
Oracle® Fusion Middleware
Command Reference for Oracle WebLogic
Server

12c (12.2.1.3.0)
E80455-03
April 2018

Oracle Fusion Middleware Command Reference for Oracle WebLogic Server, 12c (12.2.1.3.0)

E80455-03

Copyright © 2007, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility vii

Conventions vii

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1

1.2 Guide to This Document 1-1

1.3 Related Documentation 1-1

1.4 New and Changed Features in This Release 1-2

2 Using the Oracle WebLogic Server Java Utilities

2.1 appc 2-2

2.2 AppletArchiver 2-2

2.2.1 Syntax 2-2

2.3 autotype (deprecated) 2-3

2.4 BuildXMLGen 2-3

2.5 CertGen 2-3

2.5.1 Syntax 2-3

2.5.2 Example 2-5

2.6 ClientDeployer 2-6

2.7 clientgen 2-6

2.8 Conversion (deprecated) 2-6

2.9 dbping 2-6

2.9.1 Creating a DB2 Package with dbping 2-6

2.9.2 Syntax 2-7

2.9.3 Examples 2-8

2.10 ddcreate (deprecated) 2-9

2.11 DDInit 2-9

2.11.1 WebInit 2-9

2.11.2 EarInit (deprecated) 2-9

2.12 Deployer 2-10

iii

2.13 der2pem 2-10

2.13.1 Syntax 2-10

2.13.2 Example 2-11

2.14 Derby 2-11

2.15 ejbc (deprecated) 2-11

2.16 EJBGen 2-11

2.17 encrypt 2-11

2.17.1 Syntax 2-12

2.17.2 Examples 2-12

2.18 getProperty 2-13

2.18.1 Syntax 2-13

2.18.2 Example 2-13

2.19 host2ior 2-13

2.19.1 Syntax 2-13

2.20 ImportPrivateKey 2-14

2.20.1 Syntax 2-14

2.20.2 Example 2-15

2.21 jhtml2jsp 2-16

2.21.1 Syntax 2-16

2.22 jspc (deprecated) 2-16

2.23 logToZip 2-16

2.23.1 Syntax 2-16

2.23.2 Examples 2-17

2.24 MBean Commands 2-17

2.25 MulticastTest 2-17

2.25.1 Syntax 2-18

2.25.2 Example 2-18

2.26 myip 2-19

2.26.1 Syntax 2-19

2.26.2 Example 2-19

2.27 pem2der 2-19

2.27.1 Syntax 2-19

2.27.2 Example 2-19

2.28 rmic 2-20

2.29 Schema 2-20

2.29.1 Syntax 2-20

2.29.2 Example 2-20

2.30 servicegen (deprecated) 2-21

2.31 SearchAndBuild 2-21

2.31.1 Example 2-21

2.32 source2wsdd (deprecated) 2-21

iv

2.33 system 2-22

2.33.1 Syntax 2-22

2.33.2 Example 2-22

2.34 ValidateCertChain 2-22

2.35 verboseToZip 2-23

2.35.1 Syntax 2-23

2.35.2 Example 2-23

2.36 WebLogicMBeanMaker 2-23

2.36.1 Syntax 2-24

2.37 wlappc 2-24

2.38 wlcompile 2-24

2.39 wlconfig 2-24

2.40 wldeploy 2-24

2.41 wlpackage 2-25

2.42 wlserver 2-25

2.43 wsdl2Service 2-25

2.44 wsdlgen (deprecated) 2-25

2.45 wspackage (deprecated) 2-25

3 weblogic.Server Command-Line Reference

3.1 Required Environment and Syntax for weblogic.Server 3-1

3.1.1 Environment 3-1

3.1.2 Modifying the Classpath 3-2

3.1.3 Syntax 3-3

3.2 Default Behavior 3-3

3.3 weblogic.Server Configuration Options 3-4

3.3.1 JVM Parameters 3-4

3.3.2 Location of Configuration Data 3-5

3.3.2.1 Example 3-6

3.3.3 Options that Override a Server's Configuration 3-7

3.3.3.1 Server Communication 3-8

3.3.3.2 SSL 3-10

3.3.3.3 Security 3-15

3.3.3.4 Message Output and Logging 3-19

3.3.3.5 Clusters 3-20

3.3.3.6 Deployment 3-21

3.3.3.7 Other Server Configuration Options 3-21

3.4 Using the weblogic.Server Command Line to Start a Server Instance 3-24

3.5 Using the weblogic.Server Command Line to Create a Domain 3-25

v

3.6 Verifying Attribute Values That Are Set on the Command Line 3-27

vi

Preface

This preface describes the document accessibility features and conventions used in
this guide—Command Reference for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This chapter describes the contents and organization of this guide—Command
Reference for Oracle WebLogic Server.
This chapter includes the following sections:

• Document Scope and Audience

• Guide to This Document

• Related Documentation

• New and Changed Features in This Release

1.1 Document Scope and Audience
This document describes Oracle WebLogic Server command-line reference features
and Java utilities and how to use them to administer Oracle WebLogic Server.

This document is written for system administrators and application developers
deploying e-commerce applications using the Java Platform, Enterprise Edition (Java
EE). It is assumed that readers are familiar with Web technologies and the operating
system and platform where Oracle WebLogic Server is installed.

1.2 Guide to This Document
The document is organized as follows:

• This chapter, Introduction and Roadmap describes the scope of this guide and
lists related documentation.

• Using the Oracle WebLogic Server Java Utilities, describes various Java utilities
you can use to manage and troubleshoot an Oracle WebLogic Server domain.

• weblogic.Server Command-Line Reference, describes how to start Oracle
WebLogic Server instances from a command shell or from a script.

1.3 Related Documentation
• Using Ant Tasks to Configure and Use a WebLogic Server Domain in Developing

Applications with Oracle WebLogic Server.

• Understanding the WebLogic Scripting Tool

• Administering Server Environments for Oracle WebLogic Server

• Oracle WebLogic Server Administration Console Online Help

1-1

1.4 New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

Chapter 1
New and Changed Features in This Release

1-2

2
Using the Oracle WebLogic Server Java
Utilities

Oracle WebLogic Server provides a number of Java utilities and Ant tasks for
performing administrative and programming tasks, installing and configuring the
WebLogic Server environment, building and deploying applications, generating
certificates for development environments, providing convenient shortcuts, and more.

To use these utilities and tasks, you must set your CLASSPATH correctly. For more
information, see Modifying the Classpath. The command-line syntax is specified for all
utilities and, for some, examples are provided.

The Apache Web site provides other useful Ant tasks as well, including tasks for
packaging EAR, WAR, and JAR files. For more information, see http://
jakarta.apache.org/ant/manual/.

• appc

• AppletArchiver

• autotype (deprecated)

• BuildXMLGen

• CertGen

• ClientDeployer

• clientgen

• Conversion (deprecated)

• dbping

• ddcreate (deprecated)

• DDInit

• Deployer

• der2pem

• Derby

• ejbc (deprecated)

• EJBGen

• encrypt

• getProperty

• host2ior

• ImportPrivateKey

• jhtml2jsp

• jspc (deprecated)

2-1

http://jakarta.apache.org/ant/manual/
http://jakarta.apache.org/ant/manual/

• logToZip

• MBean Commands

• MulticastTest

• myip

• pem2der

• rmic

• Schema

• servicegen (deprecated)

• SearchAndBuild

• source2wsdd (deprecated)

• system

• ValidateCertChain

• verboseToZip

• WebLogicMBeanMaker

• wlappc

• wlcompile

• wlconfig

• wldeploy

• wlpackage

• wlserver

• wsdl2Service

• wsdlgen (deprecated)

• wspackage (deprecated)

2.1 appc
The appc compiler generates and compiles the classes needed to deploy EJBs and
JSPs to Oracle WebLogic Server. It also validates the deployment descriptors for
compliance with the current specifications at both the individual module level and the
application level.See appc Reference in Developing Enterprise JavaBeans, Version
2.1, for Oracle WebLogic Server.

2.2 AppletArchiver
The AppletArchiver utility runs an applet in a separate frame, keeps a record of all of
the downloaded classes and resources used by the applet, and packages these into
either a .jar file or a .cab file. (The cabarc utility is available from Microsoft.)

2.2.1 Syntax
$ java utils.applet.archiver.AppletArchiver URL filename

Chapter 2
appc

2-2

Table 2-1 describes the arguments passed to the AppletArchiver utility.

Table 2-1 AppletArchiver Arguments

Argument Definition

URL
URL for the applet.

filename
Local filename that is the destination for the .jar/.cab archive.

2.3 autotype (deprecated)
Use the autotype Ant task to generate non-built-in data type components, such as the
serialization class, for Web Services. The fully qualified name for the autotype Ant task
is weblogic.ant.taskdefs.webservices.javaschema.JavaSchema.

For a complete list of Web Services Ant tasks, see Ant Task Reference in WebLogic
Web Services Reference for Oracle WebLogic Server.

2.4 BuildXMLGen
Use BuildXMLGen to generate a build.xml file for enterprise applications in the split-
directory structure. For complete documentation of this utility, see Building
Applications in a Split Development Directory in Developing Applications for Oracle
WebLogic Server.

2.5 CertGen
The CertGen utility generates certificates that should only be used for demonstration or
testing purposes, not in a production environment.

As of version 12.1.2 of WebLogic Server, the CertGen utility generates certificates with
the following attributes by default:

• 2048-bit public key.

• SHA256 message digest algorithm.

• Subject Key Identifier extension.

• Authority Key Identifier extension (if the CA certificate contains a Subject Key ID.)

2.5.1 Syntax
$ java utils.CertGen
 -certfile <cert_file> -keyfile <private_key_file>
 -keyfilepass <private_key_password>
 [-cacert <ca_cert_file>][-cakey <ca_key_file>]
 [-cakeypass <ca_key_password>]
 [-selfsigned][-strength <key_strength>]
 [-digestalgorithm] <message digest algorithm>
 [-e <email_address>][-cn <common_name>]
 [-ou <org_unit>][-o <organization>]
 [-l <locality>][-s <state>][-c <country_code>]

Chapter 2
autotype (deprecated)

2-3

 [-keyusage [digitalSignature,nonRepudiation,keyEncipherment,
 dataEncipherment,keyAgreement,keyCertSign,
 cRLSign,encipherOnly,decipherOnly]]
 [-keyusagecritical true|false]
 [-noskid]
 [-subjectkeyid <subject_key_identifier>]
 [-subjectkeyidformat UTF-8|BASE64]
 [-help]

Table 2-2 describes the arguments that are passed to the CertGen utility.

Table 2-2 CertGen Arguments

Argument Definition

-certfile cert_file
-keyfile private_key_file

Respectively, the output file names without
extensions of the generated public certificate and
private key. The appropriate extensions are
appended when the pem and der files are created.

-keyfilepass private_key_password
The password for the generated private key.

-cacert ca_cert_file
-cakey ca_key_file
-cakeypass ca_key_password

Respectively, the public certificate, private key file,
and private key password of the CA that will be
used as the issuer of the generated certificate. If
one or more of these options are not specified, the
relevant demonstration CA files will be used:
CertGenCA.der and CertGenCAKey.der. The
CertGen utility first looks in the current working
directory, then in the WL_HOME/lib directory.

-selfsigned
Generates a self-signed certificate that can be used
as a trusted CA certificate. If this argument is
specified, the ca_cert_filename,
ca_key_filename, and ca_key_password
arguments should not be specified.

-digestalgorithm [message digest
algorithm]

The message digest algorithm used with the
signature algorithm to sign the certificate. The
default is SHA256.

Supported values are MD5, SHA1, SHA256,
SHA384, and SHA512.

-strength key_strength
The length (in bits) of the keys to be generated.
The default is 2048 bits. The longer the key, the
more difficult it is for someone to break the
encryption.

Generating a certificate with an RSA key length
less than 1024 bits may not work in JDK 7u40+.
See http://www.oracle.com/technetwork/java/
javase/7u40-relnotes-2004172.html for
additional information.

-e email_address
The email address associated with the generated
certificate.

-cn common_name
The name associated with the generated certificate.

Chapter 2
CertGen

2-4

http://www.oracle.com/technetwork/java/javase/7u40-relnotes-2004172.html
http://www.oracle.com/technetwork/java/javase/7u40-relnotes-2004172.html

Table 2-2 (Cont.) CertGen Arguments

Argument Definition

-ou org_unit
The name of the organizational unit associated with
the generated certificate.

-o organization
The name of the organization associated with the
generated certificate.

-l locality
The name of a city or town.

-s state
The name of the state or province in which the
organizational unit (ou) operates if your
organization is in the United States or Canada,
respectively. Do not abbreviate.

-c country_code
Two-letter ISO code for your country. The code for
the United States is US.

-keyusage [digitalSignature,
nonRepudiation,keyEncipherment,
dataEncipherment,keyAgreement,
keyCertSign,cRLSign,
encipherOnly,decipherOnly]

Generate certificate with a key usage extension,
and with bits set according to the comma-separated
list of bit names.

