
Oracle® Fusion Middleware
Developing JMS Applications for Oracle
WebLogic Server

12c (12.2.1.3.0)
E80437-02
September 2017

Oracle Fusion Middleware Developing JMS Applications for Oracle WebLogic Server, 12c (12.2.1.3.0)

E80437-02

Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility xvii

Conventions xvii

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1

1.2 Guide to this Document 1-1

1.3 Related Documentation 1-2

1.4 Samples and Tutorials for the JMS Developer 1-3

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials 1-3

1.5 New and Changed JMS Features in This Release 1-3

2 Understanding WebLogic JMS

2.1 Overview of the Java Message Service and WebLogic JMS 2-1

2.1.1 What Is the Java Message Service? 2-1

2.1.2 Implementation of Java Specifications 2-2

2.1.3 WebLogic JMS Architecture 2-2

2.2 Understanding the Messaging Models 2-3

2.2.1 Point-to-Point Messaging 2-3

2.2.2 Publish/Subscribe Messaging 2-4

2.2.3 Message Persistence 2-5

2.3 Value-Added Public JMS API Extensions 2-5

2.3.1 WebLogic Server Value-Added JMS Features 2-5

2.4 Understanding the JMS API 2-7

2.4.1 ConnectionFactory 2-8

2.4.1.1 Using the Default Connection Factories 2-8

2.4.1.2 Configuring and Deploying Connection Factories 2-9

2.4.1.3 The ConnectionFactory Class 2-10

2.4.2 JMSContext 2-10

2.4.3 Connection 2-10

2.4.4 Session 2-11

iii

2.4.4.1 WebLogic JMS Session Guidelines 2-11

2.4.4.2 Session Subclasses 2-12

2.4.4.3 Non-Transacted Sessions 2-12

2.4.4.4 Transacted Sessions 2-13

2.4.5 Destination 2-14

2.4.5.1 Distributed Destinations 2-15

2.4.6 MessageProducer and MessageConsumer 2-15

2.4.7 Messages 2-16

2.4.7.1 Message Header Fields 2-17

2.4.7.2 Message Property Fields 2-19

2.4.7.3 Message Body 2-20

2.4.8 ServerSessionPoolFactory 2-21

2.4.9 ServerSessionPool 2-21

2.4.10 ServerSession 2-22

2.4.11 ConnectionConsumer 2-22

3 Best Practices for Application Design

3.1 Message Design 3-1

3.1.1 Serializing Application Objects 3-1

3.1.2 Serializing Strings 3-1

3.1.3 Server-side Serialization 3-2

3.1.4 Selection 3-2

3.2 Message Compression 3-2

3.3 Message Properties and Message Header Fields 3-2

3.4 Message Ordering 3-2

3.5 Topics Vs. Queues 3-3

3.6 Asynchronous Vs. Synchronous Consumers 3-3

3.7 Persistent Vs. Non Persistent Messages 3-4

3.8 Deferring Acknowledges and Commits 3-5

3.9 Using AUTO_ACK for Non Durable Subscribers 3-5

3.10 Alternative Qualities of Service, Multicast and No-Acknowledge 3-6

3.10.1 Using MULTICAST_NO_ACKNOWLEDGE 3-6

3.10.2 Using NO_ACKNOWLEDGE 3-6

3.11 Avoid Multi threading 3-7

3.12 Using the JMSXUserID Property 3-7

3.13 Performance and Tuning 3-8

4 Enhanced Support for Using WebLogic JMS with EJBs and Servlets

4.1 Enabling WebLogic JMS Wrappers 4-1

iv

4.1.1 Declaring a JMSContext Object Using @Inject Annotation 4-1

4.1.1.1 Specifying a Lookup Name in JMSContext Injection 4-2

4.1.1.2 Determining the Authentication Type for JMSContext Injection 4-3

4.1.2 Declaring JMS Objects as Resources In the EJB or Servlet Deployment
Descriptors 4-3

4.1.2.1 Declaring a Wrapped JMS Factory using Deployment Descriptors 4-3

4.1.2.2 Declaring JMS Destinations using Deployment Descriptors 4-4

4.1.3 Referencing a Packaged JMS Application Module In Deployment
Descriptor Files 4-6

4.1.3.1 Referencing Application Modules in a weblogic-application.xml
Descriptor 4-6

4.1.3.2 Referencing JMS Resources in a WebLogic Application 4-6

4.1.3.3 Referencing JMS Resources in a Java EE Application 4-6

4.1.4 Declaring JMS Destinations and Connection Factories Using
Annotations 4-7

4.1.4.1 Injecting Resource Dependency into a Class 4-7

4.1.4.2 Non-Injected EJB 3.0 Resource Reference Annotations 4-7

4.1.5 Avoid Transactional XA Interfaces 4-8

4.2 Disabling Wrapping and Pooling 4-9

4.3 What's Happening Under the JMS Wrapper Covers 4-9

4.3.1 Automatically Enlisting Transactions 4-9

4.3.2 Container-Managed Security 4-10

4.3.3 Connection Testing 4-10

4.3.4 Java EE Compliance 4-10

4.3.5 Pooled JMS Connection Objects 4-11

4.3.6 Monitoring Pooled Connections 4-11

4.4 Improving Performance Through Pooling 4-11

4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects 4-12

4.4.2 Speeding Up Object Creation Through Caching 4-12

4.4.3 Enlisting the Proper Transaction Mode 4-12

4.5 Simplified Access to Foreign JMS Providers 4-13

4.6 Examples of JMS Wrapper Functions 4-13

4.6.1 Examples of JMS Wrapper Functions 4-14

4.6.1.1 ejb-jar.xml 4-14

4.6.1.2 weblogic-ejb-jar.xml 4-15

4.6.1.3 PoolTest.java 4-15

4.6.1.4 PoolTestHome.java 4-16

4.6.1.5 PoolTestBean.java 4-16

4.6.2 Sending a JMS Message in a Java EE Container 4-17

4.6.2.1 Using comp/env 4-18

4.6.3 Dependency Injection 4-19

v

4.6.4 EJB 3.0 Wrapper Without Injection 4-19

5 Understanding the Simplified API Programming Model

5.1 About JMS 2.0 Simplified API 5-1

5.2 New Interfaces in the Simplified JMS API 5-2

5.2.1 JMSContext 5-2

5.2.2 JMSProducer 5-2

5.2.3 JMSConsumer 5-3

5.3 New Methods to Simplify Messaging in JMS 2.0 5-3

5.3.1 Method to Extract the Body Directly from a Message 5-3

5.3.2 Method to Receive a Message Body Directly 5-3

5.3.3 Method to Create a Session 5-4

6 Developing a Basic JMS Application

6.1 Importing Required Packages 6-1

6.2 Setting Up a JMS Application 6-1

6.2.1 Using a Simplified API to Set Up a JMS Application 6-2

6.2.1.1 Look Up a Connection Factory in JNDI 6-3

6.2.1.2 Look Up a Queue or Topic 6-4

6.2.1.3 Create a JMSContext Object 6-4

6.2.1.4 Create JMSProducer and JMSConsumer Objects 6-5

6.2.1.5 Sending and Receiving Messages using the Simplified API 6-5

6.2.2 Using the Classic API to Set Up a JMS Application 6-5

6.2.2.1 Step 1: Look Up a Connection Factory in JNDI 6-7

6.2.2.2 Step 2: Create a Connection Using the Connection Factory 6-7

6.2.2.3 Step 3: Create a Session Using the Connection 6-8

6.2.2.4 Step 4: Look Up a Destination (Queue or Topic) 6-10

6.2.2.5 Step 5: Create Message Producers and Message Consumers 6-11

6.2.2.6 Step 6a: Create the Message Object (Message Producers) 6-13

6.2.2.7 Step 6b: Optionally Register an Asynchronous Message Listener 6-14

6.2.2.8 Step 7: Start the Connection 6-15

6.2.3 Example: Setting Up a Point-to-Point JMS Application Using the Classic
API 6-15

6.2.4 Example: Setting Up a Publish-Subscribe JMS Application Using the
Classic API 6-18

6.3 Sending Messages 6-20

6.3.1 Sending Messages Using the Simplified JMS API 6-21

6.3.2 Sending Messages Using the Classic JMS API 6-22

6.3.2.1 Create a Message Object 6-22

6.3.2.2 Define a Message 6-22

vi

6.3.2.3 Send the Message to a Destination Using MessageProducer 6-23

6.3.3 Sending a Message Asynchronously 6-24

6.3.4 Setting JMSProducer and MessageProducer Attributes 6-24

6.3.5 Example: Sending Messages Within a Point-toPoint Application 6-26

6.3.6 Example: Sending Messages Within a Publish/Subscribe Application 6-26

6.4 Receiving Messages 6-26

6.4.1 Receive Messages Asynchronously Using the Simplified API 6-27

6.4.2 Receiving Messages Asynchronously using the Classic API 6-27

6.4.3 Asynchronous Message Pipeline 6-27

6.4.3.1 Configuring a Message Pipeline 6-28

6.4.3.2 Behavior of Pipelined Messages 6-28

6.4.4 Receive Messages Synchronously Using the Simplified API 6-28

6.4.5 Receiving Messages Synchronously Using the Classic API 6-29

6.4.5.1 Example: Receiving Messages Synchronously Within a PTP
Application 6-29

6.4.5.2 Example: Receiving Messages Synchronously Within a Pub/Sub
Application 6-30

6.4.6 Use Prefetch Mode to Create a Synchronous Message Pipeline 6-30

6.4.7 Recovering Received Messages 6-31

6.5 Acknowledging Received Messages 6-31

6.6 Releasing Object Resources 6-32

7 Managing Your Applications

7.1 Managing Rolled Back, Recovered, Redelivered, or Expired Messages 7-1

7.1.1 Setting a Redelivery Delay for Messages 7-1

7.1.1.1 Setting a Redelivery Delay 7-2

7.1.1.2 Overriding the Redelivery Delay on a Destination 7-2

7.1.2 Setting a Redelivery Limit for Messages 7-3

7.1.2.1 Configuring a Message Redelivery Limit on a Destination 7-3

7.1.2.2 Configuring an Error Destination for Undelivered Messages 7-3

7.1.3 Ordered Redelivery of Messages 7-4

7.1.3.1 Required Message Pipeline Setting for the Messaging Bridge and
MDBs 7-5

7.1.3.2 Performance Limitations 7-5

7.1.4 Handling Expired Messages 7-5

7.2 Setting Message Delivery Times 7-5

7.2.1 Setting a Delivery Time on Producers 7-5

7.2.2 Setting a Delivery Time on Messages 7-6

7.2.3 Overriding a Delivery Time 7-6

7.2.3.1 Interaction with the Time-to-Live Value 7-7

7.2.3.2 Setting a Relative Time-to-Deliver Override 7-7

vii

7.2.3.3 Setting a Scheduled Time-to-Deliver Override 7-7

7.2.3.4 JMS Schedule Interface 7-9

7.3 Managing Connections 7-10

7.3.1 Defining a Connection Exception Listener 7-10

7.3.2 Accessing Connection Metadata 7-10

7.3.3 Starting, Stopping, and Closing a Connection 7-11

7.4 Managing Sessions 7-12

7.4.1 Defining a Session Exception Listener 7-13

7.4.2 Closing a Session 7-14

7.5 Managing Destinations 7-14

7.5.1 Dynamically Creating Destinations 7-14

7.5.2 Dynamically Deleting Destinations 7-15

7.5.2.1 Required Conditions for Deleting Destinations 7-15

7.5.2.2 What Happens when a Destination Is Deleted 7-15

7.5.2.3 Message Timestamps for Troubleshooting Deleted Destinations 7-16

7.5.2.4 Deleted Destination Statistics 7-17

7.6 Using Temporary Destinations 7-17

7.6.1 Creating a Temporary Queue 7-17

7.6.2 Creating a Temporary Topic 7-18

7.6.3 Deleting a Temporary Destination 7-18

7.7 Setting Up Durable Subscriptions 7-18

7.7.1 Defining the Persistent Store 7-19

7.7.2 Setting the Client ID Policy 7-19

7.7.3 Defining the Client ID 7-20

7.7.4 Creating a Sharable Subscription Policy 7-21

7.7.5 Creating Subscribers for a Durable Subscription 7-22

7.7.5.1 Using JMS 2.0 API 7-22

7.7.5.2 Using JMS 1.1 API 7-22

7.7.6 Best Practice: Always Close Failed JMS ClientIDs 7-23

7.7.7 Deleting Durable Subscriptions 7-23

7.7.8 Modifying Durable Subscriptions 7-24

7.7.9 Managing Durable Subscriptions 7-24

7.8 Setting and Browsing Message Header and Property Fields 7-24

7.8.1 Setting Message Header Fields 7-25

7.8.2 Setting Message Property Fields 7-27

7.8.3 Browsing Header and Property Fields 7-29

7.9 Filtering Messages 7-31

7.9.1 Defining Message Selectors Using SQL Statements 7-31

7.9.2 Defining XML Message Selectors Using XML Selector Method 7-32

7.9.3 Displaying Message Selectors 7-33

7.9.4 Indexing Topic Subscriber Message Selectors to Optimize Performance 7-33

viii

7.10 Sending XML Messages 7-34

7.10.1 WebLogic XML APIs 7-35

7.10.2 Using a String Representation 7-35

7.10.3 Using a DOM Representation 7-35

8 Using JMS Module Helper to Manage Applications

8.1 Configuring JMS System Resources Using JMSModuleHelper 8-1

8.2 Configuring JMS Servers and Store-and-Forward Agents 8-1

8.3 JMSModuleHelper Sample Code 8-2

8.3.1 Creating a JMS System Resource 8-2

8.3.2 Deleting a JMS System Resource 8-3

8.4 Security Considerations for Anonymous Users 8-4

8.5 Best Practices When Using JMSModuleHelper 8-4

9 Using Multicasting with WebLogic JMS

9.1 Benefits of Using Multicasting 9-1

9.2 Limitations of Using Multicasting 9-1

9.3 Using WebLogic Server Unicast 9-1

9.4 Configuring Multicasting for WebLogic Server 9-2

9.4.1 Prerequisites for Multicasting 9-2

9.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic
Subscriber 9-3

9.4.3 Step 2: Set Up the Message Listener 9-4

9.4.4 Dynamically Configuring Multicasting Configuration Attributes 9-4

9.4.5 Example: Multicast Time-to-Live 9-5

10

Using Distributed Destinations

10.1 What Is a Distributed Destination? 10-1

10.2 Why Use a Distributed Destination 10-1

10.3 Creating a Distributed Destination 10-2

10.4 Types of Distributed Destinations 10-2

10.4.1 Uniform Distributed Destinations 10-2

10.4.2 Weighted Distributed Destinations 10-2

10.5 Using Distributed Destinations 10-3

10.5.1 Using Distributed Queues 10-3

10.5.1.1 Queue Forwarding 10-3

10.5.1.2 QueueSenders 10-4

10.5.1.3 QueueReceivers 10-4

10.5.1.4 QueueBrowsers 10-5

ix

10.5.2 Using Replicated Distributed Topics 10-5

10.5.2.1 TopicPublishers 10-6

10.5.2.2 TopicSubscribers 10-6

10.5.2.3 Deploying Message-Driven Beans on a Distributed Topic 10-7

10.5.3 Using Partitioned Distributed Topics 10-7

10.5.4 Accessing Distributed Destination Members 10-8

10.5.5 Distributed Destination Failover 10-8

10.6 Using Message-Driven Beans with Distributed Destinations 10-8

10.7 Common Use Cases for Distributed Destinations 10-9

10.7.1 Maximizing Production 10-9

10.7.2 Maximizing Availability 10-9

10.7.2.1 Using Queues 10-10

10.7.2.2 Using Topics 10-10

10.7.3 Stuck Messages 10-10

11

Using the Message Unit-of-Order

11.1 What is Message Unit-Of-Order? 11-1

11.2 Understanding Message Processing with Unit-of-Order 11-1

11.2.1 Message Processing According to the JMS Specification 11-1

11.2.2 Message Processing with Unit-of-Order 11-2

11.2.3 Message Delivery with Unit-of-Order 11-2

11.3 Message Unit-of-Order Case Study 11-3

11.3.1 Joe Orders a Book 11-3

11.3.2 What Happened to Joe's Order 11-4

11.3.3 How Message Unit-of-Order Solves the Problem 11-5

11.4 How to Create a Unit-of-Order 11-5

11.4.1 Creating a Unit-of-Order Programmatically 11-6

11.4.2 Creating a Unit-of-Order Administratively 11-6

11.4.2.1 Configuring Unit-of-Order for a Connection Factory and
Destinations 11-6

11.4.3 Unit-of-Order Naming Rules 11-7

11.5 Getting the Current Unit-of-Order 11-7

11.6 Message Unit-of-Order Advanced Topics 11-8

11.6.1 What Happens When a Message Is Delayed During Processing? 11-8

11.6.2 What Happens When a Filter Makes a Message Undeliverable 11-8

11.6.3 What Happens When Destination Sort Keys Are Used 11-9

11.6.4 Using Unit-of-Order with Distributed Destinations 11-9

11.6.4.1 Using the Path Service 11-9

11.6.4.2 Using Hash-Based Routing 11-9

11.6.4.3 Configuring Routing on Uniform Distributed Destinations 11-10

11.6.5 Using Unit-of-Order with Topics 11-10

x

11.6.5.1 Unit-of-Order and Distributed Topics 11-10

11.6.5.2 Unit-of-Order, Topics, and Message Driven Beans 11-10

11.6.6 Using Unit-of-Order with JMS Message Management 11-11

11.6.7 Using Unit-of-Order with WebLogic Store-and-Forward 11-11

11.6.8 Using Unit-of-Order with WebLogic Messaging Bridge 11-12

11.7 Limitations of Message Unit-of-Order 11-12

12

Using Unit-of-Work Message Groups

12.1 What Are Unit-of-Work Message Groups? 12-1

12.2 Understanding Message Processing with Unit-of-Work 12-1

12.2.1 Basic UOW Terminology 12-2

12.2.2 Rules For Processing UOW Messages 12-2

12.2.3 Message Unit-of-Work Case Study 12-3

12.3 How to Create a Unit-of-Work Message Group 12-4

12.3.1 How to Write a Producer to Set UOW Message Properties 12-5

12.3.1.1 Example UOW Producer Code 12-5

12.3.1.2 UOW Exceptions 12-6

12.3.2 How to Write a UOW Consumer/Producer For an Intermediate
Destination 12-6

12.3.3 Configuring Terminal Destinations 12-7

12.3.3.1 UOW Message Routing for Terminal Distributed Destinations 12-8

12.3.4 How to Write a UOW Consumer for a Terminal Destination 12-8

12.4 Message Unit-of-Work Advanced Topics 12-9

12.4.1 Message Property Handling 12-9

12.4.1.1 System-Generated Properties 12-9

12.4.1.2 Final Component Message Properties 12-10

12.4.1.3 Component Message Heterogeneity 12-10

12.4.1.4 ReplyTo Message Property 12-10

12.4.2 UOW and Uniform Distributed Destinations 12-10

12.4.3 UOW and Store-and-Forward Destinations 12-11

12.5 Limitations of UOW Message Groups 12-11

13

Using Transactions with WebLogic JMS

13.1 Overview of Transactions 13-1

13.2 Using JMS Transacted Sessions 13-2

13.2.1 Step 1: Set Up JMS Application, Creating Transacted Session 13-3

13.2.2 Step 2: Perform Desired Operations 13-3

13.2.3 Step 3: Commit or Roll Back the JMS Transacted Session 13-3

13.3 Using JTA User Transactions 13-4

13.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted Session 13-5

xi

13.3.2 Step 2: Look Up the User Transaction in JNDI 13-6

13.3.3 Step 3: Start the JTA User Transaction 13-6

13.3.4 Step 4: Perform Desired Operations 13-6

13.3.5 Step 5: Commit or Roll Back the JTA User Transaction 13-6

13.4 JTA User Transactions Using Message Driven Beans 13-6

13.5 Example: JMS and EJB in a JTA User Transaction 13-7

13.5.1 Step 1 Set Up the JMS Application 13-7

13.5.2 Step 2 Look Up the User Transaction 13-7

13.5.3 Step 3 Start the JTA User Transaction 13-8

13.5.4 Step 4 Perform the Desired Operations 13-8

13.5.5 Step 5 Commit the JTA User Transaction 13-8

13.6 Using Cross-Domain Security 13-8

14

Developing Advanced Pub/Sub Applications

14.1 Overview of Advanced High Availability Concepts 14-1

14.1.1 WebLogic Messaging High Availability Features 14-1

14.1.2 Application Design Limitations When Using Replicated Distributed
Topics 14-2

14.1.3 Advanced Topic Features 14-2

14.2 Advanced Topic Messaging Features for High Availability 14-3

14.2.1 Shared Subscriptions and Client ID Policy 14-3

14.2.1.1 What is the Subscription Key 14-4

14.2.1.2 Configuring a Shared Subscription 14-4

14.2.2 How Sharing a Non Durable Subscription Works 14-4

14.2.2.1 How a Shared Subscription Policy for a Non durable
Subscription Is Determined 14-5

14.2.2.2 How a Non durable Subscription Is Closed 14-5

14.2.3 How Sharing a Durable Subscription Works 14-5

14.2.3.1 How a Shared Subscription Policy for a Durable Subscription is
Determined 14-6

14.2.3.2 How to Unsubscribe a Durable Subscription 14-6

14.2.3.3 Considerations When Unsubscribing a Durable Subscriber 14-7

14.2.3.4 Managing Durable Subscriptions 14-7

14.3 Design Strategies When Using Topics 14-8

14.3.1 One-Copy-Per-Instance Design Strategy 14-8

14.3.2 One-Copy-Per-Application Design Strategy 14-9

14.4 Considerations When Using JMS 2.0 Shared Subscriptions 14-9

14.5 Replacing a Replicated Distributed Topic 14-10

14.5.1 Reasons for Replacing a Replicated Distributed Topic 14-10

14.5.2 Important Prerequisites Before Replacing an RDT 14-10

14.5.3 Replacing an RDT with a Standalone Topic 14-10

xii

14.5.4 Replacing an RDT with a PDT 14-11

14.6 Best Practices for Distributed Topics 14-11

15

Recovering from a Server Failure

15.1 Automatic JMS Client Failover 15-1

15.1.1 Automatic Reconnect Limitations 15-2

15.1.2 Automatic Failover for JMS Producers 15-2

15.1.2.1 Sample Producer Code 15-3

15.1.2.2 Re usable ConnectionFactory Objects 15-4

15.1.2.3 Re usable Destination Objects 15-4

15.1.2.4 Reconnected Connection Objects 15-4

15.1.2.5 Reconnected Session Objects 15-5

15.1.2.6 Reconnected MessageProducer Objects 15-6

15.1.3 Configuring Automatic Failover for JMS Consumers 15-7

15.1.3.1 Sample Consumer Client Code 15-7

15.1.3.2 Configuring Automatic Client Refresh Options 15-7

15.1.3.3 Common Cases for Reconnected Consumers 15-8

15.1.3.4 Special Cases for Reconnected Consumers 15-9

15.1.4 Explicitly Disabling Automatic Failover on JMS Clients 15-11

15.1.4.1 Programmatically 15-11

15.1.4.2 Administratively 15-11

15.1.5 Best Practices for JMS Clients Using Automatic Failover 15-11

15.1.5.1 Always Catch exceptions 15-11

15.1.5.2 Use Transactions to Group Message Work 15-12

15.1.5.3 JMS Clients Should Always Call the close() Method 15-12

15.2 Manually Migrating JMS Data to a New Server 15-12

16

WebLogic JMS C API

16.1 What Is the WebLogic JMS C API? 16-1

16.2 System Requirements 16-2

16.3 Design Principles 16-2

16.3.1 Java Objects Map to Handles 16-3

16.3.2 Thread Utilization 16-3

16.3.3 Exception Handling 16-3

16.3.4 Type Conversions 16-3

16.3.4.1 Integer (int) 16-4

16.3.4.2 Long (long) 16-4

16.3.4.3 Character (char) 16-4

16.3.4.4 String 16-4

xiii

16.3.5 Memory Allocation and Garbage Collection 16-5

16.3.6 Closing Connections 16-5

16.3.7 Helper Functions 16-5

16.4 Security Considerations 16-5

16.5 Implementation Guidelines 16-6

16.6 Client Packaging Requirements 16-6

16.7 Workarounds for Client Failure Thread Detach Issue 16-7

A Server Session Pools (Deprecated)

A.1 Defining Server Session Pools A-1

A.1.1 Step 1: Look Up the Server Session Pool Factory in JNDI A-3

A.1.2 Step 2: Create a Server Session Pool Using the Server Session Pool
Factory A-3

A.1.2.1 Create a Server Session Pool for Queue Connection Consumers A-3

A.1.2.2 Create a Server Session Pool for Topic Connection Consumers A-4

A.1.3 Step 3: Create a Connection Consumer A-4

A.1.3.1 Create a Connection Consumer for Queues A-5

A.1.3.2 Create a Connection Consumer for Topics A-5

A.1.4 Example: Setting Up a PTP Client Server Session Pool A-6

A.1.4.1 Step 1 Look Up the Server Session Pool Factory A-6

A.1.4.2 Step 2 Create a Server Session Pool A-7

A.1.4.3 Step 3 Create a Connection Consumer A-7

A.1.5 Example: Setting Up a Publish/Subscribe Client Server Session Pool A-7

A.1.5.1 Step 1 A-8

A.1.5.2 Step 2 Create a Server Session Pool A-8

A.1.5.3 Step 3 A-9

B FAQs: Integrating Remote JMS Providers

B.1 Understanding JMS and JNDI Terminology B-1

B.2 Understanding Transactions B-2

B.3 How to Integrate with a Remote Provider B-4

B.4 Best Practices When Integrating with Remote Providers B-5

B.5 Using Foreign JMS Server Definitions B-6

B.6 Using EJB/Servlet JMS Resource References B-7

B.7 Using WebLogic Store-and-Forward B-8

B.8 Using WebLogic JMS SAF Client B-8

B.9 Using a Messaging Bridge B-9

B.10 Using Messaging Beans B-10

B.11 Using AQ JMS B-11

xiv

C How to Look Up a Destination

C.1 Use a JNDI Name C-1

C.2 Use a Create Destination Identifier C-1

C.2.1 Default WebLogic CDI Syntax C-2

C.2.2 Custom WebLogic CDI Syntax C-2

C.2.3 Server Affinity When Looking Up Destinations C-2

C.3 Examples of Syntax Used to Look Up Destinations C-3

C.3.1 Non distributed Destinations C-3

C.3.1.1 JNDI Syntax for Non distributed Destinations C-3

C.3.1.2 CDI Syntax for Non distributed destinations C-3

C.3.2 Uniform Distributed Destinations C-4

C.3.2.1 JNDI Syntax for UDDs C-4

C.3.2.2 CDI Syntax for UDDs C-4

C.3.3 Weighted Distributed Destinations C-5

C.3.3.1 JNDI Syntax for WDDs C-5

C.3.3.2 CDI Syntax for WDDs C-5

D Advanced Programming with Distributed Destinations Using the
JMS Destination Availability Helper API

D.1 Introduction D-1

D.2 Controlling DD Producer Load Balancing D-2

D.2.1 Basic JMS D-2

D.2.2 Senders to Distributed Queues (DQs) and Partitioned Distributed
Topics (PDTs) D-2

D.2.3 Senders to Replicated Distributed Topics (RDTs) D-3

D.3 Using the JMS Destination Availability Helper API D-3

D.3.1 Overview D-3

D.3.2 General Flow D-4

D.3.3 Handling the weblogic.jms.extension.DestinationDetail D-4

D.3.4 Best Practices for Consumer Containers D-5

D.3.4.1 When to Register and Unregister D-5

D.3.4.2 URL Handling D-5

D.3.4.3 Failure Handling D-5

D.3.4.4 JNDI Context Handling D-6

D.3.4.5 JMS Connection Handling D-6

D.3.5 Interoperability Guidelines D-6

D.3.5.1 API Availability D-7

D.3.5.2 Foreign Contexts D-7

D.3.5.3 Destination Type Support D-7

D.3.5.4 Unavailable Notifications D-7

xv

D.3.5.5 Interoperating with WebLogic Server 9.0 and Earlier Distributed
Queues D-7

D.3.5.6 Interoperating with WebLogic Server 10.3.4.0 and Earlier
Distributed Topics D-7

D.3.5.7 DestinationDetail Fields D-8

D.3.6 Security Considerations D-8

D.3.6.1 WebLogic Server Security Model D-8

D.3.6.2 Passing Credentials Between Threads D-9

D.3.6.3 When to Use Cross-Domain Security D-10

D.3.6.4 Authentication of Users D-10

D.3.6.5 Securing Destinations D-11

D.3.6.6 Securing Wire Data D-11

D.3.7 Transaction Considerations D-11

D.4 Strategies for Uniform Distributed Queue Consumers D-12

D.4.1 General Strategies D-12

D.4.2 Best Practice for Local Server Consumers D-13

D.5 Strategies for Subscribers on Uniform Distributed Topics D-13

D.5.1 One Copy Per Instance D-14

D.5.1.1 General Pattern Design Strategy for One Copy Per Instance D-14

D.5.1.2 Best Practice for Local Server Consumers using One Copy Per
Instance D-15

D.5.2 One Copy Per Application D-15

D.5.2.1 General Pattern Design Strategy for One Copy Per Application D-15

D.5.2.2 Best Practice for Local Server Consumers Using One Copy Per
Application D-16

xvi

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing JMS Applications for Oracle WebLogic Server. This document
is intended for software developers, business analysts and system architects.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This chapter describes the contents and organization of this guide—Developing JMS
Applications for Oracle WebLogic Server.

• Document Scope and Audience

• Guide to this Document

• Related Documentation

• Samples and Tutorials for the JMS Developer

• New and Changed JMS Features in This Release

1.1 Document Scope and Audience
This document is a resource for software developers who want to develop and
configure applications that include WebLogic Server Java Message Service (JMS). It
also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of WebLogic Server JMS
for a particular application.

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning JMS topics.

You should be familiar with Java EE and JMS concepts. This document emphasizes
the value-added features provided by WebLogic Server JMS and key information
about how to use WebLogic Server features and facilities to get a JMS application up
and running.

1.2 Guide to this Document
• This chapter, Introduction and Roadmap, introduces the organization of this guide.

• Understanding WebLogic JMS, provides an overview of the Java Message
Service. It also describes WebLogic JMS components and features.

• Best Practices for Application Design, provides design options for WebLogic
Server JMS, application behaviors to consider during the design process, and
recommended design patterns.

• Enhanced Support for Using WebLogic JMS with EJBs and Servlets, describes
"best practice" methods that make it easier to use WebLogic JMS in conjunction
with Java EE components, like Enterprise Java Beans and Servlets.

• Developing a Basic JMS Application, describes how to develop a WebLogic JMS
application.

1-1

• Understanding the Simplified API Programming Model , describes how to develop
a WebLogic JMS application using JMS 2.0 simplified APIs.

• Managing Your Applications, describes how to programmatically manage your
JMS applications using value-added WebLogic JMS features.

• Using JMS Module Helper to Manage Applications, describes how to
programatically create and manage JMS servers, Store-and-Forward Agents, and
JMS system resources.

• Using Multicasting with WebLogic JMS, describes how to use Multicasting to
enable the delivery of messages to a select group of hosts that subsequently
forward the messages to subscribers.

• Using Distributed Destinations, describes how to use distributed destinations with
WebLogic JMS.

• Using the Message Unit-of-Order, describes how to use Message Unit-of-Order to
provide strict message ordering when using WebLogic JMS queues.

• Using Unit-of-Work Message Groups, describes how to use Unit-of-Work Message
Groups to provide groups of messages when using WebLogic JMS.

• Using Transactions with WebLogic JMS, describes how to use transactions with
WebLogic JMS.

• Developing Advanced Pub/Sub Applications, describes the advanced concepts
and functionality of Uniform Distributed Topics (UDTs) necessary to design high
availability applications.

• Recovering from a Server Failure, describes how to terminate a JMS application
gracefully if a server fails and how to migrate JMS data after server failure.

• WebLogic JMS C API, provides information on how to develop C programs that
interoperate with WebLogic JMS.

• Server Session Pools (Deprecated), describes features that have been deprecated
for this release of WebLogic Server.

• FAQs: Integrating Remote JMS Providers, provides answers to frequently asked
questions about how to integrate WebLogic Server with remote JMS providers.

• How to Look Up a Destination, provides a summary of methods you can use to
lookup a destination.

• Advanced Programming with Distributed Destinations Using the JMS Destination
Availability Helper API, provides a means for getting notifications when
destinations become available or unavailable.

1.3 Related Documentation
This document contains JMS-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

• Administering JMS Resources for Oracle WebLogic Server for information about
configuring and managing JMS resources.

• Administering the Store-and-Forward Service for Oracle WebLogic Server for
information about the benefits and usage of the Store-and-Forward service with
WebLogic JMS.

Chapter 1
Related Documentation

1-2

• Administering the WebLogic Persistent Store for information about the benefits
and usage of the system-wide WebLogic Persistent Store.

• Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications.

1.4 Samples and Tutorials for the JMS Developer
In addition to this document, Oracle provides a variety of code samples and tutorials
for JMS developers. The samples and tutorials illustrate WebLogic Server JMS in
action, and provide practical instructions about how to perform key JMS development
tasks.

Oracle recommends that you run some or all of the JMS examples before developing
your own JMS applications.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects\domains\medrec
directory, where ORACLE_HOME is the directory you specified as the Oracle Home when
you installed Oracle WebLogic Server.

MedRec includes a service tier that is made up of Enterprise Java Beans (EJBs) that
work together to process requests from web applications, web services, and workflow
applications, and future client applications. The application includes message-driven,
stateless session, stateful session, and entity EJBs.

1.5 New and Changed JMS Features in This Release
This release includes the following new and changed features for WebLogic Server
12.x:

• WebLogic Server 12.2.1 supports the use of simplified APIs specified by JMS 2.0.
See Understanding the Simplified API Programming Model .

• Weighted Distributed Destinations are deprecated in WebLogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

• Advanced WebLogic JMS publish and subscribe (pub/sub) concepts and
functionality of Uniform Distributed Topics (UDTs) necessary to design high
availability applications. See Developing Advanced Pub/Sub Applications.

• The JMSDestinationAvailabilityHelper API provides a means for getting
notifications when destinations become available or unavailable. These APIs are
for advanced use cases only. Use this helper only when standard approaches for
solving WebLogic distributed consumer problems have been exhausted. See
Using the JMS Destination Availability Helper APIs with Distributed Queues in
Developing JMS Applications for Oracle WebLogic Server.

Chapter 1
Samples and Tutorials for the JMS Developer

1-3

• Since WebLogic Server 10.3.6, the JMSModuleHelper does not support
anonymous lookup (using -
Dweblogic.management.anonymousAdminLookupEnabled=true) to comply with the
existing WebLogic security model. See Security Considerations for Anonymous
Users.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

Chapter 1
New and Changed JMS Features in This Release

1-4

2
Understanding WebLogic JMS

Learn about the different Java Message Service (JMS) concepts and features, and
understand how they work with other application objects and WebLogic Server.
It is assumed that you are familiar with Java programming and JMS 1.1 and JMS 2.0
concepts and features.

• Overview of the Java Message Service and WebLogic JMS

• Understanding the Messaging Models

• Value-Added Public JMS API Extensions

• Understanding the JMS API

2.1 Overview of the Java Message Service and WebLogic
JMS

WebLogic JMS is an enterprise-class messaging system that is tightly integrated into
the WebLogic Server platform.

WebLogic JMS fully supports the JMS Specification, described at http://
www.oracle.com/technetwork/java/jms/index.html, and also provides numerous
WebLogic JMS Extensions that go above and beyond the standard JMS APIs.

2.1.1 What Is the Java Message Service?
An enterprise messaging system enables applications to communicate with one
another through the exchange of messages. A message is a request, report, and/or
event that contains information needed to coordinate communication between different
applications. A message provides a level of abstraction, allowing you to separate the
details nation system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise
messaging systems. Specifically, JMS:

• Enables Java applications sharing a messaging system to exchange messages

• Simplifies application development by providing a standard interface for creating,
sending, and receiving messages

Figure 2-1 illustrates WebLogic JMS messaging.

Figure 2-1 WebLogic JMS Messaging

2-1

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

As shown in the figure, WebLogic JMS accepts messages from producer applications
and delivers them to consumer applications.

2.1.2 Implementation of Java Specifications
WebLogic Server is compliant with the following Java specifications.

• WebLogic Server is compliant with the Java Platform, Enterprise Edition (Java EE)
Version 7.0 specification, described at http://docs.oracle.com/javaee/7/api/.

• WebLogic Server is fully compliant with the JMS 2.0 and JMS 1.1 specifications, at
http://www.oracle.com/technetwork/java/jms/index.html, and can be used in
production.

2.1.3 WebLogic JMS Architecture
Figure 2-2 illustrates the WebLogic JMS architecture.

Figure 2-2 WebLogic JMS Architecture

The major components of the WebLogic JMS Server architecture include:

• JMS servers that can host a defined set of modules and any associated persistent
storage that reside on a WebLogic Server instance.

• JMS modules contain configuration resources (such as queues, topics, and
connections factories) and are defined by XML documents that conform to the
http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd schema.

• Client JMS applications that either produce messages to destinations or consume
messages from destinations.

Chapter 2
Overview of the Java Message Service and WebLogic JMS

2-2

http://docs.oracle.com/javaee/7/api/
http://www.oracle.com/technetwork/java/jms/index.html
http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd

• Java Naming and Directory Interface (JNDI), which provides a resource lookup
facility. JMS resources such as connection factories and destinations are
configured with a JNDI name. The runtime implementations of these resources are
then bound into JNDI using the given names.

• WebLogic persistent storage (file store or JDBC-accessible) for storing persistent
message data.

2.2 Understanding the Messaging Models
JMS supports two messaging models: point-to-point (PTP) and publish/subscribe.

The messaging models are similar, except for the following differences:

• The PTP messaging model enables the delivery of a message to exact one
recipient.

• The publish/subscribe messaging model enables the delivery of a message to
multiple recipients.

Each model is implemented with classes that extend common base classes. For
example, the PTP class javax.jms.Queue (described at http://docs.oracle.com/
javaee/7/api/javax/jms/Queue.html) and the publish/subscibe class javax.jms.Topic
(described at http://docs.oracle.com/javaee/7/api/javax/jms/Topic.html) both extend
the class javax.jms.Destination (described at http://docs.oracle.com/javaee/7/api/
javax/jms/Destination.html).

Note:

The terms producer and consumer are used as generic descriptions of
applications that send and receive messages, respectively, in either
messaging model. For each specific messaging model, however, unique terms
specific to that model are used when referring to producers and consumers.

2.2.1 Point-to-Point Messaging
The point-to-point (PTP) messaging model enables one application to send a message
to another. PTP messaging applications send and receive messages using named
queues. A queue sender (producer) sends a message to a specific queue. A queue
receiver (consumer) receives messages from a specific queue.

Figure 2-3 illustrates PTP messaging.

Chapter 2
Understanding the Messaging Models

2-3

http://docs.oracle.com/javaee/7/api/javax/jms/Queue.html
http://docs.oracle.com/javaee/7/api/javax/jms/Queue.html
http://docs.oracle.com/javaee/7/api/javax/jms/Topic.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

Figure 2-3 Point-to-Point (PTP) Messaging

Multiple queue senders and queue receivers can be associated with a single queue,
but an individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, then WebLogic
JMS determines which one will receive the next message on a first come, first serve
basis. If no queue receivers are listening on the queue, then messages remain in the
queue until a queue receiver attaches to the queue.

2.2.2 Publish/Subscribe Messaging
The publish/subscribe messaging model enables an application to send a message to
multiple applications. Publish/subscribe messaging applications send and receive
messages by subscribing to a topic. A topic publisher (producer) sends messages to a
specific topic. A topic subscriber (consumer) retrieves messages from a specific topic.

Figure 2-4 illustrates publish/subscribe messaging.

Figure 2-4 Publish/Subscribe Messaging

Unlike with the PTP messaging model, the publish/subscribe messaging model allows
multiple topic subscribers to receive the same message. JMS retains the message
until all topic subscribers have received it.

The publish/subscribe messaging model supports durable subscribers, enabling you to
assign a name to a topic subscriber and associate it with a user or application. For
more information about durable subscribers, see Setting Up Durable Subscriptions.

Chapter 2
Understanding the Messaging Models

2-4

2.2.3 Message Persistence
The "Message Delivery Mode" section of the JMS Specification, described at http://
www.oracle.com/technetwork/java/jms/index.html, messages can be specified as
persistent or non persistent:

• A persistent message is guaranteed to be delivered once. The message cannot be
lost due to a JMS provider failure, and it must not be delivered twice. It is not
considered sent until it has been safely written to a file or database. WebLogic
JMS writes persistent messages to a WebLogic persistent store (disk-base file or
JDBC-accessible database) that is optionally targeted by each JMS server during
configuration.

• Non persistent messages are not stored. They are guaranteed to be delivered
once-at-most-after, unless there is a JMS provider failure, in which case messages
may be lost, and must not be delivered twice. If a connection is closed or
recovered, then all non persistent messages that have not yet been acknowledged
will be redelivered. Once a non persistent message is acknowledged, it will not be
redelivered.

For information about using the system-wide, WebLogic Persistent Store, see
Administering the WebLogic Persistent Store.

2.3 Value-Added Public JMS API Extensions
WebLogic JMS is tightly integrated into the WebLogic Server platform, enabling you to
build highly secure Java EE applications that can be easily monitored and
administered through the WebLogic Server console.

In addition to fully supporting XA transactions, WebLogic JMS also features high
availability through its clustering and service migration features, while also providing
seamless interoperability with other versions of WebLogic Server and third-party
messaging providers.

For a detailed listing of these value-added features, see WebLogic Server Value-
Added JMS Features in Administering JMS Resources for Oracle WebLogic Server.

2.3.1 WebLogic Server Value-Added JMS Features
In addition to the standard JMS APIs specified by the JMS Specification, WebLogic
Server provides numerous weblogic.jms.extensions APIs, which includes the classes
and methods described in the Table 2-1.For more information about these APIs, see
Java API Reference for Oracle WebLogic Server.

Table 2-1 WebLogic JMS Public API Extensions

Interface/Class Function

ConsumerInfo,

DestinationInfo

Provides consumer and destination information to
management clients in CompositeData format.

Chapter 2
Value-Added Public JMS API Extensions

2-5

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Table 2-1 (Cont.) WebLogic JMS Public API Extensions

Interface/Class Function

JMSMessageFactoryImpl,

WLMessageFactory

Provides a factory and methods to:

• Create JMS messages
• Create JMS bytes messages
• Create JMS map messages
• Create JMS object messages
• CreateJMS stream messages
• Create JMS text messages
• Create JMS XML messages

JMSMessageInfo Provides browsing and message manipulation using JMX

JMSModuleHelper,

JMSNamedEntityModifier

Monitors JMS runtime MBeans and manages JMS Module
configuration entities in a JMS module

JMSRuntimeHelper Monitors JMS runtime JMX MBeans

MDBTransaction Associates a message delivered to a MDB (message-
driven bean) with a transaction

WLDestination Determines if a destination is a queue or a topic

WLMessage Sets a delivery time for messages, redelivery limits, and
send timeouts

Java API Reference for Oracle
WebLogic
ServerWLMessageProducer

Sets a message delivery times for producers and Unit-of-
Order names

WLJMSContext Provides additional fields and methods that are not
supported by javax.jms.JMSContext. WLJMSContext
provides the same extension features as WLConnection
and WLSession

WLJMSProducer Provides additional methods that are not supported by
javax.jms.JMSProducer.

WLQueueSession,

WLSession,

WLTopicSession

Provides additional fields and methods that are not
supported by javax.jms.QueueSession,
javax.jms.Session, and javax.jms.TopicSession

XMLMessage Creates XML messages

Schedule Sets a scheduled delivery times for messages

JMSHelper Monitors JMS runtime MBeans.

Deprecated in this release of WebLogic Server. Replaced
by JMSModuleHelper.

ServerSessionPoolFactory,

ServerSessionPoolListener

Provides interfaces for creating server session pools and
message listeners

Note: Session pool configuration objects are deprecated.
They are not a required part of the Java EE specification,
do not support JTA user transactions, and are largely
superseded by message-driven beans (MDBs), which are a
required part of Java EE. For more information on
designing MDBs, see Developing Message-Driven Beans
for Oracle WebLogic Server.

Chapter 2
Value-Added Public JMS API Extensions

2-6

This API also supports NO_ACKNOWLEDGE and MULTICAST_NO_ACKNOWLEDGE acknowledge
modes, and extended exceptions, including throwing an exception:

• To the session exception listener (if set), when one of its consumers has been
closed by the server as a result of a server failure or administrative intervention.

• From a multicast session when the number of messages received by the session,
but not yet delivered to the message listener, exceeds the maximum number of
messages allowed for that session.

• From a multicast consumer when it detects a sequence gap (message received
out of sequence) in the data stream.

2.4 Understanding the JMS API
The javax.jms API enables you to create the class objects necessary to connect to the
JMS, and to send and receive messages.

To create a JMS application, use the javax.jms API at http://docs.oracle.com/
javaee/7/api/javax/jms/package-summary.html. JMS class interfaces are created as
subclasses to provide queue specific and topic specific versions of the common parent
classes.

The Table 2-2 lists the JMS classes described in more detail in subsequent sections.
For a complete description of all JMS classes, see javax.jms, at http://
docs.oracle.com/javaee/7/api/javax/jms/package-summary.html, or in the
weblogic.jms.extensions Javadoc.

Table 2-2 WebLogic JMS Classes

JMS Class Description

ConnectionFactory Encapsulates connection configuration information.
A connection factory is used to create connections.
You look up a connection factory using JNDI.

JMSContext Encapsulates the functionality of two objects,
Connection and Session, in a single object.

Connection Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Session Defines a serial order for the messages produced
and consumed.

Destination Identifies a queue or topic, encapsulating the
address of a specific provider. Queue and topic
destinations manage the messages delivered from
the PTP and publish/subscribe messaging models,
respectively.

MessageProducer and
MessageConsumer

Provides the interface for sending and receiving
messages. Message producers send messages to a
queue or topic. Message consumers receive
messages from a queue or topic.

Messages Encapsulates information to be sent or received.

Chapter 2
Understanding the JMS API

2-7

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html

Table 2-2 (Cont.) WebLogic JMS Classes

JMS Class Description

ServerSessionPoolFactory1 Encapsulates configuration information for a server-
managed pool of message consumers. The server
session pool factory is used to create server session
pools.

ServerSessionPool2 Provides a pool of server sessions that can be used
to process messages concurrently for connection
consumers.

ServerSession3 Associates a thread with a JMS session.

ConnectionConsumer4 Specifies a consumer that retrieves server sessions
to process messages concurrently.

1 Supports an optional JMS interface for processing multiple messages concurrently.
2 Supports an optional JMS interface for processing multiple messages concurrently.
3 Supports an optional JMS interface for processing multiple messages concurrently.
4 Supports an optional JMS interface for processing multiple messages concurrently.

For information about configuring JMS resources, see Configuring Basic JMS System
Resources in Administering JMS Resources for Oracle WebLogic Server. The
procedure for setting up a JMS application is presented in Setting Up a JMS
Application.

2.4.1 ConnectionFactory
ConnectionFactory encapsulates connection configuration information, and enables
JMS applications to create a Connection (see Connection). A connection factory
supports concurrent use, enabling multiple threads to access the object
simultaneously. You can use the pre configured default connection factories provided
by WebLogic JMS, or you can configure one or more connection factories to create
connections with predefined attributes that suit your application.

2.4.1.1 Using the Default Connection Factories
WebLogic Server supports the default connection factory as defined by the Java EE 7
specification. See Using the Default JMS Connection Factory Defined by Java EE 7 in
Administering JMS Resources for Oracle WebLogic Server.

WebLogic JMS defines two default connection factories, which you can look up using
the following JNDI names:

• weblogic.jms.ConnectionFactory

• weblogic.jms.XAConnectionFactory

You only need to create a user-defined a connection factory if the settings of the
default factories are not suitable for your application. The main difference between the
preconfigured settings for the default connection factories is the default value for the
"XA Connection Factory Enabled" attribute which is used to enable JTA transactions,
as shown in the following table.

Chapter 2
Understanding the JMS API

2-8

Table 2-3 XA Transaction Settings for Default Connection Factories

Default Connection Factory XA Connection Factory Enabled setting is

weblogic.jms.ConnectionFactory
False

weblogic.jms.XAConnectionFactory
True

An XA factory is required for JMS applications to use JTA user transactions, but is not
required for transacted sessions. For more information about using transactions with
WebLogic JMS, see Using Transactions with WebLogic JMS.

All other default factory configuration attributes are set to the same default values as a
user-defined connection factory.

For more information about the XA Connection Factory Enabled attribute, and to see
the default values for the other connection factory attributes, see JMS Connection
Factory: Configuration: Transactions in the Oracle WebLogic Server Administration
Console Online Help.

Another distinction when using the default connection factories is that you have no
control over targeting the WebLogic Server instances where the connection factory
may be deployed. However, you can disable the default connection factories on a per-
server basis.

For more information about enabling or disabling the default connection factories, see
Servers: Configuration: Services in the Oracle WebLogic Server Administration
Console Online Help.

To deploy a connection factory on specific independent servers, on specific servers
within a cluster, or on an entire cluster, you must configure a new connection factory
and specify the appropriate target, as explained in Connection Factory Configuration in
Administering JMS Resources for Oracle WebLogic Server.

Note:

For backward compatibility, WebLogic JMS still supports two deprecated
default connection factories. The JNDI names for these factories are
javax.jms.QueueConnectionFactory and javax.jms.TopicConnectionFactory.

2.4.1.2 Configuring and Deploying Connection Factories
A system administrator can define and configure one or more connection factories to
create connections with predefined attributes and WebLogic Server will add them to
the JNDI space during startup. The application then retrieves a connection factory
using WebLogic JNDI. Any user-defined connection factories must be uniquely named.

For information about configuring connection factories, see Configure connection
factories in the Oracle WebLogic Server Administration Console Online Help.

A system administrator establishes cluster-wide, transparent access to JMS
destinations from any server in the cluster by targeting to the cluster or by targeting to

Chapter 2
Understanding the JMS API

2-9

one or more server instances in the cluster. This way, each connection factory can be
deployed on multiple WebLogic Server instances. For more information about JMS
clustering, refer to Configuring Advanced WebLogic JMS Resources in Administering
JMS Resources for Oracle WebLogic Server.

2.4.1.3 The ConnectionFactory Class
The ConnectionFactory class does not define methods; however, its subclasses define
methods for the respective messaging models. A connection factory supports
concurrent use, enabling multiple threads to access the object simultaneously.

Note:

For this release, you can use the JMS version 1.1 specification connection
factories or you can choose to use the subclasses.

Table 2-4 describes the ConnectionFactory subclasses.

Table 2-4 ConnectionFactory Subclasses

Subclass In Messaging Model Is Used to Create

QueueConnectionFactory
PTP QueueConnection to a JMS PTP

provider.

TopicConnectionFactory
Publish/Subscibe TopicConnection to a JMS Publish/

Subscibe provider.

To learn how to use the ConnectionFactory class within an application, see Developing
a Basic JMS Application, or the javax.jms.ConnectionFactory Javadoc at http://
docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html.

2.4.2 JMSContext
JMSContext is the main interface introduced in the simplified API for JMS 2.0. For more
information about this interface, see New Interfaces in the Simplified JMS API.

2.4.3 Connection
A Connection represents an open communication channel between an application and
the messaging system, and is used to create a Session (see Session) for producing
and consuming messages. A connection creates server-side and client-side objects
that manage the messaging activity between an application and JMS. A connection
may also provide user authentication.

A Connection is created by ConnectionFactory (see ConnectionFactory), obtained
through a JNDI lookup.

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish a single connection for all messaging. In
the WebLogic Server, JMS traffic is multiplexed with other WebLogic services on the

Chapter 2
Understanding the JMS API

2-10

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html

client connection to the server. No additional TCP/IP connections are created for JMS.
Servlets and other server-side objects can also obtain JMS Connections.

By default, a connection is created in stopped mode. For information about how and
when to start a stopped connection, see Starting, Stopping, and Closing a Connection.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

Note:

For this release, you can use the JMS Version 1.1 specification connection
objects or you can choose to use the subclasses.

Table 2-5 describes the Connection subclasses.

Table 2-5 Connection Subclasses

Subclass In Messaging
Model

Is Used to Create

QueueConnection
PTP QueueSessions, and consists of a connection to a JMS

PTP provider created by QueueConnectionFactory.

TopicConnection
Pub/sub TopicSessions, and consists of a connection to a JMS

publish/subscribe provider created by
TopicConnectionFactory.

To learn how to use the Connection class within an application, see Developing a Basic
JMS Application, or the javax.jms.Connection Javadoc at http://docs.oracle.com/
javaee/7/api/javax/jms/Connection.html.

2.4.4 Session
A Session object defines a serial order for the messages produced and consumed, and
can create multiple message producers and message consumers. The same thread
can be used for producing and consuming messages. If you want an application to
have a separate thread for producing and consuming messages, then the application
should create a separate session for each function.

A Session is created by Connection (see Connection).

2.4.4.1 WebLogic JMS Session Guidelines
The JMS 1.1 Specification, at http://www.oracle.com/technetwork/java/jms/index.html,
allows for a generic session to have a MessageConsumer for any type of Destination
object. However, WebLogic JMS does not support having both types of
MessageConsumer (QueueConsumer and TopicSubscriber) for a single session. In addition,
having multiple consumers for a single session is not a common practice. The
following commonly used scenarios are supported:

• Using a single session with both a QueueSender and a TopicSubscriber or:
QueueConsumer and TopicPublisher.

Chapter 2
Understanding the JMS API

2-11

http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html
http://www.oracle.com/technetwork/java/jms/index.html

• Multiple MessageProducers of any type.

Note:

A session and its message producers and consumers can only be accessed
by one thread at a time. Their behavior is undefined if multiple threads access
them simultaneously.

2.4.4.2 Session Subclasses
Table 2-6 describes the Session subclasses.

Table 2-6 Session Subclasses

Subclass In Messaging Model Provides a Context for

QueueSession
PTP Producing and consuming messages for a JMS

PTP provider. Created by QueueConnection.

TopicSession
Pub/sub Producing and consuming messages for a JMS

publish/subscribe provider. Created by
TopicConnection.

To learn how to use the Session class within an application, see Developing a Basic
JMS Application, or the javax.jms.Session at http://docs.oracle.com/javaee/7/api/
javax/jms/Session.html, and the weblogic.jms.extensions.WLSession Javadoc.

2.4.4.3 Non-Transacted Sessions
In a non-transacted session, the application creating the session selects one of the
five acknowledge modes defined in Table 2-7

Table 2-7 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

AUTO_ACKNOWLEDGE
The Session object acknowledges receipt of a message after
receiving application method has returned from processing it.

CLIENT_ACKNOWLEDGE
The Session object relies on the application to call an
acknowledge method on a received message. After the
method is called, the session acknowledges all messages
received since the last acknowledge.

This mode allows an application to receive, process, and
acknowledge a batch of messages with one call.

Note: In the WebLogic Server Administration Console, if the
Acknowledge Policy attribute on the connection factory is set
to Previous, but you want to acknowledge all received
messages for a given session, then use the last message to
invoke the acknowledge method.

For more information on the Acknowledge Policy attribute,
see JMS Connection Factory: Configuration: General in the
Oracle WebLogic Server Administration Console Online Help.

Chapter 2
Understanding the JMS API

2-12

http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/Session.html

Table 2-7 (Cont.) Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

DUPS_OK_ACKNOWLEDGE
The Session object acknowledges receipt of a message after
the receiving application method has returned from
processing it; duplicate acknowledges are permitted.

This mode is most efficient in terms of resource usage.

Note: You should avoid using this mode if your application
cannot handle duplicate messages. Duplicate messages may
be sent if an initial attempt to deliver a message fails.

NO_ACKNOWLEDGE
No acknowledgement is required. Messages sent to a
NO_ACKNOWLEDGE session are immediately deleted from the
server. Messages received in this mode are not recovered,
and as a result messages may be lost and/or duplicate
message may be delivered if an initial attempt to deliver a
message fails.

This mode is supported for applications that do not require
the quality of service provided by session acknowledge, and
that do not want to incur the associated overhead.

Note: You should avoid using this mode if your application
cannot handle lost or duplicate messages. Duplicate
messages may be sent if an initial attempt to deliver a
message fails.

MULTICAST_NO_ACKNOWLEDGE
Multicast mode with no acknowledge required.

Messages sent to a MULTICAST_NO_ACKNOWLEDGE session
share the same characteristics as NO_ACKNOWLEDGE mode,
described previously.

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service
provided by session acknowledge. For more information on
multicasting, see Using Multicasting with WebLogic JMS.

Note: Use only with topics. You should avoid using this mode
if your application cannot handle lost or duplicate messages.
Duplicate messages may be sent if an initial attempt to deliver
a message fails.

2.4.4.4 Transacted Sessions
In a transacted session, only one transaction is active at any time. Any number of
messages sent or received during a transaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an
application commits a transaction, all the messages that the application received
during the transaction are acknowledged by the messaging system and messages it
sent are accepted for delivery. If an application rolls back a transaction, then the
messages that the application received during the transaction are not acknowledged
and messages it sent are discarded.

JMS can participate in distributed transactions with other Java services, such as EJB,
that use the Java Transaction API (JTA). Transacted sessions do not support this
capability because the transaction is restricted to accessing the messages associated
with that session. For more information about using JMS with JTA, see Using JTA
User Transactions.

Chapter 2
Understanding the JMS API

2-13

2.4.5 Destination
A Destination object can be either a queue or topic, encapsulating the address syntax
for a specific provider. The JMS specification does not define a standard address
syntax due to the variations in syntax between providers.

Similar to a connection factory, an administrator defines and configures the
destination, and WebLogic Server adds it to the JNDI space during startup.
Applications can also create temporary destinations that exist only for the duration of
the JMS connection in which they are created.

Note:

Administrators can also configure a distributed destination, which is a single
set of destinations (queues or topics) that are accessible as a single, logical
destination to a client. For more information, see Distributed Destinations.

On the client side, Queue and Topic objects are handles to the object on the server.
Their methods only return their names. To access them for messaging, you create
message producers and consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously. JMS Queue and Topic objects extend javax.jms.Destination method
described at http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html.

Note:

For this release, you can use the JMS version 1.1 specification destination
objects or you can choose to use the subclasses.

Table 2-8 describes the Destination subclasses.

Table 2-8 Destination Subclasses

Subclass Messaging
Model

Manages Messages for

Queue
PTP JMS point-to-point provider.

TemporaryQueue
PTP JMS point-to-point provider, and exists for the duration

of the JMS connection in which the messages are
created. A temporary queue can be consumed only by
the queue connection that created it

Topic
Pub/sub JMS publish/subscribe provider

Chapter 2
Understanding the JMS API

2-14

http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

Table 2-8 (Cont.) Destination Subclasses

Subclass Messaging
Model

Manages Messages for

TemporaryTopic
Pub/sub JMS publish/subscribe provider, and exists for the

duration of the JMS connection in which the messages
are created. A temporary topic can be consumed only
by the topic connection that created it

Note:

An application has the option of browsing queues by creating a QueueBrowser
object in its queue session. This object produces a snapshot of the messages
in the queue at the time the queue browser is created. The application can
view the messages in the queue, but the messages are not considered read
and are not removed from the queue. For more information about browsing
queues, see Setting and Browsing Message Header and Property Fields .

To learn how to use the Destination class within an application, see Developing a
Basic JMS Application, or the javax.jms.Destination Javadoc at http://
docs.oracle.com/javaee/7/api/javax/jms/Destination.html.

2.4.5.1 Distributed Destinations
A distributed destination resource is a single set of destinations (queues or topics) that
are accessible as a single, logical destination to a client (for example, a distributed
topic has its own JNDI name). The members of the set are typically distributed across
multiple servers within a cluster, with each member belonging to a separate JMS
server. Applications that use a distributed destination are more highly available than
applications that use standalone destinations because WebLogic JMS provides load
balancing and failover for the members of a distributed destination in a cluster.

• For more information about using a distributed destination with your applications,
see Using Distributed Destinations.

• For instructions about configuring a distributed queue destination, see Configure
uniform distributed queues in the Oracle WebLogic Server Administration Console
Online Help.

• For instructions about configuring a distributed topic destination, see Configure
uniform distributed topics in the Oracle WebLogic Server Administration Console
Online Help.

2.4.6 MessageProducer and MessageConsumer
A MessageProducer sends messages to a queue or topic. A MessageConsumer receives
messages from a queue or topic. Message producers and consumers operate
independently of one another. Message producers generate and send messages
regardless of whether a message consumer has been created and is waiting for a
message, and vice versa.

Chapter 2
Understanding the JMS API

2-15

http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

A Session (see Session) creates the MessageProducers and MessageConsumers that are
attached to queues and topics.

The message sender and receiver objects are created as subclasses of the
MessageProducer and MessageConsumer classes.

