Oracle® Fusion Middleware
Administering JDBC Data Sources for Oracle
WebLogic Server

12c (12.2.1.3.0)
E80440-05
August 2020

ORACLE

Oracle Fusion Middleware Administering JDBC Data Sources for Oracle WebLogic Server, 12¢ (12.2.1.3.0)
E80440-05
Copyright © 2015, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or “commercial computer software documentation” pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility XVi

Conventions XVi

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1

1.2 Guide to this Document 1-1

1.3 Related Documentation 1-2

1.4 JDBC Samples and Tutorials 1-3
1.4.1 Avitek Medical Records Application (MedRec) and Tutorials 1-3
1.4.2 JDBC Examples in the WebLogic Server Distribution 1-3

1.5 New and Changed JDBC Data Source Features in This Release 1-3

2 Configuring WebLogic JDBC Resources

2.1 Understanding JDBC Resources in WebLogic Server 2-1
2.2 Ownership of Configured JDBC Resources 2-2
2.3 Data Source Configuration Files 2-2
2.3.1 JDBC System Modules 2-3
2.3.1.1 Generic Data Source Modules 2-3

2.3.1.2 Active GridLink Data Source System Modules 2-4

2.3.1.3 Multi Data Source System Modules 2-4

2.3.2 JDBC Application Modules 2-5
2.3.2.1 Standard Java EE Application Modules 2-5

2.3.2.2 Proprietary JDBC Application Modules 2-5

2.3.3 JDBC Module File Naming Requirements 2-7
2.3.4 JDBC Modules in Versioned Applications 2-7
2.3.5 JDBC Schema 2-8
2.3.6 JDBC Data Source Type 2-9

2.4 JMX and WLST Access for JIDBC Resources 2-9
2.4.1 JDBC MBeans for System Resources 2-10

ORACLE iii

2.4.2 JDBC Management Objects in the Java EE Management Model
(JSR-77 Support) 2-10
2.4.3 Using WLST to Create JDBC System Resources 2-11
2.4.4 How to Modify and Monitor JDBC Resources 2-13
2.4.5 Best Practices when Using WLST to Configure JDBC Resources 2-13
2.5 Creating High-Availability JDBC Resources 2-13

3 Configuring JDBC Data Sources
3.1 Understanding JDBC Data Sources 3-1
3.2 Types of WebLogic Server JDBC Data Sources 3-1
3.3 Creating a JDBC Data Source 3-2
3.3.1 JDBC Data Source Properties 3-2
3.3.1.1 Data Source Names 3-3
3.3.1.2 Data Source Scope 3-3
3.3.1.3 JINDI Names 3-3
3.3.1.4 Selecting a Database Type 3-3
3.3.1.5 Selecting a JDBC Driver 3-3
3.3.2 Configure Transaction Options 3-4
3.3.3 Configure Connection Properties 3-5
3.3.3.1 Configuring Connection Properties for Oracle Bl Server 3-6
3.3.4 Test Connections 3-6
3.3.5 Target the Data Source 3-6
3.4 Configuring Generic Connection Pool Features 3-6
3.4.1 Enabling JDBC Driver-Level Features 3-7
3.4.2 Enabling Connection-based System Properties 3-7
3.4.3 Enabling Connection-based Encrypted Properties 3-9
3.4.4 Initializing Database Connections with SQL Code 3-9
3.5 Advanced Connection Properties 3-10
3.5.1 Define Fatal Error Codes 3-10
3.5.2 Using Edition-Based Redefinition 3-11
3.6 Configuring Oracle Parameters 3-13
3.7 Configuring an ONS Client 3-13
3.8 Tuning Generic Data Source Connection Pools 3-13
3.9 Generic Data Source Handling for Oracle RAC Outages 3-14
3.10 Generic Data Source Handling of Driver-Level Failover 3-14
4 Using the Default Data Source

4.1 What is the Default Data Source 4-1
4.2 Defining a Custom Default Data Source 4-2

ORACLE

4.3 Compatibility Limitations When Using a Default Data Source 4-3

5 Configuring JDBC Multi Data Sources

5.1 Multi Data Source Features 5-1
5.1.1 Removing a Database Node 5-2
5.1.2 Adding a Database Node 5-2

5.2 Creating and Configuring Multi Data Sources 5-3

5.3 Choosing the Multi Data Source Algorithm 5-3
5.3.1 Failover 5-3
5.3.2 Load Balancing 5-4

5.4 Multi Data Source Fail-Over Limitations and Requirements 5-4
5.4.1 Test Connections on Reserve to Enable Fail-Over 5-4
5.4.2 No Fail-Over for In-Use Connections 5-4

5.5 Multi Data Source Failover Enhancements 5-5
5.5.1 Connection Request Routing Enhancements When a Generic Data

Source Fails 5-5

5.5.2 Automatic Re-enablement on Recovery of a Failed Generic Data
Source within a Multi Data Source 5-5
5.5.3 Enabling Failover for Busy Generic Data Sources in a Multi Data Source 5-6
5.5.4 Controlling Multi Data Source Failover with a Callback 5-6
5.5.4.1 Callback Handler Requirements 5-7
5.5.4.2 Callback Handler Configuration 5-7
5.5.4.3 How It Works—Failover 5-7
5.5.5 Controlling Multi Data Source Failback with a Callback 5-9
5.5.5.1 How It Works—Failback 5-9

5.6 Deploying JDBC Multi Data Sources on Servers and Clusters 5-10

5.7 Planned Database Maintenance with a Multi Data Source 5-10
5.7.1 Shutting Down the Data Source 5-11

6 Using Active GridLink Data Sources

6.1 Whatis an Active GridLink Data Source 6-1
6.1.1 Fast Connection Failover 6-2
6.1.2 Runtime Connection Load Balancing 6-3
6.1.3 GridLink Affinity 6-4

6.1.3.1 Session Affinity Policy 6-5

6.1.3.2 XA Affinity Policy 6-6

6.1.4 SCAN Addresses 6-6
6.1.5 Secure Communication using Oracle Wallet with ONS Listener 6-7
6.1.6 Support for Active Data Guard 6-7

6.2 Creating an Active GridLink Data Source 6-7

ORACLE Y

6.2.1 JDBC Data Source Properties 6-8

6.2.1.1 Data Source Names 6-8

6.2.1.2 Data Source Scope 6-8

6.2.1.3 JINDI Names 6-8

6.2.1.4 Select a Driver 6-8

6.2.2 Configure Transaction Options 6-9
6.2.3 Configure Connection Properties 6-9
6.2.3.1 Enter Connection Properties 6-10

6.2.3.2 Enter a Complete URL 6-10

6.2.3.3 Supported AGL Data Source URL Formats 6-11

6.2.4 Test Connections 6-12
6.2.5 ONS Client Configuration 6-12
6.2.5.1 Enabling FAN Events 6-12

6.2.5.2 Configure ONS Host and Port 6-12

6.2.5.3 Secure ONS Client Communication 6-13

6.2.6 Test ONS Client Configuration 6-14
6.2.7 Target the Data Source 6-14

6.3 Using Socket Direct Protocol 6-14
6.3.1 Configuring Runtime Load Balancing using SDP 6-14

6.4 Configuring Active GridLink Connection Pool Features 6-15
6.4.1 Enabling JDBC Driver-Level Features 6-15
6.4.2 Enabling Connection-based System Properties 6-16
6.4.3 Initializing Database Connections with SQL Code 6-16

6.5 Configuring Oracle Parameters 6-16
6.6 Configuring an ONS Client Using WLST 6-17
6.7 Tuning Active GridLink Data Source Connection Pools 6-17
6.8 Monitoring Active GridLink JDBC Resources 6-17
6.8.1 Viewing Run-Time Statistics 6-17
6.8.1.1 JDBCOracleDataSourceRuntimeMBean 6-17
6.8.1.2 JDBCOracleDataSourcelnstanceRuntimeMBean 6-18
6.8.1.3 ONSDaemonRuntimeMBean 6-18

6.8.2 Debug Active GridLink Data Sources 6-18
6.8.2.1 JDBC Debugging Scopes 6-18

6.8.2.2 UCP JDK Logging 6-19

6.8.2.3 Enable Debugging Using the Command Line 6-19

6.9 Using Active GridLink Data Sources without FAN Notification 6-19
6.9.1 Understanding the ActiveGridlink Attribute 6-20
6.10 Best Practices for Active GridLink Data Sources 6-20
6.10.1 Catch and Handle Exceptions 6-21
6.10.2 Connection Creation with Active Gridlink Data Sources 6-21
6.11 Comparing Active GridLink and Multi Data Sources 6-21

ORACLE vi

6.12 Migrating from Multi Data Source to Active GridLink 6-22

6.12.1 Application Changes to Migrate a Multi Data Source 6-22
6.12.2 Configuration Changes to Migrate a Multi Data Source 6-22
6.12.3 Basic Steps to Migrate a Multi Data Source to a Active GridLink Data
Source 6-23
6.13 Managing Database Downtime with Active GridLink Data Sources 6-24
6.13.1 Active GridLink Configuration for Database Outages 6-24
6.13.2 Planned Outage Procedures 6-25
6.13.3 Unplanned Outages 6-29
6.14 Gradual Draining 6-29
7 Using Proxy Data Sources
7.1 What is a Proxy Data Source? 7-1
7.2 Creating a Proxy Data Source 7-2
7.2.1 Configuring a Proxy Data Source in the WebLogic Server Administration
Console 7-2
7.2.2 Configuring a Proxy Data Source Using WLST 7-4
7.3 Monitoring Proxy Data Source JDBC Resources 7-5
8 Using Universal Connection Pool Data Sources
8.1 What is a Universal Connection Pool Data Source? 8-1
8.2 Creating a Universal Connection Pool Data Source 8-2
8.2.1 Configuring a UCP Data Source in the WebLogic Server Administration
Console 8-2
8.2.2 Configuring a UCP Data Source Using WLST 8-8
8.3 UCP MT Shared Pool support 8-9
8.4 Monitoring Universal Connection Pool JDBC Resources 8-11
8.5 Oracle Sharding Support 8-11
8.6 Initial Capacity Enhancement in the Connection Pool 8-12
O Using Connection Harvesting
9.1 What is Connection Harvesting? 9-1
9.2 Enable Connection Harvesting 9-2
9.3 Marking Connections Harvestable 9-2
9.4 Recover Harvested Connections 9-2

10 Using Shared Pooling Data Sources

10.1 How shared Pooling Works 10-1

ORACLE vii

10.2 Requirements and Considerations when using Shared Pooling Data Sources 10-1
10.3 Configuring Shared Pooling 10-2
10.3.1 Configuring WebLogic Server-Specific Driver Properties for Shared
Pooling 10-2
10.3.2 Configuring Database for Shared Pooling 10-4
10.3.3 Example WLST script for configuration of shared pooling 10-4
11 Advanced Configurations for Oracle Drivers and Databases
11.1 Application Continuity 11-1
11.1.1 How Application Continuity Works 11-2
11.1.2 Requirements and Considerations 11-2
11.1.3 Configuring Application Continuity 11-3
11.1.3.1 Selecting the Driver for Application Continuity 11-3
11.1.3.2 Using a Connection Callback 11-4
11.1.3.3 Setting the Replay Timeout 11-5
11.1.3.4 Disabling Application Continuity for a Connection 11-6
11.1.3.5 Configuring Logging for Application Continuity 11-6
11.1.3.6 Enabling JDBC Driver Debugging 11-7
11.1.4 Viewing Runtime Statistics for Application Continuity 11-7
11.1.5 Application Continuity Auditing 11-10
11.1.6 Limitations with Application Continuity with Oracle 12c Database 11-11
11.2 Database Resident Connection Pooling 11-11
11.2.1 Requirements and Considerations 11-11
11.2.2 Configuring DRCP 11-12
11.2.2.1 Configuring a Data Source for DRCP 11-12
11.2.2.2 Configuring a Database for DRCP 11-13
11.3 Global Database Services 11-14
11.3.1 Requirements and Considerations 11-14
11.3.2 Creating a GridLink DataSource for GDS Connectivity 11-15
11.4 Container Database with Pluggable Databases 11-15
11.4.1 Creating Service for PDB Access 11-16
11.4.2 DRCP and CDB/PDB 11-16
11.4.3 Setting the PDB using JDBC 11-16
11.5 Service Switching 11-17
12 Using Oracle Databases with WebLogic Server
12.1 WebLogic JDBC Features for Oracle Database 12.1 12-1
12.1.1 JDBC 4.1 Support for IDK 7 12-2
12.1.2 Application Continuity Support 12-3
12.1.3 Database Resident Connection Pooling Support 12-3
ORACLE viii

12.1.4 Container Database with Pluggable Databases 12-3

12.1.5 Global Database Services Support 12-3
12.1.6 Automatic ONS Listeners 12-3
12.2 WebLogic JDBC Features for Oracle Database 12.2 12-4

13 Labeling Connections

13.1 What is Connection Labeling 13-1
13.2 Implementing Labeling Callbacks 13-2
13.3 Creating a Labeling Callback 13-2
13.3.1 Example Labeling Callback 13-3
13.4 Registering a Labeling Callback 13-4
13.4.1 Removing a Labeling Callback 13-5
13.4.2 Applying Connection Labels 13-5
13.5 Reserving Labeled Connections 13-6
13.6 Checking Unmatched labels 13-6
13.7 Removing a Connection Label 13-7
13.8 Using Initialization and Reinitialization Costs to Select Connections 13-7
13.8.1 Considerations When Using Initialization and Reinitialization Costs 13-8
13.9 Using Connection Labeling with Packaged Applications 13-8

13.9.1 Considerations When using Labelled Connections in Packaged
Applications 13-9

14 JDBC Data Source Transaction Options

14.1 Enabling Support for Global Transactions with a Non-XA JDBC Driver 14-2

14.2 Understanding the Logging Last Resource Transaction Option 14-2

14.2.1 Advantages to Using the Logging Last Resource Optimization 14-3

14.2.2 Enabling the Logging Last Resource Transaction Optimization 14-4

14.2.3 Programming Considerations and Limitations for LLR Data Sources 14-4

14.2.4 Administrative Considerations and Limitations for LLR Data Sources 14-6

14.3 Understanding the Emulate Two-Phase Commit Transaction Option 14-7
14.3.1 Limitations and Risks When Emulating Two-Phase Commit Using a

Non-XA Driver 14-8

14.3.1.1 Heuristic Completions and Data Inconsistency 14-8

14.3.1.2 Cannot Recover Pending Transactions 14-8
14.3.1.3 Possible Performance Loss with Non-XA Resources in Multi-

Server Configurations 14-8

14.3.1.4 Multiple Non-XA Participants 14-9

14.4 Local Transaction Completion when Closing a Connection 14-9

ORACLE iX

15 Understanding Data Source Security

15.1 Introduction to WebLogic Data Source Security Options 15-1
15.2 WebLogic Data Source Security Options 15-2
15.2.1 Credential Mapping vs. Database Credentials 15-4
15.2.2 Set Client Identifier on Connection 15-5
15.2.3 Oracle Proxy Session 15-7
15.2.4 Identity-based Connection Pooling 15-8
15.3 Connections within Transactions 15-10
15.4 WebLogic Data Source Resource Permissions 15-10
15.5 Data Source Security Example 15-11
15.6 Using Encrypted Connection Properties 15-13
15.6.1 Best Practices for Encrypting Connection Properties when Using the
Administration Console 15-13
15.6.2 WLST Examples to Encrypt Connection Properties 15-14
15.6.2.1 Use WLST to Update an Existing Data Source with Encrypted
Properties 15-14
15.6.2.2 Use WLST to Create Encryped Properties 15-14
15.7 Using SSL and Encryption with Data Sources and Oracle Drivers 15-15
15.7.1 Using SSL with Data Sources and Oracle Drivers 15-15
15.7.1.1 Using SSL with Oracle Wallet 15-15
15.7.1.2 Active GridLink ONS over SSL 15-16
15.7.2 Using Data Encryption with Data Sources and Oracle Drivers 15-16

16 Creating and Managing Oracle Wallet

16.1 What is Oracle Wallet 16-1
16.2 Where to Keep Your Wallet 16-1
16.3 How to Create an External Password Store 16-2
16.4 Defining a WebLogic Server Data Source using the Wallet 16-3

16.4.1 Copy the Wallet Files 16-3

16.4.2 Update the Datasource Configuration 16-3
16.5 Using a TNS Alias instead of a DB Connect String 16-4

17 Deploying Data Sources on Servers and Clusters

17.1 Deploying Data Sources on Servers and Clusters 17-1
17.2 Minimizing Server Startup Hang Caused By an Unresponsive Database 17-1

ORACLE X

18 Using WebLogic Server with Oracle RAC

18.1 Overview of Oracle Real Application Clusters 18-1
18.2 Software Requirements 18-2
18.3 JDBC Driver Requirements 18-2
18.4 Hardware Requirements 18-2
18.4.1 WebLogic Server Cluster 18-2
18.4.2 Oracle RAC Cluster 18-2
18.4.3 Shared Storage 18-3
18.5 Configuration Options in WebLogic Server with Oracle RAC 18-3
18.5.1 Choosing a WebLogic Server Configuration for Use with Oracle RAC 18-3
18.5.2 Validating Connections when using WebLogic Server with Oracle RAC 18-4

18.5.3 Additional Considerations When Using WebLogic Server with Oracle
RAC 18-5

19 Using JDBC Drivers with WebLogic Server

19.1 JDBC Driver Support 19-1
19.2 JDBC Drivers Installed with WebLogic Server 19-1
19.3 Adding Third-Party JDBC Drivers Not Installed with WebLogic Server 19-2
19.4 Globalization Support for the Oracle Thin Driver 19-6
19.5 Using the Oracle Thin Driver in Debug Mode 19-6

20 Monitoring WebLogic JDBC Resources

20.1 Viewing Run-Time Statistics 20-1
20.1.1 Data Source Statistics 20-1
20.1.2 Prepared Statement Cache Statistics 20-1

20.2 Profile Logging 20-2

20.3 Collecting Profile Information 20-2
20.3.1 Profile Types 20-2

20.3.1.1 Connection Usage (WEBLOGIC.JDBC.CONN.USAGE) 20-3
20.3.1.2 Connection Reservation Wait

(WEBLOGIC.JDBC.CONN.RESV.WAIT) 20-3
20.3.1.3 Connection Reservation Failed

(WEBLOGIC.JDBC.CONN.RESV.FAIL) 20-4
20.3.1.4 Connection Leak (WEBLOGIC.JDBC.CONN.LEAK) 20-4
20.3.1.5 Connection Last Usage

(WEBLOGIC.JDBC.CONN.LAST_USAGE) 20-4
20.3.1.6 Connection Multithreaded Usage

(WEBLOGIC.JDBC.CONN.MT_USAGE) 20-5
20.3.1.7 Statement Cache Entry

(WEBLOGIC.JDBC.STMT_CACHE.ENTRY) 20-5

ORACLE Xi

20.3.1.8 Statements Usage (WEBLOGIC.JDBC.STMT.USAGE) 20-5

20.3.1.9 Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP) 20-5
20.3.1.10 JDBC Object Closed Usage
(WEBLOGIC.JDBC.CLOSED_USAGE) 20-6
20.3.1.11 Local Transaction Connection Leak
(WEBLOGIC.JDBC.CONN.LOCALTX_LEAK) 20-6
20.3.1.12 Example Profile Information Record Log 20-6
20.3.2 Accessing Diagnostic Data 20-7
20.3.3 Callbacks for Monitoring Driver-Level Statistics (Deprecated) 20-7
20.4 Debugging JDBC Data Sources 20-8
20.4.1 Enabling Debugging 20-8
20.4.1.1 Enable Debugging Using the Command Line 20-8
20.4.1.2 Enable Debugging Using the WebLogic Server Administration
Console 20-8
20.4.1.3 Enable Debugging Using the WebLogic Scripting Tool 20-9
20.4.1.4 Changes to the config.xml File 20-10
20.4.2 JDBC Debugging Scopes 20-10
20.4.3 Setting Debugging for UCP/ONS 20-11
20.4.3.1 Debugging UCP 20-11
20.4.3.2 Debugging ONS 20-11
20.4.4 Request Dyeing 20-11

21 Managing WebLogic JDBC Resources

21.1 Testing Data Sources and Database Connections 21-1
21.2 Managing the Statement Cache for a Data Source 21-2

21.2.1 Clearing the Statement Cache for a Data Source 21-2

21.2.2 Clearing the Statement Cache for a Single Connection 21-2
21.3 Shrinking a Connection Pool 21-3
21.4 Resetting a Connection Pool 21-3
21.5 Suspending a Connection Pool 21-4
21.6 Resuming a Connection Pool 21-5
21.7 Shutting Down a Data Source 21-5
21.8 Starting a Data Source 21-6
21.9 Managing DBMS Network Failures 21-6

272 Tuning Data Source Connection Pools

22.1 Increasing Performance with the Statement Cache 22-1
22.1.1 Statement Cache Algorithms 22-2
22.1.1.1 LRU (Least Recently Used) 22-2
22.1.1.2 Fixed 22-2

ORACLE Xii

22.1.2 Statement Cache Size 22-2

22.1.3 Usage Restrictions for the Statement Cache 22-3
22.1.3.1 Calling a Stored Statement After a Database Change May
Cause Errors 22-3
22.1.3.2 Using setNull In a Prepared Statement 22-3
22.1.3.3 Statements in the Cache May Reserve Database Cursors 22-4
22.1.3.4 Other Considerations When Using the Statement Cache 22-4
22.2 Connection Testing Options for a Data Source 22-4
22.2.1 Database Connection Testing Semantics 22-6
22.2.1.1 Connection Testing When Database Connections are Created 22-7
22.2.1.2 Periodic Connection Testing 22-7
22.2.1.3 Testing Reserved Connections 22-7
22.2.1.4 Minimizing Connection Test Delay After Database Connectivity
Loss 22-7
22.2.1.5 Minimizing Connection Request Delays After Loss of DBMS
Connectivity 22-8
22.2.1.6 Minimizing Connection Request Delay with Seconds to Trust an
Idle Pool Connection 22-9
22.2.2 Database Connection Testing Configuration Recommendations 22-10
22.2.3 Database Connection Testing Using Default Test Table Name 22-10
22.2.4 Database Connection Testing Options 22-11
22.3 Enabling Connection Creation Retries 22-11
22.4 Enabling Connection Requests to Wait for a Connection 22-12
22.4.1 Connection Reserve Timeout 22-12
22.4.2 Limiting the Number of Waiting Connection Requests 22-12
22.5 Automatically Recovering Leaked Connections 22-13
22.6 Avoiding Server Lockup with the Correct Number of Connections 22-13
22.7 Limiting Statement Processing Time with Statement Timeout 22-13
22.8 Using Pinned-To-Thread Property to Increase Performance 22-14
22.8.1 Changes to Connection Pool Administration Operations When
PinnedToThread is Enabled 22-14
22.8.2 Additional Database Resource Costs When PinnedToThread is
Enabled 22-15
22.9 Using Unwrapped Data Type Objects 22-16
22.9.1 How to Disable Wrapping 22-17
22.9.1.1 Disable Wrapping using the Administration Console 22-17
22.9.1.2 Disable Wrapping using WLST 22-17
22.10 Tuning Maintenance Timers 22-17

A Configuring JDBC Application Modules for Deployment

A.1 Packaging a JDBC Module with an Enterprise Application: Main Steps A-1
A.2 Creating Packaged JDBC Modules A-2

ORACLE Xiii

A.2.1 Creating a JDBC Data Source Module Using the Administration Console A-2

A.2.2 JDBC Packaged Module Requirements A-3
A.2.3 JDBC Application Module Limitations A-3
A.2.4 Creating a Generic Data Source Module A-3
A.2.5 Creating an Active GridLink Data Source Module A-5
A.2.6 Creating a Multi Data Source Module A-5
A.2.7 Encrypting Database Passwords in a JDBC Module A-5
A.2.7.1 Deploying JDBC Modules to New Domains A-6

A.2.8 Application Scoping for a Packaged JDBC Module A-6
A.3 Referencing a JDBC Module in Java EE Descriptor Files A-6
A.3.1 Packaged JDBC Module References in weblogic-application.xml A-7
A.3.2 Packaged JDBC Module References in Other Descriptors A-7
A.4 Packaging an Enterprise Application with a JDBC Module A-8
A.5 Deploying an Enterprise Application with a JDBC Module A-8
A.6 Getting a Database Connection from a Packaged JDBC Module A-9

B Using Multi Data Sources with Oracle RAC

B.1 Overview of Oracle RAC B-1
B.1.1 Oracle RAC Scalability with WebLogic Server Multi Data Sources B-2
B.1.2 Oracle RAC Availability with WebLogic Server Multi Data Sources B-3
B.1.3 Oracle RAC Load Balancing with WebLogic Server Multi Data Sources B-3

B.2 Software Requirements B-3

B.3 JDBC Driver Requirements B-4

B.4 Hardware Requirements B-4
B.4.1 WebLogic Server Cluster B-4
B.4.2 Oracle RAC Cluster B-4
B.4.3 Shared Storage B-4

B.5 Configuring Multi Data Sources with Oracle RAC B-4
B.5.1 Choosing a Multi Data Source Configuration for Use with Oracle RAC B-5
B.5.2 Configuring Multi Data Sources for use with Oracle RAC B-5

B.5.2.1 Attributes of a Multi Data Source B-6

B.5.3 Configuration Considerations for Failover B-7

B.5.3.1 Multi Data Source-Managed Failover and Load Balancing B-7

B.5.3.2 Delays During Failover B-7

B.5.3.3 Failure Handling Walkthrough for Global Transactions B-9

B.5.4 Configuring the Listener Process for Each Oracle RAC Instance B-9
B.5.5 Configuring Multi Data Sources When Remote Listeners are Enabled or

Disabled B-11

B.5.6 Additional Configuration Considerations B-11

B.6 Using Multi Data Sources with Global Transactions B-12

ORACLE Xiv

B.6.1 Rules for Data Sources within a Multi Data Source Using Global

Transactions B-13
B.6.2 Required Attributes of Data Sources within a Multi Data Source Using
Global Transactions B-13
B.6.3 Sample Configuration Code B-14
B.7 Using Multi Data Sources without Global Transactions B-15
B.7.1 Attributes of Data Sources within a Multi Data Source Not Using Global
Transactions B-15
B.7.2 Sample Configuration Code B-16
B.8 Configuring Connections to Services on Oracle RAC Nodes B-17
B.8.1 Configuring a Data Source to Connect to a Service B-18
B.8.2 Service Connection Configurations B-19
B.8.2.1 Workload Management B-19
B.8.2.2 Load Balancing B-20
B.8.3 Connection Pool Capacity Planning B-21
B.9 Using SCAN Addresses with Multi Data Sources B-24
B.10 XA Considerations and Limitations when using multi Data Sources with
Oracle RAC B-25
B.10.1 Oracle RAC XA Requirements when using multi Data Sources B-25
B.10.1.1 Use Multi Data Sources B-26
B.10.1.2 A Global Transaction Must Be Initiated, Prepared, and
Concluded in the Same Instance of the Oracle RAC Cluster B-26
B.10.1.3 Transaction IDs Must Be Unique Within the Oracle RAC Cluster B-26
B.10.2 Known Limitations When Using Oracle RAC with multi Data Sources B-26
B.10.2.1 Potential for Data Deadlocks in Some Failure Scenarios B-26
B.10.2.2 Potential for Transactions Completed Out of Sequence B-27
B.10.3 Known Issue Occurring After Database Server Crash B-27
B.11 JDBC Store Recovery with Oracle RAC B-27
B.11.1 Configuring a JDBC Store for Use with Oracle RAC B-27
B.11.2 Automatic Retry for JIMS Connections B-28
C Using Fast Connection Failover with Oracle RAC
C.1 JDBC Driver Configuration for use with Oracle Fast Connection Failover C-1

ORACLE

XV

Preface

Preface

This preface describes the document accessibility features and conventions used in
this guide—Administering JDBC Data Sources for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. cont pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/

t opi ¢/ | ookup?ct x=acc& d=i nf o or visit htt p: / / www. or acl e. coni pl s/t opi ¢/ | ookup?
ct x=accé&i d=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

This chapter describes the audience, contents and organization of this guide—
Administering JDBC Data Sources for Oracle WebLogic Server.
This chapter includes the following sections:

e Document Scope and Audience
* Guide to this Document

* Related Documentation

e JDBC Samples and Tutorials

 New and Changed JDBC Data Source Features in This Release

1.1 Document Scope and Audience

This document is a resource for software developers and system administrators who
develop and support applications that use the Java Database Connectivity (JDBC)
API. It also contains information that is useful for business analysts and system
architects who are evaluating WebLogic Server. The topics in this document are
relevant during the evaluation, design, development, pre-production, and production
phases of a software project.

This document does not address specific JDBC programming topics. For links
to WebLogic Server documentation and resources for this topic, see Related
Documentation.

It is assumed that the reader is familiar with Java EE and JDBC concepts. This
document emphasizes the value-added features provided by WebLogic Server.

1.2 Guide to this Document

» This chapter, Introduction and Roadmap, introduces the organization of this guide
and lists new features in the current release.

» Configuring WebLogic JDBC Resources, provides an overview of WebLogic JDBC
resources.

» Configuring JDBC Data Sources, describes WebLogic JDBC data source
configuration.

e Configuring JDBC Multi Data Sources, describes WebLogic JDBC multi data
source configuration.

» Using Active GridLink Data Sources, describes WebLogic Active GridLink Data
Source configuration.

* Advanced Configurations for Oracle Drivers and Databases, provides advanced
configuration options that can provide improved data source and driver
performance when using Oracle drivers and databases.

ORACLE 1-1

Chapter 1
Related Documentation

Connection Harvesting, describes how to configure and use connection harvesting
in your applications.

Labeling Connections , provides information on how to label connections to
increase performance.

JDBC Data Source Transaction Options, provides information on XA, non-XA, and
Global Transaction options for WebLogic data sources.

Understanding Data Source Security, provides information on how WebLogic
Server uses configuration options to secure JDBC data sources.

Creating and Managing Oracle Wallet, provides information on how to create
and manage an Oracle Wallet to store database credentials for WebLogic Server
datasource definitions.

Deploying Data Sources on Servers and Clusters, provides information on how to
deploy data sources on servers and clusters.

Using WebLogic Server with Oracle RAC, describes how to configure WebLogic
Server for use with Oracle Real Application Clusters.

Using JDBC Drivers with WebLogic Server, describes how to use JDBC drivers
from other sources in your WebLogic JDBC data source configuration.

Monitoring WebLogic JDBC Resources, describes how to monitor JDBC
resources, gather profile information about database connection usage, and
enable JDBC debugging.

Managing WebLogic JDBC Resources, describes how to administer data sources.

Tuning Data Source Connection Pools, provides information on how to properly
tune the connection pool attributes in JDBC data sources in your WebLogic Server
domain to improve application and system performance.

Using an Oracle 12c Database, provides information on how to configure
WebLogic Server Release 12.1.2 and higher to interoperate with an Oracle 12¢
database.

Configuring JDBC Application Modules for Deployment, describes how to package
a WebLogic JDBC module with your enterprise application.

Using Multi Data Sources with Oracle RAC, describes how to configure multi data
sources for use with Oracle Real Application Clusters.

Using Fast Connection Failover with Oracle RAC, describes how to use WebLogic
server with Oracle Fast Connection Failover.

1.3 Related Documentation

This document contains JDBC data source configuration and administration
information.

ORACLE

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

Developing JDBC Applications for Oracle WebLogic Server is a guide to JDBC
API programming with WebLogic Server.

Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

1-2

Chapter 1
JDBC Samples and Tutorials

* Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications in development and
production environments.

1.4 JDBC Samples and Tutorials

In addition to this document, Oracle provides a variety of JDBC code samples and
tutorials that show configuration and API use, and provide practical instructions on
how to perform key JDBC development tasks.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and

highlights Oracle-recommended best practices. MedRec is optionally installed

with the WebLogic Server installation. You can start MedRec from the
ORACLE_HOME\ user _proj ect s\ donai ns\ medr ec directory, where ORACLE_HOME is the
directory you specified as the Oracle Home when you installed Oracle WebLogic
Server.

1.4.2 JDBC Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in

EXAMPLES _HOVE\ W _server\ exanpl es\ src\ exanpl es, where EXAVPLES HOVE
represents the directory in which the WebLogic Server code examples are configured.
For more information, see Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

1.5 New and Changed JDBC Data Source Features in This
Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

ORACLE 1-3

Configuring WeblLogic JDBC Resources

To configure the JDBC resource you need to understand how JDBC resources are
used in a WebLogic domain, ownership of resources, how to create MBeans for JDBC
resources using tools like JIMX and WLST, and how to increase the availability of
JDBC resources. In WebLogic Server, you can configure database connectivity by
configuring JDBC resources and then targeting or deploying the JDBC resources to
servers or clusters in your WebLogic domain.

* Understanding JDBC Resources in WebLogic Server
* Ownership of Configured JDBC Resources

» Data Source Configuration Files

e JMX and WLST Access for JDBC Resources

* Creating High-Availability JDBC Resources

2.1 Understanding JDBC Resources in WebLogic Server

ORACLE

To configure JDBC resources you need to understand how to use the different types of
data sources available such as Active GridLink (AGL) and Multi Data (MDS).Each data
source that you configure contains a pool of database connections that are created
when the data source instance is created—when it is deployed or targeted, or at
server startup.

Applications lookup a data source on the JNDI tree or in the local application context

(j ava: conp/ env), depending on how you configure and deploy the object, and then
request a database connection. When finished with the connection, the application
calls connecti on. cl ose(), which returns the connection to the connection pool in

the data source. For more information about data sources in WebLogic Server, see
Configuring JDBC Data Sources.

An Active GridLink (AGL) datasource provides a connection pool that spans one or
more nodes in one or more Oracle RAC clusters. It supports dynamic load balancing
of connections across the nodes and handles events that indicates nodes that are
added and removed from the cluster(s). See Using Active GridLink Data Sources.

A Multi Data Source is an abstraction around a selected list of Generic data sources
that provides load balancing or failover processing between the generic data sources
associated with the Multi Data Source. Multi Data Sources are bound to the JNDI tree
or local application context just like Generic data sources are bound to the JNDI tree.
Applications lookup a Multi Data Source on the JNDI tree or in the local application
context (j ava: conp/ env) just like they do for generic data sources, and then request
a database connection. The Multi Data Source determines which Generic data source
to use to satisfy the request depending on the algorithm selected in the Multi Data
Source configuration: load balancing or failover. For more information about multi data
sources, see Configuring JDBC Multi Data Sources.

2-1

Chapter 2
Ownership of Configured JDBC Resources

2.2 Ownership of Configured JDBC Resources

The key to understanding WebLogic JDBC data source configuration is to understand
who creates a JDBC resource or how a JDBC resource is created. This determines
how a resource will be deployed and modified.Both system administrators and
programmers can create JDBC resources.

* WebLogic Administrators typically use the WebLogic Server Administration
Console or the WebLogic Scripting Tool (WLST) to create and deploy (target)
JDBC modules. These JDBC modules are considered system modules. See JDBC
System Modules.

* Programmers create modules in a development tool that supports creating an XML
descriptor file, then package the JDBC modules with an application (for example,
an EAR or WAR file) and pass the application to a WebLogic Administrator to
deploy. These JDBC modules are considered application modules. See JDBC
Application Modules.

Table 2-1 lists the JDBC module types and how they can be configured and modified.

Table 2-1 JDBC Module Types and Configuration and Management Options

Module Created with Add/ Modify Modify with Modify with
Type Remove with JSR-88 Administration
Modules JMX (non- Console
with (remotel remotely)
Administra y)
tion
Console
System WebLogic Server Yes Yes No Yes—via JMX
Administration Console
or WLST
Application Oracle Enterprise Pack No No Yes—viaa Yes—viaa
for Eclipse (OEPE), deployment deployment plan
Oracle JDeveloper, plan
another IDE, or an XML
editor

2.3 Data Source Configuration Files

ORACLE

You can create and manage JDBC resources either as system modules or

as application modules. WebLogic supports either standard or proprietary JDBC
application modules. Regardless of whether you are using JDBC system modules or
JDBC application modules, each JDBC data source is represented by an XML file (a
module).

The standard JDBC application modules are created using the JEE 6 annotations

or schema definitions based on dat asour cedefi ni ti on. The proprietary JDBC
application modules are a WebLogic-specific extension of Java EE modules and can
be configured either within a Java EE application or as stand-alone modules.

These documents conform to the j dbc- dat a- sour ce. xsd schema (available
athttp://ww. oracl e. coml webf ol der/technet wor k/ webl ogi ¢/ j dbc- dat a- sour ce/
i ndex. htm).

2-2

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
Data Source Configuration Files

2.3.1 JDBC System Modules

When you create a JDBC resource (data source) using the WebLogic Server
Administration Console or using the WebLogic Scripting Tool (WLST), WebLogic
Server creates a JDBC module in the confi g/ j dbc subdirectory of the domain
directory, and adds a reference to the module in the domain's confi g. xnl file. The
JDBC module conforms to the j dbc- dat a- sour ce. xsd schema (available at http://
www. or acl e. conf webf ol der/t echnet wor k/ webl ogi c/j dbc- dat a- sour ce/ i ndex. ht nl).

JDBC data sources that you configure this way are considered system modules.
System modules are owned by an Administrator, who can delete, modify, or add
similar resources at any time. System modules are globally available for targeting

to servers and clusters configured in the domain, and therefore are available to all
applications deployed on the same targets and to client applications. System modules
are also accessible through JMX as JDBCSyst enResour ceMBeans.

2.3.1.1 Generic Data Source Modules

Generic data source system modules are included in the domain's confi g. xm file as
a JDBCSyst enResour ce element, which includes the name of the JDBC module file and
the list of target servers and clusters on which the module is deployed. Figure 2-1
shows an example of a data source listing in a confi g. xm file and the module that it
maps to.

" Note:

"Generic" is the term used to distinguish a simple data source from a Multi
Data Source or AGL data source.

Figure 2-1 Reference from config.xml to a Data Source System Module

Domain'config Directory Domainwonfigjdbe Directory

config.xmil

ORACLE

examples-demo-jdbec.xml
<jdbc

2-3

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
Data Source Configuration Files

In this illustration, the confi g. xn file lists the exanpl es- deno data source as a j dbc-
syst emresour ce element, which maps to the exanpl es- deno-j dbc. xmi module in the
domai n\ confi g\ j dbc folder.

2.3.1.2 Active GridLink Data Source System Modules

AGL data source system modules are included in the domain's confi g. xm file as a
JDBCSyst enResour ce element, similar to generic data source system modules. AGL
data sources include an j dbc- or acl e- par ans section that includes ONS and FAN.

For more information on AGL data sources, see Using Active GridLink Data Sources.

2.3.1.3 Multi Data Source System Modules

Similarly, multi data source system modules are included in the domain's confi g. xm
file as aj dbc- syst em resour ce element. The multi data source module includes a
dat a- sour ce- 1 i st parameter that maps to the data source modules used by the multi
data source. The individual data source modules are also included in the confi g. xni .
Figure 2-2 shows the relationship between elements in the confi g. xni file and the
system modules in the confi g/ j dbc directory.

Figure 2-2 Reference from config.xml to Multi Data Source and Data Source System Modules

Domain'config Directory Domain'configjdbe Directory

config.xml PB-MultiDataSource-jdbc.xml

DataSource=iame=

examples-demo-2-jdbc.xml examples-demo-jdbc.xml

namerexamples-demo—-2</hame=

In this illustration, the confi g. xm file lists three JDBC modules—one multi data
source and the two generic data sources used by the multi data source, which are

ORACLE 2.4

Chapter 2
Data Source Configuration Files

also listed within the multi data source module. Your application can look up any of
these modules on the JNDI tree and request a database connection. If you look up
the multi data source, the multi data source determines which of the generic data
sources to use to supply the database connection, depending on the data sources in
the dat a- sour ce- | i st parameter, the order in which the data sources are listed, and
the algorithm specified in the al gori t hm t ype parameter.

" Note:

Members of a multi data source must be generic data sources; they cannot
be multi data sources or AGL data sources.

For multi data sources, see Configuring JDBC Multi Data Sources.

2.3.2 JDBC Application Modules

In contrast to system resource modules, JDBC modules that are packaged with an
application are owned by the developer who created and packaged the module, rather
than the Administrator who deploys the module. This means that the Administrator
has more limited control over packaged modules. When deploying a resource module,
an Administrator can change resource properties that were specified in the module,
but the Administrator cannot add or delete modules. (As with other Java EE modules,
deployment configuration changes for a resource module are stored in a deployment
plan for the module, leaving the original module untouched.)

2.3.2.1 Standard Java EE Application Modules

Java EE 6 provides the ability to programmatically define DataSource resources as
application modules for a more flexible and portable method of database connectivity.
See Using DataSource Resource Definitions in Developing JDBC Applications for
Oracle WebLogic Server.

2.3.2.2 Proprietary JDBC Application Modules

ORACLE

JDBC resources can also be managed as application modules, similar to standard
Java EE modules. A proprietary JDBC application module is simply an XML

file that conforms to the | dbc- dat a- sour ce. xsd schema (available at http: //

www. or acl e. coml webf ol der/t echnet wor k/ webl ogi c/ j dbc- dat a- sour ce/ i ndex. ht m)
and represents a data source.

JDBC modules can be included as part of an Enterprise Application as a packaged
module. Packaged modules are bundled with an EAR or exploded EAR directory,
and are referenced in all appropriate deployment descriptors, such as the webl ogi c-
application.xm andejb-jar.xm deployment descriptors. The JDBC module is
deployed along with the enterprise application, and can be configured to be available
only to the enclosing application or to all applications. Using packaged modules
ensures that an application always has access to required resources and simplifies
the process of moving the application into new environments. With packaged JDBC
modules, you can migrate your application and the required JDBC configuration from
environment to environment, such as from a testing environment to a production
environment, without opening an EAR file and without extensive manual data source
reconfiguration.

2-5

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
Data Source Configuration Files

By definition, packaged JDBC modules are included in an enterprise application,

and therefore are deployed when you deploy the enterprise application. For more
information about deploying applications with packaged JDBC modules, see Deploying
Applications to Oracle WebLogic Server.

A proprietary JDBC application module can also be deployed as a stand-alone
resource using the webl ogi c. Depl oyer utility or the WebLogic Server Administration
Console, in which case the resource is typically available to the server or cluster
targeted during the deployment process. JDBC resources deployed in this manner
are called stand-alone modules and can be reconfigured using the WebLogic Server
Administration Console or a JSR-88 compliant tool, but are unavailable through JMX
or WLST.

Stand-alone JDBC modules promote sharing and portability of JDBC resources. You
can create a data source configuration and distribute it to other developers. Stand-
alone JDBC modules can also be used to move data source configuration between
domains, such as between the development domain and the staging domain.

" Note:

When deploying proprietary JDBC modules as standalone modules, a multi
data source needs to have a deployment order that is greater than the
deployment orders of its member generic data sources.

For more information about JDBC application modules, see Configuring JDBC
Application Modules for Deployment .

For information about deploying stand-alone JDBC modules, see Deploying JDBC,
JMS, WLDF Application Modules in Deploying Applications to Oracle WebLogic
Server.

2.3.2.2.1 Including Drivers in EAR/WAR Files

ORACLE

In WebLogic Server 10.3.6 and higher releases, you can include a database driver in
the APP- I NF/ | i b directory of the EAR/WAR file that contains a packaged data source.
This allows you to deploy a self-contained EAR/WAR file that has both the data source
and driver required for an application.

" Note:

You do not need to update the C asspat h of the manifest file to include the
driver location.

An EAR has its own classloader and it is shared across all of the nested applications
so any of them can use it. You can deploy multiple EAR/WAR files, each with a
different driver version. However, if there are other versions of the driver in the system
cl asspat h, set PREFER-WEB-INF-CLASSES=t r ue in the webl ogi c. xm file to ensure
that the application uses the driver classes that it was packaged with which it was
packaged.

2-6

Chapter 2
Data Source Configuration Files

When using the Oracle driver embedded in an EAR or WAR with

oj dbc6. j ar or oj dbc7. | ar, there is a known problem related to

cleaning up the associated classloader. To resolve this problem, call

oracle.jdbc. Oracl eDriver. deregi st erHack() from the cont ext Dest royed() method
of a Servl et Cont ext Li st ener.

You can also use the VEEB- | NF/ | i b directory to hold driver JAR files. The following
example shows the location of the various directories in WAR and EAR files.

Application (ear)
Wb modul e (war)
VEB- | NF/ 1i b
EJB nodul e
MVETA- | NF
APP-INF/1ib

However, you cannot have two versions of the same JAR in both DOMAIN_HOME/lib
(see Using a Third-Party JAR File in DOMAIN_HOME/lib or the system classpath and
VEB- I NF/ 1'i b or APP-1NF/|'i b, with prefer-web-inf-classes orprefer-application-
packages set. That is, you should do only one of the following:

e Use DOMAIN_ HOWE/ | i b or system classpath to get the driver into all applications in
the domain, or

e Use the driver embedded in the application.

" Note:

If you do not adhere to this restriction, it is possible (depending on the JAR,
the version changes, and the order in which the JARs are referenced) that a
ClassCastException will occur in the application.

If the JAR files are present in multiple locations, the following rules apply:

o Ifprefer-web-inf-classes inthe webl ogi c. xm is false, the precedence is:
system classpath > DOMAI N_HOVE/ | i bAPP- I NF/ | i bWEB- | NF/ | i b.

o If prefer-web-inf-classes inwebl ogic.xnl is true, the classes in VEB- I NF/ | i b
will take precedence over all other locations.

2.3.3 JDBC Module File Naming Requirements

All WebLogic JDBC module files must end with the -j dbc. xn suffix, such as
exanpl es- demo- j dbc. xml . WebLogic Server checks the file name when you deploy
the module. If the file does not end in -j dbc. xm , the deployment will fail and the
server will not boot.

2.3.4 JDBC Modules in Versioned Applications

When you use production redeployment (versioning) to deploy a version of an
application that includes a packaged JDBC module, WebLogic Server identifies the
data source defined in the JDBC module with a name in the following format:

ORACLE .

Chapter 2
Data Source Configuration Files

appl i cation_i d#version_i d@odul e_name@lat a_sour ce_narne

This name is used for data source run-time MBeans and for registering the data
source instance with the WebLogic Server transaction manager.

If transactions in a retiring version of an application time out and the version of the
application is then undeployed, you may have to manually resolve any pending or
incomplete transactions on the data source in the retired version of the application.
After a data source is undeployed (in this case, with the retired version of the
application), the WebLogic Server transaction manager cannot recover pending or
incomplete transactions.

For more information about production redeployment, see:

» Developing Applications for Production Redeployment in Developing Applications
for Oracle WebLogic Server

» Using Production Redeployment to Update Applications in Deploying Applications
to Oracle WebLogic Server

2.3.5 JDBC Schema

In support of the modular deployment model for JDBC resources in WebLogic Server,
Oracle provides a schema for WebLogic JDBC objects: webl ogi c-j dbc. xsd. When
you create JDBC resource modules (descriptors), the modules must conform to the
schema. IDEs and other tools can validate JDBC resource modules based on the
schema.

The schema is available at ht t p: // ww. or acl e. com’ webf ol der/t echnet wor k/
webl ogi c/ j dbc- dat a- sour ce/ i ndex. htni .

¢ Note:

The scope in the j dbc- dat a- sour ce- par ans element of the schema
may only be set to Appl i cati on for packaged data sources. The value
Appl i cation is not valid for:

e System resources in confi g/ j dbc, including generic, multi-data sources,
and AGL data sources.

» Stand-alone data sources that are deployed dynamically or statically
using the <app- depl oynent > element in the confi g. xm file.

For these data source types, there is no application to scope the data source
and no associated module. WebLogic Server does not generate a scope of
Appl i cation. This omission was not flagged as an error in releases of prior
to WebLogic Server 10.3.6.0 and is displayed in the console with an invalid
name similar to dsO@ul | @s0. For WebLogic Server 10.3.6.0 and higher, an
Error message is logged for this configuration error and the system attempts
to set the scope to d obal and display the data source name as ds0. In
future releases, this error may be treated as fatal.

ORACLE 2-8

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Chapter 2
JMX and WLST Access for JDBC Resources

2.3.6 JDBC Data Source Type

Data sources (generic, multi data, Active Gridlink, Universal Connection pool, and
Proxy) need a datasource-type set in the descriptor. This functionality was added in
WebLogic Server 12.2.1 and is optional for backward compatibility.

Data sources should have a datasource-type set in the descriptor. This functionality
was added in WebLogic Server 12.2.1 and is optional for backward compatibility. The
valid values are:

* GENERI C—Generic data source

e MDS —Multi Data Source

* AG—Active GridLink data source

* UCP—Universal Connection Pool data source
* PROXY—Proxy for multiple tenant data sources

If the dat asour ce-t ype is not set to UCP or PROXY, the following validations are
performed:

- Ifdatasource-type is setto AG, it is treated as an Active GridLink data source
even if FAN enabled is f al se and no ONS list is configured, and the Active GridLink
flag is fal se.

* If the dat asource-type is not set to AG, it is an error even if FAN enabled is true or
an ONS list is configured or the Active GridLink flag ist rue.

» If no data source list exists (it does not have Multi Data Source members) and
dat asour ce-t ype is set to anything other than GENERI C or AG, it is an error.

» If the data source list exists (it has Multi Data Source members) and the
dat asour ce-t ype is set to anything other than MDS, it is an error.

2.4 JMX and WLST Access for JDBC Resources

ORACLE

You can create JDBC resources using any of the WebLogic Server administration
tools. When you create JDBC resources, WebLogic Server creates MBeans (Managed
Beans) for each of the resources. You can then access these MBeans using JMX or
the WebLogic Scripting Tool (WLST).

See Summary of System Administration Tools and APIsfor a complete list of WebLogic
Server administration tools. See Developing Custom Management Utilities Using JMX
for Oracle WebLogic Server and Understanding the WebLogic Scripting Tool for
information about using JMX and WLST to access MBeans for JBDC resources.

- JDBC MBeans for System Resources

« JDBC Management Objects in the Java EE Management Model (JSR-77 Support)
e Using WLST to Create JDBC System Resources

* How to Modify and Monitor JDBC Resources

» Best Practices when Using WLST to Configure JDBC Resources

2-9

Chapter 2
JMX and WLST Access for JDBC Resources

2.4.1 JDBC MBeans for System Resources

This topic describes the JDBC Bean tree structure.

Figure 2-3 shows the hierarchy of the MBeans for JDBC objects in a WebLogic
domain.

Figure 2-3 JDBC Bean Tree

DomainMBean

JOBCSystemResourceMBean

JDBCDataSourceBean JavaBean representations
of JOBC descriptor elements

JOBCDriverParamsBean

JOBCConnectionPoolParamsBean

JOBCDataSourceParamsBean

JOBCXAParamsBean

The JDBCSyst enResour ceMBean is a container for the JavaBeans created from a
data source module. However, all JIMX access for a JDBC data source is through
the JDBCSyst enResour ceMBean. You cannot directly access the individual JavaBeans
created from the data source module.

2.4.2 JDBC Management Objects in the Java EE Management Model
(JSR-77 Support)

ORACLE

The WebLogic Server JDBC subsystem supports JSR-77, which defines the Java

EE Management Model. The Java EE Management Model is used for monitoring the
run-time state of a Java EE Web application server and its resources. You can access
the Java EE Management Model to monitor resources, including the WebLogic JDBC
subsystem as a whole, JDBC drivers loaded into memory, and JDBC data sources.

To comply with the specification, Oracle added the following run-time MBean types for
the WebLogic JDBC subsystem:

2-10

Chapter 2
JMX and WLST Access for JDBC Resources

e JDBCServi ceRunt i meMBean—Which represents the JDBC subsystem and
provides methods to access the list of JDBCDr i ver Runt i meMBeans,
JDBCMWUI t i Dat aSour ceRunt i meMBean, and JDBCDat aSour ceRunt i neMBeans currently
available in the system.

e JDBCMul ti Dat aSour ceRunt i neMBean—Which represents a JDBC multi data source
deployed on a server or cluster.

e JDBCDri ver Runti meMBean—Which represents a JDBC driver that the server loaded
into memory.

» JDBCDat aSour ceRunt i mreMBeans—Which represents a JDBC generic or AGL data
source deployed on a server or cluster.

Note:

WebLogic JDBC run-time MBeans do not implement the optional
Statistics Provider interfaces specified by JSR-77.

For more information about using the Java EE management model with WebLogic
Server, see Developing Java EE Management Applications for Oracle WebLogic
Server.

2.4.3 Using WLST to Create JDBC System Resources

Basic tasks you need to perform when creating JDBC resources with the WLST are:

e Start an edit session.

* Create a JDBC system module that includes JDBC system resources, such as
pools, data sources, multi data sources, and JDBC drivers.

e Target your JDBC system module.
Example 2-1 WLST Script to Create JDBC Resources

i mport sys
fromjava.lang inport System

print "@@Starting the script ..."
gl obal props

url sys. argv[1]
usr = sys.argv|2]
password = sys. argv[3]

connect (usr, password, url)
edit()
startEdit()

server nb=get MBean(" Server s/ exanpl esServer")
if servernb is None:
print '@ No server MBean found'
el se:
def addJDBC(prefix):

ORACLE 2-11

Chapter 2
JMX and WLST Access for JDBC Resources

print("")
print("*** Creating JDBC resources with property prefix " + prefix)

Create the Connection Pool. The systemresource will have
generated name of <Pool Nane>+"-j dbc"

nmyResour ceName = props. get Property(prefix+"Pool Nange")
print("Here is the Resource Name: " + nyResourceNane)

j dbcSyst enResource = wl . creat e(nyResour ceNang, " JDBCSyst enResour ce")
nyFile = jdbcSyst enResour ce. get Descri pt or Fi | eNange()
print ("HERE |'S THE JDBC FILE NAME: " + nyFile)

j dbcResource = j dbcSyst enResour ce. get JDBCResour ce()
j dbcResour ce. set Name(pr ops. get Property(prefi x+"Pool Name"))

Create the DataSource Parans
dpBean = j dbcResour ce. get JDBCDat aSour cePar ans()
myName=pr ops. get Property(prefix+"JND Nane")
dpBean. set JNDI Nanes([myNare])

Create the Driver Parans
drBean = j dbcResource. get JDBCDx i ver Par ans()
dr Bean. set Passwor d(props. get Property(prefix+"Password"))
drBean. set Url (props. get Property(prefix+"URLNane"))
dr Bean. set Dri ver Nane(props. get Property(prefix+"DriverNane"))

propBean = drBean. get Properties()
driverProps = Properties()
driverProps. setProperty("user", props. get Property(prefix+"UserName"))

e = driverProps. propertyNanes()
whi | e e. hasMoreEl enents() :
propNane = e.nextEl enent ()
nmyBean = propBean. creat eProperty(propNange)
nmyBean. set Val ue(dri ver Props. get Property(propName))

Create the ConnectionPool Parans
ppBean = j dbcResource. get JDBCConnect i onPool Par ans()
ppBean. set I nitial Capacity(int(props.getProperty(prefix+"Initial Capacity")))
ppBean. set MaxCapaci ty(i nt (props. get Property(prefix+"MaxCapacity")))

if not props.getProperty(prefix+"ShrinkPeriodM nutes") == None:

ppBean. set Shri nkFrequencySeconds(i nt (props. get Property(prefix+"ShrinkPeriodM nutes")))
i f not props.getProperty(prefix+"TestTabl eNanme") == None:

ppBean. set Test Tabl eNane(props. get Property(prefix+"Test Tabl eNane"))

i f not props.getProperty(prefix+"LoginDel aySeconds") == None:
ppBean. set Logi nDel aySeconds(i nt (props. get Property(prefix+"Logi nDel aySeconds")))

Addi ng KeepXaConnTi |l TxConplete to help with in-doubt transactions.
xaParans = j dbcResour ce. get JDBCXAPar ans()
xaPar ans. set KeepXaConnTi | | TxConpl et e(1)

Add Target
j dbcSyst enResour ce. addTar get (w . get MBean("/ Server s/ exanpl esServer"))

ORACLE 2-12

Chapter 2
Creating High-Availability JDBC Resources

2.4.4 How to Modify and Monitor JDBC Resources

You can modify or monitor JDBC objects and attributes by using the appropriate
method available from the MBean.

* You can modify JDBC objects and attributes using the set, target, untarget, and
delete methods.

* You can monitor JDBC run-time objects using get methods.

See Navigating MBeans (WLST Online) in Understanding the WebLogic Scripting
Tool.

2.4.5 Best Practices when Using WLST to Configure JDBC Resources

This section provides best practices information when using WLST to configure JDBC
resources:

e Trap for Null MBean objects (such as pools, data sources, drivers) before trying to
manipulate the MBean object.

e When using WLST offline, the following characters are not valid in names of
management objects: period (.), forward slash (/), or backward slash (\). See
Syntax for WLST Commands in Understanding the WebLogic Scripting Tool.

2.5 Creating High-Availability JDBC Resources

To improve the availability your JDBC resource and load balance communication
between resources you can target or deploy a JDBC data source to the members
of a cluster using the WebLogic Server Administration Console.

However, connections do not fail over in the event that a cluster member becomes
unavailable for any reason. New connections are created as needed on available
cluster members. See Deploying Data Sources on Servers and Clusters.

Note:

A multi data source can only use generic data sources that are deployed on
the same cluster member (in the same JVM).

ORACLE 2-13

Configuring JDBC Data Sources

In WebLogic Server, you configure database connectivity by adding JDBC data
sources to your WebLogic domain. Configuring data sources requires several steps
including choosing a type of data source, creating the data source, configuring
connection pools and Oracle database parameters and so on.

This chapter describes the steps required to create and configure JDBC connection
pools. It includes the following topics:

e Understanding JDBC Data Sources

* Types of WebLogic Server JDBC Data Sources

e Creating a JDBC Data Source

e Configuring Generic Connection Pool Features

e Advanced Connection Properties

e Configuring Oracle Parameters

e Configuring an ONS Client

e Tuning Generic Data Source Connection Pools

e Generic Data Source Handling for Oracle RAC Outages.

e Generic Data Source Handling of Driver-Level Failover

3.1 Understanding JDBC Data Sources

In WebLogic Server, you configure database connectivity by adding data sources to
your WebLogic domain. WebLogic JDBC data sources provide database access and
database connection management.

Each data source contains a pool of database connections that are created when

the data source is created and at server startup. Applications reserve a database
connection from the data source by looking up the data source on the JNDI tree or

in the local application context and then calling get Connect i on() . When finished with
the connection, the application should call connecti on. cl ose() as early as possible,
which returns the database connection to the pool for other applications to use.

3.2 Types of WebLogic Server JDBC Data Sources

ORACLE

WebLogic Server provides five types of data sources such as Generic data source,
Active GridLink (AGL) data source, Multi data source (MDS), Proxy data source and
Universal Connection Pool (UCP) data source.

e Generic data sources—Generic data sources and their connection pools
provide connection management processes that help keep your system running
efficiently.You can set options in the data source to suit your applications and your
environment.

e Active GridLink (AGL) data sources—A datasource that provides a connection
pool that spans one or more nodes in one or more Oracle RAC clusters. It

3-1

Chapter 3
Creating a JDBC Data Source

supports dynamic load balancing of connections across the nodes and handles
events that indicates nodes that are added and removed from the cluster(s). See
Using Active GridLink Data Sources.

Multi data sources (MDS)—A multi data source is an abstraction around a group
of generic data sources that provides load balancing or failover processing. See
Configuring JDBC Multi Data Sources.

Proxy data source—A data source that provides the ability to switch between
databases in a WebLogic Server Multitenant environment. See Using Proxy Data
Sources..

Universal Connection Pool (UCP) data source—A UCP data source is provided as
an option for users who wish to use Oracle Universal Connection Pooling (UCP)
to connect to Oracle Databases. UCP provides an alternative connection pooling
technology to Oracle WebLogic Server connection pooling. See Using Universal
Connection Pool Data Sources.

3.3 Creating a JDBC Data Source

WebLogic JDBC data sources provide database access and database connection
management. You can create JDBC data sources in your WebLogic domain using the
WebLogic Server Administration Console or the WebLogic Scripting Tool (WLST).

To create JDBC data sources using the WebLogic Server Administration Console or
the WebLogic Scripting Tool (WLST):

Create a JDBC Data Source in the Oracle WebLogic Server Administration
Console Online Help.

WebLogic Server JDBC Data Sources in Administering Oracle WebLogic Server
with Fusion Middleware Control.

The sample WLST script

EXAMPLES HOVE\ W _server\ exanmpl es\ src\ exanpl es\w st\online\jdbc data so
urce_creation. py, where EXAMPLES HOME represents the directory in which the
WebLogic Server code examples are configured. See WLST Online Sample
Scripts in Understanding the WebLogic Scripting Tool.

Data source configuration in the Weblogic Server Administration Console is done
using the Data Source configuration wizard. The following sections provide an
overview of the information required by the wizard to create a data source.

JDBC Data Source Properties
Configure Transaction Options
Configure Connection Properties
Test Connections

Target the Data Source

3.3.1 JDBC Data Source Properties

JDBC Data Source Properties include options that determine the identity of the data
source and the way the data is handled on a database connection.

ORACLE

3-2

Chapter 3
Creating a JDBC Data Source

3.3.1.1 Data Source Names

JDBC data source names are used to identify the data source within the WebLogic
domain. For system resource data sources, names must be unique among all other
JDBC system resources. To avoid naming conflicts, data source names should also
be unique among other configuration object names, such as servers, applications,
clusters, and JMS queues, topics, and servers. For JDBC application modules
packaged in an application, data source names must be uniqgue among JDBC data
sources that are similarly scoped.

3.3.1.2 Data Source Scope

Select the scope for the data source from the list of available scopes. You can set the
scope to Global (at the domain level), or to any existing Resource Group or Resource
Group Template.

3.3.1.3 JNDI Names

You can configure a data source so that it binds to the JNDI tree with a single or
multiple names. See Developing JNDI Applications for Oracle WebLogic Server.

3.3.1.4 Selecting a Database Type

Select a DBMS. For information about supported databases, see Supported
Configurations in What's New in Oracle WebLogic Server 12.2.1.3.0.

3.3.1.5 Selecting a JDBC Driver

When creating a JDBC data source using the WebLogic Server Administration
Console, you are prompted to select a JDBC driver class. The WebLogic Server
Administration Console provides most of the more common driver class names and in
most cases tries to help you construct the URL as required by the driver. You should
verify, however, that the URL is as you want it before asking the console to test it.
The driver you select must be in the cl asspat h on all servers on which you intend

to deploy the data source. Some but not all JDBC drivers listed in the WebLogic
Server Administration Console are shipped (and/or are already in the cl asspat h) with
WebLogic Server:

* Oracle Thin Driver
— Oracle Thin Driver XA
— Oracle Thin Driver non-XA
e MySQL (non-XA)
e Third-party JDBC drivers (see Using JDBC Drivers with WebLogic Server):

e WebLogic-branded DataDirect drivers for the following database management
systems (see Using WebLogic-branded DataDirect Drivers):

— DB2

— Informix

— Microsoft SQL Server
— Sybase

ORACLE 3-3

Chapter 3
Creating a JDBC Data Source

All of these drivers are referenced by the webl ogi c. j ar manifest file and do not need
to be explicitly defined in a server's cl asspat h.

When deciding which JDBC driver to use to connect to a database, you should
try drivers from various vendors in your environment. In general, JDBC driver
performance is dependent on many factors, especially the SQL code used in
applications and the JDBC driver implementation.

For information about supported JDBC drivers, see Supported Configurations in
What's New in Oracle WebLogic Server 12.2.1.3.0.

¢ Note:

JDBC drivers listed in the WebLogic Server Administration Console when
creating a data source are not necessarily certified for use with WebLogic
Server. JDBC drivers are listed as a convenience to help you create
connections to many of the database management systems available.

You must install JIDBC drivers in order to use them to create database
connections in a data source on each server on which the data source

is deployed. Drivers are listed in the WebLogic Server Administration
Console with known required configuration options to help you configure

a data source. The JDBC drivers in the list are not necessarily installed.
Driver installation can include setting system Path, Classpath, and other
environment variables. See Adding Third-Party JDBC Drivers Not Installed
with WebLogic Server .When a JDBC driver is updated, configuration
requirements may change. The WebLogic Server Administration Console
uses known configuration requirements at the time the WebLogic Server
software was released. If configuration options for your JDBC driver have
changed, you may need to manually override the configuration options when
creating the data source or in the property pages for the data source after it
is created.

3.3.2 Configure Transaction Options

ORACLE

When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver:

e For XA drivers, the system automatically selects the Two-Phase Commit
protocol for global transaction processing.

e For non-XA drivers, local transactions are supported by definition, and WebLogic
Server offers the following options

Supports Global Transactions: (selected by default) Select this option if you
want to use connections from the data source in global transactions, even though
you have not selected an XA driver. See Enabling Support for Global Transactions
with a Non-XA JDBC Driver.

When you select Supports Global Transactions, you must also select the protocol
for WebLogic Server to use for the transaction branch when processing a global
transaction:

3-4

Chapter 3
Creating a JDBC Data Source

Logging Last Resource: With this option, the transaction branch in which

the connection is used is processed as the last resource in the transaction

and is processed as a local transaction. Commit records for two-phase commit
(2PC) transactions are inserted in a table on the resource itself, and the

result determines the success or failure of the prepare phase of the global
transaction. This option offers some performance benefits and greater data
safety than Emulate Two-Phase Commit, but it has some limitations. See
Understanding the Logging Last Resource Transaction Option.

Note:

Logging Last Resource is not supported for data sources used by

a multi data source except when used with Oracle RAC version

10g Release 2 (10gR2) and greater versions as described in
Administrative Considerations and Limitations for LLR Data Sources.

Emulate Two-Phase Commit: With this option, the transaction branch in
which the connection is used always returns success for the prepare phase
of the transaction. It offers performance benefits, but also has risks to data in
some failure conditions. Select this option only if your application can tolerate
heuristic conditions. See Understanding the Emulate Two-Phase Commit
Transaction Option.

One-Phase Commit: (selected by default) With this option, a connection from
the data source can be the only participant in the global transaction and the
transaction is completed using a one-phase commit optimization. If more than
one resource participates in the transaction, an exception is thrown when the
transaction manager calls XAResour ce. pr epar e on the 1PC resource.

For more information on configuring transaction support for a data source, see JDBC
Data Source Transaction Options.

3.3.3 Configure Connection Properties

ORACLE

Connection Properties are used to configure the connection between the data
source and the DBMS. Typical attributes are the database name, host name, port
number, user name, and password.

3-5

Chapter 3
Configuring Generic Connection Pool Features

< Note:

You can use a Single Client Access Name (SCAN) address to represent the
host name. When using Oracle RAC 11.2 and higher, consider the following:

* If the Oracle RAC REMOTE_LI| STENER your data source connects to is set
to SCAN, the data source connection url can only use a SCAN address.

e If the Oracle RAC REMOTE_LI| STENER your data source connects to is set
to Li st of Node VIPs, the data source connection url can only use a list
of VIP addresses.

e If the Oracle RAC REMOTE_LI| STENER your data source connects to is set
toM x of SCAN and List of Node VI Ps, the data source connection url
can use both SCAN and VIP addresses.