Specify a key usage when you want to restrict the
operation for a key that could be used for more
than one operation.

-keyusagecritical true|false
By default, a key usage extension is marked critical.
To generate a certificate with a non-critical
extension, use -keyusagecritical false.

-noskid Prevents a subject key identifier extension in the
certificate from being generated. CertGen ignores -
subjectkeyid and -subjectkeyidformat if you
specify -noskid.

-subjectkeyid subject_key_identifier
Generates a certificate with the specified subject
key identifier.

-subjectkeyidformat UTF-8|BASE64
The format of the subjectkeyid value; UTF-8 is the
default.

2.5.2 Example
By default, the CertGen utility looks for the CertGenCA.der and CertGenCAKey.der files in
the current directory, or in the WL_HOME directory, as specified in the weblogic.home
system property or the CLASSPATH. Alternatively, you can specify CA files on the
command line.

Enter the following command to generate certificate files named testcert with private
key files named testkey:

$ java utils.CertGen -keyfilepass mykeypass
-certfile testcert -keyfile testkey
Generating a certificate with common name machine-name and key strength 2048
issued by CA with certificate from CertGenCA.der file and key from CertGenCAKey.der
file

Chapter 2
CertGen

2-5

2.6 ClientDeployer
You use weblogic.ClientDeployer to extract the client-side JAR file from a Java EE
EAR file, creating a deployable JAR file. The weblogic.ClientDeployer class is
executed on the Java command line with the following syntax:

java weblogic.ClientDeployer ear-file client

The ear-file argument is an expanded directory (or Java archive file with a .ear
extension) that contains one or more client application JAR files.

For example:

java weblogic.ClientDeployer app.ear myclient

In the preceding example, app.ear is the EAR file that contains a Java EE client
packaged in myclient.jar.

Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and point it to a
WebLogic Server instance as follows:

java weblogic.j2eeclient.Main clientjar URL [application args]

For example:

java weblogic.j2eeclient.Main helloWorld.jar t3://localhost:7001 Greetings

2.7 clientgen
Use clientgen to generate the client-side artifacts, such as the JAX-RPC stubs,
needed to invoke a Web Service. See Ant Task Reference in WebLogic Web Services
Reference for Oracle WebLogic Server.

2.8 Conversion (deprecated)
WebLogic Server 9.0 does not support conversion or upgrading from a pre-6.0 version
of Oracle WebLogic Server. To upgrade from version 6.1 or later, see Upgrading
Oracle WebLogic Server.

2.9 dbping
The dbping command-line utility tests the connection between a DBMS and your client
machine via a JDBC driver. You must complete the installation of the driver before
attempting to use this utility. To install a driver, see the documentation from your driver
vendor. Also see Using Third-Party Drivers with WebLogic Server in Developing JDBC
Applications for Oracle WebLogic Server.

2.9.1 Creating a DB2 Package with dbping
With the WebLogic Type 4 JDBC Driver for DB2, you can also use the dbping utility to
create a package on the DB2 server. When you ping the database with the dbping
utility, the driver automatically creates the default package on the database server if it

Chapter 2
ClientDeployer

2-6

does not already exist. If the default package already exists on the database server,
the dbping utility uses the existing package.

The default DB2 package includes 200 dynamic sections. You can specify a different
number of dynamic sections to create in the DB2 package with the -d option. The -d
option also sets CreateDefaultPackage=true and ReplacePackage=true on the connection
used in the connection test, which forces the DB2 driver to replace the DB2 package
on the DB2 server. (See Using DataDirect Documentation in Developing JDBC
Applications for Oracle WebLogic Server.) You can use the -d option with dynamic
sections set at 200 to forcibly recreate a default package on the DB2 server.

Note:

When you specify the -d option, the dbping utility recreates the default
package and uses the value you specify for the number of dynamic sections.
It does not modify the existing package.

To create a DB2 package, the user that you specify must have CREATE
PACKAGE privileges on the database.

2.9.2 Syntax
$ java utils.dbping DBMS [-d dynamicSections] user password DB

Table 2-3 describes the arguments that are passed to the dbping command-line utility.

Table 2-3 dbping Arguments

Argument Definition

DBMS
Varies by DBMS and JDBC driver:

DB2B—WebLogic Type 4 JDBC Driver for DB2

DERBY—Embedded Derby driver

JCONN2—Sybase JConnect (JDBC 2.0) driver

JCONN3—Sybase JConnect (JDBC 2.0) driver

JCONNECT—Sybase JConnect driver

INFORMIXB—WebLogic Type 4 JDBC Driver for Informix

MSSQLSERVER4—WebLogic jDriver for Microsoft SQL Server

MSSQLSERVERB—WebLogic Type 4 JDBC Driver for Microsoft SQL
Server

MYSQL— MySQL's Type 4 Driver

ORACLE—WebLogic jDriver for Oracle

ORACLEB—WebLogic Type 4 JDBC Driver for Oracle

ORACLE_THIN—Oracle Thin Driver

POINTBASE—PointBase Universal Driver

SYBASEB—WebLogic Type 4 JDBC Driver for Sybase

Chapter 2
dbping

2-7

Table 2-3 (Cont.) dbping Arguments

Argument Definition

[-d dynamicSections]
Specifies the number of dynamic sections to create in the DB2
package. This option is for use with the WebLogic Type 4 JDBC
Driver for DB2 only.

If the -d option is specified, the driver automatically sets
CreateDefaultPackage=true and ReplacePackage=true on the
connection and creates a DB2 package with the number of dynamic
sections specified.

user
Valid database username for login. Use the same values you use with
isql, sqlplus, or other SQL command-line tools.

For DB2 with the -d option, the user must have CREATE PACKAGE
privileges on the database.

password
Valid database password for the user. Use the same values you use
with isql or sqlplus.

DB
Name and location of the database. Use the following format,
depending on which JDBC driver you use:

DB2B—Host:Port/DBName

DERBY—Host:Port/DBName

JCONN2—Host:Port/DBName

JCONN3—Host:Port/DBName

JCONNECT—Host:Port/DBName

INFORMIXB—Host:Port/DBName/InformixServer

MSSQLSERVER4—Host:Port/DBName or [DBName@]Host[:Port]

MSSQLSERVERB—Host:Port/DBName

MYSQL—Host:Port/DBName

ORACLE—DBName (as listed in tnsnames.ora)

ORACLEB—Host:Port/DBName

ORACLE_THIN—Host:Port/DBName

POINTBASE—Host[:Port]/DBName

SYBASEB—Host:Port/DBName

Where:

• Host is the name of the machine hosting the DBMS.
• Port is port on the database host where the DBMS is listening for

connections.
• DBName is the name of a database on the DBMS.
• InformixServer is an Informix-specific environment variable that

identifies the Informix DBMS server.

2.9.3 Examples
The following is an example using the Oracle Thin Driver.

C:\>java utils.dbping ORACLE_THIN scott tiger dbserver1:1561:demo

**** Success!!! ****

You can connect to the database in your app using:

Chapter 2
dbping

2-8

java.util.Properties props = new java.util.Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("dll", "ocijdbc9");
 props.put("protocol", "thin");
 java.sql.Driver d =
 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();
 java.sql.Connection conn =
 Driver.connect("jdbc:oracle:thin:@dbserver1:1561:demo", props);

The following is an example using the Derby driver. Derby is an open source relational
database management system bundled with WebLogic Server for use by the sample
applications and code examples as a demonstration database.

$ java utils.dbping DERBY examples examples localhost:1527/demo
**** Success!!! ****
You can connect to the database in your app using:

 java.util.Properties props = new java.util.Properties();
 props.put("user", "examples");
 props.put("password", "examples");
 java.sql.Driver d =
 Class.forName("org.apache.derby.jdbc.ClientDriver").newInstance();
 java.sql.Connection conn =
 Driver.connect("jdbc:derby://localhost:1527/demo", props);

2.10 ddcreate (deprecated)
This Ant task calls EARInit, which generates an application.xml and a weblogic-
application.xml file for an EAR.See EarInit (deprecated).

2.11 DDInit
DDInit is a utility for generating deployment descriptors for applications to be deployed
on Oracle WebLogic Server. Target a module's archive or folder and DDInit uses
information from the module's class files to create appropriate deployment descriptor
files.

In its command-line version, DDInit writes new files that overwrite existing descriptor
files. If META-INF or WEB-INF does not exist, DDInit creates it.

Specify the type of Java EE deployable unit (either Web Application or Enterprise
Application) for which you want deployment descriptors generated by using the DDInit
command specific to the type, as described below.

2.11.1 WebInit
Target a WAR file or a folder containing files that you intend to archive as a WAR file, and
WebInit will create web.xml and weblogic.xml files for the module.

prompt> java weblogic.marathon.ddinit.WebInit <module>

2.11.2 EarInit (deprecated)
The EarInit tool is deprecated in this version of Oracle WebLogic Server. As a result,
you should not:

Chapter 2
ddcreate (deprecated)

2-9

• Use the DDInit utility to generate deployment descriptors for Enterprise
applications.

• Use the ddcreate ant task, which calls EarInit.

Generate an application.xml and a weblogic-application.xml file for an EAR using this
command. Target an existing EAR or a folder containing JAR or WAR files you intend to
archive into an EAR file.

prompt> java weblogic.marathon.ddinit.EarInit <module>

2.12 Deployer
Using the weblogic.Deployer tool, you can deploy Java EE applications and
components to WebLogic Servers in a command-line or scripting environment. For
detailed information on using this tool, see weblogic.Deployer Command-Line
Reference in Deploying Applications to Oracle WebLogic Server.
The weblogic.Deployer utility replaces the weblogic.deploy utility, which has been
deprecated.

2.13 der2pem
The der2pem utility converts an X509 certificate from DER format to PEM format.
The .pem file is written in the same directory and has the same filename as the
source .der file.

2.13.1 Syntax
$ java utils.der2pem derFile [headerFile] [footerFile]

Table 2-4 describes the arguments that are passed to the der2pem utility.

Table 2-4 der2pem Arguments

Argument Description

derFile
The name of the file to convert. The filename must end with a .der
extension, and must contain a valid certificate in .der format.

headerFile
The header to place in the PEM file. The default header is "-----BEGIN
CERTIFICATE-----".

Use a header file if the DER file being converted is a private key file, and
create the header file containing one of the following:

• "-----BEGIN RSA PRIVATE KEY-----" for an unencrypted private key.
• "-----BEGIN ENCRYPTED PRIVATE KEY-----" for an encrypted private

key.
Note: There must be a new line at the end of the header line in the file.

Chapter 2
Deployer

2-10

Table 2-4 (Cont.) der2pem Arguments

Argument Description

footerFile
The header to place in the PEM file. The default header is "-----END
CERTIFICATE-----".

Use a footer file if the DER file being converted is a private key file, and
create the footer file containing one of the following in the header:

• "-----END RSA PRIVATE KEY-----" for an unencrypted private key.
• "-----END ENCRYPTED PRIVATE KEY-----" for an encrypted private

key.
Note: There must be a new line at the end of the header line in the file.

2.13.2 Example
$ java utils.der2pem graceland_org.der
Decoding
..

2.14 Derby
Derby is an open source relational database management system based on Java,
JDBC, and SQL standards. It is bundled with WebLogic Server for use by the sample
applications and code examples as a demonstration database.See http://
db.apache.org/derby.

2.15 ejbc (deprecated)
For each deployment descriptor either specified in the command line or present in
a .jar file, ejbc creates wrapper classes for the corresponding EJBean class. It then
runs these through the RMI compiler, which generates a client-side stub and a server-
side skeleton.See appc Reference in Developing Enterprise JavaBeans, Version 2.1,
for Oracle WebLogic Server.

2.16 EJBGen
EJBGen is an Enterprise JavaBeans 2.0 code generator. You can annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to one the
number of EJB files you need to edit and maintain.

See EJBGen Reference in Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

2.17 encrypt
The weblogic.security.Encrypt utility encrypts clear text strings for use with Oracle
WebLogic Server. The utility uses the encryption service of the current directory, or the
encryption service for a specified Oracle WebLogic Server domain root directory.

Chapter 2
Derby

2-11

http://db.apache.org/derby
http://db.apache.org/derby

Note:

An encrypted string must have been encrypted by the encryption service in
the Oracle WebLogic Server domain where it will be used. If not, the server
will not be able to decrypt the string.

You can run the weblogic.security.Encrypt utility only on a machine that has at least
one server instance in an Oracle WebLogic Server domain; it cannot be run from a
client.

Note:

Oracle recommends running the utility from the Administration Server
domain directory or on the machine hosting the Administration Server and
specifying a domain root directory.

2.17.1 Syntax
java [-Dweblogic.RootDirectory=dirname]
 [-Dweblogic.management.allowPasswordEcho=true]
 weblogic.security.Encrypt [password]

Table 2-5 describes the arguments that are passed to the weblogic.security.Encrypt
utility.