Note:

For this release, you can use the JMS version 1.1 specification message
producer and consumer objects or you can use the subclasses.

Table 2-9 describes the MessageProducer and MessageConsumer subclasses.

Table 2-9 MessageProducer and MessageConsumer Subclasses

Subclass In Messaging Model Performs this Function

QueueSender
PTP Sends messages for a JMS point-to-point

provider.

QueueReceiver
PTP Receives messages for a JMS point-to-point

provider

TopicPublisher
Publish/subscibe Sends messages for a JMS Publish/subscibe

provider

TopicSubscriber
Publish/subscibe Receives messages for a JMS Publish/subscibe

provider

The PTP model, as shown in the figure Figure 2-3, allows multiple sessions to receive
messages from the same queue. However, a message can only be delivered to one
queue receiver. When there are multiple queue receivers, WebLogic JMS defines the
next queue receiver that will receive a message on a first-come, first-serve basis.

The Publish/subscibe model, as shown in the figure Figure 2-4, allows messages to be
delivered to multiple topic subscribers. Topic subscribers can be durable or non-
durable, as described in Setting Up Durable Subscriptions.

An application can use the same JMS connection to both publish and subscribe to a
topic. Because topic messages can be delivered to all subscribers, an application can
receive messages it has published itself. To prevent clients from receiving messages
that they publish, a JMS application can set a noLocal attribute on the topic subscriber,
as described in Step 5: Create Message Producers and Message Consumers.

To learn how to use the MessageProducer and MessageConsumer classes within an
application, see Setting Up a JMS Application, or the javax.jms.MessageProducer (at
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html), and
javax.jms.MessageConsumer (at http://docs.oracle.com/javaee/7/api/javax/jms/
MessageConsumer.html) Javadoc.

2.4.7 Messages
A Message encapsulates the information exchanged by applications. This information
includes three components:

Chapter 2
Understanding the JMS API

2-16

http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html

• Message Header Fields

• Message Property Fields

• Message Body

2.4.7.1 Message Header Fields
Every JMS message contains a standard set of header fields that is included by
default and available to message consumers. Some fields can be set by the message
producers.

For information about setting message header fields, see Setting and Browsing
Message Header and Property Fields , or to the javax.jms.Message Javadoc at http://
docs.oracle.com/javaee/7/api/javax/jms/Message.html.

Table 2-10 describes the fields in the message headers and shows how values are
defined for each field.

Table 2-10 Message Header Fields

Field Description Defined by

JMSCorrelationID
Specifies one of the following: a WebLogic JMSMessageID (field
described later in this table), an application-specific string, or a byte[]
array. The JMSCorrelationID field is used to correlate messages and is
set directly on the message by the application before send().

There are two common applications for this field.

The first application is to link messages by setting up a request/
response scheme, as follows:

1. When an application sends a message, it stores the JMSMessageID
value assigned to it.

2. When an application receives the message, it copies the
JMSMessageID into the JMSCorrelationID field of a response
message that it sends back to the sending application.

The second application is to use the JMSCorrelationID field to carry any
String you choose, enabling a series of messages to be linked with
some application-determined value.

Application

JMSDeliveryMode
Specifies PERSISTENT or NON_PERSISTENT messaging. This field is set on
the producer or as parameter sent by the application before send().

When a persistent message is sent, it is stored in the WebLogic
Persistent Store. The send() operation is not considered successful until
delivery of the message can be guaranteed. A persistent message is
guaranteed to be delivered at least once.

WebLogic JMS does not store non-persistent messages in the persistent
store. This mode of operation provides the lowest overhead. They are
guaranteed to be delivered at least once unless there is a system failure,
in which case messages may be lost. If a connection is closed or
recovered, all non persistent messages that have not yet been
acknowledged will be redelivered. After a non persistent message is
acknowledged, it will not be redelivered.

This value is overwritten by a call to theproducer.send(), setting this
value directly on the message has no effect. The values set by the
producer can be queried using the message supplied to
producer.send() or when the message is received by a consumer.

send() method

Chapter 2
Understanding the JMS API

2-17

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Table 2-10 (Cont.) Message Header Fields

Field Description Defined by

JMSDeliveryTime
Defines the earliest absolute time at which a message can be delivered
to a consumer. This field is set by the application before send() and
depends on timeToDeliver, which is set on the producer.

This field can be used to sort messages in a destination and to select
messages. For purposes of data type conversion, the JMSDeliveryTime
is a long integer.

send() method

JMSDestination
Specifies the destination (queue or topic) to which the message is to be
delivered. This field is set when creating producer or as parameter sent
by the application before send().

This value is overwritten by a call to producer.send(), setting this value
directly on the message has no effect. The values set by the producer
can be queried using the message supplied to producer.send() or
when the message is received by a consumer. When a message is
received, its destination value must be equivalent to the value assigned
when it was sent.

send() method

JMSExpiration
Specifies the expiration, or time-to-live value, for a message. This field is
set by the application before send(). Depends on timeToLive, which is
set on the producer or as a parameter sent by the application to send().

WebLogic JMS calculates the JMSExpiration value as the sum of the
application's time-to-live and the current GMT. If the application specifies
time-to-live as 0, then the JMSExpiration value is set to 0, which means
the message never expires.

WebLogic JMS removes expired messages from the system to prevent
their delivery.

send() method

JMSMessageID
Contains a string value that uniquely identifies each message sent by a
JMS Provider. This field is set internally by send().

All JMSMessageIDs start with an ID: prefix.

This value is overwritten by a call to producer.send(), setting this value
directly on the message has no effect. The values set by the producer
can be queried using the message supplied to producer.send() or
when the message is received by a consumer. When the message is
received, it contains a provider-assigned value.

send() method

JMSPriority
Specifies the priority level. This field is set on the producer or as
parameter sent by the application before send().

JMS defines ten priority levels, 0 to 9, 0 being the lowest priority. Levels
0-4 indicate gradations of normal priority, and level 5-9 indicate
gradations of expedited priority.

When the message is received, it contains the value specified by the
method sending the message.

You can sort destinations by priority by configuring a destination key, as
described in Configure destination keys in the Oracle WebLogic Server
Administration Console Online Help.

send() method

Chapter 2
Understanding the JMS API

2-18

Table 2-10 (Cont.) Message Header Fields

Field Description Defined by

JMSRedelivered
Specifies a flag set when a message is redelivered because no
acknowledge was received. This flag is of interest to a receiving
application.

If set, the flag indicates that JMS may have delivered the message
previously because one of the following is true:

• The application has already received the message, but did not
acknowledge it.

• The session's recover() method was called to restart the session
beginning after the last acknowledged message. For more
information about the recover() method, see Recovering Received
Messages.

WebLogic JMS

JMSReplyTo
Specifies a queue or topic to which reply messages should be sent. This
field is set directly on the message by the application before send().

This feature can be used with the JMSCorrelationID header field to
coordinate request/response messages.

Setting the JMSReplyTo field does not guarantee a response; it simply
enables the receiving application to respond.

Application

JMSTimestamp
Contains the time at which the message was sent. WebLogic JMS writes
the timestamp in the message when it accepts the message for delivery,
not when the application sends the message.

When the message is received, it contains the timestamp.

The value stored in the field is a Java millis time value.

WebLogic JMS

JMSType
Specifies the message type identifier (String) set directly on the
message by the application before send().

The JMS specification allows some flexibility with this field to
accommodate diverse JMS providers. Some messaging systems allow
application-specific message types to be used. For such systems, the
JMSType field could be used to hold a message type ID that provides
access to the stored type definitions.

WebLogic JMS does not restrict the use of this field.

Application

2.4.7.2 Message Property Fields
The property fields of a message contain header fields added by the sending
application. The properties are standard Java name/value pairs. Property names must
conform to the message selector syntax specifications defined in the
javax.jms.Message Javadoc at http://docs.oracle.com/javaee/7/api/javax/jms/
Message.html. The following values are valid: boolean, byte, double, float, int, long,
short, and String.

WebLogic Server supports the use of the following JMS (JMSX) defined properties as
defined in the JMS 1.1. Specification, at http://www.oracle.com/technetwork/java/jms/
index.html:

Chapter 2
Understanding the JMS API

2-19

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Table 2-11 JMSX Property

Type Description

JMSXUserID System generated property that identifies the user sending the
message. See Using the JMSXUserID Property.

JMSXDeliveryCount System generated property that specifies the number of
message delivery attempts where first attempt is 1

JMSXGroupID Identity of the message group

JMSXGroupSeq Sequence number of a message within a group

Although message property fields may be used for application-specific purposes, JMS
provides them primarily for use in message selectors. You determine how the JMS
properties are used in your environment. You can include them in some messages
and omit them from others depending upon your processing criteria. For more
information, see:

• Setting and Browsing Message Header and Property Fields

• Filtering Messages

• JMS 1.1. Specification, described at http://www.oracle.com/technetwork/java/jms/
index.html

2.4.7.3 Message Body
A message body contains the content being delivered from the producer to the
consumer.

Table 2-12 describes the types of messages defined by JMS. All message types
extend javax.jms.Message, at http://docs.oracle.com/javaee/7/api/javax/jms/
Message.html, which consists of message headers and properties, but no message
body.

Table 2-12 JMS Message Types

Type Description

javax.jms.BytesMessage
Stream of uninterpreted bytes, which must be understood by
the sender and receiver. The access methods for this
message type are stream-oriented readers and writers based
on java.io.DataInputStream and
java.io.DataOutputStream. See http://docs.oracle.com/
javaee/7/api/javax/jms/BytesMessage.html.

javax.jms.MapMessage
Set of name/value pairs in which the names are strings and
the values are Java primitive types. Pairs can be read
sequentially or randomly, by specifying a name.

javax.jms.ObjectMessage
Single serializable Java object. See http://
docs.oracle.com/javaee/7/api/javax/jms/
ObjectMessage.html.

javax.jms.StreamMessage
Similar to a BytesMessage, except that only Java primitive
types are written to or read from the stream. See http://
docs.oracle.com/javaee/7/api/javax/jms/
StreamMessage.html.

Chapter 2
Understanding the JMS API

2-20

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html

Table 2-12 (Cont.) JMS Message Types

Type Description

javax.jms.TextMessage
Single String. The TextMessage can also contain XML
content. See http://docs.oracle.com/javaee/7/api/
javax/jms/TextMessage.html.

weblogic.jms.extensions.XMLMessage XML content. Use of the XMLMessage type facilitates
message filtering, which is more complex when performed
on XML content shipped in a TextMessage.

For more information, see the javax.jms.Message Javadoc at http://docs.oracle.com/
javaee/7/api/javax/jms/Message.html. For more information about the access methods
and, if applicable, the conversion charts associated with a particular message type,
see the Javadoc for that message type.

2.4.8 ServerSessionPoolFactory

Note:

Session pool and connection consumer configuration objects are deprecated.
They are not a required part of the Java EE specification, do not support JTA
user transactions, and are largely superseded by message driven beans
(MDBs), which are simpler, easier to manage, and more capable. For more
information about designing MDBs, see Message-Driven EJBs in Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

A server session pool is a WebLogic-specific JMS feature that enables you to process
messages concurrently. A server session pool factory is used to create a server-side
ServerSessionPool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory:<name>, the <name> specifies the
name of the JMS server to which the session pool is created. The WebLogic Server
adds the default server session pool factory to the JNDI space during startup and the
application subsequently retrieves the server session pool factory using WebLogic
JNDI.

To learn how to use the server session pool factory within an application, see Defining
Server Session Pools, or the weblogic.jms.extnesions.ServerSessionPoolFactory
Javadoc.

2.4.9 ServerSessionPool
A ServerSessionPool application server object provides a pool of server sessions that
connection consumers can retrieve in order to process messages concurrently.

A ServerSessionPool is created by the ServerSessionPoolFactory object (see
ServerSessionPoolFactory) obtained through a JNDI lookup.

Chapter 2
Understanding the JMS API

2-21

http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

To learn how to use the server session pool within an application, see Defining Server
Session Poolsor the javax.jms.ServerSessionPool application Javadoc at http://
docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html.

2.4.10 ServerSession
A ServerSession application server object enables you to associate a thread with a
JMS session by providing a context for creating, sending, and receiving messages.

A ServerSession application is created by a ServerSessionPool object, described in
ServerSessionPool.

To learn how to use the server session within an application, see Defining Server
Session Pools or the javax.jms.ServerSession Javadoc at http://docs.oracle.com/
javaee/7/api/javax/jms/ServerSession.html.

2.4.11 ConnectionConsumer
A ConnectionConsumer object uses a server session to process received messages. If
message traffic is heavy, then the connection consumer can load each server session
with multiple messages to minimize thread context switching. A ConnectionConsumer is
created by a Connection object, described in Connection.

To learn how to use the connection consumers within an application, see Defining
Server Session Pools, or the javax.jms.ConnectionConsumer Javadoc at http://
docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html.

Note:

Connection consumer listeners run on the same JVM as the server.

Chapter 2
Understanding the JMS API

2-22

http://docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html

3
Best Practices for Application Design

Learn about the design options for WebLogic Server JMS, application behaviors to be
considered during the design process, and the recommended design patterns.

• Message Design

• Message Compression

• Message Properties and Message Header Fields

• Message Ordering

• Topics Vs. Queues

• Asynchronous Vs. Synchronous Consumers

• Persistent Vs. Non Persistent Messages

• Deferring Acknowledges and Commits

• Using AUTO_ACK for Non Durable Subscribers

• Alternative Qualities of Service, Multicast and No-Acknowledge

• Avoid Multi threading

• Using the JMSXUserID Property

• Performance and Tuning

3.1 Message Design
Learn how to design messages to improve messaging performance.

3.1.1 Serializing Application Objects
The CPU cost of serializing Java objects can be significant. This expense, in turn,
affects JMS Object messages. You can offset some of this cost by having application
objects implement thejava.io.Externalizable, but there still will be significant overhead
in marshalling the class descriptor. To avoid the cost of having to write the class
descriptors of additional objects embedded in an Object message, have these objects
implement Externalizable, and call readExternal and writeExternal on them directly.
For example, call obj.writeExternal(stream) rather than the stream.writeObject(obj).
Using Bytes and Stream messages is generally a preferred practice.

3.1.2 Serializing Strings
Serializing Java strings is more expensive than serializing other Java primitive types.
Strings are also memory intensive; they consume two bytes of memory per Character,
and cannot compactly represent binary data (integers, for example). In addition, the
introduction of string-based messages often implies an expensive parse step in the
application in order to process the String into something the application can make
direct use of. Bytes, Stream, Map and Object messages are therefore sometimes

3-1

preferable to Text and XML messages. Similarly, it is preferable to avoid the use of
strings in message properties, especially if they are large.

3.1.3 Server-side Serialization
WebLogic JMS servers do not incur the cost of serializing non persistent messages.
Serialization of non persistent message types is incurred by the remote client.
Persistent messages are serialized by the server.

3.1.4 Selection
Using a selector is expensive. This consideration is important when you are deciding
where in the message to store application data that is accessed through JMS
selectors.

3.2 Message Compression
Compressing large messages in a JMS application can improve performance.

Message compression reduces the amount of time required to transfer messages
across the network, reduces the amount of memory used by the JMS server, and, if
the messages are persistent, reduces the size of persistent writes. Text and XML
messages can often be compressed significantly. Of course, compression is achieved
at the expense of an increase in the CPU usage of the client.

Keep in mind that the benefits of compression become questionable for smaller
messages. If a message is less than a few KB in size, then compression can actually
increase its size. The JDK provides built-in compression libraries. For details, see the
java.util.zip package.

For information about using JMS connection factories to specify the automatic
compression of messages that exceed a specified threshold size, see Compressing
Messages in the Tuning Performance of Oracle WebLogic Server.

3.3 Message Properties and Message Header Fields
Instead of user-defined message properties, consider using standard JMS message
header fields or the message body for message data. Message properties incur an
extra cost in serialization, and are more expensive to access than standard JMS
message header fields.

Avoid embedding large amounts of data in the properties field or the header fields;
only message bodies are paged out when paging is enabled. Consequently, if user
defined message properties are defined in an application, avoid the use of large string
properties.

See Message Header Fields and Message Property Fields .

3.4 Message Ordering
You should use the Message Unit-of-Order feature rather than Ordered Redelivery to
guarantee ordered message processing.

The advantages of Message Unit-of-Order over Ordered Redelivery are:

Chapter 3
Message Compression

3-2

• Ease of configuration.

– Does not require a custom connection factory for asynchronous receivers,
such as setting the MessagingMaximum to 1 when using message-driven beans
(MDBs).

– Simple configuration when using distributed destinations.

• Preserves message order during processing delays.

• Preserves message order during transaction rollback or session recovery.

Oracle recommends applications that use Ordered Redelivery upgrade to Message
Unit-of-Order. See Using the Message Unit-of-Order.

3.5 Topics Vs. Queues
When you start to design your application, it is not always immediately obvious
whether it would be better to use a Topic or Queue.

You should use a Topic only if one of the following conditions applies:

• The same message must be replicated to multiple consumers.

• A message should be dropped if there are no active consumers that will select it.

• There are many subscribers, each with a unique selector.

Note that a topic with a single durable subscriber is semantically similar to a queue.
The differences are as follows:

• If you change a topic selector for a durable subscriber, then all previous messages
in the subscription are deleted, while if you change a queue selector for consumer,
then no messages in the queue are deleted.

• A queue may have multiple consumers, and will distribute its messages in a
round-robin fashion, whereas a topic subscriber is limited to one consumer.

For more information about configuring JMS queues and topics, see Queue and Topic
Destination Resources in Administering JMS Resources for Oracle WebLogic Server.

3.6 Asynchronous Vs. Synchronous Consumers
In general, asynchronous (onMessage) consumers perform and scale better than
synchronous consumers.

• Asynchronous consumers create less network traffic. Messages are pushed
unidirectionally, and are pipelined to the message listener. Pipelining supports the
aggregation of multiple messages into a single network call.

Note:

In WebLogic Server, your synchronous consumers can also use the same
efficient behavior as asynchronous consumers by enabling the Prefetch Mode
for Synchronous Consumers option on JMS connection factories, as described
in Use Prefetch Mode to Create a Synchronous Message Pipeline.

Chapter 3
Topics Vs. Queues

3-3

• Asynchronous consumers use fewer threads. An asynchronous consumer does
not use a thread while it is inactive. A synchronous consumer consumes a thread
for the duration of its receive call. As a result, a thread can remain idle for long
periods, especially if the call specifies a blocking timeout.

• For application code that runs on a server, it is almost always best to use
asynchronous consumers, typically through MDBs. The use of asynchronous
consumers prevents the application code from doing a blocking operation on the
server. A blocking operation, in turn, idles a server-side thread; it can even cause
deadlocks. Deadlocks occur when blocking operations consume all threads. When
no threads remain to handle the operations required to unblock the blocking
operation itself, that operation never stops blocking.

For more information, see Receiving Messages Asynchronously using the Classic API
and Receiving Messages Synchronously Using the Classic API.

3.7 Persistent Vs. Non Persistent Messages
When designing an application, make sure you specify that messages will be sent in
non persistent mode unless a persistent QOS is required.

Oracle recommends non persistent mode because unless synchronous writes are
disabled, a persistent QOS can cause a significant degradation in performance.

Note:

Avoid persisting sending persistent messages unintentionally. Occasionally an
application sends persistent messages even though the designer intended the
messages to be sent in non persistent mode.

If your messages are truly non persistent, none should end up in a regular JMS store.
To make sure that none of your messages are persistent, check whether the JMS
store size grows when unconsumed messages are accumulating on the JMS server.
Here is how message persistence is determined, in order of precedence:

• Producer's connection's connection factory configuration:

– PERSISTENT (default)

– NON_PERSISTENT

• JMS Producer API override on QueueSender and TopicPublisher:

– setDeliveryMode(DeliveryMode.PERSISTENT)

– setDeliveryMode(DeliveryMode.NON_PERSISTENT)

– setDeliveryMode(DeliveryMode.DEFAULT_DELIVERY_MODE) (default)

• JMS Producer API per message override on QueueSender and TopicPublisher:

– For queues, optional deliveryMode parameter on send()

– For topics, optional deliveryMode parameter on publish()

• Override on destination configuration:

– Persistent

Chapter 3
Persistent Vs. Non Persistent Messages

3-4

– Non Persistent

– No Delivery (default, implies no override)

• Override on JMS server configuration:

– If store is configured then that implies using the default persistent store that is
available on each targeted WebLogic Server instance

– If a Store is configured then that implies no override.

• Non durable subscribers only:

– If there are no subscribers, or there are only non durable subscribers for a
topic, the messages will be downgraded to non persistent. (Because non
durable subscribers exist only for the life of the JMS server, there is no reason
for the message to persist.)

• Temporary destinations:

– Because temporary destinations exist only for the lifetime of their host JMS
server, there is no reason for messages to persist. WebLogic JMS
automatically forces all messages in a temporary destination to non-persistent.

Durable subscribers require a persistent store to be configured on their JMS server,
even if they receive only non persistent messages. A durable subscription persists to
ensure that it continues through a server restart, as required by the JMS specification.

3.8 Deferring Acknowledges and Commits
Because sending is generally faster than receiving , consider reducing the overhead
associated with receiving by deferring acknowledgment of messages until several
messages have been received and can be acknowledged collectively.

If you are using transactions, then substitute the word commit for acknowledge.

Deferment of acknowledgements is not likely to improve performance for non durable
subscriptions, because of the internal optimizations already in place.

It may not be possible to implement deferred acknowledgements for asynchronous
listeners. If an asynchronous listener acknowledges only every 10 messages, but for
some reason receives only 5, then the last few messages may not be acknowledged.
One possible solution is to have the asynchronous consumer post synchronous, non
blocking receives from within its onMessage() callback to receive subsequent
messages. Another possible solution is to have the listener start a timer that, when
triggered, sends a message to the listener's destination in order to wake it up and
complete the outstanding work that has not yet been acknowledged—assuming that
the wake-up message can be directed at the correct listener.

3.9 Using AUTO_ACK for Non Durable Subscribers
Non durable, non transactional topic subscribers are optimized to store local copies of
the message on the client side, thus reducing network overhead when
acknowledgements are being issued.

This optimization yields a 10-20 percent performance improvement, where the
improvement is more evident under higher subscriber loads.

One side effect of this optimization, particularly for high numbers of concurrent topic
subscribers, is the overhead of client-side garbage collection, which can degrade

Chapter 3
Deferring Acknowledges and Commits

3-5

performance for message subscriptions. To prevent such degradation, Oracle
recommends allocating a larger heap size on the subscriber client. For example, in a
test of 100 concurrent subscribers running in 10 JVMs, it was found that giving clients
an initial and maximum heap size of 64MB for each JVM was sufficient.

3.10 Alternative Qualities of Service, Multicast and No-
Acknowledge

WebLogic JMS provides alternative qualities of service (QOS) extensions that can
help performance.

• Using MULTICAST_NO_ACKNOWLEDGE

• Using NO_ACKNOWLEDGE

3.10.1 Using MULTICAST_NO_ACKNOWLEDGE
Non durable topic subscribers can subscribe to messages using the
MULTICAST_NO_ACKNOWLEDGE. If a topic has such subscribers, then the JMS server will
broadcast messages to them using multicast mode. Multicast improves performance
considerably and provides linear scalability, as the network only needs to handle one
message, regardless of the number of subscribers, rather than one message per
subscriber. Multicast messages may be lost if the network is congested or if the client
falls behind in processing them. Calls to recover() or acknowledge() have no effect on
multicast messages.

Note:

On the client side, each multicasting session requires a dedicated thread to
retrieve messages off the multicast socket. Therefore, you should increase the
JMS client-side thread pool size to adjust for this.

This QOS extension has the same level of guarantee as some JMS implementations
default QOS from vendors other than Oracle WebLogic Server for non durable topic
subscriptions. The JMS 1.1 specification specifically allows non durable topic
messages to be dropped (deleted) if the subscriber is not ready for them. WebLogic
JMS has a higher QOS for non durable topic subscriptions by default than the JMS 1.1
specification requires.

3.10.2 Using NO_ACKNOWLEDGE
A no-acknowledge delivery mode implies that the server gives messages to
consumers, but does not expect an acknowledgement to be called. Instead, the server
pre-acknowledges the message. In this acknowledge mode, calls to recover will not
work, because the message was acknowledged. This mode saves the overhead of an
additional network call to the acknowledge, at the expense of possibly losing a
message when a server failure, a network failure, or a client failure occurs.

Chapter 3
Alternative Qualities of Service, Multicast and No-Acknowledge

3-6

Note:

If an asynchronous client calls theclose() in this scenario, then all messages
in the asynchronous pipeline are lost.

Asynchronous consumers that use a NO_ACKNOWLEDGE QOS may want to reduce
their message pipeline size in order to lower the number of lost messages in the event
of a failure.

3.11 Avoid Multi threading
The JMS specification states that multi threading a session, producer, consumer, or
message method results in undefined behavior except when calling close().

See the specification at http://www.oracle.com/technetwork/java/jms/index.html. If
your application is thread limited, then try increasing the number of producers and
sessions.

3.12 Using the JMSXUserID Property
For WebLogic Server 9.0 and later, you can configure a JMS connection factory and
destination to automatically propagate the message sender's authenticated username.
The username is placed in a javax.jms.Message property named JMSXUserID.

Consider the following points when using the JMSXUserID property in your application.

• While the JMS specification makes some mention of the JMSXUserID property, the
behavior is lightly defined and will likely be different for different JMS vendors.

• The JMSXUserID property is based on the credential of the thread an application
uses to create the JMS producer. It does not derive from the credential that is on a
thread during the JMS send call itself.

• JMS will ignore or override any attempt by an application to directly set JMSXUserID
(for example, javax.jms.Message.setXXXProperty() will not work).

• JMS messages are not signed or encrypted (similar to any RMI/EJB call).
Therefore, fully secure transfers of the JMSXUserID require sending the message
through secure protocols (for example, t3s or https).

• WebLogic Store-and-Forward agents do not propagate the JMSXUserID (they null it
out).

• WebLogic Messaging bridges will propagate JMSXUserID property of the source
destination's message if the messaging bridges are both are forwarding to a 9.0 or
later JMS server and are configured to Preserve Message Properties. Otherwise,
the forwarded message will either contain no username or the username used by
the bridge sender. The latter behavior is determined by the configuration of the
bridge sender's connection factory and destination.

• The WebLogic JMS WLMessageProducer.forward() extension can forward a received
message's JMSXUserID.

Chapter 3
Avoid Multi threading

3-7

http://www.oracle.com/technetwork/java/jms/index.html

Note:

The JMSXUserID property interoperability behavior for WebLogic JMS clients
prior to 9.0 is undetermined.

For instructions about setting the JMSXUserID property on a connection factory or a
destination, see the following topics in the WebLogic Server Administration Console
online help:

• Configure connection factory security parameters

• Configure advanced queue parameters

• Configure advanced topic parameters

• Uniform distributed queues - configure advanced parameters

• Uniform distributed topics - configure advanced parameters

3.13 Performance and Tuning
Implement the performance tuning features available with WebLogic JMS and get the
most out of your applications.

See Tuning WebLogic JMS in Tuning Performance of Oracle WebLogic Server.

Chapter 3
Performance and Tuning

3-8

4
Enhanced Support for Using WebLogic
JMS with EJBs and Servlets

Learn about WebLogic Server enhancements, such as JMS wrappers, that extend the
Java EE standard to make it easier to access EJB and servlet containers with
WebLogic JMS or third-party JMS providers. Implementing JMS wrapper support is the
best practice method of how to send a WebLogic JMS message from inside an EJB or
servlet.

• Enabling WebLogic JMS Wrappers

• Disabling Wrapping and Pooling

• What's Happening Under the JMS Wrapper Covers

• Improving Performance Through Pooling

• Simplified Access to Foreign JMS Providers

• Examples of JMS Wrapper Functions

4.1 Enabling WebLogic JMS Wrappers
WebLogic Server uses JMS wrappers that make it easier to use WebLogic JMS inside
a Java EE component, such as an EJB or a servlet.

The JMS wrappers also provide a number of enhanced usability and performance
features:

• Automatic pooling of JMS connection and session objects (and some pooling of
message producer objects as well)

• Automatic transaction enlistment for WebLogic JMS implementations and for third-
party JMS providers that support two-phase commit transactions (XA protocol)

• Testing of the JMS connection, as well as reestablishment after a failure

• Security credentials that are managed by the EJB or servlet container

The following sections provide information on how to use WebLogic JMS wrappers:

• Declaring JMS Objects as Resources In the EJB or Servlet Deployment
Descriptors

• Referencing a Packaged JMS Application Module In Deployment Descriptor Files

• Declaring JMS Destinations and Connection Factories Using Annotations

• Avoid Transactional XA Interfaces

4.1.1 Declaring a JMSContext Object Using @Inject Annotation
WebLogic Server 12.2.1 release supports the JMS 2.0 simplified API, which enables
you to inject a JMSContext object into the application using the @Inject annotation as
follows:

4-1

@Inject
@JMSConnectionFactory("myJMSCF")
@JMSPasswordCredential(userName="admin", password="mypassword")private
JMSContext context;

The @Inject annotation determines when the container should create the JMSContext
object.

Note:

• Injection should be enabled for the class. Depending on the class being
used and the archive in which it is packaged, it may be necessary to
specify a beans.xml file. For more information, see Using Contexts and
Dependency Injection for the Java EE Platform in Developing Applications
for Oracle WebLogic Server.

• If the injected JMSContext is null and if your application fails, then review
the server log. If the connection factory could not be found, you can see
that error in the server log. If there is no error in the server log then the
application failure is probably due to a missing beans.xml file.

4.1.1.1 Specifying a Lookup Name in JMSContext Injection
When injecting a JMSContext object, you can use the @JMSConnectionFactory annotation
to specify the product-specific global JNDI look up name of a connection factory to be
used by the container.

Note:

When you provide a product-specific global JNDI name for the connection
factory annotation, you cannot override it using a resource reference in the
deployment descriptor of the container.

Alternatively, you can specify a fully qualified resource reference name of the form
java:comp/env/res-ref-name as follows:

@Inject
@JMSConnectionFactory("java:comp/env/res-ref-name")
private JMSContext context;

In this case, the resource reference name must be defined using a <resource-ref>
element in the deployment descriptor that maps it to an appropriate product-specific
global JNDI name. See Declaring a Wrapped JMS Factory using Deployment
Descriptors.

If no lookup name is provided for the @JMSConnectionFactory annotation, then the Java
EE platform default JMS connection factory (java:comp/DefaultJMSConnectionFactory)
will be used.

Chapter 4
Enabling WebLogic JMS Wrappers

4-2

4.1.1.2 Determining the Authentication Type for JMSContext Injection
The JMSContext injection cannot use the resource reference to determine whether the
connection factory should use container authentication or application authentication.
Instead, you can use the @JMSPasswordCredential annotation to specify the type of
authentication required.

If you specify the @JMSPasswordCredential annotation then the connection factory will
use password authentication, and the specified user and password. If the
@JMSPasswordCredential annotation is not defined then the connection factory will use
container authentication.

4.1.2 Declaring JMS Objects as Resources In the EJB or Servlet
Deployment Descriptors

The following sections provide information on declaring JMS objects as resources:

• Declaring a Wrapped JMS Factory using Deployment Descriptors

• Declaring JMS Destinations using Deployment Descriptors

For more information about packaging EJBs, see Implementing Enterprise
JavaBeansin Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic
Server. For more information about programming servlets, see Creating and
Configuring Servlets in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

4.1.2.1 Declaring a Wrapped JMS Factory using Deployment Descriptors

Note:

New applications will likely use EJB 3.0 annotations instead of deployment
descriptors. Annotations are described in Declaring JMS Destinations and
Connection Factories Using Annotations.

You can declare a JMS connection factory as part of an EJB or servlet by defining a
resource-ref element in the ejb-jar.xml or web.xml file, respectively. This process
creates a "wrapped" JMS connection factory that can benefit from the more advanced
session pooling, automatic transaction enlistment, connection monitoring, and
container-managed security features described in Improving Performance Through
Pooling.

Here is an example of such a connection factory element:

<resource-ref>
 <res-ref-name>jms/QCF</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

Chapter 4
Enabling WebLogic JMS Wrappers

4-3

This element declares that a JMS QueueConnectionFactory object be bound into JNDI,
at the location:

java:comp/env/jms/QCF

This JNDI name is only valid inside the context of the EJB or servlet where the
resource-ref is declared, which is what the java:comp/env JNDI context signifies.

In addition to this element, there must be a matching resource-description element in
the ejb-jar.xml (for EJBs) or weblogic.xml (for servlets) file that tells the Java EE
container which JMS connection factory to put in that location. Here is an example:

<resource-description>
 <res-ref-name>jms/QCF</res-ref-name>
 <jndi-name>weblogic.jms.ConnectionFactory</jndi-name>
</resource-description>

The connection factory specified here must already exist in the global JNDI tree. (This
example uses one of the default JMS connection factories that is automatically created
when the built-in WebLogic JMS server is used). To use another WebLogic JMS
connection factory from the same cluster, include that connection factory's JNDI name
inside the jndi-name element. To use a connection factory from another vendor, or
from another WebLogic Server cluster, create a Foreign JMS Server.

If the JNDI name specified in the resource-description element is incorrect, then the
application is still deployed. However, you will receive an error when you try to use the
connection factory.

4.1.2.2 Declaring JMS Destinations using Deployment Descriptors
You can define a JMS destination resource in a web module, EJB module, application
client module, or in an application deployment descriptor using the jms-destination or
resource-env-ref descriptor elements.

Note:

New applications will likely use EJB 3.2 annotations instead of deployment
descriptors. Annotations are described in Declaring JMS Destinations and
Connection Factories Using Annotations.

The transaction enlistment, pooling, connection monitoring features take place in the
connection factory, not in the destinations. However, this feature is useful for
consistency, and to make an application less dependent on a particular configuration
of WebLogic Server, since destinations can easily be modified by simply changing the
corresponding jms-destination or resource-env-ref description, without having to
recompile the source code

4.1.2.2.1 Declaring JMS Destinations Using the jms-destination Element
You can define a JMS destination resource using the jms-destination element in the
ejb-jar.xml or web.xml deployment descriptors. It creates the destination and binds it to
the appropriate naming context based on the namespace specified.

Chapter 4
Enabling WebLogic JMS Wrappers

4-4

The following example defines a queue destination myQueue1 that is bound to JNDI at
the location java:app/MyJMSDestination:

<jms-destination>
 <description>JMS Destination definition</description>
 <name>java:app/MyJMSDestination</name>
 <interface-name>javax.jms.Queue</interface-name>
 <destination-name>myQueue1</destination-name>
 <property>
 <name>Property1</name>
 <value>10</value>
 </property>
 <property>
 <name>Property2</name>
 <value>20</value>
 </property>
</jms-destination>

For more information about the jms-destination element and its attributes, see the
schema at http://xmlns.jcp.org/xml/ns/javaee/javaee_7.xsd.

4.1.2.2.2 Declaring JMS Destinations Using the resource-env-ref Element
You can also bind a JMS queue or topic destination into the java:comp/env JNDI tree
by declaring it as a resource-env-ref element in the ejb-jar.xml or web.xml deployment
descriptors.

For resource-env-ref description, the queue or topic destination specified in the
descriptor must already exist in the global JNDI tree. Again, if the destination does not
exist, then the application is deployed, but an exception is thrown when you try to use
the destination.

Here is an example of such a queue destination element:

<resource-env-ref>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

This element declares that a JMS Queue destination object will be bound into JNDI, at
the location:

java:comp/env/jms/TESTQUEUE

As with a referenced connection factory, this JNDI name is only valid inside the
context of the EJB or servlet where the resource-ref is declared.

You must also define a matching resource-env-description element in the weblogic-
ejb-jar.xml or weblogic.xml file. This provides a layer of indirection that enables you to
easily modify referenced destinations just by changing the corresponding resource-
env-ref deployment descriptors.

<resource-env-description>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <jndi-name>jmstest.destinations.TESTQUEUE</jndi-name>
</resource-env-description>

Chapter 4
Enabling WebLogic JMS Wrappers

4-5

http://xmlns.jcp.org/xml/ns/javaee/javaee_7.xsd

4.1.3 Referencing a Packaged JMS Application Module In Deployment
Descriptor Files

When you package a JMS module with an enterprise application, you must reference
the JMS resources within the module in all applicable descriptor files of the Java EE
application components, including:

• The WebLogic enterprise descriptor file, weblogic-application.xml

• Any WebLogic deployment descriptor file, such as weblogic-ejb-jar.xml or
weblogic.xml

• Any Java EE descriptor file, such as EJB (ejb-jar.xml) or WebApp (web.xml) files

4.1.3.1 Referencing Application Modules in a weblogic-application.xml
Descriptor

When including JMS modules in an enterprise application, you must list each JMS
module as a module element of type JMS in the weblogic-application.xml descriptor
file packaged with the application, and a path that is relative to the root of the Java EE
application. Here is an example of a reference to a JMS module name Workflows:

<module>
 <name>Workflows</name>
 <type>JMS</type>
 <path>jms/Workflows-jms.xml</path>
</module>

4.1.3.2 Referencing JMS Resources in a WebLogic Application
Within any weblogic-foo descriptor file, such as EJB (weblogic-ejb-jar.xml) or WebApp
(weblogic.xml), the name of the JMS module is followed by a number (#) separator
character, which is followed by the name of the resource inside the module. For
example, a JMS module named Workflows that contains a queue named OrderQueue,
would have a name of Workflows#OrderQueue.

<resource-env-description>
 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-name>
 <resource-link>Workflows#OrderQueue</resource-link>
</resource-env-description>

Note that the <resource-link> element is unique to WebLogic Server, and is how the
resources that are defined in a JMS module are referenced (linked) from the other
Java EE Application components.

4.1.3.3 Referencing JMS Resources in a Java EE Application
The name element of a JMS connection factory resource specified in the JMS module
must match the res-ref-name element defined in the referring EJB or WebApp
application descriptor file. The res-ref-name element maps the resource name (used
by java:comp/env) to a module referenced by an EJB.

For queue or topic destination resources specified in the JMS module, the name
element must match the resource-env-ref field defined in the referring module
descriptor file.

Chapter 4
Enabling WebLogic JMS Wrappers

4-6

That name is how the link is made between the resource referenced in the EJB or web
application module and the resource defined in the JMS module. For example:

<resource-ref>
 <res-ref-name>jms/OrderQueueFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
</resource-ref>
<resource-env-ref>
 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>

4.1.4 Declaring JMS Destinations and Connection Factories Using
Annotations

WebLogic Server 10.0 and later releases support the EJB 3.0 programming model
which uses annotations to configure metadata, eliminating the need for deployment
descriptors. You can declare JMS objects using the @Resources annotation as
described in Standard JDK Annotations Used By EJB 3.0 in Developing Enterprise
JavaBeans for Oracle WebLogic Server.

4.1.4.1 Injecting Resource Dependency into a Class
If you apply the @Resource to a class, then the resource is made available in the
comp/env context. The following is an example of how to inject a WebLogic JMS
destination and connection factory resource in a Java EE application, including EJBs,
MDBs, and servlets.

Example 4-1 is a Wrapped JMS Pooling Annotation example:

Example 4-1 Wrapped JMS Pooling Annotation Example

.

.

.
// The "name=" or "type=" are not always required,
// "mappedName=" is usually sufficient.
@Resource(name="ReplyQueue",
 type=javax.jms.Queue.class,
 mappedName="jms/ReplyQueue") Destination rq;
.
.
.
@Resource(name="ReplyConnectionFactory",
 type=javax.jms.ConnectionFactory.class,
 mappedName = "jms/ConnectionFactory") ConnectionFactory cf;
.
.
.

4.1.4.2 Non-Injected EJB 3.0 Resource Reference Annotations
Injected resource dependencies are resolved when the host EJB or servlet is
instantiated. You may not want injected resource because:

• The injection may prevent applications from deploying successfully if the container
attempts to resolve references during deployment.

Chapter 4
Enabling WebLogic JMS Wrappers

4-7

• You might want to defer reference resolution until the application is first invoked.

You can setup a non-injected resource reference by placing the @Resources annotation
above the class definition. An application can resolve such references at runtime by
looking up the reference in the bean context. As a best practice, the bean or servlet
should also cache the result in order to avoid the overhead of repeated lookups as
shown in Example 4-2:

For a full example, see EJB 3.0 Wrapper Without Injection.

Example 4-2 Non-Injected Resource Example

.

.

.
@Resources ({
 @Resource(name="targetCFRef",
 mappedName="TargetCFJNDIName",
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="TargetDestJNDIName",
 type=javax.jms.Destination.class)
})

@Stateless(mappedName="StatelessBean")
public class MyStatelessBean implements MyStateless {

 @Resource
 private SessionContext sctx; // inject the bean context

 private ConnectionFactory targetCF;
 private Destination targetDest;

 public void completeWorkOrder() {

 // Lookup the JMS resources and cache for re-use. Note that a
 // "java:/comp/env" prefix isn't needed for EJB3.0 bean contexts.

 if (targetCF == null) targetCF =
 (javax.jms.ConnectionFactory)sctx.lookup("targetCFRef");

 if (targetDest == null) targetDest =
 (javax.jms.Destination)sctx.lookup("targetDestRef");
.
.
.

4.1.5 Avoid Transactional XA Interfaces
With resource wrapping, do not use the javax.jms XA transactional XA interfaces. The
container uses them internally if the JMS code is used inside a transaction context.
This allows your EJB application code to run EJBs in an environment where
transactions are present or in a non-transactional environment, just by changing the
deployment descriptors.

Chapter 4
Enabling WebLogic JMS Wrappers

4-8

4.2 Disabling Wrapping and Pooling
It is sometimes desirable to leverage resource references but disable resource
reference wrapping and pooling.

To disable resource wrapping and pooling, use the deployment descriptor approach,
but change the res-type to java.lang.Object.class in the resource-ref stanza for the
connection factory. There is currently no known way to disable wrapping and pooling
using annotations.

4.3 What's Happening Under the JMS Wrapper Covers
Understand what is actually taking place under the covers when WebLogic Server
creates a set of wrappers around the JMS objects.

For example, the code fragment in Sending a JMS Message in a Java EE Container,
shows an instance of a WebLogic-specific wrapper class being returned, rather than
the actual JMS connection factory because the connection factory was looked up from
the java:comp/env JNDI tree. This wrapper object intercepts certain calls to the JMS
provider and inserts the correct Java EE behavior, as described in the following
sections.

• Automatically Enlisting Transactions

• Container-Managed Security

• Connection Testing

• Java EE Compliance

• Pooled JMS Connection Objects

• Monitoring Pooled Connections

4.3.1 Automatically Enlisting Transactions
Automatically Enlisting Transaction works for either WebLogic JMS implementations or
for third-party JMS providers that support two-phase commit transactions (XA
protocol). If a wrapped JMS connection sends or receives a message inside a
transaction context, then the JMS session being used to send or receive the message
is automatically enlisted in the transaction through the XA capabilities of the JMS
provider. This is the case whether the transaction was started implicitly because the
JMS code was invoked inside an EJB with container-managed transactions enabled,
or whether the transaction was started manually using the UserTransaction interface in
a servlet or an EJB that supports bean-managed transactions.

However, if an EJB or servlet attempts to send or receive a message inside a
transaction context and the JMS provider does not support XA, the send() or receive()
call throws the following exception:

[J2EE:160055] Unable to use a wrapped JMS session in the transaction because two-
phase commit is not available.

Therefore, if you are using a JMS provider that doesn't support XA to send or receive a
message inside a transaction, then either declare the EJB with a transaction mode of
NotSupported or suspend the transaction using one of the JTA APIs.

Chapter 4
Disabling Wrapping and Pooling

4-9

4.3.2 Container-Managed Security
WebLogic JMS uses the security credentials that are present on the thread when the
EJB or servlet container is invoked. For foreign JMS providers, however, when you
declare a JMS connection factory through a resource-ref element in the ejb-jar.xml or
web.xml file, there is an optional sub element called res-auth. This element may have
one of two settings:

Container — When you set the res-auth element to Container, security to the JMS
provider is managed by the Java EE container. In this case, if the JMS connection
factory was mapped into the JNDI tree using a Foreign JMS Connection Factory
configuration MBean, then the user name and password from that MBean is used.
Otherwise, WebLogic Server connects to the provider with no user name or password
specified and throws an error if the createConnection() method is used to pass a user
name and password to the connection factory.

Application — When you set the res-auth element to Application, any user name or
password on the MBean is ignored. Instead, the application code must specify a user
name and password to the createConnection(String userName, String password)
method of the JMS connection factory, or use the version of createConnection() with
no parameters if the user name or password are not required.

Note:

When you inject a JMSContext object into the application and if the JNDI name
of the connection factory is specified by @JMSConnectionFactory, then container
authentication is used. If you specify the username and password in the
@JMSPasswordCredential annotation to specify the user/password, application
authentication is used. See Declaring a JMSContext Object Using @Inject
Annotation.

4.3.3 Connection Testing
The JMS wrapper classes monitor each connection that is established to the JMS
provider. They do this in two ways:

• Registering a JMS ExceptionListener object on the connection.

• Testing the connection every 2 minutes by sending a message to a temporary
queue or topic and then receiving it again.

4.3.4 Java EE Compliance
The Java EE specification states that you should not be allowed to make certain JMS
API calls inside a Java EE application. The JMS wrappers enforce these restrictions
by throwing the following exceptions when they are violated:

• On the connection object, the methods createConnectionConsumer(),
createDurableConnectionConsumer(), setClientID(), setExceptionListener(), and
stop() should not be called.

Chapter 4
What's Happening Under the JMS Wrapper Covers

4-10

• On the session object, the methods getMessageListener() and
setMessageListener() should not be called.

• On the consumer object (a QueueReceiver or TopicSubscriber object), the methods
getMessageListener() and setMessageListener() should not be called.

Furthermore, the createSession() method, and the associated createQueueSession()
and createTopicSession() methods, are handled differently. The createSession()
method takes two parameters: an "acknowledgement" mode and a "transacted" flag.
When used inside an EJB, these two parameters are ignored. If a transaction is
present, then the JMS session is enlisted in the transaction as described in
Automatically Enlisting Transactions; otherwise, it is not. By default, the
acknowledgement mode is set to "auto acknowledge". This behavior is expected by
the Java EE specification.

Note:

This may make it more difficult to receive messages from inside an EJB, but
the recommended way to receive messages from inside an EJB is to use a
MDB, as described in Developing Message-Driven Beans for Oracle
WebLogic Server.

Inside a servlet, however, the parameters to createQueueSession() and
createTopicSession() are handled normally, and users can make use of all the various
message acknowledgement modes.

4.3.5 Pooled JMS Connection Objects
The JMS wrappers pool various session objects in order to make code like the
example provided in Sending a JMS Message in a Java EE Container more efficient. A
pooled JMS connection is a session pool used by EJBs and servlets that use a
resource-ref element in their deployment descriptor to define their JMS connection
factories, as discussed in Declaring a Wrapped JMS Factory using Deployment
Descriptors.

4.3.6 Monitoring Pooled Connections
You can use the WebLogic Server Administration Console to monitor pooled
connections. For more information, see JMS Servers: Monitoring: Active Pooled
Connections in the Oracle WebLogic Server Administration Console Online Help.

4.4 Improving Performance Through Pooling
The automatic pooling of connections and other objects by the JMS wrappers means
that it is efficient to write code.

For example, see the example inSending a JMS Message in a Java EE Container.
Although in this example the Connection Factory, Connection, and Session objects are
created every time a message is sent, in reality these three classes work together so
that when they are used as shown, they do little more than retrieve a Session object
from the pool.

Chapter 4
Improving Performance Through Pooling

4-11

• Speeding Up JNDI Lookups by Pooling Session Objects

• Speeding Up Object Creation Through Caching

• Enlisting the Proper Transaction Mode

4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects
The JNDI lookups of the Connection Factory and Destination objects can be
expensive in terms of performance. This is particularly true if the Destination object
points to a Foreign JMS Destination MBean, and therefore, is a lookup on a non local
JNDI provider. Because the Connection Factory and Destination objects are thread-
safe, they can be looked up after they are inside an EJB or servlet at creation time,
which saves the time required to perform the lookup each time.

Inside a servlet, these lookups can be performed inside the init() method. The
Connection Factory and Destination objects can then be assigned to an instance
variable and reused whenever a message is sent.

Inside an EJB, these lookups can be performed inside the ejbCreate() method and
assigned to an instance variable. For a session bean, each instance of the bean will
then have its own copy. Because stateless session beans are pooled, this method is
also very efficient (and is consistent with the Java EE specifications), because the
number of a times that lookups occur is drastically reduced by pooling the JMS
connection objects. (Caching these objects in a static member of the EJB class may
work, but it is discouraged by the Java EE specification.)

However, if these objects are cached inside the ejbCreate() or init() method, then the
EJB or servlet must have some way to recreate them if was a failure. This is
necessary because some JMS providers, like WebLogic JMS, may invalidate a
Destination object after a server failure. So, if the EJB runs on Server A, and JMS runs
on Server B, then the EJB on Server A must perform the JNDI lookup of the objects
from Server B again after that server has recovered. The example, PoolTestBean.java
includes a sample EJB that performs this caching and re-lookup process correctly.

4.4.2 Speeding Up Object Creation Through Caching
After Connection Factory object and Destination object pooling is established, it may
be tempting to cache other objects, such as the Connection, Session, and Producer
objects, inside the ejbCreate() method. This will work, but it is not always the most
efficient solution. Essentially, by doing this you are removing a Session object from the
cache and permanently assigning it to a particular EJB, whereas by using the JMS
wrappers as designed, that Session object can be shared by other EJBs and servlets
as well. Furthermore, the wrappers attempt to reestablish a JMS connection and
create new session objects if there is a communication failure with the JMS provider,
but this will not work if you cache the Session object on your own.

4.4.3 Enlisting the Proper Transaction Mode
When a JMS send() or receive() operation is performed inside a transaction, the EJB
or servlet automatically enlists the JMS provider in the transaction. A transaction can
be started automatically inside an EJB or servlet that has container-managed
transactions, or it can be started explicitly using the UserTransaction interface. In either
case, the container automatically enlists the JMS provider. However, if the underlying
JMS connection factory used by the EJB or servlet does not support XA, then the
container throws an exception.

Chapter 4
Improving Performance Through Pooling

4-12

Performing the transaction enlistment has overhead. Furthermore, if an XA connection
factory is used, but the send() or receive() method is invoked outside a transaction,
then the container must still create a JTA transaction to wrap the send() or receive()
method in order to ensure that the operation properly takes place no matter which JMS
provider is used. Although this is only a one-phase commit, it can still slow down the
server.

Therefore, when writing an EJB or servlet that uses a JMS resource in a non-
transactional manner, it is best to use a JMS connection factory that is not configured
to support XA.

4.5 Simplified Access to Foreign JMS Providers
Learn how to access foreign JMS providers by using WebLogic Server Administration
Console.

See Accessing Foreign JMS Providers in the Administering JMS Resources for Oracle
WebLogic Server. This feature makes it possible to easily map foreign JMS providers
— including remote instances of WebLogic Server in another cluster or domain — so
that they appear in the local JNDI tree as a local JMS object.

Another set of foreign JMS provider features makes it possible to create a "symbolic
link" between a JMS connection factory or destination object in an third-party JNDI
provider to an object inside the local WebLogic Server. This feature can also be used
to reference remote instances of WebLogic Server in another cluster or domain in the
local WebLogic JNDI tree.

There are three System Module MBeans for this task:

• Foreign server : Contains information about the remote JNDI provider, including its
initial context factory, URL, and additional parameters. It is the parent of the
Foreign Connection Factory and Foreign Destination MBeans. It can be targeted
to an independent WebLogic Server or to a cluster. For more information see,
ForeignServerBean in the MBean Reference for Oracle WebLogic Server.

• Foreign connection factory : Represents a foreign connection factory. It contains
the name of the connection factory in the remote JNDI provider, the name to map
it to in the server's JNDI tree, and an optional user name and password. The user
name and password are only used when a Foreign Connection Factory is used
inside a resource-reference in an EJB or a servlet, with the "Container" mode of
authentication. It creates non-replicated JNDI objects on each WebLogic Server
instance to which the parent Foreign Connection Factory MBean is targeted. (To
create the JNDI object on every node in a cluster, target the parent MBean to the
cluster.). For more information see, ForeignConnectionFactoryBean in the MBean
Reference for Oracle WebLogic Server.

• Foreign destination : Represents a foreign destination. It contains the name to look
up on the foreign JNDI provider, and the name to map it to on the local server.

4.6 Examples of JMS Wrapper Functions
JMS wrapper functions make it easier to use WebLogic JMS inside a Java EE
component, such as an EJB or a servlet.

• Examples of JMS Wrapper Functions

• Sending a JMS Message in a Java EE Container

Chapter 4
Simplified Access to Foreign JMS Providers

4-13

• Dependency Injection

• EJB 3.0 Wrapper Without Injection

4.6.1 Examples of JMS Wrapper Functions
The following files make up a simple stateless EJB session bean that uses the
WebLogic JMS wrapper functions to send a transactional message
(sendXATransactional) when an EJB is called. Although this example uses a session
bean, the same XML descriptors and bean class (with very few changes) can be used
for a message-driven bean.

• ejb-jar.xml

• weblogic-ejb-jar.xml

• PoolTest.java

• PoolTestHome.java

• PoolTestBean.java

4.6.1.1 ejb-jar.xml
This section describes the EJB components. For the "JMS wrapper" code examples
provided in this section, note that this section declares the resource-ref and resource-
env-ref elements for the wrapped JMS connection factory (QueueConnectionFactory)
and referenced JMS destination (TESTQUEUE).

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/
ejb-jar_2_1.xsd">
<?xml version="1.0"?>
...
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>PoolTestBean</ejb-name>
 <home>weblogic.jms.pool.test.PoolTestHome</home>
 <remote>weblogic.jms.pool.test.PoolTest</remote>
 <ejb-class>weblogic.jms.pool.test.PoolTestBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 <resource-ref>
 <res-ref-name>jms/QCF</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>

 <resource-env-ref>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>

Chapter 4
Examples of JMS Wrapper Functions

4-14

 <method>
 <ejb-name>PoolTestBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

4.6.1.2 weblogic-ejb-jar.xml
This section declares matching resource-description queue connection factory and
queue destination elements that tell the Java EE container which JMS connection
factory and destination to put in that location.

<!DOC<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/920" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/920 http://www.bea.com/ns/
weblogic/920/weblogic-ejb-jar.xsd">

...
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>PoolTestBean</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <max-beans-in-free-pool>8</max-beans-in-free-pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>

 <resource-description>
 <res-ref-name>jms/QCF</res-ref-name>
 <jndi-name>weblogic.jms.XAConnectionFactory</jndi-name>
 </resource-description>
 <resource-env-description>
 <res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>
 <jndi-name>TESTQUEUE</jndi-name>
 </resource-env-description>
 <jndi-name>PoolTest</jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

4.6.1.3 PoolTest.java
This section defines the "remote" interface for the PoolTest bean. It declares one
method, called sendXATransactional.

package weblogic.jms.pool.test;

import java.rmi.*;
import javax.ejb.*;
public interface PoolTest extends EJBObject
{
 public String sendXATransactional(String text)
 throws RemoteException;
}

Chapter 4
Examples of JMS Wrapper Functions

4-15

4.6.1.4 PoolTestHome.java
This section defines the "home" interface for the PoolTest bean. It is required by the
EJB specification.

package weblogic.jms.pool.test;

import java.rmi.*;
import javax.ejb.*;

public interface PoolTestHome
 extends EJBHome
{
 PoolTest create()
 throws CreateException, RemoteException;
}

4.6.1.5 PoolTestBean.java
This section defines the actual EJB code. It sends a message whenever the
sendXATransactional method is called.

package weblogic.jms.pool.test;

import java.lang.reflect.*;
import java.rmi.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;
import javax.transaction.*;

public class PoolTestBean
 extends PoolTestBeanBase
 implements SessionBean
{
 private SessionContext context;
 private QueueConnectionFactory qcf;
 private Queue destination;

 public void ejbActivate()
 {
 }

 public void ejbRemove()
 {
 }

 public void ejbPassivate()
 {
 }

 public void setSessionContext(SessionContext ctx)
 {
 context = ctx;
 }

 private void lookupJNDIObjects()
 throws NamingException
 {

Chapter 4
Examples of JMS Wrapper Functions

4-16

 InitialContext ic = new InitialContext();
 try {
 qcf =
 (QueueConnectionFactory)ic.lookup
 ("java:comp/env/jms/QCF");
 destination =
 (Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");
 } finally {
 ic.close();
 }
 }

 public void ejbCreate()
 throws CreateException
 {
 try {
 lookupJNDIObjects();
 } catch (NamingException ne) {
 throw new CreateException(ne.toString());
 }
 }

 public String sendXATransactional(String text)
 throws RemoteException
 {
 String id = "Not sent yet";
 try {
 if ((qcf == null) || (destination == null)) {
 lookupJNDIObjects();
 }
 QueueConnection connection = qcf.createQueueConnection();
 try {
 QueueSession session = connection.createQueueSession
 (false, 0);
 TextMessage message = session.createTextMessage
 (text);
 QueueSender sender = session.createSender(destination);
 sender.send(message);
 id = message.getJMSMessageID();
 } finally {
 connection.close();
 }
 } catch (Exception e) {
 // Invalidate the JNDI objects if there is a failure.
 // this is necessary because the destination object
 // can become invalid if the destination server has
 // been shut down.
 qcf = null;
 destination = null;
 throw new RemoteException("Failure in EJB: " + e);
 }
 return id;
 }
}

4.6.2 Sending a JMS Message in a Java EE Container
After you declare the JMS connection factory and destination resources, you can use
them to send and receive JMS messages inside an EJB or servlet. The following
sections provide examples of how to send a message:

Chapter 4
Examples of JMS Wrapper Functions

4-17

4.6.2.1 Using comp/env
The code in Example 4-3 sends a message if you map to the java:comp/env JNDI tree:

Example 4-3 Sending a Message Using comp/env

.

.

.

InitialContext ic = new InitialContext();
QueueConnectionFactory qcf =
 (QueueConnectionFactory)ic.lookup("java:comp/env/jms/QCF");
Queue destQueue =
 (Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");
ic.close();
QueueConnection connection = qcf.createQueueConnection();
try {
 QueueSession session = connection.createQueueSession(0, false);
 QueueSender sender = session.createSender(destQueue);
 TextMessage msg = session.createTextMessage("This is a test");
 sender.send(msg);
} finally {
 connection.close();
}

This is standard code that complies with the Java EE specification and should run on
any EJB or servlet product that properly supports Java EE , the difference is that it
runs more efficiently on WebLogic Server, because under the covers various objects
are pooled, as described in Pooled JMS Connection Objects.

Note that this code example uses a try...finally block to guarantee that the close()
method on the JMS Connection object is executed even if one of the statements inside
the block throws an exception. If no connection pooling were being done, then this
block would be necessary in order to ensure that the connection is closed, and to
prevent server resources from being wasted. But because WebLogic Server pools
some of the objects that are created by this code example , it is even more important
that close() be called; otherwise, the EJB or servlet container will not know when to
return the object to the pool.

Also, none of the transactional XA extensions to the JMS API are used in this code
example . Instead, the container uses them internally if the JMS code is used inside a
transaction context. But whether or not XA is used internally, the user-written code is
the same, and does not use any JMS XA classes. This is what is specified by Java
EE. Writing EJB code in this way enables you to run EJBs in an environment where
transactions are present or in a non-transactional environment, just by changing the
deployment descriptors.

Note:

When using a wrapped JMS connection factory, which is obtained by using the
resource-ref feature and looked up by using the java:comp/env/jms JNDI tree
context, the EJB must not use the javax.jms XA transactional XA interfaces.

Chapter 4
Examples of JMS Wrapper Functions

4-18

4.6.3 Dependency Injection
The code in Example 4-4 sends a message if you have used dependency injection to
a variable.

Example 4-4 Sending a Message using Dependency Injection

package test;
// Example injected annotation.
import javax.annotation.Resource;
import javax.ejb.*;
import javax.jms.*;

@Stateless(mappedName="StatelessBean")
public class MyStatelessBean implements MyStateless {
 @Resource(mappedName="myDestJNDIName")
 private Destination dest;

 @Resource(mappedName="weblogic.jms.XAConnectionFactory")
 private ConnectionFactory connectionFactory;

 public void completeWorkOrder() {
 Connection con = null;
 Session session = null;
 MessageProducer sender = null;
 try {
 System.out.println("completeWorkOrder called!");
 con = connectionFactory.createConnection();
 session = con.createSession(true, Session.AUTO_ACKNOWLEDGE);
 sender = session.createProducer(null);
 Message message = session.createTextMessage("work order complete!");
 sender.send(dest, message);
 } catch(Exception e) {
 throw new EJBException("Exception sending message: " + e, e);
 } finally {
 try {
 if (con != null) con.close();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }
}

4.6.4 EJB 3.0 Wrapper Without Injection
Example 4-5 demonstrates EJB 3.0 annotations for an MDB that references resources
that are not injected. The references are resolved at runtime when the MDB is invoked
instead of when the MDB instances are instantiated.