For more information on using SCAN addresses, see "Introduction
to Automatic Workload Management” in Real Application Clusters
Administration and Deployment Guide 11g Release 2 (11.2).

3.3.3.1 Configuring Connection Properties for Oracle Bl Server

If you selected Oracle Bl Server as your DBMS, configure the additional connection
properties on the Connection Properties page as described in Connection String in
Oracle Business Intelligence Publisher Administrator's and Developer's Guide.

3.3.4 Test Connections

Test Database Connection allows you to test a database connection before the data
source configuration is finalized using a table name or SQL statement. If necessary,
you can test additional configuration information using the Properti es and Syst em
Properti es attributes.

3.3.5 Target the Data Source

You can select one or more targets to which to deploy your new JDBC data source.
If you don't select a target, the data source will be created but not deployed. You will
need to deploy the data source at a later time before getting connections.

3.4 Configuring Generic Connection Pool Features

Each JDBC data source has a pool of JDBC connections that are created when the
data source is deployed or at server startup. Applications use a connection from the
pool then return it when finished using the connection. Connection pooling enhances
performance by eliminating the costly task of creating database connections for the
application.

ORACLE 3-6

http://docs.oracle.com/docs/cd/E10415_01/doc/bi.1013/e12188/T421739T514578.htm

Chapter 3
Configuring Generic Connection Pool Features

< Note:

If a non-dynamic data source attribute is updated, the data source needs to
be undeployed or redeployed for the attribute to take effect. To determine
whether an attribute is dynamic or non-dynamic, see the MBean reference
MBean Reference for Oracle WebLogic Server for the attribute. If the
attribute definition contains the Redepl oy or Restart required text, then
it is a non-dynamic attribute.

The following sections include information about connection pool options for a JDBC
data source. Some of these options are dynamically changeable and others are non-
dynamic.

* Enabling JDBC Driver-Level Features

» Enabling Connection-based System Properties

» Enabling Connection-based Encrypted Properties
» Initializing Database Connections with SQL Code
» Advanced Connection Properties

You can see more information and set these and other related options through the:

- JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console. See JDBC Data Source: Configuration:
Connection Pool in the Oracle WebLogic Server Administration Console Online
Help

« JDBCConnectionPoolParamsBean, which is a child MBean of the
JDBCDataSourceBean

Note:

Certain Oracle JDBC extensions, and possibly other non-standard methods
available from other drivers may durably alter a connection's behavior in a
way that future users of the pooled connection will inherit. WebLogic Server
attempts to protect connections against some types of these calls when
possible.

3.4.1 Enabling JDBC Driver-Level Features

WebLogic JDBC data sources support the j avax. sql . Connect i onPool Dat aSour ce
interface implemented by JDBC drivers. You can enable driver-level features by
adding the property and its value to the Properti es attribute in a JDBC data
source. Driver-level properties in the Properti es attribute are set on the driver's
Connect i onPool Dat aSour ce object.

3.4.2 Enabling Connection-based System Properties

WebLogic JDBC data sources support setting driver properties using the value of
system properties. The value of each property is derived at runtime from the named

ORACLE .

ORACLE

Chapter 3
Configuring Generic Connection Pool Features

system property. You can configure connection-based system properties using the
WebLogic Server Administration Console by editing the Syst em Properti es attribute
of your data source configuration.

If a system property value is set, it overrides an encrypted property value, which
overrides a normal property value (you can only have one property value for each
property name).

A system property value can contain one of the variables listed in Table 3-1. If one

or more of these variables is included in the system property, it is substituted with the
corresponding value. If a value is not found, no substitution is performed. If none of
these variables are found in the system property, then the value is taken as a system
property name.

Table 3-1 Variables Supported in System Property Values for JDBC Data
Source

Variable Value Description

${pid} First half (up to @) of
ManagementFactory.getRuntimeMXBean().get
Name()

${machine} Second half of
ManagementFactory.getRuntimeMXBean().get
Name()

${user.name} Java system property user.name

${os.name} System property os.name

${datasourcename} Data source name from the JDBC descriptor. It
does not contain the partition name.

${partition} Partition name or DOMAIN

${serverport} WebLogic Server server listen port

${serversslport} WebLogic Server server SSL listen port

${servername} WebLogic Server server name

${domainname} WebLogic Server domain name

A sample set of properties is shown in the following example:

<properties>
<property>
<name>user </ name>
<sys- prop- val ue>user </ sys- pr op- val ue>
</ property>
<property>
<nanme>v$sessi on. osuser </ nane>
<sys- prop- val ue>${ user. name} </ sys- pr op- val ue>
</ property>
<property>
<name>v$sessi on. process</ name>
<sys- prop- val ue>${ pi d} </ sys- prop- val ue>
</ property>
<property>
<name>v$sessi on. machi ne</ name>
<sys- pr op- val ue>${ machi ne} </ sys- pr op- val ue>

3-8

Chapter 3
Configuring Generic Connection Pool Features

</ property>
<property>
<nane>v$sessi on. t er m nal </ nane>
<sys- prop- val ue>${ dat asour cename} </ sys- pr op- val ue>
</ property>
<property>
<nane>v$sessi on. progr ank/ name>
<sys- prop-val ue>\ebLogi ¢ ${servernanme} Partition ${partition}</sys-
prop-val ue>
</ property>
</ properties>

In this example:

e user is set to the value of - Duser =val ue

e v$session values are set as described in Table 3-1
For example, v$sessi on. programrunning on nyserver is set to WebLogi ¢
nmyserver Partition DOVAIN

Note that the values have the following length limitations:

e osuser—30

e process—24

e machi ne—64

e termnal —30

° program—48

3.4.3 Enabling Connection-based Encrypted Properties

WebLogic JDBC data sources support setting driver properties using encrypted
values. You can configure connection-based encrypted properties using the WebLogic
Server Administration Console by editing the Encrypt ed Properti es attribute of your
data source configuration. See Using Encrypted Connection Properties.

3.4.4 Initializing Database Connections with SQL Code

ORACLE

When WebLogic Server creates database connections in a data source, the server
can automatically run SQL code to initialize the database connection. To enable this
feature, enter SQL followed by a space and the SQL code you want to run in the Init
SQL attribute on the JDBC Data Source: Configuration: Connection Pool page in the
WebLogic Server Administration Console. Alternatively, you can specify simply a table
name without SQL and the statement SELECT COUNT(*) FROM t abl enane is used. If
you leave this attribute blank (the default), WebLogic Server does not run any code to
initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the
data source, which includes at server startup, when expanding the connection pool,
and when refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are connection-
specific or to ensure that a connection has memory or permissions to perform required
actions.

3-9

Chapter 3
Advanced Connection Properties

Start the code with SQL followed by a space. An Oracle DBMS example:
SQ alter session set NLS _DATE_FORMAT=' YYYY- MM DD HH24: M : SS

or an Informix DBMS:

SQ SET LOCK MODE TO WAI' T

The SQL statement is executed using JDBC St at ement . execut e() . Options that you
can set using InitSQL vary by DBMS. See the documentation for your database
vendor for supported statements. If you want to execute multiple statements, you may
want to create a stored procedure and execute it. The syntax is vendor specific. For
example, to execute an Oracle stored procedure:

SQL CALL MYPROCEDURE()

3.5 Advanced Connection Properties

You can set up advance connection properties like fatal error codes and use of
Edition-Based Redefinition (EBR). You define fatal error codes which indicate the
database server with which the data source communicates is no longer accessible
on a connection. EBR provides the ability to upgrade the database component of an
application while it is in use, thereby minimizing or eliminating down time.

The following sections highlight some important advanced connection properties.

» Define Fatal Error Codes

e Enabling Edition-Based Redefinition

3.5.1 Define Fatal Error Codes

ORACLE

You can define fatal error codes that indicate that the database server with which the
data source communicates is no longer accessible on a connection. The connection is
marked invalid and taken out of the pool but the data source is not suspended. These
errors include deployment errors that cause a server to fail to boot and connection
errors that prevent a connection from being put back in the connection pool.

When specified as the exception code within a SQLException (retrieved by

sql Excepti on. get Error Code()), it indicates that a fatal error has occurred, the
connection is no longer good, and it is removed from the connection pool. For Oracle
databases the following fatal error codes are predefined within WLS and do not need
to be placed in the configuration file:

Error Code Description

3113 end-of-file on communication channel

3114 not connected to ORACLE

1033 ORACLE initialization or shutdown in progress

1034 ORACLE not available

1089 immediate shutdown in progress - no operations are permitted
1090 shutdown in progress - connection is not permitted

17002 I/O exception

3-10

Chapter 3
Advanced Connection Properties

For DB2, the following fatal error codes are predefined: -4498, -4499, -1776, -30108,
-30081, -30080, -6036, -1229, -1224, -1035, -1034, -1015, -924, -923, -906, -518,
-514, 58004.

For Informix, the following fatal error codes are predefined: -79735, -79716, -43207,
-27002, -25580, -4499, -908, -710, 43012.

To define fatal error codes in the WebLogic Server Administration Console, see Define
Fatal Error Codes in Oracle WebLogic Server Administration Console Online Help.

3.5.2 Using Edition-Based Redefinition

ORACLE

Edition-based redefinition (EBR) provides the ability to upgrade the database
component of an application while it is in use, thereby minimizing or eliminating down
time. It allows a pre-upgrade and post-upgrade view of the data to exist at the same
time, providing a hot upgrade capability. You can then specify which view you want for
a particular session.

See:

* Using Edition-Based Redefinition in the Oracle Database Development Guide

» Edition-Based Redefinition White Paper at http://www.oracle.com/technetwork/
databaselfeatures/availability/edition-based-redefinition-1-133045.pdf

Using EBR with JDBC Connections
There are two approaches to using EBR with JDBC connections:

e If you use a database service to connect to the database and an initial session
edition was specified for that service, then the initial session edition for the service
is your initial session edition on the connection. This approach is recommended for
minimal overhead on the connection.

When you create or modify a database service, you can specify its initial session
edition. To create or modify a database service, Oracle recommends using the
srvct! add serviceorsrvctl nodify servi ce command. To specify the default
initial session edition of the service, use the - edi ti on option.

Alternatively, you can create or modify a database service with the
DBMS_SERVI CE. CREATE_SERVI CE or DBMS_SERVI CE. MODI FY_SERVI CE procedure, and
specify the default initial session edition of the service with the EDITION attribute.

» Changing your session edition after connecting to the database using the SQL
statement ALTER SESSI ON SET EDI Tl ON. You can change your session edition to
any edition on which you have the USE privilege. Note that changing the edition
can require re-generating a significant amount of state on session and database
server. Oracle recommends using DBMS_SESSI ON. RESET _PACKAGE to clean-up some
of this state when changing the edition on a session.

Using Edition-based redefinition does not require any new WebLogic Server
functionality.

To make use of EBR, your environment needs to consist of an earlier version of

the application with a data source that references the earlier EDITION and a later
version of the application with a data source that references the later EDITION. When
referring to multiple versions of a WebLogic Server application, you should be using
WebLogic Server versioned applications in the production redeployment feature. See
Developing Applications for Production Redeployment in Developing Applications for

3-11

http://www.oracle.com/pls/topic/lookup?ctx=fmw121400&id=ADFNS020
http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf
http://www.oracle.com/technetwork/database/features/availability/edition-based-redefinition-1-133045.pdf

ORACLE

Chapter 3
Advanced Connection Properties

Oracle WebLogic Server. By combining Oracle database EBR and WebLogic Server
versioned applications, the application can be upgraded with no downtime, making the
combination of features more powerful than either feature independently.

You need to run with a versioned database and a versioned application initially so that
you can switch versions. To version a WebLogic Server application, simply add the
Wbl ogi c- Appl i cati on- Ver si on property in the MANI FEST. M file (you can also specify
it at deployment time).

Configuring WebLogic Data Sources to Use Editions

The following list describe the different ways you can configure WebLogic data
sources to use Oracle database editions.

Packaged Data Source Using a Single Edition—The recommended way to
configure the data source is to use a packaged data source descriptor that is
stored in the application EAR or WAR file so that everything is self-contained.

By doing so, you can use the same name for each data source and you do not
need to change the application to use a variable name based on the edition.

The data source URL in the descriptor should reference the database service
associated with the correct edition. If for some reason you are using a SID instead
of a database service (no longer recommended), the alternative is to specify

SQ. ALTER SESSI ON SET EDI TI ON = nane in the Init SQL parameter in the data
source descriptor. This SQL statement is executed for each newly created physical
database connection in the data source pool. This approach assumes that a data
source references only a single edition of the database and all connections use
that edition.

Note the following restrictions when using a packaged data source.

— You cannot use a packaged data source with Logging Last Resource (LLR).
You must use a system resource.

— You cannot use an application-scoped packaged data source with
EmulateTwoPhaseCommit for the global-transactions-protocol with a
versioned application. You must use a global-scoped data source.

Therefore, if you need to use LoggingLastResource or
EmulateTwoPhaseCommit, you cannot use this approach. See JDBC
Application Module Limitations.

System Resource Data Source Using a Single Edition—You can use a system
resource as an alternative to a packaged data source. In this case, each data
source must have a unique name and JNDI name. The application needs to be
flexible enough to use that name at runtime. For example, you can pass in the
data source JNDI name as a system property and the code that looks up the data
source in JNDI will use that value.

The disadvantage of using a single edition per data source, whether packaged

or as a system resource, is that it requires more database connections. A single
edition approach can work when the period during which the old and new editions
are running is relatively short. For applications that are using a lot of data sources
and/or connections, this is not a viable approach.

System Resource Data Source Using Multiple Editions—An alternative is

to have a data source that references multiple editions. The recommended
configuration would still use a database service associated with a single edition.
However, the connections will be re-associated with different editions during the
lifetime of the connection.

3-12

Chapter 3
Configuring Oracle Parameters

Multiple Editions by Setting the Edition for Every Reservation—It is possible
for the application to set the database edition every time it gets a connection.
There is some overhead associated with making this call each time (round
trip to the database server and setting the session) and the application

code needs to be modified everywhere that a connection is reserved. If

you are using the replay driver, this initialization should be done in the
ConnectionlnitializationCallback.See Using a Connection Callback.

It's important to optimize for the normal use case instead of optimizing for the
(hopefully) short period during which the migration is done to a new edition. This
approach doesn't optimize for the normal case where all connections are on the
needed edition.

Multiple Editions using Connection Labeling—You can also associate an
edition with the connection and try to reserve a connection with the correct edition.
The recommended way to tag a connection with a property is to use connection
labeling. The application then needs to implement the pieces associated with
connection labeling.

— When a connection is reserved, it needs to determine the edition needed in
the context.

— A matching method is needed to determine if the property, in this case just the
edition, matches.

— Alabeling initialization method is needed to make the connection match if it
doesn't already match by using SQL ALTER SESSI ON SET EDI TI ON = nare.

There is overhead associated with connection labeling, particularly when
exclusively scanning the list of existing connections to find a mach. On the other
hand, the normal use case is that every connection matches the current edition so
there is no need to look far to find a match. It is only during migration that there will
be thrashing between editions and potentially longer searches to find a match (or
to determine that there is no match).

3.6 Configuring Oracle Parameters

WebLogic Server provides several attributes that provide improved Data Source
performance when using Oracle drivers.

For detailed information on how to configure Oracle parameters, see Advanced
Configurations for Oracle Drivers and Databases

3.7 Configuring an ONS Client

Configuring an ONS client changes a generic data source to an AGL data source.
For more detailed configuration information and additional environment requirements,
see Using Active GridLink Data Sources.

3.8 Tuning Generic Data Source Connection Pools

ORACLE

You can improve application and system performance by ensuring a proper
configuration of the connection pool attributes in JDBC data sources in your WebLogic
Server domain.

For detailed information on tuning generic data source connection, see Tuning Data
Source Connection Pools.

3-13

Chapter 3
Generic Data Source Handling for Oracle RAC Outages

3.9 Generic Data Source Handling for Oracle RAC Outages

It is possible to use a Generic data source with Oracle RAC with some limitations.
These limitations complicate transaction processing, monitoring, and graceful handling
of RAC outages.

Note:

Oracle recommends using a Multi Data Source or Active GridLink data
source instead of a Generic data source using driver-level failover. See
Using Active GridLink Data Sources or Using Multi Data Sources with Oracle
RAC.

The following limitations are due to WebLogic Server instances not being aware of the
RAC instances associated with the connections in the pool:

A generic data source does not have the ability to disable a single instance in

the pool that a Multi Data Source or Active GridLink data source provides. If one
of the RAC instances goes down (planned or unplanned), the data source tests
all connections in the pool for the down instance, disabling them individually. In
addition to more overhead and application delays, the pool sees multiple failures
which cause the entire pool to be disabled. To prevent the pool from being
disabled, set the value of Count Of Test Failures Till FlushtoO. See the
JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console or see JDBCConnectionPoolParamsBean in the MBean
Reference for Oracle WebLogic Server.

JTA or global transactions should not be used with this configuration. Because
WebLogic Server is not aware of the RAC instances, it cannot guarantee
transaction affinity. This is a problem if the transaction spans multiple servers or if
a failure occurs such that another connection is used to complete the transaction.
Since the additional connections required to complete the transaction may not be
within the same RAC instance, transaction processing may fail.

It is not possible to monitor the connections based on the RAC instances.

3.10 Generic Data Source Handling of Driver-Level Failover

Several database drivers support a feature to define multiple database instances

in the URL and failover from one database to the next. It possible to use a

Generic data source with driver-level failover with some limitations. These limitations
complicate transaction processing, monitoring, and graceful handling of database
instance outages.

The following limitations are due to WebLogic Server instances not being aware of the
database instances associated with the connections in the pool:

ORACLE

A generic data source does not have the ability to disable a single instance in

the pool that a Multi Data Source provides. If one of the database instances goes
down (planned or unplanned), the data source tests all connections in the pool for
the down instance, disabling them individually. In addition to more overhead and
application delays, the pool sees multiple failures which cause the entire pool to be

3-14

ORACLE

Chapter 3
Generic Data Source Handling of Driver-Level Failover

disabled. To prevent the pool from being disabled, set the value of Count O Test
Failures Till Flush to 0.For more information, see:

— JDBC Data Source: Configuration: Connection Pool page in the Oracle
WebLogic Server Administration Console Online Help

— JDBCConnectionPoolParamsBean in the MBean Reference for Oracle
WebLogic Server

JTA or global transactions should not be used with this configuration. Because
WebLogic Server is not aware of the database instances, it cannot guarantee
transaction affinity. This is a problem if the transaction spans multiple servers or if
a failure occurs such that another connection is used to complete the transaction.
Since the additional connections required to complete the transaction may not be
within the same database instance, transaction processing may fail.

It is not possible to monitor the connections based on the database instances.

3-15

Using the Default Data Source

Oracle provides a default data source required by a Java EE 7-compliant runtime.
This pre-configured data source can be used by an application to access the Derby
Database installed with WebLogic Server.

This chapter contains the following sections:

e What is the Default Data Source
* Defining a Custom Default Data Source

e Compatibility Limitations When Using a Default Data Source

4.1 What is the Default Data Source

ORACLE

It is accessible under the INDI name:

j ava: conp/ Def aul t Dat aSour ce

which is equivalent to:

@Resour ce(| ookup="j ava: conp/ Def aul t Dat aSour ce")
Dat aSour ce nyDS;

You can explicitly bind a DataSource resource reference to the default data source
using the lookup element of the Resource annotation or the lookup-name element of
the resource-ref deployment descriptor element.

Note:

The Derby database is started by the st art WebLogi ¢ command by default.
For more information on starting and stopping a WebLogic Server instance,
see Starting and Stopping Servers: in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

Characteristics of a Default Data Source
A default data source has the following characteristics:

* Must be available for each component that is deployed.

e Only accessible for deployed components, not for data sources that are system
resources or stand-alone deployments.

* Only visible in a console after it has been referenced.
* Appears as a deployment for each component, like other Java EE deployments.

* Not configurable.

4-1

Chapter 4
Defining a Custom Default Data Source

* Has the lifecycle of the associated application.

The WebLogic Server Default Data Source Definition

The following table provides the configuration settings that define the WebLogic Server
default data source definition:

Table 4-1 Default Data Source Configuration

Attribute Value

Name java:comp/DefaultDataSource
Initial capacity 0

Min capacity 0

Max capacity 15

Classname org.apache.derby.jdbc.ClientDataSource
Port 1527

Host localhost

Database name DefaultDataSource

User none

Password none

Transactional false

MaxStatements 0

MaxldleTimeout not set

4.2 Defining a Custom Default Data Source

ORACLE

You can implement a custom default data source by defining a custom data source
descriptor that is bound to java:comp/DefaultDataSource or overidding the default data
source to point to another JNDI name.

See:

* Creating a Custom Default Data Source Descriptor.
e Overriding the Default Data Source.

After the component is deployed, if j ava: conp/ Def aul t Dat aSour ce is not available
for the component, the WebLogic Server preconfigured default data source is
available to the component. However, if you disabled the Derby database by setting
DERBY_FLAG=f al se) before running st art W\ebLogi c. sh script, the WebLogic Server
preconfigured default data source is not available.

Creating a Custom Default Data Source Descriptor

You can configure a data source descriptor that is bound to java:comp/
DefaultDataSource replacing the preconfigured default data source. For example, the
following provides an example of Java EE 6 annotations in a EAR application:

@t at el ess(mappedName="DSBean")

@at aSour ceDef i ni ti on(name="j ava: conp/ Def aul t Dat aSour ce",
cl assNanme="oracl e. jdbc. Oracl eDri ver",

port Number =1521,

server Name="myServer",

4-2

Chapter 4
Compatibility Limitations When Using a Default Data Source

dat abaseNane="nyDB",
user="a username",
passwor d="a password",
transactional =f al se

)

public class DSBean inplements DSl nterface

Overriding the Default Data Source

You can override the preconfigured default data source provided by WebLogic Server
by updating the JNDI name in the Default Data Source attribute in the configuration of
a server or server template to point to another existing data source. See the following
topics in Administering Oracle WebLogic Server with Fusion Middleware Control:

» Define general server configuration
e Configure server template general settings

In a partitioned environment, you can override this attribute using the
Dat aSour cePartiti onMBean. See Configuring JDBC in Using WebLogic Server
Multitenant.

4.3 Compatibility Limitations When Using a Default Data

Source

ORACLE

Learn about the limitations when using a default data source.

In releases prior to Weblogic Server 12.2.1, WebLogic Server tries to satisfy
unresolved data source r es- r ef references automatically by an attempting to lookup
the data source in JNDI using the name of the r es-r ef . This behavior is undefined
prior to Java EE 7. This WebLogic Server release uses the default data source as
defined by Java EE 7.

4-3

Configuring JDBC Multi Data Sources

A multi data source is an abstraction around a group of generic data sources that

is bound to the JNDI tree or local application context just like generic data sources

are bound to the JNDI tree. You can configure a multi data source to provide load
balancing or failover processing at the time of connection requests, between the
generic data sources associated with the multi data source.

Applications lookup a multi data source on the JNDI tree or in the local application
context (j ava: conp/ env) just as they do for generic data sources, and then request a
database connection. The multi data source determines which generic data source to
use to satisfy the request depending on the algorithm selected in the multi data source
configuration: load balancing or failover.

< Note:

Active GridLink and Multi Data Source are designed to work with Oracle RAC
clusters. Oracle does not recommend using generic data sources with Oracle
RAC clusters. See Comparing AGL and Multi Data Sources.

This chapter includes the following sections:

* Multi Data Source Features

e Creating and Configuring Multi Data Sources

e Choosing the Multi Data Source Algorithm

e Multi Data Source Fail-Over Limitations and Requirements

* Multi Data Source Failover Enhancements

* Deploying JDBC Multi Data Sources on Servers and Clusters

* Planned Database Maintenance with a Multi Data Source

5.1 Multi Data Source Features

ORACLE

Multi data sources are used for failover or load balancing between nodes of a highly
available database system such as Oracle Real Application Clusters (Oracle RAC).
The generic data source member list for a multi data source supports dynamic
updates. This feature allows Oracle RAC environments to add and remove database
nodes and corresponding generic data sources without redeployment, grow and
shrink RAC clusters in response to throughput, and shutdown Oracle RAC node for
maintenance.

See:

e Adding a Database Node.
* Removing a Database Node.

e Using Multi Data Sources with Oracle RAC.

5-1

Chapter 5
Multi Data Source Features

< Note:

Multi data sources do not provide any synchronization between databases.
It is assumed that database synchronization is handled properly outside

of WebLogic Server so that data integrity is maintained. Adding and
removing database nodes is a manual operation performed by the database
administrator.

5.1.1 Removing a Database Node

You can remove a database node and corresponding generic data sources without
redeployment. This capability provides you the ability to shutdown a node for
maintenance or shrink a cluster. Use the following high-level steps to shutdown a
database node:

4.

¢ Note:

Failure to follow these step may cause transaction roll-backs.

Remove the generic data source from the multi data source. See Add or remove
generic data sources in a JDBC multi data source in Oracle WebLogic Server
Administration Console Online Help

When all transactions have completed, suspend the generic data source. See
Suspend JDBC data sources in Oracle WebLogic Server Administration Console
Online Help

When all transactions have completed, shut down the generic data source. See
Shut down JDBC data sources in Oracle WebLogic Server Administration Console
Online Help

Shut down the database node.

5.1.2 Adding a Database Node

You can add a database node and corresponding generic data sources without
redeployment. This capability provides you the ability to start a node after maintenance
or grow a cluster. Use the following high-level steps to add a database node:

1.
2.

ORACLE

Restart the database node.

Restart the generic data source. See Start JDBC data sources in Oracle WebLogic
Server Administration Console Online Help.

Add the generic data source back to the multi data source. See Add or
remove data sources in a JDBC multi data source in Oracle WebLogic Server
Administration Console Online Help.

5-2

Chapter 5
Creating and Configuring Multi Data Sources

5.2 Creating and Configuring Multi Data Sources

You create a multi data source by first creating generic data sources, then creating the
multi data source using the WebLogic Server Administration Console or the WebLogic
Scripting Tool and then assigning the generic data sources to the multi data source.
For instructions to create a multi data source, see Configure JDBC multi data sources
in the Oracle WebLogic Server Administration Console Online Help.

For information about the configuration files created when configuring a multi data
source, see Understanding JDBC Resources in WebLogic Server. Also see Creating a
Multi Data Source Module.

" Note:

In general, if a WebLogic Server data source setting of initial capacity is

set to 0, WebLogic Server makes no DBMS connections at startup. But to
startup a MultiDataSource of LLR data sources, WebLogic Server makes a
connection at startup to see if the DBMS is a RAC or not. For a generic LLR
MultiDatasource, all the data sources need to be available, but if it is using
RAC, only one node needs to be accessible for LLR processing.

5.3 Choosing the Multi Data Source Algorithm

Before you set up a multi data source, you need to determine the primary purpose of
the multi data source—failover or load balancing. You can choose the algorithm that
corresponds with your requirements.

5.3.1 Failover

ORACLE

The Failover algorithm provides an ordered list of generic data sources to use to
satisfy connection requests. Normally, every connection request to this kind of multi
data source is served by the first generic data source in the list. If a database
connection test fails and the connection cannot be replaced, or if the generic data
source is suspended, a connection is sought sequentially from the next generic data
source on the list.

5-3

Chapter 5
Multi Data Source Fail-Over Limitations and Requirements

< Note:

This algorithm requires that Test Reserved Connections

(Test Connect i onsOnReser ve) on the generic data source is enabled. If
enabled, a connection in the first generic data source is tested to verify if
the generic data source is healthy. If the connection fails the test, the multi
data source uses a connection from the next generic data source listed in
the multi data source. See Connection Testing Options for a Data Source for
information about configuring Test Connect i onsOnReser ve.

JDBC is a highly stateful client-DBMS protocol, in which the DBMS
connection and transactional state are tied directly to the socket between
the DBMS process and the client (driver). For this reason, failover of a
connection while it is in use is not supported.

5.3.2 Load Balancing

Connection requests to a load-balancing multi data source are served from any
generic data source in the list. The multi data source selects generic data sources

to use to satisfy connection requests using a round-robin scheme. When the multi data
source provides a connection, it selects a connection from the generic data source
listed just after the last generic data source that was used to provide a connection.
Multi data sources that use the Load Balancing algorithm also fail over to the next
generic data source in the list if a database connection test fails and the connection
cannot be replaced, or if the generic data source is suspended.

5.4 Multi Data Source Fail-Over Limitations and
Requirements

WebLogic Server provides a failover algorithm for multi data sources so that if a
generic data source fails (for example, if the database management system crashes),
your system can continue to operate. However, there are certain limitations and
requirements you must consider when configuring the multi data source.

5.4.1 Test Connections on Reserve to Enable Fail-Over

Generic data sources rely on the Test Reserved Connections

(Test Connect i onsOnReser ve) feature on the generic data source to know when
database connectivity is lost. Testing reserved connections must be enabled for the
generic data sources within the multi data source. WebLogic Server will test each
connection before giving it to an application. With the Failover algorithm, the multi data
source uses the results from connection test to determine when to fail over to the

next generic data source in the multi data source. After a test failure, the generic data
source attempts to recreate the connection. If that attempt fails, the multi data source
fails over to the next generic data source.

5.4.2 No Fail-Over for In-Use Connections

ORACLE

It is possible for a connection to fail after being reserved, in which case your
application must handle the failure. WebLogic Server cannot provide fail-over for

5-4

Chapter 5
Multi Data Source Failover Enhancements

connections that fail while being used by an application. Any failure while using a
connection requires that the application code close the failed connection, and the
transaction must be restarted from the beginning with a new connection.

5.5 Multi Data Source Failover Enhancements

Learn about the enhancements that improve failover processing for multi data sources.
The following enhancements improve failover processing for multi data sources:

« Connection request routing enhancements to avoid requesting a connection from
an automatically disabled (dead) generic data source within a multi data source.
See Connection Request Routing Enhancements When a Generic Data Source
Fails.

» Automatic failback on recovery of a failed generic data source within a multi data
source. See Automatic Re-enablement on Recovery of a Failed Generic Data
Source within a Multi Data Source.

» Failover for busy generic data sources within a multi data sources. See Enabling
Failover for Busy Generic Data Sources in a Multi Data Source.

» Failover callbacks for multi data sources with the Failover algorithm. See
Controlling Multi Data Source Failover with a Callback.

* Failback callbacks for multi data sources with either algorithm. See Controlling
Multi Data Source Failback with a Callback.

5.5.1 Connection Request Routing Enhancements When a Generic
Data Source Fails

To improve performance when a generic data source within a multi data source

fails, WebLogic Server automatically disables the generic data source when a pooled
connection fails a connection test. After a generic data source is disabled, WebLogic
Server does not route connection requests from applications to the generic data
source. Instead, it routes connection requests to the next available generic data
source listed in the multi data source.

This feature requires that generic data source testing options are configured for all
generic data sources in a multi data source, specifically Test Table Name and Test
Reserved Connections. See Connection Testing Options for a Data Source.

If a callback handler is registered for the multi data source, WebLogic Server calls the
callback handler before failing over to the next generic data source in the list. See
Controlling Multi Data Source Failover with a Callback for more details.

5.5.2 Automatic Re-enablement on Recovery of a Failed Generic Data
Source within a Multi Data Source

ORACLE

After a generic data source is automatically disabled because a connection failed a
connection test, the multi data source periodically tests a connection from the disabled
generic data source to determine when the generic data source (or underlying
database) is available again. When the generic data source becomes available, the
multi data source automatically re-enables the generic data source and resumes
routing connection requests to the generic data source, depending on the multi data
source algorithm and the position of the generic data source in the list of included

5-5

Chapter 5
Multi Data Source Failover Enhancements

generic data sources. Frequency of these tests is controlled by the Test Frequency
Seconds attribute of the multi data source. The default value for Test Frequency is
120 seconds, so if you do not specifically set a value for the option, the multi data
source will test disabled generic data sources every 120 seconds. See JDBC Multi
Data Source: Configuration: General in the Oracle WebLogic Server Administration
Console Online Help.

WebLogic Server does not test and automatically re-enable generic data sources
that you manually disable. It only tests generic data sources that are automatically
disabled.

If a callback handler is registered for the multi data source, WebLogic Server calls
the callback handler before re-enabling the generic data source. See Controlling Multi
Data Source Failback with a Callback for more details.

5.5.3 Enabling Failover for Busy Generic Data Sources in a Multi Data

Source

By default, for multi data sources with the Failover algorithm, when the number of
requests for a database connection exceeds the number of available connections
in the current generic data source in the multi data source, subsequent connection
requests fail.

To enable the multi data source to failover when all connections in the current generic
data source are in use, you can enable the Failover Request if Busy option on

the JDBC Multi Data Source: Configuration: General page in the WebLogic Server
Administration Console. (Also available as the Fai | over Request | f Busy attribute in the
JDBCDataSourceParamsBean). If enabled (set to t r ue), when all connections in the
current generic data source are in use, application requests for connections will be
routed to the next available generic data source within the multi data source. When
disabled (set to f al se, the default), connection requests do not failover.

If a Connect i onPool Fai | over Cal | backHandl er is included in the multi data source
configuration, WebLogic Server calls the callback handler before failing over. See
Controlling Multi Data Source Failover with a Callback for more details.

5.5.4 Controlling Multi Data Source Failover with a Callback

ORACLE

You can register a callback handler with WebLogic Server that controls when a multi
data source with the Failover algorithm fails over connection requests from one JDBC
generic data source in the multi data source to the next generic data source in the list.

You can use callback handlers to control if or when the failover occurs so that you can
make any other system preparations before the failover, such as priming a database or
communicating with a high-availability framework.

Callback handlers are registered via the Failover Callback Handler attribute of the
multi data source and are registered per multi data source. You must register the
callback handler for each multi data source to which you want the callback handler to
apply. And you can register different callback handlers for each multi data source in
your domain.

5-6

Chapter 5
Multi Data Source Failover Enhancements

5.5.4.1 Callback Handler Requirements

A callback handler used to control the failover and failback

within a multi data source must include an implementation of the

webl ogi c. j dbc. ext ensi ons. Connect i onPool Fai | over Cal | back interface. When the
multi data source needs to failover to the next generic data source in the list or when a
previously disabled generic data source becomes available, WebLogic Server calls the
al | owPool Fai | over () method in the Connecti onPool Fai | over Cal | back interface, and
passes a value for the three parameters, cur r Pool , next Pool , and opcode, as defined
below. WebLogic Server then waits for the return from the callback handler before
completing the task.

Your application must return OK, RETRY_CURRENT, or DONOT_FAI LOVER as defined below.
The application should handle failover and failback cases.

See the weblogic.jdbc.extensions.ConnectionPoolFailoverCallback interface.

Note:

Failover callback handlers are optional. If no callback handler is specified
in the multi data source configuration, WebLogic Server proceeds with the
operation (failing over or re-enabling the disabled generic data source).

5.5.4.2 Callback Handler Configuration

There are two multi data source configuration attributes associated with the failover
and failback functionality:

e Failover Callback Handler (Connect i onPool Fai | over Cal | backHandl er)—To
register a failover callback handler for a multi data source,
you add a value for this attribute to the multi data source
configuration. The value must be an absolute name, such
as com bea. sanpl es. W s. j dbc. Mul ti Dat aSour ceFai | over Cal | backAppl i cati on.
You can set the Failover Callback Handler using the WebLogic Server
Administration Console (see Register a failover callback handler in the
Oracle WebLogic Server Administration Console Online Help) or on the
JDBCDataSourceParamsBean for the multi data source using WLST.

* Test Frequency (Test Fr equencySeconds)—To control how often the multi data
source checks disabled (dead) generic data sources to see if they are now
available. See Automatic Re-enablement on Recovery of a Failed Generic Data
Source within a Multi Data Source for more details.

5.5.4.3 How It Works—Failover

ORACLE

WebLogic Server attempts to failover connection requests to the next generic data
source in the list when the current generic data source fails a connection test or, if

you enabled Fai | over Request | f Busy, when all connections in the current generic data
source are busy.

To enable the callback feature, you register the callback handler with Weblogic Server
using Failover Callback Handler in the multi data source configuration.

5-7

Chapter 5
Multi Data Source Failover Enhancements

With the Failover algorithm, connection requests are served from the first generic data
source in the list. If a connection from that generic data source fails a connection

test, WebLogic Server marks the generic data source as dead and disables it. If a
callback handler is registered, WebLogic Server calls the callback handler, passing the
following information, and waits for a return:

e currPool —For failover, this is the name of generic data source currently being
used to supply database connections. This is the "failover from" generic data
source.

* next Pool —The name of next available generic data source listed in the multi data
source. For failover, this is the "failover to" generic data source.

e opcode—A code that indicates the reason for the call:

— OPCODE_CURR_POOL_DEAD—WebLogic Server determined that the current
generic data source is dead and has disabled it.

— OPCODE_CURR_POOL_BUSY—AII database connections in the generic data
source are in use. (Requires Fai | over | f Busy=t r ue in the multi data source
configuration. See Enabling Failover for Busy Generic Data Sources in a Multi
Data Source.)

Failover is synchronous with the connection request: Failover occurs only when
WebLogic Server is attempting to satisfy a connection request.

The return from the callback handler can indicate one of three options:

e OK—proceed with the operation. In this case, that means to failover to the next
generic data source in the list.

* RETRY_CURRENT—Retry the connection request with the current generic data
source.

e DONOT_FAI LOVER—Do not retry the current connection request
and do not failover. WebLogic Server will throw a
webl ogi c. j dbc. ext ensi ons. Pool Unavai | abl eSQLExcepti on.

WebLogic Server acts according to the value returned by the callback handler.

If the secondary generic data sources fails, WebLogic Server calls the callback handler
again, as in the previous failover, in an attempt to failover to the next available generic
data source in the multi data source, if there is one.

" Note:

WebLogic Server does not call the callback handler when you manually
disable a generic data source.

For multi data sources with the Load-Balancing algorithm, WebLogic Server does not
call the callback handler when a generic data source is disabled. However, it does call
the callback handler when attempting to re-enable a disabled generic data source. See
the following section for more details.

ORACLE 5-8

Chapter 5
Multi Data Source Failover Enhancements

5.5.5 Controlling Multi Data Source Failback with a Callback

If you register a failover callback handler for a multi data source, WebLogic Server
calls the same callback handler when re-enabling a generic data source that was
automatically disabled. You can use the callback to control if or when the disabled
generic data source is re-enabled so that you can make any other system preparations
before the generic data source is re-enabled, such as priming a database or
communicating with a high-availability framework.

See the following sections for more details about the callback handler:

e "Callback Handler Requirements"

e "Callback Handler Configuration”

5.5.5.1 How It Works—Failback

ORACLE

WebLogic Server periodically checks the status of generic data sources in a multi data
source that were automatically disabled. (See Automatic Re-enablement on Recovery
of a Failed Generic Data Source within a Multi Data Source.) If a disabled generic data
source becomes available and if a failover callback handler is registered, WebLogic
Server calls the callback handler with the following information and waits for a return;

e currPool —For failback, this is the name of the generic data source that was
previously disabled and is now available to be re-enabled.

* next Pool —For failback, this is null.

* opcode—A code that indicates the reason for the call. For failback, the code is
always OPCODE_REENABLE CURR_PQOL, which indicates that the generic data source
named in curr Pool is now available.

Failback, or automatically re-enabling a disabled generic data source, differs from
failover in that failover is synchronous with the connection request, but failback is
asynchronous with the connection request.

The callback handler can return one of the following values:

e (K—proceed with the operation. In this case, that means to re-enable the indicated
generic data source. WebLogic Server resumes routing connection requests to
the generic data source, depending on the multi data source algorithm and the
position of the generic data source in the list of included generic data sources.

e DONOT_FAI LOVER—Do not re-enable the cur r Pool generic data source. Continue to
serve connection requests from the generic data source(s) in use.

WebLogic Server acts according to the value returned by the callback handler.

If the callback handler returns DONOT_FAILOVER, WebLogic Server will attempt to
re-enable the generic data source during the next testing cycle as determined by the
Test FrequencySeconds attribute in the multi data source configuration, and will call the
callback handler as part of that process.

The order in which generic data sources are listed in a multi data source is very
important. A multi data source with the Failover algorithm will always attempt to serve
connection requests from the first available generic data source in the list of generic
data sources in the multi data source. Consider the following scenario:

5-9

Chapter 5
Deploying JDBC Multi Data Sources on Servers and Clusters

1. MiltiDataSource_1 uses the Failover algorithm, has a registered
Connect i onPool Fai | over Cal | backHandl er, and includes three generic data
sources: DS1, DS2, and DS3, listed in that order.

2. DSl becomes disabled, so Mul ti Dat aSour ce_1 fails over connection requests to
DS2.

3. DS2 then becomes disabled, so Mul ti Dat aSour ce_1 fails over connection requests
to DS3.

4. After some time, DS1 becomes available again and the callback handler allows
WebLogic Server to re-enable the generic data source. Future connection
requests will be served by DS1 because DS1 is the first generic data source listed in
the multi data source.

5. If DS2 subsequently becomes available and the callback handler allows WebLogic
Server to re-enable the generic data source, connection requests will continue
to be served by DS1 because DS1 is listed before DS2 in the list of generic data
sources.

5.6 Deploying JDBC Multi Data Sources on Servers and

Clusters

All generic data sources used by a multi data source to satisfy connection requests
must be deployed on the same servers and clusters as the multi data source. A multi
data source always uses a generic data source deployed on the same server to satisfy
connection requests. Multi data sources do not route connection requests to other
servers in a cluster or in a domain.

To deploy a multi data source to a cluster or server, you select the server or cluster

as a deployment target. When a multi data source is deployed on a server, WebLogic
Server creates an instance of the multi data source on the server. When you deploy a
multi data source to a cluster, WebLogic Server creates an instance of the multi data
source on each server in the cluster.

For instructions, see Target and deploy JDBC multi data sources in the Oracle
WebLogic Server Administration Console Online Help.

5.7 Planned Database Maintenance with a Multi Data

Source

ORACLE

Learn how to handle planned maintenance, without service interruption, on the
database server used by a multi data source.

To avoid service interruption, multiple database instances must be available so that
the database can be updated in a rolling fashion. Oracle RAC cluster and Oracle
GoldenGate, or a combination of these products, can be used to help accomplish this
goal. (Note that Oracle DataGuard cannot be used for planned maintenance without
service interruption). Each database instance is configured as a Generic data source
member of the Multi Data Source. This approach assumes that the application is
returning connections to the pool on a regular basis.

5-10

Chapter 5
Planned Database Maintenance with a Multi Data Source

Process Overview

The following steps provide a high-level overview of the planned maintenance
process:

1. On mid-tier systems—Shutdown all member data sources associated with the
Oracle RAC instance that will be shut down for maintenance. It is important
that you do not shut down all data sources in each Multi Data Source list so
that connections can be reserved for the other member(s). Wait for data source
shutdown to complete. See:

e Shutting Down the Data Source

- JDBCDataSourceRuntimeMBean shutdown operation in MBean Reference for
Oracle WebLogic Server

2. If desired, you may want to reduce the remaining connections on the database
side that are not associated with the WebLogic data source. For the Oracle
database server, this might include stopping (or relocating) the application services
at the instances that will be shut down for maintenance, stopping the listener,
and/or issuing a transactional disconnect for the services on the database
instance.

Shut down the database instance using your preferred tools.
Perform the planned maintenance
Restart the database instance using your preferred tools.

Startup the services when the database instances are ready for application use.

N o g ;@

On mid-tier systems—Start the member data sources. See the
JDBCDataSourceRuntimeMBean start operation in MBean Reference for Oracle
WebLogic Server.

5.7.1 Shutting Down the Data Source

ORACLE

This topic describes the process of shutting down a Data Source.

Shutting down the data source involves first suspending the data source and then
releasing the associated resources including the connections. When a member data
source in a Multi Data Source is marked as suspended, the Multi Data Source will

not try to get connections from the suspended pool. Instead, to reserve connections, it
will go to the next member data source. It is important that you do not shut down all
member data sources in a Multi Data source list at the same time. If all members are
shut down or fail, then access to the Multi Data Source fails and the application will
see failures.

When you gracefully suspend a data source, which is the first step of the shut down
process, the following occurs:

* The data source is immediately marked as suspended at the beginning of the
operation and no further connections are created on the data source.

* Idle (not reserved) connections are marked closed

e After a timeout period for the suspend operation, all remaining connections in
the pool are marked as suspended and the following exception is thrown for any
operations on the connection, indicating that the data source is suspended:

5-11

ORACLE

Chapter 5
Planned Database Maintenance with a Multi Data Source

java. sql . SQLRecover abl eExcepti on: Connection has been administratively
disabled. Try later.

* All the remaining connections are then closed. We won't know until the data
source is resumed if they are good or not. In this case, we know that the database
will be shut down and the connections in the pool will not be good if the data
source is resumed. Instead, we are doing a data source shutdown which will close
all of the disabled connections.

The shutdown operation can be done synchronously or asynchronously. If you

do a synchronous shutdown, the default timeout period is 60 seconds. You can
change the value of this timeout period by configuring or dynamically setting

I nactive Connection Timeout Seconds to a non-zero value. There is no upper
limit on the inactive timeout period. Note that the processing actually checks for
in-use (reserved) resources every tenth of a second so if the timeout value is set
to 2 hours and all reserved resources are released a second later, the shut down
will complete a second later.If you do an asynchronous operation, the timeout
period is specified on the method itself. If set to 0, the default is used. The default
is to use Inactive Connection Timeout Seconds if set or 60 seconds. If you want a
minimal timeout, set the value to 1. If you want no timeout, set it to a large value
(not recommended).

This shutdown operation runs synchronously; there is no asynchronous version of the
MBean operation available.

You can also use this for Multi Data Sources configured with either Load-Balancing or
Failover.

Example 5-1 WLST Example

The following WLST example script demonstrates how to edit the configuration to
increase the suspend timeout period and then use the runtime MBean to shutdown
a data source. This script must be integrated into the existing framework for all
WebLogic Server servers and data sources.

i mport sys, socket, os

host name = socket . get host name()

dat asour ce=' ds'

svr="nyserver'

connect ("webl ogi ¢", "password", "t 3://"+host name+": 7001")

Shutdown the data source serverRuntime()
cd('/JDBCServiceRuntine/" + svr + '/JDBCDataSourceRunti neMBeans/' +
dat asource)

task = cno. shut down(10000)

while (task.isRunning ()):

print ' SHUTTI NG DO ;

java. | ang. Thread. sl eep(2000);

print 'Datasource task is in status' + task.getStatus();
exit()

$ java webl ogi c. W.ST nyscri pt 2. py

Intializing Wblogic Scripting Tool (WST)...

Wl come to WeblLogic Server Administration Scripting Shell

Location changed to serverRuntine tree.

This is a read-only tree with ServerRunti neMBean as the root. For nore
hel p, use hel p(' serverRuntine').

SHUTTI NG DOWN

5-12

ORACLE

Chapter 5
Planned Database Maintenance with a Multi Data Source

Dat asource task is in status
SUCCESS

Dat asource task is in status
SUCCESS

Exiting WebLogic Scripting Tool .

Important Considerations

The following list describes issues you should be aware of when performing planned
maintenance:

If the Multi Data Source is using a database service, you cannot stop or relocate
the database service before suspending or shutting down the Multi Data Source. If
you do, the Multi Data Source may attempt to create a connection to the now
missing service and it will react as though the database is down and Kkill all
connections, preventing a graceful shutdown. Because suspending a Multi Data
Source ensures that no new connections are created at the associated instance, it
is not necessary to stop the service. (Note that the Multi Data Source only creates
connections on this instance. It will never create connections on another instance
even if it is relocated). Also, suspending a Multi Data Source ceases operations
on all connections, therefore no further progress occurs on any sessions (the
transactions will not complete) that remain in the Multi Data Source pool.

You may encounter an issue related to XA affinity that is enforced by the

Multi Data Source algorithms. When an XA branch is created on an Oracle

RAC instance, all additional branches are created on the same instance. While
Oracle RAC supports XA across instances, there are some significant limitations
that applications run into before the prepare phase, and the Multi Data Source
enforces that all operations are on the same instance. As soon as the graceful
suspend operation starts, the member data source is marked as suspended

and no further connections are allocated there. If an application using global
transactions tries to start another branch on the suspending data source, it will
fail to get a connection and the transaction fails. In the case of an XA transaction
spanning multiple WebLogic servers, the suspend is not graceful. This issue does
not apply to Emulate Two-Phase Commit or one-phase commit, which use a single
connection for all work, and Logging Last Resource (LLR).

If for some reason you must separate suspending the data source, at which point
all connections are disabled, from releasing the resources, you can perform a
suspend followed by f or ceShut down. You must use a forced shutdown to avoid
going through the waiting period a second time. Oracle does not recommend using
this process.

To get a graceful shutdown of the data source when shutting down the database,
the data source must be involved. This process of shutting down the data source
followed by shutdown of the database requires coordination between the mid-tier
and the database server processing. Processing is simplified by using Active
GridLink instead of Multi Data Source. See Using Active GridLink Data Sources.

When using the Oracle database, Oracle recommends that an application service
be configured for each database so that it can be configured for high availability.
By using an application service, you can start up the database on its own without
the data source starting to use it. Once the application service is explicitly started,
the administrator can make the database available to the data source.

5-13

Using Active GridLink Data Sources

An Active GridLink (AGL) data source provides connectivity between WebLogic Server
and an Oracle database, which may include one or more Oracle RAC clusters. Using
an AGL data source involves creating the AGL data source, configuring the connection
pool and Oracle database parameters, tuning, monitoring and so on.

This chapter contains the following sections:

* What is an Active GridLink Data Source

e Creating an Active GridLink Data Source

e Using Socket Direct Protocol

e Configuring AGL Connection Pool Features

e Configuring Oracle Parameters

e Configuring an ONS Client Using WLST

e Tuning Active GridLink Data Source Connection Pools

e Monitoring GridLink JDBC Resources

e Using Active GridLink Data Sources without FAN Natification
* Best Practices for Active GridLink Data Sources

e Comparing AGL and Multi Data Sources

e Migrating from Multi Data Source to Active GridLink

* Managing Database Downtime with Active GridLink Data Sources

e Gradual Draining

6.1 What is an Active GridLink Data Source

An AGL data source provides connectivity between WebLogic Server and an Oracle
database service, which may include one or more Oracle RAC clusters. An Oracle
database service represents a workload with common attributes that enables system
administrators to manage the workload as a single entity.

You scale the number of AGL data sources as the number of services increases in
the data base, independent of the number of nodes in the Oracle RAC cluster(s).
Examples of High Availability support for multiple clusters include Data Guard,
GoldenGate, and Global Database Service.

Note:

Active GridLink and Multi Data Source are designed to work with Oracle RAC
clusters. Oracle does not recommend using generic data sources with Oracle
RAC clusters. See Comparing AGL and Multi Data Sources.

ORACLE 6-1

Chapter 6
What is an Active GridLink Data Source

Figure 6-1 Active GridLink Data Source Connectivity

Weblogic Server

-

Single WLS connection

AN
g

//

UCP-RAC module

jusi|o SNO

-

An AGL data source includes the features of generic data sources plus the following
support for Oracle RAC:

Fast Connection Failover
Runtime Connection Load Balancing
GridLink Affinity

SCAN Addresses
Secure Communication using Oracle Wallet with ONS Listener.

6.1.1 Fast Connection Failover

An AGL data source uses Fast Connection Failover and responds to Oracle RAC
events using Oracle Notification Service (ONS). This ensures that the connection pool
in the AGL data source contains valid connections (including reserved connections)
without the need to poll and test connections. It also ensures that connections are
created on new nodes as they become available.

ORACLE"

6-2

Chapter 6
What is an Active GridLink Data Source

Figure 6-2 Fast Connection Failover

T m

) -~ RAC "~
Fail-over Handler _ Database -
- € .
Thread -
- Start — ONS Subscribe m

- |

1
|
£ i
m m *Handle Event ? * i I
= Handle Event ONS Publish !
|
|
|
|

WehlLogic RAC
AwareConnection Pool

An AGL data source uses Fast Connection Failover to:

Provide rapid failure detection.
Abort and remove invalid connections from the connection pool.

Perform graceful shutdown for planned and unplanned Oracle RAC node outages.
See Planned Outage Procedures and Unplanned Outages.

Adapt to changes in topology, such as adding or removing a node.

Distribute runtime work requests to all active Oracle RAC instances, including
those rejoining a cluster.

¢ Note:

AGL data sources do not support the deprecated

Fast Connect i onFai | over Enabl ed connection property. An attempt to
create an XA connection with this property enabled results in
ajava.sql . SQLException: Can not use get XAConnection() when
connection caching is enabl ed exception because the driver
implementation of Fast Connection Failover for this property does not
support XA connections.

6.1.2 Runtime Connection Load Balancing

AGL data sources provide load balancing. AGL data sources use runtime connection
load balancing (RCLB) to distribute connections to Oracle RAC instances based on
Oracle FAN events issued by the database. This simplifies data source configuration
and improves performance as the database drives load balancing of connections
through the AGL data source, independent of the database topology.

ORACLE

Runtime Connection Load Balancing allows WebLogic Server to:

6-3

Chapter 6
What is an Active GridLink Data Source

* Adjust the distribution of work based on back end node capacities such as CPU,

availability, and response time.
* React to changes in Oracle RAC topology.

* Manage pooled connections for high performance and scalability.

Figure 6-3 Runtime Connection Load Balancing

30% connections

Ty
1 Instancei

]
I
I
I
I
|
1
10% connections: _,...— !
I
I
I
I
I
|
I

WehlLogic
Connection Pool

__ i
Application I'mvery busy | :':
|

| Instance2
-

(s

. Instance3 ,

I'midle

60% connections

If FAN is not enabled, AGL data sources use a round-robin load balancing algorithm to

allocate connections to Oracle RAC nodes.

¢ Note:

Connections may be shut down periodically on AGL data sources. If the
connections allocated to various RAC instances do not correspond to the
Runtime Load Balancing percentages in the FAN load-balancing advisories,
connections to overweight instances are destroyed and new connections
opened. This process occurs every 30 seconds by default.

You can tune this behavior using the

webl ogi c. j dbc. gravi t ati onShri nkFrequencySeconds system property
which specifies the amount of time, in seconds, the system waits before
rebalancing connections. A value of 0 disables the rebalancing process.

6.1.3 GridLink Affinity

WebLogic Server GridLink affinity policies are designed to improve application
performance by maximizing RAC cluster utilization. See:

e Session Affinity Policy

ORACLE

6-4

Chapter 6
What is an Active GridLink Data Source

* XA Affinity Policy

6.1.3.1 Session Affinity Policy

ORACLE

Web applications have better performance when repeated operations against the
same set of records are processed by the same RAC instance. Business applications
such as online shopping and online banking are typical examples of this pattern.

An AGL data source uses the Session Affinity policy to ensure all the data base

operations for a web session, including transactions, are directed to the same Oracle
RAC instance of a RAC cluster.

" Note:

The context is stored in the HTTP session. It is up to the application

how windows (within a browser or across browsers) are mapped to HTTP
sessions.

If an AGL data source with a session affinity policy is accessed outside the context of a
web session, the affinity policy changes to the XA affinity policy. See XA Affinity Policy.

Figure 6-4 Session Affinity

Application

I

Database "E

Data
Source e g

Data -—
Source
| Ay
Daa || :_‘* ‘
Source

e “1
¥
Kﬁ Instance1
- Connectto m? I,

] i Instance2
WebLogic Server Web Logic Connection [H—
Pool ! :l:
mm Connection P .
<@ Affinity Context . Instance3 -

An AGL data source monitors RAC load balancing advisories (LBAS) using the
AffEnabled attribute to determine if RAC affinity is enabled for a RAC cluster. The
first connection request is load balanced using Runtime Connection Load-Balancing
(RCLB) and is assigned an Affinity context. All subsequent connection requests

are routed to the same Oracle RAC instance using the Affinity context of the first
connection until the session ends or the transaction completes. Affinity is based on
the database name, service name, and instance name. Although the Session Affinity

policy for an AGL data source is always enabled by default, a Web session is active for
Session Affinity if:

e Oracle RAC is enabled, active, and the service has enabled RCLB. RCLB
is enabled for a service if the service GOAL (NOT CLB_GQAL) is set to either
SERVI CE_TI ME or THROUGHPUT.

6-5

Chapter 6
What is an Active GridLink Data Source

* The database determines there is sufficient performance improvement in the
cluster wait time and the Affinity flag in the payload in the information from ONS is
set to TRUE.

If the database determines it is not advantageous to implement session affinity,

such as a high database availability condition, the database load balancing algorithm
reverts to its default work allocation policy and the Affinity flag in the payload is set to
FALSE.

6.1.3.2 XA Affinity Policy

XA Affinity for global transactions ensures all the data base operations for a global
transaction performed on an Oracle RAC cluster are directed to the same Oracle RAC
instance. There are limitations to consider:

e XA transaction can't span instances.

e Strict affinity is enforced for connections within an XA transaction. If a connection
cannot be created on the correct instance, an exception is thrown.

Figure 6-5 XA Affinity

QOracle Qracle QOracle Qracle
WebLogic RAC Server WebLogic RAC Server
Servers Servers

hhx_&‘
TXN

=)

Enable XA
Transaction
Affinity

RAC Instance

6.1.4 SCAN Addresses

There are two options to load balance connections across nodes:

» Use a single Oracle Single Client Access Name (SCAN) address

jdbc:oracl e:thin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP) (HOST=scannane)
(PORT=scanport)) (CONNECT _DATA=(SERVI CE_NAME=nyser vi ce)))

* Use multiple non-SCAN addresses with LOAD_BALANCE=0n

j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS_LI ST=(LOAD BALANCE=QN)
(ADDRESS=(PROTOCOL=TCP) (HOST=host 1) (PORT=1521)) (ADDRESS=(PROTOCOL=TCP)
(HOST=host 2) (PORT=1521))) (CONNECT_DATA=(SERVI CE_NANE=nyservi ce)))

Using a SCAN address is recommended over using multiple non-SCAN addresses.
However, a SCAN address can only be used if your database is configured to use it.

ORACLE 6-6

Chapter 6
Creating an Active GridLink Data Source

Contact your network administrator for appropriately configured SCAN URLSs for your
environment.

Note:
When using Oracle RAC 11.2 and higher, consider the following:

e Ifthe Oracle RAC listener is set to SCAN, the AGL data source
configuration can only use a SCAN address.

* If the Oracle RAC listener is set to Li st of Node VI Ps, the AGL data
source configuration can only use a list of VIP addresses.

e Ifthe Oracle RAC listeneris setto M x of SCAN and List of Node
VI Ps, the AGL data source configuration can use both SCAN and VIP
addresses.

See:

e Overview of Automatic Workload Management with Dynamic Database
Services in Real Application Clusters Administration and Deployment
Guide.

e Oracle Single Client Access Name (SCAN) White
Paper at http:/lwww.oracle.com/technetwork/databaselclustering/
overview/scan-129069.pdf

6.1.5 Secure Communication using Oracle Wallet with ONS Listener

This feature allows you to configure secure communication with the ONS listener using
Oracle Wallet. See Secure ONS Client Communication.

6.1.6 Support for Active Data Guard

This topic describes the support for active data guard.

Active GridLink also works with Oracle Active Data Guard. Oracle Clusterware must be
installed and active on the primary and standby sites for both single instance (using
Oracle Restart) and Oracle RAC databases. Oracle Data Guard broker coordinates
with Oracle Clusterware to properly fail over role-based services to a new primary
database after a Data Guard failover has occurred. Cluster Ready Services (CRS)
posts FAN events when the role change occurs.

6.2 Creating an Active GridLink Data Source

Use the WebLogic Server Administration Console or WLST to create an AGL data
source in a WebLogic domain.

See :

» Create JDBC GridLink data sources in the Oracle WebLogic Server Administration
Console Online Help.

e The sample WLST script
EXAMPLES HOVE\ W _server\ exanpl es\ src\ exanpl es\w st\online\jdbc_data_so

ORACLE 6-7

http://www.oracle.com/pls/topic/lookup?ctx=fmw121400&id=RACAD7276
http://www.oracle.com/pls/topic/lookup?ctx=fmw121400&id=RACAD7276
http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf
http://www.oracle.com/technetwork/database/clustering/overview/scan-129069.pdf

Chapter 6
Creating an Active GridLink Data Source

urce_creation. py, where EXAMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured. This example creates a generic
data source. See WLST Online Sample Scripts in Understanding the WebLogic
Scripting Tool.

The following sections provide an overview of the basics steps used in the data source
configuration wizard to create a data source using the WebLogic Server Administration
Console:

» JDBC Data Source Properties

* Configure Transaction Options

* Configure Connection Properties
» Test Connections

* ONS Client Configuration

» Test ONS Client Configuration

» Target the Data Source

6.2.1 JDBC Data Source Properties

JDBC Data Source Properties include options that determine the identity of the data
source and the way the data is handled on a database connection.

6.2.1.1 Data Source Names

JDBC data source names are used to identify the data source within the WebLogic
domain. For system resource data sources, hames must be unique among all other
JDBC system resources, including data sources. To avoid naming conflicts, data
source names should also be unique among other configuration object names, such
as servers, applications, clusters, and JMS queues, topics, and servers. For JDBC
application modules scoped to an application, data source names must be unique
among JDBC data sources that are similarly scoped.

6.2.1.2 Data Source Scope

Select the scope for the data source from the list of available scopes. You can set the
scope to Global (at the domain level), or to any existing Resource Group or Resource
Group Template.

6.2.1.3 JNDI Names

You can configure a data source so that it binds to the JNDI tree with a single or
multiple names. You can use a multi-JNDI-named data source in place of legacy
configurations that included multiple data sources that pointed to a single JDBC

connection pool. See Developing JNDI Applications for Oracle WebLogic Server.

6.2.1.4 Select a Driver

ORACLE

Select the replay driver for application continuity, or the XA or non-XA Thin driver.

6-8

Chapter 6
Creating an Active GridLink Data Source

< Note:

The replay driver does not currently support XA transactions.

6.2.2 Configure Transaction Options

When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver:

For the XA driver, the system automatically selects the Two-Phase Commit
protocol for global transaction processing.

For the non-XA or replay driver, local transactions are supported by definition, and
WebLogic Server offers the following options

Supports Global Transactions: (selected by default) Select this option if you
want to use connections from the data source in global transactions, even though
you have not selected an XA driver. See Enabling Support for Global Transactions
with a Non-XA JDBC Driver.

When you select Supports Global Transactions, you must also select the protocol
for WebLogic Server to use for the transaction branch when processing a global
transaction:

— Logging Last Resource: With this option, the transaction branch in which
the connection is used is processed as the last resource in the transaction
and is processed as a local transaction. Commit records for two-phase commit
(2PC) transactions are inserted in a table on the resource itself, and the
result determines the success or failure of the prepare phase of the global
transaction. This option offers some performance benefits and greater data
safety than Emulate Two-Phase Commit, but it has some limitations. See
Understanding the Logging Last Resource Transaction Option.

— Emulate Two-Phase Commit: With this option, the transaction branch in
which the connection is used always returns success for the prepare phase
of the transaction. It offers performance benefits, but also has risks to data in
some failure conditions. Select this option only if your application can tolerate
heuristic conditions. See Understanding the Emulate Two-Phase Commit
Transaction Option.

— One-Phase Commit: (selected by default) With this option, a connection from
the data source can be the only participant in the global transaction and the
transaction is completed using a one-phase commit optimization. If more than
one resource participates in the transaction, an exception is thrown when the
transaction manager calls XAResour ce. pr epar e on the 1PC resource.

For more information on configuring transaction support for a data source, see JDBC
Data Source Transaction Options.

6.2.3 Configure Connection Properties

Connection Properties are used to configure the connection between the data
source and the DBMS. Typical attributes are the service name, database name, host
name, port number, user name, and password.

ORACLE

6-9

Chapter 6
Creating an Active GridLink Data Source

< Note:
Using service names:

* When a Database Domain is used, service names must be suffixed
with the domain name. For example, if the database name is
db. count ry. nyCor p. com the service name nyser vi ce would need to be
entered as nyservi ce. db. count ry. myCor p. com

The console allows you to enter connection properties in one of the following ways:
» Enter Connection Properties

* Enter a Complete URL

e Supported AGL Data Source URL Formats

6.2.3.1 Enter Connection Properties

On the GridLink data source connection Properties Options page, select Enter
individual listener information and click Next. Enter the connection properties. For
example:

e Enter myService in Servi ce Nare.

* Enter left:1234, center:1234, right:1234 in the Host and Port: . Separate the
host and port of each listener with colon.

e Enter myDataBase in Dat abase User Nane.
* Enter myPassword1 in Passwor d.
* If required, set Protocol to SDP.

The console automatically generates the complete JDBC URL. For example:

jdbc:oracle:thin: @ DESCRI PTION = (ADDRESS LI ST = (LOAD_BALANCE=0n)

(FAI LOVER=ON) (ADDRESS=(PROTOCOL=TCP) (HOST=I ef t) (PORT=1521))

(ADDRESS=(PROTOCOL=TCP) (HOST=cent er) (PORT=1521)) (ADDRESS=(PROTOCOL=TCP)
(HOST=ri ght) (PORT=1521))) (CONNECT_DATA=(SERVI CE_NAME=ny Servi ce)))

6.2.3.2 Enter a Complete URL

ORACLE

On the GridLink data source connection Properties Options page, select Enter
complete JDBC URL and click Next. Enter the connection properties. For example:

* In Complete JDBC URL, enter the JDBC URL. For example:

jdbc:oracle:thin: @ DESCRI PTION = (ADDRESS LI ST

= (LOAD BALANCE=0n) (FAI LOVER=ON) (ADDRESS=(PROTOCOL=TCP)

(HOST=l ef t) (PORT=1521)) (ADDRESS=(PROTOCOL=TCP) (HOST=cent er)
(PORT=1521)) (ADDRESS=(PROTOCOL=TCP) (HOST=ri ght) (PORT=1521)))

(CONNECT_DATA=(SERVI CE_NAME=ny Ser vi ce)))

You can also use a SCAN address. For example:

j dbc: oracl e: thin: @DESCRI PTI ON=(ADDRESS LI ST=(ADDRESS=(PROTOCOL=TCP)

(HOST=MyScanAddr - scn. nyConpany. con) (PORT=1234)))
(CONNECT _DATA=(SERVI CE_NAME=ny Ser vi ce)))

6-10

Chapter 6
Creating an Active GridLink Data Source

* Enter myDataBase in Dat abase User Nane.
e Enter myPassword1l in Passwor d.

» If required, set Protocol to SDP.

6.2.3.3 Supported AGL Data Source URL Formats

ORACLE

This topic describes the supported AGL data surce url formats.

AGL data sources only support long format JDBC URLs. The supported long format
pattern is:

j dbc: oracl e: thin: @DESCRI PTI ON=(ADDRESS LI ST=(ADDRESS=(PROTOCOL=TCP)
(HOST=[SCAN_VI P]) (PORT=[SCAN_PORT])))
(CONNECT_DATA=(SERVI CE_NAME=[SERVI CE_NAME])))

Easy Connect (short) format URLs are not supported for AGL data sources. The
following is an example of a Easy Connect URL pattern that is not supported for use
with AGL data sources:

j dbc: oracl e: thin: [SCAN_VI P] : [SCAN_PORT] / [SERVI CE_NAVE]

Recommendations for AGL Data Source URLs

The following section provides general recommendations when creating AGL data
source URLs.

e Use a single DESCRI PTI ON. Avoid a DESCRI PTI ON_LI ST to avoid connection delays.
* Use one ADDRESS LI ST for each RAC cluster or DataGuard database

e Enter RETRY_COUNT, RETRY_DELAY, CONNECT_TI MEQUT at the DESCRI PTI ON level so
that all ADDRESS LI ST entries use the same value.