Table 2-5 Encrypt Arguments

Argument Definition

dirname
Optional. Oracle WebLogic Server domain directory in
which the encrypted string will be used. If not specified, the
default domain root directory is the current directory (the
directory in which the utility is being run).

weblogic.management.allowPassw
ordEcho

Optional. Allows echoing characters entered on the
command line. weblogic.security.Encryptexpects that
no-echo is available; if no-echo is not available, set this
property to true.

password
Optional. Cleartext string to be encrypted. If omitted from
the command line, you will be prompted to enter a
password.

2.17.2 Examples
The utility returns an encrypted string using the encryption service of the domain
located in the current directory.

java weblogic.security.Encrypt xxxxxx
{AES}yWv/i0qhfM4/IvzoghzjHj/xpJUkQPF8OWuSfh0f0Ss=

Chapter 2
encrypt

2-12

The utility returns an encrypted string using the encryption service of the specified
domain location.

java -Dweblogic.RootDirectory=./mydomain weblogic.security.Encrypt xxxxxx
{AES}wr86u9Z5DHr+5p7WIbzTDSy4M/sl7EYnX/K5xzcarDQ=

The utility returns an encrypted string in the current directory, without echoing the
password.

java weblogic.security.Encrypt
Password:
{AES}LIX8hoiStcAhph0PGCpveouw/0UO0lciODuj+TQh/bs=

2.18 getProperty
The getProperty utility gives you details about your Java setup and your system. It
takes no arguments.

2.18.1 Syntax
$ java utils.getProperty

2.18.2 Example
$ java utils.getProperty
-- listing properties --
user.language=en
java.home=c:\java11\bin\..
awt.toolkit=sun.awt.windows.WToolkit
file.encoding.pkg=sun.io
java.version=1.1_Final
file.separator=\
line.separator=
user.region=US
file.encoding=8859_1
java.vendor=Sun Microsystems Inc.
user.timezone=PST
user.name=mary
os.arch=x86
os.name=Windows NT
java.vendor.url=http://www.sun.com/
user.dir=C:\weblogic
java.class.path=c:\weblogic\classes;c:\java\lib\cla...
java.class.version=45.3
os.version=4.0
path.separator=;
user.home=C:\

2.19 host2ior
The host2ior utility obtains the Interoperable Object Reference (IOR) of an Oracle
WebLogic Server.

2.19.1 Syntax
$ java utils.host2ior hostname port

Chapter 2
getProperty

2-13

2.20 ImportPrivateKey
The ImportPrivateKey utility is used to load a private key into a private keystore file.

2.20.1 Syntax
$ java utils.ImportPrivateKey
 -certfile <cert_file> -keyfile <private_key_file>
 [-keyfilepass <private_key_password>]
 -keystore <keystore> -storepass <storepass> [-storetype <storetype>]
 -alias <alias> [-keypass <keypass>]
 [-help]

Table 2-6 describes the arguments that are passed to the ImportPrivateKey utility.

Table 2-6 ImportPrivateKey Arguments

Argument Definition

cert_file
The name of the certificate associated with the private key.

private_key_file
The name of the generated private key file.

private_key_password
The password for the private key.

keystore
The name of the keystore file. A new keystore is created if one
does not exist.

storepass
The password for the keystore.

storetype
The type (format) of the keystore.

The storetype argument, which is the same as that used by the
keytool command, specifies the type of Java keystore. The
default storetype is jks, defined by the keystore.type property
in the java.security file:

keystore.type=jks

You can specify another storetype (for example, pcks12 or
nCipher.SWorld) if a configured security provider supports that
type.

alias
The name that is used for looking up the certificate and private
key being imported into the keystore.

keypass
The password of the private key entry being imported into the
keystore. If keypass is not specified, the first default is
private_key_password, and the second default is storepass.

Chapter 2
ImportPrivateKey

2-14

Note:

If you used CertGen to create a private key file protected by a password (-
keyfilepass private_key_password), that password is the one required by
ImportPrivateKey to extract the key from the key file and insert the key in the
newly created keystore (which will contain both the certificate(s) from
cert_file and the private key from private_key_file).

2.20.2 Example
Use the following steps to:

• Generate a certificate and private key using the CertGen utility

• Create a keystore and store a private key using the ImportPrivateKey utility

Note:

By default, the CertGen utility looks for the CertGenCA.der and
CertGenCAKey.der files in the current directory, or in the WL_HOME/
server/lib directory, as specified in the weblogic.home system property or
the CLASSPATH.

Alternatively, you can specify CA files on the command line. If you want
to use the default settings, there is no need to specify CA files on the
command line.

To generate a certificate:

1. Enter the following command to generate certificate files named testcert with
private key files named testkey:

$ java utils.CertGen -keyfilepass mykeyfilepass
-certfile testcert -keyfile testkey
Generating a certificate with common name return and key strength 1024
issued by CA with certificate from CertGenCA.der file and key from
CertGenCAKey.der file

2. Convert the certificate from DER format to PEM format.

$ java utils.der2pem CertGenCA.der

3. Concatenate the certificate and the Certificate Authority (CA).

$ cat testcert.pem CertGenCA.pem >> newcerts.pem

4. Create a new keystore named mykeystore and load the private key located in the
testkey.pem file.

$ java utils.ImportPrivateKey -keystore mykeystore -storepass mypasswd
-keyfile mykey -keyfilepass mykeyfilepass -certfile newcerts.pem -keyfile
testkey.pem -alias passalias

No password was specified for the key entry
Key file password will be used

Chapter 2
ImportPrivateKey

2-15

Imported private key testkey.pem and certificate newcerts.pem
into a new keystore mykeystore of type jks under alias passalias

2.21 jhtml2jsp
The jhtml2jsp utility converts JHTML files to JSP files. Be sure to inspect the results
carefully. Given the unpredictable nature the JHTML code, jhtml2jsp does not
necessarily produce flawless translations.

The output is a new JSP file named after the original file.

The HTTP servlets auto-generated from JSP pages differ from the regular HTTP
servlets generated from JHTML. JSP servlets extend weblogic.servlet.jsp.JspBase,
and so do not have access to the methods available to a regular HTTP servlet.

If your JHTML pages reference these methods to access the servlet context or config
objects, you must substitute these methods with the reserved words in JSP that
represent these implicit objects.

If your JHTML uses variables that have the same name as the reserved words in JSP,
the tool will output a warning. You must edit your Java code in the generated JSP
page to change the variable name to something other than a reserved word.

2.21.1 Syntax
$ java weblogic.utils.jhtml2jsp [-d directory] filename.jhtml

Table 2-7 describes the argument that is passed to the jhtml2jsp tool.

Table 2-7 html2jsp Arguments

Argument Definition

-d directory
Optional. The target directory. If the target directory isn't specified, output
is written to the current directory.

2.22 jspc (deprecated)
The jspc utility is a JSP-specific compiler task. Use appc instead.

2.23 logToZip
The logToZip utility searches an HTTP server log file, finds the Java classes loaded
into it by the server, and creates an uncompressed .zip file that contains those Java
classes. It is executed from the document root directory of your HTTP server.
To use this utility, you must have access to the log files created by the HTTP server.

2.23.1 Syntax
$ java utils.logToZip logfile codebase zipfile

Table 2-8 describes the arguments that are passed to the logToZip utility.

Chapter 2
jhtml2jsp

2-16

Table 2-8 logToZip Arguments

Argument Definition

logfile
Required. Fully-qualified pathname of the log file.

codebase
Required. Code base for the applet, or "" if there is no code base. By
concatenating the code base with the full package name of the applet, you
get the full pathname of the applet (relative to the HTTP document root).

zipfile
Required. Name of the .zip file to create. The resulting .zip file is created
in the directory in which you run the program. The path name for the
specified file can be relative or absolute. In the examples shown below, a
relative path name is given, so the .zip file is created in the current
directory.

2.23.2 Examples
The following example shows how a .zip file is created for an applet that resides in the
document root itself, that is, with no code base:

$ cd /HTTP/Serv/docs
$ java utils.logToZip /HTTP/Serv/logs/access "" app2.zip

The following example shows how a .zip file is created for an applet that resides in a
subdirectory of the document root:

C:\>cd \HTTP\Serv
C:\HTTP\Serv>java utils.logToZip \logs\applets\classes app3.zip

2.24 MBean Commands
Use the MBean commands (CREATE, DELETE, GET, INVOKE, and SET) to administer
MBeans. See Editing Commands in WLST Command Reference for WebLogic Server.

2.25 MulticastTest
The MulticastTest utility helps you debug multicast problems when configuring a
WebLogic cluster. The utility sends out multicast packets and returns information
about how effectively multicast is working on your network. Specifically, MulticastTest
displays the following types of information via standard output:

1. A confirmation and sequence ID for each message sent out by the current server.

2. The sequence and sender ID of each message received from any clustered
server, including the current server.

3. A missed-sequenced warning when a message is received out of sequence.

4. A missed-message warning when an expected message is not received.

To use MulticastTest, start one copy of the utility on each node on which you want to
test multicast traffic.

Chapter 2
MBean Commands

2-17

Tip:

Do NOT run the MulticastTest utility by specifying the same multicast
address (the -a parameter) as that of a currently running WebLogic Cluster.
The utility is intended to verify that multicast is functioning properly before
starting your clustered WebLogic Servers.

For information about setting up multicast, see the configuration documentation for the
operating system and hardware of the WebLogic Server host machine. See
Administering Clusters for Oracle WebLogic Server.

2.25.1 Syntax
$ java utils.MulticastTest -n name -a address [-p portnumber]
 [-t timeout] [-s send]

Table 2-9 describes the arguments that are passed to the MulticastTest utility.

Table 2-9 MulticastTest Arguments

Argument Definition

-n name
Required. A name that identifies the sender of the sequenced
messages. Use a different name for each test process you start.

-a address
The multicast address on which: (a) the sequenced messages should
be broadcast; and (b) the servers in the clusters are communicating
with each other. (The default is 237.0.0.1.)

-p portnumber
Optional. The multicast port on which all the servers in the cluster are
communicating. (The multicast port is the same as the listen port set
for WebLogic Server, which defaults to 7001 if not set.)

-t timeout
Optional. Idle timeout, in seconds, if no multicast messages are
received. If not set, the default is 600 seconds (10 minutes). If a
timeout is exceeded, a positive confirmation of the timeout is sent to
stdout.

-s send
Optional. Interval, in seconds, between sends. If not set, the default is
2 seconds. A positive confirmation of each message sent out is sent
to stdout.

2.25.2 Example
$ java utils.MulticastTest -N server100 -A 237.155.155.1
Set up to send and receive on Multicast on Address 237.155.155.1 on port 7001
Will send a sequenced message under the name server100 every 2 seconds.
Received message 506 from server100
Received message 533 from server200
 I (server100) sent message num 507
Received message 507 from server100
Received message 534 from server200
 I (server100) sent message num 508
Received message 508 from server100
Received message 535 from server200

Chapter 2
MulticastTest

2-18

 I (server100) sent message num 509
Received message 509 from server100
Received message 536 from server200
 I (server100) sent message num 510
Received message 510 from server100
Received message 537 from server200
 I (server100) sent message num 511
Received message 511 from server100
Received message 538 from server200
 I (server100) sent message num 512
Received message 512 from server100
Received message 539 from server200
 I (server100) sent message num 513
Received message 513 from server100

2.26 myip
The myip utility returns the IP address of the host.

2.26.1 Syntax
$ java utils.myip

2.26.2 Example
$ java utils.myip
Host toyboat.toybox.com is assigned IP address: 192.0.0.1

2.27 pem2der
The pem2der utility converts an X509 certificate from PEM format to DER format.
The .der file is written in the same directory as the source .pem file.

2.27.1 Syntax
$ java utils.pem2der pemFile

Table 2-10 describes the argument that is passed to the pem2der utility.

Table 2-10 pem2der Arguments

Argument Description

pemFile
The name of the file to be converted. The filename must end with
a .pem extension, and it must contain a valid certificate in .pem
format.

2.27.2 Example
$ java utils.pem2der graceland_org.pem
Decoding
..
..

Chapter 2
myip

2-19

..

..

..

2.28 rmic
The WebLogic RMI compiler is a command-line utility for generating and compiling
remote objects. Use weblogic.rmic to generate dynamic proxies on the client-side for
custom remote object interfaces in your application, and to provide hot code
generation for server-side objects. See Using the WebLogic RMI Compiler in
Developing RMI Applications for Oracle WebLogic Server.

2.29 Schema
The Schema utility lets you upload SQL statements to a database using the WebLogic
JDBC drivers. For additional information about database connections, see Developing
JDBC Applications for Oracle WebLogic Server.

2.29.1 Syntax
$ java utils.Schema driverURL driverClass [-u username]
 [-p password] [-verbose] SQLfile

Table 2-11 describes the arguments that are passed to the Schema utility.

Table 2-11 Schema Arguments

Argument Definition

driverURL
Required. URL for the JDBC driver.

driverClass
Required. Pathname of the JDBC driver class.

-u username
Optional. Valid username.

-p password
Optional. Valid password for the user.

