
Oracle® Fusion Middleware
Developing Resource Adapters for Oracle
WebLogic Server

12c (12.2.1.3.0)
E80457-03
December 2017

Oracle Fusion Middleware Developing Resource Adapters for Oracle WebLogic Server, 12c (12.2.1.3.0)

E80457-03

Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility x

Conventions x

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1

1.2 Guide to This Document 1-1

1.3 Related Documentation 1-2

1.4 Examples for the Resource Adapter Developer 1-2

1.5 New and Changed Features in This Release 1-3

2 Understanding Resource Adapters

2.1 Overview of Resource Adapters 2-1

2.1.1 Comparing WebLogic Server and WebLogic Integration Resource
Adapters 2-1

2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters 2-1

2.1.3 Connector Architecture 1.7 Support 2-2

2.1.4 Connector Architecture 1.6 Support 2-2

2.1.5 Comparing 1.0 Resource Adapters to 1.5 and 1.6 2-3

2.1.6 Additional Support Provided by the WebLogic Server Connector
Container 2-4

2.2 Java EE Connector Architecture 2-5

2.2.1 Java EE Architecture Diagram and Components 2-5

2.2.2 System-Level Contracts 2-7

2.3 Resource Adapter Deployment Descriptors 2-8

3 Creating and Configuring Resource Adapters

3.1 Creating and Configuring Resource Adapters: Main Steps 3-1

3.2 Modifying an Existing Resource Adapter 3-3

3.3 Configuring the ra.xml File 3-4

3.3.1 Creating the ra.xml File Manually 3-4

iii

3.3.2 Using Metadata Annotations to Specify Deployment Information 3-4

3.3.3 Resource Adapter XML Schema Definitions 3-5

3.4 Configuring the weblogic-ra.xml File 3-5

3.4.1 Editing Resource Adapter Deployment Descriptors 3-6

3.4.1.1 Editing Considerations 3-6

3.4.1.2 Schema Header Information 3-6

3.4.1.3 Conforming Deployment Descriptor Files to Schema 3-7

3.4.2 Dynamic Descriptor Updates: Console Configuration Tabs 3-7

3.4.2.1 Dynamic Reconfigurable Configuration Properties 3-8

3.4.2.2 Dynamic Configuration Parameters 3-8

3.4.2.3 Dynamic Pool Parameters 3-9

3.4.2.4 Dynamic Logging Parameters 3-9

3.4.3 Automatic Generation of the weblogic-ra.xml File 3-9

3.4.4 (Deprecated) Configuring the Link-Ref Mechanism 3-10

3.5 Bean Validation Configuration File 3-10

3.6 Long-Running Work Support 3-11

3.7 Tooling Support 3-11

3.8 Monitoring Resource Adapter Health 3-12

3.8.1 Obtaining Resource Adapter Health State 3-12

3.8.2 Deployment Requirements for Monitoring Health 3-12

4 Programming Tasks

4.1 Required Classes for Resource Adapters 4-1

4.2 Generic Work Context 4-2

4.2.1 Interfaces, Classes, and Methods Added to Support the Generic Work
Context 4-2

4.2.2 Deployment Descriptor Element Added to Support the Generic Work
Context 4-3

4.3 Programming a Resource Adapter to Perform as a Startup Class 4-3

4.3.1 Minimum Content of a Resource Adapter 4-3

4.3.2 Submitting a Work Instance 4-4

4.3.3 Retrying a Work Submission 4-6

4.4 Suspending and Resuming Resource Adapter Activity 4-6

4.5 Extended BootstrapContext 4-9

4.5.1 Diagnostic Context ID 4-10

4.5.2 Dye Bits 4-10

4.5.3 Callback Capabilities 4-11

4.5.4 Bean Validation 4-11

4.5.5 BeanManager 4-11

4.6 Administered Object Uniqueness 4-11

iv

5 Using Contexts and Dependency Injection in Resource Adapters

5.1 Overview 5-1

5.2 Resource Adapter Bean Discovery 5-1

5.3 Obtaining Contextual References to Resource Adapter Beans 5-2

5.4 Invoking Resource Adapter Beans From Other Application Types 5-2

5.5 Using Resource Adapters Deployed as CDI Bean Archives 5-2

5.5.1 BeanManager Support 5-3

5.5.2 Injection Points 5-3

5.6 Using CDI with Resource Adapter Component Beans 5-4

5.6.1 Resource Adapter Component Beans Must Not Be Managed Beans 5-5

5.6.2 Using Dependency Injection 5-6

5.6.2.1 Notes on Injection Usage 5-6

5.6.2.2 Example 5-7

6 Connection Management

6.1 Connection Management Contract 6-1

6.1.1 Connection Factory and Connection 6-1

6.1.2 Resource Adapters Bound in JNDI Tree 6-2

6.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction) 6-2

6.1.4 Specifying and Obtaining Transaction Support Level 6-3

6.1.5 Specifying an Unshareable ManagedConnectionFactory 6-4

6.2 Configuring Outbound Connections 6-4

6.2.1 Connection Pool Configuration Levels 6-4

6.2.2 Retrying a Connection Attempt 6-5

6.2.3 Isolating, Troubleshooting, and Fixing Outbound Connection Pool
Failures Without Redeploying the Adapter 6-5

6.2.3.1 Using the Deploy-As-A-Whole Option 6-5

6.2.3.2 Troubleshooting Failed Connection Pools 6-6

6.2.3.3 Connection Pool Recovery Steps 6-7

6.2.3.4 Other Options for Recovering Failed Connection Pools 6-7

6.2.4 Multiple Outbound Connections Example 6-8

6.3 Configuring Inbound Connections 6-10

6.4 Configuring Connection Pool Parameters 6-11

6.4.1 initial-capacity: Setting the Initial Number of ManagedConnections 6-11

6.4.2 max-capacity: Setting the Maximum Number of ManagedConnections 6-11

6.4.3 capacity-increment: Controlling the Number of ManagedConnections 6-12

6.4.4 shrinking-enabled: Controlling System Resource Usage 6-12

6.4.5 shrink-frequency-seconds: Setting the Wait Time Between Attempts to
Reclaim Unused ManagedConnections 6-12

v

6.4.6 highest-num-waiters: Controlling the Number of Clients Waiting for a
Connection 6-12

6.4.7 highest-num-unavailable: Controlling the Number of Unavailable
Connections 6-13

6.4.8 connection-creation-retry-frequency-seconds: Recreating Connections 6-13

6.4.9 match-connections-supported: Matching Connections 6-13

6.4.10 test-frequency-seconds: Testing the Viability of Connections 6-13

6.4.11 test-connections-on-create: Testing Connections upon Creation 6-13

6.4.12 test-connections-on-release: Testing Connections upon Release to
Connection Pool 6-14

6.4.13 test-connections-on-reserve: Testing Connections upon Reservation 6-14

6.4.14 deploy-as-a-whole: Isolating Outbound Connection Pool Failures from
the Whole Adapter Deployment 6-14

6.5 Connection Proxy Wrapper - 1.0 Resource Adapters 6-14

6.5.1 Possible ClassCastException 6-14

6.5.2 Turning Proxy Generation On and Off 6-15

6.6 Reset a Connection Pool 6-15

6.7 Testing Connections 6-16

6.7.1 Configuring Connection Testing 6-16

6.7.2 Testing Connections in the Administration Console 6-16

7 Transaction Management

7.1 Supported Transaction Levels 7-1

7.1.1 XA Transaction Support 7-1

7.1.2 Local Transaction Support 7-2

7.1.3 No Transaction Support 7-2

7.1.4 Runtime Transaction Support Level Specification 7-2

7.2 Configuring Transaction Levels 7-3

7.2.1 Configure XA Transaction Recovery Credential Mapping 7-3

8 Message and Transactional Inflow

8.1 Overview of Message and Transactional Inflow 8-1

8.1.1 Architecture Components 8-2

8.1.2 Inbound Communication Scenario 8-3

8.2 How Message Inflow Works 8-4

8.2.1 Handling Inbound Messages 8-4

8.2.2 Proprietary Communications Channel and Protocol 8-5

8.3 Message Inflow to Message Endpoints (Message-Driven Beans) 8-5

8.3.1 Deployment-Time Binding Between an MDB and a Resource Adapter 8-5

8.3.1.1 Binding an MDB and a Resource Adapter 8-6

vi

8.3.2 Dispatching a Message 8-6

8.3.3 Activation Specifications 8-7

8.3.4 Administered Objects 8-7

8.4 Transactional Inflow 8-7

8.4.1 Using the Transactional Inflow Model for Locally Managed Transactions 8-9

8.5 Configuring and Managing Long-Running Work 8-9

8.5.1 Setting the Maximum Number of Concurrent Long-Running Work
Instances 8-9

8.5.2 Monitoring Long-Running Work 8-10

9 Security

9.1 Container-Managed and Application-Managed Sign-on 9-1

9.1.1 Application-Managed Sign-on 9-1

9.1.2 Container-Managed Sign-on 9-2

9.2 Credential Mapping for Making Outbound Connections 9-2

9.2.1 Authentication Mechanisms 9-2

9.2.2 Outbound Credential Mappings 9-3

9.2.2.1 Non-initial Connection: Requires ManagedConnection from
Adapter Upon Application's Request 9-4

9.2.2.2 Initial Connection: Requires a ManagedConnection from Adapter
Without Application's Request 9-5

9.2.2.3 Special Users 9-6

9.2.3 Creating Outbound Credential Mappings Using the Console 9-6

9.3 Security Inflow 9-6

9.3.1 Inbound Principal Mappings 9-7

9.3.2 Security Inflow Callback Requirements 9-8

9.3.3 Backward Compatibility with Connector Architecture 1.5 and 1.0 9-9

9.4 Security Policy Processing 9-9

9.5 Configuring Security Identities for Resource Adapters 9-10

9.5.1 default-principal-name: Default Identity 9-11

9.5.2 manage-as-principal-name: Identity for Running Management Tasks 9-12

9.5.3 run-as-principal-name: Identity Used for Connection Calls from the
Connector Container into the Resource Adapter 9-12

9.5.4 run-work-as-principal-name: Identity Used for Performing Resource
Adapter Management Tasks 9-13

9.6 Configuring Connection Factory-Specific Authentication and Re-authentication
Mechanisms 9-13

10

Packaging and Deploying Resource Adapters

10.1 Packaging Resource Adapters 10-1

10.1.1 Packaging Directory Structure 10-1

vii

10.1.2 Packaging Considerations 10-2

10.1.3 Packaging Limitation 10-2

10.1.4 Packaging Resource Adapter Archives (RARs) 10-2

10.2 Deploying Resource Adapters 10-3

10.2.1 Deployment Options 10-4

10.2.2 Resource Adapter Deployment Names 10-4

10.2.3 Production Redeployment 10-4

10.2.3.1 Suspendable Interface and Production Redeployment 10-5

10.2.3.2 Production Redeployment Requirements 10-5

10.2.3.3 Production Redeployment Process 10-5

10.2.4 Deploying a Resource Adapter Configured with Multiple Outbound
Connection Pools 10-6

A weblogic-ra.xml Schema

A.1 weblogic-connector A-1

A.2 work-manager A-5

A.3 connector-work-manager A-7

A.4 security A-8

A.4.1 default-principal-name A-9

A.4.2 manage-as-principal-name A-10

A.4.3 run-as-principal-name A-10

A.4.4 run-work-as-principal-name A-10

A.4.5 security-work-context A-11

A.4.5.1 caller-principal-default-mapped A-11

A.4.5.2 caller-principal-mapping A-12

A.4.5.3 group-principal-mapping A-12

A.5 properties A-12

A.6 admin-objects A-13

A.6.1 admin-object-group A-13

A.6.1.1 admin-object-instance A-14

A.7 outbound-resource-adapter A-15

A.7.1 default-connection-properties A-16

A.7.1.1 pool-params A-17

A.7.1.2 logging A-18

A.7.2 connection-definition-group A-20

A.7.2.1 connection-instance A-21

B Resource Adapter Best Practices

B.1 Classloading Optimizations for Resource Adapters B-1

B.2 Connection Optimizations B-1

viii

B.3 Thread Management B-2

B.4 InteractionSpec Interface B-2

B.5 Using javax.jms.ConnectionFactory B-2

ix

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing Resource Adapters for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This document describes how to develop applications that include Java EE resource
adapters and how to deploy them on WebLogic Server. It is written for resource
adapter users, deployers, and software developers, and also contains information that
is useful for business analysts and system architects who are evaluating WebLogic
Server or considering the use of WebLogic Server resource adapters for a particular
application.
The following sections describe the contents and organization of this guide—
Developing Resource Adapters for Oracle WebLogic Server.

• Document Scope and Audience

• Guide to This Document

• Related Documentation

• Examples for the Resource Adapter Developer

• New and Changed Features in This Release

1.1 Document Scope and Audience
The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning topics. For links to WebLogic Server documentation and resources
for these topics, see Related Documentation.

It is assumed that the reader is familiar with Java EE and resource adapter concepts.
The foundation document for resource adapter development is the JSR 322: Java EE
Connector Architecture 1.7. See http://jcp.org/aboutJava/communityprocess/final/
jsr322/index.html. Resource adapter developers should become familiar with the Java
EE Connector Architecture 1.7 specification. This document, Developing Resource
Adapters for Oracle WebLogic Server, emphasizes the value-added features provided
by WebLogic Server resource adapters and key information about how to use
WebLogic Server features and facilities to get a resource adapter up and running.

1.2 Guide to This Document
• This section, Introduction and Roadmap, introduces the organization of this guide.

• Understanding Resource Adapters introduces you to the Oracle WebLogic Server
implementation of the Java EE Connector Architecture as well as the resource
adapter types and XML schema.

• Creating and Configuring Resource Adapters describes how to create resource
adapters using the Oracle WebLogic Server implementation of the Java EE
Connector Architecture.

1-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

• Programming Tasks describes programming tasks for resource adapters.

• Using Contexts and Dependency Injection in Resource Adapters describes
WebLogic Server support for Contexts and Dependency Injection (CDI) in
resource adapter beans.

• Connection Management introduces you to resource adapter connection
management.

• Transaction Management introduces you to the resource adapter transaction
management.

• Message and Transactional Inflow describes resource adapter messaging inflow
and transactional inflow.

• Security describes how to configure security for resource adapters.

• Packaging and Deploying Resource Adapters discusses packaging and deploying
requirements for resource adapters and provides instructions for performing these
tasks.

• weblogic-ra.xml Schema provides a complete reference for the schema for the
WebLogic Server-specific deployment descriptor, weblogic-ra.xml.

• Resource Adapter Best Practices provides best practices for resource adapter
developers.

1.3 Related Documentation
The foundation document for resource adapter development is JSR 322: Java EE
Connector Architecture 1.7. Developing Resource Adapters for Oracle WebLogic
Server document assumes you are familiar with the Java EE Connector Architecture
specification, which contains design and development information that is specific to
developing WebLogic Server resource adapters.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

• Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications.

• Tuning Performance of Oracle WebLogic Server contains information on
monitoring and improving the performance of WebLogic Server applications.

1.4 Examples for the Resource Adapter Developer
In addition to this document, Oracle provides resource adapter examples for software
developers. WebLogic Server optionally installs API code examples in the
ORACLE_HOME/wlserver/samples/server/examples/src/examples directory. For more
information about the WebLogic Server code examples, see Sample Applications and
Code Examples in Understanding Oracle WebLogic Server.

The resource adapter example provided with this release of WebLogic Server is
compliant with the 1.7 Connector Architecture. Oracle recommends that you examine,
run, and understand these resource adapter examples before developing your own
resource adapters.

Chapter 1
Related Documentation

1-2

1.5 New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.012.2.1.3.0.

Chapter 1
New and Changed Features in This Release

1-3

2
Understanding Resource Adapters

Resource adapters play a central role in the integration and connectivity between
enterprise information systems (EIS) and applications deployed on Oracle WebLogic
Server by communicating through well-defined contracts that are specified in the Java
EE Connector Architecture. This chapter explains resource adapter concepts, and also
describes the deployment descriptors that define the structure and runtime behavior of
a resource adapter that is deployed on WebLogic Server.

• Overview of Resource Adapters

• Java EE Connector Architecture

• Resource Adapter Deployment Descriptors

2.1 Overview of Resource Adapters
A resource adapter is a system library specific to an Enterprise Information System
(EIS) and provides connectivity to an EIS. A resource adapter is analogous to a JDBC
driver, which provides connectivity to a database management system. The interface
between a resource adapter and the EIS is specific to the underlying EIS; it can be a
native interface. The resource adapter plugs into an application server, such as
WebLogic Server, and provides seamless connectivity between the EIS, application
server, and enterprise application.
Multiple resource adapters can plug in to an application server. This capability enables
application components deployed on the application server to access the underlying
EISes. An application server and an EIS collaborate to keep all system-level
mechanisms — transactions, security, and connection management — transparent to
the application components. As a result, an application component provider can focus
on the development of business and presentation logic for application components and
need not get involved in the system-level issues related to EIS integration. This leads
to an easier and faster cycle for the development of scalable, secure, and
transactional enterprise applications that require connectivity with multiple EISes.

2.1.1 Comparing WebLogic Server and WebLogic Integration
Resource Adapters

It is important to note the difference between WebLogic Integration (WLI) resource
adapters and WebLogic Server resource adapters. WebLogic Integration resource
adapters are written to be specific to WebLogic Server and, in general, are not
deployable to other application servers. However, WebLogic Server resource adapters
written without WLI extensions are deployable in any Java EE-compliant application
server. This document discusses the design and implementation of non-WLI resource
adapters.

2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters
WebLogic Server supports three types of resource adapters:

2-1

• Outbound resource adapter — Allows an application to connect to an EIS system
and perform work. All communication is initiated by the application. In this case,
the resource adapter serves as a passive library for connecting to an EIS and
executes in the context of the application threads.

Outbound resource adapters based on the Java EE Connector Architecture 1.5
and 1.6 can be configured to have more than one simultaneous outbound
connection. You can configure each outbound connection to have its own
WebLogic Server-specific authentication and transaction support. See Configuring
Outbound Connections.

Outbound resource adapters based on the Java EE Connector Architecture 1.0
are also supported. These resource adapters can have only one outbound
connection.

• Inbound resource adapter (1.5 and 1.6 only) — Allows an EIS to call application
components and perform work. All communication is initiated by the EIS. The
resource adapter may request threads from WebLogic Server or create its own
threads; however, this is not the Oracle-recommended approach. Oracle
recommends that the resource adapter submit work by way of the WorkManager.
See Message and Transactional Inflow.

Note:

The WebLogic Server thin-client JAR also supports the WorkManager
contracts and thus can be used by non-managed resource adapters
(resource adapters not running in WebLogic Server).

• Bi-directional resource adapter (1.5 and 1.6 only) — Supports both outbound and
inbound communication.

2.1.3 Connector Architecture 1.7 Support
WebLogic Server supports the following Java EE Connector Architecture (1.7)
features:

• Supports @AdministeredObjectDefinition/@AdministeredObjectDefinitions
annotations and equivalent deployment descriptors for defining an administered
object resource.

• Supports @ConnectionFactoryDefinition/@ConnectionFactoryDefinitions and
equivalent deployment descriptors for defining a connection factory resource.

2.1.4 Connector Architecture 1.6 Support
The major themes of Connector Architecture 1.6 that are supported in WebLogic
Server Full Platform include the following:

• Ease of development features

Connector Architecture 1.6 adds a number of features to simplify the development
process, such as metadata annotations and support for sparse deployment
descriptors. Metadata annotations can be embedded within resource adapter class
files to specify deployment information, minimizing or even eliminating the need to

Chapter 2
Overview of Resource Adapters

2-2

manually create the ra.xml file. See Using Metadata Annotations to Specify
Deployment Information.

• Generic work context

A generic work context is the mechanism used by the resource adapter to
propagate contextual information, such as the transaction context and security
context, from the EIS to WebLogic Server during message delivery or submitting a
work instance. For more information, see Generic Work Context.

• Security context

Connector Architecture 1.6 defines a standard, generic security context that
leverages the work done in JSR 196: Java Authentication Service Provider
Interface for Containers. For more information, see Security Inflow.

• Miscellaneous improvements, including:

– Integration of JSR 303: Bean Validation

– Dynamic Reconfigurable Configuration Properties

This includes the ability to designate specific properties of resource adapter
component beans to be dynamically configurable, enabling those properties to
be reconfigured at run time without requiring adapter restart or redeployment.
See Dynamic Reconfigurable Configuration Properties.

– The ability for a resource adapter to determine and classify the level of
transaction support it can provide at run time. See Specifying and Obtaining
Transaction Support Level.

– Optional distributed Work processing, which gives an application server
instance's WorkManager the choice to distribute a Work instance submitted by
a resource adapter to another WorkManager residing in a different application
server instance.

2.1.5 Comparing 1.0 Resource Adapters to 1.5 and 1.6
WebLogic Server supports resource adapters developed under versions 1.0, 1.5, and
1.6 of the Java EE Connector Architecture. Java EE Connector Architecture 1.0
restricts resource adapter communication to a single external system using one-way
outbound communication. Java EE Connector Architecture 1.5 lifts this restriction.
Other capabilities provided by and for 1.5 and 1.6 resource adapters that do not apply
to 1.0 resource adapters include:

• Outbound communication from the application to multiple systems, such as
Enterprise Information Systems (EISes) and databases. See Inbound, Outbound,
and Bidirectional Resource Adapters.

• Inbound communication from one or more external systems such as an EIS to the
resource adapter. See Handling Inbound Messages.

• Transactional inflow to enable a Java EE application server to participate in an XA
transaction controlled by an external Transaction Manager by way of a resource
adapter. See Transactional Inflow.

• A Work Manager provided by WebLogic Server to enable resource adapters to
create threads through Work instances. See work-manager.

• A life cycle contract for calling start() and stop() methods of the resource adapter
by the application server. See Programming a Resource Adapter to Perform as a
Startup Class.

Chapter 2
Overview of Resource Adapters

2-3

http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/summary?id=303

Another important difference between 1.0 resource adapters and 1.5 and 1.6 resource
adapters is regarding connection pools. For 1.5 and 1.6 resource adapters, you do not
automatically get one connection pool per connection factory; you must configure a
connection instance. You do so by setting the connection-instance element in the
weblogic-ra.xml deployment descriptor.

Although WebLogic Server Full Platform is now compliant with JSR 322: Java EE
Connector Architecture 1.6, it continues to fully support versions 1.0 and 1.5. In
accordance with Connector Architecture 1.6, WebLogic Server supports schema-
based deployment descriptors. Resource adapters that have been developed based
on the Java EE Connector Architecture 1.0 use Document Type Definition (DTD)-
based deployment descriptors. Resource adapters that are built on DTD-based
deployment descriptors are still supported.

This document describes the development and use of 1.6 resource adapters.

2.1.6 Additional Support Provided by the WebLogic Server Connector
Container

WebLogic Server provides a number of features in its Connector container that
supplement the JSR 322: Java EE Connector Architecture 1.6, including the following:

• Support for JSR 299: Contexts and Dependency Injection for the Java EE Platform
(CDI) in embedded and global resource adapters. CDI defines a set of services for
using injection to specify dependencies in an application. For more information,
see Using Contexts and Dependency Injection in Resource Adapters.

• Additional runtime transaction level specification. WebLogic Server exposes
information about the runtime transaction level in the
ConnectorConnectionPoolRuntimeMBean.RuntimeTransactionSupport MBean attribute
and in the WebLogic Server Administration Console. For more information, see
Supported Transaction Levels.

• Ability to lookup the TransactionSynchronizationRegistry object in JNDI, using the
standard name of java:comp/TransactionSynchronizationRegistry. Oracle extends
support by providing two additional global JNDI names: javax/transaction/
TransactionSynchronizationRegistry and weblogic/transaction/
TransactionSynchronizationRegistry. For more information, see
javax.transaction.TransactionSynchronizationRegistry.

• Management and monitoring of long-running Work instances, including the number
of current active work requests and the number of completed work requests, which
WebLogic Server exposes on the ConnectorWorkManagerRuntimeMBean and in the
WebLogic Server Administration Console. See Long-Running Work Support.

• Additional support for the javax.resource.spi.RetryableException exception by
extending it to outbound connection pools. When you try to get a connection from
a suspended connection pool, WebLogic Server throws a
RetryableApplicationServerInternalException that implements the
RetryableException interface. You can then use the RetryableException instance to
determine whether the failure is transient.

• Supplemental support for the security context in the WebLogic Server
Administration Console by providing a means to create inbound EIS-to-WebLogic
principal mappings, which map EIS principals, such as users or groups defined in
the EIS security domain, to corresponding principals in the WebLogic domain. For
more information, see Inbound Principal Mappings.

Chapter 2
Overview of Resource Adapters

2-4

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/index.html?javax/transaction/TransactionSynchronizationRegistry.html

• Support for module-level JSR 303: Bean Validation configuration. WebLogic
Server extends Java EE 6 by supporting the optional use this bean configuration
file to validate a resource adapter module.

• New methods on the weblogic.connector.extensions.ExtendedBootstrapContext
that:

– Provide a means for a resource adapter to look up the Validator and
ValidatorFactory instances of its own beans for validation. See Bean
Validation.

– Return the resource adapter's BeanManager instance to support CDI injection.
See BeanManager, and Using Resource Adapters Deployed as CDI Bean
Archives.

• Work Name Hint — Names a Work instance and is used as part of the thread name
assigned to a long-running Work instance. The nameHint forms part of the thread
name and is used only for long-running work. For more information, see Long-
Running Work Support.

• In resource adapters configured with multiple connection pools, the ability to
isolate failed connection pools from healthy ones during deployment. This enables
you to locate, diagnose, and fix failed connection pools, and then dynamically
update the adapter deployment, without redeploying the resource adapter.

The ability to detect outbound connection pool failures is available through the
health monitoring feature, which is extended to resource adapters. You can
access the health state of a resource adapter deployment using WLST or the
WebLogic Server Administration Console. For more information, see Monitoring
Resource Adapter Health, and Deploying a Resource Adapter Configured with
Multiple Outbound Connection Pools .

2.2 Java EE Connector Architecture
The Java EE Connector Architecture defines a standard architecture for connecting
the Java EE platform to heterogeneous Enterprise Information Systems (EISes), such
as Enterprise Resource Planning (ERP) systems, mainframe transaction processing
(TP), and database systems.

The resource adapter serves as a protocol adapter that allows any arbitrary EIS
communication protocol to be used for connectivity. An application server vendor
extends its system once to support the Java EE Connector Architecture and is then
assured of seamless connectivity to multiple EISes. Likewise, an EIS vendor provides
one standard resource adapter that can plug in to any application server that supports
the Java EE Connector Architecture.

See Resource Adapters and Contracts in The Java EE 6 Tutorial.

2.2.1 Java EE Architecture Diagram and Components
Figure 2-1 and the discussion that follows describe a WebLogic Server implementation
of Connector Architecture 1.6.

Chapter 2
Java EE Connector Architecture

2-5

http://jcp.org/en/jsr/detail?id=303
http://docs.oracle.com/javaee/6/tutorial/doc/gipgl.html

Figure 2-1 Connector Architecture Overview

The connector architecture shown in Figure 2-1 demonstrates a bi-directional resource
adapter. The following components are used in outbound connection operations:

• A client application that connects to WebLogic Server, but also needs to interact
with the EIS.

• An application component (an EJB or servlet) that the client application uses to
submit outbound requests to the EIS through the resource adapter

• The WebLogic Server Connector container in which the resource adapter is
deployed. The container in this example holds the following:

– A deployed resource adapter that provides bi-directional (inbound and
outbound) communication to and from the EIS.

– One or more connection pools maintained by the container for the
management of outbound managed connections for a given
ManagedConnectionFactory (in this case, MCF-2 - there may be more
corresponding to different types of connections to a single EIS or even
different EISes)

Chapter 2
Java EE Connector Architecture

2-6

– Multiple managed connections (MC1, MCn), which are objects representing
the outbound physical connections from the resource adapter to the EIS.

– Connection handles (C-handle) returned to the application component from
the connection factory of the resource adapter and used by the application
component for communicating with the EIS.

The following components are used for inbound connection operations:

• One or more external message sources (MS1, MS2), which could be an Enterprise
Information System (EIS) or Message Provider, and which send messages
inbound to WebLogic Server.

• One or more ActivationSpecs (Act Spec), each of which corresponds to a single
MessageListener type (MLT-i).

• A MessageEndpointFactory created by the EJB container and used by the resource
adapter for inbound messaging to create proxies to MessageEndpoint instances
(MDB instances from the MDB pool).

• A message endpoint application (a message-driven bean (MDB) and possibly
other Java EE components) that receives and handles inbound messages from
the EIS through the resource adapter.

2.2.2 System-Level Contracts
To achieve a standard system-level pluggability between WebLogic Server and an
EIS, WebLogic Server has implemented the standard set of system-level contracts
defined by the Java EE Connector Architecture. These contracts consist of SPI
classes and interfaces that are required to be implemented in the application server
and the EIS, so that the two systems can work cooperatively. The EIS side of these
system-level contracts are implemented in the resource adapter's Java classes. The
following standard contracts are supported:

• Connection management contract — Enables WebLogic Server to pool
connections to an underlying EIS and enables application components to connect
to an EIS. Also allows efficient use of connection resources through resource
sharing and provides controls for associating and disassociating connection
handles with EIS connections.