* RETRY_DELAY specifies the delay, in seconds, between the connection retries. This
attribute is new in the Oracle 12.1.0.2 release.

e RETRY_COUNT is used to specify the number of times an ADDRESS list is traversed
before the connection attempt is terminated. The default value is 0. When using
SCAN listeners with FAI LOVER=0n, setting RETRY_COUNT to a value of 2 means that
if you had 3 SCAN | P addresses, each would be traversed three times each,
resulting in a total of nine connect attempts (3 * 3)

» Specify LOAD BALANCE=0n for each address list to balance the SCAN addresses.

* The service name should be a configured application service, not a PDB or
administration service.

e CONNECT_TI MEQUT is used to specify the overall time used to complete the Oracle
Net connect. Set CONNECT_TI MEQUT=90 or higher to prevent logon storms. For
JDBC driver 12.1.0.2 and earlier, CONNECT_TI MEQUT is also used for the TCP/IP
connection timeout for each address in the URL. When considering TCP/IP
connections, a shorter CONNECT_TI MEQUT is preferred though secondary to overall
timeout requirements.

* Do not set the oracl e. net . CONNECT_TI MEQUT driver property on the data source
because it is overridden by the URL property.

6-11

Chapter 6
Creating an Active GridLink Data Source

6.2.4 Test Connections

Test Database Connection allows you to test a database connection before the data
source configuration is finalized using a table name or SQL statement. If necessary,
you can test additional configuration information using the Properties and System
Properti es attributes.

6.2.5 ONS Client Configuration

ONS client configuration allows the data source to subscribe to and process Oracle
FAN events. When configuring the ONS node list, Oracle recommends not specifying
a value and allowing auto-ONS to perform the ONS configuration. In some cases,
however, it is necessary to explicitly configure the ONS configuration, for example if
you need to specify an Oracle Wallet and password, or if you want to explictly specify
the ONS topology.

e Enabling Fan Events
e Configure ONS Host and Port
e Secure ONS Client Communication

You can also configure an ONS client using WLST. For an example, see Configuring
an ONS Client Using WLST

To configure an ONS client from the Summary of Data Sources page in the
Administration Console, see Configure ONS client parameters in Oracle WebLogic
Server Administration Console Online Help.

Other Considerations

In general, if a WebLogic Server datasource setting of initial capacity is set to 0,
WebLogic Server makes no DBMS connections at startup. For AGL datasources with
Auto-ONS, WebLogic Server needs to connect to the DBMS once at startup to get the
ONS information.

6.2.5.1 Enabling FAN Events

To ensure that the data source is configured to subscribe to and process Oracle Fast
Application Notification (FAN) events, select Fan Enabl ed.

6.2.5.2 Configure ONS Host and Port

ORACLE

This topic describes configuration of ONS host and port.

There are two methods that you can use to configure the OnsNodeList value: a single
node list or a property node list. You can use one or the other, but not both. If the
WebLogic Server OnsNodeList contains an equals sign (=), it is assumed to be a
property node list.

For both types of node lists you can use a Single Client Access Name (SCAN)
address instead of a host name, and to access FAN notifications. For more information
about SCAN addresses, see Scan Addresses.

To configure the OnsNodeList value using a:

6-12

Chapter 6
Creating an Active GridLink Data Source

Single node list—Specify a comma separated list of ONS daemon listen
addresses and ports for receiving ONS-based FAN events. For example,

racl: 6200, rac2: 6200. You can enter a single node list in the ONS host and port
field in the Administration Console when creating an AGL Data Source.

Property node list—Specify a string composed of multiple records, with each
record consisting of a key=value pair and terminated by a new line (\n") character.
For example, nodes.1=rac1l: 6200, rac2: 6200. You cannot enter a property node
list in the ONS host and port field when creating a data source. Instead, you
should leave this field blank. After you finish creating the data source, you can
enter the property node list on the Configuration: ONS tab on the settings page for
the data source.

You can specify the following keys in a property node list:

nodes. i d—A list of nodes representing a unique topology of remote ONS servers.
id specifies a unique identifier for the node list. Duplicate entries are ignored. The
list of nodes configured in any list must not include any nodes configured in any
other list for the same client or duplicate notifications will be sent and delivered.
The list format is a comma separated list of ONS daemon listen addresses and
ports pairs separated by colon.

maxconnect i ons. i d—Specifies the maximum number of concurrent connections
maintained with the ONS servers. id specifies the node list to which this parameter
applies. The default is 3

active.id Iftrue, the list is active and connections are automatically established
to the configured number of ONS servers. If false, the list is inactive and is only
be used as a fail over list in the event that no connections for an active list can

be established. An inactive list can only serve as a fail over for one active list at a
time, and once a single connection is re-established on the active list, the fail-over
list reverts to being inactive. Note that only notifications published by the client
after a list has failed over are sent to the fail over list. i d specifies the node list to
which this parameter applies. The defaultistrue

renot et i meout —The timeout period, in milliseconds, for a connection to each
remote server. If the remote server has not responded within this timeout period,
the connection is closed. The default is 30 seconds

Note:

Although wal | et fi | e and wal | et passwor d are supported in the string,
WebLogic Server has separate configuration elements for these values,
Ons\al | et Fi | e and Ons\Wal | et Passwor dEncr ypt ed.

6.2.5.3 Secure ONS Client Communication

To use an Oracle Wallet file with WebLogic Server, you must:

ORACLE

Update your AGL data source configuration to include the directory of the Oracle
wallet file in which the SSL certificates are stored and optionally, the ONS Wallet
password. See Secure ONS Listener using Oracle Wallet in Oracle WebLogic
Server Administration Console Online Help.

For more information on Oracle Wallet, see the Creating and Managing Oracle
Wallet.

6-13

Chapter 6
Using Socket Direct Protocol

6.2.6 Test ONS Client Configuration

Test ONS client configuration allows you to test a connection to the ONS listener
before the data source configuration is finalized.

6.2.7 Target the Data Source

You can select one or more targets to which to deploy your new AGL data source. If
you don't select a target, the data source will be created but not deployed. You will
need to deploy the data source at a later time.

6.3 Using Socket Direct Protocol

To use the Socket Direct Protocol (SDP), your database network must be configured to
use Infiniband. SDP does not support SCAN addresses.

See Configuring SDP Support for InfiniBand Connections in the Oracle Database Net
Services Administrator's Guide.

6.3.1 Configuring Runtime Load Balancing using SDP

To configure load balancing across SDP connections, you must edit the TNSNAVES. ORA
file on all nodes and add an SDP end-point to the LI STENER | BLOCAL entry.

" Note:

The TNSNAMES. ORA file is only read at instance startup or when using an
ALTER SYSTEM SET LI STENER NETWORKS="Ii st ener address" command.
After updating the TNSNANMES. ORA file, restart all instances or run the ALTER
SYSTEM SET LI STENER_NETWORKS command on all networks.

For example:

LI STENER | BLOCAL =
(DESCRI PTI ON =
(ADDRESS_LI ST =
(ADDRESS = (PROTOCOL = TCP) (HOST =

scl cgdb02i bvi p. count ry. myCor p. con (PORT=1522))
(ADDRESS = (PROTOCOL = SDP) (HOST =
scl cgdb02- bvi p. count ry. myCor p. com (PORT=1522))

)
)

You should then distribute connections on the LI STERNER | B network using the
following URL:

j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS_LI ST=(ADDRESS=(PROTOCOL=SDP)
(HOST=scl cgdb01- bvi p. country. nyCor p. con) (PORT=1522)) (ADDRESS=(PROTOCOL=SDP)

ORACLE 6-14

http://docs.oracle.com/database/121/NETAG/performance.htm#NETAG014

Chapter 6
Configuring Active GridLink Connection Pool Features

(HOST=scl cgdb02-i bvi p. count ry. nyCor p. com) (PORT=1522)))
(CONNECT_DATA=(SERVI CE_NAME=el servi ce)))

6.4 Configuring Active GridLink Connection Pool Features

Applications use a connection from the pool then return it when finished using the
connection. Connection pooling enhances performance by eliminating the costly task
of creating database connections for the application. Connection pools have options
that allow you to control JDBC driver features and system properties associated with
connection pools as well as use SQL for database connection initialization.

" Note:

Certain Oracle JDBC extensions may durably alter a connection's behavior
in a way that future users of the pooled connection will inherit. WebLogic
Server attempts to protect connections against some types of these calls
when possible.

The following sections include information about connection pool options for a JDBC
data source.

» Enabling JDBC Driver-Level Features
» Enabling Connection-based System Properties.
» Initializing Database Connections with SQL Code

You can see more information and set these and other related options through the:

+ JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console. See JDBC Data Source: Configuration:
Connection Pool in the Oracle WebLogic Server Administration Console Online
Help

» JDBCConnectionPoolParamsBean, which is a child MBean of the
JDBCDataSourceBean

6.4.1 Enabling JDBC Driver-Level Features

ORACLE

WebLogic JDBC data sources support the j avax. sql . Connect i onPool Dat aSour ce
interface implemented by JDBC drivers. You can enable driver-level features by
adding the property and its value to the Properti es attribute in a JDBC data
source. Driver-level properties in the Properti es attribute are set on the driver's
Connect i onPool Dat aSour ce object.

" Note:

Do not use Fast Connect i onFai | over Enabl ed, Connect i onCachi ngEnabl ed,
or Connect i onCacheNarne as Driver-level properties in the Properti es
attribute in a JDBC data source.

6-15

Chapter 6
Configuring Oracle Parameters

6.4.2 Enabling Connection-based System Properties

WebLogic JDBC data sources support setting driver properties using the value of
system properties. The value of each property is derived at runtime from the named
system property. You can configure connection-based system properties using the
WebLogic Server Administration Console by editing the Syst em Properti es attribute
of your data source configuration.

< Note:

Do not specify or acl e. j dbc. Fast Connecti onFai | over as a Java system
property when starting the WebLogic Server.

6.4.3 Initializing Database Connections with SQL Code

When WebLogic Server creates database connections in a data source, the server
can automatically run SQL code to initialize the database connection. To enable this
feature, enter SQL followed by a space and the SQL code you want to run in the Init
SQL attribute on the JDBC Data Source: Configuration: Connection Pool page in the
WebLogic Server Administration Console. Alternatively, you can specify simply a table
name without SQL and the statement SELECT COUNT(*) FROM t abl enane is used. If
you leave this attribute blank (the default), WebLogic Server does not run any code to
initialize database connections.

WebLogic Server runs this code whenever it creates a database connection for the
data source, which includes at server startup, when expanding the connection pool,
and when refreshing a connection.

You can use this feature to set DBMS-specific operational settings that are connection-
specific or to ensure that a connection has memory or permissions to perform required
actions.

Start the code with SQL followed by a space. An Oracle DBMS example:

SQ. alter session set NLS DATE FORMAT=' YYYY- MM DD HH24: M : SS

or an Informix DBMS:

SQL SET LOCK MCDE TO WAI'T

The SQL statement is executed using JDBC St at ement . execut e() . Options that you
can set using InitSQL vary by DBMS. See the documentation for your database
vendor for supported statements. If you want to execute multiple statements, you may
want to create a stored procedure and execute it. The syntax is vendor specific. For
example, to execute an Oracle stored procedure:

SQL CALL MYPROCEDURE()

6.5 Configuring Oracle Parameters

WebLogic Server provides several attributes that provide improved data source
performance when using Oracle drivers.

ORACLE 6-16

Chapter 6
Configuring an ONS Client Using WLST

See Advanced Configurations for Oracle Drivers and Databases.

6.6 Configuring an ONS Client Using WLST

Use WLST to configure an ONS client.

The following fragment provides an example for setting the Oracle parameters of an
Active Gridlink data source.

cd('/JDBCSyst emResources/' + dsName + '/JDBCResource/' + dsNanme + '/
JDBCOr acl eParans/' + dsNane)

cno. set FanEnabl ed(t rue)

cro. set OnsNodeLi st (' nodes. 1=racl: 6200, rac2: 6200\ nnaxconnecti ons. 1=3\n")

For more information about configuring an ONS client, see ONS Client
Communication.

6.7 Tuning Active GridLink Data Source Connection Pools

By properly configuring the connection pool attributes in JDBC data sources in your
WebLogic Server domain, you can improve application and system performance.

See Tuning Data Source Connection Pools.

6.8 Monitoring Active GridLink JDBC Resources

Learn about monitoring and debugging Active Gridlink data sources.
* Viewing Run-Time Statistics

» Debug Active GridLink Data Sources.

See Monitoring WebLogic JDBC Resources.

6.8.1 Viewing Run-Time Statistics

You can view run-time statistics for an AGL data source via the WebLogic Server
Administration Console or through the associated runtime MBeans.

6.8.1.1 JDBCOracleDataSourceRuntimeMBean

The JDBCOr acl eDat aSour ceRunt i meMBean provides methods for getting the current
state of the data source instance. The JDBCOr acl eDat aSour ceRunt i neMBean provides
methods for getting the current state of the data source and for getting statistics
about the data source, such as the average number of active connections, the current
number of active connections, and the highest number of active connections. This
MBean also has a child JDBCOr acl eDat aSour cel nst anceRunt i meMBean for each node
that is active in the AGL datasource. See JDBCOracleDataSourceRuntimeMBean in
the MBean Reference for Oracle WebLogic Server.

ORACLE 6-17

Chapter 6
Monitoring Active GridLink JDBC Resources

6.8.1.2 JDBCOracleDataSourcelnstanceRuntimeMBean

The JDBCOr acl eDat aSour cel nst anceRunt i neMBean provides methods for getting the
current state of the data source instance. There an instance for each ONS listener
that is active. In a configuration that uses aut o- ONS where the administrator doesn't
configure the ONS string, this is the only way to discover which ONS listeners

are available. See JDBCOracleDataSourcelnstanceRuntimeMBean in the MBean
Reference for Oracle WebLogic Server.

6.8.1.3 ONSDaemonRuntimeMBean

The ONSDaenonRunt i neMBean provides methods for monitoring the ONS client
configuration that is associated with an AGL data source.

The following is a WLST script for testing an ONS connection. In this example, the
Active GridLink data source is named glds and it is targeted to myserver:

connect (<w user>, <w password>, 't3://local host:7001")
serverRuntime()

cd(' JDBCServi ceRuntine')

cd(' nyserver')

cd(' JDBCDat aSour ceRunt i meMBeans')
cd('glds")

cd(' ONSCl i ent Runtine')

cd('glds")

cd(' ONSDaenonRunt i nes')
cd('glds_0")

cmo. ping()

See ONSDaemonRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

6.8.2 Debug Active GridLink Data Sources

You can activate WebLogic Server's debugging features to track down the specific
problem within the application

6.8.2.1 JDBC Debugging Scopes

ORACLE

The following are registered debugging scopes for JDBC:

* DebugJDBCRAC—jprints information about AGL data source lifecycle, UCP
callback, and connection information.

* DebugJDBCONS—traces ONS client information, including the LBA event body.
One trace is available for each ONS listener that is active. In a configuration that
uses auto-ONS where the administrator doesn't configure the ONS string, this is
the only way to see what ONS listeners are available.

* DebugJDBCReplay—traces application continuity replay information.

* DebugJDBCUCP—traces low level RAC information from the UCP driver.

6-18

Chapter 6
Using Active GridLink Data Sources without FAN Notification

6.8.2.2 UCP JDK Logging

You can enable UCP JDK logging by following the instructions in Setting Up Logging
in UCP in Universal Connection Pool for JDBC Developer's Guide.

6.8.2.3 Enable Debugging Using the Command Line

Set the appropriate AGL data source debugging properties on the command line. For
example,

- Dwebl ogi c. debug. DebugJDBCRAC=t r ue
- Dwebl ogi c. debug. DebugJDBCONS=t r ue
- Dwebl ogi c. debug. DebugJDBCUCP=t r ue
- Dwebl ogi c. debug. DebugJ DBCREPLAY=t r ue

Setting these values is static and can only be used at server startup.

To enable ONS debugging, you must configure Java Util Logging. To do so, set the
following properties on the command line as follows:

- Dor acl e. ons. debug=t r ue

See java.util.logging in Java Platform Standard Edition API Specification.

6.9 Using Active GridLink Data Sources without FAN
Notification

ORACLE

You can configure and use an AGL data source without enabling Fast Application
Notification (FAN). In this configuration, disabling a connection to a RAC node occurs
after two successive connection test failures. Connectivity is reestablished after a
successful connection test.

¢ Note:

This is not a standard recommendation from Oracle.

Oracle recommends that you enable Test Connect i onsOnReser ve. You might need to
turn off FAN if a configured firewall doesn't allow this protocol to flow.

The following table indicates the availability of AGL data source features when FAN
Enabled set to f al se.

Table 6-1 GridLink Features when FAN Enabled is False

Active GridLink Feature Available when FAN Enabled is False?
Single data source configuration for accessto Yes

RAC cluster

Runtime MBeans for individual RAC cluster Yes

instances

6-19

https://docs.oracle.com/javase/8/docs/api/index.html?java/util/logging/package-summary.html

Chapter 6
Best Practices for Active GridLink Data Sources

Table 6-1 (Cont.) GridLink Features when FAN Enabled is False
|

Active GridLink Feature Available when FAN Enabled is False?
Connection load balancing using Runtime No

Load Balancing (RLB)

Fast Application Notification (FAN) No

Fast Connection Failover (FCF) No

Graceful shutdown No

Gravitation (rebalancing connections) No

ONS Client Support, including password and Yes
encrypted wallet configurations

Transaction affinity Yes

Session affinity No

6.9.1 Understanding the ActiveGridlink Attribute

In WebLogic Server 12.1.2 and higher, the ActiveG i dl i nk attribute is used to
explicitly declare a data source configuration as an AGL datasource. It is automatically
enabled by the WebLogic Server Administration Console when creating a GridLink
data source. If you create data source configurations using WLST, you must remember
to set ActiveGidlink=true.

¢ Note:

To maintain backward compatibility with releases prior to WebLogic Server
12.1.2, a data source configuration is always an AGL data source
configuration if FanEnabl ed=t r ue or the OnsNodelLi st is non-null. In this case,
the ActiveGridlink value is ignored.

Legacy data source configurations are not updated during the upgrade process. If you
need to update a legacy AGL data source to access RAC clusters without enabling
Fast Application Notification (FAN), edit or use WLST to set ActiveGidlink=true in
the configuration.

6.10 Best Practices for Active GridLink Data Sources

ORACLE

Learn about the best practices for using AGL data sources by understanding the catch
and handle exceptions and how connections are created when using an AGL data
source.

e Catch and Handle Exceptions

» Connection Creation with Active Gridlink Data Sources

6-20

Chapter 6
Comparing Active GridLink and Multi Data Sources

6.10.1 Catch and Handle Exceptions

Applications need to catch and handle all exceptions. Applications using AGL data
sources should expect exceptions, such as an |1 O socket read error, when
performing JDBC operations on borrowed connections. Best practice is to check the
connection validity and reconnect if necessary. Connection exceptions can occur if the
driver detects an outage earlier than FAN event arrival or as a result of the cleanup

of a connection. For unplanned down events, a connection pool aborts all borrowed
connections that are affected by the outage.

6.10.2 Connection Creation with Active Gridlink Data Sources

This section summarizes the change in connections in AGL, assuming FAN and ONS
are enabled:

» Connections are added to the pool initially based on the configured initial
capacity. That uses connect time load balancing based on the listener. For that
to work correctly, you must either specify LOAD_BALANCE=ON for multiple non-scan
addresses or use SCAN.

e Connections are added to the pool on demand based on runtime load balancing.
However, this is overridden by XA affinity or Web session affinity, in which case
connections are added on the instance providing affinity to the last request in the
transaction or Web session.

e When a planned down event occurs, unused connections for that instance are
released immediately and connections in use are released when returned to the
pool.

¢ When an unplanned down event occurs, all connections for that instance are
destroyed immediately.

* When an up event occurs, connections are proactively created on the new
instance.

e When gravitation shrinking occurs, one unused connection is destroyed on a
heavily loaded instance (per period).

e When normal shrinking occurs, half of the unused connections down to minimum
capacity are destroyed without respect to load (per period).

6.11 Comparing Active GridLink and Multi Data Sources

ORACLE

There are several benefits to using AGL data sources over multi data sources when
using Oracle RAC clusters.

The benefits include:

* Requires one data source with a single URL. Multi data sources require a
configuration with n generic data sources and a multi data source.

* Eliminates a polling mechanism that can fail if one of the generic data sources is
performing slowly.

» Eliminates the need to manually add or delete a node to/from the cluster.

6-21

Chapter 6
Migrating from Multi Data Source to Active GridLink

* Provides a fast internal notification (out-of-band) when nodes are available so that
connections are load-balanced to the new nodes using Oracle Notification Service
(ONS).

* Provides a fast internal notification when a node goes down so that connections
are steered away from the node using ONS.

* Provides load balancing advisories (LBA) so that new connections are created on
the node with the least load, and the LBA information is also used for gravitation to
move idle connections around based on load.

* Provides affinity based on your XA transaction or your web session which may
significantly improve performance.

» Leverages all the advantages of HA configurations like DataGuard. For
more information, see Oracle WebLogic Server and Highly Available Oracle
Databases: Oracle Integrated Maximum Availability Solutions on the Oracle
Technology network at http://www.oracle.com/technetwork/middleware/weblogic/
learnmore/index.html

6.12 Migrating from Multi Data Source to Active GridLink

Many multi Data Source data source users are migrating to AGL data sources.
Migrating from multi data sources to AGL data sources is a simple manual process.

This topic includes the following sections:

e Comparing AGL and Multi Data Sources

* Application Changes to Migrate a Multi Data Source

» Configuration Changes to Migrate a Multi Data Source

- Basic Steps to Migrate a Multi Data Source to a Active GridLink Data Source

6.12.1 Application Changes to Migrate a Multi Data Source

No changes should be required to your applications. A standard application looks up
the MDS in JNDI and uses it to get connections. By giving the AGL the same JNDI
name as the MDS, the process is exactly the same in the application to use a data
source name from JNDI.

6.12.2 Configuration Changes to Migrate a Multi Data Source

ORACLE

The only changes necessary should be to your configuration. An AGL data source

is composed of information from the MDS and the member generic data sources
combined into a single AGL descriptor. The only additional information that is needed
is the configuration of Oracle Notification Service (ONS) on the RAC cluster. In many
cases, the ONS information consists of the same host names as used in the MDS and
the only additional information is the port number, and which can be simplified by the
use of a SCAN address.

A MDS descriptor does not contain much information. The key components are:

e The JNDI name. It must become the name of your new AGL data source to keep
things transparent to the application. If you want to run the MDS in parallel with the

6-22

http://www.oracle.com/technetwork/middleware/weblogic/learnmore/index.html
http://www.oracle.com/technetwork/middleware/weblogic/learnmore/index.html

Chapter 6
Migrating from Multi Data Source to Active GridLink

AGL data source, then you must give the AGL data source a new JNDI name but
you must also update the application to use that new JNDI name.

A list of the member generic data sources which provide any remaining
information that you need to configure the AGL data source.

Each of the member generic data sources has its own URL. As described in Using
Multi Data Sources with Oracle RAC,, it has the following pattern:

j dbc: oracl e: t hin: @ DESCRI PTI ON=(ADDRESS=
(PROTOCOL=TCP) (HOST=host 1- vi p) (PORT=1521))
(CONNECT_DATA=(SERVI CE_NAME=dbser vi ce) (| NSTANCE_NAME=i nst1)))

Each member should have its own host and port pair. The members probably have
the same service and often have the same port on different hosts. The URL for the
AGL data source is a combination of the host and port pairs. For example:

j dbc: oracl e: t hin: @ DESCRI PTI ON=(ADDRESS LI ST=
(ADDRESS=(PROTOCOL=TCP) (HOST=host 1- vi p) (PORT=1521))
(ADDRESS=(PROTOCOL=TCP) (HOST=host 2- vi p) (PORT=1521)))
(CONNECT_DATA=(SERVI CE_NAME=dbser vi ce))

It is preferable to use an Oracle Single Client Access Name (SCAN) address
instead of multiple host or Virtual IP (VIP) addresses. SCAN addresses are
simpler and makes changes to the nodes in the cluster transparent. For more
information on SCAN addresses, see the Oracle Real Application Clusters
Administration and Deployment Guide. For example:

jdbc: oracl e: thin: @DESCRI PTI ON=(ADDRESS_LI ST=(ADDRESS=(PROTOCOL=TCP)
(HOST=scanaddr ess) (PORT=1521))) (CONNECT_DATA=(SERVI CE_NAME=dbser vi ce))

Ignore the Algorithm Type.

6.12.3 Basic Steps to Migrate a Multi Data Source to a Active GridLink
Data Source

The following section provides the basic steps needed to migrate a MDS to a AGL
data source:

ORACLE

Delete the MDS and the generic data sources from the configuration using the
WebLogic Server Administration Console.

Add a single AGL data source using the WebLogic Server Administration Console.
— Give it the same JNDI name as the MDS.
— Select an XA or non-XA driver based on your what generic data sources used.

— Enter the complete URL as described in Configuration Changes to Migrate a
Multi Data Source.

— Set the user and password, it should be the same as what you had on the
MDS members.

— On the Test GridLink Datasource Connection page, click Test All Listeners
and verify the new URL.

— Enter the information for the ONS connections. Specify one or more host: port
pairs. For example, host 1- vi p: 6200 or scanaddr ess: 6200. If possible, use a
single SCAN address and port. Make sure that FAN Enabled is checked.

— Test the ONS connections.

6-23

Chapter 6
Managing Database Downtime with Active GridLink Data Sources

Deploy the data source.
Edit the AGL data source and configure additional parameters.

There are many data source parameters that can't be configured while creating a
new data source. In most cases, you should be able to use the parameter setting
used in the MDS. If there are conflicts, you will need to resolve them and select
the appropriate settings for your environment.

For more information on creating AGL data sources using the WebLogic Server
Administration Console, see Configure JDBC GridLink data sources in Oracle
WebLogic Server Administration Console Online Help.

6.13 Managing Database Downtime with Active GridLink
Data Sources

Learn several ways to handle database downtime with AGL data sources in an Oracle
RAC database environment.

Active GridLink Configuration for Database Outages
Planned Outage Procedures

Unplanned Outages

6.13.1 Active GridLink Configuration for Database Outages

Ensure that the AGL data source is configured as follows:

ORACLE

Fast Application Notification (FAN) is enabled. FAN provides rapid notification
about state changes for database services, instances, the databases themselves,
and the nodes that form the cluster. It allows for draining of work during planned
maintenance with no errors returned to applications.

Is using auto-ONS, or an explicitly defined ONS configuration. See ONS Client
Configuration.

Is using a dynamic database service. Do not connect using the administrative
service or PDB service. They are for intended for administration purposes only and
are not supported for FAN.

Test connections is enabled. Depending on the outage, applications may receive
stale connections when connections are borrowed before a down event is
processed. This can occur, for example, on a clean instance down when

sockets are closed coincident with incoming connection requests. To prevent the
application from receiving any errors, connection checks should be enabled at the
connection pool. This requires setting t est - connect i ons- on-reser ve to true and
setting the t est - t abl e (the recommended value for Oracle is SQL ISVALID).

SCAN usage is optimized. For database drivers 12.1.0.2 and later, set the URL
setting LOAD_BALANCE=TRUE for the ADDRESSLI ST as an optimization to force re-
ordering of the SCAN IP addresses that are returned from DNS for a SCAN
address.

For database drivers before 12.1.0.2, use the connection property
oracl e. jdbc. thi nFor ceDNSLoadBal anci ng=t r ue.

See SCAN Addresses.

6-24

Chapter 6
Managing Database Downtime with Active GridLink Data Sources

6.13.2 Planned Outage Procedures

ORACLE

For planned downtime, the primary goal is to manage scheduled maintenance with
no application interruption while maintenance is underway at the database server.
Achieving this goal requires the following:

» Transparent scheduled maintenance—Ensures that the scheduled maintenance
process at the database servers is transparent to applications.

» Session Draining—When an instance is brought down for maintenance at the
database server, session draining ensures that all work using instances at that
node completes and that idle sessions are removed. Sessions are drained without
impacting in-flight work.

For maintenance purposes (such as software and hardware upgrades, repairs,
changes, migrations within and across systems), the services used are shutdown
gracefully one or several at a time without disrupting the operations and availability of
the WebLogic Server applications. Upon a FAN DOWN event, AGL drains sessions
away from the instance(s) targeted for maintenance. It is necessary to stop non-
singleton services running on the target database instance (assuming that they are
still available on the remaining running instances) or relocate singleton services from
the target instance to another instance. Once the services have drained, the instance
is stopped with no application errors

The following steps provide a high level overview of the planned maintenance process:

1. Detect "'DOWN?"” event triggered by DBA on instances targeted for maintenance.
2. Drain sessions away from the targeted instance(s).

3. Perform scheduled maintenance on the database servers.

4. Resume operations on the upgraded node(s).

Unlike Multi Data Source where operations need to be coordinated on both the
database server and the mid tier, Active GridLink co-operates with the database so
that all of these operations are managed from the database server, simplifying the
process. Table 6-2 lists the steps that are executed on the database server and the
corresponding reactions at the mid tier.

6-25

ORACLE

Chapter 6

Managing Database Downtime with Active GridLink Data Sources

Table 6-2 Steps Performed on Database Server for AGL Planned Maintenance

Step # Database Server Command Mid-Tier Reaction
Steps
1. Stop the non-singleton $ srvct| stop The FAN Planned
service without -force servi ce —-db Down (reason=USER)
or relocate the db_nane -service eventforthe service
singleton service. servi ce_nane informs the connection
Omitting the —server - i nstance pool that a service is
option operates on i nstance_nane no longer availaple for
all services on the or use and connections
instance. should be drained. Idle
$ srvctl relocate connections on the
service —db stopped service are
db_nane -service released immediately.
service_nane - In-use connections
ol dinst oldins - are released when
new nst new nst returned (logically
closed) by the
application. New
connections are
reserved on other
instance(s) and
databases offering
the services. This
FAN action invokes
draining the sessions
from the instance
without disrupting the
application.
2. Disable the stopped $ srvct| disable No new connections

service to ensure it

is not automatically
started again.
Disabling the service
is optional. This step
is recommended for
maintenance actions
where the service
must not restart
automatically until the
action has completed.

service —db
db_name -service
servi ce_nane
-instance

i nstance_nane

are associated with
the stopped/disabled
service at the mid-tier.

6-26

Chapter 6

Managing Database Downtime with Active GridLink Data Sources

Table 6-2 (Cont.) Steps Performed on Database Server for AGL Planned

Maintenance

Step #

Database Server
Steps

Command

Mid-Tier Reaction

Allow sessions to
drain.

The amount of

time depends on

the application.
There may be long-
running queries. Batch
programs may not be
written to periodically
return connections
and get new ones.

It is recommended
that batch be drained
in advance of the
maintenance.

Check for long-running SQL> sel ect

sessions. Terminate
these sessions

using a transactional
disconnect. Wait for
the sessions to drain.
You can run the query
again to check if any
sessions remain.

count(*) from
(select 1 from
v$sessi onwher e
service_nanme in
upper (' service_na
me') union all
select 1 from
v$transaction
where status =
"ACTIVE')

SQL> exec
dbns_servi ce. di sc
onnect _session('
service_nanme',
DBMS_SERVI CE. PCST
_TRANSACTI ON)

The connection on
the mid-tier will get
an error. If using
application continuity,
it is possible to

hide the error

from the application
by automatically
replaying the
operations on a new
connection on another
instance. Otherwise,
the application gets a
SQLException.

Repeat steps 1
through 4.

Repeat for all services
targeted for planned
maintenance

Stop the database
instance using the
immediate option.

$ srvctl stop

i nstance —db
db_name -instance
i nstance_nane

- st opopti on

i medi ate

No impact on the mid-
tier until the database
and service are re-
started.

ORACLE

6-27

ORACLE

Chapter 6

Managing Database Downtime with Active GridLink Data Sources

Table 6-2 (Cont.) Steps Performed on Database Server for AGL Planned

Maintenance

Step # Database Server Command Mid-Tier Reaction
Steps
7. Optionally, disable the $ srvct| disable
instance so that it i nstance —db
will not automatically ~ db_nane -instance
start again during i nst ance nane
maintenance. B
This step is
for maintenance
operations where
the services cannot
resume during the
maintenance.
8. Perform the scheduled
maintenance work
(patches, repairs, and
changes).
9. Enable and startthe ~ $ srvctl enable
instance. i nstance —db
db_name -instance
i nstance_name
$ srvctl start
i nstance —db
db_nane -instance
i nstance_name
10. Enable and startthe $ srvct!l enable The FAN UP event
service back. Check service —db for the service informs

that the service is up
and running.

db_name -service
servi ce_nane
-instance

i nstance_nane

$ srvctl start
service —db
db_nane -service
servi ce_nane
-instance

i nstance_nane

the connection pool
that a new instance

is available for use,
allowing sessions to
be created on this
instance at the next
request submission.
Automatic rebalancing
of sessions starts.

shows the distribution of connections for a service across two Oracle RAC instances
before and after Planned Downtime. Notice that the connection workload moves from
fifty-fifty across both instances to hundred-zero. In other words, RAC_INST_1 can be
taken down for maintenance without any impact on the business operation.

6-28

Chapter 6
Gradual Draining

Figure 6-6 Distribution of Connections Across Two Oracle RAC Instances

rig 1: Flanned Downtime

B P —

6.13.3 Unplanned Outages

There are several differences when an unplanned outage occurs:

e A component at the database server may fail making all services unavailable on
the instances running at that node. There is no stop or disable on the services
because they have failed.

e The FAN unplanned DOWN event (r eason=FAl LURE) is delivered to the mid-tier.

» All sessions are closed immediately, preventing the application from hanging on
TCP/IP timeouts. Existing connections on other instances remain usable, and new
connections are opened to these instances as needed.

* There is no graceful draining of connections. For those applications using services
that are configured to use Application Continuity, active sessions are restored on a
surviving instance and recovered by replaying the operations, masking the outage
from applications. If not protected by Application Continuity, any sessions in active
communication with the instance receive a SQLException.

6.14 Gradual Draining

ORACLE

During planned database maintenance, gradually close the database connections
instead of closing all of the connections immediately. This strategy prevents uneven
performance by the application.

When planned database maintenance occurs, a planned down service event is
processed by the WebLogic Server JDBC data source. By default, all unreserved
connections in the pool are closed immediately and borrowed connections are closed
when they are returned to the pool. This shutdown process can cause uneven
application performance because:

* New connections need to be created on the alternative instances.

* Alogon storm can occur on the other instances.

This feature is supported for an active GridLink data source running with Oracle RAC.
This chapter includes the following sections:

e Setting the Drain Timeout Period

6-29

ORACLE

Chapter 6
Gradual Draining

e Gradual Draining Processing

Setting the Drain Timeout Period

The connection property webl ogi c. j dbc. drai nTi neout is recognized to define the
draining period in seconds. The value must be a non-negative integer. For example,
the following is a sample from a WLST script that creates a datasource.

j dbcSR = creat e(dsnanme, ' JDBCSystenResource')

j dbcResource = j dbcSR get JDBCResour ce()

driverParans = jdbcResource. get JDBCDri ver Parans()
driverProperties = driverParans. get Properties()

drainprop =
driverProperties.createProperty('weblogic.jdbc.drainTi meout")
drai nprop. set Val ue(' 60")

When running with the Oracle database 12.2 driver and the Oracle database 12.2
server, the drain timeout can be configured on the database server side by setting
-drai n_timeout on the database service. For example, a replayable service can be
created by using:

srvct| add service -db ORCL -service otrade -clbgoal SHORT -preferred
orcl1,orcl2 -rlbgoal SERVICE TIME -failoverretry 30 -failoverdelay 10 -
failovertype TRANSACTI ON -conmit_outcome TRUE -replay_init_tinme 1800 -
retention 86400 -notification TRUE -drain_timeout 60

If both the connection property and the server-side drain timeout are set on an Oracle
database 12.2 configuration, the server-side value takes precedence. This value is
only used during a planned down event to stop some but not all of the instances on
which a service is running. For example,

srvct! stop service -db ORCL -instance orcl?2 -service otrade. us.oracle.com

If the drain period is not set or set to 0, then by default, there is no drain period and
connections are closed immediately.

A small value accelerates the migration, but might cause applications to experience
higher response times, as requests on the target node hit a cold buffer cache. A larger
value migrates work more gently and gives the buffer cache on the target node more
time to warm-up, which in consequence leads to reduced impact on the application,
but a longer overall migration duration.

Gradual Draining Processing

Processing starts when a database service that is configured for an AGL datasource
is stopped using srvctl stop service -db dbnane -instance instancenane -
service servicenanme

" Note:

Draining is not done if all services are shutdown (for example, when no
instance name is specified).

6-30

ORACLE

Chapter 6
Gradual Draining

» If the drain timeout is not set or set to 0, there is no drain period. Unreserved
connections are immediately closed and borrowed connections are closed when
returned to the pool.

» If the drain timeout is specified, it takes effect only if the service is available at
another RAC instance. For active/active services draining is gradual. For active/
passive services, version 12.2 of RAC relocates the service first, so gradual
draining is also supported. This feature does not work with Oracle DataGuard,
which has only one primary active service at a time.

» If an alternative instance is available, the drain timeout period is started. The
granularity and reducing the connections is done on a five-second interval. The
total connection count is the count of the unreserved and the count of the reserved
connections. The total count is divided by the value “(drain period/5)” to compute
the number of connections to be released per interval (note that if the number is
less than 1, then some intervals may not have any connections drained). After
each five-second interval, harvestable connections are harvested and interval
count connections are closed if they are unreserved or marked for closure on
return to the pool. After the last interval, the instance is marked as down (with
respect to monitor status).

» If a datasource is suspended or shut down, draining is stopped on any instance
that is currently draining. Unreserved connections are immediately closed and
borrowed connections are closed when returned to the pool.

» If a service is started again on an instance that is draining for that service, draining
is stopped.

» If a service is stopped on all instances by not specifying a instance name or the
last instance is stopped, draining is stopped on all instances. For all instances,
unreserved connections are immediately closed and borrowed connections are
closed when returned to the pool.

* When draining is happening on an instance, connection gravitation on the
datasource (rebalancing connections based on the runtime load balancing
information) is stopped until the draining completes.

* When the service is stopped, the Load Balance Advisories (LBA) indicates that
the percentage for the stopped service should be 0. This causes the preference
for allocating existing connections to other instances first. If a connection does not
exists on the other instances and a connection exists on the stopped service, it will
pick that one instead of creating a connection. This applies to connections created
using LBA or Session Affinity. XA affinity will try to create a new connection for the
instance in the affinity context, and only use a different instance or branch if a new
connection can't be created.

Example

Figure 6-7 shows the effect of gradual draining when a service on an instance

is stopped. In this case, the service is stopped on instance “beadev?2” just after
25:00. Note that it takes a while for the Load Balancing Advisories (LBA) to respond
to the shut down at around 25: 25 and the percentage goes to 0 for instance
“beadev2”. WebLogic Server receives the shutdown event almost instantly and
starts to take action. If gradual draining were not configured, the graph of Current
Capacity would show the capacity dropping to 0 (or the count of active connections)
immediately when the event is received. Instead, you can see that the capacity
gradually goes down every five- seconds for the sixty-second drain period and there is
a corresponding increase in capacity on “beadev1”. Note that the total capacity stays
constant through the entire period.

6-31

Chapter 6
Gradual Draining

< Note:

These graphs were generated from an artificial work-load of requests that
are getting a connection, doing a little work, and releasing the connection. In
the real world, the results may not be so perfect.

Figure 6-7
LBA Percentages: Current Capacity:
100 — T POPOO=DNO00RO000 2r
beadev1 beadev1 mo-ooooo-oooooo—oocnoo-moocl-
50 beadev? 10 beadev?
0 | _______________ & |- Total
24:50 25:00 25:10 25:20 25:30 25:40 25:50 26:00 6
LBA Affinity: !
true ! . beadev1 Il el)] 4
beadev2 2
false ‘
0

24:50 25:00 25:10 25:20 25:30 25:40 25:50 26:00

24:50 25:00 2510 25:20 25:30 25:40 2550 26:00

ORACLE"

6-32

Using Proxy Data Sources

Proxy data sources provide the ability to switch between databases in a WebLogic
Server Multitenant environment.

This chapter provides information on how to configure and monitor Proxy data
sources.

* Whatis a Proxy Data Source?
* Creating a Proxy Data Source

e Monitoring Proxy Data Source JDBC Resources

7.1 What is a Proxy Data Source?

ORACLE

Applications often need a quick access to data sources by name without knowing
the naming conventions, context names (partitions or tenants), and so on. Proxy data
sources provide applications the access to such underlying data sources.

In a WebLogic Server Multitenant environment, resources, including data sources,
are replicated for each partition. The Proxy data source simplifies the administration
of multiple data sources by providing a light-weight mechanism for accessing a data
source associated with a partition or tenant. All of the significant processing happens
in the data sources to which it points. That is, the underlying data sources actually
handle deployment, management, security, and so on.

" Note:

If desired, you can also use Proxy data sources in a non-multitenant
environment.

Proxy data source provides for WebLogic Server data source access with:

e Minimal configuration.

* Minimal performance overhead including no double connection pooling (for
example, no pooling of connections in both the proxy and the underlying
connection pool).

* The ability to switch between replicated data sources in the WebLogic Server
Multitenant environment.

» JNDI access to a data source object.
* A data source object that implements j avax. sql . Dat aSour ce.

* A callback interface that can be implemented to do the data source switching
based on the context in the environment (for example, partition, tenant, and so on)

7-1

Chapter 7
Creating a Proxy Data Source

» Switching configuration by the application both at the context-level used for
switching (such as tenant, partition, other information in the thread) and to which
data sources the switch is done.

» Direct access to all the data sources to which it may want to switch.

7.2 Creating a Proxy Data Source

To create a Proxy data source in your WebLogic domain, you can use the WebLogic
Server Administration Console, WLST, or Fusion Middleware Control.

The Administration Console and WLST methods are described in the following
sections:

» Configuring a Proxy Data Source in the WebLogic Server Administration Console
e Configuring a Proxy Data Source Using WLST

Procedures for creating a Proxy data source using Fusion Middleware Control are
described in Create JDBC Proxy data sources in Administering Oracle WebLogic
Server with Fusion Middleware Control.

When creating a Proxy data source, note the following:

* The Proxy data source does not validate the values in the switching properties
to confirm that they match the context names or data sources. If an invalid data
source is specified, getting a connection will fail. However, the data sources to
which the proxy points do not have to be available when configured or deployed.

* There are no rules for the data sources to which the proxy points. In general,
however, the members should basically provide the same functionality. They
can be from different vendor drivers but should have the same schemas,
transaction properties, and general functionality. Oracle does not assume that
the underlying data sources are configured to use Oracle Container Database/
Pluggable Database technology or that the data sources use an Oracle driver.

* The proxy data source provides a j avax. sql . Dat aSour ce interface. The
XADat aSour ce equivalent is not provided or necessary. The additional methods on
XADat aSour ce are necessary only for handling transaction enlistment. Transaction
processing is handled at the member/real data source level instead of at the proxy
level; doing it at two levels would cause problems.

e Proxy data sources are not supported in an application-scoped environment, nor
should they reference application-scoped data sources. They must be defined as
system resources and targeted to server(s) and/or cluster(s) (WebLogic Server
does not support targeting to a domain)

7.2.1 Configuring a Proxy Data Source in the WebLogic Server
Administration Console

ORACLE

The procedure for creating a Proxy data source in the WebLogic Server Administration
Console is provided in Create Proxy data sources in the Oracle WebLogic

Server Administration Console Online Help. This procedure includes instructions for
accessing the data source configuration wizard. To create a Proxy data source, select
Proxy Data Source from the New menu in the wizard.

7-2

Chapter 7
Creating a Proxy Data Source

The following sections provide an overview of the basics steps used in the data source
configuration wizard to create a data source using the WebLogic Server Administration
Console:

» Set Proxy Data Source Properties

» Select Target

Set Proxy Data Source Properties

The Proxy Data Source Properties section includes options that determine the identity
of the data source and the way the data is handled on a database connection.
Guidelines for configuring these properties are described as follows:

e Data Source Names—Enter a name for the Proxy data source in the Name
field. JDBC data source names are used to identify the data source within the
WebLogic domain. For system resource data sources, names must be unique
among all other JDBC system resources, including data sources. To avoid naming
conflicts, data source names should also be unique among other configuration
object names, such as servers, applications, clusters, and JMS queues, topics,
and servers.

e Scope—Select the scope for the data source from the list of available scopes. You
can set the scope to Global (at the domain level), or to any existing Resource
Group or Resource Group Template.

e JNDI Names—Enter a JNDI name for the Proxy data source in the JNDI Name
field. You can configure a data source so that it binds to the JNDI tree with a single
name or multiple names. You can use a multi-JNDI-named data source in place of
legacy configurations that included multiple data sources that pointed to a single
JDBC connection pool. For more information, see Developing JNDI Applications
for Oracle WebLogic Server.

e Switching Properties—Enter the switching properties to be passed to
the switching callback method for the Proxy data source. This value
is dependent on the requirements of the switching callback. For the
default switching callback, the format of the proxy switching properties is
partitionl=datasourcel; partition2=datasource2;...;defaul t=datasourcen.
It is passed to the second argument of get Dat aSour ce() in the switching callback.

The default WebLogic Server implementation uses the current partition to look up
the data source in the switching properties. If it is not in a partition, the partition
value is DOVAI N. If no match is found or it is not in a partition, the data source
associated with default is used. If a default value is not appropriate, then do not
provide a def aul t value and a null is returned. The default callback can only be
used within the WebLogic Server.

» Switching Callback—Enter the name of the proxy switching callback class. To use
the default callback, leave this value empty. If you specify a callback class, it
must implement the webl ogi c. j dbc. ext ensi ons. Dat aSour ceSwi t chi ngCal | back
interface. This interface has one method that takes two parameters. The format of
the two parameters depends on the implementation. The first parameter, which is
a comma-separated list of INDI names for the proxy data source, is not used in
the default callback. The second parameter is described above in the Switching
Properties.

ORACLE 7-3

Chapter 7
Creating a Proxy Data Source

Select Target

You can select one or more targets to which to deploy your new Proxy data source.
If you don't select a target, the data source will be created but not deployed. You will
need to deploy the data source at a later time.

7.2.2 Configuring a Proxy Data Source Using WLST

ORACLE

You can create a Proxy data source using WLST in the same way that you create
other data source types. However, Proxy data sources require less attributes.
The configuration elements for a Proxy data source are as follows.

° nane
e datasource-type=PROXY

e jdbc-data-source-parans proxy-swtching-properti es—A string that defines
how the switching is done. This value is optional and is null if not specified. This
value is configurable and dynamic.

* jdbc-data-source-parans proxy-switching-cal |l back—A string that
defines the name of a class that implements
webl ogi c. j dbc. ext ensi ons. Dat aSour ceSwi t chi ngCal | back. This value is
optional and a default callback class will be used for WebLogic Server. This value
is configurable and dynamic.

* jdbc-data-source-parans jndi-nane—An array of String names at which the
data source is mapped into the WebLogic Server (Java EE) JNDI. In addition to
other naming conventions regarding JNDI names, JNDI name(s) for the proxy data
source must not contain a comma (,).

No other elements from the WebLogic Server data source descriptor are recognized. If
other elements are specified, they are ignored.

A sample WLST script for creating a Proxy data source is provided in Example 7-1

Example 7-1 Sample WLST Script to Create a Proxy Data Source

i mport sys, socket

i mport os

host name = socket . get host name()

connect ("webl ogi c", "wel comel", "t 3://"+host name+": 7001")
edit()

startEdit()

server Name="Adm nServer"

serverBean = get MBean('/ Servers/' +server Nanme)

host =" %. us. conpany. com %host name

print 'Creating Proxy datasource

domain = get MBean("/")

startEdit()

resour ceNane=' pr oxyDS'

print "Creating data source in donmain"

syst enResour ce=donai n. cr eat eJDBCSyst enResour ce(r esour ceName)
syst enResour ce. set Nane(r esour ceNane)

j dbcResour ce=syst enResour ce. get JDBCResour ce()

j dbcResour ce. set Nane(resour ceNane)

j dbcResour ce. set Dat asour ceType(' PROXY")

7-4

Chapter 7
Monitoring Proxy Data Source JDBC Resources

j dbcDat aSour cePar ans=j dbcResour ce. get JDBCDat aSour cePar ans()

j dbcDat aSour cePar ans. addJNDI Nane(r esour ceNane)

j dbcDat aSour cePar ans. set ProxySwi t chi ngProperties(' partitionl=partitionl:
ds; def aul t =domai n: ds')

cd('/ SystenResources/' + resourceNane)

set (' Targets',jarray.array([Object Name(' com bea: Name=' + serverNane +

", Type=Server')], ObjectNane))

save()

activate()

Note:

You can also use the sample WLST script for creating a Generic data source
that is provided with WebLogic Server as the basis for your Proxy data
source:

EXAMPLES HOVE\ W _server\ exanpl es\ src\ exanpl es\w st\online\jdbc_
data_source_creation. py

where EXAMPLES_HOME represents the directory in which the WebLogic
Server code examples are configured. See WLST Online Sample Scripts in
Understanding the WebLogic Scripting Tool.

7.3 Monitoring Proxy Data Source JDBC Resources

Monitor a Proxy data source using runtime statistics. You can view runtime
statistics via the WebLogic Server Administration Console or through the
JDBCPr oxyDat aSour ceRunt i me MBean.

The JDBCPr oxyDat aSour ceRunt i neMBean extends the JDBCDat aSour ceRunt i meMBean
so that it can be returned with the list of other JDBC MBeans from the JDBC service
for tools such as the WebLogic Server Administration Console. For a PROXY data
source, it sets the state. All runtime statistics such as active connections and so on are
not set (they will be set to -1).

In addition to runtime statistics, the t est Pool () operation returns null if the test is a
success. Otherwise it returns an error string (similar to other data source types). The
rest of the operations take no action.

See JDBCProxyDataSourceRuntimeMBean in the MBean Reference for Oracle
WebLogic Server.

For JDBC monitoring, see Monitoring WebLogic JDBC Resources.

ORACLE e

Using Universal Connection Pool Data
Sources

8.1 What is a Universal Connection Pool Data Source?

A Universal Connection Pooling (UCP) data source is provided as an option for
users who wish to use UCP for connecting to Oracle Databases. UCP provides

ORACLE

A Universal Connection Pooling (UCP) data source is provided as an option for
users who wish to use Oracle Universal Connection Pooling to connect to Oracle
Databases. UCP provides an alternative connection pooling technology to Oracle

WebLogic Server connection pooling.

This chapter provides information on how to configure and monitor UCP data sources.

This chapter includes the following topics:

What is a Universal Connection Pool Data Source?
Creating a Universal Connection Pool Data Source

Monitoring Universal Connection Pool JDBC Resources

UCP MT Shared Pool support

Oracle Sharding Support

Initial Capacity Enhancement in the Connection Pool

an alternative connection pooling technology to Oracle WebLogic Server connection
pooling.

WebLogic Server provides the following support when using a UCP data source:

< Note:

Configuration as an alternative data source to Generic data source, Multi Data
Source, or Active GridLink data source.

Deploy and undeploy data source.

Oracle generally recommends the use of Active GridLink data source, multi
data source, or JDBC data source with Oracle WebLogic Server to establish
connectivity with Oracle databases.

Basic monitoring and statistics:

Connect i onsTot al Count
CurrCapacity

Fai | edReser veRequest Count
Acti veConnect i onsH ghCount

8-1

Chapter 8
Creating a Universal Connection Pool Data Source

— ActiveConnectionsCurrent Count
e Certification with Oracle simple driver, XA driver, and application continuity driver.

A UCP data source does not support:

* WebLogic Server Transaction Manager (one-phase, LLR, JTS, JDBC TLog,
determiner resource, and so on).

* Additional life cycle operations (suspend, resume, shutdown, forceshutdown, start,
and so on).

* Generic support for any connection pool.

* Oracle WebLogic Server Security options.

» JDBC drivers other than those listed above.

* Oracle WebLogic Server data operations such as JMS, Leasing, EJB, and so on.
* RMIl access to a UCP data source.

The implementations of UCP data sources are loosely coupled, allowing the swapping
of the ucp.jar to support the use of new UCP features by the applications. UCP data
sources are not supported in an application-scoped/packaged or stand-alone module
environment.

For details about the Oracle Universal Connection Pool, see Oracle Universal
Connection Pool for IDBC Developer's Guide.

8.2 Creating a Universal Connection Pool Data Source

To create a UCP data source in your WebLogic domain, you can use the WebLogic
Server Administration Console, the WebLogic Scripting Tool (WLST), or Fusion
Middleware Control.

The WebLogic Server Administration Console and WLST methods are described in the
following sections:

* Configuring a UCP Data Source in the WebLogic Server Administration Console.
* Configuring a UCP Data Source Using WLST.

Procedures for creating a UCP data source using Fusion Middleware Control are
described in Create JDBC UCP data sources in Administering Oracle WebLogic
Server with Fusion Middleware Control.

8.2.1 Configuring a UCP Data Source in the WebLogic Server
Administration Console

ORACLE

The procedure for creating a UCP data source in the WebLogic Server Administration
Console is provided in Create UCP data sources in the Oracle WebLogic Server
Administration Console Online Help. This procedure includes instructions for
accessing the data source configuration wizard.

The following sections provide an overview of the basics steps used in the data source
configuration wizard to create a data source using the WebLogic Server Administration
Console:

e Set JDBC Data Source Properties

8-2

https://docs.oracle.com/database/121/JJUCP/intro.htm#JJUCP8109
https://docs.oracle.com/database/121/JJUCP/intro.htm#JJUCP8109

Chapter 8
Creating a Universal Connection Pool Data Source

» Set Connection Properties.
e Test Database Connections.

* Select Targets.

Set JDBC Data Source Properties

The JDBC Data Source Properties section includes options that determine the identity
of the data source and the way the data is handled on a database connection.
Guidelines for configuring these properties are described as follows:

e Data Source Names—Enter a name for the UCP data source in the Name
field. JDBC data source names are used to identify the data source within the
WebLogic domain. For system resource data sources, nhames must be unique
among all other JDBC system resources, including data sources. To avoid naming
conflicts, data source names should also be uniqgue among other configuration
object names, such as servers, applications, clusters, and JMS queues, topics,
and servers.

» Scope—Select the scope for the data source from the list of available scopes. You
can set the scope to Global (at the domain level), or to any existing Resource
Group or Resource Group Template.

* JNDI Names—Enter a JNDI name for the UCP data source in the JNDI Name
field. You can configure a data source so that it binds to the JNDI tree with a single
name or multiple names. You can use a multi-JNDI-named data source in place of
legacy configurations that included multiple data sources that pointed to a single
JDBC connection pool. For more information, see Developing JNDI Applications
for Oracle WebLogic Server.

- Database Type and Driver—The UCP data source is certified with three Oracle
drivers: thin XA and non-XA, and an application continuity (replay) driver. Select
the required driver from the menu.

The supported combinations of driver and JDBC connection factory are shown in
Table 8-1

Table 8-1 Supported Driver and Connection Factory Combinations for UCP
Data Source

Driver Factory (ConnectionFactoryClassName)

oracl e. ucp. j dbc. Pool Dat aSour cel npl oracl e. ucp. j dbc. Pool Dat aSour cel npl

(default)

oracl e. ucp. j dbc. Pool XADat aSour cel npl oracl e.jdbc. xa. client. O acl eXADat aSo
urce

oracl e. ucp. j dbc. Pool Dat aSour cel npl oracl e.jdbc.replay. Oracl eDat aSour cel
mpl

ORACLE 8-3

ORACLE

Chapter 8
Creating a Universal Connection Pool Data Source

< Note:
The replay driver does not currently support XA transactions.

If a non-XA driver from the list in Table 8-1Table 8-1 is specified with an XA
factory from the table, an error is generated. If you specify values that are not
in the table they are not validated.

If the driver-nane is not specified in the j dbc- dri ver - par ans, it defaults to
oracl e. ucp. j dbc. Pool Dat aSour cel npl .

If you specify a supported driver name but do not specify the

Connect i onFact or yd assName connection property, the corresponding entry
from Table 8-1 is used. If you do not specify a supported driver name, an
error is generated.

Set Connection Properties

Connection properties are used to configure the connection between the data source
and the DBMS. There are two ways that you can enter the connection properties for a
UCP data source in the Administration Console.

On the Connection Properties page of the wizard, all of the available connection
properties for a UCP driver are displayed so that you can enter the appropriate values.
As an alternative, you can configure properties by entering the properties directly

into the Properties text box on the Test Database Connection page using the format
propertyName=val ue. Any values that you entered on the Connection Properties page
are already listed Properties text box.

Table 8-2 describes the connection properties that you can configure for a UCP
data source. For more information about UCP connection properties, see Class
PoolDataSourcelmpl. In Oracle Universal Connection Pool for JDBC Java API
Reference. Attributes are determined by setters on the Pool Dat aSour cel npl class.
Use the attribute name without the "set" prefix. The names are case insensitive.

Table 8-2 UCP Connection Pool Properties

|
Property Type Description

AbandonedConnectionTimeou | int Sets the abandoned
t connection timeout.

The range of valid values is
0 to Integer.MAX_VALUE. The
default is 0.

ConnectionFactoryClassName | String Sets the Connection Factory
class name.

ConnectionFactoryProperties | name=value Sets the connection factory
properties on the connection
factory.

ConnectionFactoryProperty name=value Sets a connection factory
property on the connection
factory.

8-4

Chapter 8
Creating a Universal Connection Pool Data Source

Table 8-2 (Cont.) UCP Connection Pool Properties

ORACLE

Property

Type

Description

ConnectionHarvestMaxCount

int

Sets the maximum number
of connections that can

be harvested when the
connection harvesting occurs.

ConnectionHarvestTriggerCou
nt

int

Sets the number of available
connections at which the
connection pool's connection
harvesting will occur.

ConnectionLabelingHighCost

int

Sets the cost value that
identifies a connection as
"high-cost" for connection
labeling.

ConnectionPoolName

String

Sets the connection pool
name.

ConnectionProperties

name=value

Sets the connection properties
on the connection factory.

ConnectionProperty

name=value

Sets a connection property on
the connection factory.

ConnectionWaitTimeout

int

Sets the amount of time to
wait (in seconds) for a used
connection to be released by a
client.

The range of valid values is
0 to Integer.MAX_VALUE. The
default is 3.

DatabaseName

String

Sets the database name.

DataSourceName

String

Sets the data source name.

Description

String

Sets the data source
description.

FastConnectionFailoverEnable
d

Boolean

Enables Fast Connection
Failover (FCF) for the
connection pool accessed
using this pool-enabled data
source. Valid values are true
and false.

HighCostConnectionReuseThr
eshold

int

Sets the high-cost connection
reuse threshold for connection
labeling.

InactiveConnectionTimeout

int

Sets the inactive connection
timeout.

he range of valid values is 0
to Integer. MAX_VALUE. The
default is 0.

8-5

ORACLE

Table 8-2 (Cont.) UCP Connection Pool Properties

Chapter 8

Creating a Universal Connection Pool Data Source

Property

Type

Description

InitialPoolSize

int

Sets the initial pool size.

The range of valid values is

0 to Integer.MAX_VALUE. Itis
illegal to set this to a value
greater than the maximum
pool size. The default is 0.

LoginTimeout

int

Sets the login timeout.

MaxConnectionReuseCount

int

Sets the connection reuse
count property.

MaxConnectionReuseTime

long

Sets the connection reuse
time property.

MaxIdleTime

int

Sets Idle timeout for available
connections in the pool.

MaxPoolSize

int

Sets the maximum number of
connections.

The range of valid values

is 1 to Integer.MAX_VALUE.
The default is

Integer. MAX_VALUE.

MaxStatements

int

Sets the maximum number
of statements that may be
pooled or cached on a
connection.

MinPoolSize

int

Sets the minimum number of
connections.

The range of valid values is

0 to Integer.MAX_VALUE. ltis
illegal to set this to a value
greater than the maximum
pool size. The default is 0.

NetworkProtocol

String

Sets the data source network
protocol.

ONSConfiguration

String

Sets the configuration string
used for remote ONS
subscription.

Password

String

Sets the password with
which connections have to be
obtained.

PortNumber

int

Sets the database port
number.

PropertyCycle

int

Sets the Property cycle in
seconds.

RoleName

String

Sets the data source role
name.

ServerName

String

Sets the database server
name.

8-6

ORACLE

Chapter 8
Creating a Universal Connection Pool Data Source

Table 8-2 (Cont.) UCP Connection Pool Properties
|

Property Type Description
SQLForValidateConnection String Sets the value (SQL)
for SQLForValidateConnection
property.
TimeoutCheckinterval int Sets the timeoutChecklinterval,
in seconds.
TimeToLiveConnectionTimeou | int Sets the maximum time, in
t seconds, that a connection
may remain in-use.
URL String Sets the URL that the

data source uses to obtain
connections to the database.

User String Sets the user name with
which connections have to be
obtained.

ValidateConnectionOnBorrow | Boolean Sets whether or not a

connection being borrowed
should first be validated. Valid
values aretrue andfal se.

¢ Note:

System properties and encrypted properties are supported in addition to
normal string literals. See the following topics in Oracle WebLogic Server
Administration Console Online Help:

e Set System Properties

e Encrypt connection properties

If the j dbc-dri ver - params URL is set, any URL property is ignored. If the encrypted-
password is set, any password property is ignored.

The attributes Connect i onFact or yProperty, ConnectionFactoryProperties,
Connect i onProperty, and Connecti onFact oryProperties accept values of the form
"nanel=val uel, nane2=val ue2...".

Test Database Connections

The Test Database Connection page allows you to enter free-form values for
properties and to test a database connection before the data source configuration

is finalized using a table name or SQL statement. If necessary, you can test additional
configuration information using the Properties and System Properties attributes.

Select Targets

You can select one or more targets to which to deploy your new UCP data source. If
you don't select a target, the data source will be created but not deployed. You will
need to deploy the data source at a later time.

8-7

Chapter 8
Creating a Universal Connection Pool Data Source

8.2.2 Configuring a UCP Data Source Using WLST

ORACLE

You can create a UCP data source using WLST in the same way that you create other
data source types. However, UCP data sources have less attributes.

The configuration elements for a UCP data source are as follows.

° name
e datasource-type=UCP

e jdbc-driver-params url

e jdbc-driver-params property - user

e jdbc-driver-params password-encrypted
e jdbc-data-source-params jndi-name

e jdbc-driver-params other properties

No other elements from the WebLogic Server data source descriptor are recognized. If
other elements are specified, they are ignored.

A sample WLST script for creating a UCP data source is provided in Example 8-1

Example 8-1 Sample WLST Script to Create a UCP Data Source

i mport sys, socket

i mport os

host name = socket . get host nanme()

connect ("webl ogi ¢", "wel comel", "t 3://"+host name+": 7001")
edit()

startEdit()

server Name="Adm nServer"

serverBean = get MBean('/ Servers/' +server Name)

host =' %s. us. conpany. com %host name

print 'Creating UCP datasource'

domai n = get MBean("/")

startEdit()

resour ceNane=" ucpDS

print "Creating datasource ds in donain"

syst enResour ce=donai n. cr eat eJDBCSyst enResour ce(r esour ceNane)
syst enResour ce. set Nane(r esour ceNane)

j dbcResour ce=syst enResour ce. get JDBCResour ce()

j dbcResour ce. set Nane(r esour ceNane)

j dbcResour ce. set Dat asour ceType(' UCP')

dri ver Par ans=j dbcResour ce. get JDBCDr i ver Par ans()
driverParans. set Driver Nane(' oracl e. ucp. j dbc. Pool Dat aSour cel npl ')
driverParans.set Ul ('jdbc:oracl e:thin: @bhost: 1521/ otrade')
properties = driverParans. get Properties()
properties.createProperty('user', 'dbuser')

properties. createProperty(' ConnectionFactoryd assNane',
"oracle.jdbc. pool . Oracl eDat aSource')

driver Parans. set Passwor d(' MYPASSWD')

j dbcDat aSour cePar ans=j dbcResour ce. get JDBCDat aSour cePar ans()
j dbcDat aSour cePar ans. addJNDI Nane(r esour ceNare)

j dbcDat aSour cePar ans. set d obal Transacti onsProt ocol (' None')

8-8

Chapter 8
UCP MT Shared Pool support

cd('/ SystenResources/' + resourceNanme)

set (' Targets',jarray.array([Object Name(' com bea: Name=' + serverNane +
', Type=Server')], ObjectNane))

save()

activate()

Note:

You can also use the sample WLST script for creating a Generic data source
that is provided with WebLogic Server as the basis for your UCP data
source:

EXAMPLES HOVE\ W _server\ exanpl es\ src\ exanpl es\w st\online\jdbc_
data_source_creation. py

where EXAMPLES HOME represents the directory in which the WebLogic
Server code examples are configured. See WLST Online Sample Scripts
in Understanding the WebLogic Scripting Tool.

8.3 UCP MT Shared Pool support

ORACLE

To use this feature, the URI for the UCP XML configuration file must be specified using
the oracl e. ucp. j dbc. xm Confi gFi | e system property before any UCP data source is
loaded in the JVM.

This can be set on the command line when starting weblogic.Server. Since this

is sometimes inconvenient, it is also possible to set the Xnl Confi gFi | e connection
property. If you use the connection property approach, it must be set on all UCP data
sources configured in WebLogic Server, even if they do not use the XML file. The
format is generally something like file:///path/file.xnl.

When using the shared pool feature, all attributes for the data source are ignored
except for the following:

« Name - the data source name
e Data source Type - UCP

e Driver class name - oracl e. ucp. j dbc. Pool Dat aSour cel mpl or
oracl e. ucp. j dbc. Pool XADat aSour cel npl

* Property Dat aSour ceFr onConf i gur ati on — data source name in the XML file .

» Property Xm Confi gFi | e — optionally set the URI of the XML file if not set as a
system property

* JNDI Name — the JNDI name where the data source object is mapped.

Example:
i nport sys, socket
i nport os

host name = socket . get host name()
connect ("webl ogi ¢", "wel comel", "t 3://"+host name+": 7001")

8-9

ORACLE

Chapter 8
UCP MT Shared Pool support

edit()

startEdit()

server Name="nyserver"

print 'Creating UCP datasource

domai n = get MBean("/")

startEdit()

resour ceName=" ds5

print "Creating datasource ds in domain"

syst enResour ce=donai n. cr eat eJDBCSyst enResour ce(r esour ceName)
syst enResour ce. set Nane(r esour ceNane)

j dbcResour ce=syst enResour ce. get JDBCResour ce()

j dbcResour ce. set Nane(r esour ceNane)

j dbcResour ce. set Dat asour ceType(' UCP')

dri ver Par ans=j dbcResour ce. get JDBCDr i ver Par anms()

driverParans. set Driver Nane("' oracl e. ucp. j dbc. Pool Dat aSour cel npl ')
properties = driverParans. get Properties()
properties.createProperty(' DataSour ceFronConfiguration', 'pdsl')
properties.createProperty(' Xm ConfigFile' , "file:///

Shar edPool Deno. xm ')

j dbcDat aSour cePar ans=j dbcResour ce. get JDBCDat aSour cePar ans()

j dbcDat aSour cePar ans. addJNDI Nane(r esour ceNane)

cd('/ SystenResources/' + resourceNanme)

set (' Targets',jarray.array([ObjectNane(' com bea: Name=" + server Nane
+ ', Type=Server')], bjectName))

save()

activate()

The UCP XML file might look like the following.

