Oracle® Fusion Middleware
Administering Server Environments for Oracle

WebLogic Server

12¢ (12.2.1.3.0)
E80453-03
July 2018

ORACLE

Oracle Fusion Middleware Administering Server Environments for Oracle WebLogic Server, 12c (12.2.1.3.0)
E80453-03
Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility iX
Conventions iX

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1
1.2 Guide to This Document 1-1
1.3 Related Documentation 1-2
1.4 New and Changed Features in This Release 1-2

2 Using Work Managers to Optimize Scheduled Work

2.1 Understanding How WebLogic Server Uses Thread Pools 2-1
2.2 Understanding Work Managers 2-2
2.2.1 Request Classes 2-3
2.2.2 Constraints 2-6
2.2.3 Stuck Thread Handling 2-6
2.2.4 Self-Tuning Thread Pool 2-7
2.2.4.1 Self-Tuning Thread Pool Size 2-7

2.2.4.2 ThreadLocal Clean Out 2-8

2.3 Work Manager Scope 2-8
2.3.1 The Default Work Manager 2-8
2.3.1.1 Overriding the Default Work Manager 2-9

2.3.1.2 When to Use Work Managers 2-9

2.3.2 Global Work Managers 2-9
2.3.3 Application-scoped Work Managers 2-9

2.4 Using Work Managers, Request Classes, and Constraints 2-10
2.4.1 Dispatch Policy for EJB 2-10
2.4.2 Dispatch Policy for Web Applications 2-10

2.5 Deployment Descriptor Examples 2-10
2.6 Work Managers and Execute Queues 2-14
2.6.1 Enabling Execute Queues 2-14

ORACLE iii

2.6.2 Migrating from Execute Queues to Work Managers 2-15

2.7 Accessing Work Managers Using MBeans 2-15
2.8 Using CommonJ With WebLogic Server 2-15
2.8.1 Accessing CommonJ Work Managers 2-16
2.8.2 Mapping CommonJ to WebLogic Server Work Managers 2-16

3 Avoiding and Managing Overload

3.1 Configuring WebLogic Server to Avoid Overload Conditions 3-1
3.1.1 Limiting Requests in the Thread Pool 3-1
3.1.1.1 Work Managers and Thread Pool Throttling 3-2

3.1.2 Limiting HTTP Sessions 3-2
3.1.3 Exit on Out of Memory Exceptions 3-2
3.1.4 Stuck Thread Handling 3-3

3.2 WebLogic Server Self-Monitoring 3-3
3.2.1 Overloaded Health State 3-3

3.3 WebLogic Server Exit Codes 3-4

4 Configuring Network Resources

4.1 Overview of Network Configuration 4-1
4.2 Understanding Network Channels 4-1
4.2.1 What Is a Channel? 4-1
4.2.1.1 Rules for Configuring Channels 4-2

4.2.1.2 Custom Channels Can Inherit Default Channel Attributes 4-2

4.2.2 Why Use Network Channels? 4-2
4.2.2.1 Handling Channel Failures 4-3

4.2.2.2 Upgrading Quality of Service Levels for RMI 4-3

4.2.3 Standard WebLogic Server Channels 4-3
4.2.3.1 The Default Network Channel 4-4

4.2.3.2 Administration Port and Administrative Channel 4-4

4.2.4 Using Internal Channels 4-7
4.2.4.1 Channel Selection 4-7

4.2.4.2 Internal Channels Within a Cluster 4-7

4.3 Configuring a Channel 4-8
4.3.1 Guidelines for Configuring Channels 4-8
4.3.1.1 Channels and Server Instances 4-8

4.3.1.2 Dynamic Channel Configuration 4-8

4.3.1.3 Channels and Identity 4-8

4.3.1.4 Channels and Protocols 4-9

4.3.1.5 Reserved Names 4-9

ORACLE

4.3.1.6 Channels, Proxy Servers, and Firewalls 4-9

4.3.2 Configuring Network Channels For a Cluster 4-9
4.3.2.1 Create the Cluster 4-9

4.3.2.2 Create and Assign the Network Channel 4-10

4.3.2.3 Configuring a Replication Channel 4-10

4.3.2.4 Increase Packet Size When Using Many Channels 4-11

4.4 Assigning a Custom Channel to an EJB 4-11
4.5 Using IPv6 with IPv4 4-11

5 Configuring Web Server Functionality

5.1 Overview of Configuring Web Server Components 5-1
5.2 Configuring the Server 5-1
5.2.1 Configuring the Listen Port 5-2

5.3 Web Applications 5-2
5.3.1 Web Applications and Clustering 5-2

5.4 Configuring Virtual Hosting 5-3
5.4.1 Virtual Hosting and the Default Web Application 5-3
5.4.2 Setting Up a Virtual Host 5-4

5.5 How WebLogic Server Resolves HTTP Requests 5-4
5.6 Setting Up HTTP Access Logs 5-6
5.6.1 Log Rotation 5-6
5.6.2 Common Log Format 5-6
5.6.3 Setting Up HTTP Access Logs by Using Extended Log Format 5-7
5.6.3.1 Creating the Fields Directive 5-7

5.6.3.2 Supported Field Identifiers 5-8

5.6.3.3 Creating Custom Field Identifiers 5-10

5.7 Preventing POST Denial-of-Service Attacks 5-14
5.8 Setting Up WebLogic Server for HTTP Tunneling 5-14
5.8.1 Configuring the HTTP Tunneling Connection 5-15
5.8.2 Connecting to WebLogic Server from the Client 5-15

5.9 Using Native I/O for Serving Static Files (Windows Only) 5-16

6 Using the Plug-in for Oracle Virtual Assembly Builder

6.1 Overview 6-1
6.1.1 About Oracle Virtual Assembly Builder 6-1
6.1.2 About the WebLogic Server Introspection Plug-in 6-2
6.1.3 Setting Up the WebLogic Server Introspection Plug-in 6-2

6.2 Introspection Plug-in Parameters 6-2

6.3 Reference System Prerequisites 6-3

ORACLE Y

6.4 Plug-in Usage Requirements 6-3

6.5 Resulting Artifact Type 6-4

6.6 Wiring 6-5

6.7 Wiring Properties 6-5

6.8 WebLogic Server Appliance Properties 6-8

6.8.1 Assembly-Level System Properties 6-8
6.8.2 Properties Common to Administration Server and Managed Server

Appliances 6-9

6.8.3 Administration Server Appliance Properties 6-10

6.9 Oracle Coherence*Web Introspection Extension 6-11

6.10 Supported Template Types 6-11

7 Configuring Concurrent Managed Objects

7.1 About Java EE Concurrency Utilities 7-1
7.1.1 Concurrency 1.0 Code Examples in WebLogic Server 7-2

7.2 How Concurrent Managed Objects Provide Concurrency for WebLogic Server
Containers 7-2

7.2.1 How WebLogic Server Handles Asynchronous Tasks in Application

Components 7-3
7.2.2 Concurrent Managed Objects (CMOSs) 7-3
7.2.3 CMOs versus CommonJ API 7-4
7.2.4 CMO Context Propagation 7-5
7.2.4.1 Propagated Context Types 7-5
7.2.4.2 Contextual Invocation Points 7-6
7.2.5 Self Tuning for CMO Tasks 7-6
7.2.6 Threads Interruption When CMOs Are Shutting Down 7-7
7.2.7 CMO Constraints for Long-Running Threads 7-8
7.2.7.1 Setting Limits for Maximum Concurrent Long Running Requests 7-8
7.2.7.2 Setting Limits for Maximum Concurrent New Threads 7-10
7.3 Default Java EE CMOs 7-11
7.3.1 Default Managed Executor Service 7-12
7.3.2 Default Managed Scheduled Executor Service 7-12
7.3.3 Default Context Service 7-13
7.3.4 Default Managed Thread Factory 7-13
7.4 Customized CMOs in Configuration Files 7-14
7.4.1 Defining CMOs in WebLogic Configuration Files 7-14
7.4.2 Binding CMOs to JNDI Under an Application Component Environment 7-15
7.4.2.1 JINDI Binding Using <resource-env-ref> 7-15
7.4.2.2 JINDI Binding Using @Resource 7-15
7.4.2.3 Updated Schemas for Custom CMO Modules 7-16
7.4.2.4 Updated System Module Beans for CMOs 7-17

ORACLE vi

7.4.3 Custom Managed Executor Service Configuration Elements 7-17
7.4.3.1 Deployment Descriptor Examples 7-19
7.4.4 Custom Managed Scheduled Executor Service Configuration Elements 7-19
7.4.4.1 ScheduledFuture.get() Method 7-20
7.4.4.2 Deployment Descriptor Examples 7-21
7.4.5 Custom Managed Thread Factory Configuration Elements 7-21
7.4.5.1 Contexts of Threads Created by MTF 7-21
7.4.5.2 Deployment Descriptor Examples 7-22
7.4.6 Transaction Management for CMOs 7-23
7.4.6.1 Transaction Management for MES and MSES 7-23
7.4.6.2 Transaction Management for Context Service 7-23
7.4.6.3 Transaction Management for MTF 7-24
7.5 Global CMO Templates 7-24
7.5.1 Configuring CMO Templates using the Administration Console 7-25
7.5.2 Using MBeans to Configure CMO Templates 7-25
7.6 Configuring Concurrent Constraints 7-25
7.6.1 Using the Administration Console to Configure Concurrent Constraints 7-26
7.6.1.1 Domain-level Concurrent Constraints 7-26
7.6.1.2 Server-level Concurrent Constraints 7-26
7.6.1.3 Dynamic Cluster-level Concurrent Constraints 7-26
7.6.2 Using MBeans to Configure Concurrent Constraints 7-27
7.7 Querying CMOs 7-27
7.7.1 Using the Administration Console to Monitor CMO Threads 7-27

7.7.1.1 Monitor JSR236 CMOs for All Deployed Applications and Modules
7-28
7.7.1.2 Monitor JSR236 CMOs for a Deployed EAR or Module 7-28
7.7.2 Using MBeans to Monitor CMOs 7-28
7.7.3 Using MBeans to Monitor Concurrent Constraints 7-29

8 Using the Batch Runtime
8.1 About Batch Jobs 8-1
8.1.1 Use of Multiple Batch Runtime Instances 8-1
8.1.2 Batch 1.0 Code Examples in WebLogic Server 8-2
8.2 Using the Default Batch Runtime Configuration with the Derby Database 8-3
8.3 Configuring the Batch Runtime to Use a Dedicated Database 8-3
8.3.1 Prerequisite Steps: Configure the Job Repository Tables, Batch Data

Source, and Managed Executor Service 8-4
8.3.1.1 Create the Job Repository Tables 8-4
8.3.1.2 Create a JDBC Data Source for the Job Repository 8-5
8.3.1.3 Optionally, Create a Managed Executor Service Template 8-6

ORACLE

Vii

8.3.2 Configure the Batch Runtime to Use a Dedicated Batch Data Source

and Managed Executor Service 8-6

8.3.2.1 Configuring the Batch Runtime Using the Administration Console 8-6

8.3.2.2 Configuring the Batch Runtime Using WLST 8-7

8.4 Querying the Batch Runtime 8-8

8.4.1 Using the Administration Console to Query the Batch Runtime 8-8

8.4.1.1 Get Details of all Batch Jobs 8-8

8.4.1.2 Get Details about a Job's Execution 8-9

8.4.1.3 Get Details about a Job's Step Execution 8-9

8.4.2 Using Runtime MBeans to Query the Batch Runtime 8-9

8.4.2.1 Get Details of all Batch Jobs Using getJobDetails 8-9

8.4.2.2 Get Detalls of a Job Execution Using getJobExecutions 8-10

8.4.2.3 Get Details of a Job Step Execution Using getStepExecutions 8-11

8.5 Troubleshooting Tips 8-12
8.5.1 Make Sure the Database Containing the Job Repository Tables is

Running 8-12

ORACLE viii

Preface

This preface describes the document accessibility features and conventions used in
this guide—Administering Server Environments for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/t opi ¢/ | ookup?
ct x=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: / / ww. or acl e. coni pl s/ t opi ¢/

| ookup?ct x=acc&i d=i nfo or visit htt p: // ww. or acl e. com pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE' »

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

This section describes the contents and organization of this guide—Administering
Server Environments for Oracle WebLogic Server.

Document Scope and Audience
Guide to This Document
Related Documentation

New and Changed Features in This Release

1.1 Document Scope and Audience

This document describes how you design, configure, and manage WebLogic Server
environments. It is a resource for system administrators and operators responsible for
implementing a WebLogic Server installation. This document is relevant to all phases
of a software project, from development through test and production phases.

ORACLE

It is assumed that the reader is familiar with Java EE and Web technologies, object-
oriented programming techniques, and the Java programming language.

1.2 Guide to This Document

The document is organized as follows:

This chapter, Introduction and Roadmap describes the scope of this guide and
lists related documentation.

Using Work Managers to Optimize Scheduled Work describes the WebLogic
Server execution model and the process of configuring application access to the
execute queue.

Avoiding and Managing Overload describes detecting, avoiding, and recovering
from overload conditions.

Configuring Network Resources describes optimizing your WebLogic Server
domain for your network.

Configuring Web Server Functionality describes using WebLogic Server as a Web
server.

Using the Plug-in for Oracle Virtual Assembly Builder describes the WebLogic
Server introspection plug-in for Oracle Virtual Assembly Builder, which can be
used to examine a single WebLogic domain and the Middleware home directory in
which it resides.

Configuring Concurrent Managed Objects describes the Concurrent Managed
Objects (CMOs) implemented by WebLogic Server to provide support for defining
and implementing the Concurrency Utilities for Java EE 1.0 (JSR 236).

1-1

Chapter 1
Related Documentation

* Using the Batch Runtime describes the batch runtime implemented by WebLogic
Server to provide support for defining, implementing, and running batch jobs, as
defined for Java EE 7 in Batch Applications for the Java Platform (JSR 352).

1.3 Related Documentation

* Understanding Domain Configuration for Oracle WebLogic Server

* Oracle WebLogic Server Administration Console Online Help

1.4 New and Changed Features in This Release

ORACLE

This release of WebLogic Server enhances adds support for Java EE 7, including the
following features:

» Concurrency Utilities for Java EE 1.0 (JSR 236). For information, see Configuring
Concurrent Managed Objects.

« Batch Applications for the Java Platform (JSR 352). For information, see Using the
Batch Runtime.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

1-2

Using Work Managers to Optimize
Scheduled Work

WebLogic Server helps you determine how your application prioritizes the execution of
its work using a Work Manager. Based on rules you define and by monitoring actual
runtime performance, WebLogic Server can optimize the performance of your
application and maintain service-level agreements. You define the rules and
constraints for your application by defining a Work Manger and applying it either
globally to a WebLogic Server domain or to a specific application component.

* Understanding How WebLogic Server Uses Thread Pools
* Understanding Work Managers

* Work Manager Scope

* Using Work Managers, Request Classes, and Constraints
* Deployment Descriptor Examples

* Work Managers and Execute Queues

» Accessing Work Managers Using MBeans

* Using CommonJ With WebLogic Server

2.1 Understanding How WebLogic Server Uses Thread

Pools

ORACLE

WebLogic Server uses a thread pool to execute various types of work and prioritizes
the execution of work based on the rules and the run-time metrics you define in the
Work Manager.

In previous versions of WebLogic Server, processing was performed in multiple
execute queues. Different classes of work were executed in different queues, based
on priority and ordering requirements, and to avoid deadlocks. In addition to the
default execute queue, webl ogi c. ker nel . def aul t, there were pre-configured queues
dedicated to internal administrative traffic, such as webl ogi c. admi n. HTTP and

webl ogi ¢. admi n. RM .

You could control thread usage by altering the number of threads in the default queue,
or configure custom execute queues to ensure that particular applications had access
to a fixed number of execute threads, regardless of overall system load.

Now WebLogic Server uses a single thread pool, in which all types of work are
executed. WebLogic Server prioritizes work based on rules you define, and run-time
metrics, including the actual time it takes to execute a request and the rate at which
requests are entering and leaving the pool.

The common thread pool changes its size automatically to maximize throughput. The
gueue monitors throughput over time and based on history, determines whether to
adjust the thread count. For example, if historical throughput statistics indicate that a

2-1

Chapter 2
Understanding Work Managers

higher thread count increased throughput, WebLogic increases the thread count.
Similarly, if statistics indicate that fewer threads did not reduce throughput, WebLogic
decreases the thread count. This new strategy makes it easier for administrators to
allocate processing resources and manage performance, avoiding the effort and
complexity involved in configuring, monitoring, and tuning custom executes queues.

2.2 Understanding Work Managers

WebLogic Server prioritizes work and allocates threads based on an execution model
that takes into account administrator-defined parameters and actual run-time
performance and throughput.

Administrators can configure a set of scheduling guidelines and associate them with
one or more applications, or with particular application components. For example, you
can associate one set of scheduling guidelines for one application, and another set of
guidelines for other applications. At run time, WebLogic Server uses these guidelines
to assign pending work and enqueued requests to execution threads.

Note:

Work requests from all Work Managers are executed by a single thread pool;
separate thread pools are not created for each Work Manager.

To manage work in your applications, you define one or more of the following Work
Manager components:

e Fair Share Request Class

e Response Time Request Class
* Min Threads Constraint

* Max Threads Constraint

e Capacity Constraint

e Context Request Class

See Request Classes or Constraints.

You can use any of these Work Manager components to control the performance of
your application by referencing the name of the component in the application
deployment descriptor. In addition, you may define a Work Manager that encapsulates
all of the above components (except Context Request Class; see Example 2-3) and
reference the name of the Work Manager in your application's deployment descriptor.
You can define multiple Work Managers—the appropriate number depends on how
many distinct demand profiles exist across the applications you host on WebLogic
Server.

You can configure Work Managers at the domain level, application level, and module
level in one of the following configuration files, or by using the WebLogic Server
Administration Console:

e config. xn —Work Managers specified in confi g. xnl can be assigned to any
application, or application component, in the domain.

ORACLE 2-2

Chapter 2
Understanding Work Managers

* webl ogi c-appl i cation. xnl —Work Managers specified at the application level can
be assigned to that application, or any component of that application.

e webl ogi c-ej b-jar.xn orwebl ogi c. xmi —Work Managers specified at the component
level can be assigned to that component.

* webl ogi c. xn —Work Managers specified for a Web application.

Example 2-1 is an example of a Work Manager definition.

* Request Classes

e Constraints

* Stuck Thread Handling

Example 2-1 Work Manager Stanza

<wor k- manager >
<name>hi ghpri ority_wor kmanager </ name>
<fair-share-request-class>
<nane>hi gh_pri ority</ nane>
<fair-share>100</fair-share>
</ fair-share-request-class>
<m n-t hr eads- const rai nt >
<name>M nThr eadsCount Fi ve</ name>
<count >5</ count >
</ min-threads-constraint>
</ wor k- manager >

To assign the Work Manager in Example 2-1 to control the dispatch policy of the entire
Web application, add the code in Example 2-2 to the Web application's webl ogi c. xm
file:

Example 2-2 Referencing the Work Manager in a Web Application

<w - di spat ch- pol i cy>hi ghpri ority-wor kmanager </ W - di spat ch- pol i cy>

To assign the Work Manager to control the dispatch policy of a particular servlet, add
the following code to the Web application's web. xnl file:

<servl et>

<init-paran

<par am nane>wW - di spat ch- pol i cy</ par am nane>

<par am val ue>hi ghpriority_wor kmanager </ par am val ue>
<linit-paran

</servlet>

The components you can define and use in a Work Manager are described in following
sections:

2.2.1 Request Classes

ORACLE

A request class expresses a scheduling guideline that WebLogic Server uses to
allocate threads to requests. Request classes help ensure that high priority work is
scheduled before less important work, even if the high priority work is submitted after
the lower priority work. WebLogic Server takes into account how long it takes for
requests to each module to complete.

2-3

ORACLE

Chapter 2
Understanding Work Managers

Request classes define a best effort. They do not guarantee that the configured ratio
will be maintained consistently. The observed ratio may vary due to several factors
during a period of sufficient demand, such as:

The mixture of requests from different request classes in the queue at any
particular time. For example, more requests than the configured ratio may be
processed for a lower priority request class if there are not enough requests from a
higher priority request class in the Work Manager queue.

Because the ratio is specified in terms of thread-usage time, a larger number of
shorter requests could be processed in the same amount of thread-usage time as
a smaller number of time-consuming requests.

There are multiple types of request classes, each of which expresses a scheduling
guideline in different terms. A Work Manager may specify only one request class.

fair-share-request-cl ass—Specifies the average thread-use time required to
process requests. The default fair share value is 50.

For example, assume that WebLogic Server is running two modules. The Work
Manager for Mdul eA specifies a fai r- share-request - cl ass of 80 and the Work
Manager for Mdul eB specifies a fai r - shar e-request - cl ass of 20.

During a period of sufficient demand, with a steady stream of requests for each
module such that the number requests exceed the number of threads, WebLogic
Server will allocate 80% and 20% of the thread-usage time to Mdul eA and Mbdul eB,
respectively.

Note:

The value of a fair share request class is specified as a relative value,
not a percentage. Therefore, in the above example, if the request
classes were defined as 400 and 100, they would still have the same
relative values.

response-ti me-request - cl ass—Specifies a response time goal in milliseconds.
Response time goals are not applied to individual requests. Instead, WebLogic
Server computes a tolerable waiting time for requests with that class by
subtracting the observed average thread use time from the response time goal,
and schedules requests so that the average wait for requests with the class is
proportional to its tolerable waiting time.

For example, given that ModuleA and ModuleB in the previous example, have
response time goals of 2000 ms and 5000 ms, respectively, and the actual thread
use time for an individual request is less than its response time goal. During a
period of sufficient demand, with a steady stream of requests for each module
such that the number of requests exceed the number of threads, and no "think
time" delays between response and request, WebLogic Server will schedule
requests for Mdul eA and Mbdul eB to keep the average response time in the ratio
2:5. The actual average response times for Mdul eA and Mdul eB might be higher or
lower than the response time goals, but will be a common fraction or multiple of
the stated goal. For example, if the average response time for Mdul eA requests is
1,000 ms., the average response time for Modul eB requests is 2,500 ms.

The previous sections described request classes based on fair share and
response time by relating the scheduling to other work using the same request

2-4

ORACLE

Chapter 2
Understanding Work Managers

class. A mix of fair share and response time request classes is scheduled with a
marked bias in favor of response time scheduling.

e context-request-cl ass—Assigns request classes to requests based on context

information, such as the current user or the current user's group.

For example, the cont ext - request - cl ass in Example 2-3 assigns a request class to
requests based on the value of the request's subj ect and rol e properties.

The hi gh_fairshare and | ow fai rshar e request classes referenced by the
cont ext _wor kmanager in Example 2-3 could be defined in the config. xm as follows:

<sel f-tuni ng>

<fair-share-request-class>
<nane>hi gh_f ai r shar e</ nane>
<t arget >myserver</target>
<fair-share>75</fair-share>
</fair-share-request-class>
<fair-share-request-class>
<nane>| ow_f ai r shar e</ nane>
<t arget >myserver</target>
<fair-share>25</fair-share>
</fair-share-request-class>

</ sel f-tuni ng>

¢ Note:

If a Web application's Work Manager references a context request class,
the first user call will go through the default request class; subsequent
calls in same session will go through the user-defined request class.

When using context request classes, set session timeout values to
prevent sessions from expiring while requests wait in the Work Manager
queue.

Example 2-3 Context Request Class

<wor k- manager >
<name>cont ext _wor kmanager </ nanme>
<cont ext - request - cl ass>
<nane>t est _cont ext </ name>
<cont ext - case>
<user - name>syst enx/ user - name>
<request - cl ass- name>hi gh_f ai r shar e</ request - c| ass- name>
</ cont ext - case>
<cont ext - case>
<gr oup- name>ever yone</ gr oup- nane>
<request - cl ass- name>| ow_f ai r shar e</ r equest - cl ass- name>
</ cont ext - case>
</ cont ext - request - cl ass>
</ wor k- manager >

2-5

Chapter 2
Understanding Work Managers

2.2.2 Constraints

A constraint defines minimum and maximum numbers of threads allocated to execute
requests and the total number of requests that can be queued or executing before
WebLogic Server begins rejecting requests.

You can define the following types of constraints:

e nmax-threads- constrai nt —Limits the number of concurrent threads executing
requests from the constrained work set. The default is unlimited. For example,
consider a constraint defined with maximum threads of 10 and shared by 3 entry
points. The scheduling logic ensures that not more than 10 threads are executing
requests from the three entry points combined.

You can define a max-t hreads- const rai nt in terms of a the availability of the
resource that requests depend upon, such as a connection pool.

A max-t hreads- const rai nt might, but does not necessarily, prevent a request class
from taking its fair share of threads or meeting its response time goal. Once the
constraint is reached the server does not schedule requests of this type until the
number of concurrent executions falls below the limit. The server then schedules
work based on the fair share or response time goal.

* nin-threads-constrai nt—Guarantees the number of threads the server will
allocate to affected requests to avoid deadlocks. The default is zero. A ni n-
t hreads- constrai nt value of one is useful, for example, for a replication update
request, which is called synchronously from a peer.

A nin-t hreads- const rai nt might not necessarily increase a fair share. This type of
constraint has an effect primarily when the server instance is close to a deadlock
condition. In that case, the constraint will cause WebLogic Server to schedule a
request even if requests in the service class have gotten more than its fair share
recently.

e capaci ty—Causes the server to reject requests only when it has reached its
capacity. The default is -1. Note that the capacity includes all requests, queued or
executing, from the constrained work set. Work is rejected either when an
individual capacity threshold is exceeded or if the global capacity is exceeded.
This constraint is independent of the global queue threshold.

Note that the capaci ty constraint is not enforced if the request is made by a user
belonging to the WebLogic Server Administrators group.

2.2.3 Stuck Thread Handling

ORACLE

In response to stuck threads, you can define a Stuck Thread Work Manager
component that can shut down the Work Manager, move the application into admin
mode, or mark the server instance as failed.

For example, the Work Manager defined in Example 2-4 shuts down the Work
Manager when two threads are stuck for longer than 30 seconds.

Example 2-4 Stuck-Thread Work Manager

<wor k- manager >
<name>st uckt hr ead_wor kmanager </ name>
<wor k- manager - shut down- t ri gger >
<max- st uck-t hread- t i me>30</ max- st uck-t hread-ti me>

2-6

Chapter 2
Understanding Work Managers

<st uck-t hr ead- count >2</ st uck- t hr ead- count >
</ wor k- manager - shut down- t ri gger >
</ wor k- manager >

2.2.4 Self-Tuning Thread Pool

WebLogic Server maintains three groups of threads for the self-tuning thread pool:

* Running threads: threads that are currently executing work requests submitted to
Work Managers

» |dle threads: threads that are idly waiting for a work request

Idle threads include threads that have completed their previous work requests and
are waiting for new requests, as well as threads that are created by the self-tuning
thread pool based on usage statistics in order to anticipate future workload.

» Standby threads: threads that are not currently processing or waiting for work
requests

Standby threads do not count toward the self-tuning thread pool thread count.
When the self-tuning thread pool decides to decrease the thread count based on
usage statistics, threads are moved from the group of idle threads into the group of
standby threads. Conversely, when the self-tuning thread pool decides to increase
the thread count, it first tries to find threads in the standby thread group to move to
the idle thread group. The self-tuning thread pool only creates new threads if there
are not enough threads in the standby group.

Threads are shut down when the number of standby threads reaches an internal
maximum limit of 256. Ideally, a number of standby threads are ready if WebLogic
Server needs to increase the self-tuning thread pool count occurs so that the
WebLogic Server instance can avoid creating new threads at a time when
workload is high. Standby threads can also be created and used to satisfy
minimum threads constraints. See Constraints.