Example 4-5 Non injected MDB Example

package test;

import javax.annotation.Resources;
import javax.annotation.Resource;
import javax.naming.*;
import javax.ejb.*;

Chapter 4
Examples of JMS Wrapper Functions

4-19

import javax.jms.*;

import javax.ejb.ActivationConfigProperty;

@MessageDriven(
 name = "MyMDB",
 mappedName = "JNDINameOfMDBSourceDest",
 activationConfig = {
 // the JMS interface type for the MDB destination, either javax.jms.Topic or jav
ax.jms.Queue
 @ActivationConfigProperty(
 propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),
 // optionally specify a connection factory
 // there's no need to specify a connection factory if the source
 // destination is a WebLogic JMS destination
 @ActivationConfigProperty(
 propertyName = "connectionFactoryJndiName",
 propertyValue = "JNDINameOfMDBSourceCF"),
 })

// resources that are not injected

@Resources ({
 @Resource(name="targetCFRef",
 mappedName="TargetCFJNDIName",
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="TargetDestJNDIName",
 type=javax.jms.Destination.class)
})

public class MyMDB implements MessageListener {

 // inject a reference to the MDB context

 @Resource
 private MessageDrivenContext mdctx;

 // cache targetCF and targetDest for re-use (performance)

 private ConnectionFactory targetCF;
 private Destination targetDest;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void onMessage(Message message) {

 Connection jmsConnection = null;

 try {
 System.out.println("My MDB got message: " + message);

 if (targetCF == null)
 targetCF = (javax.jms.ConnectionFactory)mdctx.lookup("targetCFRef");

 if (targetDest == null)
 targetDest = (javax.jms.Destination)mdctx.lookup("targetDestRef");

 jmsConnection = targetCF.createConnection();

Chapter 4
Examples of JMS Wrapper Functions

4-20

 Session s = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = s.createProducer(null);

 if (message.getJMSReplyTo() != null)
 mp.send(message.getJMSReplyTo(), s.createTextMessage("My Reply"));
 else
 mp.send(targetDest, message);

 } catch (JMSException e) {
 throw new EJBException(e);

 } finally {

 // Return JMS resources to the resource reference pool for later re-use.
 // Closing a connection automatically also closes its sessions, etc.

 try { if (jmsConnection != null) jmsConnection.close(); }
 catch (JMSException ignored) {};
 }
 }
}

Chapter 4
Examples of JMS Wrapper Functions

4-21

Chapter 4

Examples of JMS Wrapper Functions

4-22

5
Understanding the Simplified API
Programming Model

Understand the key features of JMS simplified API defined by the Java Message
Service (JMS) 2.0 specification. Also learn how it is implemented for creating JMS
applications for WebLogic Server.

• About JMS 2.0 Simplified API

• New Interfaces in the Simplified JMS API

• New Methods to Simplify Messaging in JMS 2.0

5.1 About JMS 2.0 Simplified API
The JMS 2.0 simplified API provides the same basic functionality as the JMS 1.1 API
(classic API), but the new interfaces and several API changes make it easier to use.

The following interfaces provided by the simplified API were implemented in Oracle
WebLogic Server 12.2.1 release:

• ConnectionFactory : An administered object used by a client to create a Connection.
This interface is also used by the classic API.

• JMSContext : An active connection to a JMS provider and a single-threaded context
used to send or receive messages.

• JMSProducer : An object created by a JMSContext to send messages to a queue or
topic.

• JMSConsumer : An object created by a JMSContext to receive messages sent to
a.queue or topic

Figure 5-1 shows how these objects fit together in a JMS client application.

5-1

Figure 5-1 Simplified API Programming Model

For more information about the JMS 2.0 interfaces, see the javax.jms package
documentation at http://docs.oracle.com/javaee/7/api/javax/jms/package-
summary.html.

5.2 New Interfaces in the Simplified JMS API
The JMS 2.0 simplified API consists of three new interfaces.

• JMSContext

• JMSProducer

• JMSConsumer

5.2.1 JMSContext
The main interface in the simplified API is JMSContext . It combines the functions of the
Connection and Session objects of the JMS 1.1 API. Creating a single JMSContext object
eliminates the need to create a connection, session, and a text message separately.

For more information about the JMSContext interface, see http://docs.oracle.com/
javaee/7/api/javax/jms/JMSContext.html.

The WLJMSContext interface in the weblogic.jms.extensions package defines the fields
and methods that are not supported by javax.jms.JMSContext. It provides the same
extension features as WLConnection and WLSession. See the Javadoc for WLJMSContext in
Java API Reference for Oracle WebLogic Server.

5.2.2 JMSProducer
To send messages in the simplified API, use a JMSProducer object. You can create a
JMSProducer object by calling the createProducer method on a JMSContext object.

Chapter 5
New Interfaces in the Simplified JMS API

5-2

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html

Note:

You do not need to save the JMSProducer object in a variable. It is
recommended that you create this object when sending a message. For more
information, see Sending Messages Using the Simplified JMS API.

For more information about the JMSProducer interface, see http://docs.oracle.com/
javaee/7/api/javax/jms/JMSProducer.html.

The WLJMSProducer interface defines methods and attributes specific to WebLogic JMS.
You can use these features by casting the JMSProducer instance to the WLSJMSProducer
interface defined in the weblogic.jms.extensions package. See the Javadoc for
WLJMSProducer in Java API Reference for Oracle WebLogic Server.

5.2.3 JMSConsumer
The JMSConsumer object receives messages from a queue or topic. You can create a
JMSConsumer object by passing a Queue or Topic object to one of the createConsumer
methods on a JMSContext or by passing a Topic object to one of the
createSharedConsumer or createDurableConsumer methods on a JMSContext object.

For more information about the JMSConsumer interface, see http://docs.oracle.com/
javaee/7/api/javax/jms/JMSConsumer.html.

5.3 New Methods to Simplify Messaging in JMS 2.0
In addition to the methods for sending and receiving messages on JMSContext objects,
JMS 2.0 introduces a few more methods to simplify the code.

• Method to Extract the Body Directly from a Message

• Method to Receive a Message Body Directly

• Method to Create a Session

5.3.1 Method to Extract the Body Directly from a Message
The getBody method provides an easy way to obtain the body from a message. This
method applies to both the classic and simplified API.

void onMessage(Message message){ // delivers a BytesMessage
 byte[] bytes = message.getBody(byte[].class);
 ...

For more information, see the Javadoc at

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

5.3.2 Method to Receive a Message Body Directly
The receiveBody method can be used to receive any type of message except for
StreamMessage and Message, as long as the class of the expected body is known in
advance.

Chapter 5
New Methods to Simplify Messaging in JMS 2.0

5-3

http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

JMSConsumer consumer = ...
String body = consumer.receiveBody(String.class,1000);

For more information, see the Javadoc at:

https://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html

5.3.3 Method to Create a Session
A new createSession method, that accepts a single parameter or no parameter, was
added to the javax.jms.Connection. See Create a Session Using the createSession
Method.

Chapter 5
New Methods to Simplify Messaging in JMS 2.0

5-4

https://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html

6
Developing a Basic JMS Application

Learn how to set up a basic WebLogic JMS application using the JMS 2.0 and JMS
1.1 APIs.

• Importing Required Packages

• Setting Up a JMS Application

• Sending Messages

• Receiving Messages

• Acknowledging Received Messages

• Releasing Object Resources

6.1 Importing Required Packages
Import the Java packages that define all required classes and interfaces to create,
send, receive, and read messages for the WebLogic application.

Table 6-1 lists the packages that are commonly used by WebLogic JMS applications.

Table 6-1 WebLogic JMS Packages

Package Description

javax.jms
JMS API. This package is always used by WebLogic
JMS applications. See http://docs.oracle.com/
javaee/7/api/javax/jms/package-summary.html.

javax.naming
weblogic.jndi

JNDI packages required for server and destination
lookups. See http://docs.oracle.com/javase/7/
docs/api/javax/naming/package-summary.html.

javax.transaction.UserTransaction
JTA API required for JTA user transaction support. See
http://www.oracle.com/technetwork/java/
javaee/jta/index.html.

weblogic.jms.extensions WebLogic-specific JMS public API that provides
additional classes and methods, as described in Value-
Added Public JMS API Extensions.

6.2 Setting Up a JMS Application
Before you can send and receive messages, you must set up a JMS application.

The following sections describe the procedure to set up a basic WebLogic JMS
application:

• Using a Simplified API to Set Up a JMS Application

• Using the Classic API to Set Up a JMS Application

6-1

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/naming/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/naming/package-summary.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

You must ensure that the system administrator responsible for configuring WebLogic
Server has configured the required JMS resources, including the connection factories,
JMS servers, and destinations.

• For information about JMS resource definitions, see Configuring Basic JMS
System Resources in Administering JMS Resources for Oracle WebLogic Server.

• For information about configuring other JMS resources, see Configure Messaging
in the Oracle WebLogic Server Administration Console Online Help.

• For more information about the JMS classes and methods described in these
sections, see Understanding the JMS API, or the javax.jms, at http://
docs.oracle.com/javaee/7/api/javax/jms/package-summary.html, or the
weblogic.jms.extensions Javadoc in Java API Reference for Oracle WebLogic
Server.

• For information about setting up transacted applications and JTA user
transactions, see Using Transactions with WebLogic JMS.

6.2.1 Using a Simplified API to Set Up a JMS Application
Oracle WebLogic Server 12.2.1 supports the JMS 2.0 simplified API for sending and
receiving messages. For more information about the simplified API, see
Understanding the Simplified API Programming Model .

Figure 6-1 shows the steps required to set up a JMS application using the JMS 2.0
Simplified API.

Chapter 6
Setting Up a JMS Application

6-2

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html

Figure 6-1 Setting Up a JMS Application Using the Simplified API

6.2.1.1 Look Up a Connection Factory in JNDI
Before you can look up a connection factory, it must be defined as part of the
configuration information.

The administrator can configure new connection factories during configuration;
however, these factories must be uniquely named or the server will not boot. You can
also use the default connection factories defined by the Java EE specification and
WebLogic Server. For information, see Connection Factory Configuration in
Administering JMS Resources for Oracle WebLogic Server.

After the connection factory is defined, you can look it up by establishing a JNDI
context (namingContext) using the InitialContext() constructor, at http://
docs.oracle.com/javase/7/docs/api/javax/naming/

InitialContext.html#InitialContext(). For any application other than a servlet

Chapter 6
Setting Up a JMS Application

6-3

http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()

application, you must provide a Hashtable defining the environment when calling the
InitialContext constructor.

After the JNDI context is defined, to look up a connection factory in JNDI, execute the
following command:

ConnectionFactory connectionFactory =
 (ConnectionFactory) namingContext.lookup(CF_name);

The CF_name argument specifies the connection factory name defined during the
configuration.

For more information about the ConnectionFactory class, see ConnectionFactory, or
the javax.jms.ConnectionFactory Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/ConnectionFactory.html.

6.2.1.2 Look Up a Queue or Topic
Before you can look up a queue or a topic, it must be configured by the WebLogic JMS
system administrator, as described in Configure topics and Configure queues in the
Oracle WebLogic Server Administration Console Online Help. For more information,
see Destination or the Javadocs at http://docs.oracle.com/javaee/7/api/javax/jms/
Queue.html and http://docs.oracle.com/javaee/7/api/javax/jms/Topic.html.

After the destination is configured, you can look up a queue or topic destination using
one of the following procedures:

You can look up a queue or topic destination by establishing a JNDI context
(namingContext), which has already been accomplished in Look Up a Connection
Factory in JNDI, and executing one of the following commands, for Point-to-Point or
Publish/Subscribe messaging, respectively:

Queue queue = (Queue) namingContext.lookup(Queue_name);

Topic topic = (Topic) namingContext.lookup(Topic_name);

The Queue_name and Topic_name arguments specify the JNDI names of the queue and
topic destinations defined during the configuration.

6.2.1.3 Create a JMSContext Object
A JMSContext object replaces the Connection and Session objects in the classic API. For
more information, see New Interfaces in the Simplified JMS API.

The JMSContext object can be created by calling one of the several createContext
methods on a ConnectionFactory object. For example:

JMSContext context = connectionFactory.createContext(sessionMode);

In this case, a connection and a session with the specified mode are created for use
by the new JMSContext object context. For more information, see connectionFactory
interface definition in http://docs.oracle.com/javaee/7/api/javax/jms/
ConnectionFactory.html.

Alternatively, you can inject JMSContext in the Java EE web and EJB containers using
the @Inject annotation as described in Declaring a JMSContext Object Using @Inject
Annotation. This is the recommended way for creating JMSContext in Java EE
applications. For example:

Chapter 6
Setting Up a JMS Application

6-4

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/Queue.html
http://docs.oracle.com/javaee/7/api/javax/jms/Queue.html
http://docs.oracle.com/javaee/7/api/javax/jms/Topic.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html

@Inject @JMSConnectionFactory("myJMSCF") JMSContext context;

For more information about using the JMSContext interface, see http://
docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html.

6.2.1.4 Create JMSProducer and JMSConsumer Objects
Use the JMSProducer and JMSConsumer objects to send and receive messages
respectively.

You can create a JMSProducer object by calling the createProducer method on a
JMSContext object as follows:

JMSProducer producer = context.createProducer();

Note:

You do not need to save the JMSProducer object in a variable. Instead, create
the object while calling the send method as follows:

context.createProducer().send(queue, message);

For more information, see http://docs.oracle.com/javaee/7/api/javax/jms/
JMSProducer.html.

You can create a JMSConsumer object by passing a queue or topic object to one of the
createConsumer methods on a JMSContext object as follows:

JMSContext context = connectionFactory.createContext();
JMSConsumer consumer = context.createConsumer(queue);

For more information, see http://docs.oracle.com/javaee/7/api/javax/jms/
JMSConsumer.html.

6.2.1.5 Sending and Receiving Messages using the Simplified API
The following sections describe how to send and receive messages using the
Simplified API:

• Sending Messages Using the Simplified JMS API

• Sending a Message Asynchronously

• Receive Messages Asynchronously Using the Simplified API

• Receive Messages Synchronously Using the Simplified API

6.2.2 Using the Classic API to Set Up a JMS Application
The following figure shows the steps required to set up a JMS application using JMS
1.1 classic API.

Chapter 6
Setting Up a JMS Application

6-5

http://docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html

Figure 6-2 Setting Up a JMS Application using Classic API

Chapter 6
Setting Up a JMS Application

6-6

Note:

Oracle WebLogic Server 12.2.1 supports JMS 2.0 simplified API for sending
and receiving messages. See Understanding the Simplified API Programming
Model .

6.2.2.1 Step 1: Look Up a Connection Factory in JNDI
Before you can look up a connection factory, it must be defined as part of the
configuration information.

The administrator can configure new connection factories during configuration;
however, these factories must be uniquely named or the server will not boot. You can
also use the default connection factories defined by the Java EE specification and
WebLogic Server. For information, see "Connection Factory Configuration" in
Administering JMS Resources for Oracle WebLogic Server.

after the connection factory is defined, you can look it up by establishing a JNDI
context (context) using the InitialContext() method, at http://docs.oracle.com/
javase/7/docs/api/javax/naming/InitialContext.html#InitialContext(). For any
application other than a servlet application, you must pass an environment used to
create the initial context.

After the context is defined, to look up a connection factory in JNDI, execute one of the
following commands, for PTP or Publish/Subscribe messaging, respectively:

QueueConnectionFactory queueConnectionFactory =
 (QueueConnectionFactory) context.lookup(CF_name);

TopicConnectionFactory topicConnectionFactory =
 (TopicConnectionFactory) context.lookup(CF_name);

The CF_name argument specifies the connection factory name defined during
configuration.

For more information about the ConnectionFactory class, see ConnectionFactory, or
the javax.jms.ConnectionFactory Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/ConnectionFactory.html.

6.2.2.2 Step 2: Create a Connection Using the Connection Factory
You can create a connection for accessing the messaging system by using the
ConnectionFactory methods described in the following sections.

For more information about the Connection class, see Connection, or the
javax.jms.Connection Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
Connection.html.

6.2.2.2.1 Create a Queue Connection
The QueueConnectionFactory provides the following two methods for creating a queue
connection:

public QueueConnection createQueueConnection(
) throws JMSException

Chapter 6
Setting Up a JMS Application

6-7

http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html

public QueueConnection createQueueConnection(
 String userName,
 String password
) throws JMSException

The first method creates a QueueConnection; the second method creates a
QueueConnection using a specified user identity. In each case, a connection is created
in stopped mode and must be started in order to accept messages, as described in
Step 7: Start the Connection.

For more information about the QueueConnectionFactory class methods, see the
javax.jms.QueueConnectionFactory Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/QueueConnectionFactory.html. For more information about the
QueueConnection class, see the javax.jms.QueueConnection Javadoc, at http://
docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html.

6.2.2.2.2 Create a Topic Connection
The TopicConnectionFactory provides the following two methods to create a topic
connection:

public TopicConnection createTopicConnection(
) throws JMSException

public TopicConnection createTopicConnection(
 String userName,
 String password
) throws JMSException

The first method creates a TopicConnection; the second method creates a
TopicConnection using a specified user identity. In each case, a connection is created
in stopped mode and must be started in order to accept messages, as described in
Step 7: Start the Connection.

For more information about the TopicConnectionFactory class methods, see the
javax.jms.TopicConnectionFactory Javadoc., at http://docs.oracle.com/javaee/7/api/
javax/jms/TopicConnectionFactory.html. For more information about the
TopicConnection class, see the javax.jms.TopicConnection Javadoc, at http://
docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html.

6.2.2.3 Step 3: Create a Session Using the Connection
You can create one or more sessions for accessing a queue or topic using the
Connection methods described in the following sections.

Chapter 6
Setting Up a JMS Application

6-8

http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html

Note:

A session and its message producers and consumers can only be accessed
by one thread at a time. Their behavior is undefined if multiple threads access
them simultaneously.

WebLogic JMS does not support having both types of MessageConsumer
(QueueConsumer and TopicSubscriber) for a single Session. However, it does
support a single session with both a QueueSender and a TopicSubscriber
(and vice-versa: QueueConsumer and TopicPublisher), or with multiple
MessageProducers of any type.

For more information about the Session class, see Session or the javax.jms.Session
Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/Session.html.

6.2.2.3.1 Create a Session Using the createSession Method
Use the createSession method in javax.jms.Connection to create a session. This
method accepts a single parameter, sessionMode, or no parameter as follows:

Session createSession(int sessionMode) throws JMSException

or

Session createSession() throws JMSException

6.2.2.3.2 Create a Queue Session
The QueueConnection class defines the following method for creating a queue session:

public QueueSession createQueueSession(
 boolean transacted,
 int acknowledgeMode
) throws JMSException

You must specify a boolean argument indicating whether the session will be
transacted (true) or non-transacted (false), and an integer that indicates the
acknowledge mode for non-transacted sessions. The acknowledgeMode attribute is
ignored for transacted sessions. In this case, messages are acknowledged when the
transaction is committed using the commit() method.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/QueueConnection.html. For more information about the QueueSession class,
see the javax.jms.QueueSession Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/QueueSession.html.

6.2.2.3.3 Create a Topic Session
The TopicConnection class defines the following method for creating a topic session:

public TopicSession createTopicSession(
 boolean transacted,
 int acknowledgeMode
) throws JMSException

Chapter 6
Setting Up a JMS Application

6-9

http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSession.html

You must specify a boolean argument indicating whether the session will be
transacted (true) or non-transacted (false), and an integer that indicates the
acknowledge mode for non-transacted sessions. The acknowledgeMode attribute is
ignored for transacted sessions. In this case, messages are acknowledged when the
transaction is committed using the commit() method.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/TopicConnection.html. For more information about the TopicSession class,
see the javax.jms.TopicSession Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/TopicSession.html.

6.2.2.4 Step 4: Look Up a Destination (Queue or Topic)
Before you can look up a destination, the destination must be configured by the
WebLogic JMS system administrator, as described in Configure topics and Configure
queues in the Oracle WebLogic Server Administration Console Online Help. For more
information about the Destination class, see Destination or the javax.jms.Destination
Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html.

After the destination is configured, you can look up a destination using a JNDI name or
a reference:

6.2.2.4.1 Using a JNDI Name
You can look up a destination by establishing a JNDI context (context), which has
already been accomplished in Look Up a Connection Factory in JNDI, and executing
one of the following commands, for PTP or Publish/Subscibe messaging, respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the JNDI name of the destination defined during
configuration.

6.2.2.4.2 Use a Reference
If you do not use a JNDI namespace, you can use the following QueueSession or
TopicSession method to reference a queue or topic, respectively:

Note:

The createQueue() and createTopic() methods do not create destinations
dynamically; they create only references to destinations that already exist. For
information about creating destinations dynamically, see Using JMS Module
Helper to Manage Applications.

public Queue createQueue(
 String queueName
) throws JMSException

public Topic createTopic(

Chapter 6
Setting Up a JMS Application

6-10

http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

 String topicName
) throws JMSException

For the syntax of JNDI name, createQueue(), and createTopic(), see How to Look Up
a Destination.

6.2.2.5 Step 5: Create Message Producers and Message Consumers
You can create message producers and message consumers by passing the
destination reference to the Session methods described in the following sections.

Note:

Each consumer receives its own local copy of a message. After a message is
received, you can modify the header field values; however, the message
properties and message body are read only. (Attempting to modify the
message properties or body at this point will generate a
MessageNotWriteableException.) You can modify the message body by
executing the corresponding message type's clearbody() method to clear the
existing contents and enable the write permission.

For more information about the MessageProducer and MessageConsumer classes, see
MessageProducer and MessageConsumer, or the javax.jms.MessageProducer, at
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html, and
javax.jms.MessageConsumer Javadocs, at http://docs.oracle.com/javaee/7/api/
javax/jms/MessageConsumer.html.

6.2.2.5.1 Create QueueSenders and QueueReceivers
The QueueSession object defines the following methods for creating queue senders and
receivers:

public QueueSender createSender(
 Queue queue
) throws JMSException

public QueueReceiver createReceiver(
 Queue queue
) throws JMSException

public QueueReceiver createReceiver(
 Queue queue,
 String messageSelector
) throws JMSException

You must specify the queue object for the queue sender or receiver being created.
You may also specify a message selector for filtering messages. Message selectors
are described in more detail in Filtering Messages.

If you pass the value of null to the createSender() method, you create an anonymous
producer. In this case, you must specify the queue name when sending messages, as
described in Sending Messages.

Chapter 6
Setting Up a JMS Application

6-11

http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html

After the queue sender or receiver is created, you can access the queue name
associated with the queue sender or receiver using the following QueueSender or
QueueReceiver method:

public Queue getQueue(
) throws JMSException

For more information about the QueueSession class methods, see the
javax.jms.QueueSession Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
QueueSession.html. For more information about the QueueSender and QueueReceiver
classes, see the javax.jms.QueueSender, at http://docs.oracle.com/javaee/7/api/
javax/jms/QueueSender.html, and javax.jms.QueueReceiver Javadocs, at http://
docs.oracle.com/javaee/7/api/javax/jms/QueueReceiver.html.

6.2.2.5.2 Create TopicPublishers and TopicSubscribers
The TopicSession object defines the following methods for creating topic publishers
and topic subscribers:

public TopicPublisher createPublisher(
 Topic topic
) throws JMSException

public TopicSubscriber createSubscriber(
 Topic topic
) throws JMSException

public TopicSubscriber createSubscriber(
 Topic topic,
 String messageSelector,
 boolean noLocal
) throws JMSException

Note:

The methods described in this section create non-durable subscribers. Non-
durable topic subscribers only receive messages sent while they are active.
For information about the methods used to create durable subscriptions
enabling messages to be retained until all messages are delivered to a
durable subscriber, see Creating Subscribers for a Durable Subscription. In
this case, durable subscribers only receive messages that are published after
the subscriber has subscribed.

You must specify the topic object for the publisher or subscriber being created. You
can specify a message selector for filtering messages and a noLocal flag (described
later in this section). Message selectors are described in more detail in Filtering
Messages.

If you pass a value of null to the createPublisher() method, then you create an
anonymous producer. In this case, you must specify the topic name when sending
messages, as described in Sending Messages.

An application can have JMS connections that it uses to both publish and subscribe to
the same topic. Because topic messages are delivered to all subscribers, the

Chapter 6
Setting Up a JMS Application

6-12

http://docs.oracle.com/javaee/7/api/javax/jms/QueueSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueReceiver.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueReceiver.html

application can receive messages it has published itself. To prevent this behavior, a
JMS application can set a noLocal flag to true.

After the topic publisher or subscriber is created, you can access the topic name
associated with the topic publisher or subscriber using the following TopicPublisher or
TopicSubscriber method:

Topic getTopic(
) throws JMSException

In addition, you can access the noLocal variable setting associated with the topic
subscriber using the following TopicSubscriber method:

boolean getNoLocal(
) throws JMSException

For more information about the TopicSession class methods, see the
javax.jms.TopicSession Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
TopicSession.html. For more information about the TopicPublisher and TopicSubscriber
classes, see the javax.jms.TopicPublisher, at http://docs.oracle.com/javaee/7/api/
javax/jms/TopicPublisher.html, and the javax.jms.TopicSubscriber Javadocs, at
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSubscriber.html.

6.2.2.6 Step 6a: Create the Message Object (Message Producers)

Note:

This step applies to message producers only.

To create the message object, use one of the following Session or WLSession class
methods:

• Session Methods

Note:

These methods are inherited by both the QueueSession and TopicSession
subclasses.

public BytesMessage createBytesMessage(
) throws JMSException

public MapMessage createMapMessage(
) throws JMSException

public Message createMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
) throws JMSException

public ObjectMessage createObjectMessage(

Chapter 6
Setting Up a JMS Application

6-13

http://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSubscriber.html

 Serializable object
) throws JMSException

public StreamMessage createStreamMessage(
) throws JMSException

public TextMessage createTextMessage(
) throws JMSException

public TextMessage createTextMessage(
 String text
) throws JMSException

• WLSession Method

public XMLMessage createXMLMessage(
 String text
) throws JMSException

For more information about the Session and WLSession class methods, see the
javax.jms.Session, at http://docs.oracle.com/javaee/7/api/javax/jms/Session.html,
and weblogic.jms.extensions.WLSession Javadocs, respectively. For more information
about the Message class and its methods, see Messages, or the javax.jms.Message
Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/Message.html.

6.2.2.7 Step 6b: Optionally Register an Asynchronous Message Listener

Note:

This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message
listener by performing the following steps:

1. Implement the javax.jms.MessageListener interface, at http://docs.oracle.com/
javaee/7/api/javax/jms/MessageListener.html, which includes an onMessage()
method.

Note:

For an example of the onMessage() method interface, see Example: Setting Up
a Point-to-Point JMS Application Using the Classic API.

If you want to issue the close() method within an onMessage() method call, the
system administrator must select the Allow Close In OnMessage option when
configuring the connection factory. For more information on configuring
connection factory options, see "Configuring Basic JMS System Resources" in
Administering JMS Resources for Oracle WebLogic Server.

2. Set the message listener using the following MessageConsumer method, passing the
listener information as an argument:

Chapter 6
Setting Up a JMS Application

6-14

http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageListener.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageListener.html

public void setMessageListener(
 MessageListener listener
) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as
described in Defining a Connection Exception Listener.

You can unset a message listener by calling the MessageListener() method with the
value of null.

After a message listener is defined, you can access it by calling the following
MessageConsumer method:

public MessageListener getMessageListener(
) throws JMSException

Note:

WebLogic JMS guarantees that multiple onMessage() calls for the same
session will not be executed simultaneously.

If a message consumer is closed by an administrator or as the result of a server
failure, then a ConsumerClosedException is delivered to the session exception listener, if
one was defined. In this way, a new message consumer can be created, if necessary.
For information about defining a session exception listener, see Defining a Connection
Exception Listener.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer class
methods, see MessageProducer and MessageConsumer or the
javax.jms.MessageConsumer Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/MessageConsumer.html.

6.2.2.8 Step 7: Start the Connection
You start the connection using the Connection class start() method.

For additional information about starting, stopping, and closing a connection, see
Starting, Stopping, and Closing a Connection or the javax.jms.Connection Javadoc, at
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html.

6.2.3 Example: Setting Up a Point-to-Point JMS Application Using the
Classic API

The following example is excerpted from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the EXAMPLES_HOME\wlserver\samples\server\examples
\src\examples\jms\classicapi\queue directory where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured. The init()
method shows you how to set up and start a QueueSession for a JMS application. The
following shows the init() method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and
queue static variables.

Chapter 6
Setting Up a JMS Application

6-15

http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html

public final static String JNDI_FACTORY=
 "weblogic.jndi.WLInitialContextFactory";
public final static String JMS_FACTORY=
 "weblogic.examples.jms.QueueConnectionFactory";
public final static String
 QUEUE="weblogic.examples.jms.exampleQueue";

private QueueConnectionFactory qconFactory;
private QueueConnection qcon;
private QueueSession qsession;
private QueueSender qsender;
private Queue queue;
private TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
 .
 .
 .
private static InitialContext getInitialContext(
 String url
) throws NamingException
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);
 return new InitialContext(env);
}

Note:

When setting up the JNDI initial context for an EJB or servlet, use the following
method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx
object is the JNDI initial context passed in by the main() method.

public void init(
 Context ctx,
 String queueName
) throws NamingException, JMSException
{

Step 1

Look up a connection factory in JNDI.

 qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2

Create a connection using the connection factory.

 qcon = qconFactory.createQueueConnection();

Chapter 6
Setting Up a JMS Application

6-16

Step 3

Create a session using the connection. The following code defines the session as non-
transacted and specifies that messages will be acknowledged automatically. For more
information about transacted sessions and acknowledge modes, see Session.

 qsession = qcon.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

Step 4

Look up a destination (queue) in JNDI.

 queue = (Queue) ctx.lookup(queueName);

Step 5

Create a reference to a message producer (queue sender) using the session and
destination (queue).

 qsender = qsession.createSender(queue);

Step 6

Create the message object.

 msg = qsession.createTextMessage();

Step 7

Start the connection.

 qcon.start();
}

The init() method for the examples.jms.queue.QueueReceive example is similar to the
QueueSend init() method shown previously, with the one exception. Steps 5 and 6
would be replaced by the following code, respectively:

qreceiver = qsession.createReceiver(queue);
qreceiver.setMessageListener(this);

In the first line, instead of calling the createSender() method to create a reference to
the queue sender, the application calls the createReceiver() method to create the
queue receiver.

In the second line, the message consumer registers an asynchronous message
listener.

When a message is delivered to the queue session, it is passed to the
examples.jms.QueueReceive.onMessage() method. The following code example shows
the onMessage() interface from the QueueReceive example:

public void onMessage(Message msg)
{
 try {
 String msgText;
 if (msg instanceof TextMessage) {
 msgText = ((TextMessage)msg).getText();
 } else { // If it is not a TextMessage...
 msgText = msg.toString();
 }

Chapter 6
Setting Up a JMS Application

6-17

 System.out.println("Message Received: "+ msgText);

 if (msgText.equalsIgnoreCase("quit")) {
 synchronized(this) {

 quit = true;
 this.notifyAll(); // Notify main thread to quit
 }
 }
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
}

The onMessage() method processes messages received through the queue receiver.
The method verifies that the message is a TextMessage and, if it is, prints the text of the
message. If the onMessage() method receives a different message type, then it uses
the message's toString() method to display the message contents.

Note:

It is good practice to verify that the received message is the type expected by
the handler method.

For more information about the JMS classes used in this example, see Understanding
the JMS API or the javax.jms Javadoc, at http://www.oracle.com/technetwork/java/jms/
index.html.

6.2.4 Example: Setting Up a Publish-Subscribe JMS Application Using
the Classic API

The following example is an excerpt from the examples.jms.topic.TopicSend example,
provided with WebLogic Server in the EXAMPLES_HOME\wlserver\samples\server\examples
\src\examples\jms\classicapi\topic directory, where EXAMPLES_HOME represents the
directory in which the WebLogic Server code examples are configured. The init()
method shows you how to set up and start a topic session for a JMS application. The
following shows the init() method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and
topic static variables.

public final static String JNDI_FACTORY=
 "weblogic.jndi.WLInitialContextFactory";
public final static String JMS_FACTORY=
 "weblogic.examples.jms.TopicConnectionFactory";
public final static String
 TOPIC="weblogic.examples.jms.exampleTopic";

protected TopicConnectionFactory tconFactory;
protected TopicConnection tcon;
protected TopicSession tsession;
protected TopicPublisher tpublisher;

Chapter 6
Setting Up a JMS Application

6-18

protected Topic topic;
protected TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
 .
 .
 .
private static InitialContext getInitialContext(
 String url
) throws NamingException
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);
 return new InitialContext(env);
}

Note:

When setting up the JNDI initial context for a servlet, use the following
method:

Context ctx = new InitialContext();

Create all the necessary objects for sending messages to a JMS queue. The ctx
object is the JNDI initial context passed in by the main() method.

public void init(
 Context ctx,
 String topicName
) throws NamingException, JMSException
{

Step 1

Look up a connection factory using JNDI.

 tconFactory =
 (TopicConnectionFactory) ctx.lookup(JMS_FACTORY);

Step 2

Create a connection using the connection factory.

 tcon = tconFactory.createTopicConnection();

Step 3

Create a session using the connection. The following defines the session as non-
transacted and specifies that messages will be acknowledged automatically. For more
information about setting session transaction and acknowledge modes, see Session.

 tsession = tcon.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

Step 4

Chapter 6
Setting Up a JMS Application

6-19

Look up the destination (topic) using JNDI.

 topic = (Topic) ctx.lookup(topicName);

Step 5

Create a reference to a message producer (topic publisher) using the session and
destination (topic).

 tpublisher = tsession.createPublisher(topic);

Step 6

Create the message object.

 msg = tsession.createTextMessage();

Step 7

Start the connection.

 tcon.start();
 }

The init() method for the examples.jms.topic.TopicReceive example is similar to the
TopicSend init() method shown previously with one exception. Steps 5 and 6 would
be replaced by the following code, respectively:

tsubscriber = tsession.createSubscriber(topic);
tsubscriber.setMessageListener(this);

In the first line, instead of calling the createPublisher() method to create a reference to
the topic publisher, the application calls the createSubscriber() method to create the
topic subscriber.

In the second line, the message consumer registers an asynchronous message
listener.

When a message is delivered to the topic session, it is passed to the
examples.jms.TopicSubscribe.onMessage() method. The onMessage() interface for the
TopicReceive example is the same as the QueueReceive onMessage() interface, as
described in Example: Setting Up a Point-to-Point JMS Application Using the Classic
API.

For more information about the JMS classes used in this example, see Understanding
the JMS API or the javax.jms Javadoc, at http://www.oracle.com/technetwork/
java/jms/index.html.

6.3 Sending Messages
To send a message, you can use either the simplified API or the classic API.

You can start sending messages after you set up the JMS application as described in
Setting Up a JMS Application.

Chapter 6
Sending Messages

6-20

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

6.3.1 Sending Messages Using the Simplified JMS API
In the simplified API, messages are sent by creating a JMSProducer object on behalf of
JMSContext. For more information, see Create JMSProducer and JMSConsumer
Objects.

To send a message to a specified destination, you can use the following JMSProducer
method which is analogous to the send method of MessageProducer in the classic API:

JMSProducer send(Destination destination, Message message)

For example,

context.createProducer().send(destination,"Hello");

This code creates a TextMessage object and sets its body to "Hello", and then sends it
to the specified destination.

You can also use the following JMSProducer methods, which create a message
automatically for of the appropriate message type and set the payload to the specified
parameter:

JMSProducer send(Destination destination,byte[] body)

JMSProducer send(Destination destination, Map<String,Object> body)

JMSProducer send(Destination destination, Serializable body)

JMSProducer send(Destination destination, String body)

For more information about the JMSProducer interface and send methods, see the
Javadoc at:

http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html

WebLogic JMS provides proprietary attributes that you can use while sending
messages. You can specify the delivery mode (DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT), priority (0-9), delivery delay, and time-to-live (in
milliseconds) by casting the JMSProducer instance to
weblogic.jms.extensions.WLJMSProducer. See the Javadoc for WLSJMSProducer in Java
API Reference for Oracle WebLogic Server.

For example,

context.createProducer().setDeliveryMode(DeliveryMode.NON_PERSISTENT).send(destinatio
n,message);

If not specified, the delivery mode, priority, and time-to-live attributes are set to one of
the following:

• Connection factory or destination override configuration attributes defined for the
producer, as described Configure default delivery parameters in the Oracle
WebLogic Server Administration Console Online Help.

• Values specified using the JMSProducer object's set methods, as described in
Setting JMSProducer and MessageProducer Attributes.

Chapter 6
Sending Messages

6-21

http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html

6.3.2 Sending Messages Using the Classic JMS API
Once you have set up the JMS application as described in Using the Classic API to
Set Up a JMS Application, you can send messages. To send a message, you must, in
order, perform the steps described in the following sections:

1. Create a Message Object

2. Define a Message

3. Send the Message to a Destination Using MessageProducer

For more information about the JMS classes for sending messages and the message
types, see the javax.jms.Message Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/Message.html. For information about receiving messages, see Receiving
Messages.

6.3.2.1 Create a Message Object
This step has already been completed as part of the client setup procedure, as
described in Step 6a: Create the Message Object (Message Producers).

6.3.2.2 Define a Message
This step may have been completed when you set up an application, as described in
Step 6a: Create the Message Object (Message Producers). Whether or not this step
has already been completed depends on the method that was called to create the
message object. For example, for TextMessage and ObjectMessage types, when you
create a message object, you have the option of defining the message when you
create the message object.

If a value was specified and you do not want to change it, you can go to step 3.

If a value was specified or if you want to change an existing value, you can define a
value using the appropriate set method. For example, the method for defining the text
of a TextMessage is as follows:

public void setText(
 String string
) throws JMSException

Note:

Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void clearBody(
) throws JMSException

For more information about methods used to define messages, see the
javax.jms.Session Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
Session.html.

Chapter 6
Sending Messages

6-22

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/Session.html

6.3.2.3 Send the Message to a Destination Using MessageProducer
The Destination and MessageProducer objects were created when you set up the
application, as described in Using the Classic API to Set Up a JMS Application.

Note:

If multiple topic subscribers are defined for the same topic, each subscriber
will receive its own local copy of a message. After the message is received,
you can modify the header field values; however, the message properties and
message body are read only. You can modify the message body by executing
the corresponding message type's clearbody() method to clear the existing
contents and enable the write permission.

For more information about the MessageProducer class, see MessageProducer and
MessageConsumer or the javax.jms.MessageProducer Javadoc, at http://
docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html.

You must specify a message. You can also specify the queue name (for anonymous
message producers), delivery mode (DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT), priority (0-9), delivery delay, and time-to-live (in
milliseconds). If not specified, the delivery mode, priority, and time-to-live attributes are
set to one of the following:

• Connection factory or destination override configuration attributes defined for the
producer, as described in Configure default delivery parameters in the Oracle
WebLogic Server Administration Console Online Help.

• Values specified using the message producer's set methods, as described in
Setting JMSProducer and MessageProducer Attributes.

If you define the delivery mode as PERSISTENT, you should configure a backing store for
the destination, as described in Configure persistent stores in the Oracle WebLogic
Server Administration Console Online Help.

Note:

If no backing store is configured, then the delivery mode is changed to
NON_PERSISTENT and messages are not written to the persistent store.

For more information about using the QueueSender and TopicPublisher methods for
sending messages, see the WebLogic Server documentation at:

https://docs.oracle.com/middleware/1213/wls/JMSPG/implement.htm#JMSPG228

For additional information about the QueueSender class methods, see the
javax.jms.QueueSender Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
QueueSender.html.

Chapter 6
Sending Messages

6-23

http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
https://docs.oracle.com/middleware/1213/wls/JMSPG/implement.htm#JMSPG228
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html

For more information about the TopicPublisher class methods, see the
javax.jms.TopicPublisher Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
TopicPublisher.html.

6.3.3 Sending a Message Asynchronously
In asynchronous mode, the JMS client sends a message and returns control to the
application without waiting for an acknowledgement from the JMS server.

To send messages asynchronously, your application should define a
CompletionListener object. When an acknowledgement is received from the JMS
server to indicate that the message was received, the JMS provider notifies the
application by invoking the callback method onCompletion on the CompletionListener
object defined by the application. For more information about the CompletionListener
interface, see http://docs.oracle.com/javaee/7/api/javax/jms/
CompletionListener.html.

After defining the javax.jms.CompletionListener object, send messages
asynchronously using the JMSProducer or MessageProducer objects as described.

• If you are using JMSProducer objects to send messages, call the method
setAsync(CompletionListener listener) with a non-null CompletionListener on the
JMSProducer object before calling the send method as listed in the following
example:

// send a message asynchronously
try (JMSContext context = connectionFactory.createContext()) {
 MyCompletionListener myCompletionListener = new MyCompletionListener();
//call normal send method
 context.createProducer().setAsync(myCompletionListener).send(queue, "Hello
world");
 ...
}

For more information, see Sending Messages Using the Simplified JMS API.

• If you are using a MessageProducer to send messages, use the following method to
send messages asynchronously:

messageProducer.send(message,completionListener);

For more information, see Sending Messages Using the Classic JMS API.

6.3.4 Setting JMSProducer and MessageProducer Attributes
As described in the previous section, when sending a message, you can optionally
specify the delivery mode, priority, delivery delay, and time-to-live values. If not
specified, these attributes are set to the connection factory configuration attributes, as
described in Configure connection factories in the Oracle WebLogic Server
Administration Console Online Help.

Alternatively, you can set the delivery mode, priority, time-to-deliver, time-to-live, and
redelivery delay (timeout), and redelivery limit values dynamically using the message
producer's set methods. Table 6-2 lists the message producer set and get methods for
each dynamically configurable attribute.

Chapter 6
Sending Messages

6-24

http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/CompletionListener.html
http://docs.oracle.com/javaee/7/api/javax/jms/CompletionListener.html

Note:

The delivery mode, priority, time-to-live, time-to-deliver, redelivery delay
(timeout), and redelivery limit attribute settings can be overridden by the
destination using the Delivery Mode Override, Priority Override, Time To Live
Override, Time To Deliver Override, Redelivery Delay Override, and
Redelivery Limit configuration attributes, as described in Configure message
delivery overrides and Configure topic message delivery overrides in the
Oracle WebLogic Server Administration Console Online Help.

Table 6-2 Message Producer Set and Get Methods

Attribute Set Method Get Method

Delivery Mode
public void setDeliveryMode(
 int deliveryMode
) throws JMSException

public int getDeliveryMode(
) throws JMSException

Priority
public void setPriority(
 int defaultPriority
) throws JMSException

public int getPriority(
) throws JMSException

Time-to-Live
public void setTimeToLive(
 long timeToLive
) throws JMSException

public long getTimeToLive(
) throws JMSException

Redelivery limit
public void setRedeliveryLimit(
 int redeliveryLimit
) throws JMSException

public int getredeliveryLimit(
) throws JMSException

Send timeout
public void setsendTimeout(
long sendTimeout
) throws JMSException

public long getsendTimeout(
) throws JMSException

Note:

JMS defines optional MessageProducer methods for disabling the message ID
and timestamp information. However, these methods are ignored by WebLogic
JMS.

For more information about the MessageProducer class methods, see the
javax.jms.MessageProducer Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/MessageProducer.html, or the weblogic.jms.extensions.WLMessageProducer
Javadoc.

Chapter 6
Sending Messages

6-25

http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html

6.3.5 Example: Sending Messages Within a Point-toPoint Application
The following example is excerpted from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the EXAMPLES_HOME\wl_server\examples\src\examples
\jms\queue directory, where EXAMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured. The example shows the code
required to create a TextMessage, set the text of the message, and send the message
to a queue.

msg = qsession.createTextMessage();
 .
 .
 .
public void send(
 String message
) throws JMSException
{
 msg.setText(message);
 qsender.send(msg);
}

For more information about the QueueSender class and methods, see the
javax.jms.QueueSender Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
QueueSender.html.

6.3.6 Example: Sending Messages Within a Publish/Subscribe
Application

The following example is excerpted from the examples.jms.topic.TopicSend example,
provided with WebLogic Server in the EXAMPLES_HOME\wl_server\examples\src\examples
\jms\topic directory, where EXAMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured. It shows the code required to create
a TextMessage, set the text of the message, and send the message to a topic.

msg = tsession.createTextMessage();
 .
 .
 .
public void send(
 String message
) throws JMSException
{
 msg.setText(message);
 tpublisher.publish(msg);
}

For more information about the TopicPublisher class and methods, see the
javax.jms.TopicPublisher Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
TopicPublisher.html.

6.4 Receiving Messages
Learn how to receive messages using the JMSConsumer and MessageConsumer methods.

Chapter 6
Receiving Messages

6-26

http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html

After you set up the JMS application as described in Setting Up a JMS Application,
you can receive messages.

To receive a message, you must create the receiver object and specify whether you
want to receive messages asynchronously or synchronously.

The order in which messages are received can be controlled by the following:

• Message delivery attributes (delivery mode and sorting criteria) defined during
configuration or as part of the send() method, as described in Sending Messages.

• Destination sort order set using destination keys, as described in Configure
destination keys in the Oracle WebLogic Server Administration Console Online
Help.

After the message received, you can modify the header field values; however, the
message properties and message body are read-only. You can modify the message
body by executing the corresponding message type's clearbody() method to clear the
existing contents and enable write permission.

For more information about the JMS classes for receiving messages and the message
types, see the javax.jms.Message Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/Message.html. For information about sending messages, see Sending
Messages.

6.4.1 Receive Messages Asynchronously Using the Simplified API
To receive messages, you must first create a JMSConsumer object using one of the
several createConsumer or createDurableConsumer methods on JMSContext object.

Create a JMSConsumer object and use the method setMessageListener to specify the
object that implements the MessageListener interface. Message delivery is started
automatically.

JMSConsumer consumer = context.createConsumer(queue);
consumer.setMessageListener(messageListener);

6.4.2 Receiving Messages Asynchronously using the Classic API
Receiving Messages Asynchronously using the Classic API is described within the
context of setting up the application. For more information, see Step 6b: Optionally
Register an Asynchronous Message Listener.

Note:

You can control the maximum number of messages that may exist for an
asynchronous consumer and that have not yet been passed to the message
listener by setting the Messages Maximum attribute when configuring the
connection factory.

6.4.3 Asynchronous Message Pipeline
If messages are produced faster than asynchronous message listeners (consumers)
can consume them, a JMS server will push multiple unconsumed messages in a batch

Chapter 6
Receiving Messages

6-27

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

to another session with available asynchronous message listeners. These in-flight
messages are sometimes referred to as the message pipeline, or in some JMS
vendors as the message backlog. The pipeline or backlog size is the number of
messages that are accumulated on an asynchronous consumer, but that are not been
passed to a message listener.

6.4.3.1 Configuring a Message Pipeline
You can control a client's maximum pipeline size by configuring the Messages
Maximum per Session attribute on the client's connection factory, which is defined as
the "maximum number of messages that can exist for an asynchronous consumer and
that have not yet been passed to the message listener". The default setting is 10. For
more information about configuring a JMS connection factory, see Configure
connection factories in the Oracle WebLogic Server Administration Console Online
Help.

6.4.3.2 Behavior of Pipelined Messages
After a message pipeline is configured, it will exhibit the following behavior:

• Statistics — JMS monitoring statistics reports backlogged messages in a message
pipeline as pending (for queues and durable subscribers) until they are either
committed or acknowledged.

• Performance — Increasing the Messages Maximum pipeline size may improve
performance for high-throughput applications. Note that a larger pipeline will
increase client memory usage as the pending pipelined messages accumulate on
the client JVM before the asynchronous consumer's listener is called.

• Sorting — Messages in an asynchronous consumer's pipeline are not sorted
according to the consumer destination's configured sort order; instead, they
remain in the order in which they are pushed from the JMS server. For example, if
a destination is configured to sort by priority, high priority messages will not jump
ahead of low priority messages that have already been pushed into an
asynchronous consumer's pipeline.

Note:

The Messages Maximum per Session pipeline size setting on the connection
factory is not related to the Messages Maximum quota settings on JMS
servers and destinations.

Messages in a pipeline are sometimes aggregated into a single message on
the network transport. If the messages are sufficiently large, the aggregate
size of the data written may exceed the maximum value for the transport,
which may cause undesirable behavior. For example, the t3 protocol sets a
default maximum message size of 10,000,000 bytes, and is configurable on
the server with the MaxT3MessageSize attribute. This means that if ten 2
megabyte messages are in the pipeline t3 limit may be exceeded.

6.4.4 Receive Messages Synchronously Using the Simplified API
The receive methods on a JMSConsumer object are used for synchronous delivery of
messages.

Chapter 6
Receiving Messages

6-28

public String receiveMessage(
ConnectionFactory connectionFactory,Queue queue){
 String body=null;
 try (JMSContext context = connectionFactory.createContext();){
 JMSConsumer consumer = session.createConsumer(queue);
 body = consumer.receiveBody(String.class);
 } catch (JMSRuntimeException ex) {
 // handle exception
 }
 return body;
}

For additional information about the JMSConsumer class methods, see the
javax.jms.JMSConsumer Javadoc, at http://docs.oracle.com/javaee/7/api/javax/jms/
JMSConsumer.html.

6.4.5 Receiving Messages Synchronously Using the Classic API
To receive messages synchronously, use the following MessageConsumer methods:

public Message receive(
) throws JMSException

public Message receive(
 long timeout
) throws JMSException

public Message receiveNoWait(
) throws JMSException

In each case, the application receives the next message produced. If you call the
receive() method with no arguments, then the call blocks indefinitely until a message
is produced or the application is closed. Alternatively, you can pass a timeout value to
specify how long to wait for a message. If you call the receive() method with a value of
0, then the call blocks indefinitely. The receiveNoWait() method receives the next
message if one is available, or returns null; in this case, the call does not block.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer class
methods, see the javax.jms.MessageConsumer Javadoc, at http://docs.oracle.com/
javaee/7/api/javax/jms/MessageConsumer.html.

6.4.5.1 Example: Receiving Messages Synchronously Within a PTP Application
The following example is excerpted from the examples.jms.queue.QueueReceive
example, provided with WebLogic Server in the EXAMPLES_HOME\wl_server\examples\src
\examples\jms\queue directory, where EXAMPLES_HOME represents the directory in which
the WebLogic Server code examples are configured. Rather than set a message
listener, you would call qreceiver.receive() for each message. For example:

qreceiver = qsession.createReceiver(queue);
qreceiver.receive();

The first line creates the queue receiver on the queue. The second line executes a
receive() method. The receive() method blocks and waits for a message.

Chapter 6
Receiving Messages

6-29

http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html

6.4.5.2 Example: Receiving Messages Synchronously Within a Pub/Sub
Application

The following example is excerpted from the examples.jms.topic.TopicReceive
example, provided with WebLogic Server in the EXAMPLES_HOME\wl_server\examples\src
\examples\jms\topic directory, where EXAMPLES_HOME represents the directory in which
the WebLogic Server code examples are configured. Rather than set a message
listener, you would call tsubscriber.receive() for each message.

For example:

tsubscriber = tsession.createSubscriber(topic);
Message msg = tsubscriber.receive();
msg.acknowledge();

The first line creates the topic subscriber on the topic. The second line executes a
receive() method. The receive() method blocks and waits for a message.

6.4.6 Use Prefetch Mode to Create a Synchronous Message Pipeline
In releases prior to WebLogic Server 9.1, synchronous consumers required making a
two-way network calls for each message, which was an inefficient model because the
synchronous consumer could not retrieve multiple messages, and could also increase
network traffic resources, since synchronous consumers would continually poll the
server for available messages. In WebLogic 9.1 or later, your synchronous consumers
can also use the same efficient behavior as asynchronous consumers by enabling the
Prefetch Mode for Synchronous Consumers option on JMS connection factories, either
using the WebLogic Server Administration Console or the JMSClientParamsBean MBean.

Similar to the asynchronous message pipeline, when the Prefetch Mode is enabled on
a JMS client's connection factory, the connection factory's targeted JMS servers will
proactively push batches of unconsumed messages to synchronous message
consumers, using the connection factory's Messages Maximum per Session
parameter to define the maximum number of messages per batch. This may improve
performance because messages are ready and waiting for synchronous consumers
when the consumers are ready to process more messages, and it may also reduce
network traffic by reducing synchronous calls from consumers that must otherwise
continually poll for messages.

Synchronous message prefetching does not support user (XA) transactions for
synchronous message receives or multiple synchronous consumers per session
(regardless of queue or topic). In most such cases, WebLogic JMS will silently and
safely ignore the Prefetch Mode for Synchronous Consumer flag; however, otherwise
WebLogic will fail the application's synchronous receive calls.

For more information on the behavior of pipelined messages, see Asynchronous
Message Pipeline. For more information on configuring a JMS connection factory, see
"Configure connection factories" in the Oracle WebLogic Server Administration
Console Online Help.

Chapter 6
Receiving Messages

6-30

6.4.7 Recovering Received Messages

Note:

This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE. Synchronously received
AUTO_ACKNOWLEDGE messages may not be recovered; they have already been
acknowledged.

An application can request that JMS redeliver messages (unacknowledge them) using
the following method:

public void recover(
) throws JMSException

The recover() method performs the following steps:

• Stops message delivery for the session

• Tags all messages that have not been acknowledged (but may have been
delivered) as redelivered

• Resumes sending messages starting from the first unacknowledged message for
that session

Note:

Messages in queues are not necessarily re delivered in the same order that
they were originally delivered, nor to the same queue consumers. For
information to guarantee the correct ordering of re delivered messages, see
Ordered Redelivery of Messages.

6.5 Acknowledging Received Messages
Use the acknowledge() method to acknowledge a received message. This method
depends on how the connection factory's Acknowledge Policy attribute is configured.

Note:

This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE.

To acknowledge a received message, use the following Message method:

public void acknowledge(
) throws JMSException

Chapter 6
Acknowledging Received Messages

6-31

The acknowledge() method depends on how the connection factory's Acknowledge
Policy attribute is configured, as follows:

• The default policy of "All" specifies that calling the acknowledge on a message
acknowledges all unacknowledged messages received on the session.

• The "Previous" policy specifies that calling the acknowledge on a message
acknowledges only unacknowledged messages up to, and including, the given
message. Messages that are not acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE. Otherwise, the method is ignored.

6.6 Releasing Object Resources
When you finish using the connection, session, message producer or consumer,
connection consumer, or queue browser created on behalf of a JMS application, you
should explicitly close them to release the resources.

Enter the close() method to close JMS objects, as follows:

public void close(
) throws JMSException

When closing an object:

• The call blocks until the method call completes or until any outstanding
asynchronous receiver onMessage() calls complete.

• All associated sub objects are also closed. For example, when closing a session,
all associated message producers and consumers are also closed. When closing
a connection, all associated sessions are also closed.

For more information about the effects of the close() method for each object, see the
appropriate javax.jms Javadoc, at http://www.oracle.com/technetwork/java/jms/
index.html. In addition, for more information about the connection or Session close()
method, see Starting, Stopping, and Closing a Connection or Closing a Session,
respectively.

The following example is an excerpt from the examples.jms.queue.QueueSend example,
provided with WebLogic Server in the EXAMPLES_HOME\wl_server\examples\src\examples
\jms\queue directory. EXAMPLES_HOME represents the directory in which the WebLogic
Server code examples are configured. This example shows the code required to close
the message consumer, session, and connection objects.

public void close(
) throws JMSException
{
 qreceiver.close();
 qsession.close();
 qcon.close();
}

In the QueueSend example, the close() method is called at the end of main() to close
objects and free resources.

Chapter 6
Releasing Object Resources

6-32

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

7
Managing Your Applications

Learn how to manage your JMS applications programatically using the value-added
WebLogic JMS features.

• Managing Rolled Back, Recovered, Redelivered, or Expired Messages

• Setting Message Delivery Times

• Managing Connections

• Managing Sessions

• Managing Destinations

• Using Temporary Destinations

• Setting Up Durable Subscriptions

• Setting and Browsing Message Header and Property Fields

• Filtering Messages

• Sending XML Messages

7.1 Managing Rolled Back, Recovered, Redelivered, or
Expired Messages

Learn how to mange rolled back or recovered messages.

• Setting a Redelivery Delay for Messages

• Setting a Redelivery Limit for Messages

• Ordered Redelivery of Messages

• Handling Expired Messages

7.1.1 Setting a Redelivery Delay for Messages
You can delay the redelivery of messages when a temporary, external condition
prevents an application from properly handling a message. This enables an application
to temporarily inhibit the receipt of "poison" messages that it cannot currently handle.
When a message is rolled back or recovered, the redelivery delay is the amount of
time a message is put aside before an attempt is made to redeliver the message.

If JMS immediately redelivers the message, then the error condition may not be
resolved and the application may still not be able to handle the message. However, if
an application is configured for a redelivery delay, then when it rolls back or recovers a
message, the message is set aside until the redelivery delay has passed, at which
point the messages are made available for redelivery.

All messages consumed and subsequently rolled back or recovered by a session
receive the redelivery delay for that session at the time of rollback or recovery.

7-1

Messages consumed by multiple sessions as part of a single user transaction will
receive different redelivery delays as a function of the session that consumed the
individual messages. Messages that are left unacknowledged or uncommitted by a
client, either intentionally or as a result of a failure, are not assigned a redelivery delay.

7.1.1.1 Setting a Redelivery Delay
A session inherits the redelivery delay from its connection factory when the session is
created. The RedeliveryDelay attribute of a connection factory is configured using the
WebLogic Server Administration Console.

For more information, see Configure connection factories in the Oracle WebLogic
Server Administration Console Online Help.

The application that creates the session can then override the connection factory
setting using WebLogic-specific extensions to the javax.jms.Session interface. The
session attribute is dynamic and can be changed at any time. Changing the session
redelivery delay affects all messages consumed and rolled back (or recovered) by that
session after the change except when the message is in a session using non-durable
topics.

Note:

When a session is using non-durable topics, the setRedeliveryDelay method
does not apply. This may result in unexpected behavior if you are using a non-
durable topic consumer to drive a workflow.

The method for setting the redelivery delay on a session is provided through the
weblogic.jms.extensions.WLSession interface, which is an extension to the
javax.jms.Session interface. To define a redelivery delay for a session, use the
following methods:

public void setRedeliveryDelay(
 long redeliveryDelay
) throws JMSException;

public long getRedeliveryDelay(
) throws JMSException;

For more information on the WLSession class, refer to the
weblogic.jms.extensions.WLSession Javadoc.

7.1.1.2 Overriding the Redelivery Delay on a Destination
Regardless of what redelivery delay is set on the session, the destination where a
message is being rolled back or recovered can override the setting. The redelivery
delay override applied to the redelivery of a message is the one in effect at the time a
message is rolled back or recovered.

The RedeliveryDelayOverride attribute of a destination is configured using the
WebLogic Server Administration Console. For more information, see:

• Configure queue message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help

Chapter 7
Managing Rolled Back, Recovered, Redelivered, or Expired Messages

7-2

• Configure topic message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help

7.1.2 Setting a Redelivery Limit for Messages
You can specify a limit on the number of times that WebLogic JMS will attempt to
redeliver a message to an application. After WebLogic JMS fails to redeliver a
message to a destination for a specific number of times, the message can be
redirected to an error destination that is associated with the message destination. If
the redelivery limit is configured, but no error destination is configured, then persistent
or non-persistent messages are deleted when they reach their redelivery limit.

Alternatively, you can set the redelivery limit value dynamically using the message
producer's set method, as described in Setting JMSProducer and MessageProducer
Attributes.

7.1.2.1 Configuring a Message Redelivery Limit on a Destination
When a destination's attempts to redeliver a message to a consumer reaches a
specified redelivery limit, then the destination deems the message undeliverable. The
RedeliveryLimit attribute is set on a destination and is configurable using the
WebLogic Server Administration Console. This setting overrides the redelivery limit set
on the message producer. For more information, see:

• Configure queue message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help.

• Configure topic message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help.

7.1.2.2 Configuring an Error Destination for Undelivered Messages
If an error destination is configured on the JMS server for undelivered messages, then
when a message has been deemed undeliverable, the message will be redirected to a
specified error destination. The error destination can be either a queue or a topic, and
it must be configured on the same JMS server as the destination for which it is
defined. If no error destination is configured, then undeliverable messages are simply
deleted.

The ErrorDestination attribute is configured for standalone destinations and uniform
distributed destination using the WebLogic Server Administration Console. For more
information, see:

• Configure queue message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help.

• Configure topic message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help.

• Uniform distributed queues - configure delivery failure parameters in the Oracle
WebLogic Server Administration Console Online Help.

• Uniform distributed topics - configure delivery failure parameters in the Oracle
WebLogic Server Administration Console Online Help.

Chapter 7
Managing Rolled Back, Recovered, Redelivered, or Expired Messages

7-3

7.1.3 Ordered Redelivery of Messages

Note:

Oracle recommends that applications use the Ordered Redelivery upgrade to
Message Unit-of-Order. See Using the Message Unit-of-Order.