• Transaction management contract — A contract between the transaction manager
and an EIS that supports transactional access to EIS resource managers. Enables
WebLogic Server to use its transaction manager to manage transactions across
multiple resource managers.

• Transaction inflow contract — Allows a resource adapter to propagate an imported
transaction to WebLogic Server. Allows a resource adapter to flow-in transaction
completion and crash recovery calls initiated by an EIS. Transaction inflow
involves the use of an external transaction manager to coordinate transactions.

• Security contract — Extends the connection management contract by providing
secure access to an EIS and support for a secure application environment that
reduces security threats to the EIS and protects valuable information resources
managed by the EIS.

• Life cycle management contract — Enables WebLogic Server to manage the life
cycle of a resource adapter. This allows bootstrapping a resource adapter instance
during its deployment or application server startup, and notification to the resource
adapter instance when it is undeployed or when the application server is being
shut down.

Chapter 2
Java EE Connector Architecture

2-7

• Work management contract — Allows a resource adapter to do work (monitor
network endpoints, call application components, and so on) by submitting Work
instances to WebLogic Server for execution.

• Generic work context contract — Enables a resource adapter to control the
contexts in which the Work instances that it submits are executed by the
WorkManager in WebLogic Server. A generic work context mechanism also
enables WebLogic Server to support new message inflow and delivery schemes,
providing the resource adapter with a robust contextual Work execution
environment that includes the ability to manage concurrent activity.

The generic work context contract standardizes the transaction context and the
security context. JSR 322: Java EE Connector Architecture 1.6 defines this
contract between the resource adapter and the application server in detail,
including interfaces and classes, the thread model, rules for verifying and
establishing contexts, error handling, event notifications, and so on.

• Message inflow contract — Allows a resource adapter to asynchronously or
synchronously deliver messages to message endpoints residing in WebLogic
Server independent of the specific messaging style, messaging semantics, and
messaging infrastructure used to deliver messages. Also serves as the standard
message provider pluggability contract that enables a wide range of message
providers (Java Message Service, Java API for XML Messaging, and so on) to be
plugged into WebLogic Server through a resource adapter.

These system-level contracts are described in detail in JSR 322: Java EE Connector
Architecture 1.6.

2.3 Resource Adapter Deployment Descriptors
The structure of a resource adapter and its runtime behavior are defined in
deployment descriptors. Programmers create the deployment descriptors during the
packaging process, and these become part of the application deployment when the
application is compiled.

WebLogic Server resource adapters have two deployment descriptors, each of which
has its own XML schema:

• ra.xml — The standard Java EE deployment descriptor. All resource adapters
must be specified in an ra.xml deployment descriptor file. The schema for ra.xml is
http://xmlns.jcp.org/xml/ns/javaee/connector_1_7.xsd.

Note:

Connector Architecture 1.6 introduces metadata annotations, which allow
you to specify deployment information in resource adapter class files,
thereby minimizing or eliminating the need to manually create the
deployment descriptor file ra.xml.

• weblogic-ra.xml — This WebLogic Server-specific deployment descriptor contains
elements related to WebLogic Server features such as transaction management,
connection management, and security. This file is required for the resource
adapter to be deployed to WebLogic Server. The schema for the weblogic-ra.xml
deployment descriptor file is http://xmlns.oracle.com/weblogic/weblogic-

Chapter 2
Resource Adapter Deployment Descriptors

2-8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://xmlns.jcp.org/xml/ns/javaee/connector_1_7.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

connector/1.5/weblogic-connector.xsd. For a reference to the weblogic-ra.xml
deployment descriptor, see weblogic-ra.xml Schema.

Chapter 2
Resource Adapter Deployment Descriptors

2-9

http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

3
Creating and Configuring Resource
Adapters

To create and configure a WebLogic Server resource adapter and prepare it for
deployment, you perform several tasks that include creating the resource adapter
classes and configuring the deployment descriptors, and may also include specifying
metadata annotations, preparing the bean validation configuration file, setting up
health status monitoring of standalone and embedded resource adapters, and more.

• Creating and Configuring Resource Adapters: Main Steps

• Modifying an Existing Resource Adapter

• Configuring the ra.xml File

• Configuring the weblogic-ra.xml File

• Bean Validation Configuration File

• Long-Running Work Support

• Tooling Support

• Monitoring Resource Adapter Health

3.1 Creating and Configuring Resource Adapters: Main
Steps

To create a new WebLogic resource adapter, you must create the classes for the
particular resource adapter, write the resource adapter's deployment descriptors, and
then package everything into an archive file to be deployed to WebLogic Server.

The following are the main steps for creating a resource adapter:

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with JSR 322: Java EE
Connector Architecture 1.7. These classes will be specified in the ra.xml file. For
example:

<managedconnectionfactory-class>
com.sun.connector.blackbox.LocalTxManagedConnectionFactory
</managedconnectionfactory-class>

<connectionfactory-interface>
javax.sql.DataSource
</connectionfactory-interface>

<connectionfactory-impl-class>
com.sun.connector.blackbox.JdbcDataSource
</connectionfactory-impl-class>

<connection-interface>
java.sql.Connection

3-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

</connection-interface>

<connection-impl-class>
com.sun.connector.blackbox.JdbcConnection
</connection-impl-class>

For 1.6 adapters, you can embed metadata annotations in the resource adapter
class files to specify deployment information, eliminating the need to create the
ra.xml file manually. For more information, see Configuring the ra.xml File.

Note:

The WebLogic Server implementation of Connector Architecture 1.6
includes support for Contexts and Dependency Injection. This support has
implications on the set of annotations that may be used in resource adapter
component beans, which are beans that define special components
managed by the Connector container and that have a special life cycle. For
more information, see

For more information about programming resource adapters, see Programming
Tasks.

2. Compile the Java code for the interfaces and implementation into class files, using
a standard compiler.

3. Create the resource adapter's deployment descriptors. A WebLogic resource
adapter uses two deployment descriptor files:

• ra.xml describes the resource adapter-related attributes type and its
deployment properties using the standard XML schema specified by the Java
EE Connector Architecture specification.

Note:

Java EE Connector Architecture 1.6 no longer requires the ra.xml file
to be created manually. Instead, deployment information can be
specified in metadata annotations. See Configuring the ra.xml File.

• weblogic-ra.xml adds additional WebLogic Server-specific deployment
information, including connection and connection pool properties, security
identities, Work Manager properties, and logging.

For detailed information about creating WebLogic Server-specific deployment
descriptors for resource adapters, refer to Configuring the weblogic-ra.xml File,
and weblogic-ra.xml Schema.

4. Package the Java classes into a Java archive (JAR) file with a .rar extension.

Create a staging directory anywhere on your hard drive. Place the JAR file in the
staging directory and the deployment descriptors in a subdirectory called META-INF.

Then create the resource adapter archive by executing a jar command similar to
the following in the staging directory:

jar cvf myRAR.rar *

Chapter 3
Creating and Configuring Resource Adapters: Main Steps

3-2

Optionally, you can include the Bean Validation configuration file, META-INF/
validation.xml, inside the JAR file. WebLogic Server uses the Bean Validation
configuration file to validate the resource adapter module.

5. Deploy the resource adapter archive (RAR) file on WebLogic Server in a test
environment and test it.

During testing, you may need to edit the resource adapter deployment descriptors.
You can do this using the WebLogic Server Administration Console or manually
using an XML editor or a text editor. For more information about editing
deployment descriptors, see Configuring the weblogic-ra.xml File, and Configure
resource adapter properties in the Oracle WebLogic Server Administration
Console Online Help. See also weblogic-ra.xml Schema, for detailed information
on the elements in the deployment descriptor.

6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in
an enterprise archive (EAR) file to be deployed as part of an enterprise
application.

For information about these steps, see Packaging and Deploying Resource
Adapters. See also Deploying Applications to Oracle WebLogic Server for detailed
information about deploying components and applications in general.

3.2 Modifying an Existing Resource Adapter
If you already have a resource adapter that is packaged in a RAR file, you can modify
it for deployment to WebLogic Server. This task involves adding the weblogic-ra.xml
deployment descriptor and repackaging the resource adapter.
The follow example shows the steps for modifying an existing resource adapter
packaged in a RAR file named blackbox-notx.rar.

1. Create a temporary directory anywhere on your hard drive to stage the resource
adapter:

mkdir c:/stagedir

2. Extract the contents of the resource adapter archive:

cd c:/stagedir
jar xf blackbox-notx.rar

The staging directory should now contain the following:

• A JAR file containing Java classes that implement the resource adapter

• A META-INF directory containing the Manifest.mf and ra.xml files

Execute these commands to see these files:

c:/stagedir> ls
 blackbox-notx.rar
 META-INF
c:/stagedir> ls META-INF
 Manifest.mf
 ra.xml

3. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment
descriptor for resource adapters. In this file, you specify parameters for connection
factories, connection pools, and security settings.

Chapter 3
Modifying an Existing Resource Adapter

3-3

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00503
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00503

For more information, see Configuring the weblogic-ra.xml File, and also refer to
weblogic-ra.xml Schema, for information on the XML schema that applies to
weblogic-ra.xml.

4. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory.
The META-INF directory is located in the temporary directory where you extracted
the RAR file or in the directory containing a resource adapter in exploded directory
format. Use the following command:

cp weblogic-ra.xml c:/stagedir/META-INF
c:/stagedir> ls META-INF
 Manifest.mf
 ra.xml
 weblogic-ra.xml

5. Create the resource adapter archive:

jar cvf blackbox-notx.rar -C c:/stagedir

6. Deploy the resource adapter to WebLogic Server. For more information about
packaging and deploying the resource adapter, see Packaging and Deploying
Resource Adapters, and Deploying Applications to Oracle WebLogic Server.

3.3 Configuring the ra.xml File
All resource adapters must be specified in an ra.xml deployment descriptor file. For
1.0 or 1.5 resource adapters, you must create this file manually. If you are creating a
1.6 resource adapter, you can optionally specify metadata annotations in the resource
adapter classes, eliminating the need to create the ra.xml file manually. The following
sections explain how to configure the ra.xml file:

• Creating the ra.xml File Manually

• Using Metadata Annotations to Specify Deployment Information

• Resource Adapter XML Schema Definitions

For more information about creating a ra.xml file, you can also refer to JSR 322: Java
EE Connector Architecture 1.6.

3.3.1 Creating the ra.xml File Manually
If your resource adapter does not already contain a ra.xml file, and you are creating a
resource adapter, you must manually create or edit an existing one to set the
necessary deployment properties for the resource adapter. You can use a text editor
or XML editor to edit the properties.

3.3.2 Using Metadata Annotations to Specify Deployment Information
The Java EE Connector Architecture 1.6 no longer requires you to manually create a
ra.xml file. Instead, metadata annotations can be included in resource adapter classes
to provide the same functions that are specified in the ra.xml file.

If you choose to specify all deployment information in a ra.xml file, the Java EE
Connector Architecture 1.6 includes the metadata-complete element, which you include
in the ra.xml file and set to true. Setting the metadata-complete element to true causes
all metadata annotations included in the resource adapter classes to be ignored. If the
metadata-complete element is not specified, or is set to false, WebLogic Server merges

Chapter 3
Configuring the ra.xml File

3-4

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

the information specified in the annotations with the information specified in the ra.xml
file at run time, and uses this merged information to deploy and manage the resource
adapter.

For more information about deployment descriptors and annotations, see Chapter 18,
Metadata Annotations, of JSR 322: Java EE Connector Architecture 1.6. See also
Metadata Annotations in The Java EE 6 Tutorial.

3.3.3 Resource Adapter XML Schema Definitions
The Java EE Connector Architecture 1.6 introduces changes to the ra.xml file schema,
primarily to support ease-of-development features such as metadata annotations. For
details about schema definition changes, see Section 20.7, Resource Adapter XML
Schema Definition, in JSR 322: Java EE Connector Architecture 1.6.

The schema for the ra-xml file for 1.0 and 1.5 resource adapters is http://
java.sun.com/xml/ns/j2ee/connector_1_5.xsd. For 1.6 and 1.7 adapters, the schema is
at http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html.

3.4 Configuring the weblogic-ra.xml File
In addition to supporting features of the standard resource adapter configuration
ra.xml file, WebLogic Server defines an additional deployment descriptor file,
weblogic-ra.xml. This file contains parameters that are specific to configuring and
deploying resource adapters in WebLogic Server. This functionality is consistent with
the equivalent weblogic-*.xml extensions for EJBs and Web applications in WebLogic
Server, which also add WebLogic-specific deployment descriptors to the deployable
archive. The basic RAR or deployment directory can be deployed to WebLogic Server
without a weblogic-ra.xml file. If a resource adapter is deployed in WebLogic Server
without a weblogic-ra.xml file, a template weblogic-ra.xml file populated with default
element values is automatically added to the resource adapter archive. However, this
automatically generated weblogic-ra.xml file is not persisted to the RAR; the RAR
remains unchanged.
The following summarizes the most significant features you can configure in the
weblogic-ra.xml deployment descriptor file.

• Descriptive text about the connection factory.

• JNDI name bound to a connection factory. (Resource adapters developed based
on JSR 322: Java EE Connector Architecture 1.6 are bound in the JNDI as objects
independently of their ConnectionFactory objects.)

• Reference to a separately deployed connection factory that contains resource
adapter components that can be shared with the current resource adapter.

• Connection pool parameters that set the following behavior:

– Initial number of ManagedConnections that WebLogic Server attempts to allocate
at deployment time.

– Maximum number of ManagedConnections that WebLogic Server allows to be
allocated at any one time.

– Number of ManagedConnections that WebLogic Server attempts to allocate
when filling a request for a new connection.

– Whether WebLogic Server attempts to reclaim unused ManagedConnections to
save system resources.

Chapter 3
Configuring the weblogic-ra.xml File

3-5

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://docs.oracle.com/javaee/6/tutorial/doc/girdd.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

– The time WebLogic Server waits between attempts to reclaim unused
ManagedConnections.

• Logging properties to configure WebLogic Server logging for the
ManagedConnectionFactory or ManagedConnection.

• Transaction support levels (XA, local, or no transaction support).

• Principal names to use as security identities.

For detailed information about configuring the weblogic-ra.xml deployment descriptor
file, see the reference information in weblogic-ra.xml Schema. See also the
configuration information in the following sections:

• Connection Management

• Transaction Management

• Message and Transactional Inflow

• Security

3.4.1 Editing Resource Adapter Deployment Descriptors
To define or make changes to the XML descriptors used in the WebLogic Server
resource adapter archive, you must define or edit the XML elements in the weblogic-
ra.xml and ra.xml deployment descriptor files. You can edit the deployment descriptor
files with any plain text editor. However, to avoid introducing errors, use a tool
designed for XML editing.You can also edit most elements of the files using the
WebLogic Server Administration Console.

3.4.1.1 Editing Considerations
To edit XML elements manually:

• If you use an ASCII text editor, make sure that it does not reformat the XML or
insert additional characters that could invalidate the file.

• Use the correct case for file and directory names, even if your operating system
ignores the case.

• To use the default value for an optional element, you can either omit the entire
element definition or specify a blank value. For example: <max-config-property></
max-config-property>

3.4.1.2 Schema Header Information
When editing or creating XML deployment files, it is critical to include the correct
schema header for each deployment file. The header refers to the location and version
of the schema for the deployment descriptor.

Although this header references an external URL at java.sun.com, WebLogic Server
contains its own copy of the schema, so your host server need not have access to the
Internet. However, you must still include this <?xml version...> element in your ra.xml
file, and have it reference the external URL because the version of the schema
contained in this element is used to identify the version of this deployment descriptor.

Table 3-1 shows the entire schema headers for the ra.xml and weblogic-ra.xml files.

Chapter 3
Configuring the weblogic-ra.xml File

3-6

Table 3-1 Schema Header

XML File Schema Header

ra.xml <?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee/
connector_1_7.xsd"
version="1.7">

weblogic-ra.xml <?xml version = "1.5">
<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/
weblogic-connector">

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier 'identifier_name'

3.4.1.3 Conforming Deployment Descriptor Files to Schema
The contents and arrangement of elements in your deployment descriptor files must
conform to the schema for each file you use. The following links provide the public
schema locations for deployment descriptor files used with WebLogic Server:

• connector_1_7.xsd contains the schema for the standard ra.xml deployment file,
required for all resource adapters. This schema is maintained as part of JSR 322:
Java EE Connector Architecture 1.7 and is located at http://www.oracle.com/
webfolder/technetwork/jsc/xml/ns/javaee/index.html#7.

• weblogic-ra.xsd contains the schema used for creating weblogic-ra.xml, which
defines resource adapter properties used for deployment to WebLogic Server.
This schema is located at http://xmlns.oracle.com/weblogic/weblogic-
connector/1.5/weblogic-connector.xsd.

Note:

Your browser might not display the contents of files having the .xsd
extension. In that case, to view the schema contents in your browser, save
the links as text files and view them with a text editor.

3.4.2 Dynamic Descriptor Updates: Console Configuration Tabs
You can use the WebLogic Server Administration Console to view, modify, and (when
necessary) persist deployment descriptor elements. Some descriptor element changes
take place dynamically at run time without requiring the resource adapter to be
redeployed. Other descriptor elements require redeployment after changes are made.
To use the WebLogic Server Administration Console to configure a resource adapter,
open Deployments and click the name of the deployed resource adapter. Use the

Chapter 3
Configuring the weblogic-ra.xml File

3-7

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html#7
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html#7
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

Configuration tab to change the configuration of the resource adapter and the other
tabs to control, test, or monitor the resource adapter.

For information about using the WebLogic Server Administration Console, see
Configure resource adapter properties in the Oracle WebLogic Server Administration
Console Online Help.

3.4.2.1 Dynamic Reconfigurable Configuration Properties
Dynamic reconfigurable configuration properties are described in Section 5.3.7.6 of
JSR 322: Java EE Connector Architecture 1.6. For 1.6 resource adapters, WebLogic
Server supports dynamic reconfigurable configuration properties for the following
adapter component beans:

• ResourceAdapter beans

• ManagedConnectionFactory beans

• Administered object beans

At run time, after you update the dynamically configurable properties on any of these
adapter component beans, you must update the adapter to put changes into effect.
Updating the adapter is a relatively lightweight operation during which WebLogic
Server modifies the run-time bean instances without interfering with active connection
pools or admin objects that do not have configuration updates. You do not need to
update the adapter immediately. However, changes to properties on adapter
component beans do not go into effect unless the beans are dynamically updated or
the resource adapter is restarted.

The resource adapter should be designed carefully with regard to support for dynamic
changes to its properties during run time. Depending on the services provided by the
resource adapter, it might be critically important that some properties should never be
reconfigured when the adapter is running; for example, the listen address and port
number of a resource adapter used for the EIS connection (any reconfiguration of
those properties should require the adapter to be shut down and restarted). WebLogic
Server does not impose any requirements on an adapter component bean with regard
to whether specific properties may or may not be designated as dynamically
reconfigurable. It is entirely for the adapter developer to decide which adapter
component beans support dynamic update and which do not.

3.4.2.2 Dynamic Configuration Parameters
For 1.6 adapters, WebLogic Server supports dynamic update on properties of Resource
Adapter, ManagedConnectionFactory, and admin object beans. Using the WebLogic
Server Administration Console, you can modify the following configuration parameters
on those beans dynamically, without requiring the resource adapter to be redeployed:

• Edit the adapter JNDI name

• Create and delete outbound connection pools

• Edit the connection pool JNDI name

• Create and delete admin objects

• Edit admin object JNDI names

Chapter 3
Configuring the weblogic-ra.xml File

3-8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

3.4.2.3 Dynamic Pool Parameters
Using the WebLogic Server Administration Console, you can modify the following
weblogic-ra.xml pool parameters dynamically, without requiring the resource adapter
to be redeployed:

• initial-capacity

• max-capacity

• capacity-increment

• shrink-frequency-seconds

• highest-num-waiters

• highest-num-unavailable

• connection-creation-retry-frequency-seconds

• connection-reserve-timeout-seconds

• test-frequency-seconds

3.4.2.4 Dynamic Logging Parameters
Using the WebLogic Server Administration Console, you can modify the following
weblogic-ra.xml logging parameters dynamically, without requiring the resource
adapter to be redeployed:

• log-filename

• file-count

• file-size-limit

• log-file-rotation-dir

• rotation-time

• file-time-span

3.4.3 Automatic Generation of the weblogic-ra.xml File
A resource adapter archive (RAR) deployed on WebLogic Server must include a
weblogic-ra.xml deployment descriptor file in addition to the ra.xml deployment
descriptor file specified in JSR 322: Java EE Connector Architecture 1.6.

If a resource adapter is deployed in WebLogic Server without a weblogic-ra.xml file, a
template weblogic-ra.xml file populated with default element values is automatically
added to the resource adapter archive. However, this automatically generated
weblogic-ra.xml file is not persisted to the RAR; the RAR remains unchanged.
WebLogic Server instead generates internal data structures that correspond to default
information in the weblogic-ra.xml file.

For a 1.0 resource adapter that is a single connection factory definition, the JNDI
name will be eis/ModuleName. For example, if the RAR is named MySpecialRA.rar, the
JNDI name of the connection factory will be eis/MySpecialRA.

For a 1.5 resource adapter with a ResourceAdapter bean class specified, the JNDI
name of the bean would be MySpecialRA. Each connection factory would also have a

Chapter 3
Configuring the weblogic-ra.xml File

3-9

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

corresponding instance created with a JNDI name of eis/ModuleName, eis/ModuleName_1,
eis/ModuleName_2, and so on.

3.4.4 (Deprecated) Configuring the Link-Ref Mechanism
The Link-Ref mechanism was introduced in the 8.1 release of WebLogic Server to
enable the deployment of a single base adapter whose code could be shared by
multiple logical adapters with various configuration properties. For 1.5 resource
adapters in the current release, the Link-Ref mechanism is deprecated and is replaced
by the new Java EE libraries feature. However, the Link-Ref mechanism is still
supported in this release for 1.0 resource adapters. For more information on Java EE
libraries, see Creating Shared Java EE Libraries and Optional Packages in Developing
Applications for Oracle WebLogic Server. To use the Link-Ref mechanism, use the ra-
link-ref element in your resource adapter's weblogic-ra.xml file.

The deprecated and optional ra-link-ref element allows you to associate multiple
deployed resource adapters with a single deployed resource adapter. In other words, it
allows you to link (reuse) resources already configured in a base resource adapter to
another resource adapter, modifying only a subset of attributes. The ra-link-ref
element enables you to avoid - where possible - duplicating resources (such as
classes, JARs, image files, and so on). Any values defined in the base resource
adapter deployment are inherited by the linked resource adapter, unless otherwise
specified in the ra-link-ref element.

If you use the optional ra-link-ref element, you must provide either all or none of the
values in the pool-params element. The pool-params element values are not partially
inherited by the linked resource adapter from the base resource adapter.

Do one of the following:

• Assign the max-capacity element the value of 0 (zero). This allows the linked
resource adapter to inherit its pool-params element values from the base resource
adapter.

• Assign the max-capacity element any value other than 0 (zero). The linked
resource adapter will inherit no values from the base resource adapter. If you
choose this option, you must specify all of the pool-params element values for the
linked resource adapter.

For further instructions on editing the weblogic-ra.xml file, see weblogic-ra.xml
Schema.

3.5 Bean Validation Configuration File
In its support of JSR 303: Bean Validation, WebLogic Server extends Java EE 6 by
providing a module-level bean validation configuration file. WebLogic Server supports
the optional use of this file to validate a resource adapter module. The JSR 303: Bean
Validation specification is available at https://jcp.org/en/jsr/detail?id=303.
The bean validation configuration file can be specified for a resource adapter module
regardless of whether the resource adapter is deployed independently (as a
standalone RAR) or as part of an enterprise application (EAR). If no bean validation
configuration file is specified for an adapter module, WebLogic Server uses a default
bean validation configuration to validate the resource adapter module.

The bean validation configuration file is named validation.xml and is included among
the deployment descriptors in the META-INF subdirectory of the RAR.

Chapter 3
Bean Validation Configuration File

3-10

https://jcp.org/en/jsr/detail?id=303

For more information about bean validation, see Bean Validation.

3.6 Long-Running Work Support
Section 11.7 of the Java EE Connector Architecture 1.6 specification defines two
standard hints to control the quality-of-service (QoS) characteristics afforded to it by
the WorkManager. These hints are:

• Work Name Hint — Names a Work instance and is used as part of the thread name
assigned to a long-running Work instance.

• Long-running Work instance Hint — Performs the same function as the WebLogic
Server extension annotation @LongRunning, which allows you to schedule a Work
instance in a separate thread and that also facilitates the control and monitoring
capabilities of long-running Work instances.

WebLogic Server allows you to configure a limit on the number of long-running
Work instances that can be submitted by a resource adapter to be executed
concurrently. The default limit is 10. You can change the limit to higher value, but
you need to exercise care not to overburden system resources.

This limit can be specified either by using the max-concurrent-long-running-
requests element in the weblogic-ra.xml file or by setting
ConnectorWorkManagerRuntimeMBean.ActiveLongRunningRequests attribute, which is
exposed in the WebLogic Server Administration Console. The
ConnectorWorkManagerRuntimeMBean includes getter and setter methods on the
ActiveLongRunningRequests and CompletedLongRunningRequests attributes that allow
you to configure and monitor information about long-running Work instances.

For more information, see Configuring and Managing Long-Running Work.

3.7 Tooling Support
WebLogic Server supports two tools, weblogic.appmerge and appc, which you can use
to help with resource adapter development and deployment.

• weblogic.appmerge

Performs validation checks metadata annotations. When used with the -
writeInferredDescriptors option, weblogic.appmerge generates a merged ra.xml
that combines deployment information specified in annotations with the contents of
any pre-existing ra.xml file.

Note:

After you run the weblogic.appmerge tool, make sure the metadata-complete
element in the merged ra.xml is set to true. This prevents the deployer
from processing annotations again, which improves overall deployment
performance and reduces deployment time.

See Using weblogic.appmerge to Merge Libraries in Developing Applications for
Oracle WebLogic Server.

• appc

Chapter 3
Long-Running Work Support

3-11

Performs extensive validation checks on annotations, bean classes, ra.xml,
weblogic-ra.xml, and the resource adapter deployment plan (weblogic.appmerge
validates annotations only).

The appc tool also:

– Provides extensive reports that include both warnings and errors.

– Is particularly useful for validating a resource adapter and ensuring that its
configuration is correct without having to deploy it.

See appc Reference in Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

3.8 Monitoring Resource Adapter Health
WebLogic Server provides the ability to monitor the health status of standalone and
embedded resource adapters. By default if a standalone or embedded resource
adapter has a deployment error, the entire deployment of the adapter fails with a
health status of HEALTH_FAILED. However, if the resource adapter includes multiple
outbound connection pools and its deploy-as-a-whole flag is set to false, the adapter
deployment can succeed even if one or more outbound connection pool failures occur.
You can use the health monitoring feature to detect connection pool failures and repair
them without needing to redeploy the adapter.
The following sections explain how resource adapter health status monitoring is
available in WebLogic Server:

• Obtaining Resource Adapter Health State

• Deployment Requirements for Monitoring Health

3.8.1 Obtaining Resource Adapter Health State
To support health monitoring in both standalone and embedded resource adapters,
WebLogic Server provides the following MBean attributes, whose values can be
obtained using the WebLogic Server Administration Console, WLST, or JMX:

• ConnectorComponentRuntimeMBean.HealthState — Returns the overall health state of
either a standalone or embedded resource adapter. If an outbound connection
pool has a deployment failure, the health state of the resource adapter is
HEALTH_CRITICAL.

• ApplicationRuntimeMBean.OverallHealthState — Returns the aggregated health
state of the application, including that of the embedded components that report
health. If an embedded resource adapter contains a failed outbound connection
pool, the health state of that connection pool is reflected in the overall health of the
application.

• ConnectorConnectionPoolRuntimeMBean.HealthState — Returns health state of the
individual outbound connection pool in a resource adapter.

3.8.2 Deployment Requirements for Monitoring Health
To deploy a resource adapter that is configured with multiple outbound connection
pools so that a failed connection pool does not cause the whole adapter deployment to
fail, you must set the deploy-as-a-whole element in the weblogic-ra.xml file to false.
(By default, this element is set to true.) For information about setting this deployment

Chapter 3
Monitoring Resource Adapter Health

3-12

option, see Deploying a Resource Adapter Configured with Multiple Outbound
Connection Pools .

Chapter 3
Monitoring Resource Adapter Health

3-13

4
Programming Tasks

When you implement a WebLogic Server resource adapter, you must include a
specific set Java classes that are required by the Java EE Connector Architecture.
Optionally, you can create the resource adapter so that it can perform as a startup
class. You should also understand how to suspend and resume resource adapter
activity and also how to use the ExtendedBootstrapContext class.