2.2.4.1 Self-Tuning Thread Pool Size

ORACLE

By default, the self-tuning thread pool size limit is 400. This limit includes all running
and idle threads, but does not include any standby threads. You can configure the limit
using the Sel f Tuni ngThr eadPool Si zeMax attribute in the Ker nel MBean. You may choose a
higher size limit if your system can support additional workload even when the self-
tuning thread pool has reached its upper thread count limit. Contrarily, you may
choose to lower the limit if your system resources, such as CPU, become overloaded
at a lower thread count. However, if lowering the Sel f Tuni ngThr eadPool Si zeMax limit,
note that if the value is set too low, the self-tuning thread pool may not be allowed to
create enough threads to handle the system workload. This could result in a backlog of
pending work requests on some Work Managers.

Note:

Minimum threads constraints can affect the number of threads that are
executing work requests for Work Managers, especially if the WebLogic
Server instance is under heavy load.

2-7

Chapter 2
Work Manager Scope

The self-tuning thread pool does not consider the Sel f Tuni ngThr eadPool Si zeMax
attribute when creating a new standby thread to process incoming work requests for a
Work Manager to satisfy its allocated minimum threads constraint. This is due to the
importance of allocating threads for processing work requests for Work Managers with
minimum threads constraints, which are designed to be used to avoid server-to-server
deadlocks.

As a result, the maximum possible number of threads maintained by the self-tuning
thread pool is the sum of the configured Sel f Tuni ngThr eadPool Si zeMax attribute value
and the sum of the values for all minimum threads constraints configured in the
WebLogic Server instance, assuming a worst-case scenario where the configured
number of threads are allocated to all configured minimum threads constraints.

2.2.4.2 ThreadLocal Clean Out

To clean up stray ThreadLocal use by applications and third-party libraries, configure
the eager Thr eadLocal C eanup attribute in the Ker nel MBean. The eager Thr eadLocal d eanup
attribute specifies whether to clean up all ThreadLocal storage from self-tuning thread
pools after they have finished processing each work request.

By default, the eager ThreadLocal d eanup attribute is set to false, in which the self-tuning
thread pool only cleans up ThreadLocal storage when a thread returns to a standby
pool and after an application is undeployed.

Setting the eager Thr eadLocal O eanup attribute to true ensures that all thread pool
threads have no leftover ThreadLocal values from previous requests when running
work for a new request. However, overhead occurs from cleaning up ThreadLocal
storage after each work request and then reestablishing ThreadLocal values for each
new request. Since some applications cache objects that are expensive to create in
the ThreadLocal storage, cleaning up ThreadLocal values after each request may
negatively impact performance on those applications.

2.3 Work Manager Scope

Essentially, there are three types of Work Managers, each one characterized by its
scope and how it is defined and used.

* The Default Work Manager
* Global Work Managers

* Application-scoped Work Managers

2.3.1 The Default Work Manager

ORACLE

To handle thread management and perform self-tuning, WebLogic Server implements
a default Work Manager. This Work Manager is used by an application when no other
Work Managers are specified in the application's deployment descriptors.

In many situations, the default Work Manager may be sufficient for most application
requirements. WebLogic Server thread-handling algorithms assign each application its
own fair share by default. Applications are given equal priority for threads and are
prevented from monopolizing them.

2-8

Chapter 2
Work Manager Scope

2.3.1.1 Overriding the Default Work Manager

You can override the behavior of the default Work Manager by creating and
configuring a global Work Manager called def aul t . This allows you to control the
default thread-handling behavior of WebLogic Server.

Note:

When you override the default Work Manager, all instances are overridden.

2.3.1.2 When to Use Work Managers

Use the following guidelines to determine when you might want to use Work Managers
to customize thread management:

Note:

To use Work Manager, it is mandatory to meet one of the guidelines.

* The default fair share (50) is not sufficient.

This usually occurs in situations where one application needs to be given a higher
priority over another.

* Aresponse time goal is required.

* A minimum thread constraint needs to be specified to avoid server deadlock

2.3.2 Global Work Managers

You can create global Work Managers that are available to all applications and
modules deployed on a server, in the WebLogic Server Administration Console and in
config.xm.

An application uses a globally-defined Work Manager as a template. Each application
creates its own instance which handles the work associated with that application and
separates that work from other applications. This separation is used to handle traffic
directed to two applications which are using the same dispatch policy. Handling each
application's work separately, allows an application to be shut down without affecting
the thread management of another application. Although each application implements
its own Work Manager instance, the underlying components are shared.

2.3.3 Application-scoped Work Managers

ORACLE

In addition to globally-scoped Work Managers, you can also create Work Managers
that are available only to a specific application or module. You can define application-
scoped Work Managers in the WebLogic Server Administration Console and in the
following descriptors:

2-9

Chapter 2
Using Work Managers, Request Classes, and Constraints

* webl ogi c-application. xm
* weblogic-ejb-jar.xn
* weblogic.xm

If you do not explicitly assign a Work Manager to an application, it uses the default
Work Manager.

A method is assigned to a Work Manager, using the <dispatch-policy> element in the
deployment descriptor. The <dispatch-policy> can also identify a custom execute
gueue, for backward compatibility. For an example, see Example 2-2.

2.4 Using Work Managers, Request Classes, and
Constraints

Work Managers, Request Classes, and Constraints require a definition and a
mapping.

* A definition. You may define Work Managers, Request Classes, or Constraints
globally in the domain's configuration using the WebLogic Server Administration
Console, (see Environments > Work Managers in the WebLogic Server
Administration Console) or you may define them in one of the deployment
descriptors listed previously. In either case, you assign a name to each.

* A mapping. In your deployment descriptors you reference one of the Work
Managers, Request Classes, or Constraints by its name.

2.4.1 Dispatch Policy for EJB

webl ogi c- ej b-j ar. xm —The value of the existing di spat ch- pol i cy tag under webl ogi c-

ent er pri se-bean can be a named di spat ch- pol i cy. For backwards compatibility, it can

also name an ExecuteQueue. In addition, Oracle allows di spat ch-pol i ¢y, max-t hr eads,
and ni n-t hr eads, to specify named (or unnamed with a numeric value for constraints)

policy and constraints for a list of methods, analogously to the presenti sol ati on- | evel
tag.

2.4.2 Dispatch Policy for Web Applications

webl ogi ¢. xml —Also supports mappings analogous to the fil t er- mappi ng of the web. xni ,
where named dispatch-policy, max-threads, or min-threads are mapped for url-
patterns or servlet names.

2.5 Deployment Descriptor Examples

Examine examples for defining Work Managers in various types of deployment
descriptors.

For additional and detailed reference, see the schema for these deployment
descriptors:

» weblogic-ejb-jar.xml schema: http: //xn ns. or acl e. con webl ogi ¢/ webl ogi c- e] b-
jar/ 1.6/ weblogic-ejb-jar.xsd

ORACLE 2-10

http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd

ORACLE

Chapter 2
Deployment Descriptor Examples

» weblogic-application.xml schema: http: //xn ns. or acl e. com webl ogi ¢/ webl ogi c-
application/ 1.7/ webl ogi c-application. xsd

* weblogic.xml schema: See weblogic.xml Deployment Descriptor Elements in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Example 2-5 weblogic-ejb-jar.xml With Work Manager Entries

<webl ogi c-ej b-jar xm ns="http://xm ns. oracl e. com webl ogi c/ webl ogi c-ej b-jar"
xmns:j2ee="http://java.sun.com xm /ns/j 2ee"
xmns: xsi ="http://ww. w3. org/ 2001/ XM.Schema- i nst ance”
xsi : schemalLocation="http://xm ns. oracl e. conm webl ogi c/ webl ogi c- ej b-j ar
http://xm ns. oracl e. conl webl ogi c/ webl ogi c-ej b-j ar/ 1. 6/ webl ogi c-ej b-j ar. xsd" >

<webl ogi c-ent er pri se- bean>

<ej b- name>Wor KEJB</ €] b- name>

<j ndi - name>cor e_wor k_ej b_wor kbean_Wor kEJB</ j ndi - nanme>

<di spat ch- pol i cy>webl ogi c. ker nel . Syst enx/ di spat ch- pol i cy>
</ webl ogi c-ent er pri se- bean>

<webl ogi c-ent er pri se- bean>
<ej b- name>NonSyst emr KEJB</ e] b- name>
<j ndi - name>cor e_wor k_ej b_wor kbean_NonSyst em\r kEJB</ j ndi - nanme>
<di spat ch- pol i cy>wor kbean_wor kmanager </ di spat ch- pol i cy>

</ webl ogi c-ent er pri se- bean>

<webl ogi c-ent er pri se- bean>
<ej b- name>M nThr eadsWor kKEJB</ ej b- name>
<j ndi - name>cor e_wor k_ej b_wor kbean_M nThr eads\Wr kEJB</ j ndi - name>
<di spat ch- pol i cy>M nThr eadsCount Fi ve</ di spat ch- pol i cy>

</ webl ogi c-ent er pri se- bean>

<wor k- manager >
<name>wor kbean_wor kmanager </ nane>
</ wor k- manager >

<wor k- manager >
<name>st uckt hr ead_wor knmanager </ name>
<wor k- manager - shut down- t ri gger >
<max- st uck-t hread- ti me>30</ max- st uck- t hread-ti me>
<st uck-t hr ead- count >2</ st uck- t hr ead- count >
</ wor k- manager - shut down- t ri gger >
</ wor k- manager >

<wor k- manager >
<name>ni nt hr eads_wor kmanager </ nane>
<mi n-t hreads- constrai nt >
<name>M nThr eadsCount Fi ve</ nane>
<count >5</ count >
</ m n-threads-constraint>
</ wor k- manager >

<wor k- manager >
<name>| owpri ority_wor kmanager </ name>
<fair-share-request-class>
<name>| ow_pri ority</ nane>
<fair-share>10</fair-share>
</fair-share-request-class>
</ wor k- manager >

<wor k- manager >
<nane>hi ghpri ority_wor kmanager </ name>

2-11

http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd

ORACLE

Chapter 2
Deployment Descriptor Examples

<fair-share-request-class>
<nane>hi gh_pri ority</ name>
<fair-share>100</fair-share>
</fair-share-request-class>
</ wor k- manager >

<wor k- manager >
<nane>ver yhi ghpriority_wor kmanager </ nane>
<fair-share-request-class>
<nane>ver yhi gh_priority</name>
<fair-share>1000</fair-share>
</fair-share-request-class>
</ wor k- manager >

The EJBs in Example 2-6 are configured to get as many threads as there are
instances of a resource they depend upon—a connection pool, and an application-
scoped connection pool.

Example 2-6 weblogic-ejb-jar.xml with Connection Pool Based Max Thread
Constraint

<webl ogi c-ej b-jar xm ns="http://xm ns. oracl e. conl webl ogi ¢/ webl ogi c-ej b-j ar"
xmns:j2ee="http://java.sun.com xm /ns/j 2ee"
xmns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schema- i nst ance”
xsi : schemalLocation="http://xm ns. oracl e. com webl ogi c/ webl ogi c- ej b-j ar
http://xm ns. oracl e. coml webl ogi ¢/ webl ogi c- ej b-j ar/ 1. 6/ webl ogi c-ej b-j ar. xsd" >

<webl ogi c- ent er pri se- bean>
<ej b- name>Resour ceConst r ai nt EJB</ ej b- nane>
<j ndi - name>cor e_wor k_ej b_resour ce_Resour ceConst r ai nt EJB</ j ndi - name>
<di spat ch- pol i cy>t est _resour ce</ di spat ch- pol i cy>

</ webl ogi c-ent er pri se- bean>

<webl ogi c- ent er pri se- bean>
<ej b- name>AppScopedResour ceConst r ai nt EJB</ ej b- nanme>
<j ndi - name>cor e_wor k_ej b_r esour ce_AppScopedResour ceConst r ai nt EJB
</j ndi - nane>
<di spat ch- pol i cy>t est _appscoped_r esour ce</ di spat ch-pol i cy>
</ webl ogi c-ent er pri se- bean>

<wor k- manager >
<nane>t est _r esour ce</ nane>
<max-t hr eads- const rai nt >
<name>pool _constrai nt </ name>
<pool - name>t est Pool </ pool - name>
</ max-t hr eads- const rai nt >
</ wor k- manager >

<wor k- manager >
<name>t est _appscoped_r esour ce</ nane>
<max-t hr eads- constrai nt >
<nane>appscoped_pool _constrai nt </ name>
<pool - name>AppScopedDat aSour ce</ pool - name>
</ max-t hreads- constrai nt>
</ wor k- manager >
</webl ogi c-ej b-j ar>

Example 2-7 weblogic-ejb-jar.xml with commonJ Work Managers

2-12

ORACLE

Chapter 2
Deployment Descriptor Examples

For information using commonJ, see Using CommonJ With WebLogic Server and the
commonJ Javadocs.

Example 2-8 weblogic-application.xml

<webl ogi c-application xm ns="http://xm ns. oracl e. conf webl ogi ¢/ webl ogi c- appl i cation"
xmns:j2ee="http://java. sun.com xm /ns/j 2ee"
xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM.Schema- i nst ance"
xsi : schemalLocation="http://xm ns. oracl e. conf webl ogi c/ webl ogi c-appl i cation
http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- appl i cation/ 1. 7/ webl ogi c-

appl i cation. xsd">

<max-t hreads- constrai nt >
<name>j 2ee_maxt hr eads</ name>
<count >1</ count >

</ max-t hr eads- constrai nt >

<m n-t hreads- constrai nt >
<name>j 2ee_mi nt hr eads</ name>
count >1</ count >

</ m n-threads-constraint>

<wor k- manager >
<nanme>J2EEScopedWr kManager </ nane>
</ wor k- manager >
</ webl ogi c- appl i cation>

The Web application in Example 2-9 is deployed as part of the Enterprise application
defined in Example 2-8. This Web application's descriptor defines two Work Managers.
Both Work Managers point to the same max threads constraint, j 2ee_maxt hr eads, which
is defined in the application's webl ogi c- appl i cation. xm file. Each Work Manager
specifies a different response time request class.

Example 2-9 Web Application Descriptor

<webl ogi ¢ xm ns="http://xm ns. oracl e. cont webl ogi c"
xm ns:j2ee="http://java. sun. cont xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_.Schema- i nst ance"
xsi : schemalLocation="http://xn ns. oracl e. com webl ogi c
http://xn ns. oracl e. conf webl ogi ¢/ 1. 0/ webl ogi c. xsd" >

<wor k- manager >
<nane>f ast _response_ti ne</ name>
<response-tine-request - cl ass>
<nane>fast _response_ti me</ name>
<goal - ms>2000</ goal - ms>
</response-tinme-request-cl ass>
<mex-t hreads- constrai nt - name>j 2ee_maxt hr eads
</ max-t hr eads- const r ai nt - name>
</ wor k- manager >

<wor k- manager >
<nane>sl ow_r esponse_t i ne</ name>
<mex-t hreads- constrai nt - name>j 2ee_maxt hr eads
</ max-t hr eads- const rai nt - name
<response-tine-request-cl ass>
<nane>sl ow_response_t i nme</ name>
<goal - ms>5000</ goal - ms>
</response-tinme-request-cl ass>
</ wor k- manager >

2-13

Chapter 2
Work Managers and Execute Queues

</ webl ogi ¢>

The descriptor in Example 2-10 defines a Work Manager using the context-request-
class.

Example 2-10 Web Application Descriptor

<?xm version="1.0" encodi ng="UTF-8"?>
<webl ogi c- web-app xm ns="http://xm ns. oracl e. conl webl ogi ¢/ webl ogi c- web- app"
xm ns:j2ee="http://java.sun.com xm /ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM.Schema- i nst ance”
xsi: schemaLocation="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- web- app
http://xm ns. oracl e. com webl ogi c/ webl ogi c- web- app/ 1. 8/ webl ogi c- web- app. xsd" >
<wor k- manager >
<nane>f oo- servl et - 1</ nanme>
<request - cl ass- name>t est - f ai r shar e2</ r equest - cl ass- nane>
<max-t hreads- constrai nt>
<nane>f oo- nt c</ name>
<pool - name>or acl ePool </ pool - nane>
</ max-t hreads- constrai nt>
</ wor k- manager >

<wor k- manager >
<name>f 0o- ser vl et </ name>
<cont ext - request - cl ass>
<name>t est - cont ext </ name>
<cont ext - case>
<user - name>anonymous</ user - nane>
<request - cl ass- name>t est - f ai r shar el</ request - cl ass- nane>
</ cont ext - case>

<cont ext - case>
<gr oup- name>ever yone</ gr oup- nane>
</ cont ext - request - cl ass>

</ wor k- manager >

</ webl ogi c- web- app>

2.6 Work Managers and Execute Queues

Learn how to enable backward compatibility with Execute Queues and how to migrate
applications from using Execute Queues to Work Managers.

2.6.1 Enabling Execute Queues

ORACLE

WebLogic Server, Version 8.1, implemented Execute Queues to handle thread
management in which you created thread-pools to determine how workload was
handled. WebLogic Server still provides Execute Queues for backward compatibility,
primarily to facilitate application migration. However, when developing new
applications, you should use Work Managers to perform thread management more
efficiently.

You can enable Execute Queues in the following ways:

» Using the command line option - Duebl ogi c. Use81St yl eExecut eQueues=t r ue

e Setting the Use81Styl eExecut eQueues property via the Kernel MBean in confi g. xnl .

2-14

Chapter 2
Accessing Work Managers Using MBeans

Enabling Execute Queues disables all Work Manager configuration and thread self
tuning. Execute Queues behave exactly as they did in WebLogic Server 8.1.

When enabled, Work Managers are converted to Execute Queues based on the
following rules:

e If the Work Manager implements a minimum or maximum threads constraint, then
an Execute Queue is created with the same name as the Work Manager. The
thread count of the Execute Queue is based on the value defined in the constraint.

e If the Work Manager does not implement any constraints, the global default
Execute Queue is used.

2.6.2 Migrating from Execute Queues to Work Managers

When an application is migrated from WebLogic Server 8.1, any Execute Queues
defined in the server configuration before migration will still be present. WebLogic
Server does not automatically convert the Execute Queues to Work Managers.

When an 8.1 application implementing Execute Queues is deployed on WebLogic
Server 9.x, the Execute Queues are created to handle thread management for
requests. However, only those requests whose dispatch-policy maps to an Execute
Queue will take advantage of this feature.

2.7 Accessing Work Managers Using MBeans

2.8 Using

ORACLE

Work Managers can be accessed using the WorkManagerMBean configuration
MBean.

WorkManagerMBean is accessed in the runtime tree or configuration tree depending
on how the Work Manager is accessed by an application.

* If the Work Manager is defined at the module level, the WorkManagerRuntime
MBean is available through the corresponding ComponentRuntimeMBean.

* If a Work Manager is defined at the application level, then WorkManagerRuntime
is available through ApplicationRuntime.

* If a Work Manager is defined globally in confi g. xni , each application creates its
own instance of the Work Manager. Each application has its own corresponding
WorkManagerRuntime available at the application level.

See WorkManagerMBean.

CommonJ With WebLogic Server

WebLogic Server Work Managers provide server-level configuration that allows
administrators a way to set dispatch-policies to their servlets and EJBs. WebLogic
Server provides a programmatic way of handling work from within an application by
implementing the commonj . wor k and commonj . ti ners packages of the CommonJ
specification.

For specific information on the WebLogic Server implementation of CommonJ, see the
CommonJ Javadocs.

The WebLogic Server implementation of CommonJ enables an application to break a
single request task into multiple work items, and assign those work items to execute
concurrently using multiple Work Managers configured in WebLogic Server.

2-15

Chapter 2
Using CommonJ With WebLogic Server

Applications that do not need to execute concurrent work items can also use
configured Work Managers by referencing or creating Work Managers in their
deployment descriptors or, for Java EE Connectors, using the JCA API.

The following are some differences between the WebLogic Server implementation and
the CommonJ specification:

e The RemoteWorkltem interface is an optional interface provided by the CommonJ
specification and is not supported in WebLogic Server. WebLogic Server
implements its own cluster load balancing and failover policies. Workload
management is based on these policies.

e WebLogic CommonJ timers behave differently than j ava. util. Ti ner. When the
execution is greater that twice the period, the WebLogic CommonJ timer will skip
some periods to avoid falling further behind. The java. util. Ti mer does not do this.

e In a WebLogic Server environment, the WrkLi st ener . Wr kRej ect ed method is
called when a thread becomes stuck.

2.8.1 Accessing CommonJ Work Managers

Unlike WebLogic Server Work Managers, which can only be accessed from an
application via dispatch policies, you can access CommonJ Work Managers directly
from an application. The following code example demonstrates how to lookup a
CommonJ Work Manager using JNDI:

Initial Context ic = new Initial Context();
conmmon;j . wor k. Wor kManager wm =
(commonj . wor k. Wor kManager)i c. | ookup("] ava: conp/ env/ wl nyW') ;

See CommonJ Javadocs.

2.8.2 Mapping CommonJ to WebLogic Server Work Managers

ORACLE

You can map an externally defined CommonJ Work Manager to a WebLogic Server
Work Manager. For example, if you have a CommonJ Work Manager defined in a
descriptor, ej b-j ar. xn , for example, as:

<resource-ref>
<res-ref-name>ni nt hr eads_wor kmanager </ r es- r ef - nane>
<res-type>conmon] . wor k. Wor kManager </ r es-t ype>
<res- aut h>Cont ai ner </ r es- aut h>
<res-sharing- scope>Shar eabl e</res- shari ng- scope>
</resource-ref>

You can link this to a WebLogic Server Work Manager by ensuring that the nane
element is identical in the WebLogic Server descriptor such as webl ogi c-ej b-j ar. xm :

<wor k- manager >
<name>ni nt hr eads_wor kmanager </ nane>
<mi n-t hreads-constraint >
<count >5</ count >
</ m n-threads-constraint>
</ wor k- manager >

This procedure is similar for a resource-ref defined in web. xnl . The WebLogic Server
Work Manager can be defined in either a module descriptor (webl ogi c-ej b-jar. xn or
webl ogi c. xnl , for example) or in the application descriptor (webl ogi c- appl i cati on. xnl).

2-16

Avoiding and Managing Overload

WebLogic Server has overload protection features that help to detect, avoid, and
recover from overload conditions. These features prevent the negative consequences
that result from continuing to accept requests when the system capacity is reached.
These consequences degrade the application performance and stability.

» Configuring WebLogic Server to Avoid Overload Conditions
* WebLogic Server Self-Monitoring
* WebLogic Server Exit Codes

3.1 Configuring WebLogic Server to Avoid Overload
Conditions

When system capacity is reached, if an application server continues to accept
requests, application performance and stability can deteriorate.

The following sections demonstrate how you can configure WebLogic Server to
minimize the negative results of system overload.

3.1.1 Limiting Requests in the Thread Pool

In WebLogic Server, all requests, whether related to system administration or
application activity—are processed by a single thread pool. An administrator can
throttle the thread pool by defining a maximum queue length. Beyond the configured
value, WebLogic Server will refuse requests, except for requests on administration
channels.

Note:

Administration channels allow access only to administrators. The limit you
set on the execute length does not effect administration channel requests, to
ensure that reaching the maximum thread pool length does not prevent
administrator access to the system. To limit the number of administration
requests allowed in the thread pool, you can configure an administration
channel, and set the MaxConnectedClients attribute for the channel.

When the maximum number of enqueued requests is reached, WebLogic Server
immediately starts rejecting:

* Web application requests.

* Non-transactional RMI requests with a low fair share, beginning with those with the
lowest fair share.

ORACLE 3-1

Chapter 3
Configuring WebLogic Server to Avoid Overload Conditions

If the overload condition continues to persist, higher priority requests will start
getting rejected, with the exception of JIMS and transaction-related requests, for
which overload management is provided by the JMS and the transaction manager.

Throttle the thread pool by setting the Shared Capacity For Wrk Mnagers field in the
WebLogic Server Administration Console (see Environments > Servers >
server_name > Configuration > Overload). The default value of this field is 65536.

3.1.1.1 Work Managers and Thread Pool Throttling

An administrator can configure Work Managers to manage the thread pool at a more
granular level, for sets of requests that have similar performance, availability, or
reliability requirements. A Work Manager can specify the maximum requests of a
particular request class that can be queued. The maximum requests defined in a Work
Manager works with the global thread pool value. The limit that is reached first is
honored.

See Using Work Managers to Optimize Scheduled Work.

3.1.2 Limiting HTTP Sessions

An administrator can limit the number of active HTTP sessions based on detection of a
low memory condition. This is useful in avoiding out of memory exceptions.

WebLogic Server refuses requests that create new HTTP sessions after the
configured threshold has been reached. In a WebLogic Server cluster, the proxy plug-
in redirects a refused request to another Managed Server in the cluster. A non-
clustered server instance can redirect requests to alternative server instance.

The Servlet container takes one of the following actions when maximum number of
sessions is reached:

» If the server instance is in a cluster, the servlet container throws a
Sessi onCr eat i onExcept i on. Your application code should handle this run-time
exception and send a relevant response.

To implement overload protection, you should handle this exception and send a
503 response explicitly. This response can then be handled by the proxy or load
balancer.

You set a limit for the number of simultaneous HTTP sessions in the deployment
descriptor for the Web application. For example, the following element sets a limit of
12 sessions:

<sessi on-descri pt or>
<max- i n- menory- sessi ons>12</ max- i n- menory- sessi ons>
</ sessi on-descri pt or >

3.1.3 Exit on Out of Memory Exceptions

ORACLE

Administrators can configure WebLogic Server to exit upon an out of memory
exception. This feature allows you to minimize the impact of the out of memory
condition—automatic shutdown helps avoid application instability, and you can
configure Node Manager or another high availability (HA) tool to automatically restart
WebLogic Server, minimizing down-time.

You can configure this using the WebLogic Server Administration Console, or by
editing the following elements in config.xml:

3-2

Chapter 3
WebLogic Server Self-Monitoring

<overl oad- protecti on>
<pani c- acti on>syst em exi t </ pani c-acti on>
</ over| oad- protection>

See the description of the OverloadProtectionMBean in the MBean Reference for
Oracle WebLogic Server.

3.1.4 Stuck Thread Handling

WebLogic Server checks for stuck threads periodically. If all application threads are
stuck, a server instance marks itself failed, if configured to do so, exits. You can
configure Node Manager or a third-party high-availability solution to restart the server
instance for automatic failure recovery.

You can configure these actions to occur when not all threads are stuck, but the
number of stuck threads have exceeded a configured threshold:

e Shut down the Work Manager if it has stuck threads. A Work Manager that is shut
down will refuse new work and reject existing work in the queue by sending a
rejection message. In a cluster, clustered clients will fail over to another cluster
member.

e Shut down the application if there are stuck threads in the application. The
application is shutdown by bringing it into admin mode. All Work Managers
belonging to the application are shut down, and behave as described above. Once
the stuck thread condition is cleared, the application automatically returns to
running mode.

* Mark the server instance as failed and shut it down it down if there are stuck
threads in the server. In a cluster, clustered clients that are connected or
attempting to connect will fail over to another cluster member.

See the description of the OverloadProtectionMBean in the MBean Reference for
Oracle WebLogic Server.

3.2 WebLogic Server Self-Monitoring

WebLogic Server self-monitoring features aid in determining and reporting overload
conditions.

3.2.1 Overloaded Health State

ORACLE

WebLogic Server has a health state—OVERLOADED—Wwhich is returned by the
Ser ver Runt i meMBean. get Heal t hSt at e() when a server instance whose life cycle state is
RUNNI NG becomes overloaded. This condition occurs as a result of low memory.

Upon entering the OVERLOADED state, server instances start rejecting requests from the
Work Manager queue (if a Work Manager is configured), HTTP requests return a 503
Error (Service Unavailable), and RMI requests fail over to another server if clustered,
otherwise, a remote exception is returned to the client.

The server instances health state returns to X after the overload condition passes. An
administrator can suspend or shut down an OVERLOADED server instance.