All messages initially delivered to a consumer from a given producer are guaranteed to
arrive at the consumer in the order in which they were produced. WebLogic JMS goes
above and beyond this requirement by providing the "Ordered Redelivery of
Messages" feature, which guarantees the correct ordering of redelivered messages as
well.

In order to provide this guarantee, WebLogic JMS must impose certain constraints.
They are:

• Single consumers — ordered redelivery is only guaranteed when there is a single
consumer. If there are multiple consumers, then there are no guarantees about the
order in which any individual consumer will receive messages.

Note:

With respect to MDBs (message-driven beans), the number of consumers is a
function of the number of MDB instances deployed for a given MDB. The initial
and maximum values for the number of instances must be set to 1. Otherwise
no ordering guarantees can be made with respect to redelivered messages.

• Sort order : If a given destination is sorted, has JMS destination keys defined, and
another message is produced such that the message would be placed at the top of
the ordering, then no guarantee can be made between the redelivery of an existing
message and the delivery of the incoming message.

• Message selection : If a consumer is using a selector, then ordering on redelivery
is only guaranteed between the message being redelivered and other messages
that match the criteria for that selector. There are no guarantees of order with
respect to messages that do not match the selector.

• Redelivery delay : If a message has a redelivery delay period and is recovered or
rolled back, then it is unavailable for the delay period. During that period, other
messages can be delivered before the delayed message, even though these
messages were sent after the delayed message.

• Messages pending recovery : Ordered redelivery does not apply to redelivered
messages that end up in a pending recovery state due to a server failure or a
system reboot.

Chapter 7
Managing Rolled Back, Recovered, Redelivered, or Expired Messages

7-4

7.1.3.1 Required Message Pipeline Setting for the Messaging Bridge and
MDBs

For asynchronous consumers or JMS applications using the WebLogic Messaging
Bridge or MDBs, the size of the message pipeline must be set to 1. The pipeline size is
set using the Messages Maximum attribute on the JMS connection factory used by the
receiving application. Any value higher than 1 means there may be additional in-flight
messages that will appear ahead of a redelivered message. MDB applications must
define an application-specific JMS connection factory and set the Messages Maximum
attribute value to 1 on that connection factory, and then reference the connection
factory in the EJB descriptor for their MDB application.

For more information about programming EJBs, see Message-Driven EJBs in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

7.1.3.2 Performance Limitations
JMS applications that implement the Ordered Redelivery feature will incur
performance degradation for asynchronous consumers using JTA transactions
(specifically, MDBs and the WebLogic Messaging Bridge). This is caused by a
mandatory reduction in the number of in-flight messages to exactly 1, so messages
are not aggregated when they are sent to the client.

7.1.4 Handling Expired Messages
WebLogic JMS has an active message Expiration Policy feature that allows you to
control how the system searches for expired messages and how it handles them when
they are encountered. This feature ensures that expired messages are cleaned up
immediately, either by simply discarding expired messages, discarding expired
messages and logging their removal, or redirecting expired messages to an error
destination configured on the local JMS server.

7.2 Setting Message Delivery Times
You can schedule message deliveries to an application for specific times in the future.

Message deliveries can be deferred for short periods of time (such as seconds or
minutes) or for long stretches of time (for example, hours later for batch processing).
Until that delivery time, the message is essentially invisible until it is delivered,
enabling you to schedule work at a particular time in the future.

Messages are not sent on a recurring basis; they are sent only once. In order to send
messages on a recurring basis, a received scheduled message must be sent back to
its original destination. Typically, the receive, the send, and any associated work
should be under the same transaction to ensure exactly-once semantics.

7.2.1 Setting a Delivery Time on Producers
Support for setting and getting a time-to-deliver on an individual producer is provided
through the weblogic.jms.extensions.WLMessageProducer interface, which is an
extension to the javax.jms.MessageProducer interface. To define a time-to-deliver on an
individual producer, use the following methods:

Chapter 7
Setting Message Delivery Times

7-5

public void setTimeToDeliver(
 long timeToDeliver
) throws JMSException;

public long getTimeToDeliver(
) throws JMSException;

For more information about the WLMessageProducer class, see the
weblogic.jms.extensions.WLMessageProducer Javadoc.

7.2.2 Setting a Delivery Time on Messages
DeliveryTime is a JMS message header field that defines the earliest absolute time at
which the message can be delivered. That is, the message is held by the messaging
system and is not given to any consumers until that time.

As a JMS header field, DeliveryTime can be used to sort messages in a destination or
to select messages. For the purposes of data type conversion, the delivery time is
stored as a long integer.

Note:

Setting a delivery time value on a message has no effect on this field, because
JMS will always override the value with the producer's value when the
message is sent or published. The message delivery time methods described
here are similar to other JMS message fields that are set through the
producer, including the delivery mode, priority, time-to-deliver, time-to-live,
redelivery delay, and redelivery limit fields. Specifically, the setting of these
fields is reserved for JMS providers, including WebLogic JMS.

The support for setting and getting the delivery time on a message is provided through
the weblogic.jms.extensions.WLMessage interface, which is an extension to the
javax.jms.Message interface. To define a delivery time on a message, use the following
methods:

public void setJMSDeliveryTime(
 long deliveryTime
) throws JMSException;

public long getJMSDeliveryTime(
) throws JMSException;

For more information about the WLMessage class, see
weblogic.jms.extensions.WLMessage Javadoc.

7.2.3 Overriding a Delivery Time
When a producer is created it inherits its TimeToDeliver attribute, expressed in
milliseconds, from the connection factory used to create the connection that the
producer is a part of. Regardless of the time-to-deliver set on the producer, the
destination to which a message is being sent or published can override the setting. An
administrator can set the TimeToDeliverOverride attribute on a destination in either a
relative or scheduled string format.

Chapter 7
Setting Message Delivery Times

7-6

7.2.3.1 Interaction with the Time-to-Live Value
If the specified time-to-live value (JMSExpiration) is less than or equal to the specified
time-to-deliver value, then the message delivery succeeds. However, the message is
then silently expired.

7.2.3.2 Setting a Relative Time-to-Deliver Override
The relative TimeToDeliverOverride attribute is a string specified as an integer, and is
configurable using the WebLogic Server Administration Console.

7.2.3.3 Setting a Scheduled Time-to-Deliver Override
The scheduled TimeToDeliverOverride attribute can also be specified using the
weblogic.jms.extensions.Schedule class, which provides methods that take a schedule
and return the next scheduled time for delivering messages.

Table 7-1 Message Delivery Schedule

Example Description

0 0 0,30 * * * *
Exact next nearest half-hour

* * 0,30 4-5 * * *
Anytime in the first minute of the half hours between 4
A.M. and 5 A.M. hours

* * * 9-16 * * *
Between 9 A.M. and 5 P.M. (9:00.00 A.M. to 4:59.59
P.M.)

* * * * 8-14 * 2
The second Tuesday of the month

* * * 13-16 * * 0
Between 1 P.M. and 5 P.M. on Sunday

* * * * * 31 *
The last day of the month

* * * * 15 4 1
The next time April 15th occurs on a Sunday

0 0 0 1 * * 2-6;0 0 0 2 * * 1,7
1 A.M. on weekdays; 2 A.M. on weekends

A cron-like string is used to define the schedule. The format is defined by the following
BNF syntax:

schedule := millisecond second minute hour dayOfMonth month
 dayOfWeek

The BNF syntax for specifying the second field is as follows:

second := * | secondList
secondList := secondItem [, secondList]
secondItem := secondValue | secondRange
SecondRange := secondValue - secondValue

Chapter 7
Setting Message Delivery Times

7-7

Similar BNF statements for milliseconds, minute, hour, day of month, month, and day
of week can be derived from the second syntax. The values for each field are defined
as non-negative integers in the following ranges:

milliSecondValue := 0-999
milliSecondValue := 0-999
secondValue := 0-59
minuteValue := 0-59
hourValue := 0-23
dayOfMonthValue := 1-31
monthValue := 1-12
dayOfWeekValue := 1-7

Note:

These values equate to the same ranges that thejava.util.Calendar class
uses, except for monthValue. The java.util.Calendar range for monthValue is
0-11, rather than 1-12.

Using this syntax, each field can be represented as a range of values indicating all
times between the two times. For example, 2-6 in the dayOfWeek field indicates Monday
through Friday, inclusive. Each field can also be specified as a comma-separated list.
For instance, a minute field of 0,15,30,45 means every quarter hour on the quarter
hour. Last, each field can be defined as both a set of individual values and ranges of
values. For example, an hour field of 9-17,0 indicates between the hours of 9 A.M. and
5 P.M., and on the hour of midnight.

Additional semantics are as follows:

• If multiple schedules are supplied (using a semi-colon (;) as the separator), then
the next scheduled time for the set is determined using the schedule that returns
the soonest value. One use for this is for specifying schedules that change based
on the day of the week (see the example below).

• A value of 1 (one) for dayOfWeek equates to Sunday.

• A value of * means every time for that field. For instance, a * in the Month field
means every month. A * in the Hour field means every hour.

• A value of l or last (not case sensitive) indicates the greatest possible value for a
field.

• If a day of the month is specified that exceeds the normal maximum for a month,
then the normal maximum for that month will be specified. For example, if it is
February during a leap year and 31 was specified, then the scheduler will
schedule as if 29 was specified instead. This means that setting the month field to
31 always indicates the last day of the month.

• If milliseconds are specified, then they are rounded down to the nearest 50th of a
second. The values are 0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded to
0-39 and 50-999 gets rounded to 39-999.

Chapter 7
Setting Message Delivery Times

7-8

Note:

When a calendar is not supplied as a method parameter to one of the static
methods in this class, the calendar used is a java.util.GregorianCalendar with
a default java.util.TimeZone and a default java.util.Locale.

7.2.3.4 JMS Schedule Interface
The weblogic.jms.extensions.schedule class has methods that will return the next
scheduled time that matches the recurring time expression. This expression uses the
same syntax as TimeToDeliverOverride. The time returned in milliseconds can be
relative or absolute.

For more information about the WLSession class, see weblogic.jms.extensions.Schedule
Javadoc.

You can define the next scheduled time after the given time using the following
method:

public static Calendar nextScheduledTime(
 String schedule,
 Calendar calendar
) throws ParseException {

You can define the next scheduled time after the current time using the following
method:

public static Calendar nextScheduledTime(
 String schedule,
) throws ParseException {

You can define the next scheduled time after the given time in absolute milliseconds
using the following method:

public static long nextScheduledTimeInMillis(
 String schedule,
 long timeInMillis
) throws ParseException

You can define the next scheduled time after the given time in relative milliseconds
using the following method:

public static long nextScheduledTimeInMillisRelative(
 String schedule,
 long timeInMillis
) throws ParseException {

You can define the next scheduled time after the current time in relative milliseconds
using the following method:

public static long nextScheduledTimeInMillisRelative(
 String schedule
) throws ParseException {

Chapter 7
Setting Message Delivery Times

7-9

7.3 Managing Connections
Learn how to manage JMS connections.

• Defining a Connection Exception Listener

• Accessing Connection Metadata

• Starting, Stopping, and Closing a Connection

7.3.1 Defining a Connection Exception Listener
An exception listener asynchronously notifies an application whenever a problem
occurs with a connection. This mechanism is particularly useful for a connection
waiting to consume messages that might not be notified otherwise.

Note:

The purpose of an exception listener is not to monitor all exceptions thrown by
a connection, but to deliver those exceptions that would not be otherwise
delivered.

You can define an exception listener for a connection using the following Connection
method:

public void setExceptionListener(
 ExceptionListener listener
) throws JMSException

You must specify an ExceptionListener object for the connection.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a connection using the following ExceptionListener method:

public void onException(
 JMSException exception
)

The JMS provider specifies the exception that describes the problem when calling the
method.

You can access the exception listener for a connection using the following Connection
method:

public ExceptionListener getExceptionListener(
) throws JMSException

7.3.2 Accessing Connection Metadata
You can access the metadata associated with a specific connection using the following
Connection method:

public ConnectionMetaData getMetaData(
) throws JMSException

Chapter 7
Managing Connections

7-10

This method returns a ConnectionMetaData object that enables you to access JMS
metadata. The following table lists the various type of JMS metadata and the get
methods that you can use to access them.

Table 7-2 JMS Metadata

JMS Metadata Get Method

Version
public String getJMSVersion(
) throws JMSException

Major version
public int getJMSMajorVersion(
) throws JMSException

Minor version
public int getJMSMinorVersion(
) throws JMSException

Provider name
public String getJMSProviderName(
) throws JMSException

Provider version
public String getProviderVersion(
) throws JMSException

Provider major version
public int getProviderMajorVersion(
) throws JMSException

Provider minor version
public int getProviderMinorVersion(
) throws JMSException

JMSX property names
public Enumeration getJMSXPropertyNames(
) throws JMSException

For more information about the ConnectionMetaData class, see the
javax.jms.ConnectionMetaData Javadoc at http://docs.oracle.com/javaee/7/api/
javax/jms/ConnectionMetaData.html.

7.3.3 Starting, Stopping, and Closing a Connection
To control the flow of messages, you can start and stop a connection temporarily using
the start() and stop() methods, respectively, as follows.

The start() and stop() method details are as follows:

public void start(
) throws JMSException

public void stop(
) throws JMSException

A newly created connection is stopped—no messages are received until the
connection is started. Typically, other JMS objects are set up to handle messages
before the connection is started, as described in Setting Up a JMS Application.

Chapter 7
Managing Connections

7-11

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionMetaData.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionMetaData.html

Messages may be produced on a stopped connection, but cannot be delivered to a
stopped connection.

Once started, you can stop a connection using the stop() method. This method
performs the following steps:

• Pauses the delivery of all messages. No applications waiting to receive messages
will return until the connection is restarted or the time-to-live value associated with
the message is reached.

• Waits until all message listeners that are currently processing messages have
completed.

Typically, a JMS Provider allocates a significant amount of resources when it creates a
connection. When a connection is no longer being used, you should close it to free up
resources. A connection can be closed using the following method:

public void close(
) throws JMSException

This method performs the following steps to execute an orderly shutdown:

• Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

• Waits until all message listeners that are currently processing messages have
completed.

• Rolls back in-process transactions on its transacted sessions (unless such
transactions are part of an external JTA user transaction). For more information
about JTA user transactions, see Using JTA User Transactions.

• Does not force an acknowledge of client-acknowledged sessions. By not forcing
an acknowledge, no messages are lost for queues and durable subscriptions that
require reliable processing.

When you close a connection, all associated objects are also closed. You can
continue to use the message objects created or received via the connection, except
the received message's acknowledge() method. Closing a closed connection has no
effect.

Note:

Attempting to acknowledge a received message from a closed connection's
session throws an IllegalStateException.

7.4 Managing Sessions
Learn how to manage JMS sessions.

• Defining a Session Exception Listener

• Closing a Session

Chapter 7
Managing Sessions

7-12

7.4.1 Defining a Session Exception Listener
An exception listener asynchronously notifies a client in the event a problem occurs
with a session. This is particularly useful for a session waiting to consume messages
that might not be notified otherwise.

Note:

The purpose of an exception listener is not to monitor all exceptions thrown by
a session, only to deliver those exceptions that would otherwise be
undelivered.

You can define an exception listener for a session using the following WLSession
method:

public void setExceptionListener(
 ExceptionListener listener
) throws JMSException

You must specify an ExceptionListener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a session using the following ExceptionListener method:

public void onException(
 JMSException exception
)

The JMS Provider specifies the exception encountered that describes the problem
when calling the method.

You can access the exception listener for a session using the following WLSession
method:

public ExceptionListener getExceptionListener(
) throws JMSException

Note:

Because there can only be one thread per session, an exception listener and
message listener (used for asynchronous message delivery) cannot execute
simultaneously. Consequently, if a message listener is executing at the time a
problem occurs, execution of the exception listener is blocked until the
message listener completes its execution. For more information about
message listeners, see Receiving Messages Asynchronously using the
Classic API.

Chapter 7
Managing Sessions

7-13

7.4.2 Closing a Session
As with connections, a JMS provider allocates a significant amount of resources when
it creates a session. When a session is no longer being used, it is recommended that it
be closed to free up resources. A session can be closed using the following Session
method:

public void close(
) throws JMSException

Note:

The close() method is the only Session method that can be invoked from a
thread that is separate from the session thread.

This method does the following to execute an orderly shutdown:

• Terminates the receipt of all pending messages. Applications can return a
message or null if a message was not available at the time connection was closed.

• Waits until all message listeners that are currently processing messages have
completed.

• Rolls back in-process transactions (unless these transactions are part of external
JTA user transaction). For more information about JTA user transactions, see
Using JTA User Transactions.

• Does not force an acknowledgement of client acknowledged sessions, ensuring
that no messages are lost for queues and durable subscriptions that require
reliable processing.

When you close a session, all associated producers and consumers are also closed.

Note:

If you want to issue the close() method within an onMessage() method call,
then the system administrator must select the Allow Close In OnMessage
check box when configuring the connection factory.

7.5 Managing Destinations
Learn how to create and delete JMS destinations.

• Dynamically Creating Destinations

• Dynamically Deleting Destinations

7.5.1 Dynamically Creating Destinations
See the following topics for information about creating destinations dynamically:

Chapter 7
Managing Destinations

7-14

• Using JMS Module Helper to Manage Applications briefs you about how to use the
weblogic.jms.extensions.JMSModuleHelper. For more information about Using JMS
Module Helper, see Using JMS Module Helper to Manage Applications

• Using Temporary Destinations briefs you about how applications are enabled to
create destinations as per requirement. For more information about Using
Temporary Destinations, seeUsing Temporary Destinations

The associated procedures for creating dynamic destinations are described in the
following sections.

7.5.2 Dynamically Deleting Destinations
You can dynamically delete JMS destinations (queue or topic) using any of the
following methods:

• JMSModuleHelper class (see Using JMS Module Helper to Manage Applications)

• Administration console

• User-defined JMX application

The JMS server removes the deleted destination in real time, therefore, it is not
necessary to redeploy the JMS server for the deletion to take effect.

7.5.2.1 Required Conditions for Deleting Destinations
In order to successfully delete a destination, the following conditions must be met:

• The destination must not be a member of a distributed destination. For more
information, see Using Distributed Destinations.

• The destination must not be the error destination for some other destination. For
more information, see Configuring an Error Destination for Undelivered Messages.

If either of these conditions cannot be met, then the deletion will not be allowed.

7.5.2.2 What Happens when a Destination Is Deleted
When a destination is deleted, the following behaviors and semantics apply:

• Physical deletion of existing messages : All durable subscribers for the deleted
destination are permanently deleted. All messages, persistent and non-persistent,
stored in the deleted destination are permanently removed from the messaging
system.

• No longer able to create producers, consumers, and browsers : After a destination
is deleted, applications will no longer be able to create producers, consumers, or
browsers for the deleted destination. Any attempt to do so will result in the
application receiving an InvalidDestinationException — as if the destination does
not exist.

• Closing of consumers : All existing consumers for the deleted destination are
closed. The closing of a consumer generates a ConsumerClosedException, which is
delivered to the ExceptionListener, if any, of the parent session, and which will
read "Destination was deleted".

When a consumer is closed, if it has an outstanding receive() operation, then that
operation is cancelled and the caller receives a null value indicating that no

Chapter 7
Managing Destinations

7-15

message is available. Attempts by an application to do anything but close() a
closed consumer will result in an IllegalStateException.

• Closing of browsers: All browsers for the deleted destination are closed. Attempts
by an application to do anything but close() a closed browser will result in an
IllegalStateException. Closing of a browser implicitly closes all enumerations
associated with the browser.

• Closing of enumerations : All enumerations for the deleted destination are closed.
The behavior after an enumeration is closed depends on the last call before the
enumeration was closed. If a call to hasMoreElements() returns a value of true, and
no subsequent call to nextElement() has been made, then the enumeration
guarantees that the next element can be enumerated. This produces the specifics.
When the last call before the close was to hasMoreElements(), and the value
returned was true, then the following behaviors apply:

– The first call to the nextElement() will return a message.

– Subsequent calls to the nextElement() will throw a NoSuchElementException.

– Calls to thehasMoreElements() made before the first call to the nextElement()
will return true.

– Calls to the hasMoreElements() made after the first call to the nextElement() will
return false.

If a given enumeration was never called, or the last call before the close was to
nextElement(), or the last call before the close was to the hasMoreElements() and
the value returned was false, then the following behaviors apply:

– Calls to thehasMoreElements() will return false.

– Calls to the nextElement() will throw a NoSuchElementException.

• Blocking send operations cancelled — all blocking send operations posted against
the deleted destination are cancelled. Send operations waiting for quota will
receive a ResourceAllocationException.

• Uncommitted transactions unaffected : The deletion of a destination does not
affect existing uncommitted transactions. Any uncommitted work associated with a
deleted destination is allowed to complete as part of the transaction. However,
because the destination is deleted, the net result of all operations (rollback,
commit, and so on) is the deletion of the associated messages.

7.5.2.3 Message Timestamps for Troubleshooting Deleted Destinations
If a destination with persistent messages is deleted and then immediately re-created
while the JMS server is not running, then the JMS server will compare the version
number of the destination (using the CreationTime field in the configuration config.xml
file) to the version number of the destination in the persistent messages. In this case,
the left over persistent messages for the older destination will have an older version
number than the version number in the config.xml file for the re-created destination,
and when the JMS server is rebooted, the left over persistent messages are
discarded.

However, if a persistent message somehow has a version number that is newer than
the version number in the config.xml for the re-created destination, then either the
system clock was rolled back when the destination was deleted and re-created (while
the JMS server was not running), or a different config.xml is being used. In this
situation, the JMS server will fail to boot. To save the persistent message, you can set

Chapter 7
Managing Destinations

7-16

the version number (the CreationTime field) in the config.xml to match the version
number in the persistent message. Otherwise, you can change the version number in
the config.xml so that it is newer than the version number in the persistent message;
this way, the JMS server can delete the message when it is rebooted.

7.5.2.4 Deleted Destination Statistics
Statistics for the deleted destination and the hosting JMS server are updated as the
messages are physically deleted. However, the deletion of some messages can be
delayed pending the outcome of another operation. This includes messages sent and
received in a transaction, as well as unacknowledged non-transactional messages
received by a client.

7.6 Using Temporary Destinations
Temporary destinations enable an application to create a destination, as required,
without the system administration overhead associated with configuring and creating a
server-defined destination.

JMS applications can use the JMSReplyTo header field to return a response to a
request. The sender application may optionally set the JMSReplyTo header field of its
messages to its temporary destination name to advertise the temporary destination
that it is using to other applications.

Temporary destinations exist only for the duration of the current connection, unless
they are removed using the delete() method, described in Deleting a Temporary
Destination.

Because messages are never available if the server is restarted, all PERSISTENT
messages are silently made NON_PERSISTENT. As a result, temporary destinations are
not suitable for business logic that must survive a restart.

Note:

Temporary destinations are enabled by default through the JMS server's
Hosting Temporary Template attribute. However, if you want to create temporary
destinations with specific settings, you must modify the default Temporary
Template values using the JMS server's Temporary Template and Module
Containing Temporary Template attributes, as explained in Configure general
JMS server properties in the Oracle WebLogic Server Administration Console
Online Help.

The following sections describe how to create a temporary queue (Point-to-Point) or
temporary topic (Publish/Subscibe).

7.6.1 Creating a Temporary Queue
You can create a temporary queue using the following QueueSession method:

public TemporaryQueue createTemporaryQueue(
) throws JMSException

Chapter 7
Using Temporary Destinations

7-17

For example, to create a reference to a TemporaryQueue that will exist only for the
duration of the current connection, use the following method call:

QueueSender = Session.createTemporaryQueue();

7.6.2 Creating a Temporary Topic
You can create a temporary topic using the following TopicSession method:

public TemporaryTopic createTemporaryTopic(
) throws JMSException

For example, to create a reference to a temporary topic that will exist only for the
duration of the current connection, use the following method call:

TopicPublisher = Session.createTemporaryTopic();

7.6.3 Deleting a Temporary Destination
When you finish using a temporary destination, you can delete it (to release
associated resources) using the following TemporaryQueue or TemporaryTopic method:

public void delete(
) throws JMSException

7.7 Setting Up Durable Subscriptions
WebLogic JMS supports durable and non durable subscriptions. Learn how to set up
durable subscriptions for your application.

For durable subscriptions, WebLogic JMS stores a message in a persistent file or
database until the message is delivered to the subscribers or has expired, even if
those subscribers are not active at the time that the message is delivered. A
subscriber is considered active if the Java object that represents it exists. Durable
subscriptions are supported for Publish/Subscribe messaging only.

Note:

Durable subscriptions cannot be created for distributed topics. However, you
can still create a durable subscription on distributed topic member and the
other topic members will forward the messages to the member that has the
durable subscription. See Using Distributed Destinations.

For non durable subscriptions, WebLogic JMS delivers messages only to applications
with an active session. Messages sent to a topic while an application is not listening
are never delivered to that application. In other words, non durable subscriptions last
only as long as their subscriber objects. By default, subscribers are non durable.

The following sections describe:

• Defining the Persistent Store

• Setting the Client ID Policy

• Defining the Client ID

Chapter 7
Setting Up Durable Subscriptions

7-18

• Creating a Sharable Subscription Policy

• Creating Subscribers for a Durable Subscription

• Best Practice: Always Close Failed JMS ClientIDs

• Deleting Durable Subscriptions

• Modifying Durable Subscriptions

• Managing Durable Subscriptions

7.7.1 Defining the Persistent Store
You must configure a persistent file or database store and assign it to your JMS server
so WebLogic JMS can store a message until it is delivered to the subscribers or has
expired.

• Create a JMS file store or JMS JDBC backing store using the Stores node.

• Target the configured store to your JMS server by selecting it from the Store field's
drop-down list on the General tab of the configuration page under JMS Server.

Note:

No two JMS servers can use the same backing store.

7.7.2 Setting the Client ID Policy
The Client ID Policy specifies whether more than one JMS connection can use the
same client ID in a cluster. Valid values for this policy are:

• RESTRICTED: The default. Only one connection that uses this policy can exist in a
cluster at any given time for a particular client ID (If a connection already exists
with a given Client ID, attempts to create new connections using this policy with
the same client ID fail with an exception).

• UNRESTRICTED: Connections created using this policy can specify any Client ID,
even when other restricted or unrestricted connections already use the same client
ID. When a durable subscription is created using an Unrestricted client ID, it can
only be cleaned up using weblogic.jms.extensions.WLJMSContext.unsubscribe(Topic
topic, String name) or using
weblogic.jms.extensions.WLSession.unsubscribe(Topic topic, String name). See
Managing Durable Subscriptions.

Oracle recommends setting the client ID policy to Unrestricted for new applications
(unless your application architecture requires exclusive client IDs), especially if sharing
a subscription (durable or non-durable). Subscriptions created with different client ID
policies are always treated as independent subscriptions. See ClientIdPolicy in the
MBean Reference for Oracle WebLogic Server.

To set the Client ID Policy attribute on the connection factory using the WebLogic
Console, see Configure multiple connections using the same client Id in the Oracle
WebLogic Server Administration Console Online Help. The connection factory setting
can be overridden programatically using the setClientID method of the WLConnection
interface in Java API Reference for Oracle WebLogic Server.

Chapter 7
Setting Up Durable Subscriptions

7-19

For more information about advanced concepts and functionality of Uniform
Distributed Topics (UDTs) necessary to design high availability applications, see
Shared Subscriptions and Client ID Policy.

7.7.3 Defining the Client ID
To support durable subscriptions, a client identifier (client ID) must be defined for the
connection.

Note:

The JMS client ID is not necessarily equivalent to the WebLogic Server
username, that is, a name used to authenticate a user in the WebLogic
security realm. You can set the JMS client ID to the WebLogic Server
username, if it is appropriate for your JMS application.

The client ID can be supplied in two ways:

• The first method is to configure the connection factory with the client ID. For
WebLogic JMS, this means adding a separate connection factory definition during
configuration for each client ID. Applications then look up their own topic
connection factories in JNDI and use them to create connections that contain their
own client IDs. See in Oracle WebLogic Server Administration Console Online
Help.

• Alternatively, the preferred method is for an application that can set its client ID in
the connection after the connection is created by calling the following connection
method:

public void setClientID(
 String clientID
) throws JMSException

If you use this alternative approach, then you can use the default connection
factory (if it is acceptable for your application) and avoid the need to modify the
configuration information. However, applications with durable subscriptions must
ensure that they call thesetClientID() method immediately after creating their
topic connection.

If a client ID is already defined for the connection, then an IllegalStateException is
thrown. If the specified client ID is already defined for another connection, then an
InvalidClientIDException is thrown.

Note:

When specifying the client ID using the setClientID() method, there is a risk
that a duplicate client ID may be specified without throwing an exception. For
example, if the client IDs for two separate connections are set simultaneously
to the same value, then a race condition may occur and the same value may
be assigned to both connections. You can avoid this risk of duplication by
specifying the client ID during configuration.

Chapter 7
Setting Up Durable Subscriptions

7-20

To display a client ID and test whether or not a client ID has been defined already,
use the following connection method:

public String getClientID(
) throws JMSException

Note:

Support for durable subscriptions is a feature unique to the Publish/Subscibe
messaging model, so client IDs are used only with topic connections; queue
connections also contain client IDs, but JMS does not use them.

Durable subscriptions should not be created for a temporary topic, because a
temporary topic is designed to exist only for the duration of the current
connection.

7.7.4 Creating a Sharable Subscription Policy
The Subscription Sharing policy specifies whether subscribers can share subscriptions
with other subscribers on the same connections on this connection. Valid values for
this policy are:

• Exclusive: The default. All subscribers created using this connection factory cannot
share subscriptions with any other subscribers. Use this policy to retain the
functionality of WebLogic Server 10.3.4.0 and earlier.

• Sharable: Subscribers created using this connection factory can share their
subscriptions with other subscribers, regardless of whether those subscribers are
created using the same connection factory or a different connection factory.
Consumers can share non durable subscriptions only if they have the same client
ID and client ID policy; consumers can share a durable subscription only if they
have the same client ID, client ID policy, and subscription name.

WebLogic JMS applications can override the Subscription Sharing policy specified on
the connection factory configuration by casting a javax.jms.JMSContext instance to
weblogic.jms.extensions.WLJMSContext or a javax.jms.Connection instance to
weblogic.jms.extensions.WLConnection and calling setSubscriptionSharingPolicy(String
subscriptionSharingPolicy).

Most applications with a Sharable Subscription Sharing policy will also use an
Unrestricted client ID policy in order to ensure that multiple connections with the same
client ID can exist.

Two durable subscriptions with the same client ID and subscription name are treated
as two different independent subscriptions if they have a different Client ID Policy.
Similarly, two Sharable non durable subscriptions with the same client ID are treated
as two different independent subscriptions if they have a different client ID policy.

For more information on how to use the Subscription Sharing policy, see:

• Configure a connection factory subscription sharing policy in Oracle WebLogic
Server Administration Console Online Help.

• Shared Subscriptions and Client ID Policy

Chapter 7
Setting Up Durable Subscriptions

7-21

7.7.5 Creating Subscribers for a Durable Subscription
This section describes how to create subscribers for a durable subscription and
contains the following topics:

• Using JMS 2.0 API

• Using JMS 2.0 API

7.7.5.1 Using JMS 2.0 API
To create subscribers for an unshared durable subscription use one of the following
methods:

public MessageConsumer createDurableConsumer(
 Topic topic,
 String name
) throws JMSException

or

public MessageConsumer createDurableConsumer(
 Topic topic,
 String name,
 String selector,
 boolean noLocal
) throws JMSException

7.7.5.2 Using JMS 1.1 API
You can create subscribers for a durable subscription using the following TopicSession
methods:

public TopicSubscriber createDurableSubscriber(
 Topic topic,
 String name
) throws JMSException

or

public TopicSubscriber createDurableSubscriber(
 Topic topic,
 String name,
 String messageSelector,
 boolean noLocal
) throws JMSException

You must specify the name of the topic for which you are creating a subscriber and the
name of the durable subscription.

Note:

Valid durable subscription names cannot include the following characters:
comma , equals, colon , asterisk , percent , or question mark.

Chapter 7
Setting Up Durable Subscriptions

7-22

You may also specify a message selector for filtering messages and a noLocal flag
(described later in this section). Message selectors are described in more detail in
Filtering Messages. If you do not specify a selector or messageSelector,then by default
all messages are searched.

An application can use a JMS connection to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, an application can
receive messages it has published itself. To prevent this, a JMS application can set a
noLocal flag to true. The default for the noLocal value is false. Durable subscriptions
are stored within the file or database.

7.7.6 Best Practice: Always Close Failed JMS ClientIDs
As a best practice, JMS clients should always call the close() method instead of
allowing the application to rely on the JVM's garbage collection to clean failed JMS
connections. This is particularly important for durable subscription ClientIDs because
the JMS Automatic Reconnect feature keeps a reference to failed JMS connections.
Therefore, always use connection.close() method to clean up your connections. Also,
consider using a finally block to ensure that your connection resources are cleaned
up. Otherwise, WebLogic Server allocates system resources to keep the connection
available.

The following code example demonstrates using theclose() method and thefinally
block in a JMS client to clean up failed connection resources:

 JMSConnection con = null;
 try {
 con = cf.createConnection();
 con.setClientID("Fred");
 // Do some I/O stuff;
 }
 finally {
 if (con != null) con.close();
 }

For more information about the JMS Automatic Reconnect feature, see Automatic JMS
Client Failover.

7.7.7 Deleting Durable Subscriptions
To delete a durable subscription, you use the following TopicSession method:

public void unsubscribe(
 String name
) throws JMSException

You must specify the name of the durable subscription to be deleted.

You cannot delete a durable subscription if any of the following are true:

• A TopicSubscriber is still active on the session.

• A message received by the durable subscription is part of a transaction or has not
yet been acknowledged in the session.

Chapter 7
Setting Up Durable Subscriptions

7-23

Note:

You can also delete durable subscriptions from the WebLogic Server
Administration Console. For information about managing durable
subscriptions, see Managing Durable Subscriptions.

7.7.8 Modifying Durable Subscriptions
To modify a durable subscription, perform the following steps:

1. Delete the durable subscription, as described in Deleting Durable Subscriptions.

If it is not explicitly performed, the deletion will be executed implicitly when the
durable subscription is recreated in the next step.

2. Use the methods described in Creating Subscribers for a Durable Subscription to
re-create a durable subscription of the same name, but specifying a different topic
name, message selector, or noLocal value.

The durable subscription is re-created based on the new values.

Note:

When re-creating a durable subscription, be careful to avoid creating a durable
subscription with a duplicate name. For example, if you attempt to delete a
durable subscription from a JMS server that is unavailable, the delete call fails.
If you subsequently create a durable subscription with the same name on a
different JMS server, you may experience unexpected results when the first
JMS server becomes available. Because the original durable subscription has
not been deleted, when the first JMS server again becomes available, there
will be two durable subscriptions with duplicate names.

7.7.9 Managing Durable Subscriptions
You can monitor and manage durable topic subscribers using either the WebLogic
Server Administration Console or through public runtime APIs. This functionality also
enables you to view and browse all messages, and to manipulate most messages on
durable subscribers. This includes message browsing (for sorting), message
manipulation (such as move and delete), and message import and export. For more
information, see and Managing JMS Messages in Administering JMS Resources for
Oracle WebLogic Server.

7.8 Setting and Browsing Message Header and Property
Fields

WebLogic JMS provides a set of standard header fields that you can define to identify
and route messages. In addition, property fields enable you to include application-
specific header fields within a message, extending the standard set. You can use the
message header and property fields to convey information between communicating
processes.

Chapter 7
Setting and Browsing Message Header and Property Fields

7-24

The primary reason for including data in a property field rather than in the message
body is to support message filtering through message selectors. Except for XML
message extensions, data in the message body cannot be accessed through message
selectors. For example, suppose you use a property field to assign high priority to a
message. You can then design a message consumer that contains a message
selector that accesses this property field and selects only messages of expedited
priority. See Filtering Messages.

7.8.1 Setting Message Header Fields
JMS messages contain a standard set of header fields that are always transmitted with
the message. They are available to message consumers that receive messages, and
some fields can be set by the message producers that send messages. After a
message is received, its header field values can be modified.

When modifying (overriding) header field values, you must ake into consideration
instances when message fields are overwritten by the JMS subsystem. For instance,
setting the priority on a producer affects the priority of the message, but a value
supplied to the send() method overrides the setting on the producer. Similarly, values
set on a destination override values set by the producer or values supplied to the
send() method. The only way to verify the value of header fields is to query the
message after a send() method.

For a description of the standard messages header fields, see Message Header
Fields.

Table 7-3 lists the message class set and get methods for each of the supported data
types.

Note:

In some cases, the send() method overrides the header field value set using
the set() method, as indicated in the following table.

Table 7-3 JMS Header Field Methods

Header Field Set Method Get Method

JMSCorrelationID public void setJMSCorrelationID(
 String correlationID
) throws JMSException

public String getJMSCorrelationID(
) throws JMSException

public byte[]
getJMSCorrelationIDAsBytes(
) throws JMSException

JMSDestination1 public void setJMSDestination(
 Destination destination
) throws JMSException

public Destination getJMSDestination(
) throws JMSException

JMSDeliveryMode1 public void setJMSDeliveryMode(
 int deliveryMode
) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

Chapter 7
Setting and Browsing Message Header and Property Fields

7-25

Table 7-3 (Cont.) JMS Header Field Methods

Header Field Set Method Get Method

JMSDeliveryTime1 public void setJMSDeliveryTime(
 long deliveryTime
) throws JMSException

public long getJMSDeliveryTime(
) throws JMSException

JMSDeliveryMode1 public void setJMSDeliveryMode(
 int deliveryMode
) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

JMSMessageID1 public void setJMSMessageID(
 String id
) throws JMSException

Note: In addition to the set method, the
weblogic.jms.extensions.JMSRuntimeHel
per class provides the following methods to
convert between pre-WebLogic JMS 6.0
and 6.1 JMSMessageID formats:

public void oldJMSMessageIDToNew(
 String id,
 long timeStamp
) throws JMSException

public void newJMSMessageIDToOld(
 String id,
 long timeStamp
) throws JMSException

public String getJMSMessageID(
) throws JMSException

JMSPriority1 public void setJMSPriority(
 int priority
) throws JMSException

public int getJMSPriority(
) throws JMSException

JMSRedelivered1 public void setJMSRedelivered(
 boolean redelivered
) throws JMSException

public boolean getJMSRedelivered(
) throws JMSException

JMSRedeliveryLimit1 public void setJMSRedeliveryLimit(
 int redelivered
) throws JMSException

public int getJMSRedeliveryLimit(
) throws JMSException

JMSReplyTo public void setJMSReplyTo(
 Destination replyTo
) throws JMSException

public Destination getJMSReplyTo(
) throws JMSException

JMSTimeStamp1 public void setJMSTimeStamp(
 long timestamp
) throws JMSException

public long getJMSTimeStamp(
) throws JMSException

Chapter 7
Setting and Browsing Message Header and Property Fields

7-26

Table 7-3 (Cont.) JMS Header Field Methods

Header Field Set Method Get Method

JMSType public void setJMSType(
 String type
) throws JMSException

public String getJMSType(
) throws JMSException

1 The corresponding set() method has no impact on the message header field when the send() method is executed. If set, this
header field value will be overridden during the send() operation.

The examples.jms.sender.SenderServlet example, provided with WebLogic Server in
the EXAMPLES_HOME\wl_server\examples\src\examples\jms\sender directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code examples
are configured, shows how to set header fields in messages that you send and how to
display message header fields after they are sent.

For example, the following code, which appears after the send() method, displays the
message ID that was assigned to the message by WebLogic JMS:

System.out.println("Sent message " +
 msg.getJMSMessageID() + " to " +
 msg.getJMSDestination());

7.8.2 Setting Message Property Fields
To set a property field, call the appropriate set method and specify the property name
and value. To read a property field, call the appropriate get method and specify the
property name.

The sending application can set properties in the message, and the receiving
application can subsequently view them. The receiving application cannot change the
properties without first clearing them using the following clearProperties() method:

public void clearProperties(
) throws JMSException

This method does not clear the message header fields or body.

Note:

The JMSX property name prefix is reserved for JMS. The connection metadata
contains a list of JMSX properties, which can be accessed as an enumerated list
using the getJMSXPropertyNames() method. For more information, see
Accessing Connection Metadata.

The JMS_ property name prefix is reserved for provider-specific properties; it is
not intended for use with standard JMS messaging.

The property field can be set to any of the following types: boolean, byte, double,
float, int, long, short, or string. The following table lists the Message class set
and get methods for each of the supported data types.

Chapter 7
Setting and Browsing Message Header and Property Fields

7-27

Table 7-4 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method

boolean
public void setBooleanProperty(
 String name,
 boolean value
) throws JMSException

public boolean getBooleanProperty(
 String name
) throws JMSException

byte
public void setByteProperty(
 String name,
 byte value
) throws JMSException

public byte getByteProperty(
 String name
) throws JMSException

double
public void setDoubleProperty(
 String name,
 double value
) throws JMSException

public double getDoubleProperty(
 String name
) throws JMSException

float
public void setFloatProperty(
 String name,
 float value
) throws JMSException

public float getFloatProperty(
 String name
) throws JMSException

int
public void setIntProperty(
 String name,
 int value
) throws JMSException

public int getIntProperty(
 String name
) throws JMSException

long
public void setLongProperty(
 String name,
 long value) throws JMSException

public long getLongProperty(
 String name
) throws JMSException

short
public void setShortProperty(
 String name,
 short value
) throws JMSException

public short getShortProperty(
 String name
) throws JMSException

String
public void setStringProperty(
 String name,
 String value
) throws JMSException

public String getStringProperty(
 String name
) throws JMSException

In addition to the set and get methods described in the previous table, you can use the
setObjectProperty() and getObjectProperty() methods to use the objectified primitive
values of the property type. When the objectified value is used, the property type can
be determined at execution time rather than during the compilation. The valid object
types are boolean, byte, double, float, int, long, short, and string.

You can access all property field names using the following Message method:

public Enumeration getPropertyNames(
) throws JMSException

Chapter 7
Setting and Browsing Message Header and Property Fields

7-28

This method returns all property field names as an enumeration. You can then retrieve
the value of each property field by passing the property field name to the appropriate
get method, as described in the Table 7-4, based on the property field data type.

Table 7-5 contains a conversion chart for message properties. It enables you to
identify the type that can be read based on the type that has been written. For each
property type listed in the left-most column in which a message has been written, a
YES in one of the remaining columns indicates that the message can be read as the
type listed at the top of that column.

Table 7-5 Message Property Conversion Chart

Property
Written As. . .

boolean byte double float int long short String

boolean YES No No No No No No YES

byte No YES No No YES YES YES YES

double No No YES No No No No YES

float No No YES YES No No No YES

int No No No No YES YES No YES

long No No No No No YES No YES

Object YES YES YES YES YES YES YES YES

short No No No No YES YES YES YES

String YES YES YES YES YES YES YES YES

You can test whether or not a property value was set using the following Message
method:

public boolean propertyExists(
 String name
) throws JMSException

You specify a property name and the method returns a Boolean value indicating
whether or not the property exists.

For example, the following code sets two String properties and an int property:

msg.setStringProperty("User", user);
msg.setStringProperty("Category", category);
msg.setIntProperty("Rating", rating);

For more information about message property fields, see Message Property Fields , or
the javax.jms.Message Javadoc at http://docs.oracle.com/javaee/7/api/javax/jms/
Message.html.

7.8.3 Browsing Header and Property Fields

Note:

Only queue message header and property fields can be browsed. You cannot
browse topic message header and property fields.

Chapter 7
Setting and Browsing Message Header and Property Fields

7-29

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

You can browse the header and property fields of messages on a queue using the
following QueueSession methods:

public QueueBrowser createBrowser(
 Queue queue
) throws JMSException

public QueueBrowser createBrowser(
 Queue queue,
 String messageSelector
) throws JMSException

You must specify the queue that you want to browse. You can also specify a message
selector to filter messages that you are browsing. Message selectors are described in
more detail in Filtering Messages.

After you define a queue, you can access the queue name and message selector
associated with a queue browser using the following QueueBrowser methods:

public Queue getQueue(
) throws JMSException

public String getMessageSelector(
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the
following QueueBrowser method:

public Enumeration getEnumeration(
) throws JMSException

The examples.jms.queue.QueueBrowser example, provided with WebLogic Server in the
EXAMPLES_HOME\wl_server\examples\src\examples\jms\queue directory, where
EXAMPLES_HOME represents the directory in which the WebLogic Server code examples
are configured, shows how to access the header fields of received messages.

For example, the following code is an excerpt from the QueueBrowser example and
creates the QueueBrowser object:

qbrowser = qsession.createBrowser(queue);

The following is an excerpt from the displayQueue() method defined in the QueueBrowser
example. In this example, the QueueBrowser object is used to obtain an enumeration
that is subsequently used to scan the queue's messages.

 public void displayQueue(
) throws JMSException
 {
 Enumeration e = qbrowser.getEnumeration();
 Message m = null;

 if (! e.hasMoreElements()) {
 System.out.println("There are no messages on this queue.");
 } else {

 System.out.println("Queued JMS Messages: ");
 while (e.hasMoreElements()) {
 m = (Message) e.nextElement();
 System.out.println("Message ID " + m.getJMSMessageID() +
 " delivered " + new Date(m.getJMSTimestamp())
 " to " + m.getJMSDestination());

Chapter 7
Setting and Browsing Message Header and Property Fields

7-30

 }
 }

When a queue browser is no longer being used, you should close it to free up
resources. For more information, see Releasing Object Resources.

For more information about the QueueBrowser class, see the javax.jms.QueueBrowser
Javadoc at http://docs.oracle.com/javaee/7/api/javax/jms/QueueBrowser.html.

7.9 Filtering Messages
In many cases, an application does not need to be notified of every message that is
delivered to it. Use message selectors to filter unwanted messages, and subsequently
improve performance by minimizing their effect on network traffic.

Message selectors operate as follows:

• The sending application sets message header or property fields to describe or
classify a message in a standardized way.

• The receiving applications specify a simple query string to filter the messages that
they want to receive.

Because message selectors cannot reference the contents (body) of a message,
some information may be duplicated in the message property fields (except in the case
of XML messages).

You specify a selector when creating a queue receiver or topic subscriber, as an
argument to the QueueSession.createReceiver() or TopicSession.createSubscriber()
methods, respectively. For information about creating queue receivers and topic
subscribers, see Step 5: Create Message Producers and Message Consumers.

WebLogic JMS assigns a state or current processing condition to messages during
processing. You can use these states as selectors. For information on valid message
states, see weblogic.jms.extensions.JMSMessageInfo in Java API Reference for
Oracle WebLogic Server.

The following sections describe how to define a message selector using SQL
statements and XML selector methods, and how to update message selectors. For
more information about setting header and property fields, see Setting and Browsing
Message Header and Property Fields and Setting Message Property Fields ,
respectively.

7.9.1 Defining Message Selectors Using SQL Statements
A message selector is a Boolean expression. It consists of a String with a syntax
similar to the where clause of an SQL select statement.

The following excerpts provide examples of selector expressions.

salary > 64000 and dept in ('eng','qa')

(product like 'WebLogic%' or product like '%T3')
 and version > 3.0

hireyear between 1990 and 1992
 or fireyear is not null

fireyear - hireyear > 4

Chapter 7
Filtering Messages

7-31

http://docs.oracle.com/javaee/7/api/javax/jms/QueueBrowser.html

The following example shows how to set a selector when creating a queue receiver
that filters out messages with a priority lower than 6.

String selector = "JMSPriority >= 6";
qsession.createReceiver(queue, selector);

The following example shows how to set the same selector when creating a topic
subscriber.

String selector = "JMSPriority >= 6";
qsession.createSubscriber(topic, selector);

For more information about the message selector syntax, see the javax.jms.Message
Javadoc at http://docs.oracle.com/javaee/7/api/javax/jms/Message.html.

7.9.2 Defining XML Message Selectors Using XML Selector Method
For XML message types, in addition to using the SQL selector expressions described
in the previous section to define message selectors, you can use the following method:

String JMS_BEA_SELECT(String type, String expression)

The JMS_BEA_SELECT is a built-in function in WebLogic JMS SQL syntax. You specify the
syntax type, which must be set to xpath (XML path language) and an XPath
expression. The XML path language is defined in the XML Path Language (XPath)
document, which is available at the XML Path Language web site at: http://
www.w3.org/TR/xpath.

Note:

Pay careful attention to your XML message syntax, since malformed XML
messages (for example, a missing end tag) will not match any XML selector.

The method returns a null value under the following circumstances:

• The message does not parse.

• The message parses, but the element is not present.

• If a message parses and the element is present, but the message contains no
value (for example, <order></order>).

For example, consider the following XML code example:

<order>
 <item>
 <id>007</id>
 <name>Hand-held Power Drill</name>
 <description>Compact, assorted colors.</description>
 <price>$34.99</price>
 </item>
 <item>
 <id>123</id>
 <name>Mitre Saw</name>
 <description>Three blades sizes.</description>
 <price>$69.99</price>
 </item>

Chapter 7
Filtering Messages

7-32

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

 <item>
 <id>66</id>
 <name>Socket Wrench Set</name>
 <description>Set of 10.</description>
 <price>$19.99</price>
 </item>
</order>

The following example shows how to retrieve the name of the second item in the
previous example. This method call returns the string, Mitre Saw.

 String sel = "JMS_BEA_SELECT('xpath', '/order/item[2]/name/text()') = 'Mitre
Saw'";

Pay careful attention to the use of double and single quotation mark and spaces. Note
the use of single quotation mark around xpath, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous
example. This method call returns the string, 66.

 String sel = "JMS_BEA_SELECT('xpath', '/order/item[3]/id/text()') = '66'";

7.9.3 Displaying Message Selectors
You can use the following MessageConsumer method to display a message selector:

public String getMessageSelector(
) throws JMSException

This method returns either the currently defined message selector or null if a message
selector is not defined.

7.9.4 Indexing Topic Subscriber Message Selectors to Optimize
Performance

For a certain class of applications, WebLogic JMS can significantly optimize topic
subscriber message selectors by indexing them. These applications typically have a
large number of subscribers, each with a unique identifier (like a user name), and they
need to be able to quickly send a message to a single subscriber or to a list of
subscribers. A typical example is an instant messaging application where each
subscriber corresponds to a different user, and each message contains a list of one or
more target users.

To activate optimized subscriber message selectors, subscribers must use the
following syntax for their selectors:

 "identifier IS NOT NULL"

identifier is an arbitrary string that is not a predefined JMS message property (e.g.,
neither JMSCorrelationID nor JMSType). Multiple subscribers can share the same
identifier.

WebLogic JMS uses this message selector syntax as a hint to build internal subscriber
indexes. Message selectors that do not follow the syntax, or that include additional OR
and AND clauses, are still honored, but do not activate the optimization.

Chapter 7
Filtering Messages

7-33

After subscribers register using this message selector syntax, a message published to
the topic can target specific subscribers by including one or more identifiers in the
message's user properties, as shown in the following example:

// Set up a named subscriber, where "wilma" is the name of
// the subscriber and subscriberSession is a JMS TopicSession.
// Note that the selector syntax used activates the optimization.

TopicSubscriber topicSubscriber =
 subscriberSession.createSubscriber(
 (Topic)context.lookup("IMTopic"),
 "Wilma IS NOT NULL",
 /* noLocal= */ true);

// Send a message to subscribers "Fred" and "Wilma",
// where publisherSession is a JMS TopicSession. Subscribers
// with message selector expressions "Wilma IS NOT NULL"
// or "Fred IS NOT NULL" will receive this message.

TopicPublisher topicPublisher =
 publisherSession.createPublisher(
 (Topic)context.lookup("IMTopic");

TextMessage msg =
 publisherSession.createTextMessage("Hi there!");
msg.setBooleanProperty("Fred", true);
msg.setBooleanProperty("Wilma", true);

topicPublisher.publish(msg);

Note:

The optimized message selector and message syntax is based on the
standard JMS API; therefore, applications that use this syntax will also work
on versions of WebLogic JMS that do not have optimized message selectors,
and on non-WebLogic JMS products. However, these versions will not perform
as well as versions that include this enhancement.

The message selector optimization will have no effect on applications that use
the MULTICAST_NO_ACKNOWLEDGE acknowledge mode. These applications have no
need for the enhancement anyway, because the message selection occurs on
the client side rather than on the server side.

7.10 Sending XML Messages
The WebLogic Server JMS API provides native support for the Document Object
Model (DOM) to send XML messages.

Note:

This release does not support streaming. Only text and DOM representations
of XML documents are supported.

Chapter 7
Sending XML Messages

7-34

The following sections provide information on WebLogic JMS API extensions that
provide enhanced support for XML messages.

• WebLogic XML APIs

• Using a String Representation

• Using a DOM Representation

7.10.1 WebLogic XML APIs
You can use the following WebLogic XML APIs for transformation of XML between
String and DOM representations:

• XMLMessage: Use to send messages with XML content.

• WLSession.createXMLMessage : Use to create an XML message.

It is possible for the payload of XMLMessage to be set using one XML representation and
retrieved using a different representation. For example, it is valid for the XMLMessage
body to be set using a String representation and be retrieved using a DOM
representation.

7.10.2 Using a String Representation
Use the following steps to publish an XML message using a string type:

1. Serialize the XML to a StringWriter.

2. Call thetoString on the StringWriter and pass it into the message.setText.

3. Publish the message.

7.10.3 Using a DOM Representation
Sending XML messages using a DOM representation provides a significant
performance improvement over sending messages as a String. Use the following
steps to publish an XML message using a Dom representation:

1. If necessary, generate a DOM document from your XML source.

2. Pass the DOM document into theXMLMessage.setDocument.

3. Publish the message.

Chapter 7
Sending XML Messages

7-35

Chapter 7

Sending XML Messages

7-36

8
Using JMS Module Helper to Manage
Applications

Learn how to create and manage JMS servers, Store-and-Forward agents, and JMS
system resources by using JMSModuleHelper.

See weblogic.jms.extensions.JMSModuleHelper.

• Configuring JMS System Resources Using JMSModuleHelper

• Configuring JMS Servers and Store-and-Forward Agents

• JMSModuleHelper Sample Code

• Security Considerations for Anonymous Users

• Best Practices When Using JMSModuleHelper

8.1 Configuring JMS System Resources Using
JMSModuleHelper

You can manage a system module, including the JMS resources it contains by
providing the domain MBean or by providing the initial context to the administration
server in the API signatures defined by the JMSModuleHelper class.

The JMSModuleHelperclass provides the following API signatures to manage a system
module and JMS resources, such as queues and topics:

• Create a resource

• Create and modify resource

• Delete a resource

• Find and modify a resource

• Find using a template

See Configuring Basic JMS System Resources in the Administering JMS Resources
for Oracle WebLogic Server.

8.2 Configuring JMS Servers and Store-and-Forward Agents
You can manage JMS servers and Store-and-Forward agents by providing the domain
MBean or by providing the initial context to the administration server in the API
signature defined by the JMSModuleHelper class.

The JMSModuleHelper class provides the following method APIs to manage JMS servers
and Store-and-Forward agents:

• Create JMS servers and Store-and-Forward Agents

• Delete JMS servers and Store-and-Forward Agents

8-1

• Deploy JMS servers and Store-and-Forward Agents

• Undeploy JMS servers and Store-and-Forward Agents

Related Topics

• Configuring Basic JMS System Resources in the Administering JMS Resources
for Oracle WebLogic Server.

• Understanding the Store-and-Forward Service in the Administering JMS
Resources for Oracle WebLogic Server.

8.3 JMSModuleHelper Sample Code
Learn how to create and delete a JMS system resource module by following
instructions in the sample code.

• Creating a JMS System Resource

• Deleting a JMS System Resource

8.3.1 Creating a JMS System Resource
The module contains a connection factory and a topic.

Example 8-1 shows how to create JMS system resources.

Example 8-1 Create JMS System Resources

.

.

.
private static void createJMSUsingJMSModuleHelper(Context ctx){
System.out.println(
 "\n\n.... Configure JMS Resource for C API Topic Example\n\n");

 try {

 MBeanHome mbeanHome =
 (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 DomainMBean domainMBean = mbeanHome.getActiveDomain();
 String domainMBeanName = domainMBean.getName();
 ServerMBean[] servers = domainMBean.getServers();

 String jmsServerName = "examplesJMSServer";

//
// create a JMSSystemResource "CapiTopic-jms"
//
 String resourceName = "CapiTopic-jms";
 JMSModuleHelper.createJMSSystemResource(
 ctx,
 resourceName,
 servers[0].getName());
 JMSSystemResourceMBean jmsSR =
 JMSModuleHelper.findJMSSystemResource(
 ctx,
 resourceName);
 JMSBean jmsBean = jmsSR.getJMSResource();
 System.out.println("Created JMSSystemResource " + resourceName);

Chapter 8
JMSModuleHelper Sample Code

8-2

//
// create a JMSConnectionFactory "CConFac"
//
 String factoryName = "CConFac";
 String jndiName = "CConFac";
 JMSModuleHelper.createConnectionFactory(
 ctx,
 resourceName,
 factoryName,
 jndiName,
 servers[0].getName());
 JMSConnectionFactoryBean factory =
jmsBean.lookupConnectionFactory(factoryName);
 System.out.println("Created Factory " + factory.getName());

//
// create a topic "CTopic"
//
 String topicName = "CTopic";
 String topicjndiName = "CTopic";
 JMSModuleHelper.createTopic(
 ctx,
 resourceName,
 jmsServerName,
 topicName,
 topicjndiName);

 TopicBean topic = jmsBean.lookupTopic(topicName);
 System.out.println("Created Topic " + topic.getName());
 } catch (Exception e) {
 System.out.println("Example configuration failed :" + e.getMessage());
 e.printStackTrace();
 }
}
.
.
.

8.3.2 Deleting a JMS System Resource
The following code removes JMS system resources.

Example 8-2 shows how to delete the JMS system resources.

Example 8-2 Delete JMS System Resources

.

.

.
private static void deleteJMSUsingJMSModuleHelper(Context ctx) {

 System.out.println("\n\n.... Remove JMS System Resource for C API Topic
Example\n\n");

 try {

 MBeanHome mbeanHome =
 (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 DomainMBean domainMBean = mbeanHome.getActiveDomain();
 String domainMBeanName = domainMBean.getName();

Chapter 8
JMSModuleHelper Sample Code

8-3

 ServerMBean[] servers = domainMBean.getServers();

 String jmsServerName = "examplesJMSServer";

//
// delete JMSSystemResource "CapiTopic-jms"
//
 String resourceName = "CapiTopic-jms";
 JMSModuleHelper.deleteJMSSystemResource(
 ctx,
 resourceName
);
 } catch (Exception e) {
 System.out.println("Example configuration failed :" + e.getMessage());
 e.printStackTrace();
 }
}
.
.
.

8.4 Security Considerations for Anonymous Users
If your application environment depends on using anonymous users, you can create a
security role for Anonymous and then apply a policy to the
weblogic.management.mbeanservers JNDI resource that allow access by users in that
role.

See Security for WebLogic Server MBeans in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

Since WebLogic Server 10.3.6, the JMSModuleHelper does not support anonymous
lookup (using -Dweblogic.management.anonymousAdminLookupEnabled=true) to comply with
the existing WebLogic security model.

8.5 Best Practices When Using JMSModuleHelper
Understand the best practices to follow when using the JMSModuleHelper class to
configure JMS servers and resources.

• Trap for null MBean objects (such as servers, JMS servers, modules) before trying
to manipulate the MBean object.

• A create or delete method call can fail without throwing an exception. In addition, a
thrown exception does not necessarily indicate that the method call failed.

• The time required to create the destination on the JMS server and propagate the
information to the JNDI namespace can be significant. The propagation delay
increases if the environment contains multiple servers. It is recommended that you
test for the existence of the queue or topic, respectively, using the session
createQueue() or createTopic() method, rather than perform a JNDI lookup. By
doing so, you can avoid some of the propagation-specific delay.

For example, the following method, findQueue(), attempts to access a dynamically
created queue, and if unsuccessful, sleeps for a specified interval before retrying.
A maximum retry count is established to prevent an infinite loop.

private static Queue findQueue (
 QueueSession queueSession,

Chapter 8
Security Considerations for Anonymous Users

8-4

 String jmsServerName,
 String queueName,
 int retryCount,
 long retryInterval
) throws JMSException
{
 String wlsQueueName = jmsServerName + "/" + queueName;
 String command = "QueueSession.createQueue(" +
 wlsQueueName + ")";
 long startTimeMillis = System.currentTimeMillis();
 for (int i=retryCount; i>=0; i--) {
 try {
 System.out.println("Trying " + command);
 Queue queue = queueSession.createQueue(wlsQueueName);
 System.out.println(command + "succeeded after " +
 (retryCount - i + 1) + " tries in " +
 (System.currentTimeMillis() - startTimeMillis) +
 " millis.");
 return queue;
 } catch (JMSException je) {
 if (retryCount == 0) throw je;
 }
 try {
 System.out.println(command + "> failed, pausing " +
 retryInterval + " millis.");
 Thread.sleep(retryInterval);
 } catch (InterruptedException ignore) {}
 }
 throw new JMSException("out of retries");
}

You can then call the findQueue() method after the JMSModuleHelper class method call
to retrieve the dynamically created queue after it becomes available. For example:

JMSModuleHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,
 queueName, jndiName);
Queue queue = findQueue(qsess, jmsServerName, queueName,
 retry_count, retry_interval);

Chapter 8
Best Practices When Using JMSModuleHelper

8-5

Chapter 8

Best Practices When Using JMSModuleHelper

8-6

9
Using Multicasting with WebLogic JMS

Learn how WebLogic JMS Multicasting enables the delivery of messages to a select
group of hosts that subsequently forward the messages to subscribers in a cluster.

