configures a filter to

Il forward only counter nonitor messages.

Moni t or Li stener |istener = new MonitorlListener();
NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enabl eType("j m. nonitor.counter");

filter.enabl eType("jmx. monitor.error");

//Uses the MBean server's addNotificationListener method to
/lregister the listener and filter with the nonitor MBean.

Systemout. println("===> ADD NOTI FI CATI ON LI STENER TO " +noni t or ON) ;
connection. addNotificationListener(monitorON, |istener, filter, null);
Systemout. printIn("\n[nyListener]: Listener registered ...");

[lStarts the nonitor.
connection.invoke(monitorON, "start", new Qoject[] { }, new String[] { });

|/ Keeps the renpte client active.
Systemout. printIn("pausing........... ");
Systemin.read();

} catch(Exception e) {

ORACLE 7-20

Chapter 7
Using Monitor MBeans to Observe Changes: Main Steps

Systemout. println("Exception:
e.printStackTrace();

+e);

ORACLE 7.21

Chapter 7

Using Monitor MBeans to Observe Changes: Main Steps

ORACLE" 7-22

Configuring WebLogic Server JMX
Services

This chapter describes how to establish and configure the specific set of IMX services
that are to be available within a WebLogic Server domain. For example, in a
production environment you can disable the WebLogic Server editing service and
therefore prevent most run-time changes to the domain.

This chapter includes the following sections:

e Determining the JMX Services Available in a Domain

» Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

8.1 Determining the JMX Services Available in a Domain

Within a WebLogic domain, you can specify which JMX services are available.

The following attributes of JMKMBean determine which JMX services are available in a
domain (see JIMXMBean in MBean Reference for Oracle WebLogic Server):

e Edit MBeanSer ver Enabl ed controls whether JMX clients, including utilities such as the
WebLogic Server Administration Console and the WebLogic Scripting Tool, can
modify a domain's configuration.

e Domai nMBeanSer ver Enabl ed controls whether JMX clients can access all run-time
MBeans and read-only configuration MBeans through a single connection to the
Domain Runtime MBean Server.

* Runti meMBeanSer ver Enabl ed controls whether JMX clients can access a specific
server's run-time MBeans and read-only configuration MBeans through the
server's Runtime MBean Server.

e PlatfornivBeanServer Enabl ed controls whether all WebLogic Server instances
initialize the JDK platform MBean server. Pl at f or mVBeanSer ver Used controls
whether all WebLogic server instances start their Runtime MBean Servers as the
JDK platform MBean server. This makes it possible to access WeblLogic Server
MBeans and the JVM platform MBeans from a single MBean server.

e Conpati bi | i t yMBeanSer ver Enabl ed enables JMX clients to use the deprecated
webl ogi c. managenent . MBeanHone interface to access WeblLogic Server MBeans.

e Managenent EJBEnabl ed controls whether the current WebLogic Server domain
supports the Java EE Management APIs.

8.2 Example: Using WebLogic Scripting Tool to Make a
Domain Read-Only

The following example uses the WebLogic Scripting Tool (WLST) to set the JMXMBean
Edi t MBeanSer ver Enabl ed attribute to f al se. It assumes that you are running WLST on a

ORACLE 8-1

Chapter 8
Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

Windows computer, that you created a domain under c: \ nydomai n, and that you have
not deleted the scripts that WebLogic Server creates along with your domain.

Note:

The following steps prevent JMX clients (including the WebLogic Server
Administration Console and the WebLogic Scripting Tool in online mode) from
modifying the domain's configuration. You can still modify the domain
configuration through the offline editing feature of WebLogic Scripting Tool.

These steps do not prevent JMX clients from deploying or undeploying
modules because the WebLogic Server deployment service does not use
JMX.

1. Start the domain's Administration Server.

2. Inacommand prompt, set up the required environment by running the following
script:

c¢:\ mydonai n\ set Domai nEnv. cnd
3. Inthe same command prompt, enter the following commands:
a. java weblogic. WST
b. connect (' weblogic', "' weblogic')
c. edit()
d. startEdit()
e. cd(' IM nydomain')
f. set('EditMeanServerEnabled','false')
g. activate()

h. exit()

ORACLE 8-2

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Understanding WebLogic Server MBeans
	2.1 Basic Organization of a WebLogic Server Domain
	2.2 Separate MBean Types for Monitoring and Configuring
	2.3 The Life Cycle of WebLogic Server MBeans
	2.4 WebLogic Server MBean Data Model
	2.4.1 Containment and Reference Relationships
	2.4.1.1 Containment Relationship
	2.4.1.2 Reference Relationship