3-3

Chapter 3
WebLogic Server Exit Codes

3.3 WebLogic Server Exit Codes

ORACLE

When WebLogic Server exits it returns an exit code. The exit codes can be used by
shell scripts or HA agents to decide whether a server restart is necessary.

See WebLogic Server Exit Codes and Restarting After Failure in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

3-4

Configuring Network Resources

The configurable network resources such as network channels and domain-wide
administration ports help you effectively use the network features of the machines that
host your applications and manage quality of service.

* Overview of Network Configuration

* Understanding Network Channels

* Configuring a Channel

* Assigning a Custom Channel to an EJB
e Using IPv6 with IPv4

4.1 Overview of Network Configuration

For many development environments, configuring WebLogic Server network resources
is simply a matter of identifying a Managed Server listen address and listen port.
However, in most production environments, administrators must balance finite network
resources against the demands placed upon the network. The task of keeping
applications available and responsive can be complicated by specific application
requirements, security considerations, and maintenance tasks, both planned and
unplanned.

WebLogic Server lets you control the network traffic associated with your applications
in a variety of ways, and configure your environment to meet the varied requirements
of your applications and end users. You can:

» Designate the Network Interface Cards (NICs) and ports used by Managed
Servers for different types of network traffic.

e Support multiple protocols and security requirements.
* Specify connection and message time-out periods.
* Impose message size limits.

You specify these and other connection characteristics by defining a network channel
—the primary configurable WebLogic Server resource for managing network

connections. You configure a network channel in the WebLogic Server Administration
Console (Servers > Protocols > Channels) or by using the Net wor kAccessPoi nt MBean.

4.2 Understanding Network Channels

Learn about network channels, the standard channels that WebLogic Server pre-
configures, and common applications for channels.

4.2.1 What Is a Channel?

A network channel is a configurable resource that defines the attributes of a network
connection to WebLogic Server. For instance, a network channel can define:

ORACLE 4-1

Chapter 4
Understanding Network Channels

» The protocol the connection supports.
* The listen address.

* The listen ports for secure and non-secure communication.

» Connection properties such as the login time-out value and maximum message
sizes.

* Whether or not the connection supports tunneling.

* Whether the connection can be used to communicate with other WebLogic Server
instances in the domain, or used only for communication with clients.

4.2.1.1 Rules for Configuring Channels

Follow these guidelines when configuring a channel.

* You can assign a particular channel to only one server instance.
* You can assign multiple channels to a server instance.

« Each channel assigned to a particular server instance must have a unique
combination of listen address, listen port, and protocol.

* You can configure a custom identity keystore, and other channel-specific SSL
attributes, that are separate from and that override the default keystore and SSL
configuration settings for the Managed Server instance or the domain.

* If you assign non-SSL and SSL channels to the same server instance, make sure
that they do not use the same port number.

4.2.1.2 Custom Channels Can Inherit Default Channel Attributes

If you do not assign a channel to a server instance, it uses the WebLogic Server
default channel, which is automatically configured by WebLogic Server, based on the
attributes in Server MBean or SSLMBean; the operating system determines the network
interface. The default channel is described in The Default Network Channel.

Server MBean and SSLMBean represent a server instance and its SSL configuration. When
you configure a server instance listen address, listen port, and SSL listen port, using
the Server > Configuration > General page, those values are stored in the

Ser ver MBean and SSLMBean for the server instance.

If you do not specify a particular connection attribute in a custom channel definition,
the channel inherits the value specified for the attribute in Server MBean. For example, if
you create a channel, and do not define its listen address, the channel uses the listen
address defined in Server MBean. Similarly, if a Managed Server cannot bind to the listen
address or listen port configured in a channel, the Managed Server uses the defaults
from Server MBean or SSLMBean.

4.2.2 Why Use Network Channels?

ORACLE

You use network channels to manage quality of service, meet varying connection
requirements, and improve utilization of your systems and network resources. For
example, network channels allow you to:

* Segregate different types of network traffic—You can configure whether or not
a channel supports outgoing connections. By assigning two channels to a server
instance—one that supports outgoing connections and one that does not—you

4-2

Chapter 4
Understanding Network Channels

can independently configure network traffic for client connections and server
connections, and physically separate client and server network traffic on different
listen addresses or listen ports.

You cannot create an outbound only network channel; there always has to be a
corresponding inbound interface, port, and protocol associated with the channel.
However, you can avoid directing your traffic to it or use a firewall to block it. Also
remember that a custom channel is protocol specific, so you will need a network
channel defined per protocol (HTTP, HTTPS, t3, t3s, and such). See, also

Net wor kAccessPoi nt MBean. Cut boundEnabl ed.

You can also segregate instance administration and application traffic by
configuring a domain-wide administration port or administration channel. See
Administration Port and Administrative Channel.

e Support varied application or user requirements on the same Managed
Server—You can configure multiple channels on a Managed Server to support
different protocols, or to tailor properties for secure versus non-secure traffic.

By configuring a network channel to use a custom identity keystore, you can
assert an identity on that channel that is different from the identity configured for
the Managed Server or domain.

e Segregate internal application network traffic—You can assign a specific
channel to a an EJB.

If you use a network channel with a server instance on a multihomed machine, you
must enter a valid listen address either in Server MBean or in the channel. If the channel
and Ser ver MBean listen address are blank or specify the localhost address (IP address
0.0.0.0 or 127.*.*.*), the server binds the network channel listen port and SSL listen
ports to all available IP addresses on the multihomed machine. See The Default
Network Channel for information on setting the listen address in Ser ver MBean.

4.2.2.1 Handling Channel Failures

When initiating a connection to a remote server, and multiple channels with the same
required destination, protocol and quality of service exist, WebLogic Server will try
each in turn until it successfully establishes a connection or runs out of channels to try.

4.2.2.2 Upgrading Quality of Service Levels for RMI

For RMI lookups only, WebLogic Server may upgrade the service level of an outgoing
connection. For example, if a T3 connection is required to perform an RMI lookup, but
an existing channel supports only T3S, the lookup is performed using the T3S
channel.

This upgrade behavior does not apply to server requests that use URLSs, since URLs
embed the protocol itself. For example, the server cannot send a URL request
beginning with http:// over a channel that supports only https://.

4.2.3 Standard WebLogic Server Channels

WebLogic Server provides pre-configured channels that you do not have to explicitly
define.

e Default channel—Every Managed Server has a default channel.

ORACLE 4.3

Chapter 4
Understanding Network Channels

* Administrative channel—If you configure a domain-wide administration port,
WebLogic Server configures an administrative channel for each Managed Server
in the domain.

4.2.3.1 The Default Network Channel

Every WebLogic Server domain has a default channel that is generated automatically
by WebLogic Server. The default channel is based on the listen address and listen
port defined in the Server MBean and SSLMBean. It provides a single listen address, one
port for HTTP (non-secure) communication (7001 by default), and one port for HTTPS
(secure) communication (7002 by default). You can configure the listen address and
listen port using the Configuration > General page in the WebLogic Server
Administration Console; the values you assign are stored in attributes of the

Ser ver MBean and SSLMBean.

The default configuration may meet your needs if:

e You are installing in a test environment that has simple network requirements.

e Your server uses a single NIC, and the default port numbers provide enough
flexibility for segmenting network traffic in your domain.

Using the default configuration ensures that third-party administration tools remain
compatible with the new installation, because network configuration attributes remain
stored in Server MBean and SSLMBean.

Even if you define and use custom network channels for your domain, the default
channel settings remain stored in Server MBean and SSLMBean, and are used if necessary
to provide connections to a server instance.

" Note:

Unless specified, WebLogic Server uses the non-secure default channel for

cluster communication to send session information among cluster members.
If you disable the non-secure channel, there is no other channel available by
default for the non-secure communication of cluster session information. To

address this, you can:

e Enable the secureRepl i cati onEnabl ed attribute of the O ust er MBean so that
the cluster uses a secure channel for communication. See Configuring a
Replication Channel.

¢ Create a custom channel for non-secure communication. See Custom
Channels Can Inherit Default Channel Attributes.

4.2.3.2 Administration Port and Administrative Channel

ORACLE

You can separate administration traffic from application traffic in your domain by
defining an optional administration port. When configured, the administration port is
used by each Managed Server in the domain exclusively for communication with the
domain Administration Server. If an administration port is enabled, WebLogic Server
automatically generates an administrative channel for your domain, based on the port
settings upon server instance startup. The administrative channel provides a listen
address and listen port to handle administration traffic.

4-4

Chapter 4
Understanding Network Channels

4.2.3.2.1 Administration Port Capabilities

An administration port enables you to:

e Start a server in standby state. This allows you to administer a Managed Server,
while its other network connections are unavailable to accept client connections.
See STANDBY State in Administering Server Startup and Shutdown for Oracle
WebLogic Server.

» Separate administration traffic from application traffic in your domain. In production
environments, separating traffic ensures that critical administration operations
(starting and stopping servers, changing a server's configuration, and deploying
applications) do not compete with high-volume application traffic on the same
network connection.

» Administer a deadlocked server instance using WLST. If you do not configure an
administration port, administrative commands such as t hr eadDunp and shut down will
not work on deadlocked server instances.

4.2.3.2.2 Administration Port Restrictions

ORACLE

The administration port accepts only secure, SSL traffic, and all connections via the
port require authentication. Enabling the administration port imposes the following
restrictions on your domain:

* The Administration Server and all Managed Servers in your domain must be
configured with support for the SSL protocol. Managed Servers that do not support
SSL cannot connect with the Administration Server during startup—you will have
to disable the administration port in order to configure them.

* Because all server instances in the domain must enable or disable the
administration port at the same time, you configure the administration port at the
domain level. You can change an individual Managed Server administration port
number, but you cannot enable or disable the administration port for an individual
Managed Server. The ability to change the port number is useful if you have
multiple server instances with the same listen address.

e After you enable the administration port, you must establish an SSL connection to
the Administration Server in order to start any Managed Server in the domain. This
applies whether you start Managed Servers manually, at the command line, or
using Node Manager. For instructions to establish the SSL connection, see
Administration Port Requires SSL.

* After enabling the administration port, all WebLogic Server Administration Console
traffic must connect via the administration port.

» If multiple server instances run on the same computer in a domain that uses a
domain-wide administration port, you must either:

— Host the server instances on a multihomed machine and assign each server
instance a unique listen address, or

— Override the domain-wide port on all but one of the servers instances on the
machine. Override the port using the Local Administration Port Override option
in the Advanced Attributes section of the Server > Connections > SSL Ports
page in the WebLogic Server Administration Console.

4-5

Chapter 4
Understanding Network Channels

4.2.3.2.3 Administration Port Requires SSL

The administration port requires SSL, which is enabled by default when you install
WebLogic Server. If SSL has been disabled for any server instance in your domain,
including the Administration Server and all Managed Servers, re-enable it using the
Server > Configuration > General page in the WebLogic Server Administration
Console.

Ensure that each server instance in the domain has a configured default listen port or
default SSL listen port. The default ports are those you assign on the Server >
Configuration > General page in the WebLogic Server Administration Console. A
default port is required in the event that the server cannot bind to its configured
administration port. If an additional default port is available, the server will continue to
boot and you can change the administration port to an acceptable value.

By default WebLogic Server is configured to use demonstration certificate files. To
configure production security components, follow the steps in Configuring SSL in
Administering Security for Oracle WebLogic Server.

4.2.3.2.4 Configure Administration Port

Enable the administration port as described in Enabling the Domain-Wide
Administration Port in Oracle WebLogic Server Administration Console Online Help.

After configuring the administration port, you must restart the Administration Server
and all Managed Servers to use the new administration port.

4.2.3.2.5 Booting Managed Servers to Use Administration Port

If you reboot Managed Servers at the command line or using a start script, specify the
administration port in the port portion of the URL. The URL must specify the https://
prefix, rather than http://, as shown below.

- Dwebl ogi c. managenent . server =https://host: adm n_port

Note:

If you use Node Manager for restarting the Managed Servers, it is not
necessary to modify startup settings or arguments for the Managed Servers.
Node Manager automatically obtains and uses the correct URL to start a
Managed Server.

If the hostname in the URL is not identical to the hostname in the Administration
Server's certificate, disable hostname verification in the command line or start script,
as shown below:

- Dwebl ogi c. security. SSL. i gnor eHost naneVeri fi cati on=true

4.2.3.2.6 Booting Managed Servers to Use Administrative Channels

To allow a Managed Server to bind to an administrative channel during reboot, use the
following command-line option:

ORACLE 4-6

Chapter 4
Understanding Network Channels

- Dwebl ogi ¢. admi n. Li st enAddr ess=<addr >

This allows the Managed Server to startup using an administrative channel. After the
initial bootstrap connection, a standard administrative channel is used.

Note:

This option is useful to ensure that the appropriate NIC semantics are used
before config. xm is downloaded.

4.2.3.2.7 Custom Administrative Channels

If the standard WebLogic Server administrative channel does not satisfy your
requirements, you can configure a custom channel for administrative traffic. For
example, a custom administrative channel allows you to segregate administrative
traffic on a separate NIC.

To configure a custom channel for administrative traffic, configure the channel as
described in Configuring a Channel, and select "admin" as the channel protocol. Note
the configuration and usage guidelines described in:

e Administration Port Requires SSL

e Booting Managed Servers to Use Administration Port

4.2.4 Using Internal Channels

Previous version of WebLogic Server allowed you to configure multiple channels for
external traffic, but required you to use the default channel for internal traffic between
server instances. WebLogic Server now allows you to create network channels to
handle administration traffic or communications between clusters. This can be useful
in the following situations:

* Internal administration traffic needs to occur over a secure connection, separate
from other network traffic.

* Other types of network traffic, for example replication data, need to occur over a
separate network connection.

» Certain types of network traffic need to be monitored.

4.2.4.1 Channel Selection

All internal traffic is handled via a network channel. If you have not created a custom
network channel to handle administrative or clustered traffic, WebLogic Server
automatically selects a default channel based on the protocol required for the
connection. See The Default Network Channel.

4.2.4.2 Internal Channels Within a Cluster

Within a cluster, internal channels can be created to handle to the following types of
server-to-server connections:

* Multicast traffic

ORACLE 47

Chapter 4
Configuring a Channel

Replication traffic

Administration traffic

See Configuring Network Channels For a Cluster.

4.3 Configuring a Channel

Use the WebLogic Server Administration Console or Net wor kAccessPoi nt MBean to
configure a network channel.

From the console, navigate to Servers > Protocols > Channels page to configure the
channel properties. To configure a channel for clustered Managed Servers see,
Configuring Network Channels For a Cluster.

For a summary of key facts about network channels, and guidelines related to their
configuration, see Guidelines for Configuring Channels .

4.3.1 Guidelines for Configuring Channels

Follow these guidelines when configuring a channel.

4.3.1.1 Channels and Server Instances

Each channel you configure for a particular server instance must have a unique
combination of listen address, listen port, and protocol.

A channel can be assigned to a single server instance.
You can assign multiple channels to a server instance.

If you assign non-SSL and SSL channels to the same server instance, make sure
that they do not use the same combination of address and port number.

4.3.1.2 Dynamic Channel Configuration

In WebLogic Server, you can configure a network channel without restarting the

server. Additionally, you can start and stop dynamically configured channels while
the server is running. However, when you shutdown a channel while the server is
running, the server does not attempt to gracefully terminate any work in progress.

4.3.1.3 Channels and Identity

ORACLE

By default, when you configure a network channel, the channel uses the SSL
configuration that is set for the server instance. This means that the channel uses
the same identity and trust that is established for the server. The server might use
a custom identity that is specific to that server, or it might be a single domain-wide
identity, depending on how the server instance and domain are configured.

You can configure a network channel to use a custom identity keystore, and other
SSL attributes, that are specific to that channel. This allows you to use an identity
on that channel that is different from the one configured for the server. Using this
capability, you can configure a server that can switch to a different identity when
communicating with a particular client.

See Configuring an ldentity Keystore Specific to a Network Channel in
Administering Security for Oracle WebLogic Server.

4-8

Chapter 4
Configuring a Channel

4.3.1.4 Channels and Protocols

* Some protocols do not support particular features of channels. In particular the
COM protocol does not support SSL or tunneling.

* You must define a separate channel for each protocol you wish the server
instance to support, with the exception of HTTP.

HTTP is enabled by default when you create a channel, because RMI protocols
typically require HTTP support for downloading stubs and classes. You can
disable HTTP support on the Advanced Options portion of the Servers >
Protocols > Channels page in the WebLogic Server Administration Console.

4.3.1.5 Reserved Names

* WebLogic Server uses the internal channel names . W.Def aul t Channel
and . W.Def aul t Adni nChannel and reserves the . W prefix for channel names. Do not
begin the name of a custom channel with the string . W.

4.3.1.6 Channels, Proxy Servers, and Firewalls

If your configuration includes a a firewall between a proxy Web server and a cluster
(as described in Firewall Between Proxy Layer and Cluster in Administering Clusters
for Oracle WebLogic Server), and the clustered servers are configured with two
custom channels for segregating HTTPS and HTTP traffic, those channels must share
the same listen address. Furthermore, if both HTTP and HTTPS traffic needs to be
supported, there must be a custom channel for each—it is not possible to use the
default configuration for one or the other.

If either of those channels has a Publ i cAddr ess defined, as is likely given the existence
of the firewall, both channels must define Publ i cAddr ess, and they both must define the
same Publ i cAddr ess.

4.3.2 Configuring Network Channels For a Cluster

To configure a channel for clustered Managed Servers, note the information in
Guidelines for Configuring Channels , and follow the guidelines described in the
following sections.

4.3.2.1 Create the Cluster

ORACLE

If you have not already configured a cluster you can:

* Use the Configuration Wizard to create a new, clustered domain, following the
instructions in Create a Clustered Domain in Administering Clusters for Oracle
WebLogic Server, or

* Use the WebLogic Server Administration Console to create a cluster in an existing
domain, following the instructions Create and configure clusters in Oracle
WebLogic Server Administration Console Online Help.

For information and guidelines about configuring a WebLogic Server cluster, see
Before You Start in Administering Clusters for Oracle WebLogic Server.

4-9

Chapter 4
Configuring a Channel

4.3.2.2 Create and Assign the Network Channel

Use the instructions in Configuring a Network Channel in Oracle WebLogic Server
Administration Console Online Help to create a new network channel for each
Managed Server in the cluster. When creating the new channels:

* For each channel you want to use in the cluster, configure the channel identically,
including its name, on each Managed Server in the cluster.

» Make sure that the listen port and SSL listen port you define for each Managed
Server's channel are different than the Managed Server's default listen ports. If the
custom channel specifies the same port as a Managed Server's default port, the
custom channel and the Managed Server's default channel will each try to bind to
the same port, and you will be unable to start the Managed Server.

» If a cluster address has been explicitly configured for the cluster, it will be appear
in the Cluster Address field on the Server > Protocols > Channels >
Configuration page.

If you are using dynamic cluster addressing, the Cluster Address field will be
empty, and you do not need to supply a cluster address. For information about the
cluster address, and how WebLogic Server can dynamically generate the cluster
address, see Cluster Address in Administering Clusters for Oracle WebLogic
Server.

Note:

If you want to use dynamic cluster addressing, do not supply a cluster

address on the Server > Protocols > Channels > Configuration page.
If you supply a cluster address explicitly, that value will take precedence
and WebLogic Server will not generate the cluster address dynamically.

4.3.2.3 Configuring a Replication Channel

ORACLE

A replication channel is a network channel that is designated to transfer replication
information between clusters. If a replication channel is not explicitly defined,
WebLogic Server uses a default network channel to communicate replication
information.

When WebLogic Server uses a default network channel as the replication channel, it
does not use SSL encryption by default. You must enable SSL encryption using the
secur eRepl i cat i onEnabl ed attribute of the d ust er MBean. You can also update this setting
from the WebLogic Server Administration Console.

Enabling SSL encryption can have a direct impact on clustered application throughput
as session replication is blocking by design. in other words, no response is sent to the
client until replication is completed. You should consider this when deciding to enable
SSL on the replication channel.

If a replication channel is explicitly defined, the channel's protocol is used to transmit
replication traffic.

4-10

Chapter 4
Assigning a Custom Channel to an EJB

4.3.2.4 Increase Packet Size When Using Many Channels

Use of more than about twenty channels in a cluster can result in the formation of
multicast header transmissions that exceed the default maximum packet size. The
MIUSi ze attribute in the Server element of confi g. xm sets the maximum size for
packets sent using the associated network card to 1500. Sending packets that exceed
the value of MTUSi ze can result in a java. | ang. Negat i veArraySi zeExcepti on. You can
avoid exceptions that result from packet sizes in excess of MIUSi ze by increasing the
value of MTUSi ze from its default value of 1500.

4.4 Assigning a Custom Channel to an EJB

4.5 Using

ORACLE

After you configure a custom channel, assign it to an EJB using the net wor k- access-
poi nt element in webl ogi c- ej b-j ar. xnl , you can assign a custom channel to an EJB.

See network-access-point in Developing Enterprise JavaBeans, Version 2.1, for
Oracle WebLogic Server.

IPv6 with IPv4

WebLogic Server supports host machines that are configured to use either Internet
Protocol (IP) versions 4 or 6 (IPv4 and IPv6).

If you have a domain that includes some machines that use IPv4 in network
communications and others that use IPv6, and the Administration Server is hosted on
a machine using IPv4, the status of the Managed Server instances hosted on the
machines using IPv6 might be displayed as "unknown" in the WebLogic Server
Administration Console.

To make the status of these Managed Server instances available in the WebLogic
Server Administration Console, you must specify a listen address for them. If your
server is running, you will have to restart it after specifying the listen address. For
information on assigning the listen address for a Managed Server in an existing
domain using the WebLogic Server Administration Console, see Configure listen
addresses in the Oracle WebLogic Server Administration Console Online Help.

You can also specify the listen address for your Managed Server when configuring it
with the Configuration Wizard. On the Managed Servers page, enter the physical IP
address of each Managed Server in the Listen Address field, save changes and
continue configuring.

4-11

Configuring Web Server Functionality

Learn how to configure a Java EE Web application hosted on WebLogic Server to
function as a standard HTTP Web server hosting static content. Web applications also
can host dynamic content such as JSPs and servlets. See Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

e Overview of Configuring Web Server Components

* Configuring the Server

* Web Applications

» Configuring Virtual Hosting

* How WebLogic Server Resolves HTTP Requests

e Setting Up HTTP Access Logs

* Preventing POST Denial-of-Service Attacks

e Setting Up WebLogic Server for HTTP Tunneling

* Using Native I/O for Serving Static Files (Windows Only)

5.1 Overview of Configuring Web Server Components

In addition to hosting dynamic Java-based distributed applications, WebLogic Server
functions as a Web server that handles high-volume Web sites, serving static files
such as HTML files and image files, as well as servlets and JavaServer Pages (JSP).

WebLogic Server supports the HTTP 1.1 standard.

5.2 Configuring the Server

ORACLE

You can specify the port that each WebLogic Server listens on for HTTP requests.
Although you can specify any valid port number, if you specify port 80, you can omit
the port number from the HTTP request used to access resources over HTTP. For
example, if you define port 80 as the listen port, you can use the form htt p: // host nane/
nyfile. htm instead of http://host name: port nunber/nyfile. htn .

On UNIX systems, binding a process to a port lower than 1025 must be done from the
account of a privileged user, usually root. Consequently, if you want WebLogic Server
to listen on port 80, you must start WebLogic Server as a privileged user; yet it is
undesirable from a security standpoint to allow long-running processes like WebLogic
Server to run with more privileges than necessary. WebLogic Server needs root
privileges only until the port is bound.

WebLogic Server provides capabilities to switch its UNIX user ID (UID) and/or UNIX
group ID (GID) after it binds to port 80. You can change the UID (or GID) either
through the WebLogic Server Administration Console (see Configuring the Listen
Port) or by accessing Uni xMachi neMBean using WLST. Use

Uni xMachi neMBbean. set Post Bi ndUl D() to set the UID and enable the switch by setting

5-1

Chapter 5
Web Applications

Uni xMachi neMBean. set Post Bi ndUl DEnabl ed() to true. Similarly, the GID can be changed
using methods Uni xMachi neMBean. set Post Bi ndG () and
Uni xMachi neMBean. set Post Bi ndG DEnabl ed() .

You can switch to the UNIX account "nobody," which is the least privileged user on
most UNIX systems. If desired, you may create a UNIX user account expressly for
running WebLogic Server. Make sure that files needed by WebLogic Server, such as
log files and the WebLogic classes, are accessible by the non-privileged user. Once
ownership of the WebLogic process has switched to the non-privileged user,
WebLogic will have the same read, write, and execute permissions as the non-
privileged user.

You define a separate listen port for non-SSL and secure (using SSL) requests. For
additional information on configuring listen ports, see Understanding Network
Channels.

5.2.1 Configuring the Listen Port
1. Use the WebLogic Server Administration Console to set the listen port to port 80.
See Configure Listen Ports.
2. If the machine hosting WebLogic Server is running Windows, skip to step 8.

3. Use the WebLogic Server Administration Console to create a new Unix Machine.
See Configure Machines.

4. Select the Enabl e Post-Bi nd U D field.

5. Enter the user name you want WebLogic Server to run as in the Post-Bind U D
field.

6. Select the Enabl e Post-Bind G D fields.

7. Enter the group name you want WebLogic Server to run as in the Post-Bind G D
field.

8. Click Save.

9. To activate these changes, in the Change Center of the WebLogic Server
Administration Console, click Activate Changes.

5.3 Web Applications

HTTP and Web applications are deployed according to the Java EE Servlet 3.0 and
JSP 2.2 specifications, which describe Web Applications as a standard for grouping
the components of a Web-based application. These components include JSP pages,
HTTP servlets, and static resources such as HTML pages or image files. In addition, a
Web application can access external resources such as EJBs and JSP tag libraries.
Each server can host any number of Web applications. You typically use the name of
the Web application as part of the URI you use to request resources from the Web
application.

See Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

5.3.1 Web Applications and Clustering

Web applications can be deployed to a WebLogic Server cluster. When a user
requests a resource from a Web application, the request is routed to one of the

ORACLE 5-2

Chapter 5
Configuring Virtual Hosting

servers in the cluster that host the Web application. If an application uses a session
object, then sessions must be replicated across the nodes of the cluster. Several
methods of replicating sessions are provided.

See Administering Clusters for Oracle WebLogic Server.

5.4 Configuring Virtual Hosting

Virtual hosting allows you to define host names that servers or clusters respond to.
When you use virtual hosting, you use DNS to specify one or more host names that
map to the IP address of a WebLogic Server instance or cluster, and you specify
which Web applications are served by the virtual host. When used in a cluster, load
balancing allows the most efficient use of your hardware, even if one of the DNS host
names processes more requests than the others.

For example, you can specify that a Web application called books responds to requests
for the virtual host name ww. books. com and that these requests are targeted to
WebLogic Servers A,B, and C, while a Web application called car s responds to the
virtual host name wwv. aut os. com and these requests are targeted to WebLogic Servers
D and E. You can configure a variety of combinations of virtual host, WebLogic Server
instances, clusters, and Web applications, depending on your application and Web
server requirements.

For each virtual host that you define you can also separately define HTTP parameters
and HTTP access logs. The HTTP parameters and access logs set for a virtual host
override those set for a server. You may specify any number of virtual hosts.

You activate virtual hosting by targeting the virtual host to a server or cluster of
servers. Virtual hosting targeted to a cluster will be applied to all servers in the cluster.

5.4.1 Virtual Hosting and the Default Web Application

ORACLE

You can also designate a default Web Application for each virtual host. The default
Web application for a virtual host responds to all requests that cannot be resolved to
other Web applications deployed on the same server or cluster as the virtual host.

Unlike other Web applications, a default Web application does not use the Web
application name (also called the context path) as part of the URI used to access
resources in the default Web application.

