Oracle® Fusion Middleware
Administering Oracle HTTP Server

12¢ (12.2.1.3.0)
EB80474-03
March 2021

ORACLE"

Oracle Fusion Middleware Administering Oracle HTTP Server, 12¢ (12.2.1.3.0)
E80474-03

Copyright © 2015, 2021, Oracle and/or its affiliates.

Primary Author: Tom Pfaeffle

Contributors: Kevin Clark, M.D. Ibrahim, Brunda Karanam, Prabhat Kishore, Sriram Natarajan, Mike Rumph,
Ken Vincent, Asha Yarangatta

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Audience Xiii
Documentation Accessibility Xiii
Related Documents Xiii
Conventions Xiv

Part | Understanding Oracle HTTP Server
1 Introduction to Oracle HTTP Server

1.1 Whatis Oracle HTTP Server? 1-1
1.2 Oracle HTTP Server 12c (12.2.1.3.0) Topologies 1-2
1.3 Key Features of Oracle HTTP Server 1-4
1.3.1 Restricted-JRF Mode 1-4
1.3.2 Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) 1-5
1.3.3 CGl and Fast CGI Protocol (mod_proxy_fcgi) 1-5
1.3.4 Security Features 1-5
1.3.4.1 Oracle Secure Sockets Layer (mod_ossl) 1-5
1.3.4.2 Security: Encryption with Secure Sockets Layer 1-6
1.3.4.3 Security: Single Sign-On with WebGate 1-6
1.3.,5 URL Rewriting and Proxy Server Capabilities 1-6
1.4 Domain Types 1-7
1.4.1 WebLogic Server Domain (Full-JRF Mode) 1-7
1.4.2 WebLogic Server Domain (Restricted-JRF Mode) 1-7
1.4.3 Standalone Domain 1-8
1.5 Understanding Oracle HTTP Server Directory Structure 1-8
1.6 Understanding Configuration Files 1-9
1.6.1 Staging and Run-time Configuration Directories 1-9
1.6.2 Oracle HTTP Server Configuration Files 1-10
1.6.3 Modifying an Oracle HTTP Server Configuration File 1-10
1.7 Upgrading from Earlier Releases of Oracle HTTP Server 1-11

ORACLE

1.8 Oracle HTTP Server Support 1-11
2 Understanding Oracle HTTP Server Modules
2.1 Oracle-Developed Modules for Oracle HTTP Server 2-1
2.1.1 mod_certheaders Module—Enables Reverse Proxies 2-1
2.1.2 mod_context Module—Creates or Propagates ECIDs 2-2
2.1.3 mod_dms Module—Enables Access to DMS Data 2-2
2.1.4 mod_odl Module—Enables Access to ODL 2-2
2.1.5 mod_ora_audit—Supports Authentication and Authorization Auditing 2-3
2.1.6 mod_ossl Module—Enables Cryptography (SSL) 2-3
2.1.7 mod_webgate Module—Enables Single Sign-on 2-4
2.1.8 mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server 2-4
2.2 Apache HTTP Server and Third-party Modules in Oracle HTTP Server 2-5
3 Understanding Oracle HTTP Server Management Tools
3.1 Administering Oracle HTTP Server Using Fusion Middleware Control 3-1
3.1.1 Accessing Fusion Middleware Control 3-2
3.1.2 Accessing the Oracle HTTP Server Home Page 3-2
3.1.3 Understanding the Oracle HTTP Server Home Page 3-3
3.1.4 Editing Configuration Files Using Fusion Middleware Control 3-4
3.2 Administering Oracle HTTP Server Using WLST 3-4
3.2.1 Oracle HTTP Server-Specific WLST Commands 3-4
3.2.2 Using WLST in a Standalone Environment 3-5
Part Il Managing Oracle HTTP Server
4 Running Oracle HTTP Server
4.1 Before You Begin 4-1
4.2 Creating an Oracle HTTP Server Instance 4-1
4.2.1 Creating an Oracle HTTP Server Instance in a WebLogic Server
Domain 4-2
4.2.1.1 Creating an Instance by Using WLST 4-2
4.2.1.2 Associating Oracle HTTP Server Instances With a Keystore Using
WLST 4-3
4.2.1.3 Creating an Instance by Using Fusion Middleware Control 4-4
4.2.1.4 About Instance Provisioning 4-6
4.2.2 Creating an Oracle HTTP Server Instance in a Standalone Domain 4-7
4.3 Performing Basic Oracle HTTP Server Tasks 4-7
ORACLE Y

4.3.1 Understanding the PID File 4-7
4.3.2 Starting Oracle HTTP Server Instances 4-8
4.3.2.1 Starting Oracle HTTP Server Instances Using Fusion Middleware
Control 4-8
4.3.2.2 Starting Oracle HTTP Server Instances Using WLST 4-8
4.3.2.3 Starting Oracle HTTP Server Instances from the Command Line 4-9
4.3.2.4 Starting Oracle HTTP Server Instances on a Privileged Port
(UNIX Only) 4-10
4.3.2.5 Starting Oracle HTTP Server Instances as a Different User (UNIX
Only) 4-11
4.3.3 Stopping Oracle HTTP Server Instances 4-12
4.3.3.1 Stopping Oracle HTTP Server Instances Using Fusion
Middleware Control 4-12
4.3.3.2 Stopping Oracle HTTP Server Instances Using WLST 4-12
4.3.3.3 Stopping Oracle HTTP Server Instances from the Command Line 4-13
4.3.4 About Using the WLST Commands 4-14
4.3.5 Restarting Oracle HTTP Server Instances 4-14
4.3.5.1 Restarting Oracle HTTP Server Instances Using Fusion
Middleware Control 4-14
4.3.5.2 Restarting Oracle HTTP Server Instances Using WLST 4-14
4.3.6 Checking the Status of a Running Oracle HTTP Server Instance 4-15
4.3.6.1 Checking Server Status by Using Fusion Middleware Control 4-15
4.3.6.2 Checking Server Status Using WLST 4-16
4.3.7 Deleting an Oracle HTTP Server Instance 4-17
4.3.7.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server
Domain 4-17
4.3.7.2 Deleting an Oracle HTTP Server Instance from a Standalone
Domain 4-19
4.3.8 Changing the Default Node Manager Port Number 4-20
4.3.8.1 Changing the Default Node Manager Port Using WLST 4-20
4.3.8.2 Changing the Default Node Manager Port Using Oracle WebLogic
Server Administration Console 4-20
4.4 Remotely Administering Oracle HTTP Server 4-21
4.4.1 Setting Up a Remote Environment 4-21
4.4.1.1 Host Requirements for a Remote Environment 4-21
4.4.1.2 Task 1: Set Up an Expanded Domain on hostl 4-21
4.41.3 Task 2: Pack the Domain on hostl 4-22
4.4.1.4 Task 3: Unpack the Domain on host2 4-22
4.4.1.5 Task 4: Run Oracle HTTP Server Remotely 4-23
5 Working with Oracle HTTP Server
5.1 About Editing Configuration Files 5-1

ORACLE

5.1.1 Editing a Configuration File for a Standalone Domain 5-1

5.1.2 Editing a Configuration File for a WebLogic Server Domain 5-1
5.2 Specifying Server Properties 5-2
5.2.1 Specifying Server Properties by Using Fusion Middleware Control 5-2
5.2.2 Specify Server Properties by Editing the httpd.conf File 5-3
5.3 Configuring Oracle HTTP Server Instances 5-4
5.3.1 Secure Sockets Layer Configuration 5-5
5.3.2 Configuring Secure Sockets Layer in Standalone Mode 5-6
5.3.2.1 Configure SSL 5-6
5.3.2.2 Specify SSLVerifyClient on the Server Side 5-8
5.3.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic
Server 5-11
5.3.2.4 Using SAN Certificates with Oracle HTTP Server 5-11
5.3.3 Exporting the Keystore to an Oracle HTTP Server Instance Using WLST 5-12
5.3.4 Configuring MIME Settings Using Fusion Middleware Control 5-13
5.3.4.1 Configuring MIME Types 5-13
5.3.4.2 Configuring MIME Encoding 5-14
5.3.4.3 Configuring MIME Languages 5-15
5.3.5 About Configuring mod_proxy_fcgi 5-15
5.3.6 About Configuring the Oracle WebLogic Server Proxy Plug-In
(mod_wl_ohs) 5-16
5.3.6.1 Configuring SSL for mod_wl_ohs 5-16
5.3.7 Removing Access to Unneeded Content 5-16
5.3.7.1 Edit the cgi-bin Section 5-16
5.3.7.2 Edit the Fancy Indexing Section 5-17
5.3.7.3 Edit the Product Documentation Section 5-18
5.3.8 Using the apxs Command to Install Extension Modules 5-19
5.3.9 Disabling the Options Method 5-20
5.3.10 Updating Oracle HTTP Server Component Configurations on a Shared
File System 5-21
5.4 Configuring the mod_security Module 5-21
5.4.1 Configuring mod_security in the httpd.conf File 5-22
5.4.2 Configuring mod_security in a mod_security.conf File 5-23
5.4.3 Configuring SecRemoteRules in the mod_security.conf File 5-23
5.4.4 Sample mod_security.conf File 5-24
6 Managing and Monitoring Server Processes
6.1 Oracle HTTP Server Processing Model 6-1
6.1.1 Request Process Model 6-1
6.1.2 Single Unit Process Model 6-1
6.2 Monitoring Server Performance 6-2

ORACLE vi

6.2.1 Oracle HTTP Server Performance Metrics 6-2
6.2.2 Viewing Performance Metrics 6-3
6.2.2.1 Viewing Server Metrics by Using Fusion Middleware Control 6-3
6.2.2.2 Viewing Server Metrics Using WLST 6-4
6.3 Oracle HTTP Server Performance Directives 6-5
6.3.1 Understanding Performance Directives 6-6
6.3.1.1 Changing the MPM Type Value in a Standalone Domain 6-6
6.3.1.2 Changing the MPM Type Value in a WebLogic Server Managed
Domain 6-7
6.3.2 Configuring Performance Directives by Using Fusion Middleware
Control 6-7
6.3.2.1 Setting the Request Configuration by Using Fusion Middleware
Control 6-8
6.3.2.2 Setting the Connection Configuration by Using Fusion Middleware
Control 6-9
6.3.2.3 Setting the Process Configuration by Using Fusion Middleware
Control 6-9
6.4 Understanding Process Security for UNIX 6-10
7 Managing Connectivity
7.1 Default Listen Ports 7-1
7.2 Defining the Admin Port 7-1
7.3 Viewing Port Number Usage 7-2
7.3.1 Viewing Port Number Usage by Using Fusion Middleware Control 7-2
7.3.2 Viewing Port Number Usage Using WLST 7-2
7.4 Managing Ports 7-3
7.4.1 Creating Ports Using Fusion Middleware Control 7-4
7.4.2 Editing Ports Using Fusion Middleware Control 7-5
7.4.3 Disabling a Listening Port in a Standalone Environment 7-6
7.5 Configuring Virtual Hosts 7-7
7.5.1 Creating Virtual Hosts Using Fusion Middleware Control 7-8
7.5.2 Configuring Virtual Hosts Using Fusion Middleware Control 7-9
38 Managing Oracle HTTP Server Logs
8.1 Overview of Server Logs 8-1
8.1.1 About Error Logs 8-1
8.1.2 About Access Logs 8-2
8.1.3 Configuring Log Rotation 8-3
8.1.3.1 Syntax and Examples for Time- and Size-Based Log Rotation 8-4
8.2 Configuring Oracle HTTP Server Logs 8-5
8.2.1 Configuring Error Logs Using Fusion Middleware Control 8-5

ORACLE

Vii

8.2.1.1 Configuring the Error Log Format and Location 8-6

8.2.1.2 Configuring the Error Log Level 8-7
8.2.1.3 Configuring Error Log Rotation Policy 8-7
8.2.2 Configuring Access Logs Using Fusion Middleware Control 8-8
8.2.2.1 Configuring the Access Log Format 8-8
8.2.2.2 Configuring the Access Log File 8-9
8.2.3 Configuring the Log File Creation Mode (umask) (UNIX/Linux Only) 8-10
8.2.3.1 Configure umask for an Oracle HTTP Server Instance in a
Standalone Domain 8-10
8.2.3.2 Configure umask for an Oracle HTTP Server Instance in a
WebLogic Server Managed Domain 8-10
8.3 Configuring the Log Level Using WLST 8-11
8.4 Log Directives for Oracle HTTP Server 8-11
8.4.1 Oracle Diagnostic Logging Directives 8-12
8.4.1.1 OralLogMode 8-12
8.4.1.2 OralLogDir 8-12
8.4.1.3 OralLogSeverity 8-12
8.4.1.4 OralLogRotationParams 8-13
8.4.2 Apache HTTP Server Log Directives 8-14
8.4.2.1 ErrorLog 8-14
8.4.2.2 LogLevel 8-14
8.4.2.3 LogFormat 8-14
8.4.2.4 CustomLog 8-15
8.5 Viewing Oracle HTTP Server Logs 8-15
8.5.1 Viewing Logs Using Fusion Middleware Control 8-15
8.5.2 Viewing Logs Using WLST 8-16
8.5.3 Viewing Logs in a Text Editor 8-17
8.6 Recording ECID Information 8-17
8.6.1 About ECID Information 8-17
8.6.2 Configuring Error Logs for ECID Information 8-17
8.6.3 Configuring Access Logs for ECID Information 8-18

9 Managing Application Security

9.1 About Oracle HTTP Server Security 9-1
9.2 Classes of Users and Their Privileges 9-1
9.3 Authentication, Authorization and Access Control 9-2
9.3.1 Access Control 9-2
9.3.2 User Authentication and Authorization 9-2
9.3.2.1 Authenticating Users with Apache HTTP Server Modules 9-3

9.3.2.2 Authenticating Users with WebGate 9-3

9.3.3 Support for FMW Audit Framework 9-3

ORACLE viii

ORACLE

9.3.3.1 Managing Audit Policies Using Fusion Middleware Control 9-4
9.4 Implementing SSL 9-4
9.4.1 Global Server ID Support 9-5
9.4.2 PKCS #11 Support 9-5
9.4.3 SSL and Logging 9-5
9.4.4 Terminating SSL Requests 9-6
9.4.4.1 About Terminating SSL at the Load Balancer 9-6
9.4.4.2 About Terminating SSL at Oracle HTTP Server 9-8
9.5 Using mod_security 9-9
9.6 Using Trust Flags 9-9
A Oracle HTTP Server WLST Custom Commands
A.1 Getting Help on Oracle HTTP Server WLST Custom Commands A-1
A.2 Names of WLST Custom Commands Have Changed A-1
A.3 Oracle HTTP Server Commands A-2
A.3.1 ohs_addAdminProperties A-2
A.3.2 ohs_addNMProperties A-3
A.3.3 ohs_createlnstance A-4
A.3.4 ohs_deletelnstance A-4
A.3.5 ohs_exportKeyStore A-5
A.3.6 ohs_postUpgrade A-6
A.3.7 ohs_updatelnstances A-6
B Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules
B.1 Task 1: Replace LoadModule Directives in htttpd.conf File B-1
B.2 Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File B-2
B.3 Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External
FastCGl Server B-2
B.4 Task 4: Setup an External FastCGI Server B-3
B.5 Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications B-3
C Frequently Asked Questions
C.1 How Do | Create Application-Specific Error Pages? C-2
C.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS? C-2
C.3 Can | Use Different Language and Character Set Versions of Document? C-2
C.4 Can | Apply Apache HTTP Server Security Patches to Oracle HTTP Server? C-3
C.5 Can | Upgrade the Apache HTTP Server Version of Oracle HTTP Server? C-3
C.6 Can | Compress Output From Oracle HTTP Server? C-3
C.7 How Do | Create a Namespace That Works Through Firewalls and Clusters? C-4

C.8 How Can | Enhance Website Security? C-4

C.9 Whyis REDIRECT_ERROR_NOTES not set for "File Not Found" errors? C-5
C.10 How can | hide information about the Web Server Vendor and Version C-5
C.11 Can | Start Oracle HTTP Server by Using apachectl or Other Command-Line
Tool? C-6
C.12 How Do | Configure Oracle HTTP Server to Listen at Port 80? C-6
C.13 How Do | Terminate Requests Using SSL Within Oracle HTTP Server? C-6
C.14 How Do | Configure End-to-End SSL Within Oracle HTTP Server? C-6
C.15 Can Oracle HTTP Server Front-End Oracle WebLogic Server? C-7
C.16 What is the Difference Between Oracle WebLogic Server Domains and
Standalone Domains? C-7
C.17 Can Oracle HTTP Server Cache the Response Data? C-7
C.18 How Do | Configure a Virtual Server-Specific Access Log? C-8
C.19 How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware
Control? C-8
C.19.1 Start Node Manager and Admin Server C-8
C.19.2 Create Keystore C-9
C.19.3 Generate Keypair C-9
C.19.4 Generate CSR for a Certificate C-9
C.19.5 Import the Trusted Certificate C-10
C.19.6 Import the Trusted Certificate to WebLogic Domain C-10
C.19.7 Import the User Certificate c-11
C.19.8 Export Keystore to Wallet C-12
C.19.9 Enable SSL C-12

D Troubleshooting Oracle HTTP Server

D.1 Oracle HTTP Server Fails to Start Due to Port Conflict D-1
D.2 System Overloaded by Number of httpd Processes D-2
D.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024
D-2
D.4 Using Log Files to Locate Errors D-2
D.4.1 Rewrite Log D-2
D.4.2 Script Log D-3
D.4.3 Error Log D-3
D.5 Recovering an Oracle HTTP Server Instance on a Remote Host D-3
D.6 Oracle HTTP Server Performance Issues D-3
D.6.1 Special Runtime Files Reside on a Network File System D-3
D.6.2 UNIX Sockets on a Network File System D-4
D.6.3 DocumentRoot on a Slow File System D-4
D.6.4 Instances Created on Shared File Systems D-4
D.7 Out of DMS Shared Memory D-4

ORACLE X

D.8 Node Manager 12c (12.1.2) Oracle HTTP Server Throws Java Exception on

AIX D-5
D.9 Oracle HTTP Server Fails to Start When mod_security is Enabled on RHEL
or Oracle Linux 7 D-5
D.10 Oracle HTTP Server Fails to Start due to Certificates Signed Using the MD5
Algorithm D-6

E Configuration Files

F Property Files

F.1 ohs_addAdminProperties F-1
F.2 ohs_nm.properties File F-2
F.3 ohs.plugins.nodemanager.properties File F-2
F.3.1 Cross-platform Properties F-3
F.3.2 Environment Variable Configuration Properties F-4

F.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux
and UNIX F-6

G Oracle HTTP Server Module Directives

G.1 mod_wl_ohs Module G-1
G.2 mod_certheaders Module G-1
G.2.1 AddCertHeader Directive G-1
G.2.2 SimulateHttps Directive G-2
G.3 mod_ossl Module G-2
G.3.1 SSLCARevocationFile Directive G-3
G.3.2 SSLCARevocationPath Directive G-3
G.3.3 SSLCipherSuite Directive G-4
G.3.4 SSLEngine Directive G-8
G.3.5 SSLFIPS Directive G-8
G.3.6 SSLHonorCipherOrder Directive G-11
G.3.7 SSLlinsecureRenegotiation Directive G-11
G.3.8 SSLOptions Directive G-12
G.3.9 SSLProtocol Directive G-13
G.3.10 SSLProxyCipherSuite Directive G-14
G.3.11 SSLProxyEngine Directive G-14
G.3.12 SSLProxyProtocol Directive G-15
G.3.13 SSLProxyWallet Directive G-15
G.3.14 SSLRequire Directive G-15
G.3.15 SSLRequireSSL Directive G-18
G.3.16 SSLSessionCache Directive G-18

ORACLE Xi

G.3.17
G.3.18
G.3.19
G.3.20

ORACLE

SSLSessionCacheTimeout Directive
SSLTraceLoglLevel Directive
SSLVerifyClient Directive

SSLWallet Directive

G-18
G-19
G-19
G-20

Xii

Preface

Audience

This guide describes how to manage Oracle HTTP Server, including how to start and
stop Oracle HTTP Server, how to manage network components, configure listening
ports, and extend basic functionality using modules.

Administering Oracle HTTP Server is intended for application server administrators,
security managers, and managers of databases used by application servers. This
documentation is based on the assumption that readers are already familiar with
Apache HTTP Server.

Unless otherwise mentioned, the information in this document is applicable when
Oracle HTTP Server is installed with Oracle WebLogic Server and Oracle Fusion
Middleware Control. It is assumed that readers are familiar with the key concepts of
Oracle Fusion Middleware as described in the Oracle Fusion Middleware Concepts
Guide and the Administering Oracle Fusion Middleware.

For information about installing Oracle HTTP Server in standalone mode, see
Installing and Configuring Oracle HTTP Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at htt p: / / www. or acl e. com pl s/t opi ¢/ | ookup?
ct x=acc& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=accé& d=i nf o or visit ht t p: // www. or acl e. com pl s/t opi ¢/ | ookup?
ct x=accé&i d=trs if you are hearing impaired.

Related Documents

ORACLE

See the following documents in the Oracle Fusion Middleware 12¢ (12.2.1.x)
documentation set:

e Understanding Oracle Fusion Middleware
* Administering Oracle Fusion Middleware
e Tuning Performance

* High Availability Guide

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

e Using Oracle WebLogic Server Proxy Plug-Ins

* Apache documentation included in this library. See: http://htt pd. apache. or g/
docs/ 2. 4/

" Note:

Readers using this guide in PDF or hard copy formats will be unable to
access third-party documentation, which Oracle provides in HTML format
only. To access the third-party documentation referenced in this guide, use
the HTML version of this guide and click the hyperlinks.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE Xiv

http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs/2.4/

Understanding Oracle HTTP Server

ORACLE

Oracle HTTP Server is the web server component for Oracle Fusion Middleware.
It includes several Oracle-provided and third-party modules to extend its basic
functionality. It also includes Apache HTTP Server.

This part presents introductory and conceptual information about Oracle HTTP Server.
It contains the following chapters:

e Introduction to Oracle HTTP Server
e Understanding Oracle HTTP Server Modules

e Understanding Oracle HTTP Server Management Tools

Introduction to Oracle HTTP Server

Oracle HTTP Server is the web server component for Oracle Fusion Middleware, and
provides a listener for Oracle WebLogic Server and the framework for hosting static
pages, dynamic pages, and applications over the web.

This chapter introduces the Oracle HTTP Server (OHS). It describes key features of
Oracle HTTP Server, and its place within the Oracle Fusion Middleware Web Tier and
also provides information about the Oracle HTTP Server directory structure, the Oracle
HTTP Server configuration files, and how to obtain Oracle HTTP Server support.

This chapter includes the following sections:

* What is Oracle HTTP Server?

e Oracle HTTP Server 12c¢ (12.2.1.3.0) Topologies

» Key Features of Oracle HTTP Server

e Domain Types

* Understanding Oracle HTTP Server Directory Structure
* Understanding Configuration Files

* Upgrading from Earlier Releases of Oracle HTTP Server

e Oracle HTTP Server Support

1.1 What is Oracle HTTP Server?

Oracle HTTP Server 12¢ (12.2.1.3.0) is a web server based on Apache HTTP Server
infrastructure and includes additional modules developed specifically by Oracle.
Oracle HTTP Server can also be a proxy server. The features of single sign-on,
clustered deployment, and high availability enhance the operation of the Oracle HTTP
Server.

Oracle HTTP Server has the following components to handle client requests

e HTTP listener, to handle incoming requests and route them to the appropriate
processing utility.

e Modules (mods), to implement and extend the basic functionality of Oracle HTTP
Server. Many of the standard Apache HTTP Server modules are included with
Oracle HTTP Server. Oracle also includes several modules that are specific to
Oracle Fusion Middleware to support integration between Oracle HTTP Server
and other Oracle Fusion Middleware components.

e Perl interpreter, which allows Oracle HTTP Server to be set up as a reverse
proxy through the fcgi protocol to a persistent Perl runtime environment using
mod_proxy_fcgi.

Although Oracle HTTP Server contains a Perl interpreter, it is internal to the
product. You cannot use this interpreter for hosting Perl under a FastCGl
environment. You must provide your own Perl environment.

ORACLE 1-1

Chapter 1
Oracle HTTP Server 12c¢ (12.2.1.3.0) Topologies

* Oracle WebLogic Server Proxy Plug-In, which enables Oracle HTTP Server to
front-end WebLogic Servers and other Fusion Middleware-based applications.

Oracle HTTP Server enables developers to program their site in a variety of languages
and technologies, such as:

« Perl (through mod_proxy_fcgi, CGl and FastCGl)
e Cand C++ (through mod_proxy_fcgi, CGl and FastCGl)
» Java, Ruby and Python (through mod_proxy_fcgi, CGIl and FastCGl)

Oracle HTTP Server can also be a proxy server, both forward and reverse. A reverse
proxy enables content served by different servers to appear as if coming from one
server.

" Note:

For more information about Fusion Middleware concepts, see Understanding
Oracle Fusion Middleware.

1.2 Oracle HTTP Server 12¢ (12.2.1.3.0) Topologies

Oracle HTTP Server leverages the WebLogic Management Framework to provide

a simple, consistent, and distributed environment for administering Oracle HTTP
Server, Oracle WebLogic Server, and other Fusion Middleware components. It acts
as the HTTP front end by hosting the static content from within and by leveraging its
built-in Oracle WebLogic Server Proxy Plug-Ins to route dynamic content requests to
Managed Server instances.

There are multiple ways of implementing Oracle HTTP Server, depending on your
requirements. Table 1-1 describes the major implementations, or "topologies."”

Table 1-1 Oracle HTTP Server Topologies

Topology Description For More Information
Standard This topology is similar to an Oracle See Standard Installation Topology for Oracle
Installation WebLogic Server Domain topology, but does HTTP Server in a Standalone Domain in Installing
Topology for not provide an administration server or and Configuring Oracle HTTP Server.
Oracle HTTP managed servers. It is useful when you
Serverina do not want your Oracle HTTP Server
Standalone implementation to front a Fusion Middleware
Domain domain and do not need the management
functionality provided by Fusion Middleware
Control. This topology is depicted in
Figure 1-1.
To obtain this topology, install Oracle HTTP
Server in standalone mode. Can be paired
with Oracle HTTP Server Collocated mode
by using the Pack or UnPack commands.
ORACLE 1-2

Table 1-1 (Cont.) Oracle HTTP Server Topologies

Chapter 1
Oracle HTTP Server 12c¢ (12.2.1.3.0) Topologies

Topology Description For More Information

Standard This topology is similar to the Full-JRF See Standard Installation Topology for Oracle
Installation (Java Required Files) topology, except that HTTP Server in a WebLogic Server Domain in
Topology for it does not require a backing database. Installing and Configuring Oracle HTTP Server
Oracle HTTP The Restricted-JRF mode offers all of the

Server in a functionality as the Full-JRF mode, except

WebLogic Cross component wiring is not available.

Server Domain
(Restricted-JRF)

To obtain this topology, install Oracle HTTP
Server in Collocated mode, then choose the
Oracle HTTP Server Restricted-JRF domain
template for provisioning this domain. This
topology handles most use cases except for
Cross-component wiring.

Standard This topology provides enhanced See Standard Installation Topology for Oracle
Installation management capabilities through the HTTP Server in a WebLogic Server Domain in
Topology for Fusion Middleware Control and WebLogic Installing and Configuring Oracle HTTP Server.
Oracle HTTP Management Framework. A WebLogic
Serverin a Server domain can be scaled out to
WebLogic multiple physical machines and be centrally
Server Domain managed by the administration server. This
(Full-dRF) topology is depicted in Figure 1-2.
To obtain this topology, install Oracle HTTP
Server in Collocated mode, then choose
the Oracle HTTP Server Full-JRF domain
template. Note that this topology, requires
a database in back-end and can support
cross-component wiring.
Figure 1-1 illustrates the standard Installation Topology for Oracle HTTP Server in a
Standalone Domain.
Figure 1-1 Standard Installation Topology for Oracle HTTP Server in a
Standalone Domain
Machine
Mode
Manager » —_—
Commands
WeblLogic Mode Oracle
Scripting Tool Manager HTTP
(WLST) Server
Figure 1-2 illustrates the high-availability implementation, with two separate hosts for
Oracle HTTP Server on a Web Tier, managed by FMW Control.
ORACLE 1-3

Chapter 1
Key Features of Oracle HTTP Server

Figure 1-2 Standard Installation Topology for Oracle HTTP Server in a
WebLogic Server Domain

Machine 1
T — o E
—’. —
Fusion Admin MNode Oracle HTTP
Middleware Sarver Manager Sarver 1
Control
Cnline
Scripting

Commands Machine 2

Mode
— L N
Manager >
Commands
WebLogic Node Oracle HTTP
Scripting Tool Manager Server 2

(WLST)

1.3 Key Features of Oracle HTTP Server

Oracle HTTP Server includes a web server proxy plug-in for Oracle WebLogic Server,
components for boosting web application performance, an installation mode that does
not require a database connection, multiple security configuration options, and more.

The following sections describe some key features of Oracle HTTP Server:
* Restricted-JRF Mode

* Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)

* CGl and Fast CGI Protocol (mod_proxy_fcgi)

e Security Features

* URL Rewriting and Proxy Server Capabilities

1.3.1 Restricted-JRF Mode

ORACLE

Oracle HTTP Serverl2c (12.2.1) introduces the Restricted-JRF mode. If you choose
to install Oracle HTTP Server in a Oracle WebLogic Server domain in this mode,
then a connection to an external database is not required. All of the Oracle HTTP
Server functionality through Fusion MiddleWare Control and WLST described in this
documentation is still available, with the exception of cross component wiring.

Lack of support for cross component wiring means that:

* There are changes to the Fusion MiddleWare Control menu options: some of the
menu options which support cross component wiring are removed or disabled.

* Any database dependencies are completely removed.

1-4

Chapter 1
Key Features of Oracle HTTP Server

¢ See Also:

Wiring Components to Work Together in Administering Oracle Fusion
Middleware.

The management of keys and certificates for an Oracle HTTP Server instance in a
Restricted-JRF domain continue to be keystore services (KSS). In a Restricted-JRF
domain, the database persistency of KSS is replaced with file persistency. To an end
user, there are no visible change in basic KSS APIs to manage keys or certificates.

Oracle HTTP Server continues to support multiple Oracle wallets for complex virtual
server configurations both in Restricted-JRF and full JRF mode.

1.3.2 Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)

The Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs) enables requests to be
proxied from Oracle HTTP Serverl2c to Oracle WebLogic Server. This plug-in
enhances an Oracle HTTP server installation by allowing Oracle WebLogic Server to
handle requests that require dynamic functionality. In other words, you typically use a
plug-in where the HTTP server serves static pages such as HTML pages, while Oracle
WebLogic Server serves the J2EE dynamic pages such as Servlets, Java Server
Pages (JSPs), and Enterprise Java Bean (EJB).

See Configuring the Plug-In for Oracle HTTP Server.

1.3.3 CGl and Fast CGlI Protocol (mod_proxy_fcgi)

CGI programs are commonly used to program Web applications. Oracle HTTP Server
enhances the programs by providing a mechanism to keep them active beyond the
request lifecycle by using the mod_proxy_fcgi module.

The mod_proxy_fcgi module is the Oracle replacement for the deprecated mod_fastcgi
module. The mod_proxy_fcgi module requires the service of the mod_proxy module
and provides support for the FastCGl protocol.

For information on configuring the mod_proxy_fcgi module, see About Configuring
mod_proxy_fcgi. For information on migrating from the mod_fastcgi module to
mod_proxy_fcgi, see Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules .

1.3.4 Security Features

Oracle HTTP Server employs many security features. Key among them are:

* Oracle Secure Sockets Layer (mod_ossl)
e Security: Encryption with Secure Sockets Layer

e Security: Single Sign-On with WebGate

1.3.4.1 Oracle Secure Sockets Layer (mod_ossl)

The mod_ossl module, the Oracle Secure Sockets Layer (SSL) implementation used
in the Oracle database, enables strong cryptography for Oracle HTTP Server. Itis a
plug-in to Oracle HTTP Server that enables the server to use SSL and is very similar

ORACLE 1-5

Chapter 1
Key Features of Oracle HTTP Server

to the OpenSSL module, mod_ssl. The mod_ossl module supports TLS version 1.0,
1.1and1.2.

1.3.4.2 Security: Encryption with Secure Sockets Layer

Secure Sockets Layer (SSL) is required to run any website securely. Oracle HTTP
Server supports SSL encryption based on patented, industry standard, algorithms.
SSL works seamlessly with commonly-supported Internet browsers. Security features
include the following:

e SSL hardware acceleration support uses dedicated hardware for SSL. Hardware
encryption is faster than software encryption.

e Variable security per directory allows individual directories to be protected by
different strength encryption.

* Oracle HTTP Server and Oracle WebLogic Server communicate using the HTTP
protocol to provide both encryption and authentication. You can also enable HTTP
tunneling for the T3 or IIOP protocols to provide non-browser clients access to
WebLogic Server services.

¢ See Also:

Securing Applications with Oracle Platform Security Services

1.3.4.3 Security: Single Sign-On with WebGate

WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines
incoming requests and determines whether the requested resource is protected, and
if so, retrieves the session information for the user. Through WebGate, Oracle HTTP
Server becomes an SSO partner application enabled to use SSO to authenticate
users, obtain their identity by using Oracle Single Sign-On, and to make user identities
available to web applications accessed through Oracle HTTP Server.

¢ See Also:

Securing Applications with Oracle Platform Security Services

1.3.5 URL Rewriting and Proxy Server Capabilities

ORACLE

Active websites usually update their web pages and directory contents often, and
possibly their URLs as well. Oracle HTTP Server makes it easy to accommodate the
changes by including an engine that supports URL rewriting so end users do not have
to change their bookmarks.

Oracle HTTP Server also supports reverse proxy capabilities, making it easier to make
content served by different servers to appear from one single server.

1-6

Chapter 1
Domain Types

1.4 Domain Types

You can install Oracle HTTP Server on two types of domains: WebLogic Server
domain and standalone domain. In the WebLogic Server domain, Oracle HTTP Server
can be collocated with Oracle WebLogic Server in full or Restricted-JRF mode.
Standalone domain has restricted functionality.

You can select which environment you want to use during server configuration.
* WebLogic Server Domain (Full-JRF Mode)
* WebLogic Server Domain (Restricted-JRF Mode)

e Standalone Domain

1.4.1 WebLogic Server Domain (Full-JRF Mode)

A WebLogic Server Domain in Full-JRF mode contains a WebLogic Administration
Server, zero or more WebLogic Managed Servers, and zero or more System
Component Instances (for example, an Oracle HTTP Server instance). This type of
domain provides enhanced management capabilities through the Fusion Middleware
Control and WebLogic Management Framework present throughout the system. A
WebLogic Server Domain can span multiple physical machines, and it is centrally
managed by the administration server. Because of these properties, a WebLogic
Server Domain provides the best integration between your System Components and
Java EE Components.

WebLogic Server Domains support all WebLogic Management Framework tools.

Because Fusion Middleware Control provides advanced management capabilities,
Oracle recommends using WebLogic Server Domain, which requires installing a
complete Oracle Fusion Middleware infrastructure before you install Oracle HTTP
Server.

e For more information about installing a WebLogic Server Domain, see Installing
and Configuring the Oracle Fusion Middleware Infrastructure.

e For information about installing Oracle HTTP Server either as part of a Oracle
Fusion Middleware infrastructure or as standalone component, see Installing and
Configuring Oracle HTTP Server.

1.4.2 WebLogic Server Domain (Restricted-JRF Mode)

ORACLE

The Weblogic Server Domain in Restricted-JRF mode is similar in architecture and
functionality to Weblogic Server Domain in Full mode, except it does not define

a connection to an external database. There are no database dependencies in
Restricted-JRF mode.

This lack of a backing database means that cross component wiring is not supported
by Oracle HTTP Server in a Restricted-JRF domain; this is the major differentiating
factor between a Full JRF- and a Restricted-JRF-based domain.

Like the Full -JRF domain, the management of keys and certificates of an Oracle
HTTP Server instance in a Restricted-JRF domain continues to be keystore service
(KSS). In a Restricted-JRF domain, the database persistency of KSS is replaced with

1-7

Chapter 1
Understanding Oracle HTTP Server Directory Structure

file persistency, although to an end user there is no visible change in basic KSS APIs
to manage keys and certificates.

Like the Full -JRF domain, Oracle HTTP Server in a Restricted-JRF domain supports
multiple Oracle wallets for complex virtual server configurations.

1.4.3 Standalone Domain

A standalone domain is a container for system components, such as Oracle HTTP
Server. It has a directory structure similar to an Oracle WebLogic Server Domain, but it
does not contain an Administration Server or Managed Servers. It can contain one or
more instances of system components of the same type, such as Oracle HTTP Server,
or a mix of system component types.

For standalone domains, the WebLogic Management Framework supports the
following tools:

* Node Manager
* The WebLogic Scripting Tool (WLST) commands, including:

— nnStart(),nnKill(), nnBoftRestart(), and nnt op() that start and stop
Oracle HTTP Server instance.

— nnConnect () to connect to Node Manager.
— nnlog() to get the Node Manager log information.

For a complete list of supported WLST Node Manager commands, see Node
Manager Commands in WLST Command Reference for WebLogic Server.

¢ Note:

If you have a remote Oracle HTTP Server in a managed mode and
another in standalone with the remote administration mode enabled, you
can use WLST to perform management tasks such as SSL configuration.
A vanilla Oracle HTTP Server in a standalone domain can be used only
as a WebLogic Server Node Manager and for Oracle HTTP Server start
or stop purposes. You can also do this by using a command-line script.

» Configuration Wizard
e Pack or Unpack

Generally, you would use a standalone domain when you do not want your Oracle
HTTP Server implementation installed with a WebLogic Server domain and do not
need the management functionality provided by Oracle Fusion Middleware Control.
Nor would you use it when you want to keep Oracle HTTP Server in a "demilitarized
zone" (DMZ, that is, the zone between the internal and external firewalls) and you do
not want to open management ports used by Node Manager.

1.5 Understanding Oracle HTTP Server Directory Structure

When Oracle HTTP Server is installed in a domain, a directory tree is created that
contains the files that are required by Oracle HTTP server to support that domain type.

ORACLE 1-8

Chapter 1
Understanding Configuration Files

Oracle HTTP Server domains can be either WebLogic Server or standalone. When
installed, each domain has its own directory structure that contains files necessary to
implement the domain type. For a complete file structure topology, see Understanding
the Directory Structures in Installing and Configuring Oracle HTTP Server.

1.6 Understanding Configuration Files

Oracle HTTP Server contains several configuration files that are similar to those used
in Apache HTTP Server. Most of these files end with the . conf file type.

The following topics explain the layout of the configuration file directories, mechanisms
for editing the files, and more about the files themselves.

e Staging and Run-time Configuration Directories
e Oracle HTTP Server Configuration Files

* Modifying an Oracle HTTP Server Configuration File

1.6.1 Staging and Run-time Configuration Directories

ORACLE

Two configuration directories are associated with each Oracle HTTP Server instance:
a staging directory and a run-time directory.

e Staging directory
DOMAIN_HOME/config/fmwconfig/components/OHS/componentName

* Run-time directory
DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName

Each of the configuration directories contain the complete Oracle HTTP Server
configuration -- httpd.conf, admin.conf, auditconfig.xml, and so on.

Modifications to the configuration are made in the staging directory. These
modifications are automatically propagated to the run-time directory during the
following operations:

¢ Note:

Before making any changes to files in the staging directory manually
(that is, without using Fusion Middleware Control or WLST), stop the
Administration Server.

* Oracle HTTP Server instances which are part of a WebLogic Server Domain

Modifications are replicated to the run-time directory on the node with the
managed Oracle HTTP Server instance after changes are activated from within
Fusion Middleware Control, or when the administration server initializes and prior
changes need to be replicated. If communication with Node Manager is broken at
the time of the action, replication will occur at a later time when communication
has been restored.

e Standalone Oracle HTTP Server instances

1-9

Chapter 1
Understanding Configuration Files

Modifications are synchronized with the run-time directory when a start, restart, or
stop action is initiated. Some changes might be written to the run-time directory
during domain update, but the changes will be finalized during synchronization.

Any modifications to the configuration within the run-time directory will be lost during
replication or synchronization.

Note:

When a standalone instance is created, the keystores directory containing a
demo wallet is created only in the run-time directory.

Before creating the first new wallet for the instance, the user must create a
keystores directory within the staging directory.

DOMAIN_HOME/config/fmwconfig/components/OHS/componentName/
keystores

Wallets must then be created within that keystores directory.

1.6.2 Oracle HTTP Server Configuration Files

The default Oracle HTTP Server configuration contains the files described in
Configuration Files.

Additional files can be added to the configuration and included in the top-level .conf
file httpd.conf using the I ncl ude directive. For information on how to use this directive,
see the Include directive documentation, at:

http://httpd. apache. or g/ docs/ 2. 4/ mod/ cor e. ht ml #i ncl ude

The default configuration provides an Include directive which includes all .conf files in
the moduleconf/ directory within the configuration.

An Include directive should be added to an existing .conf file, usually httpd.conf,

for .conf files which are not stored in the moduleconf/ directory. This may be required if
the new .conf file must be included at a different configuration scope, such as within an
existing virtual host definition.

1.6.3 Modifying an Oracle HTTP Server Configuration File

ORACLE

For instances that are part of a WebLogic Server Domain, Fusion Middleware

Control and the management infrastructure manages the Oracle HTTP Server
configuration. Direct editing of the configuration in the staging directory is subject to
being overwritten after subsequent management operations, including modifying the
configuration in Fusion Middleware Control. For such instances, direct editing should
only be performed when the administration server is stopped. When the administration
server is subsequently started (with start or restart), the results of any manual edits
will be replicated to the run-time directory on the node of the managed instance. See
About Editing Configuration Files.

1-10

http://httpd.apache.org/docs/2.4/mod/core.html#include

Chapter 1
Upgrading from Earlier Releases of Oracle HTTP Server

< Note:

Fusion Middleware Control and other Oracle software that manage the
Oracle HTTP Server configuration might save these files in a different,
equivalent format. After using the software to make a configuration change,
multiple configuration files might be rewritten.

1.7 Upgrading from Earlier Releases of Oracle HTTP Server

You can use the Upgrade Assistant to upgrade and configure supported Fusion
Middleware and Oracle HTTP Server domains from an earlier release to 12c
(12.2.1.3.0) and perform a readiness check prior to an upgrade.

To upgrade Oracle HTTP Server, see Upgrading with the Upgrade Assistant.

If you are upgrading a collocated Oracle HTTP Server setup (not a standalone
installation), then you must perform the following manual steps after you complete
the Upgrade Assistant.

1.

Start the Administration Server (WebLogic) of the upgraded domain, for example
UNIX/Linux: . / st artWebLogi c. sh
Windows: st art WebLogi ¢. cnd

Start the version of WLST that resides in the Middleware Home of your 12¢
(12.2.1.3.0) installation, for example:

Linux or UNIX: $ORACLE_HOME/ or acl e_conmmon/ conmon/ bi n/ wi st . sh
Windows: $ORACLE_HOVE\ or acl e_common\ conmon\ bi n\wl st . cnd

Connect to the Administration Server of the upgraded domain, for example:
> connect('loginlD, 'password', '<adm nHost>:<adm nPort>")

Execute the ohs_post Upgrade() WLST custom command, for example:

> ohs_post Upgr ade()

For more information about the ohs_post Upgr ade WLST custom command, see
Importing Wallets to the KSS Database after an Upgrade Using WLST and
ohs_postUpgrade.

1.8 Oracle HTTP Server Support

Oracle provides technical support for Oracle HTTP Server features.

ORACLE

The following Oracle HTTP Server features and conditions are supported:

Modules included in the Oracle distribution. Oracle does not support modules
obtained from any other source, including the Apache Software Foundation.
Oracle HTTP Server will still be supported when non-Oracle-provided modules are
included. If non-Oracle-provided modules are suspect of contributing to reported
problems, customers may be requested to reproduce the problems without
including those modules.

1-11

Chapter 1
Oracle HTTP Server Support

* Problems that can be reproduced within an Oracle HTTP Server configuration
consisting only of supported Oracle HTTP Server modules.

ORACLE 1-12

Understanding Oracle HTTP Server
Modules

Modules extend the basic functionality of Oracle HTTP Server and support integration
between Oracle HTTP Server and other Oracle Fusion Middleware components.
Oracle HTTP Server uses both Oracle developed modules or “plug-ins” and Apache
and third party-developed modules.

This chapter includes the following sections:

* Oracle-Developed Modules for Oracle HTTP Server
e Apache HTTP Server and Third-party Modules in Oracle HTTP Server

2.1 Oracle-Developed Modules for Oracle HTTP Server

Oracle has developed modules that Oracle HTTP Server can use specifically to extend
its basic functionality.

The following sections describe these modules:

 mod_certheaders Module—Enables Reverse Proxies

* mod_context Module—Creates or Propagates ECIDs

¢ mod_dms Module—Enables Access to DMS Data

* mod_odl Module—Enables Access to ODL

* mod_ora_audit—Supports Authentication and Authorization Auditing
* mod_ossl Module—Enables Cryptography (SSL)

 mod_webgate Module—Enables Single Sign-on

* mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server

2.1.1 mod_certheaders Module—Enables Reverse Proxies

The mod_certheaders module enables reverse proxies that terminate Secure Sockets
Layer (SSL) connections in front of Oracle HTTP Server to transfer information
regarding the SSL connection, such as SSL client certificate information, to Oracle
HTTP Server and the applications running behind Oracle HTTP Server. This
information is transferred from the reverse proxy to Oracle HTTP Server using HTTP
headers. The information is then transferred from the headers to the standard CGI
environment variable. The mod_ossl module or the mod_ssl module populate the
variable if the SSL connection is terminated by Oracle HTTP Server.