-verbose
Optional. Prints SQL statements and database messages.

SQLfile
Required. Text file with SQL statements.

2.29.2 Example
The following code shows a Schema command line for the examples.utils package:

$ java utils.Schema
"jdbc:derby://localhost:1527/demo"
"org.apache.derby.jdbc.ClientDriver" -u examples
-p examples examples/utils/ddl/demo.ddl

Chapter 2
rmic

2-20

utils.Schema will use these parameters:
 url: jdbc:derby://localhost:1527/demo
 driver: org.apache.derby.jdbc.ClientDriver
 user: examples
 password: examples
 SQL file: examples/utils/ddl/demo.ddl

2.30 servicegen (deprecated)
The servicegen Ant task takes as input an EJB JAR file or a list of Java classes, and
creates all the needed Web Service components and packages them into a deployable
EAR file.

Web services are now a Java EE standard, which has resulted in many changes
between 8.1 and 9.0 WebLogic web services.

For a complete list of web services Ant tasks, see Ant Task Reference in WebLogic
Web Services Reference for Oracle WebLogic Server.

2.31 SearchAndBuild
This Ant task executes build.xml files that are included within the FileSet. The task
assumes that all of the files defined in FileSet are valid build files, and executes the
Ant task of each of them.
Make certain that your FileSet filtering is correct. If you include the build.xml file that
SearchAndBuildTask is being called from, you will be stuck in an infinite loop as this task
will execute the top level build file—itself—forever.

2.31.1 Example
<project name="all_modules" default="all" basedir=".">
<taskdef name="buildAll"
classname="weblogic.ant.taskdefs.build.SearchAndBuildTask"/>
<target name="all">
<buildAll>
<fileset dir="${basedir}">
<include name="**\build.xml"/>
<exclude name="build.xml"/>
</fileset>
</buildAll>
</target>
</project>

2.32 source2wsdd (deprecated)
The source2wsdd utility generates a web-services.xml deployment descriptor file from
the Java source file for a Java class-implemented WebLogic web service.

Web services are now a Java EE standard, which has resulted in many changes
between 8.1 and 9.0 WebLogic web services.

For a complete list of web services Ant tasks, see Ant Task Reference in WebLogic
Web Services Reference for Oracle WebLogic Server.

Chapter 2
servicegen (deprecated)

2-21

2.33 system
The system utility displays basic information about your computer's operating
environment, including the manufacturer and version of your JDK, your CLASSPATH, and
details about your operating system.

2.33.1 Syntax
$ java utils.system

2.33.2 Example
$ java utils.system
* * * * * * * java.version * * * * * * *
1.8.0_121

* * * * * * * java.vendor * * * * * * *
Oracle Corporation

* * * * * * * java.class.path * * * * * * *
C:\Oracle\wlserver\samples\server\examples\build\serverclasses;C:\Java
\JDK18~1.0_7\lib\tools.jar;
C:\Oracle\wlserver\server\lib\weblogic.jar;C:\Oracle\oracle_common\modules
\net.sf.antcontrib_1.1.0.0_1-0b3\lib
\ant-contrib.jar;C:\Oracle\wlserver\modules\features
\oracle.wls.common.nodemanager.jar;
C:\Oracle\wlserver\common\derby\lib\derbynet.jar;C:\Oracle\wlserver\common\derby\lib
\derbyclient.jar;
C:\Oracle\wlserver\common\derby\lib\derby.jar;C:\Oracle\wlserver\samples\server
\examples\build\clientclasses

* * * * * * * os.name * * * * * * *
Windows 7

* * * * * * * os.arch * * * * * * *
amd64

* * * * * * * os.version * * * * * * *
6.1

2.34 ValidateCertChain
WebLogic Server provides the ValidateCertChain utility to check whether or not an
existing certificate chain will be rejected by WebLogic Server. The utility uses
certificate chains from PEM files, PKCS-12 files, PKCS-12 keystores, and JKS
keystores. A complete certificate chain must be used with the utility. The following is
the syntax for the ValidateCertChain utility:

java utils.ValidateCertChain -file pemcertificatefilenamejava
utils.ValidateCertChain -pem pemcertificatefilenamejava
utils.ValidateCertChain -pkcs12store pkcs12storefilenamejava
utils.ValidateCertChain -pkcs12file pkcs12filename passwordjava
utils.ValidateCertChain -jks alias storefilename [storePass]

Example of valid certificate chain:

Chapter 2
system

2-22

java utils.ValidateCertChain -pem zippychain.pemCert[0]: CN=zippy,
OU=FORTESTINGONLY,O=MyOrganization,L=MyTown,ST=MyState,C=USCert[1]:
 CN=CertGenCAB,OU=FOR TESTINGONLY,O=MyOrganization,L=MyTown,ST=MyState,C=US

Certificate chain appears valid

Example of invalid certificate chain:

java utils.ValidateCertChain -jks mykey mykeystoreCert[0]: CN=corba1,
OU=FOR TESTING ONLY, O=MyOrganization,L=MyTown,ST=MyState,C=US

CA cert not marked with critical BasicConstraint indicating it is a
CACert[1]: CN=CACERT,OU=FOR TESTING ONLY,
 O=MyOrganization,L=MyTown,ST=MyState,C=USCertificate chain is invalid

2.35 verboseToZip
When executed from the document root directory of your HTTP server, verboseToZip
takes the standard output from a Java application run in verbose mode, finds the Java
classes referenced, and creates an uncompressed .zip file that contains those Java
classes.

2.35.1 Syntax
$ java utils.verboseToZip inputFile zipFileToCreate

Table 2-12 describes the arguments that are passed to verboseToZip.

Table 2-12 verboseToZip Arguments

Argument Definition

inputFile
Required. Temporary file that contains the output of the application
running in verbose mode.

zipFileToCreate
Required. Name of the .zip file to be created. The resulting .zip file
is be created in the directory in which you run the program.

2.35.2 Example
$ java -verbose myapplication > & classList.tmp
$ java utils.verboseToZip classList.tmp app2.zip

2.36 WebLogicMBeanMaker
The WebLogicMBeanMaker utility takes an XML MBean Description File (MDF) and
outputs some intermediate Java files, including an MBean interface, an MBean
implementation, and an associated MBean information file. Together, these
intermediate files form the MBean type for a custom security provider
See Understand What the WebLogic MBeanMaker Provides in Developing Security
Providers for Oracle WebLogic Server.

Chapter 2
verboseToZip

2-23

2.36.1 Syntax
$ java -DMDF=xmlfile -DFiles=filesdir -DcreateStubs=true|false
weblogic.management.commo.WebLogicMBeanMaker

Table 2-13 describes the arguments that are passed to WebLogicMBeanMaker.

Table 2-13 WebLogicMBeanMaker Arguments

Argument Description

-DMDF=xmlfile
Specifies that the WebLogic MBeanMaker utility should translate
the MDF file, represented by xmlfile, into code. Whenever
xmlfile is specified, a new set of output files is generated.

-DFiles=filesdir
Specifies the location, represented by filesdir, where the
WebLogic MBeanMaker utility places the intermediate files for
the MBean type.

-DcreateStubs=true|false
Specifies whether the WebLogic MBeanMaker utility overwrites
any existing MBean implementation file.

2.37 wlappc
The wlappc utility compiles and validates a Java EE EAR file, an EJB JAR file, or a
WAR file for deployment.

See Building Modules and Applications Using wlappc in Developing Applications for
Oracle WebLogic Server.

2.38 wlcompile
Use the wlcompile Ant task to invoke the javac compiler to compile your application's
Java files in a split development directory structure.

2.39 wlconfig
The wlconfig Ant task enables you to configure a WebLogic Server domain by
creating, querying, or modifying configuration MBeans on a running Administration
Server instance.
For complete documentation on this Ant task, see Using Ant Tasks to Configure a
WebLogic Server Domain in Developing Applications for Oracle WebLogic Server.

2.40 wldeploy
The wldeploy Ant task enables you to perform weblogic.Deployer tool functions using
attributes specified in an Ant task.
See Deployer. For more information about wldeploy, see Deploying and Packaging
from a Split Development Directory in Developing Applications for Oracle WebLogic
Server.

Chapter 2
wlappc

2-24

2.41 wlpackage
You use the wlpackage Ant task to package your split development directory application
as a traditional EAR file that can be deployed to WebLogic Server.
See Deploying and Packaging from a Split Development Directory in Developing
Applications for Oracle WebLogic Server.

2.42 wlserver
The wlserver Ant task enables you to start, reboot, shutdown, or connect to a
WebLogic Server instance.
The server instance may already exist in a configured WebLogic Server domain, or
you can create a new single-server domain for development by using the
generateconfig=true attribute. For complete documentation on this Ant task, see
Starting Servers and Creating Domains Using the wlserver Ant Task in Developing
Applications for Oracle WebLogic Server.

2.43 wsdl2Service
The wsdl2Service Ant task is a web services tool that takes as input an existing WSDL
file and generates the Java interface that represents the implementation of your web
service and the web-services.xml file that describes the web service.
See Developing WebLogic Web Services Starting From a WSDL File: Main Steps in
Developing JAX-WS Web Services for Oracle WebLogic Server.

2.44 wsdlgen (deprecated)
The wsdlgen Ant task is a web services tool that generates a WSDL file from the EAR
and WAR files that implement your web service.

Web Services are now a Java EE standard, which has resulted in many changes
between 8.1 and 9.0 WebLogic Web Services.

For a complete list of web services Ant tasks, see Ant Task Reference in WebLogic
Web Services Reference for Oracle WebLogic Server.

2.45 wspackage (deprecated)
Use the web services wspackage Ant task to package the various components of a
WebLogic web service into a new deployable EAR file and add extra components to
an already existing EAR file.

Web services are now a Java EE standard, which has resulted in many changes
between 8.1 and 9.0 WebLogic web services.

For a complete list of web services Ant tasks, see Ant Task Reference in WebLogic
Web Services Reference for Oracle WebLogic Server.

Chapter 2
wlpackage

2-25

3
weblogic.Server Command-Line Reference

The weblogic.Server class is the main class for a WebLogic Server instance. You start
a server instance by invoking weblogic.Server in a Java command.You can invoke the
class directly in a command prompt (shell), indirectly through scripts, or through Node
Manager.
Oracle recommends using java weblogic.Server primarily for initial development but
not as a standard mechanism for starting production systems for the following
reasons:

• java weblogic.Server will not function if you select a product directory outside of
the ORACLE_HOME directory.

• When executing java weblogic.Server, patches will not be recognized by the
WebLogic Server run time.

The following sections explain how to use the weblogic.Server class to start WebLogic
Server:

• Required Environment and Syntax for weblogic.Server

• Default Behavior

• weblogic.Server Configuration Options

• Using the weblogic.Server Command Line to Start a Server Instance

• Using the weblogic.Server Command Line to Create a Domain

• Verifying Attribute Values That Are Set on the Command Line

For information about using scripts to start an instance of WebLogic Server, see
Starting an Administration Server with a Startup Script and Starting Managed Servers
With a Startup Script in Administering Server Startup and Shutdown for Oracle
WebLogic Server.

For information about using the Node Manager to start an instance of WebLogic
Server, see Using Node Manager to Control Servers in the Administering Node
Manager for Oracle WebLogic Server.

3.1 Required Environment and Syntax for weblogic.Server
Before you can use the weblogic.Server class to start a WebLogic Server instance, you
must install WebLogic Server, set the CLASSPATH environment variable, and include a
Java Virtual Machine (JVM) in your PATH environment variable.

3.1.1 Environment
To set up your environment for the weblogic.Server command:

1. Install and configure the WebLogic Server software, as described in Installing and
Configuring Oracle WebLogic Server and Coherence.

3-1

2. If desired, modify the CLASSPATH environment variable, as described in Modifying
the Classpath.

3. Include a Java Virtual Machine (JVM) in your PATH environment variable. You can
use any JVM that is listed in Supported Configurations.

If you do not include a JVM in the PATH environment variable, you must provide a
pathname for the Java executable file that the JVM provides.

3.1.2 Modifying the Classpath
After installation, WebLogic Server's classpath is already set, but you may choose to
modify it for a number of reasons such as adding a patch to WebLogic Server,
updating the version of Derby you are using, or adding support for Log4j logging.

To apply a patch to ALL of your WebLogic Server domains without the need to modify
the classpath of a domain, give the patch JAR file the name, weblogic_sp.jar, and
copy it into the WL_HOME/server/lib directory. The commEnv.cmd/sh script will
automatically include a JAR named weblogic_sp on the classpath for you.

If you would rather not use the name weblogic_sp.jar for your patch file or you would
just like to make sure a JAR file, such as one mentioned below, comes before
weblogic.jar on the classpath:

• For ALL domains, edit the commEnv.cmd/sh script in WL_HOME/common/bin and prepend
your JAR file to the WEBLOGIC_CLASSPATH environment variable.

• To apply a patch to a SPECIFIC WebLogic Server domain, edit the
setDomainEnv.cmd/sh script in that domain's bin directory, and prepend the JAR file
to the PRE_CLASSPATH environment variable.