<?xm version="1.0" encodi ng="UTF-8"?>
<ucp- properties>
<connecti on- poo
connecti on- pool - name="pool 1"
connection-factory-cl ass-name="oracl e. j dbc. pool . O acl eDat aSour ce"
url ="jdbc: oracl e:thin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp)
(HOST=dbhost) (PORT=5521)) (CONNECT_DATA=
(SERVI CE_NAME=dbhost service)))"
user ="syst ent
passwor d="rmanager "
initial-pool-size="4"
m n- pool - si ze="2"

max- pool - si ze="10"
shared="true"

>
<dat a- source dat a- sour ce- name="pds1"
user ="syst ent

passwor d="rmanager "

servi ce="pdbl_service"
description="pdbl data source"

/>
<dat a- source dat a- sour ce- name="pds2"
user ="syst ent

passwor d="rmanager "
servi ce="pdh2_servi ce"

8-10

Chapter 8
Monitoring Universal Connection Pool JDBC Resources

description="pdb2 data source"
/>
</ connecti on- pool >
</ ucp-properties>

8.4 Monitoring Universal Connection Pool JDBC Resources

Learn about monitoring UCP JDBC Resources using the WebLogic
Sever Administration Console or the JDBCUCPDat aSour ceRunt i neMBean,
JDBCDat aSour ceRunt i neMBean .

The JDBCUCPDat aSour ceRunt i neMBean provides methods for getting the current
state of the data source and for getting statistics about the data source, such

as the average number of active connections, the current number of active
connections, and the highest number of active connections. This MBean extends the
JDBCDat aSour ceRunt i meMBean so that it can be returned with the list of other JDBC
MBeans from the JDBC service.

In addition to runtime statistics, the t est Pool () operation returns null if the test is
success or an error string otherwise (similar to other data source types). Testing the
pool is done only if SQLFor Val i dat eConnecti on is set to a SQL string to be executed
for validation (for example SELECT 1 from DUAL). The rest of the operations will take
no action.

See JDBCUCPDataSourceRuntimeMBean in the MBean Reference for Oracle
WebLogic Server.

To understand more about JDBC monitoring, see Monitoring WebLogic JDBC
Resources.

8.5 Oracle Sharding Support

ORACLE

Sharding is a data tier architecture in which data is horizontally partitioned across
independent databases.

See Oracle Sharding and Overview of Oracle Sharding for Oracle database
documentation on sharding. Oracle sharding is available in 12.2 UCP and surfaced
from WebLogic Server via the native UCP data source feature.

Once the UCP data source is accessed using a JNDI look-up, the sharding API's can
be used, as in the following java code:

i nport javax.nami ng. Cont ext;

i nport javax.naming.lnitial Context;

i mport java.sql. Connection;

i mport oracl e. ucp.j dbc. Pool Dat aSour ce;

Context cts = new Initial Context();

/1l Look up the data source using JNDI
Pool Dat asour ce pds = (Pool Dat aSour ce) ctx. | ookup(" ShardedDB");

/1 Create a key corresponding to sharding key colums, to access the

correct shard
Oracl eShar di ngkey key = pds. creat eShar di ngKeyBui | der (). subkey(100,

8-11

http://www.oracle.com/technetwork/database/database-technologies/sharding/overview/index.html

Chapter 8
Initial Capacity Enhancement in the Connection Pool

JDBCType. NUVERI C) . bui I d();
/1 Fetch a connection to the shard corresponding to the key
Connection conn =

pds. creat econnecti onBui | der (). shar di ngkey(key) . build();

/1 Use the above connection for performng shard specific operations

8.6 Initial Capacity Enhancement in the Connection Pool

ORACLE

Connection retry, early failure, and critical data sources are available from WebLogic
Server 12.2.1.3, to enhance the initial capacity connections in the connection pool.

Creating the Initial Capacity Connections in the Connection Pool

Whenever a server starts, the data source tries to create the initial capacity
connections in the connection pool. Prior to 12.2.1.3, the data source attempted to
create initial capacity connections even if some of the connection attempts failed. This
can take a long time if one or more of the connection failures take a long time due to
unavailability of network or database.

From WebLogic Server 12.2.1.3 onwards, the following changes are available during
the creation of the initial capacity connections:

e Connection Retry
e Early Failure

e Critical Data Sources

Connection Retry

There are two connection properties that control retrying the initial connection creation
failure:

webl ogi c. j dbc. st art upRet ryCount — If this property is set and the value is greater
than O, if failure occurs connection creation will be retried based on the value. The
default value is 0 (no retry).

webl ogi c. j dbc. st art upRet r yDel aySeconds— If this property is set and the value is
greater than 0 and retry count is set, the connection creation will delay for the specified
number of seconds between retries. The default value is 0 (no delay).

Early Failure

The following connection property controls whether or not to continue after connection
creation fails:

webl ogi c. j dbc. conti nueMakeResour ceAtt enpt sAft er Fai | ure=true — If

startup retry is enabled, the driver property

webl ogi c. j dbc. conti nueMakeResour ceAtt enpt sAft er Fai | ure=tr ue is ignored and
the data source will not continue to create connections after a failure when the server
is starting. It will continue create attempts if the data source is deployed or redeployed
on a running server.

8-12

ORACLE

Chapter 8
Initial Capacity Enhancement in the Connection Pool

Critical Data Sources

If a failure occurs while populating the initial capacity connections in the connection
pool, the data source is not deployed (it won't be in INDI so the application will fail

to find it) but the server continues to startup and is not marked as unhealthy. In some
applications, a data source may be a critical resource such that no useful processing
can be done if the data source is not deployed. This can be controlled using a
connection property:

webl ogi c. jdbc. critical — If this value is set to true, the managed server fails to
boot; this does not apply to the administration server, which is available to process
configuration changes. The default value is false, where the server continues to boot
without deploying the data source.

Example 8-2 WLST Sample Code

The following WLST sample code fragment illustrates defining a Retry count and
delay on a data source.

edit()

startEdit()

dat asour ce="dsname"

cd("/JDBCSyst enResour ces/" + datasource + "/JDBCResource/" + datasource
+ "/ JDBCDri ver Par ans/ "

+ datasource + "/Properties/" + datasource)

cno. creat eProperty("webl ogi c. jdbc. startupRetryCount”, "5")

cno. creat eProperty("webl ogi c. j dbc. startupRetryDel aySeconds”, "10")
save()

activate()

8-13

Using Connection Harvesting

Connection harvesting helps to ensure that a specified number of connections are
always available in the pool and improves performance by minimizing connection
initialization. Using connection harvesting in your applications involves enabling the
use of connection harvesting, marking the connection pools as harvestable, and
recovering the harvested connections.

This chapter provides information on how to configure and use connection harvesting
in your applications. The chapter includes the following sections:

* What is Connection Harvesting?
e Enable Connection Harvesting
» Marking Connections Harvestable

» Recover Harvested Connections

9.1 What is Connection Harvesting?

ORACLE

Connection harvesting is particularly useful if an application caches connection
handles. Caching is typically performed for performance reasons because it minimizes
the initialization of state necessary for connections to participate in a transaction.

For example: A connection is reserved from the data source, initialized with

necessary session state, and then held in a context object. Holding connections

in this manner may cause the connection pool to run out of available connections.
Connection harvesting appropriately reclaims the reserved connections and allows the
connections to be reused.

¢ Note:

In WebLogic Server 12.2.1.1.0 and earlier releases, do not enable harvesting
on data sources that are referenced by WebLogic JDBC or TLOG-in-DB
stores. Harvesting may destabilize such stores, which can in turn destabilize
WebLogic JMS or WebLogic JTA. If you want to enable harvesting on a

data source used by WebLogic JDBC or TLOG-in-DB stores in WebLogic
Server 12.2.1.1.0 and earlier releases, contact Oracle Support for a patch
that protects their store connections from getting harvested.

Use the following steps to use connection harvesting in your applications:

1. Enable Connection Harvesting
2. Marking Connections Harvestable

3. Recover Harvested Connections

9-1

Chapter 9
Enable Connection Harvesting

9.2 Enable Connection Harvesting

To enable and specify a threshold to trigger connection harvesting, use Connection
Harvest Trigger Count data source attribute.

For example, if Connection Harvest Trigger Count is setto 10, connection
harvesting is enabled and the data source begins to harvest reserved connections
when the number of available connections drops to 10. A value of -1, the default,
indicates that connection harvesting is disabled. See Connecti on Harvest Trigger
Count .

When connection harvesting is triggered, the Connecti on Harvest Max Count
specifies how many reserved connections should be returned to the pool. The number
of connections actually harvested ranges from 1 to the value of Connecti on Harvest
Max Count, depending on how many connections are marked harvestable.

See Configure connection harvesting for a connection pool in Oracle WebLogic Server
Administration Console Online Help.

9.3 Marking Connections Harvestable

When connection harvesting is enabled, all connections are initially marked
harvestable.

If you do not want a connection to be harvestable, you must explicitly mark it

as unharvestable by calling the set Connect i onHar vest abl e(bool ean) method in
the oracl e. ucp. j dbc. Har vest abl eConnect i on interface with f al se as the argument
value. For example, use the following statements to prevent harvesting when a
transaction is used within a transaction:

Connection conn = datasource. get Connection();
((Harvest abl eConnection) conn). set Connecti onHar vest abl e(fal se);

After work with the connection is completed, you can mark the connection as
harvestable by setting set Connect i onHar vest abl e(true) so the connection can be
harvested if required. You can tell the harvestable status of a connection by calling

i sConnect i onHar vest abl e().

9.4 Recover Harvested Connections

ORACLE

When a connection is harvested, an application callback is executed to cleanup the
connection if the callback has been registered. A unique callback must be generated
for each connection; generally it needs to be initialized with the connection object.

For example:

i mport java.sql.Connection;

publi ¢ myHarvestingCal | back inplenents ConnectionHarvestingCal | back {
private Connection conn;
mycal | back(Connection conn) {
this.conn = conn;

}

9-2

Chapter 9
Recover Harvested Connections

publi ¢ bool ean cl eanup() {

try {
conn. cl ose();

} catch (Exception ignore) {
return fal se;
}

return true;
}

}

Connection conn = ds. get Connection();

try {
(Harvest abl eConnecti on) conn). regi st er Connect i onHar vest i ngCal | back(

new nyHar vestingCal | back(conn));
(Har vest abl eConnecti on) conn) . set Connect i onHar vest abl e(true);
} catch (Exception exception) {
/1 This can't be fromregistration — setConnectionHarvestabl e nust have fail ed.
Il That nost |ikely means that the connection has already been harvested.
/1 Do whatever logic is necessary to clean up here and start over.
t hrow new Exception("Need to get a new connection");

Note:
Consider the following:

e After a connection is harvested, an application can only call
Connection. cl ose.

< If the connection is not closed by the application, a warning is logged
indicating that the connection was forced closed if LEAK profiling is
enabled.

< If the callback throws an exception, a message is logged and the
exception is ignored. Use JDBCCONN debugging to retrieve a full stack
trace.

e The return value of the cleanup method is ignored.

e Connection harvesting releases reserved connections that are marked
harvestable by the application when a data source falls to a
specified number of available connections. By default, this check is
performed every 30 seconds. You can tune this behavior using the
webl ogi c. j dbc. har vest i ngFrequencySeconds system property which
specifies the amount of time, in seconds, the system waits before
harvesting marked connections. Setting this system property to less than
1 disables harvesting.

ORACLE 9-3

Using Shared Pooling Data Sources

Shared pooling provides the ability for multiple data source definitions to share an
underlying connection pool. This feature improves connection utilization and density
when data sources are not heavily used by applications, or are not participating in long
running transaction processing. When configured to connect to an Oracle Container
Database (CDB) environment, the shared pool can easily manage connections to
multiple Pluggable Database (PDB) services.

This chapter provides information on how to configure and use shared pooling. The
chapter includes the following sections:

e How shared Pooling Works
* Requirements and Consideration

e Configuring Shared Pooling

10.1 How shared Pooling Works

When an application component requests a connection from a data source, the shared
pool attempts to locate a connection that matches the database name and service

for the data source.If an existing connection is found, it is returned to the application.
Otherwise, an available connection associated with a different database is reserved
and re-purposed for the requesting data source.

Note:

If there are no available connections in the shared pool, and if capacity is
available, a new connection will be created for the common service and
repurposed for the shared data source requesting the connection.

10.2 Requirements and Considerations when using Shared
Pooling Data Sources

Learn and understand the requirements for using shared pooling.

* Shared pool feature requires the Oracle 12.2 database and the 12.2
JDBC/UCP/ONS client libraries.

» All sharing data source definitions that specify a particular shared pool JNDI name
must have compatible configuration attributes with the shared pooling data source
definitions.

» Separate ONS subscriptions need to be managed for each sharing data source
that defines a unique PDB service.

* The shared pool feature provides support for Generic and Active GridLink data
source types.

ORACLE 10-1

Chapter 10
Configuring Shared Pooling

< Note:

A Generic sharing data source cannot be used as a member data source
in a MDS configuration, as this would result in an exception being raised
at runtime causing the MDS deployment to fail.

* The shared connection pool supports connection matching based on PDB name,
service name and RAC instance name (AGL)

» Shared pooling does not provide support for Pinned-to-thread Optimization,
Application Invoked PDB Switch, and Identity-based pooling and Bl Impersonation
identity options.

10.3 Configuring Shared Pooling

You can configure shared pooling by setting WebLogic Server-specific driver
properties and configuring Database properties.

For information about configuring shared pooling, see the following sections:

e Configuring WebLogic Server-specific driver properties for shared pooling
e Configuring Database for shared pooling

e Example WLST script for configuration of shared pooling

10.3.1 Configuring WebLogic Server-Specific Driver Properties for
Shared Pooling

To configure shared pooling in your environment you need to set the following
properties in the data source:

» Setting the Shared Pool Definition

» Setting the Sharing Data Source Definition

Setting the Shared Pool Definition

» Set the shared pool attribute webl ogi c. j dbc. shar edPool =t r ue.

< Note:

This attribute indicates whether the data source definition represents a
shared connection pool. When this attribute is set to false (default) any
data source referencing the data source as a shared pool will result in a
deployment exception.

Setting the Sharing Data Source Definition

» Set the shared pool JNDI Name webl ogi c. j dbc. shar edPool JNDI Nane=<j ndi name>

ORACLE 10-2

ORACLE

Chapter 10
Configuring Shared Pooling

< Note:

If the data source bound under JNDI Name is not configured as a shared
pool then it will result in deployment exception.

Set the name of the PDB that is associated with the sharing data source
weblogic.jdbc.pdbName=<pdb>.

Note:

If a sharing data source does not specify the PDB name property then
get Connecti on() invocations will return a JDBC connection associated

with the root container, or the default service of the shared pool
configuration.

You can set the PDB Service Name to specify the name of the service set on the
JDBC connection when the connection is repurposed for a specific PDB.

webl ogi c. j dbc. pdbSer vi ceNanme=<servi ce>

< Note:

The PDB service name attribute is optional. When not specified by the
sharing data source configuration a connection will be associated with
the default service of the shared pool data source.

You can set Proxy User property to specify the name of the proxy user and
password to set on the JDBC connection when the connection is repurposed for
the sharing data source.

webl ogi c. j dbc. pdbPr oxy. <pr oxy- user >=<pr oxy- passwor d>

" Note:

Proxy user is only set when a connection is switched to a PDB/

service. When both Proxy User and Role Name attributes are specified,
the Proxy User takes precedence and the role is not set on the database
session.

You can also set the Rol e property to specify a password-protected role to be
set on the JDBC connection when it is repurposed for the sharing data source.
There can be any number of password-protected roles configured for a sharing
data source.

webl ogi c. j dbc. pdbRol e. <r ol e- nane>=<r ol e- passwor d>

10-3

Chapter 10
Configuring Shared Pooling

< Note:

When the Proxy User attribute is also set, it takes precedence and the
role is not set.

< Note:

You can set proxy authentication or password protected roles to secure the
sharing data source. For any given shared pool, you can use only one of
these options.

10.3.2 Configuring Database for Shared Pooling

To configure your Oracle database to support shared pooling, you need to specify a
common database user in the shared pooling data source configuration attributes. This
common user must exist in all PDBs that are connected to the sharing data sources.
This common user must have the following privileges:

e grant execute on dbms_service_prvt to c##user;
e grant set container to c##user;

The shared pooling data source configuration should specify a URL that includes a
common service for the CDB.

The password-protected roles need to be defined for the configured common user in
each PDB connected to by a sharing data source

10.3.3 Example WLST script for configuration of shared pooling

ORACLE

i mport os
def creat eJDBCSyst enResour ce(owner, resourceNane, driver, url, user,
passwor d) :
syst enResour ce=owner . cr eat eJDBCSyst enResour ce(resour ceNane)
syst enResour ce. set Name(r esour ceNane)
j dbcResour ce=syst enResour ce. get JDBCResour ce()
j dbcResour ce. set Nane(resour ceNane)
dri ver Par ans=j dbcResour ce. get JDBCDr i ver Par ans()
if driver:
driverParans. set Dri ver Nane(driver)
if ourl:
driverParans. set Ul (dburl)
properties = driverParans. get Properties()
if user:
properties.createProperty('user', user)
i f password:
driver Par ans. set Passwor d(dbpasswor d)
return systemResource
def creat eSharedPool DS(owner, resourceName, driver, url, user,
passwor d):

10-4

ORACLE

Chapter 10
Configuring Shared Pooling

syst enResource = creat eJDBCSyst enResour ce(owner, resourceNane,
driver, url, user, password)

syst enResour ce. get JDBCResour ce() . get JDBCDr i ver Parans() . get Properties().c
reat eProperty(' webl ogi c.jdbc. sharedPool ', "true')
return systemResource
def createSharingDS(owner, resourceNanme, sharedPool JNDI Narme, pdbNane,
pdbServi ceNane, rol eNanme, rol ePassword)
syst enResour ce = creat eJDBCSyst enResour ce(owner, resourceNane,
driver=None, url=None, user=None, password=None)

properties=syst enResour ce. get JDBCResour ce(). get JDBCDri ver Params(). get Pro
perties()
properties. createProperty(' webl ogic.jdbc. sharedPool JNDI Nane'
shar edPool JNDI Narnre)
i f pdbName:
properties.createProperty("weblogic.jdbc. pdbName", pdbNane)
i f pdbServi ceName:
properties.createProperty("weblogic.jdbc. pdbServi ceName"
pdbSer vi ceNane)
i f rol eNane:

rol eprop=properties.createProperty("webl ogic.jdbc. pdbRol e. " +r ol eName)

i f rol ePassword:

rol eprop. set Encr ypt edVal ue(r ol ePasswor d)

return systemResource
server name=' nyserver'
shar edpool nane=" shar edpool
shari ngdslnane=" sharingdsl'
shari ngds2nane=" shari ngds2
driver="oracle.jdbc. OracleDriver'
dburl =" j dbc: oracl e: t hi n: @ost: 1521/ orcl
dbuser =' c##1'
dbpasswor d=' xyzzy
pdbl='pdbl
pdblservice=' coke
pdblrol e=' cokerol e'
pdblrol epwd=" cokepwd'
pdb2=" pdb2
pdb2ser vi ce=" pepsi
pdb2r ol e=' pepsirol €'
pdb2r ol epwd=" pepsi pwd'
connect (' webl ogic', 'weblogic', 't3://local host:7001")
edit()
create shared pool datasource
startEdit()
spds=cr eat eShar edPool DS(cmo, shar edpool nane, driver, dburl, dbuser
dbpasswor d)
spds. addTar get (get MBean(' / Servers/' +servernane))
activate()
startEdit()
create sharing datasource 1
shari ngdsl=creat eShari ngDS(owner =cno, resourceNane=sharingdslnane,
shar edPool JNDI Name=shar edpool nane, pdbName=pdbl
pdbSer vi ceNane=pdblservi ce, rol eName=pdblrol e, rol ePassword=pdblrol epwd)

10-5

ORACLE

Chapter 10
Configuring Shared Pooling

sharingdsl. addTar get (get MBean('/ Servers/' +servernane))

create sharing datasource 2

shari ngds2=cr eat eShari ngDS(owner =cno, resour ceNane=shari ngds2nane,
shar edPool JNDI Name=shar edpool nane, pdbName=pdb2

pdbSer vi ceNane=pdb2servi ce, rol eName=pdb2rol e

rol ePasswor d=pdb2r ol epwd)

sharingds2. addTar get (get MBean(' / Servers/' +servernane))

activate()

exit()

10-6

Advanced Configurations for Oracle
Drivers and Databases

Oracle provides advanced configuration options such as application continuity,
database resident connection policy, global database services to improve data source
and driver performance when using Oracle drivers and databases. These configuration
options help in management of connection reservation in the data source.

This chapter includes the following sections:

* Application Continuity

» Database Resident Connection Pooling

* Global Database Services

e Container Database with Pluggable Databases

» Limitations with Tenant Switching

11.1 Application Continuity

Application Continuity (also referred to as Replay) is a general purpose, application-
independent infrastructure for GridLink and Generic data sources that enables

the recovery of work from an application perspective and masks many system,
communication, and hardware failures.

In today's environment, application developers are required to deal explicitly with
outages of the underlying software, hardware, communications, and storage layers.
As a result, application development is complex and outages are exposed to the end
users. For example, some applications warn users not to hit the submit button twice.
When the warning is not heeded, users may unintentionally purchase items twice or
submit multiple payments for the same invoice.

Application Continuity semantics assure that end-user transactions can be executed
on time and at-most-once. The only time an end user should see an interruption in
service is when the outage is such that there is no point in continuing.

The following sections provide information on how to configure and use Application
Continuity:

* How Application Continuity Works
* Requirements and Considerations
* Configuring Application Continuity
* Viewing Runtime Statistics for Application Continuity

e Limitations with Application Continuity with Oracle 12c Database

ORACLE 11-1

Chapter 11
Application Continuity

11.1.1 How Application Continuity Works

Following any outage that is due to a loss of database service, planned or unplanned,
Application Continuity rebuilds the database session. Once an outage is identified by
Fast Application Notification or a recoverable ORACLE error, the Oracle driver:

» Establishes a new database session to clear any residual state.

» If a callback is registered, issues a callback allowing the application to re-establish
initial state for that session.

* Executes the saved history accumulated during the request.

The Oracle driver determines the timing of replay calls. Calls may be processed
chronologically or using a lazy processing implementation depending on how the
application changes the database state. The replay is controlled by the Oracle 12c
Database Server. For a replay to be approved, each replayed call must return exactly
the same client visible state that was seen and potentially used by the application
during the original call execution.

Figure 11-1 Application Continuity

Application Continuity (G)

Unplanned or 1 Request 6 Response...
Planned Outage //

JDBC/OCI,
Pool or
WebLogic

12c Database

11.1.2 Requirements and Considerations

ORACLE"

The following section provides requirements and items to consider when using
Application Continuity with WebLogic applications:

* Requires an Oracle 12c JDBC Driver and Database. See Using an Oracle 12¢
Database.

* Application Continuity supports read and read/write transactions. XA transactions
are not supported. To support transactions using non-XA drivers such as
an Oracle driver for Application Continuity, see Enabling Support for Global
Transactions with a Non-XA JDBC Driver in Administering JDBC Data Sources
for Oracle WebLogic Server for information.

11-2

Chapter 11
Application Continuity

< Note:

Remember to call connecti on. set Aut oCommi t (f al se) in your
application to prevent breaking the transaction semantics and disabling
Application Continuity in your environment.

Deprecated or acl e. sgl . * concrete classes are not supported. Occurrences
should be changed to use either the corresponding or acl e. j dbc. * interfaces
orjava. sql . * interfaces. Oracle recommends using the standard j ava. sqgl . *
interfaces. See Using API Extensions for Oracle JDBC Types in Developing JDBC
Applications for Oracle WebLogic Server.

Application Continuity works by storing intermediate results in memory. An
application may run slower and require significantly more memory than running
without the feature.

If the WebLogic statement cache is configured with Application Continuity, the
cache is cleared every time the connection is replayed.

There are additional limitations and exceptions to the Application Continuity
feature which may affect whether your application can use Replay. For more
information, see "Application Continuity for Java" in the Oracle® Database JDBC
Developer's Guide.

The database service that is specified in the URL for the data source must be
configured with the failover type set to TRANSACTI ON and the - comrmi t _out conme
parameter to TRUE . For example:

srvct! nodify service -d nydb -s nyservice -e TRANSACTI ON -
commit _outcome TRUE -rlbgoal SERVICE TIME -cl bgoal SHORT

11.1.3 Configuring Application Continuity

The following sections provide information on how to implement Application Continuity
in your environment:

Selecting the Driver for Application Continuity
Using a Connection Callback

Setting the Replay Timeout

Disabling Application Continuity for a Connection
Configuring Logging for Application Continuity
Enabling JDBC Driver Debugging

11.1.3.1 Selecting the Driver for Application Continuity

ORACLE

Configure your data source to use the correct JDBC driver using one of the following
methods:

If you are creating a new data source, when asked to select a Database driver
from the drop-down menu in the configuration wizard, select the appropriate
Oracle driver that supports Application Continuity for your environment. See
Enable Application Continuity in Oracle WebLogic Server Administration Console
Online Help.

11-3

Chapter 11
Application Continuity

* If you are editing an existing data source in the Administrator Console,
select the Connection Pool tab, change the Driver Class Name to
oracle.jdbc. repl ay. Oracl eDat aSour cel npl , and click Save.

e When creating or editing a data source with a text editor or WLST, set the JDBC
driver to oracl e. j dbc. repl ay. Or acl eDat aSour cel npl .

See Requirements and Considerations.

11.1.3.2 Using a Connection Callback

The following sections provide information on how to use a Connection Callback:
e Create an Initialization Callback
e Registering an Initialization Callback

* Unregister an Initialization Callback

11.1.3.2.1 Create an Initialization Callback

ORACLE

To create a connection initialization callback, your application must
implementtheinitialize(java.sql.Connection connection) method of the

oracl e. ucp. jdbc. ConnectionlnitializationCallback interface. Only one callback
can be created per connection pool.

The callback is ignored if a labeling callback is registered for the connection pool.
Otherwise, the callback is executed at every connection check out from the pool and
at each successful reconnect following a recoverable error at replay. Use the same
callback at runtime and at replay to ensure that exactly the same initialization that
was used when the original session was established is used during the replay. If the
callback invocation fails, replay is disabled on that connection.

Note:

Connection Initialization Callback is not supported for clients (JDBC over
RMI).

Connection callback once registered will be called even without Oracle
driver.

The following example demonstrates a simple initialization callback implementation:

i nport oracle.ucp.jdbc. ConnectionlnitializationCallback ;

class MyConnectionlnitializationCallback inplenments ConnectionlnitializationCallb
ack {

public MyConnectionlnitializationCallback() {

}

public void initialize(java.sql.Connection connection) throws SQLException {

Il Re-set the state for the connection, if necessary

}

}

11-4

Chapter 11
Application Continuity

11.1.3.2.2 Registering an Initialization Callback

The W.Dat aSour ce interface provides the

regi sterConnectionlnitializationCallback(ConnectionlnitializationCallback
cal I back) method for registering initialization callbacks. Only one callback

may be registered on a connection pool. The following example

demonstrates registering an initialization callback that is implemented in the
MyConnectionlnitializationCallback class:

i nport webl ogi c. j dbc. ext ensi ons. W.Dat aSour ce;

MyConnectionlnitializationCallback call back = new MyConnectionlnitializationCallb
ack();
((W.Dat aSour ce) ds) . regi ster ConnectionlnitializationCallback(callback);

The callback can also be registered by entering the callback class in the Connection
Initialization Callback attribute on the Oracle tab for a data source in the WebLogic
Server Administration Console. Oracle recommends configuring this callback attribute
instead of setting the callback at runtime. See Enable Application Continuity in Oracle
WebLogic Server Administration Console Online Help.

11.1.3.2.3 Unregister an Initialization Callback

The W.Dat aSour ce interface provides the

unregi sterConnectionlnitializationCallback() method for unregistering a
ConnectionlnitializationCallback. The following example demonstrates removing
an initialization callback:

i mport webl ogi c. j dbc. ext ensi ons. W.Dat aSour ce;
((W.Dat aSour ce) ds) . unr egi st er ConnectionlnitializationCall back();

11.1.3.3 Setting the Replay Timeout

ORACLE

Use the Repl ayl ni tiationTi neout attribute on the Oracle tab for a data source in
the WebLogic Server Administration Console to set the amount of time a data source
allows for Application Continuity replay processing before timing out and ending a
replay session context for a connection.

For applications that use the WebLogic HTTP request timeout, make sure to set the
Repl ayl nitiationTi meout appropriately:

e You should set the Repl ayl ni tiationTi neout value equal to the HTTP session
timeout value to ensure the entire HTTP session is covered by a replay session.
The default Repl ayl ni ti ati onTi meout and the default HTTP session timeout are
both 3600 seconds.

* If the HTTP timeout value is longer than Repl ayl ni ti ati onTi neout value, replay
events will not be available for the entire HTTP session.

» |If the HTTP timeout value is shorter than the Repl ayl ni ti ati onTi meout value,
your application should close the connection to end the replay session.

11-5

Chapter 11
Application Continuity

11.1.3.4 Disabling Application Continuity for a Connection

You can disable Application Continuity on a per-connection basis using the following:

i f (connection instanceof oracle.jdbc.replay.Replayabl eConnection) {
((oracle.jdbc.replay. Repl ayabl eConnecti on) connecti on). di sabl eRepl ay();

}

You can disable application continuity at the database service level by modifying the
service to have a failover type of NONE. For example:

srvctl nodify service -d nmydb -s nyservice -e NONE

You can also disable application continuity at the data source level by setting the
ReplayINitializationTimeout to 0. When set to zero (0) seconds, replay processing
(failover) is disabled (begin and endRequest are still called).

11.1.3.5 Configuring Logging for Application Continuity

To enable logging of Application Continuity processing, use the following WebLogic
property:

- Duebl ogi c. debug. DebugJDBCRepl ay=t r ue

Use -Djava. util.logging.config.file=configfile,whereconfigfile isthe path
and file name of the configuration file property used by standard JDK logging, to
control the log output format and logging level. The following is an example of a
configuration file that uses the SimplFormatter and sets the logging level to FI NEST:

handl ers = java.util.loggi ng. Consol eHandl er
java.util.logging. Consol eHandl er.level = ALL
java.util.logging. Consol eHandl er.formatter = java.util.logging.Sinpl eFormatter
#OR - use other formatters |ike the ones bel ow

#j ava. util .l oggi ng. Consol eHandl er.formatter = java.util.loggi ng. XM_For natter

#j ava. util .l oggi ng. Consol eHandl er.formatter = oracle.ucp.util.logging. UCPFornatte

r

#OR - use FileHandl er instead of Consol eHandl er

#handl ers = java.util.logging.Fil eHandl er

#java. util .l ogging. FileHandl er.pattern = replay.log
#java.util.logging.FileHandl er.limt = 3000000000
#java.util .l ogging. FileHandl er.count =1

#java.util.logging.FileHandl er.formatter = java.util.logging. Sinpl eFornatter
oracle.jdbc.internal.replay.level = FINEST

See Adding WebLogic Logging Services to Applications Deployed on Oracle
WebLogic Server.

ORACLE 11-6

Chapter 11
Application Continuity

11.1.3.6 Enabling JDBC Driver Debugging

To enable JDBC driver debugging, you must configure Java Util Logging. To do so, set
the following properties on the command line as follows:

-Djava. util.logging.config.file=configfile
-Doracl e.jdbc. Trace=true

In this command, confi gfil e is the path and file name of the configuration property
file property used by standard JDK logging to control the log output format and logging
level.

The confi gf i | e must include one of the following lines:

e oracle.jdbc.internal.replay.|evel =FI NEST—Replay debugging
e oracle.jdbc.level = FI NEST—Standard JDBC debugging

For more information, see java.util.logging in Java Platform Standard Edition 7 API
Specification.

11.1.4 Viewing Runtime Statistics for Application Continuity

This topic describes Runtime statics for application continuity.

Application Continuity (or Replay) statistics are available using the
JDBCReplayStatisticsRuntimeMBean for Generic and Active GridLink data sources.

The JDBCRepl aySt ati sti csRunti meMBean:

* Is available for Generic and Active GridLink data sources. It is not available (null is
returned) for Multi Data Source (MDS), PROXY, and UCP data sources

* Is available only if running with the 12.1.0.2 or later Oracle thin driver. It is not
available (null is returned) for earlier driver versions.

* Is available only if the data source is configured to use the replay driver. It is not
available (null is returned) for non-replay drivers (such as the Oracle driver and XA
drivers)

* Will not have any statistics set initially (they will be initialized to -1). You must call
therefreshStatistics() operation on the MBean to update the statistics before
getting them.

Note:

Refreshing the statistics is a heavy operation. It locks the entire pool and
runs through all reserved and unreserved connections aggregating the
statistics. Running this operation frequently will impact the performance of
the data source. Performance can also be impacted when clearing the
statistics.

Table 11-1 lists the statistics that you can access using the
JDBCReplayStatisticsRuntimeMBean.

ORACLE 11-7

https://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/package-summary.html

ORACLE

Chapter 11
Application Continuity

Table 11-1 Runtime Statistics for JDBCReplayStatisticsRuntimeMBean

Name

Description

TotalRequests

Total number of successfully submitted
requests.

TotalCompletedRequests

Total number of completed requests.

TotalCalls

Total number of JDBC calls executed.

TotalProtectedCalls

Total number of JDBC calls executed that are
protected by Application Continuity.

TotalCallsAffectedByOutages

Total number of JDBC calls affected by
outages. This includes both local calls and
calls that involve roundtrip(s) to the database
server.

TotalCallsTriggeringReplay

Total number of JDBC calls that triggered
replay. Replay can be disabled for some
requests, therefore not all calls affected by an
outage trigger replay.

TotalCallsAffectedByOutagesDuringReplay

Total number of JDBC calls affected by
outages in the middle of replay. Outages may
be cascaded and strike a call multiple times
when replay is ongoing. Application Continuity
automatically reattempts replay when this
happens, unless it reaches the maximum retry
limit.

SuccessfulReplayCount

Total number of replays that succeeded.
Successful replays mask the outages from
applications.

FailedReplayCount

Total number of replays that failed.

When replay fails, it rethrows the original
SQLRecoverableException to the application,
along with the reason for the failure chained to
the original exception. The application can call
getNextException to retrieve the reason.

ReplayDisablingCount

Total number of times that replay is disabled.

When replay is disabled in the middle of a
request, the remaining calls in that request are
no longer protected by Application Continuity.
If an outage strikes one of the remaining calls,
no replay is attempted, and the application
gets an SQLRecoverableException.

TotalReplayAttempts

Total number of replay attempts. Application
Continuity automatically reattempts when
replay fails, so this number may exceed the
number of JDBC calls that triggered replay.

For more information, see:

* JDBCReplayStatisticsRuntimeMBean in MBean Reference for Oracle WebLogic

Server.

* ReplayableConnection.StatisticsReportType in Oracle JDBC Java API Reference

11-8

http://docs.oracle.com/database/121/JAJDB/oracle/jdbc/replay/ReplayableConnection.StatisticsReportType.html

ORACLE

Chapter 11
Application Continuity

Example 11-1 WLST Sample

You can access the statistics on the runtime MBean using WLST. The
following sample WLST script shows how to print the information on the
JDBCRepl aySt ati sticsRunti neMBean:

i mport sys, socket, o0s

host name = socket . get host nanme()

dat asour ce=' JDBC Gi dLi nk Data Source-0'

svr='nyserver'

connect ("webl ogi ¢", "password", "t 3://"+host name+": 7001")

serverRuntime()

cd('/JDBCServiceRuntine/" + svr + '/JDBCDataSourceRunti neMBeans/' +
dat asource + '/JDBCRepl ayStatisticsRuntimeMBean/' +
datasource + '.ReplayStatistics')

cmo. refreshStatistics()

I's()

t ot al =cnm. get Tot al Request s()

cmo. clearStatistics()

Example 11-2 Java Sample

The following Java example demonstrates how to expose the statistics using the
JDBCRepl aySt ati sticsRunti neMBean:

i nport javax.nam ng. Nani ngExcepti on;
i mport javax. managenent. Attri but eNot FoundExcepti on;
i mport j avax. managenent. MBeanServer ;
i mport j avax. managenent. | nst anceNot FoundExcepti on;
i nport javax.management. Refl ectionException
i nport javax. management. Cbj ect Nane;
i mport javax. managenent. Mal f or medChj ect NaneExcept i on;
i nport javax.management. MBeanAttri but el nfo;
i nport javax.management. MBeanQper ati onl nf o;
i mport javax. managenent. MBeanExcepti on;
i nport javax.management. MBeanPar anet er | nf o;
i mport webl ogi c. management. runti me. JDBCRepl aySt ati sti csRunti neMBean;
public void printReplayStats(String dsName) throws Exception {
MBeanServer server = get MBeanServer();
bj ect Nare[] dsRTs = get JdbcDat aSour ceRunt i neMBeans(server);
for (CbjectNanme dsRT : dsRTs) {
String nane = (String) server.getAttribute(dsRT, "Nane");
i f (nane.equal s(dsName)) {
(bj ect Name nb = (bj ect Nanme) server. get Attri but e(dsRT,
" JDBCRepl aySt ati sti csRunti meMBean");
server.invoke(nmb, "refreshStatistics", null, null);
MBeanAttributelnfo[] attributes =
server. get MBeanl nfo(nb).get Attributes();
for (int i =0; i <attributes.length; i++) {
if (attributes[i].getType().equals("java.lang.Long")) {
Systemout.printin(attributes[i].getNang()+"="+
(Long) server.getAttribute(mb, attributes[i].getNane()));

11-9

Chapter 11
Application Continuity

}

}

MBeanServer get MBeanServer () throws Exception {
Initial Context ctx = new Initial Context();
MBeanServer server = (MBeanServer) ctx.|ookup("java: conp/env/jnx/

runtinme");

return server;

}

(bj ect Name[] get JdbcDat aSour ceRunt i meMBeans(MBeanSer ver server)

throws Exception {

bj ect Narme service = new Qbj ect Name(

"com bea: Name=Runt i neSer vi ce, Type=webl ogi c. nenagenent . mheanservers. runti
me . Runti neServi ceMBean");
bj ect Narme server RT = (Obj ect Nane) server.getAttribute(service,
"Server Runtine");
bj ect Nare j dbcRT = (Cbj ect Nane) server.get Attribute(serverRT,
" JDBCSer vi ceRunti ne") ;
bj ect Nanme[] dsRTs = ((bjectName[]) server.getAttribute(jdbcRT,
" JDBCDat aSour ceRunt i meMBeans") ;
return dsRTs;

11.1.5 Application Continuity Auditing

ORACLE

During a ConnectionlnitializationCallback, between the first connection initialization
and reinitialization during replay, the application may want to know when the
connection work is being replayed. The getReplayAttemptCount() method on the
WLConnection interface is available to get the number of times that replay is
attempted on the connection.

When a connection is first being initialized, it will be set to 0. For subsequent
initialization of the connection when it is being replayed, it will be set to a value greater
than 0.

Note:

This counter only indicates attempted replays since it is possible for replay to
fail for various reasons (after which the connection is no longer valid). For a
non-replay driver, it will always return O.

Example 11-3 WLST Sample

The following is a sample callback class for initializing the connection. It assumes
that there is some mechanism for getting an application identifier associated with the
current work or transaction..

i mport java.sql.SQLException;

import java.util.Date;

i mport java.text.SinpleDateFormat;

import java.util.Properties;

i mport webl ogi c. j dbc. ext ensi ons. W.Connect i on;

i mport oracle.ucp.jdbc. ConnectionlnitializationCallback;

11-10

Chapter 11
Database Resident Connection Pooling

public class callback inplements ConnectionlnitializationCallback {
final String idLabel = "GQUU D";
public call back() {

}

public void initialize(java.sql.Connection conn) throws SQ.Exception {
if (((W.Connection)conn).getReplayAttenptCount() == 0) {

[l first time - initialize the |abel value

((WL.Connecti on) conn) . appl yConnect i onLabel (i dLabel ,

Application. getGuuid());

/] Get the id fromsonewhere and store it in the connection | abel
} else {

Properties props = ((W.Connection)conn).get Connecti onLabel s();
String val ue = props. get Property(idLabel);

Systemout. println("Transaction '"+value+"' is getting replayed at " +
new Si npl eDat eFor mat ("yyyy- M4t dd HH: nm ss. SSS") . f or mat (new
Date()));

}

}

}

11.1.6 Limitations with Application Continuity with Oracle 12¢c
Database

The following section provides information on limitations when using Oracle Database
Release 12c¢ with Application Continuity:

 DRCP is not supported. That is, a web request will not be replayed and the
original java.sql.SQ.Recoverabl eExcepti on is thrown if an outage occurs.

e Cannot be used with PDB tenant switching using ALTER SESSI ON SET CONTAI NER.

11.2 Database Resident Connection Pooling

Database Resident Connection Pooling (DRCP) provides the ability for multiple web-
tier and mid-tier data sources to pool database server processes and sessions that are
resident in an Oracle database.

See Database Resident Connection Pooling (DRCP) at http: // www. or acl e. com
technetwork/articles/oracl edrcpllg-1-133381. pdf.

The following sections provide more information on using and configuring DRCP in
WebLogic Server:

* Requirements and Considerations

» Configuring a Data Source for DRCP

11.2.1 Requirements and Considerations

The following section provides requirements and items to consider when using DRCP
with WebLogic applications:

* Requires an Oracle 12c JDBC Driver and Database. See Using an Oracle 12c
Database.

ORACLE 11-11

http://www.oracle.com/technetwork/articles/oracledrcp11g-1-133381.pdf

Chapter 11
Database Resident Connection Pooling

If the WebLogic statement cache is configured along with DRCP, the cache is
cleared every time the connection is returned to the pool with cl ose().

WebLogic Server data sources do not support connection labeling on DRCP
connections and a SQLExcept i on is thrown. For example, using get Connect i on
with properties on W.Dat aSour ce or a method on Label abl eConnecti on is

called, generates an exception. Note, r egi st er Connect i onLabel i ngCal | back and
removeConnect i onLabel i ngCal | back on W.Dat aSour ce are permitted.

WebLogic Server does not support defining the
oracl e. j dbc. DRCPConnect i onCl ass as a system property. It must be defined as
a connection property in the data source descriptor.

For DRCP to be effective, applications must return connections to the connection
pool as soon as work is completed. Holding on to connections and using
harvesting defeats the use of DRCP.

When using DRCP, the JDBC program must attach to the server before
performing operations on the connection and must detach from the server to
allow other connections to use the pooled session. By default, when the JDBC
program is attaching to the server, it does not actually reserve a session but
returns and defers the reservation until the next database round-trip. As a
result, the subsequent database operation may fail because it cannot reserve
a session. To prevent this from happening, there is a network timeout value
that forces a round-trip to the database after an attach to the server. Once
this occurs, the network timer is unset. The default network timeout is 10,000
milliseconds. You can set it to another value by setting the system property
webl ogi c. j dbc. at t achNet wor kTi meout .

This property is the timeout, in milliseconds to wait for the attach to be done and
the database round trip to return. If set to 0, then the additional processing around
the server attach is not done.

For more information on configuring DRCP, see Configuring Database Resident
Connection Pooling in the Oracle® Database Administrator's Guide.

11.2.2 Configuring DRCP

The following sections provide information on how to configure DRCP in your
environment:

Configuring a Data Source for DRCP
Configuring a Database for DRCP

11.2.2.1 Configuring a Data Source for DRCP

To configure your data source to support DRCP:

ORACLE

If you are creating a new data source, on the Connection Properties tab of the
data source configuration wizard, under Additional Configuration Properties,
enter the DRCP connection class in the oracle.jdbc.DRCPConnectionClass
field. See Create JDBC generic data sources and Create JDBC Active GridLink
data sources in Oracle WebLogic Server Administration Console Online Help.

In the resulting data source:

— The suffix : POOLED is added to the constructed short-form of the URL. For
example: j dbc: oracl e:thin: @/ host: port/servi ce_name: POOLED

11-12

http://www.oracle.com/pls/topic/lookup?ctx=fmw121400&id=ADMIN12349
http://www.oracle.com/pls/topic/lookup?ctx=fmw121400&id=ADMIN12349

Chapter 11
Database Resident Connection Pooling

— For the service form of the URL, (SERVER=POOLED) is added after the
(SERVI CE_NAME=nane) parameter in the CONNECT _DATA element.

— The value/name pair of the DRCP connection class appears as
a connection property on the Connection Pool tab. For example:
oracl e. j dbc. DRCPConnect i onCl ass=myDRCPcl ass.

If you are editing an existing data source in the Administrator Console, select the
Connection Pool tab:

— Change the URL to include a suffix of : POOLED or (SERVER=POOLED) for service
URLs.

— Update the connection properties to include the value/
name pair of the DRCP connection class. For example:
oracl e. j dbc. DRCPConnect i onCl ass=myDRCPcl ass.

— Click Save.
When creating or editing a data source with a text editor or using WLST:

— Change the URL element to include a suffix of : POOLED
or (SERVER=POOLED) for service URLs. For example:
<ur | >j dbc: oracl e:thin: @ost:port:service: POOLED</ ur| >

— Update the connection properties to include the value/name pair of the DRCP
connection class. For example:

<properties>
<property>
<name>aname</ name>
<val ue>aval ue</ val ue>
</ property>
<property>
<nanme>or acl e. j dbc. DRCPConnect i onCl ass</ nane>
<val ue>nmyDRCPcl ass</ val ue>
</ property>
</ properties>
WebLogic Server throws a configuration error if the a datasource definition has
aoracl e.j dbc. DRCPConnect i onCl ass connection property or a POOLED URL but
not both. This validation is performed when testing the connection listener in

the console, deploying a datasource during system boot, or when targeting a
datasource.

Set Test Connect i onsOnReser ve=t r ue to minimize problems with MAX_TH NK_TI ME.
See Configuring a Database for DRCP.

Set Test FrequencySeconds to a value less than | NACTI VI TY_TI MEQUT. See
Configuring a Database for DRCP.

11.2.2.2 Configuring a Database for DRCP

To configure your Oracle database to support DRCP:

ORACLE

DRCP must be enabled on the Database side using:

sqL>
DBMS_CONNECTI ON_POOL. CONFI GURE_POOL(' SYS_DEFAULT_CONNECTI ON_POOL')

SQL> EXECUTE DBMS_CONNECTI ON_POOL. START_POOL():

The following parameters of the server pool configuration must be set correctly:

11-13

Chapter 11
Global Database Services

— MAXSI ZE: The maximum number of pooled servers in the pool. The default
value is 40. The connection pool reserves 5% of the pooled servers
for authentication and at least one pooled server is always reserved for
authentication. When setting this parameter, ensure that there are enough
pooled servers for both authentication and connections.

It may be necessary to set MAXSI ZE to the size of the largest WebLogic
connection pool using the DRCP.

— | NACTI VI TY_TI MEQUT: The maximum time, in seconds, the pooled server can
stay idle in the pool. After this time, the server is terminated. The default value
is 300. This parameter does not apply if the server pool has a size of M NSI ZE.

If a connection is reserved from the WebLogic datasource and then not used,
the inactivity timeout may occur and the DRCP connection will be released.
Set | NACTI VI TY_TI MEQUT appropriately or return connections to the WebLogic
datasource if they will not be used. You can also use Test FrequencySeconds
to ensure that unused connections don't time out.

— MAX_THI NK_TI ME: The maximum time of inactivity, in seconds, for a client after
it obtains a pooled server from the pool. After obtaining a pooled server
from the pool, if the client application does not issue a database call for the
time specified by MAX_THI NK_TI Mg, the pooled server is freed and the client
connection is terminated. The default value is 120.

If a connection is reserved from the WebLogic datasource and no activity
is done within the MAX_THI NK_TI ME, the connection is released. You can
set Test Connections On Reserve (see Testing Reserved Connections)
or set MAX_THI NK_TI ME appropriately. You can minimize the overhead of
testing connections by setting Secondst oTr ust anl dl ePool Connecti on to a
reasonable value less than MAX_THI NK_TI ME. See Tuning Data Source
Connection Pools.

If the server pool configuration parameters are not set correctly for your
environment, your datasource connections may be terminated and your
applications may receive an error, such as a socket exception, when accessing
a WebLogic datasource connection.

11.3 Global Database Services

Global Data Services (GDS) enables you to use a global service to provide seamless
central management in a distributed database environment. A global server provides
automated load balancing, fault tolerance and resource utilization across multiple RAC
and single-instance Oracle databases interconnected by replication technologies such
as Data Guard or GoldenGate.

The following sections provide information on requirements and configuration for GDS
in WebLogic Server:

* Requirements and Considerations

e Creating a GridLink DataSource for GDS Connectivity

11.3.1 Requirements and Considerations

The following section provides requirements and considerations when using Global
Database Services in WebLogic Server:

ORACLE 11-14

Chapter 11
Container Database with Pluggable Databases

* Requires an Oracle 12c JDBC Driver and Database. See Using an Oracle 12c
Database.

* Itis not possible to use a single SCAN address to replace multiple Global Service
manger (GSM) addresses.

» For update operations to be handled correctly, you must define a service for
updates that is only enabled on the primary database.

» Define a separate service for Read-only operations that is located on the primary
and secondary databases.

» Since only a single service can be defined for a URL and a single URL for a
datasource configuration, one datasource must be defined for the update service
and another datasource defined for the read-only service.

* Your application must be written so that update operations are process by the
update datasource and read-only operations are processed by the read-only
datasource.

11.3.2 Creating a GridLink DataSource for GDS Connectivity

Use the WebLogic Server Administration Console to create a GridLink datasource that
uses a modified URL to provide GDS connectivity. See Create JDBC Active GridLink
data sources in the Oracle WebLogic Server Administration Console Online Help.

The connection information for a GDS URL is similar to a RAC Cluster, containing the
following basic information:

e Service name (Global Service Name)

e Address/port pairs for Global Service Managers
e GDS Region in the CONNECT_DATA parameter
The following is a sample URL:

j dbc: oracl e: thin: @DESCRI PTI ON=
(ADDRESS_LI ST=(LOAD_BALANCE=ON) (FAI LOVER=QON)
(ADDRESS=(HOST=nyHost 1. com) (PORT=1111) (PROTOCOL=t cp))
(ADDRESS=(HOST=nyHost 2. com) (PORT=2222) (PROTOCOL=t cp)))
(CONNECT_DATA=(SERVI CE_NAME=ny. gds. cl oud) (REG ON=west)))

11.4 Container Database with Pluggable Databases

ORACLE

Container Database (CDB) is an Oracle Database feature that minimizes the overhead
of having many of databases by consolidating them into a single database with
multiple Pluggable Databases (PDB) in a single CDB.

See Managing Pluggable Databases in Enterprise Manager Lifecycle Management
Administrator's Guide.

* Creating Service for PDB Access
 DRCP and CDB/PDB
e Setting the PDB using JDBC

11-15

Chapter 11
Container Database with Pluggable Databases

11.4.1 Creating Service for PDB Access

Access to a PDB is completely transparent to a WebLogic Server data source. It is
accessed like any other database using a URL with a service. The service must be
associated with the PDB. It can be created in SQLPIus by associating a session with
the PDB, creating the service and starting it.

alter session set container = cdbl_pdbl; -- configure service for each PDB
execute

dbns_service. create_service(' repl aytest_cdbl_pdbl.regress.rdbns. dev. us. nyConpany.
con, ' replaytest_cdbl_pdbl.regress.rdbns. dev. us. nyConpany. coni);

execute

DBVMS_SERVI CE. START_SERVI CE(' repl ayt est _cdbl_pdbl. regress. rdbns. dev. us. nyConpany. c
on);

If you want to set up the service for use with Application Continuity, it needs to be
appropriately configured. For example, SQLPIus:

decl are

paranms dbns_servi ce. svc_parameter_array ;
begi n

params('goal ') := 'service_tine' ;
paranms(' commit_outcome') := '"true' ;
parans('ag_ha_notifications') := "true' ;
params(' failover_nethod') := "BASIC ;
parans(' failover_type') :='TRANSACTION ;
paranms(' failover_retries') := 60 ;
parans('failover_delay') := 2 ;

dbns_service. modi fy_service(' repl aytest _cdbl_pdbl.regress.rdbns. dev. us. nyConpany.
com, parans);

end;

/

11.4.2 DRCP and CDB/PDB

DRCP cannot be used in a PDB. It must be associated with a CDB only. To configure,
set a session to point to the CDB and start the DRCP pool. For example:

alter session set container = cdb$root;
execut e dbns_connection_pool . configure_pool (' SYS_DEFAULT_CONNECTI ON_POOL');
execut e dbms_connection_pool . start_pool ();

11.4.3 Setting the PDB using JDBC

ORACLE

Initially when a connection is created for the pool, it is created using the URL with

the service associated with a specific PDB in a CDB. It is possible to dynamically
change the PDB within the same CDB. Changing PDB's is done by executing the SQL
statement:

ALTER SESSI ON SET CONTAI NER = name SET SERVI CE servi cenane;

Specifying SET SERVI CE servi cenane allows for an explicit service to be configured
by the application and named. This allows for support of Load Balancing Advisories,
Session Affinity , FAN, Application Continuity, and Proxy Authentication. These
features are not available without the SET SERVICE servicename clause.

After the container is changed, the following do not change:

11-16

Chapter 11
Service Switching

The RAC instance
The connection object
The WebLogic connection lifecycle (enabl ed/di sabl ed/dest r oyed)

The WebLogic connection attributes.

Any remaining state on the connection is cleared to avoid leaking information between
PDB's.

If configured, the following are reset:

Application Continuity (Replay)
DRCP

client identifier

proxy user

The connection harvesting callback.

< Note:

DRCP is not supported with PDB switching

11.5 Service Switching

Learn about the limitations of service switching.

ORACLE

The limitations of using service switching with WebLogic Server are as follows:

Service switching has no impact on where the service is offered.

Service switching is only allowed only when the service is published at that
instance.

Service switching is only allowed at request boundaries. This is necessary for
Application Continuity to work correctly.

Service switching is only allowed at a top level call (no user call is active).
Service switching is not supported with DRCP.
Service switching returns an error if there is an open transaction, local or XA.

Service attributes set at switch are never carried over from earlier usage. The
application must set up the session appropriately.

Service switching is supported in non-CDB environments as wells as CDB
environments. In the non-CDB environment, the container cannot change.

As with the earlier version, the service name may change during the switch but the
instance name may not change.

XA affinity is based on a service_name, database _name, instance_name triple.
When the service changes, there is no XA affinity enforced.

11-17

ORACLE

Chapter 11
Service Switching

< Note:

There is a limitation for Generic, AGL, and UCP datasources. Fast
Application Notification (FAN) and Fast Connection Failover (FCF) are
service based. When the data source is created, a subscription is set up

for the configured service name. The data source will receive events for
instance and service up and down. When the application switches the
service, service up and down events will not be received for the new

service name. Since gradual draining and scheduled maintenance are based
on stopping the service allowing connections to drain before the instance

is stopped, scheduled maintenance (planned down) does not work with
application service switching. When the instance is stopped, a down event
will be processed and the connections closed. WebLogic Server shared
pooling manages multiple subscriptions and the resulting FAN service events
properly.

11-18

Using Oracle Databases with WebLogic
Server

WebLogic JDBC provides several features that specifically require the use of Oracle
Database and the Oracle Database JDBC driver.

For information about how to use WebLogic Server data source with Oracle Database,
see the following sections:

* WebLogic JDBC Features for Oracle Database 12.1
* WebLogic JDBC Features for Oracle Database 12.2

12.1 WebLogic JDBC Features for Oracle Database 12.1

Learn about Oracle database features supported with various combinations of
WebLogic Server, 11g and 12c JDBC drivers, and 11g and 12.1 versions of Oracle
Database.

Table 12-1 Oracle Database 12.1 Feature Support

Feature WebLogic WebLogic WebLogic WebLogic WebLogic WebLogic
Server Server Server Server Server Server
10.3.6/12.1. 10.3.6/12.1. 10.3.6/12.1. 12.1.2and 10.3.6/12.1. 12.1.2 and
x with 11g xwith11lg 1 with 12c later with 1 with 12c later with
drivers and drivers and drivers and 12c drivers drivers and 12c drivers

Oracle Oracle Oracle and Oracle Oracle with Oracle
Database Database Database Database Database Database
11gR2 12¢ 11gR2 11gR2 12¢c 12c
JDBC No No No No Yes (Read/ Yes (Read/
replay Write with ~ Write with
(read/write) Active Active

GridLink GridLink
only, no XA and generic
transactions data source,

) no XA
transactions
)
Pluggable No Yes (Except No No Yes Yes
Database Set
(PDB) Cont ai ner)
Dynamic No No No No No Yes (no XA)
switching
between
PDBs

ORACLE 12-1

Table 12-1 (Cont.) Oracle Database 12.1 Feature Support

Chapter 12

WebLogic JDBC Features for Oracle Database 12.1

Feature WebLogic WebLogic WebLogic WebLogic WebLogic WebLogic
Server Server Server Server Server Server
10.3.6/12.1. 10.3.6/12.1. 10.3.6/12.1. 12.1.2and 10.3.6/12.1. 12.1.2 and
x with 11g xwith 11g 1 with 12c later with 1 with 12c later with
drivers and drivers and drivers and 12c drivers drivers and 12c drivers
Oracle Oracle Oracle and Oracle Oracle with Oracle
Database Database Database Database Database Database
11gR2 12c 11gR2 11gR2 12c 12c

Database No No No Yes No Yes

Resident

Connection

pooling

(DRCP)

Oracle No No No No No Yes (Active

Notification GridLink

Service only)

(ONS) auto

configuratio

n

Global No Yes (Active No No Yes (Active Yes (Active

Database GridLink GridLink GridLink

Services only) only) only)

(GDS)

JDBC 4.1 No No Yes Yes Yes Yes

(using

ojdbc7.jar

files and

JDK 7)

The following sections describe WebLogic JDBC features for Oracle Database 12.1:

ORACLE

JDBC 4.1 Support for JDK 7

Application Continuity Support

Database Resident Connection Pooling Support

Container Database with Pluggable Databases

Global Database Services Support

Automatic ONS Listeners

12.1.1 JDBC 4.1 Support for JDK 7

WebLogic Server supports the JDBC 4.1 specification when the environment is
using JDK 7 and the JDBC driver is JDBC 4.1 compliant. To use new JDBC 4.1
methods, you must use the oj dbc7. j ar. See JDBC™ 4.1 Specification at http://
downl oad. oracl e. conf ot ndocs/j cp/jdbc-4_1-nrel -spec/index. htn.

12-2

http://download.oracle.com/otndocs/jcp/jdbc-4_1-mrel-spec/index.html

Chapter 12
WebLogic JDBC Features for Oracle Database 12.1

< Note:

WebLogic Server currently does not support the j ava. sql . dri ver interfaces
required to use the Java SE 7 get Par ent Logger method. See http://
docs.oracle.com/javase/7/docs/api/index.html?java/sql/Driver.html.

JDK 7 also brings support for minor changes in Rowset 1.1 defined at
http://jcp.org/aboutJava/communityprocess/maintenance/jsr114/114MR2approved.pdf.
The WebLogic Server implementation of the new RowSet Fact ory is called

webl ogi c. j dbc. rowset . JdbcRowSet Fact ory.

12.1.2 Application Continuity Support

Oracle WebLogic Server Continuous Availability provides an integrated solution for
building maximum availability architectures (MAA) that span data centers in distributed
geographical locations. The major benefits of this integrated solution are faster failover
or switchover, increased overall application availability, data integrity, reduced human
error and risk, recovery of work, and local access of real-time data. See Application
Continuity.

12.1.3 Database Resident Connection Pooling Support

Database Resident Connection Pooling (DRCP) is an Oracle database server feature
that provides the ability to share connections among multiple connection pools that
can span across mid-tier systems. See Database Resident Connection Pooling.

12.1.4 Container Database with Pluggable Databases

Container Database (CDB) is an Oracle Database feature that minimizes the overhead
of having many of databases by consolidating them into a single database with
multiple Pluggable Databases (PDB) in a single CDB. See Container Database with
Pluggable Databases.

12.1.5 Global Database Services Support

Global Data Services (GDS) is an Oracle Database feature that provides automated
load balancing, fault tolerance and resource utilization in a distributed database
environment. See Global Database Services.

12.1.6 Automatic ONS Listeners

If you are using Oracle Database 12c with WebLogic Server version 12.1.2 or later,
you are no longer required to provide the ONS Listener list as part of an Active
GridLink data source configuration. The ONS list is automatically provided from the
database to the driver. See Enabling FAN Events.

ORACLE 12-3

http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/Driver.html
http://docs.oracle.com/javase/7/docs/api/index.html?java/sql/Driver.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr114/114MR2approved.pdf

Chapter 12

WebLogic JDBC Features for Oracle Database 12.2

12.2 WebLogic JDBC Features for Oracle Database 12.2

WebLogic JDBC provides several features that specifically require the use of Oracle
Database 12.2.x. Learn about supported features with various combinations of
WebLogic Server releases and Oracle Database 12.2.x release.

ORACLE

Table 12-2 Oracle Database 12.2 Feature Support

Feature Description WebLogic Server Database
Introduced Releases
JDBC 4.2 See JDBC 4.2 Interfaces 12.1.3 12.1.0.1
Service Switching See Service Switching 12.2.1 12.2
XA Replay Driver See Database 12.2 XA Replay 12.2.1 12.2
Driver
UCP MT Shared Pool See UCP MT Shared Pool 12.2.1.1.0 12.2
support support
Gradual Draining During planned maintenance, it 12.2.1.2.0 12.1 with
is desirable to gradually drain 12.2
connections instead of closing enhanceme
them all immediately. This nts
prevents uneven performance
by the application. See
Gradual Draining
AGL Support for URL with See AGL Support for URL with 12.2.1.2.0 12.2
@alias or @Idap @alias or @ldap
Data Source Shared Shared pooling feature 12.2.1.3.0 12.2
Pooling provides the ability for multiple
data source definitions to share
an underlying connection pool.
See Using Shared Pooling
Data Sources
Transaction Guard Transaction Guard provides 12.2.1.3.0 12.1.0.2

Integration

a generic infrastructure for
applications to use for at-most-
once execution during planned
and unplanned outages and
duplicate submissions. See
Using Transaction Guard in
Developing JTA Applications
for Oracle WebLogic Server.

JDBC 4.2 Interfaces

JDK 8 has new API's for JDBC 4.2 that are supported for any database driver that is
JDBC 4.2 compliant. The first Oracle driver to support JDK 8 and JDBC 4.2 is 12.2.0.1

The following are the features introduced in JDBC 4.2 java.sql and javax.sql

* Added JDBCType enum and SQLType interface

e Support for REF CURSORS in CallableStatement

» DatabaseMetaData methods to return maximum Logical LOB size and if Ref
Cursors are supported

12-4

ORACLE

Chapter 12
WebLogic JDBC Features for Oracle Database 12.2

* Added support for large update counts
The JDBC 4.2 API changes are documented at https://docs.oracle.com/javase/8/docs/
technotes/guides/jdbc/jdbc_42.html

Database 12.2 XA Replay Driver

The XA replay driver is new in Oracle Database 12.2. The name is
oracle.jdbc.repl ay. Oracl eXADat aSour cel npl . If the WebLogic Server is run on a
driver earlier than 12.2, an error will be thrown indicating that the class cannot be
loaded.

If the data source is running with the XA replay driver from database 12.2, the test
table name is validated as follows:

e If SQL | SVALI Dor SQL PI NGDATABASE, no change.

e If a table name (which is converted to select count(*) from tablename) or SQL
SELECT is specified, it is converted to SQL | SVALI D.

* Any other value (DML or DDL) will cause an exception to be thrown and the
datasource will not deploy.

" Note:

12.2 XA Replay Driver does not support replay with global transactions, it
supports local transactions on an XA connection.

AGL Support for URL with @alias or @Idap

This feature allows for using an alias or an LDAP connection in the AGL URL.
The alias format is j dbc: oracl e: thi n: / @l i as where "alias” is an alias defined in a
t nsnanes. or a file.

See LDAP Syntax for further information.
To use an alias, you need to you need to perform the following steps:

1. Specify the system property -Dor acl e. net .t ns_adm n=t ns_di rect ory, where
tns_directory, is the directory location of the t nsnanes. or a file.

2. Create or modify a t nsnanes. or a file in the directory location specified by
tns_directory.

The entry has the form: al i as=(DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP)
(HOST=host) (PORT=por t)) (CONNECT_DATA=(SERVI CE_NAME=ser vi ce)))

where host is URL of a database listener, port is the port a database listener, and
service is the service name of the database you would like to connect to.

3. Use the alias in the datasource definition URL by replacing the connection string
with the alias.

For example, change the URL attribute in the Connection Pool tab of the
Administrative Console to j dbc: oracl e:thin:/ @il i as.

12-5

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html
https://docs.oracle.com/database/121/JJDBC/urls.htm#CHDBICFA

Labeling Connections

Label connections increase the performance of database connections. By associating
particular labels with particular connection states, an application can retrieve an
already initialized connection from the pool and avoid the time and cost of re-
initialization.

This chapter provides information on how to use label connections with WebLogic
JDBC. The chapter includes the following sections:

e Whatis Connection Labeling

e Implementing Labeling Callbacks

e Creating a Labeling Callback

* Registering a Labeling Callback

* Reserving Labeled Connections

e Checking Unmatched labels

* Removing a Connection Label

» Using Initialization and Reinitialization Costs to Select Connections

e Using Connection Labeling with Packaged Applications

13.1 What is Connection Labeling

ORACLE

Applications often initialize connections retrieved from a connection pool before using
the connection. The initialization varies and could include simple state re-initialization
that requires method calls within the application code or database operations that
require round trips over the network. The cost of such initialization may be significant.
Labeling connections allows an application to attach arbitrary name/value pairs to a
connection.

The application can request a connection with the desired label from the connection
pool. The connection labeling feature does not impose any meaning on user-defined
keys or values; the meaning of user-defined keys and values is defined solely by the
application.

Some of the examples for connection labeling include role, NLS language settings,
transaction isolation levels, stored procedure calls, or any other state initialization that
is expensive and necessary on the connection before work can be executed by the
resource.

Connection labeling is application-driven and requires the following:

e Theoracl e. ucp. j dbc. Label abl eConnect i on interface is used to apply and
remove connection labels, as well as retrieve labels that have been set on a
connection.

* Theoracle.ucp. ConnectionLabel i ngCal | back interface is used to create a
labeling callback that determines whether or not a connection with a requested

13-1

Chapter 13
Implementing Labeling Callbacks

label already exists. If no connections exist, the interface allows current
connections to be configured as required.

 AConnection Labeling Callback, see JDBC Data Source: Configuration:
Connection Pool in Oracle WebLogic Server Administration Console Online Help.