	2.4.2 WebLogic Server MBean Object Names
	2.4.3 MBeanServerInvocationHandler

	2.5 MBean Servers
	2.5.1 Connecting to MBean Servers
	2.5.1.1 Local Connections to MBean Servers
	2.5.1.2 Remote Connections to MBean Servers

	2.5.2 Using the Platform MBean Server
	2.5.3 Service MBeans

	2.6 Security for WebLogic Server MBeans
	2.6.1 Additional Security Resources for Some Attributes and Operations

	3 Overview of WebLogic Server Subsystem MBeans
	3.1 Domain and Server Logging Configuration
	3.2 JMS Server and JMS System Module Configuration
	3.3 JDBC Resource Configuration

	4 Accessing WebLogic Server MBeans with JMX
	4.1 Set Up the Classpath for Remote Clients
	4.2 Make Remote Connections to an MBean Server
	4.2.1 Example: Connecting to the Domain Runtime MBean Server
	4.2.2 Best Practices: Choosing an MBean Server
	4.2.3 Remote Connections Using Only JDK Classes

	4.3 Make Local Connections to the Runtime MBean Server
	4.4 Make Local Connections to the Domain Runtime MBean Server
	4.5 Navigate MBean Hierarchies
	4.6 Example: Printing the Name and State of Servers
	4.7 Example: Monitoring Servlets

	5 Managing a Domain's Configuration with JMX
	5.1 Editing MBean Attributes: Main Steps
	5.1.1 Start an Edit Session
	5.1.2 Change Attributes or Create New MBeans
	5.1.3 Save Changes to the Pending Configuration Files
	5.1.4 Activate Your Saved Changes
	5.1.5 Example: Changing the Administration Port
	5.1.6 Exception Types Thrown by Edit Operations

	5.2 Listing and Undoing Changes
	5.2.1 List Unsaved Changes
	5.2.2 List Unactivated Changes
	5.2.3 List Changes in the Current Activation Task
	5.2.4 Undoing Changes

	5.3 Tracking the Activation of Changes
	5.3.1 Listing the Status of the Current Activation Task
	5.3.2 Listing All Activation Tasks Stored in Memory
	5.3.3 Purging Completed Activation Tasks from Memory

	5.4 Managing Locks
	5.5 Best Practices: Recommended Pattern for Editing and Handling Exceptions
	5.6 Setting and Getting Encrypted Values
	5.6.1 Set the Value of an Encrypted Attribute (Recommended Technique)
	5.6.2 Set the Value of an Encrypted Attribute (Compatibility Technique)
	5.6.3 Back Up an Encrypted Value

	6 Managing Security Realms with JMX
	6.1 Understanding the Hierarchy of Security MBeans
	6.1.1 Base Provider Types and Mix-In Interfaces
	6.1.2 Security MBeans

	6.2 Choosing an MBean Server to Manage Security Realms
	6.3 Working with Existing Security Providers
	6.3.1 Discovering Available Services
	6.3.1.1 Example: Adding Users to a Realm

	6.4 Modifying the Realm Configuration

	7 Using Notifications and Monitor MBeans
	7.1 Best Practices: Listening Directly Compared to Monitoring
	7.2 Best Practices: Listening for WebLogic Server Events
	7.3 Best Practices: Listening or Monitoring WebLogic Server Runtime Statistics
	7.4 Listening for Notifications from WebLogic Server MBeans: Main Steps
	7.4.1 Creating a Notification Listener
	7.4.1.1 Listening from a Remote JVM
	7.4.1.2 Best Practices: Creating a Notification Listener

	7.4.2 Configuring a Notification Filter
	7.4.2.1 Creating a Custom Filter

	7.4.3 Registering a Notification Listener and Filter
	7.4.4 Packaging and Deploying Listeners on WebLogic Server
	7.4.5 Example: Listening for The Registration of Configuration MBeans

	7.5 Using Monitor MBeans to Observe Changes: Main Steps
	7.5.1 Monitor MBean Types and Notification Types
	7.5.1.1 Errors and the MonitorNotification Type Property

	7.5.2 Creating a Notification Listener for a Monitor MBean
	7.5.3 Registering the Monitor and Listener
	7.5.3.1 Example: Registering a CounterMonitorMBean and Its Listener

	8 Configuring WebLogic Server JMX Services
	8.1 Determining the JMX Services Available in a Domain
	8.2 Example: Using WebLogic Scripting Tool to Make a Domain Read-Only