• Required Classes for Resource Adapters

• Generic Work Context

• Programming a Resource Adapter to Perform as a Startup Class

• Suspending and Resuming Resource Adapter Activity

• Extended BootstrapContext

• Administered Object Uniqueness

4.1 Required Classes for Resource Adapters
In accordance with Java Connector Architecture, a resource adapter must include a
specific set of classes, and which must be specified in the ra.xml deployment
descriptor file.

A resource adapter requires the following Java classes:

• ManagedConnectionFactory

• ConnectionFactory interface

• ConnectionFactory implementation

• Connection interface

• Connection implementation

You must specify these classes in the ra.xml file. For example:

<managedconnectionfactory-class>
com.sun.connector.blackbox.LocalTxManagedConnectionFactory
</managedconnectionfactory-class>

<connectionfactory-interface>
javax.sql.DataSource
</connectionfactory-interface>

<connectionfactory-impl-class>
com.sun.connector.blackbox.JdbcDataSource
</connectionfactory-impl-class>

<connection-interface>
java.sql.Connection
</connection-interface>

<connection-impl-class>

4-1

com.sun.connector.blackbox.JdbcConnection
</connection-impl-class>

In addition, if the resource adapter supports inbound messaging, the resource adapter
will require an ActivationSpec class for each supported inbound message type. See
Message and Transactional Inflow.

The specifics of these resource adapter classes depend on the nature of the resource
adapter you are developing.

4.2 Generic Work Context
Connector Architecture 1.6 defines the generic work context, which is a mechanism for
a resource adapter to propagate contextual information from an EIS to WebLogic
Server during message delivery or when submitting a Work instance. The generic
work context comprises a set of classes, interfaces, and methods, and also includes
new schema elements supported in WebLogic Server.
The following sections describe these entities added to support the generic work
context:

• Interfaces, Classes, and Methods Added to Support the Generic Work Context

• Deployment Descriptor Element Added to Support the Generic Work Context

4.2.1 Interfaces, Classes, and Methods Added to Support the Generic
Work Context

The following interfaces are added to support the generic work context:

Interface Description

javax.resource.spi.work.WorkContext Serves as a standard mechanism for a resource adapter
to propagate an imported context from an EIS to an
application server.

javax.resource.spi.work.WorkContextLi
fecycleListener

Models the various events that occur during the
processing of the WorkContexts associated with a Work
instance. This interface may be implemented by a
WorkContext instance to receive notifications from the
WorkManager when the WorkContext is set as the
execution context of the Work instance it is associated
with.

javax.resource.spi.work.WorkContextPr
ovider

Specifies the methods a Work instance uses to associate
a List of WorkContext instances to be set when the
Work instance gets executed by a WorkManager.

The following class is added to support the generic work context:

Class Description

javax.resource.spi.work.WorkContextEr
rorCodes

Models the possible error conditions that might occur
during associating a WorkContext with a Work instance.

The following method is added to BootstrapContext interface to support the generic
work context:

Chapter 4
Generic Work Context

4-2

Method Description

isContextSupported A resource adapter can check an application server's support for
a particular WorkContext type through this method. This
mechanism enables a resource adapter developer to dynamically
change the WorkContexts submitted with a Work instance based
on the support provided by the application server.

4.2.2 Deployment Descriptor Element Added to Support the Generic
Work Context

To support the generic work context, the required-work-context element is added to
the ra.xml file schema to represent a WorkContext class that is required by the resource
adapter for WebLogic Server to support. For each WorkContext class that is required,
an individual required-work-context element is specified.

Note that the @Connector metadata annotation can be used in a resource adapter
source file to specify this deployment descriptor information. See Section 18.4,
@Connector, in JSR 322: Java EE Connector Architecture 1.6.

4.3 Programming a Resource Adapter to Perform as a
Startup Class

As an alternative to using a WebLogic Server startup class, you can implement a
simple resource adapter to perform as a startup class.

The following sections describe programming a resource adapter to perform as a
startup class:

• Minimum Content of a Resource Adapter

• Submitting a Work Instance

• Retrying a Work Submission

4.3.1 Minimum Content of a Resource Adapter
As an alternative to using a WebLogic Server startup class, you can program a
resource adapter with a minimal resource adapter class that implements
javax.resource.ResourceAdapter, which defines a start() and stop() method.

Note:

Because of the definition of the ResourceAdapter interface, you must also
define the endpointActivation(), Deactivation() and getXAResource() methods.

When the resource adapter is deployed, the start() method is invoked. When it is
undeployed, the stop() method is invoked. Any work that the resource adapter initiates
can be performed in the start() method as with a WebLogic Server startup class.

Chapter 4
Programming a Resource Adapter to Perform as a Startup Class

4-3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Example 4-1 shows a resource adapter having a minimum resource adapter class. It is
the absolute minimum resource adapter that you can develop (other than removing the
println statements). In this example, the only work performed by the start() method
is to print a message to stdout (standard out).

Example 4-1 Minimum Resource Adapter

import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.endpoint.MessageEndpointFactory;
import javax.resource.spi.ActivationSpec;
import javax.resource.ResourceException;
import javax.transaction.xa.XAResource;
import javax.resource.NotSupportedException;
import javax.resource.spi.BootstrapContext;
/**
* This resource adapter is the absolute minimal resource adapter that anyone can
build (other than removing the println's.)
*/
public class ResourceAdapterImpl implements ResourceAdapter
{
 public void start(BootstrapContext bsCtx)
 {
 System.out.println("ResourceAdapterImpl started");
 }
 public void stop()
 {
 System.out.println("ResourceAdapterImpl stopped");
 }
 public void endpointActivation(MessageEndpointFactory messageendpointfactory,
ActivationSpec activationspec)
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 public void endpointDeactivation(MessageEndpointFactory messageendpointfactory,
ActivationSpec activationspec)
 {
 }
 public XAResource[] getXAResources(ActivationSpec aactivationspec[])
 throws ResourceException
 {
 throw new NotSupportedException();
 }
}

4.3.2 Submitting a Work Instance
Because resource adapters have access to the Work Manager through the
BootstrapContext in the start() method, they should submit Work instances instead of
using direct thread management. This enables WebLogic Server to manage threads
effectively through its self-tuning Work Manager.

Once a Work instance is submitted for execution, the start() method should return
promptly so as not to interfere with the full deployment of the resource adapter. Thus,
a scheduleWork() or startWork() method should be invoked on the Work Manager
rather than the doWork() method.

Example 4-2 shows resource adapter that submits work instances to the Work
Manager. The resource adapter starts some work in the start() method, thus serving
as a Java EE-compliant startup class.

Chapter 4
Programming a Resource Adapter to Perform as a Startup Class

4-4

Example 4-2 Resource Adapter Using the Work Manager and Submitting Work
Instances

import javax.resource.NotSupportedException;
import javax.resource.ResourceException;
import javax.resource.spi.ActivationSpec;
import javax.resource.spi.BootstrapContext;
import javax.resource.spi.ResourceAdapter;
import javax.resource.spi.endpoint.MessageEndpointFactory;
import javax.resource.spi.work.Work;
import javax.resource.spi.work.WorkException;
import javax.resource.spi.work.WorkManager;
import javax.transaction.xa.XAResource;
/**
* This Resource Adapter starts some work in the start() method,
* thus serving as a Java EE compliant "startup class"
*/
public class ResourceAdapterWorker implements ResourceAdapter
{
 private WorkManager wm;
 private MyWork someWork;
 public void start(BootstrapContext bsCtx)
 {
 System.out.println("ResourceAdapterWorker started");
 wm = bsCtx.getWorkManager();
 try
 {
 someWork = new MyWork();
 wm.startWork(someWork);
 }
 catch (WorkException ex)
 {
 System.err.println("Unable to start work: " + ex);
 }
 }
 public void stop()
 {
 // stop work that was started in the start() method
 someWork.release();
 System.out.println("ResourceAdapterImpl stopped");
 }
 public void endpointActivation(MessageEndpointFactory messageendpointfactory,
 ActivationSpec activationspec)
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 public void endpointDeactivation(MessageEndpointFactory
 messageendpointfactory, ActivationSpec activationspec)
 {
 }
 public XAResource[] getXAResources(ActivationSpec activationspec[])
 throws ResourceException
 {
 throw new NotSupportedException();
 }
 // Work class
 private class MyWork implements Work
 {
 private boolean isRunning;
 public void run()

Chapter 4
Programming a Resource Adapter to Perform as a Startup Class

4-5

 {
 isRunning = true;
 while (isRunning)
 {
 // do a unit of work (e.g. listen on a socket, wait for an inbound msg,
 // check the status of something)
 System.out.println("Doing some work");
 // perhaps wait some amount of time or for some event
 try
 {
 Thread.sleep(60000); // wait a minute
 }
 catch (InterruptedException ex)
 {}
 }
 }
 public void release()
 {
 // signal the run() loop to stop
 isRunning = false;
 }
 }
}

4.3.3 Retrying a Work Submission
There are instances in which the submission of a Work instance by a resource adapter
can experience a transient failure. For example, JSR 322: Java EE Connector
Architecture 1.6 describes how you can use the optional startTimeout parameter in a
WorkManager interface implementation to specify a time interval within which the
execution of the Work instance must start. If a Work submission times out, a work
submission failure occurs and a WorkRejectedException is generated.

JSR 322: Java EE Connector Architecture 1.6 states that the application server throws
out a RetryableWorkRejectedException when it determines that the failure of a Work
submission may due to transient causes. When it receives a
RetryableWorkRejectedException, the resource adapter may retry submitting the Work
instance. WebLogic Server supports the RetryableWorkRejectedException in the
following transient failure situations:

• The Work instance was submitted to a suspended Work Manager.

• The Work submission has timed out.

Note:

WebLogic Server extends retryable exception support to outbound connection
pools if a connection instance attempts to connect to a suspended connection
pool. For more information, see Retrying a Connection Attempt.

4.4 Suspending and Resuming Resource Adapter Activity
You can program your resource adapter to use the suspend() method, which provides
custom behavior for suspending activity. For example, using the suspend() method,
you can queue up all incoming messages while allowing in-flight transactions to

Chapter 4
Suspending and Resuming Resource Adapter Activity

4-6

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

complete, or you can notify the Enterprise Information System (EIS) that reception of
messages is temporarily blocked.
You then invoke the resume() method to signal that the inbound queue be drained and
messages be delivered, or notify the EIS that message receipt was re-enabled.
Basically, the resume() method allows the resource adapter to continue normal
operations.

You initiate the suspend() and resume() methods by making a call on the resource
adapter runtime MBeans programmatically, using WebLogic Scripting Tool, or from the
WebLogic Server Administration Console. See Start and stop a resource adapter in
the Oracle WebLogic Server Administration Console Online Help for more information.

The Suspendable.supportsSuspend() method determines whether a resource adapter
supports a particular type of suspension. The Suspendable.isSuspended() method
determines whether or not a resource adapter is presently suspended.

A resource adapter that supports suspend(), resume(), or production redeployment
must implement the Suspendable interface to inform WebLogic Server that these
operations are supported. These operations are invoked by WebLogic Server when
the following occurs:

• Suspend is called by the suspend() method on the connector component MBean.

• The production redeployment sequence of calls is invoked (when a new version of
the application is deployed that contains the resource adapter). See Suspendable
Interface and Production Redeployment.

Example 4-3 contains the Suspendable interface for resource adapters:

Example 4-3 Suspendable Interface

package weblogic.connector.extensions;
import java.util.Properties;
import javax.resource.ResourceException;
import javax.resource.spi.ResourceAdapter;
/**
* Suspendable may be implemented by a ResourceAdapter JavaBean if it
* supports suspend, resume or side-by-side versioning
* @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
* @since November 14, 2003
*/
public interface Suspendable
{
/**
* Used to indicate that inbound communication is to be suspended/resumed
*/
int INBOUND = 1;
/**
* Used to indicate that outbound communication is to be suspended/resumed
*/
int OUTBOUND = 2;
/**
* Used to indicate that submission of Work is to be suspended/resumed
*/
int WORK = 4;
/**
* Used to indicate that INBOUND, OUTBOUND & WORK are to be suspended/resumed
*/
int ALL = 7;
/**
* May be used to indicate a suspend() operation

Chapter 4
Suspending and Resuming Resource Adapter Activity

4-7

*/
int SUSPEND = 1;
/**
* May be used to indicate a resume() operation
*/
int RESUME = 2;
/**
* Request to suspend the activity specified. The properties may be null or
* specified according to RA-specific needs
* @param type An int from 1 to 7 specifying the type of suspension being
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of one
* or more of these, or the value Suspendable.ALL)
* @param props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes
* @exception ResourceException If the resource adapter can't complete the
* request
*/
void suspend(int type, Properties props) throws ResourceException;
/**
* Request to resume the activity specified. The Properties may be null or
* specified according to RA-specific needs
*
* @param type An int from 1 to 7 specifying the type of resume being
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)
* @param props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes
* @exception ResourceException If the resource adapter can't complete the
* request
*/
void resume(int type, Properties props) throws ResourceException;
/**
*
* @param type An int from 1 to 7 specifying the type of suspend this inquiry
* is about (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)
* @return true iff the specified type of suspend is supported
*/
boolean supportsSuspend(int type);
/**
*
* Used to determine whether the specified type of activity is
* currently suspended.
*
* @param type An int from 1 to 7 specifying the type of activity
* requested (i.e. Suspendable.INBOUND, .OUTBOUND, .WORK or the sum of
* one or more of these, or the value Suspendable.ALL)
* @return true iff the specified type of activity is suspened by this
* resource adapter
*/
boolean isSuspended(int type);
/**
* Used to determine if this resource adapter supports the init() method used for
* resource adapter versioning (side-by-side deployment)
*
* @return true iff this resource adapter supports the init() method
*/
boolean supportsInit();
/**
* Used to determine if this resource adapter supports the startVersioning()
* method used for

Chapter 4
Suspending and Resuming Resource Adapter Activity

4-8

* resource adapter versioning (side-by-side deployment)
*
* @return true iff this resource adapter supports the startVersioning() method
*/
boolean supportsVersioning();
/**
* Used by WLS to indicate to the current version of this resource adapter that
* a new version of the resource adapter is being deployed. This method can
* be used by the old RA to communicate with the new RA and migrate services
* from the old to the new.
* After being called, the ResourceAdapter is responsible for notifying the
* Connector container via the ExtendedBootstrapContext.complete() method, that
* it is safe to be undeployed.
*
* @param ra The new ResourceAdapter JavaBean
* @param props Properties associated with the versioning
* when it can be undeployed
* @exception ResourceException If something goes wrong
*/
void startVersioning(ResourceAdapter ra,
Properties props) throws ResourceException;
/**
* Used by WLS to inform a ResourceAdapter that it is a new version of an already
* deployed resource adapter. This method is called prior to start() so that
* the new resource adapter may coordinate its startup with the resource adapter
* it is replacing.
* @param ra The old version of the resource adapter that is currently running
* @param props Properties associated with the versioning operation
* @exception ResourceException If the init() fails.
*/
void init(ResourceAdapter ra, Properties props) throws ResourceException;
}

4.5 Extended BootstrapContext
WebLogic Server extends the Java EE Connector Architecture 1.6 specification by
providing the weblogic.connector.extensions.ExtendedBootstrapContext interface, which
your resource adapter can implement to obtain access to additional WebLogic Server-
specific diagnostics capabilities and that also support Contexts and Dependency
Injection (CDI).

If, when a resource adapter is deployed, it has a resource adapter JavaBean specified
in the resource-adapter-class element of its ra.xml descriptor, the WebLogic Server
connector container calls the start() method on the resource adapter bean as
required by JSR 322: Java EE Connector Architecture 1.6. The resource adapter code
can use the BootstrapContext object that is passed in by the start() method to:

• Obtain a WorkManager object for submitting Work instances

• Create a Timer

• Obtain an XATerminator for use in transaction inflow

These capabilities are all prescribed by Connector Architecture 1.6.

In addition to implementing the required javax.resource.spi.BootstrapContext, the
BootstrapContext object passed to the resource adapter start() method also
implements weblogic.connector.extensions.ExtendedBootstrapContext, which gives the
resource adapter access to some additional WebLogic Server-specific extensions that

Chapter 4
Extended BootstrapContext

4-9

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

enhance diagnostic capabilities and that also support Contexts and Dependency
Injection (CDI). These extensions are described in the following sections:

• Diagnostic Context ID

• Dye Bits

• Callback Capabilities

• Bean Validation

• BeanManager

4.5.1 Diagnostic Context ID
In the WebLogic Server Diagnostic Framework, a thread may have an associated
diagnostic context. A request on the thread carries its diagnostic context throughout its
lifetime, as it proceeds along its path of execution. The ExtendedBootstrapContext
allows the resource adapter developer to set a diagnostic context payload consisting
of a String that can be used, for example, to trace the execution of a request from an
EIS all the way to a message endpoint.

This capability can serve a variety of diagnostic purposes. For example, you can set
the String to the client ID or session ID on an inbound message from an EIS. During
message dispatch, various diagnostics can be gathered to show the request flow
through the system. As you develop your resource adapter classes, you can make use
of the setDiagnosticContextID() and getDiagnosticContextID() methods for this
purpose.

Note the following regarding the contents of the diagnostic context payload:

• The payload can be viewed by other code in the same execution context, and it
can also flow out of the process along with the Work instance. Therefore, you
should ensure that the application does not include any sensitive data in the
payload that, for example, could be returned by the getDiagnosticContextID()
method.

• The payload can be overwritten by other code in the same execution context.
Therefore, the application must never have a dependency on a specific context ID
being available in the payload. In addition, the application should also verify that
the context ID in the payload matches what is expected before using it.

For more information about the diagnostic context, see Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

4.5.2 Dye Bits
The WebLogic Server diagnostic framework also provides the ability to dye a request.
The ExtendedBootstrapContext allows you to set and retrieve four dye bits on the
current thread for whatever diagnostic purpose the resource adapter developer
chooses. For example, you might set priority of a request using the dye bits. For more
information about request dyeing, see Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server.

Chapter 4
Extended BootstrapContext

4-10

4.5.3 Callback Capabilities
You can use the ExtendedBootstrapContext.complete() method as a callback to the
connector container. See Redeploying Applications in a Production Environment in
Deploying Applications to Oracle WebLogic Server.

4.5.4 Bean Validation
In its support of JSR 303: Bean Validation, WebLogic Server extends Java EE 6 by
providing a module-level bean validation configuration file, which WebLogic Server
uses to validate the resource adapter module.

There are circumstances in which you might want a resource adapter to perform
validation on other bean instances that are managed by that resource adapter.
Because a resource adapter does not have its own JNDI namespace, it cannot look up
its own Validator and ValidatorFactory instances using JNDI. Instead, the resource
adapter can inject those beans using CDI, or use the following methods on the
ExtendedBootstrapContext interface to obtain instances of those beans:

• getValidator()

• getValidatorFactory()

4.5.5 BeanManager
To support JSR 299: Contexts and Dependency Injection for the Java EE Platform
(CDI), WebLogic Server implements the getBeanManager method on the
ExtendedBootstrapContext interface. A resource adapter can invoke this method to
obtain its own BeanManager instance and perform CDI-style injection of managed beans
inside the resource adapter.

Note:

Note the following restrictions:

• The use of a resource adapter's BeanManager instance by a separate, caller
thread is not supported.

• You cannot use a BeanManager instance to manage the life cycle of resource
adapter component beans.

For more information about using the getBeanManager method on the
ExtendedBootstrapContext interface to use CDI, see Using Contexts and Dependency
Injection in Resource Adapters.

4.6 Administered Object Uniqueness
Connector Architecture 1.6 allows a resource adapter to have multiple administered
object classes that implement the same interface. However, there must be no more
than one administered object definition with the same interface and class name
combination (see Section 20.4.1, Resource Adapter Provider in JSR 322: Java EE

Chapter 4
Administered Object Uniqueness

4-11

http://jcp.org/en/jsr/detail?id=303
http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Connector Architecture 1.6). The adminobject-type-uniqueness constraint has been
added to the schema definition for the ra.xml file to define the adminobject-interface
and adminobject-class combination.
In previous releases of WebLogic Server, the mapping of an admin object group
defined in weblogic-ra.xml to the corresponding admin object defined in ra.xml was
based on the admin object interface only. However, to support multiple admin object
classes that have the same interface, WebLogic Server includes the optional admin-
object-class sub-element of the admin-object-group element in weblogic-ra.xml. You
can use the admin-object-class sub-element to define an admin object interface and
class combination that WebLogic Server is able to map to the corresponding admin
object defined in ra.xml.

When mapping an admin object group, WebLogic Server uses the following rules,
which also ensure backward compatibility with 1.0 and 1.5 adapters:

• If the admin object group defined in weblogic-ra.xml includes both an admin object
interface and class, WebLogic Server attempts to match that interface and class to
the corresponding admin object definition in ra.xml.

• If the admin object group defined in weblogic-ra.xml includes only one admin
object interface, and more than one matching admin object interface is defined in
ra.xml, WebLogic Server generates an error.

• If the admin object group defined in weblogic-ra.xml includes only one admin
object interface, and only one matching admin object interface is defined in ra.xml,
that specific admin object interface is used.

Chapter 4
Administered Object Uniqueness

4-12

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

5
Using Contexts and Dependency Injection
in Resource Adapters

WebLogic Server provides full support for JSR 299: Contexts and Dependency
Injection for the Java EE Platform (CDI) in its implementation of Connector
Architecture 1.7.

• Overview

• Resource Adapter Bean Discovery

• Obtaining Contextual References to Resource Adapter Beans

• Invoking Resource Adapter Beans From Other Application Types

• Using Resource Adapters Deployed as CDI Bean Archives

• Using CDI with Resource Adapter Component Beans

5.1 Overview
The CDI specification defines a set of services for using injection to specify
dependencies in an application. CDI provides contextual life cycle management of
beans, type-safe injection points, a loosely coupled event framework, loosely coupled
interceptors and decorators, alternative implementations of beans, bean navigation
through the Unified Expression Language (EL), and a service provider interface (SPI)
that enables CDI extensions to support third-party frameworks or future Java EE
components.
CDI support in the WebLogic Server implementation of Connector Architecture 1.7 is
based on the following related specifications:

• JSR 299: Contexts and Dependency Injection for the Java EE Platform (http://
www.jcp.org/en/jsr/summary?id=299)

• JSR 330: Dependency Injection for Java (http://jcp.org/en/jsr/summary?id=330)

For additional general information about CDI, see:

• Using Contexts and Dependency Injection for the Java EE Platform in Developing
Applications for Oracle WebLogic Server

• Introduction to Contexts and Dependency Injection for the Java EE Platform in the
Java EE 6 Tutorial.

5.2 Resource Adapter Bean Discovery
A resource adapter RAR is a bean archive if it has a bean archive descriptor file,
beans.xml, in its META-INF directory. If a resource adapter RAR is a bean archive, then
all JARs must conform to the CDI 1.1 standard. See Using CDI With JCA Technology
in Developing Applications for Oracle WebLogic Server.

5-1

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=330
http://download.oracle.com/javaee/6/tutorial/doc/giwhb.html

When an application is deployed as a resource adapter RAR bean archive, the
WebLogic Server Connector container searches the following for beans and bean
references:

• The resource adapter RAR

• All classes packaged directly inside the resource adapter RAR

• Every bean archive referenced by the adapter RAR

5.3 Obtaining Contextual References to Resource Adapter
Beans

A resource adapter is different from a Web application or an EJB in that a resource
adapter does not have its own JNDI namespace. That is, a resource adapter module
does not have a java:comp, java:module, or java:app namespace. Therefore, it is not
possible to bind a named managed bean to a resource adapter's JNDI namespace,
and it is also not possible to perform a lookup (as specified in the Java EE 6 Managed
Beans Specification) from a resource adapter's JNDI namespace or to use the Java
EE 6 @Resource annotation to inject a predefined bean.
However, WebLogic Server provides the ExtendedBootstrapContext.getBeanManager()
method. A resource adapter can invoke the getBeanManager method to expose the
BeanManager instance of its adapter module.

5.4 Invoking Resource Adapter Beans From Other
Application Types

The WebLogic Server Connector container does not support injecting CDI bean
classes contained in a resource adapter RAR bean archive into other Web
applications or EJBs. WebLogic Server support is limited to permitting CDI beans
within an adapter RAR bean archive to be used or invoked by other caller Web
applications or EJBs, provided that those CDI beans are not client proxies.

5.5 Using Resource Adapters Deployed as CDI Bean
Archives

If the resource adapter is deployed as a CDI bean archive, the WebLogic Server
Connector container provides support for several CDI features within the resource
adapter itself. This support includes:

• The ability to discover managed beans, decorators, interceptors, events, and so
on, that are inside the deployed resource adapter

• Support for third-party portable extensions, as defined in Portable Extensions of
Chapter 11 in JSR 299: Contexts and Dependency Injection for the Java EE
Platform

• Support for the CDI features that are exposed by the BeanManager

• Support for bean instantiation, injection, decorators, interceptors, events, and so
on, for managed beans inside the resource adapter

Note the following:

Chapter 5
Obtaining Contextual References to Resource Adapter Beans

5-2

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299

• A resource adapter's BeanManager instance is exposed by the getBeanManager
method on the ExtendedBootstrapContext object.

• WebLogic Server supports the use of an adapter's BeanManager only in the
adapter's own thread. An adapter's BeanManager cannot be used in another
application's thread.

• The WebLogic Server Connector container supports the injection of built-in
BeanManager bean types that are inside the resource adapter module; for example,
injecting into the ResourceAdapter bean.

• The use of the Resource injection annotation on a resource adapter's managed
beans is not supported.

5.5.1 BeanManager Support
A resource adapter's BeanManager can be used in either of the following situations:

• During the adapter deployment process, such as when the ResourceAdapter.start
method is invoked

• Inside the Work.run method, which is scheduled by the resource adapter's
WorkManager instance

The WebLogic Server Connector container supports the injection of built-in
BeanManager bean types in the resource adapter module. However, the use of a
resource adapter's BeanManager instance by a caller thread is not supported.

5.5.2 Injection Points
The WebLogic Server Connector container supports injection points for the following
beans within a resource adapter deployed as a CDI bean archive:

• The following built-in beans, which JSR 299: Contexts and Dependency Injection
for the Java EE Platform requires to be provided in a Java EE container:

– UserTransaction — Provided by WebLogic JTA.

– Principal — The caller principal set by the WebLogic Server Connector
container. Its value is the current principal on the thread at the time this
instance is used, not when it was injected.

– ValidationFactory — The ValidationFactory instance of the resource adapter
module itself and that is also accessible from the
ExtendedBootstrapContext.getValidatorFactory method.

– Validator — The Validator instance of the resource adapter module itself and
that is also accessible from the ExtendedBootstrapContext.getValidator
method.

• The BeanManager instance, as defined in Section 11.3 of JSR 299: Contexts and
Dependency Injection for the Java EE Platform, of the resource adapter module
itself that is accessible from the ExtendedBootstrapContext.getBeanManager method.

• Any managed bean that conforms to JSR 299: Contexts and Dependency Injection
for the Java EE Platform and the Java EE 6 Managed Beans Specification, which
is a part of JSR 316: Java Platform, Enterprise Edition 6 (Java EE 6) Specification.

• Any special Connector Architecture 1.6 built-in beans of the following types that
are part of the current resource adapter module:

Chapter 5
Using Resource Adapters Deployed as CDI Bean Archives

5-3

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=316

– javax.resource.spi.ResourceAdapter allowing injection of a reference to the
current resource adapter bean, which always refers to either: the
ResourceAdapter bean instance of the current adapter module; or null if no
ResourceAdapter bean is defined for the current resource adapter module.

– javax.resource.spi.BootstrapContext or
weblogic.connector.extensions.ExtendedBootstrapContext allowing injection of
a reference to either: the current resource adapter's BootstrapContext bean
instance; or null if no ResourceAdapter bean is defined for the current resource
adapter module. This bean type is also available from a parameter in an
invocation of the ResourceAdapter.start(BootstrapContext ctx) method.

– javax.resource.spi.work.WorkManager allowing injection of a reference to either:
the current resource adapter's WorkManager instance, which is available also
from the BootstrapContext.getWorkManager() method; or null if no
ResourceAdapter bean is defined for the current resource adapter module.

– javax.resource.spi.XATerminator allowing injection of a reference to either: the
current resource adapter's XATerminator instance, which is also available from
the BootstrapContext.getXATerminator method; or null if no ResourceAdapter
bean is defined for the current resource adapter module.

– javax.transaction.TransactionSynchronizationRegistry allowing injection of a
reference to the JTA TransactionSynchronizationRegistry instance, which is
also available also from the
BootstrapContext.getTransactionSynchronizationRegistry method.

5.6 Using CDI with Resource Adapter Component Beans
WebLogic Server supports four types of beans called resource adapter component
beans, which define special components managed by the WebLogic Server
Connector container. Resource adapter component beans are POJOs (Plain Old Java
Objects), but are created and managed by the resource adapter container and have a
special life cycle.

The adapter component bean types are:

• ResourceAdapter bean — Resource adapter class that implements
javax.resource.spi.ResourceAdapter interface, which contains operations for life
cycle management and message endpoint setup.