13.2 Implementing Labeling Callbacks

A labeling callback is used to define how the connection pool selects labeled
connections and allows the selected connection to be configured before returning it
to an application. Applications that use the connection labeling feature must provide a
callback implementation.

A labeling callback is used when a labeled connection is requested but there are

no connections in the pool that match the requested labels. The callback determines
which connection requires the least amount of work in order to be re-configured to
match the requested label and then allows the connection's labels to be updated
before returning the connection to the application.

Note:

Connection Labeling is not supported from client applications that use RMI.
See Using the WebLogic RMI Driver (Deprecated) in Developing JDBC
Applications for Oracle WebLogic Server.

13.3 Creating a Labeling Callback

ORACLE

A labeling callback is used to define how the connection pool selects labeled
connections and allows the selected connection to be configured before returning
it to an application. Learn how to create a labeling callback by implementing the
oracl e. ucp. Connecti onLabel i ngCal | back interface.

To create a labeling callback, an application implements the
oracl e. ucp. Connecti onLabel i ngCal | back interface. One callback is created per
connection pool. The interface provides two methods as shown below:

public int cost(Properties requestedLabel s, Properties currentlLabels);
public bool ean configure(Properties requestedLabel s, Connection conn);

The connection pool iterates over each connection available in the pool. For each
connection, it calls the cost method. The result of the cost method is an integer
which represents an estimate of the cost required to reconfigure the connection to the
required state. The larger the value, the costlier it is to reconfigure the connection. The
connection pool always returns connections with the lowest cost value. The algorithm
is as follows:

e If the cost method returns O for a connection, the connection is a match (note
that this does not guarantee that r equest edLabel s equals current Label s). The
connection pool does not call configure on the connection found and simply
returns the connection.

13-2

Chapter 13
Creating a Labeling Callback

» If the cost method returns a value that is not O (a negative or positive integer), then
the connection pool iterates until it finds a connection with a cost value of 0 or runs
out of available connections.

» If the pool has iterated through all available connections and the lowest cost of a
connection is | nt eger . MAX_VALUE (2147483647 by default), then no connection
in the pool is able to satisfy the connection request. The pool creates a
new connection, calls the confi gur e method on it, and then returns this new
connection. If the pool has reached the maximum pool size (it cannot create a
new connection), then the pool either throws an SQL exception or waits if the
connection wait timeout attribute is specified.

» If the pool has iterated through all available connections and the lowest cost of a
connection is less than | nt eger . MAX_VALUE, then the configure method is called
on the connection and the connection is returned. If multiple connections are less
than | nt eger. MAX_VALUE, the connection with the lowest cost is returned.

There is also an extended callback interface

oracl e. ucp. j dbc. Connecti onLabel i ngCal | back that has an additional

get Request edLabel s() method. get Request edLabel s is invoked at get Connect i on()

time when no requested labels are provided and there is an instance registered. This

occurs when the standard j ava. sql . Dat asour ce get Connecti on() methods are used
that do not provide the label information on the get Connecti on() call.

13.3.1 Example Labeling Callback

The following code example demonstrates a simple labeling callback implementation
that implements both the cost and confi gur e methods. The callback is used to find a
labeled connection that is initialized with a specific transaction isolation level.

Example 13-1 Labeling Callback

i mport oracl e. ucp. jdbc. Connecti onLabel i ngCal | back;

i mport oracl e. ucp. j dbc. Label abl eConnecti on;

inport java.util.Properties;

i mport java.util.Map;

inport java.util.Set;

i nport webl ogi c. j dbc. ext ensi ons. W.Dat aSour ce;

class MyConnectionLabel i ngCal | back i npl enents ConnectionlLabel i ngCal | back {

public MyConnectionLabel i ngCal | back() {
}
public int cost(Properties reqlLabels, Properties currentlLabels) ({
/] Case 1. exact match
i f (regLabel s.equal s(currentLabels)) {
Systemout. println("## Exact match found!! ##");
return 0;

}

/] Case 2. sone |abels match with no unmatched | abels
String isol = (String) reglLabels. get (" TRANSACTI ON_| SOLATI ON');
String iso2 = (String) currentLabel s. get (" TRANSACTI ON_| SOLATI ON') ;
bool ean match =

(isol !'= null & iso2 !'= null && isol.equal slgnoreCase(iso2));
Set rKeys = reqLabel s. keySet ();
Set cKeys = currentLabel s. keySet ();
if (match && rKeys. containsAll (cKeys)) {

Systemout.println("## Partial match found!! ##");

return 10;

ORACLE 13-3

Chapter 13
Registering a Labeling Callback

/1 No |abel matches to application's preference.
/1 Do not choose this connection.
Systemout.printin("## No match found!! ##");
return | nteger. MAX_VALUE;

}

public bool ean configure(Properties regLabels, Object conn) {
try {
String isoStr = (String) reqlabels. get (" TRANSACTI ON_| SOLATI ON');
((Connection)conn).set Transacti onl sol ation(lnteger.val ued (isoStr));
Label abl eConnection | conn = (Label abl eConnection) conn;

Il Find the unmatched | abels on this connection
Properties unmatchedLabel s =
I conn. get Unmat chedConnect i onLabel s(reqlLabel s);
/1 Apply each | abel <key,value> in unmatchedLabels to conn

for (Map. Entry<Qbject, Object> |abel : unmatchedlLabel s.entrySet()) ({
String key = (String) |abel.getKey();
String value = (String) |abel.getValue();

| conn. appl yConnect i onLabel (key, val ue);

} catch (Exception exc) {
return fal se;

}

return true;

}

public java.util.Properties getRequestedLabels() {
Properties props = new Properties();

/1 Set based on sone application state that might be on a thread-local, http
session info, etc.

String value = "val ue";

props. put (" TRANSACTI ON_I SOLATI ON', val ue);

return props;
}
}

13.4 Registering a Labeling Callback

A WebLogic Server data source provides the
regi st er Connecti onLabel i ngCal | back(Connect i onLabel i ngCal | back cal | back)

method for registering labeling callbacks. Only one callback may be registered on
a connection pool.

See, the regi st er Connect i onLabel i ngCal | back(Connect i onLabel i ngCal | back
cal | back) method for registering labeling callbacks. The following code example
demonstrates registering a labeling callback that is implemented in the
MyConnect i onLabel i ngCal | back class:

ORACLE 13-4

Chapter 13
Registering a Labeling Callback

i nport webl ogi c. j dbc. ext ensi ons. W.Dat aSour ce;

MyConnect i onLabel i ngCal | back cal | back = new MyConnecti onLabel i ngCal | back();
((W.Dat aSour ce) ds) . r egi st er Connect i onLabel i ngCal | back(cal | back);

You can also register the callback using the WebLogic Server Administration Console,
see Configure a connection labeling callback class in Oracle WebLogic Server
Administration Console Online Help.

13.4.1 Removing a Labeling Callback

You can remove a labeling callback by using one of the following methods:

* If you have programmatically set a callback, use the
removeConnect i onLabel i ngCal | back() method as shown in the following
example:

i nport webl ogi c. j dbc. ext ensi ons. W.Dat aSour ce;
((W.Dat aSour ce) ds) . renobveConnect i onLabel i ngCal | back(cal | back);
» If you have administratively configured the callback, remove the callback from the

data source configuration. See Configure a connection labeling callback class in
Oracle WebLogic Server Administration Console Online Help

¢ Note:

An application must use one of the methods to register and remove
callbacks but not both. For example, if you register the callback on a
connection using r egi st er Connect i onLabel i ngCal | back(cal | back), you
must use r emoveConnect i onLabel i ngCal | back() to remove it.

13.4.2 Applying Connection Labels

ORACLE

Labels are applied on a reserved connection using the appl yConnecti onLabel method
from the Label abl eConnecti on interface. Any number of connection labels may be
cumulatively applied on a reserved connection. Each time a label is applied to a
connection, the supplied key/value pair is added to the existing collection of labels.
Only the last applied value is retained for any given key.

¢ Note:

A labeling callback must be registered on the connection pool before a label
can be applied on a reserved connection; otherwise, labeling is ignored. See
Creating a Labeling Callback.

13-5

Chapter 13
Reserving Labeled Connections

The following example demonstrates initializing a connection with a transaction
isolation level and then applying a label to the connection:

String pname = "propertyl";

String pvalue = "val ue";

Connection conn = ds. get Connection();

[l initialize the connection as required.

conn. set Transacti onl sol ati on(Connecti on. TRANSACTI ON_SERI ALI ZABLE) ;
((Label abl eConnection) conn). appl yConnecti onLabel (pnanme, pval ue);

13.5 Reserving Labeled Connections

WebLogic JDBC data sources provide two getConnection methods that are used for
reserving a labeled connection from the pool.

The syntax of the two methods is:
e public Connection getConnection(java.util.Properties labels)

e public Connection getConnection(String user, String password, java.util.Properties
labels)

The methods require that the label be passed to the get Connect i on method as a
Properti es object. The following example demonstrates getting a connection with the
label property1 value.

i nport webl ogi c. j dbc. ext ensi ons. W.Dat aSour ce;

String pname = "propertyl";

String pval ue = "val ue";

Properties |abel = new Properties();
| abel . set Property(pnane, pvalue);

Connection conn = ((W.Dat aSource)ds). get Connecti on(l abel);

It is also possible to use the standard j ava. sql . Dat asour ce get Connecti on()
methods. In this case, the label information is not provided on the get Connecti on()
call. The interface or acl e. ucp. j dbc. Connecti onLabel i ngCal | back is used:

java. util.Properties getRequestedLabel s();

get Request edLabel s is invoked at get Connecti on() time when no requested labels
are provided and there is an instance registered.

13.6 Checking Unmatched labels

ORACLE

Connections may have multiple labels, which each uniquely identify the connection
based on specified criteria. Use the get Unnmat chedConnect i onLabel s method to verify
which connections do not match the requested label.

This method is used after a connection with multiple labels is reserved
from the connection pool and is typically used by a labeling callback.
Seeget Unnat chedConnect i onLabel s method.

The following code example demonstrates checking for unmatched labels:

13-6

Chapter 13
Removing a Connection Label

String pname = "propertyl";

String pvalue = "val ue";

Properties |abel = new Properties();
| abel . set Property(pnane, pvalue);

Conneci on conn = ((W.Dat aSour ce)ds). get Connection(l abel);
Properties unmatched =
((Label abl eConnecti on) connecti on). get Unmat chedConnecti onLabel s (| abel);

13.7 Removing a Connection Label

You can remove a connection label by using the r emoveConnect i onLabel method.

This method is used after a labeled connection is reserved from the connection pool.
See renoveConnect i onLabel .

The following code example demonstrates removing a connection label:

String pnane = "propertyl";

String pvalue = "val ue";

Properties label = new Properties();

| abel . set Property(pnane, pvalue);

Connection conn = ((W.Dat aSource)ds). get Connecti on(l abel);

((Label abl eConnection) conn).renoveConnectionLabel (pnane);

13.8 Using Initialization and Reinitialization Costs to Select
Connections

ORACLE

Some applications require that a connection pool be able to identify high-cost
connections and avoid using those connections when the number of connections is
below a certain threshold. Using that information allows a connection pool to use
new physical connections to serve connection requests from different tenants without
incurring reinitialization overhead on other tenant connections already in the pool.
WebLogic Server provides the following connection properties to identify high cost
connections:

e ConnectionlLabel i ngH ghCost —When greater than 0, connections with a cost
value equal to or greater than the property value are considered high-cost
connections. The default value is I nt eger . MAX_VALUE.

For example, if the property value is set to 5, any connection whose calculated
cost value from the labeling callback is equal to or greater than 5 is considered a
high-cost connection.

e HighCost Connect i onReuseThr eshol d—When greater than 0, specifies a threshold
of the number of total connections in the pool beyond which Connection Labeling
is allowed to reuse high-cost connections in the pool to serve a request. Below
this threshold, Connection Labeling either uses an available low-cost connection
or creates a brand-new physical connection to serve a request. The default value
is 0.

13-7

Chapter 13
Using Connection Labeling with Packaged Applications

For example, if set to 20, Connection Labeling reuses high-cost connections when
there are no low-cost connections available and the total connections reach 20.

For generic data sources see Configuring Generic Connection Pool Features

For AGL data sources, see Configuring AGL Connection Pool Features

13.8.1 Considerations When Using Initialization and Reinitialization

Costs

This section provides additional considerations when selecting connections based on
connection costs:

Valid callback registration activates Connection Labeling. Once registered, the
connection pool checks for new threshold values at regular intervals and
determines:

— if a connnection has a cost that is equal to or greater than
Connect i onLabel i ngH ghCost .

— If the number of total connections accounts for the number of active
connection creation requests, including restrictions for M nCapacity and
MaxCapaci ty.

Any labeled connection with cost value of | nt eger. MAX_VALUE is not reused, even
if a new threshold is reached.

There is no requirement not to reuse connections without labels (stateless)

in the pool to serve connection requests with labels (labeled requests). Once
the H ghCost Connect i onReuseThr eshol d is reached and Connection Labeling is
activated, the pool continues to favor connections without labels (stateless) over
creating new physical connections.

13.9 Using Connection Labeling with Packaged Applications

WebLogic Server allows callbacks, such as connection labeling and connection
initialization, in EAR or WAR files used by a packaged application.

ORACLE

To define an application-packaged callback class in a data source configuration:

Define the datasource as part of the application.

For example, if the callback implementation classes are packaged in a WAR or

defined as part of a shared library that is referenced by the application, the EAR
file contains application packaged datasource configurations that reference the

callback class names in their module descriptors.

Specify the application WAR file (that contains the callback implementations) as
part of the application classloader hierarchy in the webl ogi c- appl i cation. xm file.

For example:

<cl assl oader - st ruct ure>
<nodul e-ref>
<modul e- uri >appcal | backs. war </ nodul e-uri >
</ modul e-ref>
</ cl assl oader - st ruct ure>

13-8

Chapter 13
Using Connection Labeling with Packaged Applications

13.9.1 Considerations When using Labelled Connections in Packaged
Applications

ORACLE

WebLogic Server does not support specifying a connection labeling callback or
connection initialization callback in the module descriptor for a globally scoped
datasource system resource when the callback class is packaged in an application.

A global datasource requires that callback implementation classes be on the WebLogic
classpath. However, you can workaround this restriction for an application callback
that is packaged in a WAR or EAR by having the application register the callback

at runtime using the WLDataSource interface in the Java API Reference for Oracle
WebLogic Server.

13-9

JDBC Data Source Transaction Options

ORACLE

When you configure a JDBC data source using the WebLogic Server Administration
Console, WebLogic Server automatically selects specific transaction options based on
the type of JDBC driver. XA, non-XA, and Global transaction options are supported by
WebLogic JDBC data sources.

For XA drivers, the system automatically selects the Two-Phase Commit
protocol for global transaction processing.

For non-XA drivers, local transactions are supported by definition, and WebLogic
Server offers the following options

Supports Global Transactions: (selected by default) Select this option if you
want to use connections from the data source in global transactions, even though
you have not selected an XA driver. See Enabling Support for Global Transactions
with a Non-XA JDBC Driver for more information.

When you select Supports Global Transactions, you must also select the protocol
for WebLogic Server to use for the transaction branch when processing a global
transaction:

— Logging Last Resource: With this option, the transaction branch in which
the connection is used is processed as the last resource in the transaction
and is processed as a local transaction. Commit records for two-phase commit
(2PC) transactions are inserted in a table on the resource itself, and the
result determines the success or failure of the prepare phase of the global
transaction. This option offers some performance benefits and greater data
safety than Emulate Two-Phase Commit, but it has some limitations. See
Understanding the Logging Last Resource Transaction Option.

" Note:

Logging Last Resource is not supported for data sources used

by a multi data source except when used with Oracle RAC
version 10g Release 2 (10gR2) and greater versions as described
in Administrative Considerations and Limitations for LLR Data
Sources..

— Emulate Two-Phase Commit: With this option, the transaction branch in
which the connection is used always returns success for the prepare phase
of the transaction. It offers performance benefits, but also has risks to data in
some failure conditions. Select this option only if your application can tolerate
heuristic conditions. See Understanding the Emulate Two-Phase Commit
Transaction Option.

— One-Phase Commit: (selected by default) With this option, a connection from
the data source can be the only participant in the global transaction and the
transaction is completed using a one-phase commit optimization. If more than
one resource participates in the transaction, an exception is thrown when the
transaction manager calls XAResour ce. pr epar e on the 1PC resource.

14-1

Chapter 14
Enabling Support for Global Transactions with a Non-XA JDBC Driver

This chapter includes the following sections:

» Enabling Support for Global Transactions with a Non-XA JDBC Driver
* Understanding the Logging Last Resource Transaction Option
* Understanding the Emulate Two-Phase Commit Transaction Option

* Local Transaction Completion when Closing a Connection

14.1 Enabling Support for Global Transactions with a Non-
XA JDBC Driver

If you use global transactions in your applications, you should use an XA JDBC driver
to create database connections in the JDBC data source. If an XA driver is unavailable
for your database, or you prefer not to use an XA driver, you should enable support for
global transactions in the data source.

You should also enable support for global transaction if your applications meet any of
the following criteria:

e Use the EJB container in WebLogic Server to manage transactions
e Include multiple database updates within a single transaction

e Access multiple resources, such as a database and the Java Messaging Service
(JMS), during a transaction

e Use the same data source on multiple servers (clustered or non-clustered)

With an EJB architecture, it is common for multiple EJBs that are doing database work
to be invoked as part of a single transaction. Without XA, the only way for this to

work is if all transaction participants use the exact same database connection. When
you enable global transactions and select either Logging Last Resource or Emulate
Two-Phase Commit, WebLogic Server internally uses the JTS driver to make sure all
EJBs use the same database connection within the same transaction context without
requiring you to explicitly pass the connection from EJB to EJB.

If multiple EJBs are participating in a transaction and you do not use an XA JDBC
driver for database connections, configure a Data Source with the following options:

e Supports Global Transactions selected
* Logging Last Resource or Emulate Two-Phase Commit selected

This configuration will force the JTS driver to internally use the same database
connection for all database work within the same transaction.

With XA (requires an XA driver), EJBs can use a different database connection for
each part of the transaction. WebLogic Server coordinates the transaction using the
two-phase commit protocol, which guarantees that all or none of the transaction will be
completed.

14.2 Understanding the Logging Last Resource Transaction
Option

WebLogic Server supports the Logging Last Resource (LLR) transaction optimization
with JDBC data sources. LLR is a performance enhancement option that enables one

ORACLE 14-2

Chapter 14
Understanding the Logging Last Resource Transaction Option

non-XA resource to participate in a global transaction with the same ACID guarantee
as XA. LLR is a refinement of the "Last Agent Optimization”. It differs from Last Agent
Optimization in that it is transactionally safe.

The LLR resource uses a local transaction for its transaction work. The WebLogic
Server transaction manager prepares all other resources in the transaction and then
determines the commit decision for the global transaction based on the outcome of the
LLR resource's local transaction.

The LLR optimization improves performance by:

e Removing the need for an XA JDBC driver to connect to the database. XA JDBC
drivers are typically inefficient compared to non-XA JDBC drivers.

e Reducing the number of processing steps to complete the transaction, which also
reduces network traffic and the number of disk 1/Os.

* Removing the need for XA processing at the database level

When a connection from a data source configured for LLR patrticipates in a two-phase
commit (2PC) global transaction, the WebLogic Server transaction manager completes
the transaction by:

* Calling prepare on all other (XA-compliant) transaction participants.

* Inserting a commit record to a table on the LLR participant (rather than to the
file-based transaction log).

* Committing the LLR participant's local transaction (which includes both the
transaction commit record insert and the application's SQL work).

e Calling commit on all other transaction participants.

For a one-phase commit (1PC) global transaction, LLR eliminates the XA overhead by
using a local transaction to complete the database operations, but no 2PC transaction
record is written to the database.

The Logging Last Resource optimization maintains data integrity by writing the commit
record on the LLR participant. If the transaction fails during the local transaction
commit, the WebLogic Server transaction manager rolls back the transaction on all
other transaction participants. For failure recovery, the WebLogic Server transaction
manager reads the transaction log on the LLR resource along with other transaction
log files in the default store and completes any transaction processing as necessary.
Work associated with XA participants is committed if a commit record exists, otherwise
their work is rolled back.

For instructions on how to create an LLR-enabled JDBC data source, see Create
LLR-enabled JDBC data sources in the Oracle WebLogic Server Administration
Console Online Help. For more details about the Logging Last Resource transaction
processing, see Logging Last Resource Transaction Optimization in Developing JTA
Applications for Oracle WebLogic Server.

14.2.1 Advantages to Using the Logging Last Resource Optimization

ORACLE

Depending on your environment, you may want to consider the LLR transaction
protocol in place of the two-phase commit protocol for transaction processing
because of its performance benefits. The LLR transaction protocol offers the following
advantages:

* Allows non-XA JDBC drivers and even non-XA—capable databases to safely
participate in two-phase commit transactions.

14-3

Chapter 14
Understanding the Logging Last Resource Transaction Option

» Eliminates the database's use of the XA protocol.
* Performs better than JDBC XA connections.
* Reduces the length of time that database row locks are held.

* Always commits database work prior to other XA work. In XA transactions,
these operations are committed in parallel, so, for example, when a JMS send
participates in the transaction, the JMS message may be delivered before
database work commits. With LLR, the database work in the local transaction is
completed before all other transaction work.

e Has no increased risk of heuristic hazards, unlike the Emulate Two-Phase Commit
option for a JDBC data source.

¢ Note:

The LLR optimization provides a significant increase in performance for
insert, update, and delete operations. However, for read operations with
LLR, performance is somewhat slower than read operations with XA.

For more information about performance tuning with LLR, see Optimizing
Performance with LLR in Developing JTA Applications for Oracle
WebLogic Server.

14.2.2 Enabling the Logging Last Resource Transaction Optimization

To enable the LLR transaction optimization, you create a JDBC data source with the
Logging Last Resource transaction protocol, then use database connections from the
data source in your applications. WebLogic Server automatically creates the required
table on the database.

See Create LLR-enabled JDBC data sources in the Oracle WebLogic Server
Administration Console Online Help.

14.2.3 Programming Considerations and Limitations for LLR Data

Sources

ORACLE

You use JDBC connections from an LLR-enabled data source in an application as
you would use JDBC connections from any other data source: after beginning a
transaction, you look up the data source on the JNDI tree, then request a connection
from the data source. However, with the LLR optimization, WebLogic Server internally
manages the connection request and handles the transaction processing differently
than in an XA transaction. For more information about how Logging Last Resource
works, see Logging Last Resource Transaction Optimization in Developing JTA
Applications for Oracle WebLogic Server.

Note the following:

* When programming with an LLR data source, you must start the global transaction
before calling getConnection on the LLR data source. If you call getConnection
before starting the global transaction, the connection will be independent, and
will not be associated with any subsequently started global transaction. The
connection will operate in the aut oConmi t (true) mode. In this mode, every update

14-4

ORACLE

Chapter 14
Understanding the Logging Last Resource Transaction Option

will commit automatically on its own, and there will be no way to roll back any
update unless application code has explicitly set the aut oCommi t state to false and
is explicitly managing its own local transaction.

Only one internal JDBC LLR connection is reserved per transaction. And that
connection is used throughout the transaction processing.

The reserved connection is always hosted on the transaction's coordinator server.
Make sure that the data source is targeted to the coordinating server or to

the cluster. Also see Optimizing Performance with LLR" in Developing JTA
Applications for Oracle WebLogic Server.

For additional JDBC connection requests within the transaction from a same-
named data source, operations are routed to the reserved connection from the
original connection request, even if the subsequent connection request is made
on a different instance of the data source (i.e., a data source deployed on a
different server than the original data source that supplied the connection for the
first request). Note the following:

— Routed LLR connections may be less capable and less performant than
locally hosted XA connections. (See Possible Performance Loss with Non-XA
Resources in Multi-Server Configurations.)

— Connection request routing limits the number of concurrent transactions. The
maximum number of concurrent LLR transactions is equal to the configured
size (MaxCapaci ty) of the coordinator's JDBC LLR data source.

— Routed connections have less capability than local connections, and may fail
as a result. Specifically, non-serializable "custom" data types within a query
Resul t Set may fail.

Only instances of a single LLR data source may participate in a particular
transaction. A single LLR data source may have instances on multiple WebLogic
servers, and two data sources are considered to be the same if they have the
same configured name. If more than one LLR data source instance is detected
and they are not instances of the same data source, the transaction manager will
roll back the transaction.

Resource adapters (connectors) that implement the

webl ogi c. transacti on. nonxa. NonXAResour ce interface cannot participate in
global transaction in which an LLR resource also participates because

both must be the last resource in the transaction. If both resource types
participate in the same transaction, the transaction commi t () method throws a
javax. transaction. Rol | backExcept i on when this conflict is detected.

Because the LLR connection uses a separate /ocal transaction for database
processing, any changes made (and locks held) to the same database using an
XA connection are not visible during the LLR processing even though all of the
processing occurs in the same global transaction. In some cases, this can cause
deadlocks in the database. You should not combine XA and LLR processing in the
same database in a single global transaction.

Connections from an LLR data source cannot participate in transactions
coordinated by foreign transaction managers, such as a transaction started by
a remote object request broker or by Tuxedo.

Global transactions cannot span to another legacy domain that includes a data
source with the same name as an LLR data source.

For JDBC LLR 2PC transactions, if the transaction data is too large to fit in
the LLR table, the transaction will fail with a rollback exception thrown during

14-5

Chapter 14
Understanding the Logging Last Resource Transaction Option

commit. This can occur if your application adds many transaction properties during
transaction processing. (See Oracle WebLogic Extensions to JTA in Developing
JTA Applications for Oracle WebLogic Server) Your database administrator can
manually create a table with larger columns if this occurs.

14.2.4 Administrative Considerations and Limitations for LLR Data

Sources

ORACLE

Consider the following requirements and limitations when configuring an LLR-enabled
JDBC data source. For more information about how Logging Last Resource works,
see Logging Last Resource Transaction Optimization in Developing JTA Applications
for Oracle WebLogic Server.

e There is one LLR table per server:
— Multiple LLR data sources may share a table.
— WebLogic Server automatically creates the table if it is not found.

— Default name is W._LLR SERVERNAME. You can configure the table name in
the WebLogic Server Administration Console on the Server > Configuration >
General tab under Advanced options. See Servers: Configuration: General in
Oracle WebLogic Server Administration Console Online Help.

A server will not boot if the database is down or the LLR table is unreachable
during boot.

* Multiple servers must not share the same LLR table. Boot checks to ensure
domain and server name match the domain and server name stored in the table
when the table is created. If WebLogic Server detects that more than one server is
sharing the same LLR table, WebLogic Server will shut down one or more of the
servers.

* LLR supports server migration and transaction recovery service migration. To
use the transaction recovery service migration, ensure that each LLR resource
be targeted to either the cluster or the set of candidate servers in the cluster.
See Recovering Transactions For a Failed Clustered Server in Developing JTA
Applications for Oracle WebLogic Server.

* The LLR transaction option is not permitted for use in JDBC application modules.

* When using multi data sources, the LLR transaction option can only be used
with Oracle RAC version 10g Release 2 (10gR2) and greater versions with the
following settings:

— All WebLogic application database JDBC interactions must use the
READ COWM TTED transaction isolation level (the default).

— The Oracle RAC setting MAX_COMM T_PROPAGATI ON_DELAY must be setto a
value of O (zero, the default).

The use of LLR with Multi Data Sources is supported only with Oracle RAC. All (or
none) of the members of the Multi Data Source must be LLR data sources.

— When using Oracle RAC, at least one of the members of the MDS must be
available for recovery processing when the server is booted or the server fails
to boot.

— When not using Oracle RAC, all of the members of the MDS must be available
for recovery processing when the server is booted or the server fails to boot.

14-6

Chapter 14
Understanding the Emulate Two-Phase Commit Transaction Option

* If you use credential mapping or identity pooling on an LLR data source, all
mapped users must have write permissions on the LLR table.

* You cannot use a JDBC XA driver to create database connections in a JDBC LLR
data source. If the JDBC driver used in a JDBC LLR data source supports XA, a
warning message is logged, and the data source participates in transactions as a
full XA resource rather than as an LLR resource.

» Transaction statistics for LLR resources are tracked under "NonXAResource." See
View transaction statistics for non-XA resources in the Oracle WebLogic Server
Administration Console Online Help.

* When using LLR with a Sybase DBMS, Sybase's JDBC driver requires that certain
JDBC stored procedures be installed in the DBMS in order to implement some
standard JDBC metadata methods. See the Sybase jConnect documentation for
details.

14.3 Understanding the Emulate Two-Phase Commit
Transaction Option

If you need to support distributed transactions with a JDBC data source, but there

is no available XA-compliant driver for your DBMS, you can select the Emulate Two-
Phase Commit for non-XA Driver option for a data source to emulate two-phase
commit for the transactions in which connections from the data source participate.

This option is an advanced option on the Configuration > General tab of a data source
configuration.

When the Emulate Two-Phase Commit for non-XA Driver option is selected

(Enabl eTwoPhaseCommi t is setto t rue), the non-XA JDBC resource always

returns XA K during the XAResour ce. prepar e() method call. The resource
attempts to commit or roll back its local transaction in response to subsequent
XAResour ce. commit () or XAResour ce. rol | back() calls. If the resource commit or
rollback fails, a heuristic error results. Application data may be left in an inconsistent
state as a result of a heuristic failure.

When the Emulate Two-Phase Commit for non-XA Driver option is not selected in

the Console (Enabl eTwoPhaseConmi t is set to f al se), the non-XA JDBC resource
causes XAResour ce. prepar e() to fail. When there is only one resource participating in
a transaction, the one phase optimization bypasses XAResour ce. prepar e(), and the
transaction commits successfully in most instances.

Note:

There are risks to data integrity when using the Emulate Two-Phase Commit
for non-XA Driver option. Oracle recommends that you use an XA-compliant
JDBC driver or the Logging Last Resource option rather than use the
Emulate Two-Phase Commit option. Make sure you consider the risks below
before enabling this option.

This non-XA JDBC driver support is often referred to as the "JTS driver" because
WebLogic Server uses the WebLogic JTS Driver internally to support the feature. For

ORACLE 14-7

Chapter 14
Understanding the Emulate Two-Phase Commit Transaction Option

more information about the WebLogic JTS Driver, see Using the WebLogic JTS Driver
in Developing JDBC Applications for Oracle WebLogic Server.

14.3.1 Limitations and Risks When Emulating Two-Phase Commit
Using a Non-XA Driver

WebLogic Server supports the participation of non-XA JDBC resources in global
transactions with the Emulate Two-Phase Commit data source transaction option, but
there are limitations that you must consider when designing applications to use such
resources. Because a non-XA driver does not adhere to the XA/2PC contracts and
only supports one-phase commit and rollback operations, WebLogic Server (through
the JTS driver) has to make compromises to allow the resource to participate in a
transaction controlled by the Transaction Manager.

Consider the following limitations and risks before using the Emulate Two-Phase
Commit for non-XA Driver option.

14.3.1.1 Heuristic Completions and Data Inconsistency

When Emulate Two-Phase Commit is selected for a non-XA resource,

(enabl eTwoPhaseCommi t = true), the prepare phase of the transaction for the non-XA
resource always succeeds. Therefore, the non-XA resource does not truly participate
in the two-phase commit (2PC) protocol and is susceptible to failures. If a failure
occurs in the non-XA resource after the prepare phase, the non-XA resource is

likely to roll back the transaction while XA transaction participants will commit the
transaction, resulting in a heuristic completion and data inconsistencies.

Because of the data integrity risks, the Emulate Two-Phase Commit option should only
be used in applications that can tolerate heuristic conditions.

14.3.1.2 Cannot Recover Pending Transactions

Because a non-XA driver manipulates local database transactions only, there is no
concept of a transaction pending state in the database with regard to an external
transaction manager. When XAResour ce. recover () is called on the non-XA resource,
it always returns an empty set of Xids (transaction IDs), even though there may be
transactions that need to be committed or rolled back. Therefore, applications that use
a non-XA resource in a global transaction cannot recover from a system failure and
maintain data integrity.

14.3.1.3 Possible Performance Loss with Non-XA Resources in Multi-Server
Configurations

ORACLE

Because WebLogic Server relies on the database local transaction associated with

a particular JDBC connection to support non-XA resource participation in a global
transaction, when the same JDBC data source is accessed by an application with a
global transaction context on multiple WebLogic Server instances, the JTS driver will
always route to the first connection established by the application in the transaction.
For example, if an application starts a transaction on one server, accesses a non-XA
JDBC resource, then makes a remote method invocation (RMI) call to another server
and accesses a data source that uses the same underlying JDBC driver, the JTS
driver recognizes that the resource has a connection associated with the transaction
on another server and sets up an RMI redirection to the actual connection on the first

14-8

Chapter 14
Local Transaction Completion when Closing a Connection

server. All operations on the connection are made on the one connection that was
established on the first server. This behavior can result in a performance loss due to
the overhead associated with setting up these remote connections and making the
RMI calls to the one physical connection.

14.3.1.4 Multiple Non-XA Participants

If you use more than one non-XA resource in a global transaction, it is possible to

see JTA Syst enExcepti ons in the event of a non-atomic outcome. The chance for

non-atomic outcomes and Syst enExcept i ons tends to increase with the number of
two-phase-emulated data source participants.

" Note:

The use of a two-phase-emulated data source in a JTA transaction across
domains of different versions is not supported.

14.4 Local Transaction Completion when Closing a
Connection

ORACLE

For a non-XA connection, the set Aut oComm t (t rue) method is called if the connection
is currently in auto-commit false state when a connection is closed. Per the Java
EE JDBC specification, this method automatically commits any outstanding local
transaction.

There are some drivers (Oracle 10.x and 11.x driver) that do not commit the
local transaction. If the application does not complete (commit or rollback) the
local transaction before closing the connection, a connection is returned to the
pool with outstanding work and that work may never be completed or it may be
committed or rolled back by the next reservation of that connection. To prevent
that situation from happening, a WebLogic data source calls commit on the
connection when returning it to the pool, if running with the Oracle 10.x or 11.x
driver. If an explicit commit is desired on close, then set the system property
webl ogi c. dat asour ce. endLocal TxOnNonXaConW t hCommi t =t rue .

Some users may want an abandoned local transaction to rollback instead of commit
on close. Setting the following properties will cause local transactions to be rolled back
instead of committed if abandoned:

- Dnebl ogi c. dat asour ce. endLocal TxOnNonXaConW t hConmi t =f al se
- Dnebl ogi c. dat asour ce. endLocal TxOnNonXaConW t hRol | back=t r ue

" Note:

It is not a good programming practice to leave abandoned transactions.
It is recommended that applications explicitly commit or rollback local
transactions.

14-9

ORACLE

Chapter 14
Local Transaction Completion when Closing a Connection

For an XA connecti on, WebLogic data sources have always rolled back
any local transaction when closing the connection. The transaction can
be committed instead of rolled back by setting the system property

webl ogi c. dat asour ce. endLocal TxOnXaConW t hCommi t =t r ue.

For an XA connecti on, WebLogic data sources have always rolled back
any local transaction when closing the connection. The transaction can
be committed instead of rolled back by setting the system property

webl ogi c. dat asour ce. endLocal TxOnXaConW t hCommi t =t r ue.

14-10

Understanding Data Source Security

Secure WebLogic JDBC data sources by configuring the data source security options
in your application environment. Security considerations include the number of
WebLogic Server and database users, the granularity of data access, the depth of the
security identity (property on the connection or a real user), performance, coordination
of various components in the software stack, and driver capabilities.

This chapter includes the following sections:

e Introduction to WebLogic Data Source Security Options
* WebLogic Data Source Security Options

» Connections within Transactions

* WebLogic Data Source Resource Permissions

e Data Source Security Example

e Using Encrypted Connection Properties

e Using SSL and Encrytption with Data Sources and Oracle Drivers

15.1 Introduction to WebLogic Data Source Security Options

ORACLE

By default, you define a single database user and password for a data source. You can
store it in the data source descriptor or make use of the wallet.

For information on using wallets, see Creating and Managing Oracle Wallet). This is a
very simple and efficient approach to security. All of the connections in the connection
pool are owned by this user and there is no special processing when a connection

is given out. That is, it's a homogenous connection pool and any request can get

any connection from a security perspective (there are other aspects, such as affinity).
Regardless of the end user of the application, all connections in the pool use the same
security credentials to access the DBMS. No additional information is needed when
you get a connection because it's all available from the datasource descriptor or wallet.
For example:

java. sql . Connection conn = nydatasource. get Connection();

15-1

Chapter 15
WebLogic Data Source Security Options

< Note:

You can enter the password as a name-value pair in the Properti es field
(this not permitted for production environments) or you can enter it in the
Passwor d field. The value in the Passwor d field overrides any password value
defined in the Properti es passed to the JDBC Driver when creating physical
database connections.

It is recommended that you use the Passwor d attribute in place of the
password property in the properties string because the Passwor d value

is encrypted in the configuration file (stored as the password-encrypted
attribute in the j dbc- dri ver - par ans tag in the module file) and is hidden

in the WebLogic Server Administration Console. The Properti es and
Passwor d fields are located on the WebLogic Server Administration Console
data source creation wizard or data source configuration page. Also,
JDBCDr i ver Par ansBean. Passwor d attribute is now dynamic and does not
require a restart of the data source. See JDBC Data Source: Configuration:
Connection Pool in Oracle WebLogic Server Administration Console Online
Help.

The JDBC API can also be used to programmatically specify the database username
and password as in the following.

java. sqgl . Connection conn = nydatasour ce. get Connection(“user", “password");

Although the JDBC specification implies that the get Connecti on(“user",

“passwor d”) method should take a database user and associated password, software
vendors have developed implementations according to their own interpretation of the
specification. Oracle WebLogic Server, by default, treats this as an application server
user and password:

e The pair is authenticated to see if it is a valid user and that user is used for
WebLogic security permission checks.

e The user is then mapped to a database user and password using the data source
credential mapper.

WebLogic Server's implementation generically follows the specification but the
database credentials are one-step removed from the application code.

While the default approach is simple, it does mean that only one user is doing all of
the work. You can't determine who actually did the update nor can you restrict SQL
operations by who is running the operation, at least at the database level. Any type of
per-user logic needs to be in the application code instead of relying on the database.
There are various WebLogic datasource features that can be configured to provide
per-user information about the operations.

15.2 WebLogic Data Source Security Options

Learn about the security options available for WebLogic JDBC data source.

ORACLE 15-2

ORACLE

Chapter 15

WebLogic Data Source Security Options

Table 15-1 WebLogic Data Source Configuration Options for Security

Credentials

Feature Description Can be used with . . . Can't be used
with . ..
User authentication Default Proxy session, Set client Identity pooling, Use

(default)

get Connect i on(us
er, password)
behavior —
WebLogic validates
the input and uses
the user/password in
the descriptor.

identifier

database credentials

Use database
credentials

Instead of using the
credential mapping,
use the supplied
user and password
directly.

Set client identifier, Proxy
session, Identity pooling

User authentication

Set Client Identifier

Set a client identifier
property associated
with the connection

(Oracle and DB2

only).

Everything

N/A

Proxy Session

Set a light-

weight proxy user
associated with the
connection (Oracle-

only).

User authentication, Set
client identifier, Use
database credentials

Identity pooling

Identity pooling

Heterogeneous pool
of connections
owned by specified
users.

Set client identifier, Use
database credentials

Proxy session,

User authentication,
Labeling, Active
GridLink

Note:

All of these features are available with both XA and non-XA drivers.

All of these features are configurable on the Identity tab of the Data Source
Configuration tab in the WebLogic Server Administration Console. See JDBC Data
Source: Configuration: Identity Option in Oracle WebLogic Server Administration
Console Online Help.

Note:

Prior WebLogic Server Release 12.1.2, the Proxy Session and Use
Database Credentials options were only on the Oracle tab.

The following sections describe these features in more detail:

» Credential Mapping vs. Database Credentials

15-3

Chapter 15
WebLogic Data Source Security Options

» Set Client Identifier on Connection
* Oracle Proxy Session

* ldentity-based Connection Pooling

15.2.1 Credential Mapping vs. Database Credentials

ORACLE

Each WebLogic data source has a credential map that is a mechanism used to map

a key, in this case a WebLogic user, to security credentials (user and password). By
default, when a user and password are specified when getting a connection, they

are treated as credentials for a WebLogic user, validated, and are converted to a
database user and password using a credential map associated with the data source.
If a matching entry is not found in the credential map for the data source, then the
user and password associated with the data source definition are used. Because of
this defaulting mechanism, you should be careful what permissions are granted to the
default user. Alternatively, you can define an invalid default user to ensure that no one
can accidentally get through (in this case, you would need to set the initial capacity for
the pool to zero so that the pool is populated only by valid users).

To create an entry in the credential map:

1. Create a WebLogic user. In the WebLogic Server Administration Console, go
to Security realms, select your realm (for example, myrealm), select Users, and
select New.

2. Create the mapping as described in Configure credential mapping for a JDBC data
source in Oracle WebLogic Server Administration Console Online Help.

The advantages of using the credential mapping are that:

* You don't hard-code the database user/password into a program or need to
prompt for it in addition to the WebLogic user/password.

* It provides a layer of abstraction between WebLogic security and database
settings such that many WebLogic identities can be mapped to a smaller set of DB
identities, thereby only requiring middle-tier configuration updates when WebLogic
users are added/removed.

You can cut down the number of users that have access to a data source to reduce
the user maintenance overhead. For example, suppose that a servlet has the one
pre-defined WebLogic user/password for data source access that is hardwired in its
code using a get Connect i on(user, password) call. Every WebLogic user can reap the
specific DBMS access coded into the servlet, but none has to have general access

to the data source. For instance, there may be a Sales DBMS which needs to be
protected from unauthorized eyes, but it contains some day-to-day data that everyone
needs. The Sales data source is configured with restricted access and a servlet is built
that hardwires the specific data source access credentials in its connection request. It
uses that connection to deliver only the generally needed day-to-day info to any caller.
The servlet cannot reveal any other data and no WebLogic user can get any other
access to the data source. This is the approach that many large applications use and
is the logic behind the default mapping behavior in WebLogic Server.

The disadvantages of using the credential map are that:

» ltis difficult to manage (create, update, delete) with a large number of users; it is
possible to use WLST scripts or a custom JMX client utility to manage credential
map entries.

15-4

Chapter 15
WebLogic Data Source Security Options

* You can't share a credential map between data sources so they must be
duplicated.

Some applications prefer not to use the credential map. Instead, the credentials
passed to get Connect i on(user, password) should be treated as database credentials
and used to authenticate with the database for the connection, avoiding going through
the credential map. This is enabled by setting the use- dat abase- credential s totrue.
See Configure Oracle parameters in Oracle WebLogic Server Administration Console
Online Help.

When use- dat abase- credenti al s is enabled, it turns of credential mapping for the
following attributes:

* identity-based-connection-pooling-enabl ed
e oracl e-proxy-session

e set client identifier

" Note:

in the data source schema, the set client identifier feature is poorly named
credenti al - mappi ng- enabl ed. The documentation and the console refer to it
as set client identifier.).

To review the behavior of credential mapping and using database credentials:

» If using the credential map, there needs to be a mapping for each WebLogic user
to database user for those users that have access to the database; otherwise the
default user for the data source is used. If you always specify a user/password
when getting a connection, you only need credential map entries for those specific
users.

» If using database credentials without specifying a user/password, the default user
and password in the data source descriptor are always used. If you specify a
user/password when getting a connection, that user is used for the credentials.
WebLogic users are not involved at all in the data source connection process.

15.2.2 Set Client Identifier on Connection

ORACLE

When this feature is enabled on the data source, a client property is associated
with the connection. The underlying SQL user remains unchanged for the life of
the connection but the client value can change. This information can be used for
accounting, auditing, or debugging. The cl i ent property is based on either the
WebLogic user mapped to a database user based on the credential map or the
database user parameter directly from the get Connecti on() method, based on the
use database credentials setting described earlier.

To enable this feature, select Set Client 1D On Connection in the WebLogic Server
Administration Console. See Enable Set Client ID On Connection for a JDBC data
sourcein Oracle WebLogic Server Administration Console Online Help.

The Set Client Identifier feature is only available for use with the Oracle thin driver and
the IBM DB2 driver, based on the following interfaces:

15-5

ORACLE

Chapter 15
WebLogic Data Source Security Options

For pre-Oracle 12c,

oracle.jdbc.driver.Oacl eConnection.setCientldentifier(client) isused.
For more information about how to use this for auditing and debugging, see

Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity in the Oracle
Database Security Guide. You can get the value using get 0 i entldentifier()
from the driver using the oj dbcN. j ar or oj dbcN g. j ar files.

< Note:

Setting the client identifier using the Oracle driver is disabled if you are
using oj dbcNdns. j ar, the default JAR file for Oracle Fusion MiddleWare
and Oracle Fusion Applications. In this case, the Set Client Identifier
feature is not supported.

To get back the value from the database as part of a SQL query, use a statement
like the following:

sel ect sys_context (' USERENV' ,' CLI ENT_I DENTIFIER) from DUAL

Starting in Oracle 12c, j ava. sql . Connection. set O ient|nfo("OCSI D. CLI ENTI D',
client) is used. This is a JDBC standard API, although the property values are
proprietary. A problem with set O i ent | dentifier usage is that there are pieces
of the Oracle technology stack that set and depend on this value. If application
code also sets this value, it can cause problems. This has been addressed

with set O i ent | nf o by making use of this method a privileged operation. A
well-managed container can restrict the Java security policy grants to specific
namespaces and code bases, and protect the container from out-of-control user
code. When running with the Java security manager, permission must be granted
in the Java security policy file for:

perm ssion "oracle.jdbc. Oracl eSQLPerni ssi on"
“clientlnfo.OCSID. CLIENTID';

Using the name OCSI D. CLI ENTI D allows for upward compatible use of sel ect
sys_context (' USERENV' , ' CLI ENT_| DENTI FI ER) from DUAL or use the JDBC
standard APl j ava. sql . get CientInfo(“QOCSID. CLI ENTI D') to retrieve the value.

Setting this value in the Oracle USERENV context can be used to drive the Oracle
Virtual Private Database (VPD) feature to create security policies to control
database access at the row and column level. Essentially, Oracle Virtual Private
Database adds a dynamic WHERE clause to a SQL statement that is issued against
the table, view, or synonym to which an Oracle Virtual Private Database security
policy was applied. SeeUsing Oracle Virtual Private Database to Control Data
Access in the Oracle Database Security Guide. Using this data source feature
means that no programming is needed on the WebLogic side to set this context.
The context is set and cleared by the WebLogic data source code.

For the IBM DB2 driver,

com i bm db2.jcc. DB2Connecti on. set DB2CI i ent User (cl i ent) is used for older
releases (prior to version 9.5). This specifies the current client user name for
the connection. Note that the current client user name can change during

a connection (unlike the user). This value is also available in the CURRENT

CLI ENT_USERI D special register. You can select it using a statement like sel ect
CURRENT CLI ENT_USERI D from SYS| BM SYSTABLES.

15-6

http://docs.oracle.com/cd/B28359_01/network.111/b28531/authentication.htm#i1009003
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm

Chapter 15
WebLogic Data Source Security Options

* When running the IBM DB2 driver with JDBC 4.0 (starting with version 9.5),
java. sqgl . Connection.setCientInfo(“ClientUser", client) isused. You can
retrieve the value using j ava. sql . Connection.getdientlnfo(“CientUser")
instead of the DB2 proprietary API (even if set using set DB2C i ent User ()).

15.2.3 Oracle Proxy Session

ORACLE

Oracle proxy authentication allows one JDBC connection to act as a proxy for multiple
(serial) light-weight user connections to an Oracle database with the thin driver. You
can configure a WebLogic data source to allow a client to connect to a database
through an application server as a proxy user. The client authenticates with the
application server and the application server authenticates with the Oracle database.
This allows the client's user name to be maintained on the connection with the
database.

¢ Note:

This feature is only supported when using the Oracle thin driver and a
supported Oracle database (the database url must contain or acl e.

Use the following steps to configure proxy authentication on a connection to an Oracle
database.

1. If you have not yet done so, create the necessary database users.

2. On the Oracle database, provide CONNECT THROUGH privileges. For example:
SQ.> ALTER USER connectionuser GRANT CONNECT THROUGH dbuser;
where connect i onuser is the name of the application user to be authenticated and
dbuser is an Oracle database user.

3. Create a generic or Active GridLink data source and set the user to the value of
dbuser.

4. To use:

* WebLogic credentials, create an entry in the credential map that maps the
value of wisuser to the value of dbuser, as described earlier.

« Database credentials, enable “Use Database Credentials", as described
earlier

5. Enable Oracle Proxy Authentication, see Configure Oracle parameters in Oracle
WebLogic Server Administration Console Help.

6. Log onto a WebLogic Server instance using the value of W suser or dbuser.

7. Get a connection using getConnection(username, password). The credentials are
based on either the WebLogic user that is mapped to a database user or the
database user directly, based on the “use database credentials" setting.

You can see the current user and proxy user by executing:

sel ect user, sys_context (' USERENV' ,' PROXY_USER) from DUAL

15-7

Chapter 15
WebLogic Data Source Security Options

< Note:

get Connect i on fails if Use Database Credenti al s is not enabled and the
value of the user/password is not valid for a WebLogic user. Conversely,
it fails if Use Dat abase Credenti al s is enabled and the value of the user/
password is not valid for a database user.

A proxy session is opened on the connection based on the user each time a
connection request is made on the pool. The proxy session is closed when the
connection is returned to the pool. Opening or closing a proxy session has the
following impact on JDBC objects:

» Closes any existing statements (including result sets) from the original connection.
» Clears the WebLogic Server statement cache.
» Clears the client identifier, if set.

* The WebLogic Server test statement for a connection is recreated for every proxy
session.

These behaviors may impact applications that share a connection across instances
and expect some state to be associated with the connection.

Oracle proxy session is also implicitly enabled when use- dat abase- credenti al s is
enabled and get Connecti on(user, password) is called.

The exact definition of or acl e- pr oxy- sessi on is as follows:

» If proxy authentication is enabled and identity based pooling is also enabled, it is
an error.

» If auser is specified on get Connection() and i dentity-based-connecti on-
pool i ng- enabl ed is f al se, then or acl e- pr oxy- sessi on is treated as t r ue
implicitly (it can also be explicitly t r ue).

e If auseris specified on get Connection() and i dentity-based-connecti on-
pool i ng- enabl ed is t rue, then or acl e- proxy- sessi on is treated as f al se.

15.2.4 Identity-based Connection Pooling

ORACLE

An identity based pool creates a heterogeneous pool of connections. This allows
applications to use a JDBC connection with a specific DBMS credential by pooling
physical connections with different DBMS credentials. The DBMS credential is based
on either the WebLogic user mapped to a database user or the database user directly,
based on the use- dat abase-credenti al s. use- dat abase- credenti al s=true is how
some implementations interpret the JDBC standard—basically a heterogeneous pool
with users specified by get Connect i on(user, password) .

The allocation of connections is more complex if Enabl e 1dentity Based Connection
Pool i ng attribute is enabled on the data source. When an application requests a
database connection, the WebLogic Server instance selects an existing physical
connection or creates a hew physical connection with requested DBMS identity.

The following section provides information on how heterogeneous connections are
created:

15-8

ORACLE

Chapter 15
WebLogic Data Source Security Options

1. At connection pool initialization, the physical JDBC connections based on the
configured or default “initial capacity" are created with the configured default
DBMS credential of the data source.

2. An application tries to get a connection from a data source.
3. If:

* use-database-credenti al s is not enabled, the user specified in
get Connect i on is mapped to a DBMS credential, as described earlier. If the
credential map doesn't have a matching user, the default DBMS credential is
used from the data source descriptor.

* use-database-credential s is enabled, the user and password specified in
get Connecti on are used directly.

4. The connection pool is searched for a connection with a matching DBMS
credential.

5. If a match is found, the connection is reserved and returned to the application.

6. If no match is found, a connection is created or reused based on the maximum
capacity of the pool:

* If the maximum capacity has not been reached, a new connection is created
with the DBMS credential, reserved, and returned to the application.

» If the pool has reached maximum capacity, based on the least recently
used (LRU) algorithm, a physical connection is selected from the pool and
destroyed. A new connection is created with the DBMS credential, reserved,
and returned to the application.

It should be clear that finding a matching connection is more expensive than a
homogeneous pool. Destroying a connection and getting a new one is very expensive.
If possible, use a normal homogeneous pool or one of the light-weight options (client
identity or an Oracle proxy connection) as they are more efficient than identity-based
pooling.

Regardless of how physical connections are created, each physical connection in the
pool has its own DBMS credential information maintained by the pool. Once a physical
connection is reserved by the pool, it does not change its DBMS credential even if the
current thread changes its WebLogic user credential and continues to use the same
connection.

To configure this feature, select Enabl e I dentity Based Connection Pooling. See
Enable identity-based connection pooling for a JDBC data source in Oracle WebLogic
Server Administration Console Online Help.

You must make the following changes to use Logging Last Resource (LLR) transaction
optimization with Identity-based Pooling to get around the problem that multiple users
access the associated transaction table:

* You must configure a custom schema for LLR using a fully qualified LLR table
name. All LLR connections will then use the named schema rather than the default
schema when accessing the LLR transaction table.

» Use database specific administration tools to grant permission to access the
named LLR table to all users that could access this table via a global transaction.
By default, the LLR table is created during boot by the user configured for the
connection in the data source. In most cases, the database will only allow access
to this user and not allow access to mapped users.

15-9

Chapter 15
Connections within Transactions

15.3 Connections within Transactions

When you get a connection within a transaction, it is associated with the transaction
context on a particular WebLogic Server instance. This type of connection has some
special behaviors.

For example:

e When getting a connection with a data source configured with non-XA LLR or
1PC (JTS driver) with global transactions, the first connection obtained within
the transaction is returned on subsequent connection requests regardless of the
values of username/password specified and independent of the associated proxy
user session, if any. The connection must be shared among all users of the
connection when using LLR or 1PC.

e For XA data sources, the first connection obtained within the global transaction
is returned on subsequent connection requests within the application server,
regardless of the values of username/password specified and independent of the
associated proxy user session, if any. The connection must be shared among all
users of the connection within a global transaction within the application server/
JVM.

15.4 WebLogic Data Source Resource Permissions

ORACLE

In WebLogic Server, security policies answer the question "who has access" to a
WebLogic data source resource. A security policy is created when you define an
association between a WebLogic data source resource and a user, group, or role. You
can optionally restrict access to JDBC data sources using security policies.

A WebLogic data source resource has no protection until you assign it a security
policy. As soon as you add one policy for a permission, then all other users are
restricted. For example, if you add a policy so that webl ogi ¢ can reserve a connection,
then all other users fail to reserve connections unless they are also explicitly added.
The validation is done for WebLogic user credentials, not database user credentials.
See Create policies for resource instances in Oracle WebLogic Server Administration
Console Online Help.

You can protect JDBC resource operations by assigning Administrator methods which
can limit the actions that an administrator may take upon a JDBC data source. These
resources can be defined on the Policies tab on the Security tab associated with the
data source. When you secure an individual data source, you can choose whether to

protect JDBC oper ati ons using one or more of the following administrator methods:

e adni n—The following methods on the JDBCDat aSour ceRunt i meMBean are invoked
as adni n operations: cl ear St at ement Cache, suspend, f or ceSuspend, r esune,
shut down, f or ceShut down, start, get Properti es, and pool Exi sts.

* reserve—Applications reserve a connection in the data source by looking up
the data source and then calling get Connect i on. Giving a user the r eserve
permission enables them to execute vendor-specific operations. Depending on
the database vendor, some of these operations may have database security
implications. See WebLogic Data Source Security Options.

* shrink—Shrinks the number of connections in the data source to the maximum of
the currently reserved connections or to the initial size.

15-10

Chapter 15
Data Source Security Example

* reset —Resets the data source connections by shutting down and re-establishing
all physical database connections. This also clears the statement cache for each
connection. You can only reset data source connections that are running normally.

e Al —An individual data source is protected by the union of the Admi n, reserve,
shrink, and reset administrator methods.

< Note:

Be aware of the following:

— If a security policy controls access to connections in a multi data
source, access checks are performed at both levels of the JDBC
resource hierarchy (once at the multi data source level, and again
at the individual data source level). As with all types of WebLogic
resources, this double-checking ensures that the most specific
security policy controls access.

See Java DataBase Connectivity (JDBC) Resources in Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

The following table provides information on the user for permission checking when
using the administrator method r eser ve:

Table 15-2 Determining the User when using the reserve Administration

Method
|
API Use-database-credential User for permission
checking
get Connecti on() True or Fal se Current WebLogic user
get Connect i on(user, passwo Fal se User/password from API
rd)
get Connect i on(user, passwo True Current WebLogic user
rd)

In summary, if a simple get Connecti on() is used or database credentials are enabled,
the current user that is authenticated to the WebLogic system is checked. If database
credentials are not enabled, then the user and password on the API are used. This
feature is very useful to restrict what code and users can access your database.

For instructions on how to set up security for all WebLogic Server resources, see
Use roles and policies to secure resources in Oracle WebLogic Server Administration
Console Online Help. For more information about securing server resources, see
Securing Resources Using Roles and Policies for Oracle WebLogic Server.

15.5 Data Source Security Example

Learn about the interactions and differences between Identity, Proxy, and Database
Credentials with help of data source security example.

ORACLE 15-11

ORACLE

Chapter 15
Data Source Security Example

The following is an actual example of the interactions between i dentity-
based- connecti on- pool i ng- enabl ed, or acl e- pr oxy- sessi on, and use- dat abase-
credenti al s.

On the database side, the following objects are configured:
e users:scott;jdbcqga;jdbcga3

e alter user jdbcga3 grant connect through jdbcqa;
e alter user jdbcga grant connect through jdbcqga;
The following WebLogic users are configured:

weblogic

* wuser

The following WebLogic data source objects are configured.
» Credential mapping webl ogi ¢ to scot t

e Credential mapping wl user toj dbcqa3

» Datasource configured with user j dbcga

e Alltests run with Set Cient |Dsettotrue.

e All tests run with or acl e- proxy- sessi on set to f al se.
The test program:

* Runsin serviet

* Authenticates to WebLogic as user webl ogi ¢

Table 15-3 Comparing Identity, Proxy, and Database Credentials
|

Use DB Identity based getConnect getConnection getConnectio getConnection(

Credentia ion (weblogic,***) n)

Is (scott,***) (jdbcqa3,***)

true true Identity webl ogi ¢ fails User j dbcga3 Defaultj dbcga
scott —notadbuser cjient Client webl ogi ¢
Client webl ogi ¢ Proxy nul |
webl ogi ¢ Proxy nul |
Proxy nul |

fal se true scott fails— Userscott j dbcga3 fails User scot t
nota Clientscott ~ —nhota Client scot t
WebLogic ¥ WebLogic user ¥
user Proxy nu Proxy nu

true fal se Proxy for webl ogi ¢ fails User j dbcga3 Defaultj dbcga
scott failed —notadbuser cjient Client webl ogi ¢

webl ogi ¢ Proxy nul |
Proxy j dbcga

fal se fal se scott fails— Userjdbcgqa jdbcga3fails Default jdbcga
nota Clientscott ~ —nhota Client scot t
WebLogic ¥ WebLogic user ¥
user Proxy nu Proxy nu

If:

15-12

Chapter 15
Using Encrypted Connection Properties

e Set Cient IDissettofalse, all cases would have Cient settonul | .

e The Oracle thin driver is not used, the one case with the non-nul | Proxy would
throw an exception because proxy session is only supported with the Oracle thin
driver.

When or acl e- proxy- sessi on is set to t r ue, the only cases that pass (with a proxy of
j dbcqa) are:

e Setting use- dat abase-credential s totrue and using get Connecti on(j dbcga3, ..)
or get Connection() .

e Setting use- dat abase-credential s is f al se and using get Connecti on(w user,
..) or get Connection().

15.6 Using Encrypted Connection Properties

As part of a secure configuration, it may be necessary to provide one or more
connection property values that should not appear as clear text in the connection
properties of the data source descriptor file. These properties can be added using the
Encrypted Properties attribute.

See Encrypt connection properties in Oracle WebLogic Server Administration Console
Online Help.

< Note:

You cannot encrypt connection properties when creating a data source in the
WebLogic Server Administration Console. It can only be done when updating
an existing data source configuration.

15.6.1 Best Practices for Encrypting Connection Properties when
Using the Administration Console

The following section provides information on best practices and tips when encrypting
connection properties in the WebLogic Server Administration Console:

* When creating a data source:
— Create it without the encrypted property and do not target the data source.

— It may not be possible to test the connection without the encrypted property.
You might want to temporarily test with a clear text property, then replace the
clear text property with the encrypted property later.

— Edit the data source by going to Summary of JDBC Data Sources page,
select the Data Source, go to the Configuration tab and then select the
Connection Pool tab.

* To enter values without clear text values displayed on the screen:

— Save any other changes that you wish to make to this page and click the Add
Securely button next to the Encrypted Properties text box.

— On the Add a new Encrypted Property page, enter the property name and
masked value, and click OK.

ORACLE 15-13

Chapter 15
Using Encrypted Connection Properties

— Repeat for additional encrypted property values.
— Click Save when you have finished entering encrypted properties.

* You can enter several values at once if it is appropriate in your environment to
display the encrypted values on the screen until the changes are saved.

— List each property=val ue pair on a separate line in the Encrypted Properties
field.

— Click Save to encrypt the values.
e Activate your changes:

— If the data source was untargeted: Go to the Targets tab, target the data
source, and click Save.

— If the data source was already active when the encrypted property values were
added: Go to the Targets tab, untarget the data source, click Save, retarget
the data source, and click Save.

15.6.2 WLST Examples to Encrypt Connection Properties

The following sections provide examples of WLST scripts that encrypt connection
properties:

» Use WLST to Update an Existing Data Source with Encrypted Properties
* Use WLST to Create Encryped Properties

15.6.2.1 Use WLST to Update an Existing Data Source with Encrypted
Properties

The following is an online WLST script shows how to add an encrypted property to an
existing data source named genericds.

connect (' adnmin', ' password','t3://1ocal host:7001")

edit()

startEdit()

cd(' JDBCSyst enResour ces/ generi cds/ JDBCResour ce/ generi cds/ JDBCDx i ver Par ans/
generi cds/ Properties/ genericds/Properties')

create(' encryptedprop',' Property')

cd(' encrypt edprop')

cno. set Encrypt edVal ueEncrypt ed(encrypt (' foo'))

save()

activate()

15.6.2.2 Use WLST to Create Encryped Properties

The following WLST script creates encrypted properties:
create(' nyProps',' Properties')

cd(' Properties/ NO_ NAME 0')

Create other properties

p=create('javax.net.ssl.trustStoreType', 'Property')
p. set Val ue(' JKS')

ORACLE 15-14

Chapter 15
Using SSL and Encryption with Data Sources and Oracle Drivers

p=creat e('javax.net.ssl.trustStorePassword', 'Property"')
p. set Encrypt edVal ueEncrypt ed(encrypt (' securityComonTr ust KeySt or ePassPhrase'))

15.7 Using SSL and Encryption with Data Sources and
Oracle Drivers

Use SSL to provide both data encryption and strong authentication for network
connections to the database server.

The following sections provide additional information on using these features with
WebLogic Server.

e Using SSL with Data Sources and Oracle Drivers
e Using Data Encryption with Data Sources and Oracle Drivers

See JDBC Client-Side Security Features in the Oracle® Database JDBC Developer's
Guide.

15.7.1 Using SSL with Data Sources and Oracle Drivers

This section provides additional information on a variety of options that use SSL with
data sources and Oracle drivers.

The general requirement when using SSL, regardless of the option, is that you must
specify a protocol of t cps in any url.

For detailed information on configuring and using SSL with Oracle drivers, see:

* http://www.oracle.com/technetwork/middleware/weblogic/index-087556.html

» http://www.oracle.com/technetwork/database/enterprise-edition/wp-oracle-jdbc-
thin-ssl-130128.pdf.

If you use a provider that requires a password, such as the

j avax. net.ssl.trust StorePassword orj avax. net. ssl . keySt or ePasswor d, the value
should be stored as an encrypted property. See Using Encrypted Connection
Properties.

15.7.1.1 Using SSL with Oracle Wallet

ORACLE

Oracle wallet can also be used with SSL. By using it correctly, passwords can

be eliminated from the JDBC configuration and client/server configuration can be
simplified by sharing the wallet). The following is a list of basic requirements to use
SSL with Oracle wallet.

» Update the sgl net.ora and | i stener. or a files with the location of the wallet.
These files also indicate whether or not SSL_CLI ENT_AUTHENTI CATI ONis being
used.

» If you use an auto-login wallet type, a password is not needed in the data source
configuration to open the wallet. The store type for an auto-login wallet is SSO (not
JKS or PKCS12) and the file name is cwal | et . sso. If you use another provider
type, use the encrypted property type to store the password as an encrypted value
in the data source configuration.

* Enable the Oracle PKI provider in a WLS startup class using:

15-15

http://www.oracle.com/technetwork/middleware/weblogic/index-087556.html
http://www.oracle.com/technetwork/database/enterprise-edition/wp-oracle-jdbc-thin-ssl-130128.pdf
http://www.oracle.com/technetwork/database/enterprise-edition/wp-oracle-jdbc-thin-ssl-130128.pdf

Chapter 15
Using SSL and Encryption with Data Sources and Oracle Drivers

Security.insertProviderAt(new oracle.security.pki.OaclePKlProvider (), 3);

» For encryption and server authentication, use the datasource connection
properties:

javax. net.ssl.trust Store=l ocation of wallet
j avax. net.ssl.trust StoreType="SSO'

* For client authentication, use the datasource connection properties:

javax. net.ssl . keyStore=location of wall et
j avax. net. ssl . keySt or eType="SSCO'

* Wallets are created using the orapki. They need to be created based on the usage
(encryption or authentication).

Common use cases are:

» Encryption and server authentication, which requires just a trust store.

» Encryption and authentication of both tiers (client and server), which requires a
trust store and a key store.

15.7.1.2 Active GridLink ONS over SSL

You can use SSL to secure communication between an Active GridLink (AGL) data
source and the Oracle Notification Service (ONS) which is use to provide load
balancing information and notification of node up/down events.

Use the following basic steps:

» Create an auto-login wallet and use the wallet on the client and server. The
following is a sample sequence to create a test wallet for use with ONS.

orapki wallet create -wallet ons -auto_login -pwd ONS_Val | et

orapki wallet export -wallet ons -dn "CN=ons_test, C=US" -cert ons/cert.txt
-pwd ONS_Wal | et

orapki wallet export -wallet ons -dn "CN=ons_test, C=US" -cert ons/cert.txt
-pwd ONS_Wal | et

* Onthe database server side:
1. Define the wallet file directory in the file $CRS_HOVE/ oprm/ conf / ons. confi g.
2. Runonsctl stop/start

* When configuring an AGL datasource, the connection to the ONS must be
defined. In addition to the host and port, the wallet file directory must be specified.
If you do not provide a password, a SSO wallet is assumed.