For example, if you defined virtual host name wwmv. nyst ore. comand targeted it to a
server on which you deployed a Web application called shoppi ng, you would access a
JSP called cart . j sp from the shoppi ng Web application with the following URI:

http://ww:. nystore. conl shoppi ng/cart.jsp

If, however, you declared shoppi ng as the default Web application for the virtual host
wwmv. myst or e. com you would access cart . j sp with the following URI:

http://ww. nystore.comcart.jsp

See How WebLogic Server Resolves HTTP Requests.

When using multiple Virtual Hosts with different default Web applications, you can not
use single sign-on, as each Web application will overwrite the JSESSIONID cookies
set by the previous Web application. This will occur even if the CookieName,
CookiePath, and CookieDomain are identical in each of the default Web applications.

5-3

Chapter 5
How WebLogic Server Resolves HTTP Requests

5.4.2 Setting Up a Virtual Host

1. Use the Administration Console to define a virtual host. See Virtual Host.

2. Add a line naming the virtual host to the et ¢/ host s file on your server to ensure
that the virtual host name can be resolved.

5.5 How WebLogic Server Resolves HTTP Requests

When WebLogic Server receives an HTTP request, it resolves the request by parsing
the various parts of the URL and using that information to determine which Web
application and/or server should handle the request.

Table 5-1 demonstrates various combinations of requests for Web applications, virtual
hosts, servlets, JSPs, and static files and the resulting response.

Note:

If you package your Web application as part of an Enterprise application, you
can provide an alternate name for a Web application that is used to resolve
requests to the Web application. See Developing Web Applications, Serviets,
and JSPs for Oracle WebLogic Server.

Table 5-1 provides some sample URLs and the file that is served by WebLogic Server.
The Index Directories Checked column refers to the Index Directories attribute that
controls whether or not a directory listing is served if no file is specifically requested.

Table 5-1 Examples of How WebLogic Server Resolves URLs

URL Index Directories Checked? This file is served in
response

No Welcome file* defined in the

http://host:port/appl es appl es Web application.

Yes Directory listing of the top-
level directory of the appl es
Web application.

http://host:port/appl es

Does not matter Servlet mapped with <ur| -
pattern>of/naval inthe
or anges Web application.

http://host: port/oranges/
naval

There are additional
considerations for servlet
mappings. See Configuring
Servlets in Developing Web
Applications, Servlets, and
JSPs for Oracle WebLogic
Server.

ORACLE 5-4

ORACLE

Chapter 5

How WebLogic Server Resolves HTTP Requests

Table 5-1 (Cont.) Examples of How WebLogic Server Resolves URLs

]
Index Directories Checked? This file is served in

URL

response

http://host: port/naval

Does not matter

Servlet mapped with <ur| -
pattern>of/naval inthe

or anges Web application and
oranges is defined as the
default Web application.

See Configuring Servlets in
Developing Web Applications,
Servlets, and JSPs for Oracle
WebLogic Server.

http://host:port/appl es/
pie.jsp

Does not matter

pi e. j sp, from the top-level
directory of the appl es Web
application.

.) Yes Directory listing of the top-
http://host: port level directory of the default
Web application
No Welcome file* from the default

http://host: port

Web application.

http://host: port/appl es/
nyfile. htn

Does not matter

nmyfile.htm, from the top-
level directory of the appl es
Web application.

http://host: port/
nyfile. htm

Does not matter

nmyfile.htm, from the top-
level directory of the default
Web application.

http://host: port/appl es/
i mges/red. gi f

Does not matter

red. gi f, from the images
subdirectory of the top-level
directory of the appl es Web
application.

http://host: port/
nyFile. htm

Where nyfile. htm does not
exist in the appl es Web
application and a default
servlet has not been defined.

Does not matter

Error 404

http: // w. frui t . cont No Welcome_flle_from the Qefault
Web application for a virtual
host with a host name of
www, fruit. com
Yes Directory listing of the top-

http://www fruit.com

level directory of the def aul t
Web application for a virtual
host with a host name of
www, fruit. com

5-5

Chapter 5
Setting Up HTTP Access Logs

Table 5-1 (Cont.) Examples of How WebLogic Server Resolves URLs

URL Index Directories Checked? This file is served in
response

http: //www. frui t. cond or anges/ Does not matter myfile. htn, from_ the_

nyfile. htn oranges Web application that

is targeted to a virtual host
with host name
www. fruit. com

5.6 Setting Up HTTP Access Logs

WebLogic Server can keep a log of all HTTP transactions in a text file, in either
common log format or extended log format.

Common log format is the default. Extended log format allows you to customize the
information that is recorded. You can set the attributes that define the behavior of
HTTP access logs for each server instance or for each virtual host that you define. To
set up HTTP logging for a server or a virtual host, refer to the following topics in the
Oracle WebLogic Server Administration Console Online Help:

* Enabling and Configuring HTTP Access Logs
» Specifying HTTP Log File Settings for a Virtual Host

5.6.1 Log Rotation

You can rotate the log file based on either the size of the file or after a specified
amount of time has passed. When either criterion is met, the current access log file is
closed and a new access log file is started. If you do not configure log rotation, the
HTTP access log file grows indefinitely. You can configure the name of the access log
file to include a time and date stamp that indicates when the file was rotated. If you do
not configure a time stamp, each rotated file name includes a numeric portion that is
incremented upon each rotation. Separate HTTP access logs are kept for each Virtual
Host you have defined.

5.6.2 Common Log Format

ORACLE

The default format for logged HTTP information is the common log format (see http://
wwv. W3. or g/ Daenon/ User / Confi g/ Loggi ng. ht m #conmon- | ogf i | e-f or mat). This standard
format follows the pattern:

host RFCI31 auth_user [day/nonth/year: hour: ni nute: second
UTC of fset] "request" status bytes

where:

host
Either the DNS name or the IP number of the remote client

RFC931
Any information returned by IDENTD for the remote client; WebLogic Server does not
support user identification

5-6

http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

Chapter 5
Setting Up HTTP Access Logs

auth_user
If the remote client user sent a userid for authentication, the user name; otherwise "-"

day/monthlyear:hour:minute:second UTC_offset
Day, calendar month, year and time of day (24-hour format) with the hours difference
between local time and GMT, enclosed in square brackets

"request”
First line of the HTTP request submitted by the remote client enclosed in double
quotes

status
HTTP status code returned by the server, if available; otherwise "-"

bytes
Number of bytes listed as the content-length in the HTTP header, not including the
HTTP header, if known; otherwise "-"

5.6.3 Setting Up HTTP Access Logs by Using Extended Log Format

WebLogic Server also supports extended log file format, version 1.0, an emerging
standard defined by the draft specification from the W3C at htt p: / / ww. w3. or g/ TR/ WD-
logfile.htm . The current definitive reference is on the W3C Technical Reports and
Publications page at http: // ww. w3. or g/ TR/ .

The extended log format allows you to specify the type and order of information
recorded about each HTTP communication. To enable this format in the WebLogic
Server Administration Console:

1. Navigate to the server-name > Logging > HTTP page.
2. Make sure that HTTP access log file enabled is checked.
3. Click Advanced.

4. In the field labeled Format, select Extended.

In the field labeled Extended Logging Format Fields, you can select one or more of
the fields described in Supported Field Identifiers. If you want to add custom fields to
an HTTP access log file, see Creating Custom Field Identifiers for details.

You specify the information that should be recorded in the log file with directives,
included in the actual log file itself. A directive begins on a new line and starts with a
pound sign (#). If the log file does not exist, a new log file is created with default
directives. However, if the log file already exists when the server starts, it must contain
valid directives at the head of the file.

5.6.3.1 Creating the Fields Directive

ORACLE

The first line of your log file must contain a directive stating the version number of the
log file format. You must also include a Fi el ds directive near the beginning of the file:

#Version: 1.0
#Fi el ds: XXXX XXXX XXXX ...

Where each xxxx describes the data fields to be recorded. Field types are specified as
either simple identifiers, or may take a prefix-identifier format, as defined in the W3C
specification. For example:

5-7

http://www.w3.org/TR/WD-logfile.html
http://www.w3.org/TR/WD-logfile.html
http://www.w3.org/TR/

Chapter 5
Setting Up HTTP Access Logs

#Fields: date tinme cs-nethod cs-uri

This identifier instructs the server to record the date and time of the transaction, the
request method that the client used, and the URI of the request for each HTTP access.
Each field is separated by white space, and each record is written to a new line,
appended to the log file.

Note:

The #Fi el ds directive must be followed by a new line in the log file, so that
the first log message is not appended to the same line.

5.6.3.2 Supported Field Identifiers

The following identifiers are supported, and do not require a prefix.

date
Date at which transaction completed, field has type <date>, as defined in the W3C
specification.

time
Time at which transaction completed, field has type <time>, as defined in the W3C
specification.

time-taken
Time taken for transaction to complete in seconds, field has type <fixed>, as defined
in the W3C specification.

bytes

Number of bytes transferred, field has type <integer>.

Note that the cached field defined in the W3C specification is not supported in
WebLogic Server.

The following identifiers require prefixes, and cannot be used alone. The supported
prefix combinations are explained individually.

5.6.3.2.1 IP Address Related Fields

These fields give the IP address and port of either the requesting client, or the
responding server. These fields have type <address>, as defined in the W3C
specification. The supported fields are:

c-ip
The IP address of the client.

s-ip
The IP address of the server.

5.6.3.2.2 DNS Related Fields

ORACLE

These fields give the domain names of the client or the server and have type <name>,
as defined in the W3C specification. The supported fields are:

5-8

Chapter 5
Setting Up HTTP Access Logs

c-dns
The domain name of the requesting client.

s-dns
The domain name of the requested server.

sc-status
Status code of the response, for example (404) indicating a ""File not found" status.
This field has type <integer>, as defined in the W3C specification.

sc-comment
The comment returned with status code, for instance "File not found". This field has
type <text>.

cs-method
The request method, for example GET or POST. This field has type <name>, as
defined in the W3C specification.

cs-uri
The full requested URI. This field has type <uri>, as defined in the W3C specification.

Note:

When extended log format is enabled, the logged URI is truncated if its
length exceeds 256 characters, which is the default limit. You can increase
the maximum URI length by specifying it in following argument to the
command that starts WebLogic Server:

- Dnebl ogi c. servl et. maxLoggi ngURI Lengt h=I engt h

cs-uri-stem
Only the stem portion of URI (omitting query). This field has type <uri>, as defined in
the W3C specification.

cs-uri-query
Only the query portion of the URI. This field has type <uri>, as defined in the W3C
specification.

5.6.3.2.3 Diagnostic Message Correlation Fields

ORACLE

These fields give message correlation information for diagnostic messages, helping
you to determine relationships between messages across components. These fields
are logged if the diagnostic context is present and populated for the executed request.
The diagnostic context may be present if it is propagated into the server with the
incoming request, or it may be created for the request by WebLogic Server if the
diagnostic context is enabled. The supported fields are:

ctx-ecid

The Execution Context ID (ECID). The ECID is a globally unique identifier associated
with the execution of a particular request.

5-9

Chapter 5
Setting Up HTTP Access Logs

ctx-rid

The Relationship ID (RID). The RID distinguishes the work done in one thread on one
process, from work done by any other threads on this and other processes on behalf
of the same request.

If the diagnostic context does not exist, or the values of the ECID and RID are not
available in the diagnostic context, a hyphen (-) is logged as their values. For more
information about the ECID and RID, see Correlating Messages Across Log Files and
Components in Administering Oracle Fusion Middleware.

5.6.3.3 Creating Custom Field Identifiers

You can also create user-defined fields for inclusion in an HTTP access log file that
uses the extended log format (ELF). To create a custom field, you identify the field in
the ELF log file using the Fi el ds directive and then you create a matching Java class
that generates the desired output. You can create a separate Java class for each field,
or the Java class can output multiple fields. For a sample of the Java source for such a
class, see Example 5-1.

To create a custom field:

1. Include the field name in the Fi el ds directive, using the form:

x- myCust onFi el d.

Where nyCust onfi el d is a fully-qualified class nhame.
See Creating the Fields Directive.

2. Create a Java class with the same fully-qualified class name as the custom field
you defined with the Fi el ds directive (for example nyCust onFi el d). This class
defines the information you want logged in your custom field. The Java class must
implement the following interface:

webl ogi c. servl et. | oggi ng. Cust onELFLogger

In your Java class, you must implement the | ogFi el d() method, which takes a
Ht t pAccount i ngl nf o object and For mat St ri ngBuf f er object as its arguments:

» Use the Htt pAccounti ngl nf o object to access HTTP request and response data
that you can output in your custom field. Getter methods are provided to
access this information. For a complete listing of these get methods, see Get
Methods of the HttpAccountinginfo Object.

* Use the Format StringBuf fer class to create the contents of your custom field.
Methods are provided to create suitable output.

3. Compile the Java class and add the class to the CLASSPATH statement used to start
WebLogic Server. You will probably need to modify the CLASSPATH statements in
the scripts that you use to start WebLogic Server.

Note:

Do not place this class inside of a Web application or Enterprise
application in exploded or jar format.

ORACLE 5-10

Chapter 5
Setting Up HTTP Access Logs

4. Configure WebLogic Server to use the extended log format. See Setting Up HTTP
Access Logs by Using Extended Log Format.

Note:

When writing the Java class that defines your custom field, do not
execute any code that is likely to slow down the system (For instance,
accessing a DBMS or executing significant 1/O or networking calls.)
Remember, an HTTP access log file entry is created for every HTTP
request.

Note:

If you want to output more than one field, delimit the fields with a tab
character. For more information on delimiting fields and other ELF
formatting issues, see "Extended Log Format" at http://

wew. W3. or g/ TR/ WD- | ogfi | e-960221. htmi .

5.6.3.3.1 Get Methods of the HttpAccountinginfo Object

The following methods return various data regarding the HTTP request. These
methods are similar to various methods of j avax. servl et . Servl et Request ,
javax.servlet.http. Htp. Servl et Request, and j avax. servl et. http. H t pServl et Response.

The Javadoc for these interfaces is available at the following locations:

e http://docs.oracle.conlavaeel 7/ api/j avax/ servl et/ Servl et Request . ht m
e http://docs.oracl e.conljavaeel/ 7/ api/javax/ servl et/ Servl et Response. ht n
e http://docs.oracle.contjavaeel 7/ api/javax/servlet/http/ HtpServl et Request. htm

For details about these methods, see the corresponding methods in the Java
interfaces listed in the following table, or refer to the specific information contained in
this table.

Table 5-2 Getter Methods of HttpAccountinginfo
|

HttpAccountinginfo Methods Method Information

Obj ect getAttribute(String nane); j avax. servl et. Servl et Request

Enuneration get AttributeNames(); j avax. servl et. Servl et Request

String get Charact erEncodi ng(); j avax. servl et. Servl et Request

int get ResponseCont ent Lengt h(); javax. servl et. Servl et Response. set Cont ent Lengt h()

This method gets the content length of the response, as
set with the set Cont ent Lengt h() method.

ORACLE

5-11

http://www.w3.org/TR/WD-logfile-960221.html
http://www.w3.org/TR/WD-logfile-960221.html
http://docs.oracle.com/javaee/7/api/javax/servlet/ServletRequest.html
http://docs.oracle.com/javaee/7/api/javax/servlet/ServletResponse.html
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html

Table 5-2 (Cont.) Getter Methods of HttpAccountinginfo

|
Method Information

HttpAccountinginfo Methods

Chapter 5

Setting Up HTTP Access Logs

String get Content Type();

j avax. servl et.

Ser vl et Request

Local e getLocal e(); j avax. servl et. Servl et Request
Enuneration getLocal es(); j avax. servl et. Servl et Request
String getParaneter(String nane); javax. servl et. Servl et Request
Enuneration get Paranmet er Nanmes() ; j avax. servl et. Servl et Request
String[] getParaneterVal ues(String nane); j avax. servl et. Servl et Request
String getProtocol (); j avax. servl et. Servl et Request
String get Renot eAddr () ; j avax. servl et. Servl et Request
String get RenoteHost(); javax. servl et. Servl et Request
String get Schene(); javax. servl et. Servl et Request
String get ServerNanme(); javax. servlet. Servl et Request
int getServerPort(); javax. servl et. Servl et Request
bool ean isSecure(); j avax. servl et. Servl et Request
String get Aut hType(); javax. servl et. http. H t pServl et Request
String get Cont extPath(); javax. servl et. http. H t pServl et Request
Cooki e[] get Cooki es(); javax.servlet.http. HtpServl et Request
| ong get Dat eHeader (String nane); javax. servlet. http. H t pServl et Request
String getHeader (String name); javax. servlet. http. H t pServl et Request
Enuneration get Header Nanes() ; javax. servlet. http. H tpServl et Request
Enuneration get Headers(String nane); javax. servlet. http. H t pServl et Request

ORACLE

5-12

Chapter 5
Setting Up HTTP Access Logs

Table 5-2 (Cont.) Getter Methods of HttpAccountinginfo

HttpAccountinginfo Methods

Method Information

int getlntHeader(String name);

javax. servl et. http. Ht pServl et Request

String get Met hod();

javax. servl et. http. H t pServl et Request

String getPathlinfo();

j avax. servl et. http. H t pServl et Request

String getPathTransl ated();

javax.servlet.http. HtpServl et Request

String getQueryString();

javax. servlet. http. H t pServl et Request

String get Renot eUser () ;

javax. servlet. http. H t pServl et Request

String getRequest URI();

javax. servlet. http. H t pServl et Request

String get Request edSessionld();

javax. servlet. http. H t pServl et Request

String getServletPath();

javax.servlet.http. HtpServl et Request

Principal getUserPrincipal();

javax. servlet. http. H t pServl et Request

bool ean i sRequest edSessi onl dFr onCooki e() ;

javax. servlet. http. H t pServl et Request

bool ean i sRequest edSessi onl dFr omURL() ;

javax. servlet. http. Ht pServl et Request

bool ean i sRequest edSessi onl dFronmlr| ();

javax. servl et. http. H t pServl et Request

bool ean i sRequest edSessi onl dVal i d();

javax. servl et. http. H t pServl et Request

byte[] get URI AsBytes();

Returns the URI of the HTTP request as byte array, for

example: If GET /index.html HTTP/1.0 is the first line of

an HTTP Request, /index.html is returned as an array of
bytes.

| ong get | nvokeTime();

Returns the starting time of current TimeM | i s().

To get the length of time taken by the servlet to send the
response to the client, use the following code:

long milsec = SystemcurrentTimeMIlis() -
metrics. getlnvokeTine();

Fl oat sec = new Float(mlsec / 1000.0);

int getResponseStatusCode();

javax.servlet.http. HtpServl et Response

String get ResponseHeader (String name);

javax.servlet. http. H t pServl et Response

ORACLE

5-13

Chapter 5
Preventing POST Denial-of-Service Attacks

Example 5-1 Java Class for Creating a Custom ELF Field

i mport webl ogi c. servl et. | oggi ng. Cust onELFLogger ;

i mport webl ogi c. servl et. | oggi ng. Format St ri ngBuf f er;

i mport webl ogi c. servl et. | oggi ng. H t pAccount i ngl nf o;

/* This exanple outputs the User-Agent field into a

customfield called M/CustonField

*|

public class MyCustonField inplenents CustonELFLogger{

public void | ogFiel d(HttpAccountinglnfo netrics,
For mat StringBuf fer buff) {
buf f. appendVal ueOr Dash(netri cs. get Header (" User - Agent"));

}
}

5.7 Preventing POST Denial-of-Service Attacks

A Denial-of-Service attack is a malicious attempt to overload a server with phony
requests. One common type of attack is to send huge amounts of data in an HTTP
POST method. You can set three attributes in WebLogic Server that help prevent this
type of attack. These attributes are set in the Console, under Servers or Virtual Hosts.
If you define these attributes for a virtual host, the values set for the virtual host
override those set under Servers.

PostTimeoutSecs

Amount of time that WebLogic Server waits between receiving chunks of data in an
HTTP POST.

The default value for Post Ti neout Secs is 30.

MaxPostTimeSecs

Maximum time that WebLogic Server spends receiving post data. If this limit is
triggered, a Post Ti neout Except i on is thrown and the following message is sent to the
server log:

Post tinme exceeded MaxPost Ti meSecs.

The default value for MaxPost Ti meSecs is 30.

MaxPostSize

Maximum number of bytes of data received from a single request. The configuration
controls both POST and PUT requests. If the requested data exceeds the

MaxPost Si ze, the system throws MaxPost Si zeExceeded exception and sends the
following message to the server log:

PCST size exceeded the paranmeter MaxPostSi ze.

e If the request contains chunked transfer encoding and the requested data
exceeds the MaxPost Si ze, MaxPost Si zeExcept i on is thrown.

* If the request comprises of content-length set and the requested data exceeds the
MaxPost Si ze, the message POST si ze exceeded the paraneter
MaxPost Si ze. is written to server log and an HTTP error code 413 (Request
Entity Too Large) is sent back to the client.

The default value for MaxPost Si ze is -1.

5.8 Setting Up WebLogic Server for HTTP Tunneling

HTTP tunneling provides a way to simulate a stateful socket connection between
WebLogic Server and a Java client when your only option is to use the HTTP protocol.

ORACLE 5-14

Chapter 5
Setting Up WebLogic Server for HTTP Tunneling

It is generally used to tunnel through an HTTP port in a security firewall. HTTP is a
stateless protocol, but WebLogic Server provides tunneling functionality to make the
connection appear to be a regular T3Connection. However, you can expect some
performance loss in comparison to a normal socket connection.

Note:

Oracle does not recommend enabling tunneling on channels that are
available external to the firewall.

5.8.1 Configuring the HTTP Tunneling Connection

Under the HTTP protocol, a client may only make a request, and then accept a reply
from a server. The server may not voluntarily communicate with the client, and the
protocol is stateless, meaning that a continuous two-way connection is not possible.

WebLogic HTTP tunneling simulates a T3Connection via the HTTP protocol,
overcoming these limitations. There are attributes that you can configure in the
WebLogic Server Administration Console to tune a tunneled connection for
performance. It is advised that you leave them at their default settings unless you
experience connection problems. These properties are used by the server to
determine whether the client connection is still valid, or whether the client is still alive.

Enable Tunneling

Enables or disables HTTP tunneling. HTTP tunneling is disabled by default.

Note that the server must also support both the HTTP and T3 protocols in order to
use HTTP tunneling.

Tunneling Client Ping

When an HTTP tunnel connection is set up, the client automatically sends a request
to the server, so that the server may volunteer a response to the client. The client may
also include instructions in a request, but this behavior happens regardless of whether
the client application needs to communicate with the server. If the server does not
respond (as part of the application code) to the client request within the number of
seconds set in this attribute, it does so anyway. The client accepts the response and
automatically sends another request immediately.

Default is 45 seconds; valid range is 20 to 900 seconds.

Tunneling Client Timeout

If the number of seconds set in this attribute have elapsed since the client last sent a
request to the server (in response to a reply), then the server regards the client as
dead, and terminates the HTTP tunnel connection. The server checks the elapsed
time at the interval specified by this attribute, when it would otherwise respond to the
client's request.

Default is 40 seconds; valid range is 10 to 900 seconds.

5.8.2 Connecting to WebLogic Server from the Client

ORACLE

When your client requests a connection with WebLogic Server, all you need to do in
order to use HTTP tunneling is specify the HTTP protocol in the URL. For example:

Hasht abl e env = new Hashtabl e();
env. put (Cont ext . PROVI DER_URL, "http://w host:80");
Context ctx = new Initial Context(env);

5-15

Chapter 5
Using Native I/O for Serving Static Files (Windows Only)

On the client side, a special tag is appended to the htt p protocol, so that WebLogic
Server knows this is a tunneling connection, instead of a regular HTTP request. Your
application code does not need to do any extra work to make this happen.

The client must specify the port in the URL, even if the port is 80. You can set up your
WebLogic Server instance to listen for HTTP requests on any port, although the most
common choice is port 80 since requests to port 80 are customarily allowed through a
firewall.

You specify the listen port for WebLogic Server in the WebLogic Server Administration
Console under the "Servers" node, under the "Network" tab.

5.9 Using Native 1/O for Serving Static Files (Windows Only)

When running WebLogic Server on Windows NT/2000/XP you can specify that
WebLogic Server use the native operating system call Transni t Fi | e instead of using
Java methods to serve static files such as HTML files, text files, and image files. Using
native 1/0O can provide performance improvements when serving larger static files.

To use native 1/O, add two parameters to the web. xmi deployment descriptor of a Web
application containing the files to be served using native 1/0O. The first parameter,

webl ogi c. htt p. nati vel CEnabl ed should be set to TRUE to enable native I/O file serving.
The second parameter, webl ogi c. htt p. mi ni numNat i veFi | eSi ze sets the minimum file
size for using native I/O. If the file being served is larger than this value, native 1/O is
used. If you do not specify this parameter, a value of 4K is used by default.

Generally, native 1/O provides greater performance gains when serving larger files.
However, as the load on the machine running WebLogic Server increases, these gains
diminish. You may need to experiment to find the correct value for

webl ogi ¢. htt p. mi ni mumNat i veFi | eSi ze.

The following example shows the complete entries that should be added to the web. xm
deployment descriptor. These entries must be placed in the web. xnl file after the
<di stri but abl e> element and before the <servl et > element.

<cont ext - par am
<par am name>webl ogi c. htt p. nati vel CEnabl ed</ par am nane>
<par am val ue>TRUE</ par am val ue>
</ cont ext - par anp
<cont ext - par am
<par am name>webl ogi c. ht t p. mi ni numNat i veFi | eSi ze</ par am nane>
<par am val ue>500</ par am val ue>
</ cont ext - par anp

webl ogi c. http. nati vel CEnabl ed can also be set as a context parameter in the
FileServlet.

ORACLE 5-16

Using the Plug-in for Oracle Virtual
Assembly Builder

Learn about the WebLogic Server introspection plug-in for Oracle Virtual Assembly
Builder, which examines a single WebLogic domain. The domain specified and the
Oracle home are captured.

" Note:

This chapter describes the WebLogic Server plug-in that is included with the
WebLogic Server installation program. Older versions of this plug-in are
included with the Oracle Virtual Assembly Builder installation program.

* Overview

* Introspection Plug-in Parameters

» Reference System Prerequisites

* Plug-in Usage Requirements

* Resulting Artifact Type

* Wiring

* Wiring Properties

* WebLogic Server Appliance Properties

e Oracle Coherence*Web Introspection Extension

e Supported Template Types

6.1 Overview

Read a brief overview of Oracle Virtual Assembly Builder and the WebLogic Server
introspection plug-in.

e About Oracle Virtual Assembly Builder

e About the WebLogic Server Introspection Plug-in

6.1.1 About Oracle Virtual Assembly Builder

Oracle Virtual Assembly Builder is a tool for virtualizing installed Oracle components,

ORACLE

modifying those components, and then deploying them into your own environment.
Using Oracle Virtual Assembly Builder, you capture the configuration of existing

software components in artifacts called software appliances. Appliances can then be
grouped, and their relationships defined into artifacts called software assemblies which

provide a blueprint describing a complete multi-tier application topology.

6-1

Chapter 6
Introspection Plug-in Parameters

Oracle Virtual Assembly Builder allows the logical connections between appliances
within an assembly to be reconfigured by a process known as assembly editing. When
a desired assembly configuration has been achieved, you use Oracle Virtual Assembly
Builder to prepare the assembly for deployment and then deploy it into your
environment.

6.1.2 About the WebLogic Server Introspection Plug-in

Introspection is an operation performed on a software component or a group of related
components to create an appliance or assembly. During introspection, Oracle Virtual
Assembly Builder creates an XML description of the component and captures a
component-specific set of configuration files. This information forms a snapshot of the
component's configuration at the time of introspection.