• ManagedConnectionFactory bean — JavaBean class that implements the
javax.resource.spi.ManagedConnectionFactory interface and is a factory of both
ManagedConnection and EIS-specific connection factory instances. This interface
supports connection pooling by providing methods for matching and creation of a
ManagedConnection instance.

• ActivationSpec bean — JavaBean class that implements the
javax.resource.spi.ActivationSpec interface and that holds the activation
configuration information for a message endpoint.

• Administered objects, or admin objects — Optional set of JavaBean classes that
represent objects specific to a messaging style or message provider.

The following metadata annotations may be used within resource adapter component
beans:

• @Connector

Chapter 5
Using CDI with Resource Adapter Component Beans

5-4

• @Activation

• @ConnectionDefinition

• @ConnectionDefinitions

• @AdministeredObject

Note:

The preceding annotations are new in Connector Architecture 1.6 and are
recommended for use instead of the corresponding ra.xml elements.

The following sections include important information about the programming
requirements for resource adapter component beans:

• Resource Adapter Component Beans Must Not Be Managed Beans

• Using Dependency Injection

For information about setting dynamically configurable properties on resource adapter
component beans, see Dynamic Reconfigurable Configuration Properties.

5.6.1 Resource Adapter Component Beans Must Not Be Managed
Beans

Resource adapter component beans must not be managed beans. However, the
WebLogic Server Connector container does support CDI injection of managed beans,
as defined in JSR 299: Contexts and Dependency Injection for the Java EE Platform,
into a resource adapter component bean. WebLogic Server also supports the
PostConstruct and PreDestroy annotations in adapter component beans as well.

Note:

Note the following:

• The WebLogic Server Connector container does not support managed
beans that conform to the Java EE 6 Managed Beans Specification, which
is a part of JSR 316: Java Platform, Enterprise Edition 6 (Java EE 6)
Specification.

• For information about designing a managed bean that meets the conditions
required by JSR 299, see About Managed Beans in The Java EE 6
Tutorial.

To ensure that a resource adapter component bean is not treated as a managed bean,
WebLogic Server will fail to deploy the adapter if any of the following class-level
annotations are used within an adapter component bean:

• The javax.annotation.ManagedBean annotation

• Any scope annotation

• Any qualifier annotation

Chapter 5
Using CDI with Resource Adapter Component Beans

5-5

http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=316
http://docs.oracle.com/javaee/6/tutorial/doc/gjfzi.html
http://docs.oracle.com/javaee/6/api/javax/annotation/ManagedBean.html

• Any stereotype annotation

• javax.inject.Named annotation

• javax.enterprise.inject.Alternative annotation

• javax.enterprise.inject.Specializes annotation

• javax.enterprise.inject.Typed annotation

• javax.decorator.Decorator annotation

• javax.decorator.Delegate annotation

5.6.2 Using Dependency Injection
In a resource adapter that is deployed as a CDI bean archive, the WebLogic Server
Connector container supports CDI for adapter component beans once they are
created and initialized.

To support Dependency Injection for resource adapter component beans, consistent
with Section EE.5.20, Support for Dependency Injection (JSR-330) in the Java
Platform, Enterprise Edition (Java EE) Specification, Version 6, the WebLogic
Connector container does the following when initializing these beans:

1. Initializes the resource adapter component bean configuration properties using
values in deployment descriptors.

2. Uses the PostConstruct annotation after dependency injection is done to perform
any initialization.

3. Performs bean validation, consistent with JSR 303: Bean Validation, and for an
ActivationSpec bean, invokes the validate() method.

4. For a ResourceAdapter bean, invokes the start() method.

5. Makes all resource adapter component beans available either by binding them to
JNDI or exposing them to endpoint applications.

5.6.2.1 Notes on Injection Usage
Resource adapter component beans cannot be injected into other beans outside of the
resource adapter module because they are not standard managed beans. That is, they
are not visible outside the resource adapter module in a way that is consistent with
JSR 299: Contexts and Dependency Injection for the Java EE Platform. You can
design adapter component beans to support injection, but it is important to ensure that
they are not treated like managed beans because the notion of request scope or
session scope is meaningless in resource adapter component beans.

Injection is supported as follows:

• Field and method injection, but not constructor injection, is supported using the
javax.inject.Inject annotation.

• Injected Fields, as defined in Section 3.8 of JSR 299: Contexts and Dependency
Injection for the Java EE Platform, is supported.

• All injection points listed in Injection Points, are supported, such as
weblogic.transaction.UserTransaction or javax.resource.spi.BootstrapContext.

• The PostConstruct and PreDestroy injection annotations are supported as follows:

Chapter 5
Using CDI with Resource Adapter Component Beans

5-6

http://docs.oracle.com/javaee/6/api/javax/inject/Named.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Alternative.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Specializes.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Typed.html
http://docs.oracle.com/javaee/6/api/javax/decorator/Decorator.html
http://docs.oracle.com/javaee/6/api/javax/decorator/Delegate.html
http://download.oracle.com/otndocs/jcp/javaee-6.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/javaee-6.0-fr-eval-oth-JSpec/
http://jcp.org/en/jsr/detail?id=303
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/javax/resource/spi/BootstrapContext.html

– For ResourceAdapter bean types, the @PostConstruct method is called after
the configuration properties are initialized but before the start() method is
called. In addition, the @PreDestroy method is after the stop() method.

– For other bean types, the @PostConstruct method is called after the
configuration properties are initialized but before the bean is bound to JNDI. In
addition, the @PreDestroy method is called when the resource adapter is
undeployed or when the server is shut down.

– For all beans, WebLogic Server performs bean validation consistent with its
support for JSR 303: Bean Validation and also call the validate() method, if
applicable, after calling the @PostConstruct method.

• Events, as defined in Chapter 10, Events, in JSR 299: Contexts and Dependency
Injection for the Java EE Platform, are supported.

• In releases prior to WebLogic Server 12.2.1, the annotation "@Inject Validator v"
injects only the default validator, even if you specify a customized validator as per
the specification in CDI 1.0. However, since 12.2.1 release of WebLogic Server,
the annotation "@Inject Validator v" injects even the customized validator as per
the specification in CDI 1.1.

The Resource injection annotation is not supported in a resource adapter module.

5.6.2.2 Example
The following example shows that during resource adapter deployment, WebLogic
Server first instantiates a MyResourceAdapter instance consistent with CDI.
MyResourceAdapter is the ResourceAdapter component bean of the resource adapter
module shown in this example because it is annotated with the Connector annotation.
During deployment, WebLogic Server also:

• Instantiates MyBean and injects it into the MyResourceAdapter instance using the
javax.inject.Inject annotation.

• Injects the Validator instance of this adapter module into the MyResourceAdapter
instance.

• Injects the WorkManager and UserTransaction instances of this adapter module into
MyBean.

@Connector
public class MyResourceAdapter implements ResourceAdapter{
 private @Inject MyBean bean;
private @Validator v;

public void start(BootstrapContext ctx){
 v.validate(this, AnotherGroup.class);
 bean.do();
 .
 .
 .
}
 .
 .
 .
}

public class MyBean{
 private String name;
private @WorkManager wm;

Chapter 5
Using CDI with Resource Adapter Component Beans

5-7

http://jcp.org/en/jsr/detail?id=303
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html

private @UserTransaction ut;

public String getName(){
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void do(){
 Work w = …
 wm.scheduleWork(w);
 }
}

Chapter 5
Using CDI with Resource Adapter Component Beans

5-8

6
Connection Management

WebLogic Server supports connection management in accordance with Connector
Architecture 1.6 and includes support for the connection management contract, a
standard model for configuring outbound and inbound connections and connection
pooling, support for testing connections, and more.

• Connection Management Contract

• Configuring Outbound Connections

• Configuring Inbound Connections

• Configuring Connection Pool Parameters

• Connection Proxy Wrapper - 1.0 Resource Adapters

• Reset a Connection Pool

• Testing Connections

For more information about the connection management contract, see Chapter 6,
Connection Management, of JSR 322: Java EE Connector Architecture 1.6.

6.1 Connection Management Contract
The connection management contract is a requirement of Connector Architecture 1.6
and specifies a consistent model for connection management, a set of services that
must be provided by the application server to its resource adapters, and more.

The connection management contract between WebLogic Server and a resource
adapter:

• Provides a consistent application programming model for connection acquisition
for both managed and non-managed (two-tier) applications.

• Enables a resource adapter to provide a connection factory and connection
interfaces based on the common client interface (CCI) specific to the type of
resource adapter and EIS. This enables JDBC drivers to be aligned with the Java
EE Connector Architecture 1.6 with minimum impact on the existing JDBC APIs.

• Enables an application server to provide various services — transactions, security,
advanced pooling, error tracing/logging — for its configured set of resource
adapters.

• Supports connection pooling.

The resource adapter's side of the connection management contract is embodied in
the resource adapter's Connection, ConnectionFactory, ManagedConnection, and
ManagedConnectionFactory classes.

6.1.1 Connection Factory and Connection
A Java EE application component uses a public interface called a connection factory
to access a connection instance, which the component then uses to connect to the

6-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

underlying EIS. Examples of connections include database connections and JMS
(Java Message Service) connections.

A resource adapter provides connection and connection factory interfaces, acting as a
connection factory for EIS connections. For example, the javax.sql.DataSource and
java.sql.Connection interfaces are JDBC-based interfaces for connecting to a
relational database.

An application looks up a connection factory instance in the Java Naming and
Directory Interface (JNDI) namespace and uses it to obtain EIS connections. See
Obtaining the ConnectionFactory (Client-JNDI Interaction).

6.1.2 Resource Adapters Bound in JNDI Tree
Version 1.5 and 1.6 resource adapters can be bound in the JNDI tree as independent
objects, making them available as system resources in their own right or as message
sources for message-driven beans (MDBs). In contrast, version 1.0 resource adapters
are identified by their ConnectionFactory objects bound in the JNDI tree.

In a version 1.5 or 1.6 resource adapter, at deployment time, the ResourceAdapter Bean
(if it exists) is bound into the JNDI tree using the value of the jndi-name element,
shown in the weblogic-ra.xml file. As a result, administrators can view resource
adapters as single deployable entities, and they can interact with resource adapter
capabilities publicly exposed by the resource adapter provider. For more information,
see jndi-name in weblogic-ra.xml Schema.

6.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction)
The application assembler or component provider configures the Connection Factory
requirements for an application component in the application's deployment descriptor.
For example:

res-ref-name: eis/myEIS
res-type: javax.resource.cci.ConnectionFactory
res-auth: Application or Container

The resource adapter deployer provides the configuration information for the resource
adapter.

An application looks up a ConnectionFactory instance in the Java Naming and Directory
Interface (JNDI) namespace and uses it to obtain EIS connections. The following
events occur when an application in a managed environment obtains a connection to
an EIS instance from a Connection Factory, as specified in the res-type variable.

Note:

A managed application environment defines an operational environment for a
Java EE-based, multi-tier, Web-enabled application that accesses EISes.

1. The application server uses a configured resource adapter to create physical
connections to the underlying EIS.

2. The application component looks up a ConnectionFactory instance in the
component's environment by using the JNDI interface, as shown in Example 6-1.

Chapter 6
Connection Management Contract

6-2

3. The application component uses the returned connection to access the underlying
EIS.

4. The application component invokes the getConnection method on the
ConnectionFactory to obtain an EIS connection. The returned connection instance
represents an application level handle to an underlying physical connection. An
application component obtains multiple connections by calling the method
getConnection on the connection factory multiple times:

javax.resource.cci.Connection cx = cxf.getConnection();

5. After the component finishes with the connection, it closes the connection using
the close method on the Connection interface:

cx.close();

If an application component fails to close an allocated connection after its use, that
connection is considered an unused connection. The application server manages
the cleanup of unused connections.

Example 6-1 JNDI Lookup

//obtain the initial JNDI Naming context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory
javax.resource.cci.ConnectionFactory cxf =
 (javax.resource.cci.ConnectionFactory)
 initctx.lookup("java:comp/env/eis/MyEIS");

The JNDI name passed in the method NamingContext.lookup is the same as that
specified in the res-ref-name element of the deployment descriptor. The JNDI lookup
results in an instance of type java.resource.cci.ConnectionFactory as specified in the
res-type element.

6.1.4 Specifying and Obtaining Transaction Support Level
Section 7.13 of JSR 322: Java EE Connector Architecture 1.6 specifies that a resource
adapter may determine and classify the level of transaction support it can provide at
run time. To have the ability to specify the level of transaction support, a resource
adapter's ManagedConnectionFactory class must implement the TransactionSupport
interface. If this interface is not implemented, the Connector container uses the
transaction support specified in the merged result of the resource adapter's ra.xml file
and Connector annotations.

JSR 322: Java EE Connector Architecture 1.6 also defines the rules and priorities on
the transaction support level determined from the ra.xml file, Connector annotation, and
the TransactionSupport interface.

WebLogic Server supplements support for obtaining transaction support level by
exposing the following two methods on the ConnectorConnectionPoolRuntimeMBean:

• ConnectorConnectionPoolRuntimeMBean.getRuntimeTransactionSupport() — Return
the real transaction support level in use for this Connector connection pool.

This value may also be viewed in the WebLogic Server Administration Console in
the Resource Adapter: Monitoring: Outbound Connection Pools page.

• ConnectorConnectionPoolRuntimeMBean.getTransactionSupport() — Returns the
static transaction support level, which is configured either in ra.xml or using the

Chapter 6
Connection Management Contract

6-3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

@Connector annotation, for the resource adapter for this Connector connection
pool.

6.1.5 Specifying an Unshareable ManagedConnectionFactory
In most cases, an adapter's ManagedConnectionFactory supports connection sharing, as
defined in section 7.9 of JSR 322: Java EE Connector Architecture 1.6. The
specification also says that a connection can be made unshareable by setting res-
sharing-scope to Unshareable in the caller application's deployment descriptor or
annotation.

However, it can be inconvenient to define an unshareable resource reference in the
caller application. For example, the caller application may perform a look up to a
ConnectionFactory pool from WebLogic's global JNDI directly, but the application does
not define unshareable resource references to this pool. WebLogic Server treats such
use of the pools as shareable by default. As a result, if an adapter does not support
connection sharing, the adapter will not work.

To circumvent this problem, WebLogic Server supports the public annotation
weblogic.connector.extensions.Unshareable. This annotation can be used on a
ManagedConnectionFactory class if the ManagedConnectionFactory does not support
sharing. When such an adapter is deployed, WebLogic Server checks the
ManagedConnectionFactory class and treats the ManagedConnectionFactory and related
pools as unshareable. If you configure a sharable resource reference to this
unshareable pool in a Web application or an Enterprise Java Bean, WebLogic Server
issues a warning message—but the Web application or the EJB nevertheless treats
the pool as unshareable. There is no need to configure anything in weblogic-ra.xml or
in the WebLogic Server Administration Console.

If a ManagedConnectionFactory is shareable, nothing needs to be changed in the
adapter's code. All ManagedConnectionFactory instances and pools are considered
shareable by default, unless the ManagedConnectionFactory contains an Unshareable
annotation.

6.2 Configuring Outbound Connections
Outbound resource adapters based on Connector Architecture 1.6 can be configured
to have one or more outbound connections, each having its own WebLogic Server-
specific authentication and transaction support. You configure outbound connection
properties in the ra.xml and weblogic-ra.xml deployment descriptor files.

6.2.1 Connection Pool Configuration Levels
You use the outbound-resource-adapter element and its subelements in the weblogic-
ra.xml deployment descriptor to describe the outbound components of a resource
adapter.

You can define outbound connection pools at three levels:

• Global - Specify parameters that apply to all outbound connection groups in the
resource adapter using the default-connection-properties element. See default-
connection-properties.

• Group - Specify parameters that apply to all outbound connection instances
belonging to a particular connection factory specified in the ra.xml deployment

Chapter 6
Configuring Outbound Connections

6-4

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

descriptor using the connection-definition-group element. A one-to-one
correspondence exists from a connection factory in ra.xml to a connection
definition group in weblogic-ra.xml. The properties specified in a group override
any parameters specified at the global level. See connection-definition-group.

The connection-factory-interface element (a subelement of the connection-
definition-group element) serves as a required unique element (a key) to each
connection-definition-group. There must be a one-to-one relationship between
the connection-definition-interface element in weblogic-ra.xml and the
connectiondefinition-interface element in ra.xml.

• Instance - Under each connection definition group, you can specify connection
instances using the connection-instance element of the weblogic-ra.xml
deployment descriptor. These correspond to the individual connection pools for the
resource adapter. You can use the connection-properties subelement to specify
properties at the instance level too; properties specified at the instance level
override those provided at the group and global levels. See connection-instance.

6.2.2 Retrying a Connection Attempt
If an application component attempts to obtain a connection instance from a
connection pool using the getConnection() method on the ConnectionFactory, but the
pool is temporarily suspended, WebLogic Server generates an exception that
implements javax.resource.spi.RetryableException. The application component can
use an instance of RetryableException to determine whether the connection failure is
transient.

6.2.3 Isolating, Troubleshooting, and Fixing Outbound Connection
Pool Failures Without Redeploying the Adapter

By default, if a resource adapter has multiple outbound connection pools, a failure in
any one connection pool causes the entire deployment of the resource adapter to fail.
However, the deploy-as-a-whole deployment option is available, which you can set to
isolate individual outbound connection pool failures from the resource adapter
deployment. Using this deployment option enables you to use the adapter health
monitoring feature to identify connection pool failures, which you can troubleshoot and
repair without the need to redeploy the resource adapter.

For general information about the resource adapter health monitoring features, see
Monitoring Resource Adapter Health. For information about setting the deploy-as-a-
whole element in the weblogic-ra.xml file, see the following topics:

• deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole
Adapter Deployment

• Deploying a Resource Adapter Configured with Multiple Outbound Connection
Pools

The following sections explain how to use the deploy-as-a-whole deployment option
and how to diagnose and recover from outbound connection pool failures:

6.2.3.1 Using the Deploy-As-A-Whole Option
To deploy a resource adapter so that the failure of an individual outbound connection
pool does not cause the whole adapter deployment to fail, set the deploy-as-whole
element of the weblogic-ra.xml file to false (by default, this element is set to true). For

Chapter 6
Configuring Outbound Connections

6-5

details about setting this deployment option, see Deploying a Resource Adapter
Configured with Multiple Outbound Connection Pools .

If the deploy-as-a-whole option is set to false, note the following:

• If there is no error during deployment, the resource adapter deployment succeeds
and is placed in an active state, with a health state of HEALTH_OK.

• If an error occurs when creating or configuring at least one outbound connection
pool, the health state of the adapter deployment is set to HEALTH_CRITICAL.

• If any other failure occurs, such as the following, the adapter deployment fails:

– An error parsing or validating the ra.xml file, the weblogic-ra.xml file, or the
deployment plan.

– An error occurs when creating or configuring the ResourceAdapter or admin
object beans.

– Any pool-related classes failing to meet basic requirements defined by JSR
322: Java EE Connector Architecture 1.6 that can be detected statically; for
example, the adapter's ManagedConnectionFactory class not implementing the
required standard interface javax.resource.spi.ManagedConnectionFactory.

6.2.3.2 Troubleshooting Failed Connection Pools
If a connection pool is in a HEALTH_CRITICAL state, invoking most methods on the
ConnectorConnectionPoolRuntimeMBean, such as testPool, may simply throw an
IllegalStateException. You can invoke only the following methods, which provide
static information and are not affected by connection pool failures:

• getKey()

• getPoolName()

• getState() (always returns Shutdown for failed pools)

• getHealthState()

• getManagedConnectionFactoryClassName()

• getMCFClassName() (same as getManagedConnectionFactoryClassName())

• getConnectionFactoryClassName() (returns the ConnectionFactoryName of the
connection pool)

• reset()

• forceReset()

Note the following:

• A resource adapter module's health state may change from HEALTH_OK to
HEALTH_CRITICAL after one of the following actions:

– Performing a dynamic update.

– Performing either a reset or force reset of outbound connection pools

– Stopping then restarting the resource adapter

– Redeploying the adapter

• If a connection pool is in the HEALTH_CRITICAL state, the suspend and resume
actions on the pool have no effect.

Chapter 6
Configuring Outbound Connections

6-6

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

6.2.3.3 Connection Pool Recovery Steps
Once a connection pool has failed and is in the HEALTH_CRITICAL state, check the
failure reason and correct the error. For example, ensure that updated values for the
pool's properties are valid and properly assigned.

For most failures that are caused by an incorrect configuration, Oracle recommends
taking the following steps:

1. Modify the configuration of each failed pool, if necessary.

2. Save the new configuration to the adapter's deployment plan.

3. Using the updated adapter's deployment plan, perform a dynamic update of the
resource adapter.

The preceding steps can recover failed pools without affecting properly functioning and
in-use connection pools. During the dynamic update process, all failed connection
pools are recreated using the new configuration data, regardless of whether the
configuration changes for the pools have been made in the new deployment plan or
whether the configuration changes are dynamically updatable. For existing connection
pools that are functioning properly, non-dynamic configuration changes are ignored.
However, for failed connection pools, the configuration updates go into effect from the
dynamic update process.

6.2.3.4 Other Options for Recovering Failed Connection Pools
As an alternative to performing a dynamic update to recover a failed connection pool,
you can try one of the following methods. If the failure is due to causes other than an
invalid pool configuration, one of these method might be appropriate:

• Reset or force reset the failed connection pool, as described in Reset a
Connection Pool.. Depending on the reason for the failure, these actions may or
may not recover the failed pool. However, because no connections with failed
pools are active, reset and force reset have the same effect. Note the following:

– If the pool failure is not caused by an invalid configuration, the pool can
potentially be recovered by resetting it, which uses the existing configuration
data. For example, if the failure is due to a JNDI conflict, the pool can be
recovered if the conflicting object from JNDI tree is removed. Resetting the
connection pool would be recommended in this scenario.

– If the connection pool has failed due to an invalid configuration, resetting the
connection pool is not recommended. Resetting uses the existing deployment
plan, or existing deployment descriptor information, which contain the invalid
configuration data.

• Redeploy the adapter. Note that this action affects all outbound connection pools
in the resource adapter, including any that are functioning properly

• Stop and then restart the resource adapter. This action also affects all outbound
connection pools in the adapter. This method has drawbacks similar to performing
a reset or force reset action because it also uses the pre-existing configuration
data without first performing a dynamic update. In addition, configuration data that
has been revised that is not made available by dynamic update is not used. For
this reason, stopping and then restarting the resource adapter is not a
recommended option for recovering failed connection pools in most cases.

Chapter 6
Configuring Outbound Connections

6-7

6.2.4 Multiple Outbound Connections Example
Example 6-2 is an example of a weblogic-ra.xml deployment descriptor that configures
multiple outbound connections:

Example 6-2 weblogic-ra.xml Deployment Descriptor: Multiple Outbound
Connections

<?xml version="1.0" ?>
<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
<jndi-name>900eisaNameOfBlackBoxXATx</jndi-name>
 <outbound-resource-adapter>
 <connection-definition-group>
 <connection-factory-interface>javax.sql.DataSource
 </connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME1
 </jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60</shrink-frequency-seconds>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>
 jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false
 </value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPool</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 <connection-instance>
 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME2
 </jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60
 </shrink-frequency-seconds>

Chapter 6
Configuring Outbound Connections

6-8

 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>
 jdbc:oracle:thin:@bcpdb:1531:bay920;create=true;autocommit=false
 </value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPool</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 <connection-definition-group>
 <connection-factory-interface>javax.sql.DataSourceCopy
 </connection-factory-interface>
 <connection-instance>
 <jndi-name>eis/900eisaBlackBoxXATxConnectorJNDINAME3</jndi-name>
 <connection-properties>
 <pool-params>
 <initial-capacity>2</initial-capacity>
 <max-capacity>10</max-capacity>
 <capacity-increment>1</capacity-increment>
 <shrinking-enabled>true</shrinking-enabled>
 <shrink-frequency-seconds>60</shrink-frequency-seconds>
 </pool-params>
 <properties>
 <property>
 <name>ConnectionURL</name>
 <value>jdbc:oracle:thin:@bcpdb:
1531:bay920;create=true;autocommit=false</value>
 </property>
 <property>
 <name>XADataSourceName</name>
 <value>OracleXAPoolB</value>
 </property>
 <property>
 <name>TestClassPath</name>
 <value>HelloFromsetTestClassPathGoodDay</value>
 </property>
 <property>
 <name>unique_ra_id</name>
 <value>eisablackbox-xa-two.oracle.900</value>
 </property>
 </properties>
 </connection-properties>
 </connection-instance>
 </connection-definition-group>
 </outbound-resource-adapter>
</weblogic-connector>

Chapter 6
Configuring Outbound Connections

6-9

6.3 Configuring Inbound Connections
The Java EE Connector Architecture 1.7 permits you to configure a resource adapter
to support inbound message connections.

The following are the main steps for configuring an inbound connection:

1. Provide a JNDI name for the resource adapter in the weblogic-ra.xml deployment
descriptor. See jndi-name in Table A-1

2. Configure a message listener and ActivationSpec for each supported inbound
message type in the ra.xml deployment descriptor. For information about
requirements for an ActivationSpec class, see Chapter 13, Message Inflow in JSR
322: Java EE Connector Architecture 1.6.

3. Within the packaged enterprise application, include a configured EJB message-
driven bean (MDB). In the resource-adapter-jndi-name element of the weblogic-
ejb-jar.xml deployment descriptor, provide the same JNDI name assigned to the
resource adapter in the previous step. Setting this value enables the MDB and
resource adapter to communicate with each other.

4. Configure the security identity to be used by the resource adapter for inbound
connections. When messages are received by the resource adapter, work must be
performed under a particular security identity. See Configuring Security Identities
for Resource Adapters.

5. Deploy the resource adapter as discussed in Deploying Applications to Oracle
WebLogic Server.

6. Deploy the MDB. See Deploying MDBs in Developing Message-Driven Beans for
Oracle WebLogic Server and Deploying Applications to Oracle WebLogic Server.

Example 6-3 Example of Configuring an Inbound Connection

<inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type>
 weblogic.qa.tests.connector.adapters.flex.InboundMsgListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 weblogic.qa.tests.connector.adapters.flex.ActivationSpecImpl
 </activationspec-class>
 </activationspec>
 </messagelistener>
 <messagelistener>
 <messagelistener-type>
 weblogic.qa.tests.connector.adapters.flex.ServiceRequestMsgListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 weblogic.qa.tests.connector.adapters.flex.ServiceRequestActivationSpec
 </activationspec-class>
 </activationspec>
 </messagelistener>
 </messageadapter>
</inbound-resourceadapter>

Chapter 6
Configuring Inbound Connections

6-10

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Example 6-3 shows how an inbound connection with two message listener/activation
specs could be configured in the ra.xml deployment descriptor:

6.4 Configuring Connection Pool Parameters
You configure WebLogic Server resource adapter connection pool parameters in the
weblogic-ra.xml deployment descriptor.

6.4.1 initial-capacity: Setting the Initial Number of
ManagedConnections

Depending on the complexity of the Enterprise Information System (EIS) that the
ManagedConnection is representing, creating ManagedConnections can be expensive. You
may decide to populate the connection pool with an initial number of
ManagedConnections upon startup of WebLogic Server and therefore avoid creating
them at run time. You can configure this setting using the initial-capacity element in
the weblogic-ra.xml descriptor file. The default value for this element is 1
ManagedConnection.

Because no initiating security principal or request context information is known at
WebLogic Server startup, a server instance creates initial connections using a security
subject by looking up special credential mappings for the initial connection. See Initial
Connection: Requires a ManagedConnection from Adapter Without Application's
Request .

Note:

WebLogic Server uses null as Subject if a mapping is not found.

6.4.2 max-capacity: Setting the Maximum Number of
ManagedConnections

As more ManagedConnections are created, they consume more system resources - such
as memory and disk space. Depending on the Enterprise Information System (EIS),
this consumption may affect the performance of the overall system. To control the
effects of ManagedConnections on system resources, you can specify a maximum
number of allocated ManagedConnections in the max-capacity element of the weblogic-
ra.xml descriptor file.

If a new ManagedConnection (or more than one ManagedConnection in the case of
capacity-increment being greater than one) needs to be created during a connection
request, WebLogic Server ensures that no more than the maximum number of allowed
ManagedConnections are created. Requests for newly allocated ManagedConnections
beyond this limit results in a ResourceAllocationException being returned to the caller.

Chapter 6
Configuring Connection Pool Parameters

6-11

6.4.3 capacity-increment: Controlling the Number of
ManagedConnections

In compliance with Connector Architecture 1.6, when an application component
requests a connection to an EIS through the resource adapter, WebLogic Server first
tries to match the type of connection being requested with an existing and available
ManagedConnection in the connection pool. However, if a match is not found, a new
ManagedConnection may be created to satisfy the connection request.

Using the capacity-increment element in the weblogic-ra.xml descriptor file, you can
specify a number of additional ManagedConnections to be created automatically when a
match is not found. This feature provides give you the flexibility to control connection
pool growth over time and the performance hit on the server each time this growth
occurs.