Note:

setDomainEnv is designed to be sourced from other scripts, such as the
startWebLogic script. setDomainEnv should not be called directly from
within an interactive shell. Doing so can cause unpredictable issues in
the domain.

If you use Derby, the open-source all-Java database management system included
with Oracle WebLogic Server for use by the sample applications and code examples,
include the following files on the classpath:

• WL_HOME/common/derby/lib/derbyclient.jar - for the driver on the client side

• WL_HOME/common/derby/lib/derbynet.jar and WL_HOME/common/derby/lib/derby.jar -
for running the Derby network server

If you use WebLogic Enterprise Connectivity, include the following files on the
classpath:

WL_HOME/server/lib/wlepool.jar

WL_HOME/server/lib/wleorb.jar

If you use Log4j logging, include the following file on the classpath:

WL_HOME/server/lib/log4j.jar

Chapter 3
Required Environment and Syntax for weblogic.Server

3-2

The shell environment in which you run a server determines which character you use
to separate path elements. On Windows, you typically use a semicolon (;). In a BASH
shell, you typically use a colon (:).

3.1.3 Syntax
The syntax for invoking weblogic.Server is as follows:

java [options] weblogic.Server [-help]

The java weblogic.Server -help command returns a list of frequently used options.

3.2 Default Behavior
Understand the default sequence of operations that occur when a WebLogic Server
instance is started without any options having been passed to the weblogic.Server
class.

If you have set up the required environment described in Environment, when you enter
the command java weblogic.Server with no options, WebLogic Server does the
following:

1. Looks in the domain_name/config directory for a file named config.xml.

2. If config.xml exists in the domain_name/config directory, WebLogic Server does the
following:

a. If only one server instance is defined in config/config.xml, it starts that server
instance.

For example, if you issue java weblogic.Server from ORACLE_HOME
\user_projects\domains\medrec, WebLogic Server starts the MedRec server.

b. If there are multiple server instances defined in config/config.xml:

• If an Administration Server is defined, it looks for the server with that
name.

• If an Administration Server is not defined, it looks for a server
configuration named myserver. If it finds such a server configuration, it
starts the myserver instance.

• If it does not find a server named myserver, WebLogic Server exits the
weblogic.Server process and generates an error message.

3. If there is no config.xml file in the current directory, WebLogic Server prompts you
to create one. If you respond y, WebLogic Server does the following:

a. Creates a server configuration named myserver, and persists the configuration
in a file named config/config.xml.

Any options that you specify are persisted to the config.xml file. For example,
if you specify -Dweblogic.ListenPort=8001, then WebLogic Server saves 8001 in
the config.xml file. For any options that you do not specify, the server instance
uses default values.

You can configure WebLogic Server to make backup copies of the
configuration files. This facilitates recovery in cases where configuration
changes need to be reversed or the unlikely case that configuration files

Chapter 3
Default Behavior

3-3

become corrupted. See Configuration File Archiving in Understanding Domain
Configuration for Oracle WebLogic Server.

b. Uses the username and password that you supply to create a user with
administrative privileges. It stores the definition of this user along with other
basic, security-related data in domain_name/security files named
DefaultAuthenticatorInit.ldift, DefaultRoleMapperInit.ldift, and
SerializedSystemIni.dat.

WebLogic Server also encrypts and stores your username and password in a
server_name/security/boot.properties file, which enables you to bypass the
login prompt during subsequent instantiations of the server. See Boot Identity
Files in Administering Server Startup and Shutdown for Oracle WebLogic
Server.

c. Creates two scripts, bin/startWebLogic.cmd and bin/startWebLogic.sh, which
you can use to start subsequent instantiations of the server. You can use a
text editor to modify startup options such as whether the server starts in
production mode or development mode. The startWebLogic script contains
comments that describe each option.

Note that the server starts as an Administration Server in a new domain. There are
no other servers in this domain, nor are any of your deployments or third-party
solutions included. You can add them as you would add them to any WebLogic
domain.

3.3 weblogic.Server Configuration Options
You can use weblogic.Server options to configure the attributes of a server instance.
The following attributes are commonly used when starting a server instance:

• JVM Parameters

• Location of Configuration Data

• Options that Override a Server's Configuration

WebLogic Server provides other startup options that enable you to temporarily
override a server's saved configuration. For information about these startup options,
see Options that Override a Server's Configuration.

Unless you are creating a new domain as described in Using the weblogic.Server
Command Line to Create a Domain, all startup options apply to the current server
instantiation; they do not modify the persisted values in an existing config.xml file. Use
the WebLogic Server Administration Console or WebLogic Scripting Tool (WLST) to
modify the config.xml file. See Creating Domains Using WLST Offline in
Understanding the WebLogic Scripting Tool.

For information on verifying the WebLogic Server attribute values that you set, see
Verifying Attribute Values That Are Set on the Command Line.

3.3.1 JVM Parameters
Table 3-1 describes frequently used options that configure the Java Virtual Machine
(JVM) in which the server instance runs. For a complete list of JVM options, see the
documentation for your specific JVM. For a list of JVMs that can be used with
WebLogic Server, see Supported Configurations.

Chapter 3
weblogic.Server Configuration Options

3-4

Table 3-1 Frequently Used Options for Setting JVM Parameters

Option Description

-Xms and -Xmx
Specify the minimum and maximum values (in megabytes)
for Java heap memory.

For example, you might want to start the server with the
default allocation of 256 megabytes of Java heap memory
to the WebLogic Server. To do so, start the server using
the java -Xms256m and -Xmx512m options.

The values assigned to these parameters can dramatically
affect the performance of your WebLogic Server and are
provided here only as general defaults. In a production
environment you should carefully consider the correct
memory heap size to use for your applications and
environment.

-classpath
The minimum content for this option is described under
Modifying the Classpath.

Instead of using this argument, you can use the CLASSPATH
environment variable to specify the classpath.

-client
-server

Used by some JVMs to start a HotSpot virtual machine,
which enhances performance. For a list of JVMs that can
be used with WebLogic Server, see Supported
Configurations.

-Dfile.encoding=Canonical Name weblogic.Server
To display special characters on Linux browsers, set the
JVM file.encoding system property to ISO8859_1. For
example:

java -Dfile.encoding=ISO8859_1 weblogic.Server

For a complete listing, see the Supported Encodings page
available at http://docs.oracle.com/javase/7/docs/
technotes/guides/intl/encoding.doc.html.

3.3.2 Location of Configuration Data
All server instances must have access to configuration data. Table 3-2 provides
options for indicating the location of this data.

Table 3-2 Options for Indicating the Location of Configuration Data

Option Description

-Dweblogic.home=WL_HOME
Specifies the location of the WebLogic home directory,
which contains essential information.

By default, weblogic.Server determines the location of
the WebLogic home directory based on values in the
classpath.

-Dweblogic.RootDirectory=path
Specifies the server's root directory. See A Server's
Root Directory in Understanding Domain Configuration
for Oracle WebLogic Server.
By default, the root directory is the directory from which
you issue the start command.

Chapter 3
weblogic.Server Configuration Options

3-5

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

Table 3-2 (Cont.) Options for Indicating the Location of Configuration Data

Option Description

-Dweblogic.management.GenerateDefaultConfig=true
Prevents the weblogic.Server class from prompting for
confirmation when creating a config.xml file.

Valid only if you invoke weblogic.Server in an empty
directory. See Default Behavior.

-Dweblogic.Domain=domain
Specifies the name of the domain.

If you are using weblogic.Server to create a domain,
you can use this option to give the domain a specific
name.

In addition, this option supports a directory structure that
WebLogic Server required in releases prior to 7.0 and
continues to support in current releases. Prior to 7.0, all
configuration files were required to be located in the
following pathname:

.../config/domain_name/config.xml

where domain_name is the name of the domain.

If your domain's configuration file conforms to that
pathname, and if you invoke the weblogic.Server
command from a directory other than config/
domain_name, you can include the -
Dweblogic.Domain=domain argument to cause WebLogic
Server to search for a config.xml file in a pathname
that matches config/domain_name/config.xml.

For information on how a Managed Server retrieves its configuration data, see the -
Dweblogic.management.server entry in Table 3-3.

The WebLogic Server Administration Console does not display values that you set on
the command line. For information on verifying the attribute values that you set, see
Verifying Attribute Values That Are Set on the Command Line.

3.3.2.1 Example
The following example starts a Managed Server instance named
SimpleManagedServer. Specifying a config.xml file is not valid because Managed
Servers contact the Administration Server for their configuration data. Multiple
instances of WebLogic Server can use the same root directory. However, if your
server instances share a root directory, make sure that all relative filenames are
unique. In this example, SimpleManagedServer shares its root directory with
SimpleServer. The command itself is issued from the D:\ directory after running
WL_HOME\server\bin\setWLSEnv.cmd:

D:\> java -Dweblogic.Name=SimpleManagedServer
 -Dweblogic.management.server=http://localhost:7001
 -Dweblogic.RootDirectory=c:\my_domains\SimpleDomain weblogic.Server

Chapter 3
weblogic.Server Configuration Options

3-6

3.3.3 Options that Override a Server's Configuration
In most cases, you do not use startup options to override the configuration that is
saved in the domain's config.xml file. However, in some extraordinary cases you might
need to do so.

Tip:

When you use a startup option to override a configuration value, the server
instance uses this value for the duration of its life cycle. Even if you use the
WebLogic Server Administration Console, the WebLogic Scripting Tool, or
some other utility to change the value in the configuration, the value will
remain overridden until you restart the server without using the override.

For example, in a production environment, your organization might have a policy
against modifying the domain's config.xml file, but you need to shut down the
Administration Server and restart it using a temporary listen port. In this case, when
you use the weblogic.Server command to start the Administration Server, you can
include the -Dweblogic.ListenPort=7501 startup option to change the listen port for the
current server session. The server instance initializes its configuration MBeans from
the config.xml file but substitutes 7501 as the value of its listen port. When you
subsequently restart the server without passing the startup option, it will revert to using
the value from the config.xml file, 8010. (See Figure 3-1.)

Figure 3-1 Overriding config.xml Values

The following options temporarily override a server's configuration:

Chapter 3
weblogic.Server Configuration Options

3-7

• Server Communication

• SSL

• Security

• Message Output and Logging

• Other Server Configuration Options

• Clusters

• Deployment

3.3.3.1 Server Communication
Table 3-3 describes the options for configuring how servers communicate.

Table 3-3 Options for Configuring Server Communication

Option Description

-Dweblogic.management.server=
[protocol://]Admin-host:port

Starts a server instance as a Managed Server and specifies
the Administration Server that will configure and manage the
server instance.

The domain's configuration file does not specify whether a
server configuration is an Administration Server or a
Managed Server. You determine whether a server instance is
in the role of Administration Server or Managed Server with
the options that you use to start the instance. If you omit the -
Dweblogic.management.server option in the start command,
the server starts as an Administration Server (although within
a given domain, there can be only one active Administration
Server instance). Once an Administration Server is running,
you must start all other server configurations as Managed
Servers by including the -Dweblogic.management.server
option in the start command.

For protocol, specify HTTP, HTTPS, T3, or T3S. The T3S and
HTTPS protocols require you to enable SSL on the Managed
Server and the Administration Server and specify the
Administration Server's SSL listen port.

Note: Regardless of which protocol you specify, the initial
download of a Managed Server's configuration is over HTTP
or HTTPS. After the RMI subsystem initializes, the server
instance can use the T3 or T3S protocol.

For Admin-host, specify localhost or the DNS name or IP
address of the machine where the Administration Server is
running.

For port, specify the Administration Server's listen port. If you
set up the domain-wide administration port, port must specify
the domain-wide administration port.

See Configuring Managed Server Connections to the
Administration Server in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

Chapter 3
weblogic.Server Configuration Options

3-8

Table 3-3 (Cont.) Options for Configuring Server Communication

Option Description

-Dweblogic.ListenAddress=host
Specifies the address at which this server instance listens for
requests. The host value must be either the DNS name or the
IP address of the computer that is hosting the server
instance.

This startup option overrides any listen address value
specified in the config.xml file. The override applies to the
current server instantiation; it does not modify the value in the
config.xml file. Use any of the administration tools listed in
Summary of System Administration Tools and APIs in
Understanding Oracle WebLogic Server to modify the
config.xml file.

See Configure listen addresses in the Oracle WebLogic
Server Administration Console Online Help and Creating
Domains Using WLST Offline in Understanding the WebLogic
Scripting Tool.

-Dweblogic.ListenPort=portnumber
Enables and specifies the plain-text (non-SSL) listen port for
the server instance.

This startup option overrides any listen port value specified in
the config.xml file. The override applies to the current server
instantiation; it does not modify the value in the config.xml
file. Use any of the administration tools listed in Summary of
System Administration Tools and APIs in Understanding
Oracle WebLogic Server to modify the config.xml file.

The default listen port is 7001.

See Configure listen ports in the Oracle WebLogic Server
Administration Console Online Help and Creating Domains
Using WLST Offline in Understanding the WebLogic Scripting
Tool.