The mod_certheaders module also enables certain requests to be treated as HTTPS
requests even though they are received through HTTP. This is done using the
Si nul at eHt t ps directive.

ORACLE 2-1

Chapter 2
Oracle-Developed Modules for Oracle HTTP Server

Si mul at eHt t ps takes the container it is contained within, such as <Vi rt ual Host > or
<Locat i on>, and treats all requests received for this container as if they were received
through HTTPS, regardless of the real protocol used by the request.

See mod_certheaders Module for a list and description of the directives accepted by
mod_certheaders.

2.1.2 mod_context Module—Creates or Propagates ECIDs

The mod_context module creates or propagates Execution Context IDs, or ECIDs, for
requests handled by Oracle HTTP Server. If an ECID has been created for the request
execution flow before it reaches Oracle HTTP Server, mod_context will make the ECID
available for logging within Oracle HTTP Server and for propagation to other Fusion
Middleware components, such as WebLogic Server. If an ECID has not been created
when the request reaches Oracle HTTP Server, mod_context will create one.

mod_context is not configurable. It enables loading ECIDs into the server with the
LoadModule directive, and disabled by removing or commenting out the LoadModule
directive corresponding to this module. It should always be enabled to aid with
problem diagnosis.

2.1.3 mod_dms Module—Enables Access to DMS Data

The mod_dms module provides FMW infrastructure access to the Oracle HTTP Server
Dynamic Monitoring Service (DMS) data.

See Also:

Oracle Dynamic Monitoring Service in Tuning Performance.

2.1.4 mod_odl Module—Enables Access to ODL

ORACLE

The mod_odl module allows Oracle HTTP Server to access Oracle Diagnostic Logging
(ODL). ODL generates log messages in text or XML-formatted logs, in a format which
complies with Oracle standards for generating error log messages. Oracle HTTP
Server uses ODL by default.

ODL provides the following benefits:

* The capability to limit the total amount of diagnostic information saved. You can set
the level of information saved and you can specify the maximum size of the log file
and the log file directory.

* When you reach the specified size, older segment files are removed and newer
segment files are saved in chronological fashion.

e Components can remain active, and do not need to be shutdown, when older
diagnostic logging files are deleted.

You can view log files using Fusion Middleware Control or with WLST commands, or
you can download log files to your local client and view them using another tool (for
example, a text edit or another file viewing utility)

2-2

Chapter 2
Oracle-Developed Modules for Oracle HTTP Server

For more information on using ODL with Oracle HTTP Server, see Managing Oracle
HTTP Server Logs.

¢ See Also:

Managing Log Files and Diagnostic Datain Administering Oracle Fusion
Middleware.

2.1.5 mod_ora_audit—Supports Authentication and Authorization

Auditing

This module provides the OraAuditEnable directive to support authentication and
authorization auditing by using the FMW Common Audit Framework. Previously the
code for Audit was integrated in Oracle HTTP Server binary itself. In the current
release, this is provided as a separate loadable module. See Support for FMW Audit
Framework.

2.1.6 mod_ossl Module—Enables Cryptography (SSL)

ORACLE

The mod_ossl module, the Oracle Secure Sockets Layer (SSL) implementation used
in the Oracle database, enables strong cryptography for Oracle HTTP Server. Itis a
plug-in to Oracle HTTP Server that enables the server to use SSL and is very similar
to the OpenSSL module, mod_ssl. The mod_ossl module supports TLS versions 1, 1.1
and 1.2, and is based on Certicom and RSA Security technology.

Oracle HTTP Server complies with the Federal Information Processing Standard
publication 140 (FIPS 140); it uses a version of the underlying SSL libraries that has
gone through formal FIPS certification. As part of Oracle HTTP Server's FIPS 140
compliance, the mod_ossl plug-in now includes the SSLFIPS directive. See SSLFIPS
Directive.

Oracle no longer supports the mod_ssl module. A tool is provided to enable you to
migrate from mod_ssl to mod_ossl, and convert your text certificates to Oracle wallets.

The mod_ossl modules provides these features:

e Encrypted communication between client and server, using RSA or DES
encryption standards.

e Integrity checking of client/server communication using MD5 or SHA checksum
algorithms.

e Certificate management with Oracle wallets.

e Authorization of clients with multiple access checks, exactly as performed in the
mod_ssl module.

mod_ossl Module Directives

See mod_ossl Module for a list and descriptions of directives accepted by the
mod_ossl module.

2-3

Chapter 2
Oracle-Developed Modules for Oracle HTTP Server

< Note:

See Configuring SSL for the Web Tier in Administering Oracle Fusion
Middleware.

2.1.7 mod_webgate Module—Enables Single Sign-on

The mod_webgate module enables single sign-on (SSO) for Oracle HTTP Server.
WebGate examines incoming requests and determines whether the requested
resource is protected, and if so, retrieves the session information for the user. See
Authenticating Users with WebGate and Security: Single Sign-On with WebGate.

For information about configuring WebGate, see Configuring WebGate for Oracle
Access Manager in Installing and Configuring Oracle HTTP Server.

¢ See Also:

Securing Applications with Oracle Platform Security Services

2.1.8 mod_wl_ohs Module—Proxies Requests to Oracle WebLogic

Server

ORACLE

The mod_wl_ohs module is a key feature of Oracle HTTP Server that enables
requests to be proxied from Oracle HTTP Server to Oracle WebLogic Server. This
module is generally referred to as the Oracle WebLogic Server Proxy Plug-In. This
plug-in enhances an Oracle HTTP server installation by allowing Oracle WebLogic
Server to handle requests that require dynamic functionality. In other words, you
typically use a plug-in where the HTTP server serves static pages such as HTML
pages, while Oracle WebLogic Server serves dynamic pages such as HTTP Servlets
and Java Server Pages (JSPs).

For information about the prerequisites and procedure for configuring mod_wl_ohs,
see Configuring the Plug-In for Oracle HTTP Server in Using Oracle WebLogic
Server Proxy Plug-Ins. Directives for this module are listed in Parameters for Oracle
WebLogic Server Proxy Plug-Ins in Using Oracle WebLogic Server Proxy Plug-Ins.

< Note:

mod_wIl_ohs is similar to the mod_wl plug-in, which you can use to proxy
requests from Apache HTTP Server to Oracle WebLogic server. However,
while the mod_wl plug-in for Apache HTTP Server should be downloaded
and installed separately, the mod_wl_ohs plug-in is bundled with Oracle
HTTP Server.

2-4

Chapter 2

Apache HTTP Server and Third-party Modules in Oracle HTTP Server

2.2 Apache HTTP Server and Third-party Modules in Oracle

HTTP Server

Oracle HTTP Server includes Apache and third-party modules. These modules are not
developed by Oracle.

Table 2-1 lists these modules.

Table 2-1 Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Module Enabled by For more information, see:
Default?

mod_access_compat No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_access_conpat . ht m

mod_actions Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_actions. ht

mod_alias Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_al i as. htn

mod_asis Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_asi s. ht m

mod_auth_basic Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_aut h_basi c. ht

mod_authn_anon Yes http://httpd. apache. org/ docs/ 2. 4/ nod/
mod_aut hn_anon. ht ni

mod_authn_core Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_aut hn_core. htni

mod_authn_file Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_authn_file. htnm

mod_authz_core Yes http://httpd. apache. org/ docs/ 2. 4/ nod/
mod_aut hz_core. ht ni

mod_authnz_fcgi No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_aut hnz_f cgi . ht m

mod_authz_groupfile Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_aut hz_groupfile. htm

mod_authz_host Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_aut hz_host . ht ni

mod_authz_owner No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_aut hz_owner . ht m

mod_authz_user Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_aut hz_user . ht

mod_autoindex Yes http://httpd. apache. org/ docs/ 2. 4/ nod/
mod_aut oi ndex. ht m

mod_cache (Windows only) No http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_cache. ht n

mod_cache_disk No http://httpd. apache. org/ docs/ 2. 4/ nod/
mod_cache_di sk. ht ni

mod_disk_cache (Windows No http://httpd. apache. org/ docs/ 2. 2/ nod/

only)

mod_di sk_cache. ht ni

ORACLE

2-5

http://httpd.apache.org/docs/2.4/mod/mod_access_compat.html
http://httpd.apache.org/docs/2.4/mod/mod_access_compat.html
http://httpd.apache.org/docs/2.4/mod/mod_actions.html
http://httpd.apache.org/docs/2.4/mod/mod_actions.html
http://httpd.apache.org/docs/2.4/mod/mod_alias.html
http://httpd.apache.org/docs/2.4/mod/mod_asis.html
http://httpd.apache.org/docs/2.4/mod/mod_auth_basic.html
http://httpd.apache.org/docs/2.4/mod/mod_auth_basic.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_anon.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_anon.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_core.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_core.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_file.html
http://httpd.apache.org/docs/2.4/mod/mod_authn_file.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_core.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_core.html
http://httpd.apache.org/docs/2.4/mod/mod_authnz_fcgi.html
http://httpd.apache.org/docs/2.4/mod/mod_authnz_fcgi.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_groupfile.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_groupfile.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_host.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_host.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_owner.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_owner.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_user.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_user.html
http://httpd.apache.org/docs/2.4/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.4/mod/mod_autoindex.html
http://httpd.apache.org/docs/2.4/mod/mod_cache.html
http://httpd.apache.org/docs/2.4/mod/mod_cache_disk.html
http://httpd.apache.org/docs/2.4/mod/mod_cache_disk.html
https://httpd.apache.org/docs/2.2/mod/mod_disk_cache.html
https://httpd.apache.org/docs/2.2/mod/mod_disk_cache.html

Chapter 2
Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Table 2-1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server
]

Module Enabled by For more information, see:
Default?
mod_cern_meta Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_cern_neta. htn
mod_cgi Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_cgi . htm
mod_cgid (UNIX only) Yes http://httpd. apache. or g/ docs/ 2. 4/ nod/ mod_cgi d. ht m
mod_deflate No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_defl ate. htm
Note: To enable nod_def | at e, you must first upload
mod_filter.InApache HTTP Server Version 2.4, the
command AddOutputFilterByType directive is moved to
mod_filter module. See https://httpd.apache.org/docs/current/
upgrading.html#commonproblems.
mod_dir Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_di r. htm
mod_dumpio No http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_dunpi o. ht m
mod_env Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_env. ht ni
mod_expires Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_expires. htm
mod_file_cache Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod _file_cache. htn
mod_filter No http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_filter.htm
Note: The syntax of the Fi | t er Provi der directive under
mod_filter has changed in Apache 2.4. This directive must be
upgraded manually. See htt p: // htt pd. apache. or g/ docs/ 2. 4/
upgr adi ng. ht m
mod_headers Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_header s. ht
mod_imagemap Yes http://httpd. apache. org/ docs/ 2. 4/ nod/
mod_i magenap. ht ni
mod_include Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_i ncl ude. ht m
mod_info Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_i nf 0. ht m
mod_Ibmethod_bybusyness No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_| brret hod_bybusyness. ht m
mod_Ibmethod_byrequests No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_| brret hod_byr equest s. ht m
mod_lbmethod_bytraffic No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_| brret hod_bytraffic. htnm
mod_log_config Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_| og_config. htn
mod_log_forensic Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_| og_forensic. ht m
mod_logio No http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_| ogi 0. ht ni
ORACLE 2-6

http://httpd.apache.org/docs/2.4/mod/mod_cern_meta.html
http://httpd.apache.org/docs/2.4/mod/mod_cern_meta.html
http://httpd.apache.org/docs/2.4/mod/mod_cgi.html
http://httpd.apache.org/docs/2.4/mod/mod_cgid.html
http://httpd.apache.org/docs/2.4/mod/mod_deflate.html
http://httpd.apache.org/docs/2.4/mod/mod_deflate.html
https://httpd.apache.org/docs/current/upgrading.html#commonproblems
https://httpd.apache.org/docs/current/upgrading.html#commonproblems
http://httpd.apache.org/docs/2.4/mod/mod_dir.html
http://httpd.apache.org/docs/2.4/mod/mod_dumpio.html
http://httpd.apache.org/docs/2.4/mod/mod_env.html
http://httpd.apache.org/docs/2.4/mod/mod_expires.html
http://httpd.apache.org/docs/2.4/mod/mod_expires.html
http://httpd.apache.org/docs/2.4/mod/mod_file_cache.html
http://httpd.apache.org/docs/2.4/mod/mod_file_cache.html
http://httpd.apache.org/docs/2.4/mod/mod_filter.html
http://httpd.apache.org/docs/2.4/upgrading.html
http://httpd.apache.org/docs/2.4/upgrading.html
http://httpd.apache.org/docs/2.4/mod/mod_headers.html
http://httpd.apache.org/docs/2.4/mod/mod_headers.html
http://httpd.apache.org/docs/2.4/mod/mod_imagemap.html
http://httpd.apache.org/docs/2.4/mod/mod_imagemap.html
http://httpd.apache.org/docs/2.4/mod/mod_include.html
http://httpd.apache.org/docs/2.4/mod/mod_include.html
http://httpd.apache.org/docs/2.4/mod/mod_info.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_bybusyness.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_bybusyness.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_byrequests.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_byrequests.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_bytraffic.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_bytraffic.html
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html
http://httpd.apache.org/docs/2.4/mod/mod_log_config.html
http://httpd.apache.org/docs/2.4/mod/mod_log_forensic.html
http://httpd.apache.org/docs/2.4/mod/mod_log_forensic.html
http://httpd.apache.org/docs/2.4/mod/mod_logio.html

Chapter 2
Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Table 2-1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server
]

Module Enabled by For more information, see:
Default?
mod_macro No http://httpd. apache. or g/ docs/ 2. 4/ mod/ nod_macr o. ht n
mod_mime Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_ni ne. ht m
mod_mime_magic Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_mi me_nagi ¢. ht
mod_mpm_event Yes (Linux http://httpd. apache. org/ docs/ 2. 4/ nod/ event . ht ni
only)
mod_mpm_prefork No http://httpd. apache. org/ docs/ 2. 4/ nod/ pref ork. ht
mod_mpm_winnt (Windows Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ npm wi nnt . ht ni
only)
mod_mpm_worker Yes (on Non- http://httpd. apache. or g/ docs/ 2. 4/ nod/ wor ker . ht m
Windows and
non-Linux
platforms)
mod_negotiation Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_negoti ation. htm
mod_proxy Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_pr oxy. ht n
mod_proxy_balancer Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_proxy_bal ancer. htm
mod_proxy_connect Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_proxy_connect . ht m
mod_proxy_fcgi No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_proxy_fcgi. htn
mod_proxy_ftp Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_proxy_ftp. htm
mod_proxy_http Yes http://httpd. apache. org/ docs/ 2. 4/ nod/
mod_proxy_http. htni
mod_remoteip No http://httpd. apache. org/ docs/ 2. 4/ nod/
mod_r enot ei p. ht m
mod_reqtimeout No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_reqt i neout . ht m
mod_rewrite Yes http://httpd. apache. org/ docs/ 2. 4/ nod/
mod rewrite. htn
mod_security2 No http://ww. nodsecurity. org/ docunentation/
Also, for Oracle HTTP Server-specific information regarding
mod_security, see Configuring mod_security in the httpd.conf File..
mod_sed No http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_sed. ht m
mod_setenvif Yes http://httpd. apache. or g/ docs/ 2. 4/ nod/
mod_set envi f. ht ni
mod_slotmem_shm Yes http://httpd. apache. org/ docs/ 2. 4/ mod/

mod_s! ot mem shm ht m

ORACLE

2-7

http://httpd.apache.org/docs/2.4/mod/mod_macro.html
http://httpd.apache.org/docs/2.4/mod/mod_mime.html
http://httpd.apache.org/docs/2.4/mod/mod_mime_magic.html
http://httpd.apache.org/docs/2.4/mod/mod_mime_magic.html
http://httpd.apache.org/docs/2.4/mod/event.html
http://httpd.apache.org/docs/2.4/mod/prefork.html
http://httpd.apache.org/docs/2.4/mod/mpm_winnt.html
http://httpd.apache.org/docs/2.4/mod/worker.html
http://httpd.apache.org/docs/2.4/mod/mod_negotiation.html
http://httpd.apache.org/docs/2.4/mod/mod_negotiation.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_connect.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_connect.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_fcgi.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_ftp.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_ftp.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_http.html
http://httpd.apache.org/docs/2.4/mod/mod_remoteip.html
http://httpd.apache.org/docs/2.4/mod/mod_remoteip.html
http://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
http://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html
http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html
http://www.modsecurity.org/documentation/
http://httpd.apache.org/docs/2.4/mod/mod_sed.html
http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html
http://httpd.apache.org/docs/2.4/mod/mod_setenvif.html
http://httpd.apache.org/docs/2.4/mod/mod_slotmem_shm.html
http://httpd.apache.org/docs/2.4/mod/mod_slotmem_shm.html

Chapter 2
Apache HTTP Server and Third-party Modules in Oracle HTTP Server

Table 2-1 (Cont.) Apache HTTP Server and Third-party Modules in Oracle HTTP Server
]

Module Enabled by For more information, see:
Default?

mod_socache_shmch Yes http://httpd. apache. or g/ docs/ 2. 4/ nod/
mod_socache_shnth. ht m

mod_speling Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_spel i ng. ht m

mod_status Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_st at us. ht m

mod_substitute No http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_substitute. htn

mod_unique_id Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_uni que_i d. htm

mod_unixd Yes http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_uni xd. ht

mod_userdir Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_userdir. htm

mod_usertrack Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_usertrack. htm

mod_version Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_ver si on. ht m

mod_vhost_alias Yes http://httpd. apache. org/ docs/ 2. 4/ mod/
mod_vhost _alias. htm

mod_proxy_wstunnel No http://httpd. apache. org/ docs/ 2. 4/ nod/

mod_proxy_wst unnel . htni

ORACLE

2-8

http://httpd.apache.org/docs/2.4/mod/mod_socache_shmcb.html
http://httpd.apache.org/docs/2.4/mod/mod_socache_shmcb.html
http://httpd.apache.org/docs/2.4/mod/mod_speling.html
http://httpd.apache.org/docs/2.4/mod/mod_speling.html
http://httpd.apache.org/docs/2.4/mod/mod_status.html
http://httpd.apache.org/docs/2.4/mod/mod_substitute.html
http://httpd.apache.org/docs/2.4/mod/mod_substitute.html
http://httpd.apache.org/docs/2.4/mod/mod_unique_id.html
http://httpd.apache.org/docs/2.4/mod/mod_unique_id.html
http://httpd.apache.org/docs/2.4/mod/mod_unixd.html
http://httpd.apache.org/docs/2.4/mod/mod_userdir.html
http://httpd.apache.org/docs/2.4/mod/mod_userdir.html
http://httpd.apache.org/docs/2.4/mod/mod_usertrack.html
http://httpd.apache.org/docs/2.4/mod/mod_usertrack.html
http://httpd.apache.org/docs/2.4/mod/mod_version.html
http://httpd.apache.org/docs/2.4/mod/mod_version.html
http://httpd.apache.org/docs/2.4/mod/mod_vhost_alias.html
http://httpd.apache.org/docs/2.4/mod/mod_vhost_alias.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html

Understanding Oracle HTTP Server
Management Tools

Oracle HTTP Server can be managed using tools such as the Configuration Wizard,
Fusion Middleware Control, and WebLogic Scripting tool.

The following sections describe the management tools, how to access Fusion
Middleware Control and the Oracle HTTP Server home page, and how to use the
WebLogic Scripting Tool (WLST)

* Configuration Wizard, which enables you to create and delete Oracle HTTP Server
instances. See Installing and Configuring Oracle HTTP Server.

* Fusion Middleware Control, which is a browser-based management tool. See
Administering Oracle Fusion Middleware.

* WebLogic Scripting Tool, which is a command-driven scripting tool. See
Understanding the WebLogic Scripting Tool.

< Note:

e The management tools available to your Oracle HTTP Server
implementation depend on whether you have configured it in a WebLogic
Server domain (with FMW Infrastructure) or in a standalone domain. See
Domain Types.

e The Oracle HTTP Server MBeans, which might be visible in Fusion
Middleware Control or the WebLogic Scripting Tool (WLST) are provided
for the use of Oracle management tools. The interfaces are not
supported for other use and are subject to change without notice.

This chapter includes the following sections:
* Administering Oracle HTTP Server Using Fusion Middleware Control

* Administering Oracle HTTP Server Using WLST

3.1 Administering Oracle HTTP Server Using Fusion
Middleware Control

ORACLE

Fusion Middleware Control is the main tool for managing Oracle HTTP Server.
This tool is browser-based and helps to administer and monitor the Oracle Fusion
Middleware environment.

The following sections describe some of the basic Oracle HTTP Server administration
tasks you can perform with Fusion Middleware Control.

3-1

Chapter 3
Administering Oracle HTTP Server Using Fusion Middleware Control

» Accessing Fusion Middleware Control
» Accessing the Oracle HTTP Server Home Page
* Understanding the Oracle HTTP Server Home Page

» Editing Configuration Files Using Fusion Middleware Control

See Also:

Administering Oracle Fusion Middleware

3.1.1 Accessing Fusion Middleware Control

To display Fusion Middleware Control, you enter the Fusion Middleware Control URL,
which includes the name of the WebLogic Administration Server host and the port
number assigned to Fusion Middleware Control during the installation. The following
shows the format of the URL:

http://host nane. domai n: port/em

If you saved the installation information by clicking Save on the last installation screen,
the URL for Fusion Middleware Control is included in the file that is written to disk.

1. Display Fusion Middleware Control by entering the URL in your Web browser. For
example:

http://host 1. exanpl e. com 7001/ em

The Welcome page appears.

2. Enter the Fusion Middleware Control administrator user name and password and
click Login.

The default user name for the administrator user is webl ogi c. This is the account
you can use to log in to the Fusion Middleware Control for the first time. The

webl ogi ¢ password is the one you supplied during the installation of Fusion
Middleware Control.

3.1.2 Accessing the Oracle HTTP Server Home Page

ORACLE

When you select a target, such as a WebLogic Managed Server or a component, such
as Oracle HTTP Server, the target's home page is displayed in the content pane and
the target's menu is displayed at the top of the page, in the context pane.

To display the Oracle HTTP Server home page and the server menu, select an Oracle
HTTP Server component from the HTTP Server folder. You can also display the Oracle
HTTP Server menu by right-clicking the Oracle HTTP Server target in the navigation
pane.

Understanding the Oracle HTTP Server Home Page describes the target navigation
pane and the home page of Oracle HTTP Server.

3-2

Chapter 3
Administering Oracle HTTP Server Using Fusion Middleware Control

3.1.3 Understanding the Oracle HTTP Server Home Page

The Oracle HTTP Server Home page in Fusion Middleware Control contains menus
and regions that enable you to manage the server. Use the menus for monitoring,
managing, routing, and viewing general information.

The Oracle HTTP Server home page contains the following regions:

General Region: Shows the name of the component, its state, host, port, and
machine name, and the location of the Oracle Home.

Key Statistics Region: Shows the processes and requests statistics.

Response and Load Region: Provides information such as the number of active
requests, how many requests were submitted, and how long it took for Oracle
HTTP Server to respond to a request. It also provides information about the
number of bytes processed with the requests.

CPU and Memory Usage Region: Shows how much CPU (by percentage) and
memory (in megabytes) are being used by an Oracle HTTP Server instance.

Resource Center: Provides links to books and topics related to Oracle HTTP
Server.

Figure 3-1 shows the target navigation pane and the home page of Oracle HTTP
Server.

Figure 3-1 Oracle HTTP Server Home in Fusion Middleware Control

T ohs_1@

(@ Orade HTTP Server

Monitoring

CPU Usage (%)

Memory Usage (%)

Virtual Hosts

Number of Virtual Hosts

Modules

Number of Modules

ORACLE

|@| ohs_1 (Oracle HTTP Server) - Or...| &

ORACLE’ Enterprise Manager Fusion Middieware Control 12¢

t__-m‘l;EwebLng\c Domain ¥ weblogic ¥

Change Center @ @& ¥ [z v |Loggedinas weblogic J sko03tou.us.orac

() Start Up] Shut Down... Jul 10, 2015 10:48:39 AM PDT

General Response and Load

=

Component Name ohs_1

6
Version 12210 § f\w-
State RUNNING :
Hest slo03tou.us.oracke.com
Ports 7777 4443 127.0.0.1.7779
Machine Name infra_machine_1 10:37 AM 10:40 10:43 10:46 10:49 =

July 1

M Request Processing Time (milli seconds)
fDamain_base_domain/base_domain/ohs_1; Request Throughput (raq

Auto Restart &

Oracle Home /scratch/tpiaeffliOracle/Middieware/Oracle_Home

Table View
Key Siatislics
CPU and Memory Usage
Idle Processes 4 0.08
Busy Processes 0 0.04 \m
Error Rate (%) 00 002

o o
=

Connection Duration {seconds)

Fetching Data.
Request Processing Time (seconds) 0
Request Throughput (per second) 0.00 c
Data T ghput (KB/:) 0.00 10:43 10:46 10:49

10:37 AM 10:40
July 10 2015

W CPU Usage (9 2 Memory Usage (MB)

Table View

3-3

Chapter 3
Administering Oracle HTTP Server Using WLST

< Note:

Administering Oracle Fusion Middleware contains detailed descriptions of all
the items on the target navigation pane and the home page.

3.1.4 Editing Configuration Files Using Fusion Middleware Control

The Advanced Server Configuration page in Fusion Middleware Control enables you
to edit your Oracle HTTP Server configuration without directly editing the configuration
(.conf) files. See Modifying an Oracle HTTP Server Configuration File. Be aware that
Fusion Middleware Control and other Oracle software that manage the Oracle HTTP
Server configuration might save these files in a different, equivalent format. After using
the software to make a configuration change, multiple configuration files might be
rewritten. For instructions on how to edit a configuration file from Fusion Middleware
Control, see Editing a Configuration File for a WebLogic Server Domain.

3.2 Administering Oracle HTTP Server Using WLST

The WebLogic Scripting Tool (WLST) is a command-driven scripting tool that provides
specific commands to manage Oracle HTTP Server.

This section contains information on WLST commands and how to use WLST in a
standalone environment.

e Oracle HTTP Server-Specific WLST Commands
e Using WLST in a Standalone Environment
For detailed information on WLST, see Understanding the WebLogic Scripting Tool

For more information on the WLST custom commands that are available for Oracle
HTTP Server, see Oracle HTTP Server WLST Custom Commands.

3.2.1 Oracle HTTP Server-Specific WLST Commands

ORACLE

WLST provides Oracle HTTP Server-specific commands for server management in
WebLogic Server Domains. See Oracle HTTP Server WLST Custom Commands.

The following are online commands, which require a connection between WLST and
the administration server for the domain.

e ohs_createlnstance

e ohs_del etel nstance

e ohs_addAdm nProperties
* ohs_addNwProperties

* ohs_exportKeyStore

e ohs_post Upgr ade

* ohs_updat el nstances

Oracle recommends that you use the ohs_creat el nst ance and ohs_del et el nst ance
commands to create and delete Oracle HTTP Server instances instead of using the

3-4

Chapter 3
Administering Oracle HTTP Server Using WLST

Configuration Wizard. These commands perform additional error checking and, in the
case of instance creation, automatic port assignment.

3.2.2 Using WLST in a Standalone Environment

ORACLE

If your Oracle HTTP Server instance is running in a standalone environment, you can
use WLST but must use the offline, or "agent”, commands that route tasks through.
The specific WLST commands are described in Running Oracle HTTP Server, in

the context of the task they perform (for example, the WLST command for starting

a standalone Oracle HTTP Server instance is documented in Starting Oracle HTTP
Server Instances Using WLST); however, you must use the nnConnect () command
to actually connect to offline WLST. For both Linux and Windows, the format of the
command is the same:

nnConnect ('l ogin', ' password', ' hostname', ' port',' <donai nNane>')

For example:

nnConnect (' webl ogi c', ' wel conel', 'l ocal host','5556',"' nyDonain')

If you have a remote Oracle HTTP Server in a managed mode and another in
standalone with the remote administration mode enabled, you can use WLST to
perform management tasks such as SSL configuration. A vanilla Oracle HTTP Server
in a standalone domain can be used only as a WebLogic Server and for Oracle HTTP
Server start/stop purposes. You can also do this by using a command-line script.

3-5

Managing Oracle HTTP Server

ORACLE

There are many management tasks to consider when running Oracle HTTP Server.
These tasks include managing and monitoring the server processes, application
security, connectivity, and more.

This part presents information about management tasks for Oracle HTTP Server. It
contains the following chapters:

* Running Oracle HTTP Server

e Working with Oracle HTTP Server

e Managing and Monitoring Server Processes
e Managing Connectivity

e Managing Oracle HTTP Server Logs

e Managing Application Security

Running Oracle HTTP Server

To run Oracle HTTP Server, create and manage an Oracle HTTP Server instance in a

WebLogic or standalone environment.

This chapter describes how to create an instance, perform basic Oracle HTTP Server
tasks, and remotely administer Oracle HTTP Server. It includes the following sections:

» Before You Begin
* Creating an Oracle HTTP Server Instance
* Performing Basic Oracle HTTP Server Tasks

* Remotely Administering Oracle HTTP Server

4.1 Before You Begin

Before running Oracle HTTP Server, there are prerequisite tasks that are to be
completed. These tasks include installing and configuring the server, and starting
WebLogic Server and Node Manager.

1. Install and configure Oracle HTTP Server as described in Installing and
Configuring Oracle HTTP Server.

2. Ifyou run Oracle HTTP Server in a WebLogic Server Domain, start WebLogic
Server as described in Starting and Stopping Servers in Administering Server
Startup and Shutdown for Oracle WebLogic Server.

" Note:

e When you start WebLogic Server from the command line, you might
see many warning messages. Despite these messages, WebLogic
Server should start normally.

e On the Windows platform, Oracle HTTP Server requires Microsoft
Visual C++ run-time libraries to be installed on the system to
function. See Installing and Configuring Oracle HTTP Server.

3. Start Node Manager (required for both WebLogic and standalone domains) as
described in Using Node Manager in Administering Node Manager for Oracle
WebLogic Server.

4.2 Creating an Oracle HTTP Server Instance

The Configuration Wizard enables you to simultaneously create multiple Oracle HTTP

ORACLE

Server instances when you create a domain.

4-1

Chapter 4
Creating an Oracle HTTP Server Instance

If you are creating a WebLogic Server Domain (Full or Restricted JRF domain types),
you are not required to create any instances. If you elect not to create any instances, a
warning appears; however, you are allowed to proceed with the configuration process.

If you are creating a standalone domain, an Oracle HTTP Server instance is created
by default.

This section contains the following information:

» Creating an Oracle HTTP Server Instance in a WebLogic Server Domain

e Creating an Oracle HTTP Server Instance in a Standalone Domain

Note:

If you are attempting to create an Oracle HTTP Server instance that uses
a TCP port in the reserved range (typically less than 1024), then you must
perform some extra configuration to allow the server to bind to privileged
ports. See Starting Oracle HTTP Server Instances on a Privileged Port
(UNIX Only).

4.2.1 Creating an Oracle HTTP Server Instance in a WebLogic Server

Domain

You can create a managed Oracle HTTP Server instance in a WebLogic Server
Domain by using either the WLST custom command ohs_cr eat el nst ance() or
from Fusion Middleware Control installed as part of a Oracle Fusion Middleware
infrastructure. The following sections describe these procedures.

» Creating an Instance by Using WLST
* Associating Oracle HTTP Server Instances With a Keystore Using WLST
* Creating an Instance by Using Fusion Middleware Control

* About Instance Provisioning

Note:

If you are working with a WebLogic Server Domain, it is recommended

to use the Oracle HTTP Server WLST custom commands as described in
Administering Oracle HTTP Server Using WLST. These commands offer

superior error checking, provide automatic port management, and so on.

4.2.1.1 Creating an Instance by Using WLST

ORACLE

You can create an Oracle HTTP Server instance in a WebLogic Server Domain by
using WLST. Follow these steps.

1. From the command line, launch WLST.
Linux or UNIX: $ORACLE_HOME/ or acl e_comron/ common/ bi n/ wl st . sh

4-2

Chapter 4
Creating an Oracle HTTP Server Instance

Windows: $ORACLE_HOVE\ or acl e_common\ conmon\ bi n\wl st . cnd
2. Connect to WLST:
e InaWebLogic Server Domain:

> connect ("loginlD, 'password', '<adm nHost>:<adni nPort>")

For example:
> connect (" webl ogic', 'welcomel', 'abcO3lIIl.myCo.com 7001")

3. Use the ohs_createl nstance() command, with an instance and machine name—
which was assigned during domain creation—to create the instance:

> ohs_creat el nstance(i nstanceNane=' ohs1', machi ne="abc03l1I. nmyCo. cont,

[listenPort=XXXX], [sslPort=XXXX], [adm nPort=XXXX])

" Note:

If Node Manager is down, the create command takes place partially. The
master copy of the config files appear at OHS/componentName. Once
Node Manager comes back up, the system syncs again and the runtime
copy of the files appear at OHS/instances/componentName.

For example:

> ohs_createl nstance(instanceNane=' ohsl', machine="abc03lI1.nyCo.con)

¢ Note:

If you do not provide port numbers, they will be assigned automatically.

" Note:

For information about using the WebLogic Scripting Tool (WLST), see
Understanding the WebLogic Scripting Tool.

4.2.1.2 Associating Oracle HTTP Server Instances With a Keystore Using
WLST

After using the Configuration Wizard to create Oracle HTTP Server instances in
collocated mode, use the ohs_updat el nst ances WLST custom command to associate
the instances with a keystore.

This command parse across all of the Oracle HTTP Server instances in the domain
and perform the following tasks:

» Create a new keystore with the name <i nst anceNane>_def aul t if one does not
exist.

ORACLE 4.3

Chapter 4
Creating an Oracle HTTP Server Instance

Put a demonstration certificate, denoCASi gnedCerti fi cat e in the newly created
keystore.

Export the keystore to the instance location.

See ohs_updatelnstances.

To associate Oracle HTTP Server instances with a keystore:

1.

Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/ or acl e_comron/ common/ bi n/ wi st . sh
Windows: $ORACLE_HOVE\ or acl e_conmon\ conmon\ bi n\ wi st . cnd
Connect to the Administration Server instance:

connect (' <user Nane', '<password>', '<host>:<port>')

Issue the ohs_updat el nst ances WLST custom command, for example:

ohs_updat el nst ances()

4.2.1.3 Creating an Instance by Using Fusion Middleware Control

ORACLE

You can create an Oracle HTTP Server instance in a WebLogic Server Domain by
using Fusion Middleware Control installed as part of the Oracle Fusion Middleware
infrastructure. Follow these steps.

1.

Log in to Fusion Middleware Control and navigate to the system component
instance home page for the WebLogic Server Domain within which you want to
create the Oracle HTTP Server instance.

Open the WebLogic Server Domain menu and select Administration then
Create/Delete OHS.

< Note:

Create/Delete OHS will appear only if you have extended the domain
by using the Oracle HTTP Server domain template. Otherwise, this
command will not be available.

4-4

Chapter 4

Creating an Oracle HTTP Server Instance

base_domain ®

il WebLogic Domain

OHS Instances

base_domainase_domain

General Settings

Java Transaction APl [JTA)
Java Persistence APl [JPA)
E.Bs

Web Applications
Create/Delete Components

Create/Delete OHS h

Motes

The OHS Instances page appears.

Use this page fo Create, Delete an Instance of OHS.

o Create 3£ Delefe..

[Start [Stop

Home

Manitoring

Diagnostics

Contral

Logs

Deployments

JDBC Data Sources
Messaging

Cross Component Wiring
Web Services

Cther Services
Environment
Administration

Refresh WeblLogic Domain
Routing Topology

Security

Change Center @ A

weblogic «

v | Logged in as weblogic Ty

May 7,20151:07:05 PM PDT ()

Name Status Machine Name Host Name
ohs_1 ‘ﬂ infra_machine_1 slc03tcu.us.oracle.com
@ ' B
Click Create.
The Create OHS Instance page appears.
ORACLE 4-5

Chapter 4
Creating an Oracle HTTP Server Instance

base_domain ® Change Center @ @ v [4v |lLoggedinas weblogic T

£l WebLogic Domain v May 7, 2015 120:13 PMPDT (Y

Create OHS Instance oK cancel
Enter OHS Instance name and select a machine to which the instance will be associated.

* Instance Name

Machine Name infra_machine_1 =|

4. InInstance Name, enter a unique name for the Oracle HTTP Server instance; for
example, ohs_2.

5. In Machine Name, click the drop-down control and select the machine to which
you want to associate the instance.

6. Click OK.

The OHS Instance page reappears, showing a confirmation message and the new
instance. The port number is automatically assigned.

base_domain @ Change Center @ P ¥ [¥ |loggedinas weblogic Ty

=il WebLagic Domain = May 7, 201521327 PMPDT G

(& Confirmation E

OHS instance ohs_2 successfully created

OHS Instances

Use this page to Create, Delete an Instance of OHS.

dF Create 3% ¥
Name Status Machine Name Host Name
ohs_1 4 infra_machine_1 slc03teu.us.oracle.com
ohs_2 & infra_machine_1 slc03teu.us.oracle.com

@ | B

After creating the instance, the Column on the OHS Instances page shows a down-
arrow for that instance.

This indicates that the instance is not running. For instructions on starting an instance,
see Starting Oracle HTTP Server Instances. Once started, the arrow will point up.

4.2.1.4 About Instance Provisioning

Once an instance is created, it will be provisioned within the DOMAIN_HOME.

* The master (staging) copy will be in:
DOMAIN_HOME/config/fmwconfig/components/OHS/componentName

e The runtime will be in:
DOMAIN_HOME/config/fmwconfig/components/OHS/instances/componentName
Node Manager must be running to provision an instance in runtime.

Immediately after creation, the state reported for an Oracle HTTP Server instance will
vary depending on how the instance was created:

ORACLE 4-6

Chapter 4
Performing Basic Oracle HTTP Server Tasks

» Ifohs_createl nstance() was used, the reported state for the instance will be
SHUTDOWN.

« If the Configuration Wizard was used, the reported state for the instance will be
UNKNOWN.

4.2.2 Creating an Oracle HTTP Server Instance in a Standalone

Domain

If you select Standalone as your domain during server configuration, the Configuration
Wizard will create the domain, and during this process an Oracle HTTP Server
instance will also be created. See Installing and Configuring Oracle HTTP Server.

4.3 Performing Basic Oracle HTTP Server Tasks

You can use WLST or Fusion Middleware Control to perform basic Oracle HTTP
Server administration tasks.

For detailed information on the process ID (PID) file, and how to use WLST or Fusion
Middleware Control to perform basic administration tasks, see the following tasks:

e About Using the WLST Commands

* Understanding the PID File

e Starting Oracle HTTP Server Instances

e Stopping Oracle HTTP Server Instances

» Restarting Oracle HTTP Server Instances

* Checking the Status of a Running Oracle HTTP Server Instance
» Deleting an Oracle HTTP Server Instance

* Changing the Default Node Manager Port Number

4.3.1 Understanding the PID File

ORACLE

The process ID can be used by the administrator when restarting and terminating

the daemon. If a process stops abnormally, it is necessary to stop the htt pd child
processes using the ki || command. You must not change the default PID file name or
its location.

When Oracle HTTP Server starts, it writes the process ID (PID) of the parent ht t pd
process to the httpd.pid file located in the following directory:

DOVAI N_HOMVE/ ser ver s/ <conponent Name>/ | ogs

The Pi dFi | e directive in httpd.conf specifies the location of the PID file; however, you
should never modify the value of this directive.

¢ See Also:

PidFile directive in the Apache HTTP Server documentation.

4-7

http://httpd.apache.org/docs/current/mod/mpm_common.html#pidfile

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4.3.2 Starting Oracle HTTP Server Instances

This section contains information on how to start Oracle HTTP Server using Fusion
Middleware Control and WLST.

Note:

On the Windows platform, Oracle HTTP Server requires Microsoft Visual C+
+ run-time libraries to be installed on the system to function. See Installing
and Configuring Oracle HTTP Server.

This section includes the following topics:

Starting Oracle HTTP Server Instances Using Fusion Middleware Control
Starting Oracle HTTP Server Instances Using WLST

Starting Oracle HTTP Server Instances from the Command Line

Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)
Starting Oracle HTTP Server Instances as a Different User (UNIX Only)

4.3.2.1 Starting Oracle HTTP Server Instances Using Fusion Middleware

Control

In Fusion Middleware Control, you start the Oracle HTTP Server from the Oracle
HTTP Server home page. Navigate to the HTTP Server home page and do one of the
following:

From the Oracle HTTP Server menu:

1. Select Control.

2. Select Start Up from the Control menu.

From the Target Navigation tree:

1. Right-click the Oracle HTTP Server instance you want to start.
2. Select Control.

3. Select Start Up from the Control menu.

From the page header, select Start Up.

The instance will start in the state UNKNOWN.

4.3.2.2 Starting Oracle HTTP Server Instances Using WLST

To start an Oracle HTTP Server instance by using WLST, use the start () command
in a WebLogic Server Domain or nntt art () for a standalone domain. The commands
are illustrated in the following table.

ORACLE

4-8

Chapter 4
Performing Basic Oracle HTTP Server Tasks

< Note:

¢ Node Manager must be running for these commands to work. If it is
down, you will receive an error message.

e server Type is required for standalone domains. If it is not included an
error will be thrown referencing an inability to find st art WebLogi c.

These commands assume you have created an Oracle HTTP Server instance, as
described in Creating an Oracle HTTP Server Instance and WLST is running.

Domain Syntax Example
WebLogic start('instanceNane') start('ohsl")
or or
nnt art (server Name=' name' , nntt art (server Name=' ohs1',
server Type='type') server Type=' OHS')
Standalone nnt art (server Name=' name' , nntt art (server Name=' ohs1',
server Type='type') server Type=' OHS')

4.3.2.3 Starting Oracle HTTP Server Instances from the Command Line

You can start Oracle HTTP Server instances from the command line by invoking the
st art Conponent script from the host that contains the Administration Server.

1.
2.

ORACLE

Ensure that Node Manager is running.

Enter the following command:

Linux or UNIX: $DOMAI N_HOVE/ bi n/ st ar t Conponent . sh conponent Narre
Windows: DOVAI N_HOVE\ bi n\ st art Conponent . cnd conponent Name

For example:

$DOVAI N_HOVE/ bi n/ st art Conponent . sh ohs1

The st art Conponent script contacts Node Manager and runs the nnft art ()
command.

When prompted, enter your Node Manager password. The system responds with
these messages:

Successfully started server conponentNane. ..
Successful 'y di sconnected from Node Manager-. ..

Exiting WebLogic Scripting Tool.

4-9

Chapter 4
Performing Basic Oracle HTTP Server Tasks

< Note:

You can also use this script to start Oracle HTTP Server instances remotely.
In that case, the scripts read the configuration to determine the location

of the component. You must run this script from the same system as the
Administration Server. See Remotely Administering Oracle HTTP Server.

4.3.2.3.1 Storing Your Node Manager Password

You can avoid having to enter your Node Manager password every time you launch
the server with st art Conponent command by starting it with the st or eUser Confi g
option for the first time. Do the following:

1. At the prompt, enter the following command:

$DOMAI N_HOVE/ bi n/ st art Conponent . sh conponent Name st or eUser Confi g

The system will prompt for your Node Manager password.
2. Enter your password.
The system responds with this message:

Creating the key file can reduce the security of your systemif it is not
kept

in a secured location after it is created. Creating new key. ..

The usernane and password that were used for this WebLogi c NodeManager
connection are stored in $HOVE/ . w st/ nm cf g- myDomai nNane. props and

$HOME /. wl st/ nm key- nyDonai nNane. pr ops.

4.3.2.4 Starting Oracle HTTP Server Instances on a Privileged Port (UNIX

Only)

ORACLE

WARNING:

When this procedure is completed, any Oracle HTTP Server processes
running from this Oracle Home will be able to bind to privileged ports.

On a UNIX system, TCP ports in a reserved range (typically less than 1024) can
only be bound by processes with root privilege. Oracle HTTP Server always runs as
a non-root user; that is, the user who installed Oracle Fusion Middleware. On UNIX,
special configuration is required to allow Oracle HTTP Server to bind to privileged
ports.

To enable Oracle HTTP Server to listen on a port in the reserved range (for example,
the default port 80 or port 443) use the following one-time setup on each Oracle HTTP
Server machine:

1. Update the ORACLE_HOME/ohs/bin/launch file by performing the following steps
as the super user (if you do not have access to super user privileges, have your
system administrator perform these steps):

a. Change ownership of the file to root:

4-10

Chapter 4
Performing Basic Oracle HTTP Server Tasks

chown root $ORACLE_HOVE/ ohs/ bi n/ | aunch
b. Change the permissions on the file as follows:

chnod 4750 $ORACLE_HOVE/ ohs/ bi n/ | aunch

The steps that require root permissions are now complete.

c. Modify the port settings for Oracle HTTP Server as described in Managing
Ports.

2. Configure the User and Group directive in httpd.conf.

The configured user ID for User should be the same user ID that created the
instance. The configured group ID for Group must be the same group ID used

to create the instance. See Oracle HTTP Server Configuration Files. To configure
Oracle HTTP Server to run as a different user id see Starting Oracle HTTP Server
Instances as a Different User (UNIX Only).

3. Stop the instance if it is running by using any of the stop methods described in
Stopping Oracle HTTP Server Instances.

4. Start the instance by using any of the start-up methods described in Starting
Oracle HTTP Server Instances.

4.3.2.5 Starting Oracle HTTP Server Instances as a Different User (UNIX Only)

On UNIX systems, the Oracle HTTP Server worker processes (the processes that
accept connections and handle requests) may be configured to run as a different user
id than the user id used to create the instance.