6.4.4 shrinking-enabled: Controlling System Resource Usage
Although setting the maximum number of ManagedConnections prevents the server from
becoming overloaded by more allocated ManagedConnections than it can handle, it does
not control the efficient amount of system resources needed at any given time.
WebLogic Server provides a service that monitors the activity of ManagedConnections in
the connection pool of a resource adapter. If the usage decreases and remains at this
level over a period of time, the size of the connection pool is reduced to the initial
capacity or as close to this as possible to adequately satisfy ongoing connection
requests.

This system resource usage service is turned on by default. However, to turn off this
service, you can set the shrinking-enabled element in the weblogic-ra.xml descriptor
file to false.

6.4.5 shrink-frequency-seconds: Setting the Wait Time Between
Attempts to Reclaim Unused ManagedConnections

Use the shrink-frequency-seconds element in the weblogic-ra.xml descriptor file to
identify the amount of time (in seconds) the Connection Pool Manager will wait
between attempts to reclaim unused ManagedConnections. The default value of this
element is 900 seconds.

6.4.6 highest-num-waiters: Controlling the Number of Clients Waiting
for a Connection

If the maximum number of connections has been reached and there are no available
connections, WebLogic Server retries until the call times out. The highest-num-waiters
element controls the number of clients that can be waiting at any given time for a
connection.

Chapter 6
Configuring Connection Pool Parameters

6-12

6.4.7 highest-num-unavailable: Controlling the Number of Unavailable
Connections

When a connection is created and fails, the connection is placed on an unavailable list.
WebLogic Server attempts to recreate failed connections on the unavailable list. The
highest-num-unavailable element controls the number of unavailable connections that
can exist on the unavailable list at one time.

6.4.8 connection-creation-retry-frequency-seconds: Recreating
Connections

To configure WebLogic Server to attempt to recreate a connection that fails while
creating additional ManagedConnections, enable the connection-creation-retry-
frequency-seconds element. By default, this feature is disabled.

6.4.9 match-connections-supported: Matching Connections
A connection request contains parameter information. By default, the connector
container calls the matchManagedConnections() method on the ManagedConnectionFactory
to match the available connection in the pool to the parameters in the request. The
connection that is successfully matched is returned.

It may be that the ManagedConnectionFactory does not support the call to
matchManagedConnections(). If so, the matchManagedConnections() method call throws a
javax.resource.NotSupportedException. If the exception is caught, the connector
container automatically stops calling the matchManagedConnections() method on the
ManagedConnectionFactory.

You can set the match-connections-supported element to specify whether the resource
adapter supports connection matching. By default, this element is set to true and the
matchManagedConnections() method is called at least once. If it is set to false, the
method call is never made.

If connection matching is not supported, a new resource is created and returned if the
maximum number of resources has not been reached; otherwise, the oldest
unavailable resource is refreshed and returned.

6.4.10 test-frequency-seconds: Testing the Viability of Connections
The test-frequency-seconds element allows you to specify how frequently (in seconds)
connections in the pool are tested for viability.

6.4.11 test-connections-on-create: Testing Connections upon Creation
You can set the test-connections-on-create element to enable the testing of
connections as they are created. The default value is false.

Chapter 6
Configuring Connection Pool Parameters

6-13

6.4.12 test-connections-on-release: Testing Connections upon
Release to Connection Pool

You can set the test-connections-on-release element to enable the testing of
connections as they are released back into the connection pool. The default value is
false.

6.4.13 test-connections-on-reserve: Testing Connections upon
Reservation

You can set the test-connections-on-reserve element to enable the testing of
connections as they are reserved from the connection pool. The default value is false.

6.4.14 deploy-as-a-whole: Isolating Outbound Connection Pool
Failures from the Whole Adapter Deployment

You can set the deploy-as-a-whole element to determine whether or not the
deployment of a resource adapter, which contains multiple outbound connection pools,
should fail if a failure occurs in any connection pool. The default value is true, which
causes the whole resource adapter deployment to fail if any error occurs (not just with
connection pools).

Setting this element to false enables the resource adapter deployment to succeed as
long as at least one outbound connection pool remains healthy, allowing you isolate,
diagnose, repair, and dynamically update the resource adapter without the need to
redeploy it.

6.5 Connection Proxy Wrapper - 1.0 Resource Adapters
The connection proxy wrapper feature is valid only for resource adapters that are
created based on the Java EE Connector Architecture 1.0. When a connection request
is made, WebLogic Server returns to the client (by way of the resource adapter) a
proxy object that wraps the connection object. WebLogic Server uses this proxy to
provide the following features:

• Connection leak detection capabilities

• Late XAResource enlistment when a connection request is made before starting a
global transaction that uses that connection

6.5.1 Possible ClassCastException
If the connection object returned from a connection request is cast as a Connection
implementation class (rather than an interface implemented by the Connection class), a
ClassCastException can occur. This exception is caused by one of the following:

• The resource adapter performing the cast

• The client performing the cast during a connection request

An attempt is made by WebLogic Server to detect the ClassCastException caused by
the resource adapter. If the server detects that this cast is failing, it turns off the proxy

Chapter 6
Connection Proxy Wrapper - 1.0 Resource Adapters

6-14

wrapper feature and proceeds by returning the unwrapped connection object during a
connection request. The server logs a warning message to indicate that proxy
generation has been turned off. When this occurs, connection leak detection and late
XAResource enlistment features are also turned off.

WebLogic Server attempts to detect the ClassCastException by performing a test at
resource adapter deployment time by acting as a client using container-managed
security. This requires the resource adapter to be deployed with security credentials
defined.

If the client is performing the cast and receiving a ClassCastException, the client code
can be modified, as in the following example.

Assume the client is casting the connection object to MyConnection.

1. Rather than having MyConnection be a class that implements the resource
adapter's Connection interface, modify MyConnection to be an interface that extends
Connection.

2. Implement a MyConnectionImpl class that implements the MyConnection interface.

6.5.2 Turning Proxy Generation On and Off
If you know for sure whether or not a connection proxy can be used in the resource
adapter, you can avoid a proxy test by explicitly setting the use-connection-proxies
element in the WebLogic Server 8.1 version of weblogic-ra.xml to true or false.

Note:

WebLogic Server still supports Java EE Connector Architecture 1.0 resource
adapters. For 1.0 resource adapters, continue to use the WebLogic Server 8.1
deployment descriptors found in weblogic-ra.xml. It contains elements that
continue to accommodate 1.0 resource adapters.

If set to true, the proxy test is not performed and connection properties are generated.

If set to false, the proxy test is not performed and connection proxies are generated.

If use-connection-proxies is unspecified, the proxy test is performed and proxies are
generated if the test passes. (The test passes if a ClassCastException is not thrown by
the resource adapter).

Note:

The test cannot detect a ClassCastException caused by the client code.

6.6 Reset a Connection Pool
You may need to reset a connection pool to recover a connection pool that is in an
unhealthy state without interfering other running connection pools, or to make
nondynamic configuration changes that could not take effect through an update

Chapter 6
Reset a Connection Pool

6-15

operation. For example, changing properties on a ManagedConnectionFactory or
changing transaction support for connection.
You can reset a connection pool in one of two ways:

• Reset—If no connections in the pool are in use, the pool is recreated. The new
pool includes any configuration changes you may have made prior to the reset. If a
connection is in use, the pool is not reset.

• Force Reset—Immediately discards all used and unused connections and the pool
is recreated. The new pool includes any configuration changes you may have
made prior to the reset.

Use the following steps to reset a connection pool from the WebLogic Server
Administration Console:

1. Select your resource adapter from the Summary of Deployments table.

2. Select Control > Outbound Connection Pools

3. Select the connection pools to reset.

4. Click Reset or Force Reset.

6.7 Testing Connections
If a resource adapter's ManagedConnectionFactory implements the Validating interface,
then the application server can test the validity of existing connections. You can test
either a specific outbound connection or the entire pool of outbound connections for a
particular ManagedConnectionFactory. Testing the entire pool results in testing each
connection in the pool individually. See section 6.5.3.4 Detecting Invalid Connections
in JSR 322: Java EE Connector Architecture 1.6.

6.7.1 Configuring Connection Testing
The following optional elements in the weblogic-ra.xml deployment descriptor allow
you to control the testing of connections in the pool.

• test-frequency-seconds - The connector container periodically tests all the free
connections in the pool. Use this element to specify the frequency with which the
connections are tested. The default is 0, which means the connections will not be
tested.

• test-connections-on-create - Determines whether the connection should be tested
upon its creation. By default it is false.

• test-connections-on-release - Determines whether the connection should be
tested upon its release. By default it is false.

• test-connections-on-reserve - Determines whether the connection should be
tested upon its reservation. By default it is false.

6.7.2 Testing Connections in the Administration Console
To test a resource adapter's connection pools:

1. In the WebLogic Server Administration Console, open the Deployments page and
select the resource adapter in the Deployments table.

2. Select the Test tab.

Chapter 6
Testing Connections

6-16

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

You will see a table of connection pools for the resource adapter and the test
status of each pool.

3. Select the connection pool you want to test and click Test.

See Test outbound connections in the Oracle WebLogic Server Administration
Console Online Help.

Chapter 6
Testing Connections

6-17

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00511

7
Transaction Management

The system-level transaction management contract that is defined by the Java
Connector Architecture is a contract between the transaction manager and an EIS that
supports transactional access to EIS resource managers. This contract enables
WebLogic Server to use its transaction manager to manage transactions across
multiple resource managers for outbound communication to EISes.

• Supported Transaction Levels

• Configuring Transaction Levels

For more information about transaction management, see Chapter 7, Transaction
Management, in JSR 322: Java EE Connector Architecture 1.6. For information about
transaction management for inbound communication from EISes to WebLogic Server,
see Transactional Inflow.

7.1 Supported Transaction Levels
A transaction is a set of operations that must be committed together or not at all for the
data to remain consistent and to maintain data integrity. Transactional access to EISes
is an important requirement for business applications. The Java EE Connector
Architecture 1.7 supports the use of transactions.
WebLogic Server utilizes the WebLogic Server Transaction Manager implementation
and supports resource adapters having XA, local, or no transaction support. You
define the type of transaction support in the transaction-support element in the ra.xml
file; a resource adapter can support only one type. You can use the transaction-
support element in the weblogic-ra.xml deployment descriptor to override the value
specified in ra.xml. See Configuring Transaction Levels, and #unique_116/
unique_116_Connect_42_I1082166 in Table A-18 for details.

Resource adapters conforming to Java EE Connector Architecture 1.7 can optionally
specify the level of transaction support at run time. This requires the implementation of
the TransactionSupport interface. For more information, see Specifying and Obtaining
Transaction Support Level.

7.1.1 XA Transaction Support
XA transaction support allows a transaction to be managed by a transaction manager
external to a resource adapter (and therefore external to an EIS). When an application
component demarcates an EIS connection request as part of a transaction, the
application server is responsible for enlisting the XA resource with the transaction
manager. When the application component closes that connection, the application
server cleans up the EIS connection once the transaction has completed.

Oracle recommends creating a LocalTransaction outbound connection pool for an XA
transaction capable resource adapter for improved performance.

7-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

7.1.2 Local Transaction Support
Local transaction support allows WebLogic Server to manage resources that are local
to the resource adapter. Unlike XA transaction, local transaction generally cannot
participate in a two-phase commit protocol (2PC). The only way a local transaction
resource adapter can be involved in a 2PC transaction is if it is the only local
transaction resource involved in the transaction and if the WebLogic Server Connector
container uses a Last Resource Commit Optimization whereby the outcome of the
transaction is governed by the resource adapter's local transaction.

A local transaction is normally started by using the API that is specific to that resource
adapter, or the CCI interface if it is supported for that adapter. When a resource
adapter connection that is configured to use local transaction support is created and
used within the context of an XA transaction, WebLogic Server automatically starts a
local transaction to be used for this connection. When the XA transaction completes
and is ready to commit, prepare is first called on the XA resources that are part of the
XA transaction. Next, the local transaction is committed.

If the commit fails on the local transaction, the XA transaction and all the XA resources
are rolled back. If the commit succeeds, all the XA resources for the XA transaction
are committed. When an application component closes the connection, WebLogic
Server cleans up the connection once the transaction has completed.

7.1.3 No Transaction Support
If a resource adapter is configured to use no transaction support, the resource adapter
can still be used in the context of a transaction. However, in this case, the connections
used for that resource adapter are never enlisted in a transaction and behave as if no
transaction was present. In other words, operations performed using these
connections are made to the underlying EIS immediately, and if the transaction is
rolled back, the changes are not undone for these connections.

7.1.4 Runtime Transaction Support Level Specification
JSR 322: Java EE Connector Architecture 1.6 states that a resource adapter may
optionally determine and classify the level of transaction support it can provide at run
time. To expose information about the level of transaction support at run time, a
ManagedConnectionFactory must implement the TransactionSupport interface. JSR 322:
Java EE Connector Architecture 1.6 also defines rules and priorities on transaction
support levels set in descriptors, annotations, and the TransactionSupport interface.
For example, WebLogic Server uses the value returned by the getTransactionSupport
method and ignores the value specified by the resource adapter's deployment
descriptor and the @Connector metadata annotation.

WebLogic Server exposes information about the runtime transaction support level in
the ConnectorConnectionPoolRuntimeMBean.RuntimeTransactionSupport MBean attribute
and also in the WebLogic Server Administration Console.

To view the runtime transaction level support in the WebLogic Server Administration
Console:

1. In the Summary of Deployments page, select the resource adapter.

2. Click Monitoring > Outbound Connection Pools, and view the items in the
Runtime Transaction Support column.

Chapter 7
Supported Transaction Levels

7-2

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

7.2 Configuring Transaction Levels
You specify a transaction support level for a resource adapter in the Java EE standard
resource adapter deployment descriptor, ra.xml. To specify the transaction support
level:

• For No Transaction, add the following entry to the ra.xml deployment descriptor
file: <transaction-support>NoTransaction</transaction-support>

• For XA Transaction, add the following entry to the ra.xml deployment descriptor
file: <transaction-support>XATransaction</transaction-support>

• For Local Transaction, add the following entry to the ra.xml deployment descriptor
file: <transaction-support>LocalTransaction</transaction-support>

Resource adapters conforming to Java EE Connector Architecture 1.6 can optionally
specify the level of transaction support at run time. This requires the implementation of
the TransactionSupport interface. For more information, see Specifying and Obtaining
Transaction Support Level.

The transaction support value specified in the ra.xml deployment descriptor is the
default value for all Connection Factories of the resource adapter. You can override
this value for a particular Connection Factory by specifying a value in the transaction-
support element of the weblogic-ra.xml deployment descriptor.

The value of transaction-support must be one of the following:

• NoTransaction

• LocalTransaction

• XATransaction

For more information on specifying the transaction level in the ra.xml deployment
descriptor, see Section 20.7, Resource Adapter XML Schema Definition, in JSR 322:
Java EE Connector Architecture 1.6. For more information on specifying the
transaction level in the weblogic-ra.xml deployment descriptor, see weblogic-ra.xml
Schema.

7.2.1 Configure XA Transaction Recovery Credential Mapping
For pools which support XA Transactions, WebLogic Server may try to perform
transaction recovery for the Java EE Connector Architecture connection pool if
WebLogic Server finds pending transactions in the pool during a server startup. If
pending transactions are found, WebLogic Server gets a ManagedConnection to EIS
during recovery using
ManagedConnectionFactory.createManagedConnection(javax.security.auth.Subject

subject, ConnectionRequestInfo cxRequestInfo).

If EIS requires explicit credentials (such as user name and password) to sign-on, the
you need to configure WebLogic Server with appropriate credentials by configuring a
special credential mapping for the initial connection. See Initial Connection: Requires a
ManagedConnection from Adapter Without Application's Request . WebLogic Server
uses null as Subject if a mapping is not found.

Chapter 7
Configuring Transaction Levels

7-3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Note:

You do not need to configure this special credential mapping if the EIS doesn't
require explicit credentials.

Chapter 7
Configuring Transaction Levels

7-4

8
Message and Transactional Inflow

WebLogic resource adapters use inbound connections to handle message inflow as
well as transactional inflow. These inbound connections require several key
components, such as a communications channel and protocol to be used with the EIS,
message types recognized by the resource adapter, a Work instance to process the
incoming message and deliver it to a message endpoint, and much more.

• Overview of Message and Transactional Inflow

• How Message Inflow Works

• Message Inflow to Message Endpoints (Message-Driven Beans)

• Transactional Inflow

• Configuring and Managing Long-Running Work

8.1 Overview of Message and Transactional Inflow
Message inflow refers to inbound communication from an EIS to the application
server, using a resource adapter. Inbound messages can be part of a transaction that
is governed by a Transaction Manager that is external to WebLogic Server and the
resource adapter.

The following diagram provides an overview of how messaging and transaction inflow
occurs within a resource adapter and the role played by the Work Manager. For details
about transactional inflow, see also Transactional Inflow.

8-1

Figure 8-1 Messaging and Transactional Inflow Architecture

8.1.1 Architecture Components
Figure 8-1 contains the following components:

• A client application, which connects to an application running on WebLogic Server,
but which also needs to connect to an EIS

• An external system (in this case, an EIS or Enterprise Information System)

• An application component (an EJB) that the client application uses to submit
outbound requests to the EIS through the resource adapter

• A message endpoint application (a message-driven bean and possibly other Java
EE components) used for the receipt of inbound messages from the EIS through
the resource adapter

• The WebLogic Server Work Manager and an associated thread (or threads) to
which the resource adapter submits Work instances to process inbound messages
and possibly process other actions.

Chapter 8
Overview of Message and Transactional Inflow

8-2

• An external Transaction Manager, to which the WebLogic Server Transaction
Manager is subordinate for transactional inflow of messages from the EIS

• The WebLogic Server Connector container in which the resource adapter is
deployed. The container manages the following:

– A deployed resource adapter that provides bi-directional (inbound and
outbound) communication to and from the EIS.

– An active Work instance.

– Multiple managed connections (MC1, ..., MCn), which are objects representing
the outbound physical connections from the resource adapter to the EIS.

– Connection handles (C-handle) returned to the application component from
the connection factory of the resource adapter and used by the application
component for communicating with the EIS.

– One of perhaps many activation specifications. There is an activation
specification (ActivationSpec) that corresponds to each specific message
listener type, MLT-j. For information about requirements for an ActivationSpec
class, see Chapter 13, Message Inflow in JSR 322: Java EE Connector
Architecture 1.6.

– One of the connection pools maintained by the container for the management
of managed connections for a given ManagedConnectionFactory (in this case,
MCF-2. A Connector container could include multiple connection pools, each
corresponding to a different type of connections to a single EIS or even
different EISes).

– A MessageEndpointFactory created by the EJB container and used by the
resource adapter to create proxies to MessageEndpoint instances (MDB
instances from the MDB pool).

• An external message source, which could be an EIS or Message Provider

8.1.2 Inbound Communication Scenario
This section describes a basic inbound communication scenario that may be described
using the diagram, showing how inbound messages originate in an EIS, flow into the
resource adapter, and are handled by a Message-driven Bean. For related
information, see Figure 2-1.

A typical simplified inbound sequence involves the following steps:

1. The EIS sends a message to the resource adapter.

2. The resource adapter inspects the message and determines what type of
message it is.

3. The resource adapter may create a Work object and submit it to the Work Manager.
The Work Manager performs the succeeding work in a separate Thread, while the
resource adapter can continue waiting for other incoming messages.

4. Based on the message type, the resource adapter (either directly or as part of a
Work instance) looks up the correct message endpoint to which it will send the
message.

5. Using the message endpoint factory corresponding to the type of message
endpoint it needs, the resource adapter creates a message endpoint (which is a
proxy to a message-driven bean instance from the MDB pool).

Chapter 8
Overview of Message and Transactional Inflow

8-3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

6. The resource adapter invokes the message listener method on the endpoint,
passing it message content based on the message it received from the EIS.

7. The message is handled by the MDB in one of several possible ways:

a. the MDB may handle the message directly and possibly return a result to the
EIS through the resource adapter

b. the MDB may distribute the message to some other application component

c. the MDB may place the message on a queue to be picked up by the client

d. the MDB may directly communicate with the client application.

8.2 How Message Inflow Works
To manage message inflow, a resource adapter that supports inbound communication
from an EIS to the application server typically includes a proprietary communications
channel and protocol, a set of recognized message types, and a dispatching
mechanism.

• A proprietary communications channel and protocol is required for connecting to
and communicating with an EIS. The communications channel and protocol are
not visible to the application server in which the resource adapter is deployed. See
Proprietary Communications Channel and Protocol.

• One or more message types that are recognized by the resource adapter must be
established.

• A dispatching mechanism is required for dispatching a message of a given type to
another component in the application server.

8.2.1 Handling Inbound Messages
A resource adapter may handle an inbound message in a variety of ways. For
example, it may:

• Handle the message locally, that is, within the ResourceAdapter bean, without
involving other components.

• Pass the message off to another application component. For example, it may look
up an EJB and invoke a method on it.

• Send the message to a message endpoint. Typically, a message endpoint is a
message-driven bean (MDB). For more information, see Message Inflow to
Message Endpoints (Message-Driven Beans).

Inbound messages may return a result to the EIS that is sending the message. A
message requiring an immediate response is referred to as synchronous (the sending
system waits for a response). This is also referred to as request-response messaging.
A message that does not expect a response as part of the same exchange with the
resource adapter is referred to as asynchronous or event notification-based
communication. A resource adapter can support asynchronous or synchronous
communications for all three destinations listed above.

Depending upon the transactional capabilities of the resource adapter and the EIS,
inbound messages can be either part of a transaction (XA) or not (non-transactional).
If the messages are XA, the controlling transaction may be coordinated by an external
Transaction Manager (transaction inflow) or by the application server's Transaction
Manager. See Transactional Inflow.

Chapter 8
How Message Inflow Works

8-4

In most cases, inbound messages in a resource adapter are dispatched through a Work
instance in a separate thread. The resource adapter wraps the work to be done in a
Work instance and submits it to the application server's Work Manager for execution
and management. A resource adapter can submit a Work instance using the doWork(),
startWork(), or scheduleWork() methods depending upon the scheduling requirements
of the work.

8.2.2 Proprietary Communications Channel and Protocol
The resource adapter can expose connection configuration information to the deployer
by various means; for example, as properties on the ResourceAdapter bean or
properties on the ActivationSpec object. An alternative is to use the same
communication channel for inbound as well as outbound traffic. Thus you can also set
configuration information on the outbound connection pool.

8.3 Message Inflow to Message Endpoints (Message-Driven
Beans)

As of EJB 2.1, message-driven beans (MDBs) accommodate the delivery of messages
from inbound resource adapters. Prior to EJB 2.1, an MDB supported only Java
Message Service (JMS) messaging. That is, an MDB had to implement the
javax.jms.MessageListener interface, including the onMessage(javax.jms.Message)
message listener method. MDBs were bound to JMS components and the JMS
subsystem delivered the messages to MDBs by invoking the onMessage() method on
an instance of the MDB. With EJB 2.1, the JMS-only MDB restriction has been lifted.
The main ingredients for message delivery to an MDB by way of a resource adapter
are:

• An inbound message of a certain type (determined by the resource adapter/EIS
contract)

• An ActivationSpec object implemented by the resource adapter

• A mapping between message types and message listener interfaces

• An MDB that implements a given message listener interface

• A deployment-time binding between an MDB and a resource adapter

For more information about message-driven Beans, see Message-Driven EJBs in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

8.3.1 Deployment-Time Binding Between an MDB and a Resource
Adapter

A resource adapter can be deployed independently (as a standalone RAR) or as part
of an enterprise application (EAR). An MDB can also be deployed independently (as a
standalone JAR) or as part of an enterprise application (EAR). In either case, an MDB
whose messages are derived from a resource adapter must be bound to the resource
adapter. The following sections describe binding the MDB and resource adapter and
subsequent messaging operations.

Chapter 8
Message Inflow to Message Endpoints (Message-Driven Beans)

8-5

8.3.1.1 Binding an MDB and a Resource Adapter
To bind an MDB and a resource adapter, you must:

1. Set the jndi-name element in the weblogic-ra.xml deployment descriptor for the
resource adapter. See jndi-name in weblogic-ra.xml Schema.

2. Set the adapter-jndi-name element in the weblogic-ejb-jar.xml deployment
descriptor to match the value set in the corresponding jndi-name element in the
resource adapter.

3. Assume that the resource adapter is deployed prior to the MDB. (The MDB could
be deployed before the resource adapter is deployed; in that case, the deployed
MDB polls until the resource adapter is deployed.) When the resource adapter is
deployed, the ResourceAdapter bean is bound into JNDI using the name specified.

4. The MDB is deployed, and the MDB container invokes an application server-
specific API that looks up the resource adapter by its JNDI name and invokes the
specification-mandated endpointActivation(MessageEndpointFactory,
ActivationSpec) method on the resource adapter.

5. The MDB container provides the resource adapter with a configured
ActivationSpec (containing configuration information) and a factory for the creation
of message endpoint instances.

6. The resource adapter saves this information for later use in message delivery. The
resource adapter thereby knows what message listener interface the MDB
implements. This information is important for determining what kind of messages
to deliver to the MDB.

8.3.2 Dispatching a Message
When a message arrives from the EIS to the resource adapter, the resource adapter
determines where to dispatch it. The following is a possible sequence of events:

1. A message arrives from the EIS to the resource adapter.

2. The resource adapter examines the message and determines its type by looking it
up in an internal table. The resource adapter determines the message type
corresponds to a particular pair (MessageEndpointFactory, ActivationSpec).

3. The resource adapter determines the message should be dispatched to an MDB.

4. Using the MessageEndpointFactory for that type of message endpoint (one to be
dispatched to an MDB), the resource adapter creates an MDB instance by
invoking createEndpoint() on the factory.

5. The resource adapter then invokes the message listener method on the MDB
instance, passing any required information (such as the body of the incoming
message) to the MDB.

6. If the message listener does not return a value, the message dispatching process
is complete.

7. If the message listener returns a value, the resource adapter determines how to
handle that value. This may or may not result in further communication with the
EIS, depending upon the contract with the EIS.

Chapter 8
Message Inflow to Message Endpoints (Message-Driven Beans)

8-6

8.3.3 Activation Specifications
A resource adapter is configured with a mapping of message types and activation
specifications. The activation specification is a JavaBean that implements
javax.resource.spi.ActivationSpec. The resource adapter has an ActivationSpec class
for each supported message type. The mapping of message types and activation
specifications is configured in the ra.xml deployment descriptor, as described in
Configuring Inbound Connections, For more information about ActivationSpecs, see
Chapter 13, Message Inflow, in JSR 322: Java EE Connector Architecture 1.6.

8.3.4 Administered Objects
As described in section 13.4.2.3 of JSR 322: Java EE Connector Architecture 1.6, a
resource adapter may provide the Java class name and the interface type of an
optional set of JavaBean classes representing administered objects that are specific to
a messaging style or message provider. You configure administered objects in the
admin-objects elements of the ra.xml and weblogic-ra.xml deployment descriptor files.
As with outbound connections and other WebLogic resource adapter configuration
elements, you can define administered objects at three configuration scope levels:

• Global - Specify parameters that apply to all administered objects in the resource
adapter using the default-properties element. See weblogic-ra.xml Schema in
Table A-15

• Group - Specify parameters that apply to all administered objects belonging to a
particular administered object group specified in the ra.xml deployment descriptor
using the admin-object-group element. The properties specified in a group override
any parameters specified at the global level. See admin-object-group.

The admin-object-interface element (a subelement of the admin-object-group
element) serves as a required unique element (a key) to each admin-object-group.
There must be a one-to-one relationship between the admin-object-interface
element in weblogic-ra.xml and the admin-object-interface element in ra.xml.

• Instance - Under each admin object group, you can specify administered object
instances using the admin-object-instance element of the weblogic-ra.xml
deployment descriptor. These correspond to the individual administered objects for
the resource adapter. You can use the admin-object-properties subelement to
specify properties at the instance level too; properties specified at the instance
level override those provided at the group and global levels. See admin-object-
instance.

8.4 Transactional Inflow
Transactional inflow is established by a transaction inflow contract, which allows the
resource adapter to handle transaction completion and crash recovery calls that are
initiated by an EIS. The transactional inflow contract also ensures that ACID properties
of the imported transaction are preserved. For more information about transaction
inflow, see Chapter 15, Transaction Inflow, in JSR 322: Java EE Connector
Architecture 1.6.
When an EIS passes a message through a resource adapter to the application server,
it may pass a transactional context under which messages are delivered or work is
performed. The inbound transaction will be controlled by a transaction manager

Chapter 8
Transactional Inflow

8-7

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

external to the resource adapter and application server. See Message Inflow to
Message Endpoints (Message-Driven Beans).

A resource adapter may act as a bridge between the EIS and the application server for
transactional control. That is, the resource adapter receives messages that it interprets
as XA callbacks for participating in a transaction with a external Transaction Manager.

WebLogic Server can function as an XA resource to a external Transaction Manager
through its interposed Transaction Manager. The WebLogic Server Transaction
Manager maps external transaction IDs to WebLogic Server-specific transaction IDs
for such transactions.