The introspection architecture is plug-in based. A plug-in is available for each
supported component type, including a plug-in for WebLogic Server. Typically the
result of introspecting a component is an appliance. However, when you use Oracle
Virtual Assembly Builder to introspect a WebLogic Server domain, the introspection
plug-in generates an assembly. The generated assembly contains:

e An appliance representing the Administration Server.
e One appliance for each standalone Managed Server.

e One appliance for each cluster. (This appliance encompasses all Managed Server
instances contained in that cluster.)

The WebLogic Server introspection plug-in fully supports WebLogic domains that are
configured with dynamic clusters and dynamic servers.

6.1.3 Setting Up the WebLogic Server Introspection Plug-in

The following steps summarize the process of making the WebLogic Server
introspection plug-in available for us with Oracle Virtual Assembly Builder:

1. Install the Oracle Fusion Middleware Infrastructure software (W s_jrf_generic.jar).
For installation type, select Fusion Middleware Infrastructure.
2. Install Oracle Virtual Assembly Builder.

3. Install the WebLogic Server plug-in for Oracle Virtual Assembly Builder using the
following command:

$AB_| NSTANCE/ bi n/ abct| install Pl ugins -product Root $ORACLE HOVE/ Wi server

In the preceding command, $AB_| NSTANCE is the environment variable set to the
Studio instance home directory.

6.2 Introspection Plug-in Parameters

ORACLE

The introspecting plug-in parameters such as domai nRoot , W sHone, and admi nUser help
you to specify the components that you want to introspect.

Table 6-1 lists the introspection parameters for the WebLogic Server plug-in for Oracle
Virtual Assembly Builder. The specific set of parameters that are available for use
depend on whether you are using the abct| command or Oracle Virtual Assembly
Builder Studio. The column labeled Command-Line Support indicates whether the

6-2

Chapter 6
Reference System Prerequisites

corresponding parameter may be specified using the abct| command. The column
labeled Required indicates whether the parameter must be specified for the plug-in.

Table 6-1 WebLogic Server Plug-in Introspection Parameters

Parameter Description Command Required
-Line
Support
domai nRoot The fully qualified path to the domain you want to introspect. Yes Yes
This should be the directory that contains the confi g directory.
Wl sHome The fully qualified path to the WebLogic home directory. For Yes Yes
example, / u01/ Oracl e/ M ddl ewar e/ Or acl e_Hone/ wl server.
adni nUser The administrative user for the WebLogic domain. Yes Yes
The password for the administrative user corresponding to the No Yes

i nP. r .
admi nPasswor d adm nUser parameter.

The Node Manager user name. If you specify this parameter Yes No
during introspection time, the specified user name is used

when the domain is rehydrated. If you specify this option in the

abctl command, you are automatically prompted for the

nodeManager Passwor d, which is used during dehydration.

If you do not specify this parameter, the value of the adm nUser
parameter is used by default as the Node Manager user.

nodeManager User

- - 1
nodeManager Passwor d The password for the user specified with the nodeManager User No Yes
parameter.
The non-default directory that contains the Node Manager Yes No

nodeNanager bi configuration. If this parameter is not specified, the following

value is used by default:

$W._HOVE/ cormon/ nodemanager

The password for the identity keystore that is used if the No No

i dentityKeystorePassP N) . .
de yreystorerass domain is configured to have a custom identity keystore.

hrase

The password for the private key contained in the custom No No

privat eKeyPassPhr ase identity keystore.

1 Required only if the Node Manager user name is specified.

6.3 Reference System Prerequisites

The Administration Server for the domain must be running and introspection must
target the Administration Server host machine.

6.4 Plug-in Usage Requirements

Table 6-2 lists and describes the requirements for using the introspection plug-in.
Some requirements listed in this table pertain to the WebLogic Server plug-in, while
others pertain overall to Oracle Virtual Assembly Builder.

ORACLE 6-3

Chapter 6
Resulting Artifact Type

Table 6-2 Requirements for Using the Introspection Plug-in

Requirement

Description

Editable domain

You must ensure that any WebLogic domain being
introspected is configured to be editable. This allows
edits to be performed successfully during deployment.
See Understanding Domain Configuration for Oracle
WebLogic Server.

Oracle Internet Directory

Oracle recommends the use of Oracle Internet Directory
as the LDAP identity store on the reference system, not
a file-based LDAP server. File-based LDAP cannot work
properly in a deployed system due to synchronization
issues.

Remote user

The remote user specified for remote introspection of
WebLogic Server must be able to access files created
by the user who owns the WebLogic Server process.
When possible Oracle recommends that the remote
user specified be the same as the user who owns the
WebLogic Server process.

Applications accessing Web services

For each application that accesses a Web service
hosted on the WebLogic Server reference system, you
must:

1. Update the application to access the Web service
WSDL on the new Oracle VM host.

2. Redeploy the application to the Oracle VM
WebLogic Server environment, using any of the
administration tools listed in Summary of System
Administration Tools and APIs in Understanding
Oracle WebLogic Server.

Avoid creating templates on
individual servers

You must not create a template on an individual server
in WebLogic Server. Such templates cannot be
deployed because they lack certain deployment artifacts
(the domain template jar in content, and data at the
assembly level).

Administration Server URL

If you want to perform manual starts from the context of
the Guest-OS, you must manually modify the

St art ManagedSer ver script to provide the correct
Administration Server URL (Administration Server host
name). This is required to provide the default
Administration Server URL the correct value (the
machine name of the Administration Server is not known
at the time of template creation).

6.5 Resulting Artifact Type

An atomic assembly that contains an appliance for the Administration Server and
appliances for any clusters found and any standalone (that is, non-clustered) Managed
Servers found. One appliance is created for a cluster regardless of the number of
Managed Servers in that cluster. The WebLogic Server plug-in assumes that every
Managed Server in a cluster is configured identically. The names and the number of
Managed Servers in the cluster are saved as 'scale out' information in the appliance

metadata.

ORACLE

6-4

6.6 Wiring

6.7 Wiring

ORACLE

Chapter 6
Wiring

Note:

An atomic assembly cannot be edited to add or remove appliances. To wire
other appliances to an atomic WebLogic Server assembly a non-atomic
assembly must be created and the WebLogic Server assembly must be
added to the non-atomic assembly.

Inputs are created on the WebLogic Server assembly for all the channels the servers
in the domain are listening on. Typically Oracle HTTP Server outputs would be
connected to the WebLogic Server inputs.

Outputs are created on the WebLogic Server assembly for the following types of
configuration that are found:

- JDBC

» LDAP

e JMS messaging bridges
e Foreign IMS

These outputs must all be connected to either an external resource or to an appliance
before deployment. The description on the output and the protocol supported by the
output provide hints about the type of appliance to connect the output to.

Properties

All input endpoints have two editable and one non-editable properties where as all
output endpoints have one editable and two editable properties.

All input endpoints have the following wiring properties:

* Two editable properties: port and descri ption.

* One non-editable property: a list of prot ocol s. The protocol s indicate the type of
outputs that can be connected to the input.

All output endpoints have the following wiring properties:

e One editable property: descri ption.
» The following non-editable properties:
— protocol — Indicates the type of input that can be connected to the output.

— singl eton — Indicates the type of appliance that the output can be connected
to. If si ngl et on is true, the output can be connected only to an input on an
appliance that has a scalability absolute max value of 1.

Table 6-3 describes common WebLogic Server appliance input user properties:

6-5

Chapter 6
Wiring Properties

Table 6-3 Common WebLogic Server Appliance Input User Properties
]

Name Type Req'd Default Description

keepLocal Host Bool ean false none If th|§ .|nput was orlglnaII)_/ bou_nd to localhost
explicitly, this property will exist and be set to
true. Connections should not be made to this
input if this property exists and its value is
not overridden to false.

readymetric- String false none The password to use for the connection

nani ng- made to the server when doing the ready

passwor d metric check.

r eadymet ri c- String false none Optlona! protocol you can specify for. naming

nani ng- connections used for the ready metric check

or ot ocol (for example, i i op).

readymetric- String false none The user to use for the connection made to

nani ng- user the server when doing the ready metric
check (for example, webl ogi c).

readymetric- String false none The protocol to use for the connection made

server- to the server when doing the ready metric

or ot ocol check (for example, i i op).

Table 6-4 describes common WebLogic Server appliance input properties. These are
not user-modifiable properties.

Table 6-4 Common WebLogic Server Appliance Input Properties
]

Name Type Req'd Default Description
ori gi nal Bi ndAd String false none i‘ll'qr:reogrlglcr::(ljaddress of the system that was
dresses P)

false none The original host name of the system that

ori gi nal Def aul
t Host name

String

was introspected. (For example,
exanpl e. con).

Table 6-5 describes the Administration Server appliance input system properties:

Table 6-5 Administration Server Appliance Input Properties
]

Name

Type

Req'd

Default

Description

adm n-password String

true

none

The admin user's password. This is a user-
modified property, specified in the
deployment plan, that allows a deployer to
introspect a well-known domain and deploy it
multiple times, each deployed instance
having a custom password.

ORACLE

6-6

Chapter 6
Wiring Properties

Table 6-5 (Cont.) Administration Server Appliance Input Properties
]

Name Type Req'd Default Description

admi n- user name String true none The admin user name for connecting to the
Administration Server (for example,
webl ogi c).

Table 6-6 through Table 6-9 describe Administration Server appliance output user
properties for JDBC, foreign JMS, JMS messaging bridge, and LDAP.

Table 6-6 describes Administration Server appliance output user and system
properties for JDBC. The password and user nane properties are user properties, and
original-url is a system property.

Table 6-6 Administration Server Appliance Output Properties: JDBC

L ___|
Name Type Req'd Default Description

false <empty> The password for the user needed for the

asswor d Strin -
P g data source connection.

false none The user needed for the data source
connection. The value will be the original
user for the data source connection.

user nane String

false none The original JDBC URL from the
introspected WebLogic domain. For
example,
jdbc:oracl e: thin: @dc2100927. exanpl e. ¢
om 1521: orcl .

original-url String

Table 6-7 describes Administration Server appliance output user properties for foreign
JMS:

Table 6-7 Administration Server Appliance Output Properties: Foreign JMS

__|]
Name Type Req'd Description

"~ =cCco =0

false nThe original URL for the
doreign JMS server.
n
e

original -connection-url String

Table 6-8 describes Administration Server appliance output system properties for IMS
messaging bridge:

ORACLE .

Chapter 6
WebLogic Server Appliance Properties

Table 6-8 Administration Server Appliance Output Properties: JMS Messaging Bridge
]

Name Type Req'd Default Description
ori ginal -ur| String false none The orlglnal URL for the IMS
messaging bridge server.

- . false none The original username for the
ori gi nal - user nane String JMS messaging bridge server.
- i . false none The original password for the
ori gi nal - passwor d String JMS messaging bridge server,

encrypted.

Table 6-9 describes Administration Server appliance output system properties for
LDAP:

Table 6-9 Administration Server Appliance Output Properties: LDAP
]

Name Type Req'd Default Description

ori gi nal - nane String false none The prlglnal name for the LDAP security
provider.

ori gi nal - host String false none The prlglnal host for the LDAP security
provider.

ori gi nal - port String false none The prlglnal port for the LDAP security
provider.

ori gi nal - user String false none The prlglnal user for the LDAP security
provider.

6.8 WebLogic Server Appliance Properties

WebLogic Server appliance properties include assembly-level properties, properties
on the inputs and outputs of each application, and properties of the appliances
themselves.

e Assembly-Level System Properties
e Properties Common to Administration Server and Managed Server Appliances

e Administration Server Appliance Properties
6.8.1 Assembly-Level System Properties
Table 6-10 describes assembly-level system properties:

Table 6-10 Assembly-level System Properties

|
Name Type Req'd Default Description

adni n- passwor d String true none The admin user password for the domain.

ORACLE 6-8

Table 6-10 (Cont.) Assembly-level System Properties
]

Chapter 6
WebLogic Server Appliance Properties

Name Type Req'd Default Description

adni n- user nane String true none The admln user for the domain (for example,
webl ogi c).

. . . true none Indicates what input on the Administration

admsvr - nx- I nput String Server appliance should be used when
making JMX connections (for example,
Def aul t).

. . true none The protocol to use when making a JIMX

adnsvr - j nx- pr ot ocol String connection to the Administration Server (for
example, i i op).

domai n- name String false none The domain name of the domain that was
introspected (for example, t est _domai n).

usesr acl eHones bool ean true none Indicates that this is not a core WebLogic

Server installation and as such has an
Oracle home associated with it. This will be
true for SOA and WebCenter domains.
Allowable values are true and false.

6.8.2 Properties Common to Administration Server and Managed

Server Appliances

The following information describes properties common to Administration Server and
Managed Server appliances.

Table 6-11 describes common WebLogic Server appliance user properties:

Table 6-11 Common WebLogic Server Appliance User Properties
]

Name Type

Req'd

Default

Description

NodeManager Por t I nt eger

true

5556

The port the Node Manager should listen on
(for example, 5556). This will only be present
if the Node Manager was found to be
configured on the reference system.

readymetric-attribute-
conpar e-type

String

false

EQUALS

The comparison to make between the
readymetric-attribute's value and the value
specified for the property r eadynetri c-
attribute-val ue.

Valid values are EQUALS, LESSER_THAN,
GREATER_THAN,
LESSER_THAN_OR_EQUAL, and
GREATER_THAN_OR_EQUAL.

readymetric-attribute-nane String

false

State

The MBean attribute to check.

ORACLE

6-9

Chapter 6
WebLogic Server Appliance Properties

Table 6-11 (Cont.) Common WebLogic Server Appliance User Properties

___|]
Name Type Req'd Default Description

false STRING The type of the MBean attribute.

Valid values (but specific to the attribute
being examined) are STRING, INTEGER,
SHORT, LONG, DOUBLE, FLOAT, and

readymetric-attribute-type String

BOOLEAN.
readynet ri c-attri but e- val ue String false RUNNIN The yalue the property readynetri c-
G attri but e- name must have for the check to
be considered successful.
readymetric-instance-name-0 String false com.bfa: The instance name to use for the JMX ready
Name=Ad metric check.
minServer
,Type=Se
rverRunti
me
false 600 The maximum time in seconds to wait for a

readymetric-max-wait-period String successful ready metric check

false none The input to use for the ready metric check

readynetric- nam ng-i nput String (for example, "Default”).

false none The time between connection attempts, in

readymetric-pol Iing-peri od String seconds, for the ready metric check.

 eadymet ri c- server-i nput String false none (ngfelizﬁgfeufgefgﬂ% ready metric check
. . false none The location of the trust store to use if the
readynetric-trust-store-0 String ready metric check is using an SSL enabled
port.
r eadymet i c- type String false JMX lg;gﬁfem ready metric to use for the
C . false true If this property is set to true the ready metric
readynetric-verify String check will be performed. Otherwise it will be
skipped.
useTenpl at e String false OEL Specifies the template type to use by default

when creating a template for the appliance.

6.8.3 Administration Server Appliance Properties

Table 6-12 describes Administration Server appliance system properties:

Table 6-12 Administration Server Appliance System Properties

L __|
Name Type Req'd Default Description

false none The input to use for connecting to the
Administration Server admin-input-protocol
(for example, "Default").

admi n-i nput - String
nane

ORACLE 6-10

Chapter 6
Oracle Coherence*Web Introspection Extension

Table 6-12 (Cont.) Administration Server Appliance System Properties

___|]
Name Type Req'd Default Description

false none The protocol to use for connecting to the

adni n-input- - String Administration Server (for example, "http").

prot ocol

Table 6-13 describes Administration Server appliance user properties:

Table 6-13 Administration Server Appliance User Properties

]
Name Type Req'd Default Description

false <empty> The cluster address for the cluster named by

<cl r nane>-cl r- rin)
cluster name>-cluste string the first part of the property name.

address

false <empty> The front-end host for the cluster named by

<cl uster name>-frontend-host String the first part of the property name

false <empty> The non-secure front-end port for the cluster

<cluster name>-frontend-ttp- String named by the first part of the property name.

port
<cluster name>-frontend- String false <empty> The secure front-end port for the cluster
ht t ps- por t named by the first part of the property name.

6.9 Oracle Coherence*Web Introspection Extension

The Oracle Coherence*Web introspection extension extends the functionality of the
WebLogic Server Introspector. It examines the configuration of Coherence cache
clusters and servers configured as part of a WebLogic domain.

See the Oracle Coherence documentation.

6.10 Supported Template Types

The supported template type is Oracle Enterprise Linux (OEL).

ORACLE 6-11

Configuring Concurrent Managed Objects

Learn about the Concurrent Managed Objects (CMOs) implemented by WebLogic
Server to provide support for defining and implementing the Concurrency Utilities for
Java EE 1.0 (JSR 236).

About Java EE Concurrency Utilities

How Concurrent Managed Objects Provide Concurrency for WebLogic Server
Containers

Default Java EE CMOs

Customized CMOs in Configuration Files
Global CMO Templates

Configuring Concurrent Constraints
Querying CMOs

7.1 About Java EE Concurrency Utilities

The Concurrency Utilities for Java EE 1.0 (JSR 236) implements a standard API for
providing asynchronous capabilities to Java EE application components such as
servlets and EJBs.

ORACLE

As described in the Java EE 7 Tutorial, the two main concurrency concepts are
processes and threads:

Processes are primarily associated with applications running on the operating
system (OS). A process has specific runtime resources to interact with the
underlying OS and allocate other resources, such as its own memory, just as the
JVM process does. A JVM is in fact a process.

Threads share some features with processes, since both consume resources from
the OS or the execution environment. But threads are easier to create and
consume many fewer resources than a process.

The primary components of the concurrency utilities are:

ManagedExecutorService (MES): Used by applications to execute submitted
tasks asynchronously. Tasks are executed on threads that are started and
managed by the container. The context of the container is propagated to the
thread executing the task.

ManagedScheduledExecutorService (MSES): Used by applications to execute
submitted tasks asynchronously at specific times. Tasks are executed on threads
that are started and managed by the container. The context of the container is
propagated to the thread executing the task.

ManagedThreadFactory (MTF): Used by applications to create managed
threads. The threads are started and managed by the container. The context of
the container is propagated to the thread executing the task.

7-1

Chapter 7
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

» ContextService: Used to create dynamic proxy objects that capture the context of
a container and enable applications to run within that context at a later time or be
submitted to a Managed Executor Service. The context of the container is
propagated to the thread executing the task.

For more detailed information, see "Concurrency Utilities for Java EE" in The Java EE
7 Tutorial. Also see the Java Specification Request 236: Concurrency Utilities for Java
EE 1.0 (http://jcp.org/en/jsr/detail ?i d=236).

7.1.1 Concurrency 1.0 Code Examples in WebLogic Server

When you install WebLogic Server complete with the examples, the examples source
code is placed in the EXAMPLES_HOVE\ exanpl es\ sr ¢\ exanpl es directory. The default path
is ORACLE_HOME\ W ser ver\ sanpl es\ server. From this directory, you can access the
source code and instruction files for the Concurrency 1.0 examples without having to
set up the samples domain.

The ORACLE_HOME\ user _pr oj ect s\ donmai ns\w _server directory contains the WebLogic
Server examples domain; it contains your applications and the XML configuration files
that define how your applications and Oracle WebLogic Server will behave, as well as
startup and environment scripts. See Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

* Using Concurrency ContextService — demonstrates how to use Cont ext Ser vi ce
interface to create dynamic proxy objects.

EXAMPLES HOVE/ W _server/ exanpl es/ src/ exanpl es/ j avaee7/ concur r ency/ dynam cpr oxy

* Using Concurrency Executor — demonstrates how to use
javax. enterprise. concurrent. ManagedExecut or Servi ce for submitting tasks.

EXAMPLES HOME/ exanpl es/ src/ exanpl es/ j avaee7/ concurrency/ execut or

* Using Concurrency Schedule — demonstrates how to use
javax. enterprise. concurrent . ManagedSchedul edExecut or Ser vi ce for submitting
delayed or periodic tasks.

EXAMPLES_HOME/ exanpl es/ src/ exanpl es/ j avaee7/ concur r ency/ schedul e

* Using Concurrency Threads — demonstrates how to use
javax. ent erpri se. concurrent . ManagedThr eadFact ory to obtain a thread from the
Java EE container.

EXAMPLES HOVE/ exanpl es/ src/ exanpl es/ j avaee7/ concurrency/ t hr eads

Oracle recommends that you run these examples before programming your own
applications that use concurrency.

7.2 How Concurrent Managed Objects Provide Concurrency
for WebLogic Server Containers

ORACLE

Learn how WebLogic Server provides concurrency capabilities to Java EE applications
by associating the Concurrency Utilities API with the Work Manager to make threads
container-managed.

* How WebLogic Server Handles Asynchronous Tasks in Application Components
e Concurrent Managed Objects (CMOs)

7-2

http://jcp.org/en/jsr/detail?id=236

Chapter 7

How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

CMOs versus Commond API

CMO Context Propagation
Self Tuning for CMO Tasks
Threads Interruption When CMOs Are Shutting Down

CMO Constraints for Long-Running Threads

7.2.1 How WebLogic Server Handles Asynchronous Tasks in
Application Components

With JSR236 Concurrent Utilities, WebLogic Server can recognize the asynchronous
tasks in a server application component, and then manages them by:

Providing the proper execution context. See CMO Context Propagation.

Submitting tasks to the single server-wide self-tuning thread pool to make them
prioritized based on defined rules and run-time metrics. See Self Tuning for CMO

Tasks.

Interrupting the thread that the task is executed in when the component that
created the task is shutting down. See Threads Interruption When CMOs Are

Shutting Down.

Limiting the number of new running threads to be created by managed objects
when the task is not suitable to be dispatched to the self-tuning thread pool. See
CMO Constraints for Long-Running Threads.

7.2.2 Concurrent Managed Objects (CMOs)

In WebLogic Server, asynchronous task management is provided by four types of
Concurrent Managed Objects (or CMOS).

Table 7-1 summarizes the CMOs that provide asynchronous task management.

Table 7-1 CMOs that Provide Asynchronous Task Management

Managed Object

Context
Propagation

Self Tuning

Thread Interruption
While Shutting
Down

Limit of Concurrent
Long-Running New
Threads

Managed Executor
Service (MES)

Contexts are
propagated based on
configuration. See
CMO Context
Propagation.

Only short-running
tasks are dispatched
to the single self-
tuning thread pool by
a specified work
manager. See Self
Tuning for CMO
Tasks.

When Work Manager
is shutting down, all
the unfinished task
will be canceled. See
Threads Interruption
When CMOs Are
Shutting Down.

The maximum
number of long-
running threads
created by MES/
MSES can be
configured to avoid
excessive number of
these threads making
negative effect on
server. See CMO
Constraints for Long-
Running Threads.

ORACLE

7-3

Chapter 7

How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

Table 7-1 (Cont.) CMOs that Provide Asynchronous Task Management

___|]
Thread Interruption Limit of Concurrent

Managed Object

Context
Propagation

Self Tuning

While Shutting
Down

Long-Running New
Threads

Managed Scheduled
Executor Service
(MSES)

Contexts are
propagated based on
configuration. See
CMO Context
Propagation.

Same behavior as
MES. See Self
Tuning for CMO
Tasks.

Same behavior as
MES. See Threads
Interruption When
CMOs Are Shutting
Down.

Same behavior as
MES. See CMO
Constraints for Long-
Running Threads.

Context Service

Contexts are
propagated based on
configuration. See
CMO Context
Propagation.

n/a

n/a

n/a

Managed Thread
Factory (MTF)

Contexts are
propagated based on
configuration. See
CMO Context
Propagation.

Threads returned by
the newThr ead()
method are not from
the single self-tuning
thread pool and will
not be put into the
thread pool when the
task is finished. See
Self Tuning for CMO
Tasks.

Threads created by
the newThr ead()
method will be
interrupted when the
MTF is shutting
down. See Threads
Interruption When
CMOs Are Shutting
Down.

The maximum
number of new
threads created by
MTF can be
configured to avoid
excessive number of
these threads making
negative effect on
server. See CMO
Constraints for Long-
Running Threads.

There are three types of JSR236 CMOs in WebLogic Server, each one characterized
by its scope and how it is defined and used.

Default Java EE CMOs — Required by the Java EE standard that default resources
be made available to applications, and defines specific JNDI names for these

default resources.

Customized CMOs in Configuration Files — Can be defined at the application and
module level or referenced from an application component environment (ENC) that

is bound to JNDI.

Global CMO Templates — Can be defined globally as templates in the domain's
configuration by using the WebLogic Server Administration Console and
configuration MBeans.

Similar to Work Managers, global CMO templates can be defined at the domain or
server level using the WebLogic Server Administration Console or configuration
MBeans. See Configuring CMO Templates using the Administration Console and

Using MBeans to Configure CMO Templates.

7.2.3 CMOs versus CommonJ API

The CommonJ API (commonj . wor k) in WebLogic Server provides a set of interfaces that
allows an application to execute multiple work items concurrently within a container.
CMOs and CommonJ APIs operate at the same level: they both dispatch tasks to work
managers and programmatically handle work from within an application. However,
there are distinct differences between CMOs and the CommonJ API, such as:

ORACLE

CommondJ API is Weblogic specific and CMOs have been standardized.

7-4

Chapter 7
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

* Commond API provides functions similar to the CMO Managed Executor Service
and Managed Scheduled Executor Service, but it does not provides CMO
functions like the Managed Thread Factory and the Context Service.

For information about using the CommonJ API, see Using the Timer and Work
Manager API in Developing Commond Applications for Oracle WebLogic Server.

7.2.4 CMO Context Propagation

This section explains the four context types that are propagated for CMOs and the
context invocation points in WebLogic Server for MES and MSES managed objects.

7.2.4.1 Propagated Context Types

Table 7-2 summarizes the contexts types that are propagated for the four types of
managed objects.

Table 7-2 Propagated Context Types

__|
Context Type Description Context Tasks Run with...

JNDI JNDI namespace For MES, MSES, and
ContextService, tasks can
access the application-scoped
JNDI tree (such as j ava: app,
j ava: nodul e, j ava: conp) of
the submitting thread.

For MTF, tasks can access
application-scoped JNDI tree
of the component that created
the ManagedThreadFactory
instance.

ClassLoader Context Class loader For MES, MSES, and
ContextService, tasks run with
the context classloader of the
submitting thread.

For MTF, tasks run with the
classloader of the component
that created the
ManagedThreadFactory
instance

Security Subject identity For MES, MSES, and
ContextService, tasks run with
the subject identity of the
submitting thread.For MTF,
tasks run with the anonymous
subject.

ORACLE 7-5

Chapter 7

How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

Table 7-2 (Cont.) Propagated Context Types

Context Type Description

Context Tasks Run with...

WorkArea WorkArea contexts with
PropagationMode WORK

For MES, MSES, and Context
Service there is a new
WorkArea context type, and
so all tasks run with a
WorkContextMap, which
contains all the submitting
thread's contexts with WORK
mode.

For MTF, all tasks run with an
empty WorkContextMap.

Note: While the
WorkContextMap is a new
instance, the contained values
are not, so updating the
contents of the values can
affect the contents of the
submitting thread.

7.2.4.2 Contextual Invocation Points

Table 7-3 summarizes the callback methods of the Contextual Invocation Points in
WebLogic Server and the context that the Contextual Invocation Point runs with for the

MES and MSES managed objects.

Table 7-3 Contextual Invocation Points

Concurrent Managed Contextual Invocation Context with which the

Objects Points Contextual Invocation Point
Runs

ManagedExecutorService callback method: The Contextual Invocation

javax. enterprise.concurren
t. ManagedTaskLi st ener

Points run with the context of
the application component
instance that called the
submit(),invokeAll (),

i nvokeAny() methods.

ManagedScheduledExecutorS callback methods:

ervice javax. enterpri se. concurrent
. ManagedTaskLi st ener and
javax. enterprise.concurren
t. Trigger

The application component
instance that called the
submt(),invokeAll (),

i nvokeAny(), schedul e(),
schedul eAt Fi xedRat e(),
schedul eW t hFi xedDel ay()
methods.