Follow the directions in Starting Oracle HTTP Server Instances on a Privileged Port
(UNIX Only) and configure the User directive with the desired user id. The configured
user id must be in the same group as the group that owns the instance directory. The
Group directive must also be configured and set to the same group id used to create
the instance.

" Note:

e The parent process and logging processes of the Oracle HTTP Server
will run as root—these processes neither accept connections nor handle
requests.

* If Node Manager is configured to use the SSL listener, then ensure
that other users have the appropriate permissions to access the SSL
trust store used by NodeMmanager so that the startComponent.sh or
nmConnect commands can run successfully as a different user.

See Node Manager Overview in Administering Node Manager for Oracle
WebLogic Server.

ORACLE 4-11

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4.3.3 Stopping Oracle HTTP Server Instances

This section contains information on how to stop Oracle HTTP Server using Fusion
Middleware Control and WLST. Be aware that other services might be impacted when
Oracle HTTP Server is stopped.

This section includes the following topics:

Stopping Oracle HTTP Server Instances Using Fusion Middleware Control
Stopping Oracle HTTP Server Instances Using WLST

Stopping Oracle HTTP Server Instances from the Command Line

4.3.3.1 Stopping Oracle HTTP Server Instances Using Fusion Middleware

Control

In Fusion Middleware Control, you can stop Oracle HTTP Server from the Oracle
HTTP Server home page. Navigate to the Oracle HTTP Server home page and do one
of the following:

From the Oracle HTTP Server home page:
1. Select the server instance you want to stop.

2. Select Control then Shut Down from the Oracle HTTP Server drop-down
menu on the server instance home page.

From the Target Navigation tree:

1. Right-click the Oracle HTTP Server component you want to stop.
2. Select Control.

3. Select Shut Down from the Control menu.

From the page header on the server instance home page, select Shut Down.

4.3.3.2 Stopping Oracle HTTP Server Instances Using WLST

You can stop Oracle HTTP Server by using WLST. From within the scripting tool, use
one of the following commands:

ORACLE

" Note:

¢ Node Manager must be running for these commands to work. If it is
down, you will receive an error message.

e serverType is required for standalone domains. If it is not included, an
error will be thrown referencing an inability to find st art WebLogi ¢

Domain Syntax Example

WebLogic

shut down(' server Name') shut down(' ohs1')

4-12

Chapter 4
Performing Basic Oracle HTTP Server Tasks

Domain Syntax Example
Standalone nnKi | | (server Name="serverNanme', nnKill (serverName=' ohsl',
server Type='type')! server Type=' OHS')

1 nmKill() will also work in a WebLogic domain.

WARNING:

If you run shutdown() without specifying any parameters, WebLogic Server
will terminate and exit WLST. Oracle HTTP Server will continue running.
To recover, restart WeblLogic Server, launch WLST, and reconnect to the
AdminServer. Then re-run the shutdown with the Oracle HTTP Server
instance name.

4.3.3.3 Stopping Oracle HTTP Server Instances from the Command Line

ORACLE

You can stop Oracle HTTP Server instances from the command line by invoking the
st opConponent script from the host that contains the Administration Server.

1.

Enter the following command:

$DOVAI N_HOVE/ bi n/ st opConponent . sh conponent Name

For example:

$DOMVAI N_HOVE/ bi n/ st opConrponent . sh ohs1

This command invokes WLST and executes the nnKi | | () command. The
st opConponent command will not function if Node Manager is not running.
When prompted, enter your Node Manager password.

If you started Oracle HTTP Server instance with the st or eUser Conf i g option as
described in Storing Your Node Manager Password, you will not be prompted.

Once the server is stopped, the system will respond:

Successfully killed server conponent Nane. ..
Successful 'y di sconnected from Node Manager. ..

Exiting WebLogic Scripting Tool .

< Note:

You can also use this script to stop Oracle HTTP Server instances remotely.
In that case, the scripts read the configuration to determine the location

of the component. You must run this script from the same system as the
Administration Server. See Remotely Administering Oracle HTTP Server.

4-13

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4.3.4 About Using the WLST Commands

If you plan to use WLST, you should familiarize yourself with that tool. You should also
be aware of the following restriction on WLST:

If you run a standalone version of Oracle HTTP Server, you must use the offline,
or "agent", WLST commands. These commands are described in their appropriate
context.

See Getting Started Using the Oracle WebLogic Scripting Tool (WLST) in Oracle®
Fusion Middleware Administrator's Guide.

4.3.5 Restarting Oracle HTTP Server Instances

Restarting Oracle HTTP Server causes the Apache parent process to advise its child
processes to exit after their current request (or to exit immediately if they are not
serving any requests). Upon restarting, the parent process re-reads its configuration
files and reopens its log files. As each child process exits, the parent replaces it with
a child process from the new generation of the configuration file, which begins serving
new requests immediately.

The following sections contain information on how to restart Oracle HTTP Server using
Fusion Middleware Control and WLST.

» Restarting Oracle HTTP Server Instances Using Fusion Middleware Control

* Restarting Oracle HTTP Server Instances Using WLST

4.3.5.1 Restarting Oracle HTTP Server Instances Using Fusion Middleware

Control

In Fusion Middleware Control you restart Oracle HTTP Server from the Oracle HTTP
Server home page. Navigate to the Oracle HTTP Server home page and do one of the
following:

e From the Oracle HTTP Server home page:
1. Select the server instance you want to restart. Select Control.

2. Click Start Up on the instance home page, or select Control then Restart
from the Oracle HTTP Server drop-down menu.

e From the Target Navigation tree:
1. Right-click the Oracle HTTP Server instance you want to restart.
2. Select Control.

3. Select Restart from the Control menu.

4.3.5.2 Restarting Oracle HTTP Server Instances Using WLST

ORACLE

To restart Oracle HTTP Server by using WLST, use the soft Restart () command.
From within the scripting tool, enter one of the following commands:

4-14

Chapter 4
Performing Basic Oracle HTTP Server Tasks

< Note:

e For the WebLogic and the Standalone domains, Node Manager must be
running (that is, state is RUNNI NG) for these commands to work. If it is
down, you will receive an error message.

e All parameters are required for standalone domains. If they are not
included, an error will be thrown referencing an inability to find
start\WbLogi c.

e The nnBoft Rest art command can also be used in WebLogic domains.
To do this, you must first connect to Node Manager by using the
nmConnect command.

Domain Syntax Example
WebLogic soft Restart (' server Name') soft Restart (' ohsl")
Standalone

nnSof t Rest art (server Name=' name', nnfBof t Restart (server Name=' ohsl',
server Type='type') server Type=' CHS')

4.3.6 Checking the Status of a Running Oracle HTTP Server Instance

This section contains information on how to check the status of a running Oracle HTTP
Server instance. You can check this information from either Fusion Middleware Control
installed as part of an Oracle Fusion Middleware infrastructure or by using WLST.

This section includes the following topics:

e Checking Server Status by Using Fusion Middleware Control
» Checking Server Status Using WLST

4.3.6.1 Checking Server Status by Using Fusion Middleware Control

An up or down arrow in the top left corner of any Oracle HTTP Server page's header
indicates whether the selected server instance is running. This image shows the up
arrow, indicating that the server instance, in this case, ohs_2, is running:

@ ohs 2@

" @ Oracle HTTP Server

This image shows a down arrow, indicating that the server instance, in this case,
ohs_2, is not running:

ORACLE 4-15

Chapter 4
Performing Basic Oracle HTTP Server Tasks

% ohs 2@

" @ Oracle HTTP Server +

4.3.6.2 Checking Server Status Using WLST

In a WebLo

gic Server Domain, if you used ohs_cr eat el nst ance() to create the Oracle

HTTP Server instance, its initial state (that is, before starting it) will be SHUTDOWN.

If you used

the Configuration Wizard to generate the instance (both WebLogic Server

Domain and standalone domain), its initial state (that is, before starting) will be
UNKNOWN.

To check th
within the s

Not

e status of a running Oracle HTTP Server instance by using WLST, from
cripting tool, enter the following:

e:

Node Manager must be running for these commands to work. If it is
down, you will receive an error message. If Node Manager goes down

in a WebLogic Server Domain, the state will be returned as UNKNOWN,
regardless of the real state of the instance. Additionally st at e() does not
inform you that it cannot connect to Node Manager.

Unlike other WLST commands, st at e() will not tell you when Node
Manager is down so there is no way to distinguish an instance that truly
is in state UNKNOWN as opposed to Node Manager simply being down.

All parameters are required for standalone domains. If they are not
included, then an error will be thrown referencing an inability to find
start\Weblogi c.

The nnBer ver St at us command can also be used in WebLogic domains.
To do this, you must first connect to the Node Manager by using the
nmConnect command.

Domain Syntax Example
WebLogic state(' serverName') state(' ohsl")
Standalone

nnBer ver St at us(server Nanme=' name' nnBServer St at us(server Name=' ohs1'
, serverType='type') , serverType='CHS')

ORACLE

4-16

Chapter 4
Performing Basic Oracle HTTP Server Tasks

< Note:

This command does not distinguish between non-existent components and
real components in state UNKNOWN. Thus, if you enter a non-existent
instance (for example, you made a typo), a state of UNKNOWN will be
returned.

4.3.7 Deleting an Oracle HTTP Server Instance

You can delete an Oracle HTTP Server instance in both a WebLogic Server Domain
and a standalone domain.

This section includes the following topics:

e Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain

e Deleting an Oracle HTTP Server Instance from a Standalone Domain

4.3.7.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server
Domain

In a WebLogic Server Domain, you can use either the WLST custom command
ohs_del et el nstance() or from Fusion Middleware Control installed as part of
an Oracle Fusion Middleware infrastructure. The following topics describe these
procedures.

e Deleting an Instance Using WLST

e Deleting an Instance Using Fusion Middleware Control

4.3.7.1.1 Deleting an Instance Using WLST

If you are in a WebLogic Server Domain, you can delete an Oracle HTTP Server
instance by using the WLST custom command ohs_del et el nst ance() . When you use
this command, the following happens:

* The selected instance information is removed from config.xml.

e All Oracle HTTP Server configuration directories and their contents are deleted;
for example, OHS/instanceName and OHS/instances/instanceName. These paths
refer to both the runtime and master copies of the configuration.

« All logdfiles associated with the deleted instance are deleted.

« All state information for the deleted instance is removed.

Note:

You cannot delete an instance by using ohs_del et el nst ance() if Node
Manager is down.

To delete an instance using WLST:

ORACLE 4-17

Chapter 4
Performing Basic Oracle HTTP Server Tasks

From the command line, launch WLST:

Linux or UNIX: $ORACLE_HOME/ or acl e_conmon/ conmon/ bi n/ wi st . sh
Windows: $ORACLE_HOVE\ or acl e_comon\ conmon\ bi n\w st . cnd
Connect to WLST:

* Ina WebLogic Server Domain:

> connect('loginlD, 'password', '<adm nHost>:<adm nPort>')

For example:
> connect (' webl ogic', 'welcomel', 'abcO3lIIl.mCo.com7001")
At the command prompt, enter:
ohs_del et el nst ance(i nst anceNanme="i nst anceNane')
For example, to delete an Oracle HTTP Server instance named ohs1 use the
following command:

ohs_del et el nst ance(i nst anceName=' ohs1')

You cannot delete an Oracle HTTP Server instance in either an UNKNOWN or a
RUNNING state.

< Note:

For newly created Oracle HTTP Server instances in state UNKNOWN (for
example, created with config wizard), one can start and stop the instance to
move the state to SHUTDOWN. It can then be deleted successfully.

For instances in state RUNNING... first stop the instance to move it to state
SHUTDOWN and then it can be deleted successfully.

4.3.7.1.2 Deleting an Instance Using Fusion Middleware Control

ORACLE

To delete an Oracle HTTP Server instance by using Fusion Middleware Control:

Note:

You cannot delete a running Oracle HTTP Server instance. If the instance is
running, stop it, as described in Stopping Oracle HTTP Server Instances and
then proceed with the following steps.

Log in to Fusion Middleware Control. Navigate to the system component instance
home page for the WebLogic Server Domain that contains the Oracle HTTP
Server instance you want to delete.

Open the WebLogic Server Domain menu and select Administration then
Create/Delete OHS.

In the OHS Instances page, select the instance you want to delete and click
Delete.

4-18

Chapter 4
Performing Basic Oracle HTTP Server Tasks

4. In the confirmation window, click Yes to complete the deletion.

The OHS Instances page appears, with an information message indicating that the
selected Oracle HTTP Server instance was deleted.

4.3.7.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain

ORACLE

You can delete an Oracle HTTP Server instance in a standalone domain by using the
Configuration Wizard if it is not the only instance in the domain. The Configuration
Wizard always requires at least one Oracle HTTP Server instance in a standalone
domain; you will not be able to delete the instance if it is the only one in the domain.
To delete the only instance in a standalone domain, you should instead completely
remove the entire domain directory.

Deleting Oracle HTTP Server instances by using the Configuration Wizard is actually
only a partial deletion (and is inconsistent with the way WebLogic Server domain
performs deletion by using ohs_del et el nst ance() . See Deleting an Instance Using
WLST). When you delete a standalone instance by using the Configuration Wizard,
the following occurs:

* Information on the specific instance is removed from config.xml, so this instance
is no longer recognized as valid. When you launch the Configuration Wizard again
for another update, the deleted instance will not appear.

e The logs compiled for the deleted instance are left intact at: DOMAIN_HOME/
servers/ohsl (assuming your instance name was ohsl). If a new instance with the
same name is subsequently created, it will inherit and continue logging to these
files.

* The deleted instance's configuration directories and their
contents are not deleted; they remain intact at: DOMAIN_HOME/
config/fmwconfig/components/OHS/instanceName and DOMAIN_HOME/config/
fmwconfig/components/OHS/instances/instanceName. The only change in both
directories is that the following files are renamed: httpd.conf becomes
httpd.conf.bak; ssl.conf becomes ssl.conf.bak; and admin.conf becomes
admin.conf.bak. This prevents the instance from being started. (If you create a
new instance with the same name as the instance you deleted, this information will
be overwritten, but the *.bak files will remain).

* The deleted instance's state information is left intact at DOMAIN_HOME/
system_components/. If a new instance of the same name is subsequently
created, it will inherit the state of the old instance. Instead of
starting in UNKNOWN state, it could appear as SHUTDOWN or even
FAILED _NOT_RESTARTABLE.

To delete an Oracle HTTP Server instance in a standalone domain, do the following:

1. Shutdown all running instances (see Stopping Oracle HTTP Server Instances). Be
aware the Configuration Wizard will not check the state of the Oracle HTTP Server
instance so you will need to verify that all instances are indeed stopped before
deletion.

2. Ifitis running, shut down Node Manager.

3. Launch the Configuration Wizard (see Installing and Configuring Oracle HTTP
Server) and do the following:

a. Select Update an existing domain and select the path to the domain.

4-19

Chapter 4
Performing Basic Oracle HTTP Server Tasks

b. Skip both the Templates screen and the JDK Selection screen by clicking Next
on each.

c. On the System Components screen, select the instance you want to delete
and click Delete.

The selected instance is deleted.
d. Click Next, and, on the OHS Server screen, click Next again.

e. On the Configuration Summary screen, verify that the selected instance has
been deleted and click Update.

f. On the Success screen, click Finish.

4.3.8 Changing the Default Node Manager Port Number

You can change the default value of the Node Manager port by using either WLST or
the Oracle WebLogic Server Administration console.

This section includes the following topics:

e Changing the Default Node Manager Port Using WLST

e Changing the Default Node Manager Port Using Oracle WebLogic Server
Administration Console

4.3.8.1 Changing the Default Node Manager Port Using WLST

To change the default Node Manager port number using WLST, use the custom
command r eadDonei n to open the domain. Navigate to the directory containing Node
Manager for the machine. Set the Li st enPort property, then update the domain.

readDonai n(* DOVAI N_HOME')

cd(' / Machi nes/ Machi ne_Name/ NodeManager / Node_Manager _Nane')
set (' ListenPort', 9090)

updat eDomai n()

cl oseDomai n()

In this example, DOMAI N_HOME represents the root directory of the domain. Machi nes
and NodeManager are directories. The Node_Manager Nane is the name of Node
Manager belonging to the Machi ne_Nane machine. The default Node Manager name is
| ocal machi ne. The default Machi ne_Narre is also | ocal machi ne. The Li st enPort value
is set to 9090.

4.3.8.2 Changing the Default Node Manager Port Using Oracle WebLogic
Server Administration Console

Follow these steps to change the default Node Manager port number using Oracle
WebLogic Server Administration Console.

1. Manually edit the DOVAI N_HOVE/ nodenmanager / nodemanager . properti es file to
change the value of the Li st enPort property.

2. In the WebLogic Server Administration Console, change the configuration of the
machine associated with Node Manager, to point it to the new port number.

ORACLE 4-20

Chapter 4
Remotely Administering Oracle HTTP Server

From the left pane of the Console, expand Environment and then select Machines.
Select the machine whose configuration you want to edit. Select the Configuration
tab, then the Node Manager tab. Change the Listen Port to the port updated in
nodemanager . properti es file. Click Save.

4.4 Remotely Administering Oracle HTTP Server

You can remotely manage an Oracle HTTP Server instance running in a standalone
environment from a collocated Oracle HTTP Server implementation running on a
separate machine. Use WLST or Fusion Middleware Control to start, stop, and
configure the server from the remote machine.

This section includes the following information which describes how to set up Oracle
HTTP Server to run remotely:

e Setting Up a Remote Environment

4.4.1 Setting Up a Remote Environment

The following instructions describe how to set up a remote environment, which will
enable you to run Oracle HTTP Server installed on one machine from an installation
on another. This section contains the following information:

e Host Requirements for a Remote Environment.
e Task 1: Set Up an Expanded Domain on host1.
* Task 2: Pack the Domain on host1.

e Task 3: Unpack the Domain on host2.

e Task 4: Run Oracle HTTP Server Remotely

4.4.1.1 Host Requirements for a Remote Environment

To remotely manage Oracle HTTP Server, you must have separate hosts installed on
separate machines:

* A collocated installation (for this example, this installation will be called host1).

* A standalone installation (host2). The path to standalone MW_HOME on host2
must be the same as the path to the collocated MW_HOME on host1. For
example:

/ scrat ch/ user/work

4.4.1.2 Task 1: Set Up an Expanded Domain on hostl

The following steps describe how to set up an expanded domain and link it to a
database on the collocated version of Oracle HTTP Server (host1):

1. Using the Repository Configuration Utility (RCU), set up and install a database for
the expanded domain.See Creating Schemas with the Repository Creation Ultility.

2. Launch the Configuration Wizard and create an expanded domain. Use the values
specified in Table 4-1.

ORACLE 4-21

Chapter 4
Remotely Administering Oracle HTTP Server

Table 4-1 Setting Up an Expanded Domain

For...

Select or Enter...

Create Domain

Create a new domain and specify its path (for example,
MW_HOME/user_projects/domains/ohs1_domain).

Templates

Oracle HTTP Server (Collocated)

Application Locations

The default.

Administrator Account

A username and password.

Database Configuration
Type

The RCU data. Then, click Get RCU Configuration and then
Next.

Optional Configuration

The following items:

* Administration Server

e Node Manager

* System Components

* Deployment and Services

Administration Server

The listen address (All Local Addresses or the valid name or
address for host1) and port.

Node Manager

Per Domain and specify the NodeManager credentials.

System Components

Add and set the fields, using OHS as the Component Type
(for example, use a System Component value of ohs1).

OHS Server

The listen addresses and ports or use the defaults.

Machines

Add. This will add a machine to the domain (for example,
ohs1l_Machine) and the Node Manager listen and port values.
You must specify a listen address for host2 that is accessible
from host1, such the valid name or address for host2 (do not
use localhost or All Local Addresses).

Assign System
Components

The OHS component (for example, ohs1) then use the
right arrow to assign the component to the machine
(ohs1_machi ne, for example).

Configuration Summary

Create (the OPSS steps may take some minutes).

4.4.1.3 Task 2: Pack the Domain on hostl

On host1, use the pack command to pack the domain. The pack command creates
a template archive (.jar) file that contains a snapshot of either an entire domain or a
subset of a domain.

<MW HOME>/ ohs/ comon/ bi n/ pack. sh - domai n=path to donain -tenplate=path to
tenpl ate -tenpl ate_nane=nane - nmanaged=true

For example:

<MW HOME>/ ohs/ common/ bi n/ pack. sh - domai n=<MN HOVE>/ user _pr oj ect s/ donai ns/
ohsl domain -tenplate=/tnp/ohsl _tnplt.jar -tenplate_nanme=ohsl - managed=true

4.4.1.4 Task 3: Unpack the Domain on host2

ORACLE

The unpack command creates a full domain or a subset of a domain used for a
Managed Server domain directory on a remote machine. Use the following steps to
unpack the domain you packed on hostl in Task 2: Pack the Domain on hostl, on
host2.

4-22

Chapter 4
Remotely Administering Oracle HTTP Server

1. Copy the template file created in Task 2: Pack the Domain on hostl1 from host1 to
host2.

2. Use the unpack command to unpack the domain:

<MW HOME>/ ohs/ common/ bi n/ unpack. sh - domai n=path to domain -tenplate=path to
tenpl ate

For example:

<MW HOME>/ ohs/ common/ bi n/ unpack. sh - domai n=<MN HOVE>/ user _pr oj ect s/ domai ns/
ohsl_domain -tenpl ate=/tnp/ohsl_tnplt.jar

4.4.1.5 Task 4: Run Oracle HTTP Server Remotely

ORACLE

Once you have unpacked the domain created on hostl onto host2, you can use the
same set of WLST commands and Fusion Middleware Control tools you would in a
collocated environment to start, stop, restart, and configure the component.

To run an Oracle HTTP Server remotely, do the following:

1. Start the WebLogic Administration Server on host1:
<MW HOVE>/ user _pr oj ect s/ domai ns/ ohs1_donai n/ bi n/ st art WebLogi c. sh &
2. Start Node Manager on host2:
<MW HOME>/ user _pr oj ect s/ domai ns/ ohs1_donai n/ bi n/ st art NodeManager . sh &

You can now run the Oracle HTTP Server instance on host2 from the collocated
implementation on hostl. You can use any of the WLST commands or any of the
Fusion Middleware Control tools. For example, to connect host2 to Node Manager and
start the server ohsl, from hostl enter:

<MV HOVE>/ ohs/ conmron/ bi n/ Wl st . sh

nnConnect (' webl ogi ¢', '<password>', '<nmhost>', '<nmport>', '<donain-name>",
' <domai n-directory>,'ssl")

nnSt art (server Name=' ohs1', serverType='CHS')

See Performing Basic Oracle HTTP Server Tasks for information on starting, stopping,
restarting, and configuring Oracle HTTP Server components.

4-23

Working with Oracle HTTP Server

When working with an installed version of Oracle HTTP Server, there are some
common tasks that you have to perform, such as editing configuration files, specifying
server properties, and more.

This chapter includes the following sections:

* About Editing Configuration Files

* Specifying Server Properties

e Configuring Oracle HTTP Server Instances

e Configuring the mod_security Module

5.1 About Editing Configuration Files

Configuration files are to be edited only after the Administration Server is stopped to
avoid losing the changes.

For instances that are part of a WebLogic Server Domain, Fusion Middleware

Control and the management infrastructure manages the Oracle HTTP Server
configuration. Direct editing of the configuration in the staging directory is subject to
being overwritten after subsequent management operations, including modifying the
configuration in Fusion Middleware Control. For such instances, direct editing should
only be performed when the administration server is stopped. When the administration
server is subsequently started (or restarted), the results of any manual edits will be
replicated to the run-time directory on the node of the managed instance.

See Understanding Configuration Files.
The following sections provide more information on modifying configuration files.

» Editing a Configuration File for a Standalone Domain.

» Editing a Configuration File for a WebLogic Server Domain.

5.1.1 Editing a Configuration File for a Standalone Domain

For standalone instances, you can edit the configuration directly within the staging
directory at any time. The runtime config files are updated on start, restart or stopping
of the Oracle HTTP Server instance.

5.1.2 Editing a Configuration File for a WebLogic Server Domain

ORACLE

You can modify configuration files for a Weblogic Server Domain. Use the Fusion
Middleware Control to edit these files. The changes are displayed on the Advanced
Server Configuration page after you restart the Oracle HTTP Server.

You can open and edit configuration files from within Fusion Middleware Control.
Follow these steps to modify the files.

5-1

Chapter 5
Specifying Server Properties

1. Select Administration from the HTTP Server menu.
2. Select Advanced Configuration from the Administration menu item.

3. Inthe Advanced Server Configuration page, select the configuration file from the
Select File drop-down list, such as the htt pd. conf file, then click Go.

4. Edit the file, as needed.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server
Instances .

The file is saved and displayed on the Advanced Server Configuration page.

5.2 Specifying Server Properties

Server properties include items like the document root, administrator email, directory
index, and operating system details. You can set Oracle HTTP Server properties by
using Fusion Middleware Control only or by directly editing the configuration files. You
cannot use WLST commands to specify the server properties.

This section includes the following topics:

» Specifying Server Properties by Using Fusion Middleware Control

» Specify Server Properties by Editing the httpd.conf File

5.2.1 Specifying Server Properties by Using Fusion Middleware

Control

ORACLE

Follow these steps to specify the server properties by using Fusion Middleware
Control.

1. Select Administration from the Oracle HTTP Server menu.

2. Select Server Configuration from the Administration menu.

5-2

Chapter 5
Specifying Server Properties

#ohs 1@ Change Center @ % v [v | Loggedinas weblogic | [sicD3tou us oracle.com
=
=
= @ Oracle HTTP Server v [startUp [J Shut Down... May 8, 2015 11:39:06 AM PDT
[3]
Server Configuration Apply Revert

Configure basic OHS settings, such as document root directory, the user and group under which the server runs, installed modules, and aliases.

4 General
Server Root Directory "${ORACLE_INSTANCE}/config/imweonfigicomponents${COMPONENT_TYPE}/instances/${COMPONENT_NAME}"
Document Root "${ORACLE_INSTANGE}/config/imwconfigicomponents/${COMPONENT_TYPE

Adminisirator's E-mail

Directory Index index.html

4 Modules

The following are the installed OHS modules that can be enabled or disabled

[mod_authnz_fegi (] mod_proxy_fegi

A Aliases
Alias is used to map URLs to filesystem localions. This allows for documents to be stored in the local filesystem other than under the Document Root.

4k AddRow 3¢

URL Path File Path or Directory Path
lerror/ "${ORACLE_INSTANGE}config/fmweonfigicomponents${COMPONENT_TYPE}/instances/${COMPONENT _
ficons/ “${PRODUCT_HOME}/icons™
® TIP For example. the columns can have the following values: URL Pathzimage. File Path o Directory PathZftp/pubimage jmm

[x]

In the Server Configuration page, enter the server properties.

a. Enter the documentation root directory in the Document Root field that forms
the main document tree visible from the website.

b. Enter the e-mail address in the Administrator's E-mail field that the server
will include in error messages sent to the client.

c. Enter the directory index in the Directory Index field. The is the main (index)
page that will be displayed when a client first accesses the website.

d. Use the Modules region to enable or disable modules. The available
modules are mod_authnz_fcgi and mod_proxy_fcgi. See About Configuring
mod_proxy_fcgi.

e. Create an alias, if necessary in the Aliases table. An alias maps to a specified
directory. For example, to use a specific set of content pages for a group you
can create an alias to the directory that has the content pages.

Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server
Instances .

The server properties are saved, and shown on the Server Configuration page.

h.2.2 Specify Server Properties by Editing the httpd.conf File

You can specify server properties by manually editing the httpd.conf file. Follow these

ORACLE

steps to edit the httpd.conf file.

5-3

Chapter 5
Configuring Oracle HTTP Server Instances

< Note:

Before attempting to edit any . conf file, you should familiarize yourself
with the layout of the configuration file directories, mechanisms for editing
the files, and learn more about the files themselves. See Understanding
Configuration Files.

Open the ht t pd. conf file (the "master” or "staging" copy: $DOMAIN_HOME/
config/fmwconfig/components/OHS/ohs1/httpd.conf)by using either a text editor
or the Advanced Server Configuration page in Fusion Middleware Control. (See
Modifying an Oracle HTTP Server Configuration File.)

In the Docunent Root section of the file, enter the directory that stores the main
content for the website. The following is an example of the syntax:

Docunent Root " ${ ORACLE_| NSTANCE}/ conf i g/ f mrconfi g/ conponent s/ $
{ COVPONENT_TYPE}/ i nst ances/ ${ COMPONENT_NAME} / ht docs"

In the ServerAdmin section of the file, enter the administrator's email address. This
is the e-mail address that will appear on client pages. The following is an example
of the syntax:

Server Admi n W\ebMast er @xanpl e. com

In the Directorylndex section of the file, enter the directory index. This is the main
(index) page that will be displayed when a client first accesses the website. The
following is an example of the syntax:

Directorylndex index.htm index.htm .var

Create aliases, if needed. An alias maps to a specified directory. For example, to
use a specific set of icons, you can create an alias to the directory that has the
icons for the Web pages. The following is an example of the syntax:

Alias /icons/ "${PRODUCT_HOMVE}/icons/"<Directory "${PRODUCT_HOME}/i cons" >
Options I ndexes MultiViews Al l owOverride None Require all granted</
Directory>

Save the file.

Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server
Instances .

5.3 Configuring Oracle HTTP Server Instances

ORACLE

Some of the common Oracle HTTP Server instance configuration procedures are
related to secure sockets, MIME settings, Oracle WebLogic Server proxy plug-in
(mod_wl_ohs), mod_proxy_fcgi, and more.

Note:

This section does not include initial system configuration information. For
initial system configuration instructions, see Installing and Configuring Oracle
HTTP Server.

5-4

Chapter 5
Configuring Oracle HTTP Server Instances

This section includes the following topics:

* Secure Sockets Layer Configuration

e Configuring Secure Sockets Layer in Standalone Mode

* Exporting the Keystore to an Oracle HTTP Server Instance Using WLST

e Configuring MIME Settings Using Fusion Middleware Control

* About Configuring mod_proxy_fcgi

» About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
* Removing Access to Unneeded Content

» Using the apxs Command to Install Extension Modules

» Disabling the Options Method

e Updating Oracle HTTP Server Component Configurations on a Shared File
System

" Note:

Fusion Middleware Control and other Oracle software which manage the
Oracle HTTP Server configuration might save configuration files in a
different, equivalent format. After using the software to make a configuration
change, multiple configuration files might be rewritten.

5.3.1 Secure Sockets Layer Configuration

ORACLE

Secure Sockets Layer (SSL) is an encrypted communication protocol that is designed
for securely sending messages across the Internet. SSL resides between Oracle
HTTP Server on the application layer and the TCP/IP layer. It transparently handles
encryption and decryption when a secure connection is made by a client.

One common use of SSL is to secure Web HTTP communication between a browser
and a Web server. This case does not preclude the use of non-secured HTTP. The
secure version is simply HTTP over SSL (HTTPS). The differences are that HTTPS
uses the URL scheme https:// rather than http://. The default communication
port is 4443 in Oracle HTTP Server. Oracle HTTP Server does not use the 443
standard htt ps: // privileged port because of security implications. For information
about running Oracle HTTP Server on privileged ports, see Starting Oracle HTTP
Server Instances on a Privileged Port (UNIX Only).

By default, an SSL listen port is configured and enabled using a default wallet during
installation. Wallets store your credentials, such as certificate requests, certificates,
and private keys.

The default wallet that is automatically installed with Oracle HTTP Server is for testing
purposes only. A real wallet must be created for your production server. The default
wallet is located in the DOMAIN_HOME/config/fmwconfig/components/OHS/instances/
componentName/keystores/default directory. You can either place the new wallet in
this location, or change the SSLWal | et directive in DOMAIN_HOME/config/fmwconfig/
components/OHS/componentName/ssl.conf to point to the location of your real wallet.

5-5

Chapter 5
Configuring Oracle HTTP Server Instances

Oracle strongly recommends that you do not use a certificate that uses the Message
Digest 5 algorithm (MD5). This algorithm has been severely compromised. The MD5
certificate must be replaced with a certificate that uses Secure Hash Algorithm 2
(SHA-2), which provides more secure encryption.

For the changes to take effect, restart Oracle HTTP Server, as described in Restarting
Oracle HTTP Server Instances .

For information about configuring wallets and SSL by using Fusion Middleware
Control, see Enabling SSL for Oracle HTTP Server Virtual Hosts in the Administering
Oracle Fusion Middleware guide.

5.3.2 Configuring Secure Sockets Layer in Standalone Mode

The following sections contain information about how to enable and configure SSL
for Oracle HTTP Server in standalone mode. These instructions use the mod_ossl
module to Oracle HTTP Server which enables the server to use SSL.

* Configure SSL

» Specify SSLVerifyClient on the Server Side

* Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server
* Using SAN Certificates with Oracle HTTP Server

5.3.2.1 Configure SSL

By default, SSL is enabled when you install Oracle HTTP Server. Perform the
following tasks to modify and configure SSL:

* Task 1: Create a Real Wallet
e Task 2: (Optional) Customize Your Configuration

* Basic SSL Configuration Example

5.3.2.1.1 Task 1: Create a Real Wallet

To configure Oracle HTTP Server for SSL, you need a wallet that contains the
certificate for the server. Wallets store your credentials, such as certificate requests,
certificates, and private keys.

The default wallet that is automatically installed with Oracle

HTTP Server is for testing purposes only. A real wallet must

be created for your production server. The default wallet is

located in $ORACLE_| NSTANCE/ conf i g/ f mwconf i g/ conponent s/ $COVPONENT _TYPE/

i nst ances/ $COMPONENT _NAME/ keyst or es/ def aul t . You can either place the new
wallet in that location, or change the SSLWl | et directive in $ORACLE_| NSTANCE/
confi g/ f mconfi g/ conponent s/ $COVPONENT_TYPE/ $COVMPONENT_NAME/ ssl . conf (the
pre-installation location) to point to the location of your real wallet.

ORACLE 5-6

Chapter 5
Configuring Oracle HTTP Server Instances

¢ See Also:

orapki in Administering Oracle Fusion Middleware for instructions on creating
a wallet. It is important that you do the following:

Generate a certificate request: For the Common Name, specify the name
or alias of the site you are configuring. Make sure that you enable this
auto_login_only feature.

5.3.2.1.2 Task 2: (Optional) Customize Your Configuration

Optionally, you can further customize your configuration using nod_ossl directives.

See Also:

« mod_ossl Module for a list and descriptions of directives accepted by
mod_ossl .

e SSLFIPS Directive for information on how to configure the SSLFI PS
directive and a list of the cipher suites it accepts.

< Note:

The files installed during configuration contain all of the necessary SSL
configuration directives and a default setup for SSL.

5.3.2.1.3 Basic SSL Configuration Example

ORACLE

Your SSL configuration must contain, at minimum, the directives in the following
example.

LoadModul e ossl _nodul e " ${ PRODUCT_HOVE} / nodul es/ nod_ossl| . so”

Listen 4443

Server Name wwww. t est ohs. com

SSLEngi ne on

SSL Protocol Support:

List the supported protocols.

SSLProtocol TLSv1.2 TLSv1.1 TLSvl

SSL G pher Suite:

List the ciphers that the client is pernmitted to negotiate.

SSLCi pher Suite

SSL_RSA W TH RC4_128_MD5, SSL_RSA W TH RC4_128 SHA, SSL_RSA W TH_3DES_EDE_CBC SHA, T
LS RSA W TH_AES_128_CBC_SHA, TLS_RSA_ W TH_AES_256_CBC_SHA

SSLWal | et " ${ ORACLE_I NSTANCE} / confi g/ f maconf i g/ conponent s/ ${ COVPONENT_TYPE}/
i nst ances/ ${ COVPONENT_NAME}/ keyst or es/ def aul t

</Virtual Host >To enabl e client authentication, do the follow ng:

5-7

Chapter 5
Configuring Oracle HTTP Server Instances

5.3.2.2 Specify SSLVerifyClient on the Server Side

This section describes the different ways of using the SSLVerifyClient directive to
authenticate and authorize access. Use the appropriate client certificate on the client
side for the HTTPS connection. See your client documentation for information on
getting and using a client certificate. Ensure that the Oracle server wallet trusts your
client certificate.

To ensure that the server trusts the client certificate, you can check whether the client
certificate is self-signed or signed by a certificate authority (CA). In both cases, the
certificate must be added to the list of trusted certificates.

You can add a trusted client certificate to an Oracle wallet using one of the following
ways:

* Adding a Trusted Client Certificate in a Standalone Oracle HTTP Server
Installation

* Adding a Trusted Client Certificate in Collocated Oracle HTTP Server Installation

The following subsections describe the different methods of using the SSLVerifyClient
directive to authenticate and authorize access:

» Forcing Clients to Authenticate Using Certificates
» Forcing a Client to Authenticate for a Particular URL
» Authorizing a Client for a Particular URL

* Allowing Clients with Strong Ciphers and CA Client Certificate or Basic
Authentication

5.3.2.2.1 Adding a Trusted Client Certificate in a Standalone Oracle HTTP Server

Installation

To add a trusted certificate to the wallet in a standalone installation, use the or apki
command. See orapki in Administering Oracle Fusion Middleware.

5.3.2.2.2 Adding a Trusted Client Certificate in Collocated Oracle HTTP Server Installation

ORACLE

To add a trusted certificate to a wallet in a collocated installation, use the Fusion
Middleware Control or the WebLogic Scripting Tool.

1. Import the certificate into the trusted certificate list of the keystore.

2. Export keystore into the server’s wallet after importing trusted certificates to the
keystore.

To import certificate using the Fusion Middleware Control, see Managing
Certificates with Fusion Middleware Control in Securing Applications with Oracle
Platform Security Services. Export keystore option is not provided in the Fusion
Middleware Control.

To import certificate and export keystore using the WebLogic Scripting Tool, see
Managing Certificates with WLST and Managing Keystores with WLST in Securing
Applications with Oracle Platform Security Services.

5-8

Chapter 5
Configuring Oracle HTTP Server Instances

5.3.2.2.3 Forcing Clients to Authenticate Using Certificates

You can force the client to validate its client certificate and allow access to the server
using SSLVeri fyCd i ent . This scenario is valid for all clients having a client certificate
supplied by the server Certificate Authority (CA). The server can validate client's
supplied certificates against its CA for additional permission.

require a client certificate which has to be directly

signed by our CA certificate

SSLVerifyCQient require

SSLWal | et "${ ORACLE_I NSTANCE}/ confi g/ f mconf i g/ conponent s/ ${ COVPONENT _TYPE} /
i nst ances/ ${ COWPONENT_NAME} / keyst or es/ def aul t "

5.3.2.2.4 Forcing a Client to Authenticate for a Particular URL

To force a client to authenticate using certificates for a particular URL, you can use the
per-directory reconfiguration features of mod_ossl. In this case, the SSLVeri fyd i ent
appears in a Locat i on block.

SSLVerifydient none
SSLWal | et " ${ ORACLE_I NSTANCE} / confi g/ f maconf i g/ conponent s/ ${ COVPONENT_TYPE} /
i nst ances/ ${ COVPONENT_NAME}/ keyst or es/ def aul t
<Location /secure/area>
SSLVerifydient require
</ Locati on>

5.3.2.2.5 Authorizing a Client for a Particular URL

ORACLE

To authorize a client for a particular URL, check that part of the client certificate
matches what you expect. Usually, this means checking all or part of the Distinguished
Name (DN), to see if it contains some known string. There are two ways to do this,
using either nod_aut h_basi ¢ or SSLRequi re.

The mod_aut h_basi ¢ method is generally required when the certificates are completely
arbitrary, or when their DNs have no common fields (usually the organization, and

so on). In this case, you should establish a password database containing all of the
clients allowed, for example:

SSLVerifydient none

<Directory /access/required>
SSLVerifydient require
SSLOpt i ons +FakeBasi cAut h
SSLRequi r eSSL
Aut hNarre "Oracl e Auth”
Aut hType Basi ¢
Aut hBasi cProvi der file
Aut hUser Fi | e htt pd. passwd
Require val i d- user

</Directory>

The password used in this example is the DES encrypted string passwor d. For
more information on this directive, see SSLOptions Directive which describes the
SSLOpt i ons directive of the nod_ossl module.

htt pd. passwd

Subj ect: OU=Cl ass 3 Public Primary Certification Authority, O=Veri Sign\,

5-9

Chapter 5
Configuring Oracle HTTP Server Instances

I nc., C=US

Subj ect: CN=GTE Cyber Trust d obal Root, QU=GTE Cyber Trust Sol utions\,

I nc., O=GTE Cor por ati on, C=US

Subj ect: CN=l ocal host, QU=FOR TESTI NG ONLY, O=FOR TESTI NG ONLY

Subj ect: O=C ass 2 Public Primary Certification Authority, O=Veri Sign\,
I nc., C=US

Subj ect: OLC ass 1 Public Primary Certification Authority, O=Veri Sign\,
I nc., C=US

When your clients are all part of a common hierarchy, which is encoded into the DN,
you can match them more easily using SSLRequi r e, for example:

SSLVerifydient none
SSLWal | et " ${ ORACLE_| NSTANCE}/ confi g/ f mwconfi g/ conponent s/ ${ COVPONENT_TYPE} /
i nst ances/ ${ COVPONENT_NAME} / keyst or es/ def aul t "

<Directory /access/required>

SSLVerifydient require

SSLOpt i ons +FakeBasi cAut h

SSLRequi r eSSL

SSLRequi re U SSL_CLIENT_S DN G eq "VeriSign\, Inc." \

and % SSL_CLIENT_S DN QJ} in {"Cass", "Public", "Primry"}
</Directory>

5.3.2.2.6 Allowing Clients with Strong Ciphers and CA Client Certificate or Basic

Authentication

ORACLE

The following examples presume that clients on the Intranet have IPs in the range
192.168.1.0/24, and that the part of the Intranet website you want to allow Internet
access to is /access/required. This configuration should remain outside of your HTTPS
virtual host, so that it applies to both HTTPS and HTTP.

SSLval | et "$ORACLE_I NSTANCE/ confi g/ f maconfi g/ conponent s/ SCOVPONENT _TYPE/
i nst ances/ $COVMPONENT_NAME/ keyst or es/ def aul t "
<Directory [/access/required>
Qutside the subarea only Intranet access is granted
Require ip 192.168.1.0/24
</Directory>

<Directory [/access/required>
Inside the subarea any Intranet access is allowed
but fromthe Internet only HTTPS + Strong- G pher + Password
or the alternative HITPS + Strong-Gipher + Client-Certificate

If HITPS is used, neke sure a strong cipher is used.
Additionally allowclient certs as alternative to basic auth.

SSLVerifydient opti onal

SSLOpti ons +FakeBasi cAuth +StrictRequire
SSLRequi r e 9% SSL_Cl PHER USEKEYSI ZE} >= 128

Force clients fromthe Internet to use HITPS

Rewr i t eEngi ne on

Rewr i t eCond 9% REMOTE_ADDR} !7192\.168\.1\.[0-9] +$
Rewr i t eCond Y HTTPS} !=on

RewriteRul e . - [F

Allow Network Access and/or Basic Auth

Satisfy any

Network Access Control
Require ip 192.168.1.0/24

5-10

Chapter 5
Configuring Oracle HTTP Server Instances

HITP Basic Authentication

Aut hType basi c

Aut hNane "Protected Intranet Area"
Aut hBasi cProvi der file

Aut hUserFil e ht passwd

Require val i d- user

</Directory>

5.3.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic

Server

Use the Oracle WebLogic Server Proxy Plug-In to enable SSL between Oracle HTTP
Server and Oracle WebLogic Server. The plug-ins allow you to configure SSL libraries
and configure one-way and two-way SSL communications. See Use SSL with Plug-Ins
and Parameters for Oracle WebLogic Server Proxy Plug-In in Using Oracle WebLogic
Server Proxy Plug-Ins.

5.3.2.4 Using SAN Certificates with Oracle HTTP Server

ORACLE

A Subject Alternative Name (SAN) Certificate or Unified Communications Certificates
(UCC) can secure multiple sub-domains that are specified in Subject Alternative name
field.

You can use the Subject Alternative Name (SAN) field to specify additional host
names (for example, site, IP address, command name) that are to be protected by a
single SSL certificate. Using a SAN certificate, you can secure host names on different
base domains in one SSL certificate. You can also host multiple SSL enabled sites

on a single server by using Multi-Domain (SAN) Certificate with Subject Alternative
Names. Certificates with SAN extension do not support use of wildcards. So you must
add each subdomain individually.

Create Certificate Request with SAN Extension by Using orapki Utility

Use the orapki utility to create certificate request with SAN extension. See Adding a
Certificate Request to an Oracle Wallet.

Sample Configuration Using SAN Certificates

1. Create a <Vi rtual Host > block for each host that you want to serve using the
same IP address and port.

2. Ineach <Vi rtual Host > block, set up the ServerName directive to designate which
host is being served.

For example, if VHL is the first virtual host block, set the ServerName as
Server Name nsl. exanpl e. com Similarly, if VH2 is the second virtual host block,
set the ServerName as Server Name ns2. exanpl e. com

3. Generate a certificate with the host names referring the different virtual hosts
added to the SAN extension field.

4. Ineach <Virtual Host > block, set up the SSLWallet directive to the wallet that
contains the certificate generated in Step 3.

For example, SSLwal | et server.