The WebLogic Server Transaction Manager is subordinate to the external Transaction
Manager, which means that the external Transaction Manager ultimately determines
whether the transaction succeeds or is rolled back. See Participating in Transactions
Managed by a Third-Party Transaction Manager in Developing JTA Applications for
Oracle WebLogic Server. As part of the Java EE Connector Architecture 1.6, the ability
for a resource adapter to participate in such a transaction is now exposed through a
Java EE standard API.

The following process explains how a resource adapter would participate in a external
transaction. For more information, see section 15.4, Transaction Inflow Model, in JSR
322: Java EE Connector Architecture 1.6.

1. The resource adapter receives an inbound message with the transaction context
that arrived along with the incoming message.

2. The resource adapter represents the transaction context using the
javax.transaction.xa.Xid instance.

3. The resource adapter creates a new Work instance to process the incoming
message and deliver it to a message endpoint, and also creates an instance of an
ExecutionContext (javax.resource.spi.work.ExecutionContext), setting the Xid it
created and also setting a transaction timeout value. Version 1.6 of the Connector
Architecture defines a standard class, TransactionContext, which resource
adapters may use instead of the ExecutionContext for propagating the transaction
context from the EIS to the application server.

4. The resource adapter submits the Work object and the TransactionContext (or
ExecutionContext) to the Work Manager for processing. At this point, the Work
Manager performs the necessary work to enlist the transaction and start it with the
WebLogic Server Transaction Manager.

To use a TransactionContext, the Work class must:

a. Implement the javax.resource.spi.work.WorkContextProvider interface.

b. Create and return a TransactionContext instance in the getWorkContexts()
method.

Note:

If the resource adapter uses a TransactionContext, the adapter must not
use an ExecutionContext.

5. Subsequent XA calls from the external Transaction Manager are sent through the
resource adapter and communicated to the WebLogic Server Transaction
Manager. In this way, the resource adapter acts as a bridge for the XA calls

Chapter 8
Transactional Inflow

8-8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

between the external Transaction Manager and the WebLogic Server Transaction
Manager, which is acting as a resource manager.

8.4.1 Using the Transactional Inflow Model for Locally Managed
Transactions

When the resource adapter receives requests from application components running in
the same server instance as the resource adapter that need to be delivered to an MDB
as part of the same transaction as the resource adapter request, the transaction ID
must be obtained from the transaction on the current thread and placed in a
TransactionContext (or ExecutionContext).

In this case, WebLogic Server does not use the Interposed Transaction Manager but
simply passes the transaction on to the Work Thread used for message delivery to the
MDB.

8.5 Configuring and Managing Long-Running Work
WebLogic Server supports the use of HintsContext.LONGRUNNING_HINT, which if set to
true in a resource adapter Work class, causes a Work instance to be established as a
long-running work item that WebLogic Server schedules in a separate daemon thread,
not in a Work thread. LONGRUNNING_HINT performs the same function as the WebLogic
Server extension annotation @LongRunning.
WebLogic Server extends Connector Architecture 1.6 by providing the
ConnectorWorkManagerRuntimeMBean, which contains attributes for configuring and
monitoring long-running Work instances. These attributes, described in the following
sections, are also exposed in the WebLogic Server Administration Console.

• Setting the Maximum Number of Concurrent Long-Running Work Instances

• Monitoring Long-Running Work

For more information about the @LongRunning extension annotation, see LongRunning in
Java API Reference for Oracle WebLogic Server.

8.5.1 Setting the Maximum Number of Concurrent Long-Running Work
Instances

Oracle recommends that you minimize the number of long-running Work instances
executing concurrently because each long running work runs in its own daemon
thread. Having too many concurrent long-running Work instances can exhaust the
thread resources in WebLogic Server and cause a negative impact on server
performance and stability. WebLogic Server may introduce restrictions on maximum
concurrent long running works allowed in a future release.

You can use the WebLogic Server Administration Console to set the maximum
allowed number of concurrent Work instance requests as follows:

1. Select the resource adapter in the Summary of Deployments > Control page.

2. Select Configuration > Workload.

3. Enter a new value in Maximum Number of Concurrent Long Running
Requests, if desired, and click Save.

Chapter 8
Configuring and Managing Long-Running Work

8-9

If you save a new value, the Save Deployment Plan Assistant is displayed,
which prompts you to select or enter the path of a deployment plan file. For more
information about working with deployment plans, see Understanding WebLogic
Server Deployment in Deploying Applications to Oracle WebLogic Server.

Note the following:

• You can also view the maximum number of concurrent Work instance requests
allowed from the Resource Adapter: Monitoring: Workload page in the WebLogic
Server Administration Console, as described in Monitoring Long-Running Work.

• As an alternative to using the WebLogic Server Administration Console, you can
use the max-concurrent-long-running-requests element in the weblogic-ra.xml file
to set the maximum allowed number of concurrent Work instance requests. For
information, see connector-work-manager.

8.5.2 Monitoring Long-Running Work
The ConnectorWorkManagerRuntimeMBean exposes long-running run-time
information about the resource adapter's specific Work Manager in the following
MBean attributes:

• ConnectorWorkManagerRuntimeMBean.ActiveLongRunningRequests — Returns the
number of current active long-running Work instance requests.

• ConnectorWorkManagerRuntimeMBean.CompletedLongRunningRequests — Returns the
number of completed long-running Work instance requests.

• ConnectorWorkManagerRuntimeMBean.MaxConcurrentLongRunningRequests — Returns
the maximum number of concurrent Work instance requests allowed.

To view information about the currently active or completed long-running Work instance
requests using the WebLogic Server Administration Console:

1. Select the resource adapter in the Summary of Deployments > Control page.

2. Select Monitoring > Workload.

The following information about long-running Work instance requests is available
from the Long Running Work Managers table:

The column labeled identifies the following

Active Requests The number of currently active long-running Work
instance requests.

Completed Requests The number of completed long-running Work instance
requests.

Max Concurrent Requests
Allowed

The maximum number of concurrent Work instance
requests allowed.

Chapter 8
Configuring and Managing Long-Running Work

8-10

9
Security

WebLogic Server provides several security services for resource adapters for inbound
and outbound communication. Resource adapters must be configured with
authentication and other necessary security information to be able to establish
connections with external systems.

• Container-Managed and Application-Managed Sign-on

• Credential Mapping for Making Outbound Connections

• Security Inflow

• Security Policy Processing

• Configuring Security Identities for Resource Adapters

• Configuring Connection Factory-Specific Authentication and Re-authentication
Mechanisms

For more information about WebLogic security, see Understanding Security for Oracle
WebLogic Server and Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

9.1 Container-Managed and Application-Managed Sign-on
When a resource adapter makes an outbound connection to an Enterprise Information
System (EIS), it needs to sign on with valid security credentials. In accordance with the
Java Connector Architecture 1.6 specification, WebLogic Server supports both
container-managed and application-managed sign-on for outbound connections. At
runtime, WebLogic Server determines the chosen sign-on mechanism, based on the
information specified in either the invoking client component's deployment descriptor
or the res-auth element of the resource adapter deployment descriptor. A sign-on
mechanism specified in a resource adapter's deployment descriptor takes precedence
over one specified in the calling component's deployment descriptor. Even when using
container-managed sign-on, any security information explicitly specified by the client
component is presented on the call to obtain the connection.
If the WebLogic Server Java EE 1.6 Connector Architecture implementation cannot
determine the sign-on mechanism that is being requested by the client component, the
connector container attempts container-managed sign-on.

9.1.1 Application-Managed Sign-on
With application-managed sign-on, the client component supplies the necessary
security credentials (typically a user name and password) when making the call to
obtain a connection to an EIS. In this scenario, the application server provides no
additional security processing other than to pass along this information in the request
for the connection.

9-1

9.1.2 Container-Managed Sign-on
WebLogic Server and an EIS each maintain independent security realms. A goal of
container-managed sign-on is to permit a user to sign on to WebLogic Server and be
able to use applications that access an EIS through a resource adapter without having
to sign on separately to the EIS. Container-managed sign-on in WebLogic Server uses
outbound credential mappings, which map credentials (either username/password
pairs or security tokens) of WebLogic security principals (which may be either
authenticated individual users or client applications) to the corresponding credentials
required to access the EIS. For any deployed resource adapter, you can configure
outbound credential mappings for applicable security principals. For related
information, see Outbound Credential Mappings.

9.2 Credential Mapping for Making Outbound Connections
The Java Connector Architecture 1.6 specification requires that credentials are stored
in a javax.security.auth.Subject. When an outbound connection is being made, these
credentials are passed to either the createManagedConnection or the
matchManagedConnection method of the ManagedConnectionFactory object. Outbound
credential mappings, which are stored in the WebLogic Server embedded LDAP
server, are specific to outbound resource adapters.
When creating outbound credential mappings of WebLogic Server users to usernames
in an EIS to which you want to connect using a resource adapter, note the following:

• WebLogic Server supports creating outbound credential mappings for WebLogic
Server users who are defined in the default security realm only. If you are using a
security realm that you have customized, you need to define it as the default
security realm before configuring outbound credential mappings for resource
adapters. See Customizing the Default Security Configuration in Administering
Security for Oracle WebLogic Server and Change the default security realm in
Oracle WebLogic Server Administration Console Online Help.

• You must define the authentication-mechanism element for the connection pool in
either of the following deployment descriptor files:

– ra.xml, which works for all connection pools of the resource adapter

– weblogic-ra.xml for each individual connection pool

If there is no valid authentication-mechanism element defined, the outbound
credential mapping will not take effect, as explained in Authentication
Mechanisms. The following is a sample ra.xml file snippet:

<authentication-mechanism>
<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
<credential-interface>javax.resource.spi.security.PasswordCredential</credential-
interface>
</authentication-mechanism>

9.2.1 Authentication Mechanisms
WebLogic Server users must be authenticated whenever they request access to a
protected WebLogic Server resource. For this reason, each user is required to provide
a credential (a username/password pair or a digital certificate) to WebLogic Server.

Chapter 9
Credential Mapping for Making Outbound Connections

9-2

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH03006

Password authentication is the only authentication mechanism supported by WebLogic
Server out of the box. Password authentication consists of a user ID and password.
Based on the configured mappings, when a user requests connection to a resource
adapter, the appropriate credentials for that user are supplied to the resource adapter.

The SSL (or HTTPS) protocol can be used to provide an additional level of security to
password authentication. Because the SSL protocol encrypts the data transferred
between the client and WebLogic Server, the user ID and password of the user do not
flow in clear text. Using SSL, WebLogic Server can authenticate the user without
compromising the confidentiality of the user's ID and password. See Configuring SSL
in Administering Security for Oracle WebLogic Server.

9.2.2 Outbound Credential Mappings
Outbound credential mappings are specific to outbound resource adapters. You
configure outbound credential mappings using the WebLogic Server Administration
Console. Before you can configure credential mappings, you must successfully deploy
the resource adapter.

Note:

The first time you deploy a resource adapter, it has no configured outbound
credential mappings and the initial connections will fail until they are configured.

If the resource adapter requires credentials and is configured to create connections at
deployment time (meaning the initial-capacity element in the weblogic-ra.xml is set
to greater than 0), the initial connection may fail. To prevent initial connection failure,
Oracle recommends you set the initial-capacity element the connection pool to 0 for
its connection pool for the initial installation and deployment of a resource adapter.
Once the resource adapter is deployed for the first time, you can change the value of
the initial-capacity element. For more information, see initial-capacity: Setting the
Initial Number of ManagedConnections.

You can configure outbound credential mappings for individual outbound connection
pools or globally for all the connection pools in the resource adapter. When the
resource adapter receives a request for a connection, WebLogic Server searches for
outbound credential mappings configured for a specific connection pool and then
checks the mappings configured globally for the resource adapter.

Review the situations described in the following sections:

• Non-initial Connection: Requires ManagedConnection from Adapter Upon
Application's Request

• Initial Connection: Requires a ManagedConnection from Adapter Without
Application's Request

• Special Users

Chapter 9
Credential Mapping for Making Outbound Connections

9-3

9.2.2.1 Non-initial Connection: Requires ManagedConnection from Adapter
Upon Application's Request

WebLogic Server requires a ManagedConnection from the adapter upon an
application's request. For example, an application wants to get a connection from a
pool but there is no available ManagedConnection in the pool so WebLogic Server
needs to make a request to the adapter to create a new ManagedConnection.

Note:

Applies only to Container-Managed sign-on.

The server searches for outbound mappings in the following order:

1. Specific mappings (or anonymous mapping if unauthenticated) at the connection
factory level.

2. Specific mappings (or anonymous mapping if unauthenticated) at the global level.

3. Default mappings at the connection factory level.

4. Default mappings at the global level.

Example 9-1 Outbound Credential Mapping Examples

poolA
 system user name: admin
 system password: admin_password
 default user name: guest1
 default password: guest1_password

poolB
 wlsjoe user name: harry
 wlsjoe password: harry_password

global
 system user name: sysman
 system password: sysman_password
 wlsjoe user name: scott
 wlsjoe password: scott_password
 default user name: viewer
 default password: viewer_password
 anonymous user name: foo
 anonymous password: foo_password

Referring to the example provided in Example 9-1, consider an application
authenticated as system that makes a connection request against poolA. Because a
specific outbound credential mapping is defined for system for poolA, the resource
adapter uses this mapping (admin/admin_password).

If the application makes the same request against poolB as system, there is no
corresponding specific outbound credential mapping for system. Therefore, the server
searches for the credential mapping at the global level where it finds a mapping
(sysman/sysman_password).

Chapter 9
Credential Mapping for Making Outbound Connections

9-4

If another application authenticates as wlsjoe and makes a request against poolA, it
finds no mapping for wlsjoe defined for poolA. It then searches at the global level and
finds a mapping for wlsjoe (scott/scott_password). Against poolB, the application would
find the mapping defined for poolB (harry/happy_password).

If an application authenticated as user1 makes a request against poolA, it finds no
mapping for user1 for poolA. The following sequence occurs:

1. The application searches at the global level, which also has no mapping for user1.

2. The application searches the poolA outbound mappings for a default mapping and
finds a default mapping.

If an application does not authenticate to WebLogic Server and makes a request
against poolA, it finds no outbound mapping for anonymous user for poolA. It then
searches at the global level and finds a mapping for the anonymous user (foo/
foo_password).

For example, in Example 9-1, consider two connection pools with the following
outbound credential mappings:

9.2.2.2 Initial Connection: Requires a ManagedConnection from Adapter
Without Application's Request

WebLogic Server requires a ManagedConnection from an adapter without the
application's request. This can either be when WebLogic Server creates initial
connections at deployment time (meaning the initial-capacity element in weblogic-
ra.xml is set to greater than 0), or when WebLogic Server needs to get a
ManagedConnection specifically for XA recovery.

Note:

Applies to both Container-Managed sign-on and Application-Managed sign-on.

WebLogic Server searches for outbound mappings in the following order:

1. Initial mappings at the connection factory level.

2. Initial mappings at the global level.

3. Default mappings at the connection factory level.

4. Default mappings at the global level.

Example 9-2 Credential Mapping Examples

poolA
 initial user name: admin
 initial password: admin_password

poolB
 default user name: harry
 default password: harry_password

global
 initial user name: sysman
 initial password: sysman_password

Chapter 9
Credential Mapping for Making Outbound Connections

9-5

Referring to Example 9-2, WebLogic Server needs to perform XA Recovery for poolA
and so makes a connection request against poolA. Because the initial outbound
credential mapping is defined for system for poolA, the resource adapter uses this
mapping (admin/admin_password).

If WebLogic Server makes the same request against poolB, there is no corresponding
initial outbound credential mapping for poolB. WebLogic Server then searches for the
initial credential mapping at the global level where it finds a mapping (sysman/
sysman_password).

If neither an initial nor default mapping is defined, WebLogic Server uses null as the
Subject when making calls to the adapter to create a ManagedConnection.

For example, consider two connection pools with the following outbound credential
mappings:

9.2.2.3 Special Users
Three special users are provided for use by resource adapters:

• Initial User (user for creating initial connections) — If you define an outbound
credential mapping for this user, the specified credentials are used for the initial
connections created when:

– Starting the connection pool for this resource adapter

– Doing XA transaction recovery for the connection pool

The InitialCapacity parameter on the pool specifies the number of initial
connections. If you do not define a mapping for this user, the default mapping (if
provided) is used. Otherwise, no credentials are provided for the initial
connections.

• Anonymous User (unauthenticated WebLogic Server user) — If you define a
mapping for this user, the specified credentials are used when no user is
authenticated for the connection request on the resource adapter.

• Default User — If you define a mapping for this user, the specified credentials are
used when:

– No other mapping applies for the current user.

– No anonymous mapping is provided in the case where there is no
authenticated user.

9.2.3 Creating Outbound Credential Mappings Using the Console
You can create outbound credential maps with the WebLogic Server Administration
Console. If you are using the WebLogic Credential Mapping provider, the outbound
credential maps are stored in the embedded LDAP server. For information about how
to create an outbound credential map, see Create outbound credential mappings in
the Oracle WebLogic Server Administration Console Online Help.

9.3 Security Inflow
The Java Connector Architecture 1.6 specification defines a standard, generic security
context shared among the EIS, the resource adapter, and the application server that
leverages the work done in the resource adapter container, as specified in JSR 196:

Chapter 9
Security Inflow

9-6

Java Authentication Service Provider Interface for Containers. The security context
enables a resource adapter to establish security information that is used when
submitting a Work instance for execution and delivering messages to message
endpoints that are hosted in WebLogic Server.
The Java Connector Architecture 1.6 specification:

• Defines an abstract class SecurityContext as the contract between the resource
adapter and the application server

• Defines two scenarios on how to handle flown-in identities based on whether or
not they belong to the application server's security domain:

– Case 1 (see Section 16.4.3, Case 1: Identity in the Container Security Domain,
in JSR 322: Java EE Connector Architecture 1.6.)

– Case 2 (Section 16.4.4, Case 2: Identity Translated Between Security
Domains.)

• Uses the CallbackHandler defined in the JSR 196: Java Authentication Service
Provider Interface for Containers.

• Uses three callbacks from JSR 196: CallerPrincipalCallback,
GroupPrincipalCallback, and PasswordValidationCallback.

Note:

When the WebLogic Server Connector container calls the setupSecurityContext
method of the SecurityContext implementation provided by the resource
adapter, the serviceSubject passed to the adapter will always be null.

9.3.1 Inbound Principal Mappings
A resource adapter deployed in the WebLogic Connector container can flow in an
identity (that is, a caller principal, a group principal, or both) into a container, and the
identity may be defined in either the WebLogic domain (as in the Case 1 scenario) or
in the EIS security domain (as in the Case 2 scenario).

If the identity is defined in the EIS security domain, the WebLogic Connector container
must be able to map the flown-in principal to a principal defined in the WebLogic
domain. To support this scenario, WebLogic Server provides the ability to create an
inbound principal mapping between the EIS principal and the corresponding
WebLogic domain.

The following mappings can be created:

• Default mapping of EIS user names to either a specific WebLogic user, or the
WebLogic user anonymous

• A specific EIS user name to either a specific WebLogic user, or the WebLogic user
anonymous

• Default mapping of EIS group names to a WebLogic group name

• A specific EIS group name to a WebLogic group name

A principal name defined in an inbound principal mapping configuration must contain
at least one non-space character. A string that contains only space characters is not a

Chapter 9
Security Inflow

9-7

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196

valid principal name (and is not accepted by the WebLogic Server Administration
Console).

Note the following behavior regarding inbound principal mapping:

• Although JSR 322: Java EE Connector Architecture 1.6 allows a resource adapter
to pass any user and group combination to the container, Connector Architecture
1.6 also allows the container to apply security restrictions. In the case of WebLogic
Server, not all user and group combinations are valid: the WebLogic principals
specified in the mapping must currently be defined in the WebLogic security realm,
and the user must be defined in the WebLogic security realm as being a valid
member of the group specified in the mapping. This is a requirement imposed by
WebLogic Server.

For example, if a mapping specifies a particular user and group combination, and
either the user or the group is not defined in the WebLogic Server security realm,
the mapping is not valid. Additionally, if both the user and group are defined in the
security realm, but the user is not a member of the particular group specified in the
mapping, the mapping is not valid. When WebLogic Server determines that a
mapping is not valid, it throws an exception.

Note also that WebLogic Server does not validate users or groups at the time an
inbound principal mapping is configured. Because a security realm can be
modified after the resource adapter has been deployed, WebLogic principals
specified in an inbound principal mapping are validated only at run time.

• A flown-in identity cannot run as a principal (that is, a user or group) that is
mapped to an administrator role, such as Admin, AdminChannelUser, Deployer,
Operator, or Monitor.

• If no default inbound mapping is configured for an EIS user principal, and no
mapping specific to the EIS user is configured, the user is mapped to an
unauthenticated user.

• If no default inbound mapping is configured for a EIS group principal, and no
mapping specific to the EIS group is configured, the group principal is ignored.

• Inbound principal mappings can be configured after the resource adapter has
been deployed.

For information about how to create an inbound principal mapping using the WebLogic
Server Administration Console, see Create inbound principal mappings in Oracle
WebLogic Server Administration Console Online Help.

9.3.2 Security Inflow Callback Requirements
When a resource adapter flows in a identity that is used by the application server
through handling CallerPrincipalCallback, GroupPrincipalCallback, and
PasswordValidationCallback, JSR 322: Java EE Connector Architecture 1.6 does not
specify any restrictions how those callbacks may be combined. However, not all
combinations are valid in WebLogic Server Connector Architecture 1.6. The WebLogic
Connector container validates these callbacks according to the requirements
described in this section. You must design resource adapters so that they meet these
requirements when they pass callbacks to the WebLogic Connector container.
Otherwise, those callbacks are rejected.

WebLogic Server imposes the following requirements on callbacks passed to the
Connector container:

Chapter 9
Security Inflow

9-8

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00512
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

• If a resource adapter handles a PasswordValidationCallback, the adapter must
also handle a CallerPrincipalCallback. The WebLogic Security Service requires
that a caller principal that is established by means of a CallerPrincipalCallback
must match the user name that is authenticated by means of the
PasswordValidationCallBack.

• If a resource adapter handles a GroupPrincipalCallback, the adapter must also
handle a CallerPrincipalCallback.

• A resource adapter must not handle a PasswordValidationCallback in Case 2 (see
Section 16.4.4, Case 2: Identity Translated Between Security Domains, in JSR
322: Java EE Connector Architecture 1.6). Because the username and password
in the PasswordValidationCallback belong to the EIS security domain, the
application server (that is, WebLogic Server) cannot authenticate them.

9.3.3 Backward Compatibility with Connector Architecture 1.5 and 1.0
WebLogic Server allows a resource adapter to use a configured principal to execute
the Work.run() method. This principal can be configured in the WebLogic Server
Administration Console, as described in Configure security principals in Oracle
WebLogic Server Administration Console Online Help, or in the weblogic-ra.xml file
using the run-work-as-principal-name and default-principal-name.

The Work.run() method then executes using the principal, if configured, or anonymous,
by default, if this principal is not configured.

This mechanism provides a basic security configuration at the adapter level that
applies to all Work instances submitted by the adapter. However, other security
principals cannot be used selectively for different Work instances.

The security context feature in Connector Architecture 1.6 provides more flexibility by
allowing each Work instance to provide its own SecurityContext, allowing each Work
instance to be run under a different security principal.

Because the WebLogic Server Connector container is backward compatible with 1.0
and 1.5 adapters, note the following behavior when a resource adapter submits a Work
instance:

• If the Work instance is submitted without a SecurityContext, the Work instance uses
the principal defined in the run-work-as-principal-name and default-principal-name
elements in the weblogic-ra.xml file.

• If the Work instance is submitted with a SecurityContext, the Work instance runs
under the security principals that are defined according to the description of the
SecurityContext class in JSR 322: Java EE Connector Architecture 1.6. The
principals defined in the run-work-as-principal-name and default-principal-name
elements, if present, are ignored.

9.4 Security Policy Processing
A security policy is an association between a WebLogic resource and one or more
users, groups, or security roles and is designed to protect the WebLogic resource
against unauthorized access. JSR 322: Java EE Connector Architecture 1.6 defines
default security policies for resource adapters running in an application server. It also
defines how resource adapters can provide their own specific security policies
overriding the default. The weblogic.policy file that ships with WebLogic Server

Chapter 9
Security Policy Processing

9-9

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00505
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

establishes the default security policies as specified in the Java EE Connector
Architecture Specification.
If the resource adapter does not have a specific security policy defined, WebLogic
Server establishes the runtime environment for the resource adapter with the default
security policies specified in the weblogic.policy file, which conforms to the defaults
specified by the Java EE Connector Architecture Specification. If the resource adapter
has defined specific security policies, WebLogic Server establishes the runtime
environment for the resource adapter with a combination of the default security
policies for resource adapters and the specific policies defined for the resource
adapter. You define specific security policies for resource adapters using the security-
permission-spec element in the ra.xml deployment descriptor file.

For more information on security policy processing requirements, see the Security
Permissions section of Chapter 21, Runtime Environment, in JSR 322: Java EE
Connector Architecture 1.6. For more information about security policies and the
WebLogic security framework, see Security Policies in Securing Resources Using
Roles and Policies for Oracle WebLogic Server.

9.5 Configuring Security Identities for Resource Adapters
Security identities determine the security principals that can perform particular
resource adapter functions. In a WebLogic resource adapter, you can either have a
single security identity that can perform all functions, or separate identities for separate
classes of functions. You can define the following four types of security identities in the
weblogic-ra.xml deployment descriptor:

• default principal — Security principal that can perform all resource adapter tasks.

• run-as principal — Security principal used by calls from the connector container
into the resource adapter code during connection requests.

• run-work-as principal — Security principal used for Work instances launched by
the resource adapter.

• manage-as principal — Security principal used for resource adapter management
tasks, such as startup, shutdown, testing, and transaction management.

Example 9-3 is an excerpt from a weblogic-ra.xml deployment descriptor that
illustrates how you would configure all four of these available security identities for
performing different resource adapter tasks.

Example 9-3 Configuring All Security Identities for Resource Adapters

<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
 <jndi-name>900blackbox-notx</jndi-name>
 <security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
 <run-as-principal-name>
 <principal-name>raruser</principal-name>
 </run-as-principal-name>
 <run-work-as-principal-name>
 <principal-name>workuser</principal-name>
 </run-work-as-principal-name>
 <manage-as-principal-name>
 <principal-name>raruser</principal-name>
 </manage-as-principal-name>

Chapter 9
Configuring Security Identities for Resource Adapters

9-10

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

 </security>
</weblogic-connector>

Example 9-4 illustrates how you could use the default-principal-name element to
configure a single default principal security identity for performing all resource adapter
tasks.

Example 9-4 Configuring a Single Default Principal Identity for a Resource
Adapter

<weblogic-connector xmlns="http://xmlns.oracle.com/weblogic/weblogic-connector">
 <jndi-name>900blackbox-notx</jndi-name>
 <security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
 </security>
</weblogic-connector>

For more information on setting security identity properties, see security.

9.5.1 default-principal-name: Default Identity
You can define a single security identity that can be used for all resource adapter
purposes using the default-principal-name element. If values are not specified for run-
as-principal-name, manage-as-principal-name, and run-work-as-principal-name, they
default to the value set for default-principal-name.

The value of default-principal-name can be set to a defined WebLogic Server user
name such as system or to use an anonymous identity (which is the equivalent of
having no security identity) as shown inExample 9-5

For example, you can create a single security identity that makes all calls from
WebLogic Server into the resource adapter and manages all resource adapter
management tasks with a default system identity as shown in Example 9-6:

Example 9-5 Using a Defined WebLogic Server Name

<security>
 <default-principal-name>
 <principal-name>system</principal-name>
 </default-principal-name>
</security>

You can set the default-principal-name element to anonymous as follows:

Example 9-6 Setting Up an Anonymous Identity

<security>
 <default-principal-name>
 <use-anonymous-identity>true</use-anonymous-identity>
 </default-principal-name>
</security>

Chapter 9
Configuring Security Identities for Resource Adapters

9-11

9.5.2 manage-as-principal-name: Identity for Running Management
Tasks

You can define a management identity that is used for running various resource
adapter management tasks such as startup, shutdown, testing, shrinking, and
transaction management using the manage-as-principal-name element.

As with default-principal-name, the value of manage-as-principal-name can be set to a
defined WebLogic Server user name such as system or to use an anonymous identity
(which is the equivalent of having no security identity). If you do not set up a value for
the manage-as-principal-name element, it defaults to the value set up for default-
principal-name. If no value is set up for default-principal-name, it defaults to the
anonymous identity.

Example 9-7 illustrates how you can configure a resource adapter to run management
calls using the WebLogic Server-defined user name system.

Example 9-7 Using a Defined WebLogic Server Name

<security>
 <manage-as-principal-name>
 <principal-name>system</principal-name>
 </manage-as-principal-name>
</security>

Example 9-8 illustrates how you can configure a resource adapter to run management
calls using an anonymous identity.