7.2.5 Self Tuning for CMO Tasks

Short-running tasks submitted to the MES or the MSES are dispatched to the single
self-tuning thread pool by associating with the Work Manager specified in deployment

descriptors.

ORACLE

7-6

Chapter 7
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

The execution of the tasks will be consistent with the rules defined for the specified
Work Manager. For tasks submitted to the execute method in MES and MSES, if the
Work Manager's overload policy rejects the task, the following events will occur:

e The java.util.concurrent.Reject edExecuti onExcepti on will be thrown in the submit
or execute method.

* The overload reason parameter passed to webl ogi c. wor k. Wr k will be set to the
Rej ect edExecut i onExcepti on.

» If the user registered the task with the ManagedTaskListener, this listener will not
be notified because user can receive the overload message through the
Rej ect edExecut i onExcepti on.

Note: A ManagedTaskListener is used to monitor the state of a task's Future. For
more information see, Package j avax. enterprise.concurrent.

For the i nvokeAl | () and i nvokeAny() methods in the MES and MSES, for any of the
submitted tasks that are is rejected by the Work Manager overload policy, the following
events will occur:

* The user-registered ManagedTaskListener's t askSubmi tt ed() method will be
called.

* The user-registered ManagedTaskListener's t askDone() method will be called and
the t hr owabl ePar amwill be j avax. ent er pri se. concurrent . Abort edExcept i on.

e The overload reason parameter passed to webl ogi c. wor k. Wr k will be set to the
Abort edExcept i on.

For the schedul e(), schedul eAt Fi xRat (), schedul eAt Fi xDel ay(), and schedul e(Tri gger)
() methods, if the task is rejected by the Work Manager's overload policy, the following
events will occur:

* The user-registered ManagedTaskListener's t askDone() method will be called, the
t hr owabl ePar amwill be j avax. ent erpri se. concurrent . Abort edExcept i on.

* The overload reason parameter passed to webl ogi c. wor k. Wr k will be set to the
Abort edExcept i on.

* If the task is periodic, the next run of task will still be scheduled.

7.2.6 Threads Interruption When CMOs Are Shutting Down

When either the MES or MSES is shut down:

* None of the waiting tasks will be executed.

e All the running threads will be interrupted. The user should check the
Thread. i sl nterrupted() method and terminate their tasks because WebLogic
Server will not force it to terminate.

* An executor returned Future object will throw the
java.util.concurrent. Cancel |l ati onException() if the Future. get () method is called.

e User registered ManagedTaskListener's t askAbort ed() method will be called and
par aniThr owabl e will be the Cancel | ati onException().

When the MTF is shut down:

ORACLE .

http://docs.oracle.com/javaee/7/api/javax/enterprise/concurrent/package-summary.html

Chapter 7
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

» All threads that it has created using the newThread() method are interrupted. Calls
to the i sShut down() method in the Manageabl eThr ead interface on these threads
return true.

» All subsequent calls to the newThread() method throw a
java.lang. 111 egal Stat eException.

For the ContextService, no thread is interrupted. However:

e Allinvocations to any of the proxied interface methods will fail with a
java.lang. |1l egal StateException.

7.2.7 CMO Constraints for Long-Running Threads

As mentioned above, long-running tasks submitted to MES and MSES and the calling
of newThr ead() method of MTF need to create new threads that will not be managed as
a part of the self-tuning thread pool. Because an excessive number of running threads
can have a negative affect on server performance and stability, configurations are
provided to specify the maximum number of running threads that are created by
concurrency utilities API.

7.2.7.1 Setting Limits for Maximum Concurrent Long Running Requests

The limit of concurrent long-running requests submitted to MES and MSES can be
specified in managed object and server levels. All levels of configurations are
independent and the maximum of the concurrent long-running requests cannot exceed
any of them.

Table 7-4 summarizes the limit of concurrent long-running requests with the max-
concurrent-long-running-requests element that can be defined in the deployment
descriptors.

Table 7-4 Limit of Concurrent Long-running Requests

Scope Deployment Descriptor Description <max-concurrent-long-
running-requests>
Element Details
Server Inconfig.xn : Limit of concurrent Long- Optional
As the sub-element of running requests specified Range: [0-65534]. When
<domai n><server > or for that server. out of range, the default
<domai n><ser ver - value will be used
tenpl ate> Default value: 100
ORACLE 7-8

Chapter 7

How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

Table 7-4 (Cont.) Limit of Concurrent Long-running Requests

Scope

Deployment Descriptor Description

<max-concurrent-long-
running-requests>
Element Details

Managed Object

Limit of concurrent long-
running requests specified
for that MES or MSES.

In webl ogi c-
application.xm,

The same as above with
the exception that the
default value is 10.

webl ogi c-ej b-jar. xm, or
webl ogi c. xm :

As the sub-element of
<managed- execut or -

servi ce> or <managed-
schedul ed- execut or -
service>

inconfig.xm:

As the sub-element of
<managed- execut or -
service-tenpl ate> or
<managed- schedul ed-
execut or - servi ce-
tenpl at e>

ORACLE

When the specified limit is exceeded, the MES or MSES will take following actions for
new long-running tasks submitted to them:

e Thejava.util.concurrent.RejectedExecuti onException will be thrown when calling
the task submission API.

» If the user registered the task with the ManagedTaskListener, then this listener will
not be notified because the submit method failed.

Note that above rule is not applied for the i nvokeAl | () and i nvokeAny() methods. If any
of the tasks submitted by these methods is rejected by the specified limit, the following
events will occur:

* The user-registered ManagedTaskListener's t askSubni tt ed() method will be
called.

* The user-registered ManagedTaskListener's t askDone() method will be called and
the t hr owabl ePar amwill be j avax. enter pri se. concurrent . Abort edExcept i on.

e Other submitted tasks will not be affected.
e The method will not throw the Rej ect edExecut i onExcept i on.

Example 7-1 demonstrates how the value specified for the max- concurrent -1 ong-
runni ng- r equest s element in the config.xml can affect the maximum number of long-
running requests.

Example 7-1 Sample Placements of max-concurrent-long-running-requests in
config.xml

<domai n>
<server>
<nane>nyserver </ server>
<max- concurrent -1 ong- runni ng- r equest $>50</ max- concur r ent - | ong- r unni ng-
requests> (place 1)
</ server>

7-9

Chapter 7
How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers

<max- concurrent - | ong- runni ng- r equest s>10</ max- concur r ent - | ong- r unni ng- r equest s>
(place 2)
<server-tenpl ate>
<name>nyt enpl at e</ name>
<max- concurrent -1 ong- runni ng- r equest s>50</ max- concur r ent - | ong- r unni ng-
requests> (place 3)
</ server-tenpl at e>
</ domai n>

* place 1 — Affects the MES and MSES defined in the server instance myserver. All
the MES and MSES running in that server instance can only create a maximum of
50 long-running-requests in total.

e place 2 — Only affects MES and MSES defined in the domain. All the MES and
MSES running in the domain can create a maximum of 10 long-running-requests
in total.

* place 3 — Affects MES & MSES defined in the server instances that apply to the
template mytemplate. All the MES and MSES running in that server instance can
only create a maximum of 50 long-running-requests in total.

Example 7-2 demonstrates how the value specified for the max- concurrent -1 ong-
runni ng- r equest s element in the confi g. xm can affect the maximum number of long-
running requests.

Example 7-2 Sample Configurations of max-concurrent-long-running-requests

server 1(100)
| ---applicationl
| - - - managed- schedul ed- execut or - servi cel(not specified)
| ---modul el
| - - - mnaged- execut or - servi cel(20)
| - - - mnaged- schedul ed- execut or - servi ce2(not speci fi ed)
| ---application2

In the following cases, none of the limits are exceeded and the above actions will not
be taken:

e Assume 120 long-running tasks were submitted to managed- execut or - servi cel, 115
of them were finished, 5 of them are being executed, if one more long-running task
is submitted to managed- execut or - ser vi cel, it will be executed because no limit is
exceeded.

In the following cases, one of the limits is exceeded and the above actions will be
taken:

e Assume 10 long-running tasks are being executed by nmanaged- schedul ed- execut or -
servi cel, if one more long-running task is submitted to nanaged- schedul ed-
execut or - servi cel, then the limit of managed- schedul ed- execut or - servi cel is
exceeded.

e Assume 10 long-running tasks are being executed by appl i cati onl, 90 are being
executed by appl i cati on2, if one more long-running task is submitted to
appl i cationl or application2, then the limit of server 1 is exceeded.

7.2.7.2 Setting Limits for Maximum Concurrent New Threads

The limit of concurrent new running threads created by calling the newThr ead() method
of the MTF can be specified in a managed object, domain, and server level. All levels

ORACLE 7-10

Chapter 7
Default Java EE CMOs

of configurations are independent and the maximum of the concurrent new running
threads can not exceed any of them.

Note that the meaning of running thread is a thread that has been created by the
MTF and which has not finished its run() method.

Table 7-5 summarizes the limit of concurrent new running threads with an element
<max- concurrent - newt hr eads> that can be defined in the deployment descriptors.

Table 7-5 Limit of Concurrent New Running Threads

Scope Deployment Descriptor Description <max-concurrent-new-
threads> Element Details
Server Inconfig.xm: Limit of concurrent new Optional

As the sub-element of
<domai n><server > or
<domai n><ser ver -
tenpl at e>

running threads specified
for that server.

Range: [0-65534]. When
out of range, the default
value will be used

Default value: 100

Managed Object

In webl ogi c-
application. xm,
webl ogi c-ej b-jar.xm, or

Limit of concurrent new
running threads specified
for that

The same as above with
the exception that the
default value is 10.

webl ogi c. xm : ManagedThreadFactory

As the sub-element of
<managed- execut or -
servi ce> or <managed-
schedul ed- execut or -
service>

inconfig.xm:

As the sub-element of
<managed- execut or -
service-tenpl ate> or
<managed- schedul ed-
execut or - servi ce-
tenpl at e>

When the specified limit is exceeded, calls to the newThread() method of the MTF will
return nul | to be consistent with the Thr eadFact ory. newThr ead Javadoc.

To see a sample snippet of using max- concurrent - newt hr eads, refer to Deployment
Descriptor Examples.

7.3 Default Java EE CMOs

ORACLE

The Java EE standard specifies that certain default resources be made available to
applications, and defines specific JNDI names for these default resources. WebLogic
Server makes these names available through the use of logical JINDI names, which
map Java EE standard JNDI names to specific WebLogic Server resources.

» Default Managed Executor Service
» Default Managed Scheduled Executor Service
» Default Context Service

» Default Managed Thread Factory

7-11

Chapter 7
Default Java EE CMOs

7.3.1 Default Managed Executor Service

There is a default MES instance for each application. It is automatically bound to the
default JINDI name of j ava: conp/ Def aul t ManagedExecut or Ser vi ce of all the sub-
components when deployed.

* Uses the default Work Manager as the dispatch policy
* Propagates all the context-info

e The long-running request limit default is 10

e The long-running thread priority defaults to nor mal

You can also use the default MES in applications with the @esour ce annotation. For
example:

package com exanpl e;
public class TestServlet extends HitpServlet {

@Resour ce
private ManagedExecut or Service service;

Overriding the Default MES
The behavior of the default MES can be overridden by:

e Defining an executor template named Def aul t ManagedExecut or Ser vi ce in the
config. xnl . All applications will use this template to create a default MES.

e Defining a custom managed- execut or - servi ce in the webl ogi ¢c- appl i cation. xnl , using
either deployment descriptors or annotations. This will also override the default
MES definition in confi g. xm in the application. See Custom Managed Executor
Service Configuration Elements.

You cannot define a default executor named Def aul t ManagedExecut or Servi ce in the
webl ogi c. xnl or webl ogi c- ej b-j ar. xm ; doing so will cause the deployment to fail.

7.3.2 Default Managed Scheduled Executor Service

ORACLE

The default MSES instance is similar to the default MES instance, but is automatically
bound to the default JINDI name of j ava: conp/ Def aul t ManagedSchedul edExecut or Ser vi ce
of all the sub-components when deployed. It has the same default settings and
propagates all the context information.

You can also use the default MSES in applications with the @esour ce annotation. For
example:

package com exanpl e;
public class TestServlet extends HttpServliet {
@esour ce
private ManagedSchedul edExecut or Servi ce service;

Overriding the Default MSES
The behavior of the default MSES can be overridden by:

» Defining a scheduled executor template named
Def aul t ManagedSchedul edExecut or Ser vi ce in the confi g. xn . All applications will use
this template to create a default MSES.

7-12

Chapter 7
Default Java EE CMOs

» Defining a custom <managed- schedul ed- execut or - servi ce> in the weblogic-
application.xml, using either deployment descriptors or annotations. This will also
override the default MSES definition in confi g. xm in the application. See Custom
Managed Scheduled Executor Service Configuration Elements.

You cannot define a default scheduled executor named Def aul t ManagedExecut or Ser vi ce
in the webl ogi c. xm or webl ogi c-ej b-j ar. xm ; doing so will cause the deployment to fail.

7.3.3 Default Context Service

There is a default context service instance for each application. It is automatically
bound to the default JINDI name of j ava: conp/ Def aul t Cont ext Ser vi ce of all the sub-
components when deployed and propagates all types of supported contexts.

The default Context Service can also be bound to j ava: conp/ env/ concurrent/cs under
an application component environment (ENC) using the resource-env-ref or @esource
annotation.

Note that the behavior of the default context service cannot be overridden.

Example 7-3 shows how to use the default context service in a webl . xni file using the
resour ce-env-ref element:

Example 7-3 Using the Default Context Service with <resource-env-ref>in a
Web App

<l-- web.xm -->
<resource-env-ref>
<resour ce-env-ref - name>concurrent/cs</resour ce-env-ref - nane>
<resource-env-ref-type>j avax. enterpri se. concurrent. Cont ext Servi ce</ resour ce- env-
ref-type>
</resource-env-ref>

Example 7-4 shows how to use the default context service in a servlet with the
@Resour ce annotation:

Example 7-4 Using the Default Context Service with @Resource in a Servlet

/1 when using @resource, the following 2 ways are correct.
@resour ce(| ookup="j ava: conp/ env/ concurrent/cs")

/| @esour ce(name="concurrent/cs")

private Context Service service;

/1 when using JNDI Nanming Context to |ookup:
[/ initial Context.|ookup("java: conp/env/concurrent/cs")

7.3.4 Default Managed Thread Factory

ORACLE

There is a default MTF instance for each application. It is automatically bound to the
default JNDI name of j ava: conp/ Def aul t ManagedThr eadFact ory of all the sub-
components when deployed.

» Propagates all types of supported contexts for new threads
e The default priority for long-running threads created by newThr ead() is nor mal
e The default limit for running concurrent new threads is 10

You can also use the default MTF in applications with the @esour ce annotation. For
example:

7-13

Chapter 7
Customized CMOs in Configuration Files

package com exanpl e;
public class TestServlet extends HttpServlet {

@Resour ce

private ManagedThreadFactory service;

Overriding the Default MTF

The behavior of the default MTF can be overridden by:

Defining a thread factory template named Def aul t ManagedThr eadFact ory in the
config.xnl . All applications will use this template to create a default MTF.

Defining a custom nanaged-t hr ead- f act ory in the webl ogi c- appl i cati on. xnl , using
either deployment descriptors or annotations. This will also override the default
MTF definition in confi g. xnl in the application. See Custom Managed Thread
Factory Configuration Elements.

You cannot define a default thread factory named Def aul t ManagedThr eadFact ory in the
webl ogi c. xnl or webl ogi c- ej b-j ar. xm ; doing so will cause the deployment to fail.

7.4 Customized CMOs in Configuration Files

You can define the customized CMOs at the application and module level or
referenced from an application component environment (ENC) that is bound to JNDI.

Defining CMOs in WebLogic Configuration Files

Binding CMOs to JNDI Under an Application Component Environment
Custom Managed Executor Service Configuration Elements

Custom Managed Scheduled Executor Service Configuration Elements
Custom Managed Thread Factory Configuration Elements

Transaction Management for CMOs

Note:

In the current release, a custom Context Service cannot be configured.

7.4.1 Defining CMOs in WebLogic Configuration Files

Customized CMOs can be defined at the application and module level in one of these
configuration files:

ORACLE

webl ogi c-appl i cati on. xM —CMOs specified at the application level can be
assigned to that application, or any component of that application.

webl ogi c-ej b-jar. xm or webl ogi c. xmM —CMOs specified at the component level can
be assigned to that component.

7-14

Chapter 7
Customized CMOs in Configuration Files

7.4.2 Binding CMOs to JNDI Under an Application Component
Environment

7.4.2.1 INDI

7.4.2.2 INDI

ORACLE

Executor and thread factory CMOs can also be bound to JNDI under an application

component environment (ENC) using the resour ce-env-ref element or the @esour ce
annotation. The resour ce- env-ref referencing a CMO can only be defined in web. xnl ,
ejb-jar.xm , orapplication. xm.

The four ENC namespaces (j ava: conp, j ava: nodul e, j ava: appl i cati on, and
java: gl obal) are supported for resour ce- env-ref - name and @esour ce.

If you bind an executor in an application, AppA, to the j ava: gl obal JNDI namespace,
the executor can be looked up and used by another application, AppB. Tasks
submitted by AppB are canceled when AppA or AppB is shutdown

Binding Using <resource-env-ref>

Example 7-5 demonstrates how to map an MES named M/Execut or to the
j ava: conp/ env JNDI namespace.

Example 7-5 Binding an Executor to JNDI Using <resource-env-ref>

webl ogi c. xm

<resour ce-env-descri pti on>
<resour ce- env-ref - name>concur r ent / MyExecut or </ r esour ce- env- r ef - name>
<resour ce- | i nk>MyExecut or </ resour ce- i nk>

</resour ce-env-description>

web. xm
<resour ce-env-ref>
<resour ce-env-ref - name>concur r ent / MyExecut or </ r esour ce- env- r ef - name>
<resour ce-env-ref-type>j avax. enterpri se. concurrent. ManagedExecut or Ser vi ce</
resour ce-env-ref-type>
</resource-env-ref>

In webl ogi c. xni the resource- i nk element specifies which executor is being mapped,
which in Example 7-5 is named M/Execut or .

Executors defined in webl ogi c. xm are searched first, followed by webl ogi c-
appl i cation. xnl , and then the managed- execut or - servi ce-tenpl at e in confi g. xnl to find
a executor name attribute that matches the one specified in resour ce- i nk.

If the resour ce- env-descri ption is defined in webl ogi c- ej b-j ar. xnl , then webl ogi c- j b-

jar.xn is searched first, then webl ogi c-appl i cation. xnl , and then config. xm .

Binding Using @Resource

The mapping rules for @esour ce annotation are equivalent to those for resour ce- env-
ref, but uses different these naming conventions:

* resource-env-ref-nane is the nane attribute value in @esour ce.
* resource-link is equivalent to the mappedNane attribute value defined in @esour ce.

If @Resource is used under a web component, it is equivalent to define an resour ce-
env-ref under web. xni

7-15

Chapter 7
Customized CMOs in Configuration Files

If @esour ce is used under an EJB component, it is equivalent to define an resour ce-
env-ref under ej b-jar. xn .

The annotation can also be used on class or methods as defined in the Java EE
specification.

Example 7-5 using the resour ce-env-ref definition is equivalent to Example 7-6 using
@resour ce.

Example 7-6 Binding an Executor to JNDI Using @Resource

package com exanpl e;

public class TestServlet extends HitpServlet {

@resour ce(name="concurrent/M/Executor" mappedNanme="M/Execut or")
private ManagedExecutorService service;

In this example, if the mappedNanme attribute of @resour ce is not specified, then the default
executor is used.

If you define both the resour ce-env-ref and @esource, and the resour ce- env-ref - nane
and nane attribute of @esour ce are the same, then the resour ce-env-ref defined
executor will be injected into the @esour ce field.

You can also use @esour ce with a look-up attribute or I ni ti al Cont ext . | ookup to find a
executor bound by resource-env-ref.

7.4.2.3 Updated Schemas for Custom CMO Modules

ORACLE

The following WebLogic Server schemas include elements for configuring CMO
deployment descriptors:

e webl ogi c-j avee. xsd — Describes common elements shared among all WebLogic-
specific deployment descriptors:

http://xm ns. oracl e. com webl ogi ¢/ webl ogi c-j avaee/ 1. 4/ webl ogi c- j avaee. xsd

e webl ogi c-application. xsd — The WebLogic Server-specific deployment descriptor
extension for the appli cation. xnl Java EE deployment descriptor, where you
configure features such as shared Java EE libraries referenced in an application
and EJB caching.

See weblogic-application.xml Deployment Descriptor Elements in Developing
Applications for Oracle WebLogic Server.

* webl ogi c- web- app. xsd — The WebLogic Server-specific deployment descriptor for
Web applications.

See weblogic.xml Deployment Descriptor Elements in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

* webl ogi c-ej b-j ar. xsd — The WebLogic-specific XML Schema-based (XSD)
deployment descriptor file for EJB deployments.

See weblogic-ejb-jar.xml Deployment Descriptor Reference in Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Example 7-7 shows the CMO-related elements in the webl ogi c- web- app. xsd.
Example 7-7 CMO Elements in weblogic-web-app.xsd

<xs: conpl exType nanme="webl ogi c- web- appType" >
<XSs: sequence>

7-16

http://xmlns.oracle.com/weblogic/weblogic-javaee/1.4/weblogic-javaee.xsd

Chapter 7
Customized CMOs in Configuration Files

<xs: choice m nCccurs="0" maxCccur s="unbounded" >

<l-- added for JSR236 -->

<xs: el ement nane="nanaged- execut or-servi ce" type="w s: managed- execut or -
servi ceType" m nCccurs="0" maxQccur s="unbounded"/>

<xs: el ement nane="nanaged- schedul ed- execut or-servi ce" type="w s: managed-
schedul ed- execut or - servi ceType" minCccurs="0" maxCccur s="unbounded"/ >

<xs: el ement nane="nanaged-t hread-factory" type="w s: managed-t hr ead-
factoryType" minCccurs="0" maxCQccur s="unbounded"/>

<l-- added end -->

7.4.2.4 Updated System Module Beans for CMOs

The following WebLogic Server system module beans include attributes for configuring
CMOs in applications and modules:

* ManagedExecut or Servi ceBean

* ManagedSchedul edExecut or Servi ceBean
° ManagedThr eadFact or yBean

* Wbl ogi cAppl i cationBean

° WebLogi cE bJar Bean

* WebLogi cWebAppBean

See the WebLogic Server System Module MBeans section in the MBean Reference
for Oracle WebLogic Server.

7.4.3 Custom Managed Executor Service Configuration Elements

ORACLE

This section defines the configuration elements for a managed executor service.

7-17

Chapter 7
Customized CMOs in Configuration Files

Table 7-6 Managed Executor Service Configuration Elements

Name Description Required Default Range
Value
name The name of the MES. Yes n/a An arbitrary non-empty string.

An MES with the same name cannot be
configured in the same scope. For example,
if the same MES name is used in an
application or module scope, the deployment
of the application will fail.

An MES can have the same name as other
types of managed objects, such as a
ContextService, in any scope and it will be
no relationship between them.

An MES with the same name can only be
configured in different scopes if:

« If there are more than one MES with
same name configured in the server
template, partition template, or
application scope, the partition MES
template executor will override the
server template, and the application
scope MES will override the other two
levels.

» Ifthere is a MES A defined in module
scope which name is same with the
executor B defined in server template,
partition template or application scope.
A and B will both exists. Which executor
is used is determined by the location
referencing the executor.

dispatch- The name of the Work Manager. The rule of No

Default n/a

policy which Work Manager should be used is: Work
+ Search module scope Work Manager Manager
first if the ManagedExecutorService is
defined in module scope.
« If not found, search application level.
» fstill not found, the default Work Manger
is used. (This behavior is consistent with
servlet and EJB's dispatch policy
resolving strategy.)
max- Maximum number of concurrent long running No 10 [0-65534].

concurren tasks.

When out of range, the default

t-long- See Setting Limits for Maximum Concurrent value will be used.
running- | ong Running Requests.

requests)

long- An integer that specifies the long-running No Thread.N 1-10

running- daemon thread's priority. If specified, all ORM PRIO Range between

priority long-running threads will be affected. RITY Thread. M N PRI ORI TY and

See Setting Limits for Maximum Concurrent
New Threads.

Thread. MAX_PRI ORI TY. When out
of range, the default value will be
used.

ORACLE

7-18

Chapter 7
Customized CMOs in Configuration Files

7.4.3.1 Deployment Descriptor Examples

Example 7-8 is an example of a custom MES definition in a Web application's
webl ogi c. xnl file:

Example 7-8 Using Deployment Descriptor to Define a Custom MES in an
Application

<I-- weblogic.xn -->
<managed- execut or - servi ce>
<name>M/Execut or </ nanme>
<di spat ch- pol i cy>My/Wor kManager </ di spat ch- pol i cy>
<l ong-runni ng-priority>10</1ong-runni ng-priority>
<max- concurrent - | ong-runni ng- r equest s>10</ max- concur r ent - | ong- r unni ng-
request s>
</ managed- execut or - servi ce>

Example 7-9 is an example of a custom MES reference in the webl ogi c. xnl descriptor
using the <resour ce- env-ref > element:

Example 7-9 Referencing a Custom MES Using <resource-env-ref> in an
Application

webl ogi ¢. xm
<resour ce- env-description>
<resour ce- env-ref - name>concur rent / MyExecut or </ r esour ce- env-r ef - nane
<resour ce- | i nk>M/Execut or </ resour ce- | i nk>
</resource-env-description>

Example 7-10 is an example of a custom MES reference in a webl . xni file using the
<resour ce- env-ref > element:

Example 7-10 Referencing a Custom MES Using <resource-env-ref> in a Web
App

web. xm
<resource-env-ref>
<resour ce-env-ref - name>concur rent / MyExecut or </ r esour ce- env-r ef - nane
<resour ce-env-ref-type>j avax. enterpri se. concurrent. ManagedExecut or Servi ce</
resour ce-env-ref-type>
</resource-env-ref>

Example 7-11 is an example of a custom MES reference in a servlet using the
@Resour ce annotation.

Example 7-11 Referencing a Custom MES in a Servlet Using @Resource in a
Servlet

package com exanpl e;

public class TestServlet extends HitpServlet {

@resour ce(name="concurrent/MExecutor" mappedName="MExecutor")
private ManagedExecutor Service service;

7.4.4 Custom Managed Scheduled Executor Service Configuration
Elements

This section defines the configuration elements for a managed scheduled executor
service.

ORACLE 7-19

Table 7-7 Managed Scheduled Executor Service Configuration Elements

Chapter 7

Customized CMOs in Configuration Files

Name Description Required Default Range
Value
name The name of the MSES. Yes n/a An
For naming convention rules, see Table 7-6. arbitrary
non-
empty
string.
dispatch-policy The name of the Work Manager. No Default n/a
For Work Manager usage rules, see Work
Table 7-6. Manager
max-concurrent-long-running- Maximum number of concurrent long running No 10 [0-65534].
requests tasks. When out
See Setting Limits for Maximum Concurrent of range,
Long Running Requests. the
default
value is
used.
long-running-priority An integer that specifies the long-running No 5 1-1
daemon thread's priority. If specified, all Thread. N Range
long-running threads will be affected. ORM PRIO petween
See Setting Limits for Maximum Concurrent RITY Thread. M
New Threads. I N_PRICR
I TY and
Thread. M
AX_PRIOR
ITY.
When out
of range,
the
default
value is
used.