5. Save the changes and start Oracle HTTP Server.

5-11

Chapter 5
Configuring Oracle HTTP Server Instances

Sample Configuration Example

Li sten 4443

<Vi rtual Host >
Server Name nsl. exanpl e. com
SSLwal | et "server"

</ Virtual Host >

<Vi rtual Host >
Server Name ns2. exanpl e. com
SSLwal | et "server"

</ Virtual Host >

Restrictions

Oracle HTTP Server does not support Server Name Indication (SNI) extension. In
absence of SNI support, when setting up more than one SSL enabled virtual host by
using a certificate with several Subj ect Al t Nane extension entries, only the per - vhost
mod_ossl directives set for the first virtual host are considered.

Consider the following configuration:

Ensure that Apache listens on port 443
Li sten 443
<Virtual Host *:443>
Because this virtual host is defined first, it wll
be used as the default
Document Root / www/ exanpl el
Server Name nsl. exanpl e. com
OQther directives here
SSLCi pher Suite AES
SSLProtocol TLSv1
</ Virtual Host >
<Virtual Host *:443>
Docunent Root / www/ exanpl e2
Server Name ns2. exanpl e. com
OQther directives here
SSLCi pher Suite AES- GCM
SSLProtocol TLSv1.2
</ Virtual Host >

When connecting to both ns1. exanpl e. comand ns2. exanpl e. com permitted
ciphers and protocols are AES and TLSv1 respectively. Although the cipher

suite directive is set to AES-GCM and the protocol version is set to TLSv1.2

for ns2. exanpl e. com the ones used in handshake while connecting to

ns2. exanpl e. comwould be AES cipher and TLSv1 protocol only.

5.3.3 Exporting the Keystore to an Oracle HTTP Server Instance
Using WLST

The collocated Oracle HTTP server uses the Oracle wallet during run time. It
is recommended not to manage certificates in the Oracle wallet using tools like

ORACLE 5-12

Chapter 5
Configuring Oracle HTTP Server Instances

orapki. Instead, use the central storage and unified management available with the
Keystore Service to manage wallets and their contents through the export, import, and
synchronization features of that service. The export KeySt or e command provided by
KSS, can be used for exporting the keystore to the wallet. However, there are many
nuances that the user has to be aware of while using the export KeySt or e command.
Hence, a custom OHS WLST command called ohs_export Keyst or e is provided.

Use the WLST custom command ohs_expor t KeySt or e to export the keystore to the
Oracle wallet after modifying the keystore. For more information about this command
and naming conventions for keystores, see ohs_exportKeyStore.

1. Launch WLST from the command line.
Linux or UNIX: $ORACLE_HOME/ or acl e_conmmon/ conmon/ bi n/ wi st . sh
Windows: $ORACLE_HOVE\ or acl e_common\ conmon\ bi n\w st . cnd

2. Connect to the Administration Server instance:
connect (' <user Nane', '<password>', '<host>:<port>')

3. Issue the ohs_export KeySt ore WLST custom command:

ohs_export KeySt or e(keySt oreName = ' <keystore_nanme>', instanceNane =
" <nane_of _t he_CHS_ i nstance>")

For example, to export the ohs1_nyKeyst or e keystore to the ohs1 Oracle HTTP
Server instance:

ohs_export KeySt ore(keySt oreName = 'ohsl_nyKeystore', instanceNane = 'ohsl')

5.3.4 Configuring MIME Settings Using Fusion Middleware Control

Oracle HTTP Server uses Multipurpose Internet Mail Extension (MIME) settings to
interpret file types, encodings, and languages. MIME settings for Oracle HTTP Server
can only be set using Fusion Middleware Control. You cannot use WLST commands to
specify the MIME settings.

The following tasks can be completed on the MIME Configuration page:

» Configuring MIME Types
* Configuring MIME Encoding
* Configuring MIME Languages

5.3.4.1 Configuring MIME Types

MIME type maps a given file extension to a specified content type. The MIME type is
used for filenames containing an extension.

To configure a MIME type using Fusion Middleware Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Types region.

ORACLE 5-13

Chapter 5
Configuring Oracle HTTP Server Instances

4 MIME Types

Create MIME settings to map file extensions to a particular content type. To apply a MIME type as the default for unknown types, select a row and
click Set As Default.

4k AddRow 3¢
MIME Type File Extension
application/x-compress z
application/x-gzip 0z gz
application/x-x508-ca-cert ort
application/x-pkes7-crl crl

3. Click Add Row in MIME Configuration region. A new, blank row is added to the
list.

4. Enter the MIME type and its associated file extension.

5. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

6. Restart Oracle HTTP Server, as described in Restarting Oracle HTTP Server
Instances .

The MIME configuration is saved, and shown on the MIME Configuration page.

5.3.4.2 Configuring MIME Encoding

ORACLE

MIME encoding enables Oracle HTTP Server to determine the file type based on
the file extension. You can add and remove MIME encodings. The encoding directive
maps the file extension to a specified encoding type.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Encoding region.

4 MIME Encodings
Create MIME settings to map file extensions to a particular content encoding

4k AddRow 3¢

MIME Encoding File Exiension
No MIME Encodings Found

3. Expand the MIME Encoding region, if necessary, by clicking the plus sign (+) next
to MIME Encoding.

Click Add Row in MIME Encoding region. A new, blank row is added to the list.
Enter the MIME encoding, such as x- gzi p.

Enter the file extension, such as .gx.

N o o &

Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server
Instances .

5-14

Chapter 5
Configuring Oracle HTTP Server Instances

5.3.4.3 Configuring MIME Languages

The MIME language setting maps file extensions to a particular language. This
directive is commonly used for content negotiation, in which Oracle HTTP Server
returns the document that most closely matched the preferences set by the client.

1. Select Administration from the Oracle HTTP Server menu.

2. Select MIME Configuration from the Administration menu. The MIME
configuration page appears. Scroll to the MIME Languages region.

4 MIME Languages

Create MIME settings to map file extensions to a particular content language. To apply a MIME language as the default for unknown types, selecta
row and click Set As Default.

Default MIME
Language
<k AddRow 3¢
MIME Language File Extension
ca ca
ce £Z .8
da da
de de

3. Expand the MIME Languages region, if necessary, by clicking the plus sign (+)
next to MIME Languages.

Click Add Row in MIME Languages region. A new, blank row is added to the list.
Enter the MIME language, such as en-US.

Enter the file extension, such as en-us.

N o g »

To choose a default MIME language, select the desired row, then click Set As
Default. The default language will appear in the Default MIME Language field.

8. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

9. Restart Oracle HTTP Server as described in Restarting Oracle HTTP Server
Instances .

5.3.5 About Configuring mod_proxy_fcgi

ORACLE

The mod_proxy_fcgi module does not have configuration directives. Instead, it uses
the directives set on the mod_proxy module. Unlike the mod_fcgid and mod_fastcgi
modules, the mod_proxy_fcgi module has no provision for starting the application
process. The purpose of mod_proxy_fcgi is to move this functionality outside of the
web server for faster performance. So, mod_proxy_fcgi simply will act as a reverse
proxy to an external FastCGI server.

For more information on configuring the mod_proxy_fcgi module, see Task 3:
Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI Server
and Task 4: Setup an External FastCGI Server.

5-15

Chapter 5
Configuring Oracle HTTP Server Instances

5.3.6 About Configuring the Oracle WebLogic Server Proxy Plug-In
(mod_wl_ohs)

You can configure the Oracle WebLogic Server Proxy Plug-In (mod_wI_ohs) either
by using Fusion Middleware Control or by manually editing the mod_wl_ohs.conf
configuration file.

For information about the prerequisites and procedure for configuring the Oracle
WebLogic Server Proxy Plug-In to proxy requests from Oracle HTTP Server to Oracle
WebLogic Server, see Configuring the WebLogic Proxy Plug-In for Oracle HTTP
Server in Using Oracle WebLogic Server Proxy Plug-Ins.

5.3.6.1 Configuring SSL for mod_wl_ohs

You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between the plug-in and Oracle WebLogic Server. The SSL protocol provides
confidentiality and integrity to the data passed between the plug-in and WebLogic
Server. See Using SSL with Plug-Ins in Using Oracle WebLogic Server Proxy Plug-Ins.

5.3.7 Removing Access to Unneeded Content

By default, the httpd.conf file allows server access to extra content such as
documentation and sample scripts. This access might present a low-level security risk.
Starting with the Oracle HTTP Server 12c¢ (12.2.1) release, some of these sections are
commented out.

You might want to tailor this extra content in your own environment to suit your use
cases. To access the httpd.conf file, see About Editing Configuration Files to access
the file.

This section includes the following topics:

» Edit the cgi-bin Section
» Edit the Fancy Indexing Section

e Edit the Product Documentation Section

5.3.7.1 Edit the cgi-bin Section

ORACLE

Examine the contents of the cgi - bi n directory. You can either remove the code from
the httpd.conf file that you do not need, or change the following Directory directive to
point to your own CGI script directory.

#
" ${ ORACLE_| NSTANCE}/ confi g/ f mvconfi g/ conponent s/ ${ COVPONENT_TYPE} /i nst ances/ $
{ COVPONENT_NAME} / cgi - bi n" shoul d be changed to whatever your ScriptAliased
C3d directory exists, if you have that configured.
#
<Directory "${ ORACLE | NSTANCE}/ confi g/ f mxconfi g/ conponent s/ ${ COVPONENT_TYPE}/
i nst ances/ ${ COVPONENT_NAME}/ cgi - bi n" >
Al I owOverride None
Options None
Require all granted

5-16

Chapter 5
Configuring Oracle HTTP Server Instances

</Directory>

5.3.7.2 Edit the Fancy Indexing Section

ORACLE

Edit the following sections pertaining to fancy indexing in the httpd.conf file for your
use cases.

Uncomment the following line to enable the fancy indexing configuration
bel ow.

Define ENABLE_FANCYI NDEXI NG

<I| f Def i ne ENABLE_FANCYI NDEXI NG>

IndexOptions: Controls the appearance of server-generated directory
|istings.

#

I ndexOpt i ons Fancyl ndexi ng HTM.Tabl e Versi onSort

W include the /icons/ alias for Fancylndexed directory listings. |If
you do not use Fancyl ndexing, you nay conment this out.

#

Alias /icons/ "${PRODUCT_HOWE}/icons/"

<Directory "${ PRODUCT_HOVE}/i cons" >
Options Indexes MultiViews
Al l owOverride None
Require all granted
</Directory>

#

Addl con* directives tell the server which icon to show for different
files or filenane extensions. These are only displayed for

Fancyl ndexed directories.

#

Addl conByEncodi ng (CMP, /i cons/ conpressed. gif) x-conpress x-gzip

Addl conByType (TXT,/icons/text.gif) text/*
Addl conByType (I M3 /icons/image2.gif) image/*
Addl conByType (SND,/icons/sound2.gif) audio/*
Addl conByType (VID,/icons/novie.qgif) videol*

Addl con /icons/binary.gif .bin .exe

Addl con /i cons/ bi nhex. gif . hgx

Addl con /icons/tar.gif .tar

Addl con /icons/world2.gif .wl .wl.gz .vrml .vrm.iv
Addl con /icons/conpressed.gif .Z .z .tgz .gz .zip
Addl con /icons/a.gif .ps .ai .eps

Addl con /icons/layout.gif .htm .shtml .htm.pdf

Addl con /icons/text.gif .txt

Addl con /icons/c.gif .c

Addl con /icons/p.gif .pl .py

Addl con /icons/f.gif .for

Addl con /icons/dvi.gif .dv

Addl con /i cons/uuencoded. gi f . uu

Addl con /icons/script.gif .conf .sh .shar .csh .ksh .tc
Addl con /icons/tex.gif .tex

Addl con /i cons/bomb. gif core

Addl con /icons/back.gif ..

5-17

Chapter 5
Configuring Oracle HTTP Server Instances

Addl con /icons/hand.right.gif README
Addl con /icons/folder.gif ~"Dl RECTORY "
Addl con /icons/ bl ank. gi f ~"BLANKI CONM

#

Defaultlcon is which icon to show for files which do not have an icon
explicitly set.

#

Defaul t1con /icons/unknown. gi f

#

AddDescription allows you to place a short description after a file in
server-generated indexes. These are only displayed for Fancyl ndexed
directories

Format: AddDescription "description" filename

#

#AddDescription "GZI P conpressed document” . gz

#AddDescription "tar archive" .tar

#AddDescription "GZI P conpressed tar archive" .tgz

ReadneNane is the nane of the README file the server will look for by
default, and append to directory listings.

Header Narme is the name of a file which shoul d be prepended to
directory indexes.

ReadmeName README. ht ni

Header Name HEADER. ht m

#
#
#
#
#
#

#

Indexlgnore is a set of filenanes which directory indexing should ignore
and not include in the listing. Shell-style wildcarding is permtted.

#

I ndexl gnore .??* *~ *# HEADER* README* RCS CVS *,v * t

</|fDefine>

5.3.7.3 Edit the Product Documentation Section

ORACLE

Uncomment the Def i ne MANUAL_ENABLE line to enable the manual configuration of
product documentation.

#

Uncomment the following Iine to enable the manual configuration bel ow
Define ENABLE_ MANUAL

<| f Defi ne ENABLE_ MANUAL>

AliasMatch A manual (?:/(?:de|en|es|fr|jalko|pt-br|rultr))?(/.*)?$ "$

{ PRODUCT_HOME} / manual $1"

<Directory "${PRODUCT_HOVE}/ manual ">
Options | ndexes
Al | owOverride None
Require all granted

<Files *.htm>
Set Handl er type-map
</ Files>
.tr is text/troff in mnme.types!
<Files *.htm .tr.utf8>
For ceType text/htn

5-18

Chapter 5
Configuring Oracle HTTP Server Instances

</Files>

Set Envlf Request _URI ~/ manual / (de|en|es|fr|jalko|pt-br|ru|tr)/ prefer-
| anguage=$1

Redi rect Mat ch 301 ~/ manual (?:/(de|en|es|fr|jalko|pt-br|rujtr)){2,}(/.*)?$ /
manual / $1$2

LanguagePriority en de es fr ja ko pt-br ru tr
For ceLanguagePriority Prefer Fallback
</Directory>
</IfDefine>

5.3.8 Using the apxs Command to Install Extension Modules

ORACLE

< Note:

This command is only for UNIX and Linux and is necessary only for modules
which are supplied in source code form. Follow the installation instructions
for modules supplied in binary form.

For more information about the apxs command, see the Apache HTTP
Server documentation at:

http://httpd. apache. org/ docs/ 2. 4/ progr ams/ apxs. ht m

The Apache Extension Tool (apxs) can build and install Apache HTTP Server
extension modules for Oracle HTTP Server. apxs installs modules in the
ORACLE_HQOVE/ ohs/ nmodul es directory for access by any Oracle HTTP Server
instances which run from this installation.

Note:

Once any third-party module is created and loaded, it falls under the third-
party criteria specified in the Oracle HTTP Server support policy. Before
continuing with this procedure, you should be aware of this policy. See
Oracle HTTP Server Support.

Recommended apxs options for use with Oracle HTTP Server are:

Option Purpose Example Command

- Compile module source $ORACLE_HOVE ohs/ bi n/ apxs -c nod_exanpl e. ¢

-i Install module binary into

ORACLE_HOME $ORACLE_HOVE/ ohs/ bi n/ apxs -ci mpd_exanple.c

When the module binary has been installed into ORACLE_HOVE, a LoadMbdul e
directive in httpd.conf or other configuration file loads the module into the server
processes; for example:

LoadModul e exanpl e_nodul e " ${ ORACLE_HOVE} / ohs/ nodul es/ nod_exanpl e. so"

5-19

http://httpd.apache.org/docs/2.4/programs/apxs.html

Chapter 5
Configuring Oracle HTTP Server Instances

The directive is required in the configurations for all instances which must load the
module.

When the -a or -A option is specified, apxs will edit httpd.conf to add a LoadModule
directive for the module. Do not use the - a and - A options with Oracle HTTP Server
instances that are part of a WebLogic Server Domain. Instead, use Fusion Middleware
Control to update the configuration, as described in Modifying an Oracle HTTP Server
Configuration File.

You can use the -a or -A option with Oracle HTTP Server instances that are part of
a standalone domain if the CONFIG_FILE_PATH environment variable is set to the
staging directory for the instance before invoking apxs. For example:

CONFI G_FI LE_PATH=$ORACLE_HOVE/ user _proj ect s/ domai ns/ base_doni n/ confi g/ f mconfi g/
conponent s/ CHS/ ohs1

export CONFI G_FI LE_PATH

$ORACLE_HOVE ohs/ bi n/ apxs -cia nod_exanpl e. c

By default, apxs uses the Perl interpreter in /usr/bin. If apxs cannot locate the product
install or encounters other operational errors when using / usr/ bi n/ per| , use the
Perl interpreter within the Middleware home by invoking apxs as follows:

$ORACLE_HOVE per | / bi n/ per| $ORACLE_HOVE/ ohs/ bi n/ apxs -c nod_exanple.c
Modules often require directives besides LoadMbdul e to properly function. After the

module has been installed and loaded using the LoadModule directive, refer to the
documentation for the module for any additional configuration requirements.

5.3.9 Disabling the Options Method

ORACLE

The Options method enables clients to determine which methods are supported by a
web server. If enabled, it appears in the Al | owline of HTTP response headers.

For example, if you send a request such as:

---- Request -------

OPTIONS / HTTP/1.0

Content-Length: 0

Accept: */*

Accept - Language: en-US

User-Agent: Mzilla/4.0 (conpatible; MSIE 6.0; Wn32)
Host: host 123: 80

you might get the following response from the web server:

---- Response --------

HTTP/ 1.1 200 K

Date: Wed, 23 Apr 2008 20:20:49 GMI

Server: Oracle-Application-Server-11g/11.1.1.0.0 Oracl e- HTTP- Server
Al'l ow. CET, HEAD, PCST, OPTI ONS

Content-Length: 0

Connection: close

Content - Type: text/htm

Some sources consider exposing the Options method a low security risk because
malicious clients could use it to determine the methods supported by a web server.
However, because web servers support only a limited number of methods, disabling
this method will just slow down malicious clients, not stop them. In addition, the
Options method may be used by legitimate clients.

5-20

Chapter 5
Configuring the mod_security Module

If your Oracle Fusion Middleware environment does not have clients that require the
Options method, you can disable it by including the following lines in the httpd.conf file:

<IfMdule nod_rewite.c>

Rewr i t eEngi ne on

Rewr i t eCond % REQUEST METHOD} ~OPTI ONS

RewiteRul e
</l f Modul e>

- [A

5.3.10 Updating Oracle HTTP Server Component Configurations on a
Shared File System

You might encounter functional or performance issues when an Oracle HTTP Server
component is created on a shared file system, such as NFS (Network File System). In
particular, lock files or UNIX sockets used by Oracle HTTP Server might not work

or may have severe performance degradation; Oracle WebLogic Server requests
routed by mod_wl_ohs may have severe performance degradation due to file system
accesses in the default configuration.

Table 5-1 provides information about the Lock file issues and the suggested changes
in the htt pd. conf file specific to the operating systems.

Table 5-1 Lock File issues

Operating System

Description

httpd.conf changes

Linux Lock files are not required. Change Mutex fnctl:fileloc
The Sys V semaphore is the def aul t to Mut ex sysvsemdef aul t
preferred cross-process mutex where fi | el oc is the value of
implementation. the directive Mit ex (three places in

httpd.conf).

Solaris Lock files are not required. The Change Mitex fnctl:filel oc
cross-process pthread mutex defaul t to Mitex pthread default
is the preferred cross-process where fi | el oc is the value of
mutex implementation. the directive Mit ex (three places in

httpd.conf).

Other UNIX Change the file location specified in the

platforms Mut ex directive to point to a local file

system (three places in httpd.conf).

UNIX socket issues

mod_cgid is not enabled by
default. If enabled, use the
Scri pt Sock directive to place
mod_cgid's UNIX socket on a
local file system.

5.4 Configuring the mod_security Module

You can configure the mod_securi ty module to protect Oracle HTTP Server from

ORACLE

intrusion.

You can use the open-source nod_security module to detect and prevent intrusion
attacks against Oracle HTTP Server. For example, specifying a nod_securi ty rule to
screen all incoming requests and deny requests that match the conditions specified
in the rule. The mod_security module and its prerequisites are included in the

5-21

Chapter 5
Configuring the mod_security Module

Oracle HTTP Server installation as a shared object named nod_security2. so in the
ORACLE_HOWVE/ ohs/ nodul es directory.

Starting version 12c¢ (12.2.1.1.0), Oracle HTTP Server supports nod_security
version 2.9.0 directives, variables, action, phases, and functions. See http://
www. nodsecurity. org/ docunentation/.

Sample mod_security.conf File provides a usable example of the mod_securi ty. conf
file, including the LoadMbdul e statement.

¢ Note:

e nod_security was removed from earlier versions of Oracle HTTP
Server but was reintroduced in version 11.1.1.7. This version
follows the recommendations and practices prescribed for open
source nod_security 2.9.0. Only documentation applicable to open
source mod_security 2.9.0 is applicable to the Oracle HTTP Server
implementation of the module.

e In Oracle HTTP Server versions 11.1.1.7 and later, nod_security is not
loaded or configured by default. However, if you have an installation
patched from version 11.1.1.6, implementing the patch might have
already loaded and configured the module.

e Oracle supports the Oracle supplied version of nod_security. Newer
versions from nodsecuri ty. or g is not supported.

The mod_securi ty configuration can be added to the ht t pd. conf configuration file,
or it can appear in a separate nod_security. conf configuration file.

This section contains the following information:

» Configuring mod_security in the httpd.conf File

e Configuring mod_security in a mod_security.conf File

* Configuring SecRemoteRules in the mod_security.conf File

e Sample mod_security.conf File

5.4.1 Configuring mod_security in the httpd.conf File

You can configure the mod_security module by entering mod_security directives in the
httpd.conf file in an | f Modul e container. To make the mod_security module available
when Oracle HTTP Server is running, ensure that the mod_security configuration
begins with the following lines:

#Load nodul e
LoadMbdul e security2_modul e "${ PRODUCT_HOVE}/ modul es/ mod_security2. so"

ORACLE 5-22

http://www.modsecurity.org/documentation/
http://www.modsecurity.org/documentation/

Chapter 5
Configuring the mod_security Module

5.4.2 Configuring mod_security in a mod_security.conf File

You can specify the mod_security directives in a separate mod_security.conf file and
include that file in the httpd.conf file by using the | ncl ude directive.

1. You must create the mod_security.conf file yourself, preferably by using the
template in Sample mod_security.conf File.

Copy and paste the sample into a text editor, then edit it for your system.

2. To make the mod_security module available when Oracle HTTP Server is running,
ensure that mod_security.conf begins with the following lines:

#Load nodul e
LoadModul e security2_nodul e "${ PRODUCT_HOVE}/ nodul es/ nod_security2. so"

3. Save the file with the name "mod_security.conf" and include it in your httpd.conf
file by using the I ncl ude directive.

If you implement mod_security.conf file as described, it will use the LoadModul e
directive to load mod_security2.so into the run time environment.

5.4.3 Configuring SecRemoteRules in the mod_security.conf File

ORACLE

The SecRemoteRules is an optional directive that you can use to load rules from a
remote server.

Syntax

SecRenot eRul es sone-key https://ww. yourserver.con pl ain-text-rul es. txt

Table 5-2 provides information about the variables of SecRemoteRules.

Table 5-2 SecRemoteRules Variables

|
Variable Description

some-key These keys can be used by the target server to provide different
content for different keys. You must provide these keys.
Along with these keys, mod_secur ity sends its unique ID and the
status call in the format of headers to the target web server. The
following headers are used:
* ModSec-status
e ModSec-unique-id
* ModSec-key
The optional option crypt o tells mod_security to expect some
encrypted content from server. The utilization of SecRenot eRul es
is only allowed over TLS. Thus, this option may not be necessary.

5-23

Chapter 5
Configuring the mod_security Module

Table 5-2 (Cont.) SecRemoteRules Variables
|

Variable Description
yourserver.com yourserver.com is the remote server that hosts the mod_security
rules.

When the SecRemoteRules directive is configured on a server S1,
S1 establishes an SSL connection with yourserver.com to fetch

the mod_security rules. Here, the pl ai n-t ext -rul es. t xt file
contains the mod_security rules. Server S1 acts as an SSL client
and yourserver.com acts as an SSL server.

The SSL client is implemented using | i bcur | . By default, | i bcur|
verifies the peer SSL certificate. The verification is done by using a
CA certificate store that the SSL library can use to ensure that the
peer's server certificate is valid.

If the server uses a certificate signed by a CA that is not

included in the store you use, add the CA certificate for your

server to the existing default CA certificate store. The trust store
path used by | i bcur| on Linuxis/ et c/ pki/tls/certs/ca-
bundle.crt.

To add the remote server certificate to the trust store, do the
following:
1. Extract the CA certificate for a particular server.
If you use the openssil tool, you can do the following to extract
the CA certificate for a particular server:

a. openssl s_client -connect xxxxx.com 443 |tee
logfile
b. Type QUIT and press Enter.

The certificate will have BEGIN CERTIFICATE and END
CERTIFICATE markers.

2. Append the contents of certificate to the default trust store path.
letclpkiltls/certs/ca-bundle.crt

Ensure that you do not add a new line at the end of the file.

l'ibcurl also verifies server host name verification. That is,

['i bcurl considers the server as the intended server when the
Common Name field or a Subject Alternate Name field in the
certificate matches the host name in the URL to which you told curl
to connect. The communication might fail if this condition is not met.

5.4.4 Sample mod_security.conf File

The following code illustrates a sample mod_security.conf configuration file.

Example 5-1 mod_security.conf Sample

#Load nodul e
LoadMbdul e security2_modul e " ${ PRODUCT_HOVE}/ nodul es/ mod_securi ty2. so"
#-- Rule engine initialization ----------mmmmmmm

Enabl e MbdSecurity, attaching it to every transaction. Use detection

only to start with, because that mninmzes the chances of post-installation
disruption.

#

ORACLE 5-24

Chapter 5
Configuring the mod_security Module

SecRul eEngi ne DetectionOnly

-- Request body handling ----------------mmmmm oo

Al ow MbdSecurity to access request bodies. |f you don't, MddSecurity
won't be able to see any POST paraneters, which opens a large security
hole for attackers to exploit.

#

SecRequest BodyAccess On

Enabl e XM. request body parser.

Initiate XM. Processor in case of xm content-type

#

SecRul e REQUEST_HEADERS: Cont ent - Type "text/xm "

"id:'200000', phase: 1,t:none,t: | owercase, pass, nol og, ctl:request BodyProcessor =XM."

Maxi mum request body size we will accept for buffering. If you support

file uploads then the value given on the first line has to be as large
as the largest file you are willing to accept. The second val ue refers
to the size of data, with files excluded. You want to keep that val ue as
low as practical.

#

SecRequest BodyLimit 13107200

SecRequest BodyNoFi | esLimt 131072

Store up to 128 KB of request body data in mermory. When the nultipart
parser reachers this limt, it will start using your hard disk for

storage. That is slow, but unavoidable.

#

SecRequest Bodyl nMenoryLimt 131072

Wiat do do if the request body size is above our configured linit.

Keep in mnd that this setting will automatically be set to ProcessParti al
when SecRul eEngine is set to DetectionOnly node in order to mninze

disruptions when initially deploying MdSecurity.

#

SecRequest BodyLi m t Acti on Rej ect

Verify that we've correctly processed the request body.

As a rule of thunb, when failing to process a request body

you shoul d reject the request (when deployed in bl ocking node)

or log a high-severity alert (when deployed in detection-only node).

#

SecRul e REQBODY_ERRCR "! @q 0" \

"id:'200001', phase:2,t:none, |l og, deny, status: 400, nsg:' Failed to parse request \
body.',logdata:' %reqbody_error_msg}', severity:2"

By default be strict with what we accept in the nultipart/formdata
request body. |f the rule below proves to be too strict for your

environment consider changing it to detection-only. You are encouraged
not to renove it altogether.

#

SecRul e MULTI PART_STRICT_ERROR "! @q 0" \

"id:'200002', phase: 2,t: none, | og, deny, status: 44, \

msg: ' Mul tipart request body failed strict validation: \

PE 94 REQBODY_PROCESSOR _ERROR}, \

BQ 9% MULTI PART_BOUNDARY_QUOTED}, \

BW 94 MULTI PART_BOUNDARY_\\HI TESPACE}, \

DB 9% MULTI PART_DATA BEFORE}, \

ORACLE 5-25

Chapter 5
Configuring the mod_security Module

DA % MULTI PART DATA AFTER}, \

HE 9% MULTI PART_HEADER FOLDI NG}, \

LF 9% MULTI PART_LF_LINE}, \

SM % MULTI PART_M SSI NG_SEM COLON}, \

| Q 9% MULTI PART_| NVALI D_QUOTI NG}, \

| P 9% MULTI PART_| NVALI D_PART}, \

I'H 9% MULTI PART_| NVALI D_HEADER FOLDI NG}, \
FL 9% MULTI PART FILE_LI M T_EXCEEDED}' "

Did we see anything that m ght be a boundary?

#

SecRul e MULTI PART_UNMATCHED BOUNDARY "! @q 0" \

"id:'200003', phase: 2,t:none, | og, deny, status: 44, nsg: ' Mul ti part parser detected a possible
unmat ched boundary.'"

PCRE Tuni ng
W want to avoid a potential RegEx DoS condition
#

SecPcreMat chLimt 1000
SecPcr eMat chLi m t Recursi on 1000

Some internal errors will set flags in TX and we will need to | ook for these.

Al of these are prefixed with "MSC ". The following flags currently exist:
#

MSC_PCRE_LIM TS_EXCEEDED: PCRE match limts were exceeded.

#

SecRule TX:/AMBC_/ "!@treq 0" \
"id:'200004', phase: 2,t:none, deny, nsg: ' ModSecurity internal error flagged: %
{ MATCHED VAR NAME}' "

-- Response body handl ing ---------cmmmmmmmm
Al'l ow ModSecurity to access response bodi es.
You shoul d have this directive enabled in order to identify errors

and data | eakage issues.

Do keep in mind that enabling this directive does increases both
menmory consunption and response | atency.

HoH O H H R

SecResponseBodyAccess On

Wi ch response M ME types do you want to inspect? You shoul d adjust the
configuration below to catch docunents but avoid static files

(e.g., imges and archives).

#

SecResponseBodyM nmeType text/plain text/htm text/xn

Buffer response bodies of up to 512 KB in |ength.
SecResponseBodyLi mt 524288

Wiat happens when we encounter a response body |arger than the configured
limt? By default, we process what we have and | et the rest through.

That's sonmewhat |ess secure, but does not break any legitinate pages.

#

SecResponseBodyLi m t Action ProcessParti al

-- Filesystemconfiguration -------------------ommmm
The location where MddSecurity stores tenporary files (for exanple, when

it needs to handle a file upload that is larger than the configured linit).
#

ORACLE 5-26

Chapter 5
Configuring the mod_security Module

This default setting is chosen due to all systens have /tnp avail abl e however,

this is less than ideal. It is recommended that you specify a location that's private.
#

SecTnpDir /tnp/

The location where MdSecurity will keep its persistent data. This default setting
is chosen due to all systens have /tnp available however, it

too should be updated to a place that other users can't access.

#

SecDataDir /tnp/

-- File uploads handling configuration ------------commmmmmmmmoo o

The | ocation where MdSecurity stores intercepted uploaded files. This
location nust be private to MbdSecurity. You don't want other users on
the server to access the files, do you?

#

#SecUpl oadDi r /opt/modsecurity/ var/ upl oad/

By default, only keep the files that were determned to be unusual

in sonme way (by an external inspection script). For this to work you
will also need at |east one file inspection rule.

#

#SecUpl oadKeepFi | es Rel evant Only

Upl oaded files are by default created with pernmissions that do not allow
any other user to access them You may need to relax that if you want to
interface MbdSecurity to an external program(e.g., an anti-virus).

#

#SecUpl oadFi | eMbde 0600

-- Debug log configuration --------------mmommmm

The default debug log configuration is to duplicate the error, warning
and notice nessages fromthe error |og.

#

#SecDebuglLog / opt/ modsecurity/var/l og/ debug. | og

#SecDebuglLogLevel 3

-- Audit log configuration --------------mmommm

Log the transactions that are narked by a rule, as well as those that
trigger a server error (determned by a 5xx or 4xx, excluding 404,

level response status codes).

#

SecAudi t Engi ne Rel evant Only

SecAudi t LogRel evant Status "~(?:5|4(?'04))"

Log everything we know about a transaction.
SecAudi t LogParts ABI JDEFHZ

Use a single file for logging. This is nuch easier to |look at, but

assumes that you will use the audit |og only ocassionally.

#

SecAudi t LogType Seri al

SecAudi t Log " ${ ORACLE_| NSTANCE} / ser ver s/ ${ COVPONENT_NAME} / | ogs/ nodsec_audi t . | og"

Specify the path for concurrent audit |ogging.
SecAudi t LogSt orageDi r " ${ ORACLE_|I NSTANCE} / ser ver s/ ${ COVPONENT_NAME} / | 0gs”

ORACLE 5-27

Chapter 5
Configuring the mod_security Module

#Sinpl e test
SecRule ARGS "\.\./" "t:nornalisePathWn,id: 99999, severity:4,nsg:' Drive Access'"

-- Mscellaneous ---------mmmmmmm

Use the mobst commonly used application/ x-ww«formurl encoded paraneter
separator. There's probably only one application somewhere that uses
something el se so don't expect to change this val ue.

#

SecAr gunent Separ ator &

Settle on version 0 (zero) cookies, as that is what nost applications
use. Using an incorrect cookie version may open your installation to
evasion attacks (against the rules that exam ne naned cookies).

#

SecCooki eFormat 0

Specify your Uni code Code Point.

This mapping is used by the t:url DecodeUni transformation function
to properly map encoded data to your |anguage. Properly setting

these directives helps to reduce fal se positives and negati ves.

#

#SecUni codeCodePage 20127

#SecUni codeMapFi | e uni code. mappi ng

ORACLE 5-28

Managing and Monitoring Server
Processes

You have tools and procedures that help to manage and monitor the performance of
Oracle HTTP Server.

This chapter includes the following sections. These sections discuss the procedures
and tools that manage the server in your environment.

e Oracle HTTP Server Processing Model
e Monitoring Server Performance
e Oracle HTTP Server Performance Directives

* Understanding Process Security for UNIX

6.1 Oracle HTTP Server Processing Model

There are two types of processing models that help to monitor Oracle HTTP Server:
Request Process Model and Single Unit Process Model.

The following sections describe the processing models for Oracle HTTP Server.

* Request Process Model

e Single Unit Process Model

6.1.1 Request Process Model

After Oracle HTTP Server is started, it is ready to listen for and respond to HTTP(S)
requests. The request processing model on Microsoft Windows systems differs from
that on UNIX systems.

* On Microsoft Windows, there is a single parent process and a single child process.
The child process creates threads that are responsible for handling client requests.
The number of created threads is static and can be configured for performance.

* On UNIX, there is a single parent process that manages multiple child processes.
The child processes are responsible for handling requests. The parent process
brings up additional child processes as necessary, based on configuration.
Although the server can dynamically start additional child processes, it is best
to configure the server to start enough child processes initially so that requests
can be handled without having to spawn more child processes.

6.1.2 Single Unit Process Model

ORACLE

Oracle HTTP Server provides functionality that allows it to terminate as a single unit
if the parent process fails. The parent process is responsible for starting and stopping
all the child processes for an Oracle HTTP Server instance. The failure of the parent
process without first shutting down the child processes leaves Oracle HTTP Server in

6-1

Chapter 6
Monitoring Server Performance

an inconsistent state that can only be fixed by manually shutting down all the orphaned
child processes. Until all the child processes are closed, a new Oracle HTTP Server
instance cannot be started because the orphaned child processes still occupy the
ports the new Oracle HTTP Server instance needs to access.

To prevent this from occurring, the DMS instrumentation layer in child processes on
UNIX and monitor functionality within WinNT MPM on Windows monitor the parent
process. If they detect that the parent process has failed, then all of the remaining
child processes are shut down.

6.2 Monitoring Server Performance

Oracle Fusion Middleware automatically and continuously measures runtime
performance for Oracle HTTP Server and Oracle WebLogic Server proxy plug-in
module.

The server performance metrics are automatically enabled; you do not need to set
options or perform any extra configuration to collect them. If you encounter a problem,
such as an application that is running slowly or hanging, you can view the metrics to
find out more about the problem. Fusion Middleware Control provides real-time data.
Cloud Control can be used to view historical data.

These sections describe performance metrics and how to view them:

* Oracle HTTP Server Performance Metrics

* Viewing Performance Metrics

6.2.1 Oracle HTTP Server Performance Metrics

This section lists commonly-used metrics that can help you analyze Oracle HTTP
Server performance.

Oracle HTTP Server Metrics

The Oracle HTTP Server Metrics folder contains performance metric options for Oracle
HTTP Server. The following table describes the metrics in the Oracle HTTP Server
Metrics folder:

Element Description

CPU Usage CPU usage and idle times

Memory Usage Memory usage and free memory, in MB

Processes Busy and idle process metrics

Request Throughput Request throughput, as measured by requests per second
Request Processing Time Request processing time, in seconds

Response Data Throughput Response data throughput, in KB per second

Response Data Processed Response data processed, in KB per response

Active HTTP Connections Number of active HTTP connections
Connection Duration Length of time for connections
HTTP Errors Number of HTTP 4xx and 5xx errors

Oracle HTTP Server Virtual Host Metrics

ORACLE 6-2

Chapter 6
Monitoring Server Performance

The Oracle HTTP Server Virtual Host Metrics folder contains performance metric
options for virtual hosts, also known as access points. The following table describes
the metrics in the Oracle HTTP Server Virtual Host Metrics folder:

Element Description

Request Throughput for a Number of requests per second for each virtual host
Virtual Host

Request Processing Time Time to process each request for each virtual host
for a Virtual Host

Response Data Throughput Amount of data being sent for each virtual host
for a Virtual Host

Response Data Processed Amount of data being processed for each virtual host
for a Virtual Host

Oracle HTTP Server Module Metrics

The Oracle HTTP Server Module Metrics folder contains performance metric option for
modules. The following table describes the metrics in the Oracle HTTP Server Module
Metrics folder.

Element Description

Request Handling Request handling throughput for a module, in requests per

Throughput second

Request Handling Time Request handling time for a module, in seconds

Module Metrics Modules including active requests, throughput, and time for
each module

6.2.2 Viewing Performance Metrics

You can view the performance metrics of the Oracle HTTP Server and Oracle
WebLogic Server Proxy Plug-In module by using the Fusion Middleware Control or
issuing the appropriate WLST command. View performance metrics to monitor and
analyze the server performance.

You can view Oracle HTTP Server and Oracle WebLogic Server Proxy Plug-In module
performance metrics by using the procedures described in the following sections:

* Viewing Server Metrics by Using Fusion Middleware Control

e Viewing Server Metrics Using WLST

6.2.2.1 Viewing Server Metrics by Using Fusion Middleware Control

ORACLE

You can view metrics from the Oracle HTTP Server home menu of Fusion Middleware
Control:

1. Select the Oracle HTTP Server that you want to monitor.

2. From the Oracle HTTP Server menu on the Oracle HTTP Server home page,
choose Monitoring, and then select Performance Summary.

The Performance Summary page is displayed. It shows performance metrics and
information about response time and request processing time for the Oracle HTTP
Server instance.

6-3

Chapter 6
Monitoring Server Performance

3. To see additional metrics, click Show Metric Palette and expand the metric

categories.

Q Tip:

Oracle HTTP Server port usage information is also available from the
Oracle HTTP Server home menu.

The following figure shows the Oracle HTTP Server Performance Summary page

with the Metric Palette displayed:

— * ohs 1@
@ Oracke HTTP Server = [StartUp [Shut Down...
15minutes | » Sider [B
npare v Hide Metric Palette

J"\—[J W CFUUsage 09

W Memory Usage (MB

M Busy Processes

Idle Processes

1145 1148 1151

x
m Request Throughput (reguests
per second)

Change Center @ % v [v |Loggedinas webloglc | [J si3tcu.us.oracke.com

May 18, 2015 11:46:41 AMPDT (&

Metric Palette
4 Targets
View v Search Q

@ ohs_1

» [Related Targets

[zl

4 Metrics @ ohs 1
View v Search Q
» [OHS Madule Metrics

4 [OHS Response Cade Metrics

[¥] HTTP 4xx error throughput (errors per second)
] HTTP Sxx error throughput (errors per second)
4 [1 OHs Server Metrics
W Active HTTP Connections
[Active HTTP Requssts
¥ Busy Procssses
[Busy Threads

[Busy Threads (%)

L«

4. Select additional metrics to add them to the Performance Summary.

6.2.2.2 Viewing Server Metrics Using WLST

To obtain and view metrics for an instance from the command line, you must connect
to, and issue the appropriate WLST command. These commands allow you to perform

any of these functions:

* Display Metric Table Names
* Display metric tables

e Dump metrics

< Note:

Scripting Tool.

Before attempting this procedure:

ORACLE

For more information on using WLST, see Understanding the WebL ogic

6-4

Chapter 6
Oracle HTTP Server Performance Directives

Before attempting to access server metrics from the command line, ensure the
following:

» The domain exists and the instance for which you want to see the metrics exist.
e The instance is running.
* Node Manager is running on the instance machine.

The Administration server can be running, but this is not required.

To view metrics using WLST:

< Note:

In both managed and standalone domain types, the following procedure will
work whether you run the commands from the same machine or from a
machine that is remote to the server.

1. Launch WLST:
On Linux or UNIX:
$ORACLE_HOME/ or acl e_common/ common/ bi n/ wl st . sh

On Windows:
$ORACLE_HOME\ or acl e_comon\ conmon\ bi n\wl st . cnd

2. From the selected domain directory (for example, ORACLE_HOWE/ user _proj ect s/
domai ns/ domai nNane), connect to the instance:

nnConnect (' usernane', 'password', nmhost, nmport, domai nName)

3. Enter one of the following WLST commands, depending on what task you want to
accomplish:

o displayMetricTabl eNames(servers=['server Name'], servertype='ser ver Type’)

e displayMetricTabl es(servers=[' serverName'],
servertype=' serverType')

e dunpMetrics(servers=['serverName'], servertype='serverType')
For example:

di spl ayMet ri cTabl eNanes(servers=['ohsl'], servertype=' CHS)
di spl ayMetri cTabl es(servers=['ohsl'], servertype=' CHS')
dunpMetrics(servers=['ohsl'], servertype='CHS)

6.3 Oracle HTTP Server Performance Directives

ORACLE

Oracle HTTP Server performance is managed by directives specified in the
configuration files. Use Fusion Middleware Control to tune performance-related
directives for Oracle HTTP Server.

The following sections describe the Oracle HTTP Server performance directives.

* Understanding Performance Directives

» Configuring Performance Directives by Using Fusion Middleware Control

6-5

Chapter 6
Oracle HTTP Server Performance Directives

6.3.1 Understanding Performance Directives

Oracle HTTP Server uses directives declared in httpd.conf and other configuration
files. This configuration file specifies the maximum number of HTTP requests that can
be processed simultaneously, logging details, and certain limits and timeouts. Oracle
HTTP Server supports and ships with the following Multi-Processing Modules (MPMs)
which are responsible for binding to network ports on the machine, accepting requests,
and dispatching children to handle the requests:

Worker: This is the default MPM for Oracle HTTP Server in UNIX (non-Linux)
environments. This MPM implements a hybrid multi-process multi-threaded server.
By using threads to serve requests, it can serve many requests with fewer system
resources than a process-based server. However, it retains much of the stability of
a process-based server by keeping multiple processes available, each with many
threads. If you are using Worker MPM, then you must configure the mod_cgid
module for your CGI applications instead of the mod_cgi module. For more
information, see the following URL:

http://httpd. apache. org/ docs/ 2. 4/ mod/ mod_cgi d. ht n

WINNT: This is the default MPM for Oracle HTTP Server on Windows platforms. It
uses a single control process which launches a single child process which in turn
creates threads to handle requests.

Prefork: This MPM implements a non-threaded, pre-forking server that handles
requests in a manner similar to Apache 1.3. It is appropriate for sites that need to
avoid threading for compatibility with non-thread-safe libraries. It is also the best
MPM for isolating each request, so that a problem with a single request will not
affect any other. If you are going to implement a CGI module with this MPM, use
only mod_fastcgi.

Event: This is the default MPM for Oracle HTTP Server in Linux environments.
This MPM is designed to allow more requests to be served simultaneously by
passing off some processing work to supporting threads, freeing up the main
threads to work on new requests. It is based on the Worker MPM, which
implements a hybrid multi-process multi-threaded server. Run-time configuration
directives are identical to those provided by Worker.

The following sections describe how to change the MPM type value for an Oracle
HTTP Server instance in a standalone and an Oracle WebLogic Server domain

Changing the MPM Type Value in a Standalone Domain
Changing the MPM Type Value in a WebLogic Server Managed Domain

6.3.1.1 Changing the MPM Type Value in a Standalone Domain

ORACLE

To change the MPM type value for an Oracle HTTP Server instance in a standalone
domain, follow these steps:

1.

Navigate to the ohs. pl ugi ns. nodenanager . properti es file at the
following location: ${ ORACLE | NSTANCE}/ confi g/ f maconfi g/ conponent s/ CHS/ $
{ COVPONENT _NANE} .

Edit the ohs. pl ugi ns. nodemanager . properti es file to make the following
changes.

Look for the key npmin an uncommented line.

6-6

http://httpd.apache.org/docs/2.4/mod/mod_cgid.html%20

Chapter 6
Oracle HTTP Server Performance Directives

* If you find the key in an uncommented line, then replace the existing value of
npmwith the value you want to set for MPM.

e If you do not find it in an uncommented line, then add a new line to the file
using the following format:

npm = npm val ue

where npm val ue is the value you want to set as MPM.