• Benefits of Using Multicasting

• Limitations of Using Multicasting

• Configuring Multicasting for WebLogic Server

9.1 Benefits of Using Multicasting
Understand the benefits of using multicasting.

• Near real-time delivery of messages to a host group

• High scalability due to the reduction in the amount of resources required by the
JMS server to deliver messages to topic subscribers in a cluster

9.2 Limitations of Using Multicasting
Understand the limitations of multicasting and the scenarios when multicasting should
not be used.

The limitations of multicasting include:

• Multicast messages are not guaranteed to be delivered to all members of the host
group. For messages requiring reliable delivery and recovery, you should not use
multicasting.

• For interoperability with different versions of WebLogic Server, clients cannot have
an earlier release of WebLogic Server installed than the host has. They must all
have at least the same version or later.

For an example of when multicasting might be useful, consider a stock ticker. When
accessing stock quotes, timely delivery is more important than reliability. When
accessing the stock information in real-time, if all or a portion of the contents is not
delivered, the client can request the information to be resent. Clients would not want to
have the information recovered, in this case, as by the time it is redelivered, it would
be out-of-date.

9.3 Using WebLogic Server Unicast
WebLogic Server provides an alternative to using multicast to handle cluster
messaging and communications. Unicast configuration is much easier because it does
not require the cross network configuration that multicast requires. Additionally, it
reduces potential network errors that can occur from multicast address conflicts.

9-1

JMS topics configured for multicasting can access WebLogic clusters configured for
unicast because a JMS topic publishes messages on its own multicast address that is
independent of the cluster address. However, the following considerations apply:

• The router hardware configurations that allow unicast clusters may not allow JMS
multicast subscribers to work.

• JMS multicast subscribers need to be in a network hardware configuration that
allows multicast accessibility.

See Communications In a Cluster in Administering Clusters for Oracle WebLogic
Server.

9.4 Configuring Multicasting for WebLogic Server
Learn how to configure multicasting for WebLogic server.

Figure 9-1 shows the steps required to set up multicasting.

Figure 9-1 Setting Up Multicasting

Note:

Multicasting is only supported for the Publish/Subscribe messaging model,
and only for non durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.

9.4.1 Prerequisites for Multicasting
Before setting up multicasting, the connection factory and destination must be
configured to support multicasting, as follows:

• For each connection factory, the system administrator configures the maximum
number of outstanding messages that can exist on a multicast session and
whether the most recent or oldest messages are discarded in the event the
maximum is reached. If the message maximum is reached, a DataOverrunException
is thrown, and messages are automatically discarded. These attributes are also
dynamically configurable, as described in Dynamically Configuring Multicasting
Configuration Attributes.

• For each destination, the Multicast Address (IP), Port, and TTL (Time-To-Live)
attributes are specified. To better understand the TTL attribute setting, see
Example: Multicast Time-to-Live.

Chapter 9
Configuring Multicasting for WebLogic Server

9-2

Note:

It is strongly recommended that you seek the advice of your network
administrator when configuring the multicast IP address, port, and time-to-live
attributes to ensure that the appropriate values are set.

For more information, see Configure topic multicast parameters in the Oracle
WebLogic Server Administration Console Online Help.

9.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic
Subscriber

Set up the JMS application as described in Setting Up a JMS Application. However,
when creating sessions, as described in Step 3: Create a Session Using the
Connection, specify that the session would like to receive multicast messages by
setting the acknowledgeMode value to MULTICAST_NO_ACKNOWLEDGE.

Note:

Multicasting is only supported for the Publish/Subscibe messaging model for
non-durable subscribers. An attempt to create a durable subscriber on a
multicast session will cause a JMSException to be thrown.

For example, the following method shows how to create a multicast session for the
Publish/Subscibe messaging model.

JMSModuleHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,
 queueName, jndiName);
Queue queue = findQueue(qsess, jmsServerName, queueName,
 retry_count, retry_interval);

Note:

On the client side, each multicasting session requires one dedicated thread to
retrieve messages off the socket. Therefore, you should increase the JMS
client-side thread pool size to adjust for this.

In addition, create a topic subscriber, as described in Create TopicPublishers and
TopicSubscribers.

For example, the following code illustrates how to create a topic subscriber:

tsubscriber = tsession.createSubscriber(myTopic);

Chapter 9
Configuring Multicasting for WebLogic Server

9-3

Note:

The createSubscriber() method fails if the specified destination is not
configured to support multicasting.

9.4.3 Step 2: Set Up the Message Listener
Multicast topic subscribers can only receive messages asynchronously. If you attempt
to receive synchronous messages on a multicast session, then a JMSException is
thrown.

Set up the message listener for the topic subscriber, as described in Receiving
Messages Asynchronously using the Classic API.

For example, the following code shows how to establish a message listener:

tsubscriber.setMessageListener(this);

When receiving messages, WebLogic JMS tracks the order in which messages are
sent by the destinations. If a multicast subscriber's message listener receives the
messages out of sequence, resulting in one or more messages being skipped, then a
SequenceGapException will be delivered to the ExceptionListener for the session(s)
present. If a skipped message is subsequently delivered, then it will be discarded. For
example, in the Figure 9-2, the subscriber is receiving messages from two destinations
simultaneously.

Figure 9-2 Multicasting Sequence Gap

Upon receiving the "4" message from Destination 1, a SequenceGapException is thrown
to notify the application that a message was received out of sequence. If subsequently
received, the "3" message will be discarded.

Note:

The larger the messages being exchanged, the greater the risk of
encountering a SequenceGapException.

9.4.4 Dynamically Configuring Multicasting Configuration Attributes
During configuration, for each connection factory the system administrator configures
the following information to support multicasting:

Chapter 9
Configuring Multicasting for WebLogic Server

9-4

• Message maximum specifying the maximum number of outstanding messages
that can exist on a multicast session.

• Overrun policy specifying whether recent or older messages are discarded in the
event the message maximum is reached.

If the message maximum is reached, a DataOverrunException is thrown and messages
are automatically discarded based on the overrun policy. Alternatively, you can set the
messages maximum and overrun policy using the Session set methods.

Table 9-1 lists the Session set and get methods for each dynamically configurable
attribute.

Table 9-1 Message Producer Set and Get Methods

Attribute Set Method Get Method

Message
Maximum

public void setMessagesMaximum(
 int messagesMaximum
) throws JMSException

public int getMessagesMaximum(
) throws JMSException

Overrun Policy
public void setOverrunPolicy (
 int overrunPolicy
) throws JMSException

public int getOverrunPolicy(
) throws JMSException

Note:

The values set using the set methods take precedence over the configured
values.

For more information about these Session class methods, see the
weblogic.jms.extensions.WLSession Javadoc. For more information about these
multicast configuration attributes, see Configure topic multicast parameters in the
Oracle WebLogic Server Administration Console Online Help.

9.4.5 Example: Multicast Time-to-Live

Note:

The following example is a very simplified illustration of how the Multicast TTL
(time-to-live) destination configuration attribute affects the delivery of
messages across routers. It is strongly advised that you seek the assistance of
your network administrator when configuring the multicast TTL attribute to
ensure that the appropriate value is set.

The Multicast TTL is independent of the message time-to-live.

Figure 9-1 shows how the Multicast TTL destination configuration attribute affects the
delivery of messages across routers.

Chapter 9
Configuring Multicasting for WebLogic Server

9-5

For more information, see Configure topic multicast parameters in the Oracle
WebLogic Server Administration Console Online Help.

Figure 9-3 Multicast TTL Example

In the figure, the network consists of three subnets: Subnet A containing the multicast
publisher, and Subnets B and C each contain one multicast subscriber.

If the Multicast TTL attribute is set to 0 (indicating that the messages cannot traverse
any routers and are delivered on the current subnet only), when the multicast publisher
on Subnet A publishes a message, the message will not be delivered to any of the
multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one
router), when the multicast publisher on Subnet A publishes a message, the multicast
subscriber on Subnet B will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can
traverse two routers), when the multicast publisher on Subnet A publishes a message,
the multicast subscribers on Subnets B and C will receive the message.

Chapter 9
Configuring Multicasting for WebLogic Server

9-6

10
Using Distributed Destinations

Understand the concepts and functionality of distributed destinations necessary to
design high availability (HA) applications.

• What Is a Distributed Destination?

• Why Use a Distributed Destination

• Creating a Distributed Destination

• Types of Distributed Destinations

• Using Distributed Destinations

• Using Message-Driven Beans with Distributed Destinations

• Common Use Cases for Distributed Destinations

10.1 What Is a Distributed Destination?
A distributed destination is a set of destinations (queues or topics) that are accessible
as a single, logical destination to a client.

A distributed destination has the following characteristics:

• It is referenced by its own JNDI name.

• Each member of the set can belong to a separate JMS server distributed across
multiple servers within a single cluster, or can be located on JMS servers that are
all on the same single non-clustered standalone server. Members of the set
cannot be distributed across multiple non-clustered standalone servers, and
cannot be distributed across multiple clusters.

10.2 Why Use a Distributed Destination
Applications that use distributed destinations are more highly available than
applications that use simple destinations because WebLogic JMS provides load
balancing and failover for member destinations of a distributed destination within a
cluster.

Once properly configured, your producers and consumers are able to send and
receive messages through the distributed destination. WebLogic JMS then balances
the messaging load across all available members of the distributed destination. When
one member becomes unavailable due a server failure, traffic is then redirected toward
other available destination members in the set. For more information about how
destination members are load balanced, see "Configuring Distributed Destination
Resources" in Administering JMS Resources for Oracle WebLogic Server.

10-1

10.3 Creating a Distributed Destination
System administrators create distributed destinations by using the WebLogic Server
Administration Console.

See Configuring Distributed Destination Resources in Administering JMS Resources
for Oracle WebLogic Server.

10.4 Types of Distributed Destinations
Learn about the two types of distributed destinations supported by WebLogic Server.

• Uniform Distributed Destinations

• Weighted Distributed Destinations

10.4.1 Uniform Distributed Destinations
In a uniform distributed destination (UDD), each of the member destinations has a
consistent configuration of all distributed destination parameters, particularly in regards
to weighting, security, persistence, paging, and quotas.

Oracle recommends using UDDs because you no longer need to create or designate
destination members, but instead rely on WebLogic Server to uniformly create the
necessary members on the JMS servers to which a UDD is targeted. This feature of
UDDs provides dynamic updating of a UDD when a new member is added or a
member is removed.

For example, if a UDD is targeted to a cluster, there is a UDD member on every JMS
server in the cluster. If a new JMS server is added, then a new UDD member is
dynamically added to the UDD. Likewise, if a JMS server is removed, then the
corresponding UDD member is removed from the UDD. This allows UDDs to provide
higher availability by eliminating bottlenecks caused by configuration errors. For more
information, see Configuring Distributed Destination Resources in Administering JMS
Resources for Oracle WebLogic Server.

10.4.2 Weighted Distributed Destinations

Note:

Weighted distributed destinations are deprecated in Weblogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

In a weighted distributed destination, the member destinations do not have a
consistent configuration of all distributed destination parameters, particularly in regards
to weighting, security, persistence, paging, and quotas.

Oracle recommends converting weighted distributed destinations to UDDs because of
the administrative inflexibility when creating members that are intended to carry extra
message load or have extra capacity (more weight). Lack of a consistent member

Chapter 10
Creating a Distributed Destination

10-2

configuration can lead to unforeseen administrative and application problems because
the weighted distributed destination can not be deployed consistently across a cluster.

For more information, see Configuring Distributed Destination Resources in
Administering JMS Resources for Oracle WebLogic Server.

10.5 Using Distributed Destinations
A distributed destination is a set of physical JMS destination members (queues or
topics) that is accessed through a single JNDI name.

As such, a distributed destination can be looked up using JNDI. Distributed destination
implements the javax.jms.Destination interface, at http://docs.oracle.com/
javaee/7/api/javax/jms/Destination.html, and can be used to create producers,
consumers, and browsers.

For information about obtaining a reference to a distributed destination, see How to
Look Up a Destination.

• Using Distributed Queues

• Using Replicated Distributed Topics

• Using Partitioned Distributed Topics

10.5.1 Using Distributed Queues
A distributed queue is a set of physical JMS queue members. As such, a distributed
queue can be used to create a QueueSender, QueueReceiver, and a QueueBrowser. The
fact that a distributed queue represents multiple physical queues is mostly transparent
to your application.

The queue members can be located anywhere, but must all be served by JMS servers
in a single server cluster. When a message is sent to a distributed queue, it is sent to
one of the physical queues in the set of members for the distributed queue. Once the
message arrives at the queue member, it is available for receipt by consumers of that
queue member only. '

This section provides information on using distributed queues:

• Queue Forwarding

• QueueSenders

• QueueReceivers

• QueueBrowsers

10.5.1.1 Queue Forwarding
Queue members can forward messages to other queue members by configuring the
Forward Delay attribute in the WebLogic Server Administration Console, which is
disabled by default. This attribute defines the amount of time, in seconds, that a
distributed queue member with messages, but which has no consumers, will wait
before forwarding its messages to other queue members that do have consumers. By
default, WebLogic Server resets the delivery count when forwarding between
distributed queue members. See Reset Delivery Count On Forward.

Chapter 10
Using Distributed Destinations

10-3

http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

10.5.1.2 QueueSenders
After creating a queue sender, if the queue supplied at creation time was a distributed
queue, then each time a message is produced using the sender a decision is made as
to which queue member will receive the message. Each message is sent to a single
physical queue member.

The message is not replicated. As such, the message is only available from the queue
member where it was sent. If that physical queue becomes unavailable before a given
message is received, then the message is unavailable until that queue member comes
back online.

It is not enough to send a message to a distributed queue and expect the message to
be received by a queue receiver of that distributed queue. Because the message is
sent to only one physical queue member, there must be a queue receiver receiving or
listening on that queue member.

Note:

For information about the load-balancing heuristics for distributed queues with
zero consumers, see Configuring Distributed Destination Resources in
Administering JMS Resources for Oracle WebLogic Server.

10.5.1.3 QueueReceivers
When creating a queue receiver, if the supplied queue is a distributed queue, then a
single physical queue member is chosen for the receiver at creation time. The created
QueueReceiver is pinned to that queue member until the queue receiver loses its access
to the queue member. At that point, the consumer will receive a JMSException, as
follows:

• If the queue receiver is synchronous, then the exception is returned to the user
directly.

• If the queue receiver is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener defined for the
consumer session, if any.

Upon receiving such an exception, an application can close its queue receiver and
recreate it. If any other queue members are available within the distributed queue,
then the creation will succeed and the new queue receiver will be pinned to one of
those queue members. If no other queue member is available, then the application
would not be able to recreate the queue receiver and will have to try again later.

Note:

For information about the load-balancing heuristics for distributed queues with
zero consumers, see Configuring Distributed Destination Resources in
Administering JMS Resources for Oracle WebLogic Server.

Chapter 10
Using Distributed Destinations

10-4

10.5.1.4 QueueBrowsers
When creating a queue browser, if the supplied queue is a distributed queue, then a
single physical queue member is chosen for the browser at creation time. The created
queue browser is pinned to that queue member until the receiver loses its access to
the queue member. At that point, any calls to the queue browser will receive a
JMSException. Any calls to the enumeration will return a NoSuchElementException.

Note:

The queue browser can only browse the queue member that it is pinned to.
Even though a distributed queue was specified at creation time, the queue
browser cannot see or browse messages for the other queue members in the
distributed destination.

10.5.2 Using Replicated Distributed Topics
A distributed topic is a set of physical JMS topic members. A distributed topic can be
used to create a TopicPublisher and TopicSubscriber. The fact that a distributed topic
represents multiple physical topics is mostly transparent to the application.

Note:

Durable subscribers (DurableTopicSubscriber) cannot be created for distributed
topics. However, you can still create a durable subscription on a distributed
topic member and the other topic members will forward the messages to the
topic member that has the durable subscription.

The topic members can be located anywhere but must all be served either by a single
WebLogic Server or any number of servers in a cluster. When a message is sent to a
distributed topic, it is sent to all of the topic members in the distributed topic set. This
enables all subscribers to the distributed topic to receive messages published for the
distributed topic.

A message published directly to a topic member of a distributed destination (that is,
the publisher did not specify the distributed destination) is also forwarded to all the
members of that distributed topic. This includes subscribers that originally subscribed
to the distributed topic and happened to be assigned to that particular topic member.
In other words, publishing a message to a specific distributed topic member
automatically forwards it to all the other distributed topic members, just as publishing a
message to a distributed topic automatically forwards it to all of its distributed topic
members. For more information about looking up specific distributed destination
members, see Accessing Distributed Destination Members.

This section provides information on using distributed topics:

• TopicPublishers

• TopicSubscribers

Chapter 10
Using Distributed Destinations

10-5

• Deploying Message-Driven Beans on a Distributed Topic

10.5.2.1 TopicPublishers
When creating a topic publisher, if the supplied destination is a distributed destination,
then any messages sent to that distributed destination are sent to all available topic
members for that distributed topic (DT), as follows:

• When some of the members of a uniform distributed topic are offline, non-
persistent messages published to the distributed topic are saved for those
members and made available when the members come back online.

In releases prior to 9.0, if you did not configure a persistent store for a JMS server
or if there was a persistent store defined and storedEnabled=false was set on the
distributed topic member, non persistent messages were dropped and not made
available when the distributed topic member came back online. If your application
depends on dropping these messages, you can approximate similar behavior by
setting the time-to-live for a server to a very low value. This will allow the
messages to be disregarded before an offline distributed topic member would
come back online. New applications developed on WebLogic Server releases
10.3.4.0 and higher can use partitioned distributed topics with message-driven
beans (MDBs) as message consumers to provide a similar capability. See
"Developing Advanced Pub/Sub Applications" in Programming JMS for Oracle
WebLogic Server.

• If one or more of the distributed topic members is not reachable, and the message
being sent is persistent, then the message is stored and forwarded to the other
topic members when they become reachable. However, the message can only be
persistently stored if the topic member has a JMS store configured.

Note:

Every effort is made to first forward the message to distributed members that
utilize a persistent store. However, if none of the distributed members utilize a
store, then the message is still sent to one of the members according to the
selected load-balancing algorithm, as described in Configuring Distributed
Destination Resources in Administering JMS Resources for Oracle WebLogic
Server.

• If all of the distributed topic members are unreachable (regardless of whether the
message is persistent or non persistent), then the publisher receives a
JMSException when it tries to send a message.

10.5.2.2 TopicSubscribers
When creating a topic subscriber, if the supplied topic is a distributed topic, then the
topic subscriber receives messages published to that distributed topic. If one or more
of the topic members for the distributed topic are not reachable by a topic subscriber,
then depending on whether the messages are persistent or non persistent the
following occurs:

• Any persistent messages published to one or more unreachable distributed topic
members are eventually received by topic subscribers of those topic members

Chapter 10
Using Distributed Destinations

10-6

after they become reachable. However, the messages can only be persistently
stored if the topic member has a JMS store configured.

• Any non persistent messages published to those unreachable distributed topic
members will not be received by that topic subscriber.

Note:

If a JMS store is configured for a JMS server that is hosting a distributed topic
member, then all the Distributed Topic System Subscribers associated with
that member destination are treated as durable subscriptions, even when a
topic member does not have a JMS store explicitly configured. The saving of
all the messages sent to these distributed topic subscribers in memory can
result in unexpected memory and disk consumption. Therefore, a
recommended best design practice when deploying distributed destination is
to consistently configure all member destinations: either with a JMS store for
durable messages or without a JMS store for non durable messages. For
example, if you want all of your distributed topic subscribers to be no -durable,
but some member destinations implicitly have a JMS store configured because
their associated JMS server uses a JMS store, then you need to explicitly set
the StoreEnabled attribute to False for each member destination to override the
JMS server setting.

Ultimately, a topic subscriber is pinned to a physical topic member. If that topic
member becomes unavailable, then the topic subscriber will receive a JMSException, as
follows:

• If the topic subscriber is synchronous, then the exception is returned to the user
directly.

• If the topic subscriber is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener defined for the
consumer session, if any.

After receiving this type of an exception, an application can close its topic subscriber
and recreate it. If any other topic member is available within the distributed topic, then
the creation should be successful and the new topic subscriber will be pinned to one of
those topic members. If no other topic member is available, then the application will
not be able to recreate the topic subscriber and will have to try again later.

10.5.2.3 Deploying Message-Driven Beans on a Distributed Topic
For information about how to deploy MDBs on topics, see Configuring and Deploying
MDBs Using Distributed Topics in Developing Message-Driven Beans for Oracle
WebLogic Server.

10.5.3 Using Partitioned Distributed Topics
Starting in WebLogic Server 10.3.4.0, partitioned distributed topics, combined with the
ability to share subscriptions and allow multiple connections to use the same Client ID,
provide the following application design patterns that provide parallel processing and
HA capabilities similar to distributed queues:

• One-copy-per-instance: Each instance of an application gets one copy of each
message that is published to the Topic.

Chapter 10
Using Distributed Destinations

10-7

• One-copy-per-application: Each application as a whole (that is all instances of the
application together) receives one copy of each message that is published to the
distributed topic . That is each instance only receives a subset of the messages
that are sent to the distributed topic .

Note:

Oracle recommends designing applications that utilize WebLogic Server
MDBs. See Configuring and Deploying MDBs Using Distributed Topics in
Developing Message-Driven Beans for Oracle WebLogic Server for detailed
information on how to design and implement applications that use message-
driven beans to provide improved HA and scalability.

For more information about using Partitioned Distributed Topics, including information
about replacing an existing Replicated Distributed Topic with a Partitioned Distributed
Topic, see Developing Advanced Pub/Sub Applications.

10.5.4 Accessing Distributed Destination Members
For information on how to access distributed destinations and their members, see How
to Look Up a Destination.

10.5.5 Distributed Destination Failover

Note:

If the distributed queue member on which a queue producer is created fails,
yet the WebLogic Server instance where the producer's JMS connection
resides is still running, then the producer remains active and WebLogic JMS
will fail it over to another distributed queue member, irrespective of whether
the Load Balancing option is enabled. For example, a WebLogic cluster
contains WLSServer1, WLSServer2, and WLSServer3 and you are connected
to WLServer2. If server WLSServer 2 fails, WebLogic JMS fail the producer
over to one of the remaining cluster members. For more information, see
Configuring Distributed Destination Resources in Administering JMS
Resources for Oracle WebLogic Server.

A simple way to failover a client connected to a failed distributed destination is to write
reconnect logic in the client code to connect to the distributed destination after
catching onException.

10.6 Using Message-Driven Beans with Distributed
Destinations

A message-driven bean (MDB) acts as a JMS message listener, which is similar to an
event listener except that it receives messages instead of events.

Chapter 10
Using Message-Driven Beans with Distributed Destinations

10-8

See also:

• MDBs and Messaging Models in Developing Message-Driven Beans for Oracle
WebLogic Server

• Deploying MDBs in Developing Message-Driven Beans for Oracle WebLogic
Server

10.7 Common Use Cases for Distributed Destinations
Understand when to use distributed destinations for your applications.

The following sections provide common use case scenarios when using distributed
destinations:

• Maximizing Production

• Maximizing Availability

• Stuck Messages

10.7.1 Maximizing Production
To maximize message production, Oracle recommends that each member of a
distributed destination be associated with a producer and a consumer. Figure 10-1
shows how to efficiently provide maximum message production and high availability
using a UDD without using load balancing:

Figure 10-1 Paired Producers and Consumers

In this situation, UDD1 is a uniform distributed destination composed of two physical
members: D1 and D2. Each physical destination has a producer/consumer pair and
the effective path for a message follows the solid line from the producer through the
destination member to the consumer. If you are using ordering, you should have a
producer for each expected Unit-of-Order. See Using Unit-of-Order with Distributed
Destinations.

10.7.2 Maximizing Availability
This section provides information on how to maximize message availability.

Chapter 10
Common Use Cases for Distributed Destinations

10-9

10.7.2.1 Using Queues
Ideally, its best to pair a producer with a consumer but it is not always practical. The
rate that messages are consumed is the limiting factor that determines the message
throughput of your application. You can increase the availability of consumers by using
load balancing between member destinations. In this situation, consumers are not
paired with a producer as the UDD load balances an incoming message to the next
available consumer using the assigned load balancing algorithm.

Note:

Some combinations of Unit-of-Order features can result in the starvation of
competing Unit-of-Order message streams, including the under utilization of
resources when the number of consumers exceed the number of in-flight
messages with different Unit-of-Order names. You will need to test your
applications under maximum loads to optimize your system's performance and
eliminate conditions that under utilize resources.

10.7.2.2 Using Topics
When using a distributed topic, every member destination will forward its messages to
every other member of the distributed topic.

Figure 10-2 Using Distributed Topics

In Figure 10-2, UDD1 is a uniform distributed destination composed of two physical
members: D1 and D2. Each physical destination has a producer/consumer pair. Each
consumer receives messages sent by Producer 1 and Producer 2.

10.7.3 Stuck Messages
InFigure 10-3, a producer is sending messages to one member of a UDD but there is
no consumer available to get the message. This typically happens as a producer
sends a message to one of the destinations (D1) and a consumer is listening for
messages on another destination (D2).

Chapter 10
Common Use Cases for Distributed Destinations

10-10

Figure 10-3 Stuck Messages

UDD1 is a uniform distributed destination composed of two physical members: D1 and
D2. D1 has a producer and D2 has a consumer. Avoid this configuration by using
producer/consumer pairs or by configuring forwarding on the destination.

Chapter 10
Common Use Cases for Distributed Destinations

10-11

Chapter 10

Common Use Cases for Distributed Destinations

10-12

11
Using the Message Unit-of-Order

Learn how to use Message Unit-of-Order to provide strict message ordering when
using WebLogic JMS.

• What is Message Unit-Of-Order?

• Understanding Message Processing with Unit-of-Order

• Message Unit-of-Order Case Study

• How to Create a Unit-of-Order

• Getting the Current Unit-of-Order

• Message Unit-of-Order Advanced Topics

• Limitations of Message Unit-of-Order

11.1 What is Message Unit-Of-Order?
Message Unit-of-Order is a WebLogic Server feature that enables a stand-alone
message producer, or a group of producers acting as one, to group messages into a
single unit with respect to the processing order.

This single unit is called a Unit-of-Order and requires that all messages from that unit
be processed sequentially in the order they were created.

11.2 Understanding Message Processing with Unit-of-Order
Understand how the message processing by WebLogic Server's Message Unit-of-
Order feature is different from the message processing as described by the JMS
specification.

• Message Processing According to the JMS Specification

• Message Processing with Unit-of-Order

• Message Delivery with Unit-of-Order

11.2.1 Message Processing According to the JMS Specification
While the Java Message Service Specification, at http://www.oracle.com/technetwork/
java/jms/index.html, provides an ordered message delivery, it does so in a very strict
sense. It defines order between a single instance of a producer and a single instance
of a consumer, but does not take into account the following common situations:

• Many consumers on one queue. See Using Distributed Destinations.

• Multiple producers within a single application acting as a single producer. See
Using Distributed Destinations.

11-1

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

• Message recoveries or transaction rollbacks where other messages from the same
producer can be delivered to another consumer for processing. See What
Happens When a Message Is Delayed During Processing?.

• Use of filters and destination sort keys. See Message Unit-of-Order Advanced
Topics.

11.2.2 Message Processing with Unit-of-Order
The WebLogic Server Unit-of-Order feature enables a message producer or group of
message producers acting as one, to group messages into a single unit that is
processed sequentially in the order the messages were created. The message
processing of a single message is complete when a message is acknowledged,
committed, recovered, or rolled back. Until message processing for a message is
complete, the remaining unprocessed messages for that Unit-of-Order are blocked.

This section provides information about rules for JMS acknowledgement modes,
described at http://www.oracle.com/technetwork/java/jms/index.html, when using
Message Unit-of-Order:

• No messages from a Unit-of-Order are processed in parallel when the
acknowledgement mode is CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, or
DUPS_OK_ACKNOWLEDGE.

• When the consumer is closed, the current message processing is completed,
regardless of the session's acknowledge mode.

• CLIENT_ACKNOWLEDGE – The application calling Message.acknowledge and
Session.recover indicate which messages are completely processed in the Unit-of-
Order.

• AUTO_ACKNOWLEDGE – The session automatically acknowledges a client's receipt of a
message when it has either successfully returned from a call to receive or when
the MessageListener that was called returns successfully.

– Asynchronous mode: Successful completion or exception of the
onMessage(msg) indicates when a message is completely processed.

– Synchronous mode: For a given consumer, such as consumer A,
consumerA.receive is completed when one of the following occurs:
consumerA.receive, consumerA.setMessageListener, or consumerA.close.

• DUPS_OK_ACKNOWLEDGE – The session automatically acknowledges a client's receipt of
a message when it has either successfully returned from a call to receive or when
the MessageListener that was called returns successfully.

– Asynchronous mode: Successful completion or exception of onMessage(msg)
indicates when a message is completely processed.

– Synchronous mode: For a given consumer, such as consumer A,
consumerA.receive() is completed when one of the following occurs:
consumerA.receive(), consumerA.setMessageListener(), or consumerA.close().

• NO_ACKNOWLEDGE – The session provides no order processing guarantees. Messages
can be processed in parallel with different available consumers.

11.2.3 Message Delivery with Unit-of-Order
Message Unit-of-Order provides that messages are delivered in accordance with the
following rules:

Chapter 11
Understanding Message Processing with Unit-of-Order

11-2

http://www.oracle.com/technetwork/java/jms/index.html

• Member messages of a Unit-of-Order are delivered to queue consumers
sequentially in the order they were created. The message order within a Unit-of-
Order will not be affected by sort criteria, priority, or filters. However, messages
that are uncommitted, have a Redelivery Delay, or have an unexpired
TimetoDeliver timer will delay messages that arrive after them.

• Unit-of-Order messages are processed one at a time. The processing completion
of one message allows the next message in the Unit-of-Order to be delivered.

• Unit-of-Order messages sent to a distributed queue reside on only one physical
member of the distributed queue. For more information, see Using Unit-of-Order
with Distributed Destinations.

• All uncommitted or unacknowledged messages from the same Unit-of-Order must
be in the same transaction, or if non-transactional, the same JMSSession. When
one message in the Unit-of-Order is uncommitted or unacknowledged, the other
messages are deliverable only to the same transaction or JMSSession. This keeps
all unacknowledged messages from the same Unit-of-Order in one recoverable
operation and allows order to be maintained despite rollbacks or recoveries.

• A queue that has several messages from the same Unit-of-Order must complete
processing all of them before they can be delivered to any queue consumer or the
next message can be delivered to the queue.

For Example,

– when Messages M1 through Mn are delivered as part of a transaction and the
transaction is rolled back (processing is complete). Then messages M1
through Mn are delivered to any available consumer:

– when Messages M1 through Mn are delivered outside of a transaction and the
messages are recovered (processing is complete). Then messages M1
through Mn are delivered to any available consumer.

– when Messages M1 through Mn are delivered outside of a transaction and the
messages are acknowledged (processing is complete). Then the undelivered
message Mn+1 is delivered to any available consumer.

11.3 Message Unit-of-Order Case Study
Learn the features of Message Unit-of-Order through a case study based on ordering
a book from an online bookstore.

• Joe Orders a Book

• What Happened to Joe's Order

• How Message Unit-of-Order Solves the Problem

11.3.1 Joe Orders a Book
XYZ Online Bookstore implements a simple processing design that uses JMS to
process customer orders. The JMS processing system is composed of:

• A message producer sending to a queue (Queue1).

• Multiple message driven beans (MDBs), such as MdbX and MdbY, that process
messages from Queue1.

• A database (myDB) that contains order and order status information.

Chapter 11
Message Unit-of-Order Case Study

11-3

Joe logs in his XYZ Online Bookstore account and searches his favorite book topics.
He chooses a book, proceeds to the checkout, and completes the sales transaction.
Then Joe realizes he has previously purchased this same item, so he cancels the
order. One week later, the book is delivered to Joe.

11.3.2 What Happened to Joe's Order
In Joe's ordering scenario, his cancel order message was processed before his
purchase order message. The result was that Joe received a book he did not wish to
purchase. The following steps demonstrate how Joe's order was processed.

The Figure 11-1 and the corresponding actions demonstrate how Joe's order was
processed.

Figure 11-1 Workflow for Joe's Order

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queue1.

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queue1.

5. MdbX takes message A from Queue1.

6. MdbY takes message B from Queue1.

7. MdbY writes the cancel message to the database. Because there is no
corresponding order message, there is no order message to remove from the
database.

8. MdbX writes the order message to the database.

9. An application responsible for shipping books reads the database, sees the order
message, and initiates shipment to Joe's home.

Although the Java Message Service Specification, at http://www.oracle.com/
technetwork/java/jms/index.html, provides an ordered message delivery, it only
provides ordered message delivery between a single instance of a producer and a
single instance of a consumer. In Joe's case, multiple MDBs were available to
consume messages from Queue1 and the processing order of the messages was no
longer guaranteed.

Chapter 11
Message Unit-of-Order Case Study

11-4

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

11.3.3 How Message Unit-of-Order Solves the Problem
To ensure that all messages in Joe's order are processed correctly, the system
administrator for XYZ Bookstore configures a Message Unit-of-Order based on a user
session, such that all messages from a user session have a Unit-of-Order name
attribute with the value of the session id. See How to Create a Unit-of-Order. All
messages created during Joe's user session are processed sequentially in the order
they were created because WebLogic Server guarantees that messages in a Unit-of-
Order are not processed in parallel.

In Figure 11-2 and the corresponding actions demonstrate how Joe's order was
processed using Message Unit-of-Order.

Figure 11-2 Workflow for Joe's Order Using Unit-of-Order

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queue1.

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queue1.

5. MdbX takes message A from Queue1.

6. MdbY takes message B from Queue1.

7. Message B on MdbY is blocked until MdbX acknowledges the order message.
See What Happens When a Message Is Delayed During Processing?.

8. Message A is committed and written to the database.

9. Message B is committed and written to the database.

Because there is a corresponding order message, Joe's order is removed from the
database and he does not receive a book.

11.4 How to Create a Unit-of-Order
Learn how to create a Message Unit-of-Order programmatically and administratively.

• Creating a Unit-of-Order Programmatically

• Creating a Unit-of-Order Administratively

Chapter 11
How to Create a Unit-of-Order

11-5

• Unit-of-Order Naming Rules

Also see Message Delivery with Unit-of-Order and Message Unit-of-Order Advanced
Topics.

11.4.1 Creating a Unit-of-Order Programmatically
Use the setUnitOfOrder() method of the WLMessageProducer interface to associate a
producer with a Unit-of-Order name.

In the following example, the Unit-of-Order name attribute value is set to
myUOOname:

getProducer().setUnitOfOrder("myUOOname");

After a producer is associated with a Unit-of-Order, all messages sent by this producer
are processed as a Unit-of-Order until either the producer is closed or the association
between the producer and the Unit-of-Order is dissolved.

The Example 11-1 shows how to associate a producer with a Unit-of-Order:

Example 11-1 Using the WLMessageProducer Interface to Create a Unit-of-
Order

.

.

.
queue = (Queue)(ctx.lookup(destName));
qsender = (WLMessageProducer) qs.createProducer(queue);
qsender.setUnitOfOrder();
uooname = qsender.getUnitOfOrder();
System.out.println("Using UnitOfOrder :" + uooname);
.
.
.

11.4.2 Creating a Unit-of-Order Administratively
The following section provides information about how to configure JMS connection
factories or JMS destinations to enable Message Unit-of-Order.

11.4.2.1 Configuring Unit-of-Order for a Connection Factory and Destinations
Use one of the following methods to configure JMS connection factories and
destinations to enable Message Unit-of-Order:

• Configure a connection factory to always use a user-generated Unit-of-Order
name. As a result, all producers created from such a connection factory have Unit-
of-Order enabled. See Configure connection factory unit-of-order parameters in
the Oracle WebLogic Server Administration Console Online Help.

• Configure a connection factory to always use a system-generated Unit-of-Order
name for each session. See Configure connection factory unit-of-order parameters
in the Oracle WebLogic Server Administration Console Online Help.

• A client can call WLProducer.setUnitOfOrder(name) and change the initial connection
factory setting on the producer.

Chapter 11
How to Create a Unit-of-Order

11-6

• Configure a standalone or distributed destination to always use a system-
generated Unit-of-Order name. See the following topics in the Administration
Console Online Help:

– Configure advanced topic parameters

– Configure advanced queue parameters

– Uniform distributed topics - configure advanced parameters

– Uniform distributed queues - configure advanced parameters

– Configure advanced JMS template parameters

You should administratively configure a Unit-of-Order on a connection factory or
destination when interoperating with legacy JMS applications. This method provides a
simple mechanism to ensure messages are processed in the order they are created
without making any code changes.

11.4.3 Unit-of-Order Naming Rules
A Unit-of-Order is identified by a name attribute. Within a destination, messages that
have the same value for the Unit-of-Order name attribute belong to the same Unit-of-
Order. The name can be provided by either the system or the application. Messages in
the same Unit-of-Order all share the same name. See How to Create a Unit-of-Order.

The name attribute for a Unit-of-Order must adhere to the following rules:

• A valid value for the Unit-of-Order name attribute is any non-null and non-empty
string.

• System-generated Unit-of-Order names are timestamp-based and statistically
unique.

• Applications can supply their own Unit-of-Order names. For example, WebLogic
Integration applications can use Workflow names and Web Services applications
can use conversation names.

• Message Unit-of-Order has its own name space. A Unit-of-Order does not need to
be unique with respect to other named objects. For instance, it is valid to have a
Unit-of-Order named Foo and a queue named Foo.

• The scope of a Message Unit-of-Order is limited to a single destination. Two
different Units of Order on two destinations can have the same name.

• One or more producers can send messages with the same Unit-of-Order name by
using the same string to create the Unit-of-Order.

A system-generated Unit-of-Order name can be used by more than one producer.
This paradigm works just as well for application-assigned Unit-of-Order names. It
will be most efficient if the information is serialized in only one place, so a property
like Conversation ID can be stored only as the Unit-of-Order name. This paradigm
does not work when the message is sent through a non-Unit-of-Order JMS
provider (releases before WebLogic 9.0 or non-WebLogic JMS providers).

11.5 Getting the Current Unit-of-Order
You can extract the Unit-of-Order name from a delivered message.

For example:

Chapter 11
Getting the Current Unit-of-Order

11-7

msg.getStringProperty("JMS_BEA_UnitOfOrder");

11.6 Message Unit-of-Order Advanced Topics
Understand how Unit-of-Order processes messages in advanced or more complex
situations.

• What Happens When a Message Is Delayed During Processing?

• What Happens When a Filter Makes a Message Undeliverable

• What Happens When Destination Sort Keys Are Used

• Using Unit-of-Order with Distributed Destinations

• Using Unit-of-Order with Topics

• Using Unit-of-Order with JMS Message Management

• Using Unit-of-Order with WebLogic Store-and-Forward

• Using Unit-of-Order with WebLogic Messaging Bridge

11.6.1 What Happens When a Message Is Delayed During
Processing?

There are many situations that can occur during message processing that would
normally change the order in which a message is processed. The following is a short
list of typical message processing states that make a message not ready for delivery:

• A message is within an uncommitted transaction.

• A message's TimeToDeliver value prevents it from being delivered until the
TimeToDeliver interval has elapsed.

• A consumer calls a recover or rollback operation that prevents a message from
being re-delivered until the RedeliveryDelay interval has elapsed.

Suppose messages A and B arrive respectively in the same Unit-of-Order, and
message A cannot be delivered for any of the previously listed reason. Even though
nothing is delaying the delivery of message B, it is not deliverable until message A in
its Unit-of-Order is delivered.

11.6.2 What Happens When a Filter Makes a Message Undeliverable
Using a filter and a Unit-of-Order can provide unexpected behaviors. Suppose
messages A through Z are in the same Unit-of-Order in the same Queue. Consumer1
has a filter, and messages A, B, and C satisfy the filter, and they are delivered to
Consumer1.

1. Messages D through Z are undeliverable until messages A, B, and C are
acknowledged.

2. Messages A, B, and C are acknowledged or recovered.

3. Message D is available to the message delivery system.

4. Message D does not pass the filter and can never be presented to Consumer1.

5. Messages E through Z are undeliverable until message D is processed.

Chapter 11
Message Unit-of-Order Advanced Topics

11-8

• The transaction that contains message D must be rolled back.

• After message D is processed, messages E through Z can be delivered.

For more information, see Filtering Messages.

11.6.3 What Happens When Destination Sort Keys Are Used
Destination sort keys control the order in which messages are presented to consumers
when messages are not part of a Unit-of-Order or are not part of the same Unit-of-
Order.

For example, messages A and B arrive and in the same Unit-of-Order on a queue that
is sorted by priority and the sort order is depending, but message B has a higher
priority than A.

Even though message B has a higher priority than message A, message B is still not
deliverable until message A is processed because they are in the same Unit-of-Order.
If a message C arrives and either does not have a Unit-of-Order or is not in the same
Unit-of-Order as message A, then the priority setting of message C and the priority
setting of message A determine the delivery order. See Configuring Basic JMS
System Resources in Administering JMS Resources for Oracle WebLogic Server.

11.6.4 Using Unit-of-Order with Distributed Destinations
As previously discussed in the Message Processing According to the JMS
Specification, the Java Message Service Specification (at http://www.oracle.com/
technetwork/java/jms/index.html) does not guarantee ordered message delivery when
applications use distributed queues. WebLogic JMS directs messages with the same
Unit-of-Order and having a distributed destination target to the same distributed
destination member. The member is selected by the destination's Unit-of-Order
configuration:

• Using the Path Service

• Using Hash-Based Routing

11.6.4.1 Using the Path Service
You can configure the WebLogic Path Service to provide a persistent map that can
store the information required to route the messages contained in a Unit-of-Order to its
destination resource; a member of a uniform distributed destination. If the WebLogic
Path Service is configured for a uniform distributed destination, then the routing path to
a member destination is determined by the server using the run-time load balancing
heuristics for the distributed queue.

11.6.4.2 Using Hash-Based Routing
If the WebLogic Path Service is not configured, then the default routing path to a
uniform queue member is chosen by the server based on the hash codes of the
Message Unit-of-Order name and the uniform distributed queue members. An
advantage of this routing mechanism is that routes to a distributed queue member are
calculated quickly and do not require persistent storage in a cluster.

Consider the following when implementing Message Unit-of-Order in conjunction with
hash-based routing:

Chapter 11
Message Unit-of-Order Advanced Topics

11-9

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

• If a distributed queue member has an associated Unit-of-Order and is removed
from the distributed queue, new messages are sent to a different distributed queue
member and the messages will not be continuous with older messages.

• If a distributed Queue member has an associated Unit-of-Order and is
unreachable, then the producer sending the message will throw a
JMSOrderException and the messages are not routed to other distributed Queue
members. The exception is thrown because the JMS messaging system can not
meet the quality-of-service required ; only one distributed destination member
consumes messages for a particular Unit-of-Order.

11.6.4.3 Configuring Routing on Uniform Distributed Destinations
See the following topics to configure either the Path service or hash-based routing
mechanism on uniform distributed destinations using Message Unit-of-Order:

• Uniform distributed topics - configure advanced parameters in the Oracle
WebLogic Server Administration Console Online Help

• Uniform distributed queues - configure advanced parameters in the Oracle
WebLogic Server Administration Console Online Help

11.6.5 Using Unit-of-Order with Topics
Assigning a Unit-of-Order does not prohibit parallel processing of a message by two
subscribers on the same topic. Because individual subscribers for a topic have their
own destination and message list, similar to a queue with one consumer, messages
are processed by all subscribers according to the Unit-of-Order assigned at the time of
production.

11.6.5.1 Unit-of-Order and Distributed Topics
The routing of messages between physical topics can affect Unit-of-Order if an
application directly sends to a member of a distributed topic. To ensure correct order
of processing, the application must ensure the messages are sent using the logical
distributed topic (that is, the destination is obtained using the JNDI name of the
distributed topic). WebLogic Server then ensures messages with the same Unit-of-
Order take the same path to the distributed topic member.

11.6.5.2 Unit-of-Order, Topics, and Message Driven Beans
The WebLogic Server message-driven bean implementation goes beyond the
requirements of the EJB and JMS specifications to provide parallel processing of an
incoming message stream for a single topic subscription and JMS session. This
parallel processing does not take Unit-of-Order into account, so care is required to
ensure that the processing is still ordered correctly. There are two ways to achieve
this : either process each message in its own JTA transaction, or disable parallel
processing by setting the pool size to one.

When using Unit-of-Order with topics and message driven beans, you must either:

• Use JTA Transactions

or

• Set Pool Size to One

Chapter 11
Message Unit-of-Order Advanced Topics

11-10

Start by configuring MDBs to Use JTA Transactions. In the unlikely event that the
transaction overhead is unacceptable, switch to Set Pool Size to One.

11.6.5.2.1 Use JTA Transactions
The simplest approach is to use JTA transactions. It has a processing overhead, but is
usually low because WebLogic Server has a highly optimized transaction engine and
the application benefits from parallel processing of messages that have different Units-
of-Order. The JTA transaction may be of benefit for some application use cases. For
example, it is necessary to ensure atomic interaction with other operations such as
sending JMS messages, or updating a database.

11.6.5.2.2 Set Pool Size to One
Setting the pool size to one allows more efficient, non-transactional messaging to be
used, but has a drastic effect on parallelism.

11.6.6 Using Unit-of-Order with JMS Message Management
JMS message management allows a JMS administrator to move and delete most
messages in a running JMS Server. This enables an administrator to violate the
delivery rules specified in Message Delivery with Unit-of-Order.

If messages A, B, C, and D are produced and sent to destination D1 and belong to
Unit-of-Order foo, consider the following:

• Moving messages C and D to destination D2 may allow parallel processing of
messages from both destinations.

• Moving messages B and C to destination D2 may allow parallel processing of
message A and messages B and C. After message A is processed, message D is
deliverable.

For applications that depend on maintaining message order, a best practice is to move
all of the messages in a Unit-of-Order as a single group.

To ensure Unit-of-Order delivery rules are maintained, use the following steps:

1. Pause the source destination and the target destination.

2. Select all of the messages with the Unit-of-Order you would like to move.

3. Move the selected messages to the target destination. If necessary, sort them
according to the order that you want them processed.

4. Resume the source and target destinations.

For more information, see "Troubleshooting WebLogic JMS" in Administering JMS
Resources for Oracle WebLogic Server.

11.6.7 Using Unit-of-Order with WebLogic Store-and-Forward
WebLogic Store-and-Forward supports Message Unit-of-Order. For example, a Store-
and-Forward producer sends messages with a Unit-of-Order named Foo. If the
producer disconnects and reconnects through a different connection, the producer
creates another Unit-of-Order with the name Foo and continues sending messages. All
messages sent before and after the reconnect are directed through the same Store-

Chapter 11
Message Unit-of-Order Advanced Topics

11-11

and-Forward agent. See Administering the Store-and-Forward Service for Oracle
WebLogic Server.

11.6.8 Using Unit-of-Order with WebLogic Messaging Bridge
If both the source and target destinations are WebLogic Server 9.0 or later Messaging
Bridge instances, you can enable PreserveMsgProperty on the Messaging Bridge to
preserve the Unit-of Order name and set the producer's Unit-of-Order accordingly. See
Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

11.7 Limitations of Message Unit-of-Order
Understand the limitations when using Message Unit-of-Order.

• A browser enumeration contains the current queue messages in the order they are
to be received by the browser, where current is defined as those messages that
are deliverable. At most, the first message within a Unit-of-Order is deliverable.
Subsequent messages in the same Unit-of-Order are not deliverable.

• Some combinations of Unit-of-Order features can result in the starvation of
competing Unit-of-Order message streams, including the under utilization of
resources when the number of consumers exceed the number of in-flight
messages with different Unit-of-Order names. You will need to test your
applications under maximum loads to optimize your system's performance and
eliminate conditions that under utilize resources.

• This release of WebLogic Server Message Unit-of-Order does not support clients
connecting to a non-Unit-of-Order JMS provider (releases before than WebLogic
9.0 or non-WebLogic JMS providers).

Chapter 11
Limitations of Message Unit-of-Order

11-12

12
Using Unit-of-Work Message Groups

Learn how to use Unit-of-Work Message Groups to provide groups of messages when
using WebLogic JMS.

• What Are Unit-of-Work Message Groups?

• Understanding Message Processing with Unit-of-Work

• How to Create a Unit-of-Work Message Group

• Message Unit-of-Work Advanced Topics

• Limitations of UOW Message Groups

12.1 What Are Unit-of-Work Message Groups?
WebLogic JMS provides the Unit-of-Work (UOW) Message Groups, which allows
applications to send JMS messages, identifying some of them as a group and allowing
a JMS consumer to process them as such.

The Unit-of-Work (UOW) Message Groups can be used when applications need an
even more restricted notion of a group than provided by the Message Unit-of-Order
(UOO) feature. For example, a JMS producer can designate a set of messages that
must be delivered to a single client without interruption, so that the messages can be
processed as a unit. Further, the client will not be blocked waiting for the completion of
one unit when there is another unit that is already complete.

Note:

It is a programming error to use both the Unit-of-Order and Unit-of-Work
features on the same JMS message.

The following sections describe how to use Message UOW to provide strict message
grouping when using WebLogic JMS:

• Understanding Message Processing with Unit-of-Work

• How to Create a Unit-of-Work Message Group

• Message Unit-of-Work Advanced Topics

• Limitations of UOW Message Groups

12.2 Understanding Message Processing with Unit-of-Work
Understand the basic UOW terminology and the rules for processing UOW messages.

• Basic UOW Terminology

• Rules For Processing UOW Messages

12-1

• Message Unit-of-Work Case Study

12.2.1 Basic UOW Terminology
Table 12-1 defines the terms used to define UOW.

Table 12-1 Unit-of-Work Terminology

Term Definition

Unit-of-Work (UOW) A set of JMS messages that must be processed as a single
unit.

UOW Component Message A message that is part of a UOW. In order for WebLogic JMS to
identify a message as part of a UOW, the message must have
the JMS properties described in How to Write a Producer to Set
UOW Message Properties.

UOW Producer A producer that needs to split its work into multiple parts (i.e., a
creator of a UOW). Multiple producers can concurrently
contribute component messages to a UOW message, as
shown in Message Unit-of-Work Case Study.

If fact, a UOW producer can close midway through a UOW and
a new producer can complete the UOW message, while
maintaining the same strict component message integrity (that
is detect duplicates, etc.).

Intermediate Destination A destination whose consumers have the job of processing
component messages separately rather than as a unit. No
special UOW configuration is required for intermediate
destinations.

When a component message arrives on an intermediate
destination it will be made available without waiting for other
component messages to arrive. Further, if the intermediate
destination is a distributed destination, no special routing needs
to occur. See How to Write a UOW Consumer/Producer For an
Intermediate Destination.

Terminal Destination A destination whose consumers have the job of processing a
full UOW. A destination is identified as a terminal destination by
the Unit-of-Work Message Handling Policy parameter on
standalone destinations, distributed destinations, or JMS
templates. See Configuring Terminal Destinations.

Available/Visible Messages Equivalent JMS terms that refer to a message becoming ready
for consumption, pending the reception of any messages that
precede it. For example, a JMS message is not available until
its time to deliver has been reached or a JMS message that is
sent as part of a transaction is not visible until that transaction
is committed.

12.2.2 Rules For Processing UOW Messages
The following rules apply to UOW messages.

• All Messages Required For Processing

No message within the UOW will be available until all of them are available on the
terminal destination.

• Message Reordering

Chapter 12
Understanding Message Processing with Unit-of-Work

12-2

No matter what order the messages arrive to the terminal destination, they will be
put into the order specified by the UOW producer.

• Gap Freedom

The group of messages will be delivered to the user without gaps. That is, all
messages in the group will be delivered to the user before messages from any
other group (or part of no group at all).

• Single Consumer Consumption

The group of messages will be delivered to the same consumer.

12.2.3 Message Unit-of-Work Case Study
This section provides a simple case study for Message Unit-of-Work based on an
online order that requires a variety of merchandise from multiple companies.

Jill Orders Miscellaneous Items from an Online Retailer:

The Megazon online retailer implements a processing design that uses JMS to
process customer orders for a variety of merchandise, some of which need to be
routed to Megazon's partner companies to complete the order. For example, Megazon
can directly fulfill book orders, but must re route some parts of the order for certain
electronics or houseware items. Since Megazon is configured to use UOW, items in an
order can be routed as UOW messages to these intermediate company destinations
before being passed onto Megazon's terminal destination where all the UOW
messages that make up the order are gathered before a final invoice can be
processed.

The Megazon JMS processing system is composed of:

• A UOW producer sending order fulfillment component messages with the required
UOW properties to the appropriate intermediate and terminal destinations

• Intermediate destinations for non book items, where UOW component messages
are processed by consumer and/or producer clients before being passed onto the
final UOW destination

• A UOW terminal destination where the component messages are gathered for final
processing

Jill logs into her Megazon account and does some holiday shopping. She chooses a
book, flash drive, MP3 player, and a lava lamp, she then proceeds to the checkout,
and completes the sales transaction.

How Message Unit-of-Work Completes the Order:

To ensure that all messages in Jill's order are processed as a single unit, the order-
taking JMS producer client sets UOW properties on her order messages to indicate
that they are part of a single unit. These UOW message properties must also be
copied by any consumer or producer clients listening on the intermediate Gadget
Planet, Widget World, and Desperate Housewares destinations before they pass the
UOW messages onto the terminal destination. Last, the system administrator for
Megazon configures the terminal destination to UOW Message Handling Policy
parameter to Single Message Delivery. See How to Create a Unit-of-Work Message
Group.

Figure 12-1 and the corresponding actions demonstrate how Jill's order was
processed using Message Unit-of-Work.

Chapter 12
Understanding Message Processing with Unit-of-Work

12-3

Figure 12-1 Workflow for Jill's Order Using Unit-of-Work

1. Jill clicks the order button from her shopping cart.

2. The order is split into three messages that use the same unique UOW name:

• SEQ#1, which is routed to the intermediate Gadget Planet queue, where a
consumer processes the Flash Drive order before passing SEQ#1 onto a
producer who then routes it to the intermediate Widget World queue, where a
consumer processes the MP3 player order before passing SEQ#1 to the
terminal Megazon queue for final invoice processing.

• SEQ#2, which is routed to the intermediate Desperate Housewares queue,
where a consumer processes the lava lamp order before passing SEQ#1 onto
a producer who routes it to the Megazon terminal processing queue for final
invoice processing.

• SEQ#3, which is routed directly to Megazon's terminal queue for book order
fulfillment and for final invoice processing.

3. The terminal Megazon queue gathers the three UOW messages before forming
them into an ObjectMessage list for delivery to Megazon's invoice consumer client.

4. Jill receives an invoice that shows her entire order was processed.

12.3 How to Create a Unit-of-Work Message Group
Learn how to set UOW message properties for a message consumer and producer.

• How to Write a Producer to Set UOW Message Properties

• How to Write a UOW Consumer/Producer For an Intermediate Destination

• Configuring Terminal Destinations

• How to Write a UOW Consumer for a Terminal Destination

Chapter 12
How to Create a Unit-of-Work Message Group

12-4

12.3.1 How to Write a Producer to Set UOW Message Properties
UOW enables a producer to split its work into multiple parts to accomplish its goal.
UOW is, in effect, taking these multiple messages and joining them into one. Whether
component messages are delivered as parts of a single message or as many
messages, it is easiest to envision them as a single virtual message, as well as
individual messages.

In order for WebLogic JMS to identify a message as part of a UOW, the message must
have the JMS properties in Table 12-1 set by the producer client.

Table 12-2 Unit-of-Work Properties

Type Description

JMS_BEA_UnitOfWork
A string property that is set by the standard JMS mechanism for
setting properties. For example:

message.setStringProperty("JMS_BEA_UnitOfWork",
"MyUnitOfWorkName")

To avoid naming conflicts, the UOW ID should never be reused.
For example, if messages are lost or retransmitted, then they
may be perceived as part of a separate UOW. For this reason,
Oracle recommends using a Java universally unique identifier
(UUID). See http://docs.oracle.com/javase/6/docs/api/
java/util/UUID.html.

JMS_BEA_UnitOfWorkSequenc
eNumber

An integer property that is set by the standard JMS mechanism
for setting properties. For example:

message.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber"
, 5)

The valid values are integers greater than or equal to 1

JMS_BEA_IsUnitOfWorkEnd
A Boolean property that is set by the standard JMS mechanism
for setting properties. For example:

message.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",
true)

When this property is set to true, the message is the last in the
Unit-of-Work. When this property is false or nonexistent, the
message is not last in the Unit-of-Work.

If the UnitOfWork property is not set, then SequenceNumber and End will be ignored.

12.3.1.1 Example UOW Producer Code
The Example 12-2copies the UOW properties defined in Table 12-1.

Example 12-1 Sample UOW Producer Message Properties

 for (int i=1; i<=100; i++)
 {
 sendMsg.setStringProperty("JMS_BEA_UnitOfWork","joule");
 sendMsg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber",i);
 if (i == 100)

Chapter 12
How to Create a Unit-of-Work Message Group

12-5

http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html

 {
 System.out.println("set the end of message flag for message # " + i);
 sendMsg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",true);
 }
 qSender.send(sendMsg, DeliveryMode.PERSISTENT,7,0);
 }

12.3.1.2 UOW Exceptions
The following exceptions may be thrown to the producer when sending JMS messages
to a terminal destination. When a UOW exception is town, the UOW message is not
delivered.

Except for the last one, they are all in the weblogic.jms.extensions package and are
subclasses of JMSException.

• BadSequenceNumberException – This will occur if (a) UnitOfWork is set on the
message, but SequenceNumber is not or (b) the SequenceNumber is less than or equal
to zero.

• OutOfSequenceRangeException – This will be thrown if (a) a message is sent with a
SequenceNumber that is higher than the sequence number of the message which
has already been marked as the end of the unit or (b) a message is sent with a
sequence number which is lower than a message which has already arrived in the
same unit, yet the new message is marked as the end message.

• DuplicateSequenceNumberException – This will be thrown to the producer if it sends a
message with a sequence number which is the same as a previously sent
message in the same UOW.

• JMSException – A JMS exception will be thrown if a message has both the
UnitOfOrder property set and the UnitOfWork property set.

Note:

As a programming best-practice, consider having your UOW producers send
all component messages that comprise a new UOW under a single
transaction. This way, either all of the work is completed or none of it is. For
example, if a UOW producer gets an exception or crashes partway through a
UOW and wants to then cancel the current UOW, then the entire transaction
will be rolled back and the application will not need to make a decision for
each message after a failure.

12.3.2 How to Write a UOW Consumer/Producer For an Intermediate
Destination

An intermediate destination is one whose consumers have the job of processing
component messages separately rather than as a unit. A JMS ForwardHelper extension
API is available to assist developers who are writing producers and/or consumers at
intermediate destinations. This is because there are many message properties that
need to be copied from the incoming message to the outgoing message. For example,
the message properties that control the behavior of UOW need to be copied.

Chapter 12
How to Create a Unit-of-Work Message Group

12-6

The following intermediate consumer code sample copies the UOW properties defined
in Table 12-1.

Example 12-2 Sample Client Code for UOW Intermediate Destination

 msg = qReceiver1.receive();
 try
 {
 text = msg.getText();
 TextMessage forwardmsg = qsess.createTextMessage();
 forwardmsg.setText(text);
 forwardmsg.setStringProperty("JMS_BEA_UnitOfWork",
 msg.getStringProperty("JMS_BEA_UnitOfWork"));
 forwardmsg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber",
 msg.getIntProperty("JMS_BEA_UnitOfWorkSequenceNumber"));
 if (tm.getBooleanProperty("JMS_BEA_IsUnitOfWorkEnd"))
 forwardmsg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",
 msg.getBooleanProperty("JMS_BEA_IsUnitOfWorkEnd"));
 qsend.send(forwardmsg);
 }

Note that the three UOW properties are copied from the incoming message to the
outgoing message.

12.3.3 Configuring Terminal Destinations
A destination is identified as a terminal destination by the Unit-of-Work Message
Handling Policy parameter on standalone destinations, distributed destinations, or
JMS templates. There is also a parameter that allows for expiration of incomplete work
on terminal destinations.

Using the WebLogic Server Administration Console, these Advanced configuration
options are available on the General Configuration page for all destination types (or by
using the DestinationBean API), as well as on JMS templates (or by using the
TemplateBean API).

Table 12-3 Unit-of-Work Configuration Options

Console Label/MBean Name Description

Unit-of-Work (UOW) Message
Handling Policy

UnitOfWorkHandlingPolicy

Specifies whether the Unit-of-Work (UOW) feature is
enabled for a destination.