15.7.2 Using Data Encryption with Data Sources and Oracle Drivers

To use data encryption with the Oracle Thin driver, you must specify several
connection properties, see Configuration Parameters in Oracle® Database Advanced
Security Administrator's Guide. The following table maps the encryption and checksum
configuration parameters to the string constants required when configuring data
source descriptors using the Administration Console or WLST:

ORACLE 15-16

http://www.oracle.com/pls/topic/lookup?ctx=fmw121200&id=ASOAG030

Chapter 15
Using SSL and Encryption with Data Sources and Oracle Drivers

Table 15-4 Connection Encryption Parameters and WebLogic Configuration

Constants

___|

Client Configuration Parameter WebLogic Server Configuration String
Constant

Oracl eConnect i on. CONNECTI ON_PROPERTY_T oracl e. net. encryption_client
HI N_NET_ENCRYPTI ON_LEVEL

Oracl eConnect i on. CONNECTI ON_PROPERTY_T oracl e. net. encryption_types_clien
H N_NET_ENCRYPTI ON_TYPES t

Oracl eConnecti on. CONNECTI ON_PROPERTY_T oracl e. net.crypto_checksumclient
H N_NET_CHECKSUM LEVEL

Oracl eConnect i on. CONNECTI ON_PROPERTY_T oracl e. net.crypto_checksumtypes_
H N_NET_CHECKSUM TYPES client

ORACLE 15-17

Creating and Managing Oracle Wallet

Oracle Wallet allows you to store database credentials for WebLogic JDBC data
source definitions.

This chapter describes how to create and manage an Oracle Wallet for use with
WebLogic JDBC data sources. This chapter includes the following sections:

* What is Oracle Wallet

e Where to Keep Your Wallet

* How to Create an External Password Store

« Defining a WebLogic Server Datasource using the Wallet

e Using a TNS Alias instead of a DB Connect String

16.1 What is Oracle Wallet

Wallet provides a simple and easy method to manage database credentials across
multiple domains. It allows you to update database credentials by updating the
Wallet instead of having to change individual data source definitions. Updates are
accomplished by using a database connection string in the data source definition that
is resolved by an entry in the Wallet.

This is accomplished by using a database connection string in the data source
definition that is resolved by an entry in the Wallet.

This feature can be taken a step further by also using the Oracle TNS (Transparent
Network Substrate) administrative file to hide the details of the database connection
string (host name, port number, and service name) from the data source definition and
instead use an alias. If the connection information changes, it is simply a matter of
changing the tnsnames.ora file instead of potentially many data source definitions.

The wallet can be used to have common credentials between different domains.

That includes two different WebLogic Server domains or sharing credentials between
WebLogic Server and the database. When used correctly, it makes having passwords
in the data source configuration unnecessary.

16.2 Where to Keep Your Wallet

Oracle recommends that you create and manage the location of the Wallet in

the database environment. The database environment provides all the necessary
commands and libraries, including the $ORACLE_HOVE/ or acl e_conmon/ bi n/ mkst or e
command. Often the storage of the Wallet is managed by a database administrator
and provided for use by the client. A configured Wallet consists of two files,

cwal | et.sso and ewal | et. pl2 stored in a secure Wallet directory.

ORACLE 16-1

Chapter 16
How to Create an External Password Store

< Note:

You can also install the Oracle Client Runtime package to provide the
necessary commands and libraries to create and manage Wallet.

16.3 How to Create an External Password Store

ORACLE

Wallet has an automatic login feature that allows the client to access the Wallet
contents without supplying a password. Use of this feature prevents exposing a clear
text password on the client. Learn how to create an Wallet at the desired location and
provide credentials in the Wallet file.

Create a Wallet on the client by using the following syntax at the command line:

nkstore -wl <wallet location> -create

where wal | et _| ocati on is the path to the directory where you want to create and
store the Wallet.

This command creates a Wallet with the autologin feature enabled at the location
specified. Autologin enables the client to access the Wallet contents without supplying
a password and prevents exposing a clear text password on the client.

The kst or e command prompts for a password that is used for subsequent
commands. Passwords must have a minimum length of eight characters and contain
alphabetic characters combined with numbers or special characters. For example:

nkstore -wl /tnp/wallet —create

Enter password: mnysecret

PKI - 01002: Invalid password.

Enter password: mysecretl (not echoed)
Enter password again: mysecretl (not echoed)

Note:

Using Wallet moves the security vulnerability from a clear text password in
the data source configuration file to an encrypted password in the Walllet file.
Make sure the Wallet file is stored in a secure location.

You can store multiple credentials for multiple databases in one client Wallet. You
cannot store multiple credentials (for logging in to multiple schemas) for the same
database in the same Wallet. If you have multiple login credentials for the same
database, then they must be stored in separate Wallets.

To add database login credentials to an existing client Wallet, enter the following
command at the command line:

nkstore -wl <wallet_location> -createCredential <db_connect_string> <username>
<passwor d>

where:

e Thewall et | ocation isthe path to the directory where you created the Wallet.

16-2

Chapter 16
Defining a WebLogic Server Data Source using the Wallet

* The db_connect _string must be identical to the connection string that you specify
in the URL used in the data source definition (the part of the string that follows the
@. It can be either the short form or the long form of the URL. For example:

nmyhost : 1521/ myser vi ce or

(DESCRI PTI ON=(ADDRESS_LI ST=(ADDRESS=(PROTOCOL=TCP) (HOST=nyhost - scan)
(PORT=1521))) (CONNECT_DATA=(SERVI CE_NAME=nyservi ce)))

¢ Note:

You should enclose this value in quotation marks to escape any special
characters from the shell. Since this name is generally a long and
complex value, an alternative is to use TNS aliases. See Using a TNS
Alias instead of a DB Connect String.

» The usernane and passwor d are the database login credentials.
* Repeat for each database you want to use in a WebLogic data source.

See the Oracle Database Advanced Security Administrator's Guide for more
information about using autologin and maintaining Wallet passwords.

16.4 Defining a WebLogic Server Data Source using the
Wallet

To configure a WebLogic Server data source to use a Wallet you need to copy the
Wallet files to the secure directory on the client machine and update the data source
configuration files.

Use the following procedures to configure a WebLogic Server data source to use
Wallet:

e Copy the Wallet Files

« Update the Data source Configuration

16.4.1 Copy the Wallet Files

Copy the Wallet files, cwal | et . sso and ewal | et . p12, from the database machine to
the client machine and locate it in a secure directory.

16.4.2 Update the Datasource Configuration

Use the following steps to configure a WebLogic datasource to use Oracle Wallet:

1. Do not enter a user or password in the WebLogic Server Administration Console
when creating a datasource or delete them from an existing datasource. If a user,
password, or encrypted password appear in the configuration, they override the
Oracle wallet values.

2. Modify the URL so that there is a “/ " before the “@. For example: the short form of
the URL should look like j dbc: or acl e: t hi n: / @ydbur | : 1234/ nydb).

3. The following value must be added to Connection Properties:

ORACLE 16-3

http://docs.oracle.com/cd/E15586_01/network.1111/e10746/asowalet.htm

Chapter 16
Using a TNS Alias instead of a DB Connect String

oracle.net.wall et _|ocation=wallet_directory

where wal | et _directory is the secure directory location in Step 1 of Copy the
Wallet Files. An alternative method is use the - Dor acl e. net . wal [et _| ocation
system property and add it to JAVA_OPTI ONS. Oracle recommends using the
connection property.

16.5 Using a TNS Alias instead of a DB Connect String

Instead of specifying a matching database connection string in the URL and in the
Oracle Wallet, you can create an alias to map the URL information. The connection
string information is stored in t nsnanes. or a file with an associated alias name. The
alias name is then used both in the URL and the Wallet.

Use the following steps to create an TNS alias:

1. Specify the system property - Dor acl e. net . t ns_adm n=t ns_di rect ory where
tns_directory is the directory location of the t nsnames. or a file.

" Note:

Do not use the t ns_di rect ory location as a connection property.

2. Create or modify a t nsnanes. or a file in the directory location specified by
tns_directory. The entry has the form:

al i as=(DESCRI PT| ON=(ADDRESS=(PROTOCOL=TCP) (HOST=host)(PORT=por t))
(CONNECT_DATA=(SERVI CE_NAME=ser vi ce)))

Where host is URL of a database listener, port is the port a database listener, and
servi ce is the service name of the database you would like to connect to.

There are additional attributes that can be configured, see Local Naming
Parameters (tnsnames.ora) in the Database Net Services Reference. Oracle
recommends that the string be entered on a single line.

3. Use the alias in the data source definition URL by replacing the connection string
with the alias. For example, change the URL attribute in the Connection Pool tab
of the Administrative Console to j dbc: oracle:thin:/ @l i as.

Once created, it should not be necessary to modify the alias or the data source
definition again. To change the user credential, update the Wallet. To change the
connection information, update the t nsnanes. or a file. In either case, the data source
must be re-deployed. The simplest way to redeploy a data source is to untarget

and target the data source in the WebLogic Server Administration Console. This
configuration is supported for Oracle release 10.2 and higher drivers.

ORACLE 16-4

http://docs.oracle.com/cd/E11882_01/network.112/e10835/tnsnames.htm
http://docs.oracle.com/cd/E11882_01/network.112/e10835/tnsnames.htm

Deploying Data Sources on Servers and
Clusters

Learn about how to deploy data sources on servers and clusters.
This chapter includes the following sections:

» Deploying Data Sources on Servers and Clusters

e Minimizing Server Startup Hang Caused By an Unresponsive Database

17.1 Deploying Data Sources on Servers and Clusters

To deploy a data source to a cluster or server, you select the server or cluster as a
deployment target. When a data source is deployed on a server, WebLogic Server
creates an instance of the data source on the server, including the pool of database
connections in the data source. When you deploy a data source to a cluster, WebLogic
Server creates an instance of the data source on each server in the cluster.

For instructions, see Target JDBC data sources in the Oracle WebLogic Server
Administration Console Online Help.

17.2 Minimizing Server Startup Hang Caused By an
Unresponsive Database

To minimize the chances of the server hanging during start-up, use the
JDBCLogi nTi meout Seconds attribute on the ServerMBean.

On server startup, WebLogic Server attempts to create database connections in the
data sources deployed on the server. If a database is unreachable, server startup may
hang in the STANDBY state for a long period of time. This is due to WebLogic Server
threads that hang inside the JDBC driver code waiting for a reply from the database
server. The duration of the hang depends on the JDBC driver and the TCP/IP timeout
setting on the WebLogic Server machine.

To work around this issue, WebLogic Server includes the JDBCLogi nTi meout Seconds
attribute on the ServerMBean. When you set a value for this attribute, the value is
passed into j ava. sql . Dri ver Manager . set Logi nTi neout () . If the JDBC driver being
used to create database connections implements the set Logi nTi meout method,
attempts to create database connections will wait only as long as the timeout
specified.

An alternative is to setthe I nitial Capacity for the data source to 0. That means that
no connections are created when the data source is deployed and the database need
not even be available at that time. Connection creation is deferred until the application
needs them.

ORACLE 17-1

Using WebLogic Server with Oracle RAC

Oracle WebLogic Server provides strong support for Oracle Real Application Clusters
(RAC), minimizing database access time while allowing transparent access to rich
pooling management functions that maximizes both connection performance and
availability.

This chapter describes the requirements and configuration tasks for using Oracle Real
Application Clusters (Oracle RAC) with WebLogic Server. This chapter includes the
following sections:

* Overview of Oracle Real Application Clusters

» Software Requirements

« JDBC Driver Requirements

e Hardware Requirements

» Configuration Options in WebLogic Server with Oracle RAC

Both Oracle RAC and WebLogic Server are complex systems. To use them together
requires specific configuration on both systems, as well as clustering software and

a shared storage solution. This document describes the configuration required at a
high level. For more details about configuring Oracle RAC, your clustering software,
your operating system, and your storage solution, see the documentation from the
respective vendors.

18.1 Overview of Oracle Real Application Clusters

Oracle RAC is a software component you can add to a high-availability solution
that enables users on multiple machines to access a single database with increased
performance.

Oracle RAC comprises two or more Oracle database instances running on two

or more clustered machines and accessing a shared storage device via cluster
technology. To support this architecture, the machines that hosts the database
instances are linked by a high-speed interconnect to form the cluster. The interconnect
is a physical network used as a means of communication between the nodes of the
cluster. Cluster functionality is provided by the operating system or compatible third
party clustering software.

An Oracle RAC installation appears like a single standard Oracle database and is
maintained using the same tools and practices. All the nodes in the cluster execute
transactions against the same database and Oracle RAC coordinates each node's
access to the shared data to maintain consistency and ensure integrity. You can add
nodes to the cluster easily and there is no need to partition data when you add them.
This means that you can horizontally scale the database tier as usage and demand
grows by adding Oracle RAC nodes, storage, or both.

ORACLE 18-1

Chapter 18
Software Requirements

18.2 Software Requirements

Learn about the software requirements for using WebLogic Server with Oracle RAC.

To use WebLogic Server with Oracle RAC, you must install the following software on
each Oracle RAC node:

e Operating system patches required to support Oracle RAC. See the release notes
from Oracle for details.

e Oracle database management system. See Oracle® Fusion Middleware Licensing
Information..

e Clustering software for your operating system. See the Oracle documentation for
supported clustering software and cluster configurations.

e Shared storage software, such as Oracle Automatic Storage Management (ASM).
Note that some clustering software includes a file storage solution, in which case
additional shared storage software is not required.

¢ Note:

See Supported Configurations in What's New in Oracle WebLogic
Server 12.2.1.3.0 for the latest WebLogic Server hardware platform and
operating system support, and for the Oracle RAC versions supported
by WebLogic Server versions and service packs. See the Oracle
documentation for hardware and software requirements required for
running the Oracle RAC software.

18.3 JDBC Driver Requirements

To use WebLogic Server with Oracle RAC, your WebLogic JDBC data sources must
use the Oracle JDBC Thin driver 11g or later to create database connections.

18.4 Hardware Requirements

A typical WebLogic Server/Oracle RAC configuration includes a WebLogic Server
cluster, an Oracle RAC cluster, and hardware for shared storage.

18.4.1 WebLogic Server Cluster

The WebLogic Server cluster can be configured in many ways and with various
hardware options. See Administering Clusters for Oracle WebLogic Server for more
details about configuring a WebLogic Server cluster.

18.4.2 Oracle RAC Cluster

For the latest hardware requirements for Oracle RAC, see the Oracle RAC
documentation. However, to use Oracle RAC with WebLogic Server, you must
run Oracle RAC instances on robust, production-quality hardware. The Oracle
RAC configuration must deliver database processing performance appropriate for

ORACLE 18-2

Chapter 18
Configuration Options in WebLogic Server with Oracle RAC

reasonably-anticipated application load requirements. Unusual database response
delays can lead to unexpected behavior during database failover scenarios.

18.4.3 Shared Storage

In an Oracle RAC configuration, all data files, control files, and parameter files are
shared for use by all Oracle RAC instances. An HA storage solution that uses one of
the following architectures is recommended:

» Direct Attached Storage (DAS), such as a dual ported disk array or a Storage Area
Network (SAN)

* Network Attached Storage (NAS)

For a complete list of supported storage solutions, see your Oracle documentation.

18.5 Configuration Options in WebLogic Server with Oracle
RAC

When using WebLogic Server with Oracle RAC, configure the WebLogic domain so
that it interacts with Oracle RAC instances.

The following sections describe configuration options and requirements:

* Choosing a WebLogic Server Configuration for Use with Oracle RAC
* Validating Connections when using WebLogic Server with Oracle RAC

* Additional Considerations When Using WebLogic Server with Oracle RAC

18.5.1 Choosing a WebLogic Server Configuration for Use with Oracle
RAC

Consider the following alternatives:

* Using Active GridLink (AGL) data sources, see Oracle® Fusion Middleware
Licensing Information. AGL supports automatic additional and removal of RAC
instances. It also automatically handles when nodes go down and come up without
waiting for connection failures and successes. See Using Active GridLink Data
Sources.

» To connect to multiple Oracle RAC instances when using global transactions (XA),
Oracle recommends the use of transaction-aware WebLogic JDBC AGL or Multi
Data Sources (MDS), which support failover and load balancing, to connect to the
Oracle RAC nodes. See Using Multi Data Sources with Global Transactions.

" Note:

Using a generic data source for XA with Oracle RAC is not supported.
Oracle recommends AGL or MDS for XA to connect with Oracle RAC.
See Generic Data Source Handling for Oracle RAC Outages.

* To connect to multiple Oracle RAC instances when not using XA, Oracle
recommends the use of (non-transaction-aware) multi data sources to connect

ORACLE 18-3

Chapter 18
Configuration Options in WebLogic Server with Oracle RAC

to the Oracle RAC nodes. Use the standard multi data source configuration, which
supports failover and load balancing. For more information see Using Multi Data
Sources without Global Transactions.

WebLogic supports the use of Oracle Data Guard with Multi Data Source and AGL

When using Multi Data Source with single instances on the primary and standby,
the algorithm type must be set to FAI LOVER. When the instance on the primary
fails, connections on the primary will fail and connections will be created on the
standby.

The following table may help you as you try to determine which configuration is right
for your particular application:

Table 18-1 Choosing Configurations to Use with Oracle RAC

Requires Requires Requires Uses Oracle See...

Load Failover? Global RAC

Balancing? Transactions Services

(XA)?

Yes Yes Yes Yes Using Active GridLink Data Sources

Yes Yes Yes No Using Multi Data Sources with Global Transactions

Yes Yes Yes Yes Configuring Connections to Services on Oracle RAC
Nodes

Yes Yes No Yes Configuring Connections to Services on Oracle RAC
Nodes

Yes Yes No No Using Multi Data Sources without Global
Transactions

WebLogic supports the use of Oracle Data Guard with Multi Data Source and AGL.
When used with a Multi Data Source, the following limitations exist:

Only the failover policy is supported.

Only one RAC instance is allowed in the primary data center. A single generic data
source that is a member of the Multi Data Source is configured for the primary
data center. If SCANis used, an | NSTANCE_NAME must also be specified.

For each standby instance, a generic data source that is a member of the Multi
Data Source must be configured. If SCAN is used, an | NSTANCE_NAME must also be
specified for each instance. No member of the Multi Data Source can represent
more than one instance in a RAC cluster.

18.5.2 Validating Connections when using WebLogic Server with
Oracle RAC

Applications can use the JDBC 4.0 Connection.isValid API to verify connection
viability.

ORACLE

18-4

http://docs.oracle.com/javase/6/docs/api/java/sql/Connection.html#isValid(int)

Chapter 18
Configuration Options in WebLogic Server with Oracle RAC

< Note:

WebLogic Server does not
support or acl e. ucp. j dbc. Val i dConnection.isValid or
oracl e. ucp.jdbc. Val i dConnection. setlnvalid.

18.5.3 Additional Considerations When Using WebLogic Server with
Oracle RAC

The Distributed Transaction Processing (DTP) attribute on a database service should
not be used to coordinate transactions when using AGL data sources or multi data
sources with Oracle RAC. This option implies that the service is guaranteed to run

on only one RAC instance at any time. Transaction affinity to a single instance is
automatically managed by WebLogic Server for either AGL or Multi Data Source. This
allows the whole RAC cluster to be available for distributed transactions, as opposed
to DTP limiting all transactions for the service to a single RAC instance.

ORACLE 18-5

Using JDBC Drivers with WebLogic Server

WebLogic Server uses JDBC drivers to provide access to various databases.
WebLogic Server comes with a default set of JDBC drivers but third-party JDBC
drivers can also be used.

This chapter describes how to set up and use JDBC drivers. This chapter includes the
following sections:

e JDBC Driver Support

« JDBC Dirivers Installed with WebLogic Server

e Adding Third-Party JDBC Drivers Not Installed with WebLogic Server
e Globalization Support for the Oracle Thin Driver

e Using the Oracle Thin Driver in Debug Mode

19.1 JDBC Driver Support

WebLogic Server provides support for application data access to any database using a
JDBC-compliant driver.

The JDBC-compliant driver needs to meet the following requirements:
* The driver must be thread-safe.

* The driver must implement standard JDBC transactional calls, such as
set Aut oCommi t () and set Transacti onl sol ati on(), when used in transactional
aware environments.

» If the driver that does not implement serializable or remote interfaces, it cannot
pass objects to an RMI client application.

When WebLogic Server features use a database for internal data storage, database
support is more restrictive than for application data access. The following WebLogic
Server features require internal data storage:

e Container Managed Persistence (CMP)

* Rowsets

e JMS/JDBC Persistence and use of a WebLogic JDBC Store

+ JDBC Session Persistence

e RDBMS Security Providers

e Database Leasing (for singleton services and server migration)

e JTA Logging Last Resource (LLR) optimization.

19.2 JDBC Drivers Installed with WebLogic Server

The 12c version of the Oracle Thin driver is installed with Oracle WebLogic Server.
In addition to the Oracle Thin Driver, the mySQL 5.1.x (nysql - connect or - j ava-

ORACLE 19-1

Chapter 19
Adding Third-Party JDBC Drivers Not Installed with WebLogic Server

commer ci al -5. 1. 22- bi n. j ar) JDBC driver, WebLogic-branded DataDirect drivers are
also installed with WebLogic Server.

The drivers files are named:

e 0jdbc8.jar,o0jdbc8 g.jar, and oj dbc8dms. j ar for IDK 8

< Note:

For more information on WebLogic-branded DataDirect drivers, see Using
WebLogic-branded DataDirect Drivers in Developing JDBC Applications for
Oracle WebLogic Server.

These drivers are installed in subdirectories of $ORACLE_HOWE/ or acl e_comon/

modul es. The manifest in the webl ogi c. j ar lists this file so that it is loaded when
weblogic.jar is loaded (when the server starts). Therefore, you do not need to add
this JDBC driver to your CLASSPATH. If you plan to use a third-party JDBC driver
that is not installed with WebLogic Server, you must install the drivers, which includes
updating your CLASSPATH with the path to the driver files, and may include updating
your PATH with the path to database client files. See Supported Configurations in
What's New in Oracle WebLogic Server

Note:

* WebLogic Server includes a version of the Derby DBMS installed
with the WebLogic Server examples in the W._HOVE\ conmon\ der by
directory. Derby is an all-Java DBMS product included in the WebLogic
Server distribution solely in support of demonstrating the WebLogic
Server examples. For more information about Derby, see http://
db. apache. or g/ der by.

e If you want to upgrade installed Oracle Thin Driver, follow the note:
(downgrading is not supported) How To Upgrade the UCP and JDBC
Drivers Bundled with WebLogic Server 10.3.6 and 12c (for both
Database 11g and 12c) (Doc ID 1970437.1) . See http://www.oracle.com/
support/index.html.

19.3 Adding Third-Party JDBC Drivers Not Installed with
WebLogic Server

ORACLE

To use third-party JDBC drivers that are not installed with WebLogic Server, you

can add them to the DOVAI N_HOW/ | i b directory.Here, DOVAI N_HOME represents the
directory in which the WebLogic Server domain is configured. The default path is
ORACLE_HOWE/ user _pr oj ect s/ domai ns.

For more information, see Adding JARs to the Domain /lib Directory in Developing
Applications for Oracle WebLogic Server.

19-2

http://db.apache.org/derby
http://db.apache.org/derby
http://www.oracle.com/support/index.html
http://www.oracle.com/support/index.html

ORACLE

Chapter 19
Adding Third-Party JDBC Drivers Not Installed with WebLogic Server

< Note:

In previous releases, adding a new JDBC driver or updating a JDBC driver
where the replacement JAR has a different name than the original JAR
required updating the WebLogic Server's classpath to include the location of
the JDBC driver classes. This is no longer required.

Using a Third-Party JAR File in DOMAIN_HOMElIlib

Using a third-party JAR file in DOMAIN_HOME/lib is only supported for third-party
JDBC drivers that are not installed with WebLogic Server. The drivers installed with
WebLogic Server are described in JDBC Drivers Installed with WebLogic Server.

When you use a third-party JAR file in the DOMAIN_HOME/lib directory, note the
following:

* The classloader that gets created is a child of the system classpath classloader in
WebLogic Server.

» Any classes that are in JARs in this directory are visible only to Java EE
applications in the server, such as EAR files.

* You can use the WebLogic Server Administration Console and WLST online to
configure and manage the JAR files. (You may also be able to use WLST offline
because the data source is not deployed.)

* These JAR files do not work when run from a standalone client (such as the t3
RMI client) or standalone applications (such as java utils.Schema).

* These JAR files are not supported for Application Data Access. See Database
Interoperability in What's New in Oracle WebLogic Server 12.2.1.

» If there are multiple domain directories involved (that is, multiple machines without
a shared file system), the JAR file must be installed in /lib in each domain
directory.

* WebLogic Server use of methods called on third-party drivers (such as TimesTen
abort and DB2 set DB2C i ent User) is supported.

Data Source Support
Third-party JAR files installed i n /1i b can be used with the following:

« All data source types supported by WebLogic Server system resources including
Generic, Multi Data Source, Active GridLink, and Proxy data source. The UCP
data source does not apply since the UCP JAR is not third-party)

e Packaged data sources in an EAR or a WAR.
« Java EE 6 data source definition defined in an EAR or WAR.

Although not JDBC methods, using a third-party JAR filein /1ib does apply to
WebLogic Server data source callbacks like Multi Data Source failover, connection,
replay, and harvesting.

Example 19-1 Example of Using a Third-Party JAR File in /lib

The following example shows the files contained in a standalone WAR file
named get ver si on. war . The Derby JAR files are located in WEB-I NF/ i b or

19-3

ORACLE

Chapter 19
Adding Third-Party JDBC Drivers Not Installed with WebLogic Server

DOVAI N_HOVE/ | i b (or both). The class file is compiled and installed at WEB- | NF/
cl asses/ deno/ Get Ver si on. cl ass.

<web- app>
<wel come-file-list>
<wel come-fil e>wel cone. j sp</ wel corme-fil e>
</wel come-file-list>
<di spl ay- name>Get Ver si on</ di spl ay- nane>
<servl et>
<descri ption></description>
<di spl ay- name>Get Ver si on</ di spl ay- nane>
<servl et - nane>Get Ver si on</ servl et - nane>
<servl et-class>
deno. Get Ver si on
</servlet-class>
</servlet>
<I-- Data source description can go in the web.xnl descriptor or as an
annotation in the java code - see bel ow
<dat a- sour ce>
<name>j ava: gl obal / DSD</ name>
<cl ass- nane>or g. apache. derby. j dbc. O i ent Dat aSour ce</ cl ass- nane>
<port - nunber >1527</ port - nunber >
<server - name>| ocal host </ server - name>
<dat abase- nane>exanpl es</ dat abase- nane>
<transactional >f al se</transacti onal >
</ dat a- sour ce>
>
</ web- app>

VEB- | NF/ webl ogi ¢. xm

<webl ogi c- web- app>
<cont ai ner - descri ptor>
<pref er-web-inf-classes>true</ prefer-web-inf-classes>
</ cont ai ner-descri ptor>
</ webl ogi c- web- app>

Java file
package denv;

i mport java.io. | OException

import java.io.PrintWiter;

i mport java.sql.Connection

i mport java.sql.SQLException

i mport javax.annotation. Resource

i mport javax.annotation. sql. DataSourceDefinition;
i mport javax.servlet. Servl et Exception

i mport javax.servlet.annotation. \WbServlet;

i mport javax.servlet.http.HtpServl et Request;
i mport javax.servlet.http.HttpServl et Response
i mport javax. sql. DataSource;

@at aSour ceDef i ni ti on(name="j ava: gl obal / DSD"
cl assNane="or g. apache. der by. j dbc. C i ent Dat aSour ce"

19-4

ORACLE

Chapter 19
Adding Third-Party JDBC Drivers Not Installed with WebLogic Server

port Nunmber =1527,

server Name="| ocal host ",

dat abaseNane="exanpl es",

transactional =f al se

)

@¥bServl et (url Patterns = "/ Get Version")

public class GetVersion extends javax.servlet.http. HtpServlet
i mpl ements javax.servlet.Servlet {
@Resour ce(l ookup = "java: gl obal / DSD")
private DataSource ds;

public GetVersion() {
super ();

}

protected void doGet (HttpServl et Request request,
Ht t pSer vl et Response response) throws ServletException, |OException {
doPost (request, response);

}

protected void doPost (Ht pServl et Request request,
Ht t pSer vl et Response response) throws Servlet Exception, |OException {
response. set Cont ent Type("text/htm");

PrintWiter witer = response.getWiter();
witer.println("<htm>");
witer.println("<head><title>GetVersion</title></head>");
witer.println("<body>" + doit() +"</body>");
witer.printin("</htm>");

witer.close();

}

private String doit() {
String ret = "FAI LED";
Connection conn = null;

try {
conn = ds. get Connection();
ret = "Connection obtained with version=" +

conn. get Met aDat a() . get Dri ver Version();
} catch(Exception e) {
e. printStackTrace();

} finally {
try {
if (conn !'=null)
conn. cl ose();
} catch (Exception ignore) {}
}

return ret;

19-5

Chapter 19
Globalization Support for the Oracle Thin Driver

19.4 Globalization Support for the Oracle Thin Driver

For globalization support with the Oracle Thin driver, Oracle supplies the or ai 18n. j ar
file.This file replaces nl s_charset. zi p.

If you use character sets other than US7ASCI | , WEBDEC, V\E8I SO8859P1 and UTF8

with CHAR and NCHAR data in Oracle object types and collections, you must include
orai 18n. jar and or ai 18n- mappi ng. j ar in your CLASSPATH.

The orai 18n. j ar and or ai 18n- nappi ng. j ar are included with the WebLogic Server
installation in the ORACLE_HOME\ or acl e_comon\ modul es\oracle.nlsrtl_12.1.0
folder. These files are not referenced by the webl ogi c. j ar nmani f est file, so you must
add them to your CLASSPATH before they can be used.

19.5 Using the Oracle Thin Driver in Debug Mode

The ORACLE_HOME\ or acl e_comon\ nodul es\ or acl e. j dbc folder includes the

oj dbc8_g.j ar (for JIDK8), which is the version of the Oracle Thin driver with classes to
support debugging and tracing. To use the Oracle Thin driver in debug mode, add the
path to these files at the beginning of your CLASSPATH.

ORACLE 19-6

Monitoring WebLogic JDBC Resources

For monitoring WebLogic JDBC resources you need to understand how to create,
collect, analyze, archive, and access diagnostic data generated by a running server
and the applications deployed within its containers. This data provides insight into
the run-time performance of servers and applications and enables you to isolate and
diagnose faults when they occur. WebLogic JDBC takes advantage of this service to
provide enhanced run-time statistics, profile information over a period of time, logging,
and debugging to help you keep your WebLogic domain running smoothly.

You can use the run-time statistics to monitor the data sources in your WebLogic
domain to see if there is a problem. If there is a problem, you can use profiling

to determine which application is the source of the problem. Once you've narrowed
it down to the application, you can then use JDBC debugging features to find the
problem within the application.

This chapter includes the following sections:
e Viewing Run-Time Statistics

* Profile Logging

e Collecting Profile Information

e Debugging JDBC Data Sources

20.1 Viewing Run-Time Statistics

Viewing run-time statistics allows you to monitor the data sources in your WebLogic
domain.
WebLogic Server provides the following run-time statistics:

» Data Source Statistics

» Prepared Statement Cache Statistics

20.1.1 Data Source Statistics

You can view run-time statistics for a data source using the WebLogic

Server Administration Console (see JDBC Data Source:Monitoring:Statistics in

Oracle WebLogic Server Administration Console Online Help or through the

JBCDat aSour ceRunt i meMBean. The JDBCDat aSour ceRunt i meMBean provides methods
for getting the current state of the data source and for getting statistics about the

data source, such as the average number of active connections, the current number of
active connections, the highest number of active connections, and so forth. For more
information, see JDBCDataSourceRuntimeMBean in the MBean Reference for Oracle
WebLogic Server.

20.1.2 Prepared Statement Cache Statistics

You can view run-time statistics for a prepared statement cache via the WebLogic
Server Administration Console or through the JBCDat aSour ceRunt i meMBean. For more

ORACLE 20-1

Chapter 20
Profile Logging

information, see JDBCDataSourceRuntimeMBean in the MBean Reference for Oracle
WebLogic Server.

20.2 Profile Logging

WebLogic Server uses a data source profile log to store events.
The profile log has the following benefits:

e Log-rotation—provides the ability to configure, rotate, and retire old data using the
standard WebLogic logging implementation. See the DataSourceLogFileMBean in
MBean Reference for Oracle WebLogic Server.

« Data accessibility—provides the ability to use common text editors, the WLDF
Data Accessor, or the WebLogic Server Administration Console. See Accessing
Diagnostic Data.

Basic characteristics of the log for data source profiling are:

* Asingle log file is used for all data source profile types. Each profile record has the
profile type name for filtering. See Profile Types.

* Asingle log file is used for all data sources on the server. Each
profile record has the decorated data source name for filtering (fully
qualified with appl i cat i on@wodul e@onponent , if applicable). See the
DataSourcelLogFileMBean in MBean Reference for Oracle WebLogic Server.

For more information on WebLogic logging services, see:

» Enable and configure Datasource Profile logs in Oracle WebLogic Server
Administration Console Online Help.

* Understanding WebLogic Logging Services in Configuring Log Files and Filtering
Log Messages for Oracle WebLogic Server.

20.3 Collecting Profile Information

If the statistics indicate a problem in your WebLogic domain, you can configure

any data source to collect profile information to help you pinpoint the source of the
problem. The collected profile information is stored in records in the profile log.

The fields contain different information for different profile types, as described in the
following sections:

* Profile Types
* Accessing Diagnostic Data

» Callbacks for Monitoring Driver-Level Statistics (Deprecated)

When configuring your data source for profiling, you must specify the interval at which
profile data is harvested (Har vest Frequency Seconds); if the interval is set to O,
harvesting of data is disabled. See Configure diagnostic profiling for a JDBC data
source in Oracle WebLogic Server Administration Console Online Help.

20.3.1 Profile Types

For each of the profile types in this section, the User information provides a stack
trace of the thread that allocated the connection and is associated with the operation
being profiled. By default, the value is not set because of the overhead in tracking this

ORACLE 20-2

Chapter 20
Collecting Profile Information

information. To obtain this information, you must also enable profiling of connection
leaks in addition to profile type that you want to track. For more information about
profiling connection leaks, see Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)..

You can choose to profile the following information about data sources and the
prepared statement cache, as described in the following sections of this document:

e Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)

e Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT)

e Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL)

e Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)

e Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST _USAGE)

e Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE)
e Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)

e Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)

e Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)

e JDBC Obiject Closed Usage (WEBLOGIC.JDBC.CLOSED_USAGE)

e Local Transaction Connection Leak (WEBLOGIC.JDBC.CONN.LOCALTX LEAK)

e Example Profile Information Record Log

20.3.1.1 Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)

Enable connection usage profiling to collect information about threads currently using
connections from the pool of connections in the data source. This profile information
can help determine why applications are unable to get connections from the data
source.

The record contains the following information:

* PoolName - name of the data source to which this connection belongs
* ID - connection ID

» User - stack trace of the thread using the connection

e Timestamp - time stamp showing when the connection was given to the thread

20.3.1.2 Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT)

ORACLE

Enable connection reservation wait profiling to collect information about threads
currently waiting to reserve a connection from the data source. This profile information
can help determine why applications are unable to get connections from the data
source or to wait for connections. The record contains the following information:

e PoolName - name of the data source to which this connection belongs
 ID-thread ID
e User - stack trace of the thread waiting for the connection

e Timestamp - time stamp showing when the thread started waiting for a connection

20-3

Chapter 20
Collecting Profile Information

20.3.1.3 Connection Reservation Failed
(WEBLOGIC.JDBC.CONN.RESV.FAIL)

Enable connection reservation failure profiling to collect information about threads
that attempt to reserve a connection from the data source but fail to get that
connection. This profile information can help determine why applications are unable to
get connections from the data source even after reserving them. The record contains
the following information:

* PoolName - name of the data source to which this connection belongs
* ID-thread ID

* User - stack trace of the thread waiting for the connection plus the exception
received when the reservation request failed

e Timestamp - time stamp showing when the reservation request failed

20.3.1.4 Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)

Enable connection leak profiling to collect information about threads that have
reserved a connection from the data source and the connection leaked (was not
properly returned to the pool of connections). This profile information can help
determine which applications are not properly closing JDBC connections. Connection
leak profiling must be enabled to get user stack trace information for any of the profile
types.The record contains the following information:

e PoolName - name of the data source to which this connection belongs

e ID - connection ID

e User - stack trace of the thread waiting for the connection

e Timestamp - time stamp showing when the connection leak was detected

To specify the length of time before a reserved connection is considered leaked, do
one of the following:

e Setlnactive Connection Timeout Seconds to a value greater than zero.
WebLogic prints a stack trace of where a JDBC pool connection was reserved.
The stack trace is printed after the I nactive Connection Ti meout Seconds
expires.

e Set Connection Leak Timeout Seconds to a value greater than zero. The value
specifies the number of seconds that a JDBC connection needs to be held by an
application before triggering a connection leak diagnostic profiling record. If set to
0, the timeout is disabled.

20.3.1.5 Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST_USAGE)

ORACLE

Enable connection last usage profiling to collect information about the previous thread
that last used the connection. This information is useful when you are debugging
problems with connections infected in pending transactions that cause subsequent XA
operations on the connections to fail. The record contains the following information:

* PoolName - name of the data source to which this connection belongs

» |ID - stack trace of the XA exception thrown

20-4

Chapter 20
Collecting Profile Information

» User - stack trace of the thread that last used the connection

* Timestamp - timestamp showing when the exception was thrown

20.3.1.6 Connection Multithreaded Usage
(WEBLOGIC.JDBC.CONN.MT_USAGE)

Enable connection multithreaded usage profiling to collect information about threads
that erroneously use a connection that was previously obtained by a different thread.
This information is useful when an application reports a problem that you suspect may
have been caused by the simultaneous use of a connection by more than one thread.
The record contains the following information:

* PoolName - name of the data source to which this connection belongs
» |ID - stack trace of the other thread that was found using the connection
* User - stack trace of the thread that reserved the connection

e Timestamp - time stamp showing when usage of the connection by multiple
threads was detected

20.3.1.7 Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)

Enable statement cache entry profiling to collect information for prepared and callable
statements added to the statement cache, and for the threads that originated the
cached statements. This information can help you determine how the cache is being
used. The record contains the following information:

e PoolName - name of the data source to which this connection belongs
e ID - string representation of the statement
e User - stack trace of the thread using the statement

e Timestamp - time stamp showing when the statement was added to the cache

20.3.1.8 Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)

Enable statements usage profiling to collect information about threads currently
executing SQL statements from the statement cache. This information can help
you determine how statements are being used. The record contains the following
information:

* PoolName - name of the data source to which this connection belongs
* ID - SQL statement being executed via the statement
e User - stack trace of the thread using the statement

» Timestamp - duration of statement execution

20.3.1.9 Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)

Enable connection unwrap profiling to collect profile information about application
components that access the underlying JDBC connection using either the

get Vendor Obj ect WebLogic extension API or the JDBC 4.0 method unwr ap. The
record contains the following information:

* PoolName - name of the data source to which this connection belongs

ORACLE 20-5

Chapter 20
Collecting Profile Information

» ID - stack trace of where the object was unwrapped
» User - stack trace of the thread unwrapping the object

* Timestamp - time stamp showing when the object was unwrapped.

20.3.1.10 JDBC Object Closed Usage (WEBLOGIC.JDBC.CLOSED_USAGE)

Enable JDBC object usage profiling to collect profile information about JDBC objects
(Connection, Statement, or ResultSet) that are accessed after the close() method has
been invoked. This information can help you determine both the thread that initially
closed the object and the thread that attempted to access the closed object. The
record contains the following information:

* PoolName - name of the data source to which this connection belongs
» ID - stack trace of the current thread attempting to close the object

» User - stack trace of the thread that closed the object plus where the close was
done

e Timestamp - time stamp showing when the object was closed

20.3.1.11 Local Transaction Connection Leak
(WEBLOGIC.JDBC.CONN.LOCALTX_LEAK)

Enable JDBC local transaction connection leak profiling to collect profile information
about application components that leak a local transaction (start it but don't commit or
rollback the transaction). The log record will include the call stack and details about the
thread releasing the connection.The record contains the following information:

e PoolName - name of the data source to which this connection belongs
e ID - stack trace of the thread that is releasing the connection

e User - stack trace of the reserving thread plus a stack trace of the thread at the
time the connection was closed

e Timestamp - time stamp showing when the connection was closed

20.3.1.12 Example Profile Information Record Log

ORACLE

The following is an example profile information record for Statements Usage
(WEBLOGIC.JDBC.STMT.USAGE) from a standard output log.

####<JDBC Dat a Source- 0> <WEBLOG C. JDBC. STMI. USAGE> <0> <j ava. | ang. Exception
at

webl ogi c. servl et. provi der. Cont ai ner Support Provi der | mpl $W sRequest Execut or. run(Co
nt ai ner Support Provi der | npl . j ava: 254)
at webl ogi c. wor k. Execut eThr ead. execut e(Execut eThr ead. j ava: 295)
at webl ogi c. wor k. Execut eThr ead. run(Execut eThr ead. j ava: 254)
> <select 1 from dual >

Each component of the profile log is surrounded by brackets ("<" and ">"):

e The PoolName—JDBC Data Source-0

20-6

Chapter 20
Collecting Profile Information

e The Profile Type— WEBLOG C. JDBC. STMI. USAGE
e The Timestamp—oO0 (milliseconds)

e User—java. |l ang. Exception at . . . at
webl ogi c. wor k. Execut eThr ead. run(Execut eThr ead. | ava: 254

e |ID—select 1 from dual

20.3.2 Accessing Diagnostic Data

You can use one of the following methods to access diagnostic data:

* The WebLogic Server Administration Console. See:

— View and configure logs in Oracle WebLogic Server Administration Console
Online Help.

— Monitor Statistics for a JDBC data source in Oracle WebLogic Server
Administration Console Online Help.

* The Data Accessor component of the WebLogic Diagnostic Framework (WLDF).
See Accessing Diagnostic Data With the Data Accessor in Configuring and Using
the Diagnostics Framework for Oracle WebLogic Server

* Manually review information using text editors.

* When running with DataSource profiling, the default harvesting time is 300
seconds so you may not be able to view data immediately. You may need to
set the harvest time to a small value (say 5 seconds) to better visualize results. To
see all connections, take a diagnostic image. To see the stack trace, enable leak
profiling.

20.3.3 Callbacks for Monitoring Driver-Level Statistics (Deprecated)

ORACLE

Note:

This feature is deprecated in WebLogic Server 10.3.6.0 and may be removed
in a future release.

WebLogic Server provides callbacks for methods called on a JDBC driver. You can
use these callbacks to monitor and profile JDBC driver usage, including methods
being executed, any exceptions thrown, and the time spent executing driver methods.

To enable the callback feature, you specify the fully qualified path

of the callback handler for the driver-interceptor element in the JDBC

data source descriptor (module). Your callback handler must implement

the webl ogi c. j dbc. ext ensi ons. Driverlnterceptor interface. When you enable
JDBC driver callbacks, WebLogic Server calls the prel nvokeCal | back(),

post I nvokeExcepti onCal | back(), and post | nvokeCal | back() methods of the
registered callback handler before and after invoking any method inside the JDBC
driver.

Any time an application calls the JDBC driver, a callback is sent to the class that
implemented the driver.

20-7

Chapter 20
Debugging JDBC Data Sources

20.4 Debugging JDBC Data Sources

Once you narrow the problem down to a specific application, you can activate the
WebLogic Server debugging features to isolate the problem with the application.

For more information, see:

e Enabling Debugging

e JDBC Debugging Scopes

e Setting Debugging for UCP/ONS
* Request Dyeing

20.4.1 Enabling Debugging

You can enable debugging by setting the appropriate Ser ver Debug configuration
attribute to "t rue." Optionally, you can also set the server St dout Severity to "Debug"”.

You can modify the configuration attribute in any of the following ways.

20.4.1.1 Enable Debugging Using the Command Line

Set the appropriate properties on the command line. For example,

- Dnebl ogi c. debug. DebugJDBCSQL=t r ue
- Dwebl ogi c. | og. St dout Severi t y="Debug"

This method is static and can only be used at server startup.

20.4.1.2 Enable Debugging Using the WebLogic Server Administration Console

To track down problems within the application you can enable debugging using the
WebLogic Server Administration Console.

To enable debugging set the following values:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit (see Using the Change Center in
Understanding Oracle WebLogic Server).

2. In the left pane of the console, expand Environment and select Servers.

w

On the Summary of Servers page, click the server on which you want to enable or
disable debugging to open the settings page for that server.

Click Debug.
Expand default.

Select the check box for the debug scopes or attributes you want to modify.

N o g bk

Select Enable to enable (or Disable to disable) the debug scopes or attributes you
have checked.

8. To activate these changes, in the Change Center of the WebLogic Server
Administration Console, click Activate Changes.

ORACLE 20-8

Chapter 20
Debugging JDBC Data Sources

9. Not all changes take effect immediately—some require a restart (see Using the
Change Center in Understanding Oracle WebLogic Server).

This method is dynamic and can be used to enable debugging while the server is
running.

20.4.1.3 Enable Debugging Using the WebLogic Scripting Tool

ORACLE

Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example,
the following command runs a program for setting debugging values called debug. py:

java webl ogi c. W.ST debug. py

The debug.py program contains the following code:

user =" user1'

passwor d=' passwor d'

url="t3://1ocal host: 7001’

connect (user, password, url)

edit()

cd("' Servers/nyserver/ Server Debug/ nyserver")
startEdit()

set (' DebugJDBCSQ.', 'true')

save()

activate()

Note that you can also use WLST from Java. The following example shows a Java file
used to set debugging values:

i mport webl ogi c. managenent . scripting.utils. WSTInterpreter;
import java.io.*;

i mport webl ogi c. j ndi . Envi ronment ;

i nport j avax. nanmi ng. Cont ext ;

i mport javax.namng.lnitial Context;

i mport j avax. nam ng. Nam ngExcepti on;

public class test {

public static void main(String args[]) {
try {
W.STInterpreter interpreter = null;
String user="user1";
String pass="pwl2ab";
String url ="t3://1ocal host: 7001";
Envi ronment env = new Environnent();
env. set ProviderUrl (url);
env. set SecurityPrincipal (user);
env. set Securi tyCredential s(pass);
Context ctx = env.getlnitial Context();

interpreter = new W.STinterpreter();
interpreter.exec

("connect (' "+user+""', " "+pass+"’, " "Hurl+")");
interpreter.exec("edit()");
interpreter.exec("startEdit()");
interpreter.exec

("cd(" Servers/ nyserver/ Server Debug/ nyserver')");
interpreter.exec("set('DebugJDBCSQ', true')");
interpreter.exec("save()");
interpreter.exec("activate()");

} catch (Exception e) {

20-9

Chapter 20
Debugging JDBC Data Sources

Systemout. println("Exception "+e);
}
}
}

Using the WLST is a dynamic method and can be used to enable debugging while the
server is running.

20.4.1.4 Changes to the config.xml File

Changes in debugging characteristics, through console, or WLST, or command line
are persisted in the confi g. xnl file. See Example 20-1:

Example 20-1 Example Debugging Stanza for JDBC

<server>

<nane>nyser ver </ name>
<server - debug>

<debug- scope>
<name>webl ogi c. transacti on</ nane>
<enabl ed>t r ue</ enabl ed>

</ debug- scope>

<debug-j dbcsql >t r ue</ debug-j dbcsql >
</ server - debug>

</ server>

This sample confi g. xm fragment shows a transaction debug scope (set of debug
attributes) and a single JDBC attribute.

20.4.2 JDBC Debugging Scopes

The following are registered debugging scopes for JDBC:

* DebugJDBCSQL (scope weblogic.jdbc.sql) - prints information about all JDBC
methods invoked, including their arguments and return values, and thrown
exceptions.

* DebugJDBCConn (scope weblogic.jdbc.connection) - trace all connection reserve
and release operations in data sources as well as all application requests to get or
close connections.

* DebugJDBCONS (scope weblogic.jdbc.rac) - trace low-level ONS debugging.
* DebugJDBCRAC (scope weblogic.jdbc.rac) - trace RAC debugging.

* DebugJDBCUCP (scope weblogic.jdbc.rac) - trace low-level UCP debugging.
» DebugJDBCReplay (scope weblogic.jdbc.rac) - trace Replay debugging.

* DebugJDBCRMI (scope weblogic.jdbc.rmi) - similar to JDBCSQL but at the RMI
level; turning on this one and JDBCSQL will get two sets of debug messages for
each operation called from a client.

ORACLE 20-10

Chapter 20
Debugging JDBC Data Sources

* DebugJDBClinternal (scope weblogic.jdbc.internal) - low level debugging in
weblogic/jdbc/common/internal related to the data source, the connection
environment, and the data source manager.

» DebugJDBCDriverLogging (scope weblogic.jdbc.driverlogging) - enables JDBC
driver level logging (this replaces ServerMBean JDBCLoggingEnabled and
getJDBCLogFileName). Note that to get driver level tracing for Oracle, you need
to use ojdbc6_g.jar instead of ojdbc6.jar. Note that for this debug scope, it can be
turned on once via the command line or configuration when the server is booted
but cannot be turned on or off dynamically (due to the DriverManager interface).

* DebugJTAJDBC (scope weblogic.jdbc.transaction) - trace transaction debugging.

20.4.3 Setting Debugging for UCP/ONS

The following sections provide information on how to set debugging for UCP/ONS.

20.4.3.1 Debugging UCP

Set UCP debugging directly using:

oracl e. ucp. | evel = FI NEST;
oracl e. ucp. j dbc. Pool Dat aSour ce = WARNI NG,
20.4.3.2 Debugging ONS

To enable debugging for ONS, you must configure Java Util Logging. To do so, set the
following properties on the command line as follows:

-Dava. util.logging.config.file=configfile
- Doracl e. ons. debug=t rue

In this command, confi gfi | e is the path and file name of the configuration property
file property used by standard JDK logging to control the log output format and logging
level. The confi gfi | e must include the following line:

oracl e. ons. | evel =FI NEST
For more information, see java.util.logging in Java Platform Standard Edition 7 API

Specification.

20.4.4 Request Dyeing

Another option for debugging is to trace the flow of an individual (typically

"dyed") application request through the JDBC subsystem. For more information, see
Configuring the Dye Vector via the Dyelnjection Monitor in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

ORACLE 20-11

https://docs.oracle.com/javase/7/docs/api/index.html?java/util/logging/package-summary.html

Managing WebLogic JDBC Resources

Learn how to use the WebLogic Server Administration Console, command line, IMX
programs, or WebLogic Scripting Tool (WLST) scripts to manage the JDBC data
sources in your domain.

This chapter includes the following sections:

e Testing Data Sources and Database Connections
e Managing the Statement Cache for a Data Source
e Shrinking a Connection Pool

* Resetting a Connection Pool

e Suspending a Connection Pool

¢ Resuming a Connection Pool

e Shutting Down a Data Source

e Starting a Data Source

e Managing DBMS Network Failures

21.1 Testing Data Sources and Database Connections

ORACLE

To make sure that the database connections in a data source remain healthy, you
should periodically test the connections. WebLogic Server includes two basic types
of testing: automatic testing that you configure with attributes on the data source and
manual testing that you can do to trouble-shoot a data source.

Allowing WebLogic Server to automatically maintain the integrity of pool connections
should prevent most DBMS connection problems. For more information about
configuring automatic connection testing, see Connection Testing Options for a Data
Source.

To manually test a connection from a data source, you can use the Test Data Source
feature on the JDBC Data Source: Monitoring: Testing page in the WebLogic Server
Administration Console (see Test JDBC data sources) or the t est Pool () method in
the JDBCDat aSour ceRunt i mvBean.

JDBCDataSourceRuntimeMBean.testPool

To test a database connection from a data source, Test Reserved Connections must
be enabled and Test Table Name must be defined in the data source configuration.
Both are defined by default if you create the data source using the WebLogic Server
Administration Console.

When you test a data source, WebLogic Server reserves a connection, tests it using
the query defined in Test Table Name, and then releases the connection.

21-1

Chapter 21
Managing the Statement Cache for a Data Source

21.2 Managing the Statement Cache for a Data Source

WebLogic Server creates a statement cache of each connection in a data source.
When a prepared statement or callable statement is used on a connection, WebLogic
Server caches the statement so that it can be reused.

For more information about the statement cache, see Increasing Performance with the
Statement Cache.

Each connection in the data source has its own statement cache, but configuration
settings are made for all connections in the data source. You can clear the statement
cache for all connections in a data source using the WebLogic Server Administration
Console or you can programmatically clear the statement cache for an individual
connection.

¢ Note:

When the JDBC 4.0 set Pool abl e(f al se) method is called for a WebLogic
data source that has prepared statement caching enabled, the statement
is removed from the cache in addition to calling the method on the driver
object.

21.2.1 Clearing the Statement Cache for a Data Source

You can manually clear the statement cache for all connections in a data source using
the WebLogic Server Administration Console (see Clear the statement cache in a
JDBC data source in Oracle WebLogic Server Administration Console Online Help) or
with the cl ear St at enent Cache() method on the JDBCDat aSour ceRunt i meMBean.

JDBCDataSourceRuntimeMBean.clearStatementCache

21.2.2 Clearing the Statement Cache for a Single Connection

ORACLE

webl ogi c. j dbc. ext ensi ons. W.Connect i on. cl ear St at enent Cache()

webl ogi c. j dbc. ext ensi ons. W.Connect i on. cl ear Cal | abl eSt at enent (j ava. | ang.
String sql)

webl ogi c. j dbc. ext ensi ons. W.Connect i on. cl ear Cal | abl eSt at enent (j ava. | ang.
String sql,int resType,int resConcurrency)

webl ogi c. j dbc. ext ensi ons. W.Connect i on. cl ear Prepar edSt at enent (j ava. | ang.
String sql)

webl ogi c. j dbc. ext ensi ons. W.Connect i on. cl ear Prepar edSt at enent (j ava. | ang.
String sql,int resType,int resConcurrency)

You can use methods in the webl ogi c. j dbc. ext ensi ons. W.Connect i on interface to
clear the statement cache for a single connection or to clear an individual statement
from the cache. These methods return t r ue if the operation was successful and f al se
if the operation fails because the statement was not found.

When prepared and callable statements are stored in the cache, they are
stored (keyed) based on the exact SQL statement and result set parameters
(type and concurrency options), if any. When clearing an individual prepared
or callable statement, you must use the method that takes the proper result

21-2

Chapter 21
Shrinking a Connection Pool

set parameters. For example, if you have callable statement in the cache with
resSet Type of Resul t Set. TYPE_SCROLL_I NSENSI Tl VE and a r esSet Concur rency of
Resul t Set . CONCUR_READ ONLY, you must use the method that takes the result set
parameters:

clearCal | abl eSt at enent (j ava.lang. String sqgl,int resSetType,int resSet Concurrency)

If you use the method that only takes the SQL string as a parameter, the method will
not find the statement, nothing will be cleared from the cache, and the method will
return f al se.

When you clear a statement that is currently in use by an application, WebLogic
Server removes the statement from the cache, but does not close it. When you clear
a statement that is not currently in use, WebLogic Server removes the statement from
the cache and closes it.

For more details about these methods, see the Javadoc for WLConnection.

21.3 Shrinking a Connection Pool

Use the Shrink option to drop some connections from the data source when a peak
usage period has ended. This option frees up WebLogic Server and DBMS resources.

A data source has a set of properties that define the initial, minimum, and maximum
number of connections in the pool (i ni ti al Capaci ty, m nCapaci ty, and naxCapaci ty).
A data source automatically adds one connection to the pool when all connections are
in use. When the pool reaches naxCapaci t y, the maximum number of connections are
opened, and they remain opened unless you enable automatic shrinking on the data
source or manually shrink the data source with the shri nk() method.

You may want to drop some connections from the data source when a peak usage
period has ended, freeing up WebLogic Server and DBMS resources. You can use
the Shrink option on the JDBC Data Source: Control page in the WebLogic Server
Administration Console (see Shrink the connection pool in a JDBC data source in
Oracle WebLogic Server Administration Console Online Help) or the shri nk() method
on the JDBCDat aSour ceRunt i meMBean.

JDBCDataSourceRuntimeMBean.shrink

When you shrink a data source, WebLogic Server reduces the number of connections
in the pool to the greater of either the nmi nCapaci ty or the number of connections
currently in use. The pool is decreased gradually to minimize thrashing. The nhumber of
unused connections is cut in half each time automatic shrinking is performed.

21.4 Resetting a Connection Pool

ORACLE

Use the Reset option to close and recreate all available database connections in a
data source.

Reset option is available on the JDBC Data Source: Control page in the WebLogic
Server Administration Console (see Reset connections in a JDBC data source in
Oracle WebLogic Server Administration Console Online Help) or the reset () method
on the JDBCDat aSour ceRunt i meMBean.

JDBCDataSourceRuntimeMBean.reset

21-3

Chapter 21
Suspending a Connection Pool

This may be necessary after the DBMS has been restarted, for example. Often when
one connection in a data source has failed, all of the connections in the pool are bad.

21.5 Suspending a Connection Pool

ORACLE

Use the Suspend and Force Suspend options to suspend a data source.

The Suspend and Force Suspend options can be reserved on the JDBC Data Source:
Control page in the WebLogic Server Administration Console (see Suspend JDBC
data sources in Oracle WebLogic Server Administration Console Online Help) or the
suspend() and f or ceSuspend() methods in the JDBCDat aSour ceRunt i neMBean.

JDBCDataSourceRuntimeMBean.suspend
JDBCDataSourceRuntimeMBean.forceSuspend

When you suspend a data source (not forcibly suspend), the data source is marked as
disabled and applications cannot reserve connections from the pool. Applications that
already have a reserved connection from the data source when it is suspended will
get an exception when trying to reserve the connection. WebLogic Server preserves
all connections in the data source exactly as they were before the data source was
suspended.

When you gracefully suspend a data source, the following occurs:

e The data source is immediately marked as suspended at the beginning of the
operation and no further connections are created on the data source.

« Idle (not reserved) connections are marked as disabled.

e After a timeout period for the suspend operation, all remaining connections in
the pool are marked as suspended and the following exception is thrown for any
operations on the connection, indicating that the data source is suspended:

java. sql . SQLRecover abl eExcepti on: Connection has been adnministratively
disabled. Try later.

» If graceful suspend is done as part of a graceful shutdown operation, connections
are immediately closed when no longer reserved or at the end of the timeout
period. If not done as part of a shutdown operation, these connections remain in
the pool and are not closed because the pool may be resumed.

A graceful suspend can be done synchronously or asynchronously.

The synchronous operation does not have a timeout period on the method. By default,
the timeout period is 60 seconds. You can change the value of this timeout period by
configuring or dynamically setting Inactive Connection Timeout Seconds to a non-zero
value. There is no upper limit on the inactive timeout period. Note that the processing
actually checks for in-use (reserved) resources every tenth of a second so if the
timeout value is set to 2 hours and all reserved resources are released a second later,
the shutdown will complete a second later.

The asynchronous operation takes a timeout value in seconds. It returns a
JDBCDataSourceTaskRuntimeMBean that can be used to check the status of the
operation. The get Progr ess() method returns TaskRunt i meMBean. PROGRESS SUCCESS
("success"), TaskRuntimeMBean. PROGRESS FAILED ("failed"), or

TaskRunt i meMBean. PROGRESS PROCESSI NG (" processing"). The get Status() method
returns " SUCCESS", "FAILURE", and now " PROCESSI NG'. There can be multiple task
MBeans in existence. The next operation call on the datasource will clean up MBeans
for tasks that have been completed for at least 30 minutes. Note that once a suspend

21-4

Chapter 21
Resuming a Connection Pool

or shutdown operation is started, the other operations will fail immediately but a task
MBean is still created. The isRunning() method returns true if suspend or shutdown
is still running. Timeout of the operation is controlled by the timeout parameter on the
new task operations. If set to 0, the default is used. The default is to use Inactive
Connection Timeout Seconds if set or 60 seconds. If you want a minimal timeout, set
the value to 1. If you want no timeout, set it to a large value (not recommended).

When you forcibly suspend a data source, all pool connections are destroyed and
any subsequent attempt to use reserved connections fail. Any transactions on the
connections that are closed are rolled back.

21.6 Resuming a Connection Pool

Use the Resume option to re-use a suspended data source.

The Resume option is available on the JDBC Data Source: Control page in

the WebLogic Server Administration Console (see Resume suspended JDBC data
sources in Oracle WebLogic Server Administration Console Online Help) or the
resume() method on the JDBCDat aSour ceRunt i neMBean.

JDBCDataSourceRuntimeMBean.resume

When you resume a data source, WebLogic Server marks the data source as enabled
and allows applications to reserve connections from the data source. If you suspended
the data source (not forcibly suspended), all connections are preserved exactly as they
were before the data source was suspended. Clients that had reserved a connection
before the data source was suspended can continue exactly where they left off. If you
forcibly suspended the data source, clients will have to reserve new connections to
proceed.

¢ Note:

You cannot resume a data source that did not start correctly, for example, if
the database server is unavailable.

21.7 Shutting Down a Data Source

ORACLE

Use the Shutdown and Force Shutdown options to shut down a data source.

The Shutdown and Force Shutdown options are available on the JDBC Data Source:
Control page in the WebLogic Server Administration Console (see Shut down JDBC
data sources in Oracle WebLogic Server Administration Console Online Help) or the
shut down() and f or ceShut down() methods in the JDBCDat aSour ceRunt i neMBean.

JDBCDataSourceRuntimeMBean.shutdown
JDBCDataSourceRuntimeMBean.forceShutdown

A graceful (non-forced) datasource shutdown operation involves first gracefully
suspending the data source and then releasing the associated resources including
the connections. See the description above for details of gracefully suspending
the datasource. After the datasource is gracefully suspended, all remaining in-use
connections are closed and the datasource is marked as shut down.

21-5

Chapter 21
Starting a Data Source

A graceful shutdown can be done synchronously or asynchronously.

The synchronous operation does not have a timeout period on the method. The
timeout period is 60 seconds by default. This can be changed by configuring or
dynamically setting Inactive Connection Timeout Seconds to a non-zero value (note
that this value is overloaded with another feature when connection leak profiling is
enabled). There is no upper limit on the inactive timeout. Note that the processing
actually checks for in-use (reserved) resources every tenth of a second so if the
timeout value is set to 2 hours and it's done a second later, it will complete a second
later.

The asynchronous operation takes a timeout value in seconds. It returns a
JDBCDataSourceTaskRuntimeMBean that can be used to check the status of the
operation. The get Progr ess() method returns TaskRunt i meMBean. PROGRESS SUCCESS
("success"), TaskRuntimeMBean. PROGRESS FAILED ("failed"), or

TaskRunt i meMBean. PROGRESS _PROCESSI NG (" processi ng"). The get Status() method
returns " SUCCESS", "FAILURE", and now "PROCESSI NG'. There can be multiple task
MBeans in existence. The next operation call on the datasource will clean up MBeans
for tasks that have been completed for at least 30 minutes. Note that once a suspend
or shutdown operation is started, the other operations will fail immediately but a task
MBean is still created. The i sRunni ng() method returns true if suspend or shutdown
is still running. Timeout of the operation is controlled by the timeout parameter on the
new task operations. If set to 0, the default is used. The default is to use Inactive
Connection Timeout Seconds if set or 60 seconds. If you want a minimal timeout, set
the value to 1. If you want no timeout, set it to a large value (not recommended).

When you forcibly shut down a data source, WebLogic Server closes database
connections in the data source and shuts down the data source. All current connection
users are forcibly disconnected. For a sample WLST script that shuts down a data
source, see the WLST exampleWLST example

21.8 Starting a Data Source

Use the Start option to start a data source which has been shut down.

The Start option is available on the JDBC Data Source: Control page in the
WebLogic Server Administration Console (see Start JDBC data sources in Oracle
WebLogic Server Administration Console Online Help) or the start () method in the
JDBCDat aSour ceRunt i neMBean.

JDBCDataSourceRuntimeMBean.start

Invoking the Start operation re-initializes the data source, creates connections and
transitions the data source to a health state of Running.

21.9 Managing DBMS Network Failures

ORACLE

Manage the DBMS network failures by setting a desired amount of time for -
Dwebl ogi c. resour cepool . max_test wait_secs=xx .

Here, xx is the amount of time, in seconds, WebLogic Server waits for connection test
before considering the connection test failed. By default, a server instance is assigned
a value of 10 seconds.

This command line flag manages failures, such as a DBMS network failure, which can
cause connection tests and connections in use by applications to hang for extended

21-6

Chapter 21
Managing DBMS Network Failures

periods of time (for example, 10 minutes). If the assigned time period expires, the
server instance purges unused connections and puts a watch on connections that are
in use by the application.

A value of ten seconds provides a reasonable amount of time to allow for peak stress
loads, when a DBMS may temporarily halt responses to clients, and then resume
service on existing connections. However, if the wait time is too long or too short, add
the flag to the st art WebLogi ¢ script used for starting the server with a value that is
more appropriate for your environment. Setting the value for the amount of time to
zero (0) seconds, causes the server to wait indefinitely on a hanging connection test.

ORACLE 21-7

Tuning Data Source Connection Pools

Learn how to use connection pool attributes for JDBC data sources to improve
application and system performance.
This chapter includes the following sections:

e Increasing Performance with the Statement Cache

e Connection Testing Options for a Data Source

e Enabling Connection Creation Retries

« Enabling Connection Requests to Wait for a Connection

e Automatically Recovering Leaked Connections

« Avoiding Server Lockup with the Correct Number of Connections
e Limiting Statement Processing Time with Statement Timeout

« Using Pinned-To-Thread Property to Increase Performance

» Using Unwrapped Data Type Objects

e Tuning Maintenance Timers

22.1 Increasing Performance with the Statement Cache

ORACLE

Reusing cached statements reduces CPU usage on the database server, improving
performance for the current statement and leaving CPU cycles for other tasks. Cache
configurations options include Statement Cache Type and Statement Cache size.

When you use a prepared statement or callable statement in an application or

EJB, there is considerable processing overhead for the communication between the
application server and the database server and on the database server itself. To
minimize the processing costs, WebLogic Server can cache prepared and callable
statements used in your applications. When an application or EJB calls any of the
statements stored in the cache, WebLogic Server reuses the statement stored in
the cache. Reusing prepared and callable statements reduces CPU usage on the
database server, improving performance for the current statement and leaving CPU
cycles for other tasks.

Each connection in a data source has its own individual cache of prepared and
callable statements used on the connection. However, you configure statement cache
options per data source. That is, the statement cache for each connection in a data
source uses the statement cache options specified for the data source, but each
connection caches it's own statements. Statement cache configuration options include:

- Statement Cache Type—The algorithm that determines which statements to store
in the statement cache. See Statement Cache Algorithms.

» Statement Cache Size—The number of statements to store in the cache for each
connection. The default value is 10. See Statement Cache Size.

22-1

Chapter 22
Increasing Performance with the Statement Cache

You can use the WebLogic Server Administration Console to set statement cache
options for a data source. See Configure the statement cache for a JDBC data source
in the Oracle WebLogic Server Administration Console Online Help.