3. Start or re-start the Oracle HTTP Server instance.

6.3.1.2 Changing the MPM Type Value in a WebLogic Server Managed Domain

To change the MPM type value for an Oracle HTTP Server instance in an Oracle
WebLogic Server domain, follow these steps.

Note:

The following steps assume that the Administration Server and Node
Manager for the domain are already up and running.

1. Launch WLST from the command line.

Linux or UNIX: $ORACLE_HOME/ or acl e_comron/ common/ bi n/ wl st . sh
2. Connect to the Administration Server instance:

connect (' <user Nane', '<password>', '<host>:<port>')
3. Navigate to the Mbean containing the MPM type value key.

You can use the edi t Cust om() command only when WLST is connected to the
Administration Server. Use cd to navigate the hierarchy of management objects.
This example assumes that Oracle HTTP Server instance with name 'ohs1'.

edi t Cust om()
cd(' oracle.ohs")
cd(' oracl e. ohs: t ype=CHSI nst ance. NVPr op, CHSI nst ance=0hs1, conponent =CHS')

4. Setthe MPM type value key.

Start an edit session and set the MPM type value key Mpmto the type value. In this
example the type value is set to event .

startEdit()

set (' Mpm , ' event')
save()

activate()

6.3.2 Configuring Performance Directives by Using Fusion Middleware
Control

The discussion and recommendations in this section are based on the use of Worker,
Event, or WinNT MPM, which uses threads. The thread-related directives listed below
are not applicable if you are using the Prefork MPM.

ORACLE .

Chapter 6
Oracle HTTP Server Performance Directives

Use the Performance Directives page of Fusion Middleware Control, illustrated in the
following figure, to tune performance-related directives for Oracle HTTP Server.

#ohs 1@ changacenar @ By v [g * |Loggedinaswensogie | [ze0smiusorace com

(@ Oracla HTTP Sarvar » StartUp) Shut Down.. May 12, 2015 11T aneoT s

@ Information

Allchanges made in this pags raquire a servar restar to take affect.

Performance Directives Resst to Default Apply | Revert
Tunae parforman ca-raiated direclves far Oracia HT TP Sarver
4 General

MPM Name warker

4 Request Configuration
Maximum Requests 130

Maximum Gonnections per Child (g .
Server Process

Request Timeout {seconds) aa

4 Connection Configuration

Maximum Connection Quaus
Langth

Multiple Requests per Connection (7 war asawas

(®) snowwim Cannectan Timeaut {seconds) | 3 Secand{s| =

4 Process Configuration

Initial Child Server Processes

Maximum kile Threads 73
Minimum kile Threads 23
Threads per Child Server Process 25

Performance directives management consists of these areas: request, connection, and
process configuration. The following sections describe how to set these configurations.

e Setting the Request Configuration by Using Fusion Middleware Control
e Setting the Connection Configuration by Using Fusion Middleware Control

e Setting the Process Configuration by Using Fusion Middleware Control

6.3.2.1 Setting the Request Configuration by Using Fusion Middleware Control

To specify the Oracle HTTP Server request configuration using Fusion Middleware
Control, do the following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the maximum number of requests in the Maximum Requests field
(MaxRequest Wor ker s directive).

This setting limits the number of requests that can be dealt with simultaneously.
The default value is 400. This is applicable for all Linux/UNIX platforms.

4. Set the maximum requests per child process in the Maximum Request per Child
Process field (MaxConnect i onsPer Chi | d directive).

ORACLE 6-8

7.

Chapter 6
Oracle HTTP Server Performance Directives

You can choose to have no limit, or a maximum number. If you choose to have a
limit, enter the maximum number in the field.

Enter the request timeout value in the Request Timeout (seconds) field (Ti meout
directive).

This value sets the maximum time, in seconds, Oracle HTTP Server waits to
receive a GET request, the amount of time between receipt of TCP packets on a
POST or PUT request, and the amount of time between ACKs on transmissions of
TCP packets in responses.

Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

The request configuration settings are saved, and shown on the Performance
Directives page.

6.3.2.2 Setting the Connection Configuration by Using Fusion Middleware

Control

To specify the connection configuration using Fusion Middleware Control, do the
following:

1.
2.

6.

Select Administration from the Oracle HTTP Server menu.

Select Performance Directives from the Administration menu. The Performance
Directives page appears.

Enter the maximum connection queue length in the Maximum Connection Queue
Length field (Li st enBackl og directive).

This is the queue for pending connections. This is useful if the server is
experiencing a TCP SYN overload, which causes numerous new connections to
open up, but without completing the pending task.

Set the Multiple Requests per Connection field (KeepAl i ve directive) to indicate
whether to allow multiple connections. If you choose to allow multiple connections,
enter the number of seconds for timeout in the Allow With Connection Timeout
field.

The Allow With Connection Timeout value sets the number of seconds the server
waits for a subsequent request before closing the connection. Once a request has
been received, the specified value applies. The default is 5 seconds.

Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

The connection configuration settings are saved, and shown on the Performance
Directives page.

6.3.2.3 Setting the Process Configuration by Using Fusion Middleware Control

The child process and configuration settings impact the ability of the server to process
requests. You might need to modify the settings as the number of requests increase or
decrease to maintain a well-performing server.

ORACLE

6-9

Chapter 6
Understanding Process Security for UNIX

For UNIX, the default number of child server processes is 3. For Microsoft Windows,
the default number of threads to handle requests is 150.

To specify the process configuration using Fusion Middleware Control, do the
following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select Performance Directives from the Administration menu. The Performance
Directives page appears.

3. Enter the number for the initial child server processes in the Initial Child Server
Processes field (St art Server s directive).

This is the number of child server processes created when Oracle HTTP Server is
started. The default is 3. This is for UNIX only.

4. Enter the number for the maximum idle threads in the Maximum Idle Threads field
(MaxSpar eThr eads directive).

An idle thread is a process that is running, but not handling a request.

5. Enter the number for the minimum idle threads in the Minimum Idle Threads field
(M nSpar eThr eads directive).

6. Enter the number for the threads per child server process in the Threads per Child
Server Process field (Thr eadsPer Chi | d directive).

7. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

The process configuration settings are saved, and shown on the Performance
Directives page.

6.4 Understanding Process Security for UNIX

Special configuration is required to allow Oracle HTTP Server to bind to privileged
ports when installed on UNIX.

By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved
range (typically less than 1024). To enable Oracle HTTP Server to listen on ports in
the reserved range (for example, port 80 and port 443) on UNIX, see Starting Oracle
HTTP Server Instances on a Privileged Port (UNIX Only).

ORACLE 6-10

Managing Connectivity

You can manage and monitor the performance of Oracle HTTP Server connectivity by
creating ports, viewing port number usage, and configuring virtual hosts.

This chapter includes the following sections which describes the procedures for
managing Oracle HTTP Server connectivity:

» Default Listen Ports

e Defining the Admin Port

e Viewing Port Number Usage
* Managing Ports

e Configuring Virtual Hosts

7.1 Default Listen Ports

Listen ports (SSL and non-SSL) have a default range of port numbers.

Automatic port assignment occurs only if you use ohs_creat el nst ance() or Fusion
Middleware Control. The default, non-SSL port is 7777. If port 7777 is occupied, the
next available port number, within a range of 7777-65535, is assigned. The default
SSL port is 4443. Similarly, if port 4443 is occupied, the next available port number,
within a range of 4443-65535, is assigned.

If you create instances using Configuration Wizard, then you must perform your
own port management. The Configuration Wizard has no automatic port assignment
capabilities.

For information about specifying ports when creating a new Oracle HTTP Server
component, see Creating an Oracle HTTP Server Instance.

(.2 Defining the Admin Port

ORACLE

Admin port is used internally by Oracle HTTP Server to communicate with Node
Manager. This port is configured in the admi n. conf file.

Automatic Admin port assignment occurs only if you use ohs_creat el nst ance() or
Fusion Middleware Control.

If you create instances using Configuration Wizard, then you must perform your own
Admin port management. The Configuration Wizard has no automatic port assignment
capabilities.

If for any reason you need to use the default port for another purpose, you can
reconfigure the Admin port by using the Configuration Wizard to update the domain
and manually reset ports there.

7-1

Chapter 7
Viewing Port Number Usage

7.3 Viewing Port Number Usage

You can view ports using Fusion Middleware Control or WLST.
This section includes the following topics:

e Viewing Port Number Usage by Using Fusion Middleware Control

e Viewing Port Number Usage Using WLST

7.3.1 Viewing Port Number Usage by Using Fusion Middleware

Control

You can view how ports are assigned on the Fusion Middleware Control Port Usage
detail page. To view the port number usage using Fusion Middleware Control, do the
following:

1. Navigate to the Oracle HTTP Server home page.
2. Select Port Usage from the Oracle HTTP Server menu.

The Port Usage detail page shows the component, the ports that are in use, the IP
address the ports are bound to, and the protocol being used, as illustrated in the
following figure:

& ohs_ 1@
-
= ==
- @ Cracle HTTP Server = [Start Up |} Shut Down...
Port Usage
Portin Use IP Address Component Protocol
4443 ALL ohs_1 HTTP
Fire AL ohs_1 HTTR
77 127.0.01 ohs_1 HTTF

7.3.2 Viewing Port Number Usage Using WLST

ORACLE

If you are using Oracle HTTP Server in collocated mode, then you can use WLST
commands to view the port number information on a given instance.

1. Launch WLST:
$ORACLE_HOVE/ or acl e_common/ conmon/ bi n/ wi st . sh
2. Connect to the AdminServer.

3. Use the edit Cust on{) command to navigate to the root of the or acl e. ohs MBean.
You can use the edi t Cust on{) command only when WLST is connected to the

7-2

Chapter 7
Managing Ports

Administration Server. Use cd to navigate the hierarchy of management objects,
then get () to get the value of the Port s parameter:

edi t Cust om()
cd(' oracle.ohs")
cd(' oracl e. ohs: t ype=CHSI nst ance, nane=ohs1')
get(' Ports')
WLST will return a value similar to the following:

array(java.lang. String,[' 7777, '4443", '127.0.0.1:9999'])

¢ Note:

You can also cd into the directory of the master copy of the Oracle HTTP
Server configuration files and do a gr ep for the Listen directives.

7.4 Managing Ports

The ports used by Oracle HTTP Server can be set during and after installation. In
addition, you can change the port numbers, as needed.

This section describes how to create, edit, and delete ports using Fusion Middleware
Control.

Caution:

The Oracle HTTP Server administration virtual host and its configuration,
defined in the admin.conf file, must not be edited with the WebLogic Scripting
Tool (WLST).

¢ See Also:

Changing the Oracle HTTP Server Listen Ports in the Administering Oracle
Fusion Middleware.

This section includes the following topics:

e Creating Ports Using Fusion Middleware Control

e Editing Ports Using Fusion Middleware Control

ORACLE 7.3

Chapter 7
Managing Ports

@& ohs 1@ Change Center §) & v [z v |Loggedinas weblogic

@ Cracle HTTP Server = [Start Up [Shut Down... May 18, 2012

Ports Configuration

All ports configured for this system component are shown. Some ports configured of type Admin cannot be edited or deleted.

view v [§ Create.. 7 -4
Port Port Type Host Name IP Address Protocol
7777 Listen ANY ANY HTTF
4443 Listen ANY ANY HTTP
7779 Admin localhost.localdomain 127.0.01 HTTF
\J
Note:

When deleting a port, if there is a virtual host configured to use the port you
want to delete, you must first delete that virtual host before deleting the port.

7.4.1 Creating Ports Using Fusion Middleware Control

You create a port for an Oracle HTTP Server endpoint on the Fusion Middleware
Control Create port page. To create ports using Fusion Middleware Control, do the

ORACLE

following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Administration from the Oracle HTTP Server menu.
3. Select Ports Configuration from the Administration menu.
4. Click Create.

7-4

Chapter 7
Managing Ports

% ohs_1® Change Center @ @ ¥ [v | Loggedinas weblogic _] slc03tcu.us oracle.com

@ Oracle HTTP Server w |J) Start Up [Shut Down... May 18, 2015 12:27:02 PM PDT O

@ Information

All changes made in this page require a server restart to take effect.

Create Port OK Cancel

Create a new port for this system component. Ports created can listen on local IP Address of associated host or any of available
network interfaces. SSL for a port can be configured here Virtual Hosts

4 Endpoint Attributes

Port Type Listen

IP Address ANY j

Port

Use the IP Address menu to select an IP address for the new port. Ports can listen
on a local IP Address of an associated host or on any available network interfaces.

You can configure SSL for a port on the Virtual Hosts page, as described in
Configuring Virtual Hosts Using Fusion Middleware Control.

In Port, enter the port number.
Click OK.

Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Note:

If you change the port or make other changes that affect the URL, such
as changing the host name, enabling or disabling SSL, you need to re-
register partner applications with the SSO server using the new URL. See
Registering Oracle HTTP Server mod_osso with OSSO Server.

7.4.2 Editing Ports Using Fusion Middleware Control

You can edit the values for existing ports on the Fusion Middleware Control Edit Port
page. To edit the ports using Fusion Middleware Control, do the following:

ORACLE

1.

2
3.
a

Navigate to the Oracle HTTP Server home page.

Select Administration from the Oracle HTTP Server menu.
Select Ports Configuration from the Administration menu.
Select the port for which you want to change the port number.

The Admin port cannot be edited by using Fusion Middleware Control. Although
this is a port Oracle HTTP Server uses for its internal communication with Node
Manager, in most of the cases it does not need to be changed. If you really want to
change it, manually edit the DOMAIN_HOME/config/fmwconfig/components/OHS/
componentName/admin.conf file.

7-5

https://docs.oracle.com/cd/E23520_01/doc.311/e20664/chapter_10.htm

Chapter 7
Managing Ports

5. Click Edit.
— ‘1’} ohs_1@ Change Center) % ¥ [v | Loggedinas weblogic J slc03tcu.us.oracle.com
-
=
@ Oracle HTTP Server » | Start Up [] Shut Down... May 18, 2015 12:57:40 PM PDT CI

@ Information

All changes made in this page require a server restart to take effect.

Edit Port : oracle.ohs:OHSInstance=ohs_1,name=4443,type=OHSInstance.PortConfig ok cancel

Edit attributes of a port for this system component. Ports created can listen on local IP Address of associated host or any of available network interfaces. SSL for a
port can be configured here :Virtual Hosts

4 Endpoint Attributes

Port Type Listen

Endpoint Name oracle.ohs:Of hs 1 443 type=0t PaortCaonfig

IP Address ANY -

*Port 4443

6. Editthe IP Address and/or Port number for the port.

You can be configure SSL for a port on the Virtual Hosts page as described in
Configuring Virtual Hosts Using Fusion Middleware Control.

7. Click OK.

8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

< Note:

If you change the port or make other changes that affect the URL, such as
changing the host name, enabling or disabling SSL, you need to re-register
partner applications with the SSO server using the new URL.

7.4.3 Disabling a Listening Port in a Standalone Environment

ORACLE

While you can use Fusion Middleware Control to disable a listen port in a WebLogic
Server environment, to do so in a standalone environment, you must directly update
staging configuration file by commenting-out the line where port is exposed; for
example:

#Li sten slc0lqtd. us. myCo.com 7777

" Note:

Before attempting to edit any .conf file, you should familiarize yourself
with the layout of the configuration file directories, mechanisms for editing
the files, and learn more about the files themselves. See Understanding
Configuration Files.

7-6

Configuring Virtual Hosts

7.5 Configuring Virtual Hosts

You can create virtual hosts to run more than one website (such as www. conmpanyl. com

and www. conpany2. con) on a single machine. Virtual hosts can be IP-based, meaning
that you have a different IP address for every website, or name-based, meaning that

you have multiple names running on each IP address. The fact that the virtual ports
run on the same physical server is not apparent to the end user.

Caution:

The Oracle HTTP Server administration virtual host and its configuration,
Tool (WLST).

defined in the admin.conf file, must not be edited with the WebLogic Scripting

The current release of Oracle HTTP Server enables you to use IPv6 and IPv4
addresses as the virtual host name.

You can also configure multiple addresses for the same virtual host; that is, a virtual
host can be configured to serve on multiple addresses. This allows requests to

different addresses to be served with the same content from the same virtual host.
Control.

This section describes how to create and edit virtual hosts using Fusion Middleware
Creating Virtual Hosts Using Fusion Middleware Control
Configuring Virtual Hosts Using Fusion Middleware Control

¢ See Also:

documentation.

For more information about virtual hosts, refer to the Apache HTTP Server

3 ohs_ 1@

@ Oracle HTTP Server v

Change Center) @A v [o v |loggedinas weblogic j ske03tcu.us.oracle.com
| Start Up]} Shut Down... May 18, 2015 2:26:32 PM PDT CI
) Information
Use the change center to activate the pending changes and then restart the server for changes to take effect.
Virtual Hosts
Create virtual hosts to maintain more than one server on one computer, as differentiated by their apparent hostname, enabling Oracle HTTP Server to serve
different Web sites simultaneously. You can select a virtual host row from the table and using the Configure menu specify mod_wi_chs, SSL, mime and log
configuration for selected row.
+ Create % Re -
Name Server Name Ports Protocol
127.0.0.1:7779 7779 HTTP
4443 4443 HTTP

ORACLE

7-7

http://httpd.apache.org/docs/2.4/vhosts/
http://httpd.apache.org/docs/2.4/vhosts/

Chapter 7
Configuring Virtual Hosts

7.5.1 Creating Virtual Hosts Using Fusion Middleware Control

ORACLE

You can create a virtual host for Oracle HTTP Server on the Fusion Middleware
Control Create Virtual Hosts page. To create a virtual host using Fusion Middleware
Control, do the following:

Navigate to the Oracle HTTP Server home page.
Select Administration from the Oracle HTTP Server menu.

1
2
3. Select Virtual Hosts from the Administration menu.
4

Click Create.
— 'ﬁ"ah'.i_1 @ Change Center § & ¥ [z v |Lloggedinas weblogic [skedateu.us.orade.com
=
-
@Oracle HTTP Server w |J Start Up] Shut Down... May 18, 2015 2:33:21 PMPDT CI
Virtual Hosts >

@ Information

Use the change center to activate the pending changes and then restart the server for changes to take effect.

Create Virtual Host OK Cancel

* Virtual Host Name i
@ New listen address

) Use existing listen address j
Server Name

Document Root

Directory Index

Administrator's
E-mail Address

5. Enter a name for the virtual host field and then choose whether to enter a new
listen address or to use an existing listen address.

* New listen address—use this option when you want to create a virtual host
that maps to a specific hostname, IP address, or IPv6 address, for example
mymachine.com:8080. This will create the following VirtualHost directive:

<Vi rtual Host nymachi ne. com 8080>

» Use existing listen address—use this option when you want to create a virtual
host using an existing listen port and the one that maps to all IP addresses.
This will create following type VirtualHost directive:

<Virtual Host *:8080>

¢ Note:

If you attempt to create a virtual host with a wildcard character, for
example, *: port and no Listen directive exists for that port, then the
virtual host creation will fail.

In this case, you must first add the Listen directive and then try to add
the virtual host.

7-8

Chapter 7
Configuring Virtual Hosts

6. Enter the remaining attributes for the new virtual host.
« Server Name—the name of the server for Oracle HTTP Server

* Document Root— documentation root directory that forms the main
document tree visible from the website

» Directory Index—the main (index) page that will be displayed when a client
first accesses the website

 Administrator's E-mail Address—the e-mail address that the server will
include in error messages sent to the client

7. Click OK.
8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

Removing Unnecessary Listen Directives

Creating a virtual host by using Fusion Middleware Control also adds the Listen
directive for the virtual host. However, virtual host creation will add unnecessary Listen
directives in the following situations:

e Avirtual host is being created for one host name and the Listen directive already
exists for the different host name resolving to the same IP address.

e Avirtual host is being created for one host name and the Listen directive already
exists for the IP address that the host name resolves to.

e Avirtual host is being created for multiple host names that resolve to the same IP
address.

In these situations, Oracle HTTP Server will fail to start because there are multiple
Listen directives for the same IP address. You must remove any extra Listen directives
configured for the same IP address.

7.5.2 Configuring Virtual Hosts Using Fusion Middleware Control

You can use the options on the Configure menu of the Virtual Hosts page to specify
Server, MIME, Log, SSL, and mod_wl_ohs configuration for a selected virtual host.

To configure a virtual host using Fusion Middleware Control, do the following:
Navigate to the Oracle HTTP Server home page.

Select Administration from the Oracle HTTP Server menu.

Select Virtual Hosts from the Administration menu.

Highlight an existing virtual host in the table.

@ H b P

Click Configure.

ORACLE 7-9

Chapter 7
Configuring Virtual Hosts

| ohs 1@ Change Center @ & v [v |Loggedinas weblogic [skc03tcu.us.oracle.com

@ Oracle HTTP Server = | Start Up] Shut Down... May 18, 2015 2:40:09 PM PDT CI

@ Information

Use the change center to activate the pending changes and then restart the server for changes to take effect.

Virtual Hosts
Create virtual hosts to maintain mere than one server on one computer, as differentiated by their apparent hostname, enabling Oracle HTTP Server to serve
Web sites simult ly. You can select a virtual host row from the table and using the Configure menu specify mod_wl_chs, SSL, mime and log

configuration for selected row.

4k Create 3£ Remove... Configure
Name Set Server Configuration Protocol
127.0.0.1:7779 MIME Configuration HTTP
........... *4443 Log Configuration HTTP
SSL Configuration

mod_wl_ohs Configuration

6. Select one of the following options from the Configure menu to open its
corresponding configuration page. The values on these pages apply only to the
virtual host. If the fields are blank, the virtual host uses the values configured at
the server level.

* Server Configuration: Configure basic virtual host properties, such as
document root directory, installed modules, and aliases. See Specifying Server
Properties by Using Fusion Middleware Control .

* MIME Configuration: Configure MIME settings, which are used by Oracle
HTTP Server to interpret file types, encodings, and languages. Configuring
MIME Settings Using Fusion Middleware Control.

* Log Configuration: Configure access logs that will record all requests
processed by the virtual host. The logs contain basic information about every
HTTP transaction handled by the virtual host. See Configuring Oracle HTTP
Server Logs.

* SSL Configuration: For instructions on configuring SSL using Fusion
Middleware Control, see Enabling SSL for Oracle HTTP Server Virtual Hosts
in the Administering Oracle Fusion Middleware.

mod_wl_ohs Configuration: Configure the mod_wl_ohs module to allow
requests to be proxied from an Oracle HTTP Server to Oracle WebLogic
Server. See About Configuring the Oracle WebLogic Server Proxy Plug-In
(mod_wl_ohs).

7. Review the settings on each configuration page. If the settings are correct, click
OK to apply the changes. If the settings are incorrect, or you decide to not apply
the changes, click Cancel to return to the original settings.

8. Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

ORACLE 7-10

Managing Oracle HTTP Server Logs

Managing Oracle HTTP Server logs includes configuring the server logs, viewing the
cause of an error and its corrective action, and more.

Oracle HTTP Server generates log files containing messages that record all types of
events, including startup and shutdown information, errors, warning messages, access
information on HTTP requests, and additional information.

This chapter includes the following sections:

* Overview of Server Logs

e Configuring Oracle HTTP Server Logs

* Configuring the Log Level Using WLST
* Log Directives for Oracle HTTP Server
* Viewing Oracle HTTP Server Logs

* Recording ECID Information

8.1 Overview of Server Logs

Oracle HTTP Server has two types of server logs: error logs and access logs. Error
log files record server problems, and access log files record details of components and
applications being accessed and by whom.

You can view Oracle Fusion Middleware log files using either Fusion Middleware
Control or a text editor. The log files for Oracle HTTP Server are located in the
following directory:

ORACLE_HOME/user_projects/domains/<base_domain>/servers/componentName/
logs

This section contains the following topics:
e About Error Logs
e About Access Logs

» Configuring Log Rotation

8.1.1 About Error Logs

Oracle HTTP Server enables you to choose the format in which you want to generate
log messages. You can choose to generate log messages in the legacy Apache HTTP
Server message format, or use Oracle Diagnostic Logging (ODL) to generate log
messages in text or XML-formatted logs, which complies with Oracle standards for
generating error log messages.

By default, Oracle HTTP Server error logs use ODL for generating diagnostic
messages. It provides a common format for all diagnostic messages and log files,

ORACLE 8-1

Chapter 8
Overview of Server Logs

and a mechanism for correlating the diagnostic messages from various components
across Oracle Fusion Middleware.

The default name of the error log file is instance_name.log.

" Note:

ODL error logging cannot have separate log files for each virtual host. It can
only be configured globally for all virtual hosts.

8.1.2 About Access Logs

ORACLE

Access logs record all requests processed by the server. The logs contain basic
information about every HTTP transaction handled by the server. The access log
contains the following information:

* Host name

* Remote log name

* Remote user and time

* Request

* Response code

* Number of transferred bytes

The default name of the access log file is access_log.
Access Log Format

You can specify the information to include in the access log, and the manner in which it
is written. The default format is the Common Log Format (CLF).

LogFormat "% % % % % \"%\" %s %" common

The CLF format contains the following fields:

host ident remdte_| ognane remote_usre date ECI D request authuser status bytes

* host: This is the client domain name or its IP number. Use % to specify the host
field in the log.

e ident: If IdentityCheck is enabled and the client system runs identd, this is the
client identity information. Use % to specify the client identity field in the log.

* renote_| ognane: Remote log name (from i dent d, if supplied). Use % to specify
the remote log name in the log.

e renote_user: Remote user if the request was authenticated. Use % to specify the
remote user in the log.

» date: This is the date and time of the request in the day/month/
year:hour:minute:second format. Use % to specify date and time in the log.

e ECI D: Capture ECID information. Use %E to capture ECID in the log. See also
Configuring Access Logs for ECID Information.

8-2

Chapter 8
Overview of Server Logs

* request: This is the request line, in double quotes, from the client. Use % to
specify request in the log.

e authuser: This is the user ID for the authorized user. Use % to specify the
authorized user field in the log.

e status: This is the three-digit status code returned to the client. Use % to specify
the status in the log. If the request will be forwarded from another server, use %s
to specify the last server in the log.

* bytes: This is the number of bytes, excluding headers, returned to the client. Use
% to specify number of bytes in the log. Use % to include the header in the log.

¢ See Also:

Access Log in the Apache HTTP Server documentation.

8.1.3 Configuring Log Rotation

ORACLE

Oracle HTTP Server supports two types of log rotation policies: size-based and time-
based. You can configure the Oracle HTTP Server logs to use either of the two
rotation polices, by using odl _r ot at el ogs in ORACLE_HOME/ohs/bin. By default,
Oracle HTTP Server uses odl _rot at el ogs for both error and access logs.

odl _rotatel ogs supports all the features of Apache HTTP Server's r ot at el ogs and
the additional feature of log retention.

You can find information about the features and options provided by r ot at el ogs at the
following URL:

http://httpd. apache. org/ docs/ 2. 4/ programs/ rot at el ogs. ht m
The following is the general syntax of odl _rot at el ogs:

odl _rotatelogs [-u:offset] logfile {size-|tine-based-rotation-options}

odl _rotatel ogs is meant to be used with the piped logfile feature. This feature allows
error and access log files to be written through a pipe to another process, rather than
directly to a file. This increases the flexibility of logging, without adding code to the
main server. To write logs to a pipe, replace the filename with the pipe character | ",
followed by the name of the executable which should accept log entries on its standard
input. For more information on the piped logfile feature, see the following URL:

http://httpd. apache. org/ docs/ 2. 4/ 1 ogs. ht m #pi ped

Used with the piped logfile feature, the syntax of odl _r ot at el ogs becomes the
following:

CustomLog " | ${ PRODUCT_HOME}/ bin/odl _rotatel ogs [-u:of fset] logfile {size-|time-
based-rotation-options}" |og_format

Whenever there is an input to odl _r ot at el ogs, it checks if the specified condition for
rotation has been met. If so, it rotates the file. Otherwise it simply writes the content. If
no input is provided, then it will do nothing.

Table 8-1 describes the size- and time-based rotation options:

8-3

http://httpd.apache.org/docs/2.4/logs.html#accesslog
http://httpd.apache.org/docs/2.4/programs/rotatelogs.html
http://httpd.apache.org/docs/2.4/logs.html#piped

Chapter 8
Overview of Server Logs

Table 8-1 Options for odl_rotatelogs

Option

Description

-u

The time (in seconds) to offset from UTC.

logfile

The path and name of the log file, followed by a hyphen (-) and then the
timestamp format.

The following are the common timestamp format strings:

* %m Month as a two-digit decimal number (01-12)

e 9%l: Day of month as a two-digit decimal number (01-31)

e O Year as a four-digit decimal number

* % Hour of the day as a two-digit decimal number (00-23)
e % Minute as a two-digit decimal number (00-59)

* U5: Second as a two-digit decimal number (00-59)

It should not include formats that expand to include slashes.

frequency

The time (in seconds) between log file rotations.

retentionTi ne

The maximum time for which the rotated log files are retained.

startTime The time when time-based rotation should start.
maxFi | eSi ze The maximum size (in MB) of log files.
all FileSize The total size (in MB) of files retained.

With time-based rotation, log rotation of Oracle HTTP Server using the

odl _rotatel ogs is calculated by default according to UTC time. For example, setting
log rotation to 86400 (24 hours) rotates the logs every 12:00 midnight, UTC. If
Oracle HTTP Server is running on a server in IST (Indian Standard Time) which is
UTC+05:30, then the logs are rotated at 05:30 a.m.

As an alternative to using the - u option with the UTC offset, you can use the -1 option
provided by Apache. This option causes Oracle HTTP Server to use local time as the
base for the interval. Using the- | option in an environment which changes the UTC
offset (such as British Standard Time (BST) or Daylight Savings Time (DST)) can lead
to unpredictable results.

8.1.3.1 Syntax and Examples for Time- and Size-Based Log Rotation

ORACLE

The following examples demonstrate the odl_rotatelogs syntax to set time- and size-
based log rotation.

* Time-based rotation

Syntax:

odl _rotatelogs u:of fset logfile frequency retentionTime startTine

Example:

Custonlog "| odl _rotatel ogs u:-18000 /varlog/error.|og-%/-%n% 21600
172800 2014-03-10T08: 30: 00" common

This configures log rotation to be performed for a location UTC-05:00 (18000
seconds, such as New York). The rotation will be performed every 21600 seconds
(6 hours) starting from 8:30 a.m. on March 10, 2014, and it specifies that the

8-4

Chapter 8
Configuring Oracle HTTP Server Logs

rotated log files should be retained for 172800 seconds (2 days). The log format is
conmon.

Syntax:

odl _rotatelogs logfile frequency retentionTine startTine

Example:

Customlog "| odl _rotatelogs /varlog/error.|og-%-%n% 21600 172800
2014-03-10T08: 30: 00" conmon

This configures log rotation to be performed every 21600 seconds (6 hours)
starting from 8:30 a.m. on March 10, 2014, and it specifies that the rotated log
files should be retained for 172800 seconds (2 days). The log format is comon.

* Size-based rotation
Syntax:

odl _rotatelogs logfile maxFileSize allFileSize

Example:

This configures log rotation to be performed when the size of the log file reaches
10 MB, and it specifies the maximum size of all the rotated log files as 70 MB (up
to 7 log files (=70/10) will be retained). The log format is conmon.

Customlog "| odl _rotatelogs /var/log/error.|og- %-%n% 10M 70M' conmmon

8.2 Configuring Oracle HTTP Server Logs

You can use Fusion Middleware Control to configure error and access logs.

The following sections describe logging tasks that can be set from the Log
Configuration page:

e Configuring Error Logs Using Fusion Middleware Control
e Configuring Access Logs Using Fusion Middleware Control

» Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)

8.2.1 Configuring Error Logs Using Fusion Middleware Control

You configure error logs on the Fusion Middleware Control Log Configuration page. To
configure an error log for Oracle HTTP Server using Fusion Middleware Control, do
the following:

1. Navigate to the Oracle HTTP Server home page.
2. Select Log Configuration from the Administration menu.

The Log Configuration page is displayed, as shown in the following figure.

ORACLE 8-5

Chapter 8

Configuring Oracle HTTP Server Logs

@ons 1@

@ crada MTTPSarver v [StartUp [Shut Down_
Log Configuration

4 Error Log
Oracle HTTP Sarver recol
XML ar Apache farmat. OD
Logs ¥om f1a Cracie HTT

General

File Format (@) oov-Text () apacHE

Log File/Directory = $oRACLE MNSTANCE/sarversS${COMPONENT MAM

Level | wamnmcaz -

Rotation Policy

) Mo Aomson

(@) =ze Bazea
* Maximum Log File
Size (MB)

Maximum Files To =
Retain =

() Time Bazed
Start Time

Rotation Frequency

£4|
Retention Period |

4 Access Log

ChangeCemter @ [v [0 ¥ | Laggedinas webtogk | [scodmusarac

May 18, 2015 256:20 PM FOT

Apply Revert

sarvar arrar Infarmatian In errar lags. Spacity M arrar log selngs, Induding whatar i ganarats lag messagas in Oracle Diagnasc Lagging {ODL] text, ODL
=tandard farmatand machanizm for correlaing Ha diagnosics messages fom companants across Oracks Fuslan Middiswara. To viaw log messages choasa

Accesslags racard all requasss procassad by fa sarver. The lags cantain basic infarmasan abaut evary HTTP ansacson handied by fa sarver. H you want i craate a naw lag farmat, update

an axi=ing one with a naw valus, or dalate ana, dick Manage Log Formats

4 Create 7 © £ Ramo Manage Log Formats
Log File Path Log Format
${ORACLE NSTANCE]sarvers${COMPONENT MAME|fagsaccess_lag camman

3. The following error log configuration tasks can be set from this page:

e Configuring the Error Log Format and Location
e Configuring the Error Log Level

» Configuring Error Log Rotation Policy

8.2.1.1 Configuring the Error Log Format and Location

You can change the error log format and location on the Fusion Middleware Control
Log Configuration page. By default, Oracle HTTP Server uses ODL-Text as the error
log format and creates the log file with the name conponent _nane. | og under the
DOMAIN_HOME/servers/component_name/logs directory. To use a different format or

log location, do the following:

1. From the Log Configuration page, navigate to the General section under the Error

Log section.

2. Select the desired file format.

* ODL-Text: the format of the diagnostic messages conform to an Oracle

standard and are written in text format.

» Apache: the format of the diagnostic messages conform to the legacy Apache

HTTP Server message format.

3. Enter a path for the error log in the Log File/Directory field. This directory must

exist before you enter it here.

ORACLE

8-6

Chapter 8
Configuring Oracle HTTP Server Logs

Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

8.2.1.2 Configuring the Error Log Level

You can configure the amount and type of information written to log files by specifying
the message type and level. Error log level for Oracle HTTP Server by default is
configured to WARNING:32. To use a different error log level do the following:

1.

From the Log Configuration page, navigate to the General section under the Error
Log section.

Select a level for the logging from the Level menu. The higher the log level, the
more information that is included in the log.

Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

" Note:

The log levels are different for the Apache HTTP Server log format and
ODL-Text format.

* For details on ODL log levels, refer to Setting the Level of Information
Written to Log Filesin Administering Oracle Fusion Middleware.

* For details on Apache HTTP Server log levels, refer to the LogLevel
Directive in the Apache HTTP Server documentation.

8.2.1.3 Configuring Error Log Rotation Policy

Log rotation policy for error logs can either be time-based, such as once a week, or
sized-based, such as 120MB. By default, the error log file is rotated when it reaches
10 MB and a maximum of 7 error log files will be retained. To use a different rotation
policy, do the following:

ORACLE

1.

From the Log Configuration page, navigate to the General section under the Error
Log section.

Select a rotation policy.
* No Rotation: if you do not want to have the log file rotated ever.

* Size Based: rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the
maximum number of error log files to retain in Maximum Files to Retain field.

» Time Based: rotate the log file whenever configured time is reached. Set the
start time, rotation frequency, and retention period.

8-7

http://httpd.apache.org/docs/2.4/mod/core.html#loglevel
http://httpd.apache.org/docs/2.4/mod/core.html#loglevel

4.

Chapter 8
Configuring Oracle HTTP Server Logs

Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

Restart Oracle HTTP Server. See Restarting Oracle HTTP Server Instances .

8.2.2 Configuring Access Logs Using Fusion Middleware Control

You can configure an access log format and rotation policy for Oracle HTTP Server
from the Fusion Middleware Control Log Configuration page.

The following access log configuration tasks can be set from this page:

Configuring the Access Log Format

Configuring the Access Log File

8.2.2.1 Configuring the Access Log Format

ORACLE

Log format specifies the information included in the access log file and the manner in
which it is written. To add a new access log format or to edit or remove an existing
format, do the following:

1.
2.
3.
4,

Navigate to the Oracle HTTP Server home page.

Select Log Configuration from the Administration menu.

From the Log Configuration page, navigate to the Access Log section.
Click Manage Log Formats.

The Manage Custom Access Log Formats page is displayed, as shown in the
following figure.

| ohs 1® Change Center @) & v [v |Loggedinas weblogic [sic03teu.us.oracke.com

a Oracle HTTP Server » |J] Start Up] Shut Down... May 18, 2015 3:02:12 PM PDT C,

Log Configuration >

Manage Custom Access Log Formais OK Cancel
Use the following section to create, edit, or remove log formats for access logs.
e Add Row
Log Format Name Log Format Pattern
combined 9h %l %bu %t "%r” %=s Yb V"] Referer}i” \"{User-Agent}i”
comimon %ah %l You Yot V" Yo

combinedic " %>s %b " Referer}i” V" User-Agent}i™ %l %0

Select an existing format to change or remove, or click Add Row to create a new
format.

If you choose to create a new format, then enter the new log format in the Log
Format Name field and the log format in the Log Format Pattern field.

8-8

Chapter 8
Configuring Oracle HTTP Server Logs

" See Also:

Refer to the Apache HTTP Server documentation for information about
log format directives.

7. Click OK to save the new format.

8.2.2.2 Configuring the Access Log File

ORACLE

You can configure rotation policy for the access log on the Fusion Middleware Control
Create or Edit Access Log page. To configure an access log for file Oracle HTTP
Server, do the following:

1. Navigate to the Oracle HTTP Server home page.

2. Select Log Configuration from the Administration menu.

3. From the Log Configuration page, navigate to the Access Log section.
4

Click Create to create a new access log, or select a row from the table and click
Edit button to edit an existing access log file.

The Create or Edit Access Log page is displayed.

Create Access Log X

* Log File Path |
Loeg Foermat commen -

Rotation Policy

(@ Mo Rotation () Size Based O Time Based
Maximum Log File Size Start Time
(ME)
Maximum Files To Rotation |
Retain Frequency ——
Retention ” |
Period !

QK Cancel

5. Enter the path for the access log in the Log File Path field. This directory must
exist before you enter it.

6. Select an existing access log format from the Log Format menu.
7. Select a rotation policy.
* No Rotation: if you do not want to have the log file rotated ever.

* Size Based: rotate the log file whenever it reaches a configured size. Set the
maximum size for the log file in Maximum Log File Size (MB) field and the
maximum number of error log files to retain in Maximum Files to Retain field.

» Time Based: rotate the log file whenever configured time is reached. Set the
start time, rotation frequency, and retention period.

8-9

http://httpd.apache.org/docs/2.4/mod/mod_log_config.html#accesslog

Chapter 8
Configuring Oracle HTTP Server Logs

8. Click OK to continue.

You can create multiple access log files.

8.2.3 Configuring the Log File Creation Mode (umask) (UNIX/Linux

Only)

Set the value of default file mode creation mask (umask) before starting the Oracle
HTTP Server instance. The value that you set for umask determines the file
permissions for the files created by Oracle HTTP Server instance such as the error
log, access log, and so on. If umask is not set explicitly, then a value of 0027 is used by
default.

This section contains the following information:

» Configure umask for an Oracle HTTP Server Instance in a Standalone Domain

» Configure umask for an Oracle HTTP Server Instance in a WebLogic Server
Managed Domain

8.2.3.1 Configure umask for an Oracle HTTP Server Instance in a Standalone

Domain

To configure the default file mode creation mask in a standalone domain, set the unmask
property in the ohs. pl ugi ns. nodemanager . properti es file under the staging location:

DOVAI N_HOVE/ confi g/ f maconfi g/ conponent s/ CHS/ i nst anceName/
ohs. pl ugi ns. nodemanager . properties

8.2.3.2 Configure umask for an Oracle HTTP Server Instance in a WebLogic
Server Managed Domain

ORACLE

To configure the default file mode creation mask in a WebLogic Server (either Full-JRF
or Restricted-JRF) domain, follow these steps:

1. Start the AdminServer and NodeManager for the domain, for example:

<Domai n_HOVE>/ bi n/ st art WebLogi c. sh &
<DOMAI N_HOME>/ bi n/ st art NodeManager . sh &

2. Start WLST and connect to the AdminServer.

<ORACLE_HOVE>/ or acl e_common/ bi n/ wl st . sh
connect (' <user Name', <'password' >, <" adm nServerURL' >

3. Navigate to the following MBean. Note that the ObjectName for this MBean is
dependent on the name of Oracle HTTP Server instance. In this example, the
name of Oracle HTTP Server instance is ohs1

edi t Cust om()
cd(' oracl e.ohs")
cd(' oracl e. ohs: OHSI nst ance=ohs1, conponent =CHS, t ype=CHSI nst ance. NVProp')

4. Set the value of unask to the desired value.

8-10

Chapter 8
Configuring the Log Level Using WLST

startEdit()
set (' Umask', ' 0022")

Save and activate the changes.

save()
activate()

8.3 Configuring the Log Level Using WLST

You can use WLST commands to set the LogLevel directive, which controls the
verbosity of the error log.

For more information on the LogLevel directive, see the Apache documentation:
http://httpd. apache. org/ docs/ current/nod/ core. ht n #l ogl evel

Follow these steps to set the LogLevel directive using WLST commands.

1.

Launch WLST.

$ORACLE_HOVE/ or acl e_conmon/ conmon/ bi n/ wi st . sh

Connect to Administration Server.

connect (' <user-name>', '<password>',' <host>:<port>')

Use the edi t Cust on() command to navigate to the root of the or acl e. ohs MBean.
You can use the edi t Cust on{) command only when WLST is connected to the
Administration Server. Use cd to navigate the hierarchy of management objects, in
this case, ohs1 under or acl e. ohs. Use the start Edi t () command to start an edit
session.

edi t Cust om()

cd(' oracle.ohs")

cd(' oracl e. ohs: t ype=CHSI nst ance, nane=ohs1')
startEdit()

Use the set command to set the value of the log level attribute. The following
example sets the global log level to t race7, the module st at us log level to error,
and the module env log level to war n (warning).

set (' LogLevel','trace7 status:error env:warn')

Save, then activate your changes. The edit lock associated with this edit session is
released once the activation is completed.

save()
activate()

8.4 Log Directives for Oracle HTTP Server

Oracle HTTP Server can be configured to use either Oracle Diagnostic Logging (ODL)
for generating diagnostic messages or the legacy Apache HTTP Server message
format.

ORACLE

The following sections describe Oracle HTTP Server error and access log-related
directives in the htt pd. conf file.

Oracle Diagnostic Logging Directives

Apache HTTP Server Log Directives

8-11

http://httpd.apache.org/docs/current/mod/core.html#loglevel

Chapter 8
Log Directives for Oracle HTTP Server

8.4.1 Oracle Diagnostic Logging Directives

Oracle HTTP Server by default uses Oracle Diagnostic Logging (ODL) for generating
diagnostic messages. The following directives are used to set up logging using ODL:

e OralLogMode
e OraLogDir
e OralogSeverity

e OralLogRotationParams

8.4.1.1 OraLogMode

Enables you to choose the format in which you want to generate log messages. You
can choose to generate log messages in the legacy Apache HTTP Server or ODL text
format.

OraLoghbde Apache | ODL- Text
Default value: ODL- Text

For example: OraLoghvbde ODL- Text

Note:

The Apache HTTP Server log directives Error Log and LogLevel are only
effective when Or aLoghbde is set to Apache. When O aLoghbde is set to
ODL- Text , the Error Log and LogLevel directives are ignored.

8.4.1.2 OralLogDir

Specifies the path to the directory that contains all log files. This directory must exist.

This directive is used only when OraLogMode is set to CDL- Text . When Or aLogMbde is
set to Apache, OraLogDi r is ignored and ErrorLog is used instead.

OraLogDir <pat h>
Default value: ORACLE_INSTANCE/servers/icomponentName/logs

For example: OraLogDir /tnp/logs

8.4.1.3 OraLogSeverity

ORACLE

Enables you to set message severity. The message severity specified with this
directive is interpreted as the lowest desired message severity, and all messages of
that severity level and higher are logged.

This directive is used only when Or aLogMbde is set to ODL- Text . When Or aLoghMbde

is set to Apache, OraLogSeverity isignored and LogLevel is used instead. In the
following syntax, short nodul e_i denti fi er Nane is the module name with the trailing
_modul e omitted.

8-12

Chapter 8
Log Directives for Oracle HTTP Server

OralLogSeverity [short _nodul e_identifierName] <nsg_type>[:nsg |evel]

Default value: WARNI NG: 32
For example: OraLogSeverity ni me NOTI FI CATI ON: 32
msg_type

Message types can be specified in upper or lowercase, but appear in the message
output in upper case. This parameter must be of one of the following values:

 INCIDENT_ERROR

* ERROR

* WARNING

* NOTIFICATION
* TRACE
msg_level

This parameter must be an integer in the range of 1-32, where 1 is the most severe,
and 32 is the least severe. Using level 1 will result in fewer messages than using level
32.