-Dweblogic.ssl.ListenPort=portnumber
Enables and specifies the port at which this WebLogic Server
instance listens for SSL connection requests.

This startup option overrides any SSL listen port value
specified in the config.xml file. The override applies to the
current server instantiation; it does not modify the value in the
config.xml file. Use any of the administration tools listed in
Summary of System Administration Tools and APIs in
Understanding Oracle WebLogic Server to modify the
config.xml file.

The default SSL listen port is 7002.

See Configure listen ports in the Oracle WebLogic Server
Administration Console Online Help and Creating Domains
Using WLST Offline in Understanding the WebLogic Scripting
Tool.

Chapter 3
weblogic.Server Configuration Options

3-9

Table 3-3 (Cont.) Options for Configuring Server Communication

Option Description

-Dweblogic.management.discover={true|false}
Note: This option was removed as of WebLogic Server 9.0.

Determines whether an Administration Server recovers
control of a domain after the server fails and is restarted.

A true value causes an Administration Server to
communicate with all known Managed Servers and inform
them that the Administration Server is running.

A false value prevents an Administration Server from
communicating with any Managed Servers that are currently
active in the domain.

Tip: Specify false for this option only in the development
environment of a single server. Specifying false can cause
server instances in the domain to have an inconsistent set of
deployed modules.

In WebLogic Server 9.0, this command is deprecated
because if an Administration Server stops running while the
Managed Servers in the domain continue to run, each
Managed Server will periodically attempt to reconnect to the
Administration Server at the interval specified by the
ServerMBean attribute AdminReconnectIntervalSecs. See
Administering Server Startup and Shutdown for Oracle
WebLogic Server.

The WebLogic Server Administration Console does not display values that you set on
the command line. For information on verifying the attribute values that you set, see
Verifying Attribute Values That Are Set on the Command Line.

3.3.3.2 SSL
Each Weblogic Server instance uses an instance of
weblogic.management.configuration.SSLMBean to represent its SSL configuration.

All of the options in the following table that start with -Dweblogic.security.SSL modify
the configuration of the server's SSLMBean. For example, the -
Dweblogic.security.SSL.ignoreHostnameVerification option sets the value of the
SSLMBean's ignoreHostnameVerification attribute.

Table 3-4 describes the options for configuring a server to communicate using Secure
Sockets Layer (SSL).

Note:

As of WebLogic Server version 12.1.1, JSSE is the only SSL implementation
that is supported. The Certicom-based SSL implementation is removed and
is no longer supported in WebLogic Server.

Chapter 3
weblogic.Server Configuration Options

3-10

Table 3-4 Options for Configuring SSL

Option Description

-Dweblogic.security.SSL.
ignoreHostnameVerification=true

Disables host name verification, which enables you to
use the demonstration digital certificates that are shipped
with WebLogic Server.

By default, when a WebLogic Server instance is in the
role of SSL client (it is trying to connect to some other
server or application via SSL), it verifies that the host
name that the SSL server returns in its digital certificate
matches the host name of the URL used to connect to the
SSL server. If the host names do not match, the
connection is dropped.

If you disable host name verification, either by using this
option or by modifying the server's configuration in the
config.xml file, the server instance does not verify host
names when it is in the role of SSL client.

Note: Oracle does not recommend using the
demonstration digital certificates or turning off host name
verification in a production environment.

This startup option overrides any host name verification
setting in the config.xml file. The override applies to the
current server instantiation; it does not modify the value in
the config.xml file. Use the WebLogic Server
Administration Console or WLST to modify the
config.xml file.

See Using Host Name Verification in Administering
Security for Oracle WebLogic Server.

-Dweblogic.security.SSL.HostnameVerifier=
hostnameverifierimplementation

Specifies the name of a custom host name verifier class.
The class must implement the
weblogic.security.SSL.HostnameVerifier interface.

-Dweblogic.security.SSL.sessionCache.ttl=
sessionCacheTimeToLive

Modifies the default server-session time-to-live for SSL
session caching.

The sessionCacheTimeToLive value specifies (in
milliseconds) the time to live for the SSL session. The
default value is 90000 milliseconds (90 seconds). This
means if a client accesses the server again (via the same
session ID) within 90 seconds, WebLogic Server will use
the existing SSL session. You can change this value by
setting -Dweblogic.security.SSL.sessionCache.ttl in the
server startup script.

For sessionCache.ttl:

• The minimum value is 1
• The maximum value is Integer.MAX_VALUE
• The default value is 90000

Chapter 3
weblogic.Server Configuration Options

3-11

Table 3-4 (Cont.) Options for Configuring SSL

Option Description

-Dweblogic.security.SSL.CertificateCallback=
callback-handler

Specifies a certificate callback handler class, which
evaluates details contained the end-user certificate
passed in a secure connection request to WebLogic
Server.

Depending on the details contained in the certificate, the
callback handler returns a true or false, which
determines whether authentication is successful.

Note: If you use a certificate callback implementation in
WebLogic Server, a callback is generated whenever a
request is received over a secure port. As a result, using
certificate callbacks may impose a performance overhead
that should be taken into consideration. See Checking the
Validity of End User Certificates in Administering Security
for Oracle WebLogic Server.

-Dweblogic.management.pkpassword=pkpassword
Specifies the password for retrieving SSL private keys
from an encrypted flat file.

Use this option if you store private keys in an encrypted
flat file.

-Dweblogic.security.SSL.trustedCAKeyStore=
path

Deprecated.

If you configure a server instance to use the SSL features
that were available before WebLogic Server 8.1, you can
use this argument to specify the certificate authorities that
the server or client trusts. The path value must be a
relative or qualified name to the Sun JKS keystore file
(contains a repository of keys and certificates).

If a server instance is using the SSL features that were
available before 8.1, and if you do not specify this
argument, the WebLogic Server or client trusts all of the
certificates that are specified in JAVA_HOME\jre\lib
\security.

Oracle recommends that you do not use the
demonstration certificate authorities in any type of
production deployment.

See Configuring SSL in Administering Security for Oracle
WebLogic Server.

-Dsecurity.use.interopCA=true
If you are using WebLogic Server together with a version
of WebLogic Server prior to 12.1.2, be aware that the
demo trust keystore of the previous versions does not
contain the demo CA certificate used as of version
12.1.2. Therefore, if an instance of WebLogic Server
sends its public certificate to an instance of WebLogic
Server running a prior version, that public certificate will
not automatically be trusted.

Use this system property to generate interoperable demo
certificates signed by the previous demo CA certificate.

Chapter 3
weblogic.Server Configuration Options

3-12

Table 3-4 (Cont.) Options for Configuring SSL

Option Description

-Dweblogic.security.SSL.protocolVersion=
protocol

Specifies the protocol that is used for SSL connections.

The protocol value can be one of the following:

• SSL3 — Only SSL V3.0 messages are sent and
accepted.

• TLS1 — Enables any protocol starting with TLS for
messages that are sent and accepted; for example,
TLS V1.0, TLS V1.1, and TLS V1.2.

• ALL — Depends on the JSSE provider and JDK
version. (This is the default.)

Note:

TLS V1.1 is the default
minimum protocol version
configured in WebLogic
Server. Oracle recommends
the use of TLS V1.1 or later
in a production
environment.

See Using the weblogic.security.SSL.protocolVersion
System Property in Administering Security for Oracle
WebLogic Server.

-Dweblogic.security.SSL.minimumProtocolVersion=
protocol

Specifies the minimum protocol version that is used for
SSL connections.

The protocol value can be one of the following:

• SSLv3 — Specifies SSL V3.0 as the minimum
protocol version enabled in SSL connections.

• TLSv1 — Specifies TLS V1.0 as the minimum
protocol version enabled in SSL connections.

• TLSvx.y — Specifies TLS Vx.y as the minimum
protocol version enabled in SSL connections, where
x is between 1 and 9, and y is between 0 and 9,
inclusive.

See Using the
weblogic.security.SSL.minimumProtocolVersion System
Property in Administering Security for Oracle WebLogic
Server.

Chapter 3
weblogic.Server Configuration Options

3-13

Table 3-4 (Cont.) Options for Configuring SSL

Option Description

-Dweblogic.security.ssl.sslcontext.protocol=
protocol

Specifies the javax.net.ssl.SSLContext algorithm for
the JSSE provider.

For some JSSE providers, there is a correlation between
the javax.net.ssl.SSLContext algorithm and the initially
enabled SSL/TLS protocols. If the JSSE provider
configured in your system interprets the protocol
parameter differently, you may need to set this property.
Refer to the vendor-specific documentation for the
correlations between the javax.net.ssl.SSLContext
setting and the enabled SSL/TLS protocols.

Note:

When using the IBM JSSE
provider, WebLogic Server
attempts to select a
javax.net.ssl.SSLContext
algorithm equivalent to the
default TLS.

Standard supported values are SSL, SSLv3, TLS (the
default), TLSv1, TLSv1.1, and TLSv1.2. WebLogic Server
does not support SSLv2.

See Using the weblogic.security.ssl.sslcontext.protocol
System Property in Administering Security for Oracle
WebLogic Server.

The WebLogic Server Administration Console does not display values that you set on
the command line. For information on verifying the attribute values that you set, see
Verifying Attribute Values That Are Set on the Command Line.

3.3.3.2.1 Setting Additional SSL Attributes
To set additional SSL attributes from the startup command, do the following:

1. To determine which SSL attributes can be configured from startup options, view
the WebLogic Server Javadoc for the SSLMBean and ServerMBean, described in
MBean Reference for Oracle WebLogic Server. The Javadoc also indicates valid
values for each attribute.

Each attribute that SSLMBean and ServerMBean expose as a setter method can be set
by a startup option.

2. To set attributes in the SSLMBean, add the following option to the start command:

-Dweblogic.ssl.attribute-name=value

where attribute-name is the name of the MBean's setter method without the set
prefix.

3. To set attributes in the ServerMBean, add the following option to the start command:

Chapter 3
weblogic.Server Configuration Options

3-14

-Dweblogic.server.attribute-name=value

where attribute-name is the name of the MBean's setter method without the set
prefix.

For example, the SSLMBean exposes its Enabled attribute with the following setter
method:

setEnabled()

To enable SSL for a server instance named MedRecServer, use the following
command when you start MedRecServer:

java -Dweblogic.Name=MedRecServer
 -Dweblogic.ssl.Enabled=true weblogic.Server

The WebLogic Server Administration Console does not display values that you set on
the command line. For information on verifying the attribute values that you set, see
Verifying Attribute Values That Are Set on the Command Line.

3.3.3.3 Security
Table 3-5 describes the options for configuring general security parameters.

Table 3-5 Options for General Security Parameters

Option Description

-Dweblogic.management.username=username
Specifies the username under which the server instance will
run.

As of WebLogic Server 12.1.1, the boot username property
weblogic.management.username has been deprecated and
will be removed in a future release, and you will no longer be
able to specify the username in the command for starting
WebLogic Server in production mode.

As an alternative, Oracle recommends that you use the
boot.properties file to specify the boot username for
WebLogic Server. See Boot Identity Files in Administering
Server Startup and Shutdown for Oracle WebLogic Server.
See Provide User Credentials to Start and Stop Servers in
Administering Server Startup and Shutdown for Oracle
WebLogic Server.

-Dweblogic.management.password=password
Specifies the user password.

As of WebLogic Server 12.1.1, the boot password system
property weblogic.management.password has been
deprecated and will be removed in a future release, and you
will no longer be able to specify the password in the
command for starting WebLogic Server in production mode.

As an alternative, Oracle recommends that you use the
boot.properties file to specify the boot password for
WebLogic Server. See Boot Identity Files in Administering
Server Startup and Shutdown for Oracle WebLogic Server.
See Provide User Credentials to Start and Stop Servers in
Administering Server Startup and Shutdown for Oracle
WebLogic Server.

Chapter 3
weblogic.Server Configuration Options

3-15

Table 3-5 (Cont.) Options for General Security Parameters

Option Description

-Dweblogic.system.StoreBootIdentity=true
Creates a boot.properties file in the server's root directory.
The file contains the username and an encrypted version of
the password that was used to start the server.

Do not specify this argument in a server's ServerStartMBean.
See Specifying User Credentials When Starting a Server with
the Node Manager in Administering Server Startup and
Shutdown for Oracle WebLogic Server.
Oracle recommends that you do not add this argument to a
startup script. Instead, use it only when you want to create a
boot.properties file.

See Boot Identity Files in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

-Dweblogic.system.BootIdentityFile=
filename

Specifies a boot identity file that contains a username and
password.

The filename value must be the fully qualified pathname of a
valid boot identity file. For example:

-Dweblogic.system.BootIdentityFile=
WL_HOME\mydomain\servers\myserver\security
\boot.properties

If you do not specify a filename, a server instance, or the
WLST SHUTDOWN command, use the boot.properties file in
the server's root directory.

If there is no boot identity file, when starting a server, the
server instance prompts you to enter a username and
password.