22.1.1 Statement Cache Algorithms

The Statement Cache Type (or algorithm) determines which prepared and callable
statements to store in the cache for each connection in a data source. You can choose
from the following options:

* LRU (Least Recently Used)
e Fixed

22.1.1.1 LRU (Least Recently Used)

When you select LRU (Least Recently Used, the default) as the Statement Cache
Type, WebLogic Server caches prepared and callable statements used on the
connection until the statement cache size is reached. When an application calls
Connecti on. prepar eSt at enent (), WebLogic Server checks to see if the statement

is stored in the statement cache. If so, WebLogic Server returns the cached statement
(if it is not already being used). If the statement is not in the cache, and the cache

is full (number of statements in the cache = statement cache size), WebLogic Server
determines which existing statement in the cache was the least recently used and
replaces that statement in the cache with the new statement.

The LRU statement cache algorithm in WebLogic Server uses an approximate LRU
scheme.

22.1.1.2 Fixed

When you select FIXED as the Statement Cache Type, WebLogic Server caches
prepared and callable statements used on the connection until the statement cache
size is reached. When additional statements are used, they are not cached.

With this statement cache algorithm, you can inadvertently cache statements that are
rarely used. In many cases, the LRU is preferred because rarely used statements will
eventually be replaced in the cache with frequently used statements.

22.1.2 Statement Cache Size

ORACLE

The Statement Cache Size attribute determines the total number of prepared and
callable statements to cache for each connection in each instance of the data source.
By caching statements, you can increase your system performance. However, you
must consider how your DBMS handles open prepared and callable statements:

* In many cases, the DBMS has a resource cost, such as a cursor, for each open
statement. This applies to prepared and callable statements in the statement
cache. For example, if you cache too many statements, you may exceed the
limit of open cursors on your database server. If you have a data source with 10
connections deployed on 2 servers, and set the Statement Cache Size to 10 (the
default), you may open 200 (10 x 2 x 10) cursors on your database server for the
cached statements.

22-2

Chapter 22
Increasing Performance with the Statement Cache

e Some drivers impose large memory requirements for every open statement. For
a server, memory consumption is based on (number of data sources * number of
connections * number of statements).

* Some DBMSs may impose limits on the number of statements/cursors per
connection.

The statement cache size is dependent on your applications. Ideally it is the total
number of every prepared or callable statement made with a connection from the
DataSource. One way to approximate the maximum size used by your applications is
to set the cache size to a huge number, observe the pool statistics of your application,
and then take a value slightly larger than the largest observed value. From a WebLogic
DataSource perspective, there is no loss in performance for having a cache size larger
than your applications require.

However, having a cache size that is too small negatively impacts performance as

the cache turnover can be so high while trying to accommodate new statements that
old statements are flushed before they are ever reused. In some cases where you
cannot allow a big enough statement cache to hold all or most of your statements, you
may find may the reuse rate is so small that your system performs better without a
statement cache.

22.1.3 Usage Restrictions for the Statement Cache

Using the statement cache can dramatically increase performance, but you must
consider its limitations before you decide to use it. Please note the following
restrictions when using the statement cache.

There may be other issues related to caching statements that are not listed here. If
you see errors in your system related to prepared or callable statements, you should
set the statement cache size to 0, which turns off statement caching, to test if the
problem is caused by caching prepared statements.

22.1.3.1 Calling a Stored Statement After a Database Change May Cause

Errors

Prepared statements stored in the cache refer to specific database objects at the

time the prepared statement is cached. If you perform any DDL (data definition
language) operations on database objects referenced in prepared statements stored
in the cache, the statements may fail the next time you run them. For example, if you
cache a statement such as sel ect * from enp and then drop and recreate the enp
table, the next time you run the cached statement, the statement may fail because the
exact enp table that existed when the statement was prepared, no longer exists.

Likewise, prepared statements are bound to the data type for each column in a table
in the database at the time the prepared statement is cached. If you add, delete, or
rearrange columns in a table, prepared statements stored in the cache are likely to fail
when run again.

These limitations depend on the behavior of your DBMS.

22.1.3.2 Using setNull In a Prepared Statement

ORACLE

If you cache a prepared statement that uses a set Nul | bind variable, you must set
the variable to the proper data type. If you use a generic data type, as in the following

22-3

Chapter 22
Connection Testing Options for a Data Source

example, data may be truncated or the statement may fail when it runs with a value
other than null.

java.sql . Types. Long sal =nul |

if (sal == null)
setNull (2,int)//This is incorrect
el se

set Long(2, sal)

Instead, use the following:

if (sal == null)
setNull (2,1ong)//This is correct
el se

set Long(2, sal)

22.1.3.3 Statements in the Cache May Reserve Database Cursors

When WebLogic Server caches a prepared or callable statement, the statement may
open a cursor in the database. If you cache too many statements, you may exceed the
limit of open cursors for a connection. To avoid exceeding the limit of open cursors for
a connection, you can change the limit in your database management system or you
can reduce the statement cache size for the data source.

22.1.3.4 Other Considerations When Using the Statement Cache

When oracle.jdbc.implicitstatementcachesize is set in the connection properties of a
data source, the WebLogic Server statement cache size is automatically set to zero

(0).

There are several cases where special consideration is needed for the statement
cache.

» If a data source is configured to use DRCP, the cache is cleared whenever
the connection is closed by the application. See Database Resident Connection
Pooling.

* When a data source is configured to use Application Continuity using the replay
driver, the WebLogic Server statement cache size is automatically set to O.

e oracle.jdbc.inplicitstatenentcachesize is setin the connection properties of
a datasource.

* For ease of use and to ensure caching is disabled, WebLogic Server automatically
sets the statement cache size value to zero (0).

* When the JDBC 4.0 set Pool abl e(fal se) method is called for a WebLogic data
source that has prepared statement caching enabled, the statement is removed
from the cache in addition to calling the method on the driver object.

22.2 Connection Testing Options for a Data Source

Learn about testing the database connections for a data source using the Automatic
and Manual testing methods.

ORACLE 22-4

Chapter 22
Connection Testing Options for a Data Source

To make sure that the database connections in a data source remain healthy, you
should periodically test the connections. WebLogic Server includes two basic types of
testing:

Automatic testing that you configure with options on the data source so that
WebLogic Server makes sure that database connections remain healthy.

Manual testing that you can do to trouble-shoot a data source. See Testing Data
Sources and Database Connections.

To configure automatic testing options for a data source, you set the following options
either through the WebLogic Server Administration Console or through WLST using
the JDBCConnect i onPool Par ansBean:

ORACLE

Test Frequency—(Test Fr equencySeconds in the

JDBCConnect i onPool Par anmsBean) Use this attribute to specify the number of
seconds between tests of unused connections. WebLogic Server tests unused
connections, and closes and replaces any faulty connections. You must also set
the Test Table Name.

Test Reserved Connections—(Test Connect i onsOnReser ve in the
JDBCConnect i onPool Par ansBean) Enable this option to test each connection
before giving to a client. This may add a slight delay to the request, but it
guarantees that the connection is healthy. You must also set a Test Table Name.

Test Table Name—(Test Tabl eNane in the JDBCConnect i onPool Par ansBean) Use
this attribute to specify a table name to use in a connection test. You can also
specify SQL code to run in place of the standard test by entering SQL followed by a
space and the SQL code you want to run as a test. Test Table Name is required to
enable any database connection testing. See Database Connection Testing Using
Default Test Table Name.

Seconds to Trust an Idle Pool Connection—

(SecondsToTr ust Anl dl ePool Connecti on in the JDBCConnect i onPool Par ansBean)
Use this option to specify the number of seconds after a connection has been
proven to be OK that WebLogic Server trusts the connection is still viable and will
skip the connection test, either before delivering it to an application or during the
periodic connection testing process. This option is an optimization that minimizes
the performance impact of connection testing, especially during heavy traffic.
See Minimizing Connection Request Delay with Seconds to Trust an Idle Pool
Connection.

Count of Test Failures Till Flush—(Count Of Test Fai | uresTi | | Fl ush in the
JDBCConnect i onPool Par ansBean) Use this option to specify the number of test
failures allowed before WebLogic Server closes all connections in the connection
pool to minimize the delay caused by further database testing. This parameter
minimizes the amount of time allowed for failover when a Multi Data Source
member fails. See Minimizing Connection Test Delay After Database Connectivity
Loss.

Connection Count of Refresh Failures Till Disable—

(Count O Ref reshFai | uresTi | | Di sabl e in the JDBCConnect i onPool Par ansBean)
Use this option to specify the number of test failures allowed before WebLogic
Server disables the connection pool to minimize the delay in handling the
connection request caused by a database failure. See Minimizing Connection
Request Delays After Loss of DBMS Connectivity.

22-5

Chapter 22
Connection Testing Options for a Data Source

See the JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console or see JDBCConnectionPoolParamsBean in the
MBean Reference for Oracle WebLogic Server for more details about these options.

For instructions to set connection testing options, see Configure testing options for a
JDBC data source in the Oracle WebLogic Server Administration Console Online Help.

The following section discusses automatic connection testing options:
» Database Connection Testing Semantics

» Database Connection Testing Configuration Recommendations

» Database Connection Testing Using Default Test Table Name

» Database Connection Testing Options

22.2.1 Database Connection Testing Semantics

ORACLE

When WebLogic Server tests database connections in a data source, it reserves a
connection from the data source, runs a small query on the connection, then returns
the connection to the pool in the data source. The server instance tracks statistics on
the pool status, including the amount of time a required to complete a connection test,
the number of connections waiting for a connection, and the number of connections
being tested. The history of recent test connection behavior is used to calculate the
amount of time the server instance waits until a connection test is determined to have
failed.

If a thread appears to be taking longer than normal to complete a test, the server
instance may delay testing on other threads until the abnormally long-running test
completes. If that thread hangs too long in connection testing (10 seconds by
default), a pool may declare a DBMS connectivity failure, disable itself, and kill all
connections, whether unreserved or in application hands. A pool closes all in-test or
unused connections, and flags in-use connections to check them later as they may be
hanging. After the Test Frequency Seconds has passed, WebLogic Server kills any
in-use connections that have not progressed.

This is very rare, and is intended to relieve the otherwise interminable hangs that can
be caused by network cable disconnects and other problems that can lock any JVM
thread which is doing a call in a socket read that the JVM will be unable to break until
the OS TCP limit is hit (typically 10 minutes).

The query used in testing is determined by the value in Test Table Name. If the value
is a table name, the query is sel ect count(*) fromtabl e _name. If Test Table Name
includes a full query starting with SQL followed by space and the query, WebLogic
Server uses that query when sting database connections.

If a connection fails the test, WebLogic Server closes and recreates the connection,
and then tests the new connection.

Details about the semantics of connection testing is discussed in the following
sections:

e Connection Testing When Database Connections are Created
* Periodic Connection Testing
e Testing Reserved Connections

e Minimizing Connection Test Delay After Database Connectivity Loss

22-6

Chapter 22
Connection Testing Options for a Data Source

* Minimizing Connection Request Delays After Loss of DBMS Connectivity

* Minimizing Connection Request Delay with Seconds to Trust an Idle Pool
Connection

22.2.1.1 Connection Testing When Database Connections are Created

When connections are created in a data source, WebLogic Server tests each
connection using the query defined by the value in Test Table Name. Connections
are created when a data source is deployed, either at server startup or when creating
a data source, when increasing capacity to meet demand for connections, or when
recreating a connection that failed a connection test.

The purpose of this testing is to ensure that new connections are viable and ready for
use when an application requests a connection.

22.2.1.2 Periodic Connection Testing

If Test Frequency is greater than 0, WebLogic Server periodically tests the pooled
connections that are not currently reserved by applications. The test is based on the
guery defined in Test Table Name. If a connection fails the test, WebLogic Server
closes the connection, recreates the connection, and tests the new connection before
returning it to the pool.

22.2.1.3 Testing Reserved Connections

When Test Connections On Reserve is enabled, when your application requests a
connection from the data source, WebLogic Server tests the connection using the
query specified in Test Table Name before giving the connection to the application.
The default value is not enabled.

Testing reserved connections can cause a delay in satisfying connection requests, but
it makes sure that the connection is viable when the application gets the connection.
You can minimize the impact of testing reserved connections by tuning Seconds

to Trust an Idle Pool Connection. See Minimizing Connection Request Delay with
Seconds to Trust an Idle Pool Connection.

22.2.1.4 Minimizing Connection Test Delay After Database Connectivity Loss

ORACLE

When connectivity to the DBMS is lost, even if only momentarily, some or all of the
JDBC connections in a data source typically become terminated. If the data source

is configured to test connections on reserve, then when an application requests

a database connection, WebLogic Server tests the connection, discovers that the
connection is terminated, and tries to replace it with a new connection to satisfy the
request. Ordinarily, when the DBMS comes back online, the refresh process succeeds.
However, in some cases and for some modes of failure, testing a terminated
connection can impose a long delay.

To minimize this delay, WebLogic data sources include logic that considers all
connections in the data source as terminated after a number of consecutive

test failures, and closes all connections in the data source. After all connections
are closed, when an application requests a connection, the data source creates

a connection without first having to test a terminated connection. This behavior
minimizes the delay for connection requests following the data source's connection
pool flush.

22-7

Chapter 22
Connection Testing Options for a Data Source

WebLogic Server determines the number of test failures before closing all connections
based on the test frequency setting for the data source:

» If test frequency is greater than 0, the number of test failures before closing all
connections is set to Count Of Test Fai | uresTi | | Fl ush .

¢ Note:

The default value is 2.

» If test frequency is set to O (periodic testing is disabled), the number of test failures
before closing all connections is set to 25% of the Maximum Capacity for the data
source.

" Note:

This value is overridden by Count Of Test Fai | uresTi | | Fl ush

value. Actually, the number of test failures before closing all
connections follows the count of test failures till flush, that is,

Count O Test Fai | uresTi | | Fl ush, which is located in Connecti on Pool
parameter of WebLogic Server Administration Console.

To minimize the delay that occurs during the test of dead database connections, you
can set Count O Test Fai | uresTi | | Fl ush attribute on the connection pool. To enable
this feature, Test Connect i onsOnReser ve must also be setto t r ue.

If the configured or default number of consecutive connection test failures are
observed, then all currently unused connections in the pool are terminated so that

any subsequent connection requests get a new connection. Active connections are not
interrupted but are monitored for activity. If no activity is detected with in 60 seconds,
these connections are destroyed.

The default value is generally sufficient. You may need to increase this value if your
environment has:

* Slow-running applications that may not show JDBC activity for several minutes

* Network/firewall issues that consistently terminate one or two connections

22.2.1.5 Minimizing Connection Request Delays After Loss of DBMS

Connectivity

ORACLE

If your DBMS becomes and remains unavailable, the data source will persistently test
and try to replace dead connections while trying to satisfy connection requests. This
behavior is beneficial because it enables the data source to react immediately when
the database becomes available. However, in cases where the DBMS is truly down, it
may be minutes, hours, or days before the DBMS is restored. Testing a dead database
connection can take as long as the network timeout, and can cause a long delay

for clients. This delay occurs for each dead connection in the connection pool until

all connections are replaced and can cause long delays to clients before getting the
expected failure message.

To minimize the delay that occurs for client applications while a database
is unavailable, you can set the Count Of Ref r eshFai | uresTi | | Di sabl e attribute

22-8

Chapter 22
Connection Testing Options for a Data Source

on the connection pool. The default value is 2. To enable this feature,
Test Connecti onsOnReser ve must also be settotrue and I nitial Capacity must be
greater than 0.

If the configured or default number of consecutive failures to replace a dead
connection are observed, WebLogic Server suspends the connection pool. If an
application requests a connection from a suspended connection pool, WebLogic
Server throws Pool Di sabl edSQLExcept i on to notify the client that a connection is not
available.

For data sources that are disabled in this manner, WebLogic Server periodically runs a
refresh process. The refresh process does the following:

* The server instance executes a health check on the database server every 5
seconds. This setting is not configurable.

» If the server instance recognizes that the database was recovered, it creates a
new database connection and enables the data source.

You can also manually enable the data source using the WebLogic Server
Administration Console or WLST.

Note:

If a data source is added to a multi data source, the multi data source
takes over the responsibility of disabling and re-enabling its data sources.
By default, a multi data source will check every two minutes (configurable)
and re-enable any of its data sources that can re-establish connections.
Configure using test frequency seconds at the multi data source level.
Note that the semantics of this setting are different than at the data source
level.

22.2.1.6 Minimizing Connection Request Delay with Seconds to Trust an Idle
Pool Connection

ORACLE

For some applications that use DBMS connections in a lot of very short cycles

(such as reserve-do_one_query-close), the data source's testing of the connection can
contribute a significant amount of overhead to each use cycle. To minimize the impact
of connection testing, you can set the Seconds To Trust An Idle Pool Connection
attribute in the JDBC data source configuration to trust recently-used or recently-tested
database connections and skip the connection test.

If Test Reserved Connections is enabled on your data source, when an application
requests a database connection, WebLogic Server tests the database connection
before giving it to the application. If the request is made within the time specified

for Seconds to Trust an Idle Pool Connection, since the connection was tested or
successfully used by an application, WebLogic Server skips the connection test before
delivering it to an application.

If Test Frequency is greater than 0 for your data source (periodic testing is enabled),
WebLogic Server also skips the connection test if the connection was successfully
used and returned to the data source within the time specified for Seconds to Trust an
Idle Pool Connection.

22-9

Chapter 22
Connection Testing Options for a Data Source

For instructions to set Seconds to Trust an Idle Pool Connection, see Configure testing
options for a JDBC data source in the Oracle WebLogic Server Administration Console
Online Help.

Seconds to Trust an Idle Pool Connection is a tuning feature that can improve
application performance by minimizing the delay caused by database connection
testing, especially during heavy traffic. However, it can reduce the effectiveness of
connection testing, especially if the value is set too high. The appropriate value
depends on your environment and the likelihood that a connection will become
defunct.

22.2.2 Database Connection Testing Configuration Recommendations

You should set connection testing attributes so that they best fit your environment. For
example, if your application cannot tolerate database connection failures, you should
set Seconds to Trust an Idle Pool Connection to 0 and make sure Test Reserved
Connections is enabled so that WebLogic Server will test every connection before
giving it to an application. If your application is more sensitive to delays in getting a
connection from the data source and can tolerate a possible application failure due to
using a dead connection, you should set Seconds to Trust an Idle Pool Connection to
a higher number, set Test Frequency to a lower number, and enable Test Reserved
Connections.

With these settings, your application will rely more on the data source testing
connections in the pool when they are not in use, rather than when an application
reguests a connection.

Note:

Ultimately, even if WebLogic does its best, a connection may fail in

the instant after WebLogic successfully tested it, and just before the
application uses it. Therefore, every application should be written to respond
appropriately in the case of unexpected exceptions from a dead connection.

When running with AGL and FAN enabled:

* Itis not necessary to run with Test Connections on Reserve because
ONS will send down events when a database instance goes down. This can
significantly improve performance by eliminating (or reducing) testing overhead
in the database. However, Test Connections on Reserve tests for other
failures such as network connectivity and application access to the database.
Oracle recommends running with Test Connecti ons on Reserve and using
SecondsToTr ust Anl dl ePool Connect i on and/or Test Fr equencySeconds to reduce
the overhead.

e Count Of Test Fai | uresTi | | Fl ush and Count Of Ref reshFai | uresTi | | Di sabl e are
ignored. The disabling an entire RAC instance occurs when a FAN event is
received that indicates that the instance is down.

22.2.3 Database Connection Testing Using Default Test Table Name

ORACLE

When you create a data source using the WebLogic Server Administration Console,
the WebLogic Server Administration Console automatically sets the Test Tabl e Nane

22-10

Chapter 22
Enabling Connection Creation Retries

attribute for a data source based on the DBMS that you select. The Test Tabl e Nane
attribute is used in connection testing which is optionally performed periodically or
when you create or reserve a connection, depending on how you configure the testing
options. For database tests to succeed, the database user used to create database
connections in the data source must have access to the database table. If not, you
should either grant access to the user (make this change in the DBMS) or change the
Test Tabl e Nane attribute to the name of a table to which the user does have access
(make this change in the WebLogic Server Administration Console).

The Test Tabl e Nare is an overloaded parameter. Its simplest form is to name a table
that WebLogic Server queries to test a connection. Setting it to any table, such as
"DUAL" for Oracle, causes the data source to run the query sel ect count(*) from
DUAL. If used in this mode, Oracle recommends that you choose a small, infrequently
updated table (preferably a pseudo-table such as DUAL).

The second manner in which you can define this parameter is to allow any specific
SQL string to be executed to test the connection. To use this option, set the parameter
to "SQL " plus the desired SQL string. For example SQL sel ect 1 works for
SQLServer, which does not need a table in queries to select constants. This option

is useful for adding DBMS-side control of WebLogic Server pool connection testing,
and to make the test as fast as possible.

Table 22-1 Default Test Table Name by DBMS
|

DBMS Default Test Table Name (Query)

DB2 SQL SELECT COUNT(*) FROM SYSIBM.SYSTABLES
Microsoft SQL Server SQL SELECT 1

MySQL SQL SELECT 1

Oracle SQL ISVALID

Sybase SQL SELECT 1

22.2.4 Database Connection Testing Options

For applications using an Oracle data base, particularly those with Oracle RAC
environments, using the default value of the Test Tabl e Nane attribute provides the
best overall performance.

Oracle continues to support SQL Pl NGDATABASE and SQL SELECT 1 FROM DUAL.
Although not as thorough as using SQL SELECT 1 FROM DUAL, SQ. | SVALI D
significantly eliminate processing overhead and improve SOA workload performance.

22.3 Enabling Connection Creation Retries

ORACLE

WebLogic JDBC data sources offer the Creation Retry Frequency option, which sets
the number of seconds between attempts to establish connections to the database. If
you do not set this value, data source creation fails if the database is unavailable. If set
and if the database is unavailable when the data source is created, WebLogic Server
will attempt to create connections in the pool again after the number of seconds you
specify, and will continue to attempt to create the connections until it succeeds.This
option applies to connections created when the data source is created at server
startup or when the data source is deployed or if the initial capacity is increased.

22-11

Chapter 22
Enabling Connection Requests to Wait for a Connection

It does not apply to connections created for pool expansion or to replace a defunct
connection in the pool.

By default, Connection Creation Retry Frequency is 0 seconds. When the value is
set to 0, connection creation retries is disabled and data source creation fails if the
database is unavailable.

See JDBC Data Source: Configuration: Connection Pool page in the WebLogic Server
Administration Console or see JDBCConnectionPoolParamsBean in the MBean
Reference for Oracle WebLogic Server .

22.4 Enabling Connection Requests to Wait for a
Connection

JDBC data sources have two attributes that you can set to enable connection
requests to wait for a connection from a data source: Connection Reserve

Timeout (Connect i onReser veTi meout Seconds) and Maximum Waiting for Connection
(Hi ghest NumAai t er s).

You use these two attributes together to enable connection requests to wait for a
connection without disabling your system by blocking too many threads.

See the JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console or see JDBCConnectionPoolParamsBean in the
MBean Reference for Oracle WebLogic Server for more details about these options.

Also see Enable connection requests to wait for a connection in the Administration
Console Online Help.

22.4.1 Connection Reserve Timeout

When an application requests a connection from a data source, if all connections

in the data source are in use and if the data source has expanded to its maximum
capacity, the application will get a Connection Unavailable SQL Exception. To avoid
this, you can configure the Connection Reserve Timeout value (in seconds) so

that connection requests will wait for a connection to become available. After the
Connection Reserve Timeout has expired, if no connection becomes available, the
request will fail and the application will get a Pool Li nmi t SQLExcept i on exception.

If you set Connection Reserve Timeout to - 1, a connection request will timeout
immediately if there is no connection available. If you set Connection Reserve Timeout
to 0, a connection request will wait indefinitely. The default value is 10 seconds.

See Enable connection requests to wait for a connection in the Oracle WebLogic
Server Administration Console Online Help.

22.4.2 Limiting the Number of Waiting Connection Requests

ORACLE

Connection requests that wait for a connection block a thread. If too many
connection requests concurrently wait for a connection and block threads, your
system performance can degrade. To avoid this, you can set the Maximum Waiting
for Connection (H ghest Num4i t er s) attribute, which limits the number connection
requests that can concurrently wait for a connection.

22-12

Chapter 22
Automatically Recovering Leaked Connections

If you set Maximum Waiting for Connection (Hi ghest NumAi t er s) to MAX- | NT (the
default), there is effectively no bound on how many connection requests can wait for
a connection. If you set Maximum Waiting for Connection to 0, connection requests
cannot wait for a connection. If the maximum number of requests has been met, a
SQLExcept i on is thrown when an application requests a connection.

22.5 Automatically Recovering Leaked Connections

You can automatically recover leaked connection by specifying values for | nacti ve
Connection Tineout onthe JDBC Data Source: Configuration: Connection Pool page
in the WebLogic Server Administration Console.

A leaked connection is a connection that was not properly returned to the connection
pool in the data source. When you set a value for | nactive Connection Ti meout,
WebLogic Server forcibly returns a connection to the data source when there is no
activity on a reserved connection for the number of seconds that you specify. When set
to 0 (the default value), this feature is turned off.

See the JDBC Data Source: Configuration: Connection Pool page in the WebLogic
Server Administration Console or see JDBCConnectionPoolParamsBean in the
MBean Reference for Oracle WebLogic Server for more details about this option.

Note that the actual timeout could exceed the configured value for Inactive Connection
Timeout. The internal data source maintenance thread runs every 5 seconds. When

it reaches the Inactive Connection Timeout (for example 30 seconds), it checks for
inactive connections. To avoid timing out a connection that was reserved just before
the current check or just after the previous check, the server gives an inactive
connection a "second chance." On the next check, if the connection is still inactive,

the server times it out and forcibly returns it to the data source. On average, there
could be a delay of 50% more than the configured value.

22.6 Avoiding Server Lockup with the Correct Number of
Connections

To avoid receiving an error while attempting to get a connection from a data source in
which there are no available connections, make sure your data source can expand to
the size required to accommodate your peak load of connection requests.

To increase the maximum number of connections available in the data source,
increase the value for Maximum Capacity for the data source on the JDBC

Data Source: Configuration: Connection Pool page in the Oracle WebLogic Server
Administration Console Online Help.

22.7 Limiting Statement Processing Time with Statement

Timeout

ORACLE

With the Statement Timeout option on a JDBC data source, you can limit the amount
of time that a statement takes to execute on a database connection reserved from the
data source.

When you set a value for Statement Timeout, WebLogic Server passes the time
specified to the JDBC driver using the j ava. sql . St at enent . set Quer yTi neout ()
method. WebLogic Server will make the call, and if the driver throws an exception,

22-13

Chapter 22
Using Pinned-To-Thread Property to Increase Performance

the value will be ignored. In some cases, the driver may silently not support the
call, or may document limited support. Oracle recommends that you check the driver
documentation to verify the expected behavior.

When Statement Timeout is set to -1, (the default) statements do not timeout.

See the JDBC Data Source: Configuration: Connection Pool page in the Oracle
WebLogic Server Administration Console Online Help for more details about this
option.

22.8 Using Pinned-To-Thread Property to Increase
Performance

To minimize the time it takes for an application to reserve a database connection from
a data source and to eliminate contention between threads for a database connection,
you can set the Pi nned To Thread option on the JDBC data source to t r ue.

See JDBC Data Source: Configuration: Connection Pool page in the Oracle WebLogic
Server Administration Console Online Help.

When Pi nned To Thread is enabled, WebLogic Server pins a database connection
from the data source to an execution thread the first time an application uses the
thread to reserve a connection. When the application finishes using the connection
and calls connecti on. cl ose(), which otherwise returns the connection to the data
source, WebLogic Server keeps the connection with the execute thread and does not
return it to the data source. When an application subsequently requests a connection
using the same execute thread, WebLogic Server provides the connection already
reserved by the thread. There is no locking contention on the data source that occurs
when multiple threads attempt to reserve a connection at the same time and there is
no contention for threads that attempt to reserve the same connection from a limited
number of database connections.

¢ Note:

The Pinned To Thread feature does not work with an | denti t yPool . Starting
with WebLogic Server Release 12.1.2, configurations with this combination
will cause the datasource to fail to deploy.

See JDBC Data Source: Configuration: Connection Pool in the Oracle WebLogic
Server Administration Console Online Help.

22.8.1 Changes to Connection Pool Administration Operations When
PinnedToThread is Enabled

ORACLE

Because the nature of connection pooling behavior is changed when Pi nnedToThr ead
is enabled, some connection pool attributes or features behave differently or are
disabled to suit the behavior change:

 Maximum Capacity is ignored. The number of connections in a connection pool
equals the greater of either the initial capacity or the number of connections
reserved from the connection pool.

22-14

Chapter 22
Using Pinned-To-Thread Property to Increase Performance

» Shrinking does not apply to connection pools with Pi nnedToThr ead enabled
because connections are never returned to the connection pool. Effectively, they
are always reserved.

* When you Reset a connection pool, the reset connections from the connection
pool are marked as Test Needed. The next time each connection is reserved,
WebLogic Server tests the connection and recreates it if necessary. Connections
are not tested synchronously when you reset the connection pool. This feature
requires that Test Connections on Reserve is enabled and a Test Table Name or
query is specified.

Consider the following when using the Pi nnedToThr ead feature:

* Ifused with | dentity Based Connection Pooling Enabl ed settotrue, an error
is thrown and the data source will not deploy.

* When used with Use Dat abase Credential s settotrue, all connections are
owned by the default user as defined in the JDBC descriptor but the Oracle proxy
is set to the user and password specified on get Connecti on(user, password).
Similarly, with Oracl e Proxy settotrue, the user and password are mapped to
a database credential and the Oracle proxy is set. This is the same behavior as
without Pi nnedToThr ead.

» Connection labeling is not supported when using Pi nnedToThr ead and an
exception is thrown when trying to get a connection with label properties.

e When using Multi-datasource, connections are maintained by each member
datasource as they are selected by the multi-datasource. For example, with
Algorithm Type of Fai | over, connections are initially be maintained only for the
primary member of MDS. If a failover occurs, then connections are maintained
for the next member of the MDS. When used with the Algorithm Type of Load-
Bal anci ng, connections are maintained for each member of the MDS.

* When using Active GridLink, Affinity and Runti me Load Bal anci ng continue
to work as before with regard to choosing an instance. As many as one
connection is stored per instance per thread (the equivalent of setting
(nePi nnedConnect i onOnl y=t r ue but on a per instance basis). Gravitation is not
supported (no migration of connections to lightly used nodes).

22.8.2 Additional Database Resource Costs When PinnedToThread is

Enabled

ORACLE

When Pi nnedToThr ead is enabled, the maximum capacity of the connection pool
(maximum number of database connections created in the connection pool) becomes
the number of execute threads used to request a connection multiplied by the number
of concurrent connections each thread reserves. This may exceed the Maximum
Capacity specified for the connection pool. You may need to consider this larger
number of connections in your system design and ensure that your database allows
for additional associated resources, such as open cursors.

Also note that connections are never returned to the connection pool, which means
that the connection pool can never shrink to reduce the number of connections and
associated resources in use. You can minimize this cost by setting an additional
driver parameter onePi nnedConnect i onOnl y. When onePi nnedConnect i onOnl y=true,
only the first connection requested is pinned to the thread. Any additional connections
required by the thread are taken from and returned to the connection pool as needed.
Set onePi nnedConnect i onOnl y using the Properti es attribute, for example:

22-15

Chapter 22
Using Unwrapped Data Type Objects

Properti es="onePi nnedConnecti onOnl y=t r ue; user =exanpl es"

If your system can handle the additional resource requirements, Oracle recommends
that you use the Pi nnedToThr ead option to increase performance.

If your system cannot handle the additional resource requirements or if you see
database resource errors after enabling Pi nnedToThr ead, Oracle recommends not
using Pi nnedToThr ead.

22.9 Using Unwrapped Data Type Objects

ORACLE

Disabling wrapping allows applications to use native driver objects directly to provide a
significant performance improvement.

Some JDBC objects from a driver that are returned from WebLogic Server are
wrapped by default. Wrapping data source objects provides WebLogic Server the
ability to:

e Generate debugging output from all method calls.
e Track connection utilization so that connections can be timed out appropriately.
e Provide transparent automatic transaction enlistment and security authorization.

WebLogic Server provides the ability to disable the wrapping of some objects which
provides the following benefits:

» Although WebLogic Server generates a dynamic proxy for vendor methods that
implement an interface to show through the wrapper, some data types do not
implement an interface. For example, Oracle data types Array, Blob, Clob, NClob,
Ref, SQLXML, and Struct are classes that do not implement interfaces. Disabling
wrapping allows applications to use native driver objects directly.

Note:

Oracle recommends not using these concrete classes and instead using
standard SQL types or corresponding Oracle interfaces. See Using API

Extensions for Oracle JDBC Types in Developing JDBC Applications for
Oracle WebLogic Server.

» Eliminating wrapping overhead can provide a significant performance
improvement.

When wrapping is disabled (the wr ap-t ypes element is f al se), the following data
types are not wrapped:

* Array

* Blob

* Clob

* NClob

° Ref

+ SQLXML
» Struct

22-16

Chapter 22
Tuning Maintenance Timers

ParameterMetaData

— No connection testing performed.
ResultSetMetaData

— No connection testing performed.
— No result set testing performed.

— No JDBC MT profiling performed.

22.9.1 How to Disable Wrapping

You can use the WebLogic Server Administration Console and WLST to disable data
type wrapping.

22.9.1.1 Disable Wrapping using the Administration Console

To disable wrapping of JDBC data type objects:

1.

©® N o o p; w0 D

If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

In the Domain Structure tree, expand Services, then select Data Sources.

On the Summary of Data Sources page, click the data source name.

Select the Configuration: Connection Pool tab.

Scroll down and click Advanced to show the advanced connection pool options.
In Wrap Data Types, deselect the checkbox to disable wrapping.

Click Save.

To activate these changes, in the Change Center of the WebLogic Server
Administration Console, click Activate Changes.

This change does not take effect immediately—it requires that the data source be
redeployed or the server be restarted.

22.9.1.2 Disable Wrapping using WLST

The following is a WLST code snippet to disable data type wrapping:

j dbcSR = creat e(dsnane, " JDBCSyst enResour ce");

t heJDBCResour ce = j dbcSR. get JDBCResour ce();

pool Paranms = t heJDBCResour ce. get JDBCConnect i onPool Par anms() ;
pool Par ans. set WapTypes(fal se);

This change does not take effect immediately—it requires that the data source be
redeployed or the server be restarted.

22.10 Tuning Maintenance Timers

Learn about the tunable timer
properties webl ogi c. j dbc. gravi tati onShri nkFrequencySeconds

ORACLE

22-17

ORACLE

Chapter 22
Tuning Maintenance Timers

webl ogi c. j dbc. har vest i ngFr equencySeconds and
webl ogi c. j dbc. securityCacheTi meout Seconds used by WebLogic JDBC.

webl ogi c. j dbc. gravi tationShri nkFrequencySeconds—Connections may be shut
down periodically on GridLink data sources. If the connections allocated to

various RAC instances do not correspond to the Runtime Load Balancing
percentages in the FAN load-balancing advisories, connections to overweight
instances are destroyed and new connections opened. This process occurs

every 30 seconds by default. You can tune this behavior using the

webl ogi c. j dbc. gravi tati onShri nkFrequencySeconds system property which
specifies the amount of time, in seconds, the system waits before rebalancing
connections. A value less than or equal to 0 disables the rebalancing process.

webl ogi c. j dbc. har vest i ngFr equencySeconds—Connection harvesting releases
reserved connections that are marked harvestable by the application when a data
source falls to a specified number of available connections. This check by default
is done every 30 seconds. This system property can be used to change the
frequency of harvesting by Data Source the amount of time, in seconds. If set less
than or equal to 0, connection harvesting is turned off. See Recover Harvested
Connections.

webl ogi c. j dbc. securityCacheTi meout Seconds—Performance is impacted when
reserving connections from a connection pool, due to the credentials for the
WebLogic server user being checked for each reserve connection request. To
resolve this, checking can be controlled by this system property. If less than or
equal to zero, the cache is turned off and user authentication happens each time.
If greater than zero, user authentication is done only once for each user in the
specified time period in seconds; the value is then cached. In situations where
pool access restrictions are dynamically altered, the pool re-authenticates the
users once each time after the cache is cleared. The default value is 10 minutes.

22-18

Configuring JDBC Application Modules for
Deployment

Learn how to package and scope a data source for use in enterprise applications and
the details of packaged JDBC modules.

" Note:

To learn more about the proprietary mechanism provided by WebLogic
Server prior to the DatasourceDefinition feature introduced in Java EE 6,
see Using Java EE DataSources Resource Definitions in Developing JDBC
Applications for Oracle WebLogic Server.

When you package your enterprise application, you can include JDBC resources in
the application by packaging JDBC modules in the archive and adding references to
the JDBC modules in all applicable descriptor files. When you deploy the application,
the JDBC resources are deployed, too. Depending on how you configure the JDBC
modules, the JDBC data sources deployed with the application will either be restricted
for use only by the containing application (application-scoped modules) or will be
available to all applications and clients (globally-scoped modules).

e Packaging a JDBC Module with an Enterprise Application: Main Steps
e Creating Packaged JDBC Modules

e Referencing a JDBC Module in Java EE Descriptor Files

e Packaging an Enterprise Application with a JDBC Module

e Deploying an Enterprise Application with a JDBC Module

e Getting a Database Connection from a Packaged JDBC Module

A.1 Packaging a JDBC Module with an Enterprise
Application: Main Steps

ORACLE

Learn about the steps for creating, packaging, and deploying a JDBC module with an
enterprise application.

The main steps for creating, packaging, and deploying a JDBC module with an
enterprise application are as follows:

1. Create the module. See Creating Packaged JDBC Modules.

2. Add references to the module in all applicable descriptor files. See Referencing a
JDBC Module in Java EE Descriptor Files.

A-1

Appendix A
Creating Packaged JDBC Modules

Package all application modules in an EAR. See Packaging an Enterprise
Application with a JDBC Module.

Deploy the application. See Deploying an Enterprise Application with a JDBC
Module.

A.2 Creating Packaged JDBC Modules

You can create JDBC application modules using any development tool that supports
creating an XML descriptor file.

You then deploy and manage JDBC modules using JSR 88-based tools, such as the
webl ogi c. Depl oyer utility, or the WebLogic Server Administration Console.

Note:

You can create a JDBC data source using the WebLogic Server
Administration Console, then copy the module as a template for use in your
applications. You must change the name and jndi-name elements of the
module before deploying it with your application to avoid a naming conflict in
the namespace.

Each JDBC module represents a data source. Modules that represent a generic or
Active GridLink (AGL) data source include all of the configuration parameters for
the generic or AGL data source. Modules that represent a multi data source include
configuration parameters for the multi data source, including a list of generic data
source modules used by the multi data source.

A.2.1 Creating a JDBC Data Source Module Using the Administration

Console

ORACLE

To create a data source module in the WebLogic Server Administration Console that
you can re-use as an application module, follow these steps.

1.

3.

Create a data source as described in Creating a JDBC Data Source. The data
source module is created in the confi g/ j dbc subdirectory of the domain directory.

Copy the dat a- sour ce- nane. xn file to a subdirectory within your application and
rename the copy to include -jdbc as a suffix, such as new dat a- sour ce- name-
jdbc. xnm .

Open the file in an editor and change the following elements:

name—change the nane to a name that is unique within the domain.

j ndi - name—change the j ndi - nane to a name that you want the enterprise
application to use to lookup the data source in the local application context.

scope—optionally, to limit access to the data source to only the containing
application, add a scope element to the j dbc- dat a- sour ce- par ans section
of the module. For example, <scope>Appl i cat i on</ scope>. See Application
Scoping for a Packaged JDBC Module.

A-2

Appendix A
Creating Packaged JDBC Modules

4. Continue with adding references to the descriptor files in the enterprise
application. See Referencing a JDBC Module in Java EE Descriptor Files.

A.2.2 JDBC Packaged Module Requirements

A JDBC module must meet the following criteria:

» Conforms to the j dbc- dat a- sour ce. xsd schema. The schema is
available at ht t p: // www. or acl e. coml webf ol der/t echnet wor k/ webl ogi ¢/ | dbc-
dat a- source/index. htn .

* Uses a file name that ends in -j dbc. xni .

e Includes a nane element that is unique within the WebLogic domain.

Data source modules must also include the following JDBC driver parameters:
o url

e driver-nane

e properties, including any properties required by the JDBC driver to create
database connections, such as a user name and password.

Multi data source modules must also include the dat a- sour ce-1i st, which is a list of
data source modules, separated by commas, that the multi data source uses to satisfy
database connection requests from applications.

Note:

All data sources listed in the data-source-list must have the same XA and
transaction protocol settings.

All other configuration parameters are optional or have a default value that WebLogic
Server uses if a value is not specified. However, to create a useful JDBC module,
you will likely need to specify additional configuration options as required by your
applications and your environment.

A.2.3 JDBC Application Module Limitations

Note the following limitations for JDBC application modules:

* The LoggingLastResource global-transactions-protocol is not permitted for use in
JDBC application modules.

* When deploying an application in production with application-scoped JDBC
resources, if the resource uses EmulateTwoPhaseCommit for the global-
transactions-protocol, you cannot deploy multiple versions of the application at
the same time.

A.2.4 Creating a Generic Data Source Module

The main sections within a JDBC data source module are:

e jdbc-driver-params—includes entries for the JDBC driver used to create
database connections, including ur |, dri ver - nane, and individual driver pr operty

ORACLE A-3

http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/jdbc-data-source/index.html

Appendix A
Creating Packaged JDBC Modules

entries. See the j dbc- dat a- sour ce. xsd schema for more valid entries. For
an explanation of each element, see JDBCDriverParamsBean in the MBean
Reference for Oracle WebLogic Server.

e jdbc-connecti on-pool - par ans—includes entries for connection pool
configuration, including connection testing options, statement cache options, and
so forth. This element also inherits connect i on- pool - par ans from the webl ogi c-
j avaee. xsd schema, including i ni ti al - capaci ty, m n-capaci ty, max-capacity,
and other options common to pooled resources. For more information, see the
following:

"JDBCConnectionPoolParamsBean" in the MBean Reference for Oracle
WebLogic Server

— jdbc-dat a-sour ce. xsd schema

e jdbc-dat a- sour ce- par anms—includes entries for data source behavior options
and transaction processing options, such as j ndi - nane, r ow pr ef et ch-
si ze, and gl obal -transacti ons- prot ocol . See the j dbc- dat a- sour ce. xsd
schema for more valid entries. For an explanation of each element, see
JDBCDataSourceParamsBean in the MBean Reference for Oracle WebLogic
Server.

e jdbc-xa- par anms—includes entries for XA database connection handling options,
such as keep- xa-conn-till-tx-conplete, and xa-transacti on-ti meout. For an
explanation of each element, see "JDBCXAParamsBean" in the MBean Reference
for Oracle WebLogic Server.

Example A-1 shows an example of a JDBC module for a data source with some typical
configuration options.

Example A-1 Sample Generic Data Source Module

<j dbc- dat a- sour ce xsi:schemalLocation="http://wmv. bea. conf ns/webl ogi c/ 90/ domai n. xsd"
xm ns="http://xm ns. oracl e. com webl ogi ¢/ j dbc- dat a- sour ce"
xm ns: sec="http://ww. bea. con ns/ webl ogi ¢/ 90/ security"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:w s="http://ww.bea. com ns/webl ogi ¢/ 90/ security/w s">
<name>exanpl es- denoXA- 2</ nanme>
<j dbc-dri ver- parans>
<url| >j dbc: derby://1ocal host: 1527/ exanpl es; creat e=t rue</ur| >
<driver-name>or g. apache. derby. j dbc. O i ent XADat aSour ce</ dri ver - name>
<properties>
<property>
<nanme>user </ nane>
<val ue>exanpl es</val ue>
</ property>
<property>
<nane>Dat abaseNane</ nane>
<val ue>exanpl es</val ue>
</ property>
</ properties>
<passwor d- encr ypt ed>{ AES} MEK6bPunBMs9KRPAFANX3TG Q0i SWRYu2r ZGUwnVo6U=</ passwor d- encr ypt ed>
</jdbc-driver-paranms>
<j dbc- connecti on- pool - par ams>
<max- capaci t y>100</ max- capaci t y>
<connecti on-reserve-tineout - seconds>25</ connecti on-reserve-tinmeout - seconds>
<t est-tabl e-nane>SQ. SELECT 1 FROM SYS. SYSTABLES</t est -t abl e- narme>
</ j dbc- connecti on- pool - par ans>
<j dbc- dat a- sour ce- par ans>
<gl obal -transacti ons- prot ocol >TwoPhaseConmi t </ gl obal - t ransact i ons- pr ot ocol >

ORACLE A-4

Appendix A
Creating Packaged JDBC Modules

</ j dbc- dat a- sour ce- par ans>
</ j dbc-dat a- sour ce>

A.2.5 Creating an Active GridLink Data Source Module

AGL data source modules are similar to generic data source system modules. AGL
data sources include an j dbc- or acl e- par ans section that includes ONS and FAN.

A.2.6 Creating a Multi Data Source Module

A JDBC multi data source module is much simpler than a generic data source
module. Only one main section is required: j dbc- dat a- sour ce- par ans. The j dbc-
dat a- sour ce- par ans element in a multi data source differs in that it contains options
for multi data source behavior options instead of data source behavior options. Only
the following parameters in the j dbc- dat a- sour ce- par ans are valid for multi data
sources:

e jndi-nane (required)

e data-source-list (required)

e scope

e algorithmtype

e connection-pool -fail over-cal | back- handl er
o failover-request-if-busy

For an explanation of each element, see JDBCDataSourceParamsBeanin the MBean
Reference for Oracle WebLogic Server.

Example A-2 shows an example of a JDBC module for a data source with some typical
configuration options.

Example A-2 Sample JDBC Multi Data Source Module

<j dbc-dat a- source xm ns="http://xn ns. oracl e. conl webl ogi ¢/ j dbc- dat a- sour ce" >
<nanme>exanpl es- demoXA- nul ti - dat a- sour ce</ nane>
<j dbc- dat a- sour ce- par ans>
<j ndi - nane>exanpl es-denoXA -nul ti - dat a- sour ce</j ndi - nane>
<al gorithmtype>Load- Bal anci ng</ al gorithmtype>
<dat a- sour ce- | i st >exanpl es- demoXA, exanpl es- denmoXA- 2</ dat a- sour ce-1i st >
</ j dbc- dat a- sour ce- par ans>
</ j dbc- dat a- sour ce>

A.2.7 Encrypting Database Passwords in a JDBC Module

Oracle recommends that you encrypt database passwords in a JDBC module to keep
your data secure. To encrypt a database password, you process the password with
the WebLogic Server encrypt utility, which returns an encrypted equivalent of the
password that you include in the JDBC module as the passwor d- encrypt ed element.
For more details about using the WebLogic Server encrypt utility, see encrypt in the
WLST Command Reference for WebLogic Server.

ORACLE A-5

Appendix A
Referencing a JDBC Module in Java EE Descriptor Files

A.2.7.1 Deploying JDBC Modules to New Domains

It it common practice for IDBC modules to be moved from one domain to another,
such as moving an application from development to production. However, the
encryption key generated by the WebLogic Server encrypt utility is not transferable to
a new domain. When moving a JDBC module with an encrypted database password,
you must do one of the following:

* Override the old encrypted password within a deployment plan that includes a
password that was encrypted specifically for the new domain. See Update a
deployment plan in Oracle WebLogic Server Administration Console Online Help.

* Re-encrypt the passwords for your new domain. See Encrypting Database
Passwords in a JDBC Module.

« If you use the Oracle wallet, you can simply reference the wallet and copy the
wallet file to the new domain. See Creating and Managing Oracle Wallet.

A.2.8 Application Scoping for a Packaged JDBC Module

By default, when you package a JDBC module with an application, the JDBC resource
is globally scoped—that is, the resource is bound to the global INDI nhamespace

and is available to all applications and clients. To reserve the resource for use

only by the enclosing application, you must include the <scope>Appl i cat i on</ scope>

parameter in the j dbc- dat a- sour ce- par ans element in the JDBC module, which binds
the resource to the local application namespace. For example:

<j dbc- dat a- sour ce- par ans>
<j ndi - nane>exanpl es- denoXA- 2</j ndi - nane>
<scope>Appl i cati on</ scope>

</ j dbc- dat a- sour ce- par ans>

All generic data sources in a multi data source for an application-scoped JDBC module
must also be application scoped.

A.3 Referencing a JDBC Module in Java EE Descriptor Files

ORACLE

Learn about referencing a JDBC Module in Java EE Descriptor Files.

When you package a JDBC module with an enterprise application, you must reference
the module in all applicable descriptor files, including among others:

e webl ogi c-application. xm
° ejb-jar.xm

e weblogic-ejb-jar. xn

* web. xm

* weblogic.xm

Figure A-1 shows the relationship between entries in various descriptor files for an
EJB application and how they refer to a JDBC module packaged with the application.

A-6

Appendix A
Referencing a JDBC Module in Java EE Descriptor Files

Figure A-1 Relationship Between JDBC Modules and Descriptors in an Enterprise Application

Enterprise Application (myapp.ear)

<modula= =module=
<gjb> “name>
a)be/Beani jar data-source-1
<jajb> =/name=
=imodule= <typa=>
JDBC
{Hypa}
<path=>
jdbecidata-source-1-jdbe.xml
<fpath=
=/module=

<jdbc-data-source>
<name>data-source-1</name=
<jdbo-driver-parames=

<rasource-raf=
=rgs-ref-nama>my-data-source
J-ﬁ-’.l’rea-ref—namah
=res-typa=javax.sql.DataSource
</res-lypa=
<res-auth>Caontainer</ras-auth>
<fresourca-raf>

<resource-gdescription=
<res-raf-name>my-data-source
</res-ref-name:>
=jndi-name>ga-database-1
<findi-name:=

</resource-description=

fé.l]d be-drivar-params>
<jdbe-connaction-poal-params>

</jdbz-connaection-pool-params=
<jdbe-data-source-params=
* <ndi-name*ga-database-1
<{jndi-name=
<goope=Application</scope>
=/jdbc-data-source-paramss
<jdbe-xa-params>

EJB
DataSource ds =
({DataSource ot lookup(java:comp
lenv/my-data-source”)

-c.']d be-xa-params=>
<fjdbc-dala-source=

A.3.1 Packaged JDBC Module References in weblogic-application.xml

When including JDBC modules in an enterprise application, you must list each JDBC
module as a modul e element of type JDBC in the webl ogi c-appl i cation. xm descriptor
file packaged with the application. For example:

<nodul e>

<name>dat a- sour ce- 1</ name>

<t ype>JDBC</t ype>

<pat h>dat asour ces/ dat a- sour ce- 1- j dbc. xnl </ pat h>
</ modul e>

A.3.2 Packaged JDBC Module References in Other Descriptors

For other application modules in your enterprise application to use the JDBC modules
packaged with your application, you must add the following entries in the descriptor
files packaged with application modules:

ORACLE' A7

Appendix A
Packaging an Enterprise Application with a JDBC Module

* Inthe standard Java EE descriptor files packaged with your application modules,
such as ej b-j ar. xnl for an EJB, you must add r esour ce- r ef - name references to
specify the JNDI name of the data source as used in the application. For example:

<resource-ref>
<res-ref - name>ny- dat a- sour ce</res-r ef - name>
<res-type>j avax. sql . Dat aSour ce</res-type>
<res-aut h>Cont ai ner </ res-aut h>
</resource-ref>

In this example, ny- dat a- sour ce is the data source name as used in the
application module. Your application would look up the data source with the
following code:

j avax. sql . Dat aSource ds =
(j avax. sql . Dat aSour ce) ctx. | ookup("java: conp/ env/ ny-data-source");

* In the WebLogic-specific descriptor files, such as weblogic-ejb-jar.xml for an EJB,
you must map each resour ce-r ef - name reference to the j ndi - nane element of a
data source. For example:

<resour ce-description>
<res-ref-name>ny- dat a- sour ce</res-ref - name>
<j ndi - nane>ga- dat abase- 1</ j ndi - name>
</resource-description>

In this example, the resource name (<r es-r ef - name>ny- dat a- sour ce</ res-ref -
name>) from the standard descriptor is mapped to the JNDI name (<j ndi - nane>qa-
dat abase- 1</ j ndi - nane>) of the data source in the JDBC module.

Figure A-1 shows the mapping of the of the data source name as used in the
application module to the JNDI name of the JDBC data source in the JDBC module.

Note:

For application-scoped data sources, if you do not add these entries to the
descriptor files, your application will be unable to look up the data source to
get a database connection.

A.4 Packaging an Enterprise Application with a JDBC
Module

Learn about packaging an application with a JDBC module.
See Packaging Applications Using wlpackage in Developing Applications for Oracle
WebLogic Server.

A.5 Deploying an Enterprise Application with a JDBC
Module

Learn about deploying an enterprise application with a JDBC module.
See Deploying Applications Using wideploy in Developing Applications for Oracle
WebLogic Server.

ORACLE A-8

Appendix A
Getting a Database Connection from a Packaged JDBC Module

< Note:

When deploying an application in production with application-scoped JDBC
resources, if the resource uses EmulateTwoPhaseCommit for the global-
transactions-protocol, you cannot deploy multiple versions of the application
at the same time.

A.6 Getting a Database Connection from a Packaged JDBC

Module

ORACLE

To get a connection from JDBC module packaged with an enterprise application,
you look up the data source defined in the JDBC module in the local environment
(j ava: conp/ env) or on the JNDI tree and then request a connection from the data
source or multi data source.

For example:

j avax. sql . Dat aSource ds =
(j avax. sql . Dat aSour ce) ctx.|ookup("java: conp/ env/ ny-data-source");
java. sqgl . Connection conn = ds. get Connection();

When you are finished using the connection, make sure you close the connection to
return it to the connection pool in the data source:

conn. cl ose();

A-9

Using Multi Data Sources with Oracle RAC

Learn how to configure and use multi data sources on Oracle Real Application
Clusters (RAC) with WebLogic Server. Oracle continues to support multi data source
configurations for legacy application environments using RAC.

This appendix includes the following sections:

e Overview of Oracle Real Application Clusters

e Software Requirements

- JDBC Driver Requirements

e Hardware Requirements

e Configuring Multi Data Sources with Oracle RAC

e Using Multi Data Sources with Global Transactions

e Using Multi Data Sources without Global Transactions

e Configuring Connections to Services on Oracle RAC Nodes
e Using SCAN Addresses with Multi Data Sources

e XA Considerations and Limitations when using multi Data Sources with Oracle
RAC

» JDBC Store Recovery with Oracle RAC

Both Oracle RAC and WebLogic Server are complex systems. To use them together
requires specific configuration on both systems, as well as clustering software and

a shared storage solution. This section describes the configuration required at a
high level. For more details about configuring Oracle RAC, your clustering software,
your operating system, and your storage solution, see the documentation from the
respective vendors.

Note:

Oracle recommends using Active GridLink data sources when developing
new Oracle RAC applications and when legacy applications do not use multi
data sources. See Using WebLogic Server with Oracle RAC.

B.1 Overview of Oracle RAC

ORACLE

Oracle RAC is a software component you can add to a high-availability solution

that enables users on multiple machines to access a single database with increased
performance. Oracle RAC comprises two or more Oracle database instances running
on two or more clustered machines and accessing a shared storage device via cluster
technology.

B-1

Appendix B
Overview of Oracle RAC

To support this architecture, the machines that host the database instances are linked
by a high-speed interconnect to form the cluster. The interconnect is a physical
network used as a means of communication between the nodes of the cluster.
Cluster functionality is provided by the operating system, Oracle Automatic Storage
Management (ASM), or compatible third party clustering software. Figure B-1 shows
an Oracle RAC configuration.

Figure B-1 Oracle Real Application Clusters Configuration

RAC
Hode 1

RAC
Hode 2

Interconnect

Shared Storage

Oracle RAC offers features in the following areas:

e Oracle RAC Scalability with WebLogic Server Multi Data Sources.

e Oracle RAC Availability with WebLogic Server Multi Data Sources.

e Oracle RAC Load Balancing with WebLogic Server Multi Data Sources.

B.1.1 Oracle RAC Scalability with WebLogic Server Multi Data

Sources

ORACLE

An Oracle RAC installation appears like a single standard Oracle database and is
maintained using the same tools and practices. All the nodes in the cluster execute
transactions against the same database and Oracle RAC coordinates each node's
access to the shared data to maintain consistency and ensure integrity. You can add
nodes to the cluster easily and there is no need to partition data when you add them.
This means that you can horizontally scale the database tier as usage and demand
grows by adding Oracle RAC nodes, storage, or both.

As the number of nodes in an Oracle RAC increases, you scale the number of generic
data sources by the number of nodes added to the Oracle RAC. This requires a

B-2

Appendix B
Software Requirements

complex configuration (requiring n+1 data sources where n is the number of generic
data sources plus a multi data source) that requires administrative intervention when
the Oracle RAC topology changes.

B.1.2 Oracle RAC Availability with WebLogic Server Multi Data

Sources

A multi data source provides an ordered list of generic data sources to use to satisfy
connection requests. Normally, every connection request to this kind of multi data
source is served by the first generic data source in the list. If a database connection
test fails and the connection cannot be replaced, or if the generic data source is
suspended, a connection is sought sequentially from the next generic data source on
the list. See Failover and Multi Data Source-Managed Failover and Load Balancing.

B.1.3 Oracle RAC Load Balancing with WebLogic Server Multi Data

Sources

Multi data sources provide load balancing for XA and non-XA environments. The
generic data sources that form a multi data source are accessed using a round-robin
scheme. When switching connections, WebLogic Server selects a connection from the
next generic data source in the order listed.

B.2 Software Requirements

ORACLE

Learn about the software required to use WebLogic Server with Oracle RAC.

To use WebLogic Server with Oracle RAC, you must install the following software on
each Oracle RAC node:

e Operating system patches required to support Oracle RAC. See the release notes
from Oracle for details.

e Oracle 11g database management system

e Clustering software for your operating system. See the Oracle documentation for
supported clustering software and cluster configurations.

e Shared storage software, such as Oracle Automated Storage Management (ASM).
Note that some clustering software includes a file storage solution, in which case
additional shared storage software is not required.

< Note:

See Supported Configurations in What's New in Oracle WebLogic
Server 12.2.1.3.0 for the latest WebLogic Server hardware platform and
operating system support, and for the Oracle RAC versions supported
by WebLogic Server versions and service packs. See the Oracle
documentation for hardware and software requirements required for
running the Oracle RAC software.

B-3

Appendix B
JDBC Driver Requirements

B.3 JDBC Driver Requirements

To use WebLogic Server with Oracle RAC, your WebLogic generic data sources must
use the Oracle JDBC Thin driver 11g or later to create database connections.

B.4 Hardware Requirements

A typical WebLogic Server/Oracle RAC system includes a WebLogic Server cluster, an
Oracle RAC cluster, and hardware for shared storage.

B.4.1 WebLogic Server Cluster

The WebLogic Server cluster can be configured in many ways and with various
hardware options. See Administering Clusters for Oracle WebLogic Server for more
details about configuring a WebLogic Server cluster.

B.4.2 Oracle RAC Cluster

For the latest hardware requirements for Oracle RAC, see the Oracle RAC
documentation. However, to use Oracle RAC with WebLogic Server, you must

run Oracle RAC instances on robust, production-quality hardware. The Oracle
RAC configuration must deliver database processing performance appropriate for
reasonably-anticipated application load requirements. Unusual database response
delays can lead to unexpected behavior during database failover scenarios.

B.4.3 Shared Storage

In an Oracle RAC configuration, all data files, control files, and parameter files are
shared for use by all Oracle RAC instances. An HA storage solution that uses one of
the following architectures is recommended:

e Direct Attached Storage (DAS), such as a dual ported disk array or a Storage Area
Network (SAN)

* Network Attached Storage (NAS)

For a complete list of supported storage solutions, see your Oracle documentation.

B.5 Configuring Multi Data Sources with Oracle RAC

When using Multi data sources with Oracle RAC, you must configure your WebLogic
Domain so that it can interact with Oracle RAC instances and so that it performs as
expected.

The following sections describe configuration options and requirements:

* Choosing a Multi Data Source Configuration for Use with Oracle RAC
» Configuring Multi Data Sources for use with Oracle RAC
» Configuration Considerations for Failover

» Configuring the Listener Process for Each Oracle RAC Instance

ORACLE B-4

Appendix B
Configuring Multi Data Sources with Oracle RAC

» Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled

* Additional Configuration Considerations

B.5.1 Choosing a Multi Data Source Configuration for Use with Oracle

RAC

WebLogic Server multi data sources support several configuration options for using
Oracle RAC:

* To connect to multiple Oracle RAC instances when using global transactions (XA),
see Using Multi Data Sources with Global Transactions.

* To connect to multiple Oracle RAC instances when not using XA, see Using Multi
Data Sources without Global Transactions.

* You can also configure multi data sources to connect to specific services that are
running on Oracle RAC nodes. Both XA and non-XA drivers are supported, see
Configuring Connections to Services on Oracle RAC Nodes.

B.5.2 Configuring Multi Data Sources for use with Oracle RAC

ORACLE

To connect WebLogic Server to multiple Oracle RAC nodes using multi data sources,
first configure a generic data source for each Oracle RAC instance in your Oracle RAC
cluster with the Oracle Thin driver. Then configure a multi data source, using either the
algorithm for load balancing or the algorithm for failover, and add generic data sources
to it.

Figure B-2 shows a typical multi data source configuration.

B-5

Appendix B

Configuring Multi Data Sources with Oracle RAC

Figure B-2 Multi Data Source Configuration

Wehl ogic Server

Multi Data Source

Data Source Data Source

Webl ogic Server

Multi Data Source

Data Source

RAC
Hode 1

Shared Storage

Interconnect

RAC
Hode 2

You can use the WebLogic Server Administration Console or any other means that
you prefer to configure your domain, such as the WebLogic Scripting Tool (WLST) or a
JMX program. For information about configuring a WebLogic JDBC multi data source
see Configuring JDBC Multi Data Sources. For information on how to configure the
generic data sources in a multi data source to connect to services running on Oracle

RAC nodes, see Configuring Connections to Services on Oracle RAC Nodes.

To use a database connection in this configuration, your applications look up one multi
data source on the JNDI tree and then request a connection. The multi data source
determines which generic data source to use to satisfy the connection request based
on the algorithm type specified in the configuration (that is, failover or load balancing).

B.5.2.1 Attributes of a Multi Data Source

The multi data source may have the following attributes, depending on the role of
Oracle RAC in your system—Ioad balancing or failover:

e Al gorithniType="Load- Bal anci ng" or Al gorithniType="Fai |l over"

ORACLE

B-6

Appendix B
Configuring Multi Data Sources with Oracle RAC

With the Load-Balancing option, connection requests are distributed among
available generic data sources; with the Fai | over option, connection requests are
served by the first available pool in the list. When a generic data source becomes
defunct, connection requests are served by the next generic data source in the list.

e FailoverRequest | fBusy="true"

With the Failover algorithm, this attribute enables failover when all connections in
a generic data source are in use.

e TestFrequencySeconds="120"

This attribute controls the frequency at which WebLogic Server checks the health
of generic data sources previously marked as unhealthy to see if connections can
be recreated and if the generic data source can be re-enabled. For more details
see Configuring JDBC Multi Data Sources.

For fast failover of Oracle RAC nodes, set this value to a smaller interval, for
example, 10 (seconds).

B.5.3 Configuration Considerations for Failover

B.5.3.1 Multi

Consider the following information when configuring for failover.

Data Source-Managed Failover and Load Balancing

Multi data sources offer failover and load balancing for global transactions. For a
description of multi data source failover features, see Multi Data Source Failover
Enhancements.

With this configuration, pictured in Figure B-2, you get:

* Fast failover controlled by the multi data source
* Automatic failback by the WebLogic Server health monitor

The multi data source handles failover for database connections when an Oracle

RAC node becomes unavailable. When WebLogic Server tests a connection and

the connection fails, it attempts to recreate the connection. If that attempt fails, the
server disables the generic data source and routes connection requests to other
generic data sources (which correspond to other Oracle RAC nodes) in the multi data
source. WebLogic Server periodically tries to recreate the database connections in the
disabled generic data source. When WebLogic Server is successful in recreating the
connections, it next re-enables the generic data source and begins routing connection
requests to the generic data source again. Because of the connection request routing
and automatic health checking features, there is minimal delay in satisfying connection
requests after a failure.

B.5.3.2 Delays During Failover

ORACLE

Occasionally, when one Oracle RAC node fails over to another, there may be a
delay before the data associated with a transaction branch in progress on the now
failed node is available throughout the cluster. This prevents incomplete transactions
from being properly completed, which could further result in data locking in the
database. To protect against the potential consequences of such a delay, WebLogic
Server provides two configuration attributes that enable XA call retry for Oracle RAC:
XARet ryDur at i onSeconds and XARet ryl nt er val Seconds.

B-7

ORACLE

Appendix B
Configuring Multi Data Sources with Oracle RAC

When a server acting as Coordinator returns to service, it takes the following actions
during recovery:

* The Transaction Manager reads the transaction checkpoints and the resource
checkpoints from the TLog.

* The transactions read from the TLOG (transaction checkpoints) become active
and the state is set to committing. The TM tries to commit these transactions just
as it does for other runtime transactions. If the commit fails a retry-commit process
takes place until AbandonTi meout Seconds after a grace period has expired.

* The TM calls xa. recover on resources read from the TLOG (resource
checkpoints) to obtain a list of pending transactions. If the xa. r ecover
call fails, the TM retries the xa. recover call on the resource every
XARet ryl nt er val Seconds for a period of XARet r yDur at i onSeconds.

Use the following formula to determine the value for XARet r yDur at i onSeconds:

XARet ryDur at i onSeconds = (longest transaction timeout for transactions that use
connections from the generic data source) + (delay before XIDs are available on all
Oracle RAC nodes, typically less than 5 minutes)

For example, if your application sets the longest transaction timeout as 180 seconds,
you should set XARet r yDur at i onSeconds to 180 seconds + 300 seconds, for a total of
480 seconds.

Note:

It is generally better to set XARet r yDur at i onSeconds higher than minimally
necessary to make sure that all transactions are completed properly. Setting
the value higher than minimally required should not affect application
performance during normal operations. The additional processing only
affects transactions that have been prepared but have failed to complete.

You can also optionally set a value for XARet ryl nt er val Seconds. This value
determines the time between XA retry calls. By default, the value is 60 seconds.
Decreasing the value will decrease the amount of time between XA retry attempts. The
default value should suffice in most cases.

To enable XARet ryDur at i onSeconds and XARet ryl nt er val Seconds from the
WebLogic Server Administration Console, use the following steps:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. In the Domain Structure tree, expand Services > JDBC, then select Data
Sources.

On the Summary of Data Sources page, click the data source name.

Select the Configuration: Connection Pool tab.

Update XA Retry Duration and XA Retry Interval.
Click Save.
Optionally, you can use WebLogic Scripting Tool (WLST) or a JMX program.

3
4
5. Scroll down and click Advanced to show the advanced connection pool options.
6
7

B-8

Appendix B
Configuring Multi Data Sources with Oracle RAC

B.5.3.3 Failure Handling Walkthrough for Global Transactions

What happens to in-flight transactions to a database node if that node fails? When the
primary Oracle RAC node fails? Does WebLogic Server support transparent failover?
To answer these and other questions about how WebLogic Server handles failures,
let's walk through the transaction processing steps and describe how a failure would
be handled at each stage along the way.