8.4.1.4 OraLogRotationParams

ORACLE

Enables you to choose the rotation policy for an error log file. This directive is used
only when OralLogMode is set to ODL- Text . When Or aLogMbde is set to Apache,
O aLogRot at i onPar ans is ignored.

OralLogRot ati onParans <rotation_type> <rotation_policy>

Default value: S 10: 70

For example: OraLogRot ati onParams T 43200: 604800 2009- 05- 08T10: 53: 29
rotation_type

This parameter can either be S (for sized-based rotation) or T (for time-based rotation).
rotation_policy

When rotation_type is set to S (sized-based), set the rotation_policy parameter to:
maxFi | eSi ze: al | Fil esSi ze (in MB)

For example, when configured as 10: 70, the error log file is rotated whenever it
reaches 10MB and a total of 70MB is allowed for all error log files (a maximum of
70/10=7 error log files will be retained).

When rotation_type is set to T (time-based), set the rotation_policy parameter to:
frequency(in sec) retentionTine(in sec) startTinme(in YYYY- M DDThh: nm ss)

For example, when configured as 43200: 604800 2009- 05- 08T10: 53: 29, the error log
is rotated every 43200 seconds (that is, 12 hours), rotated log files are retained for
maximum of 604800 seconds (7 days) starting from May 5, 2009 at 10:53:29.

8-13

Chapter 8
Log Directives for Oracle HTTP Server

8.4.2 Apache HTTP Server Log Directives

Although Oracle HTTP Server uses ODL by default for error logs, you can configure
the OraLogMode directive to Apache to generate error log messages in the legacy
Apache HTTP Server message format. The following directives are discussed in this

section:
e ErrorLog
* LoglLevel

* LogFormat

e CustomLog

8.4.2.1 ErrorLog

The Error Log directive sets the name of the file where the server logs any errors
it encounters. If the filepath is not absolute then it is assumed to be relative to the
ServerRoot.

This directive is used only when OraLogMbde is set to Apache. When Or aLogMbde is set
to ODL- Text , ErrorLog is ignored and OraLogDi r is used instead.

¢ See Also:
For information about the Apache ErrorLog directive, see:

http://httpd. apache. org/ docs/ current/ mod/ core. ht m #errorl og

8.4.2.2 LogLevel

The LogLevel directive adjusts the verbosity of the messages recorded in the error
logs.

This directive is used only when Or aLogMbde is set to Apache. When Or aLoghbde is set
to ODL- Text, LogLevel is ignored and OraLogSeverity is used instead.

¢ See Also:
For information about the Apache HTTP Server LogLevel directive see:

http://httpd. apache. org/ docs/ current/mod/ core. htm #l ogl evel

8.4.2.3 LogFormat

The LogFor mat directive specifies the format of the access log file. By default, Oracle
HTTP Server comes with the following four access log formats defined:

ORACLE 8-14

http://httpd.apache.org/docs/current/mod/core.html#errorlog
http://httpd.apache.org/docs/2.4/mod/core.html#loglevel
http://httpd.apache.org/docs/current/mod/core.html#loglevel

Chapter 8
Viewing Oracle HTTP Server Logs

LogFormat "9% % % % 9% \"%\" %s %" conmonLogFormat "% % % % %E \"%\"
%s % \"% Referer}i\" \"% User-Agent}i\"" conbi nedLogFormat "% % % % %
\"%\" %s % \"% Referer}i\" \"% User-Agent}i\" % %' conbinedio

¢ See Also:
For information about the Apache HTTP Server LogFormat directive, see:

http://httpd. apache. org/ docs/ current/ mod/
mod_| og_confi g. ht m #l ogf or mat

8.4.2.4 CustomLog

Use the Cust onlLog directive to log requests to the server. A log format is specified
and the logging can optionally be made conditional on request characteristics using
environment variables. By default, the access log file is configured to use the common
log format.

¢ See Also:
For information about the Apache CustomLog directive, see:

http://httpd. apache. or g/ docs/ current/ nod/
mod_| og_confi g. ht ml #cust onl og

8.5 Viewing Oracle HTTP Server Logs

You can view server logs using Fusion Middleware Control, WLST, or a text editor.

There are mainly two types of log files for Oracle HTTP Server: error logs and
access logs. The error log file is an important source of information for maintaining

a well-performing server. The error log records all of the information about problem
situations so that the system administrator can easily diagnose and fix the problems.
The access log file contains basic information about every HTTP transaction that the
server handles. You can use this information to generate statistical reports about the
server's usage patterns.

See Overview of Server Logs for more information on error logs and access logs.
This section describes the methods to view Oracle HTTP Server logs:

* Viewing Logs Using Fusion Middleware Control
e Viewing Logs Using WLST

e Viewing Logs in a Text Editor

8.5.1 Viewing Logs Using Fusion Middleware Control

To access the log messages for an Oracle HTTP Server instance:

1. Navigate to the Oracle HTTP Server home page.

ORACLE 8-15

http://httpd.apache.org/docs/current/mod/mod_log_config.html#logformat
http://httpd.apache.org/docs/current/mod/mod_log_config.html#logformat
http://httpd.apache.org/docs/current/mod/mod_log_config.html#customlog
http://httpd.apache.org/docs/current/mod/mod_log_config.html#customlog

Chapter 8
Viewing Oracle HTTP Server Logs

2. Select the server instance for which you want to view log messages.

3. From the Oracle HTTP Server drop-down list, select Logs, then View Log
Messages.

The Log Messages page opens.

For information about searching and viewing log files, see Viewing Log Files and
Their Messages Using Fusion Middleware Control in Administering Oracle Fusion
Middleware.

8.5.2 Viewing Logs Using WLST

To obtain and view server logs from the command line, you need to connect to Node
Manager and issue the appropriate WebLogic Scripting Tool (WLST) command. These
commands allow you to perform any of these functions:

e List server logs.

» Display the content of a specific log.

" Note:

For more information on using WLST, see Understanding the WebLogic
Scripting Tool.

Before attempting this procedure:

Before attempting to access server metrics from the command line, ensure the
following:

e The domain exists.
» The instance you want to start exists.
* Node Manager is running on the instance machine.

To use this procedure, the instance and Administration server can be running but do
not need to be.

To view metrics using WLST:

" Note:

For managed domains, this procedure will work on an Administration server
running on either the Administration machine or on a remote machine,
whether the instance is in a running state or a shutdown state. For
standalone domains, the procedure will work only on a local machine;
however the instance can be either in a running or shutdown state.

1. Launch WLST:
From Linux or UNIX:

$ORACLE_HOVE/ or acl e_common/ conmon/ bi n/ wl st . sh

ORACLE 8-16

Chapter 8
Recording ECID Information

From Windows:
C: \ ORACLE_HOME\ or acl e_comon\ common\ bi n\ w st . cnd

2. From the selected domain directory (for example, ORACLE_HOWE/ user _pr oj ect s/
donai ns/ domai nNane), connect to Node Manager:

nnConnect (' usernane', 'pwd', |ocal host, 5556, domai nNane)

3. Enter one of the following WLST commands, depending on what task you want to
accomplish:

e listLogs(nnmConnected=1, ...)
e displayLogs(nnmConnected=1, ...)
For example:

|'i st Logs(nnmConnect ed=1, target="0ohsl")
di spl ayLogs(nnmConnect ed=1, target="ohsl', tail=5)

8.5.3 Viewing Logs in a Text Editor

You can also use a text editor to view Oracle HTTP Server log files directly from the
DOMAIN_HOME directory. By default, Oracle HTTP Server log files are located in the
DOMAIN_HOME/servers/component_name/logs directory. Download a log file to your
local client and view the log files using another tool.

8.6 Recording ECID Information

You can configure Oracle HTTP Server logs to record Execution Context ID (ECID)
information.

The following sections describe how to record Execution Context ID (ECID)
information in error logs and access logs.

* About ECID Information
* Configuring Error Logs for ECID Information

* Configuring Access Logs for ECID Information

8.6.1 About ECID Information

An ECID is a globally unique ID that can be attached to requests between Oracle
components. The ECID enables you to track log messages pertaining to the same
request when multiple requests are processed in parallel.

The Oracle HTTP Server module nod_cont ext scans each incoming request for an
ECID-Context key in the URI or cookie, or for the ECID-Context header. If found, then
the value is used as the execution context if it is valid. If it is not, then mod_context
creates a new execution context for the request and adds it as the value of the
ECID-Context header.

8.6.2 Configuring Error Logs for ECID Information

ECID information is recorded as part of Oracle Diagnostic Logging (ODL). ODL
is a method for reporting diagnostic messages which presents a common format

ORACLE 8-17

Chapter 8
Recording ECID Information

for diagnostic messages and log files, and a method for correlating all diagnostic
messages from various components.

To configure Oracle HTTP Server error logs to record ECID information, ensure that
the Or aLogMode directive in the ht t pd. conf file is set to the default value, odl . The
odl value specifies standard Apache log format and ECID information for log records
specifically associated with a request.

For more information on O aLogMde and other possible values for this directive, see
OralLogMode.

" Note:

Oracle recommends that you enter the directives before any modules are
loaded (LoadModul e directive) in the htt pd. conf file so that module-specific
logging severities are in effect before modules have the opportunity to
perform any logging.

8.6.3 Configuring Access Logs for ECID Information

ORACLE

By default, the LogFor mat directive in the ht t pd. conf file is configured to capture ECID
information:

LogFormat "% % % % % \"%\" %s %" common

If you want to add response time measured in microseconds, then add %D as follows:

LogFormat "% % % % 9% YD \"%\" %s %" common

If you want to suppress the capture of ECID information, then remove % from the
LogFor mat directive:

LogFormat "9% % % % \"%\" %s %" common

8-18

Managing Application Security

Oracle HTTP Server supports three main categories of security, namely,
authentication, authorization, and confidentiality.

To know more about Oracle HTTP Server security features and configuration
information for setting up a secure website, see the following sections:

* About Oracle HTTP Server Security

* Classes of Users and Their Privileges

* Authentication, Authorization and Access Control
e Implementing SSL

e Using mod_security

e Using Trust Flags

9.1 About Oracle HTTP Server Security

Oracle HTTP Server supports all three security categories, hamely, authentication,
authorization, and confidentiality. Oracle HTTP Server’s security infrastructure is
primarily provided by Apache security modules.

Oracle HTTP Server is based on the Apache HTTP Server, and its security
infrastructure is primarily provided by the Apache modules, mod_auth_basic,
mod_authn_file, mod_auth_user, and mod_authz_groupfile, and WebGate. The
mod_auth_basic, mod_authn_file, mod_auth_user, and mod_authz_groupfile modules
provide authentication based on user name and password pairs, while
mod_authz_host controls access to the server based on the characteristics of a
request, such as host name or IP address, mod_ossl provides confidentiality and
authentication with X.509 client certificates over SSL.

Oracle HTTP Server provides access control, authentication, and authorization
methods that you can configure with access control directives in the htt pd. conf file.
When URL requests arrive at Oracle HTTP Server, they are processed in a sequence
of steps determined by server defaults and configuration parameters. The steps for
handling URL requests are implemented through a module or plug-in architecture that
is common to many Web listeners.

9.2 Classes of Users and Their Privileges

ORACLE

Oracle HTTP Server authorizes and authenticates users before allowing them to
access or modify resources on the server, based on their user privileges.

.The following are three classes of users that access the server using Oracle HTTP
Server, and their privileges:

e Users who access the server without providing any authentication. They have
access to unprotected resources only.

9-1

Chapter 9
Authentication, Authorization and Access Control

Users who have been authenticated and potentially authorized by modules

within Oracle HTTP Server. This includes users authenticated by Apache

HTTP Server modules like mod_auth_basic, mod_authn_file, mod_auth_user, and
mod_authz_groupfile modules and Oracle's mod_ossl. Such users have access to
URLs defined in htt p. conf file.

¢ See Also:
Authentication, Authorization and Access Control.

Users who have been authenticated through Oracle Access Manager. These users
have access to resources allowed by Single Sign-On.

See Also:

Securing Applications with Oracle Platform Security Services

9.3 Authentication, Authorization and Access Control

Oracle HTTP Server provides user authentication and authorization at two stages:
access control and user authentication and authorization.

Access Control (stage one): This is based on the details of the incoming HTTP
request and its headers, such as IP addresses or host names.

User Authentication and Authorization (stage two): This is based on different
criteria depending on the HTTP server configuration. You can configure the server
to authenticate users with user name and password pairs that are checked against
a list of known users and passwords. You can also configure the server to use
single sign-on authentication for Web applications or X.509 client certificates over
SSL.

9.3.1 Access Control

Access control refers to any means of controlling access to any resource.

" See Also:

Refer to the Apache HTTP Server documentation for more information on
how to configure access control to resources.

9.3.2 User Authentication and Authorization

Authentication is any process by which you verify that someone is who they claim they
are. Authorization is any process by which someone is allowed to be where they want
to go, or to have information that they want to have. You can authenticate users with
either Apache HTTP Server modules or with WebGate.

ORACLE

9-2

http://httpd.apache.org/docs/2.4/howto/access.html

Chapter 9
Authentication, Authorization and Access Control

* Authenticating Users with Apache HTTP Server Modules
* Authenticating Users with WebGate

9.3.2.1 Authenticating Users with Apache HTTP Server Modules

The Apache HTTP Server authentication directives can be used to verify that users
are who they claim to be.

See Also:

For more information on how to authenticate users, see the Apache HTTP
Server documentation on "Authentication and Authorization" at:

http://httpd. apache. org/ docs/ 2. 4/ howt o/ aut h. ht m

9.3.2.2 Authenticating Users with WebGate

WebGate enables single sign-on (SSO) for Oracle HTTP Server. WebGate examines
incoming requests and determines whether the requested resource is protected, and if
so, retrieves the session information for the user.

Through WebGate, Oracle HTTP Server becomes an SSO partner application enabled
to use SSO to authenticate users, obtain their identity by using Oracle Single Sign-On,
and to make user identities available to web applications accessed through Oracle
HTTP Server.

By using WebGate, web applications can register URLSs that require SSO
authentication. WebGate detects which requests received by Oracle HTTP Server
require SSO authentication, and redirects them to the SSO server. Once the SSO
server authenticates the user, it passes the user's authenticated identity back to
WebGate in a secure token. WebGate retrieves the user's identity from the token
and propagates it to applications accessed through Oracle HTTP Server, including
applications running in Oracle WebLogic Server and CGls and static files handled by
Oracle HTTP Server.

" See Also:

Securing Applications with Oracle Platform Security Services

9.3.3 Support for FMW Audit Framework

ORACLE

Oracle HTTP Server supports authentication and authorization auditing by using the
FMW Common Audit Framework. As part of enabling auditing, Oracle HTTP Server
supports a directive called Or aAudi t Enabl e, which defaults to On. When it is enabled,
audit events enabled in auditconfig.xml will be recorded in an audit log. By default, no
audit events are enabled in auditconfig.xml.

When Or aAudi t Enabl e is set to O f, auditing is disabled regardless of the settings in
auditconfig.xml.

9-3

http://httpd.apache.org/docs/2.4/howto/auth.html
http://httpd.apache.org/docs/2.4/howto/auth.html
http://httpd.apache.org/docs/2.4/howto/auth.html

Chapter 9
Implementing SSL

You can configure audit filters using Fusion Middleware Control or by editing
auditconfig.xml directly.

¢ See Also:

Overview of Audit Features in Securing Applications with Oracle Platform
Security Services

9.3.3.1 Managing Audit Policies Using Fusion Middleware Control

Use the Audit Policies page in Fusion Middleware Control to assign audit policies to a
selected Oracle HTTP Server instance.

1. Navigate to the Oracle HTTP Server Home Page.
2. Select the server instance to which you want to apply audit policies.

3. From the Oracle HTTP Server drop-down menu, select Security, then Audit
Policy.

The Audit Policy page opens.

For more information on setting audit policies, see Managing Audit Policies for Java
Components with Fusion Middleware Control in Securing Applications with Oracle
Platform Security Services

9.4 Implementing SSL

Oracle HTTP Server secures communications by using a Secure Sockets Layer (SSL)
protocol. SSL secures communication by providing message encryption, integrity,

and authentication. The SSL standard allows the involved components (such as
browsers and HTTP servers) to negotiate which encryption, authentication, and
integrity mechanisms to use.

For details on how to implement SSL for Oracle HTTP Server, see Configuring SSL
for the Web Tier in Administering Oracle Fusion Middleware. For information on

using mod_ossl, Oracle's SSL module, see mod_ossl Module—Enables Cryptography
(SSL). For information about mod_ossl directives, see mod_oss| Module.

The mod_wl_ohs module also contains a configuration for SSL. See Using SSL with
Plug-ins and Parameters for Web Server Plug-Ins in Using Oracle WebLogic Server
Proxy Plug-Ins.

These sections describes SSL features that are supported for this release.

e Global Server ID Support
e PKCS #11 Support

e SSL and Logging

e Terminating SSL Requests

ORACLE 9-4

Chapter 9
Implementing SSL

9.4.1 Global Server ID Support

This feature adds support SSL protocol features called variously "step-up", "server
gated crypto” or "global server ID". "Step-up" is a feature that allows old, weak
encryption browsers, to "step-up” so that public keys greater than 512-bits and bulk
encryption keys greater than 64 bits can be used in the SSL protocol. This means
that server X.509 certificates that contain public keys in excess of 512-bits and which
contain "step-up" digital rights can now be used by Oracle Application Server. Such
certificates are often called "128-bit" certificates, even though the certificate itself
typically contains a 1024-bit certificate. The Verisign Secure Site Pro is an example
of such a certificate which can now be used by Oracle Application Server.

Global Server ID functionality is provided by default, there is no configuration
necessary.

9.4.2 PKCS #11 Support

Public-Key Cryptography Standards #11, or PKCS #11 for short, is a public key
cryptography specification that outlines how systems use hardware security modules,
which are basically "boxes" where cryptographic functions (encryption/decryption) are
performed and where encryption keys are stored.

Oracle HTTP Server supports the option of having dedicated SSL hardware through
nCi pher. nCi pher is a certified third-party accelerator that improves the performance of
the PKI cryptography that SSL uses.

¢ See Also:

e Administering Oracle Fusion Middleware

e http://ww:. nci pher.com

9.4.3 SSL and Logging

SSL- and communication-related debugging can be set using the SSLTracelLoglLevel
directive. Here you can set different verbosity of log level according to your

logging requirements. This directive generates SSL and communication logs. See
SSLTracelLoglLevel Directive.

< Note:

SSL logs will work when Oracle HTTP Server logs is set for INFO or higher
level.

ORACLE 9-5

http://www.ncipher.com

Chapter 9
Implementing SSL

9.4.4 Terminating SSL Requests

The following sections describe how to terminate requests using SSL before or within
Oracle HTTP Server, where the nod_w _ohs module forwards requests to WebLogic
Server. Whether you terminate SSL before the request reaches Oracle HTTP Server
or when the request is in the server, depends on your topology. A common reason to
terminate SSL is for performance considerations when an internal network is otherwise
protected with no risk of a third-party intercepting data within the communication.
Another reason is when WebLogic Server is not configured to accept HTTPS requests.

This section includes the following topics:

e About Terminating SSL at the Load Balancer
* About Terminating SSL at Oracle HTTP Server

9.4.4.1 About Terminating SSL at the Load Balancer

If you are using another device such as a load balancer or a reverse proxy which
terminates requests using SSL before reaching Oracle HTTP Server, then you must
configure the server to treat the requests as if they were received through HTTPS. The
server must also be configured to send HTTPS responses back to the client.

Figure 9-1 illustrates an example where the request transmitted from the browser
through HTTPS to WebLogic Server. The load balancer terminates SSL and transmits
the request as HTTP. Oracle HTTP Server must be configured to treat the request as if
it was received through HTTPS.

Figure 9-1 Terminating SSL Before Oracle HTTP Server
= Request »

Browser — HTTPS —= Load Balancer HTTP —»= Oracle HTTF Server >

9.4.4.1.1 Terminating SSL at the Load Balancer

To instruct the Oracle HTTP Server to treat requests as if they were received
through HTTPS, configure the ht t pd. conf file with the Si mul at eHt t ps directive in the
mod_cert header s module.

For more information on nod_cert header s module, see mod_certheaders Module—
Enables Reverse Proxies.

¢ Note:

This procedure is not necessary if SSL is configured on Oracle HTTP Server
(that is, if you are directly accessing Oracle HTTP Server using HTTPS).

ORACLE 9-6

ORACLE

Chapter 9
Implementing SSL

Configure the ht t pd. conf configuration file with the external name of the server
and its port number, for example:

Server Nane <www. conpany. com port>

Configure the htt pd. conf configuration file to load the nod_cert header s module,
for example:

e On UNIX:
LoadModul e certheaders_nodul e |ibexec/ mod_certheaders. so
e On Windows:

LoadModul e certheaders_nodul e modul es/ ApacheMbdul eCert Header s. di |
AddModul e mod_certheaders. ¢

" Note:

Oracle recommends that the AddMbdul e line should be included with
other AddMbdul e directives.

Configure the Si mul at eHt t ps directive at the bottom of the ht t pd. conf file to send
HTTPS responses back to the client, for example:

For use with other |oad balancers and front-end devices:
Sinmul ateH t ps On

Restart Oracle HTTP Server and test access to the server. Especially, test whether
you can access static pages such as https://host: port/index. htm

Test your configuration as a basic setup. If you are having issues, then you should
troubleshoot from here to avoid overlapping with other potential issues, such as
with virtual hosting.

Ideally, you may want to configure a Vi rt ual Host in the htt pd. conf file to handle
all HTTPS requests. This separates the HTTPS requests from the HTTP requests
as a more scalable approach. This may be more desirable in a multi-purpose site
or if a load balancer or other device is in front of Oracle HTTP Server which is also
handling both HTTP and HTTPS requests.

The following sample instructions load the nod_cer t header s module, then creates
a virtual host to handle only HTTPS requests.

Load correct nodul e here or where other LoadModul e |ines exist:
LoadModul e certheaders_nodul e |ibexec/ mod_certheaders. so
This only handl es https requests:
<Virtual Host <name>: <port>
Use nane and port used in url:
Server Name <www. conpany. com port >
SinulateHttps On
The rest of your desired configuration for this Virtual Host goes
here
</ Vi rtual Host >

Restart Oracle HTTP Server and test access to the server, First test a static page
such as https://host:port/index. htm and then your test your application.

9-7

Chapter 9
Implementing SSL

9.4.4.2 About Terminating SSL at Oracle HTTP Server

If SSL is configured in Oracle HTTP Server but not on Oracle WebLogic Server, then
you can terminate SSL for requests sent by Oracle HTTP Server.

The following figures illustrate request flows, showing where HTTPS stops. In

Figure 9-2, an HTTPS request is sent from the browser. The load balancer transmits
the HTTPS request to Oracle HTTP Server. SSL is terminated in Oracle HTTP Server
and the HTTP request is sent to WebLogic Server.

Figure 9-2 Terminating SSL at Oracle HTTP Server—With Load Balancer

»* Request >

Oracle HTTP Server

Browser — HTTPS — Load Balancer — HTTPS —» mod_wl_ohs

HTTP —»| WebLogic Server

In Figure 9-3 there is no load balancer and the HTTPS request is sent directly to
Oracle HTTP Server. Again, SSL is terminated in Oracle HTTP Server and the HTTP
request is sent to WebLogic Server.

Figure 9-3 Terminating SSL at Oracle HTTP Server—Without Load Balancer

L

» Request

Oracle HTTP Server

Browser — HTTPS —= mod_wl_ohs

— HTTP — Weblogic Server

9.4.4.2.1 Terminating SSL at Oracle HTTP Server

ORACLE

To instruct the Oracle HTTP Server to treat requests as if they were received through
HTTPS, configure the W.SPr oxySSL directive in the nod_wW _ohs. conf file and ensure
that the Secur ePr oxy directive is not configured.

1. Configure the mod_wl _ohs. conf file to add the W.SPr oxySSL directive for the
location of your non-SSL configured managed servers.

For example:
W.ProxySSL ON

2. If using a load balancer or other device in front of Oracle HTTP Server (which
is also using SSL), you might need to configure the W.Pr oxy SSLPassThr ough
directive instead, depending on if it already sets W.- Pr oxy- SSL.

For example:
WL.Pr oxySSLPassThr ough ON
For more information, see your load balancer documentation. For more

information on WLProxySSLPassThrough, see Parameters for Oracle WebLogic
Server Proxy Plug-Ins in Using Oracle WebLogic Server Proxy Plug-Ins.

9-8

9.5 Using

9.6 Using

ORACLE

Chapter 9
Using mod_security

3. Ensure that the Secur ePr oxy directive is not configured, as it will interfere with the
intended communication between the components.

This directive is to be used only when SSL is used throughout. The Secur ePr oxy
directive is commented out in the following example:

To configure SSL throughout (all the way to WYS):
SecureProxy ON
WLSSLWllet "<Path to \allet>"

4. Enable the WebLogic Plug-In flag for your managed servers or cluster.

By default, this option is not enabled. Complete the following steps to enable the
WebLogic Plug-In flag:

a. Log in to the Oracle WebLogic Server Administration Console.
b. Inthe Domain Structure pane, expand the Environment node.
c. Click on Clusters.

d. Select the cluster to which you want to proxy requests from Oracle HTTP
Server.

The Configuration: General tab appears.
e. Scroll down to the Advanced section, expand it.
f. Click Lock and Edit.
g. Setthe WebLogic Plug-In Enabled to yes.
Click Save and Activate the Changes.
i. Restart the servers for the changes to be effective.
5. Restart Oracle HTTP Server and test access to a Java application.

For example: htt ps://host: port/path/application_nanme.

mod_security

mod_security is an open-source module that you can use to detect and prevent
intrusion attacks against Oracle HTTP Server.

An example of how you can use mod_security to prevent intrusion is by specifying
a mod_security rule to screen all incoming requests and deny requests that match
the conditions specified in the rule. The mod_security module (version 2.7.2) and its
prerequisites are included in the Oracle HTTP Server installation as a shared object
named mod_security2.so in the ORACLE_HOME/ohs/modules directory.

See Configuring the mod_security Module.

Trust Flags

Trust flags allow adequate roles to be assigned to certificates to facilitate operations
like certificate chain validation and path building. However, by default, wallets do not
support trust flags.

You can use the orapki utility to maintain trust flags in the certificates installed in an
Oracle Wallet. You can create and convert wallets to support trust flags, create and
maintain appropriate flags in each certificate, and so on. For more information on

9-9

Chapter 9
Using Trust Flags

trust flags and instructions on how to incorporate them into your security strategy, see
Creating and Managing Trust Flags in Administering Oracle Fusion Middleware.

ORACLE 9-10

Oracle HTTP Server WLST Custom
Commands

There are specific WLST Server commands for managing Oracle HTTP Server in
WebLogic Server domains. Most are online commands, which require a connection
between WLST and Administration Server for the domain.

This appendix contains information on Oracle HTTP Server specific WLST commands:

e Getting Help on Oracle HTTP Server WLST Custom Commands
* Names of WLST Custom Commands Have Changed

e Oracle HTTP Server Commands

A.1 Getting Help on Oracle HTTP Server WLST Custom
Commands

Online help is available for Oracle HTTP Server WLST custom commands.

To get online help, enter hel p(' manageohs') from the WLST command line and it will
display all the of the WLST custom commands for Oracle HTTP Server.

To get help for specific WLST custom commands, enter
hel p(' cust om command_nane') from the WLST command line, for example:

hel p(' ohs_createl nstance')

A.2 Names of WLST Custom Commands Have Changed

For ease of use and greater visibility, the names of the following Oracle HTTP Server
WLST custom commands have been changed in the current release. Instead of
incorporating "OHS" in the command name, the command is now prefixed with "ohs_".

The old command names are deprecated. For example, the cr eat eCHSI nst ance
command becomes ohs_cr eat el nst ance. They will be accepted by WLST in the
current release, but you should avoid using them. If you use one of the old command
names, you will receive a message saying that the name is deprecated and containing
a pointer to the new command.

The following table lists the old and new command names.

Table A-1 Old and New Names of Oracle HTTP Server WLST Custom

Commands
|
Old Name (deprecated) New Name

addCOHSAdni nProperti es ohs_addAdmi nProperties

ORACLE A-1

Appendix A
Oracle HTTP Server Commands

Table A-1 (Cont.) Old and New Names of Oracle HTTP Server WLST Custom
Commands

Old Name (deprecated) New Name
addOHSNWVPr operti es ohs_addNWPr operti es
creat eOHSI nst ance ohs_creat el nst ance
del et eQHSI nst ance ohs_del et el nst ance

A.3 Oracle HTTP Server Commands

Use the ohs_creat el nst ance and ohs_del et el nst ance commands to create and
delete Oracle HTTP Server instances instead of using the Configuration Wizard.
These custom commands perform additional error checking and assign ports
automatically in the case of instance creation.

The WLST custom commands listed in Table A-2 manage Oracle HTTP Server
instances in WebLogic Server domains.

Table A-2 Oracle HTTP Server Commands

Use this command... To... Use with
WLST...

ohs_addAdminProperties Add the LogLevel property to Oracle HTTP Server Online
Administration server property file.

ohs_addNMProperties Add a property to the Oracle HTTP Server Node Online
Manager plug-in property file.

ohs_createlnstance Create a new instance of Oracle HTTP Server. Online

ohs_deletelnstance Delete the specified Oracle HTTP Server instance. Online

ohs_exportKeyStore Exports the keyStore to the specified Oracle HTTP Online

Server instance.

ohs_postUpgrade Import the contents of wallet for all of the Oracle Online
HTTP Server instances (valid for those Oracle
HTTP Server instances which have been upgraded
from a previous version) in the domain to the KSS
database.

ohs_updatelnstances Creates a keystore in the KSS database in the case Online
where Oracle HTTP Server instances were created
using Configuration Wizard.

A.3.1 ohs_addAdminProperties

ORACLE

The ohs_addAdmi nProperti es command adds the LogLevel property to Oracle
HTTP Server Administration server property file (ohs_admi n. properti es); LogLevel
is the only parameter ohs_addAdni nProperti es currently supports. This command is
available when WLST is connected to an Administration Server instance.

Use with WLST: Online

Syntax

A-2

Appendix A
Oracle HTTP Server Commands

ohs_addAdmi nProperties(logLevel = 'value')
Argument Description
LogLevel The granularity of information written to the log. The default is | NFO,
other values accepted are:
e ALL
« CONFIG
 FINE
* FINER
* FINEST
« OFF
e SEVERE
« WARNING

Example
This example creates a log file with log level is set to FI NEST.

ohs_addAdmi nProperties(logLevel = "'FINEST")

A.3.2 ohs_addNMProperties

ORACLE

Use with WLST: Online
Description

The ohs_addNWPr operti es command adds a property to the Oracle HTTP Server
Node Manager plug-in property file (ohs_nm properti es). This command is available
when WLST is connected to an Administration Server instance.

Syntax
ohs_addNWProperties(logLevel = 'value', machi ne=' node- manager - machi ne- name')
Argument Description
LogLevel The granularity of information written to the log. The default is | NFO,
other values accepted are:
e ALL
« CONFIG
* FINE
* FINER
* FINEST
« OFF
e SEVERE
* WARNING
machi ne The name of the machine on which Node Manage is running.
Example

This example creates a log file with name ohs_nm | og under the path <donai n_di r >/
syst em conponent s/ CHS with log level is set to FI NEST on the target machine,
my_NM machi ne. The user need not restart Node Manager.

ohs_addNWPr operti es(l ogLevel = 'FINEST', machine = 'ny_NM machine')

A-3

A.3.3 ohs_createlnstance

Appendix A
Oracle HTTP Server Commands

Use with WLST: Online

Description

The ohs_creat el nst ance command creates a new instance of Oracle HTTP Server,
allowing critical configuration such as listening ports to be specified explicitly or
assigned automatically.

Syntax

ohs_creat el nstance(instanceName='xxx', machine='yyy', serverNane='zzz', ...)

Argument

Definition

i nst anceNane

machi ne

| i stenPort

ssl Port

admi nPort

server Nane

The name of the managed instance being created.

The existing machine entry for the instance. This name

(often <host Nane>. nyCor p. con) is set during creation of the
WebLogic Server Domain. If you forget the name, you can

check $ORACLE_INSTANCE/config/config.xml and look for the
<machine> block. Alternately, in WLST you can find the machine name
by running:

server Config()
cd(' Machi nes")
I's()

(Optional) The port number of the non-SSL server. If this value is not
specified, a port is automatically assigned. Listen ports typically begin
at 7777 and go up from there.

(Optional) The port number of the SSL virtual host. If this value is not
specified, a port is automatically assigned. SSL ports typically start at
4443 and go up from there.

(Optional) The port number used for communication with Node
Manager. If this value is not specified, a port is automatically assigned.
Administration ports typically begin at 9999 and go up from there.

(Optional) The value of the ServerName directive of the non-SSL
server. If this value is not specified, the host name of the machine and
the listen port will be used to construct the value.

Example

The following example creates an Oracle HTTP Server instance called ohs1 that runs
on the machine abc03. myCor p. com

ohs_creat el nst ance(i nst anceNane=' ohs1', machi ne=' abc03. nyCorp. com)

A.3.4 ohs_deletelnstance

Use with WLST: Online

Description

ORACLE

A-4

Appendix A
Oracle HTTP Server Commands

The ohs_del et el nst ance command deletes a specified Oracle HTTP Server instance.
The instance must be stopped before you can delete it. This command will return an
error if the instance is in the UNKNOAN or RUNNI NG state.

Syntax

ohs_del et el nst ance(i nst anceName=" xxx")

i nst anceNare is the name of the Oracle HTTP Server instance.
Example

The following example deletes the Oracle HTTP Server instance ohs1.

ohs_del et el nst ance(i nst anceName=' ohs1')

A.3.5 ohs_exportKeyStore

Use with WLST: Online
Description

The ohs_export KeySt or e command exports the keystore to the specified Oracle HTTP
Server instance location. This command is available when WLST is connected to an
Administration Server instance. For more information on how to use this command,
see Exporting the Keystore to an Oracle HTTP Server Instance Using WLST.

Syntax

ohs_export KeySt or e(keySt or eNamre=" <keySt or eNane>' , i nstanceNane =
' <i nstanceNane>')

Argument Description
keyStoreName The name of the keystore.
instanceName The name of the Oracle HTTP Server instance.

Naming Conventions for Keystores
The keystore name (keySt or eNanme) must start with the string: <i nst anceName>_.

For example, presume that the keystore must be exported to an Oracle HTTP Server
instance named ohs1. Then the names of all of the keystores that must be exported to
ohs1 must start with ohs1_.

If this syntax is not followed while creating the keystore, then the export of the keystore
might not be successful.

Example

This example exports the keystore ohs1_nyKeyst or e to the Oracle HTTP Server
instance ohs1.

ohs_export KeySt or e(keySt or eName=' ohs1_nyKeystore', instanceName = 'ohsl')

ORACLE A-5

Appendix A
Oracle HTTP Server Commands

A.3.6 ohs_postUpgrade

The ohs_postUpgrade command parses all instances of the Oracle HTTP Server in
the domain, and imports their wallets to the KSS database. The command imports
wallets only if an entry does not exist in the database for the same keystore name.

Use with WLST: Online
Description

Use the ohs_post Upgr ade command after you have upgraded from a previous version
of Oracle HTTP Server to release 12c¢ (12.2.1.3.0).

Prior to release 12c¢ (12.2.1.3.0), Oracle HTTP Server instances/components used

wallets without KSS integration. If you use the Upgrade Assistant to upgrade to 12c¢
(12.2.1.3.0), the existing wallet contents must be imported to the KSS database for
further management.

The ohs_post Upgr ade command parses across all of the Oracle HTTP Server
instances in the domain and imports their wallets to the KSS database if an entry
does not already exist in the database for the same keystore name. This command

is available only when WLST is connected to an Administration Server instance. See
Upgrading from Earlier Releases of Oracle HTTP Server and Importing Wallets to the
KSS Database after an Upgrade Using WLST.

Syntax
ohs_post Upgr ade()
This command does not take any arguments.

Example

ohs_post Upgr ade()

A.3.7 ohs_updatelnstances

ORACLE

Use with WLST: Online
Description

The ohs_updat el nst ances command is available only when WLST is connected to
an Administration Server instance. It will parse across all of the Oracle HTTP Server
instances in the domain and perform the following tasks:

e Create a new keystore with the name <i nst anceNane>_def aul t if one does not
exist.

* Put a demonstration certificate, demoCASi gnedCerti fi cat e, in the newly created
keystore.

e Export the keystore to the instance location.

This command is to be used after an Oracle HTTP Server instance is created using
Configuration Wizard in collocated mode only. See Associating Oracle HTTP Server
Instances With a Keystore Using WLST.

Syntax

ohs_updat el nst ances()

A-6

Appendix A
Oracle HTTP Server Commands

This command does not take any arguments.

Example

ohs_updat el nst ances()

ORACLE A7

Migrating to the mod_proxy_fcgi and
mod_authnz_fcgi Modules

Thenod_f ast cgi module was deprecated in the previous release and has been
replaced in the current release by thenod_proxy_fcgi andnod_aut hnz_f cgi modules.
You must complete certain tasks to migrate from the nod_f ast cgi module to
thenmod_proxy_fcgi and mod_aut hnz_f cgi modules.

TThe mod_proxy_fcgi module uses mod_proxy to provide FastCGI support. The
mod_authnz_fcgi module allows FastCGl authorizer applications to authenticate users
and authorize access to resources.

Complete the following tasks to migrate from the mod_fastcgi module to the
mod_proxy_fcgi and mod_authnz_fcgi modules.

* Task 1: Replace LoadModule Directives in htttpd.conf File
» Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File

e Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External
FastCGl Server

e Task 4: Setup an External FastCGI Server
e Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications

B.1 Task 1. Replace LoadModule Directives in htttpd.conf
File

To update the LoadModul e directives in the Oracle HTTP Server configuration file,
htt pd. conf, you open this file in an editor and replace the modulesnod_f ast cgi and
mod_f cgi with the modulesnod_proxy ,mod_proxy _fcgi , and nod_authnz_fcgi .

Edit the htt pd. conf file to comment out the LoadModul e lines for nod_f ast cgi
and nod_f cgi . Add LoadMbdul e lines for mod_pr oxy, mod_proxy_fcgi , and
mod_aut hnz_fcgi, for example:

LoadModul e fastcgi _nodul e nodul es/ nod_f ast cgi . so

LoadModul e fcgi _nmodul e modul es/ mod_f cgi . so
LoadModul e proxy_nodul e nmodul es/ mod_pr oxy. so
LoadModul e proxy_fcgi _modul e nodul es/ mod_proxy_f cgi
LoadModul e aut hnz_f cgi _nodul e modul es/ mod_aut hnz_f cgi

ORACLE B-1

Appendix B
Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File

B.2 Task 2: Delete mod_fastcgi Configuration Directives
From the htttpd.conf File

To migrate to the new modules provided by Oracle HTTP Server, you must delete
the configuration directives that belong to the deprecated module nmod_f ast cgi in the
htt pd. conf file.

For more information on these directives, see Module mod_fastcgi.
» Fast Cgi Server

* FastCgi Config

e Fast Cgi Ext ernal Server

e FastCgilpchr

* Fast Cgi Wapper

e Fast Cgi Aut henti cat or

e Fast Cgi Aut henti catorAuthoritative
* Fast Cgi Aut hori zer

e Fast Cgi Aut hori zerAuthoritative

* Fast Cgi AccessChecker

e Fast Cgi AccessChecker Authoritative

B.3 Task 3: Configure mod_proxy_fcgi to Act as a Reverse
Proxy to an External FastCGl Server

ORACLE

The nmod_pr oxy_f cgi module does not have configuration directives. Instead, it uses
the directives set on the mod_pr oxy module. Unlike the nod_f cgi d and nod_f ast cgi
modules, the mod_proxy_fcgi module has no provision for starting the application
process. The purpose of mod_proxy_f cgi is to move this functionality outside of the
web server for faster performance. So, mod_proxy_fcgi simply will act as a reverse
proxy to an external FastCGlI server.

For examples of using mod_proxy_fcgi, see the following URL:
http://httpd. apache. org/ docs/trunk/ mod/ mod_proxy_fcgi. htn

For information on the directives available for mod_proxy, including reverse proxy
examples, see the following URL.:

http://httpd. apache. org/ docs/trunk/ mod/ mod_proxy. ht m

Another way to setup the mod_proxy_fcgi module to act as a reverse proxy to a
FastCGl server is to force a request to be handled as a reverse-proxy request. To

do this, you must create a suitable Handler pass-through (also known as "Access via
Handler"). For more information on how to set up a Handler pass-through, see the
following URL:

http://httpd. apache. org/ docs/trunk/ nod/ mod_proxy. ht m #handl er

B-2

https://docs.oracle.com/cd/B31017_01/web.1013/q20204/mod_fastcgi.html
http://httpd.apache.org/docs/trunk/mod/mod_proxy_fcgi.html
http://httpd.apache.org/docs/trunk/mod/mod_proxy.html
http://httpd.apache.org/docs/trunk/mod/mod_proxy.html#handler

Appendix B
Task 4: Setup an External FastCGI Server

B.4 Task 4. Setup an External FastCGl Server

An external FastCGl server enables you to run FastCGl scripts external to the web
server or even on a remote machine. Therefore, you must set up an external FastCGI
server.

The following list provides information on some available FastCGI server solutions:

« fcgistarter, a utility for starting FastCGI programs. This solution is provided
by Apache httpd 2.4. It only works on UNIX systems. See http://
htt pd. apache. or g/ docs/ t runk/ prograns/fcgistarter.htn .

* PHP-FPM, an alternative PHP FastCGI implementation. This solution is
included with PHP release 5.3.3 and later. See htt p:// php. net/ manual / en/
install.fpm configuration.php.

* spawn-fcgi, a utility for spawning remote and local FastCGI processes. See
http://redmne.lighttpd. net/projects/spawn-fcgi/wki/WkiStart.

B.5 Task 5: Setup mod_authnz_fcgi to Work with FastCGl
Authorizer Applications

ORACLE

You can set up nod_aut hnz_f cgi module to work with FastCGI authorizer applications
to authenticate users and authorize access to resources. It supports generic FastCGl
authorizers that participate in a single phase for authentication and authorization,

and Apache httpd-specific authenticators and authorizers. FastCGI authorizers can
authenticate using the user id and password for basic authentication or authenticate
using arbitrary mechanisms.

For more information on using mod_authnz_fcgi, see http://httpd. apache. or g/
docs/ trunk/ mod/ mod_aut hnz_fcgi. htnl.

B-3

http://httpd.apache.org/docs/trunk/programs/fcgistarter.html
http://httpd.apache.org/docs/trunk/programs/fcgistarter.html
http://php.net/manual/en/install.fpm.configuration.php
http://php.net/manual/en/install.fpm.configuration.php
http://redmine.lighttpd.net/projects/spawn-fcgi/wiki/WikiStart
http://httpd.apache.org/docs/trunk/mod/mod_authnz_fcgi.html
http://httpd.apache.org/docs/trunk/mod/mod_authnz_fcgi.html

Frequently Asked Questions

This appendix provides answers to frequently asked questions about Oracle HTTP
Server. It includes the following topics:

How Do | Create Application-Specific Error Pages?

What Type of Virtual Hosts Are Supported for HTTP and HTTPS?

Can | Use Different Language and Character Set Versions of Document?
Can | Apply Apache HTTP Server Security Patches to Oracle HTTP Server?
Can | Upgrade the Apache HTTP Server Version of Oracle HTTP Server?
Can | Compress Output From Oracle HTTP Server?

How Do | Create a Namespace That Works Through Firewalls and Clusters?
How Can | Enhance Website Security?

Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?
How can | hide information about the Web Server Vendor and Version

Can | Start Oracle HTTP Server by Using apachectl or Other Command-Line Tool?
How Do | Configure Oracle HTTP Server to Listen at Port 80?

How Do | Terminate Requests Using SSL Within Oracle HTTP Server?

How Do | Configure End-to-End SSL Within Oracle HTTP Server?

Can Oracle HTTP Server Front-End Oracle WebLogic Server?

What is the Difference Between Oracle WebLogic Server Domains and
Standalone Domains?

Can Oracle HTTP Server Cache the Response Data?
How Do | Configure a Virtual Server-Specific Access Log?

How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

Documentation from the Apache Software Foundation is referenced when applicable.

ORACLE

" Note:

Readers using this guide in PDF or hard copy formats will be unable to
access third-party documentation, which Oracle provides in HTML format
only. To access the third-party documentation referenced in this guide, use
the HTML version of this guide and click the hyperlinks.

C-1

Appendix C
How Do | Create Application-Specific Error Pages?

C.1 How Do | Create Application-Specific Error Pages?

Oracle HTTP Server has a default content handler for dealing with errors. You can use
the Error Docunent directive to override the defaults.

See Also:
Apache HTTP Server documentation on the Er r or Docunent directive at:

http://httpd. apache. org/ docs/ current/mod/ core. ht n #error docunent

C.2 What Type of Virtual Hosts Are Supported for HTTP and

HTTPS?

(Apache 2.4 required)

For HTTP, Oracle HTTP Server supports both name-based and IP-based virtual hosts.
Name-based virtual hosts are virtual hosts that share a common listening address (IP
plus port combination), but route requests based on a match between the Host header
sent by the client and the Ser ver Nane directive set within the Vi rt ual Host . IP-based
virtual hosts are virtual hosts that have distinct listening addresses. IP-based virtual
hosts route requests based on the address they were received on.