• Pass-Through : By default, destinations do not treat
messages as part of a UOW.

• Single Message Delivery : Select this option if UOW
consumers are receiving component messages on this
terminal destination. When selected, component UOW
messages are formed into a list and are consumed as
an ObjectMessage containing the java.util.list.

Chapter 12
How to Create a Unit-of-Work Message Group

12-7

Table 12-3 (Cont.) Unit-of-Work Configuration Options

Console Label/MBean Name Description

Expiration time for incomplete
UOW Messages

IncompleteWorkExpirationTime

The maximum length of time, in milliseconds, before
undeliverable messages in an incomplete UOW are expired.
Such messages will then follow the expiration policy defined
for undeliverable messages. Message expiration begins
after the first UOW message arrives.

This field is effective only if Unit-of-Work Handling Policy is
set to Single Message Delivery. The default value of -1
means that UOW messages will never expire.

Note: If an expiration time is not configured on terminal
destination, then it is possible for a UOW message to wait
indefinitely on the destination when a component message
was either: (A) never sent/committed, (B) expired, or (C)
manually deleted).

For instructions about configuring unit-of-work parameters on standalone destinations,
distributed destinations, or JMS templates using the WebLogic Server Administration
Console, see the following sections in the Oracle WebLogic Server Administration
Console Online Help:

• Configure advanced topic parameters

• Configure advanced queue parameters

• Uniform distributed topics - configure advanced parameters

• Uniform distributed queues - configure advanced parameters

• Configure advanced JMS template parameters

For more information about these parameters, see DestinationBean and TemplateBean in
the MBean Reference for Oracle WebLogic Server.

12.3.3.1 UOW Message Routing for Terminal Distributed Destinations
The Unit-of-Order Routing field is used to determine the routing of UOW messages for
uniform distributed destinations, using either the path service or hash-based routing.
And similar to UOO, when a UOW terminal destination is also a distributed destination,
all messages within a UOW must go to the same distributed destination member. For
more information on the UOO routing mechanisms, see Using Unit-of-Order with
Distributed Destinations.

However, basic UOO routing and UOW routing are not the same. Strictly, all
messages within a single UOO do not have to go to the same member: when there are
no more unconsumed messages for a certain UOO, newly arrived messages can go to
any member. In UOW, message routing must be guaranteed until the whole UOW has
arrived at the physical destination and consumption is irrelevant.

12.3.4 How to Write a UOW Consumer for a Terminal Destination
The sample UOW consumer code in Example 12-3 shows how a consumer listening
on a terminal destination verifies that all component messages sent are contained
within the final UOW message.

Chapter 12
How to Create a Unit-of-Work Message Group

12-8

Example 12-3 Sample Client Code for UOW Terminal Destination

 {
 msg = qReceiver1.receive();
 if (msg != null)
 {
 count++;
 System.out.println"Message received: " + msg);
 //Check that this one message contains all the messages sent.
 ArrayList msgList = (ArrayList)(((ObjectMessage)msg).getObject());
 numMsgs = msgList.size();
 System.out.println("no. of messages in the msg = " + numMsgs);
 }
 } while (msg != null);

12.4 Message Unit-of-Work Advanced Topics
Learn how Unit-of-Work processes messages in advanced or more complex
situations.

• Message Property Handling

• UOW and Uniform Distributed Destinations

• UOW and Store-and-Forward Destinations

12.4.1 Message Property Handling
UOW is, in effect, taking multiple messages and joining them into one. This is true
whether or not the messages are delivered as one message. For example, each
message will have an independent expiration time, but if one expires, none of them will
ever be delivered. Therefore, as a best practice your message producers should make
sure that messages that make up a UOW are as uniform as possible.

Whether component messages are delivered as parts of a single message or as many
messages, it is easiest to envision them as a single virtual message, as well as
individual messages. For example, because the messages must be seen
consecutively, UOW's effect on message sorting can be viewed as determining the
correct placement of the virtual message. The same is true of message selection (a
consumer must see the whole group or not see the group at all); WebLogic JMS must
determine whether "consumer A must see the virtual message" before deciding to
deliver all of the messages to consumer A.

12.4.1.1 System-Generated Properties
Some fields of the virtual message will need to be populated independently of the
component messages. For example, the virtual message cannot get its value for
delivery count from a component message. This is the list of property values that are
system-generated:

• Timestamp

• Delivery count (redelivered)

• Destination

Chapter 12
Message Unit-of-Work Advanced Topics

12-9

12.4.1.2 Final Component Message Properties
The message properties will be derived from the component messages. However,
different properties get values derived in different ways. One way to derive virtual
message properties is to get their values directly from one of the component
messages, (this simplifies the handling of component messages with different property
values). For simplicity, the last message in the UOW is the message from which the
values are derived. For example, the message priority for the virtual message will be
the priority of the message marked as last (by having the property
JMS_BEA_IsUnitOfWorkEnd set to true).

This is the list of virtual message properties that are derived from the values contained
in the last message in the UOW:

• Message ID

• Correlation ID

• Priority

• User Properties

• User ID

12.4.1.3 Component Message Heterogeneity
Another method for handling component message heterogeneity is to coerce all
component messages into the same value. For example, as mentioned earlier, a
mixture of expiration times doesn't make sense. This is the complete list of message
properties that are handled in this way:

• Delivery Mode

• Expiration

12.4.1.4 ReplyTo Message Property
The ReplyTo property value is not reflected in the virtual message because it is not
used in message selection or sorting and is only useful to the application, therefore it
is ignored.

12.4.2 UOW and Uniform Distributed Destinations
As discussed in UOW Message Routing for Terminal Distributed Destinations, the
Unit-of-Order Routing field is used to determine the routing mechanism for UOW
messages. One other requirement for UOW in distributed destinations is that all
member destinations must have the same value for the UOW Handling Policy. A
configuration that is configured otherwise is invalid.

As a best practice, the use of topics (especially distributed topics) is discouraged for
use as intermediate UOW destinations, because this configuration may lead to
duplicate component messages.

Chapter 12
Message Unit-of-Work Advanced Topics

12-10

12.4.3 UOW and Store-and-Forward Destinations
The WebLogic Store-and-Forward service supports UOW, with the exception that a
store-and-forward (SAF) imported destination cannot be a terminal destination.
However, SAF obeys the routing rules of UOW messages, just as it does for UOO
messages. See Using Unit-of-Order with WebLogic Store-and-Forward.

12.5 Limitations of UOW Message Groups
Understand the limitations when using Unit-of-Work message groups.

• JMS clients created using WebLogic Server earlier than 9.0 cannot create
messages that will be processed as part of a UOW.

• The JMS C JNI client is not able to process UOW messages at a terminal
destination, because they are object messages. It can, however, be used as a
UOW producer or on an intermediate destination.

• UOW is poorly suited for sets of large file transfers. Ideally, your messaging
environment is configured for lower maximum message sizes and to facilitate the
streaming transfer of large chunks of data (such as large files) from a single
producer to a single consumer. UOW doesn't handle this use-case because the
individual messages are accumulated back into large giant message on the server
before they are pushed to the consumer, rather than streamed.

Chapter 12
Limitations of UOW Message Groups

12-11

Chapter 12

Limitations of UOW Message Groups

12-12

13
Using Transactions with WebLogic JMS

Learn how to use transactions with WebLogic JMS and learn about JTA user
transactions using message driven beans.

• Overview of Transactions

• Using JMS Transacted Sessions

• Using JTA User Transactions

• JTA User Transactions Using Message Driven Beans

• Example: JMS and EJB in a JTA User Transaction

• Using Cross-Domain Security

Note:

For more information about the JMS classes described in this section, access
the latest JMS Specification and Javadoc supplied on the Java Web site at the
following location: http://www.oracle.com/technetwork/java/jms/index.html.

13.1 Overview of Transactions
A transaction enables an application to coordinate a group of messages for production
and consumption, treating messages sent or received as an atomic unit.

When an application commits a transaction, all of the messages it received within the
transaction are removed from the messaging system and the messages it sent within
the transaction are delivered. If the application rolls back the transaction, then the
messages it received within the transaction are returned to the messaging system and
messages it sent are discarded.

When a topic subscriber rolls back a received message, the message is redelivered to
that subscriber. When a queue receiver rolls back a received message, the message
is redelivered to the queue, not the consumer, so that another consumer on that queue
can receive the message.

For example, when shopping online, you select items and store them in an online
shopping cart. Each ordered item is stored as part of the transaction, but your credit
card is not charged until you confirm the order by checking out. At any time, you can
cancel your order and empty your cart, rolling back all orders within the current
transaction.

There are three ways to use transactions with JMS:

• If you are using only JMS in your transactions, you can create a JMS transacted
session.

13-1

http://www.oracle.com/technetwork/java/jms/index.html

• If you are mixing other operations, such as EJB, with JMS operations, you should
use a Java Transaction API (JTA) user transaction in a non-transacted JMS
session.

• Use message driven beans.

The following sections explain how to use a JMS transacted session and JTA user
transaction.

Note:

When using transactions, it is recommended that you define a session
exception listener to handle any problems that occur before a transaction is
committed or rolled back, as described in Defining a Connection Exception
Listener.

If the acknowledge() method is called within a transaction, then it is ignored. If
the recover() method is called within a transaction, a JMSException is thrown.

13.2 Using JMS Transacted Sessions
A JMS transacted session supports transactions that are located within the session.

A JMS transacted session's transaction will not have any effect outside of the session.
For example, rolling back a session will roll back all sends and receives on that
session, but will not roll back any database updates. JTA user transactions are ignored
by JMS transacted sessions.

Transactions in JMS transacted sessions are started implicitly, after the first
occurrence of a send or receive operation, and chained together; whenever you
commit or roll back a transaction, another transaction automatically begins.

Before using a JMS transacted session, the system administrator should adjust the
connection factory (Transaction Timeout) and/or session pool (Transaction) attributes,
as necessary for the application development environment.

Figure 13-1 shows the steps required to set up and use a JMS transacted session.

Figure 13-1 Setting Up and Using a JMS Transacted Session

Chapter 13
Using JMS Transacted Sessions

13-2

13.2.1 Step 1: Set Up JMS Application, Creating Transacted Session
Set up the JMS application as described in Setting Up a JMS Application, when
creating sessions, as described in Step 3: Create a Session Using the Connection,
specify that the session is to be transacted by setting the transacted Boolean value to
true.

For example, the following methods show how to create a transacted session for the
point-to-point and Publish/subscribe messaging models, respectively:

 qsession = qcon.createQueueSession(
 true,
 Session.AUTO_ACKNOWLEDGE
);

 tsession = tcon.createTopicSession(
 true,
 Session.AUTO_ACKNOWLEDGE
);

After a session is defined, you can determine whether or not a session is transacted
using the following session method:

 public boolean getTransacted(
) throws JMSException

Note:

The acknowledge value is ignored for transacted sessions.

13.2.2 Step 2: Perform Desired Operations
Perform the desired operations associated with the current transaction.

13.2.3 Step 3: Commit or Roll Back the JMS Transacted Session
After you have performed the desired operations, execute one of the following
methods to commit or roll back the transaction.

To commit the transaction, execute the following method:

 public void commit(
) throws JMSException

The commit() method commits all messages sent or received during the current
transaction. Sent messages are made visible, while received messages are removed
from the messaging system.

To roll back the transaction, execute the following method:

 public void rollback(
) throws JMSException

Chapter 13
Using JMS Transacted Sessions

13-3

The rollback() method cancels any messages sent during the current transaction and
returns any messages received to the messaging system.

If either the commit() or rollback() methods are issued outside of a JMS transacted
session, then a IllegalStateException is thrown.

13.3 Using JTA User Transactions
The Java Transaction API (JTA) supports transactions across multiple data resources.
JTA is implemented as part of WebLogic Server and provides a standard Java
interface for implementing transaction management.

You program your JTA user transaction applications using the
javax.transaction.UserTransaction object, described at http://www.oracle.com/
technetwork/java/javaee/jta/index.html, to begin, commit, and roll back the
transactions. When mixing JMS and EJB within a JTA user transaction, you can also
start the transaction from the EJB, as described in Transactions in EJB Applications in
Developing JTA Applications for Oracle WebLogic Server.

You can start a JTA user transaction after a transacted session has been started;
however, the JTA transaction will be ignored by the session and vice versa.

WebLogic Server supports the two-phase commit protocol (2PC), enabling an
application to coordinate a single JTA transaction across two or more resource
managers. It guarantees data integrity by ensuring that transactional updates are
committed in all of the participating resource managers, or are fully rolled back out of
all the resource managers, reverting to the state before the start of the transaction.

Before using a JTA transacted session, the system administrator must configure the
connection factories to support JTA user transactions by selecting the XA Connection
Factory Enabled check box.

Figure 13-2 shows the steps required to set up and use a JTA user transaction.

Chapter 13
Using JTA User Transactions

13-4

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

Figure 13-2 Setting Up and Using a JTA User Transaction

13.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted
Session

Set up the JMS application as described in Setting Up a JMS Application, however,
when creating sessions, as described in Step 3: Create a Session Using the
Connection, specify that the session is to be non-transacted by setting the transacted
boolean value to false.

For example, the following methods illustrate how to create a non-transacted session
for the PTP and Pub/sub messaging models, respectively.

 qsession = qcon.createQueueSession(
 false,
 Session.AUTO_ACKNOWLEDGE
);

 tsession = tcon.createTopicSession(
 false,
 Session.AUTO_ACKNOWLEDGE
);

Note:

When a user transaction is active, the acknowledge mode is ignored.

Chapter 13
Using JTA User Transactions

13-5

13.3.2 Step 2: Look Up the User Transaction in JNDI
The application uses JNDI to return an object reference to the UserTransaction object
for the WebLogic Server domain.

You can look up the UserTransaction object by establishing a JNDI context (context)
and executing the following code, for example:

UserTransaction xact = ctx.lookup("javax.transaction.UserTransaction");

13.3.3 Step 3: Start the JTA User Transaction
Start the JTA user transaction using the UserTransaction.begin() method. For
example:

xact.begin();

13.3.4 Step 4: Perform Desired Operations
Perform the desired operations associated with the current transaction.

13.3.5 Step 5: Commit or Roll Back the JTA User Transaction
Once you have performed the desired operations, execute one of the following
commit() or rollback() methods on the UserTransaction object to commit or roll back
the JTA user transaction.

To commit the transaction, execute the following commit() method:

 xact.commit();

The commit() method causes WebLogic Server to call the Transaction Manager to
complete the transaction, and commit all operations performed during the current
transaction. The Transaction Manager is responsible for coordinating with the resource
managers to update any databases.

To roll back the transaction, execute the following rollback() method:

 xact.rollback();

The rollback() method causes WebLogic Server to call the Transaction Manager to
cancel the transaction, and roll back all operations performed during the current
transactions.

Once you call the commit() or rollback() method, you can optionally start another
transaction by calling xact.begin().

13.4 JTA User Transactions Using Message Driven Beans
Use message-driven beans to simulate asynchronous message delivery within JTA
user transactions.

Because JMS cannot determine which, if any, transaction to use for an
asynchronously delivered message, JMS asynchronous message delivery is not
supported within JTA user transactions.

Chapter 13
JTA User Transactions Using Message Driven Beans

13-6

However, message— driven beans provide an alternative approach. A message
driven bean can automatically begin a user transaction just before message delivery.

See Designing Message-Driven EJBs in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server.

13.5 Example: JMS and EJB in a JTA User Transaction
Learn how to set up an application for mixed EJB and JMS operations in a JTA user
transaction.

The following example shows the steps to set up an application by looking up a
javax.transaction.UserTransaction using JNDI, and beginning and then committing a
JTA user transaction. In order for this example to run, the XA Connection Factory
Enabled check box must be selected when the system administrator configures the
connection factory.

Note:

In addition to this simple JTA User Transaction example, see example
provided with WebLogic JTA, located in the EXAMPLES_HOME\wl_server\examples
\src\examples\jta\jmsjdbc directory, where EXAMPLE_HOME represents the
directory in which the WebLogic Server code examples are configured.

Import the appropriate packages, including the javax.transaction.UserTransaction
package, at http://www.oracle.com/technetwork/java/javaee/jta/index.html.

import java.io.*;
import java.util.*;
import javax.transaction.UserTransaction;
import javax.naming.*;
import javax.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA_USER_XACT=
 "javax.transaction.UserTransaction";
 .
 .
 .

13.5.1 Step 1 Set Up the JMS Application
Set up the JMS application, creating a non-transacted session. For more information
on setting up the JMS application, refer to Setting Up a JMS Application.

//JMS application setup steps including, for example:
 qsession = qcon.createQueueSession(false,
 Session.CLIENT_ACKNOWLEDGE);

13.5.2 Step 2 Look Up the User Transaction
Look up the UserTransaction using JNDI.

Chapter 13
Example: JMS and EJB in a JTA User Transaction

13-7

http://www.oracle.com/technetwork/java/javaee/jta/index.html

UserTransaction xact = (UserTransaction)
 ctx.lookup(JTA_USER_XACT);

13.5.3 Step 3 Start the JTA User Transaction
Start the JTA user transaction.

xact.begin();

13.5.4 Step 4 Perform the Desired Operations
Perform the desired operations.

// Perform some JMS and EJB operations here.

13.5.5 Step 5 Commit the JTA User Transaction
Commit the JTA user transaction.

xact.commit()

13.6 Using Cross-Domain Security
You must correctly configure either the Cross— Domain Security or Security
Interoperability Mode for all participating domains.

Keep all the domains used by your process symmetric with respect to Cross Domain
Security configuration and Security Interoperability Mode. Because both settings are
set at the domain level, it is possible for a domain to be in a mixed mode, meaning the
domain has both Cross Domain Security and Security Interoperability Mode set. See
Configuring Secure Inter-Domain and Intra-Domain Transaction Communication in
Developing JTA Applications for Oracle WebLogic Server.

Chapter 13
Using Cross-Domain Security

13-8

14
Developing Advanced Pub/Sub
Applications

Understand the advanced WebLogic JMS publish and subscribe (pub/sub) concepts
and functionality of Uniform Distributed Topics (UDTs) necessary to design high
availability (HA) applications.

• Overview of Advanced High Availability Concepts

• Advanced Topic Messaging Features for High Availability

• Design Strategies When Using Topics

• Considerations When Using JMS 2.0 Shared Subscriptions

• Replacing a Replicated Distributed Topic

• Best Practices for Distributed Topics

14.1 Overview of Advanced High Availability Concepts
WebLogic messaging offers high availability and scalability by using distributed
destinations. The WebLogic Server migration features also provide high availability for
the individual members of a distributed destination.

• WebLogic Messaging High Availability Features

• Application Design Limitations When Using Replicated Distributed Topics

• Advanced Topic Features

Note:

Oracle recommends designing applications that utilize WebLogic Server
MDBs or the Oracle SOA JMS Adapter rather than explicitly handling all
potential topology changes.

14.1.1 WebLogic Messaging High Availability Features
Oracle's WebLogic messaging offers high availability (HA) and scalability using the
following features:

• Using Distributed Destinations

• Migration of JMS-related Services in Administering JMS Resources for Oracle
WebLogic Server

• Whole Server Migration in Administering Clusters for Oracle WebLogic Server

Distributed Destinations make a group of JMS physical destinations accessible as a
single, logical destination to a client. Applications that use distributed destinations

14-1

usually have higher availability and better scalability because WebLogic JMS provides
load balancing and failover among member destinations of a distributed destination
within a cluster. Automatic Service Migration (ASM) and Whole Server Migration
(WSM) enable restarting either a set of services (including JMS servers and
destinations) or an entire WebLogic Server instance in a new location. These
migration features provide high availability for the individual members of a distributed
destination.

The nature of these technologies means that the topology of a JMS system can be
unknown to a client application as:

• The scaling of a cluster, along with the scaling of a distributed destination may
exceed the number of consumers defined by the application.

• The topology may dynamically change in the event of a server or service failure.

Typically, topology changes are handled transparently using MDBs either locally or on
a remote WebLogic Server instance. However, when using other client types, these
topology changes must be explicitly handled by the application, especially if the
application is remote to the servers hosting the JMS destinations.

14.1.2 Application Design Limitations When Using Replicated
Distributed Topics

Applications implementing Uniform Distributed Topics earlier than WebLogic Server
10.3.4.0 were constrained by the following limitations:

• Messages are always forwarded and duplicated across a distributed topic, which
means that either parallel processing, and/or ensuring that a clustered application
gets one copy of each message, may requires significant additional configuration,
coding, and message hops.

• Only one consumer at a time can process the messages in a given subscription
except for the limited case of Non-XA MDBs where all processing of the
subscription must occur on the same server with a thread pool. This prevents most
customers from designing application architectures that intend to have "round-
robin" distributed or parallel processing of a single subscription's topic messages,
instead of single-threaded processing.

• MDBs only directly support durable subscriptions on distributed topics that are
located in the same cluster.

• For applications other than MDBs, a durable subscriber created for a distributed
topic can only be created on a distributed topic (DT) member, and the durable
subscription will only exist on that member. If the member hosting the subscription
is down, then the subscription will not be available to any subscriber (and is
therefore not "highly available" by definition).

• Pinning subscribers to a distributed topic member prevents automatic adjustment
to changes in topology in the same way that adjustments are made for distributed
queues.

14.1.3 Advanced Topic Features
Starting in WebLogic Server 10.3.4.0, partitioned distributed topics, combined with the
ability to share subscriptions and allow multiple connections to use the same Client ID,

Chapter 14
Overview of Advanced High Availability Concepts

14-2

provide the following application design patterns that provide parallel processing and
HA capabilities similar to distributed queues:

• One copy per instance: Each instance of an application gets one copy of each
message that is published to the Topic.

• One copy per application: Each application as a whole (that is all instances of the
application together) receives one copy of each message that is published to the
Topic. Each instance only receives a subset of the messages that are sent to the
Topic.

Note:

Oracle recommends designing applications that utilize WebLogic Server
MDBs. See Configuring and Deploying MDBs Using JMS Topics in
Programming Message-Driven Beans for Oracle WebLogic Server for detailed
information about how to design and implement applications that use
message-driven beans to provide improved HA and scalability.

14.2 Advanced Topic Messaging Features for High
Availability

In order to understand how an application can achieve One-copy-per-instance and
One-copy-per-application design patterns, you need to understand the new and
changed features such as shared subscriptions and the client ID policy.

• Shared Subscriptions and Client ID Policy

• How Sharing a Non Durable Subscription Works

• How Sharing a Durable Subscription Works

• Advanced Programming with Distributed Destinations Using the JMS Destination
Availability Helper API

14.2.1 Shared Subscriptions and Client ID Policy
Before WebLogic Server 10.3.4.0, one subscription, durable or non durable, could only
be accessed by a single subscriber instance at any time. Each subscriber receives all
messages that are sent to a topic after the subscription is established and the
messages for each subscription are processed sequentially by one consumer.

In this WebLogic Server release, multiple subscribers can share one subscription
(durable or non durable). Messages are distributed among multiple consumers that
share the same subscription and can be processed in parallel. Subscription sharing
only occurs on the same destination instance or the same member instance of a DT.
See Configure Shared Subscriptions in Administering JMS Resources for Oracle
WebLogic Server.

In order to share a subscription, durable or non-durable subscriptions must have the
Client Id set on their connection factory or connection. Before WebLogic Server
10.3.4.0, a Client ID was exclusively used by one connection at any given time. In this
release of WebLogic Server, this restriction is relaxed and a new Client ID Policy is

Chapter 14
Advanced Topic Messaging Features for High Availability

14-3

used to restrict or not restrict use of a Client ID. The default policy, Restricted, allows
only one Client ID to be used by one connection. The Unrestricted policy allows
multiple connections to use the same client ID. For more information, see How Sharing
a Durable Subscription Works.

14.2.1.1 What is the Subscription Key
A subscription key is used to uniquely identify a subscription. For non-durable
subscriptions, the key is composed of the Client ID and Client ID Policy. For durable
subscriptions, the key is composed of the Client ID, Client ID Policy, and Subscription
Name.

14.2.1.2 Configuring a Shared Subscription
To configure a shared subscription, you need to configure the Subscription Sharing
Policy attribute on the connection factory. Setting the Subscription Sharing Policy to
Sharable allows subscribers created using a connection factory to share their
subscriptions with other subscribers, regardless of whether those subscribers are
created using the same connection factory or a different connection factory.
Consumers can share a non-durable subscriptions only if they have the same Client ID
and Client ID Policy. Consumers can share a durable subscription only if they have the
same Client ID, Client ID Policy, and Subscription Name. See:

• Configure a connection factory subscription sharing policy in Oracle WebLogic
Server Administration Console Online Help

• ClientIdPolicy in MBean Reference for Oracle WebLogic Server

14.2.2 How Sharing a Non Durable Subscription Works
In order to share a subscription among multiple non durable subscribers, the
subscribers have to have a Client ID, which serves to identify the subscription. All
subscribers that intend to share a subscription must have the same subscription key
(clientID and clientIDPolicy) on their connection. If Subscription Sharing Policy is set
to SHARABLE, but the clientID is not set on the Connection, the subscription is not a
shared subscription.

The first subscriber that is created with a subscription key creates the subscription. All
subsequently created subscribers with the same subscription key share the
subscription created by the first subscriber if all subscription details (such as: the
selector, noLocal option, and the physical destination) match. For example:

• If a subscription is created with a selector and noLocal option, a subscriber
creation call that uses the same subscription key but a different selector, noLocal
option or a different physical destination is treated as a different subscription.

• If a clientID is used by an EXCLUSIVE subscriber, any current or subsequent
subscribers using the same clientID, selector, and noLocal option is treated as a
different subscription.

Chapter 14
Advanced Topic Messaging Features for High Availability

14-4

Note:

It is only possible to have the same clientID if the subscriber is created with
the same connection instance or a connection using the UNRESTRICTED client ID
policy).

14.2.2.1 How a Shared Subscription Policy for a Non durable Subscription Is
Determined

The Subscription Sharing Policy for a particular non-durable subscription is
dynamically determined by the first active subscriber on the subscription and does not
change for the life of the subscription. Any attempt to change the Shared Subscription
Policy for a subscription throws an InvalidSubscriptionSharingException, which
extends javax.jms.JMSException. For example:

• If a non-durable subscription has an EXCLUSIVE subscriber on a destination, the
subscription is EXCLUSIVE, and any attempt to create an additional subscriber using
the subscription on the same destination fails with an
InvalidSubscriptionSharingException, regardless of whether the yet-to-be-created
subscriber is EXCLUSIVE or SHARABLE.

• If a subscription has active subscribers with a SHARABLE policy, then the
subscription is SHARABLE, and any attempt to create a new EXCLUSIVE subscriber on
the subscription fail with an InvalidSubscriptionSharingException.

14.2.2.2 How a Non durable Subscription Is Closed
After all subscribers that share the same subscription close, the subscription is
cleaned up. Specifically, when the last subscriber consumer on a shared subscription
calls theclose() method, the subscription and all the associated JMS resources
cleaned up.

There is no runtime mbean that represents a non-durable subscription, regardless of
whether it is a shared or exclusive subscription. It is possible to monitor individual
subscribers using the appropriate JMSConsumerRuntime MBean.

14.2.3 How Sharing a Durable Subscription Works
In previous releases, the subscription key (<ClientID, SubscriptionName>) uniquely
identified a subscription within a cluster where the subscription could only exist on a
single destination instance or a single member of a DT within the cluster. In this
WebLogic Server release, the subscription key becomes <ClientID, ClientIDPolicy,
SubscriptionName>. All durable subscribers that use the same subscription key share
the same subscription if they subscribe to a regular topic, or if they subscribe to the
same member of a distributed topic. Multiple subscriptions that use the same
subscription key can exist on multiple distributed destination member destinations.

The first subscriber that is created with a particular subscription key creates the
subscription. All subsequently created subscribers with the same subscription key
share the subscription created by the first subscriber if all subscription details (such as
the selector, noLocal option, and the physical destination) match and they are on the
same physical destination.

Chapter 14
Advanced Topic Messaging Features for High Availability

14-5

If a subscription is created with a selector and the noLocal option, a subscriber created
on the same physical destination using the same subscription key with a different
selector and noLocal option will:

• Replace the existing durable subscription and clean-up all pending messages that
are saved for the durable subscription if there are no active subscribers using this
existing subscription.

• Throw anInvalidSubscriptionSharingException if there are active subscribers using
the same subscription key with a different selector or noLocal option.

14.2.3.1 How a Shared Subscription Policy for a Durable Subscription is
Determined

The Subscription Sharing Policy for a particular durable subscription is dynamically
determined by the first active subscriber on the subscription and does not change
unless all current subscribers close and new subscribers attach with a different policy.
Any attempt to change the policy of a subscription that already has active subscribers
throws an InvalidSubscriptionSharingException. For example:

• If a durable subscription has an EXCLUSIVE subscriber and the Subscription Sharing
Policy is EXCLUSIVE, any attempt to create an additional subscribers on the
subscription throws an InvalidSubscriptionSharingException, regardless of
whether the yet-to-be-created subscriber is EXCLUSIVE or aSHARABLE.

• If a durable subscription has active subscribers with a SHARABLE policy, the
Subscription Sharing Policy is SHARABLE and, any attempt to create a new EXCLUSIVE
subscriber on the subscription throws an InvalidSubscriptionSharingException.

Note:

Changing the Subscription Sharing Policy on an existing durable subscription
does not delete any messages that already exist on the subscription.

14.2.3.2 How to Unsubscribe a Durable Subscription
Before unsubscribing a subscription, you must consider the Client ID Policy for the
subscription:

• Applications that use a client ID Policy with a value of RESTRICTED unsubscribe a
durable subscription using the standard Session.unsubscribe(String name) API.

Note:

Before WebLogic Server 10.3.4.0, all client IDs are RESTRICTED by default. A
client ID could only be used by one connection at any given time in a WLS
JMS cluster.

• Applications that use a client ID Policy with a value of UNRESTRICTED unsubscribe a
durable subscription using the WLSession.unsubscribe(String name, Topic topic)

Chapter 14
Advanced Topic Messaging Features for High Availability

14-6

extension by supplying the subscription name and the topic or a distributed topic
member object.

14.2.3.3 Considerations When Unsubscribing a Durable Subscriber
The following section provides information on how to unsubscribe or avoid scenarios
that throw an exception:

• If there are active consumers on the subscription, a call to theunsubscribe()
method throws a JMSException.

• If there are no active consumers on a subscription, then a call to theunsubscribe()
method deletes the matching durable subscription identified by the subscription
key <ClientID, ClientIDPolicy, SubscriptionName>.

• The unsubscribe() method of a durable subscription is done per standalone topic
or per member of a DT.

• A subscription created using a connection with a RESTRICTED client ID can only be
cleaned up from a connection that uses the same RESTRICTED Client ID.

• A subscription created using a connection with an UNRESTRICTED client ID can only
be cleaned up from a connection using the same UNRESTRICTED client ID.

• If WebLogic JMS does not find a matching subscription on the topic that was
created with the same client ID and client ID Policy as the unsubscribe call, then an
InvalidDestinationException is thrown.

• If an unsubscribe call with an UNRESTRICTED client ID specifies a DT or does not
specify any Topic, then an InvalidDestinationException is thrown.

• Although .Net and C API messaging applications can share subscriptions by using
the client ID Policy and Subscription Sharing Policy on a connection factory
deployed on WebLogic Server 10.3.4.0 or later, an unsubscribe API extension is
not yet available for subscriptions that use an unrestricted client ID. The
workaround is to use administrative measures described in Managing Durable
Subscriptions.

14.2.3.4 Managing Durable Subscriptions
When there are subscriptions distributed throughout a cluster, it is possible there are
some subscriptions that should were deleted but have not been deleted. These
subscriptions are sometimes called "abandoned" subscriptions, and can continue to
accumulate messages even though there is no subscriber processing the messages. If
the accumulating messages never expire, they can eventually cause the topic to begin
throwing resource allocation exceptions (quota exceptions), or if quotas are not
configured, then the accumulating message can even cause a server to run out of
memory.

For example, the unsubscribe call fails when there are active subscribers on the
subscription and the unsubscribe call does not reach subscriptions on inactive
(shutdown) members. When this happens, the subscription is left on the member
where the call failed until it is manually removed by an administrator or the call is
repeated.

To help handle these situations, administrators have the following options to monitor
and manage durable subscriptions:

Chapter 14
Advanced Topic Messaging Features for High Availability

14-7

• There is one instance of the JMSDurableSubscriptionRuntimeMBean for each durable
subscription. Administrators can monitor a topic or UDT using the WebLogic
Server Administration Console or by using WLST command line or scripts. See
Monitor JMS servers in Oracle WebLogic Server Administration Console Online
Help.

• To find an abandoned or orphaned durable subscription, the administrator can
check the LastMessagesReceivedTime on the JMSDurableSubscriberRuntimeMBean. The
getLastMessagesReceivedTime() method returns the last time a message was
received by a subscriber from the subscription. Based on this information, together
with attributes like the MessagesPendingCount or BytesPendingCount on the same
MBean, the administrator can build a clear picture of the status of a particular
durable subscription and take appropriate action, such as cleanup the resources.

14.2.3.4.1 Naming Conventions for JMSDurableSubscriberRuntimeMbean
If a durable subscription is created using the subscription key, <MyClientID,
MySubscriptionName>, then the name of the associated
JMSDurableSubscriberRuntimeMBean is either:

• MyClientID_MySubscriptionName when the client ID Policy is RESTRICTED. Where
MyClientID is the Client ID for this subscription, and MySubscriptionName is the
name of the subscription.

• MyClientID_MySubscriptionName@topicName@JMSServerName when the client ID Policy
is UNRESTRICTED. Where MyClientID is the client ID for this subscription,
MySubscriptionName is the name of the subscription., topicName is the name of a
standalone topic or a member of a UDT, and JMSServerName is the name of the JMS
Server that the topic or member is deployed on.

14.3 Design Strategies When Using Topics
Learn about the Topic-based design strategies that can be used to develop high
availability applications.

• One-Copy-Per-Instance Design Strategy

• One-Copy-Per-Application Design Strategy

14.3.1 One-Copy-Per-Instance Design Strategy
The one-copy-per-instance design strategy is the traditional design pattern and is
backward compatible with WebLogic Server releases before 10.3.4.0. One-copy-per-
instance has the following characteristics:

• Each instance of an application gets one copy of each message that is published
to the topic.

• This pattern is usually best implemented by leveraging an MDB, which sets up
policies and subscriptions across a cluster automatically. See Best Practices for
Distributed Topics.

Chapter 14
Design Strategies When Using Topics

14-8

14.3.2 One-Copy-Per-Application Design Strategy
The One-Copy-Per-Application design strategy is a design pattern available in
WebLogic Server 10.3.4.0 and higher releases. One-copy-per-application design
strategyhas the following characteristics:

• This pattern is usually best implemented by leveraging an MDB, which sets up
policies and subscriptions across a cluster automatically. See Best Practices for
Distributed Topics.

• Each application as a whole (that is all instances of the application together)
receives one copy of each message that is published to the DT. That is, each
instance only receives a subset of the messages that are sent to the DT

• An UNRESTRICTED Client ID Policy

• An SHARABLE Subscription Sharing Policy

• Uses the same subscription name if the subscribers are durable

• All consumers subscribe to the same topic instance (or member of a DT)

14.4 Considerations When Using JMS 2.0 Shared
Subscriptions

JMS 2.0 shared subscriptions internally leverage the proprietary WebLogic shared
subscription feature. Therefore, JMS 2.0 and proprietary WebLogic shared
subscriptions have similar semantics.

This section provides information about how to use JMS 2.0 shared subscriptions to
avoid throwing exceptions:

• When a shared non-durable subscription is created on a distributed topic directly
or on a distributed topic member, and if the client ID is not set on the connection,
use a connection with an UNRESTRICTED client ID Policy.

• When a shared durable subscription is created on a distributed topic directly,
either use MDBs or use extensions and subscriptions on members.

• When a shared durable subscription is created on a distributed topic member, and
if the client ID is not set on the connection, then use a connection with an
UNRESTRICTED client ID Policy.

Note:

When the client ID Policy is set to UNRESTRICTED, unsubscribe a durable
subscription using the WLSession.unsubscribe(String name, Topic topic)
extension by supplying the subscription name and the topic or a distributed
topic member object.

Chapter 14
Considerations When Using JMS 2.0 Shared Subscriptions

14-9

14.5 Replacing a Replicated Distributed Topic
Learn about replacing a Replicated Distributed Topic (RDT) with a standalone topic or
PDT.

• Reasons for Replacing a Replicated Distributed Topic

• Important Prerequisites Before Replacing an RDT

• Replacing an RDT with a Standalone Topic

• Replacing an RDT with a PDT

14.5.1 Reasons for Replacing a Replicated Distributed Topic

It is sometimes necessary to replace an existing Replicated Distributed Topic (RDT)
with a Partitioned Distributed Topic (PDT) or standalone topic because RDTs are not
supported in the following scopes:

• Cluster-targeted JMS servers. See Simplified JMS Cluster and High Availability
Configuration in Administering JMS Resources for Oracle WebLogic Server.

• Multitenant resource groups or resource group templates

• Dynamic clusters

An attempt to configure or deploy an RDT in any of these scopes generates a
configuration validation error.

It also can be helpful to replace an RDT with a PDT or standalone topic because these
options handle the same use cases, yet are simpler and tend to perform better. RDTs
implicitly run transactional internal forwarders to duplicate messages between their
members, and these forwarders have a relatively high overhead.

14.5.2 Important Prerequisites Before Replacing an RDT

Before replacing an RDT with a different type of topic, it is important to make sure that
pre-existing messages are processed. In addition, any old subscriptions on the RDT
should be deleted – or more simply, all store files or database tables should be
deleted. If the change needs to occur without restarting a cluster, create a new topic
with a different name and delete the old topic.

14.5.3 Replacing an RDT with a Standalone Topic

Replacing an RDT with a singleton standalone topic instead of a PDT can be the
simplest option, but sacrifices scalability and some HA. Ensuring that a cluster-hosted
standalone topic is migratable, can mitigate HA concerns. See What About Failover?
in Administering JMS Resources for Oracle WebLogic Server.

Chapter 14
Replacing a Replicated Distributed Topic

14-10

Note:

Standalone topics that are hosted on cluster-targeted JMS servers, a dynamic
cluster, or in multitenant-scoped configurations can only be hosted on a JMS
server that references a store configured with a singleton distribution policy.
They also require configuring cluster leasing on a cluster where database
leasing is recommended over consensus leasing. See Simplified JMS Cluster
and High Availability Configuration in Administering JMS Resources for Oracle
WebLogic Server.

14.5.4 Replacing an RDT with a PDT

To configure a PDT, set the forwarding-policy attribute of a uniform distributed topic to
Partitioned instead of Replicated. A PDT does not duplicate a message produced to
one of its members to every other member, so this different semantic may require
further changes:

• If you are using MDBs to consume from a PDT, then each MDB’s topic-message-
distribution-mode attribute will need to be set to one-copy-per-server or one-copy-
per-app if it is not already. The default compatibility topic-message-distribution-
mode will not work with PDTs - the MDB will generate an exception. See
Configuring and Deploying MDBs Using JMS Topics and Topic Deployment
Scenarios in Developing Message-Driven Beans for Oracle WebLogic Server.

• If you are using the SOA JMS adapter to consume from a PDT, then no change is
needed. It defaults to the MDB equivalent of one-copy-per-app when consuming
from a PDT. See Accessing Distributed Destinations (Queues and Topics) on the
WebLogic Server JMS in Understanding Technology Adapters.

• Similarly, if you are using the OSA JMS Adapter to consume from a PDT, then it is
likely no change is needed.

• If you have javax.jms topic consumers that are not an MDB, SOA JMS Adapter, or
OSA JMS Adapter, then application code changes may be needed. For example,
the application may need to be changed so that it consumes from subscriptions on
each and every PDT member instead of from a single subscription. This is
because a PDT does not replicate each sent message to each of its members. For
more information and a discussion of helper APIs in this area, see Developing
Advanced Publish/Subscibe Applications, Advanced Programming with Distributed
Destinations and Using the JMS Destination Availability Helper API.

14.6 Best Practices for Distributed Topics
Follow Oracle’s recommendations when designing new applications using distributed
topics.

• Simplify application design and complexity by utilizing MDBs. See:

– Distributed Topic Deployment Scenarios in Developing Message-Driven
Beans for Oracle WebLogic Server

– Configuring and Deploying MDBs Using Distributed Topics in Developing
Message-Driven Beans for Oracle WebLogic Server

Chapter 14
Best Practices for Distributed Topics

14-11

• If MDBs are not an option, consider using an UNRESTRICTED Client ID Policy, a
SHARABLE Subscription Policy, in combination with a Partitioned Topic (a distributed
topic with a PARTITIONED forwarding policy). See:

– Configure an Unrestricted ClientID in Administering JMS Resources for Oracle
WebLogic Server

– Configure Shared Subscriptions in Administering JMS Resources for Oracle
WebLogic Server

– Configuring Partitioned Distributed Topics in Administering JMS Resources for
Oracle WebLogic Server

– Advanced Programming with Distributed Destinations Using the JMS
Destination Availability Helper API

Chapter 14
Best Practices for Distributed Topics

14-12

15
Recovering from a Server Failure

Understand how WebLogic JMS client applications reconnect or recover from a server/
network failure and learn how to migrate JMS data after a server failure.

• Automatic JMS Client Failover

• Manually Migrating JMS Data to a New Server

15.1 Automatic JMS Client Failover
With the automatic JMS client reconnect feature, if a server or network failure occurs,
some JMS client objects will transparently failover to use a another server instance, as
long as one is available.

Note:

The WebLogic JMS Automatic Reconnect feature is deprecated. The JMS
Connection Factory configuration, javax.jms.extension.WLConnection API, and
javax.jms.extension.JMSContext API for this feature will be removed or ignored
in a future release. Oracle recommends that client applications handle
connection exceptions as described in Client Resiliency Best Practices in
Administering JMS Resources for Oracle WebLogic Server.

With the automatic JMS client reconnect feature, if a fatal server failure occurs, then
JMS clients automatically attempt to reconnect to the server when it becomes
available.

A network connection failure could be due to transient reasons (a temporary
interruption in the network connection) or non-transient reasons (a server bounce or
network failure). In such cases, some JMS client objects will try to automatically
operate with another server instance in a cluster, or possibly with the host server.

By default, JMS producer session objects automatically try to reconnect to an available
server instance without any manual configuration or modifications to the existing client
code. If you do not want your JMS producers to be automatically reconnected, then
you must explicitly disable this feature either programmatically or administratively.

In addition, JMS consumer session objects can also be configured to automatically
attempt to reconnect to an available server, but due to their potentially asynchronous
nature, you must explicitly enable this capability using the WebLogic Server
Administration Console or public WebLogic JMS APIs.

Related Topics

• Automatic Reconnect Limitations

• Automatic Failover for JMS Producers

• Configuring Automatic Failover for JMS Consumers

15-1

• Explicitly Disabling Automatic Failover on JMS Clients

• Best Practices for JMS Clients Using Automatic Failover

15.1.1 Automatic Reconnect Limitations
Automatic reconnect logic can provide a seamless failover for clients in many failure
scenarios. However, there are some connection failure scenarios where the result of a
message operation is undetermined and WebLogic Server throws an exception. Your
application must deal with the exception appropriately. For instance:

• If the message send operation is idempotent, resend the message.

• Otherwise, your application may need to take some action. For instance, you may
need to check if the message is already available on the queue before resending
to avoid duplicates.

Note:

If the destination or distributed destination member is unavailable, you will not
be able to determine if the message send operation was successful until that
member becomes available.

Implicit failover of the following JMS objects is not supported before WebLogic Server
9.2:

• Queue browsers: javax.jms.QueueBrowser

• The WebLogic JMS thin client (wljmsclient.jar) does not automatically reconnect.

• Client statistics are reset on each reconnect, which results in the loss historical
data for the client.

• Under some circumstances, automatic reconnect is not possible. If it is not
possible, an exception is reported.

• Temporary destinations (javax.jms.TemporaryQueue and javax.jms.TemporaryTopic).

Note:

Temporary destinations may still be accessible after a sever/network failure.
This is because temporary destinations are not always on the same server
instance as the local connection factory due to server load balancing.
Therefore, if a temporary destination survives a server/network failure and a
producer continues sending messages to it, an auto-reconnected consumer
may or may not be able consume messages from the same temporary
destination it was connected to before the failure occurred.

15.1.2 Automatic Failover for JMS Producers
In most cases, JMS producer applications will transparently failover to another server
instance if one is available. The following WebLogic JMS producer-oriented objects

Chapter 15
Automatic JMS Client Failover

15-2

will attempt to automatically reconnect to an available sever instance without any
manual configuration or modification to the existing client code:

• Connection

• Session

• MessageProducer

If you do not want your JMS clients to be automatically reconnected, then you must
explicitly disable this feature either programatically or administratively, as described in
Explicitly Disabling Automatic Failover on JMS Clients.

15.1.2.1 Sample Producer Code
In the event of a network failure, the WebLogic JMS client code for message
production will try to reconnect to an available server during Steps 3-8 shown in
Example 15-1.

Example 15-1 Sample JMS Client Code for Message Production

 //set exception listener
1. public void onException(javax.jms.JMSException jsme) {
 connection.setExceptionListener
 // handle the exception, which may require checking for duplicates
 // or sending the message again
 }

2. Context ctx = create WebLogic JNDI context with credentials etc.
3. ConnectionFactory cf = ctx.lookup(JNDI name of connection factory)
4. Destination dest = ctx.lookup(JNDI name of destination)
 // the following operations recover from network failures
5. Connection con = cf.createConnection()
6. Session sess = con.createSession(no transactions, ack mode)
7. MessageProducer prod = sess.createProducer(dest)

8. Loop over:
9. Message msg = sess.createMessage()
 // try block to handle destination availablitiy scenarios
10. try {
 prod.send(msg)}
 catch (Some Destination Availability Exception e) {
 //handle the exception, in most cases, the destination or member
 //is not yet available, so the code should try to resend
 }
 //end loop

 // done sending messages
11. con.close(); ctx.close();

The JMS producer will transparently fail-over to another server instance, if one is
available. This keeps the client code as simple as listed in Example 15-1and
eliminates the need for client code for retrying across network failures.

The WebLogic JMS does not reconnect MessageConsumers by default. For this to
automatically occur programmatically, your client application code must call the
WebLogic WLConnection extension, with the setReconnectPolicy set to "all", as
explained in Configuring Automatic Failover for JMS Consumers.

Chapter 15
Automatic JMS Client Failover

15-3

15.1.2.2 Re usable ConnectionFactory Objects
A ConnectionFactory object looked up using JNDI (see Step 1 in Example 15-1 and
Example 15-2) is re usable after a server or network failure without requiring a re-
lookup. A network failure could be between the JMS client JVM and the remote
WebLogic Server instance it is connected to as part of the JNDI lookup, or between
the JMS client JVM and any remote WebLogic Server instance in the same cluster
where the JMS client subsequently connects.

15.1.2.3 Re usable Destination Objects
A destination object (queue or topic) looked up using JNDI (see Step 2 in
Example 15-1 and Example 15-2) is re usable after a server or network failure without
requiring another lookup. The same principle applies to producers that send to a
distributed destinations, because the client looks up the distributed destination in JNDI,
and not the unavailable distributed member.

A network failure could be between the client JVM and the WebLogic Server instance
it is connected to, or between that WebLogic Server instance and the WebLogic
Server instance that actually hosts the destination. The Destination object will also be
robust after restarting the WebLogic Server instance hosting the destination.

Note:

For information on how consumers of distributed destinations behave with
automatic JMS client reconnect, see Consumers of Distributed Destinations.

15.1.2.4 Reconnected Connection Objects
The JMS connection object is used to map one-to-one to a physical network
connection between the client JVM and a remote WebLogic Server instance. With the
JMS client reconnect feature, the JMS Connection object that the client gets from the
ConnectionFactory.createConnection() method (see Step 3 in Example 15-1 and
Example 15-2) maps in a one-to-one-at-a-time fashion to the physical network
connection. One consequence is that while the JMS client continues to use the same
Connection object, it could be actually communicating with a different WebLogic
Server instance after an implicit failover.

If there is a network disconnection and a subsequent implicit refresh of the connection,
then all objects derived from the connection (such as javax.jms.Session and
javax.jms.MessageProducer objects) are also implicitly refreshed. During the refresh,
any synchronous operation on the connection or its derived objects that go to the
server (such as producer.send() or connection.createSession()), may block for a period
of time before giving up on the connection refresh. This time is configured using the
WebLogic Server Administration Console or the setReconnectBlockingMillis(long) API
in the weblogic.jms.extension.WLConnection interface.

The reconnect feature keeps trying to reconnect to the WebLogic Server instance's
ConnectionFactory object in the background until the application calls
connection.close(). The ReconnectBlockingMillis parameter is the time-out for a
synchronous caller trying to use the connection when the connection in being retried in
the background.

Chapter 15
Automatic JMS Client Failover

15-4

If a synchronous call times out without seeing a refreshed connection, then it then
behaves in exactly the same way (that is, throws the same Exceptions) as without the
implicit reconnect (that is, it will behave as if it was called on a stale connection without
the reconnect feature).

The caller can then decide to retry the synchronous call (with a potentially lower quality
of service, like duplicate messages), or decide to call connection.close()method ,
which will terminate the background retries for that connection.

15.1.2.4.1 Special Cases for Reconnected Connections
There are special cases that can occur when producer connections are refreshed:

• Connections with a ClientID for Durable Subscribers – If your Reconnect Policy
field is set to None or Producer, and a JMS Connection has a Client ID specified
at the time of a network/server failure, then the Connection will not be
automatically refreshed. The reason for this restriction is backward compatibility,
which avoids breaking existing JMS applications that try to re-create a JMS
Connection with the same connection name after a failure. If implicit failover also
occurs on a network failure, then the application's creation of the connection will
fail due to a duplicate ClientID.

Note:

For information on how a consumer connection with a ClientID behaves, see
Consumer Connections with a ClientID for Durable Subscriptions.

• Closed Objects Are Not Refreshed – When the application calls
javax.jms.Connection.close(), javax.jms.Session.close(), etc., that object and it
descendents are not refreshed. Similarly, when the JMS client is told its
Connection has been administratively destroyed, it is not refreshed.

• Connection with Registered Exception Listener – If the JMS Connection has an
application ExceptionListener registered on it, that ExceptionListener's
onException() callback will be invoked even if the connection is implicitly refreshed.
This notifies the application code of the network disconnect event. The JMS client
application code might normally call connection.close() in onException; however, if
it wants to take advantage of the reconnect feature, it may choose not to call
connection.close(). The registered ExceptionListener is also migrated
transparently to the internally refreshed connection to listen for exceptions on the
refreshed connection.

• Multiple Connections – If there are multiple JMS Connections created off the same
ConnectionFactory object, each connection will behave independently of the other
connections as far as the reconnect feature is concerned. Each connection will
have its own connection status, its own connection retry machinery, etc.

15.1.2.5 Reconnected Session Objects
As described in Reconnected Connection Objects, JMS Session objects are refreshed
when their associated JMS connection gets refreshed (see Step 4 in Example 15-1
and Example 15-2). Session states, such as acknowledge mode and transaction
mode, are preserved across each refresh occurrence. The same session object can
be used for calls, like createMessageProducer(), after a refresh.

Chapter 15
Automatic JMS Client Failover

15-5

15.1.2.5.1 Special Cases for Reconnected Sessions
These sections discuss special cases that can occur when Sessions are reconnected.

• Transacted Sessions With Pending Commits or Rollbacks – Operations similar to
non-transacted JMS Sessions, transacted JMS sessions are automatically
refreshed. However, if there were send or receive operations on a session pending
a commit or rollback at the time of the network disconnect, then the first commit
call after the Session refresh will fail throwing a
javax.jms.TransactionRolledBackException. When a JMS session transaction
spans a network refresh, the commit for that transaction cannot vouch for the
operations done before the refresh as part of that transaction (from an application
code perspective).

After a session refresh, operations like send() or receive() will not throw an
exception; it is only the first commit after a refresh that will throw an exception.
However, the first commit after a session refresh will not throw an exception if
there were no pending transactional operations in that JMS session at the time of
the network disconneciont. In case of Session.commit() throwing the exception, the
client application code can simply retry all the operations in the transaction again
with the same (implicitly refreshed) JMS objects. The stale operations before a
refresh will not be committed and will not be duplicated.

• Pending Unacknowledged Messages – If a session had unacknowledged
messages prior to the session refresh, then the first WLSession.acknowledge() call
after a refresh throws a weblogic.jms.common.LostServerException. This indicates
that the acknowledge() call may not have removed messages from the server. As a
result, the refreshed session may receive duplicate messages that were also
delivered before the disconnect.

15.1.2.6 Reconnected MessageProducer Objects
As described in Reconnected Connection Objects, JMS MessageProducer objects are
refreshed when their associated JMS connection gets refreshed (see Step 5 in
Example 15-1). If producers are non-anonymous, that is, they are specific to a
destination object (standalone or distributed destination), then the producer's
destination is also implicitly refreshed, as described in Re usable Destination Objects.
If a producer is anonymous, that is not specific to a destination object, then the
possibly stale destination object specified on the producer's send() operation is
implicitly refreshed.

15.1.2.6.1 Special Case for Distributed Destinations
It is possible that a producer can send a message at the same time that a distributed
destination member becomes unavailable. If WebLogic JMS can determine that the
distributed destination member is not available, or was not available when the
message was sent, the system will retry sending the message to another distributed
member. If there is no way to determine if the message made it through the
connection all the way to the distributed member before it went down, the system will
not attempt to resend the message because doing so may create a duplicate
message. In that case, WebLogic JMS will throw an exception. It is up to the
application to catch that exception and decide whether or not to resend the message.

Chapter 15
Automatic JMS Client Failover

15-6

15.1.3 Configuring Automatic Failover for JMS Consumers
JMS MessageConsumer objects that are part of a JMS Connection (through a JMS
Session) can be refreshed during a JMS connection refresh (see Step 5 in
Example 15-2). However, due to the stateful nature of JMS consumers, as well as their
potential asynchronous nature, you must explicitly enable this capability using either
the weblogic.jms.extension.WLConnection API or the WebLogic SErver Administration
Console.

Explicitly enabling automatic refresh of consumers also refreshes connections with a
configured client ID for a durable subscriber, as described in Consumer Connections
with a ClientID for Durable Subscriptions. However, refreshed consumers does not
include QueueBrowser clients, which are never refreshed, as described in Automatic
Reconnect Limitations.

15.1.3.1 Sample Consumer Client Code
When Message Consumer refresh is explicitly activated, in the event of a network
failure, the WebLogic JMS client code for message consumption will attempt to
reconnect during Steps 3-8 in Example 15-2.

Example 15-2 Sample JMS Client Code for Message Consumption

0. Context ctx = create WebLogic JNDI context with credentials etc.
1. ConnectionFactory cf = ctx.lookup(JNDI name of connection factory)
2. Destination dest = ctx.lookup(JNDI name of destination)
 // the following operations recover from network failures
3. Connection con = cf.createConnection()
 (weblogic.jms.extensions.WLConnection)con).setReconnectPolicy("all")
4. Session sess = con.createSession(no transactions, auto ack)
5. MessageConsumer cons = sess.createConsumer(dest, message selector)
 - also for async consumers : cons.setMessageListener(onMessage impl)
6. con.start()
7. Loop over:
 for sync consumers: Message msg = consumer.receive()
 for async consumers (in different thread): onMessage() invoked
8. con.close(), ctx.close()

Note that the connection factory does not refresh MessageConsumer objects by default.
For this to occur programmatically, your client application code must call the WebLogic
WLConnection extension, with the setReconnectPolicy set to "all", as shown in Step 3 in
Example 15-2.

15.1.3.2 Configuring Automatic Client Refresh Options
The JMS client reconnect API includes the following configuration parameters, which
enables you to make some choices that affect the behavior of the reconnect feature for
consumers.

Chapter 15
Automatic JMS Client Failover

15-7

Table 15-1 Automatic JMS Client Reconnect Options

Console Label/MBean
Attribute

Value Description

Reconnect Policy

ReconnectPolicy

• None
• Producer

(default)
• All

Determines which JMS client objects are implicitly refreshed
when a network disconnect or server reboot. It only affects the
implicit refresh of connections, sessions, producers, and
consumers derived from this connection factory. This attribute
does not affect Destination or ConnectionFactory objects in the
JMS client, since those objects are always refreshed implicitly.
Nor does it affect the QueueBrowser object in the JMS client,
since that object is never refreshed.

Reconnect Blocking Time

ReconnectBlockingTimeMillis

6000 Determines how long any synchronous JMS calls, such as
producer.send(), consumer.receive(), and
session.createBrowser() will block the calling thread before
giving up on a JMS client reconnect in progress.

TotalReconnectPeriodMillis
-1 Determines how long JMS clients should keep retrying to connect

after either the initial network disconnection or the last
synchronous JMS call attempt (whichever occurs most recently),
before giving up retrying.

For instructions about configuring client parameters on a connection factory using the
WebLogic Server Administration Console, see Configure connection factory client
parameters in the Oracle WebLogic Server Administration Console Online Help. For
more information about these parameters, see ClientParamsBean in the MBean
Reference for Oracle WebLogic Server.

15.1.3.3 Common Cases for Reconnected Consumers
This section describes the common scenarios when refreshing synchronous and
asynchronous consumers.

15.1.3.3.1 Synchronous Consumers
Synchronous consumers use MessageConsumer.receive(),
MessageConsumer.receive(timeout), and MessageConsume.receiveNoWait() methods to
consume messages. The first two methods are already expected to potentially block
the application code, while the third method is not expected to block the application
code. To retain these semantics, the following rules describe interaction of the
reconnect feature with the synchronous consumer calls:

• MessageConsumer.receive()– If there is a network disconnection during this call, this
method can block for up to Reconnect Blocking Time property (described in the
configuration section) for a reconnect to go through before throwing an Exception.

• MessageConsumer.receive(timeout) – This call will block for the at-most timeout in
milliseconds specified by the caller. If the Reconnect Blocking Time property is
less than the timeout, then the receive will still block up to the Reconnect Blocking
Time setting; if the Reconnect Blocking Time value is more than the timeout, the
receive will only block up to timeout.

• MessageConsumer.receiveNoWait() – This call will not block if the JMS Connection is
in the process of reconnecting. The Reconnect Blocking Time value has no effect
on this call.

Chapter 15
Automatic JMS Client Failover

15-8

If these methods eventually reach their respective timeout/wait periods, they all will
throw the same Exceptions. as they would reconnect. If a reconnect succeeds while
these methods are blocked/called, then these methods will continue returning
messages, but with a potentially lowered quality-of-service and with generally similar
semantics of receiving messages (like Redelivered messages), as after a recover. The
application is notified of this possibility by a Connection ExceptionListener callback
with theLostServerException. In addition, for non-AUTO_ACK acknowledge modes, the first
acknowledge call after a refresh will throw a LostServerException to notify the
application of this possibility.

15.1.3.3.2 Asynchronous Consumers
In the context of a reconnect, the behavior for asynchronous consumers will be
governed by the setting on the Total Reconnect Period property. The JMS consumer's
registered message listener's onMessage()method will continue to be invoked if the
reconnect framework is able to successfully re-establish a connection within the Total
Reconnect Period setting after a connection failure. If the user explicitly calls a close()
on the JMS Connection (or on the JMS Session corresponding to the asynchronous
Consumer), then the reconnect framework will not invoke any further onMessages for
that Consumer. The onMessage() should expect post recover behavior (like redelivered
messages) if the Connection ExceptionListener's onException is invoked with a
LostServerException.

15.1.3.4 Special Cases for Reconnected Consumers
These sections discuss special cases that can occur when consumers are refreshed.

15.1.3.4.1 Consumers of Distributed Destinations
Before to WebLogic Server 9.2, consumers of distributed destinations (DDs) were
pinned to a particular destination member of the DD for the life of the pinned
consumer. This applies to queue consumers of distributed queues, and non-durable
subscribers of distributed topics (durable subscribers are not supported distributed
topics).

With MessageConsumer reconnect, DD consumers are also refreshed; however, the
refreshed consumer is almost never on the same destination member as the stale
consumer. Therefore, even though the application is using the same DD consumer
across a refresh, it is effectively not pinned to the same destination member across a
refresh.

15.1.3.4.2 Message-Driven EJBs
Message-driven EJBs (MDBs) are a special sub case of asynchronous consumers that
have their own behavior requirements and their own refresh framework. As such,
MDBs are not expected to participate in MessageConsumer refreshes, and are not
expected to be affected in any other way by the JMS client reconnect framework.

15.1.3.4.3 Consumer Connections with a ClientID for Durable Subscriptions
Durable subscriptions on standalone topics will not notice any difference due to the
client reconnect feature if the topic is still available across a disconnect. The JMS
client reconnect framework implicitly refreshes the durable subscriber on that topic and
continue from where it was interrupted. Note that if your Reconnect Policy is set to All,
JMS Connections with a ClientID will also refresh automatically, thus allowing durable

Chapter 15
Automatic JMS Client Failover

15-9

subscriptions (which are scoped by ClientID) to refresh automatically. Connections
with a ClientID set will not reconnect for any other Reconnect Policy setting.