7.4.4.1 ScheduledFuture.get() Method

The Schedul edFut ure. get () method will block until the latest run of the task finishes.
For example, if the Tri gger method requires the task being scheduled to run two times
(i.e., Tri gger. get Next RunTi me returns null on the third call), and the first run of the task
is finished at time A, the second run of the task is finished at time B, then:

e If Future. get () is called before time A, it will wait for the first run to finish and return
the first run result. If it is called after time A and before time B, it will wait to the
second run finish and return the second run's result.

e IfFuture. get() is called after time B, it will immediately return the second run
result. Also, if the first run fails and throws a exception, then the first Fut hur. get
call will throw that exception and the second run will still be scheduled (this is
different with schedul eAt Fi xRat €). If the Tri gger. ski pRun returns true on the first run,
then the first Fut ure. get cal | will throw a Ski pExcept i on.

ORACLE

7-20

Chapter 7
Customized CMOs in Configuration Files

7.4.4.2 Deployment Descriptor Examples

Example 7-12 is an example of a custom MSES definition in a Web application's
webl ogi c. xnl file:

Example 7-12 Using Deployment Descriptor to Define a Custom MSES in an
Application

<I-- weblogic.xn -->
<managed- schedul ed- execut or - servi ce>
<name>MSchedul edExecut or </ name>
<di spat ch- pol i cy>MyExecut or </ di spat ch-pol i cy>
</ managed- schedul ed- execut or - ser vi ce>

7.4.5 Custom Managed Thread Factory Configuration Elements

This section defines the configuration elements for a managed thread factory.

Table 7-8 Managed Thread Factory Configuration Elements

Name Description Required Default Range
Value
name The name of the MTF. Yes n/a An arbitrary non-empty string.

For naming convention rules, see Table 7-6.

priority The priority to assign to the thread. (The No 5 1-10 Range between
higher the number, the higher the priority.) Thread. N Thread. M N_PRI ORI TY and
See Setting Limits for Maximum Concurrent ORMLPRIO Thread. MAX_PRI ORI TY. When out
New Threads. RITY of range, the default value is
used.
max- The maximum number of threads created by No 10 [0-65534]
concurren the MTF and are still executing the run() When out of range, the default
t-new- method of the tasks. value is used.

threads gee Setting Limits for Maximum Concurrent
New Threads.

7.4.5.1 Contexts of Threads Created by MTF

ORACLE

According to JSR236, the Managed Thread Factory is different from the other
managed objects because when the thread is started using the Thread. start ()
method, the runnable that is executed will run with the context of the application
component instance that created the ManagedThr eadFact ory instance. Therefore, the
context of the runnable depends on the application component that created the MTF
instance.

In WebLogic Server, new MTF instances are created when an application or a
component is started, as follows. (A component means a web module or an EJB.)

1. A default MTF is created by that component.

2. If there is @esour ce annotation to get an MTF, an MTF instance is created by that
component.

3. Ifthere is a <resour ce-env-ref > defined in web. xnl / ej b-j ar. xni , and there is also a
corresponding <r esour ce- env- descri pti on> defined in webl ogi c. xm / webl ogi c- j b-

7-21

Chapter 7
Customized CMOs in Configuration Files

jar.xm with a <resour ce-1ink> for an MTF, then an MTF instance is created by
that component.

4. If there is a <resour ce- env-ref > defined in appl i cation. xn , and there is also a
corresponding <r esour ce- env- descri pti on> defined in webl ogi c- appl i cati on. xn
with a <resour ce- | i nk> for an MTF, then an MTF instance is created by that
application.

When an MTF is created by a component in the case of items 1, 2, and 3 listed above,
the Runnable runs with the context of that component, as follows:

e ClassLoader: the class loader of that component.

« JNDI: The JNDI tree of that component that contains j ava: app, j ava: nodul e, and
j ava: conp.

e Security: Fixed to be the anonymous subject because there is no component-
specific subject.

* WorkArea: Fixed to be an empty Wr kCont ext Map because there is no component-
specific Wor kCont ext Map.

When an MTF is created by an application in the case of 4, the Runnable run with the
context of that application as follows:

* ClassLoader: The class loader of that application.

* JNDI: The JNDI tree of that component that contains j ava: app but without
java: nodul e and j ava: conp.

* Security: Fixed to be the anonymous subject because there is no application-
specific subject.

* WorkArea: Fixed to be an empty Wr kCont ext Map because there is no application-
specific Wor kCont ext Map.

7.4.5.2 Deployment Descriptor Examples

ORACLE

Example 7-13 is an example of a custom MTF definition in a Web application's
webl ogi ¢. xn file:

Example 7-13 Using Deployment Descriptors to Define a Custom MTF in an
Application

<l-- weblogic.xn -->
<managed- t hr ead- f act ory>
<nane>f act or y1</ name>
<priority>3</priority>
<max- concurr ent - newt hr eads>20</ max- concur r ent - new-t hr eads>
</ managed- execut or - servi ce>

Example 7-9 is an example of a custom MTF reference in a Web application's
webl ogi ¢. xn file:

Example 7-14 Referencing a Custom MTF Using <resource-env-ref> in an
Application

webl ogi c. xm
<resour ce- env-descri ption>
<resour ce-env-ref-name>ref - f act or y1l</resour ce- env-ref - nane
<resource-|ink>factoryl</resource-|ink>
</resource-env-description>

7-22

Chapter 7
Customized CMOs in Configuration Files

Example 7-10 is an example of a custom MTF reference in a Web application's
webl ogi ¢c. xn file:

Example 7-15 Referencing a Custom MTF Using <resource-env-ref> in a Web
App

web. xm
<resour ce-env-ref>
<resour ce-env-ref-name>ref - fact oryl</resource-env-ref-nane
<resource-env-ref-type>j avax. enterprise. concurrent. ManagedThr eadFact or y</
resour ce- env-ref-type>
</resource-env-ref>

Example 7-11 is an example of a custom MTF reference in a servlet using the
@esour ce annotation:

Example 7-16 Referencing a Custom MTF Using @Resource in a Servlet

package com exanpl e;

public class TestServlet extends HitpServlet {
@resour ce(| ookup="j ava: conp/ env/ref-factoryl")
private ManagedThreadFactory factory;

7.4.6 Transaction Management for CMOs

This section explains how transactions are managed by WebLogic Server for CMOs.

7.4.6.1 Transaction Management for MES and MSES

When using an MES, transactions are managed as follows:

e There are no transaction running in the Work Manager thread before the task is
begun.

e The UserTransacti on. get St at us() method is always St at us. STATUS_NO TRANSACTI ON
unless the Transaction API is used to start a new transaction.

» User should always finish its transaction in user tasks; otherwise, the transaction
will be rolled backed.

Therefore ManagedTask. TRANSACTI ON and related attributes will be ignored.

7.4.6.2 Transaction Management for Context Service

ORACLE

By default, or by setting the value of execution property ManagedTask. TRANSACTI ON to
ManagedTask. SUSPEND:

* Any transaction that is currently active on the thread will be suspended.

e Ajavax.transaction. User Transacti on accessible in the local INDI namespace as
java: conp/ User Transact i on will be available so contextual proxy object may begin,
commit, and roll back a transaction.

» If a transaction begun by a contextual proxy object is not completed before the
method ends, a WARNI NG log will be output, and the transaction will be rolled back.

* The original transaction, if any was active on the thread, will be resumed when the
task or contextual proxy object method returns.

By setting the value of execution property ManagedTask. TRANSACTI ON to
ManagedTask. USE_TRANSACTI ON_OF EXECUTI ON_THREAD:

7-23

Chapter 7
Global CMO Templates

* The transaction will managed by the execution thread and the task themselves, so
that any transaction that is currently active on the thread will not be suspended
when contextual proxy object method begins, and will not be resumed when
contextual proxy object method returns.

« If there is a currently active transaction on the thread, any resources used by the
contextual proxy object will be enlisted to that transaction.

» If a transaction began by the contextual proxy object is not completed before the
method ends, WebLogic Server will do nothing about it because there is the
possibility that the transaction is completed by another method of the contextual
proxy object.

7.4.6.3 Transaction Management for MTF

When using the MTF, transactions are managed as follows:

* The task runs without an explicit transaction (they do not enlist in the application
component's transaction), so the User Transact i on. get St at us() method always
returns St at us. STATUS_NO TRANSACTI ON, unless a new transaction is started in the
task.

« If the transaction is not completed before the task method ends, a WARNI NG log will
be output, the transaction will be rolled back.

7.5 Global CMO Templates

ORACLE

In addition to the JSR236 default CMOs, you can also define global CMOs as
templates in the domain's configuration by using the WebLogic Server Administration
Console and configuration MBeans. CMOs specified in confi g. xm can be assigned to
any application, or application component, in the domain.

Note:

Partitioned domains for multi-tenancy are only available in WebLogic Server
Premium Edition. For more information, see About WebLogic Server MT.

" Note:

You should normally use the Administration Console to configure WebLogic
Server's manageable objects and services and allow WebLogic Server to
maintain the config. xm file.

You can define three types of CMO templates in a domain:
* Managed Executor Service Template

* Managed Scheduled Executor Service Template

* Managed Thread Factory Template

For example, if you define a managed- execut or - ser vi ce- t enpl at e, a uniqgue MES
instance is created for each application deployed in the domain.

7-24

Chapter 7
Configuring Concurrent Constraints

7.5.1 Configuring CMO Templates using the Administration Console

CMO templates can be configured globally in the domain's configuration using the
WebLogic Server Administration Console.

1. Inthe Domain Structure tree, expand Environment and click Concurrent
Templates.

2. Click New and choose one of the following template options:
* Managed Executor Service Template
* Managed Scheduled Executor Service Template
 Managed Thread Factory Template

3. Onthe Create New Template page, enter the template properties as required.
The properties vary depending on which type of concurrent template you are
creating.

e Custom Managed Executor Service Configuration Elements
* Custom Managed Scheduled Executor Service Configuration Elements
» Custom Managed Thread Factory Configuration Elements

4. Click Next.

5. Select whether to target the concurrent template to a specific WebLogic Server
instance or to a WebLogic Server cluster.

Only applications that have been deployed to the selected servers or clusters can
use this concurrent template.

6. Click Finish. The Summary of Concurrent Templates page displays and the
new concurrent template is listed.

7. Repeat these steps to create other concurrent templates as necessary.

For instructions about using the WebLogic Server Administration Console to manage a
WebLogic Server domain, see the Oracle WebLogic Server Administration Console
Online Help.

7.5.2 Using MBeans to Configure CMO Templates

CMO templates can be configured using the following configuration MBeans under the
Domai nMBean.

* ManagedExecutorServiceTemplateMBean
* ManagedScheduledExecutorServiceTemplateMBean
* ManagedThreadFactoryTemplateMBean

For more information, see the Domain Configuration MBeans section in the MBean
Reference for Oracle WebLogic Server.

7.6 Configuring Concurrent Constraints

Constraints can also be defined globally in the domain's configuration using the
WebLogic Server Administration Console and configuration MBeans. Concurrent

ORACLE 7-25

Chapter 7
Configuring Concurrent Constraints

constraints specified in confi g. xm can be assigned to any application, or application
component, in the domain.

Using the Administration Console to Configure Concurrent Constraints

Using MBeans to Configure Concurrent Constraints

7.6.1 Using the Administration Console to Configure Concurrent

Constraints

Concurrent constraints can be configured in the domain configuration, in specified
server instances, and in server templates for dynamic clusters, using the
Administration Console.

7.6.1.1 Domain-level Concurrent Constraints

To configure concurrent constraints for a domain:

1.
2.
3.

4,

In the Domain Structure tree, select the domain name at the top of the tree.

Select the Configuration > Concurrency tab.

On the Concurrency page, specify a value for any or all of the available options:

Max Concurrent Long Running Requests — The limit of concurrent long-
running requests submitted to the Managed Executor Service or Managed
Scheduled Executor Service. See Setting Limits for Maximum Concurrent

Long Running Requests.

Max Concurrent New Threads — The maximum number of concurrent new
threads created by the Managed Thread Factory outside of the self-tuning
thread pool. See Setting Limits for Maximum Concurrent New Threads.

Click Save.

7.6.1.2 Server-level Concurrent Constraints

To configure concurrent constraints for specific server instances in a domain:

1.
2.
3.

4.

In the Domain Structure tree, expand Environment and click Servers.

In the Summary of Servers table, select a server instance.

On the Concurrency page, specify a value for any or all of the available options:

Max Concurrent Long [Running] Requests — The limit of concurrent long-
running requests submitted to the Managed Executor Service or Managed
Scheduled Executor Service. See Setting Limits for Maximum Concurrent
Long Running Requests.

Max Concurrent New Threads — The maximum number of concurrent new
threads created by the Managed Thread Factory outside of the self-tuning
thread pool. See Setting Limits for Maximum Concurrent New Threads.

Click Save.

7.6.1.3 Dynamic Cluster-level Concurrent Constraints

To configure concurrent constraints for server templates in a dynamic cluster:

ORACLE

7-26

5.

Chapter 7
Querying CMOs

In the Domain Structure tree, expand Environment, expand Clusters, and click
Server Templates.

In the Summary of Server Templates table, select a server template instance.
Select the Configuration > Concurrency tab.
On the Concurrency page, specify a value for any or all of the available options:

* Max Concurrent Long Requests — The limit of concurrent long-running
requests submitted to the Managed Executor Service or Managed Scheduled
Executor Service. See Setting Limits for Maximum Concurrent Long Running
Requests.

* Max Concurrent New Threads — The maximum number of concurrent new
threads created by the Managed Thread Factory outside of the self-tuning
thread pool. See Setting Limits for Maximum Concurrent New Threads.

Click Save.

7.6.2 Using MBeans to Configure Concurrent Constraints

Concurrent constraints can be configured globally in the domain's configuration, in
specified server instances, and in server templates for dynamic clusters using the
following methods under the Domai nMBean, Ser ver MBean, and Ser ver Tenpl at eMBean:

maxConcur r ent LongRunni ngRequest s() — See Setting Limits for Maximum Concurrent
Long Running Requests.

maxConcur r ent NewThr eads() — See Setting Limits for Maximum Concurrent New
Threads.

For more information about using WebLogic Server MBeans, see Accessing WebLogic
Server MBeans with JMX in Developing Custom Management Utilities Using JMX for
Oracle WebLogic Server.

7.7 Querying CMOs

You can query global CMOs using administrative tools such as Administration Console
and MBeans.

Using the Administration Console to Monitor CMO Threads
Using MBeans to Monitor CMOs

Using MBeans to Monitor Concurrent Constraints

7.7.1 Using the Administration Console to Monitor CMO Threads

CMOs can be monitored using the Administration Console.

ORACLE

To monitor the threads created by CMOs in a server instance:

1.
2.
3.

In the Domain Structure tree, expand Environment and click Servers.
In the Summary of Servers table, select a server template instance.
On the Settings page, select the Monitoring > Concurrency tab.

The tab displays the statistics for CMO threads created in the global runtime.

7-27

Chapter 7
Querying CMOs

7.7.1.1 Monitor JSR236 CMOs for All Deployed Applications and Modules

To monitor the statistics for all JISR236 CMOs in a domain:

1.
2.

In the Domain Structure tree, click Deployments.

In the Summary of Deployments page, select the Monitoring > Concurrency
tab.

The tab displays the statistics for all the CMOs of all the deployed applications and
modules in the domain by calling the relevant runtime MBeans.

7.7.1.2 Monitor JSR236 CMOs for a Deployed EAR or Module

To monitor the statistics for all JISR236 CMOs in a domain:

1.
2.

In the Domain Structure tree, click Deployments.

In the Summary of Deployments page, select the EAR or module that you want
to monitor.

On the Settings page, select the Monitoring > Concurrency tab.

Depending on what type of application or module was selected, the tab displays
the statistics from the corresponding runtime MBean:

e EAR Application — displays statistics for all the concurrent objects of that
application (by calling Appl i cat i onRunt i meMBean).

* Web app or EJB module within an EAR — Displays statistics for all the
concurrent objects of that module (by calling Conponent Runt i meMBean).

» Standalone Web app or EJB module — displays statistics for all the concurrent
objects of that Web app or module (by calling Appl i cati onRunti neMBean and
Conponent Runt i neMBean).

7.7.2 Using MBeans to Monitor CMOs

CMOs can be monitored using the following runtime MBeans under the Donai nMBean.

ORACLE

ManagedExecut or Ser vi ceRunt i mreMBean

The ManagedExecutorServiceRuntimeMBean can be accessed from the following
MBean attributes:

— ApplicationRunti neMBean. ManagedExecut or Servi ceRunt i nes — Provides statistics
for all the Managed Executor Services of that application.

— Conponent Runt i neMBean. ManagedExecut or Servi ceRunt i mes — Provides statistics for
all the Managed Executor Services of that module.

See the ManagedExecutorServiceTemplateMBean in the MBean Reference for
Oracle WebLogic Server

ManagedSchedul edExecut or Ser vi ceRunt i meMBean

The ManagedScheduledExecutorServiceRuntimeMBean can be accessed from
the following MBean attributes:

— ApplicationRunti meMBean. ManagedSchedul edExecut or Ser vi ceRunt i mes — Provides
statistics for all the Managed Scheduled Executor Services of that application.

7-28

Chapter 7
Querying CMOs

— Conponent Runt i neMBean. ManagedSchedul edExecut or Ser vi ceRunt i nes — Provides
statistics for all the Managed Scheduled Executor Services of that module.

See the ManagedScheduledExecutorServiceRuntimeMBean in the MBean
Reference for Oracle WebLogic Server

° ManagedThr eadFact or yRunt i neMBean

The ManagedThreadFactoryRuntimeMBean can be accessed from the following
MBean attributes:

— ApplicationRunti meMBean. ManagedThr eadFact or yRunt i mes — Provides statistics for
all the Managed Thread Factories of that application.

— Conponent Runt i neMBean. ManagedThr eadFact or yRunt i mes — Provides statistics for
all the Managed Thread Factories of that module.

See the ManagedThreadFactoryRuntimeMBean in the MBean Reference for
Oracle WebLogic Server

See Accessing WebLogic Server MBeans with JIMX in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

7.7.3 Using MBeans to Monitor Concurrent Constraints

ORACLE

A server's concurrent constraints can be monitored using the
Concur r ent ManagedObj ect sRunt i meMBean, which can be accessed from the following
MBean attribute:

e Server Runti meMBean. Concur r ent ManagedObj ect sRunt i me — Provides statistics for
threads created by concurrent managed objects of global runtime.

See the ConcurrentManagedObjectsRuntimeMBean in the MBean Reference for
Oracle WebLogic Server

See Accessing WebLogic Server MBeans with JMX in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

7-29

Using the Batch Runtime

WebLogic Server implements the batch runtime to provide support for defining,
implementing, and running batch jobs, as defined for Java EE 7 in Batch Applications
for the Java Platform (JSR 352).

* About Batch Jobs

* Using the Default Batch Runtime Configuration with the Derby Database
» Configuring the Batch Runtime to Use a Dedicated Database

* Querying the Batch Runtime

» Troubleshooting Tips

8.1 About Batch Jobs

Batch jobs are tasks that can be executed without user interaction and are best suited
for non-interactive, bulk-oriented and long-running tasks that are resource intensive,
can execute sequentially or parallel, and may be initiated ad hoc or through
scheduling.

As described in the Java EE 7 Tutorial, the batch framework consists of:

* Ajob specification language based on XML.

* A set of batch annotations and interfaces for application classes that implement
the business logic.

* A batch container that manages the execution of batch jobs.
e Supporting classes and interfaces to interact with the batch container.

For detailed information about batch jobs, batch processing, and the batch processing
framework, see "Batch Processing” in The Java EE 7 Tutorial. Also see the Java
Specification Request 352: Batch Applications for the Java Platform (http://
jcp.org/en/jsr/detail ?i d=352). The specification defines the programming model for
batch applications and the runtime for scheduling and executing batch jobs.

8.1.1 Use of Multiple Batch Runtime Instances

ORACLE

WebLogic Server supports the ability for multiple batch runtime instances to run in a
domain, whereby each instance is hosted on an individual Managed Server instance.
However, there is no state replication across batch jobs running in a domain; that is,
one batch runtime instance cannot be aware of another. Consequently, the processing
for a given batch job occurs only on the batch runtime instance that is hosted on a
single Managed Server. Once a batch job is started on a Managed Server instance,
the job runs on that instance to completion. Any step in the job that is started, including
any concurrent steps, runs only on that Managed Server instance. This behavior has
important implications in both clustered and nonclustered environments, particularly
with regards to load balancing, as follows:

8-1

http://jcp.org/en/jsr/detail?id=352
http://jcp.org/en/jsr/detail?id=352

Chapter 8
About Batch Jobs

If your deployed applications allow external users or processes to access those
applications to start batch jobs, the load balancing mechanism for distributing work
across the Managed Servers instances typically ensures that the workload on
each batch runtime instance, over time and on average, is similarly balanced.

If you have an application that contains a batch job, and the application is
replicated on multiple nonclustered Managed Server instances, you must create a
data source on each Managed Server that points to the same database. You then
configure each batch runtime instance to use that database for the job repository.
In this manner, an incoming request that is routed by the load balancer can land
on any Managed Server instance and start a new batch job.

Although batch job processing cannot be clustered, batch applications can be
deployed to a cluster. You can do this by creating a data source and targeting it to
the cluster. Then you configure a group of batch runtime instances, each running
in a Managed Server instance in the cluster, to use the same job repository.

For more information about batch processing in a clustered environment, see
Batch Applications in Administering Clusters for Oracle WebLogic Server.

There is no guarantee that the batch load at any point in time is equivalent across
the Managed Server instances if different requests can generate different types of
batch load. The likelihood of uneven load distribution increases if there is high
degree of variability of the types of batch load that can be generated by different
requests. For example, if one request is sent to one batch runtime instance, and a
second request is sent to the other batch runtime instance, it is possible that the
first request could start 10 batch jobs and the second request start only 2 jobs. In
this scenario, it is possible for the batch job workload to become unevenly
distributed.

8.1.2 Batch 1.0 Code Examples in WebLogic Server

When you install WebLogic Server complete with the examples, the examples source
code is placed in the EXAMPLES_HOVE\ exanpl es\ sr ¢\ exanpl es directory. The default path
is ORACLE_HOME\ W ser ver\ sanpl es\ server. From this directory, you can access the
source code and instruction files for the Batch 1.0 examples without having to set up
the samples domain.

ORACLE

The ORACLE_HOME\ user _pr oj ect s\ donai ns\w _server directory contains the WebLogic
Server examples domain; it contains your applications and the XML configuration files
that define how your applications and Oracle WebLogic Server will behave, as well as
startup and environment scripts. See Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

Using the Batch Job Operator — demonstrates how to use the

j avax. bat ch. oper ati ons. JobQper at or interface to submit batch jobs. The
JobOper at or interface provides a set of operations to start, stop, restart, and
inspect jobs. This sample will also demonstrates how to use listeners to notify
about specific event occurring during the batch processing execution.

EXAMPLES_HOMVE/ exanpl es/ src/ exanpl es/ j avaee7/ bat ch/ j oboper at or - api

Using Batch Parallelization Model to Run Partitioned Job Steps —
demonstrates how to use the PartitionMapper interface to enable finer control over
parallel processing.

EXAMPLES_HOME/ exanpl es/ src/ exanpl es/ j avaee7/ bat ch/ partition

8-2

Chapter 8
Using the Default Batch Runtime Configuration with the Derby Database

* Avitek Medical Records (MedRec) — A comprehensive educational sample
application that demonstrates WebLogic Server and Java EE features, as well as
best practices. For Java EE 7, Medrec showcases batch processing's capability by
compiling drug statistics in the background for the administrator. The statistics sum
up the cost by record, physician and drug perspectives with a start date and end
date, altogether in one batch, but with three outputs.

Avitek Medical Records is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME/ user _pr oj ect s/ domai ns/
nedr ec directory, where ORACLE_HOME is the directory you specified as the Oracle
Home when you installed Oracle WebLogic Server.

Oracle recommends that you run these examples before programming your own
applications that use batch.

8.2 Using the Default Batch Runtime Configuration with the
Derby Database

Batch applications can be deployed and started on WebLogic Server out-of-the-box
with no runtime configuration. This is useful for smaller development environments that
do not process and store large amounts of data.

When no batch runtime configuration exists, WebLogic Server uses:

* The demo Derby database to create a data source needed to update the job
repository to persist batch job details.

* The executor service that is bound to default INDI name of j ava: conp/
Def aul t ManagedExecut or Servi ce (as required by the Java EE 7 specification).

In orders to access the default batch runtime configuration, WebLogic Server must be
started using the st art Wbl ogi c. sh script.

See Querying the Batch Runtime.

8.3 Configuring the Batch Runtime to Use a Dedicated

Database

ORACLE

The batch runtime in WebLogic Server uses an XA-capable data source to access the
JobRepository tables for batch jobs and a managed executor service to execute
asynchronous batch jobs. The managed executor service processes the jobs and the
JobRepository data source stores the status of current and past jobs.

The default batch runtime in a WebLogic domain can be used without any
configuration, which is useful in development mode environments that only require the
Derby demo database. For data-driven production environments that use a database
schema, you can configure a dedicated job repository data source and managed
executor service for the domain.

e Prerequisite Steps: Configure the Job Repository Tables, Batch Data Source, and
Managed Executor Service

e Configuring the Batch Runtime Using the Administration Console
e Configuring the Batch Runtime Using WLST

8-3

Chapter 8
Configuring the Batch Runtime to Use a Dedicated Database

8.3.1 Prerequisite Steps: Configure the Job Repository Tables, Batch
Data Source, and Managed Executor Service

For enterprise-level production environments that process and store large amounts of
data, a dedicated batch runtime can be configured to store the batch job details in a
specific database.

8.3.1.1 Create the Job Repository Tables

The database administrator must create the job repository tables needed to persist
batch job details. The schema name used to created these tables will be denoted by
the get SchemaName() method in the Bat chConf i gMBean when configuring the batch
runtime for the domain. See Configure the Batch Runtime to Use a Dedicated Batch
Data Source and Managed Executor Service.

The job repository tables can be created using the Repository Create Utility (RCU) or
using SQL scripts for the databases supported for use with WebLogic Server 12c.
Schemas for creating these tables are in the following location:

ORACLE_HOWE/ or acl e_comon/ cormon/ sql / wl ser vi ces/ bat ch/ dbnane

Iwhere ORACLE_HOME represents the top level installation directory for Oracle WebLogic
Server, and dbnane represents the name of the database.

For information about the supported databases for WebLogic Server 12c, see the
Oracle Fusion Middleware Supported System Configurations page on Oracle
Technology Network.

8.3.1.1.1 Creating Job Repository Tables Using RCU

It is important to note the following when using RCU to create the job repository tables
and schema owner:

1. On the Select Components page, select WebLogic Services as the component.
Also, note that Schema Owner name will default to the schema prefix string you
chose plus "WLS", such as JBat ch_W.S. Write this name down because you will use
it when you create the batch data source and the batch runtime.

2. Onthe Schema Passwords page, choose the Select same password for all
schemas option.

3. When you click Finish, RCU will create tables and schemas for all WebLogic
related components, including Batch, EJB Timers, Diagnostics, etc.

Now you can create the batch data source, as described in Create a JDBC Data
Source for the Job Repository. Remember that you must use the schema owner you
chose on the Select Components page as the data source's user name.

ORACLE 8-4

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=fmwcert

Chapter 8
Configuring the Batch Runtime to Use a Dedicated Database

Note:

The batch runtime caches the schema name and when it acquires a
connection to update the job repository tables, it sets the schema name on
the connection. Due to this limitation, it is not possible to use the same data
source for both application and job repository (if they use separate
schemas).

For more information about the Repository Clean Utility (RCU), see Creating Schemas
with the Repository Creation Ultility.

8.3.1.1.2 Creating Job Repository Tables Using an SQL Script

If you are not using RCU ultility to create the job repository tables for batch, you can
use the SQL command-line utility and the provided bat ch. sql script to create them. For
example, when you create job repository tables for Oracle Database and Oracle EBR
(Edition-Based Redefinition), which require SQL to create the tables.