For HTTPS, only IP-based virtual hosts are possible with Oracle HTTP Server. This

is because for name-based virtual hosts, the request must be read and inspected

to determine which virtual host processes the request. If HTTPS is used, an SSL
handshake must be performed before the request can be read. To perform the

SSL handshake, a server certificate must be provided. To have a meaningful server
certificate, the host name in the certificate must match the host name the client
requested, which implies a unique server certificate per virtual host. However, because
the server cannot know which virtual host to route the request to until it has read the
request, and it can't properly read the request unless it knows which server certificate
to provide, there is no way to make name-based virtual hosting work with HTTPS.

C.3 Can | Use Different Language and Character Set
Versions of Document?

ORACLE

Yes, you can use multiviews, a general name given to the Apache HTTP Server's
ability to provide language and character-specific document variants in response to a
request.

C-2

http://httpd.apache.org/docs/2.4/mod/core.html#errordocument
http://httpd.apache.org/docs/current/mod/core.html#errordocument

Appendix C
Can | Apply Apache HTTP Server Security Patches to Oracle HTTP Server?

¢ See Also:

Multiviews option in the Apache HTTP Server documentation on Content
Negotiation, at:

http://httpd. apache. org/ docs/ current/content-negotiation. htm

C.4 Can | Apply Apache HTTP Server Security Patches to
Oracle HTTP Server?

C5Canl

No, you cannot apply the Apache HTTP Server security patches to Oracle HTTP
Server for the following reasons:

» Oracle tests and appropriately modifies security patches before releasing them to
Oracle HTTP Server users.

* Inmany cases, the Apache HTTP Server alerts, such as OpenSSL alerts, may not
be applicable because Oracle has removed those components from the stack.

The latest security related fixes to Oracle HTTP Server are performed through the
Oracle Critical Patch Update (CPU). See Oracle's Critical Patch Updates and Security
Alerts Web page.

Note:

After applying a CPU, the Apache HTTP Server-based version may stay
the same, but the vulnerability will be fixed. There are third-party security
detection tools that can check the version, but do not check the vulnerability
itself.

Upgrade the Apache HTTP Server Version of

Oracle HTTP Server?

C.6 Can |

ORACLE

No, you cannot upgrade only the Apache HTTP Server version inside Oracle HTTP
Server. Oracle provides a newer version of Apache HTTP Server that Oracle HTTP
Server is based on, which is part of either a patch update or the next major or minor
release of Oracle Fusion Middleware.

Compress Output From Oracle HTTP Server?

In general, Oracle recommends using mod_deflate, which is included with
Oracle HTTP Server. For more information pertaining to mod_deflate, see http://
htt pd. apache. or g/ docs/ current/mod/ mod_def | ate. ht m

C-3

http://httpd.apache.org/docs/2.4/mod/mod_negotiation.html#multiviews
http://httpd.apache.org/docs/current/content-negotiation.html
http://www.oracle.com/technology/deploy/security/alerts.htm
http://www.oracle.com/technology/deploy/security/alerts.htm
http://httpd.apache.org/docs/current/mod/mod_deflate.html
http://httpd.apache.org/docs/current/mod/mod_deflate.html

Appendix C
How Do | Create a Namespace That Works Through Firewalls and Clusters?

C.7 How Do | Create a Namespace That Works Through
Firewalls and Clusters?

The general idea is that all servers in a distributed website should use a single URL
namespace. Every server serves some part of that namespace, and can redirect or
proxy requests for URLs that it does not serve to a server that is closer to that URL.
For example, your namespaces could be the following:

[appl/login.htm

[appl/ cat al og. ht n

[appl/dol ogin.jsp

[app2/ or der Form ht m
[apps/ pl aceOrder. jsp

You could initially map these name spaces to two Web servers by putting appl
on serverl and app2 on server2. The configuration for serverl might look like the
following:

Redi rect permanent /app2 http://server2/app2
Alias /appl /nyApps/applicationl
<Directory /nyApps/applicationl>

</Directory>
The configuration for Server2 is complementary.

If you decide to partition the namespace by content type (HTML on serverl, and JSP
on server2), then you can change server configuration and move files around, but you
do not have to make changes to the application itself. The resulting configuration of
serverl might look like the following:

Redi rect Match permanent (.*) \.jsp$ http://server2/$1l.jsp
AliasMatch ~app(.*) \.htm $ /nyPages/application$l. htm
<DirectoryMat ch "~/ nyPages/ application\d">

</ Di rectoryMat ch>

The amount of actual redirection can be minimized by configuring a hardware load
balancer like F5 system BIG-IP to send requests to serverl or server2 based on the
URL.

C.8 How Can | Enhance Website Security?

ORACLE

The following are some general guidelines for securing your web site.

e Use a commercial firewall between your ISP and your Web server.

e Use switched Ethernet to limit the amount of traffic a compromised server can
detect. Use additional firewalls between Web server machines and highly sensitive
internal servers running the database and enterprise applications.

* Remove unnecessary network services such as RPC, Finger, and telnet from your
server.

C-4

Appendix C
Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?

* Always validate all input from Web forms and output from your applications. Be
sure to validate encodings, long input strings and input that contains non-printable
characters, HTML tags, or javascript tags.

* Encrypt the contents of cookies when it is relevant.

» Check often for security patches for all your system and application software, and
install them as soon as possible. Only accept patches from Oracle or your Oracle
support representative.

* When it is relevant, use an intrusion detection package to monitor for defaced Web
pages, viruses, and presence of rootkits. If possible, mount system executables
and Web content on read-only file systems.

* Consider using Pen testing or other relevant security testing on your application.
Consider configuring web security using the appropriate custom mod_security
rules to protect your application. For more information on mod_security, see
Configuring the mod_security Module and Using mod_security.

* Remove unneeded content from the httpd.conf file.See Removing Access to
Unneeded Content.

* Take precautions to protect your web pages from clickjacking attempts. There
is a lot of helpful information available on the internet. For more information on
clickjacking, see the Security Best Practices section in "Security Vulnerability FAQ
for Oracle Database and Fusion Middleware Products (Doc ID 1074055.1)".

C.9 Why is REDIRECT_ERROR_NOTES not set for "File
Not Found" errors?

The REDIRECT_ERROR_NOTES CGI environment variable is not set for "File Not
Found" errors in Oracle HTTP Server because compatibility with Apache HTTP Server
does not make that information available to CGI and other applications for this
condition.

C.10 How can | hide information about the Web Server
Vendor and Version

Specify Server Si gnature O f to remove this information from web server generated
responses. Specify Server Tokens Customsomne- server-string to disguise the web
server software when Oracle HTTP Server generates the web Server response
header. (When a backend server generates the response, the server response header
may come from the backend server depending on the proxy mechanism.)

" Note:

Server Tokens Cust om some-server-string is a replacement for the
Server Header O f setting in Oracle HTTP Server 10g.

ORACLE C-5

Appendix C
Can | Start Oracle HTTP Server by Using apachectl or Other Command-Line Tool?

C.11 Can | Start Oracle HTTP Server by Using apachectl or
Other Command-Line Tool?

Oracle HTTP Server 12c¢ (12.2.1) process management is handled by Node Manager.
You can use the st art Conponent command to start Oracle HTTP Server without
using WLST or Fusion Middleware Control directly. See Starting Oracle HTTP Server
Instances from the Command Line.

C.12 How Do | Configure Oracle HTTP Server to Listen at
Port 807

By default, Oracle HTTP Server is not able to bind to ports on UNIX in the reserved
range (typically less than 1024). You can enable Oracle HTTP Server to listen on

a port in the reserved range (for example, the default port 80) by following the
instructions in Starting Oracle HTTP Server Instances on a Privileged Port (UNIX
Only).

C.13 How Do | Terminate Requests Using SSL Within
Oracle HTTP Server?

You can terminate requests using SSL before or within Oracle HTTP Server, where
the mod_w _ohs module forwards requests to WebLogic Server. Whether you terminate
SSL before the request reaches Oracle HTTP Server or when the request is in the
server, depends on your topology. See Terminating SSL at the Load Balancer and
Terminating SSL at Oracle HTTP Server.

C.14 How Do | Configure End-to-End SSL Within Oracle
HTTP Server?

Support for Secure Sockets Layer (SSL) is provided by the Oracle WebLogic Server
Proxy Plug-In. You can use the SSL protocol to protect the connection between the
plug-in and Oracle WebLogic Server. The SSL protocol provides confidentiality and
integrity to the data passed between the plug-in and WebLogic Server. See Use SSL
with Plug-Ins in Using Oracle WebLogic Server Proxy Plug-ins for information on
setting up SSL libraries and for setting up one-way or two-way SSL communications
between the web server and Oracle WebLogic Server.

If you will be configuring SSL in Oracle HTTP Server but not on Oracle WebLogic
Server, then you can terminate SSL for requests sent by Oracle HTTP Server. For
information on configuring this scenario, see Terminating SSL at Oracle HTTP Server.

ORACLE C-6

C.15 Can
Server?

Appendix C
Can Oracle HTTP Server Front-End Oracle WebLogic Server?

Oracle HTTP Server Front-End Oracle WebLogic

Oracle HTTP Server is the web server component for Oracle Fusion Middleware. The
server uses the WebLogic Management Framework to provide a simple, consistent
and distributed environment for administering Oracle HTTP Server, Oracle WebLogic
Server, and the rest of the Fusion Middleware stack. It acts as the HTTP front-end by
hosting the static content from within and by using its built-in Oracle WebLogic Server
Proxy Plug-In (mod_w _ohs module) to route dynamic content requests to WebLogic-
managed servers.

For information about the topologies you into which you can install Oracle HTTP
Server, see Oracle HTTP Server 12¢ (12.2.1.3.0) Topologies.

C.16 What is the Difference Between Oracle WebLogic
Server Domains and Standalone Domains?

C.17 Can

ORACLE

Oracle HTTP Server can be installed in either a standalone, a Full-JRF, or a
Restricted-JRF domain. A standalone domain is a container for system components,
such as Oracle HTTP Server. It is ideal for a DMZ environment because it has

the least overhead. A standalone domain has a directory structure similar to an
Oracle WebLogic Server Domain, but it does not contain an Administration Server, or
Managed Servers, or any management support. It can contain one or more instances
of system components of the same type, such as Oracle HTTP Server, or a mix of
system component types.

WebLogic Server Domains support all WebLogic Management Framework tools.

An Oracle WebLogic Server domain can be either Full-JRF or Restricted JRF. A
WebLogic Server Domain in Full-JRF mode contains a WebLogic Administration
Server, zero or more WebLogic Managed Servers, and zero or more System
Component Instances (for example, an Oracle HTTP Server instance). This type of
domain provides enhanced management capabilities through the Fusion Middleware
Control and WebLogic Management Framework present throughout the system. A
WebLogic Server Domain can span multiple physical machines, and it is centrally
managed by the administration server. Because of these properties, a WebLogic
Server Domain provides the best integration between your System Components and
Java EE Components.

The Restricted-JRF domain is a new feature of the 12.2.1 release; its purpose is to
simplify Oracle HTTP Server administration by using the WebLogic server domain. A
Restricted-JRF Oracle WebLogic Server domain is similar to a Full-JRF domain except
that a connection to an external database is not required. All of the Oracle HTTP
Server functionality through Fusion MiddleWare Control and WLST is still available,
with the exception of cross component wiring.

For more details on each of these domains, see Domain Types.

Oracle HTTP Server Cache the Response Data?

Oracle HTTP Server now includes the Apache mod_cache and mod_cache_disk
modules to cache response data.

C-7

Appendix C
How Do | Configure a Virtual Server-Specific Access Log?

For more information, on mod_cache and mod_cache_disk, see mod_cache in the
Apache documentation:

http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_cache. ht n

C.18 How Do | Configure a Virtual Server-Specific Access

Log?

Within every VirtualHost directive, you can use the Apache LogFormat and CustomLog
directives to configure Virtual Host-specific access log format and log files. See
LogFormat and CustomLog.

C.19 How to Enable SSL for Oracle HTTP Server by Using
Fusion Middleware Control?

You can enable SSL for Oracle HTTP Server using Fusion Middleware control.

The steps mentioned in this section is applicable to Oracle HTTP Server - Version
12.2.1.0.0 and later.

Complete the following steps to enable SSL for Oracle HTTP Server using Fusion
Middleware control:

Start Node Manager and Admin Server

Create Keystore

Generate Keypair

Generate CSR for a Certificate

Import the Trusted Certificate

Import the Trusted Certificate to WebLogic Domain
Import the User Certificate

Export Keystore to Wallet

C.19.1 Start Node Manager and Admin Server

1.

ORACLE

Start the Node Manager in the collocated ORACLE_HOME.

$ORACLE_HOME/ user _proj ect s/ domai ns/ bi n/ st art NodeManager . sh

Start the Admin Server in the collocated ORACLE_HOME.

$ORACLE_HOME/ user _proj ect s/ domai ns/ bi n/ st art Wbl ogi c. sh

Log in to Fusion Middleware Control with the Weblogic user name and password.

For example, http.//host.domain:7001/em.

C-8

http://httpd.apache.org/docs/2.4/mod/mod_cache.html

Appendix C
How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

C.19.2 Create Keystore

1.
2.

Log in to Fusion Middleware Control.

Go to Domain, click Security, and then click Keystore.

The Keystore page appears.

Click Create Keystore.

The Create Keystore dialog box appears.

In this dialog box, enter the following data:

* Keystore Name: Enter a unique name. For example, Test.
* Protection Type: Choose Policy.

A new keystore is created with the name _Test, that is, ohs1_Test.
Once the keystore is created, select the new keystore ohs1_Test, and then click
Manage to perform all other steps

C.19.3 Generate Keypair

To generate a certificate with an associated keypair:

1.
2.
3.

Log in to Fusion Middleware Control.

From the navigation pane, locate the domain of interest.
Navigate to Security, then Keystore.

The Keystore page appears.

Expand the stripe in which the keystore resides. Select the row corresponding to
the keystore.

Click Manage.

The Manage Certificates page appears.
Click Generate Keypair.

The Generate Keypair dialog appears.
Enter the details, and the click OK.

The new certificate appears in the list of certificates. You can view the certificate
details by clicking on the certificate alias.

The generated keypair is wrapped in a CA signed certificate. To use this certificate for
SSL or where trust needs to be established, applications must either use the domain
trust store as their trust store or import the certificate to a custom application-specific
trust store.

C.19.4 Generate CSR for a Certificate

To generate a CSR for a certificate or trusted certificate:

1.
2.
3.

ORACLE

Log in to Fusion Middleware Control.
From the navigation pane, locate the domain of interest.

Navigate to Security, and then Keystore.

C-9

Appendix C
How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

The Keystore page appears.

4. Expand the stripe in which the keystore resides. Select the row corresponding to
the keystore.

5. Click Manage.
The Manage Certificates page appears.
6. Select the row corresponding to the new keypair and click Generate CSR.
The Generate CSR dialog appears.
7. Copy and paste the entire CSR into a text file, and click Close.
Alternatively, you can click Export CSR to automatically save the CSR to a file.

You can send the resulting certificate request to a certificate authority (CA) which will
return a signed certificate.

C.19.5 Import the Trusted Certificate

To import a certificate into a password-protected keystore.
1. Log in to Fusion Middleware Control.
2. From the navigation pane, locate Oracle HTTP Server.
3. Navigate to Security, and then Keystore.

The Keystore page appears.

4. Expand the stripe in which the keystore resides. Select the keystore from which
the CSR was generated.

5. Click Manage.
The Manage Certificates page appears.
6. Click Import.
The Import Certificate dialog appears.
7. Inthe Certificate Type, select Trusted Certificate.
8. In Alias, enter a name for the Alias.

9. In Certificate Source, either paste the content of the trusted certificate in Paste
Certificate String here text box or select a trusted certificate file.

10. Click OK.
Repeat these steps for any other trusted CA certificates in the chain.

The imported trusted certificate appears in the list of certificates.

C.19.6 Import the Trusted Certificate to WebLogic Domain

ORACLE

You also need to import root CA certificate and any other Trusted CA Certificates to
WebLogic "system" stripe under trust keystore.

1. Log in to Fusion Middleware Control.
2. From the navigation pane, locate WebLogic domain.
3. Navigate to Security, and then Keystore.

The Keystore page appears.

C-10

ORACLE

10.

Appendix C
How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

Expand the stripe in which the keystore resides. Select the keystore from which
the CSR was generated.

Click Manage.

The Manage Certificates page appears.

Click Import.

The Import Certificate dialog appears.

In the Certificate Type, select Trusted Certificate.
In Alias, enter a name for the Alias.

In Certificate Source, either paste the content of the trusted certificate in Paste
Certificate String here text box or select a trusted certificate file.

Click OK.
Repeat these steps for any other trusted CA certificates in the chain.

The imported trusted certificate appears in the list of certificates.

If you miss this step, then trying to export keystore to wallet fails with the following
error message:

Error "Failed to export keystore to wallet. Error nmessage: null"
VWile Trying to Export Keystore to Wallet

See Note: 2140257.1

C.19.7 Import the User Certificate

10.

Log in to Fusion Middleware Control.

From the navigation pane, locate Oracle HTTP Server.
Navigate to Security, and then Keystore.

The Keystore page appears.

Expand the stripe in which the keystore resides. Select the keystore from which
the CSR was generated.

Click Manage.

The Manage Certificates page appears.
Click Import.

The Import Certificate dialog appears.
In the Certificate Type, select Certificate.
In Alias, enter a name for the Alias.

In Certificate Source, either paste the content of the user certificate in Paste
Certificate String here text box or select a user certificate file.

Click OK.

The imported user certificate appears in the list of certificates.

C-11

Appendix C
How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?

C.19.8 Export Keystore to Wallet

Log in to Fusion Middleware Control.

From the navigation pane, locate Oracle HTTP Server.
Navigate to Security, and then Keystore.

The Keystore page appears.

Expand the stripe in which the keystore resides. Select the keystore from which
the CSR was generated.

Click Manage.

The Manage Certificates page appears.
Click Import.

The Import Certificate dialog appears.
Click Export Keystore to Wallet.

You get an auto login wallet, cwallet.sso, that does not need a password. This auto
login enabled wallet is also associated with a PKCS#12 wallet (ewallet.p12).

C.19.9 Enable SSL

® N o o kM w d PR

10.

11.

ORACLE

Navigate to the Oracle HTTP Server home page.

Select Administration from the Oracle HTTP Server menu.
Select Virtual Hosts from the Administration menu.
Highlight an existing virtual host in the table

Click Configure.

Select SSL Configuration.

Check the Enable SSL box.

Select a wallet from the drop-down list.

Here, select the path to Test wallet.

Click OK to apply the changes.

Restart the Oracle HTTP Server instance by navigating to Oracle HTTP Server,
then Control, then Restart.

Open a browser session and connect to the port number that was SSL-enabled.

C-12

Troubleshooting Oracle HTTP Server

You can get help to troubleshoot some of the common problems that you might
encounter when using Oracle HTTP Server.

* Oracle HTTP Server Fails to Start Due to Port Conflict

e System Overloaded by Number of httpd Processes

« Permission Denied When Starting Oracle HTTP Server On a Port Below 1024

e Using Log Files to Locate Errors

* Recovering an Oracle HTTP Server Instance on a Remote Host

* Oracle HTTP Server Performance Issues

e Out of DMS Shared Memory

* Node Manager 12c¢ (12.1.2) Oracle HTTP Server Throws Java Exception on AIX

e Oracle HTTP Server Fails to Start When mod_security is Enabled on RHEL or
Oracle Linux 7

D.1 Oracle HTTP Server Falls to Start Due to Port Conflict

ORACLE

If Oracle HTTP Server cannot start due to a port conflict, a message containing the

string [Virtual Host: nmain] (98)Address already in use is generated. This error
condition occurs if the listen port configured for Oracle HTTP Server is the same as

the one in use by another process.

The generated message may look like the following:

[Virtual Host: main] (98)Address already in use: make_sock: could not bind to
address [::]:7777

Solution

Determine what process is already using that port, and then either change the IP:port
address of Oracle HTTP Server or the port of the conflicting process.

" Note:

If the Oracle HTTP Server instance was created with the config Wizard, there
is no automated port management. It is possible to create multiple instances
using the same Listen port.

D-1

Appendix D
System Overloaded by Number of httpd Processes

D.2 System Overloaded by Number of httpd Processes

When the system is overloaded by too many ht t pd processes, there are insufficient
resources for normal processing. This slows down the response time. You can lower
the value of MaxRequest Wor ker s to a value the machine can accommodate.

When too many httpd processes run on a system, the response time degrades
because there are insufficient resources for normal processing.

Solution

Lower the value of MaxRequest Wr ker s to a value the machine can accommodate.

D.3 Permission Denied When Starting Oracle HTTP Server
On a Port Below 1024

If you try to start Oracle HTTP Server on a port below 1024, a message containing
the string [Virtual Host: main] (13)Perm ssion denied: nake_sock: coul d not
bind to address [::]:443is generated. This error condition occurs because root
privileges are needed to bind these ports.

The generated message may look like the following:

[Virtual Host: main] (13)Perm ssion denied: make_sock: could not bind to address
[::]:443

Oracle HTTP Server will not start on ports below 1024 because root privileges are
needed to bind these ports.

Solution

Follow the steps in Starting Oracle HTTP Server Instances on a Privileged Port (UNIX
Only) to start Oracle HTTP Server on a Privileged Port.

D.4 Using Log Files to Locate Errors

There are three types of log files that help you locate errors, namely, rewrite, script,
and error.

The log files are explained in the following sections:

* Rewrite Log
e Script Log

e Error Log

D.4.1 Rewrite Log

This log file is necessary for debugging when mod_rewrite is used. The log file
produces a detailed analysis of how the rewriting engine transforms requests. The
value of the LogLevel directive controls the level of detalil.

ORACLE D-2

Appendix D
Recovering an Oracle HTTP Server Instance on a Remote Host

D.4.2 Script Log

This log file enables you to record the input to and output from the CGl scripts. This
should only be used in testing, and not for production servers.

¢ See Also:
ScriptLog in the Apache HTTP Server documentation at:
http://httpd. apache. org/ docs/ current/ nod/ mod_cgi . ht m #scri ptl og

D.4.3 Error Log

This log file records overall server problems. Refer to Managing Oracle HTTP Server
Logs for details on configuring and viewing error logs.

D.5 Recovering an Oracle HTTP Server Instance on a
Remote Host

To recover an Oracle HTTP Server instance on a remote host, you must use t ar and
unt ar ; pack. sh and unpack. sh do not work in this scenario.

If you need to recover an Oracle HTTP Server instance that is installed on a remote
host (that is, a host with just managed servers but no Administration Server), you must
use tar and unt ar; pack. sh and unpack. sh do not work in this scenario.

D.6 Oracle HTTP Server Performance Issues

You might encounter performance issues when running Oracle HTTP Server. The
documentation includes several topics to explain such performance related problems.

e Special Runtime Files Reside on a Network File System
e UNIX Sockets on a Network File System
e DocumentRoot on a Slow File System

e Instances Created on Shared File Systems

D.6.1 Special Runtime Files Reside on a Network File System

Oracle HTTP Server uses locks for its internal processing, which in turn use lock files.
These files are created dynamically when the lock is created and are accessed every
time the lock is taken or released. If these files reside on a slower file system (for
example, network file system), then there could be severe performance degradation.
To counter this issue:

On Linux:

ORACLE D-3

http://httpd.apache.org/docs/2.4/mod/mod_cgi.html#scriptlog
http://httpd.apache.org/docs/current/mod/mod_cgi.html#scriptlog

Appendix D
Out of DMS Shared Memory

In httpd.conf, change Mitex fnctl:filel oc default to Mutex sysvsemdefaul t where
filel oc is the value of the directive LockFi | e (two places).

On Solaris:

In httpd.conf, change Mutex fnctl:fileloc default to Mitex pthread default
where fil el oc is the value of the directive LockFi | e (two places).

D.6.2 UNIX Sockets on a Network File System

The mod_cgid module is not enabled by default. If enabled, this module uses UNIX
sockets internally. If UNIX sockets reside on a slower file system (for example, network
file system), a severe performance degradation could be observed. You can set the
following directive to avoid the issue:

» If mod_cgid is enabled, use the Scri pt Sock directive to place mod_cgid's UNIX
socket on a local filesystem.

D.6.3 DocumentRoot on a Slow File System

If you are using mod_wl_ohs to route the requests to back-end WLS server/cluster,
and the DocumentRoot is on a slower file system (for example, network file system),
then every request that mod_wl_ohs routes to the backend server can experience
performance issues. This can be overcome by setting W.SRequest to ON instead of
Set Handl er webl ogi c- handl er.

D.6.4 Instances Created on Shared File Systems

If you encounter functional or performance issues when creating an Oracle HTTP
Server instance on a shared file system, including NFS (Network File System), it might
be due to file system accesses in the default configuration. In this case, you must
update the httpd.conf file specific to your operating systems. See Updating Oracle
HTTP Server Component Configurations on a Shared File System.

D.7 Out of DMS Shared Memory

ORACLE

When there is an incorrect calculation of the required shared memory for Oracle HTTP
Server DMS, error logs are displayed. These problems can be resolved by setting

the DMS shared memory directive to a value larger than the default value of 4096 or
continuing to set the directive 50% higher until the problem is resolved.

An error log containing the string dns_fai | _shm expansi on: out of DMS shared
memory in pid XXX, disabling DVM5; increase DMSProcSharedMem directive from
YYY is displayed when an incorrect calculation of required shared memory for Oracle
HTTP Server DMS. This can be resolved by setting DMSPr oc Shar edMemto a larger
value than the default value of 4096. In some extreme configurations, you might see
the following message in the Oracle HTTP Server error log:

dns_fail _shm expansion: out of DVS shared nenory in pid XXX, disabling DVS;
i ncrease DVSProcSharedMem directive from YYY

This is because of an incorrect calculation of required shared memory for Oracle
HTTP Server DMS. This can be resolved by setting DMSPr oc Shar edMemto a larger
value than the default of 4096. Continue setting DVSPr oc Shar edMem50% higher until

D-4

Appendix D
Node Manager 12¢ (12.1.2) Oracle HTTP Server Throws Java Exception on AIX

the problem is resolved. The minimum value for DVSPr oc Shar edMemis 256 and the
maximum value is 65536.

In a configuration with a very large number of virtual hosts (hundreds or thousands),

if the above workaround does not work, you can instead, set the environment variable
OHS_DMS_BLOCKSI ZE to a large enough value that Oracle HTTP Server starts without
error. The value of this variable is in kilobytes and a value of 524288 is a good starting
point. If the error persists, continue to increase the value by 50% until Oracle HTTP
Server starts without error.

D.8 Node Manager 12c (12.1.2) Oracle HTTP Server
Throws Java Exception on AlX

When running Oracle HTTP Server on AlX, if ULIMIT values of file handlers are small,
a message containing the string"j ava. i 0. | OException: error=24, Too many open
files" is generated. You can resolve the issue by increasing the ULIMIT values of file
handlers.

Workaround
To resolve the issue, increase the ULIMIT values of file handlers as described here:
1. Login as the root user.
2. Open /etc/security/limits file.
3. Edit the file and set the following values:
* nofiles=8192
* nofiles_hard=65536

4. Reboot the machine to enable the changes.

D.9 Oracle HTTP Server Fails to Start When mod_security
IS Enabled on RHEL or Oracle Linux 7

ORACLE

If nod_security is configured in Oracle HTTP Server in Red Hat Enterprise Linux
(RHEL) or Oracle Linux (OL) 7, Oracle HTTP Server fails to start. This error condition
occurs because there is no symbolic link /lib64/liblzma.so.0

The generated error looks like the following:
i bl zma. so. 0: cannot open shared object file: No such file or directory
Solution

1. Login as a root user.

2. To create a symbolic link, /lib64/liblzma.so.0, run the following command:

cd /1ib64
In -s liblzma. so0.5.0.99 |iblznma. so.0

D-5

Appendix D
Oracle HTTP Server Fails to Start due to Certificates Signed Using the MD5 Algorithm

Verify the symlink as follows:
I's -al *liblzma*

Exit root.
Start Oracle HTTP Server.

For example, startComponent.sh ohs1, where ohs1 is the Oracle HTTP Server
instance you want to start.

D.10 Oracle HTTP Server Fails to Start due to Certificates
Signed Using the MD5 Algorithm

If Oracle HTTP Server cannot start due to the server wallet containing a certificate
signed with the Message Digest 5 (MD5) algorithm, you can replace the MD5
certificate with a Secure Hash Algorithm 2 (SHA-2) certificate.

ORACLE

Oracle HTTP Server fails to start if the Oracle HTTP Server wallet contains a
certificate or certificate request that is signed with the Message Digest 5 (MD5)
algorithm.

Solution: Replace the MD5 certificate with a Secure Hash Algorithm 2 (SHA-2)
certificate.

Workaround: To enable MD5 supported certificate, set the
ORACLE_SSL_ALLOW MD5_CERT_SI GNATURES environment variable in the
ohs.plugins.nodemanager.properties file to 1.

To set the environment variable in Oracle HTTP Server, see Environment Variable
Configuration Properties.

D-6

Configuration Files

ORACLE

Oracle HTTP Server contains configuration files that specify several properties, such
as the top-level web server configuration, listen ports, the administration port, the SSL
configuration, the plug-ins, keystores, log files, and more.

File Format Description
httpd.conf Apache HTTP Server .conf file Top-level web server configuration
format file
Primary feature configured: Various,
including non-SSL listening socket
ssl.conf Apache HTTP Server .conf file Web server configuration file for
format SSL
Primary feature configured:
mod_ossl
admin.conf Apache HTTP Server .conf file Web server configuration file for

mod_wl_ohs.conf

mime.types

ohs.plugins.nodema

nager.properties

magic

keystores/<wallet-
directory>

format

Apache HTTP Server .conf file

format

mod_mime file format

Java property file format

mod_mime_magic file format

Oracle wallet format

administration port. Only the listen
port and local address are intended
for customer configuration.

Primary feature configured:
mod_dms; administration port used
for communication with Node
Manager

Web server configuration file for
WebLogic plugin

Primary feature configured:
WebLogic plugin (mod_wl_ohs)
Web server configuration file for
mod_mime

Primary feature configured: Mime
types used by mod_mime
Configuration file for Oracle HTTP
Server Node Manager plug-ins
Primary feature configured: Oracle
HTTP Server plug-ins

Optional, disabled web

server configuration file for
mod_mime_magic

Primary feature configured: File
content patterns used by
mod_mime_magic

Oracle wallet

Primary feature configured: Oracle
wallets for SSL/TLS communication

E-1

ORACLE

Appendix E

File

Format

Description

auditconfig.xml

component-logs.xml

component_events.
xml

FMW audit framework audit
configuration XML format

FMW log file configuration XML
format

FMW audit framework component
event XML format

Configuration of Oracle HTTP
Server auditing and logging

Primary feature configured:FMW
audit framework auditing of Oracle
HTTP Server operations

Configuration of Oracle HTTP
Server log files for log collection
Primary feature configured: Log
collection

Static configuration of Oracle HTTP
Server audit event definitions

Primary feature configured: FMW
audit framework

For additional information, see the following documentation:

Understanding Configuration Files

Apache HTTP Server .conf file format: htt p: // htt pd. apache. or g/ docs/ 2. 4/
configuring. htm

mod_mime file format: http://httpd. apache. org/ docs/ 2. 4/ nod/ nod_ni ne. ht m

mod_mime_magic file format: htt p: // htt pd. apache. or g/ docs/ 2. 2/ nod/
mod_mi me_nagi ¢. ht m

E-2

http://httpd.apache.org/docs/2.4/configuring.html
http://httpd.apache.org/docs/2.4/configuring.html
http://httpd.apache.org/docs/2.4/mod/mod_mime.html
http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html
http://httpd.apache.org/docs/2.2/mod/mod_mime_magic.html

Property Files

Oracle HTTP Server instances can be configured using
property files such asohs_adni n. properties, ohs_nm properties, and
ohs. pl ugi ns. nodenmanager . properti es.

This appendix documents the property files used by Oracle HTTP Server. The files
include:

e ohs_addAdminProperties

e ohs_nm.properties File

* ohs.plugins.nodemanager.properties File

F.1 ohs_addAdminProperties

The ohs_addAdni nProperti es command adds the LogLevel property to Oracle
HTTP Server Administration server property file (ohs_admi n. properti es); LogLevel
is the only parameter ohs_addAdmni nProperti es currently supports. This command is
available when WLST is connected to an Administration Server instance.

Use with WLST: Online

Syntax
ohs_addAdmi nProperties(l ogLevel = 'value')
Argument Description
LogLevel The granularity of information written to the log. The default is | NFO,
other values accepted are:
e ALL
« CONFIG
* FINE
e FINER
e FINEST
« OFF
e SEVERE
« WARNING
Example

This example creates a log file with log level is set to FI NEST.

ohs_addAdmi nProperties(logLevel = 'FINEST")

ORACLE F-1

Appendix F
ohs_nm.properties File

F.2 ohs_nm.properties File

The ohs_nm properti es file is a per domain file used to configure the Oracle HTTP
Server plug-in.

File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs_nm.properties

Property Description

LogLevel The log level for the OHS undemanding plug-in.
Accepted values:
e SEVERE (highest value)

* WARNING

 INFO

e CONFIG

« FINE

* FINER

e FINEST (lowest value)
Default: INFO

F.3 ohs.plugins.nodemanager.properties File

ORACLE

An ohs. pl ugi ns. nodemanager . properties file exists for each configured Oracle
HTTP Server instance. This file contains parameters for configuring Oracle HTTP
Server process management.

File path: DOMAIN_HOME/config/fmwconfig/components/OHS/ohs1/
ohs.plugins.nodemanager.properties

This section contains the following information:

e Cross-platform Properties
e Environment Variable Configuration Properties

e Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX

F-2

Appendix F
ohs.plugins.nodemanager.properties File

< Note:

Any paths placed in Windows implementations of
ohs.plugins.nodemanager.properties that include backslashes must have
those backslashes escaped.

You must do this manually after upgrading from Oracle HTTP Server
11g where paths with backslashes were migrated from opmn.xml to
ohs.plugins.nodemanager.properties.

For example:
envi ronment. TMP = C:\ User s\ user\ AppDat a\ Local \ Tenp\ 1

Must be modified manually to:

environment. TMP = C:\\ Users\\user\\ AppDat a\\ Local \\ Tenp\\ 1

F.3.1 Cross-platform Properties

You can configure cross-platform properties for Oracle HTTP Server instances such as
config-file, cormand-1ine, and more.

The following table lists the cross-platform properties:

Property Description

config-file The base filename of the initial Oracle HTTP Server configuration file.

config-fil e accepts any valid .conf file in the instance configuration
directory.

Caution: The specified .conf file must include admin.conf in the same
manner as the default httpd.conf.

Default: httpd.conf

command- | i ne Extra arguments to add to the httpd invocation.
conmand- | i ne accepts any valid httpd command-line parameters.

Caution: These must not conflict with the usual start, stop, and restart
parameters. Using -D and symbol is the expected use of this property.

Default: None

start-tineout The maximum number of seconds to wait for Oracle HTTP Server to
start and initialize.

start-timeout accepts any numeric value from 5 to 3600.
Default: 120

stop-ti meout The maximum number of seconds to wait for the Oracle HTTP Server to
terminate.

stop-ti meout accepts any numeric value from 5 to 3600.
Default: 60

restart-tineout The maximum number of seconds to wait for the Oracle HTTP Server to
restart.

restart-timeout accepts any numeric value from 5 to 3600.
Default: 180

ORACLE F3

Appendix F
ohs.plugins.nodemanager.properties File

Property Description

pi ng-interval The number of seconds from the completion of one health check ping to
the Oracle HTTP Server until the start of the next. A value of 0 disables
pings.
pi ng-interval accepts any numeric value from 0 to 3600.
Default: 30

pi ng-ti meout The maximum number of seconds to wait for an Oracle HTTP Server

health check ping to complete.
pi ng- t meout accepts any numeric value from 5 to 3600.
Default: 60

Example:

config-file = httpd. conf
conmand- | i ne = - DSYMBOL
start-timeout = 120
stop-timeout = 60
restart-timeout = 180

pi ng-interval = 30

pi ng-ti meout = 60

F.3.2 Environment Variable Configuration Properties

ORACLE

You can specify additional environment variables for the Oracle HTTP Server using
environment properties such as SHELL, LANG, | NSTANCE_NAME, and more.

The environment property syntax is:

envi ronment [. append] [. <or der >] . <nane> = <val ue>

Where:

* The optional . append will append the new <value> to any existing value for
<nane>. If <nane> has not yet been defined, then <value> will be the new value.

* The optional . <or der > value sets order for this definition's setting in the
environment (the default is 0). The order determines when the configured variable
is added to the process' environment (and its value evaluated). Environment
properties with lower order values are processed before those with higher order
values. The order value must be an integer with a value greater than or equal to 0.

e <name> is the environment variable name, which must begin with a letter or
underscore, and consist of letters, numeric digits or underscores.

* <val ue> is the value of environment variable <nane>. The value can reference
other environment variable names, including its own.

The following special references may be included in the value:
— "$:" for the path separator

— "$/" for the file separator

- "$$"for'¢

With the exception of these special characters, UNIX variable syntax references
("$name" or "${name}") and the Windows variable syntax reference ("%name%") are
supported.

F-4

ORACLE

Appendix F
ohs.plugins.nodemanager.properties File

Each property name within the same property file must be unique (the behavior is not
defined for multiple properties defined with the same name), thus the . <or der > field is
necessary to keep property names unigue when multiple definitions are provided for
the same environment variable <nane>.

The following environment variables are set by the Oracle HTTP Server plug-in:

* SHELL: From 's environment, or defaults to /bin/sh, or cmd.exe for Windows
* ORA_NLS33: Set to $ORACLE_HOME/nls/data

* NLS_LANG: From 's environment, otherwise default

* LANG: From 's environment, otherwise default

e LC_ALL: From 's environment, if set

* TZ:From's environment, if set

e ORACLE_HOME: Full path to the Oracle home

* ORACLE_INSTANCE: Full path to the domain home

* INSTANCE_NAME: The name of the domain

* PRODUCT_HOME: The path to the Oracle HTTP Server
install: 5ORACLE_HOME/ohs

* PATH: Defaults to
— On UNIX:
$PRODUCT_HOME/bin:$30ORACLE_HOME/bin:
$ORACLE_HOMEI/jdk/bin:/bin:/usr/bin:/usr/local/bin
— On Windows:
%PRODUCT_HOME%\bin;%ORACLE_HOME%\bin;
%ORACLE_HOME%\jdk\bin;%SystemRo0t%;%SystemRoot%\system32
These variables apply to UNIX only:

¢ TNS_ADMIN: From 's environment, or SORACLE_HOME/network/admin

* LD_LIBRARY_PATH: $PRODUCT_HOME/lib:$ORACLE_HOME/
lib:3ORACLE_HOME/jdk/lib

« LIBPATH: Same as LD_LIBARY_PATH
< X_LD_LIBRARY_PATH_64: Same as LD_LIBRARY_PATH

These variables apply to Windows only:

e ComsSpec: Defaults to %ComSpec% value from the system.
» SystemRoot: Defaults to %SystemRoot% value from the system.
e SystemDrive: Defaults to %SystemDrive% value from the system.

Example

On a UNIX like system with the web tier installed as /oracle and the environment
variable "MODX_RUNTIME=special" set in the NodeManager's environment, the
following definitions:

envi ronment . MODX_RUNTI ME = $MODX_RUNTI ME
envi ronment . 1. MODX_ENV = Val ue A

F-5

Appendix F
ohs.plugins.nodemanager.properties File

envi ronment . 1. MODX_PATH = $PATHS$: / opt / nodx/ bi n

envi ronment . 2. MODX_ENV = ${ MODX_ENV}, Val ue B

envi ronnent . append. 2. MODX_PATH = /var/ nodx/ bin

MODX_ENV = Val ue A, Value B

MODX_PATH = /oracl e/ ohs/ bin:/oracl e/ bin:/oracl e/jdk/bin:/bin:/usr/bin: [usr/
| ocal / bi n: / opt/ modx/ bi n: / var/ nodx/ bi n

would result in the following additional environment variables set for Oracle HTTP
Server:

MODX_RUNTI ME = speci al

F.3.3 Properties Specific to Oracle HTTP Server Instances Running on
Linux and UNIX

ORACLE

You can configure properties for Oracle HTTP Server instances running on Linux
or other UNIX like systems. These properties include r est art - node, st op- node, and
more.

Property Description

restart-node Determines whether to use graceful or hard restart for the Oracle HTTP
Server when configuration changes are activated.

restart - nmode accepts these values:
e restart

e graceful

Default: graceful

st op- mode Determines whether to use a graceful or hard stop when stopping Oracle
HTTP Server.

st op- mode accepts these values:
e stop

e graceful-stop

Default: stop

npm Determines whether to use the prefork, worker, or event MPM for Oracle
HTTP Server.

nmpmaccepts these values:

« prefork
e worker
e event

Default: wor ker for UNIX, event for Linux

allow-corefiles Determines whether ulimit should be set to allow core files to be written
for Oracle HTTP Server crashes.

al | owcorefil es accepts these values:

° yes
* no
Default: no

Example

restart-node = graceful
st op-mode = stop

mm = wor ker

al l owcorefiles = no

F-6

Oracle HTTP Server Module Directives

Modules extend the basic functionality of Oracle HTTP Server and support integration
between Oracle HTTP Server and other Oracle Fusion Middleware components.
Oracle HTTP Server uses both Oracle developed modules or “plug-ins” and Apache
and third party-developed modules. Oracle developed modules have a set of directives
that Oracle HTTP Server supports.

This appendix describes the directives available in the Oracle-developed modules:
 mod_wl_ohs Module
* mod_certheaders Module

* mod_ossl Module

G.1 mod_wl_ohs Module

The mod_w _ohs module is a key feature of Oracle HTTP Server that enables requests
to be proxied from Oracle HTTP Server to Oracle WebLogic Server. This module is
generally referred to as the Oracle WebLogic Server proxy plug-in.

The mod_wl_ohs module enhances an Oracle HTTP server installation by allowing
Oracle WebLogic Server to handle requests that require dynamic functionality. In other
words, you typically use a plug-in where the HTTP server serves static pages such

as HTML pages, while Oracle WebLogic Server serves dynamic pages such as HTTP
Servlets and Java Server Pages (JSPs). For information on this module's directives,
see Parameters for Web Server Plug-Ins in Using Oracle WebLogic Server Proxy
Plug-Ins.

G.2 mod_certheaders Module

The nod_cert header s module enables reverse proxies using two directives namely,
AddCer t Header and Si mul at eHt t ps.

This section describes the mod_certheaders directives:

» AddCertHeader Directive

e SimulateHttps Directive

G.2.1 AddCertHeader Directive

Specify which headers should be translated to CGI environment variables. This can be
achieved by using the AddCert Header directive. This directive takes a single argument,
which is the CGI environment variable that should be populated from a HTTP

header on incoming requests. For example, to populate the SSL_CLIENT_CERT CGI
environment variable.

ORACLE G-1

Appendix G
mod_ossl Module

Category Value

Syntax AddCert Header environnment vari abl e
Example AddCer t Header SSL_CLI ENT_CERT
Default None

G.2.2 SimulateHttps Directive

You can use mod_certheaders to instruct Oracle HTTP Server to treat certain requests
as if they were received through HTTPS even though they were received through
HTTP. This is useful when Oracle HTTP Server is front-ended by a reverse proxy or
load balancer, which acts as a termination point for SSL requests, and forwards the
requests to Oracle HTTP Server through HTTPS.

Category Value

Syntax Si mul at eHt t ps on| of
Example Simul ateH t ps on
Default of f

G.3 mod_ossl Module

ORACLE

The nod_oss| module enables strong cryptography for Oracle HTTP Server. It accepts
a set of directives such as SSLCARevocat i onFi | e, SSLC pher Sui t e, SSLEngi ne, and
more.

To configure SSL for your Oracle HTTP Server, enter the mod_ossl module directives
you want to use in the ssl . conf file.

The following sections describe these nod_oss| directives:

* SSLCARevocationFile Directive
* SSLCARevocationPath Directive
e SSLCipherSuite Directive

e SSLEngine Directive

* SSLFIPS Directive

e SSLHonorCipherOrder Directive
e SSLlinsecureRenegotiation Directive
e SSLOptions Directive

* SSLProtocol Directive

* SSLProxyCipherSuite Directive

* SSLProxyEngine Directive

e SSLProxyProtocol Directive

e SSLProxyWallet Directive

* SSLRequire Directive

G-2

Appendix G
mod_ossl Module

* SSLRequireSSL Directive

* SSLSessionCache Directive

e SSLSessionCacheTimeout Directive
e SSLTracelLoglLevel Directive

» SSLVerifyClient Directive

* SSLWallet Directive

G.3.1 SSLCARevocationFile Directive

Specifies the file where you can assemble the Certificate Revocation Lists (CRLS)
from CAs (Certificate Authorities) that you accept certificates from. These are used for
client authentication. Such a file is the concatenation of various PEM-encoded CRL
files in order of preference. This directive can be used alternatively or additionally to
SSLCARevocat i onPat h.

Category Value
Syntax SSLCARevocationFile file _nane
Example

SSLCARevocat i onFi | e ${ ORACLE_| NSTANCE}/ confi g/ f maconfi g/
conmponent s/ ${ COWPONENT_TYPE}/ i nst ances/ ${ COMPONENT _NAME} /
keystores/crl/ca_bundl e. cr

Default None

G.3.2 SSLCARevocationPath Directive

ORACLE

Specifies the directory where PEM-encoded Certificate Revocation Lists (CRLS) are
stored. These CRLs come from the CAs (Certificate Authorities) that you accept
certificates from. If a client attempts to authenticate itself with a certificate that is on
one of these CRLs, then the certificate is revoked and the client cannot authenticate
itself with your server.

This directive must point to a directory that contains the hash value of the CRL. To see
the commands that allow you to create the hashes, see orapki in Administering Oracle
Fusion Middleware.