-Dweblogic.system.RemoveBootIdentity=true
Removes the boot identity file after a server starts.

-Dweblogic.security.anonymousUserName=name
Assigns a user ID to anonymous users. By default, all
anonymous users are identified with the string <anonymous>.

To emulate the security behavior of WebLogic Server 6.x,
specify guest for the name value and create a user named
guest in your security realm.

See Users, Groups, and Security Roles in Securing
Resources Using Roles and Policies for Oracle WebLogic
Server.

Chapter 3
weblogic.Server Configuration Options

3-16

Table 3-5 (Cont.) Options for General Security Parameters

Option Description

-Djava.security.manager
-Djava.security.policy[=]=filename

Standard Java EE options that enable the Java Security
Manager and specify a filename (using a relative or fully-
qualified pathname) that contains Java 2 security policies.

To use the WebLogic Server sample policy file, specify
WL_HOME\server\lib\weblogic.policy.

Using -Djava.security.policy==filename (note the double
equal sign (==)) causes the policy file to override any default
security policy. When JACC is enabled, this property causes
WebLogic Server to ignore any policy files that are used for
servlet and EJB authorization. A single equal sign (=) causes
the policy file to be appended to an existing security policy.

Note: The WebLogic JACC provider does not require the
Java Security Manager to be enabled.

See Using the Java Security Manager to Protect WebLogic
Resources in Developing Applications with the WebLogic
Security Service.

-Dweblogic.security.
fullyDelegateAuthorization=true

By default, roles and security policies cannot be set for an
EJB or Web application through the WebLogic Server
Administration Console unless security constraints were
defined in the deployment descriptor for the EJB or Web
application.

Use this option when starting WebLogic Server to override
this problem.

This startup option does not work with EJBs or EJB methods
that use <unchecked> or <restricted> tags or Web
applications that do not have a role-name specified in the
<auth-constraint> tag.

-Dweblogic.management.
anonymousAdminLookupEnabled=true

Enables you to retrieve an MBeanHome interface without
specifying user credentials. The MBeanHome interface is part of
the WebLogic Server JMX API.

If you retrieve MBeanHome without specifying user credentials,
the interface gives you read-only access to the value of any
MBean attribute that is not explicitly marked as protected by
the Weblogic Server MBean authorization process.

This startup option overrides the Anonymous Admin Lookup
Enabled setting on the domain_name > Security > General
page in the WebLogic Server Administration Console.

By default, the MBeanHome API allows access to MBeans only
for WebLogic users who are in one of the default security
roles. See Users, Groups, an Security Roles in Securing
Resources Using Roles and Policies for Oracle WebLogic
Server.

Chapter 3
weblogic.Server Configuration Options

3-17

Table 3-5 (Cont.) Options for General Security Parameters

Option Description

-Dweblogic.security.
identityAssertionTTL=seconds

Configures the number of seconds that the Identity Assertion
cache stores a Subject.

When using an Identity Assertion provider (either for an X.509
certificate or some other type of token), Subjects are cached
within the server. This greatly enhances performance for
servlets and EJB methods with <run-as> tags as well as for
other places where identity assertion is used but not cached
(for example, signing and encrypting XML documents). There
might be some cases where this caching violates the desired
semantics.

By default, Subjects remain in the cache for 300 seconds,
which is also the maximum allowed value. Setting the value to
-1 disables the cache.

Setting a high value generally improves the performance of
identity assertion, but makes the Identity Assertion provider
less responsive to changes in the configured Authentication
provider. For example, a change in the user's group will not
be reflected until the Subject is flushed from the cache and
recreated.

-
Djavax.security.jacc.PolicyConfigurationFacto
ry
.provider=weblogic.security.jacc.simpleprovid
er
.PolicyConfigurationFactoryImpl

-Djavax.security.jacc.policy.provider=
weblogic.security.jacc.simpleprovider
.SimpleJACCPolicy

-
Dweblogic.security.jacc.RoleMapperFactory.pro
vider=
weblogic.security.jacc.simpleprovider
.RoleMapperFactoryImpl

Defining these three system properties is required to enable
the use of the Java Authorization Contract for Containers in
the security realm. When these providers are in use, JACC
handles authorization decisions for the EJB and servlet
containers for external applications. Any other authorization
decisions for internal applications are handled by the
authorization in the WebLogic Security framework.

Note: JACC authorization does not require the use of Java
SE security.

The WebLogic JACC implementation expects that the policy
object is the default sun.security.provider.PolicyFile
class.

When starting, WebLogic Server attempts to locate and
instantiate the classes specified by the JACC startup
properties and fails if it cannot find or instantiate them (if, for
example, the files specified by the startup properties are not
valid classes).

See Using the Java Authorization Contract for Containers in
Developing Applications with the WebLogic Security Service

-Dweblogic.security.ldap.
maxSize=<max bytes>

Limits the size of the data file used by the embedded LDAP
server. When the data file exceeds the specified size,
WebLogic Server eliminates from the data file space occupied
by deleted entries.

-Dweblogic.security.ldap.
changeLogThreshold=<number of entries>

Limits the size of the change log file used by the embedded
LDAP server. When the change log file exceeds the specified
number of entries, WebLogic Server truncates the change log
by removing all entries that have been sent to all Managed
Servers.

Chapter 3
weblogic.Server Configuration Options

3-18

Table 3-5 (Cont.) Options for General Security Parameters

Option Description

-
Dweblogic.security.providers.authentication.l
dap.socketTimeout=seconds

Sets a timeout value for the LDAP Authentication provider
connection to an LDAP server. If multiple LDAP servers are
specified in the LDAPServerMBean.Host attribute, the socket
timeout applies to each individual LDAP server connection
attempt that is made. The default value is 0, which sets no
socket timeout on connections.

Note that the LDAPServerMBean.ConnectTimeout attribute
sets the timeout limit for all connection attempts that are
made. Typically the socket timeout is used in conjunction with
the connect timeout and the parallel connect delay. See
Configuring Failover for LDAP Authentication Providers in
Administering Security for Oracle WebLogic Server.

The WebLogic Server Administration Console does not display values that you set on
the command line. See Verifying Attribute Values That Are Set on the Command Line.

3.3.3.4 Message Output and Logging
Table 3-6 describes options for configuring a server instance's message output.

Table 3-6 Options for Configuring Message Output

Option Description

-Dweblogic.Stdout="filename"
Redirects the server and JVM standard output stream to a
file. You can specify a pathname that is fully qualified or
relative to the WebLogic Server root directory.

See Redirect JVM output in the Oracle WebLogic Server
Administration Console Online Help.

-Dweblogic.Stderr="filename"
Redirects the server and JVM standard error stream to a file.
You can specify a pathname that is fully qualified or relative to
the WebLogic Server root directory.

See Redirecting JVM Output in Configuring Log Files and
Filtering Log Messages for Oracle WebLogic Server.

-Dweblogic.
AdministrationMBeanAuditingEnabled=
{true | false}

Determines whether the Administration Server emits
configuration auditing log messages when a user changes the
configuration or invokes management operations on any
resource within a domain.

By default, the Administration Server does not emit
configuration auditing messages.

See Enable configuration auditing in the Oracle WebLogic
Server Administration Console Online Help.

The WebLogic Server Administration Console does not display values that you set on
the command line. For information on verifying the attribute values that you set, see
Verifying Attribute Values That Are Set on the Command Line.

Chapter 3
weblogic.Server Configuration Options

3-19

3.3.3.4.1 Setting Logging Attributes
Each Weblogic Server instance uses an instance of
weblogic.management.configuration.LogMBean to represent the configuration of its
logging services.

To set values for LogMBean attributes from the startup command, do the following:

1. To determine which log attributes can be configured from startup options, see
LogMBean in MBean Reference for Oracle WebLogic Server. The Javadoc also
indicates valid values for each attribute.

Each attribute that the LogMBean exposes as a setter method can be set by a
startup option.

2. Add the following option to the start command:

-Dweblogic.log.attribute-name=value

where attribute-name is the name of the MBean's setter method without the set
prefix.

The LogMBean exposes its FileName attribute with the following setter method:

setFileName()

To specify the name of the MedRecServer instance's local log file, use the following
command when you start MedRecServer:

java -Dweblogic.Name=MedRecServer
 -Dweblogic.log.FileName="C:\logfiles\myServer.log"
 weblogic.Server

The WebLogic Server Administration Console does not display values that you set on
the command line. For information on verifying the attribute values that you set, see
Verifying Attribute Values That Are Set on the Command Line.

3.3.3.5 Clusters
Table 3-7 describes options for configuring additional attributes of a cluster.

Table 3-7 Options for Configuring Cluster Attributes

Option Description

-Dweblogic.cluster.multicastAddress
Determines the Multicast Address that clustered servers use
to send and receive cluster-related communications. By
default, a clustered server refers to the Multicast Address that
is defined in the config.xml file. Use this option to override
the value in config.xml.

Note: The WebLogic Server Administration Console does not
display values that you set on the command line. For
information on verifying the attribute values that you set, see
Verifying Attribute Values That Are Set on the Command
Line.

Regardless of how you set the Multicast Address, all servers
in a cluster must communicate at the same Multicast
Address.

Chapter 3
weblogic.Server Configuration Options

3-20

3.3.3.6 Deployment
Table 3-8 describes options for configuring additional attributes for deployment.

Table 3-8 Options for Configuring Deployment Attributes

Option Description

-
Dweblogic.deployment.IgnorePrepareStateFailur
es=true

Overrides the default deployment behavior by allowing a
server to transition to Running even with static deployment
Prepare failures.

Note: This server level flag may cause inconsistent
deployment behavior within clusters, such as issues with
HttpSessionReplication or SFSB replication.

3.3.3.7 Other Server Configuration Options
Table 3-9 describes options for configuring additional attributes of a server instance.

Table 3-9 Options for Configuring Server Attributes

Option Description

-Dweblogic.Name=servername
Specifies the name of the server instance that you want to
start. The specified value must refer to the name of a server
that has been defined in the domain's config.xml file.

-Dweblogic.ProductionModeEnabled=
{true | false}

This attribute is deprecated in WebLogic Server 9.0.

Determines whether a server starts in production mode.

A true value prevents a WebLogic Server from automatically
deploying and updating applications that are in the
domain_name/autodeploy directory.

If you do not specify this option, the assumed value is false.

To enable production mode, you can use WLST to set
DomainMBean.isProductionModeEnabled to true, or use the
WebLogic Server Administration Console. See Change to
production mode in the Oracle WebLogic Server
Administration Console Online Help.

Note: It is recommended that you enable production mode
via the WebLogic Server Administration Console, in
config.xml, or by supplying the production argument to
startWebLogic script, for example, startWebLogic.cmd
production. You should only enable production mode from
the command line on the Administration Server.

Note: It is important to note that when
ProductionModeEnabled is set from the command line on the
Administration Server, this value is propagated to all
Managed Servers.

Chapter 3
weblogic.Server Configuration Options

3-21

Table 3-9 (Cont.) Options for Configuring Server Attributes

Option Description

-Dweblogic.management.startupMode=MODE
The argument MODE represents either of the following:

• STANDBY — Starts a server and places it in the STANDBY
state. See Administering Server Startup and Shutdown
for Oracle WebLogic Server.
To use this startup argument, the domain must be
configured to use the domain-wide administration port.

See Administration Port and Administrative Channel in
Administering Server Environments for Oracle WebLogic
Server and Configure the domain-wide administration
port in the Oracle WebLogic Server Administration
Console Online Help.

• ADMIN — Starts a server and places it in the ADMIN state.
See Administering Server Startup and Shutdown for
Oracle WebLogic Server.

Specifying the startup mode startup option overrides any
startup mode setting in the config.xml file. The override
applies to the current server instantiation and in the
config.xml file. The system property has the highest
precedence over the server configuration settings in the
config.xml and becomes part of edit session changes if
starting an edit session via Administration Console or WLST.

If a system property is specified on the server startup:

• The value cannot be changed in the run time.
• Starting a new edit session can cause the system

property value to be persisted in config.xml.

-Dweblogic.apache.xerces.maxentityrefs=
numerical-value

Limits the number of entities in an XML document that the
WebLogic XML parser resolves.

If you do not specify this option, the XML parser that
WebLogic Server installs resolves 10,000 entity references in
an XML document, regardless of how many an XML
document contains.

-Dweblogic.jsp.windows.caseSensitive=true
Causes the JSP compiler on Windows systems to preserve
case when it creates output files names.

See Using the WebLogic JSP Compiler in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Chapter 3
weblogic.Server Configuration Options

3-22

Table 3-9 (Cont.) Options for Configuring Server Attributes

Option Description

-Dweblogic.servlet.optimisticSerialization=
true

When optimistic-serialization is turned on, WebLogic
Server does not serialize-deserialize context and request
attributes upon getAttribute(name) when the request is
dispatched across servlet contexts.

This means that you must make sure that the attributes
common to Web applications are scoped to a common parent
classloader (application scoped) or you must place them in
the system classpath if the two Web applications do not
belong to the same application.