Note:

If a JMS Connection has a ClientID specified at the time of a network/server
failure, then reconnecting that client make take significantly longer than your
other clients. For example, in a cluster the JMS server must wait for the
WebLogic Server "heartbeat" notification that is broadcast from other
members of the cluster, as explained in Failover and Replication in a Cluster in
Administering Clusters for Oracle WebLogic Server.

WebLogic JMS does not support durable subscriptions on distributed topics,
so there is no issue of failover to another distributed topic member during a
refresh.

15.1.3.4.4 Non Durable Subscriptions and Possible Missed Messages
For consumers that are non-durable subscribers of topics, though the consumption
apparently continues successfully across a refresh from an application perspective, it
is possible for messages to be published to the topic and dropped (e.g., for lack of
consumers) while the reconnect was happening. Missed messages can occur with
either synchronous or asynchronous non durable subscribers.

15.1.3.4.5 Duplicate Messages
Due to the nature of the consumer refresh feature, there is a possibility of redelivered
messages without the client application code calling recover explicitly because a
consumer refresh effectively does an implicit equivalent of a recover upon a refresh.
This is the main reason why implicit Consumer refresh is not on by default. The
semantics of never redelivering a successfully acknowledged message still hold true.

There is also an unlikely case when non-durable subscribers of distributed topics can
receive duplicate messages that are not marked redelivered (e.g., when failover
happens faster than messages are discarded in topics). This is a consequence of a
non-durable subscriber refresh for the distributed topic not being pinned to a topic
member across a refresh.

15.1.3.4.6 Variations Due to Acknowledge Modes
There will be no difference in the reconnect behaviors of Consumers due to different
acknowledge modes. However, the first acknowledge call after a refresh for non-
AUTO_ACK modes will throw a LostServerException as described earlier to notify user of
potential lowered quality of service.

15.1.3.4.7 Reconnecting with Migrated JMS Destinations In a Cluster
Consumers will not always reconnect after a JMS server (and its destinations) is
migrated to another server in a cluster. If consumers do not get migrated with the
destinations, then either an exception is thrown or onException will occur to inform the
application that the consumer is no longer valid. As a workaround, an application can
refresh the consumer either in the exception handler or through onException.

Chapter 15
Automatic JMS Client Failover

15-10

15.1.4 Explicitly Disabling Automatic Failover on JMS Clients
If you do not want your JMS clients to be automatically reconnected, then you must
explicitly disable this feature either programatically or administratively.

15.1.4.1 Programmatically
If you do not want your JMS clients to be automatically reconnected, then your
applications should call the following code:

 ConnectionFactory cf = (javax.jms.ConnectionFactory)ctx.lookup
 (JNDI name of connection factory)
 javax.jms.Connection con = cf.createConnection();
 ((weblogic.jms.extensions.WLConnection)con).setReconnectPolicy("none")

For more information about the setReconnectPolicy method, see the
weblogic.jms.extension.WLConnection API.

15.1.4.2 Administratively
Administrators that do not want JMS clients to automatically reconnect should use the
following steps to disable the Reconnect Policy on the JMS connection factory:

1. Follow the directions for getting to the JMS Connection Factory: Configuration:
Client pages, see Configure connection factory client parameters in the Oracle
WebLogic Server Administration Console Online Help.

2. In the Reconnect Policy field, select None to disable the JMS client reconnect
feature on this connection factory.

For more information about the Reconnect Policy field, see JMS Connection
Factory: Configuration: Client in the Oracle WebLogic Server Administration
Console Online Help.

3. Click Save.

For more information about the other JMS connection factory client parameters, see
ClientParamsBean in the MBean Reference for Oracle WebLogic Server.

15.1.5 Best Practices for JMS Clients Using Automatic Failover
Oracle recommends the following best practices for JMS clients when using the
Automatic JMS Client Reconnect feature:

• Always Catch exceptions,

• Use Transactions to Group Message Work,

• JMS Clients Should Always Call the close() Method,

15.1.5.1 Always Catch exceptions
There are some connection failure scenarios where the result of a message operation
is undetermined and WebLogic Server throws an exception. Your application must
deal with the exception appropriately. See the following:

Chapter 15
Automatic JMS Client Failover

15-11

• Automatic Reconnect Limitations

• Special Cases for Reconnected Sessions

• Special Case for Distributed Destinations

15.1.5.2 Use Transactions to Group Message Work
Use transacted sessions (JMS) or user transactions (JTA) to group related or
dependent work, including messaging work, so that either all of the work is completed
or none of it is. If a server instance goes down and a message is lost in the middle of a
transaction, the entire transaction is rolled back and the application does not need to
make a decision for each message after a failure.

Note:

Be aware of transaction commit failures after a server reconnect, which may
occur if the transaction subsystem cannot reach all the participants involved in
the transaction.

15.1.5.3 JMS Clients Should Always Call the close() Method
As a best practice, your applications should not rely on the JVM's garbage collection to
clean up JMS connections because the JMS automatic reconnect feature keeps a
reference to the JMS connection. Therefore, always use theconnection.close() to
clean up your connections. Also consider using a Finally block to ensure that your
connection resources are cleaned up. Otherwise, WebLogic Server allocates system
resources to keep the connection available.

For more information about closing JMS client connections, see Best Practice: Always
Close Failed JMS ClientIDs.

15.2 Manually Migrating JMS Data to a New Server
WebLogic JMS uses the migration framework to allow WebLogic JMS to respond
properly to migration requests and bring a WebLogic JMS server online and offline in
an orderly fashion. This includes both scheduled migrations as well as migrations in
response to a WebLogic Server failure.

After a JMS server is properly configured, a JMS server and all of its destinations can
migrate to another WebLogic Server within a cluster.

You can manually recover JMS data from a failed WebLogic Server by starting a new
server and doing one or more of the tasks in Table 15-3.

Chapter 15
Manually Migrating JMS Data to a New Server

15-12

Note:

There are special considerations when you migrate a service from a server
instance that has crashed or is unavailable to the Administration Server. If the
Administration Server cannot reach the previously active host of the service at
the time you perform the migration, see Migrating a Service From an
Unavailable Server in Administering Clusters for Oracle WebLogic Server.

Table 15-2 Migration Task Guide

If Your JMS Application Uses Perform the Following Task

Persistent messaging—JDBC
Store

• If the JDBC database store physically exists on the
failed server, then migrate the database to a new
server and ensure that the JDBC connection pool
URL attribute reflects the appropriate location
reference.

• If the JDBC database does not physically exist on the
failed server, access to the database has not been
affected , and no changes are required.

Persistent messaging—File Store If you are using a shared file system, ensure that your file
store directories are explicitly configured to reference the
shared location (do not depend on the default), otherwise
you will need to copy the files to the new server and
ensure they have the same directory path as the original
server before restarting the migrated file stores. See Using
Custom File Stores and File Locations in Administering the
WebLogic Persistent Store.

Transactions To facilitate recovery after a failure , WebLogic Server
provides the Transaction Recovery Service, which
automatically tries to recover transactions when the
system startup. The Transaction Recovery Service owns
the transaction log for a server.

For detailed instructions about recovering transactions
from a failed server, see Transaction Recovery After a
Server Fails in Developing JTA Applications for Oracle
WebLogic Server.

Note:

JMS persistent stores can increase the amount of memory required during
initialization of WebLogic Server as the number of stored messages increases.
When rebooting WebLogic Server, if initialization fails due to insufficient
memory, then increase the heap size of the Java Virtual Machine (JVM)
proportionally to the number of messages that are currently stored in the JMS
persistent store and try the reboot again.

See Starting and Stopping Servers: Quick Reference. For information about
recovering a failed server, refer to Avoiding and Recovering From Server Failure in
Administering Server Startup and Shutdown for Oracle WebLogic Server.

Chapter 15
Manually Migrating JMS Data to a New Server

15-13

For more information about defining migratable services, see Service Migration in
Administering Clusters for Oracle WebLogic Server.

Chapter 15
Manually Migrating JMS Data to a New Server

15-14

16
WebLogic JMS C API

Understand the requirements, design principles, security considerations and
implementation guidelines need to use the WebLogic JMS C API to create C clients
that can access WebLogic JMS applications and resources.

• What Is the WebLogic JMS C API?

• System Requirements

• Design Principles

• Security Considerations

• Implementation Guidelines

• Client Packaging Requirements

• Workarounds for Client Crash Thread Detach Issue

16.1 What Is the WebLogic JMS C API?
The WebLogic JMS C API is an application program interface that enables you to
create C client applications that can access WebLogic JMS applications and
resources.

The C client application then uses the Java Native Interface (JNI), described at http://
docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html, to access the client-
side Java JMS classes. See Figure 16-1.

For this release, the WebLogic JMS C API adheres to the JMS Version 1.1
specification to promote the porting of Java JMS 1.1 code. See the JMS C API
Reference for Oracle WebLogic Server.

16-1

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html

Figure 16-1 WebLogic JMS C API Client Application Environment

16.2 System Requirements
Understand the system requirements needed to use WebLogic JMS C API in your
environment.

• A list of supported operating systems for the WebLogic JMS C API is available
from the Oracle Fusion Middleware Supported System Configurations page. See
Supported Configurations at What's New in Oracle WebLogic Server 12.2.1.3.0.

• A supported JVM for your operating system.

• An ANSI C compiler for your operating system.

• One of the following WebLogic clients to connect your C client applications to your
JMS applications:

– The WebLogic Thin T3 Client jar (wlthint3client.jar). See Developing a
WebLogic Thin T3 Client in Developing Standalone Clients for Oracle
WebLogic Server.

– The WebLogic application client (wlfullclient.jar file). See Using the
WebLogic JarBuilder Tool in Developing Standalone Clients for Oracle
WebLogic Server.

– The WebLogic JMS thin client (wljmsclient.jar file). See the WebLogic JMS
Thin Client in Developing Standalone Clients for Oracle WebLogic Server.

16.3 Design Principles
Understand the design principles for porting and developing applications for the
WebLogic JMS C API.

• Java Objects Map to Handles

• Thread Utilization

• Exception Handling

Chapter 16
System Requirements

16-2

• Type Conversions

• Memory Allocation and Garbage Collection

• Closing Connections

• Helper Functions

16.3.1 Java Objects Map to Handles
The WebLogic JMS C API is handle-based to promote modular code implementation.
This means that in your application you implement Java objects as handles in C code.
The details of how a JMS object is implemented is hidden inside a handle. However,
unlike in Java, when you are done with a handle, you must explicitly free it by calling
the corresponding Close or Destroy methods. See Memory Allocation and Garbage
Collection.

16.3.2 Thread Utilization
The handles returned from the WebLogic JMS C API are as thread—safe as their Java
counterparts. For example:

• javax.jms.Session objects are not thread-safe, and the corresponding WebLogic
JMS C API handle, JmsSession, is not thread safe.

• java.jms.Connection objects are thread-safe, and the corresponding WebLogic
JMS C API handle, JmsConnection, is thread safe.

As long as concurrency control is managed by the C client application, all objects
returned by the WebLogic JMS C API can be used in any thread.

16.3.3 Exception Handling

Note:

The WebLogic JMS C API uses integer return codes.

Exceptions in the WebLogic JMS C API are local to a thread of execution. The
WebLogic JMS C API has the following exception types:

• JavaThrowable represents the class java.lang.Throwable.

• JavaException represents the class java.lang.Exception.

• JmsException represents the class javax.jms.JMSException. All standard subclasses
of JMSException are determined by bits in the type descriptor of the exception. The
type descriptor is returned with a call to JmsGetLastException.

16.3.4 Type Conversions
When you interoperate between Java code and C code, typically one of the main tasks
is converting a C type to a Java type. For example, a short type is a two-byte entity in
Java as well as in C. The following type conversions that require special handling:

Chapter 16
Design Principles

16-3

16.3.4.1 Integer (int)
Integer (int) converts to JMS32I (4-byte signed value).

16.3.4.2 Long (long)
Long (long) converts to JMS64I (8-byte signed value).

16.3.4.3 Character (char)
Character (char) converts to short (2-byte Java character).

16.3.4.4 String
String converts to JmsString.

Java strings are arrays of 2 -byte characters. In C, strings are generally arrays of 1-
byte UTF-8 encoded characters. Pure ASCII strings fit into the UTF-8 specification.
For more information about UTF-8 string, see http://www.unicode.org. It is
inconvenient for C programmers to translate all strings into the 2-byte Java encoding.
The JmsString structure allows C clients to use native strings or Java strings,
depending on the requirements of the application.

JmsString supports two kinds of strings:

• Native C string (CSTRING)

• JavaString (UNISTRING)

A union of the UNISTRING and CSTRING called uniOrC has a character pointer called
string that can be used for a NULL terminated UTF-8 encoded C string. The uniOrC
union provides a structure called uniString, which contains a void pointer for the string
data and an integer length (bytes).

When the stringType element of JmsString is used as input, you should set it to CSTRING
or UNISTRING, depending on the type of string input. The corresponding data field
contains the string used as input.

The UNISTRING encoding encodes every 2– bytes as a single Java character. The 2-
byte sequence is big-endian. Unicode calls this encoding UTF-16BE (as opposed to
UTF-16LE, which is a 2-byte sequence that is little-endian). The CSTRING encoding
expects a UTF-8 encoded string.

When the stringType element of JmsString is used as output, the caller has the option
to let the API allocate enough space for output using malloc, or you can supply the
space and have the system copy the returned string into the provided bytes. If the
appropriate field in the union (either string or data) is NULL, then the API allocates
enough space for the output using malloc. It is the callers responsibility to free this
allocated space using free when the memory is no longer in use. If the appropriate
field in the union (string or data) is not NULL, then the allocatedSize field of JmsString
must contain the number of bytes available to be written.

If there is not enough space in the string to contain the entire output, then
allocatedSize sets to the amount of space needed and the API called returns
JMS_NEED_SPACE. The appropriate field in the JmsString (either string or data) contains as
much data as could be stored up to the allocatedSize bytes. In this case, the NULL

Chapter 16
Design Principles

16-4

http://www.unicode.org

character may or may not have been written at the end of the C string data returned.
Example:

For example, to allocate 100 bytes for the string output from a text message, you
would set the data pointer and the allocatedSize field to 100. The
JmsMessageGetTextMessage API returns JMS_NEED_SPACE with allocatedSize set to 200.
Call realloc on the original string to reset the data pointer and call the function again.
Now the call succeeds, and you are able to extract the string from the message
handle. Alternatively, you can free the original buffer and allocate a new buffer of the
correct size.

16.3.5 Memory Allocation and Garbage Collection
All resources that you allocate must also be disposed of it properly. In Java, garbage
collection cleans up all objects that are no longer referenced. However, in C, all
objects must be explicitly cleaned up. All WebLogic JMS C API handles given to the
user must be explicitly destroyed. Notice that some handles have a verb that ends in
Close while others end in Destroy. This convention distinguishes between Java objects
that have a close method and those that do not. For example:

• The javax.jms.Session object has a close method so the WebLogic JMS C API has
a JmsSessionClose function.

• The javax.jms.ConnectionFactory object does not have a close method so the
WebLogic JMS C API has a JmsConnectionFactoryDestroy function.

Note:

A handle that has been closed or destroyed should never be referenced again.

16.3.6 Closing Connections
In Java JMS, closing a connection implicitly closes all subordinate sessions,
producers, and consumers. In the WebLogic JMS C API, closing a connection does
not close any subordinate sessions, producers, or consumers. After a connection is
closed, all subordinate handles are no longer available and need to be explicitly
closed.

16.3.7 Helper Functions
The WebLogic JMS C API provides some helper functions that do not exist in
WebLogic JMS. These helpers are explained fully in the JMS C API Reference for
Oracle WebLogic Server. For example:

JmsMessageGetSubclass operates on a JmsMessage handle and returns an integer
corresponding to the subclass of the message. In JMS, this could be accomplished
using instanceof.

16.4 Security Considerations
The WebLogic JMS C API supports WebLogic compatibility realm security mode
based on a username and password.

Chapter 16
Security Considerations

16-5

The username and password must be passed to the initial context in the
SECURITY_PRINCIPAL and SECURITY_CREDENTIALS fields of the hash table used to create
the InitialContext object.

16.5 Implementation Guidelines
Understand the limitations when you implement the WebLogic JMS C API.

• It does not support WebLogic Server JMS extensions, including XML messages.

• It does not support JMS Object messages.

• It creates an error log if an error is detected in the client. This error log is named
ULOG.mmddyy (month/day/year). This log file is fully internationalized using the
NLSPATH, LOCALE, and LANG environment variables of the client.

• Users who want to translate the message catalog can use the gencat utility
provided on Windows or the gencat utility of the host platform. If the generated
catalog file is placed according to the NLSPATH, LOCALE, and LANG variables, then the
translated catalog will be used when writing messages to the log file.

• You can set the following environment variables in the client environment:

– JMSDEBUG: Provides verbose debugging output from the client.

– JMSJVMOPTS: Provides extra arguments to the JVM loaded by the client.

– ULOGPFX: Configures the pathname and file prefix where the error log file is
placed.

16.6 Client Packaging Requirements
You will need to include the JMS C API library and other files when you package the C
application.

Include the following files along with a C application executable:

• A supported JVM for your operating system.

• If WebLogic Server is not installed on the machine that will run the application: the
WebLogic JMS client jar(s) – usually the wlthint3client.jar. See Developing a
WebLogic Thin T3 Client in Developing Standalone Clients for Oracle WebLogic
Server.

• If the client executable dynamically links its JMS C library, include the JMS C API
library specific to the platform on which your application will run. JMS C API
dynamic libraries can be copied from your WebLogic Server install at:

– server/native/aix/ppc/libjmsc.so

– server/native/aix/ppc64/libjmsc.so

– server/native/hpux11/IPF64/libjmsc.so

– server/native/linux/i686/libjmsc.so

– server/native/linux/ia64/libjmsc.so

– server/native/linux/s390x/libjmsc.so

– server/native/linux/x86_64/libjmsc.so

– server/native/solaris/sparc/libjmsc.so

Chapter 16
Implementation Guidelines

16-6

– server/native/solaris/sparc64/libjmsc.so

– server/native/solaris/x64/libjmsc.so

– server/native/solaris/x86/libjmsc.so

– server/native/win/32/jmsc.dll

– server/native/win/64/jmsc.dll

– server/native/win/x64/jmsc.dll

16.7 Workarounds for Client Failure Thread Detach Issue
A C program that uses the JMS C client library may fail when its implicitly embedded
JVM fails.

The JMS client failure could be related to a known, intermittent race-condition that
occurs only with certain JVM products. The likelihood of failure can change based on
the JVM version and patch level, operating system, and hardware combination.
Specifically, the JMS C-Client library implicitly attaches C-threads to the JVM, but fails
to detach them when it is done with them. The suggested workarounds are as follows:

• Add code in the client to detach the JVM from any C thread that exits and that has
previously called into the JMS C-API.

• Do not allow a C thread that has previously called into the JMS C-API to exit
before the entire process exits.

The sample Java JNI code shown in Example 16-1 describes how to detach the thread
from the JVM.

Example 16-1 Sample Java JNI Code

#include <jni.h>

...

JavaVM *jvmList[JVM_LIST_SIZE];
jsize retSize = -1;
jint retVal = JNI_GetCreatedJavaVMs(jvmList, JVM_LIST_SIZE, &retSize);
if ((retVal != 0) || (retSize < 1)) {
 printf('ERROR: got %d/%d on JNI_getCreatedJavaVMs\n', retVal, retSize);
 return;
}
printf('INFO: got %d/%d on JNI_getCreatedJavaVMs\n', retVal, retSize);
/* The following line assumes that there's exactly one JVM: */
(*(jvmList[0]))->DetachCurrentThread(jvmList[0]);

If a program is not directly making JNI calls already, it may be necessary to add
compiler and linker parameters for access to the Java JNI libraries. For example, in
MicroSoft Visual C++, do the following:

• Add -I$(JAVA_HOME)/include and -I$(JAVA_HOME)/include/win32 to the compile

• Add $(JAVA_HOME)/lib/jvm.lib to the link

Chapter 16
Workarounds for Client Failure Thread Detach Issue

16-7

Chapter 16

Workarounds for Client Failure Thread Detach Issue

16-8

A
Server Session Pools (Deprecated)

Learn how to configure and use Server Session Pools, a deprecated JMS facility for
defining a server-managed pool of server sessions. This facility enables an application
to process messages concurrently with a deprecated release of WebLogic Server.

A.1 Defining Server Session Pools

Note:

Session pools are used rarely, because they are not a required part of the
Java EE specification, do not support JTA user transactions, and are largely
superseded by message-driven beans (MDBs), which are simpler, easier to
manage, and more capable. For more information about designing MDBs, see
Message-Driven EJBs in Developing Enterprise JavaBeans, Version 2.1, for
Oracle WebLogic Server.

WebLogic JMS implements an optional JMS facility for defining a server-managed
pool of server sessions. This facility enables an application to process messages
concurrently.

The server session pool:

• Receives messages from a destination and passes them to a server-side message
listener that you provide to process messages. The message listener class
provides an onMessage() method that processes a message.

• Processes messages in parallel by managing a pool of JMS sessions, each of
which executes a single-threaded onMessage() method.

Figure A-1shows the server session pool facility, and the relationship between the
application and the application server components.

A-1

Figure A-1 Server Session Pool Facility

As shown in the Figure A-1, the application provides a single-threaded message
listener. The connection consumer, implemented by JMS on the application server,
performs the following tasks to process one or more messages:

1. Gets a server session from the server session pool.

2. Gets the server session's session.

3. Loads the session with one or more messages.

4. Starts the server session to consume messages.

5. Releases the server session back to the pool when it has finished processing
messages.

Figure A-2shows the steps required to prepare for concurrent message processing.

Figure A-2 Preparing for Concurrent Message Processing

Applications can use other application server providers' session pool implementations
within this flow. Server session pools can also be implemented using message-driven
beans. For information about using message driven beans to implement server

Appendix A
Defining Server Session Pools

A-2

session pools, see Message-Driven EJBs in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

If the session pool and connection consumer were defined during configuration, then
you can skip this section. For more information about configuring server session pools
and connection consumers, see Configuring Basic JMS System Resources in
Administering JMS Resources for Oracle WebLogic Server.

Currently, WebLogic JMS does not support the optional
TopicConnection.createDurableConnectionConsumer() operation. For more information
about this advanced JMS operation, refer to the JMS Specification, described at
http://www.oracle.com/technetwork/java/jms/index.html.

A.1.1 Step 1: Look Up the Server Session Pool Factory in JNDI
You use a server session pool factory to create a server session pool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory:<name>, where <name> specifies the
name of the JMS server to which the session pool is created.

After it is configured, you can look up a server session pool factory by first establishing
a JNDI context (context) using the NamingManager.InitialContext() method, at http://
docs.oracle.com/javase/6/docs/api/javax/naming/

InitialContext.html#InitialContext(). For any application other than a servlet
application, you must pass an environment used to create the initial context. For more
information, see the NamingManager.InitialContext() Javadoc, at http://
docs.oracle.com/javase/6/docs/api/javax/naming/

InitialContext.html#InitialContext().

After the context is defined, to look up a server session pool factory in JNDI, use the
following code:

factory = (ServerSessionPoolFactory) context.lookup(<ssp_name>);

The <ssp_name> specifies a qualified or non-qualified server session pool factory name.

See ServerSessionPoolFactory or the
weblogic.jms.extensions.ServerSessionPoolFactory Javadoc.

A.1.2 Step 2: Create a Server Session Pool Using the Server Session
Pool Factory

You can create a server session pool for use by queue (Point-toPoint) or topic
(Publish/Subscribe) connection consumers, using the ServerSessionPoolFactory
methods described in the following sections.

For more information about server session pools, see ServerSessionPool or the
javax.jms.ServerSessionPool Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/ServerSessionPool.html.

A.1.2.1 Create a Server Session Pool for Queue Connection Consumers
The ServerSessionPoolFactory provides the following method for creating a server
session pool for queue connection consumers:

Appendix A
Defining Server Session Pools

A-3

http://www.oracle.com/technetwork/java/jms/index.html
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html

public ServerSessionPool getServerSessionPool(
 QueueConnection connection,
 int maxSessions,
 boolean transacted,
 int ackMode,
 String listenerClassName
) throws JMSException

You must specify the queue connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3), whether or not the sessions are transacted, the
acknowledge mode (applicable for non-transacted sessions only), and the message
listener class that is instantiated and used to receive and process messages
concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.extensions.ServerSessionPoolFactory Javadoc. For more information
about the ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc,
described at http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html.

A.1.2.2 Create a Server Session Pool for Topic Connection Consumers
The ServerSessionPoolFactory provides the following method for creating a server
session pool for topic connection consumers:

public ServerSessionPool getServerSessionPool(
 TopicConnection connection,
 int maxSessions,
 boolean transacted,
 int ackMode,
 String listenerClassName
) throws JMSException

You must specify the topic connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection (to
be created in step 3), whether or not the sessions are transacted, the acknowledge
mode (applicable for non-transacted sessions only), and the message listener class
that is instantiated and used to receive and process messages concurrently.

For more information about the ServerSessionPoolFactory class methods, see the
weblogic.jms.extensions.ServerSessionPoolFactory Javadoc. For more information
about the ConnectionConsumer class, see the javax.jms.ConnectionConsumer Javadoc,
described at http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html.

A.1.3 Step 3: Create a Connection Consumer
You can create a connection consumer for retrieving server sessions and processing
messages concurrently using one of the following methods:

• Configuring the server session pool and connection consumer during the
configuration, as described in "Configuring Basic JMS System Resources" in
Administering JMS Resources for Oracle WebLogic Server.

• Including in your application the Connection methods described in the following
sections.

Appendix A
Defining Server Session Pools

A-4

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html

For more information about the ConnectionConsumer class, see ConnectionConsumer or
the javax.jms.ConnectionConsumer Javadoc, described at http://docs.oracle.com/
javaee/7/api/javax/jms/ConnectionConsumer.html.

A.1.3.1 Create a Connection Consumer for Queues
The QueueConnection provides the following method for creating connection consumers
for queues:

public ConnectionConsumer createConnectionConsumer(
 Queue queue,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

You must specify the name of the associated queue, the message selector for filtering
messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session
simultaneously. For information about message selectors, see Filtering Messages.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc, at http://docs.oracle.com/javaee/7/api/
javax/jms/QueueConnection.html. For more information about the ConnectionConsumer
class, see the javax.jms.ConnectionConsumer Javadoc, at http://docs.oracle.com/
javaee/7/api/javax/jms/ConnectionConsumer.html.

A.1.3.2 Create a Connection Consumer for Topics
The TopicConnection provides the following two methods for creating
ConnectionConsumers for topics:

public ConnectionConsumer createConnectionConsumer(
 Topic topic,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

public ConnectionConsumer createDurableConnectionConsumer(
 Topic topic,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

For each method, you must specify the name of the associated topic, the message
selector for filtering messages, the associated server session pool for accessing
server sessions, and the maximum number of messages that can be assigned to the
server session simultaneously. For information about message selectors, see Filtering
Messages.

Each method creates a connection consumer; but, the second method also creates a
durable connection consumer for use with durable subscribers. For more information
about durable subscribers, see Setting Up Durable Subscriptions.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc, at http://docs.oracle.com/javaee/7/api/

Appendix A
Defining Server Session Pools

A-5

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html

javax/jms/TopicConnection.html. For more information about the ConnectionConsumer
class, see the javax.jms.ConnectionConsumer Javadoc, at http://docs.oracle.com/
javaee/7/api/javax/jms/ConnectionConsumer.html.

A.1.4 Example: Setting Up a PTP Client Server Session Pool
The following example shows how to set up a server session pool for a JMS client.
The startup() method is similar to the init() method in the
examples.jms.queue.QueueSend example, as described in Example: Setting Up a Point-
to-Point JMS Application Using the Classic API. This method also sets up the server
session pool.

The following illustrates the startup() method, with comments highlighting each setup
step.

Include the following package on the import list to implement a server session pool
application:

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION_POOL_FACTORY=
 "weblogic.jms.extensions.ServerSessionPoolFactory:examplesJMSServer";

private QueueConnectionFactory qconFactory;
private QueueConnection qcon;
private QueueSession qsession;
private QueueSender qsender;
private Queue queue;
private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;
private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(
 String name,
 Hashtable args
) throws Exception

{
 String connectionFactory = (String)args.get("connectionFactory");
 String queueName = (String)args.get("queue");
 if (connectionFactory == null || queueName == null) {
 throw new IllegalArgumentException("connectionFactory="+connectionFactory+
 ", queueName="+queueName);
 }
 Context ctx = new InitialContext();
 qconFactory = (QueueConnectionFactory)
 ctx.lookup(connectionFactory);
 qcon =qconFactory.createQueueConnection();
 qsession = qcon.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queue = (Queue) ctx.lookup(queueName);
 qcon.start();

A.1.4.1 Step 1 Look Up the Server Session Pool Factory
Look up the server session pool factory in JNDI.

Appendix A
Defining Server Session Pools

A-6

http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html

 sessionPoolFactory = (ServerSessionPoolFactory)
 ctx.lookup(SESSION_POOL_FACTORY);

A.1.4.2 Step 2 Create a Server Session Pool
Create a server session pool using the server session pool factory, as follows:

 sessionPool = sessionPoolFactory.getServerSessionPool(qcon, 5,
 false, Session.AUTO_ACKNOWLEDGE,
 examples.jms.startup.MsgListener);

The code defines the following:

• qcon is the queue connection associated with the server session pool

• 5is the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

• Sessions will be non-transacted (false)

• AUTO_ACKNOWLEDGE is the acknowledge mode

• The examples.jms.startup.MsgListener will be used as the message listener that is
instantiated and used to receive and process messages concurrently.

A.1.4.3 Step 3 Create a Connection Consumer
Create a connection consumer, as follows:

The code defines the following:

 consumer = qcon.createConnectionConsumer(queue, "TRUE",
 sessionPool, 10);

• queue is the associated queue

• TRUE is the message selector for filtering messages

• sessionPool is the associated server session pool for accessing server sessions

• 10 is the maximum number of messages that can be assigned to the server
session simultaneously

For more information about the JMS classes used in this example, see Understanding
the JMS API, or the javax.jms Javadoc at http://www.oracle.com/technetwork/
java/jms/index.html.

A.1.5 Example: Setting Up a Publish/Subscribe Client Server Session
Pool

The following example shows how to set up a server session pool for a JMS client.
The startup() method is similar to the init() method in the
examples.jms.topic.TopicSend example, as described in Example: Setting Up a
Publish-Subscribe JMS Application Using the Classic API. It also sets up the server
session pool.

The following shows the startup() method, with comments highlighting each setup
step.

Appendix A
Defining Server Session Pools

A-7

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Include the following package on the import list to implement a server session pool
application:

import weblogic.jms.extensions.ServerSessionPoolFactory

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION_POOL_FACTORY=
 "weblogic.jms.extensions.ServerSessionPoolFactory:examplesJMSServer";

private TopicConnectionFactory tconFactory;
private TopicConnection tcon;
private TopicSession tsession;
private TopicSender tsender;
private Topic topic;
private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;
private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(
 String name,
 Hashtable args
) throws Exception

{
 String connectionFactory = (String)args.get("connectionFactory");
 String topicName = (String)args.get("topic");
 if (connectionFactory == null || topicName == null) {
 throw new IllegalArgumentException("connectionFactory="+connectionFactory+
 ", topicName="+topicName);
 }
 Context ctx = new InitialContext();
 tconFactory = (TopicConnectionFactory)
 ctx.lookup(connectionFactory);
 tcon = tconFactory.createTopicConnection();
 tsession = tcon.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 topic = (Topic) ctx.lookup(topicName);
 tcon.start();

A.1.5.1 Step 1
Look up the server session pool factory in JNDI.

 sessionPoolFactory = (ServerSessionPoolFactory)
 ctx.lookup(SESSION_POOL_FACTORY);

A.1.5.2 Step 2 Create a Server Session Pool
Create a server session pool using the server session pool factory, as follows:

 sessionPool = sessionPoolFactory.getServerSessionPool(tcon, 5,
 false, Session.AUTO_ACKNOWLEDGE,
 examples.jms.startup.MsgListener);

The code defines the following:

• tcon as the topic connection associated with the server session pool

Appendix A
Defining Server Session Pools

A-8

• 5 as the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

• Sessions will be non-transacted (false)

• AUTO_ACKNOWLEDGE as the acknowledge mode

• The examples.jms.startup.MsgListener will be used as the message listener that is
instantiated and used to receive and process messages concurrently.

A.1.5.3 Step 3
Create a connection consumer, as follows:

 consumer = tcon.createConnectionConsumer(topic, "TRUE",
 sessionPool, 10);

The code defines the following:

• topic as the associated topic

• TRUE as the message selector for filtering messages

• sessionPool as the associated server session pool for accessing server sessions

• 10 as the maximum number of messages that can be assigned to the server
session simultaneously

For more information about the JMS classes used in this example, see Understanding
the JMS API, or the javax.jms Javadoc described at http://www.oracle.com/
technetwork/java/jms/index.html.

Appendix A
Defining Server Session Pools

A-9

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Appendix A

Defining Server Session Pools

A-10

B
FAQs: Integrating Remote JMS Providers

The Java EE standards for JMS (messaging), JTA (transaction), and JNDI (naming)
work together to provide reliable Java-to-Java messaging between different host
machines and even different vendors. Oracle WebLogic Server provides a variety of
tools that leverage these APIs to help integrate remote JMS providers into a local
application.

• Understanding JMS and JNDI Terminology

• Understanding Transactions

• How to Integrate with a Remote Provider

• Best Practices When Integrating with Remote Providers

• Using Foreign JMS Server Definitions

• Using EJB/Servlet JMS Resource References

• Using WebLogic Store-and-Forward

• Using WebLogic JMS SAF Client

• Using a Messaging Bridge

• Using Messaging Beans

• Using AQ JMS

B.1 Understanding JMS and JNDI Terminology
Q. What is a remote JMS provider?

A. A remote JMS provider is a JMS server that is hosted outside a local stand alone
WebLogic server or outside WebLogic server cluster. The remote JMS server can be a
WebLogic or a non-WebLogic (foreign) JMS server.

Q. What is JNDI?

A. Java Naming and Directory Interface (JNDI) is a Java EE lookup service that maps
names to services and resources. JNDI provides a directory of advertised resources
that exist on a particular stand alone (non-clustered) WebLogic server or within a
WebLogic server cluster. Examples of these resources include JMS connection
factories, JMS destinations, JDBC (database) data sources, and application EJBs.

A client connecting to WebLogic Server in a WebLogic cluster can transparently
reference any JNDI advertised service or resource hosted on any WebLogic Server
within the cluster. The client doesn't require explicit knowledge of which particular
WebLogic Server in the cluster hosts a desired resource.

Q. What is a JMS connection factory?

A. A JMS connection factory is a named entity resource stored in JNDI. Applications,
message driven beans (MDBs), and messaging bridges lookup a JMS connection
factory in JNDI and use it to create JMS connections. JMS connections are used in

B-1

turn to create JMS sessions, producers, and consumers that can send or receive
messages.

Q. What is a JMS connection-id?

A. JMS connection-IDs are used to name JMS client connections. Durable subscribers
require named connections, otherwise connections are typically unnamed. Note that
within a clustered set of servers or stand alone server, only one JMS client connection
may use a particular named connection at a time. An attempt to create new connection
with the same name as an existing connection will fail.

Q. What is the difference between a JMS topic and a JMS queue?

A. JMS queues deliver a message to one consumer, while JMS topics deliver a copy
of each message to each consumer.

Q. What is a topic subscription?

A. A topic subscription can be thought of as an internal queue of messages waiting to
be delivered to a particular subscriber. This internal queue accumulates copies of each
message published to the topic after the subscription was created. Conversely, it does
not accumulate messages that were sent before the subscription was created.
Subscriptions are not sharable, only one subscriber may subscribe to a particular
subscription at a time.

Q. What is a non-durable topic subscriber?

A. A non durable subscriber creates unnamed subscriptions that exist only for the life
of the JMS client. Messages in a non durable subscription are never persisted—even
when the message's publisher specifies a persistent quality of service (QOS). Shutting
down a JMS server terminates all non durable subscriptions.

Q. What is a durable subscriber?

A. A durable subscriber creates named subscriptions that continue to exist even after
the durable subscriber exits or the server reboots. A durable subscriber connects to its
subscription by specifying the topic-name, connection-ID, and subscriber-ID. Together,
the connection-id and subscriber-id uniquely name the subscriber's subscription within
a cluster. A copy of each persistent message published to a topic is persisted to each
of the topic's durable subscriptions. In the event of a server failure and restart, durable
subscriptions and their unconsumed persistent messages are recovered.

B.2 Understanding Transactions
Q. What is a transaction?

A. A transaction is a set of distinct application operations that must be treated as an
atomic unit. To maintain consistency, all operations in a transaction must either all
succeed or all fail. See Introducing Transactions in Developing JTA Applications for
Oracle WebLogic Server.

Q. Why are transactions important for integration?

A. Integration applications often use transactions to ensure data consistency. For
example, to ensure that a message is forwarded exactly-once, a single transaction is
often used to encompass the two operations of receiving the message from its source
destination and sending the message to the target destination. Transactions are also
often used to ensure atomicity of updating a database and performing a messaging
operation.

Appendix B
Understanding Transactions

B-2

Q. What is a JTA/XA/global transaction?

A. In Java EE, the terms JTA transaction, XA transaction, user transaction, and global
transaction are often used interchangeably to refer to a single global transaction. This
type of transaction can include operations on multiple different XA capable resources
and different resource types. A JTA transaction is always associated with the current
thread, and can be passed from server to server as one application calls another. A
common example of an XA transaction is one that includes both a WebLogic JMS
operation and a JDBC (database) operation.

Q. What is a local transaction?

A. A JMS local transaction is a transaction in which only a single resource or service
can participate. A JMS local transaction is associated with a particular JMS session
where the destinations of a single vendor participate. Unlike XA transactions, a
database operation can not participate in a JMS local transaction.

Q. How does JMS provide local transactions?

A. Local transactions are enabled by a JMS specific API called transacted sessions.
For vendors other than WebLogic JMS, the scope of a transacted session is typically
limited to a single JMS server. In WebLogic JMS, multiple JMS operations on multiple
destinations within an entire cluster can participate in a single transacted session's
transaction. In other words, it is scoped to a WebLogic cluster and no remote JMS
provider to the JMS session's cluster can participate in a transaction.

Q. Are JMS local transactions useful for integration purposes?

A. Local transactions are generally not useful for integration purposes because they
are limited in scope to a single resource, typically a messaging or database server.

Q. What is Automatic Transaction Enlistment?

A. Operations on resources such as database servers or messaging servers
participate in a Java EE JTA transaction provided that:

• The resource is XA transaction capable

• The resource was enlisted with the current transaction

• The client library used to access the resource is transaction aware (XA enabled).

Automatic participation of operations on an XA capable resource in a transaction is
technically referred to as automatic enlistment.

• WebLogic clients using XA enabled WebLogic APIs automatically enlist operation
in the current thread's JTA transaction. Examples of XA enabled WebLogic clients
include WebLogic JMS XA enabled (or user transaction enabled) connection
factories, and JDBC connection pool data sources that are global transaction
enabled.

• Foreign (non-WebLogic) JMS clients do not automatically enlist in the current JTA
transaction. These clients must either go through an extra step of
programmatically enlisting in the current transaction, or use WebLogic provided
features that wrap the foreign JMS client and automatically enlist when the foreign
JMS client is accessed via wrapper APIs.

JMS features that provide automatic enlistment for foreign vendors are:

• Message-Driven EJBs

• JMS resource-reference pools

Appendix B
Understanding Transactions

B-3

• Messaging Bridges

To determine if a non-WebLogic vendor's JMS connection factory is XA capable,
check the vendor documentation. Remember, support for transacted sessions (local
transactions) does not imply support for global/XA transactions.

B.3 How to Integrate with a Remote Provider
Q. What does a JMS client do to communicate with a remote JMS provider?

A. To communicate with any JMS provider, a JMS client must perform the following
steps:

1. Look up a JMS connection factory object and a JMS destination object using JNDI

2. Create a JMS connection using the connection factory object

3. Create message consumers or producers using the JMS connection and JMS
destination objects.

Q. What information do I need to set up communications with a remote JMS provider?

A. You will need the following information to set up communications with a remote
JMS provider:

• The destination type: Whether the remote JMS destination is a queue or a topic.

• The JNDI name of the remote JMS destination.

• For durable topic subscribers: The connection-id and subscriber-id names that
uniquely identify them. Message Driven EJBs provide default values for these
values based on the EJB name.

• For non-WebLogic remote JMS providers

– Initial Context Factory Class Name: The java class name of the remote JMS
Provider's JNDI lookup service.

– The file location of the java jars containing the remote JMS provider's JMS
client and JNDI client libraries. Ensure that these jars are specified in the local
JVM's classpath.

• The URL of the remote provider's JNDI service. For WebLogic servers, the URL is
usually in the form t3://hostaddress:port. If you are tunneling over HTTP, begin
the URL with http rather than t3. No URL is required for server application code
that accesses a WebLogic JMS Server that resides on the same WebLogic Server
or WebLogic cluster as the application.

• The JNDI name of the remote provider's JMS connection factory. This connection
factory must exist on the remote provider, not the local provider.

If the JMS application requires transactions, the connection factory must be XA
capable. WebLogic documentation refers to XA capable factories as user
transactions enabled.

By default, WebLogic servers automatically provide three non-configurable
connection factories:

– weblogic.jms.ConnectionFactory: A non-XA capable factory.

– weblogic.jms.XAConnectionFactory: An XA-capable factory

– weblogic.jms.MessageDrivenBeanConnectionFactory: An XA-capable factory for
message-driven EJBs.

Appendix B
How to Integrate with a Remote Provider

B-4

Additional WebLogic JMS connection factories must be explicitly configured.

Q. What if a foreign JMS provider JNDI service has limited functionality?

A. The preferred method for locating JMS provider connection factories and
destinations is to use a standard Java EE JNDI lookup. Occasionally a non-WebLogic
JMS provider's JNDI service is hard to use or unreliable. The solution is to create a
startup class or load-on-start servlet that runs on a WebLogic server that does the
following:

• Uses the foreign provider's proprietary (non-JNDI) APIs to locate connection
factories and JMS destinations.

• Registers the JMS destinations and JMS connection factories in WebLogic JNDI.

Q. How can I pool JMS resources?

A. Remote and local JMS resources, such as client connections and sessions, are
often pooled to improve performance. Message— driven EJBs automatically pool their
internal JMS consumers. JMS consumers and producers accessed through resource-
references are also automatically pooled.

Q. Which tools are available for integrating with remote JMS providers?

A. The following table summarizes the tools available for integrating with remote JMS
providers:

Method Automatic Enlistment JMS Resource Pooling

Direct use of the remote
provider's JMS client

Yes for a WebLogic server
provider. Other providers must
perform enlistment
programmatically.

No. Can be done
programmatically.

Messaging Bridge Yes N/A

Foreign JMS Server
Definition

No. To get automatic
enlistment, use in conjunction
with a JMS resource reference
or MDB.

No. To get resource pooling, use
in conjunction with a JMS
resource reference or MDB.

JMS Resource Reference Yes Yes

Message Driven EJBs Yes Yes

SAF Client N/A N/A

SAF Yes N/A

B.4 Best Practices When Integrating with Remote Providers
Q. How do I receive messages from a remote a JMS provider from within an EJB or
Servlet?

A. Use a message driven EJB. Synchronous receives are not recommended because
they idle a server side thread while the receiver blocks waiting for a message. See
Using Messaging Beans.

Q. How do I send messages to a remote JMS provider from within an EJB or Servlet?

A. Use a resource reference. It provides pooling and automatic enlistment. See Using
EJB/Servlet JMS Resource References. In limited cases where wrappers are not
sufficient, you can write your own pooling code.

Appendix B
Best Practices When Integrating with Remote Providers

B-5

If the target destination is remote, then consider adding a local destination and
messaging bridge to implement a store-and-forward high availability design. See Using
a Messaging Bridge.

Another best practice is to use foreign JMS server definitions. Foreign JMS server
definitions allow an application's JMS resources to be administratively changed and
avoid the problem of hard coding URLs into application code. In addition, foreign JMS
server definitions are required to enable resource references to reference remote JMS
providers. See Using Foreign JMS Server Definitions.

Q. How do I communicate with remote JMS providers from a client?

A. If the destination is not provided by WebLogic Server, and you to include operations
on the destination in a global transaction, use a server proxy to encapsulate JMS
operations on the foreign vendor in an EJB. Applications running on WebLogic Server
have facilities to enlist non-WebLogic JMS providers that are transaction (XA) capable
with the current transaction.

If you need store-and-forward capability, consider sending to local destinations and
using messaging bridges to forward the message to the foreign destination. See:

• Using a Messaging Bridge

• Using WebLogic Store-and-Forward

• Using WebLogic JMS SAF Client

Another option is to simply use the remote vendor's JNDI and JMS API directly or
configuring foreign JMS providers to avoid hard-coding references to them. You must
add the foreign provider's class libraries to the client's class-path.

Q. How can I tune WebLogic JMS interoperability features?

A. See Tuning WebLogic Server EJBs, Tuning WebLogic Message Bridge, and Tuning
WebLogic JMS Store-and-Forward in Tuning Performance of Oracle WebLogic Server.

B.5 Using Foreign JMS Server Definitions
Q. What are Foreign JMS Server Definitions?

A. Foreign JMS server definitions are an administratively configured symbolic link
between a JNDI object in a remote JNDI directory, such as a JMS connection factory
or destination object, and a JNDI name in the JNDI name space for a stand-alone
WebLogic Server or a WebLogic cluster. They can be configured using the WebLogic
Server Administration Console, standard JMX MBean APIs, or programmatically using
scripting. See Simplified Access to Foreign JMS Providers.

Q. When is it best to use a Foreign JMS Server Definition?

A. For this release, a Foreign JMS Server definition conveniently moves JMS JNDI
parameters into one central place. You can share one definition between EJBs,
servlets, and messaging bridges. You can change a definition without recompiling or
changing deployment descriptors. They are especially useful for:

• Any message driven EJB (MDB) where it is desirable to administer standard JMS
communication properties via configuration rather than hard code them into the
application's EJB deployment descriptors. This applies even if the MDB's source
destination isn't remote.

Appendix B
Using Foreign JMS Server Definitions

B-6

• Any MDB that has a destination remote to the cluster. This simplifies deployment
descriptor configuration and enhances administrative control.

• Any EJB or servlet that sends or receives from a remote destination.

• Enabling resource references to refer to remote JMS providers. See Using EJB/
Servlet JMS Resource References.

B.6 Using EJB/Servlet JMS Resource References
Q. What are JMS resource references?

A. Resource references are specified by servlet and EJB application developers and
packaged with an application. They are easy-to-use and provide a level of indirection
that lets applications reference JNDI names defined in an EJB descriptor rather than
hard coding JNDI names directly into application source code.

JMS resource-references provide two additional features:

• Automatic pooling of JMS resources when those resources are closed by the
application.

• Automatic enlistment of JMS resources with the current transaction, even for non-
WebLogic JMS providers.

Inside an EJB or servlet application code, use a JMS resource references by including
resource-ref elements in the deployment descriptors and then use a JNDI context to
look them up using the syntax java:comp/env/jms/<reference name>.

Resource references provide no functionality outside of application code, and
therefore are not useful for configuring a message driven EJB's source destination or a
messaging bridge's source or target destinations.

For WebLogic documentation on JMS resource-reference pooling, see Enhanced
Support for Using WebLogic JMS with EJBs and Servlets.

Q. What advantages do JMS resource references provide?

A. JMS resource references provide the following advantages:

• They ensure portability of servlet and EJB applications: they can be used to
change an application's JMS resource without recompiling the application's source
code.

• They provide automatic pooling of JMS Connection, Session, and
MessageProducer objects.

• They provide automatic transaction enlistment for non-WebLogic JMS providers.
This requires XA support in the JMS provider. If resource references are not used,
then enlisting a non-WebLogic JMS provider with the current transaction requires
extra programmatic steps.

Q. How do I use resource references with foreign JMS providers?

A. To enable resource references to reference remote JMS providers, they must be
used in conjunction with a foreign JMS definition. This is because resources
references do not provide a place to specify a URL or initial context factory. See Using
Foreign JMS Server Definitions.

Q. How do I use resource references with non-transactional messaging?

Appendix B
Using EJB/Servlet JMS Resource References

B-7

A. For non-transactional cases, do not use a global transaction (XA) capable
connection factory. This will affect messaging performance. If you do, the resource
reference will automatically begin and commit an internal transaction for each
messaging operation. See Understanding Transactions.

B.7 Using WebLogic Store-and-Forward
Q. What is the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service enables WebLogic Server to
deliver messages reliably between applications that are distributed across WebLogic
Server instances. For example, with the SAF service, an application that runs on or
connects to a local WebLogic Server instance can reliably send messages to a
destination that resides on a remote server. If the destination is not available at the
moment the messages are sent, either because of network problems or system
failures, then the messages are saved on a local server instance, and are forwarded to
the remote destination when it becomes available. See Understanding the Store-and-
Forward Service in Administering the Store-and-Forward Service for Oracle WebLogic
Server.

Q. When should I use the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service should be used when forwarding
JMS messages between WebLogic Server 9.0 or later domains. The SAF service can
deliver messages:

• Between two stand-alone server instances

• Between server instances in a cluster

Across two clusters in a domain

• Across separate domains

Q. When can't I use WebLogic Store-and-Forward?

A. You can't use the WebLogic Store-and-Forward service in the following situations:

• Receiving from a remote destination—use a message driven EJB or implement a
client consumer directly

• Sending messages to a local destination—send directly to the local destination

• Forwarding messages to prior releases of WebLogic Server. See Using a
Messaging Bridge

• Interoperating with third-party JMS products (for example, MQSeries) See Using a
Messaging Bridge.

• When using temporary destinations with the JMSReplyTo field to return a response
to a request

• Environment with low tolerance for message latency. SAF increases latency and
may lower throughput

B.8 Using WebLogic JMS SAF Client
Q. What is the WebLogic JMS SAF Client?

Appendix B
Using WebLogic Store-and-Forward

B-8

A. The JMS SAF Client feature extends the JMS store-and-forward service introduced
in WebLogic Server 9.0 to standalone JMS clients. Now JMS clients can reliably send
messages to server-side JMS destinations, even when the client cannot reach a
destination (for example, due to a temporary network connection failure). While
disconnected from the server, messages sent by a JMS SAF client are stored locally
on the client file system and are forwarded to server-side JMS destinations when the
client reconnects. See Reliably Sending Messages Using the JMS SAF Client.

Q. When should I use the WebLogic JMS SAF Client?

A. Use when forwarding JMS messages to WebLogic Server 9.0 or later domains.

Q. What are the limitations of using the JMS SAF Client?

A. See Limitations of Using the JMS SAF Client.

B.9 Using a Messaging Bridge
Q. What is a Messaging bridge?

A. Messaging bridges are administratively configured services that run on a WebLogic
server. They automatically forward messages from a configured source JMS
destination to a configured target JMS destination. These destinations can be on
different servers than the bridge and can even be foreign (non-WebLogic)
destinations. Each bridge destination is configured using the four common properties
of a remote provider:

• The initial context factory

• The connection URL

• The connection factory JNDI name

• The destination JNDI name

Messaging bridges can be configured to use transactions to ensure exactly-once
message forwarding from any XA capable (global transaction capable) JMS provider
to another.

Q. When should I use a messaging bridge?

A. Typically, messaging bridges are used to provide store-and-forward high availability
design requirements. A messaging bridge is configured to consume from a sender's
local destination and forward it to the sender's actual target remote destination. This
provides high availability because the sender is still able to send messages to its local
destination even when the target remote destination is unreachable. When a remote
destination is not reachable, the local destination automatically begins to store
messages until the bridge is able to forward them to the target destination when the
target becomes available again.

Q. When should I avoid using a messaging bridge?

A. Other methods are preferred in the following situations:

• Receiving from a remote destination :Use a message driven EJB or implement a
client consumer directly.

• Sending messages to a local destination : Send directly to the local destination.

• Environment with low tolerance for message latency. Messaging Bridges increase
latency and may lower throughput. Messaging bridges increase latency for

Appendix B
Using a Messaging Bridge

B-9

messages as they introduce an extra destination in the message path and may
lower throughput because they forward messages using a single thread.

• Forward messages between WebLogic 9.0 domains: Use WebLogic Store-and-
Forward. See Using WebLogic Store-and-Forward.

Q. Why are some of my messages not being forwarded?

A. Usually, a messaging bridge should forward all messages. If some messages are
not being forwarded, here are some possible reasons:

• Some messages may have an expiration time, in which case either the JMS
provider for the source or target destination expires the message.

• If you configured the bridge source destination to specify a selector filter, then only
the filtered messages are forwarded.

• A bridge does not directly provide an option to automatically move messages to an
error destination or to automatically delete messages after a limited number of
forward attempts. That said, it is possible that a JMS provider may provide such an
option, which could effect any messages on the bridge source destination. If a
redelivery limit option is enabled on the JMS provider that hosts the bridge source
destination, then you may need to reconfigure the provider to prevent the bridge
automatic retry mechanism from causing messages to exceed the redelivery limit.

B.10 Using Messaging Beans
Q. What is a Message Driven EJB (MDB)?

A. Message Driven EJBs are EJB containers that internally use standard JMS APIs to
asynchronously receive messages from local, remote, or foreign JMS destinations and
then call application code to process the messages. MDBs have the following
characteristics:

• Automatically connects to a source destination and automatically retries
connecting if the remote destination is inaccessible.

• Support automatic enlistment of the received messages in container managed
transactions, even when the JMS provider is not WebLogic.

• Automatically pool their internal JMS connections, sessions, and consumers.

• A MDB's source destination, URL, and connection factory are configured in the
EJB and WebLogic descriptors which are packaged as part of an application.

• The messaging processing application logic is contained in a single method
callback onMessage().

• A MDB is an EJB that supports transactions, security, JDBC, and other typical EJB
actions.

See Message-Driven EJBs in Developing Enterprise JavaBeans, Version 2.1, for
Oracle WebLogic Server.

Q. When should I use a MDB?

A. MDBs are the preferred mechanism for WebLogic Server applications that receive
and process JMS messages.

Q. Do I need to use a Messaging Bridge with a MDB?

Appendix B
Using Messaging Beans

B-10

A. Configure MDBs to directly consume from their source destination rather than insert
a messaging bridge between them. MDBs automatically retry connecting to their
source destination if the source destination is inaccessible, so there is no need to
insert a messaging bridge in the message path to provide higher availability.
Introducing a messaging bridge may have a performance effect. See Using a
Messaging Bridge.

Q. What is the best way to configure a MDB?

A. The following section provides tips for configuring a MDB:

• To configure MDB concurrency and thread pools, use the max-beans-in-free-pool
and dispatch-policy descriptor fields. WebLogic Server may create fewer
concurrent instances than max-beans-in-free-pool depending on the number of
available server threads in the MDB's thread pool.

• Use foreign JMS server definitions when configuring a MDB to consume from a
remote JMS provider. Although WebLogic MDB descriptors can be configured to
directly refer to remote destinations, this information is packaged with the
application and is not dynamically editable. You should configure a foreign JMS
server definition and then configure the MDB to reference the foreign definition
instead. Please note that some documentation refers to foreign JMS server
definitions as wrappers. See Using Foreign JMS Server Definitions.

• Use care when configuring a MDB for container managed transactions. A MDB
supports container managed XA transactions when a MDB's descriptor files have
transaction-type of Container and a trans-attribute of Required and the JMS
connection factory is XA enabled. Failure to follow these steps will result in the
MDB being non-transactional. The default WebLogic Server setting for a MDB
connection factory is XA enabled. The MDB automatically begins a transaction
and automatically enlists the received message in the transaction.

B.11 Using AQ JMS
Q. Can I interoperate with AQ JMS?

A. Oracle WebLogic Server applications interoperate with Oracle Streams Advanced
Queuing (AQ) through the JMS API using either WebLogic Server resources (Web
Apps, EJBs, MDBs) or stand alone clients. AQ JMS uses a database connection and
stored JMS messages in a database accessible to an entire WebLogic Server cluster,
enabling the use of database features and tooling for data manipulating and backup.

Use the JMS Foreign Server configuration to interoperate with Oracle Streams
Advanced Queuing (AQ) through the JMS API using either WebLogic Server
resources (Web Apps, EJBs, MDBs) or stand-alone clients. See Interoperating with
Oracle AQ JMS in Administering JMS Resources for Oracle WebLogic Server.

Appendix B
Using AQ JMS

B-11

Appendix B

Using AQ JMS

B-12

C
How to Look Up a Destination

Learn how to use JNDI and a Create Destination Identifier to look up a message
destination.

• Use a JNDI Name

• Use a Create Destination Identifier

• Examples of Syntax Used to Look Up Destinations

Note:

For information about how to configure JMS resources, see Understanding
JMS Resource Configurationin Administering JMS Resources for Oracle
WebLogic Server

C.1 Use a JNDI Name
The recommended way to lookup any type of destination is to use JNDI. You can look
up a destination by establishing a JNDI context (context) and executing one of the
following commands, for PTP or Pub/Sub messaging, respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the destination's JNDI name defined during
configuration. See Using a JNDI Name and Examples of Syntax Used to Look Up
Destinations.

C.2 Use a Create Destination Identifier
Create Destination Identifier (CDI) is a less common method to lookup a destination or
member of a distributed destination that does not use JNDI. CDI uses one of the
following QueueSession or TopicSession methods to reference a queue or topic,
respectively:

public Queue createQueue(
 String queueName
) throws JMSException

public Topic createTopic(
 String topicName
) throws JMSException

The syntax of the queueName and topicName strings is not defined by the JMS
specification. For WebLogic JMS, the syntax is described here:

C-1

http://docs.oracle.com/javaee/6/api/javax/jms/Session.html#createQueue(java.lang.String)
http://docs.oracle.com/javaee/6/api/javax/jms/Session.html#createTopic(java.lang.String)

• Default WebLogic CDI Syntax

• Custom WebLogic CDI Syntax

Note:

The createQueue() and createTopic() methods do not create destinations
dynamically; they create only references to destinations that already exist. For
information about creating destinations dynamically, see Using JMS Module
Helper to Manage Applications.

C.2.1 Default WebLogic CDI Syntax
Default WebLogic CDI Syntax is a string which contains a JMS server name, module,
and the destination configuration name. See Examples of Syntax Used to Look Up
Destinations.

C.2.2 Custom WebLogic CDI Syntax
In addition to the default CDI syntax, WebLogic JMS provides the
JMSCreateDestinationIdentifier as an additional configuration parameter of a
Destination or Uniform Distributed Destination. This enables you to configure a unique
reference name when there is more than one queue or topic defined (in one or more
modules) with the same value for the default CDI syntax. In other words, it is useful for
differentiating two different destinations in two different modules that have the same
default CDI name. See Examples of Syntax Used to Look Up Destinations

This name must be unique within the scope of the JMS server to which this destination
is targeted. However, it does not need to be unique within the scope of the entire JMS
module. For example, two queues can have the same CDI name as long as those
queues are targeted to different JMS servers.

Note:

Because, this name must be unique within the scope of a JMS server, verify
whether other JMS modules may contain destination names that conflict with
this name. It is the responsibility of the deployer to resolve the destination
names targeted to JMS servers.

C.2.3 Server Affinity When Looking Up Destinations
The createTopic() and createQueue() methods also allow a "./Destination_Name"
syntax to indicate server affinity when looking up destinations. This will locate
destinations that are locally deployed in the same JVM as the JMS connection's
connection factory host. If the name is not on the local JVM an exception is thrown,
even though the same name might be deployed on a different JVM.

Appendix C
Use a Create Destination Identifier

C-2

An application might use this convention to avoid hard-coding the server name when
using the createTopic() and createQueue() methods so that the code can be reused on
different JMS servers without requiring any changes.

C.3 Examples of Syntax Used to Look Up Destinations
The following sections provide examples of the syntax used to reference a destination
or a member of a distributed destination:

• Non distributed Destinations

• Uniform Distributed Destinations

• Weighted Distributed Destinations

C.3.1 Non distributed Destinations
The following section provides examples of syntax used to reference regular
destinations (destinations that are not distributed):

• JNDI Syntax for Non distributed Destinations

• CDI Syntax for Non distributed destinations

C.3.1.1 JNDI Syntax for Non distributed Destinations
Most applications use JNDI instead of CDI to lookup destinations. The following
section provides examples of the syntax used to reference non distributed destinations
using JNDI:

• When a JNDI name is configured, a string defined by:

Dest_JNDI_Name

• When a local JNDI name is configured:

Dest_Local_JNDI_Name

Note:

The local JNDI name only works when the JNDI context host is on the same
server as the non distributed destinations. The JNDI context host is not
necessarily the same as the JMS connection host.