The bat ch. sql SQL script is provided for all supported databases (such as, mysql, db2,
etc.) to create the job repository tables, and are in the following location:

ORACLE_HOVE/ or acl e_common/ conmon/ sql / W ser vi ces/ bat ch/ dbnane

To use the bat ch. sql SQL script to create the tables, follow these steps:

Open an SQL command-line session for your database.

Create a new user called j bat ch that will be identified by the bat ch. sql script.
Grant Connect privileges to user j bat ch.

Grant Resour ce privileges to user j bat ch.

g A ® NP

Run the bat ch. sql script from the directory containing the Oracle database's SQL
scripts. For example:

ORACLE_HOVE/ or acl e_common/ common/ sql / Wl ser vi ces/ bat ch/ or acl e/ bat ch. sql

Now you can create the batch data source, as described in Create a JDBC Data
Source for the Job Repository. Remember that you must use the j bat ch schema
owner you created as the data source's user name.

8.3.1.2 Create a JDBC Data Source for the Job Repository

ORACLE

For a dedicated batch runtime within a domain, the WebLogic administrator must
configure an XA-capable data source for the database that will contain the job
repository tables. When a Java EE component submits a batch job, the batch runtime
updates the job repository tables using this XA data source, which is obtained by
looking up the data source's JNDI name.

When you create the batch data source using Administration Console or WLST, you
must use the schema owner created with RCU (e.g., j bat ch_wl s) or the SQL script
j bat ch, as described in Create the Job Repository Tables.

For instructions on configuring JDBC data source, see Creating a JDBC Data Source
in Administering JDBC Data Sources for Oracle WebLogic Server.

8-5

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=RCUUG101
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=RCUUG101

Chapter 8
Configuring the Batch Runtime to Use a Dedicated Database

8.3.1.3 Optionally, Create a Managed Executor Service Template

For optimum performance, the batch runtime can be configured to use application-
scoped Managed Executor Services by configuring Managed Executor Service
Templates (MES Template) that use the same name as the batch runtime

set Bat chJobsManagedExecut or Servi ceNane() . If no MES Template is specified when
configuring the batch runtime, it will instead use the default Java EE Managed
Executor Service that is bound to (j ava: conp/ Def aul t ManagedExecut or Ser vi ce).

When a new instance of a Managed Executor Service is created for each MES
template, it will then run batch jobs that are submitted for applications that are
deployed to the domain. For example, if there are two MES Templates hamed MES1
and MES? in a domain, then when Bat chAppl and Bat chApp2 are deployed, each
application will get an instance of MES1 and MES2.

However, if you have set the set Bat chJobsExecut or Ser vi ceName(" MES2") , then all batch
jobs submitted from Bat chAppl or Bat chAppl (or from any application deployed to the
domain), will use MES2.

For instructions on configuring a Managed Executor Service Template, see
Configuring Concurrent Managed Objects.

8.3.2 Configure the Batch Runtime to Use a Dedicated Batch Data
Source and Managed Executor Service

The job repository data source and Managed Executor Service you created in
Prerequisite Steps: Configure the Job Repository Tables, Batch Data Source, and
Managed Executor Service can now be used to configure a dedicated batch runtime
using any of these WebLogic administrative tools:

e Configuring the Batch Runtime Using the Administration Console

e Configuring the Batch Runtime Using WLST

Tip:

The schema name used in Create the Job Repository Tables must be
specified when following the configuration steps in these sections. For
example when using MBeans, the schema name must be denoted by
get SchemaNane() in the Bat chConf i gMBean for the domain.

8.3.2.1 Configuring the Batch Runtime Using the Administration Console

ORACLE

A dedicated batch runtime can be configured for a domain scope using the
Administration Console. In the Settings for domain-name page, open the Batch
page and complete these configuration fields:

- Data Source JNDI Name — Select the JNDI name of the batch runtime's job
repository data source, which will be used to store data for batch jobs submitted
from applications deployed to the domain.

8-6

Chapter 8
Configuring the Batch Runtime to Use a Dedicated Database

* Schema Name — Enter the schema name used when the job repository tables
were created by RCU or the JBatch SQL script, as described in Create the Job
Repository Tables.

Note that if the data source is shared by applications then this schema name must
be the same name that the application expects.

» Executor Service Template — Select the managed executor service (MES)
template that will be used to run batch jobs that are submitted from applications
deployed in the domain. A MES template by the same name must exist and be
targeted to the domain scope when a batch jobs is submitted.

If an MES template is not selected, then the batch runtime will use the default Java
EE ManagedExecutorService that is bound to the default JINDI name of:
j ava: conp/ Def aul t ManagedExecut or Ser vi ce.

To configure a Managed Executor Service Template in the domain configuration using
the WebLogic Server Administration Console, use the Environment -> Concurrent
Templates page. See Configuring Concurrent Managed Objects.

8.3.2.2 Configuring the Batch Runtime Using WLST

ORACLE

You can use WLST with the Bat chRunt i neConf i gMBean and Domai nMBean to configure the
batch runtime to use a specific database for the job repository:

def updat e_domai n_bat ch_confi g(domai nNane, jndi Nane, schemaNane):
connect (" admin', ' passwd')
edit()
startEdit()
cno. set Dat aSour ceJndi Nane(j ndi Nane)
cd('/BatchConfig/' + domai nName)
cno. set SchemaNane(schemaNane)
save()
activate()

In this example, if the administrator has created a data source with the JNDI name

j dbc/ bat chDS, then, calling updat e_domai n_bat ch_confi g(' mydonai n', ' j dbc/

bat chDS', ' BATCH) will configure the batch runtime to store all the job repository tables
in the schema ' BATCH in the database that is pointed by the data source that is bound
to the j ndi Name: ' j dbc/ bat chDS' .

You can use WLST to configure the batch runtime to use specific Managed Executor
Services for batch job execution. However, you must first create an Managed Executor
Service and the name of the Managed Executor Service must be provided to the

Domai nMBean.

connect (" adm n', ' passwd')
edit()
startEdit()
cno. set Bat chJobsExecut or Ser vi ceName(' mesNane')
save()
activate()

where mesNane is the name of the Managed Executor Service that has already been
created (and targeted) to this domain.

The batch runtime can be configured to use different Managed Executor Services
using the get Bat chJobsManagedExecut or Ser vi ceNane() method in the Donmai nMBean.
However, a Managed Executor Service Template by the same name must exist and
be targeted to the domain scope when a batch job is submitted.

8-7

Chapter 8
Querying the Batch Runtime

See the BatchConfigMBean and DomainMBean in the MBean Reference for Oracle
WebL ogic Server.

See WebLogic Server WLST Online and Offline Command Reference in the WLST
Command Reference for WebLogic Server.

8.4 Querying the Batch Runtime

You can query the batch runtime's JobRepository for domain scope using
administrative tools such as Administration Console and MBeans.

e Using the Administration Console to Query the Batch Runtime

e Using Runtime MBeans to Query the Batch Runtime

¢ Note:

Make sure that the database that contains the batch job repository is

running. For example, the default Derby database is not automatically started
when you boot WebLogic Server using the j ava webl ogi c. Server command. If
your database is not running, an exception will be thrown by the Batch RI
when you submit a batch job or when you access the
BatchJobRepositoryRuntimeMBean, either through WLST or the
Administration Console. See Troubleshooting Tips.

8.4.1 Using the Administration Console to Query the Batch Runtime

A job repository can be queried using the Administration Console to obtain details
about batch jobs in a domain.

8.4.1.1 Get Detalils of all Batch Jobs

In the Settings for domain-name page, open the Monitoring -> Batch Jobs page to
view details about all the jobs submitted by applications deployed to the domain.

Table 8-1 All Batch Jobs
]

Element Name Description

Job Name The name of the batch job.

Application Name The name of the application that submitted the
batch job.

Instance 1D The instance ID.

Execution ID The execution ID.

Batch Status The batch status of this job.

Start Time The start time of the job.

End Time The completion time of the job.

Exit Status The exit status of the job.

ORACLE 8-8

Chapter 8
Querying the Batch Runtime

8.4.1.2 Get Details about a Job's Execution

You can view step execution details about a job by selecting it and clicking View.

Table 8-2 Job Executions Details

Element Name Description

Job Name The name of the batch job.
Instance ID The instance ID.

Execution ID The execution ID.

Batch Status The batch status of this job.
Start Time The start time of the job.

End Time The completion time of the job.
Exit Status The exit status of the job.

8.4.1.3 Get Details about a Job's Step Execution

You can view metrics about each step in a job execution by selecting it and clicking
View.

Table 8-3 Step Executions Details
|

Element Name Description

Step Name The name of the batch job step.
Step ID The step ID.

Execution ID The execution ID.

Batch Status The batch status of this job.
Start Time The start time of the job.

End Time The completion time of the job.
Exit Status The exit status of the job.

8.4.2 Using Runtime MBeans to Query the Batch Runtime

The job repository can be queried using WLST using the
Bat chJobReposi t or yRunt i meMBean to obtain details about batch jobs in a domain.

See BatchJobRepositoryRuntimeMBean in the MBean Reference for Oracle WebLogic
Server.

8.4.2.1 Get Details of all Batch Jobs Using get sobpetail s

The get JobDet ai | s() attribute returns details about all the jobs submitted by
applications deployed to the domain. Each entry in the collection contains an array of
the following elements:

ORACLE 8-9

Chapter 8
Querying the Batch Runtime

Table 8-4 Elements in getJobDetails() Attribute

Element Name Description
JOB_NAME The name of the batch job.
APP_NAME The name of the application that submitted the
batch job (String).
INSTANCE_ID The instance ID (long).
EXECUTION_ID The execution ID (long).
BATCH_STATUS The batch status of this job (String).
START_TIME The start time of the job (j ava. util . Date).
END_TIME The completion time of the job
(java. util.Date).
EXIT_STATUS The exit status of the job (String).

Here is an example of a WLST script that uses get JobDet ai | s() to print a list of all
batch jobs deployed in a domain.

connect (" adnin', 'adninl23")

domai nRunt i me()

cd(' Bat chJobReposi t oryRuntine')

cd(' nyserver")

execut i ons=cno. get JobDet ai | s(6)

print "JobName AppName InstancelD ExecutionlD BatchStatus StartTime EndTime ExitStatus”
print e[0], " ", e[1], " ", e[2], " ", e[3], " ", e[4," ", e[b], " ", e[6], ",e[7]

Here is sample output after running get JobDet ai | s() :

JobName InstancelD ExecutionlD BatchStatus StartTime

EndTi ne Exit Status

Payrol | Job 6 6 COWPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24 10:11:01
PDT 2015 COVPLETED

Payrol | Job 5 5 COWPLETED Fri Apr 24 10:10:57 PDT 2015 Fri Apr 24 10:10:58
PDT 2015 COVPLETED

Payrol | Job 4 4 COWPLETED Fri Apr 24 10:10:56 PDT 2015 Fri Apr 24 10:10:56
PDT 2015 COVPLETED

Payrol | Job 3 3 COWPLETED Mon Apr 20 11:32:12 PDT 2015 Mon Apr 20 11:32:12
PDT 2015 COVPLETED

Payrol | Job 2 2 COWPLETED Mon Apr 20 11:32:10 PDT 2015 Mon Apr 20 11:32:11
PDT 2015 COVPLETED

Payrol | Job 1 1 COWPLETED Mon Apr 20 11:25:26 PDT 2015 Mon Apr 20 11:25:26

PDT 2015 COVPLETED

8.4.2.2 Get Details of a Job Execution Using get sobexecut i ons

The get JobExect i ons attribute returns details about a particular job execution. Each
entry in the collection contains an array of the following elements:

Table 8-5 Elements in getJobExecutions() Attribute

__|
Element Name Description

JOB_NAME The name of the batch job (String).

ORACLE 8-10

Chapter 8
Querying the Batch Runtime

Table 8-5 (Cont.) Elements in getJobExecutions() Attribute
|

Element Name Description
INSTANCE_ID The instance ID (long).
EXECUTION_ID The execution ID (long).
BATCH_STATUS The batch status of this job (String).
START_TIME The start time of the job (j ava. util . Date).
END_TIME The completion time of the job
(java. util . Date).
EXIT_STATUS The exit status of the job (String).

Here is an example of using get JobExect ui ons() in a WLST script to get details for a
given ExecutionID: get JobExecuti ons(6). To get a list of all ExecutionIDs, use the
get JobDet ai | s() method.

connect (' admin', 'adminl23")
domai nRunt i me()
cd(' Bat chJobReposi t oryRuntine')
cd(' nyserver")
execut i ons=cno. get JobExecut i ons(6)
print "JobNane InstancelD ExecutionlD BatchStatus StartTime EndTine Exit St atus”
for e in executions
print e[0], " ", e[1], " ",e[2], " "oe[3], " ", e[4], " ", e[5], " ", e[6f]

Here is sample output after running get JobExecut i ons() :

JobName Instancel D ExecutionlD BatchStatus StartTime
EndTi me Exit Status
Payrol | Job 6 6 COWPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24 10:11:01

PDT 2015 COVPLETED

8.4.2.3 Get Details of a Job Step Execution Using get st epexecut i ons

The get St epExecut i ons attribute returns metrics about each step in a Job execution.
Each entry in the collection contains an array of the following elements:

Table 8-6 Elements in getStepExecutions() Attribute
|

Element Name Description
STEP_NAME The name of the batch job step (String).
STEP_ID The step ID (long).
EXECUTION_ID The execution ID (long).
BATCH_STATUS The batch status of this job (String).
START_TIME The start time of the job (j ava. util . Date).
END_TIME The completion time of the job

(java. util.Date)
EXIT_STATUS The exit status of the job (String).

ORACLE 8-11

Chapter 8
Troubleshooting Tips

Here is an example of using get St epExecut i ons() in a WLST script to get details for a
given StepExecutionID: get St epExecut i ons(6). To get a list of all ExecutionIDs, use the
get JobDet ai | s() method.

connect (' adnmin', 'adminl23")

domai nRunt i me()

cd(' Bat chJobReposi t oryRuntine')

cd(' nyserver")

execut i ons=cno. get St epExecut i ons(6)

print "StepName StepExecutionlD BatchStatus Start Tinme EndTi ne Exit St atus"
print e[0], " ",oe[1], " ",oe[2], " ",oe[3], " ", e[4], " ", e[5], "]

Here is sample output after running get St epExecut i ons() :

StepNane StepExecutionl D BatchStatus Start Time
EndTi me Exit Status
Payrol | Job 6 6 COWPLETED Fri Apr 24 10:11:00 PDT 2015 Fri Apr 24 10:11:01

PDT 2015 COVPLETED

8.5 Troubleshooting Tips

Learn tips for configuring and using the batch runtime with WebLogic Server.

8.5.1 Make Sure the Database Containing the Job Repository Tables
IS Running

A common mistake made by users of the Batch RI (reference implementation) is to
neglect starting the database that contains the job repository tables. For example, if
you boot WebLogic using the j ava webl ogi c. Server command, the Derby database is
not automatically started. If the DB isn't running, then when you submit a batch job or
access the JobReposi t or yRunt i reMBean (either through WLST or through the
Administration Console), that job will fail and a cryptic exception will be thrown by the
Batch RI:

[1] Exception thrown by Refernce Inplenmentation (fromIBM:

Caused by: webl ogi c. common. resour cepool . Resour ceSyst emException: Cannot |oad driver
class org. apache. derby. jdbc. OientDataSource for datasource '<<<Data Source name>>>>'

Here is another error message that could be thrown by the Batch RI when the job
repository's database isn't running:

Caused By: comibmjbatch. container.exception. PersistenceException:
webl ogi c. j dbc. ext ensi ons. Connect i onDeadSQLExcept i on:
webl ogi c. cormon. resour cepool . Resour ceDeadExcept i on:
0: webl ogi c. common. Resour ceException: Coul d not create pool connection for datasource
' _com oracl e_webl ogi ¢c_bat ch_connect or @ com oracl e_webl ogi c_bat ch_connect or _i npl _@com
_oracl e_webl ogi c_bat ch_connect or _i npl _W.SDat abaseConf i gur ati onBean@ com or acl e_bat ch_
internal __derby_batch_DataSource'.
The DBMS driver exception was: java.net.Connect Exception : Error connecting to
server |ocal host on port 1,527 with message Connection refused.

at
com i bm j bat ch. cont ai ner. services. i npl . JDBCPer si st enceManager | npl . get Connect i onToDef a
ul t Schema(JDBCPer si st enceManager | npl . j ava: 354)

at
com i bm j bat ch. cont ai ner. services. i npl . JDBCPer si st enceManager | npl . i sDer by(JDBCPer si st
enceManager | npl . j ava: 182)

at

ORACLE 8-12

Chapter 8
Troubleshooting Tips

com i bm jbatch. container. services.inpl.JDBCPersi st enceManager | npl . i ni t (JDBCPer si st enc
eManager | npl . j ava: 143)

at
com i bm jbatch. container. servi cesmanager. Servi cesManager | npl $Ser vi ceLoader . get Servi ¢

e(Servi cesManager | npl . j ava: 404)
at
com i bm jbatch. container.servi cesmanager. Servi cesManager | npl $Ser vi ceLoader . access$30

0(Servi cesManager | npl . j ava: 388)

If you see these errors, make sure that the database that contains the batch runtime
job repository is running.

ORACLE 8-13

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Using Work Managers to Optimize Scheduled Work
	2.1 Understanding How WebLogic Server Uses Thread Pools
	2.2 Understanding Work Managers
	2.2.1 Request Classes
	2.2.2 Constraints
	2.2.3 Stuck Thread Handling
	2.2.4 Self-Tuning Thread Pool
	2.2.4.1 Self-Tuning Thread Pool Size
	2.2.4.2 ThreadLocal Clean Out

	2.3 Work Manager Scope
	2.3.1 The Default Work Manager
	2.3.1.1 Overriding the Default Work Manager
	2.3.1.2 When to Use Work Managers

	2.3.2 Global Work Managers
	2.3.3 Application-scoped Work Managers

	2.4 Using Work Managers, Request Classes, and Constraints
	2.4.1 Dispatch Policy for EJB
	2.4.2 Dispatch Policy for Web Applications

	2.5 Deployment Descriptor Examples
	2.6 Work Managers and Execute Queues
	2.6.1 Enabling Execute Queues
	2.6.2 Migrating from Execute Queues to Work Managers

	2.7 Accessing Work Managers Using MBeans
	2.8 Using CommonJ With WebLogic Server
	2.8.1 Accessing CommonJ Work Managers
	2.8.2 Mapping CommonJ to WebLogic Server Work Managers

	3 Avoiding and Managing Overload
	3.1 Configuring WebLogic Server to Avoid Overload Conditions
	3.1.1 Limiting Requests in the Thread Pool
	3.1.1.1 Work Managers and Thread Pool Throttling

	3.1.2 Limiting HTTP Sessions
	3.1.3 Exit on Out of Memory Exceptions
	3.1.4 Stuck Thread Handling

	3.2 WebLogic Server Self-Monitoring
	3.2.1 Overloaded Health State

	3.3 WebLogic Server Exit Codes

	4 Configuring Network Resources
	4.1 Overview of Network Configuration
	4.2 Understanding Network Channels
	4.2.1 What Is a Channel?
	4.2.1.1 Rules for Configuring Channels
	4.2.1.2 Custom Channels Can Inherit Default Channel Attributes

	4.2.2 Why Use Network Channels?
	4.2.2.1 Handling Channel Failures
	4.2.2.2 Upgrading Quality of Service Levels for RMI

	4.2.3 Standard WebLogic Server Channels
	4.2.3.1 The Default Network Channel
	4.2.3.2 Administration Port and Administrative Channel
	4.2.3.2.1 Administration Port Capabilities
	4.2.3.2.2 Administration Port Restrictions
	4.2.3.2.3 Administration Port Requires SSL
	4.2.3.2.4 Configure Administration Port
	4.2.3.2.5 Booting Managed Servers to Use Administration Port
	4.2.3.2.6 Booting Managed Servers to Use Administrative Channels
	4.2.3.2.7 Custom Administrative Channels

	4.2.4 Using Internal Channels
	4.2.4.1 Channel Selection
	4.2.4.2 Internal Channels Within a Cluster

	4.3 Configuring a Channel
	4.3.1 Guidelines for Configuring Channels
	4.3.1.1 Channels and Server Instances
	4.3.1.2 Dynamic Channel Configuration
	4.3.1.3 Channels and Identity
	4.3.1.4 Channels and Protocols
	4.3.1.5 Reserved Names
	4.3.1.6 Channels, Proxy Servers, and Firewalls

	4.3.2 Configuring Network Channels For a Cluster
	4.3.2.1 Create the Cluster
	4.3.2.2 Create and Assign the Network Channel
	4.3.2.3 Configuring a Replication Channel
	4.3.2.4 Increase Packet Size When Using Many Channels

	4.4 Assigning a Custom Channel to an EJB
	4.5 Using IPv6 with IPv4

	5 Configuring Web Server Functionality
	5.1 Overview of Configuring Web Server Components
	5.2 Configuring the Server
	5.2.1 Configuring the Listen Port

	5.3 Web Applications
	5.3.1 Web Applications and Clustering

	5.4 Configuring Virtual Hosting
	5.4.1 Virtual Hosting and the Default Web Application
	5.4.2 Setting Up a Virtual Host

	5.5 How WebLogic Server Resolves HTTP Requests
	5.6 Setting Up HTTP Access Logs
	5.6.1 Log Rotation
	5.6.2 Common Log Format
	5.6.3 Setting Up HTTP Access Logs by Using Extended Log Format
	5.6.3.1 Creating the Fields Directive
	5.6.3.2 Supported Field Identifiers
	5.6.3.2.1 IP Address Related Fields
	5.6.3.2.2 DNS Related Fields
	5.6.3.2.3 Diagnostic Message Correlation Fields

	5.6.3.3 Creating Custom Field Identifiers
	5.6.3.3.1 Get Methods of the HttpAccountingInfo Object

	5.7 Preventing POST Denial-of-Service Attacks
	5.8 Setting Up WebLogic Server for HTTP Tunneling
	5.8.1 Configuring the HTTP Tunneling Connection
	5.8.2 Connecting to WebLogic Server from the Client

	5.9 Using Native I/O for Serving Static Files (Windows Only)

	6 Using the Plug-in for Oracle Virtual Assembly Builder
	6.1 Overview
	6.1.1 About Oracle Virtual Assembly Builder
	6.1.2 About the WebLogic Server Introspection Plug-in
	6.1.3 Setting Up the WebLogic Server Introspection Plug-in

	6.2 Introspection Plug-in Parameters
	6.3 Reference System Prerequisites
	6.4 Plug-in Usage Requirements
	6.5 Resulting Artifact Type
	6.6 Wiring
	6.7 Wiring Properties
	6.8 WebLogic Server Appliance Properties
	6.8.1 Assembly-Level System Properties
	6.8.2 Properties Common to Administration Server and Managed Server Appliances
	6.8.3 Administration Server Appliance Properties

	6.9 Oracle Coherence*Web Introspection Extension
	6.10 Supported Template Types

	7 Configuring Concurrent Managed Objects
	7.1 About Java EE Concurrency Utilities
	7.1.1 Concurrency 1.0 Code Examples in WebLogic Server

	7.2 How Concurrent Managed Objects Provide Concurrency for WebLogic Server Containers
	7.2.1 How WebLogic Server Handles Asynchronous Tasks in Application Components
	7.2.2 Concurrent Managed Objects (CMOs)
	7.2.3 CMOs versus CommonJ API
	7.2.4 CMO Context Propagation
	7.2.4.1 Propagated Context Types
	7.2.4.2 Contextual Invocation Points

	7.2.5 Self Tuning for CMO Tasks
	7.2.6 Threads Interruption When CMOs Are Shutting Down
	7.2.7 CMO Constraints for Long-Running Threads
	7.2.7.1 Setting Limits for Maximum Concurrent Long Running Requests
	7.2.7.2 Setting Limits for Maximum Concurrent New Threads

	7.3 Default Java EE CMOs
	7.3.1 Default Managed Executor Service
	7.3.2 Default Managed Scheduled Executor Service
	7.3.3 Default Context Service
	7.3.4 Default Managed Thread Factory

	7.4 Customized CMOs in Configuration Files
	7.4.1 Defining CMOs in WebLogic Configuration Files
	7.4.2 Binding CMOs to JNDI Under an Application Component Environment
	7.4.2.1 JNDI Binding Using <resource-env-ref>
	7.4.2.2 JNDI Binding Using @Resource
	7.4.2.3 Updated Schemas for Custom CMO Modules
	7.4.2.4 Updated System Module Beans for CMOs

	7.4.3 Custom Managed Executor Service Configuration Elements
	7.4.3.1 Deployment Descriptor Examples

	7.4.4 Custom Managed Scheduled Executor Service Configuration Elements
	7.4.4.1 ScheduledFuture.get() Method
	7.4.4.2 Deployment Descriptor Examples

	7.4.5 Custom Managed Thread Factory Configuration Elements
	7.4.5.1 Contexts of Threads Created by MTF
	7.4.5.2 Deployment Descriptor Examples

	7.4.6 Transaction Management for CMOs
	7.4.6.1 Transaction Management for MES and MSES
	7.4.6.2 Transaction Management for Context Service
	7.4.6.3 Transaction Management for MTF

	7.5 Global CMO Templates
	7.5.1 Configuring CMO Templates using the Administration Console
	7.5.2 Using MBeans to Configure CMO Templates

	7.6 Configuring Concurrent Constraints
	7.6.1 Using the Administration Console to Configure Concurrent Constraints
	7.6.1.1 Domain-level Concurrent Constraints
	7.6.1.2 Server-level Concurrent Constraints
	7.6.1.3 Dynamic Cluster-level Concurrent Constraints

	7.6.2 Using MBeans to Configure Concurrent Constraints

	7.7 Querying CMOs
	7.7.1 Using the Administration Console to Monitor CMO Threads
	7.7.1.1 Monitor JSR236 CMOs for All Deployed Applications and Modules
	7.7.1.2 Monitor JSR236 CMOs for a Deployed EAR or Module

	7.7.2 Using MBeans to Monitor CMOs
	7.7.3 Using MBeans to Monitor Concurrent Constraints

	8 Using the Batch Runtime
	8.1 About Batch Jobs
	8.1.1 Use of Multiple Batch Runtime Instances
	8.1.2 Batch 1.0 Code Examples in WebLogic Server

	8.2 Using the Default Batch Runtime Configuration with the Derby Database
	8.3 Configuring the Batch Runtime to Use a Dedicated Database
	8.3.1 Prerequisite Steps: Configure the Job Repository Tables, Batch Data Source, and Managed Executor Service
	8.3.1.1 Create the Job Repository Tables
	8.3.1.1.1 Creating Job Repository Tables Using RCU
	8.3.1.1.2 Creating Job Repository Tables Using an SQL Script

	8.3.1.2 Create a JDBC Data Source for the Job Repository
	8.3.1.3 Optionally, Create a Managed Executor Service Template

	8.3.2 Configure the Batch Runtime to Use a Dedicated Batch Data Source and Managed Executor Service
	8.3.2.1 Configuring the Batch Runtime Using the Administration Console
	8.3.2.2 Configuring the Batch Runtime Using WLST

	8.4 Querying the Batch Runtime
	8.4.1 Using the Administration Console to Query the Batch Runtime
	8.4.1.1 Get Details of all Batch Jobs
	8.4.1.2 Get Details about a Job's Execution
	8.4.1.3 Get Details about a Job's Step Execution

	8.4.2 Using Runtime MBeans to Query the Batch Runtime
	8.4.2.1 Get Details of all Batch Jobs Using getJobDetails
	8.4.2.2 Get Details of a Job Execution Using getJobExecutions
	8.4.2.3 Get Details of a Job Step Execution Using getStepExecutions

	8.5 Troubleshooting Tips
	8.5.1 Make Sure the Database Containing the Job Repository Tables is Running