Example 9-8 Setting Up an Anonymous Identity

<security>
 <manage-as-principal-name>
 <use-anonymous-identity>true</use-anonymous-identity>
 </manage-as-principal-name>
</security>

9.5.3 run-as-principal-name: Identity Used for Connection Calls from
the Connector Container into the Resource Adapter

You define the principal name that should be used by all calls from the connector
container into the resource adapter code during connection requests in the run-as-
principal-name element. This principal name is used, for example, when resource
adapter objects such as the ManagedConnectionFactory are instantiated - in other words,
when the WebLogic Server connector container makes calls to the resource adapter,
the identity defined in the run-as-principal-name element is used. This may include
calls as part of either inbound or outbound requests or setup, or as part of initialization
not specific to either inbound or outbound resource adapters (for example,
ResourceAdapter.start()).

The value of the run-as-principal-name element can be set in one of three ways:

• To a defined WebLogic Server name

• To use an anonymous identity

• To use the security identity of the calling code.

Chapter 9
Configuring Security Identities for Resource Adapters

9-12

If the value of the run-as-principal-name element is not defined, it defaults to the value
of the default-principal-name element. If the default-principal-name element is not
defined, it defaults to the identity of the requesting caller.

9.5.4 run-work-as-principal-name: Identity Used for Performing
Resource Adapter Management Tasks

For inbound resource adapters, Oracle recommends that you use Work instances to
execute inbound requests. To establish the security identity for Work instances
launched by a resource adapter, you specify this value using the run-work-as-
principal-name element. However, Work instances can also be created as part of
outbound resource adapters to execute outbound requests. If an adapter does not use
Work instances to handle inbound requests, then inbound requests are either run with
no security context established (anonymous) or the resource adapter can make
WebLogic Server-specific calls to authenticate as a WebLogic Server user. In this
case, the WebLogic Server user security context is used.

The value of the run-work-as-principal-name element can be set in one of three ways:

• To a defined WebLogic Server name

• To use an anonymous identity

• To use the security identity of the calling code

If the value of the run-work-as-principal-name element is not defined, it defaults to the
value of the default-principal-name element. If the default-principal-name element is
not defined, it defaults to the identity of the requesting caller.

To run work using the requesting caller's identity, you specify the run-work-as-
principal-name element as shown in Example 9-9:

Example 9-9 Using the Requesting Caller's Identity

<security>
 <run-work-as-principal-name>
 <use-caller-identity>true</use-caller-identity>
 </run-work-as-principal-name>
</security>

9.6 Configuring Connection Factory-Specific Authentication
and Re-authentication Mechanisms

You specify authentication and re-authentication mechanisms for a resource adapter
in the Java EE standard resource adapter deployment descriptor, ra.xml. These
settings apply to all outbound connection factories.

• The authentication-mechanism element specifies an authentication mechanism to
be used by all outbound connection factories.

• The reauthentication-support element specifies whether outbound connection
factories support re-authentication of existing Managed-Connection instances.
This is intended to be the default value for all connection factories of the resource
adapter.

You can override the authentication-mechanism and reauthentication-support values in
the ra.xml deployment descriptor by specifying them in the weblogic-ra.xml

Chapter 9
Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

9-13

deployment descriptor. Doing so allows you to apply these settings to a specific
connection factory rather than to all connection factories. See authentication-
mechanism and reauthentication-support in Table A-18.

Chapter 9
Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

9-14

10
Packaging and Deploying Resource
Adapters

To deploy a WebLogic resource adapter, you first package it in a resource adapter
archive (RAR) file, and them deploy it in either an exploded directory format or as an
archive file. There are requirements for creating the RAR file depending on several
factors, such as whether the resource adapter is deployed standalone or with a Java
EE application EAR, and also considerations regarding how you want to deploy it.

• Packaging Resource Adapters

• Deploying Resource Adapters

Deploying applications on WebLogic Server is covered in more detail in Deploying and
Packaging from a Split Development Directory in Developing Applications for Oracle
WebLogic Server.

10.1 Packaging Resource Adapters
For production and development purposes, Oracle recommends packaging your
assembled resource adapter (RAR) as part of an enterprise application (EAR). There
are several factors to consider when packaging resources adapters, such as the
packaging directory structure, dependencies on platform-specific native libraries, and
more.

10.1.1 Packaging Directory Structure
A resource adapter is a WebLogic Server component contained in a resource adapter
archive (RAR) within the applications/ directory. The deployment process begins with
the RAR or a deployment directory, both of which contain the compiled resource
adapter interfaces and implementation classes created by the resource adapter
provider. Regardless of whether the compiled classes are stored in a RAR or a
deployment directory, they must reside in subdirectories that match their Java package
structures.

Resource adapters use the same directory format, whether the resource adapter is
packaged in an exploded directory format or as a RAR. A typical directory structure of
a resource adapter is shown in Example 10-1:

Example 10-1 Resource Adapter Directory Structure

/META-INF/ra.xml
/META-INF/weblogic-ra.xml
/META-INF/MANIFEST.MF (optional)
/images/ra.jpg
/readme.html
/eis.jar
/utilities.jar
/windows.dll
/unix.so

10-1

10.1.2 Packaging Considerations
The following are packaging requirements for resource adapters:

• Deployment descriptors (ra.xml and weblogic-ra.xml) must be in a directory called
META-INF.

• An optional MANIFEST.MF also resides in META-INF. A manifest file is automatically
generated by the JAR tool and is always the first entry in the JAR file. By default, it
is named META-INF/MANIFEST.MF. The manifest file is the place where any meta-
information about the archive is stored.

• A resource adapter deployed in WebLogic Server supports the class-path entry in
MANIFEST.MF to reference a class or resource such as a property.

• The resource adapter can contain multiple JARs that contain the Java classes and
interfaces used by the resource adapter. (For example, eis.jar and
utilities.jar.) Ensure that any dependencies of a resource adapter on platform-
specific native libraries are resolved.

• The resource adapter can contain native libraries required by the resource adapter
for interacting with the EIS. (For example, windows.dll and unix.so.)

• The resource adapter can include documentation and related files not directly
used by the resource adapter. (For example, readme.html and /images/ra.jpg.)

• When a standalone resource adapter RAR is deployed, the resource adapter must
be made available to all Java EE applications in the application server.

• When a resource adapter RAR packaged within a Java EE application EAR is
deployed, the resource adapter must be made available only to the Java EE
application with which it is packaged. This specification-compliant behavior may be
overridden if required.

10.1.3 Packaging Limitation
If you reload a standalone resource adapter without reloading the client that is using it,
the client may cease to function properly. This limitation is due to JSR 322: Java EE
Connector Architecture 1.6 limitation of not providing a remotable interface.

10.1.4 Packaging Resource Adapter Archives (RARs)
After you stage one or more resource adapters in a directory, you package them in a
Java Archive (JAR) with a .rar file extension.

Note:

Once you have assembled the resource adapter, Oracle recommends that you
package it as part of an enterprise application. This allows you to take
advantage of the split development directory structure, which provides a
number of benefits over the traditional single directory structure. See Creating a
Split Development Directory Environment in Developing Applications for Oracle
WebLogic Server.

Chapter 10
Packaging Resource Adapters

10-2

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top
level of the staging directory.

4. Create a META-INF subdirectory in the staging directory.

5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note:

Refer to the following document for information about the ra.xml document
type definition: http://java.sun.com/xml/ns/javaee/connector_1_6.xsd.

6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and
add entries for the resource adapter.

Note:

Refer to weblogic-ra.xml Schema for information on the contents of the
weblogic-ra.xml file.

7. When the resource adapter classes and deployment descriptors are set up in the
staging directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebLogic Server or
package in an enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the staging-
dir directory so that the directory paths recorded in the JAR are relative to the
directory where you staged the resource adapters.

For more information on this topic, see Creating and Configuring Resource Adapters:
Main Steps.

10.2 Deploying Resource Adapters
The deployment of a resource adapter is similar to the deployment of web
applications, EJBs, and Enterprise Applications. As with these deployment units, you
can deploy a resource adapter in an exploded directory format or as an archive file.
WebLogic Server also provides a number of deployment options to choose from,
including whether to use the production redeployment feature, which allows you to
redeploy a new version of an application alongside an older version of the same
application and thereby eliminate downtime.

Chapter 10
Deploying Resource Adapters

10-3

http://java.sun.com/xml/ns/javaee/connector_1_6.xsd

10.2.1 Deployment Options
You can deploy a standalone resource adapter (or a resource adapter packaged as
part of an enterprise application) using any one of these tools:

• WebLogic Server Administration Console

• weblogic.Deployer tool

• wldeploy Ant task

• WebLogic Scripting Tool (WLST)

For information about these application deployment techniques, see Deploying
Applications and Modules with weblogic.deployer in Deploying Applications to Oracle
WebLogic Server.

You can use a deployment plan to deploy a resource adapter deployment. For a
resource adapter, a WebLogic Server deployment plan is an optional XML document
that resides outside of the RAR and configures the resource adapter for deployment to
a specific WebLogic Server environment. A deployment plan works by setting
deployment property values that would normally be defined in the resource adapter's
deployment descriptors, or by overriding property values that are already defined in
the deployment descriptors. For information on deployment plans, see Configuring
Applications for Production Deployment in Deploying Applications to Oracle WebLogic
Server.

You can also deploy a resource adapter using auto-deployment. This may be useful
during development and early testing. For more information, see Auto-Deploying
Applications in Development Domains in Deploying Applications to Oracle WebLogic
Server

10.2.2 Resource Adapter Deployment Names
When you deploy a resource adapter archive (RAR) or deployment directory, you must
specify a name for the deployment unit, for example, myResourceAdapter. This name
provides a shorthand reference to the resource adapter deployment that you can later
use to undeploy or update the resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a
deployment name that matches the path and filename of the RAR or deployment
directory. You can use this assigned name to undeploy or update the resource adapter
after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the
server is rebooted. Undeploying a resource adapter does not remove the associated
deployment name; you can use the same deployment name to redeploy the resource
adapter at a later time.

10.2.3 Production Redeployment
Using WebLogic Server's production redeployment feature, you can redeploy a new
version of a WebLogic Server application alongside an older version of the same
application. By default, WebLogic Server immediately routes new client requests to the
new version of the application, while routing existing client connections to the older
version. After all clients using the older application version complete their work,

Chapter 10
Deploying Resource Adapters

10-4

WebLogic Server retires the older application so that only the new application version
is active.

10.2.3.1 Suspendable Interface and Production Redeployment
Typically, a resource adapter bean implements the
javax.resource.spi.ResourceAdapter interface. This interface defines start() and
stop() methods. This type of resource adapter is not eligible for production
redeployment. Resource adapters connect to one or more EISes for incoming/
outgoing communication. All communication is performed in a resource adapter-
proprietary way with no knowledge of the application server. If on-the-fly production
redeployment is attempted, the application server can only provide notifications to the
resource adapter to manage the migration of connections from the existing resource
adapter to a new instance. However, the resource adapter can implement the
Suspendable interface, which provides the capability to allow resource adapters to
participate in production redeployment. For information about implementing the
Suspendable interface, see Suspending and Resuming Resource Adapter Activity.

10.2.3.2 Production Redeployment Requirements
All of the following requirements must be met by both the old and new version of the
resource adapter in order for production redeployment to work; otherwise, the
redeployment fails.

• The resource adapter must be based on Connector Architecture 1.7. (Support for
production redeployment of 1.0 resource adapters is not available.)

• The resource adapter must implement the Suspendable interface (see
Example 4-3).

• The resource adapter must be packaged inside an enterprise application (EAR
file). Production redeployment of standalone resource adapters is not supported.

• The Suspendable.supportsVersioning() method must return true when invoked by
WebLogic Server.

• The enable-access-outside-app element in the weblogic-ra.xml descriptor must be
set to false.

10.2.3.3 Production Redeployment Process
The following process assumes the older version of the resource adapter is deployed
and running. It also assumes that the older version (named old) as well as the newer
version (named new) of the resource adapter meet all of the requirements mentioned in
Production Redeployment Requirements, as well as the application requirements
described in Redeploying Applications in a Production Environment in Deploying
Applications to Oracle WebLogic Server.

The following calls are made into the resource adapters during production
redeployment:

1. WebLogic Server calls new.init(old, null) to inform the new resource adapter
that it is replacing the old resource adapter.

2. WebLogic Server calls old.startVersioning(new, null) to inform the old resource
adapter to start its production redeployment operation with the new resource
adapter.

Chapter 10
Deploying Resource Adapters

10-5

3. WebLogic Server calls new.start(extendedBootstrapContext). See Extended
BootstrapContext.

4. When the old resource adapter is finished (meaning it has succeeded in migrating
all clients and inbound connections to the new resource adapter), it calls
(ExtendedBootstrapContext)bsCtx.complete(). This informs WebLogic Server that it
is safe to undeploy the old resource adapter.

5. When undeployment occurs, WebLogic Server calls old.stop() and production
redeployment is complete.

The calls to new.init() and old.startVersioning() give the old and new resource
adapters an opportunity to migrate inbound or outbound communications from the old
to the new resource adapter. How this is done is up to the individual resource adapter
developer.

10.2.4 Deploying a Resource Adapter Configured with Multiple
Outbound Connection Pools

By default, when deploying a resource adapter that is configured with multiple
outbound connection pools, the adapter deployment fails if a failure occurs in any
connection pool. However, a deployment option is available that enables deployment
to succeed, with the failed connection pools isolated from the healthy ones. This
enables you to isolate, diagnose, and repair the failed connection pools and
dynamically update the deployment without the need to redeploy the whole adapter.

To configure resource adapter deployment to succeed if a failure occurs with an
outbound connection pool, you can do either of the following:

• Using the WebLogic Server Administration Console, make sure the Deploy As A
Whole flag is not checked. This option is available from the Resource Adapter >
Configuration > General page. See Configure resource adapter properties in the
Oracle WebLogic Server Administration Console Online Help.

• Set the deploy-as-a-whole element in the weblogic-ra.xml file to false.

Chapter 10
Deploying Resource Adapters

10-6

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00503

A
weblogic-ra.xml Schema

You can configure WebLogic Server-specific deployment descriptor elements inside
the weblogic-ra.xml file. The schema for weblogic-ra.xml is http://xmlns.oracle.com/
weblogic/weblogic-connector/1.5/weblogic-connector.xsd. If your resource adapter
archive (RAR) does not contain a weblogic-ra.xml deployment descriptor, WebLogic
Server automatically selects the default values of the deployment descriptor elements.

• weblogic-connector

• work-manager

• connector-work-manager

• security

• properties

• admin-objects

• outbound-resource-adapter

A.1 weblogic-connector
The weblogic-connector element is the root element of the WebLogic-specific
deployment descriptor for the deployed resource adapter. You can define the following
elements within the weblogic-connector element.

Table A-1 weblogic-connector subelements

Element Required/Optional Description

native-libdir Required if native
libraries are present.

Specifies the directory where all the native libraries exist
that are required by the resource adapter.

jndi-name Required only if a
resource adapter
bean is specified.

Specifies the JNDI name for the resource adapter. The
resource adapter bean is registered into the JNDI tree
with this name. It is not a required element if no
resource adapter bean is specified. It is not a functional
element if a JNDI name is specified for a resource
adapter without a resource adapter bean.

A-1

http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

Table A-1 (Cont.) weblogic-connector subelements

Element Required/Optional Description

enable-access-outside-app Optional As stated byJSR 322: Java EE Connector Architecture
1.6 , if the resource adapter is packaged within an
application (in other words, within an EAR), only
components within the application should have access
to the resource adapter. This element allows you to
override this functionality.

Note: This element does not apply for standalone
resource adapters.

Default Value: false

Note: When set to false, the resource adapter can only
be accessed by clients that reside within the same
application in which the resource adapter resides.

For version 1.0 resource adapters (supported in this
release), the default value for this element is set to true.

enable-global-access-to-
classes

Optional When set to true, the resource adapter allows global
access to its classes, and the adapter's classes are
loaded by the WebLogic Server system classpath
classloader directly so that these classes can be
accessed by all applications.

When set to true, the EE compliant setting of resource
adapter in the domain configuration is ignored. See
About Resource Adapter Classes in Developing
Applications for Oracle WebLogic Server.
The default value is false, in which case the adapter's
classes are loaded by a classloader that is a child of the
EAR's application classloader.

This value normally should be set to true for standalone
adapters.

When set to true, you must restart WebLogic Server if
you change the adapter's classes and want to redeploy
the adapter.

deploy-as-a-whole Optional When set to true, the resource adapter deployment fails
if any error occurs, such as a failure with an outbound
connection pool or an admin object bean.

When set to false, the resource adapter deployment
succeeds, but in a HEALTH_CRITICAL state, if an error
occurs when creating or configuring at least one
outbound connection pool. This setting enables you to
isolate, diagnose, and correct a failed outbound
connection pool without needing to redeploy the
resource adapter. If any other error occurs during
deployment, such as the inability to parse or validate the
ra.xml or weblogic-ra.xml files, a ResourceAdapter
bean failure, or an admin object bean failure, the
resource adapter deployment fails.

Default value: true

Appendix A
weblogic-connector

A-2

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Table A-1 (Cont.) weblogic-connector subelements

Element Required/Optional Description

work-manager Optional This complex element is used to specify all the
configurable elements for creating the Work Manager
that will be used by the resource adapter bean. The
work-manager element is imported from the weblogic-
javaee.xsd schema.

The Work Manager dynamically adjusts the number of
work threads to avoid deadlocks and achieve optimal
throughput subject to concurrency constraints. It also
meets objectives for response time goals, shares, and
priorities.

For subelements of work-manager, see work-manager .

connector-work-manager Optional This complex element is used to specify all the
configurable elements for the Connector Work Manager
for this adapter module itself.

This element provides configurations that are not
supported by the standard Work Manager.

For subelements of connector-work-manager, see
connector-work-manager .

security Optional This complex element is used to specify all the security
parameters for the operation of the resource adapter.

See security, for information on the security defaults that
will be taken by the connector container.

properties Optional This complex element is used to override any properties
that have been specified for the resource adapter bean
in the ra.xml file.

For subelements of properties, see properties.

Appendix A
weblogic-connector

A-3

Table A-1 (Cont.) weblogic-connector subelements

Element Required/Optional Description

admin-objects Optional This complex element defines all of the admin objects in
a resource adapter. As with the outbound-resource-
adapter complex element (see outbound-resource-
adapter), the admin-objects complex element has four
hierarchical property levels that specify the configuration
scope:

1. Global level — at this level, you specify parameters
that apply to all admin objects in the resource
adapter; you do so using the default-properties
element. See Table A-14.

2. Group level — at this level, you specify parameters
that apply to all admin objects belonging to a
particular admin object group specified in the
ra.xml deployment descriptor; you do so using the
admin-object-group element. The properties
specified in the group override any parameters that
are specified at the global level. See admin-object-
group.

3. Instance level — under each admin object group,
you can use the admin-object-instance element
to specify admin object instances. These
correspond to the admin object instances for the
resource adapter. You can specify properties at the
instance level and override those properties
provided in the group and global levels. See admin-
object-instance.

For admin-objects subelements, see admin-objects .

Appendix A
weblogic-connector

A-4

Table A-1 (Cont.) weblogic-connector subelements

Element Required/Optional Description

outbound-resource-adapter Optional This complex element is used to describe the outbound
components of a resource adapter. As with the admin-
objects complex element, this element has three
hierarchical property levels that specify the configuration
scope for defining outbound connection pools:

1. Global level — at this level, you specify parameters
that apply to all outbound connection pools in the
resource adapter using the default-connection-
properties element. See default-connection-
properties .

2. Group level — at this level, you specify parameters
that apply to all outbound connections belonging to
a particular connection factory specified in the
ra.xml deployment descriptor using the
connection-definition-group element. A one-to-
one correspondence exists from a connection
factory in ra.xml to a connection definition group in
weblogic-ra.xml. The properties specified in a
group override any parameters specified at the
global level. See connection-definition-group.

3. The instance level — under each connection
definition group, you can specify connection
instances. These correspond to the individual
connection pools for the resource adapter.
Parameters can be specified at this level too and
these override those provided at the group and
global levels. See connection-instance.

For outbound-resource-adapter subelements, see
outbound-resource-adapter .

A.2 work-manager
The work-manager element is a complex element that is used to specify all the
configurable elements for creating the Work Manager that will be used by the resource
adapter bean. The work-manager element is imported from the weblogic-javaee.xsd
schema. The following subelements can be configured in the work-manager element.

Appendix A
work-manager

A-5

Table A-2 work-manager subelements

Element Required/
Optional

Description

name Required Specifies the name of the Work Manager.

JSR 322: Java EE Connector Architecture 1.6
describes how a resource adapter can submit
work threads to the application server. These
work threads are managed by the WebLogic
Server Work Manager. The Work Manager
dynamically adjusts the number of work
threads to avoid deadlocks and achieve
optimal throughput subject to concurrency
constraints. It also meets objectives for
response time goals, shares, and priorities.

response-time-request-class
fair-share-request-class
context-request-class
request-class-name

Optional A work-manager element can include one and
only one of the following four elements:

response-time-request-class - Defines the
response time request class for the
application. Response time is defined with
attribute goal-ms in milliseconds. The
increment is ((goal - T) Cr)/R, where T is the
average thread use time, R the arrival rate,
and Cr a coefficient to prioritize response time
goals over fair shares.

fair-share-request-class - Defines the fair
share request class. Fair share is defined with
attribute percentage of default share.
Therefore, the default is 100. The increment is
Cf/(P R T), where P is the percentage, R the
arrival rate, T the average thread use time,
and Cf a coefficient for fair shares to prioritize
them lower than response time goals.

context-request-class - Defines the context
class. Context is defined with multiple cases
mapping contextual information, like current
user or its role, cookie, or work area fields to
named service classes.

request-class-name - Defines the request
class name.

min-threads-constraint
min-threads-constraint-name

Optional You can choose between the following two
elements:

min-threads-constraint - Used to guarantee
a number of threads the server allocates to
requests of the constrained work set to avoid
deadlocks. The default is zero. A min-threads
value of one is useful, for example, for a
replication update request, which is called
synchronously from a peer.

min-threads-constraint-name - Defines a
name for the min-threads-constraint
element.

Appendix A
work-manager

A-6

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Table A-2 (Cont.) work-manager subelements

Element Required/
Optional

Description

max-threads-constraint
max-threads-constraint-name

Optional You can choose between the following two
elements:

max-threads-constraint - Limits the number
of concurrent threads executing requests from
the constrained work set. The default is
unlimited. For example, consider a constraint
defined with maximum threads of 10 and
shared by 3 entry points. The scheduling logic
ensures that not more than 10 threads are
executing requests from the three entry points
combined.

max-threads-constraint-name - Defines a
name for the max-threads-constraint
element.

capacity
capacity-name

Optional You can choose between the following two
elements:

capacity - Constraints can be defined and
applied to sets of entry points, called
constrained work sets. The server starts
rejecting requests only when the capacity is
reached. The default is zero. Note that the
capacity includes all requests, queued or
executing, from the constrained work set. This
constraint is primarily intended for subsystems
like JMS, which do their own flow control. This
constraint is independent of the global queue
threshold.

capacity-name - Defines a name for the
capacity element.

A.3 connector-work-manager
The connector-work-manager element is a complex element that is used to specify all
the configurable elements for the Connector Work Manager for the resource adapter
module. This element provides configurations that are not supported by the standard
WebLogic Work Manager. The following subelement can be configured in the
connector-work-manager element.

Appendix A
connector-work-manager

A-7

Table A-3 connector-work-manager subelement

Element Required/
Optional

Description

max-concurrent-long-running-
requests

Optional Specifies the maximum number of concurrent long-running
Work instance requests allowed for a resource adapter
instance.

Because each long-running Work instance request executes in
its own thread, an excessive number of long-running Work
requests can have a negative affect on server performance
and stability. A resource adapter typically needs only a few
long-running Work requests, such as periodically listening to a
socket or scheduling other Work instances. New long-running
Work request submissions are rejected if the number of
currently active long-running Work requests exceeds the
specified limit.

Default value: 10

A.4 security
The security complex element contains default security information that can be
configured for the connector container. For more information, see Configuring Security
Identities for Resource Adapters.

Table A-4 security subelements

Element Required/
Optional

Description

default-principal-name
Optional Specifies the default secure ID to be used for calls into the

resource adapter.

If this value is not specified, the default is the anonymous
identity, which is the same as no security identity.

See default-principal-name for subelements of this element.

manage-as-principal-name
Optional Specifies the secure ID to be used for running various

resource adapter management tasks, including startup,
shutdown, testing, shrinking, and transaction management.

If not specified, it defaults to the default-principal-name
value. If default-principal-name is not specified, it defaults
to the anonymous identity.

See manage-as-principal-name for subelements of this
element.

run-as-principal-name
Optional Specifies the secure ID to be used by all calls from the

connector container into the resource adapter code during
connection requests. (This element currently applies only to
outbound functions.)

If not specified, it defaults to the default-principal-name
value. If default-principal-name is not specified, it uses the
identity of the requesting caller.

See run-as-principal-name for subelements of this element.

Appendix A
security

A-8

Table A-4 (Cont.) security subelements

Element Required/
Optional

Description

run-work-as-principal-name
Optional Specifies the secure ID to be used to run all work instances

started by the resource adapter.

If not specified, it defaults to the default-principal-name
value. If default-principal-name is not specified, it uses the
identity that was used to start the work.

See run-work-as-principal-name for subelements of this
element.

security-work-context
Optional This complex element specifies all security contextual

parameters of the WorkContext.

Two choices related to establishing the caller identity for a
work instance are described in JSR 322: Java EE Connector
Architecture 1.6:

• Case 1: The resource adapter flows an identity into the
application server's security policy domain. In this case,
the application server may just use the initiating principal,
flown-in from the resource adapter, as the caller principal
in the security context that the Work instance executes as.

• Case 2: The resource adapter flows in an identity
belonging to the EIS security domain. The resource
adapter establishes a connection to the EIS and executes
a Work instance in the context of an EIS identity. In this
case, the initiating or caller principal does not exist in the
application server's security domain. A translation from
one domain to the other is required to be performed. That
is, the user or group name in the EIS security domain is
mapped to a corresponding user or group name in the
application server's security domain. If no such a user or
group mapping is found, the default mapping is applied.

The element inbound-mapping-required specifies whether
the flown in identity translation from the EIS security domain to
the application server's security domain is required.

See security-work-context, for subelements of this element.

A.4.1 default-principal-name
The default-principal-name element contains the following subelements.

Table A-5 default-principal-name subelements

Element Required/
Optional

Description

use-anonymous-identity
Required Specifies that the anonymous identity should be

used.

principal-name
Required Specifies that the principal name should be used.

This should match a defined WebLogic Server user
name.

Appendix A
security

A-9

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

A.4.2 manage-as-principal-name
The manage-as-principal-name element contains the following subelements.

Table A-6 manage-as-principal-name subelements

Element Required/
Optional

Description

use-anonymous-identity
Required Specifies that the anonymous identity should be

used.

principal-name
Required Specifies that the principal name should be used.

This should match a defined WebLogic Server user
name.

A.4.3 run-as-principal-name
The run-as-principal-name element contains the following subelements.

Table A-7 run-as-principal-name subelements

Element Required/
Optional

Description

use-anonymous-identity
Required Specifies that the anonymous identity should be

used.

principal-name
Required Specifies that the principal name should be used.

This should match a defined WebLogic Server user
name.

use-caller-identity
Required Specifies that the caller's identity should be used.

A.4.4 run-work-as-principal-name
The run-work-as-principal-name element contains the following subelements.

Table A-8 run-work-as-principal-name subelements

Element Required/
Optional

Description

use-anonymous-identity
Required Specifies that the anonymous identity should be

used.

principal-name
Required Specifies that the principal name should be used.

This should match a defined WebLogic Server user
name.

use-caller-identity
Required Specifies that the caller's identity should be used.

Appendix A
security

A-10

A.4.5 security-work-context
The security-work-context element contains the following subelements.

Table A-9 security-work-context subelements

Element Required/
Optional

Description

inbound-mapping-required
Optional The default value is false, which means Case 1. All caller-

principal-mapping and group-principal-mapping
subelements are ignored.

If set to true, it means Case 2. All caller-principal-
mapping and group-principal-mapping elements are used to
determine the correct mapping from the EIS security domain
to the WebLogic domain.

Default value: false

caller-principal-default-
mapped

Optional Specifies the default mapping for EIS user names to either a
specific WebLogic user name or the WebLogic user
anonymous.

That is, if no WebLogic user name is found for an EIS user,
this default mapping is used. See caller-principal-default-
mapped, for subelements of this element.

caller-principal-mapping
Optional Specifies the mapping of an EIS user name to either a specific

WebLogic user name or the WebLogic anonymous identity.
There may be zero or more caller-principal-mapping
elements specified in weblogic-ra.xml.

See caller-principal-mapping, for subelements of this element.

group-principal-default-
mapped

Optional Specifies the default mapping for EIS group names to a
specific WebLogic group name.

That is, if no WebLogic group name is found for an EIS group,
this default mapping is used.

group-principal-mapping
Optional Specifies the mapping of an EIS group name to specific

WebLogic group name. There may be zero or more group-
principal-mapping elements specified in weblogic-ra.xml.

See group-principal-mapping, for subelements of this
mapping.

A.4.5.1 caller-principal-default-mapped
The caller-principal-default-mapped element contains the following subelements.