The first stage at which a failure may occur is before the application calls for the
transaction to be committed. If a database or Oracle RAC node fails at this stage, the
application receives an exception and must get a new connection and make a new
attempt at processing the transaction. WebLogic Server does not support transparent
failover.

If a failure occurs after the application has called for the transaction to be committed,
the handling of any in-flight transaction depends upon whether the PREPARE operation
is complete. If the PREPARE operation is not complete, the transaction manager rolls
back the transaction and sends the application an exception for the failed transaction.
If the PREPARE operation is complete, the transaction manager attempts to drive the
in-flight transaction to completion using another node.

If a failure occurs during the COW T operation, the transaction manager attempts
to retry the COW T operation several times. Note that the connection is blocked
during these attempts. If the COW T operation is not successful during the first set
of retry attempts, the application receives an exception. The transaction manager
then continues to retry the COMWM T operation periodically until it is successful; if the
transaction cannot be completed successfully within the abandon time period, the
transaction is driven to completion heuristically.

B.5.4 Configuring the Listener Process for Each Oracle RAC Instance

For Oracle RAC, the listener process establishes a communication pathway between
a user process and an Oracle instance. When you use Oracle RAC with WebLogic
Server, the user process is typically a data source.

When a multi data source is created, it attempts to create a pool of database
connections for applications to borrow. If a pooled database connection becomes
inoperative or if the generic data source is configured to grow in capacity, the

data source attempts to create additional database connections up to the maximum
specified in the configuration file. In all of these instances, the Oracle listener process
handles the connection request on the Oracle RAC instance.

Figure B-3 shows the Oracle listener process functionality.

ORACLE B-9

ORACLE

Appendix B
Configuring Multi Data Sources with Oracle RAC

Figure B-3 Oracle Listener Process Functionality

Wehl ogic Server

Data Source

Connection
Managed for Oracle
By the Connection
Process

RAC Listener Connection
Node 1 Process Process

Spawns Connection

Connection
Request

To enable this functionality, you have two options:

e Use local listeners. Configure the listener process for each Oracle RAC instance
in the Oracle cluster. WebLogic Server requires that you configure a local listener
on each Oracle RAC instance. Each database instance should be configured to
register only with its local listener.

Oracle instances can be configured to register with the listener statically in

the | i st ener. or a file or registered dynamically using the instance initialization
parameter | ocal _| i st ener, or both. Oracle recommends using dynamic
registration.

A listener can start either a shared dispatcher process or a dedicated process.
When using with WebLogic Server, Oracle recommends using dedicated
processes.

B-10

Appendix B
Configuring Multi Data Sources with Oracle RAC

* Use remote listeners. WLS requires that you specify both the SERVICE_NAME
and the INSTANCE_NAME in the JDBC URL for the generic data sources in the
multi data source. See Configuring Multi Data Sources When Remote Listeners
are Enabled or Disabled.

B.5.5 Configuring Multi Data Sources When Remote Listeners are
Enabled or Disabled

If the server-side load balancing feature has been enabled for the Oracle RAC
backend (using remote_listeners), the JDBC URL that you use in the generic data
sources of a multi data source configuration should include the INSTANCE_NAME.
For example, the URL can be specified in the following format:

j dbc: oracl e: t hin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP) (HOST=host - vi p) (PORT=1521))
(CONNECT_DATA=(SERVI CE_NAME=dbser vi ce) (| NSTANCE_NAME=i nst 1)))

If specifying the INSTANCE_NAME in the URL is not possible, remote listeners
must be disabled. To disable remote listeners, delete any listed remote listeners in
spfile.oraon each Oracle RAC node. For example:

*. renpote_|istener="

In this case, the recommended URL that you use in the generic data sources of a multi
data source configuration is:

j dbc: oracl e: t hin: @ost-vip: port/dbservice

or

j dbc: oracl e: t hi n: @ DESCR! PTI ON=(ADDRESS=(PROTOCOL=TCP) (HOST=host - vi p) (PORT=1521))

(
CONNECT_DATA=(SERVI CE_NAME=dbser vi ce)))

B.5.6 Additional Configuration Considerations

In some deployments of Oracle RAC, you may need to set parameters in addition to
the out of the box configuration of a data source in an Oracle RAC configuration. The
additional parameters are:

e Setoracle.|dbc. ReadTi meout =300000 (300000 milliseconds) for each generic
data source.

The actual value of the ReadTi meout parameter used may differ based on your
application environment.

» If the network is not reliable, it is difficult for a client to detect the frequent
disconnections when the server is abruptly disconnected. By default, a
client running on Linux takes 7200 seconds (2 hours) to sense the abrupt
disconnections. This value is equal to the value of the t cp_keepal i ve_tinme
property. To configure the application to detect the disconnections faster,
set the value of the t cp_keepal i ve_time, tcp_keepalive_interval, and
tcp_keepal i ve_probes properties to a lower value at the operating system level.

ORACLE B-11

Appendix B
Using Multi Data Sources with Global Transactions

< Note:

Setting a low value for the t cp_keepal i ve_i nt erval property leads to
frequent probe packets on the network, which can make the system
slower. Set the value of this property based on system requirements of
your application environment.

For example, sett cp_keepal i ve_ti me=600 for a system running a WebLogic
Server managed server.

e Specify the ENABLE=BROKEN parameter in the DESCRI PTI ON clause in the connection
descriptor. For example:

jdbc:oracl e:thin: @DESCR PTI ON=(enabl e=br oken)

(ADDRESS_LI ST=(ADDRESS=(PROTOCOL=TCP) (HOST=nodel- vi p. nyconpany. comnj
(PORT=1521))) (CONNECT_DATA=(SERVI CE_NAME=0r cl . count ry. myCor p. com
(1 NSTANCE_NAME=orcl 1)))

The following code snippet provides an example generic data source configuration:

<ur| >j dbc: oracl e: t hi n: @DESCRI PTI ON=(enabl e=br oken)

(ADDRESS_LI ST=(ADDRESS=(PROTOCOL=TCP) (HOST=node1l- vi p. count ry. myCor p. comn)
(PORT=1521))) (CONNECT_DATA=(SERVI CE_NAME=0r cl . count ry. myCor p. com

(I NSTANCE_NAME=orcl 1))) </ url >
<driver-name>oracl e. jdbc. xa. cl i ent. Oracl eXADat aSour ce</ dri ver - nane>
<properties>

<property>

<nane>or acl e. j dbc. ReadTi meout </ nane>

<val ue>300000</ val ue>

</ property>

<property>

<name>user </ name>

<val ue>j nsuser </ val ue>

</ property>

<property>

<nane>or acl e. net . CONNECT_TI MEQUT</ name>

<val ue>10000</ val ue>

</ property>

</ properties>

B.6 Using Multi Data Sources with Global Transactions

ORACLE

In this configuration, a multi data source "pins" a transaction to one and only
one Oracle RAC instance. Individual transactions are load balanced with the initial
connection request for the transaction.

Failover is handled at the multi data source level when a Oracle RAC instance
becomes unavailable. If there is a failure on a Oracle RAC instance before PREPARE,
the transaction is lost. If there is a failure after PREPARE, the transaction is failed over
to another instance.

* Rules for Data Sources within a Multi Data Source Using Global Transactions

* Required Attributes of Data Sources within a Multi Data Source Using Global
Transactions

e Sample Configuration Code

B-12

Appendix B
Using Multi Data Sources with Global Transactions

B.6.1 Rules for Data Sources within a Multi Data Source Using Global
Transactions

The following rules apply to the XA data sources within a multi data source:

» All the data sources must be homogeneous. In other words, either all of them must
use an XA driver or none of them can use an XA driver.

* If you choose to specify them, all XA-related attributes must be set to the same
values for each generic data source. The attributes include the following:

XARet ryDur at i onSeconds

— SupportsLocal Transacti on

— KeepXAConnTi | | TxConpl et e

— NeedTxCt xOnCl ose

— XAEndOnl yOnce

— NewXAConnFor Commi t

— Rol I backLocal TxUponConnCl ose
— RecoverOnl yOnce

— KeepLogi cal ConnQpenOnRel ease

¢ Note:

If you are not using Active GridLink data sources, Oracle
recommends the use of multi data sources for failover and load
balancing across Oracle RAC instances for XA and non-XA
environments. For more information on using multi data sources in
non-XA environments, see Using Multi Data Sources without Global
Transactions.

B.6.2 Required Attributes of Data Sources within a Multi Data Source
Using Global Transactions

Each generic data source within the multi data source should have the following
attributes:

e Oracle JDBC Thin driver. For example:

<url >j dbc: oracl e: t hi n: @ost 1: 1521: SNRACL</ ur| >
<driver-name>oracl e. j dbc. xa. cl i ent. Oracl eXADat aSour ce</ dri ver - name>

o KeepXAConnTi |l | TxConpl et e="true"

— Forces the generic data source to reserve a physical database connection
and provide the same connection to an application throughout transaction
processing until the distributed transaction is complete.

— Required for proper transaction processing with Oracle RAC.

ORACLE B-13

Appendix B
Using Multi Data Sources with Global Transactions

e XARetryDurationSeconds="300"

— Enables the WebLogic Server transaction manager to retry XA recover,
commit, and rollback calls for the specified amount of time.

e Test Connecti onsOnReserve="true"

— Enables testing of a database connection when an application reserves a
connection from the generic data source. See Test Connections on Reserve to
Enable Fail-Over for more details about this attribute.

— Required to enable failover to another Oracle RAC node.

e TestTabl eName="nanme_of small _tabl e" The name of the table used to test
a physical database connection. For more details about this attribute, see
Connection Testing Options for a Data Source.

B.6.3 Sample Configuration Code

Sample configuration code for a multi data source and two associated generic data
sources is shown below.

<j dbc-dat a- source xnm ns="http://xnl ns. oracl e. con’ webl ogi ¢/ j dbc- dat a- sour ce"
xm ns: sec="http://xm ns. oracl e. com webl ogi ¢/ security"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:w s="http://xm ns. oracl e. conl webl ogi c"
xsi: schenaLocation="http://xnl ns. oracl e. conf webl ogi ¢/ donmai n/ 1. 0/ dormai n. xsd" >
<nane>or acl eRACXAPool </ nane>
<j dbc-dri ver - par ans>
<url >j dbc: oracl e: thin: @ost 1: 1521: SNRAC1</ ur| >
<driver-nane>oracl e.jdbc. xa.client. O acl eXADat aSour ce</ dri ver - name>
<properties>
<property>
<nane>user </ nane>
<val ue>w sqa</ val ue>
</ property>
</ properties>
<passwor d- encr ypt ed>{ 3DES} aP/ xScCS8ul =</ passwor d- encr ypt ed>
</jdbc-driver-parans>
<j dbc- connecti on- pool - par ans>
<test-tabl e-nane>SQL SELECT 1 FROM DUAL</test-tabl e- nane>
<profile-type>0</profile-type>
</ j dbc- connecti on- pool - par ans>
<j dbc- dat a- sour ce- par ans>
<j ndi - nane>or acl eRACXAJndi Nane</ j ndi - name>
<gl obal -transacti ons- pr ot ocol >TwoPhaseConmi t
</ gl obal -transacti ons- protocol >
</ j dbc- dat a- sour ce- par ans>
<j dbc- xa- par ans>
<keep-xa-conn-till-tx-conpl et e>true</keep-xa-conn-till-tx-conplete>
<xa- end- onl y- once>t r ue</ xa- end- onl y- once>
<xa-set-transaction-tineout >true</xa-set-transaction-tinmeout>
<xa-transaction-timeout >120</ xa-transaction-ti meout >
<xa-retry-duration-seconds>300</ xa-retry-duration-seconds>
</j dbc- xa- par ans>
</ j dbc- dat a- sour ce>

<j dbc-dat a- source xnm ns="http://xnl ns. oracl e. conf webl ogi ¢/ j dbc- dat a- sour ce"
xm ns: sec="http://xm ns. oracl e. com webl ogi ¢/ security"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:w s="http://xm ns. oracl e. conl webl ogi c"

ORACLE B-14

Appendix B
Using Multi Data Sources without Global Transactions

xsi : schemalLocation="http://xm ns. oracl e. conl webl ogi ¢/ donmai n/ 1. 0/ domai n. xsd" >
<name>or acl eRACXAPool 2</ nane>
<j dbc-dri ver - par ans>
<url >j dbc: oracl e: t hi n: @ost 2: 1521: SNRAC2</ ur| >
<driver-name>oracl e. j dbc. xa. cl i ent. Oracl eXADat aSour ce</ dri ver - name>
<properties>
<property>
<nanme>user </ nane>
<val ue>w sga</ val ue>
</ property>
</ properties>
<passwor d- encr ypt ed>{ 3DES} aP/ xScCS8ul =</ passwor d- encr ypt ed>
</jdbc-driver-parans>
<j dbc- connect i on- pool - par ans>
<test-tabl e-nane>SQL SELECT 1 FROM DUAL</test-tabl e- nane>
<profile-type>0</profile-type>
</ j dbc- connecti on- pool - par ans>
<j dbc- dat a- sour ce- par ans>
<j ndi - nane>or acl eRACXAJndi Name2</ j ndi - name>
<gl obal -transacti ons- pr ot ocol >TwoPhaseConmi t
</ gl obal -transacti ons- protocol >
</ j dbc- dat a- sour ce- par ans>
<j dbc- xa- par ans>
<keep-xa-conn-till-tx-conplete>true</keep-xa-conn-till-tx-conplete>
<xa- end- onl y- once>t r ue</ xa- end- onl y- once>
<xa-set-transaction-tineout >true</xa-set-transaction-timeout>
<xa-transaction-timeout>120</xa-transaction-ti meout >
<xa-retry-duration-seconds>300</xa-retry-duration-seconds>
</j dbc- xa- par ans>
</ j dbc-dat a- sour ce>

<j dbc- dat a- source xm ns="http://xnl ns. oracl e. conf webl ogi ¢/ j dbc- dat a- sour ce"
xm ns: sec="http://xm ns. oracl e. com webl ogi ¢/ security"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xm ns:w s="http://xn ns. oracl e. com webl ogi c"
xsi : schemalLocation="http://xm ns. oracl e. conl webl ogi ¢/ domai n/ 1. 0/ domai n. xsd" >
<nane>or acl eRACXAMDS</ nane>
<j dbc- dat a- sour ce- par ans>
<j ndi - nane>or acl eRACMDSIndi Nane</ j ndi - name>
<al gorithmtype>Load- Bal anci ng</al gorithmtype>
<dat a- sour ce- | i st >or acl eRACXAPool , or acl eRACXAPool 2</ dat a- sour ce- | i st >
</ j dbc- dat a- sour ce- par ans>
</ j dbc- dat a- sour ce>

B.7 Using Multi Data Sources without Global Transactions

Learn about the configurations that use Oracle RAC with multi data sources in an
application that does not require global transactions.

* Attributes of Data Sources within a Multi Data Source Not Using Global
Transactions

e Sample Configuration Code

B.7.1 Attributes of Data Sources within a Multi Data Source Not Using
Global Transactions

Generic data sources must have the following attributes:

ORACLE B-15

Appendix B
Using Multi Data Sources without Global Transactions

e Oracle JDBC Thin driver. For example:

<url >j dbc: oracl e: t hi n: @ost 1: 1521: SNRACL1</ ur| >
<driver-name>oracl e. j dbc. Oracl eDri ver </ dri ver - name>

e Test ConnectionsOnReserve="true"

— Enables testing of a database connection when an application reserves a
connection from the generic data source. Test Connections on Reserve to
Enable Fail-Over for more details about this attribute.

— Required to enable failover and connection request routing within a multi data
source (effectively, failover to another Oracle RAC node).

e Test Tabl eNanme="nane_of small _table"

— The name of the table used to test a physical database connection. For more
details about this attribute, see Connection Testing Options for a Data Source.

B.7.2 Sample Configuration Code

Sample configuration code for a WebLogic JDBC multi data source and associated
generic data sources is shown below.

<j dbc- dat a- source xm ns="http://xn ns. oracl e. conf webl ogi ¢/ j dbc- dat a- sour ce"

xm ns: sec="http://xm ns. oracl e. com webl ogi ¢/ security"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:w s="http://xm ns. oracl e. com webl ogi c"
xsi:schemalLocation="http://xm ns. oracl e. coml webl ogi ¢/ domai n/ 1. 0/ domai n. xsd" >
<name>j dbcPool </ nane>
<j dbc-dri ver-parans>

<url >j dbc: oracl e: t hi n: @ost 1: 1521: snracl</url >

<driver-nane>oracl e.jdbc. Oracl eDriver</driver-nane>

<properties>

<property>
<nanme>user </ nane>
<val ue>w sga</ val ue>
</ property>

</ properties>

<passwor d- encr ypt ed>{ 3DES} aP/ xScCS8ul =</ passwor d- encr ypt ed>
</jdbc-driver-paranms>
<j dbc- connecti on- pool - par ams>

<t est-connections-on-reserve>true</test-connections-on-reserve>

<t est-tabl e-nane>SQ. SELECT 1 FROM DUAL</t est -t abl e- nane>
</ j dbc- connecti on- pool - par ans>
<j dbc- dat a- sour ce- par ans>

<j ndi - name>j dbcDat aSour ce</j ndi - name>
</ j dbc- dat a- sour ce- par ans>

</ j dbc- dat a- sour ce>

<j dbc- dat a- source xm ns="http://xn ns. oracl e. conf webl ogi c/j dbc- dat a- sour ce"

xm ns: sec="http://xm ns. oracl e. com webl ogi ¢/ security"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns:w s="http://xm ns. oracl e. com webl ogi c"
xsi:schenmalLocation="http://xm ns. oracl e. coml webl ogi ¢/ domai n/ 1. 0/ domai n. xsd" >
<name>j dbcPool 2</ name>
<j dbc-dri ver - parans>

<url >j dbc: oracl e: t hi n: @ost 2: 1521: SNRAC2</ ur| >

<driver-nane>oracl e.jdbc. Oracl eDriver</driver-nane>

<properties>

<property>
<nanme>user </ nane>

ORACLE B-16

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

<val ue>w sga</ val ue>
</ property>
</ properties>
<passwor d- encr ypt ed>{ 3DES} aP/ xScCS8ul =</ passwor d- encr ypt ed>
</jdbc-driver-parans>
<j dbc- connecti on- pool - par ans>
<t est-connections-on-reserve>true</test-connections-on-reserve>
<test-tabl e-nane>SQL SELECT 1 FROM DUAL</test-tabl e- nane>
</ j dbc- connecti on- pool - par ans>
<j dbc- dat a- sour ce- par ans>
<j ndi - nane>j dbcDat aSour ce2</ j ndi - nane>
<gl obal -transacti ons- pr ot ocol >OnePhaseConmi t
</ gl obal -transacti ons- prot ocol >
</j dbc- dat a- sour ce- par ans>
</ j dbc-dat a- sour ce>

<j dbc- dat a- source xm ns="http://xnl ns. oracl e. conf webl ogi ¢/ j dbc- dat a- sour ce"
xm ns: sec="http://xm ns. oracl e. com webl ogi ¢/ security"
xm ns: xsi="http://ww. w3. or g/ 2001/ XM.Schena- i nst ance"
xm ns:w s="http://xn ns. oracl e. com webl ogi c"
xsi : schemalLocation="http://xm ns. oracl e. conl webl ogi ¢/ dormai n/ 1. 0/ domai n. xsd" >
<nanme>j dbcNonXAwul t i Pool </ nane>
<j dbc- dat a- sour ce- par ans>
<j ndi - nane>j dbcDat aSour ce</ j ndi - nane>
<al gorithmtype>Fail over</al gorithmtype>
<dat a- sour ce- | i st >j dbcPool , j dbcPool 2</ dat a- sour ce- | i st>
<failover-request-if-busy>true</failover-request-if-busy>
</ j dbc- dat a- sour ce- par ans>
</ j dbc-dat a- sour ce>

Note:

Line breaks added for readability.

B.8 Configuring Connections to Services on Oracle RAC

Nodes

ORACLE

If you rely on Oracle services in your Oracle RAC cluster for workload management,
you must use multi data sources to connect to those services instead of you using
a Service ID (SID). A WebLogic Server generic data source can be configured to
connect only to a specific service on a specific Oracle RAC node, providing both
workload management and load balancing.

In general, to connect to Oracle RAC services, you need to:

» Create a multi data source for each service to which you want to connect.

* Within each multi data source, create one generic data source for each Oracle
RAC node in the cluster on which the service will be configured, whether or not the
service will be actively running on each node.

Configuring a Data Source to Connect to a Service, describes special considerations
for configuring these data sources. Service Connection Configurations, shows
example configurations for either load balancing or workload management.

B-17

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

B.8.1 Configuring a Data Source to Connect to a Service

You configure a generic data source to connect to a service running on an Oracle
RAC node in the same way as you configure any generic data source (using WLST,
the WebLogic Server Administration Console, or the Configuration Wizard), with the
following exceptions:

e initial-capacity="0"

This prevents pool creation failure for inactive pools at WLS startup, and enables
WLS to create the generic data source even if it can't connect to the service on the
node. Without setting this option to 0, generic data source creation will fail and the
server may fail to boot normally.

In the WebLogic Server Administration Console, edit the generic data source after
creating it, and set Initial Capacity to 0.

e Oracle JDBC Thin (or Thin XA) driver. For example:
For non-XA:

driver-name="oracl e.jdbc. Oracl eDriver"

url ="j dbc: oracl e: t hi n: @DESCRI PTI ON=(ADDRESS_L| ST=(ADDRESS=(PROTOCOL=TCP)
(HOST=RACL) (PORT=1521))) (CONNECT_DATA=(SERVI CE_NAME=Ser vi ce_1)

(1 NSTANCE_NAME=DB_02)))"

If configuring via the WebLogic Server Administration Console, select Oracles's
Driver (Thin) for RAC Service-Instance connections from the Database Driver
drop-down and specify the service in the Service Name field.

For XA:

driver-name="oracl e.j dbc. xa. cl i ent. O acl eXADat aSour ce"

url ="j dbc: oracl e: t hi n: @DESCRI PTI ON=(ADDRESS_L| ST=(ADDRESS=(PROTOCOL=TCP)
(HOST=RACL) (PORT=1521))) (CONNECT_DATA~=(SERVI CE_NAME=Ser vi cel)

(1 NSTANCE_NAME=DBasel)))"

If configuring via the WebLogic Server Administration Console, select Oracle's
Driver (Thin XA) for RAC Service-Instance connections from the Database
Driver drop-down and specify the service in the Service Name field.

Note:

The SERVICE_NAME must be the same for all generic data sources in a
given multi data source.

Specify a different HOST NAME and/or port for each generic data source
in a given multi data source.

* When specifying max- capaci t y (Maximum Capacity in the WebLogic Server
Administration Console) for the connection pool, you need to consider the
connection capacity of each of the Oracle RAC nodes in your configuration, and
the total number of connections from all generic data sources. See Connection
Pool Capacity Planning, for more information.

Selecting the Appropriate Multi Data Source Algorithm

ORACLE B-18

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

For service connection scenarios, Oracle recommends that you configure your multi
data source with the Load Balancing algorithm. If the multi data source is configured
with the Load Balancing algorithm, its connection pools are used in a round robin
fashion. In this case, workload is load-balanced across all of the Oracle RAC nodes on
which the associated service is currently active.

If the multi data source is configured with the Failover algorithm, the first generic data
source is used to connect to the service on its associated Oracle RAC node, until a
connection attempt fails for any reason (for example, the Oracle RAC node becomes
unavailable or there are no more connections available in the generic data source).

At that point, the second generic data source is used to connect to the service on its
associated Oracle RAC node, and so on. In this case, the Oracle RAC node to which
the first generic data source is connected will experience more use than the remaining
nodes on which the service is running.

B.8.2 Service Connection Configurations

You can design your configuration to provide:

* Workload Management

* Load Balancing

B.8.2.1 Workload Management

In a workload management configuration, each multi data source has one generic
data source configured for a given service on each Oracle RAC node, regardless of
whether the service you are connecting to is active or inactive on a given Oracle RAC
node. This lets you quickly start an inactive service on a node and create connections
to that service should another node become unavailable due to unplanned downtime
or scheduled maintenance. It also lets you quickly increase or decrease the available
capacity for a given service based on workload demands.

When you start the service on a node, the associated generic data source detects
that the service is now active, and the generic data source will then start making
connections to that node as needed. When you stop a service on a given node, the
associated generic data source can no longer make connections to that node, and will
become inactive until the service is restarted on that node.

The WLS generic data source performs connection testing. This lets the generic data
source adjust to changes in the topology of the Oracle RAC configuration. The generic
data source performs polling to see if its associated service is active or inactive. The
connection test fails if the service is no longer available on the Oracle RAC node.

ORACLE B-19

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

Figure B-4 Workload Management using Multi Data Sources

WebLogic
Server

WebLogic
Server

B.8.2.2 Load

ORACLE"

RAC
Multi Data Source Node 1

Data Source [Service 1
Service 2

RAC
Node 2

Data Source

Data Source

Backup Service 1
Data Source }* Service 2

Backup | RAC
Data Source | Node 3

Shared Storage

Service 1
Multi Data Source,” ‘)’ Service 2

Backu ’
Data SOUI:ce ' RAC
Node 4

Backup i
Data Source Service 1

s,
Backup 4 Service 2

RAC
Data Source Node 5

Data Source

Data Source Service 1
Service 2

™

In this example, Service 1 is active on Oracle RAC Nodes 1, 2, and 3, while Service
2 is inactive on those nodes. Service 2 is active on Oracle RAC Nodes 4 and 5, while
Service 1 is inactive on those nodes.

If Oracle RAC Node 1 becomes unavailable for any reason, you can start Service 1 on
Oracle RAC Node 4. WebLogic Server will detect that the service is running on Node
4, and will begin making connections from the associated backup generic data source
to Node 4 as needed.

Balancing

In a load balancing configuration, there are multiple services running concurrently on
each Oracle RAC node. Each WLS multi data source has an active connection pool
configured to connect to a given service on each of the nodes. In this scenario, you
would configure each multi data source to use the Load Balancing algorithm.

B-20

Appendix B

Configuring Connections to Services on Oracle RAC Nodes

Figure B-5 Load Balancing with Multi Data Sources

RAC
Multi Data Source Node 1

Data Source [om Service 1

Service 2

RAC
Node 2

WebLogic Data Source

Server
Data Source

' Node 3
Multi Data Source

Service 1

Service 2
WebLogic Data Source
Server

Service 1
Service 2

RAC
Node 4

Service 1
Service 2

RAC
Data Source Node 5

Data Source

Data Source Service 1
Service 2

Shared Storage

In this example, Service 1 and Service 2 are each actively running on all of the
available Oracle RAC nodes. As a result, all of the connection pools in each multi data
source will actively make connections in a round-robin fashion, balancing workload

among the five nodes.

B.8.3 Connection Pool Capacity Planning

It is important to note the Maximum Capacity value you specify for a generic
data source can cause the connection capacity to a given Oracle RAC node to be
exceeded. You must consider the following factors when determining how to set this

value for each of your generic data sources:

* The maximum number of simultaneous connections that a Oracle RAC node can
support. This is based on the available memory on a given Oracle RAC node and
the amount of memory consumed by each service connection (which can vary
for each service). Memory consumption by each connection is a major limitation
on the amount of work that can be generated from the WLS servers. Exceeding
the amount of available memory by creating too many connections from your
WLS generic data sources to a given Oracle RAC node can result in degraded
performance on the Oracle RAC node, or could lead to failed connections.

ORACLE"

B-21

ORACLE

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

Available memory for a node should be based on the PGA target attribute (per
session memory).

* The maximum number of generic data sources that can potentially create
connections to a given Oracle RAC node, and the number of WebLogic server
instances to which each generic data source/multi data source is targeted. For
example, if you have one generic data source that is targeted to three WLS
servers, that generic data source counts as three generic data sources, as each
server uses its own instance of the generic data source. This is the case whether
the servers are part of a cluster or are independent server instances.

* The maximum number of services that may be actively running on a given Oracle
RAC node, and the memory consumed on the node by each connection to each
service.

* The expected relative workload for each service on a given node. For example,
the expected workload of Servicel may be double that of the expected workload of
Service2.

Regardless of whether or not a service is always active on a node, you should
allocate resources for that service in the event you have to start it on the node.

* Always use the worst-case scenario when setting the Maximum Capacity value
for your generic data sources. For example, assume that all available services will
be actively running on the Oracle RAC node associated with each generic data
source.

The following example explains how you could go about determining each generic
data source's Maximum Capacity value. Keep in mind that this is a very simple
example intended to illustrate the issue conceptually, and that real-world situations are
much more complicated. In general, it is best to under-configure your generic data
sources with a low Maximum Capacity value, monitor your Oracle RAC nodes for
memory usage and performance, then adjust the Maximum Capacity values upward
until you are approaching the maximum capacity of the associated Oracle RAC nodes.

Example
Suppose you have the following basic configuration:

* Five Oracle RAC nodes, each with 16 GB of memory.

* Two services actively running on each Oracle RAC node. Servicel uses 10MB per
connection, Service2 uses 20MB per connection.

* Workload for each service is the same, that is, each service will generate an
equivalent number of connections on a given Oracle RAC node.

* Two WebLogic Server clusters. Clusterl has five servers. Cluster2 has four
servers.

» For a given Oracle RAC node, one generic data source is targeted to Clusterl and
is configured to connect to Servicel.

» For a given Oracle RAC node, one generic data source is targeted to Cluster 2
and is configured to connect to Service2.

Because Service2 uses twice as much memory per connection as Servicel, you
should allocate approximately 10GB of the node's memory for Service 2 and
approximately 5GB for Servicel.

Because Clusterl has five WLS servers, there will be five generic data sources
making connection requests to this Oracle RAC node. This gives you 1GB of memory

B-22

ORACLE

Appendix B
Configuring Connections to Services on Oracle RAC Nodes

available for connections from a given generic data source (5GB/5). Each connection
requires 10MB of memory, so the Maximum Capacity value for each generic data
source targeted to Clusterl should be 100 or lower.

Because Cluster 2 has four WLS servers, there will be four generic data sources
making connection requests to this Oracle RAC node. This gives you 2.5GB of
memory available for connections from a given generic data source (10GB/4). Each
connection requires 20MB, so the Maximum Capacity value for each generic data
source targeted to Cluster2 should be 125 or lower.

If Service 2 generates more workload than Servicel, you would have to adjust
these values appropriately (increase the Maximum Capacity value for the generic
data source connecting to Service2, decrease the value for the generic data source
connecting to Servicel). As long as:

(Max. connections to Servicel x menory used per connection) + (Max.
connections to Service2 x menmory used per connection) < Available menory

you can avoid the potential for performance degradation or connection failures.

Alternatively, in a simple configuration, such as is shown in Figure B-6, the Maximum
Capacity value you specify for each of your generic data sources can be loosely
determined using the following formula:

Maxi mum connecti on pool capacity = Maxi mum nunber of connections to Oracle RAC
nodes/ (Nunber of WeébLogic Server instances x Nvber of generic data sources
targeted to each instance x Nunber of active Oracle RAC services configured x
Nurmber of Oracle RAC Nodes)

where:

Maximum number of connections to Oracle RAC nodes is determined by total memory
available on all nodes divided by the memory consumed by each connection.

Number of WebLogic Server instances is the number of server instances to which the
generic data sources are targeted. If the generic data sources is targeted to a WLS
cluster, this is the number of servers in the cluster.

In the example in Figure B-6:

e assume that a maximum of 4000 total connections can be made to the group of
Oracle RAC nodes, based on 8GB of available memory per Oracle RAC node, and
10MB of memory used per connection.

» there are a total of five server instances to which the generic data sources are
targeted

» there are five generic data sources targeted to each server instance
» there are two services running on each Oracle RAC node, and
» there are five Oracle RAC nodes.

In this configuration, the Maximum Capacity value you would enter for each of your
generic data sources would be:

Maxi mum connecti on pool capacity = 4000/ (5 server instances x 5 generic data
sources x 2 services x 5 Oracle RAC nodes)

which would give you a Maximum Capacity value of 16 for each of your generic data
sources.

B-23

Appendix B
Using SCAN Addresses with Multi Data Sources

Figure B-6 Example multi data source Connection Configuration

RAC
Multi Data Node 1

Source

Data Source Service 1

Service 2

RAC
Node 2

Data Source

Data Source

Data Source Service 1

Service 2

RAC
Node 3

Data Source

Service 1

Multi Data Service 2
Source

Data Source

Data Source
Data Source

Data Source

RAC
Node 5

Data Source

Service 1
Service 2

Keep in mind that this formula is just a general guideline for configuring your generic
data sources, as many configurations will be too complex for you to use such a simple
calculation.

When calculating the Maximum Capacity value you should use, always consider

the worst-case scenario that you will have in your overall configuration. It is best to
under-configure this value for normal operation than to have it over-configured when

a worst-case situation develops. You can always monitor your Oracle RAC nodes to
determine if it is safe to increase the Maximum Capacity value for any of your generic
data sources.

B.9 Using SCAN Addresses with Multi Data Sources

ORACLE

Use Single Client Access Name (SCAN) for providing connection to time listener
failover and load-balancing.

SCAN is not recommended for use with multi data sources. This can be a problem
if your configuration is set up to use SCAN (for example, you can't use non-scan
addresses if the database listener is set up to use SCAN).

Connection load-balancing cannot be used with a multi data source because the multi
data source must be in control of handling the connection load balancing and failover.

B-24

Appendix B
XA Considerations and Limitations when using multi Data Sources with Oracle RAC

To turn off this capability, use a URL with an | NSTANCE NAME attribute. Each of the
generic datasources in the multi data source should point to a different instance.
When the multi data source recognizes that an instance is down on the first generic
datasource, it guides connections to the instance on the first generic datasource that
is not down. When SCAN used with an | NSTANCE NAME attribute, the multi data source
provides load-balancing, failover of connections, and continues to provide a more
reliable way to get to a listener.

If you need to configure SCAN address for a multi data source, configure each
generic data source member with a URL that has a different | NSTANCE _NAME value.
For example:

(DESCRI PTI ON=(ADDRESS=(PROTOCOL=TCP) (HOST=scannamne) (PORT=scanport))
(CONNECT_DATA=(SERVI CE_NAME=nyser vi ce) (| NSTANCE_NAME=nyi nst ance)))

" Note:

If you add a node, you need to manually add a generic data source member
and add it to the multi data source.

Another way to avoid having SCAN do connection load-balancing is to specify a
service name that is available on a single instance and omit the instance name. Each
member data source must have it's own unique service name and each service name
must be available on only one instance that doesn't overlap with any other member
data source.

B.10 XA Considerations and Limitations when using multi
Data Sources with Oracle RAC

Learn about the certain requirements and limitations you need to consider when using
XA (global transactions) with multi data sources on Oracle RAC.

* Oracle RAC XA Requirements when using multi Data Sources
* Known Limitations When Using Oracle RAC with multi Data Sources

* Known Issue Occurring After Database Server Crash

B.10.1 Oracle RAC XA Requirements when using multi Data Sources

Oracle RAC has the following requirements when using multi data sources with global
transactions.

e Use Multi Data Sources

* A Global Transaction Must Be Initiated_ Prepared_ and Concluded in the Same
Instance of the Oracle RAC Cluster

» Transaction IDs Must Be Unique Within the Oracle RAC Cluster

ORACLE B-25

Appendix B
XA Considerations and Limitations when using multi Data Sources with Oracle RAC

B.10.1.1 Use Multi Data Sources

Always use a multi data source when using XA transactions with multi data sources for
Oracle RAC.

B.10.1.2 A Global Transaction Must Be Initiated, Prepared, and Concluded in
the Same Instance of the Oracle RAC Cluster

Global transactions must be initiated, prepared, and concluded in the same instance
of the Oracle RAC cluster. WebLogic Server generic data sources manage this for
you when you set KeepXAConnTi | | TxConpl et e="t rue" in the generic data source
configuration.

B.10.1.3 Transaction IDs Must Be Unique Within the Oracle RAC Cluster

When using global transactions, transaction IDs (XIDs) must be unique within the
Oracle RAC cluster. However, neither the Oracle Thin driver nor an Oracle RAC
instance can determine if an XID is unique within the Oracle RAC cluster. Transactions
with the same XID can execute SQL code on different instances of the Oracle RAC
cluster without any exception.

B.10.2 Known Limitations When Using Oracle RAC with multi Data
Sources

The following sections describe known issues and limitations when using XA and multi
data sources with Oracle RAC:

» Potential for Data Deadlocks in Some Failure Scenarios

* Potential for Transactions Completed Out of Sequence

Note:

Some of these limitations are also described in Oracle's bug numbers
3428146 and 395790. Contact Oracle for more information about these
issues.

B.10.2.1 Potential for Data Deadlocks in Some Failure Scenarios

There is a window of time in which transaction IDs are not available across the
Oracle RAC cluster. Because of this known limitation, after some failure conditions,
some incomplete transactions cannot be properly completed, which can result in
deadlocks in the database. To prevent these failure conditions from arising, WebLogic
Server provides two configuration attributes that enable XA call retry for Oracle RAC:
XARet ryDur at i onSeconds and XARet ryl nt er val Seconds. For more information about
these configuration options, see Delays During Failover.

ORACLE B-26

Appendix B
JDBC Store Recovery with Oracle RAC

B.10.2.2 Potential for Transactions Completed Out of Sequence

When using the Oracle DataBase Control, the order of transaction processing is not
guaranteed. For example, if you implement a web service that uses DataBase Control
do the following transaction sequence:

1. Create atable
2. Insertrecord 1
3. Insertrecord 2
4. Insertrecord 3
5. Selectrecords

If the primary node goes down momentarily after the table is created, it is possible that
transactions submitted to the database are performed out of sequence.

B.10.3 Known Issue Occurring After Database Server Crash

If, while a transaction is being processed, the database server instance crashes after
the PREPARE operation is complete but before the results of that operation have been
written to the transaction log, a COW T call from a client for that transaction may hang
for several minutes and possibly until the TCP timeout period has expired. The window
of time in which this might occur is small and the problem occurs rarely. There is no
workaround for the issue at this time.

B.11 JDBC Store Recovery with Oracle RAC

If you are using a JDBC Store with Oracle RAC, there are features and limitations to
consider that concern Oracle RAC node failover.

* Configuring a JDBC Store for Use with Oracle RAC
* Automatic Retry for IMS Connections

For a list of the major services that use the JDBC store, see Monitoring Store
Connections in Administering the WebLogic Persistent Store.

B.11.1 Configuring a JDBC Store for Use with Oracle RAC

ORACLE

The way that a JDBC Store works limits the options you have for configuring one

for use with Oracle RAC. You cannot configure a JDBC store to use a generic data
source that is configured to support global transactions. The JDBC store must use a
generic data source that uses a non-XA JDBC driver. For more information about this
configuration option, see Using Multi Data Sources without Global Transactions.

A JDBC Store holds on to a connection until that connection fails, at which point

it moves on to the next connection and repeats the process. Therefore you cannot
implement load balancing with a JDBC Store, including using a load balancing multi
data source. You should configure a multi data source for a JDBC store to use the
Failover algorithm.

In short, for a JDBC store:

e Use a non-XA driver

B-27

Appendix B
JDBC Store Recovery with Oracle RAC

* Configure the multi data source for Failover mode.

B.11.2 Automatic Retry for JIMS Connections

JMS has a limited connection retry mechanism which enables it to silently react to the
failure of the Oracle RAC node that hosts its database connection. If the database has
experienced either a minor network ‘hiccup' or a Oracle RAC database has failed over
to another node, the second connection attempt (the retry) will succeed to the next
Oracle RAC node.

The time within which this retry is attempted and the number of retries attempted

are limited to minimize the negative effects that an extended connection retry time
could cause. If the database connection remains unavailable for a long period of

time, the delay can impede the ability of JMS to properly continue its processing (for
example, to maintain proper message ordering). Also, the transaction manager could
declare the JMS resource of a transaction to be dead if there is not enough processing
progress made within this time period, or out-of memory conditions could arise. There
are system-level tuning guidelines that can help minimize the Oracle RAC failover time
frame which is critical to the success of the automatic retry.

The tight loop on the automatic retry is particularly important when JMS processing
occurs with transactions. If an 1/O failure occurs in the JDBC Store, the store

record is in an unknown state which will put the message itself in an unknown

state. To prevent the message from being committed in this unknown state, JMS

will mark the transaction associated with the message as a "failedTransaction." Any
future attempts by the transaction manager to finishing committing the message will
cause JMS to throw a javax.transaction.xa.XAException with an errorCode set to
XAExcepti on. XAER RVERR. This exception is an indication to the transaction manager
that a transient error has occurred in the resource manager (JMS) and that the
transaction manager should retry commit processing. The retry logic provides a
second attempt to establish the connection before IMS communicates any failure to
the upper layer which would translate into an RMERR. If the RVERR is generated, then
the only way to recover the message and complete the transaction is to either restart
WebLogic Server or configure Automatic Service Migration (ASM) restart-in-pl ace
option for Singleton Services. Otherwise, when the I/O fails, the transaction is marked
in a way that cannot be recovered until the JMS server is restarted.

The automatic connection retry logic is currently governed by an option on WebLogic
Server as follows:

- Dwebl ogi c. store.jdbc. | ORetryDel ayM | i s=x

Where x is the number of milliseconds to elapse before the connection to the database
is retried. The default value is 1000 milliseconds. This value is restricted to the range

0 to 15000 milliseconds, and the retry is only be attempted once. If a failure occurs on

the second attempt, an exception is propagated up the call stack and a manual restart

is required to recover the messages associated with the failed transaction.

ORACLE B-28

Appendix B
JDBC Store Recovery with Oracle RAC

< Note:

In the event that an automatic retry attempt is not successful, you must
restart WebLogic Server. Automatic Service Migration (ASM) restart-in-
pl ace option for Singleton Services can be used to trigger an automatic
restart of failed JMS Services.

The automatic retry delay only applies to the connection retry mechanism.
There is no configurable retry delay available for JDBC Store I/O failures.

ORACLE B-29

Using Fast Connection Failover with Oracle
RAC

Fast Connection Failover feature provides an application-independent method to
implement Oracle RAC event natifications such as detection and cleanup of invalid
connections, load balancing of available connections, and work redistribution on active
Oracle RAC instances.

WebLogic Server supports Fast Connection Failover. See Using Fast Connection
Failover in Universal Connection Pool for JDBC Developer's Guide.

C.1 JDBC Driver Configuration for use with Oracle Fast
Connection Failover

To enable Fast Connection Failover on a data source, you need to set specific values
for the Driver Class Name and ONS configuration string properties.

Set the following connection pool properties:

e In Driver Class Name—set the class name to
oracl e. jdbc. pool . Oracl eDat aSour ce.

* In Properties—set the ONS configuration string to remotely subscribe
the Oracle RAC nodes to Oracle FAN/ONS events. For example:
ONSConf i gur at i on=nodes=host nanel: port 1, host nane2: port 2

Note:

Oracle's OracleDataSource class is not XA-capable, so the resulting
data source does not implement a XA connection pool.

ORACLE C-1

http://www.oracle.com/pls/topic/lookup?ctx=fmw121400&id=JJUCP08100
http://www.oracle.com/pls/topic/lookup?ctx=fmw121400&id=JJUCP08100

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 JDBC Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.4.2 JDBC Examples in the WebLogic Server Distribution

	1.5 New and Changed JDBC Data Source Features in This Release

	2 Configuring WebLogic JDBC Resources
	2.1 Understanding JDBC Resources in WebLogic Server
	2.2 Ownership of Configured JDBC Resources
	2.3 Data Source Configuration Files
	2.3.1 JDBC System Modules
	2.3.1.1 Generic Data Source Modules
	2.3.1.2 Active GridLink Data Source System Modules
	2.3.1.3 Multi Data Source System Modules

	2.3.2 JDBC Application Modules
	2.3.2.1 Standard Java EE Application Modules
	2.3.2.2 Proprietary JDBC Application Modules
	2.3.2.2.1 Including Drivers in EAR/WAR Files

	2.3.3 JDBC Module File Naming Requirements
	2.3.4 JDBC Modules in Versioned Applications
	2.3.5 JDBC Schema
	2.3.6 JDBC Data Source Type

	2.4 JMX and WLST Access for JDBC Resources
	2.4.1 JDBC MBeans for System Resources
	2.4.2 JDBC Management Objects in the Java EE Management Model (JSR-77 Support)
	2.4.3 Using WLST to Create JDBC System Resources
	2.4.4 How to Modify and Monitor JDBC Resources
	2.4.5 Best Practices when Using WLST to Configure JDBC Resources

	2.5 Creating High-Availability JDBC Resources

	3 Configuring JDBC Data Sources
	3.1 Understanding JDBC Data Sources
	3.2 Types of WebLogic Server JDBC Data Sources
	3.3 Creating a JDBC Data Source
	3.3.1 JDBC Data Source Properties
	3.3.1.1 Data Source Names
	3.3.1.2 Data Source Scope
	3.3.1.3 JNDI Names
	3.3.1.4 Selecting a Database Type
	3.3.1.5 Selecting a JDBC Driver

	3.3.2 Configure Transaction Options
	3.3.3 Configure Connection Properties
	3.3.3.1 Configuring Connection Properties for Oracle BI Server

	3.3.4 Test Connections
	3.3.5 Target the Data Source

	3.4 Configuring Generic Connection Pool Features
	3.4.1 Enabling JDBC Driver-Level Features
	3.4.2 Enabling Connection-based System Properties
	3.4.3 Enabling Connection-based Encrypted Properties
	3.4.4 Initializing Database Connections with SQL Code

	3.5 Advanced Connection Properties
	3.5.1 Define Fatal Error Codes
	3.5.2 Using Edition-Based Redefinition

	3.6 Configuring Oracle Parameters
	3.7 Configuring an ONS Client
	3.8 Tuning Generic Data Source Connection Pools
	3.9 Generic Data Source Handling for Oracle RAC Outages
	3.10 Generic Data Source Handling of Driver-Level Failover

	4 Using the Default Data Source
	4.1 What is the Default Data Source
	4.2 Defining a Custom Default Data Source
	4.3 Compatibility Limitations When Using a Default Data Source

	5 Configuring JDBC Multi Data Sources
	5.1 Multi Data Source Features
	5.1.1 Removing a Database Node
	5.1.2 Adding a Database Node

	5.2 Creating and Configuring Multi Data Sources
	5.3 Choosing the Multi Data Source Algorithm
	5.3.1 Failover
	5.3.2 Load Balancing

	5.4 Multi Data Source Fail-Over Limitations and Requirements
	5.4.1 Test Connections on Reserve to Enable Fail-Over
	5.4.2 No Fail-Over for In-Use Connections

	5.5 Multi Data Source Failover Enhancements
	5.5.1 Connection Request Routing Enhancements When a Generic Data Source Fails
	5.5.2 Automatic Re-enablement on Recovery of a Failed Generic Data Source within a Multi Data Source
	5.5.3 Enabling Failover for Busy Generic Data Sources in a Multi Data Source
	5.5.4 Controlling Multi Data Source Failover with a Callback
	5.5.4.1 Callback Handler Requirements
	5.5.4.2 Callback Handler Configuration
	5.5.4.3 How It Works—Failover

	5.5.5 Controlling Multi Data Source Failback with a Callback
	5.5.5.1 How It Works—Failback

	5.6 Deploying JDBC Multi Data Sources on Servers and Clusters
	5.7 Planned Database Maintenance with a Multi Data Source
	5.7.1 Shutting Down the Data Source

	6 Using Active GridLink Data Sources
	6.1 What is an Active GridLink Data Source
	6.1.1 Fast Connection Failover
	6.1.2 Runtime Connection Load Balancing
	6.1.3 GridLink Affinity
	6.1.3.1 Session Affinity Policy
	6.1.3.2 XA Affinity Policy

	6.1.4 SCAN Addresses
	6.1.5 Secure Communication using Oracle Wallet with ONS Listener
	6.1.6 Support for Active Data Guard

	6.2 Creating an Active GridLink Data Source
	6.2.1 JDBC Data Source Properties
	6.2.1.1 Data Source Names
	6.2.1.2 Data Source Scope
	6.2.1.3 JNDI Names
	6.2.1.4 Select a Driver

	6.2.2 Configure Transaction Options
	6.2.3 Configure Connection Properties
	6.2.3.1 Enter Connection Properties
	6.2.3.2 Enter a Complete URL
	6.2.3.3 Supported AGL Data Source URL Formats

	6.2.4 Test Connections
	6.2.5 ONS Client Configuration
	6.2.5.1 Enabling FAN Events
	6.2.5.2 Configure ONS Host and Port
	6.2.5.3 Secure ONS Client Communication

	6.2.6 Test ONS Client Configuration
	6.2.7 Target the Data Source

	6.3 Using Socket Direct Protocol
	6.3.1 Configuring Runtime Load Balancing using SDP

	6.4 Configuring Active GridLink Connection Pool Features
	6.4.1 Enabling JDBC Driver-Level Features
	6.4.2 Enabling Connection-based System Properties
	6.4.3 Initializing Database Connections with SQL Code

	6.5 Configuring Oracle Parameters
	6.6 Configuring an ONS Client Using WLST
	6.7 Tuning Active GridLink Data Source Connection Pools
	6.8 Monitoring Active GridLink JDBC Resources
	6.8.1 Viewing Run-Time Statistics
	6.8.1.1 JDBCOracleDataSourceRuntimeMBean
	6.8.1.2 JDBCOracleDataSourceInstanceRuntimeMBean
	6.8.1.3 ONSDaemonRuntimeMBean

	6.8.2 Debug Active GridLink Data Sources
	6.8.2.1 JDBC Debugging Scopes
	6.8.2.2 UCP JDK Logging
	6.8.2.3 Enable Debugging Using the Command Line

	6.9 Using Active GridLink Data Sources without FAN Notification
	6.9.1 Understanding the ActiveGridlink Attribute

	6.10 Best Practices for Active GridLink Data Sources
	6.10.1 Catch and Handle Exceptions
	6.10.2 Connection Creation with Active Gridlink Data Sources

	6.11 Comparing Active GridLink and Multi Data Sources
	6.12 Migrating from Multi Data Source to Active GridLink
	6.12.1 Application Changes to Migrate a Multi Data Source
	6.12.2 Configuration Changes to Migrate a Multi Data Source
	6.12.3 Basic Steps to Migrate a Multi Data Source to a Active GridLink Data Source

	6.13 Managing Database Downtime with Active GridLink Data Sources
	6.13.1 Active GridLink Configuration for Database Outages
	6.13.2 Planned Outage Procedures
	6.13.3 Unplanned Outages

	6.14 Gradual Draining

	7 Using Proxy Data Sources
	7.1 What is a Proxy Data Source?
	7.2 Creating a Proxy Data Source
	7.2.1 Configuring a Proxy Data Source in the WebLogic Server Administration Console
	7.2.2 Configuring a Proxy Data Source Using WLST

	7.3 Monitoring Proxy Data Source JDBC Resources

	8 Using Universal Connection Pool Data Sources
	8.1 What is a Universal Connection Pool Data Source?
	8.2 Creating a Universal Connection Pool Data Source
	8.2.1 Configuring a UCP Data Source in the WebLogic Server Administration Console
	8.2.2 Configuring a UCP Data Source Using WLST

	8.3 UCP MT Shared Pool support
	8.4 Monitoring Universal Connection Pool JDBC Resources
	8.5 Oracle Sharding Support
	8.6 Initial Capacity Enhancement in the Connection Pool

	9 Using Connection Harvesting
	9.1 What is Connection Harvesting?
	9.2 Enable Connection Harvesting
	9.3 Marking Connections Harvestable
	9.4 Recover Harvested Connections

	10 Using Shared Pooling Data Sources
	10.1 How shared Pooling Works
	10.2 Requirements and Considerations when using Shared Pooling Data Sources
	10.3 Configuring Shared Pooling
	10.3.1 Configuring WebLogic Server-Specific Driver Properties for Shared Pooling
	10.3.2 Configuring Database for Shared Pooling
	10.3.3 Example WLST script for configuration of shared pooling

	11 Advanced Configurations for Oracle Drivers and Databases
	11.1 Application Continuity
	11.1.1 How Application Continuity Works
	11.1.2 Requirements and Considerations
	11.1.3 Configuring Application Continuity
	11.1.3.1 Selecting the Driver for Application Continuity
	11.1.3.2 Using a Connection Callback
	11.1.3.2.1 Create an Initialization Callback
	11.1.3.2.2 Registering an Initialization Callback
	11.1.3.2.3 Unregister an Initialization Callback

	11.1.3.3 Setting the Replay Timeout
	11.1.3.4 Disabling Application Continuity for a Connection
	11.1.3.5 Configuring Logging for Application Continuity
	11.1.3.6 Enabling JDBC Driver Debugging

	11.1.4 Viewing Runtime Statistics for Application Continuity
	11.1.5 Application Continuity Auditing
	11.1.6 Limitations with Application Continuity with Oracle 12c Database

	11.2 Database Resident Connection Pooling
	11.2.1 Requirements and Considerations
	11.2.2 Configuring DRCP
	11.2.2.1 Configuring a Data Source for DRCP
	11.2.2.2 Configuring a Database for DRCP

	11.3 Global Database Services
	11.3.1 Requirements and Considerations
	11.3.2 Creating a GridLink DataSource for GDS Connectivity

	11.4 Container Database with Pluggable Databases
	11.4.1 Creating Service for PDB Access
	11.4.2 DRCP and CDB/PDB
	11.4.3 Setting the PDB using JDBC

	11.5 Service Switching

	12 Using Oracle Databases with WebLogic Server
	12.1 WebLogic JDBC Features for Oracle Database 12.1
	12.1.1 JDBC 4.1 Support for JDK 7
	12.1.2 Application Continuity Support
	12.1.3 Database Resident Connection Pooling Support
	12.1.4 Container Database with Pluggable Databases
	12.1.5 Global Database Services Support
	12.1.6 Automatic ONS Listeners

	12.2 WebLogic JDBC Features for Oracle Database 12.2

	13 Labeling Connections
	13.1 What is Connection Labeling
	13.2 Implementing Labeling Callbacks
	13.3 Creating a Labeling Callback
	13.3.1 Example Labeling Callback

	13.4 Registering a Labeling Callback
	13.4.1 Removing a Labeling Callback
	13.4.2 Applying Connection Labels

	13.5 Reserving Labeled Connections
	13.6 Checking Unmatched labels
	13.7 Removing a Connection Label
	13.8 Using Initialization and Reinitialization Costs to Select Connections
	13.8.1 Considerations When Using Initialization and Reinitialization Costs

	13.9 Using Connection Labeling with Packaged Applications
	13.9.1 Considerations When using Labelled Connections in Packaged Applications

	14 JDBC Data Source Transaction Options
	14.1 Enabling Support for Global Transactions with a Non-XA JDBC Driver
	14.2 Understanding the Logging Last Resource Transaction Option
	14.2.1 Advantages to Using the Logging Last Resource Optimization
	14.2.2 Enabling the Logging Last Resource Transaction Optimization
	14.2.3 Programming Considerations and Limitations for LLR Data Sources
	14.2.4 Administrative Considerations and Limitations for LLR Data Sources

	14.3 Understanding the Emulate Two-Phase Commit Transaction Option
	14.3.1 Limitations and Risks When Emulating Two-Phase Commit Using a Non-XA Driver
	14.3.1.1 Heuristic Completions and Data Inconsistency
	14.3.1.2 Cannot Recover Pending Transactions
	14.3.1.3 Possible Performance Loss with Non-XA Resources in Multi-Server Configurations
	14.3.1.4 Multiple Non-XA Participants

	14.4 Local Transaction Completion when Closing a Connection

	15 Understanding Data Source Security
	15.1 Introduction to WebLogic Data Source Security Options
	15.2 WebLogic Data Source Security Options
	15.2.1 Credential Mapping vs. Database Credentials
	15.2.2 Set Client Identifier on Connection
	15.2.3 Oracle Proxy Session
	15.2.4 Identity-based Connection Pooling

	15.3 Connections within Transactions
	15.4 WebLogic Data Source Resource Permissions
	15.5 Data Source Security Example
	15.6 Using Encrypted Connection Properties
	15.6.1 Best Practices for Encrypting Connection Properties when Using the Administration Console
	15.6.2 WLST Examples to Encrypt Connection Properties
	15.6.2.1 Use WLST to Update an Existing Data Source with Encrypted Properties
	15.6.2.2 Use WLST to Create Encryped Properties

	15.7 Using SSL and Encryption with Data Sources and Oracle Drivers
	15.7.1 Using SSL with Data Sources and Oracle Drivers
	15.7.1.1 Using SSL with Oracle Wallet
	15.7.1.2 Active GridLink ONS over SSL

	15.7.2 Using Data Encryption with Data Sources and Oracle Drivers

	16 Creating and Managing Oracle Wallet
	16.1 What is Oracle Wallet
	16.2 Where to Keep Your Wallet
	16.3 How to Create an External Password Store
	16.4 Defining a WebLogic Server Data Source using the Wallet
	16.4.1 Copy the Wallet Files
	16.4.2 Update the Datasource Configuration

	16.5 Using a TNS Alias instead of a DB Connect String

	17 Deploying Data Sources on Servers and Clusters
	17.1 Deploying Data Sources on Servers and Clusters
	17.2 Minimizing Server Startup Hang Caused By an Unresponsive Database

	18 Using WebLogic Server with Oracle RAC
	18.1 Overview of Oracle Real Application Clusters
	18.2 Software Requirements
	18.3 JDBC Driver Requirements
	18.4 Hardware Requirements
	18.4.1 WebLogic Server Cluster
	18.4.2 Oracle RAC Cluster
	18.4.3 Shared Storage

	18.5 Configuration Options in WebLogic Server with Oracle RAC
	18.5.1 Choosing a WebLogic Server Configuration for Use with Oracle RAC
	18.5.2 Validating Connections when using WebLogic Server with Oracle RAC
	18.5.3 Additional Considerations When Using WebLogic Server with Oracle RAC

	19 Using JDBC Drivers with WebLogic Server
	19.1 JDBC Driver Support
	19.2 JDBC Drivers Installed with WebLogic Server
	19.3 Adding Third-Party JDBC Drivers Not Installed with WebLogic Server
	19.4 Globalization Support for the Oracle Thin Driver
	19.5 Using the Oracle Thin Driver in Debug Mode

	20 Monitoring WebLogic JDBC Resources
	20.1 Viewing Run-Time Statistics
	20.1.1 Data Source Statistics
	20.1.2 Prepared Statement Cache Statistics

	20.2 Profile Logging
	20.3 Collecting Profile Information
	20.3.1 Profile Types
	20.3.1.1 Connection Usage (WEBLOGIC.JDBC.CONN.USAGE)
	20.3.1.2 Connection Reservation Wait (WEBLOGIC.JDBC.CONN.RESV.WAIT)
	20.3.1.3 Connection Reservation Failed (WEBLOGIC.JDBC.CONN.RESV.FAIL)
	20.3.1.4 Connection Leak (WEBLOGIC.JDBC.CONN.LEAK)
	20.3.1.5 Connection Last Usage (WEBLOGIC.JDBC.CONN.LAST_USAGE)
	20.3.1.6 Connection Multithreaded Usage (WEBLOGIC.JDBC.CONN.MT_USAGE)
	20.3.1.7 Statement Cache Entry (WEBLOGIC.JDBC.STMT_CACHE.ENTRY)
	20.3.1.8 Statements Usage (WEBLOGIC.JDBC.STMT.USAGE)
	20.3.1.9 Connection Unwrap (WEBLOGIC.JDBC.CONN.UNWRAP)
	20.3.1.10 JDBC Object Closed Usage (WEBLOGIC.JDBC.CLOSED_USAGE)
	20.3.1.11 Local Transaction Connection Leak (WEBLOGIC.JDBC.CONN.LOCALTX_LEAK)
	20.3.1.12 Example Profile Information Record Log

	20.3.2 Accessing Diagnostic Data
	20.3.3 Callbacks for Monitoring Driver-Level Statistics (Deprecated)

	20.4 Debugging JDBC Data Sources
	20.4.1 Enabling Debugging
	20.4.1.1 Enable Debugging Using the Command Line
	20.4.1.2 Enable Debugging Using the WebLogic Server Administration Console
	20.4.1.3 Enable Debugging Using the WebLogic Scripting Tool
	20.4.1.4 Changes to the config.xml File

	20.4.2 JDBC Debugging Scopes
	20.4.3 Setting Debugging for UCP/ONS
	20.4.3.1 Debugging UCP
	20.4.3.2 Debugging ONS

	20.4.4 Request Dyeing

	21 Managing WebLogic JDBC Resources
	21.1 Testing Data Sources and Database Connections
	21.2 Managing the Statement Cache for a Data Source
	21.2.1 Clearing the Statement Cache for a Data Source
	21.2.2 Clearing the Statement Cache for a Single Connection

	21.3 Shrinking a Connection Pool
	21.4 Resetting a Connection Pool
	21.5 Suspending a Connection Pool
	21.6 Resuming a Connection Pool
	21.7 Shutting Down a Data Source
	21.8 Starting a Data Source
	21.9 Managing DBMS Network Failures

	22 Tuning Data Source Connection Pools
	22.1 Increasing Performance with the Statement Cache
	22.1.1 Statement Cache Algorithms
	22.1.1.1 LRU (Least Recently Used)
	22.1.1.2 Fixed

	22.1.2 Statement Cache Size
	22.1.3 Usage Restrictions for the Statement Cache
	22.1.3.1 Calling a Stored Statement After a Database Change May Cause Errors
	22.1.3.2 Using setNull In a Prepared Statement
	22.1.3.3 Statements in the Cache May Reserve Database Cursors
	22.1.3.4 Other Considerations When Using the Statement Cache

	22.2 Connection Testing Options for a Data Source
	22.2.1 Database Connection Testing Semantics
	22.2.1.1 Connection Testing When Database Connections are Created
	22.2.1.2 Periodic Connection Testing
	22.2.1.3 Testing Reserved Connections
	22.2.1.4 Minimizing Connection Test Delay After Database Connectivity Loss
	22.2.1.5 Minimizing Connection Request Delays After Loss of DBMS Connectivity
	22.2.1.6 Minimizing Connection Request Delay with Seconds to Trust an Idle Pool Connection

	22.2.2 Database Connection Testing Configuration Recommendations
	22.2.3 Database Connection Testing Using Default Test Table Name
	22.2.4 Database Connection Testing Options

	22.3 Enabling Connection Creation Retries
	22.4 Enabling Connection Requests to Wait for a Connection
	22.4.1 Connection Reserve Timeout
	22.4.2 Limiting the Number of Waiting Connection Requests

	22.5 Automatically Recovering Leaked Connections
	22.6 Avoiding Server Lockup with the Correct Number of Connections
	22.7 Limiting Statement Processing Time with Statement Timeout
	22.8 Using Pinned-To-Thread Property to Increase Performance
	22.8.1 Changes to Connection Pool Administration Operations When PinnedToThread is Enabled
	22.8.2 Additional Database Resource Costs When PinnedToThread is Enabled

	22.9 Using Unwrapped Data Type Objects
	22.9.1 How to Disable Wrapping
	22.9.1.1 Disable Wrapping using the Administration Console
	22.9.1.2 Disable Wrapping using WLST

	22.10 Tuning Maintenance Timers

	A Configuring JDBC Application Modules for Deployment
	A.1 Packaging a JDBC Module with an Enterprise Application: Main Steps
	A.2 Creating Packaged JDBC Modules
	A.2.1 Creating a JDBC Data Source Module Using the Administration Console
	A.2.2 JDBC Packaged Module Requirements
	A.2.3 JDBC Application Module Limitations
	A.2.4 Creating a Generic Data Source Module
	A.2.5 Creating an Active GridLink Data Source Module
	A.2.6 Creating a Multi Data Source Module
	A.2.7 Encrypting Database Passwords in a JDBC Module
	A.2.7.1 Deploying JDBC Modules to New Domains

	A.2.8 Application Scoping for a Packaged JDBC Module

	A.3 Referencing a JDBC Module in Java EE Descriptor Files
	A.3.1 Packaged JDBC Module References in weblogic-application.xml
	A.3.2 Packaged JDBC Module References in Other Descriptors

	A.4 Packaging an Enterprise Application with a JDBC Module
	A.5 Deploying an Enterprise Application with a JDBC Module
	A.6 Getting a Database Connection from a Packaged JDBC Module

	B Using Multi Data Sources with Oracle RAC
	B.1 Overview of Oracle RAC
	B.1.1 Oracle RAC Scalability with WebLogic Server Multi Data Sources
	B.1.2 Oracle RAC Availability with WebLogic Server Multi Data Sources
	B.1.3 Oracle RAC Load Balancing with WebLogic Server Multi Data Sources

	B.2 Software Requirements
	B.3 JDBC Driver Requirements
	B.4 Hardware Requirements
	B.4.1 WebLogic Server Cluster
	B.4.2 Oracle RAC Cluster
	B.4.3 Shared Storage

	B.5 Configuring Multi Data Sources with Oracle RAC
	B.5.1 Choosing a Multi Data Source Configuration for Use with Oracle RAC
	B.5.2 Configuring Multi Data Sources for use with Oracle RAC
	B.5.2.1 Attributes of a Multi Data Source

	B.5.3 Configuration Considerations for Failover
	B.5.3.1 Multi Data Source-Managed Failover and Load Balancing
	B.5.3.2 Delays During Failover
	B.5.3.3 Failure Handling Walkthrough for Global Transactions

	B.5.4 Configuring the Listener Process for Each Oracle RAC Instance
	B.5.5 Configuring Multi Data Sources When Remote Listeners are Enabled or Disabled
	B.5.6 Additional Configuration Considerations

	B.6 Using Multi Data Sources with Global Transactions
	B.6.1 Rules for Data Sources within a Multi Data Source Using Global Transactions
	B.6.2 Required Attributes of Data Sources within a Multi Data Source Using Global Transactions
	B.6.3 Sample Configuration Code

	B.7 Using Multi Data Sources without Global Transactions
	B.7.1 Attributes of Data Sources within a Multi Data Source Not Using Global Transactions
	B.7.2 Sample Configuration Code

	B.8 Configuring Connections to Services on Oracle RAC Nodes
	B.8.1 Configuring a Data Source to Connect to a Service
	B.8.2 Service Connection Configurations
	B.8.2.1 Workload Management
	B.8.2.2 Load Balancing

	B.8.3 Connection Pool Capacity Planning

	B.9 Using SCAN Addresses with Multi Data Sources
	B.10 XA Considerations and Limitations when using multi Data Sources with Oracle RAC
	B.10.1 Oracle RAC XA Requirements when using multi Data Sources
	B.10.1.1 Use Multi Data Sources
	B.10.1.2 A Global Transaction Must Be Initiated, Prepared, and Concluded in the Same Instance of the Oracle RAC Cluster
	B.10.1.3 Transaction IDs Must Be Unique Within the Oracle RAC Cluster

	B.10.2 Known Limitations When Using Oracle RAC with multi Data Sources
	B.10.2.1 Potential for Data Deadlocks in Some Failure Scenarios
	B.10.2.2 Potential for Transactions Completed Out of Sequence

	B.10.3 Known Issue Occurring After Database Server Crash

	B.11 JDBC Store Recovery with Oracle RAC
	B.11.1 Configuring a JDBC Store for Use with Oracle RAC
	B.11.2 Automatic Retry for JMS Connections

	C Using Fast Connection Failover with Oracle RAC
	C.1 JDBC Driver Configuration for use with Oracle Fast Connection Failover