C.3.1.2 CDI Syntax for Non distributed destinations
This section provides examples of the syntax used to reference a non-distributed
destination using thecreateQueue or createTopicmethod using CDI:

• When using the default CDI, a string defined by:

JMS_Server_Name/JMS_Module_Name!Destination_Name

• When using the default CDI in an interop module, a string defined by:

JMS_Server_Name/interop-jms!Destination_Name

Appendix C
Examples of Syntax Used to Look Up Destinations

C-3

• When a custom CDI is configured, a string defined by:

JMS_Server_Name/CDI_Name

Note:

When using server affinity (replacing JMS_Server_Name with "."), the search is
restricted to the JMS connection host rather than the entire cluster.

To reference destination in releases earlier than WebLogic 9.0 Server , use a
string defined by JMS_Server_Name!Destination_Name (for example, myjmsserver!
mydestination).

C.3.2 Uniform Distributed Destinations
The following section provides examples of the syntax used to reference Uniform
Distributed Destinations (UDDs):

• JNDI Syntax for UDDs

• CDI Syntax for UDDs

C.3.2.1 JNDI Syntax for UDDs
Most applications use JNDI instead of CDI to lookup destinations. The following
section provides examples how to reference an individual member or logical UDD
using JNDI

• For a logical UDD, a string defined by:

udd-jndi-name

• For an individual member of a UDD hosted on a set of individually configured JMS
servers, a string defined by:

jms-server-name@udd-jndi-name

• For an individual member of a UDD hosted on a cluster targeted JMS server, a
string defined by:

jms-server-name@wl-server-name@udd-jndi-name

Where the wl-server-name in this case is the configured name of a WebLogic
Server in a configured cluster, or is the dynamic-server server-name-prefix
appended with a server number in a dynamic cluster.

C.3.2.2 CDI Syntax for UDDs

Note:

You can use the helper methods weblogic.jms.extensions.JMSModuleHelper
class uddMemberName and uddMemberJNDIName APIs to help create UDD CDI
names in the correct syntax.

Appendix C
Examples of Syntax Used to Look Up Destinations

C-4

This section provides an example of how to reference a UDD member using
createQueue or createTopic using CDI:

• For an individual member when CDI is not configured, a string defined by:

jms-server-name/module-name!jms-server-name@udd-name

• For an individual member when CDI is configured, a string defined by:

jms-server-name/cdi-name

• A logical UDD is referenced using a string defined by: module-name!udd-name.

Note:

When jms-server-name is replaced with ".", the API returns the first locally
available/started member of the UDQ. A member is considered to be locally
available if the JMS client connection is hosted by the same WebLogic Server
that currently hosts the member.

C.3.3 Weighted Distributed Destinations

Note:

Weighted distributed destinations are deprecated in Weblogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

A weighted distributed destination is a set of individually configured regular
destinations that has its own JNDI and CDI name. The logical name of the WDD
represents the entire set, and is configured as a JNDI name. There is no option for
accessing the logical for a WDD using CDI.

• JNDI Syntax for WDDs

• CDI Syntax for WDDs

C.3.3.1 JNDI Syntax for WDDs
The following section provides examples how to reference an individual member or
logical WDD using JNDI:

• For a logical WDD, a string defined by:

wdd-jndi-name

• For an individual member logical WDD, see JNDI Syntax for Non distributed
Destinations.

C.3.3.2 CDI Syntax for WDDs
This section provides an example of how to reference a WDD member using
thecreateQueue or createTopicmethod with and without using CDI:

Appendix C
Examples of Syntax Used to Look Up Destinations

C-5

• There is no option for accessing a WDD logical name using the createQueue() or
createTopic() methods. A logical WDD must always be referenced using a string
defined by the JNDI name of the member. Sometimes it is useful to look up the
local individual member using the "." server affinity syntax for non distributed
destinations.

• For an individual member when CDI is configured on the member, see CDI Syntax
for Non distributed destinations.

Appendix C
Examples of Syntax Used to Look Up Destinations

C-6

D
Advanced Programming with Distributed
Destinations Using the JMS Destination
Availability Helper API

Learn how to design a distributed application or a container that offers high availability
(HA), scalability, and flexibility when using JMS distributed destinations in a clustered
environment.

Note:

This guide includes advanced information for experienced JMS developers.
Oracle recommends that you use Message Driven Beans (MDBs) when
interacting with Distributed Destinations. The MDB container automatically
creates and closes internal consumers across all members of a Distributed
Destination as needed. It also handles security, threading, pooling, application
life cycle, automatic reconnect, and transaction enlistment. If you cannot use
MDBs, then you can use simpler workarounds, such as periodically restarting
consumers to rebalance consumers across a distributed destination, or if
messaging ordering and performance are not a concern, then enabling the
distributed queue forwarding option.

• Introduction

• Controlling DD Producer Load Balancing

• Using the JMS Destination Availability Helper API

• Strategies for Uniform Distributed Queue Consumers

• Strategies for Subscribers on Uniform Distributed Topics

D.1 Introduction
A distributed destination (DD) is a group of JMS physical destinations (a group of
queues or a group of topics) that is accessed as a single logical destination. Messages
are load balanced across members, and clients can failover between member
destinations.

Distributed destination users that don't leverage MDBs may encounter problems with
consumer applications. These include:

• Failing to ensure that all DD members are serviced by consumers.

• Unprocessed messages accumulating on DD members that have no consumers.

• DD Consumers not automatically rebalancing in the event of a JMS server
migration, WebLogic Server restart, or any other event that results in DD member
changes.

D-1

To address these use cases, WebLogic Server provides the JMS Destination
Availability Helper APIs and advanced topic features in Developing Advanced Pub/Sub
Applications.

D.2 Controlling DD Producer Load Balancing
Before discussing consumer load balancing, it is helpful to first explore producer load
balancing basics and best practices.

• Basic JMS

• Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)

• Senders to Replicated Distributed Topics (RDTs)

D.2.1 Basic JMS
A JMS program sets up message sends in three stages:

1. Clients create a JMS connection into WebLogic using a JMS connection factory.

2. Clients use the connection to create JMS sessions and senders.

3. Clients use the senders to send messages.

In WebLogic JMS, the WebLogic server that the client is connected to is called the
client's connection host, and messages always route from the sender, through its
connection host, and then on to a destination that's in the same cluster as the
connection host. Connections stay pinned to their connection host for the life of the
connection.

A WebLogic connection factory can be targeted at one or more WebLogic servers. If a
client is running on the same WebLogic server where a connection factory is targeted,
then the factory always returns a connection with a connection host that is the same
server as the client (the connection is local). On the other hand, if a client is not
running on a WebLogic server that is included in its connection factory targets, the
factory automatically load balances among the targets and returns a connection to one
of them.

When working with a distributed destination, senders should always send to the JNDI
name of the DQ or PDT (its "logical name") instead of sending to the JNDI names of
the individual members, as this enables automatic load balancing behavior.

D.2.2 Senders to Distributed Queues (DQs) and Partitioned
Distributed Topics (PDTs)

The default behavior for a sender to a DQ or PDT is: If there are members that run on
the sender's connection host, all sent messages go to one of these local members,
otherwise messages move in a round-robin among all members.

To force messages from the same DQ or PDT sender to move in a round-robin among
all active members even when local members reside on the sender's connection host,
use a custom connection factory with Server Affinity set to false and Load Balance set
to true.

Appendix D
Controlling DD Producer Load Balancing

D-2

D.2.3 Senders to Replicated Distributed Topics (RDTs)
Senders to RDTs always load balance once and then pin to a particular member for all
messages - this member becomes the "sender host". After a message arrives on the
sender host, the message is automatically replicated to every subscription on every
RDT member.

If you want to control the initial load balance decision for the sender host so that it is
not biased towards being the same as its connection host, then use a connection
factory with Server Affinity configured to false (default is true), and Load Balance
configured to true (the default).

D.3 Using the JMS Destination Availability Helper API
The following sections provide information on how to use the
JMSDestinationAvailabilityHelper APIs:

• Overview

• General Flow

• Handling the weblogic.jms.extension.DestinationDetail

• Best Practices for Consumer Containers

• Interoperability Guidelines

• Security Considerations

• Transaction Considerations

D.3.1 Overview
When a consumer is created using the client javax.jms API and a DD logical JNDI
name is specified, the consumer is load balanced to an active DD member and
remains pinned to that member over its lifetime. If new members become active after
all consumers were created, then the new members have no consumers.

The JMSDestinationAvailabilityHelper APIs provide a way to get notifications when
destinations become available or unavailable. These notifications can help ensure that
an application creates consumers on all DD members even when there are
unavailable members at the time the application is initialized. The same mechanism
can also be used to detect availability of other types of destinations (not just WebLogic
distributed destinations, but also regular destinations and foreign vendor destinations).

Applications register a notification listener with the helper by specifying JNDI context
parameters and the JNDI name of a destination. For DDs, the helper notifies listeners
when members become available and unavailable, as they are undeployed, added as
a new member, migrated, shut down, or restarted.

Note that MDBs in WebLogic Server internally use this same mechanism for both local
MDBs (deployed in the same cluster as a DD) and remote MDBs (deployed in a
cluster that is separate from the cluster that hosts the DD). MDBs provide an out-of-
the-box solution that achieves the same dynamic adaptability to DD topology changes
that the JMSDestinationAvailabilityHelper APIs provide.

Appendix D
Using the JMS Destination Availability Helper API

D-3

D.3.2 General Flow
Applications that use the JMSDestinationAvailabilityHelper APIs should follow these
general steps:

1. Implement the weblogic.jms.extensions.DestinationAvailableListener interface to
provide behavior as per step 3 below.

2. Register interest with the helper by specifying JNDI context properties (typically
just a URL and context factory), the JNDI name of the destination, and a listener
instance. Do not specify a URL if the client is running in the same cluster as the
DD.

import java.util.Hashtable;
import javax.naming.Context;
import weblogic.jms.extensions.JMSDestinationAvailabilityHelper;

Hashtable contextProps = new Hashtable();
contextProps.put(javax.naming.Context.PROVIDER_URL, myURL);
contextProps.put(Context.INITIAL_CONTEXT_FACTORY, "weblogic.jndi.WLInitialContext
Factory");
JMSDestinationAvailabilityHelper dah = JMSDestinationAvailabilityHelper.getInstan
ce();

RegistrationHandler rh = dah.register(
 contextProperties,
 destinationJNDIName,
 myDestinationAvailableListener
)

3. Handle listener callbacks. Callbacks are single-threaded for each listener instance,
so no two callbacks occur concurrently.

a. onDestinationsAvailable(): Typically the first notification. Implementations of
this callback usually react by creating zero or more consumers on each given
destination, and if this fails, periodically retrying.

b. onDestinationsUnavailable(): This callback is usually used to destroy existing
consumers on the destination.

c. onFailure(): This callback is usually used simply to log a failure. The helper
continues to retry internally and make subsequent callbacks, but
administrators may need to see the failure. The helper makes a best effort to
just call theonFailure()method once for the same repeated failures.

4. When you are done, unregister interest in a destination by calling the
rh.unregister()method.

D.3.3 Handling the weblogic.jms.extension.DestinationDetail
As described previously, an onDestinationsAvailable() notification indicates that a
stand alone destination, foreign destination, or distributed destination member has
become available. The notification consists of a list of DestinationDetail instances,
where key information is obtained by calling thegetDestinationType(), getJNDIName(),
isLocalWLSServer(), and isLocalCluster() on each Detail.

The destination detail helps determine the actions that the caller should take. If the
destination is of type DD_QUEUE, REPLICATED_DT, or PARTITIONED_DT then the detail's
getJNDIName() method returns the JNDI name of a specific DD member and the caller

Appendix D
Using the JMS Destination Availability Helper API

D-4

may or may not want to deploy instances of the application consumer on the member.
If the destination is of type PHYSICAL or FOREIGN, then the application treats the
destination as a regular destination.

Especially when working with DDs, it is highly recommended that you take advantage
of the co-location flags in DestinationDetail. You can determine the co-location nature
of a destination by calling isLocalWLSServer(), and isLocalCluster(). See Best Practice
for Local Server Consumers.

For more information about APIs and their methods, see DestinationDetail in Java API
Reference for Oracle WebLogic Server.

D.3.4 Best Practices for Consumer Containers
The following sections provide best practice guidelines for consumer containers:

• When to Register and Unregister

• URL Handling

• Failure Handling

• JNDI Context Handling

• JMS Connection Handling

D.3.4.1 When to Register and Unregister
1. Register with JMSDestinationAvailabilityHelper at application deployment time. Do

not fail the deployment if the helper calls the onFailure() callback on your listener
(assume it could be an intermittent failure).

2. Unregister with JMSDestinationAvailabilityHelper at application undeployment
time.

D.3.4.2 URL Handling
1. If the client is running on the same server or same cluster as the destination, then

don't specify a URL when registering with the helper or creating a JNDI context.
This ensures that the helper creates a local context.

2. Consider logging a single warning if isLocalCluster() or isLocalServer() returns
true, but a URL was specified (as no URL is needed in this case).

D.3.4.3 Failure Handling
1. Log the errors reported by onFailure() notifications, so that the application

developer can have a chance to correct possible configuration/application errors.
Avoid repeatedly logging the same exception. The helper continues to retry
internally and make subsequent callbacks on success or different types of failures,
but administrators may need to see the failures. The error may be caused by an
application or administrative error such as an incorrect URL, invalid security
information, or non-existent destination. It might also be caused by temporary
unavailability of the JNDI context host or the destination.

2. When a JMS call throws an exception, or when a JMS connection exception
listener reports a connection failure, close the connection. Once all resources have
been cleaned up, then periodically attempt to re-initialize all resources. Re-

Appendix D
Using the JMS Destination Availability Helper API

D-5

initialization generally involves creating a context, performing JNDI lookups, and
then creating a connection, session, and a consumer.

3. Avoid immediately retrying after a failure. Instead periodically retry every few
seconds to avoid overloading the server.

D.3.4.4 JNDI Context Handling
1. In general, avoid creating multiple JNDI initial context instances to the same server

or cluster.

Note:

It may be necessary to use additional context instances to work around some
security problems, especially in inter-domain scenarios.

2. Call close() on a context on undeploy to prevent a memory leak.

3. Call close() on a context and re create on any failure (including a lookup failure).

D.3.4.5 JMS Connection Handling
1. For JMS connections, always register a standard JMS connection "exception

listener".

2. On an onException(), close the connection and periodically retry JNDI lookups,
recreating a JMS connection, and setting up consumers in another thread.

3. Close connections on undeploy to prevent memory leaks.

4. Instead of sharing a WebLogic Server connection among multiple sessions,
consider creating one connection per session. With WebLogic Server, multiple
connections allow for better load balancing. There is no performance penalty when
working with WebLogic Server, but this might have unexpected overhead with
foreign vendors, because some foreign vendors create a TCP/IP socket or a
similarly expensive resource for each connection.

D.3.5 Interoperability Guidelines
The JMSDestinationAvailabilityHelper in Java API Reference for Oracle WebLogic
Server includes details about usage and behavior of the various methods available,
including details about interoperability guidelines discussed in the following sections:

• API Availability

• Foreign Contexts

• Destination Type Support

• Unavailable Notifications

• Interoperating with WebLogic Server 9.0 and Earlier Distributed Queues

• Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed Topics

• DestinationDetail Fields

Appendix D
Using the JMS Destination Availability Helper API

D-6

D.3.5.1 API Availability
The public JMS Destination Availability Helper API is available on AS11gR1PS2
(WebLogic Server version 10.3.3) and later clients and servers.

D.3.5.2 Foreign Contexts
The context properties that are specified when registering a notification listener with
the DA Helper can resolve to any valid JNDI context, including contexts from foreign
vendors and older versions of WebLogic Server.

For foreign (non-WebLogic) contexts, the foreign JNDI vendor's classes must be in the
current classpath and the Context.INITIAL_CONTEXT_FACTORY property must reference
the foreign vendor JNDI context factory class name.

D.3.5.3 Destination Type Support
The JMSDestinationAvailabilityHelper API works with any type of destination that can
be registered in a JNDI context, including non-distributed destinations and foreign
vendor destinations. However, unavailable notifications are only generated for DD
members and certain DestinationDetail fields apply only to DD members. Unavailable
notifications do not apply to foreign destinations.

D.3.5.4 Unavailable Notifications
Unavailable notifications only apply to DD type destinations (DQ_QUEUE,
PARTITIONED_DT, REPLICATED_DT).

D.3.5.5 Interoperating with WebLogic Server 9.0 and Earlier Distributed
Queues

When interoperating with a WebLogic Server 9.0 or later DDs, the DA Helper
generates notifications for each individual member of the DD, when working with
versions prior to 9.0, the helper only generates a single DestinationDetail notification
which contains the logical JNDI name for the DD destination and getDestinationType()
returns PHYSICAL.

WebLogic Server 9.0 and earlier DDs are usually treated as a regular destination, and
consequently have the same limitations as outlined in Application Design Limitations
When Using Replicated Distributed Topics.

D.3.5.6 Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed
Topics

In releases prior to WebLogic Server 10.3.4, there are no features that enable
unrestricted (non-exclusive) client IDs or shared subscriptions.

Appendix D
Using the JMS Destination Availability Helper API

D-7

Note:

For information about how to configure unrestricted client-ids and shared
subscriptions, see Configure an Unrestricted ClientID and Configure Shared
Subscriptions in Administering JMS Resources for Oracle WebLogic Server.

To determine if a destination is a WebLogic 10.3.4.0 topic or later, ensure that the
destination type is PHYSICAL_TOPIC, REPLICATED_DT or PARTITIONED_DT and not
FOREIGN_TOPIC and that isAdvancedTopicSupported() returns true. A topic prior to
WebLogic Server 10.3.4.0:

• Will never be a PARTITIONED_DT.

• PHYSICAL_TOPICs are usually treated as regular topics and are limited to one
consumer per subscription.

Automatic attempts to durably subscribe to individual members of WebLogic 10.3.4.0
and earlier DT when a logical DT name is specified are not recommended. Oracle
recommends that your applications do not support this option and log an error
informing users that need durable subscriptions on a of WebLogic 10.3.4.0 and earlier
DT to directly specify the JNDI name of a member instead of specifying the logical DT
name.

When subscribing non-durably to a distributed topic prior to WebLogic Server 10.3.4.0,
Oracle recommends creating a consumer on any single member JNDI name, or on the
logical DR name, and ignoring all other notifications (one subscriber gets all messages
sent to the DT and there can be only one consumer thread on the subscription).

D.3.5.7 DestinationDetail Fields
The behavior of some destination detail fields changes based on the type of
destination, the JMS vendor, and, when working WebLogic JMS, the WebLogic Server
version. See JMSDestinationAvailabilityHelper in Java API Reference for Oracle
WebLogic Server.

D.3.6 Security Considerations
The following sections provide information about implementing security using the Java
EE and WebLogic Server security models:

• WebLogic Server Security Model

• Passing Credentials Between Threads

• When to Use Cross-Domain Security

• Authentication of Users

• Securing Destinations

• Securing Wire Data

D.3.6.1 WebLogic Server Security Model
WebLogic Server credential propagation is thread based in most cases. The current
thread credentials are established by specifying them when creating a JNDI context or

Appendix D
Using the JMS Destination Availability Helper API

D-8

application descriptor. These credentials are automatically propagated along with any
RMI-based calls between JVMs including WebLogic JMS calls.

D.3.6.2 Passing Credentials Between Threads
The subject associated with a JNDI context is lost if the context instance is passed to
and used in a different thread, which can cause security problems in some multi
domain application scenarios. The following sections provide methods on passing
credentials:

• Using the Same Thread

• Pass as Anonymous User

• Cache and Reuse a Subject from the Initial Context

D.3.6.2.1 Using the Same Thread
If possible, you can avoid the issue by using the same thread to create the context,
perform all JMS and JNDI operations, and close the context.

D.3.6.2.2 Pass as Anonymous User
Use an anonymous subject if the JMS destination and JNDI resources are not
secured. In particular, when interoperating among multiple WebLogic domains, it is
usually simplest to force all calls to use an anonymous subject if the JMS destination
and JNDI resources are not secured. Non-anonymous credentials are typically only
valid for a particular domain, leading to security exceptions if an attempt is made to
use them for a different domain.

D.3.6.2.3 Cache and Reuse a Subject from the Initial Context
The following code provides an example of how to cache a subject and associate it
with another thread using an anonymous user.

import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;

import javax.security.auth.Subject;
import weblogic.security.Security;

 class MyClass {

 // don't make the cached subject public
 private Subject subject;

 MyClass() {
 subject = Security.getCurrentSubject();
 }

 void doSomething() {

 // run some operation as the subject on the original thread
 try {
 Security.runAs(subject,new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 // do something;
 return null; // or return some Object
 }});

Appendix D
Using the JMS Destination Availability Helper API

D-9

 } catch (PrivilegedActionException e) {
 // handle exception
 }
 }
}

D.3.6.3 When to Use Cross-Domain Security
Cross-Domain Security is a feature introduced in WebLogic Server 10.0 for
establishing security across two or more WebLogic Server domains. WebLogic Server
establishes a security role for cross-domain users and uses the WebLogic Credential
Mapping security provider in each domain to store the credentials to be used by the
cross-domain users. The cross-main security feature can be enabled on a per domain
basis. A cross-domain credential mapping must be configured for each remote domain
where internal communications needs to be secure. JTA, MDBs, and JMS are the
three subsystems that depend on this feature. For more information about how to
configure Cross-Domain security, see:

• Enabling Trust Between WebLogic Server Domains in Administering Security for
Oracle WebLogic Server

• Using Cross Domain Security in Developing JMS Applications for Oracle
WebLogic Server

• SAF and Cross Domain Security in Administering the Store-and-Forward Service
for Oracle WebLogic Server

• Configuring Cross Domain Security in Developing JTA Applications for Oracle
WebLogic Server

• Using MDBs With Cross Domain Security in Developing Message-Driven Beans
for Oracle WebLogic Server

D.3.6.4 Authentication of Users
The following sections provide methods to provide the username and password when
accessing JMS, which authenticates an application user, and also authorizes an
application for JNDI and JMS operations.

• Specifying Credentials for a JNDI Context

• Specifying Credentials for a JMS Connection

• Using Credentials of a Foreign JMS Server JNDI Context

• Using Credentials of a Foreign JMS Server Connection

D.3.6.4.1 Specifying Credentials for a JNDI Context
In order to access JMS resources, an application must have access to the JNDI
provider. The credentials can be supplied when a application code creates an initial
context to the JNDI provider. The thread that establishes the initial context carries the
subject, and is therefore used for all sub sequential operations. When an application is
running on a WebLogic Server and no server URL and security credentials are
provided while creating an initial context, the thread continues to have the same
credentials that were on the thread before the initial context was created. When the
thread that creates an initial context closes the context, the thread will resume the
original security credentials that are on the thread before creating the context.

Appendix D
Using the JMS Destination Availability Helper API

D-10

D.3.6.4.2 Specifying Credentials for a JMS Connection
The ConnectionFactory.createConnection() call optionally supports a username and
password. The credentials that are provided at the connection creation time do not
have any affect with respect to security in JMS operations on the connection that is
created (This is a WebLogic JMS specific behavior for WebLogic JMS Java clients,
with the exception of the .NET client). The credentials are only be used to check,
whether or not the user is a valid user in the domain where the connection is created.

D.3.6.4.3 Using Credentials of a Foreign JMS Server JNDI Context
Configure the Foreign JMS Server instance with JNDI Properties to gain access to the
JNDI provider. The JNDI properties contain the options for setting the security principal
and credentials.

D.3.6.4.4 Using Credentials of a Foreign JMS Server Connection
The user name and password that can be specified when configuring a Foreign
Connection Factory mapping are ignored unless you use an EJB or Servlet resource
reference to look up the JMS connection factory. See Improving Performance Through
Pooling.

D.3.6.5 Securing Destinations
WebLogic JMS provides the ability to specify ACLs for destinations. This enables the
destination to be secured and only authorized users are allowed to perform operations
on that destination. See Java Messaging Service (JMS) Resources in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

D.3.6.6 Securing Wire Data
When an application must protect JMS data passed on a wire, configure the network
to use SSL. See Configuring SSL in Administering Security for Oracle WebLogic
Server.

D.3.7 Transaction Considerations
WebLogic Server JTA transaction propagation is thread-based. The thread that starts
a transaction should be the one that commits or rolls back the transaction. If there is a
WebLogic JTA transaction on the current thread when you perform send or receive
operations on a WebLogic JMS destination, then the JMS resources are automatically
enlisted with the WebLogic transaction manager, and there is no need to perform your
own enlistment.

You only need to do explicit "manual" enlistment when there is a need for WebLogic
JMS resources to participate in a foreign or third-party transaction, or there's a need
for a non-WebLogic destination to participate in a transaction. Enlisting with a foreign
transaction manager (TM) is not directly supported on WebLogic JMS stand-alone
clients. EJB and Servlet resource references enable automatic enlistment of non-
WebLogic JMS vendors with the WebLogic TM.

Applications should not use transacted sessions if JMS operations are required to
participate in a global XA— transaction. Global transactions require use of XA-based

Appendix D
Using the JMS Destination Availability Helper API

D-11

connection factories, while local transactions use non-XA based JMS connection
factories.

D.4 Strategies for Uniform Distributed Queue Consumers
A consumer application can be either running in the same JVM of a WebLogic Server
or not, which are called a "server side consumer" and "stand-alone consumer"
respectively.

While a JMS UDQ consumer is deployed on a WebLogic Server or cluster, the
application can either run on the same cluster/server as the UDQ, or on a different
cluster. We call these two different application configurations the local case and the
remote case respectively.

Note:

Oracle recommends using MDBs to implement advanced message distribution
modes using replicated and partitioned distributed topics. For detailed
information about advanced publish/subscribe application design using MDBs,
see Developing Advanced Pub/Sub Applications and Configuring and
Deploying MDBs Using Distributed Topics in Developing Message-Driven
Beans for Oracle WebLogic Server.

For application that cannot use MDBs in their application architecture for some reason,
the following guidelines should be followed:

• General Strategies

• Best Practice for Local Server Consumers

D.4.1 General Strategies
In order to for an application to receive all the messages that are sent to a UDQ, the
application must make sure that it creates one consumer on each member of the UDQ
using the member JNDI name. This requires that applications know the topology of the
domains and UDQ configuration, and this is where JMSDestinationAvailabilityHelper
can help.

The general strategy is that each deployment instance of a particular application
should register with JMSDestinationAvailabilityHelper. The listener will receive
notifications about member availability.

• Upon receipt of an onDestinationsAvailable() notification, the application gets a
list of DestinationDetail instances for all available members, and then it must
create one or more consumer instances using the member JNDI name for each
member in the list. For remote consumers, each instance of the application should
create a consumer on each member of the UDQ. For local consumers, the
application should create a consumer on the local UDQ member only. See Best
Practice for Local Server Consumers.

• Upon receipt of an onDestinationsUnavailable() notification, the application gets a
list of DestinationDetail instances for all destinations that becomes unavailable
since the last notification. Then for each member destination in the list, the

Appendix D
Strategies for Uniform Distributed Queue Consumers

D-12

application must find the consumer previously created for the member destination
and close it.

D.4.2 Best Practice for Local Server Consumers
An application should be deployed on the same server, group of servers, or cluster
that host the UDQ whenever possible. Under this configuration, for best performance,
the application should receive messages only from the local members; local members
can be determined using the DestinationDetail isLocalWLSCluster() call if the servers
are in a cluster or the isLocalWLSServer() call for individual servers or individual cluster
members. This approach yields high performance because all messaging is local (it
avoids transferring messages over network calls), and still ensures that all members
are serviced by consumers.

In some use cases, the local server optimization network savings does not outweigh
the benefit of distributing message processing for unbalanced queue loads across all
JVMs in a cluster. This is especially a concern when message backlogs develop
unevenly throughout the cluster, and message processing is expensive. In these use
cases, the optimization should be avoided in favor of the general strategy model for
remote consumers.

D.5 Strategies for Subscribers on Uniform Distributed Topics

Note:

Oracle recommends using MDBs to implement advanced message distribution
modes using replicated and partitioned distributed topics. For detailed
information about advanced publish/subscribe application design using MDBs,
see Developing Advanced Pub/Sub Applications and Configuring and
Deploying MDBs Using Distributed Topics in Developing Message-Driven
Beans for Oracle WebLogic Server.

For all clustered and distributed applications that process messages from a UDT,
Oracle recommends using product 10.3.4 or later topics in combination with the
following settings:

• Set the Client ID Policy to Unrestricted. See Configure an Unrestricted ClientID in
Administering JMS Resources for Oracle WebLogic Server.

• Set Subscription Sharing Policy to SHARABLE. See Configure Shared Subscriptions
in Administering JMS Resources for Oracle WebLogic Server.

• Use the JMSDestinationAvailabilityHelper API to get the notification of member
availability

• Always create subscribers on the member destinations.

WebLogic JMS has two types of Uniform distributed topics:

• A replicated distributed topic (RDT) has forwarding capability among its members.
As a result, each member of a RDT has a copy of all messages that are sent to
the RDT.

Appendix D
Strategies for Subscribers on Uniform Distributed Topics

D-13

• A partitioned distributed topic (PDT) does not have forwarding capability among its
members. As a result, each member of a PDT has its own copy of all messages
that were sent to this particular member. This is a new type of DT introduced in
WebLogic Server 10.3.4.0. See Configuring Partitioned Distributed Topics in
Administering JMS Resources for Oracle WebLogic Server.

The following subsections discuss configuration requirements and programming
patterns when using RDTs and PDTs:

• One Copy Per Instance

• One Copy Per Application

D.5.1 One Copy Per Instance
The one copy per instance pattern ensures that each instance gets a copy of each
message published to a topic. For example, if each instance is a JVM, then this
pattern ensures that each JVM gets a copy of each message sent to the source topic.
The following sections provide information on developing design patterns based on
one copy per instance:

• General Pattern Design Strategy for One Copy Per Instance

• Best Practice for Local Server Consumers using One Copy Per Instance

D.5.1.1 General Pattern Design Strategy for One Copy Per Instance
In order for the instances of a distributed application/container to receive messages
that are sent to a DT in a one-copy-per-instance manner, each instance must do the
following:

1. Choose a base ClientID that will be shared by all connections and a durable
subscription name that will be shared by all durable subscribers. The subscription
name should uniquely identify your application instance. For example, if each
instance runs on a differently named WebLogic Server JVM, then the subscription
name for each instance could be based on the WebLogic Server name.

2. Create JMS connections and sessions according to standard JMS specifications.
The connection's ClientID should be set to the base ClientID appended by an
identifier that is unique for this instance, For example, use the WebLogic Server
name or the third-party application server that the application or container is
running on. The ClientIDPolicy should be set to Unrestricted.

3. Set the SubscriptionSharingPolicy to Sharable.

4. Register with the JMSDestinationAvailabilityHelper for membership availability
notifications, specifying the JNDI name of the DT.

5. Set an Exception listener.

6. Upon receipt of an onDestinationsAvailable() notification, create a subscriber on
each newly available destination in the list. If the DT is a replicated DT, the
subscriber must use a "NOT JMS_WL_DDForwarded" selector or prefix "(NOT
JMS_WL_DDForwarded) AND" to the existing application provided selector.

7. Upon receipt of an onDestinationsUnavailable() notification, close the
corresponding consumer().

Appendix D
Strategies for Subscribers on Uniform Distributed Topics

D-14

D.5.1.2 Best Practice for Local Server Consumers using One Copy Per
Instance

An application should be deployed on the same server, group of servers, or cluster
that hosts the UDT whenever possible. Under this configuration, the application needs
follow the same steps as outlined in General Pattern Design Strategy for One Copy
Per Instance except that it creates consumers only on local members. You can use the
JMSDestinationAvailabilityHelper.DestinationDetail.isLocalWLSServer() call to
determine if a member is local.

D.5.2 One Copy Per Application
The one-copy-per application pattern ensures that an application receives one copy of
each message sent to a topic, even when the application is clustered across multiple
JVMs. For example: If messages "A", "B", and "C" are sent to a topic, the messages
are processed once by the application, instead of getting one-copy-per application
instance.

The following sections provide information about developing design patterns based on
one-copy-per application:

• General Pattern Design Strategy for One Copy Per Application

• Best Practice for Local Server Consumers Using One Copy Per Application

D.5.2.1 General Pattern Design Strategy for One Copy Per Application
In order for the instances of a distributed application/container to receive messages
that are sent to a DT in a one-copy-per-application manner, each instance must do the
following:

1. Choose a base ClientID for all connections and the durable subscription name for
all durable subscribers. The subscription name should uniquely identify your
application instance. For example, if each instance runs on a differently named
WebLogic Server JVM, the subscription name for each instance could be based
on the WebLogic Server name then..

2. Create JMS connections and sessions according to standard JMS specifications.
The connection's ClientID should be set to the base ClientID. The ClientIDPolicy
should set to Unrestricted.

3. Set the SubscriptionSharingPolicy to Sharable.

4. Register with the JMSDestinationAvailabilityHelper for membership availability
notifications, specifying the JNDI name of the DT.

5. Set an Exception listener.

6. Upon receipt of an onDestinationsAvailable() notification, create a subscriber on
each newly available destination in the list. If the DT is a replicated DT, the
subscriber needs to use a "NOT JMS_WL_DDForwarded" selector or prefix "(NOT
JMS_WL_DDForwarded) AND" to the existing application provided selector.

Appendix D
Strategies for Subscribers on Uniform Distributed Topics

D-15

D.5.2.2 Best Practice for Local Server Consumers Using One Copy Per
Application

An application should be deployed on the same server, group of servers, or cluster
that hosts the UDT whenever possible. Under this configuration, the application must
follow the same step outlined in General Pattern Design Strategy for One Copy Per
Application except that it creates consumers only on local members. You can use the
JMSDestinationAvailabilityHelper.DestinationDetail.isLocalWLSServer() call to
determine if a member is local.

Appendix D
Strategies for Subscribers on Uniform Distributed Topics

D-16

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 Samples and Tutorials for the JMS Developer
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

	1.5 New and Changed JMS Features in This Release

	2 Understanding WebLogic JMS
	2.1 Overview of the Java Message Service and WebLogic JMS
	2.1.1 What Is the Java Message Service?
	2.1.2 Implementation of Java Specifications
	2.1.3 WebLogic JMS Architecture

	2.2 Understanding the Messaging Models
	2.2.1 Point-to-Point Messaging
	2.2.2 Publish/Subscribe Messaging
	2.2.3 Message Persistence

	2.3 Value-Added Public JMS API Extensions
	2.3.1 WebLogic Server Value-Added JMS Features

	2.4 Understanding the JMS API
	2.4.1 ConnectionFactory
	2.4.1.1 Using the Default Connection Factories
	2.4.1.2 Configuring and Deploying Connection Factories
	2.4.1.3 The ConnectionFactory Class

	2.4.2 JMSContext
	2.4.3 Connection
	2.4.4 Session
	2.4.4.1 WebLogic JMS Session Guidelines
	2.4.4.2 Session Subclasses
	2.4.4.3 Non-Transacted Sessions
	2.4.4.4 Transacted Sessions

	2.4.5 Destination
	2.4.5.1 Distributed Destinations

	2.4.6 MessageProducer and MessageConsumer
	2.4.7 Messages
	2.4.7.1 Message Header Fields
	2.4.7.2 Message Property Fields
	2.4.7.3 Message Body

	2.4.8 ServerSessionPoolFactory
	2.4.9 ServerSessionPool
	2.4.10 ServerSession
	2.4.11 ConnectionConsumer

	3 Best Practices for Application Design
	3.1 Message Design
	3.1.1 Serializing Application Objects
	3.1.2 Serializing Strings
	3.1.3 Server-side Serialization
	3.1.4 Selection

	3.2 Message Compression
	3.3 Message Properties and Message Header Fields
	3.4 Message Ordering
	3.5 Topics Vs. Queues
	3.6 Asynchronous Vs. Synchronous Consumers
	3.7 Persistent Vs. Non Persistent Messages
	3.8 Deferring Acknowledges and Commits
	3.9 Using AUTO_ACK for Non Durable Subscribers
	3.10 Alternative Qualities of Service, Multicast and No-Acknowledge
	3.10.1 Using MULTICAST_NO_ACKNOWLEDGE
	3.10.2 Using NO_ACKNOWLEDGE

	3.11 Avoid Multi threading
	3.12 Using the JMSXUserID Property
	3.13 Performance and Tuning

	4 Enhanced Support for Using WebLogic JMS with EJBs and Servlets
	4.1 Enabling WebLogic JMS Wrappers
	4.1.1 Declaring a JMSContext Object Using @Inject Annotation
	4.1.1.1 Specifying a Lookup Name in JMSContext Injection
	4.1.1.2 Determining the Authentication Type for JMSContext Injection

	4.1.2 Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors
	4.1.2.1 Declaring a Wrapped JMS Factory using Deployment Descriptors
	4.1.2.2 Declaring JMS Destinations using Deployment Descriptors
	4.1.2.2.1 Declaring JMS Destinations Using the jms-destination Element
	4.1.2.2.2 Declaring JMS Destinations Using the resource-env-ref Element

	4.1.3 Referencing a Packaged JMS Application Module In Deployment Descriptor Files
	4.1.3.1 Referencing Application Modules in a weblogic-application.xml Descriptor
	4.1.3.2 Referencing JMS Resources in a WebLogic Application
	4.1.3.3 Referencing JMS Resources in a Java EE Application

	4.1.4 Declaring JMS Destinations and Connection Factories Using Annotations
	4.1.4.1 Injecting Resource Dependency into a Class
	4.1.4.2 Non-Injected EJB 3.0 Resource Reference Annotations

	4.1.5 Avoid Transactional XA Interfaces

	4.2 Disabling Wrapping and Pooling
	4.3 What's Happening Under the JMS Wrapper Covers
	4.3.1 Automatically Enlisting Transactions
	4.3.2 Container-Managed Security
	4.3.3 Connection Testing
	4.3.4 Java EE Compliance
	4.3.5 Pooled JMS Connection Objects
	4.3.6 Monitoring Pooled Connections

	4.4 Improving Performance Through Pooling
	4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects
	4.4.2 Speeding Up Object Creation Through Caching
	4.4.3 Enlisting the Proper Transaction Mode

	4.5 Simplified Access to Foreign JMS Providers
	4.6 Examples of JMS Wrapper Functions
	4.6.1 Examples of JMS Wrapper Functions
	4.6.1.1 ejb-jar.xml
	4.6.1.2 weblogic-ejb-jar.xml
	4.6.1.3 PoolTest.java
	4.6.1.4 PoolTestHome.java
	4.6.1.5 PoolTestBean.java

	4.6.2 Sending a JMS Message in a Java EE Container
	4.6.2.1 Using comp/env

	4.6.3 Dependency Injection
	4.6.4 EJB 3.0 Wrapper Without Injection

	5 Understanding the Simplified API Programming Model
	5.1 About JMS 2.0 Simplified API
	5.2 New Interfaces in the Simplified JMS API
	5.2.1 JMSContext
	5.2.2 JMSProducer
	5.2.3 JMSConsumer

	5.3 New Methods to Simplify Messaging in JMS 2.0
	5.3.1 Method to Extract the Body Directly from a Message
	5.3.2 Method to Receive a Message Body Directly
	5.3.3 Method to Create a Session

	6 Developing a Basic JMS Application
	6.1 Importing Required Packages
	6.2 Setting Up a JMS Application
	6.2.1 Using a Simplified API to Set Up a JMS Application
	6.2.1.1 Look Up a Connection Factory in JNDI
	6.2.1.2 Look Up a Queue or Topic
	6.2.1.3 Create a JMSContext Object
	6.2.1.4 Create JMSProducer and JMSConsumer Objects
	6.2.1.5 Sending and Receiving Messages using the Simplified API

	6.2.2 Using the Classic API to Set Up a JMS Application
	6.2.2.1 Step 1: Look Up a Connection Factory in JNDI
	6.2.2.2 Step 2: Create a Connection Using the Connection Factory
	6.2.2.2.1 Create a Queue Connection
	6.2.2.2.2 Create a Topic Connection

	6.2.2.3 Step 3: Create a Session Using the Connection
	6.2.2.3.1 Create a Session Using the createSession Method
	6.2.2.3.2 Create a Queue Session
	6.2.2.3.3 Create a Topic Session

	6.2.2.4 Step 4: Look Up a Destination (Queue or Topic)
	6.2.2.4.1 Using a JNDI Name
	6.2.2.4.2 Use a Reference

	6.2.2.5 Step 5: Create Message Producers and Message Consumers
	6.2.2.5.1 Create QueueSenders and QueueReceivers
	6.2.2.5.2 Create TopicPublishers and TopicSubscribers

	6.2.2.6 Step 6a: Create the Message Object (Message Producers)
	6.2.2.7 Step 6b: Optionally Register an Asynchronous Message Listener
	6.2.2.8 Step 7: Start the Connection

	6.2.3 Example: Setting Up a Point-to-Point JMS Application Using the Classic API
	6.2.4 Example: Setting Up a Publish-Subscribe JMS Application Using the Classic API

	6.3 Sending Messages
	6.3.1 Sending Messages Using the Simplified JMS API
	6.3.2 Sending Messages Using the Classic JMS API
	6.3.2.1 Create a Message Object
	6.3.2.2 Define a Message
	6.3.2.3 Send the Message to a Destination Using MessageProducer

	6.3.3 Sending a Message Asynchronously
	6.3.4 Setting JMSProducer and MessageProducer Attributes
	6.3.5 Example: Sending Messages Within a Point-toPoint Application
	6.3.6 Example: Sending Messages Within a Publish/Subscribe Application

	6.4 Receiving Messages
	6.4.1 Receive Messages Asynchronously Using the Simplified API
	6.4.2 Receiving Messages Asynchronously using the Classic API
	6.4.3 Asynchronous Message Pipeline
	6.4.3.1 Configuring a Message Pipeline
	6.4.3.2 Behavior of Pipelined Messages

	6.4.4 Receive Messages Synchronously Using the Simplified API
	6.4.5 Receiving Messages Synchronously Using the Classic API
	6.4.5.1 Example: Receiving Messages Synchronously Within a PTP Application
	6.4.5.2 Example: Receiving Messages Synchronously Within a Pub/Sub Application

	6.4.6 Use Prefetch Mode to Create a Synchronous Message Pipeline
	6.4.7 Recovering Received Messages

	6.5 Acknowledging Received Messages
	6.6 Releasing Object Resources

	7 Managing Your Applications
	7.1 Managing Rolled Back, Recovered, Redelivered, or Expired Messages
	7.1.1 Setting a Redelivery Delay for Messages
	7.1.1.1 Setting a Redelivery Delay
	7.1.1.2 Overriding the Redelivery Delay on a Destination

	7.1.2 Setting a Redelivery Limit for Messages
	7.1.2.1 Configuring a Message Redelivery Limit on a Destination
	7.1.2.2 Configuring an Error Destination for Undelivered Messages

	7.1.3 Ordered Redelivery of Messages
	7.1.3.1 Required Message Pipeline Setting for the Messaging Bridge and MDBs
	7.1.3.2 Performance Limitations

	7.1.4 Handling Expired Messages

	7.2 Setting Message Delivery Times
	7.2.1 Setting a Delivery Time on Producers
	7.2.2 Setting a Delivery Time on Messages
	7.2.3 Overriding a Delivery Time
	7.2.3.1 Interaction with the Time-to-Live Value
	7.2.3.2 Setting a Relative Time-to-Deliver Override
	7.2.3.3 Setting a Scheduled Time-to-Deliver Override
	7.2.3.4 JMS Schedule Interface

	7.3 Managing Connections
	7.3.1 Defining a Connection Exception Listener
	7.3.2 Accessing Connection Metadata
	7.3.3 Starting, Stopping, and Closing a Connection

	7.4 Managing Sessions
	7.4.1 Defining a Session Exception Listener
	7.4.2 Closing a Session

	7.5 Managing Destinations
	7.5.1 Dynamically Creating Destinations
	7.5.2 Dynamically Deleting Destinations
	7.5.2.1 Required Conditions for Deleting Destinations
	7.5.2.2 What Happens when a Destination Is Deleted
	7.5.2.3 Message Timestamps for Troubleshooting Deleted Destinations
	7.5.2.4 Deleted Destination Statistics

	7.6 Using Temporary Destinations
	7.6.1 Creating a Temporary Queue
	7.6.2 Creating a Temporary Topic
	7.6.3 Deleting a Temporary Destination

	7.7 Setting Up Durable Subscriptions
	7.7.1 Defining the Persistent Store
	7.7.2 Setting the Client ID Policy
	7.7.3 Defining the Client ID
	7.7.4 Creating a Sharable Subscription Policy
	7.7.5 Creating Subscribers for a Durable Subscription
	7.7.5.1 Using JMS 2.0 API
	7.7.5.2 Using JMS 1.1 API

	7.7.6 Best Practice: Always Close Failed JMS ClientIDs
	7.7.7 Deleting Durable Subscriptions
	7.7.8 Modifying Durable Subscriptions
	7.7.9 Managing Durable Subscriptions

	7.8 Setting and Browsing Message Header and Property Fields
	7.8.1 Setting Message Header Fields
	7.8.2 Setting Message Property Fields
	7.8.3 Browsing Header and Property Fields

	7.9 Filtering Messages
	7.9.1 Defining Message Selectors Using SQL Statements
	7.9.2 Defining XML Message Selectors Using XML Selector Method
	7.9.3 Displaying Message Selectors
	7.9.4 Indexing Topic Subscriber Message Selectors to Optimize Performance

	7.10 Sending XML Messages
	7.10.1 WebLogic XML APIs
	7.10.2 Using a String Representation
	7.10.3 Using a DOM Representation

	8 Using JMS Module Helper to Manage Applications
	8.1 Configuring JMS System Resources Using JMSModuleHelper
	8.2 Configuring JMS Servers and Store-and-Forward Agents
	8.3 JMSModuleHelper Sample Code
	8.3.1 Creating a JMS System Resource
	8.3.2 Deleting a JMS System Resource

	8.4 Security Considerations for Anonymous Users
	8.5 Best Practices When Using JMSModuleHelper

	9 Using Multicasting with WebLogic JMS
	9.1 Benefits of Using Multicasting
	9.2 Limitations of Using Multicasting
	9.3 Using WebLogic Server Unicast
	9.4 Configuring Multicasting for WebLogic Server
	9.4.1 Prerequisites for Multicasting
	9.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber
	9.4.3 Step 2: Set Up the Message Listener
	9.4.4 Dynamically Configuring Multicasting Configuration Attributes
	9.4.5 Example: Multicast Time-to-Live

	10 Using Distributed Destinations
	10.1 What Is a Distributed Destination?
	10.2 Why Use a Distributed Destination
	10.3 Creating a Distributed Destination
	10.4 Types of Distributed Destinations
	10.4.1 Uniform Distributed Destinations
	10.4.2 Weighted Distributed Destinations

	10.5 Using Distributed Destinations
	10.5.1 Using Distributed Queues
	10.5.1.1 Queue Forwarding
	10.5.1.2 QueueSenders
	10.5.1.3 QueueReceivers
	10.5.1.4 QueueBrowsers

	10.5.2 Using Replicated Distributed Topics
	10.5.2.1 TopicPublishers
	10.5.2.2 TopicSubscribers
	10.5.2.3 Deploying Message-Driven Beans on a Distributed Topic

	10.5.3 Using Partitioned Distributed Topics
	10.5.4 Accessing Distributed Destination Members
	10.5.5 Distributed Destination Failover

	10.6 Using Message-Driven Beans with Distributed Destinations
	10.7 Common Use Cases for Distributed Destinations
	10.7.1 Maximizing Production
	10.7.2 Maximizing Availability
	10.7.2.1 Using Queues
	10.7.2.2 Using Topics

	10.7.3 Stuck Messages

	11 Using the Message Unit-of-Order
	11.1 What is Message Unit-Of-Order?
	11.2 Understanding Message Processing with Unit-of-Order
	11.2.1 Message Processing According to the JMS Specification
	11.2.2 Message Processing with Unit-of-Order
	11.2.3 Message Delivery with Unit-of-Order

	11.3 Message Unit-of-Order Case Study
	11.3.1 Joe Orders a Book
	11.3.2 What Happened to Joe's Order
	11.3.3 How Message Unit-of-Order Solves the Problem

	11.4 How to Create a Unit-of-Order
	11.4.1 Creating a Unit-of-Order Programmatically
	11.4.2 Creating a Unit-of-Order Administratively
	11.4.2.1 Configuring Unit-of-Order for a Connection Factory and Destinations

	11.4.3 Unit-of-Order Naming Rules

	11.5 Getting the Current Unit-of-Order
	11.6 Message Unit-of-Order Advanced Topics
	11.6.1 What Happens When a Message Is Delayed During Processing?
	11.6.2 What Happens When a Filter Makes a Message Undeliverable
	11.6.3 What Happens When Destination Sort Keys Are Used
	11.6.4 Using Unit-of-Order with Distributed Destinations
	11.6.4.1 Using the Path Service
	11.6.4.2 Using Hash-Based Routing
	11.6.4.3 Configuring Routing on Uniform Distributed Destinations

	11.6.5 Using Unit-of-Order with Topics
	11.6.5.1 Unit-of-Order and Distributed Topics
	11.6.5.2 Unit-of-Order, Topics, and Message Driven Beans
	11.6.5.2.1 Use JTA Transactions
	11.6.5.2.2 Set Pool Size to One

	11.6.6 Using Unit-of-Order with JMS Message Management
	11.6.7 Using Unit-of-Order with WebLogic Store-and-Forward
	11.6.8 Using Unit-of-Order with WebLogic Messaging Bridge

	11.7 Limitations of Message Unit-of-Order

	12 Using Unit-of-Work Message Groups
	12.1 What Are Unit-of-Work Message Groups?
	12.2 Understanding Message Processing with Unit-of-Work
	12.2.1 Basic UOW Terminology
	12.2.2 Rules For Processing UOW Messages
	12.2.3 Message Unit-of-Work Case Study

	12.3 How to Create a Unit-of-Work Message Group
	12.3.1 How to Write a Producer to Set UOW Message Properties
	12.3.1.1 Example UOW Producer Code
	12.3.1.2 UOW Exceptions

	12.3.2 How to Write a UOW Consumer/Producer For an Intermediate Destination
	12.3.3 Configuring Terminal Destinations
	12.3.3.1 UOW Message Routing for Terminal Distributed Destinations

	12.3.4 How to Write a UOW Consumer for a Terminal Destination

	12.4 Message Unit-of-Work Advanced Topics
	12.4.1 Message Property Handling
	12.4.1.1 System-Generated Properties
	12.4.1.2 Final Component Message Properties
	12.4.1.3 Component Message Heterogeneity
	12.4.1.4 ReplyTo Message Property

	12.4.2 UOW and Uniform Distributed Destinations
	12.4.3 UOW and Store-and-Forward Destinations

	12.5 Limitations of UOW Message Groups

	13 Using Transactions with WebLogic JMS
	13.1 Overview of Transactions
	13.2 Using JMS Transacted Sessions
	13.2.1 Step 1: Set Up JMS Application, Creating Transacted Session
	13.2.2 Step 2: Perform Desired Operations
	13.2.3 Step 3: Commit or Roll Back the JMS Transacted Session

	13.3 Using JTA User Transactions
	13.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted Session
	13.3.2 Step 2: Look Up the User Transaction in JNDI
	13.3.3 Step 3: Start the JTA User Transaction
	13.3.4 Step 4: Perform Desired Operations
	13.3.5 Step 5: Commit or Roll Back the JTA User Transaction

	13.4 JTA User Transactions Using Message Driven Beans
	13.5 Example: JMS and EJB in a JTA User Transaction
	13.5.1 Step 1 Set Up the JMS Application
	13.5.2 Step 2 Look Up the User Transaction
	13.5.3 Step 3 Start the JTA User Transaction
	13.5.4 Step 4 Perform the Desired Operations
	13.5.5 Step 5 Commit the JTA User Transaction

	13.6 Using Cross-Domain Security

	14 Developing Advanced Pub/Sub Applications
	14.1 Overview of Advanced High Availability Concepts
	14.1.1 WebLogic Messaging High Availability Features
	14.1.2 Application Design Limitations When Using Replicated Distributed Topics
	14.1.3 Advanced Topic Features

	14.2 Advanced Topic Messaging Features for High Availability
	14.2.1 Shared Subscriptions and Client ID Policy
	14.2.1.1 What is the Subscription Key
	14.2.1.2 Configuring a Shared Subscription

	14.2.2 How Sharing a Non Durable Subscription Works
	14.2.2.1 How a Shared Subscription Policy for a Non durable Subscription Is Determined
	14.2.2.2 How a Non durable Subscription Is Closed

	14.2.3 How Sharing a Durable Subscription Works
	14.2.3.1 How a Shared Subscription Policy for a Durable Subscription is Determined
	14.2.3.2 How to Unsubscribe a Durable Subscription
	14.2.3.3 Considerations When Unsubscribing a Durable Subscriber
	14.2.3.4 Managing Durable Subscriptions
	14.2.3.4.1 Naming Conventions for JMSDurableSubscriberRuntimeMbean

	14.3 Design Strategies When Using Topics
	14.3.1 One-Copy-Per-Instance Design Strategy
	14.3.2 One-Copy-Per-Application Design Strategy

	14.4 Considerations When Using JMS 2.0 Shared Subscriptions
	14.5 Replacing a Replicated Distributed Topic
	14.5.1 Reasons for Replacing a Replicated Distributed Topic
	14.5.2 Important Prerequisites Before Replacing an RDT
	14.5.3 Replacing an RDT with a Standalone Topic
	14.5.4 Replacing an RDT with a PDT

	14.6 Best Practices for Distributed Topics

	15 Recovering from a Server Failure
	15.1 Automatic JMS Client Failover
	15.1.1 Automatic Reconnect Limitations
	15.1.2 Automatic Failover for JMS Producers
	15.1.2.1 Sample Producer Code
	15.1.2.2 Re usable ConnectionFactory Objects
	15.1.2.3 Re usable Destination Objects
	15.1.2.4 Reconnected Connection Objects
	15.1.2.4.1 Special Cases for Reconnected Connections

	15.1.2.5 Reconnected Session Objects
	15.1.2.5.1 Special Cases for Reconnected Sessions

	15.1.2.6 Reconnected MessageProducer Objects
	15.1.2.6.1 Special Case for Distributed Destinations

	15.1.3 Configuring Automatic Failover for JMS Consumers
	15.1.3.1 Sample Consumer Client Code
	15.1.3.2 Configuring Automatic Client Refresh Options
	15.1.3.3 Common Cases for Reconnected Consumers
	15.1.3.3.1 Synchronous Consumers
	15.1.3.3.2 Asynchronous Consumers

	15.1.3.4 Special Cases for Reconnected Consumers
	15.1.3.4.1 Consumers of Distributed Destinations
	15.1.3.4.2 Message-Driven EJBs
	15.1.3.4.3 Consumer Connections with a ClientID for Durable Subscriptions
	15.1.3.4.4 Non Durable Subscriptions and Possible Missed Messages
	15.1.3.4.5 Duplicate Messages
	15.1.3.4.6 Variations Due to Acknowledge Modes
	15.1.3.4.7 Reconnecting with Migrated JMS Destinations In a Cluster

	15.1.4 Explicitly Disabling Automatic Failover on JMS Clients
	15.1.4.1 Programmatically
	15.1.4.2 Administratively

	15.1.5 Best Practices for JMS Clients Using Automatic Failover
	15.1.5.1 Always Catch exceptions
	15.1.5.2 Use Transactions to Group Message Work
	15.1.5.3 JMS Clients Should Always Call the close() Method

	15.2 Manually Migrating JMS Data to a New Server

	16 WebLogic JMS C API
	16.1 What Is the WebLogic JMS C API?
	16.2 System Requirements
	16.3 Design Principles
	16.3.1 Java Objects Map to Handles
	16.3.2 Thread Utilization
	16.3.3 Exception Handling
	16.3.4 Type Conversions
	16.3.4.1 Integer (int)
	16.3.4.2 Long (long)
	16.3.4.3 Character (char)
	16.3.4.4 String

	16.3.5 Memory Allocation and Garbage Collection
	16.3.6 Closing Connections
	16.3.7 Helper Functions

	16.4 Security Considerations
	16.5 Implementation Guidelines
	16.6 Client Packaging Requirements
	16.7 Workarounds for Client Failure Thread Detach Issue

	A Server Session Pools (Deprecated)
	A.1 Defining Server Session Pools
	A.1.1 Step 1: Look Up the Server Session Pool Factory in JNDI
	A.1.2 Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	A.1.2.1 Create a Server Session Pool for Queue Connection Consumers
	A.1.2.2 Create a Server Session Pool for Topic Connection Consumers

	A.1.3 Step 3: Create a Connection Consumer
	A.1.3.1 Create a Connection Consumer for Queues
	A.1.3.2 Create a Connection Consumer for Topics

	A.1.4 Example: Setting Up a PTP Client Server Session Pool
	A.1.4.1 Step 1 Look Up the Server Session Pool Factory
	A.1.4.2 Step 2 Create a Server Session Pool
	A.1.4.3 Step 3 Create a Connection Consumer

	A.1.5 Example: Setting Up a Publish/Subscribe Client Server Session Pool
	A.1.5.1 Step 1
	A.1.5.2 Step 2 Create a Server Session Pool
	A.1.5.3 Step 3

	B FAQs: Integrating Remote JMS Providers
	B.1 Understanding JMS and JNDI Terminology
	B.2 Understanding Transactions
	B.3 How to Integrate with a Remote Provider
	B.4 Best Practices When Integrating with Remote Providers
	B.5 Using Foreign JMS Server Definitions
	B.6 Using EJB/Servlet JMS Resource References
	B.7 Using WebLogic Store-and-Forward
	B.8 Using WebLogic JMS SAF Client
	B.9 Using a Messaging Bridge
	B.10 Using Messaging Beans
	B.11 Using AQ JMS

	C How to Look Up a Destination
	C.1 Use a JNDI Name
	C.2 Use a Create Destination Identifier
	C.2.1 Default WebLogic CDI Syntax
	C.2.2 Custom WebLogic CDI Syntax
	C.2.3 Server Affinity When Looking Up Destinations

	C.3 Examples of Syntax Used to Look Up Destinations
	C.3.1 Non distributed Destinations
	C.3.1.1 JNDI Syntax for Non distributed Destinations
	C.3.1.2 CDI Syntax for Non distributed destinations

	C.3.2 Uniform Distributed Destinations
	C.3.2.1 JNDI Syntax for UDDs
	C.3.2.2 CDI Syntax for UDDs

	C.3.3 Weighted Distributed Destinations
	C.3.3.1 JNDI Syntax for WDDs
	C.3.3.2 CDI Syntax for WDDs

	D Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API
	D.1 Introduction
	D.2 Controlling DD Producer Load Balancing
	D.2.1 Basic JMS
	D.2.2 Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)
	D.2.3 Senders to Replicated Distributed Topics (RDTs)

	D.3 Using the JMS Destination Availability Helper API
	D.3.1 Overview
	D.3.2 General Flow
	D.3.3 Handling the weblogic.jms.extension.DestinationDetail
	D.3.4 Best Practices for Consumer Containers
	D.3.4.1 When to Register and Unregister
	D.3.4.2 URL Handling
	D.3.4.3 Failure Handling
	D.3.4.4 JNDI Context Handling
	D.3.4.5 JMS Connection Handling

	D.3.5 Interoperability Guidelines
	D.3.5.1 API Availability
	D.3.5.2 Foreign Contexts
	D.3.5.3 Destination Type Support
	D.3.5.4 Unavailable Notifications
	D.3.5.5 Interoperating with WebLogic Server 9.0 and Earlier Distributed Queues
	D.3.5.6 Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed Topics
	D.3.5.7 DestinationDetail Fields

	D.3.6 Security Considerations
	D.3.6.1 WebLogic Server Security Model
	D.3.6.2 Passing Credentials Between Threads
	D.3.6.2.1 Using the Same Thread
	D.3.6.2.2 Pass as Anonymous User
	D.3.6.2.3 Cache and Reuse a Subject from the Initial Context

	D.3.6.3 When to Use Cross-Domain Security
	D.3.6.4 Authentication of Users
	D.3.6.4.1 Specifying Credentials for a JNDI Context
	D.3.6.4.2 Specifying Credentials for a JMS Connection
	D.3.6.4.3 Using Credentials of a Foreign JMS Server JNDI Context
	D.3.6.4.4 Using Credentials of a Foreign JMS Server Connection

	D.3.6.5 Securing Destinations
	D.3.6.6 Securing Wire Data

	D.3.7 Transaction Considerations

	D.4 Strategies for Uniform Distributed Queue Consumers
	D.4.1 General Strategies
	D.4.2 Best Practice for Local Server Consumers

	D.5 Strategies for Subscribers on Uniform Distributed Topics
	D.5.1 One Copy Per Instance
	D.5.1.1 General Pattern Design Strategy for One Copy Per Instance
	D.5.1.2 Best Practice for Local Server Consumers using One Copy Per Instance

	D.5.2 One Copy Per Application
	D.5.2.1 General Pattern Design Strategy for One Copy Per Application
	D.5.2.2 Best Practice for Local Server Consumers Using One Copy Per Application