When optimistic-serialization is turned off (default
value), WebLogic Server serialize-deserializes context and
request attributes upon getAttribute(name) to avoid the
possibility of ClassCastExceptions.

The optimistic-serialization value can also be specified at
domain level in the WebAppContainerMBean, which applies for
all Web applications. The value in weblogic.xml, if specified,
overrides the domain level value.

The default value is false.

-Dweblogic.servlet.maxLoggingURILength=length
By default, when using extended log format in HTTP access
logs, the maximum logged URI length is 256 characters. If the
URI exceeds that length, the logged URI is truncated.

You can use this property to increase the length of the URI
that is logged. See DNS Related Fields in Administering
Server Environments for Oracle WebLogic Server.

-Dweblogic.jdbc.qualifyRMName=false
When set, restores pre-WebLogic Server 11gR1 (10.3.1)
behavior of not qualifying the JTA registration name with the
domain name.

-Dweblogic.ScatteredReadsEnabled=true

and

-Dweblogic.GatheredWritesEnabled=true

When each is set to true, increases efficiency during I/O in
environments with high network throughput.

These command options are used together to optimize
WebLogic Server performance for use with Oracle Exalogic.
See the Oracle Exalogic Enterprise Deployment Guide.

-
Dweblogic.replication.enableLazyDeserializati
on=true

When set to true, increases efficiency with session
replication.

This command option is used to optimize WebLogic Server
performance for use with Oracle Exalogic. See the Oracle
Exalogic Enterprise Deployment Guide.

-
Dweblogic.resourcepool.max_test_wait_secs=sec
onds

The amount of time, in seconds, WebLogic Server waits
before considering a connection test failed. By default, a
server instance is assigned a value of 10 seconds. If set to
zero, the server instance waits indefinitely.

Chapter 3
weblogic.Server Configuration Options

3-23

Table 3-9 (Cont.) Options for Configuring Server Attributes

Option Description

-Dweblogic.wsee.client.ssl.usejdk=true
When set to true, switches from WlsSSLAdapter to
JdkSSLAdapter.

By default, WebLogic Server Web services use the
weblogic.wsee.connection.transport.https.WlsSSLAdapte
r class for the SSL adapter. Setting the flag to true forces the
use of JdkSSLAdapter from
weblogic.wsee.connection.transport.https.JdkSSLAdapte
r.

The
weblogic.wsee.connection.transport.https.HTTPSClientT
ransport class that defines the USE_JDK_SSL_PROPERTY is
used only in JAX-RPC. The property is not currently
supported in JAX-WS.

-Dweblogic.http.URIDecodeEncoding=charset-
name

The argument charset-name specifies the encoding used by
the WebLogic Server Web container to decode the URI of an
HTTP request or to encode the Location header in an HTTP
response. The default value is UTF-8.

See Determining the Encoding of an HTTP Request in
Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

-
Dweblogic.utils.http.requestparams.useArrayMa
p=true

When set to true in the server startup command, HTTP
request parameters are stored using an ArrayMap. By default,
HTTP request parameters are stored in a TreeMap.

The WebLogic Server Administration Console does not display values that you set on
the command line. For information on verifying the attribute values that you set, see
Verifying Attribute Values That Are Set on the Command Line.

3.4 Using the weblogic.Server Command Line to Start a
Server Instance

The basic procedure to start a WebLogic Server instance is to run the setWLSEnv script
to set the environment, change to the root directory of a domain, and enter the java
weblogic.Server command.

Complete the following steps:

1. In a command shell, set up the required environment variables by running the
following script:

WL_HOME\server\bin\setWLSEnv.cmd (on Windows)

WL_HOME/server/bin/setWLSEnv.sh (on UNIX)

where WL_HOME is the directory in which you installed the WebLogic Server
software.

2. In the command shell, change to the root of the domain directory, usually
ORACLE_HOME\user_projects\domains\DOMAIN_NAME. For example, change to the
ORACLE_HOME\user_projects\domains\medrec directory.

Chapter 3
Using the weblogic.Server Command Line to Start a Server Instance

3-24

3. To start an Administration Server, enter the following command:

java weblogic.Server

Note:

The password you use must be a string of at least 8 case-sensitive
characters. The space character is not supported. See Creating a
WebLogic Domain in Creating WebLogic Domains Using the
Configuration Wizard.

4. If the domain's Administration Server is already running, and if you have already
defined a Managed Server in the config.xml file, you can start a Managed Server
as follows:

java -Dweblogic.Name=managed-server-name
-Dweblogic.management.server=url-for-Administration-Server
weblogic.Server

For example, if you create a Managed Server named MedRecManagedServer in
the MedRec domain, you can enter the following command:

java -Dweblogic.Name=MedRecManagedServer
-Dweblogic.management.server=localhost:7011
weblogic.Server

Note:

If you are using the demo certificates in a multi-server domain, Managed
Server instances will fail to boot if you specify the fully-qualified DNS name of
the Administration Server host machine, as in the argument url-for-
Administration Server. See Limitation on CertGen Usage in Administering
Security for Oracle WebLogic Server.

3.5 Using the weblogic.Server Command Line to Create a
Domain

You can invoke the weblogic.Server class to create a domain that contains a single
server instance. However, you cannot invoke the weblogic.Server class either to add
Managed Server instances to a domain, or to modify an existing domain.
As described in Default Behavior, if weblogic.Server is unable to find a config.xml file,
it offers to create the file. Any command option that you specify and that corresponds
to an attribute that is persisted in the config.xml file will be persisted. For example, the
-Dweblogic.Name and -Dweblogic.Domain options specify the name of a server
configuration and the name of a domain. If weblogic.Server is unable to find a
config.xml file, both of these values are persisted in config.xml. However, the -
Dweblogic.system.BootIdentityFile option, which specifies a file that contains user
credentials for starting a server instance, is not an attribute that the config.xml file
persists.

To create and instantiate a simple example domain and server, do the following:

Chapter 3
Using the weblogic.Server Command Line to Create a Domain

3-25

1. In a command shell, set up the required environment variables by running the
following script:

WL_HOME\server\bin\setWLSEnv.cmd (on Windows)

WL_HOME/server/bin/setWLSEnv.sh (on UNIX)

where WL_HOME is the directory in which you installed the WebLogic Server
software.

2. In the command shell, create an empty directory.

3. In the empty directory, enter the following command:

java -Dweblogic.Domain=SimpleDomain -Dweblogic.Name=SimpleServer
-Dweblogic.management.username=weblogic -Dweblogic.management.password=password
-Dweblogic.ListenPort=7001 weblogic.Server

After you enter this command, WebLogic Server asks if you want to create a new
config.xml file. If you enter y, it then instantiates a domain named SimpleDomain. The
domain's Administration Server is configured as follows:

• The name of the Administration Server is SimpleServer.

• The domain's security realm defines one administrative user, weblogic, with a
password of password.

• For the listen address of the Administration Server, you can use localhost, the IP
address of the host computer, or the DNS name of the host computer. See
Configure listen addresses in the Oracle WebLogic Server Administration Console
Online Help.

• The Administration Server listens on port 7001.

Entering the weblogic.Server command as described in this section creates the
following files:

• config.xml

• DefaultAuthenticatorInit.ldift, DefaultRoleMapperInit.ldift, and
SerializedSystemIni.dat, which store basic security-related data.

• boot.properties file, which contains the username and password in an encrypted
format. This file enables you to bypass the prompt for username and password
when you start the server. See Boot Identity Files in Administering Server Startup
and Shutdown for Oracle WebLogic Server.

• startWebLogic.cmd and startWebLogic.sh, that you can use to start subsequent
instantiations of the server.

Note:

Invoking weblogic.Server in an empty directory results in implicit domain
creation which uses the same configuration process as WLST offline and
the Configuration Wizard and thus ensures that you always see uniform
domains. As a result, implicitly creating a domain in an empty directory
using weblogic.Server may take around 15 seconds.

Chapter 3
Using the weblogic.Server Command Line to Create a Domain

3-26

3.6 Verifying Attribute Values That Are Set on the Command
Line

The WebLogic Server Administration Console does not display values that you set on
the command line because the startup options set attribute values for the server's local
configuration MBean. To see the values that are in a server's local configuration
MBean, use WLST instead as follows:

1. Complete the procedure described in Main Steps for Using WLST in Interactive or
Script Mode in Understanding the WebLogic Scripting Tool.

>java weblogic.WLST

2. Start a WebLogic Server instance (see Starting and Stopping Servers in
Administering Server Startup and Shutdown for Oracle WebLogic Server) and
connect WLST to the server using the connect command. For detailed information
about the connect command, see connect in the WLST Command Reference for
WebLogic Server.

wls:/(offline)> connect('username','password','t3s://localhost:7002')
Connecting to weblogic server instance running at t3s://localhost:7002 as
username weblogic ...

wls:/mydomain/serverConfig>

3. For example, to determine the multicast address that a cluster member is using,
connect WLST to that server instance and enter the following commands:

wls:/mydomain/serverConfig> cd('Clusters/cluster_name')
wls:/mydomain/serverConfig/Clusters/mycluster> cmo.getMulticastAddress()

'239.192.0.0'

4. To determine the severity level of messages that the server instance prints to
standard out, connect WLST to that server instance and enter the following
commands:

wls:/mydomain/serverConfig> cd('Servers/server_name/Log/server_name')
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver>cmo.getStdoutSeverity()

'Notice'

See Understanding the WebLogic Scripting Tooland Understanding WebLogic Server
MBeans in Developing Custom Management Utilities Using JMX for Oracle WebLogic
Server.

Chapter 3
Verifying Attribute Values That Are Set on the Command Line

3-27

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Using the Oracle WebLogic Server Java Utilities
	2.1 appc
	2.2 AppletArchiver
	2.2.1 Syntax

	2.3 autotype (deprecated)
	2.4 BuildXMLGen
	2.5 CertGen
	2.5.1 Syntax
	2.5.2 Example

	2.6 ClientDeployer
	2.7 clientgen
	2.8 Conversion (deprecated)
	2.9 dbping
	2.9.1 Creating a DB2 Package with dbping
	2.9.2 Syntax
	2.9.3 Examples

	2.10 ddcreate (deprecated)
	2.11 DDInit
	2.11.1 WebInit
	2.11.2 EarInit (deprecated)

	2.12 Deployer
	2.13 der2pem
	2.13.1 Syntax
	2.13.2 Example

	2.14 Derby
	2.15 ejbc (deprecated)
	2.16 EJBGen
	2.17 encrypt
	2.17.1 Syntax
	2.17.2 Examples

	2.18 getProperty
	2.18.1 Syntax
	2.18.2 Example

	2.19 host2ior
	2.19.1 Syntax

	2.20 ImportPrivateKey
	2.20.1 Syntax
	2.20.2 Example

	2.21 jhtml2jsp
	2.21.1 Syntax

	2.22 jspc (deprecated)
	2.23 logToZip
	2.23.1 Syntax
	2.23.2 Examples

	2.24 MBean Commands
	2.25 MulticastTest
	2.25.1 Syntax
	2.25.2 Example

	2.26 myip
	2.26.1 Syntax
	2.26.2 Example

	2.27 pem2der
	2.27.1 Syntax
	2.27.2 Example

	2.28 rmic
	2.29 Schema
	2.29.1 Syntax
	2.29.2 Example

	2.30 servicegen (deprecated)
	2.31 SearchAndBuild
	2.31.1 Example

	2.32 source2wsdd (deprecated)
	2.33 system
	2.33.1 Syntax
	2.33.2 Example

	2.34 ValidateCertChain
	2.35 verboseToZip
	2.35.1 Syntax
	2.35.2 Example

	2.36 WebLogicMBeanMaker
	2.36.1 Syntax

	2.37 wlappc
	2.38 wlcompile
	2.39 wlconfig
	2.40 wldeploy
	2.41 wlpackage
	2.42 wlserver
	2.43 wsdl2Service
	2.44 wsdlgen (deprecated)
	2.45 wspackage (deprecated)

	3 weblogic.Server Command-Line Reference
	3.1 Required Environment and Syntax for weblogic.Server
	3.1.1 Environment
	3.1.2 Modifying the Classpath
	3.1.3 Syntax

	3.2 Default Behavior
	3.3 weblogic.Server Configuration Options
	3.3.1 JVM Parameters
	3.3.2 Location of Configuration Data
	3.3.2.1 Example

	3.3.3 Options that Override a Server's Configuration
	3.3.3.1 Server Communication
	3.3.3.2 SSL
	3.3.3.2.1 Setting Additional SSL Attributes

	3.3.3.3 Security
	3.3.3.4 Message Output and Logging
	3.3.3.4.1 Setting Logging Attributes

	3.3.3.5 Clusters
	3.3.3.6 Deployment
	3.3.3.7 Other Server Configuration Options

	3.4 Using the weblogic.Server Command Line to Start a Server Instance
	3.5 Using the weblogic.Server Command Line to Create a Domain
	3.6 Verifying Attribute Values That Are Set on the Command Line