Table A-10 caller-principal-default-mapped subelements

Element Required/
Optional

Description

use-anonymous-identity
Required Specifies that the WebLogic anonymous user

identity should be used. Note that you can choose
either use-anonymous-identity or principal-
name, but not both.

Appendix A
security

A-11

Table A-10 (Cont.) caller-principal-default-mapped subelements

Element Required/
Optional

Description

principal-name
Required Specifies that the principal name should be used.

This should match a WebLogic user name defined
in the WebLogic security realm.

A.4.5.2 caller-principal-mapping
The caller-principal-mapping complex element is used to specify a mapping from an
EIS group name to WebLogic group name. It contains the following subelements.

Table A-11 caller-principal-mapping subelements

Element Required/
Optional

Description

eis-caller-principal
Required Specifies an EIS user principal name.

mapped-caller-principal
Required Specifies either the mapped WebLogic user

principal name or the anonymous user identity (but
not both).

A.4.5.3 group-principal-mapping
The group-principal-mapping element contains the following subelements.

Table A-12 group-principal-mapping subelements

Element Required/
Optional

Description

eis-group-principal
Required Specifies an EIS group principal name.

mapped-group-principal
Required Specifies the mapped WebLogic group principal

name.

A.5 properties
The properties element, a subelement of weblogic-connector, is a container for
properties specified for the resource adapter bean in ra.xml. It holds one more or more
property elements.

You define property elements within the properties element as follows.

Appendix A
properties

A-12

Table A-13 properties subelements

Element Required/
Optional

Description

property
Required The property element is used to override a

property that has been specified for the resource
adapter bean in the ra.xml file.

It holds two subelements:

name - Specifies the same name as the config-
property-name element (a subelement of config-
property in the ra.xml deployment descriptor).
Setting this parameter causes the associated
config-property-value element in ra.xml to be
overridden. This is a required element.

value - Specifies the value that overrides config-
property-value element (a subelement of config-
property in the ra.xml deployment descriptor).
This is an optional element.

A.6 admin-objects
The admin-objects complex element defines all of the admin objects in the resource
adapter. As with the outbound-resource-adapter complex element, the admin-objects
complex element has three hierarchical property levels that you can specify.
The admin-objects element is a sub-element of the weblogic-connector element. You
can define the following elements within the admin-objects element.

Table A-14 admin-objects subelements

Element Required/
Optional

Description

default-properties
Optional Specifies the default properties that apply to all

admin objects (at the global level) in the resource
adapter.

The default-properties element can contain one
or more property elements, each holding a name
and value pair. See properties .

admin-object-group
One or more Specifies the default parameters that apply to all

admin objects belonging to a particular admin
object group specified in the ra.xml deployment
descriptor. The properties specified in the group
override any parameters that are specified at the
global level.

For admin-object-group subelements, see admin-
object-group .

A.6.1 admin-object-group
The admin-object-group element is used to define an admin object group. At the group
level, you specify parameters that apply to all admin objects belonging to a particular

Appendix A
admin-objects

A-13

admin object group specified in the ra.xml deployment descriptor. The properties
specified in the group override any parameters that are specified at the global level.

The admin-object-interface element (a subelement of the admin-object-group element)
serves as a required unique element (a key) to each admin-object-group. There must
be a one-to-one relationship between the weblogic-ra.xml admin-object-interface
element and the ra.xml adminobject-interface element.

The admin-object-group element is a sub-element of the weblogic-connector element.
You can define the following elements within the admin-object-group element

Table A-15 admin-object-group

Element Required/
Optional

Description

admin-object-interface
Required The admin-object-interface element serves as a

required unique element (a key) to each admin-
object-group. There must be a one-to-one
relationship between the weblogic-ra.xml admin-
object-interface element and the ra.xml
adminobject-interface element.

admin-object-class
Required in
1.6 adapters

The combination of the admin-object-interface
element and the admin-object-class element
serves as a required unique element (a key) to
each admin-object-group. There must be a one-
to-one relationship between the following two pairs:

• The admin-object-interface and admin-
object-class element pair defined in
weblogic-ra.xml

• admin-object-interface and admin-object-
class element pair defined in ra.xml

default-properties
Optional Specifies all the default properties that apply to all

admin objects in this admin object group.

The default-properties element can contain one
or more property elements, each holding a name
and value pair. See properties.

admin-object-instance
One or more Specifies one or more admin object instances

within the admin object group, corresponding to the
admin object instances for the resource adapter.
You can specify properties at the instance level and
override those provided in the group and global
levels. For subelements, see admin-object-
instance.

A.6.1.1 admin-object-instance
You can define the following subelements under admin-object-instance.

Appendix A
admin-objects

A-14

Table A-16 admin-object-instance subelements

Element Required/
Optional

Description

jndi-name
Required The JNDI name used to define the reference name

for the connection instance.

The connection pool is bound into a JNDI that
clients outside the application can see.

Note: The enable-access-outside-app element
must be set to true.

properties
Optional Defines all the properties that apply to the admin

object instance.

The properties element can contain one or more
property elements, each holding a name and value
pair. See properties.

A.7 outbound-resource-adapter
The outbound-resource-adapter element is a sub-element of the weblogic-connector
element. You can define the following elements within the outbound-resource-adapter
element.

Table A-17 outbound-resource-adapter subelements

Element Required/
Optional

Description

default-connection-
properties

Optional This complex element is used to specify the
properties at an global level. At this level, the user
is able to specify parameters that apply to all
outbound connection pools in the resource adapter.

For subelements, see default-connection-
properties.

connection-definition-
group

One or more This element is used to specify all the connection
definition groups. There must be a one-to-one
correspondence relationship between the
connection factories in the ra.xml deployment
descriptor and the groups in the weblogic-ra.xml
deployment descriptor. A group does not have to
exist in the weblogic-ra.xml deployment
descriptor for every connection factory in ra.xml.
However, if a group exists, there must be at least
one connection instance in the group.

The properties specified in the group override any
parameters that are specified at the global level
using default-connection-properties.

For subelements, see connection-definition-group.

Appendix A
outbound-resource-adapter

A-15

A.7.1 default-connection-properties
The default-connection-properties element is a sub-element of the outbound-resource-
adapter element. You can define the following elements within the default-connection-
properties element.

Table A-18 default-connection-properties subelements

Element Required/
Optional

Description

pool-params
Optional Serves as the root element for providing connection

pool-specific parameters for this connection factory.
WebLogic Server uses these specifications to
control the behavior of the maintained pool of
ManagedConnections.

This is an optional element. Failure to specify this
element or any of its specific element items results
in default values being assigned. Refer to the
description of each individual element for the
designated default value.

For subelements, see pool-params.

logging
Optional Contains parameters for configuring logging of the

ManagedConnectionFactory and
ManagedConnection objects of the resource
adapter.

For subelements, see logging.

transaction-support Optional Specifies the level of transaction support for a
particular Connection Factory. It provides the ability
to override the transaction-support value specified
in the ra.xml deployment descriptor that is
intended to be the default value for all Connection
Factories of the resource adapter.

The value of transaction-support must be one of the
following:

NoTransaction
LocalTransaction
XATransaction

For related information, see Connection
Management.

authentication-mechanism Optional The authentication-mechanism element specifies
an authentication mechanism supported by a
particular Connection Factory in the resource
adapter. It provides the ability to override the
authentication-mechanism value specified in the
ra.xml deployment descriptor that is intended to be
the default value for all Connection Factories of the
resource adapter.

Note that BasicPassword mechanism type should
support the
javax.resource.spi.security.PasswordCredenti
al interface.

Appendix A
outbound-resource-adapter

A-16

Table A-18 (Cont.) default-connection-properties subelements

Element Required/
Optional

Description

reauthentication-support Optional A Boolean that specifies whether a particular
connection factory supports re-authentication of an
existing ManagedConnection instance. It provides
the ability to override the reauthentication-
support value specified in the ra.xml deployment
descriptor that is intended to be the default value
for all Connection Factories of the resource
adapter.

properties
Optional The properties element includes one or more

property elements, which define name and value
subelements that apply to the default connections.

res-auth
Optional Specifies whether to use container- or application-

managed security. The values for this element can
be one of Application or Container. The default
value is Container.

A.7.1.1 pool-params
The pool-params element is a sub-element of the default-connection-properties
element. You can define the following elements within the pool-params element.

Table A-19 pool-params subelements

Element Required/
Optional

Description

initial-capacity
Optional Specifies the initial number of ManagedConnections, which

WebLogic Server attempts to create during deployment.

Default Value: 1

max-capacity
Optional Specifies the maximum number of ManagedConnections,

which WebLogic Server will allow. Requests for newly
allocated ManagedConnections beyond this limit results in a
ResourceAllocationException being returned to the caller.

Default Value: 10

capacity-increment
Optional Specifies the maximum number of additional

ManagedConnections that WebLogic Server attempts to
create during resizing of the maintained connection pool.

Default Value: 1

shrinking-enabled
Optional Specifies whether unused ManagedConnections will be

destroyed and removed from the connection pool as a means
to control system resources.

Default Value: true

shrink-frequency-seconds
Optional Specifies the amount of time (in seconds) the Connection Pool

Management waits between attempts to destroy unused
ManagedConnections.

Default Value: 900 seconds

Appendix A
outbound-resource-adapter

A-17

Table A-19 (Cont.) pool-params subelements

Element Required/
Optional

Description

highest-num-waiters
Optional Specifies the maximum number of threads that can

concurrently block waiting to reserve a connection from the
pool.

Default Value: 0

highest-num-unavailable
Optional Specifies the maximum number of ManagedConnections in

the pool that can be made unavailable to the application for
purposes such as refreshing the connection.

Note that in cases like the backend system being unavailable,
this specified value could be exceeded due to factors outside
the pool's control.

Default Value: 0

connection-creation-retry-
frequency-seconds

Optional The periodicity of retry attempts by the pool to create
connections.

Default Value: 0

connection-reserve-timeout-
seconds

Optional Sets the number of seconds after which the call to reserve a
connection from the pool will timeout.

Default Value: -1 (do not block when reserving resources)

test-frequency-seconds
Optional The frequency with which connections in the pool are tested.

Default Value: 0

test-connections-on-create
Optional Enables the testing of newly created connections.

Default Value: false

test-connections-on-release
Optional Enables testing of connections when they are being released

back into the pool.

Default Value: false

test-connections-on-reserve
Optional Enables testing of connections when they are being reserved.

Default Value: false

profile-harvest-frequency-
seconds

Optional Specifies how frequently the profile for the connection pool is
being harvested.

ignore-in-use-connections-
enabled

Optional When the connection pool is being shut down, this element is
used to specify whether it is acceptable to ignore connections
that are in use at that time.

match-connections-supported
Optional Indicates whether the resource adapter supports the

ManagedConnectionFactory.matchManagedConnections()
method. If the resource adapter does not support this method
(always returns null for this method), then WebLogic Server
bypasses this method call during a connection request.

Default Value: true

A.7.1.2 logging
The logging element is a sub-element of the default-connection-properties element.
You can define the following elements within the logging element.

Appendix A
outbound-resource-adapter

A-18

Table A-20 logging subelements

Element Required/
Optional

Description

log-filename
Optional Specifies the name of the log file from which output generated

from the ManagedConnectionFactory or a ManagedConnection
is sent.

The full address of the filename is required.

logging-enabled
Optional Indicates whether or not the log writer is set for either the

ManagedConnectionFactory or ManagedConnection. If this
element is set to true, output generated from either the
ManagedConnectionFactory or ManagedConnection will be
sent to the file specified by the log-filename element.

Default Value: false

rotation-type
Optional Sets the file rotation type.

Possible values are bySize, byTime, none

bySize - When the log file reaches the size that you specify in
file-size-limit, the server renames the file as FileName.n.

byTime - At each time interval that you specify in file-time-
span, the server renames the current log file. After the server
renames a file, subsequent messages accumulate in a new
file with the name that you specified in log-filename.

none - Messages accumulate in a single file. You must erase
the contents of the file if the log size becomes unwieldy.

Default Value: bySize

number-of-files-limited
Optional Specifies whether to limit the number of files that this server

instance creates to store old log messages. (Requires that
you specify a rotation-type of bySize or byTime). After the
server reaches this limit, it overwrites the oldest file. If you do
not enable this option, the server creates new files indefinitely
and you must clean up these files as you require.

If you enable number-of-files-limited by setting it to true,
the server refers to your rotationType variable to determine
how to rotate the log file. Rotate means that you override your
existing file instead of creating a new file. If you specify false
for number-of-files-limited, the server creates numerous
log files rather than overriding the same one.

Default Value: false

file-count
Optional The maximum number of log files that the server creates

when it rotates the log. This number does not include the file
that the server uses to store current messages. (Requires that
you enable number-of-files-limited.)

Default Value: 7

file-size-limit
Optional The size that triggers the server to move log messages to a

separate file. (Requires that you specify a rotation-type of
bySize.) After the log file reaches the specified minimum size,
the next time the server checks the file size, it will rename the
current log file as FileName.n and create a new one to store
subsequent messages.

Default Value: 500

Appendix A
outbound-resource-adapter

A-19

Table A-20 (Cont.) logging subelements

Element Required/
Optional

Description

rotate-log-on-startup
Optional Specifies whether a server rotates its log file during its startup

cycle.

Default Value: true

log-file-rotation-dir
Optional Specifies the directory path where the rotated log files will be

stored.

rotation-time
Optional The start time for a time-based rotation sequence of the log

file, in the format k:mm, where k is 1-24. (Requires that you
specify a rotation-type of byTime.) At the specified time, the
server renames the current log file. Thereafter, the server
renames the log file at an interval that you specify in file-
time-span.

If the specified time has already past, then the server starts its
file rotation immediately.

By default, the rotation cycle begins immediately.

file-time-span
Optional The interval (in hours) at which the server saves old log

messages to another file. (Requires that you specify a
rotation-type of byTime.)

Default Value: 24

A.7.2 connection-definition-group
The connection-definition-group element is used to define a connection definition
group. At the group level, you specify parameters that apply to all outbound
connections belonging to a particular connection factory specified in the ra.xml
deployment descriptor using the connection-definition-group element. A one-to-one
correspondence exists from a connection factory in ra.xml to a connection definition
group in weblogic-ra.xml. The properties specified in a group override any parameters
specified at the global level.

The connection-factory-interface element (a subelement of the connection-
definition-group element) serves as a required unique element (a key) to each
connection-definition-group. There must be a one-to-one relationship between the
weblogic-ra.xml connection-definition-interface element and the ra.xml
connectiondefinition-interface element.

The connection-definition-group element is a sub-element of the outbound-resource-
adapter element. You can define the following elements within the connection-
definition-group element.

Appendix A
outbound-resource-adapter

A-20

Table A-21 connection-definition-group subelements

Element Description

connection-factory-interface
Every connection definition group has a key (a required
unique element). This key is the connection-factory-
interface.

The value specified for connection-factory-interface
must be equal to the value specified for connection-
factory-interface in ra.xml.

default-connection-
properties

This complex element is used to define properties for
outbound connections at the group level.

See default-connection-properties.

connection-instance
Under each connection definition group, the user can specify
connection instances. These correspond to the individual
connection pools for the resource adapter. Parameters can
be specified at this level too and these override those
provided in the group and global levels.

This element specifies a description of the connection pool.
(A connection instance is equivalent to a connection pool.) It
is used to document the connection pool.

See connection-instance.

A.7.2.1 connection-instance
You can define the following subelements under connection-instance.

Table A-22 connection-instance subelements

Element Required/
Optional

Description

description
Optional Specifies a description of the connection instance.

jndi-name
Required The JNDI name used to define the reference name

for the connection instance.

connection-properties
Optional Defines all the properties that apply to the

connection instance.

The connection-properties element can contain
one or more property elements, each holding a
name and value pair. See properties.

Appendix A
outbound-resource-adapter

A-21

B
Resource Adapter Best Practices

When developing and deploying WebLogic resource adapters, consider Oracle’s best
practices.

• Classloading Optimizations for Resource Adapters

• Connection Optimizations

• Thread Management

• InteractionSpec Interface

• Using javax.jms.ConnectionFactory

B.1 Classloading Optimizations for Resource Adapters
When preparing resource adapter classes for packaging in a RAR file, consider
Oracle’s best practices for classloading optimizations.

You can package resource adapter classes in one or more JAR files, and then place
the JAR files in the RAR file. These are called nested JARs. When you nest JAR files
in the RAR file, and classes need to be loaded by the classloader, the JARs within the
RAR file must be opened and closed and iterated through for each class that must be
loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size,
there will be no significant performance impact. On the other hand, if there are many
JARs and the JARs are large in size, the performance impact can be great.

To avoid such performance issues, you can do either of the following:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of
JARs and hence reduces the performance hit involved in looking for classes.

2. If deploying the resource adapter in exploded format is not an option, the JARs
can be exploded within the RAR file. This also eliminates the nesting of JARs and
thus improves the performance of classloading significantly.

B.2 Connection Optimizations
Oracle recommends that resource adapters implement the optional enhancements
described in sections 7.16.1 and 7.16.2 of the Java EE Connector Architecture 1.6
specification. Implementing these interfaces allows WebLogic Server to provide
several features that will not be available without them.
Lazy Connection Association Optimization, as described in section 7.16.1, allows the
server to automatically clean up unused connections and prevent applications from
hogging resources. Lazy Transaction Enlistment Optimization, as described in 7.16.2,
allows applications to start a transaction after a connection is already opened.

B-1

B.3 Thread Management
Resource adapter implementations should use the WorkManager to launch operations
that need to run in a new thread, rather than creating new threads directly. This allows
WebLogic Server to manage and monitor these threads. For more information, see
Chapter 10, Work Management, in JSR 322: Java EE Connector Architecture 1.6.

B.4 InteractionSpec Interface
For EIS access, WebLogic Server supports the Common Client Interface (CCI), which
defines a standard client API for application components that enables application
components and EAI frameworks to drive interactions across heterogeneous EISes.
For more information, see Chapter 17, Common Client Interface, in JSR 322: Java EE
Connector Architecture 1.6.
As a best practice, you should not store the InteractionSpec class that the CCI
resource adapter is required to implement in the RAR file. Instead, you should
package it in a separate JAR file outside of the RAR file, so that the client can access
it without having to put the InteractionSpec interface class in the generic CLASSPATH.

With respect to the InteractionSpec interface, it is important to note that when all
application components (EJBs, resource adapters, Web applications) are packaged in
an EAR file, all common classes can be placed in the APP-INF/lib directory. This is the
easiest possible scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the
interface is serializable (as is the case with InteractionSpec), then both the client and
the resource adapter need access to the InteractionSpec interface as well as the
implementation classes. However, if the interface extends java.io.Remote, then the
client only needs access to the interface class.

B.5 Using javax.jms.ConnectionFactory
When using an EJB or servlet to send messages using a JCA adapter backing a JMS
provider using XA transactions, the resource-ref needs to be java.lang.object.

In a WebLogic Server environment, specifying javax.jms.ConnectionFactory
implements WebLogic JMS Wrappers which are not compatible with this JCA adapter
configuration. See Enhanced Support for Using WebLogic JMS with EJBs and
Servlets in Developing JMS Applications for Oracle WebLogic Server.

Appendix B
Thread Management

B-2

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Examples for the Resource Adapter Developer
	1.5 New and Changed Features in This Release

	2 Understanding Resource Adapters
	2.1 Overview of Resource Adapters
	2.1.1 Comparing WebLogic Server and WebLogic Integration Resource Adapters
	2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters
	2.1.3 Connector Architecture 1.7 Support
	2.1.4 Connector Architecture 1.6 Support
	2.1.5 Comparing 1.0 Resource Adapters to 1.5 and 1.6
	2.1.6 Additional Support Provided by the WebLogic Server Connector Container

	2.2 Java EE Connector Architecture
	2.2.1 Java EE Architecture Diagram and Components
	2.2.2 System-Level Contracts

	2.3 Resource Adapter Deployment Descriptors

	3 Creating and Configuring Resource Adapters
	3.1 Creating and Configuring Resource Adapters: Main Steps
	3.2 Modifying an Existing Resource Adapter
	3.3 Configuring the ra.xml File
	3.3.1 Creating the ra.xml File Manually
	3.3.2 Using Metadata Annotations to Specify Deployment Information
	3.3.3 Resource Adapter XML Schema Definitions

	3.4 Configuring the weblogic-ra.xml File
	3.4.1 Editing Resource Adapter Deployment Descriptors
	3.4.1.1 Editing Considerations
	3.4.1.2 Schema Header Information
	3.4.1.3 Conforming Deployment Descriptor Files to Schema

	3.4.2 Dynamic Descriptor Updates: Console Configuration Tabs
	3.4.2.1 Dynamic Reconfigurable Configuration Properties
	3.4.2.2 Dynamic Configuration Parameters
	3.4.2.3 Dynamic Pool Parameters
	3.4.2.4 Dynamic Logging Parameters

	3.4.3 Automatic Generation of the weblogic-ra.xml File
	3.4.4 (Deprecated) Configuring the Link-Ref Mechanism

	3.5 Bean Validation Configuration File
	3.6 Long-Running Work Support
	3.7 Tooling Support
	3.8 Monitoring Resource Adapter Health
	3.8.1 Obtaining Resource Adapter Health State
	3.8.2 Deployment Requirements for Monitoring Health

	4 Programming Tasks
	4.1 Required Classes for Resource Adapters
	4.2 Generic Work Context
	4.2.1 Interfaces, Classes, and Methods Added to Support the Generic Work Context
	4.2.2 Deployment Descriptor Element Added to Support the Generic Work Context

	4.3 Programming a Resource Adapter to Perform as a Startup Class
	4.3.1 Minimum Content of a Resource Adapter
	4.3.2 Submitting a Work Instance
	4.3.3 Retrying a Work Submission

	4.4 Suspending and Resuming Resource Adapter Activity
	4.5 Extended BootstrapContext
	4.5.1 Diagnostic Context ID
	4.5.2 Dye Bits
	4.5.3 Callback Capabilities
	4.5.4 Bean Validation
	4.5.5 BeanManager

	4.6 Administered Object Uniqueness

	5 Using Contexts and Dependency Injection in Resource Adapters
	5.1 Overview
	5.2 Resource Adapter Bean Discovery
	5.3 Obtaining Contextual References to Resource Adapter Beans
	5.4 Invoking Resource Adapter Beans From Other Application Types
	5.5 Using Resource Adapters Deployed as CDI Bean Archives
	5.5.1 BeanManager Support
	5.5.2 Injection Points

	5.6 Using CDI with Resource Adapter Component Beans
	5.6.1 Resource Adapter Component Beans Must Not Be Managed Beans
	5.6.2 Using Dependency Injection
	5.6.2.1 Notes on Injection Usage
	5.6.2.2 Example

	6 Connection Management
	6.1 Connection Management Contract
	6.1.1 Connection Factory and Connection
	6.1.2 Resource Adapters Bound in JNDI Tree
	6.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction)
	6.1.4 Specifying and Obtaining Transaction Support Level
	6.1.5 Specifying an Unshareable ManagedConnectionFactory

	6.2 Configuring Outbound Connections
	6.2.1 Connection Pool Configuration Levels
	6.2.2 Retrying a Connection Attempt
	6.2.3 Isolating, Troubleshooting, and Fixing Outbound Connection Pool Failures Without Redeploying the Adapter
	6.2.3.1 Using the Deploy-As-A-Whole Option
	6.2.3.2 Troubleshooting Failed Connection Pools
	6.2.3.3 Connection Pool Recovery Steps
	6.2.3.4 Other Options for Recovering Failed Connection Pools

	6.2.4 Multiple Outbound Connections Example

	6.3 Configuring Inbound Connections
	6.4 Configuring Connection Pool Parameters
	6.4.1 initial-capacity: Setting the Initial Number of ManagedConnections
	6.4.2 max-capacity: Setting the Maximum Number of ManagedConnections
	6.4.3 capacity-increment: Controlling the Number of ManagedConnections
	6.4.4 shrinking-enabled: Controlling System Resource Usage
	6.4.5 shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim Unused ManagedConnections
	6.4.6 highest-num-waiters: Controlling the Number of Clients Waiting for a Connection
	6.4.7 highest-num-unavailable: Controlling the Number of Unavailable Connections
	6.4.8 connection-creation-retry-frequency-seconds: Recreating Connections
	6.4.9 match-connections-supported: Matching Connections
	6.4.10 test-frequency-seconds: Testing the Viability of Connections
	6.4.11 test-connections-on-create: Testing Connections upon Creation
	6.4.12 test-connections-on-release: Testing Connections upon Release to Connection Pool
	6.4.13 test-connections-on-reserve: Testing Connections upon Reservation
	6.4.14 deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole Adapter Deployment

	6.5 Connection Proxy Wrapper - 1.0 Resource Adapters
	6.5.1 Possible ClassCastException
	6.5.2 Turning Proxy Generation On and Off

	6.6 Reset a Connection Pool
	6.7 Testing Connections
	6.7.1 Configuring Connection Testing
	6.7.2 Testing Connections in the Administration Console

	7 Transaction Management
	7.1 Supported Transaction Levels
	7.1.1 XA Transaction Support
	7.1.2 Local Transaction Support
	7.1.3 No Transaction Support
	7.1.4 Runtime Transaction Support Level Specification

	7.2 Configuring Transaction Levels
	7.2.1 Configure XA Transaction Recovery Credential Mapping

	8 Message and Transactional Inflow
	8.1 Overview of Message and Transactional Inflow
	8.1.1 Architecture Components
	8.1.2 Inbound Communication Scenario

	8.2 How Message Inflow Works
	8.2.1 Handling Inbound Messages
	8.2.2 Proprietary Communications Channel and Protocol

	8.3 Message Inflow to Message Endpoints (Message-Driven Beans)
	8.3.1 Deployment-Time Binding Between an MDB and a Resource Adapter
	8.3.1.1 Binding an MDB and a Resource Adapter

	8.3.2 Dispatching a Message
	8.3.3 Activation Specifications
	8.3.4 Administered Objects

	8.4 Transactional Inflow
	8.4.1 Using the Transactional Inflow Model for Locally Managed Transactions

	8.5 Configuring and Managing Long-Running Work
	8.5.1 Setting the Maximum Number of Concurrent Long-Running Work Instances
	8.5.2 Monitoring Long-Running Work

	9 Security
	9.1 Container-Managed and Application-Managed Sign-on
	9.1.1 Application-Managed Sign-on
	9.1.2 Container-Managed Sign-on

	9.2 Credential Mapping for Making Outbound Connections
	9.2.1 Authentication Mechanisms
	9.2.2 Outbound Credential Mappings
	9.2.2.1 Non-initial Connection: Requires ManagedConnection from Adapter Upon Application's Request
	9.2.2.2 Initial Connection: Requires a ManagedConnection from Adapter Without Application's Request
	9.2.2.3 Special Users

	9.2.3 Creating Outbound Credential Mappings Using the Console

	9.3 Security Inflow
	9.3.1 Inbound Principal Mappings
	9.3.2 Security Inflow Callback Requirements
	9.3.3 Backward Compatibility with Connector Architecture 1.5 and 1.0

	9.4 Security Policy Processing
	9.5 Configuring Security Identities for Resource Adapters
	9.5.1 default-principal-name: Default Identity
	9.5.2 manage-as-principal-name: Identity for Running Management Tasks
	9.5.3 run-as-principal-name: Identity Used for Connection Calls from the Connector Container into the Resource Adapter
	9.5.4 run-work-as-principal-name: Identity Used for Performing Resource Adapter Management Tasks

	9.6 Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

	10 Packaging and Deploying Resource Adapters
	10.1 Packaging Resource Adapters
	10.1.1 Packaging Directory Structure
	10.1.2 Packaging Considerations
	10.1.3 Packaging Limitation
	10.1.4 Packaging Resource Adapter Archives (RARs)

	10.2 Deploying Resource Adapters
	10.2.1 Deployment Options
	10.2.2 Resource Adapter Deployment Names
	10.2.3 Production Redeployment
	10.2.3.1 Suspendable Interface and Production Redeployment
	10.2.3.2 Production Redeployment Requirements
	10.2.3.3 Production Redeployment Process

	10.2.4 Deploying a Resource Adapter Configured with Multiple Outbound Connection Pools

	A weblogic-ra.xml Schema
	A.1 weblogic-connector
	A.2 work-manager
	A.3 connector-work-manager
	A.4 security
	A.4.1 default-principal-name
	A.4.2 manage-as-principal-name
	A.4.3 run-as-principal-name
	A.4.4 run-work-as-principal-name
	A.4.5 security-work-context
	A.4.5.1 caller-principal-default-mapped
	A.4.5.2 caller-principal-mapping
	A.4.5.3 group-principal-mapping

	A.5 properties
	A.6 admin-objects
	A.6.1 admin-object-group
	A.6.1.1 admin-object-instance

	A.7 outbound-resource-adapter
	A.7.1 default-connection-properties
	A.7.1.1 pool-params
	A.7.1.2 logging

	A.7.2 connection-definition-group
	A.7.2.1 connection-instance

	B Resource Adapter Best Practices
	B.1 Classloading Optimizations for Resource Adapters
	B.2 Connection Optimizations
	B.3 Thread Management
	B.4 InteractionSpec Interface
	B.5 Using javax.jms.ConnectionFactory