Category Value
Syntax SSLCARevocat i onPat h path/to/ CRL_directory/
Example

SSLCARevocati onPath $
{ ORACLE_I NSTANCE}/ confi g/ f mconf i g/ conponent s/ ${ COVPONENT _TYPE}/
i nst ances/ ${ COVPONENT_NAME} / keyst ores/ cr

Default None

G-3

Appendix G
mod_ossl Module

G.3.3 SSLCipherSuite Directive

ORACLE

Specifies the SSL cipher suite that the client can use during the SSL handshake. This
directive uses either a comma-separated or colon-separated cipher specification string
to identify the cipher suite.

SSLCipherSuite accepts the following prefixes:

e none: Adds the cipher to the list

e +: Adds the cipher to the list and places it in the correct location in the list
e -:Removes the cipher from the list (can be added later)

e |: Removes the cipher from the list permanently

Tags are joined with prefixes to form a cipher specification string. Cipher suite tags are
listed in Table G-1.

< Note:

Cipher suites that use Rivest Cipher 4 (RC4) and Triple Data Encryption
Standard (3DES) algorithms are deprecated from Oracle HTTP Server
version 12.2.1.3 onwards due to known security vulnerabilities. These
ciphers are removed from the SSLCipherSuite configuration of the default
SSL port of Oracle HTTP Server. These ciphers are also removed from all
supported cipher aliases except RC4 and 3DES aliases. If Oracle HTTP
Server is managed through Enterprise Manager or WebLogic Scripting Tool,
you cannot configure these cipher suites through these tools as these tools
do not recognize the insecure RC4 and 3DES ciphers.

To provide backward compatibility, Oracle HTTP Server enables the RC4
and 3DES ciphers, if you explicitly add them to the cipher suite configuration.
To use these insecure ciphers, edit the SSLCipherSuite directive in

your .conf files using a file editor, and then add them to the end of the cipher
list.

Table 11-2 shows the tags you can use in the string to describe the cipher suite you
want.

Category Value
Example SSLGi pher Suite ALL:! M5

In this example, all ciphers are specified except MD5 strength ciphers.
Syntax SSLGi pher Suite ci pher-spec

G-4

Appendix G
mod_ossl Module

Category

Value

Default

TLS_ECDHE_ECDSA W TH_AES 256_GCM SHA384,
TLS_ECDHE_ECDSA W TH_AES 128 _GCM SHA256,
TLS_ECDHE_ECDSA W TH_AES_256_CBC_SHA384,
TLS_ECDHE_ECDSA W TH_AES 128 _CBC SHA256,
TLS_ECDHE_ECDSA W TH_AES 256_CBC SHA,
TLS_ECDHE_ECDSA W TH_AES 128 _CBC SHA,
TLS_ECDHE_RSA W TH_AES 256_GCM SHA384,
TLS_ECDHE_RSA W TH_AES 128_GCM SHA256,
TLS_ECDHE_RSA W TH_AES 256_CBC_SHA384,
TLS_ECDHE_RSA W TH AES_128_CBC_SHA256,
TLS_ECDHE_RSA W TH AES_256_CBC_SHA,
TLS_ECDHE_RSA W TH AES_128_CBC_SHA,
TLS_RSA W TH_AES_256_GCM SHA384,
TLS_RSA W TH_AES_128_GCM SHA256,
TLS_RSA W TH_AES_256_CBC_SHA256,
TLS_RSA W TH_AES_128_CBC_SHA256,
SSL_RSA W TH_AES 256_CBC_SHA,

SSL_RSA W TH_AES 128_CBC_SHA

Table G-1 SSLCipher Suite Tags
|

Function Tag Meaning

Key exchange kRSA RSA key exchange

Key exchange k ECDHE Elliptic curve Diffie—-Hellman Exchange key
exchange

Authentication aRSA RSA authentication

Encryption 3DES Triple DES encoding

Encryption RC4A RC4 encoding

Data Integrity SHA SHA hash function

Data Integrity SHA256 SHA256 hash function

Data Integrity SHA384 SHA384 hash function

Aliases TLSv1 All TLS version 1 ciphers

ORACLE

G-5

Appendix G
mod_ossl Module

Table G-1 (Cont.) SSLCipher Suite Tags

Function Tag Meaning

Aliases TLSv1. 1 All TLS version 1.1 ciphers

Aliases TLSv1. 2 All TLS version 1.2 ciphers

Aliases MEDI UM All ciphers with 128-bit encryption

Aliases H GH All ciphers with encryption key size greater than
128 bits

Aliases AES All ciphers using AES encryption

Aliases RSA All ciphers using RSA for both authentication and
key exchange

Aliases ECDSA All ciphers using Elliptic Curve Digital Signature
Algorithm for authentication

Aliases ECDHE All ciphers using Elliptic curve Diffie—Hellman
Exchange for key exchange

Aliases AES- GCM All ciphers that use Advanced Encryption
Standard in Galois/Counter Mode (GCM) for
encryption.

Table G-2 lists the Cipher Suites supported in Oracle Advanced Security 12c¢ (12.2.1).

Note:

SHAS3S.

When using nod_ossl

on a Solaris Sparc platform, the underlying
cryptographic libraries detect the Sparc T4 processor, and makes use

of the on-core cryptography algorithms that accelerate cryptographic
operations. No configuration is required to enable this feature. The following
cryptographic algorithms are supported by the Oracle Sparc Enterprise T-
series processors: RSA, 3DES, AES-CBC, AES-GCM, SHA1, SHA256, and

Table G-2 Cipher Suites Supported in Oracle Advanced Security 12.2.1

Cipher Suite Key Authentic Encrypt Data TLSvl TLSv1.1l TLSv1.2
Exchange ation ion Integrity

SSL_RSA WTH RC4_128 SHA RSA RSA RC4A SHA Yes Yes Yes
(128)

SSL_RSA W TH 3DES EDE CB RSA RSA 3DES SHA Yes Yes Yes

C SHA (168)

SSL_RSA W TH_AES 128 CBC RSA RSA AES SHA Yes Yes Yes

_SHA (128)

SSL_RSA W TH_AES 256_CBC RSA RSA AES SHA Yes Yes Yes

_SHA (256)

TLS RSA W TH AES 128 CBC RSA RSA AES SHA256 No No Yes

_SHA256 (128)

ORACLE

G-6

Appendix G
mod_ossl Module

Table G-2 (Cont.) Cipher Suites Supported in Oracle Advanced Security 12.2.1
]

Cipher Suite Key Authentic Encrypt Data TLSvl TLSv1.1l TLSv1.2

Exchange ation ion Integrity
TLS RSA W TH_AES 256_CBC RSA RSA AES SHA256 No No Yes
_SHA256 (256)
TLS RSA W TH_AES 128 _GCM RSA RSA AES SHA256 No No Yes
_SHA256 (128)
TLS_RSA W TH_AES 256_GCM RSA RSA AES SHA384 No No Yes
_SHA384 (256)
TLS ECDHE_ECDSA W TH_AES ECDHE ECDSA AES SHA Yes Yes Yes
128 _CBC_SHA (128)
TLS ECDHE_ECDSA W TH_AES ECDHE ECDSA AES SHA Yes Yes Yes
_256_CBC_SHA (256)
TLS _ECDHE_ECDSA W TH_AES ECDHE ECDSA AES SHA256 No No Yes
_128 CBC_SHA256 (128)
TLS ECDHE_ECDSA W TH_AES ECDHE ECDSA AES SHA384 No No Yes
_256_CBC_SHA384 (256)
TLS ECDHE_ECDSA W TH_AES ECDHE ECDSA AES SHA256 No No Yes
_128_CGCM SHA256 (128)
TLS _ECDHE_ECDSA W TH_AES ECDHE ECDSA AES SHA384 No No Yes
_256_GCM SHA384 (256)
TLS ECDHE_RSA WTH RCA_1 Ephemeral RSA RC4A SHA Yes Yes Yes
28 SHA ECDH with (128)

RSA

signatures
TLS _ECDHE RSA W TH 3DES Ephemeral RSA 3DES SHA Yes Yes Yes
EDE_CBC_SHA ECDH with

RSA

signatures
TLS_ECDHE RSA W TH _AES 1 Ephemeral RSA AES SHA Yes Yes Yes
28_CBC_SHA ECDH with (128)

RSA

signatures
TLS ECDHE_RSA W TH_AES 2 Ephemeral RSA AES SHA Yes Yes Yes
56_CBC_SHA ECDH with (256)

RSA

signatures
TLS ECDHE_ECDSA W TH_RCA Ephemeral ECDSA RC4 SHA Yes Yes Yes
_128_SHA ECDH with (128)

ECDSA

signatures
TLS_ECDHE_ECDSA W TH_3DE Ephemeral ECDSA 3DES SHA Yes Yes Yes
S _EDE CBC SHA ECDH with

ECDSA

signatures

ORACLE G-7

Appendix G
mod_ossl Module

Table G-2 (Cont.) Cipher Suites Supported in Oracle Advanced Security 12.2.1

Cipher Suite Key Authentic Encrypt Data TLSvl TLSv1.1l TLSv1.2
Exchange ation ion Integrity
TLS ECDHE_RSA W TH_AES 2 Ephemeral RSA AES SHA384 No No Yes
56_GCM _SHA384 ECDH with (256)
RSA
signatures
TLS _ECDHE RSA W TH AES 1 Ephemeral RSA AES SHA256 No No Yes
28_GCM_SHA256 ECDH with (128)
RSA
signatures
TLS_ECDHE RSA W TH_AES 2 Ephemeral RSA AES SHA384 No No Yes
56_CBC_SHA384 ECDH with (256)
RSA
signatures
TLS ECDHE_RSA W TH AES 1 Ephemeral RSA AES SHA256 No No Yes
28_CBC_SHA256 ECDH with (128)
RSA
signatures
G.3.4 SSLENgine Directive

Toggles the usage of the SSL Protocol Engine. This is usually used inside a
<Vi rt ual Host > section to enable SSL for a particular virtual host. By default, the SSL
Protocol Engine is disabled for both the main server and all configured virtual hosts.

Category Value
Syntax SSLEngi ne on| of f
Example SSLEngi ne on
Default Of

G.3.5 SSLFIPS Directive

This directive toggles the usage of the SSL library FIPS_mode flag. It must be set
in the global server context and should not be configured with conflicting settings
(SSLFI PS on followed by SSLFI PS of f or similar). The mode applies to all SSL library

operations.

Category Value

Syntax SSLFIPS ON | OFF
Example SSLFIPS ON
Default Of

ORACLE G-8

ORACLE

Appendix G
mod_ossl Module

Configuring an SSLFIPS change requires that the SSLFI PS on/of f directive be set
globally in ssl.conf. Virtual level configuration is disabled in SSLFIPS directive. Hence,
setting SSLFIPS to virtual directive results in an error.

Note:
Note the following restriction on SSLFIPS:

e Enabling SSLFIPS mode in Oracle HTTP Server requires a wallet
created with AES encrypted (compat_v12) headers. To create a new
wallet or to convert an existing wallet with AES encryption, see these
sections in orapki in Administering Oracle Fusion Middleware:

Creating and Viewing Oracle Wallets with orapki
Creating an Oracle Wallet with AES Encryption
Converting an Existing Wallet to Use AES Encryption

The following tables describe the cipher suites that work in SSLFIPS mode with
various protocols. For instructions on how to implement these cipher suites, see
SSLCipherSuite Directive.

Table G-3 lists the cipher suites which work in TLS 1.0, TLS1.1, and TLS 1.2 protocols
in SSLFIPS mode.

Table G-3 Ciphers Which Work in All TLS Protocols in SSLFIPS Mode
|

Cipher Name Cipher Works in These Protocols:
SSL_RSA_WITH_3DES_EDE_CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2
SSL_RSA_WITH_AES_128 CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2
SSL_RSA_WITH_AES_256_CBC_SHA TLS 1.0, TLS1.1, and TLS 1.2

Table G-4 lists the cipher suites and protocols that can be used in SSLFIPS mode.

Table G-4 Ciphers Which Work in FIPS Mode
|

Cipher Name Cipher Works in These
Protocols:
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA TLS 1.0 and later
TLS_ECDHE_ECDSA_WITH_AES_128 CBC_SHA TLS 1.0 and later
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA TLS 1.0 and later

TLS_ECDHE_ECDSA_WITH_AES 128 CBC_SHA256 TLS1.2 and later
TLS_ECDHE_ECDSA_WITH_AES 256 _CBC_SHA384 TLS1.2 and later
TLS_ECDHE_ECDSA_WITH_AES 128 GCM_SHA256 TLS1.2 and later
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 TLS1.2 and later
TLS_RSA WITH_AES_128 CBC_SHA256 TLS1.2 and later
TLS_RSA WITH_AES_256_CBC_SHA256 TLS1.2 and later

G-9

ORACLE

Appendix G
mod_ossl Module

Table G-4 (Cont.) Ciphers Which Work in FIPS Mode
|

Cipher Name Cipher Works in These
Protocols:

TLS_RSA_WITH_AES_128_GCM_SHA256 TLS1.2 and later

TLS_RSA_WITH_AES_256_GCM_SHA384 TLS1.2 and later

TLS_ECDHE_RSA_WITH_AES_128 CBC_SHA256 TLS1.2 and later
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 TLS1.2 and later
TLS_ECDHE_RSA_WITH_AES 128 GCM_SHA256 TLS1.2 and later
TLS_ECDHE_RSA_WITH_AES 256_GCM_SHA384 TLS1.2 and later

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA TLS 1.0 and later

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS 1.0 and later

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS 1.0 and later
" Note:

e If SSLFIPS is set to ON, and a cipher that does not support FIPS is used
at the server, then client requests that use that cipher fail.

e Touse the TLS_ECDHE_ECDSA cipher suite, Oracle HTTP Server
requires a wallet created with an ECC user certificate. The
TLS_ECDHE_ECDSA cipher suite does not work with RSA certificates.

e Touse the SSL_RSA/TLS_RSA/TLS_ECDHE_RSA cipher suite, Oracle
HTTP Server requires a wallet created with an RSA user certificate. The
SSL_RSA/TLS_RSA/TLS_ECDHE_RSA cipher suite does not work with
ECC certificates.

For more information about how to configure ECC/RSA certificates in a
wallet, see Creating and Viewing Oracle Wallets with orapki in Administering
Oracle Fusion Middleware.

For instructions about how to implement these cipher suites and
corresponding protocols, see SSL Cipher Suite Directive and SSL Protocol.

Table G-5 lists the cipher suites that do not work in SSPFIPS mode.

Table G-5 Ciphers That Do Not Work in SSLFIPS Mode
|

Cipher Name Description

TLS_ECDHE_ECDSA WITH_RC4 128 SHA Does not work in SSLFIPS mode in any
protocol

SSL_RSA WITH_RC4_128 SHA Does not work in SSLFIPS mode in any
protocol

TLS_ECDHE_RSA_WITH_RC4_128 SHA Does not work in SSLFIPS mode in any
protocol

G-10

Appendix G
mod_ossl Module

G.3.6 SSLHonorCipherOrder Directive

When choosing a cipher during a handshake, normally the client's preference is used.
If this directive is enabled, then the server's preference will be used instead.

Category Value
Syntax SSLHonor G pher Order ON | OFF
Example

SSLHonor G pher Order ON

Default OFF

The server's preference order can be configured using the SSLCipherSuite directive.
When SSLHonorCipherOrder is set to ON, the value of SSLCipherSuite is treated as
an ordered list of cipher values.

Cipher values that appear first in this list are preferred by the server over ciphers that
appear later in the list.

Example:

SSLCi pherSuite
TLS_ECDHE_ECDSA W TH_AES_256_GCM SHA384, TLS_ECDHE_ECDSA W TH_AES 128 GCM SHA256, T
LS _ECDHE_ECDSA W TH_AES 256 _CBC SHA384, TLS _ECDHE_ECDSA W TH_AES 128 CBC SHA256

SSLHonor Ci pher Order ON

In this case, the server will prefer TLS_ECDHE ECDSA W TH_AES 256_GCM SHA384 over
all of the other ciphers configured in SSLCipherSuite directive as it appears first in the
list and chooses this cipher for the SSL connection, if the client supports it.

G.3.7 SSLInsecureRenegotiation Directive

ORACLE

As originally specified, all versions of the SSL and TLS protocols (up to and including
TLS/1.2) were vulnerable to a Man-in-the-Middle attack (CVE-2009-3555) during a
renegotiation. This vulnerability allowed an attacker to "prefix" a chosen plaintext to the
HTTP request as seen by the web server. A protocol extension was developed which
fixed this vulnerability if supported by both client and server.

For more information on Man-in-the-Middle attack (CVE-2009-3555), see:
https://web. nvd. ni st. gov/vi ew vul n/ det ai | ?vul nl d=CVE- 2009- 3555
Default mode

When the directive SSLInsecureRenegotion is not specified in the configuration,
Oracle HTTP Server operates in compatibility mode.

In this mode, vulnerable peers that do not have Renegotiation Info/Signaling Cipher
Suite Value (RI/SCSV) support are allowed to connect, but renegotiation is allowed
only with those peers that have RI/SCSV support.

SSLInsecureRenegotiation ON

G-11

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-3555

Appendix G
mod_ossl Module

This option allows vulnerable peers that do not have RI/SCSV to perform
renegotiation. Hence, this option must be used with caution, as it leaves the server
vulnerable to the renegotiation attack described in CVE-2009-3555.

SSLInsecureRenegotiation OFF

If this option is used, only peers that support RI/SCSV will be allowed to negotiate and
renegotiate a session. This is the most secure and recommended mode.

Category Value

Syntax SSLI nsecur eRenegotiation ON | OFF

Example SSLI nsecur eRenegot i ation ON

Default The default value is neither ON nor OFF. By default, Oracle HTTP Server
operates in compatibility mode, as described under the heading Default
mode.

To configure SSLInsecureRenegotiation, edit the ssl.conf file and set
SSLI nsecur eRenegot i at i on ONVOFF globally or virtually to enable or disable insecure
renegotiation.

G.3.8 SSLOptions Directive

ORACLE

Controls various runtime options on a per-directory basis. In general, if multiple options
apply to a directory, the most comprehensive option is applied (options are not
merged). However, if all of the options in an SSLOpt i ons directive are preceded by

a plus ('+") or minus (-") symbol, then the options are merged. Options preceded by a
plus are added to the options currently in force, and options preceded by a minus are
removed from the options currently in force.

Accepted values are:

* StdEnvVars: Creates the standard set of CGI/SSI environment variables that are
related to SSL. This is disabled by default because the extraction operation uses
a lot of CPU time and usually has no application when serving static content.
Typically, you only enable this for CGI/SSI requests.

* Export Cert Dat a: Enables the following additional CGI/SSI variables:
SSL_SERVER CERT
SSL_CLI ENT_CERT
SSL_CLI ENT_CERT _CHAIN n (where n=0, 1, 2...)

These variables contain the Privacy Enhanced Mail (PEM)-encoded X.509
certificates for the server and the client for the current HTTPS connection, and
can be used by CGl scripts for deeper certificate checking. All other certificates
of the client certificate chain are provided. This option is "Off" by default because
there is a performance cost associated with using it.

SSL_CLI ENT_CERT_CHAI N _n variables are in the following order:

SSL_CLI ENT_CERT_CHAI N_0 is the intermediate CA who signs

SSL_CLI ENT_CERT. SSL_CLI ENT_CERT_CHAI N_1 is the intermediate CA who signs
SSL_CLI ENT_CERT _CHAI N_0, and so forth, with SSL_CLI ENT_ROOT_CERT as the root
CA.

G-12

Appendix G
mod_ossl Module

» FakeBasi cAut h: Translates the subject distinguished name of the client X.509
certificate into an HTTP basic authorization user name. This means that the
standard HTTP server authentication methods can be used for access control.
No password is obtained from the user; the string ‘password' is substituted.

e StrictRequire: Denies access when, according to SSLRequireSSL Directive or
directives, access should be forbidden. Without St ri ct Requi r e, it is possible for
a'Satisfy any' directive setting to override the SSLRequi r e or SSLRequi r eSSL
directive, allowing access if the client passes the host restriction or supplies a valid
user name and password.

Thus, the combination of SSLRequi r eSSL or SSLRequi r e with SSLOpt i ons
+Stri ct Requi r e gives mod_ossl the ability to override a' Sati sfy any' directive
in all cases.

e Conpat EnvVar s: Exports obsolete environment variables for backward compatibility
to Apache SSL 1.x, nod_ssl 2.0.x, Sioux 1.0, and Stronghold 2.x. Use this to
provide compatibility to existing CGI scripts.

e (Opt Renegoti at e: This enables optimized SSL connection renegotiation handling
when SSL directives are used in a per-directory context.

Category Value

Syntax SSLOptions [+] StdEnvVars | ExportCertData |
FakeBasi cAuth | StrictRequire | ConpatEnvVars |
Opt Renegot i ate

Example SSLOpti ons - StdEnvVars

Default None

G.3.9 SSLProtocol Directive

ORACLE

Specifies SSL protocol(s) for mod_ossl to use when establishing the server
environment. Clients can only connect with one of the specified protocols. Accepted
values are:

e TLSvl
o TLSv1.1
e TLSv1.2
« Al

Note:

SSLv3 is disabled in Release 12.2.1.

You can specify multiple values as a space-delimited list. In the syntax, the "-" and "+"
symbols have the following meaning:

* +:Adds the protocol to the list
» -:Removes the protocol from the list
In the current release Al | is defined as +TLSv1 +TLSv1. 1 +TLSv1. 2.

G-13

Appendix G
mod_ossl Module

Category Value

Syntax SSLProtocol [+-] TLSvl | TLSv1.1 | TLSv1.2 | Al
Example SSLProtocol +TLSvl +TLSvl.1 +TLSv1.2

Default ALL

G.3.10 SSLProxyCipherSuite Directive

Specifies the SSL cipher suite that the proxy can use during the SSL handshake. This
directive uses a colon-separated cipher specification string to identify the cipher suite.
Table G-1 shows the tags to use in the string to describe the cipher suite you want.
SSLProxyCipherSuite accepts the following values:

* none: Adds the cipher to the list

e +:Adds the cipher to the list and places it in the correct location in the list
» -:Removes the cipher from the list (which can be added later)

» |: Removes the cipher from the list permanently

Tags are joined with prefixes to form a cipher specification string. Tags are joined
together with prefixes to form a cipher specification string. The SSLProxyCipherSuite
directive uses the same tags as the SSLCipherSuite directive. For a list of supported
suite tags, see Table G-1.

Category Value
Example SSLProxyCi pher Suite ALL:IMD5
In this example, all ciphers are specified except MD5 strength ciphers.
Syntax SSLPr oxyCi pher Sui te ci pher-spec
Default ALL: | ADH. +Hi GH +MEDI UM

The SSLProxyCipherSuite directive uses the same cipher suites as the
SSLCipherSuite directive. For a list of the Cipher Suites supported in Oracle Advanced
Security 12.2.1, see Table G-2.

G.3.11 SSLProxyEngine Directive

Enables or disables the SSL/TLS protocol engine for proxy. SSLProxyEngine is
usually used inside a <Vi rt ual Host > section to enable SSL/TLS for proxy usage in

a particular virtual host. By default, the SSL/TLS protocol engine is disabled for proxy
both for the main server and all configured virtual hosts.

SSLProxyEngine should not be included in a virtual host that will be acting as a
forward proxy (by using Proxy or ProxyRequest directives). SSLProxyEngine is not
required to enable a forward proxy server to proxy SSL/TLS requests.

Category Value
Syntax SSLProxyEngine ON | OFF
Example SSLProxyEngine on

ORACLE G-14

Appendix G
mod_ossl Module

Category Value
Default Di sabl e

G.3.12 SSLProxyProtocol Directive

Specifies SSL protocol(s) for mod_ossl to use when establishing a proxy connection in
the server environment. Proxies can only connect with one of the specified protocols.
Accepted values are:

e TLSv1

« TLSvl1l
e TLSv1.2
o Al

You can specify multiple values as a space-delimited list. In the syntax, the "-" and "+"
symbols have the following meaning:

e +:Adds the protocol to the list
e -:Removes the protocol from the list

In the current release Al | is defined as +TLSv1 +TLSv1. 1 +TLSv1. 2.

Category Value

Syntax SSLProxyProtocol [+-] TLSvl | TLSv1.1 | TLSvl1.2 |
Al

Example SSLProxyProtocol +TLSvl +TLSv1.1 +TLSv1.?2

Default ALL

G.3.13 SSLProxyWallet Directive

Specifies the location of the wallet with its WRL, specified as a filepath, that a proxy
connection needs to use.

Category Value
Syntax SSLProxyVal et file:path to wallet
Example

SSLProxyVél | et " ${ ORACLE_| NSTANCE}/ confi g/
fmaconf i g/ conponent s/ ${ COVPONENT_TYPE}/ i nst ances/ $
{ COVPONENT_NAME} / keyst or es/ pr oxy"

Default None

G.3.14 SSLRequire Directive

Denies access unless an arbitrarily complex boolean expression is true.

ORACLE G-15

Appendix G
mod_ossl Module

Category Value

Syntax SSLRequi re expression

Example SSLRequire word ">=" word |word "ge" word
Default None

Understanding the Expression Variable

The expression variable must match the following syntax (given as a BNF grammar
notation):

expr ::= "true" | "false"
"t oexpr

expr "&&" expr

expr "||" expr

"(" expr ")"

conp ::=word "==" word | word "eq" word
word "!'=" word [word "ne" word
word "<" word |word "It" word
word "<=" word |word "le" word
word ">" word |word "gt" word

word ">=" word |word "ge" word
word "=~" regex

word "!~" regex

wordlist ::= word
wordlist "," word

word ::= digit

cstring

variabl e

function

digit ::=[0-9]+

cstring ::="..."
variable ::= "%varnanme}"

Table G-6 and Table G-7 list standard and SSL variables. These are valid values for
var nane.

function ::= funcnane "(" funcargs ")"
For f uncnane, the following function is available:

file(filename)

The file function takes one string argument, the filename, and expands to the contents
of the file. This is useful for evaluating the file's contents against a regular expression.

Table G-6 lists the standard variables for SSLRequire Directive var nane.

Table G-6 Standard Variables for SSLRequire Varname
|

ORACLE

Standard Variables

Standard Variables

Standard Variables

HTTP_USER_AGENT PATH_| NFO AUTH_TYPE
HTTP_REFERER QUERY_STRI NG SERVER_SOFTWARE
HTTP_COOKI E REMOTE_HOST APl _VERSI ON

G-16

ORACLE

Appendix G
mod_ossl Module

Table G-6 (Cont.) Standard Variables for SSLRequire Varname
|

Standard Variables

Standard Variables

Standard Variables

HTTP_FORWARDED REMOTE_| DENT TI ME_YEAR
HTTP_HOST |'S_SUBREQ TI ME_MON
HTTP_PROXY_CONNECTI ON DOCUMENT _ROOT TI ME_DAY
HTTP_ACCEPT SERVER_ADM N TI ME_HOUR

HTTP: header nane SERVER_NAME TIMEMN
THE_REQUEST SERVER_PORT TI ME_SEC
REQUEST_METHOD SERVER_PROTOCOL TI ME_VDAY
REQUEST _SCHEME REMOTE_ADDR TI MVE

REQUEST_URI REMOTE_USER ENV: vari abl ename

REQUEST_FI LENAVE

Table G-7 lists the SSL variables for SSLRequire Directive varname.

Table G-7 SSL Variables for SSLRequire Varname
e _________________________ |

SSL Variables

SSL Variables

SSL Variables

HTTPS

SSL_PROTOCOL

SSL_CI PHER_ALGKEYSI ZE

SSL_Cl PHER

SSL_Cl PHER EXPORT

SSL_VERSI ON_| NTERFACE

SSL_Cl PHER_USEKEYSI ZE

SSL_VERSI ON_LI BRARY

SSL_SESSI ON_I D

SSL_CLI ENT_V_END

SSL_CLI ENT_M SERI AL

SSL_CLI ENT_V_START

SSL_CLIENT S DN ST

SSL_CLIENT_S DN

SSL_CLIENT S DN C

SSL_CLI ENT_S_DN_CN

SSL_CLIENT_S_DN_O

SSL_CLI ENT_S_DN_OU

SSL_CLIENT_S_DN_G

SSL_CLIENT_ S DN T

SSL_CLIENT_S DN |

SSL_CLIENT_S DN U D

SSL_CLIENT_S DN_S

SSL_CLIENT_S DN D

SSL_CLIENT_ | _DN C

SSL_CLIENT_S DN Emai |

SSL_CLIENT_| DN

SSL_CLIENT_| _DN_O

SSL_CLIENT_| DN ST

SSL_CLIENT_| DN L

SSL_CLIENT | DN.T

SSL_CLIENT_| _DN_OU

SSL_CLIENT_| _DN_CN

SSL_CLIENT | DN S

SSL_CLIENT | DN I

SSL_CLIENT_| DN G

SSL_CLIENT_| _DN_Eni |

SSL_CLIENT_| _DN.D

SSL_CLIENT_| _DN_UI D

SSL_CLI ENT_CERT

SSL_CLI ENT_CERT_CHAI N_n

SSL_CLI ENT_ROOT_CERT

SSL_CLI ENT_VERI FY

SSL_CLI ENT_M VERSI ON

SSL_SERVER M VERSI ON

SSL_SERVER V_START

SSL_SERVER V_END

SSL_SERVER M SERI AL

SSL_SERVER S DN C

SSL_SERVERT S _DN_ST

SSL_SERVER S_DN

SSL_SERVER S_DN_OU

SSL_SERVER S_DN_CN

SSL_SERVER S_DN_O

SSL_SERVER S_DN |

SSL_SERVER S_DN_G

SSL_SERVER S DN T

SSL_SERVER S DN D

SSL_SERVER S_DN_U D

SSL_SERVER S DN S

SSL_SERVER | DN

SSL_SERVER | DN C

SSL_SERVER S_DN_Emai |

G-17

Appendix G
mod_ossl Module

Table G-7 (Cont.) SSL Variables for SSLRequire Varname

SSL Variables

SSL Variables

SSL Variables

SSL_SERVER | DN L

SSL_SERVER | DN O

SSL_SERVER | _DN_ST

SSL_SERVER | _DN_CN

SSSL_SERVER | DN_T

SSL_SERVER | _DN_QU

SSL_SERVER | _DN_G

SSL_SERVER | DN |

G.3.15 SSLRequireSSL Directive

Denies access to clients not using SSL. This is a useful directive for absolute
protection of a SSL-enabled virtual host or directories in which configuration errors
could create security vulnerabilities.

Category Value
Syntax SSLRequi r eSSL
Example SSLRequi r eSSL
Default None

G.3.16 SSLSessionCache Directive

Specifies the global/interprocess session cache storage type. The cache provides an
optional way to speed up parallel request processing. The accepted values are:

e none: disables the global/interprocess session cache. Produces no impact on
functionality, but makes a major difference in performance.

« nonenot nul | : This disables any global/inter-process Session Cache.

» shnth: /path/to/datafile[bytes]: Uses a high-performance Shared Memory Cyclic
Buffer (SHMCB) session cache to synchronize the local SSL memory caches of
the server processes. Note: in this shm setting, no log files are created under /
path/to/datafile on local disk.

Category Value

Syntax SSLSessi onCache none | nonenotnull | shnth:/

path/to/ datafil e[byt es]

Examples SSLSessi onCache "shnch: ${ ORACLE | NSTANCE} / servers/ $
{ COVPONENT_NAME}/ | ogs/ ssl _scache(512000) "
Default SSLSessi onCache shnch:/path/to/datafil e[bytes]

G.3.17 SSLSessionCacheTimeout Directive

Specifies the number of seconds before a SSL session in the session cache expires.

Category Value

Syntax SSLSessi onCacheTi meout seconds

ORACLE G-18

Appendix G
mod_ossl Module

Category Value
Example SSLSessi onCacheTi meout 120
Default 300

G.3.18 SSLTraceLogLevel Directive

SSLTracelLoglLevel adjusts the verbosity of the messages recorded in the Oracle
Security library error logs. When a particular level is specified, messages from all
other levels of higher significance will be reported as well. For example, when
SSLTracelLoglLevel ssl is set, messages with log levels of error, warn, user and debug
will also be posted.

< Note:

This directive can only be set globally in the ssl . conf file.

SSLTraceLogLevel accepts the following log levels:

e none: Oracle Security Trace disable

- fatal: Fatal error; system is unusable.
e error: Error conditions.

e war n: Warning conditions.

» user: Normal but significant condition.
e debug: Debug-level condition

e ssl: SSL level debugging

Category Value

Syntax SSLTraceLogLevel none | fatal | error | warn | user | debug |

ssl

Example SSLTracelLogLevel fatal

Default None

G.3.19 SSLVerifyClient Directive

ORACLE

Specifies whether a client must present a certificate when connecting. The accepted
values are:

* none: No client certificate is required
e optional: Client can present a valid certificate

e require: Client must present a valid certificate

G-19

Appendix G
mod_ossl Module

Category Value

Syntax SSLVerifyCdient none | optional | require

Example SSLVerifyCdient optional

Default None

" Note:

The level opti onal _no_ca included with mod_ssl (in which the client can
present a valid certificate, but it need not be verifiable) is not supported in
mod_ossl .

G.3.20 SSLWallet Directive

Specifies the location of the wallet with its WRL, specified as a filepath.

Category Value

Syntax SSLVal let file:path to wallet directory
file: path may also be expressed simply as pat h.

Example SSLVI | et " ${ ORACLE_ | NSTANCE}/ conf i g/
f maconf i g/ conponent s/ ${ COVPONENT_TYPE}/ i nst ances/ $
{ COWPONENT_NANE} / keyst or es/ def aul t "

Default This is the default

< Note:

If the wallet has a certificate/certificate request signed with the MD5
algorithm, Oracle HTTP Server will fail to start.

ORACLE G-20

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Understanding Oracle HTTP Server
	1 Introduction to Oracle HTTP Server
	1.1 What is Oracle HTTP Server?
	1.2 Oracle HTTP Server 12c (12.2.1.3.0) Topologies
	1.3 Key Features of Oracle HTTP Server
	1.3.1 Restricted-JRF Mode
	1.3.2 Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	1.3.3 CGI and Fast CGI Protocol (mod_proxy_fcgi)
	1.3.4 Security Features
	1.3.4.1 Oracle Secure Sockets Layer (mod_ossl)
	1.3.4.2 Security: Encryption with Secure Sockets Layer
	1.3.4.3 Security: Single Sign-On with WebGate

	1.3.5 URL Rewriting and Proxy Server Capabilities

	1.4 Domain Types
	1.4.1 WebLogic Server Domain (Full-JRF Mode)
	1.4.2 WebLogic Server Domain (Restricted-JRF Mode)
	1.4.3 Standalone Domain

	1.5 Understanding Oracle HTTP Server Directory Structure
	1.6 Understanding Configuration Files
	1.6.1 Staging and Run-time Configuration Directories
	1.6.2 Oracle HTTP Server Configuration Files
	1.6.3 Modifying an Oracle HTTP Server Configuration File

	1.7 Upgrading from Earlier Releases of Oracle HTTP Server
	1.8 Oracle HTTP Server Support

	2 Understanding Oracle HTTP Server Modules
	2.1 Oracle-Developed Modules for Oracle HTTP Server
	2.1.1 mod_certheaders Module—Enables Reverse Proxies
	2.1.2 mod_context Module—Creates or Propagates ECIDs
	2.1.3 mod_dms Module—Enables Access to DMS Data
	2.1.4 mod_odl Module—Enables Access to ODL
	2.1.5 mod_ora_audit—Supports Authentication and Authorization Auditing
	2.1.6 mod_ossl Module—Enables Cryptography (SSL)
	2.1.7 mod_webgate Module—Enables Single Sign-on
	2.1.8 mod_wl_ohs Module—Proxies Requests to Oracle WebLogic Server

	2.2 Apache HTTP Server and Third-party Modules in Oracle HTTP Server

	3 Understanding Oracle HTTP Server Management Tools
	3.1 Administering Oracle HTTP Server Using Fusion Middleware Control
	3.1.1 Accessing Fusion Middleware Control
	3.1.2 Accessing the Oracle HTTP Server Home Page
	3.1.3 Understanding the Oracle HTTP Server Home Page
	3.1.4 Editing Configuration Files Using Fusion Middleware Control

	3.2 Administering Oracle HTTP Server Using WLST
	3.2.1 Oracle HTTP Server-Specific WLST Commands
	3.2.2 Using WLST in a Standalone Environment

	Part II Managing Oracle HTTP Server
	4 Running Oracle HTTP Server
	4.1 Before You Begin
	4.2 Creating an Oracle HTTP Server Instance
	4.2.1 Creating an Oracle HTTP Server Instance in a WebLogic Server Domain
	4.2.1.1 Creating an Instance by Using WLST
	4.2.1.2 Associating Oracle HTTP Server Instances With a Keystore Using WLST
	4.2.1.3 Creating an Instance by Using Fusion Middleware Control
	4.2.1.4 About Instance Provisioning

	4.2.2 Creating an Oracle HTTP Server Instance in a Standalone Domain

	4.3 Performing Basic Oracle HTTP Server Tasks
	4.3.1 Understanding the PID File
	4.3.2 Starting Oracle HTTP Server Instances
	4.3.2.1 Starting Oracle HTTP Server Instances Using Fusion Middleware Control
	4.3.2.2 Starting Oracle HTTP Server Instances Using WLST
	4.3.2.3 Starting Oracle HTTP Server Instances from the Command Line
	4.3.2.3.1 Storing Your Node Manager Password

	4.3.2.4 Starting Oracle HTTP Server Instances on a Privileged Port (UNIX Only)
	4.3.2.5 Starting Oracle HTTP Server Instances as a Different User (UNIX Only)

	4.3.3 Stopping Oracle HTTP Server Instances
	4.3.3.1 Stopping Oracle HTTP Server Instances Using Fusion Middleware Control
	4.3.3.2 Stopping Oracle HTTP Server Instances Using WLST
	4.3.3.3 Stopping Oracle HTTP Server Instances from the Command Line

	4.3.4 About Using the WLST Commands
	4.3.5 Restarting Oracle HTTP Server Instances
	4.3.5.1 Restarting Oracle HTTP Server Instances Using Fusion Middleware Control
	4.3.5.2 Restarting Oracle HTTP Server Instances Using WLST

	4.3.6 Checking the Status of a Running Oracle HTTP Server Instance
	4.3.6.1 Checking Server Status by Using Fusion Middleware Control
	4.3.6.2 Checking Server Status Using WLST

	4.3.7 Deleting an Oracle HTTP Server Instance
	4.3.7.1 Deleting an Oracle HTTP Server Instance in a WebLogic Server Domain
	4.3.7.1.1 Deleting an Instance Using WLST
	4.3.7.1.2 Deleting an Instance Using Fusion Middleware Control

	4.3.7.2 Deleting an Oracle HTTP Server Instance from a Standalone Domain

	4.3.8 Changing the Default Node Manager Port Number
	4.3.8.1 Changing the Default Node Manager Port Using WLST
	4.3.8.2 Changing the Default Node Manager Port Using Oracle WebLogic Server Administration Console

	4.4 Remotely Administering Oracle HTTP Server
	4.4.1 Setting Up a Remote Environment
	4.4.1.1 Host Requirements for a Remote Environment
	4.4.1.2 Task 1: Set Up an Expanded Domain on host1
	4.4.1.3 Task 2: Pack the Domain on host1
	4.4.1.4 Task 3: Unpack the Domain on host2
	4.4.1.5 Task 4: Run Oracle HTTP Server Remotely

	5 Working with Oracle HTTP Server
	5.1 About Editing Configuration Files
	5.1.1 Editing a Configuration File for a Standalone Domain
	5.1.2 Editing a Configuration File for a WebLogic Server Domain

	5.2 Specifying Server Properties
	5.2.1 Specifying Server Properties by Using Fusion Middleware Control
	5.2.2 Specify Server Properties by Editing the httpd.conf File

	5.3 Configuring Oracle HTTP Server Instances
	5.3.1 Secure Sockets Layer Configuration
	5.3.2 Configuring Secure Sockets Layer in Standalone Mode
	5.3.2.1 Configure SSL
	5.3.2.1.1 Task 1: Create a Real Wallet
	5.3.2.1.2 Task 2: (Optional) Customize Your Configuration
	5.3.2.1.3 Basic SSL Configuration Example

	5.3.2.2 Specify SSLVerifyClient on the Server Side
	5.3.2.2.1 Adding a Trusted Client Certificate in a Standalone Oracle HTTP Server Installation
	5.3.2.2.2 Adding a Trusted Client Certificate in Collocated Oracle HTTP Server Installation
	5.3.2.2.3 Forcing Clients to Authenticate Using Certificates
	5.3.2.2.4 Forcing a Client to Authenticate for a Particular URL
	5.3.2.2.5 Authorizing a Client for a Particular URL
	5.3.2.2.6 Allowing Clients with Strong Ciphers and CA Client Certificate or Basic Authentication

	5.3.2.3 Enable SSL Between Oracle HTTP Server and Oracle WebLogic Server
	5.3.2.4 Using SAN Certificates with Oracle HTTP Server

	5.3.3 Exporting the Keystore to an Oracle HTTP Server Instance Using WLST
	5.3.4 Configuring MIME Settings Using Fusion Middleware Control
	5.3.4.1 Configuring MIME Types
	5.3.4.2 Configuring MIME Encoding
	5.3.4.3 Configuring MIME Languages

	5.3.5 About Configuring mod_proxy_fcgi
	5.3.6 About Configuring the Oracle WebLogic Server Proxy Plug-In (mod_wl_ohs)
	5.3.6.1 Configuring SSL for mod_wl_ohs

	5.3.7 Removing Access to Unneeded Content
	5.3.7.1 Edit the cgi-bin Section
	5.3.7.2 Edit the Fancy Indexing Section
	5.3.7.3 Edit the Product Documentation Section

	5.3.8 Using the apxs Command to Install Extension Modules
	5.3.9 Disabling the Options Method
	5.3.10 Updating Oracle HTTP Server Component Configurations on a Shared File System

	5.4 Configuring the mod_security Module
	5.4.1 Configuring mod_security in the httpd.conf File
	5.4.2 Configuring mod_security in a mod_security.conf File
	5.4.3 Configuring SecRemoteRules in the mod_security.conf File
	5.4.4 Sample mod_security.conf File

	6 Managing and Monitoring Server Processes
	6.1 Oracle HTTP Server Processing Model
	6.1.1 Request Process Model
	6.1.2 Single Unit Process Model

	6.2 Monitoring Server Performance
	6.2.1 Oracle HTTP Server Performance Metrics
	6.2.2 Viewing Performance Metrics
	6.2.2.1 Viewing Server Metrics by Using Fusion Middleware Control
	6.2.2.2 Viewing Server Metrics Using WLST

	6.3 Oracle HTTP Server Performance Directives
	6.3.1 Understanding Performance Directives
	6.3.1.1 Changing the MPM Type Value in a Standalone Domain
	6.3.1.2 Changing the MPM Type Value in a WebLogic Server Managed Domain

	6.3.2 Configuring Performance Directives by Using Fusion Middleware Control
	6.3.2.1 Setting the Request Configuration by Using Fusion Middleware Control
	6.3.2.2 Setting the Connection Configuration by Using Fusion Middleware Control
	6.3.2.3 Setting the Process Configuration by Using Fusion Middleware Control

	6.4 Understanding Process Security for UNIX

	7 Managing Connectivity
	7.1 Default Listen Ports
	7.2 Defining the Admin Port
	7.3 Viewing Port Number Usage
	7.3.1 Viewing Port Number Usage by Using Fusion Middleware Control
	7.3.2 Viewing Port Number Usage Using WLST

	7.4 Managing Ports
	7.4.1 Creating Ports Using Fusion Middleware Control
	7.4.2 Editing Ports Using Fusion Middleware Control
	7.4.3 Disabling a Listening Port in a Standalone Environment

	7.5 Configuring Virtual Hosts
	7.5.1 Creating Virtual Hosts Using Fusion Middleware Control
	7.5.2 Configuring Virtual Hosts Using Fusion Middleware Control

	8 Managing Oracle HTTP Server Logs
	8.1 Overview of Server Logs
	8.1.1 About Error Logs
	8.1.2 About Access Logs
	8.1.3 Configuring Log Rotation
	8.1.3.1 Syntax and Examples for Time- and Size-Based Log Rotation

	8.2 Configuring Oracle HTTP Server Logs
	8.2.1 Configuring Error Logs Using Fusion Middleware Control
	8.2.1.1 Configuring the Error Log Format and Location
	8.2.1.2 Configuring the Error Log Level
	8.2.1.3 Configuring Error Log Rotation Policy

	8.2.2 Configuring Access Logs Using Fusion Middleware Control
	8.2.2.1 Configuring the Access Log Format
	8.2.2.2 Configuring the Access Log File

	8.2.3 Configuring the Log File Creation Mode (umask) (UNIX/Linux Only)
	8.2.3.1 Configure umask for an Oracle HTTP Server Instance in a Standalone Domain
	8.2.3.2 Configure umask for an Oracle HTTP Server Instance in a WebLogic Server Managed Domain

	8.3 Configuring the Log Level Using WLST
	8.4 Log Directives for Oracle HTTP Server
	8.4.1 Oracle Diagnostic Logging Directives
	8.4.1.1 OraLogMode
	8.4.1.2 OraLogDir
	8.4.1.3 OraLogSeverity
	8.4.1.4 OraLogRotationParams

	8.4.2 Apache HTTP Server Log Directives
	8.4.2.1 ErrorLog
	8.4.2.2 LogLevel
	8.4.2.3 LogFormat
	8.4.2.4 CustomLog

	8.5 Viewing Oracle HTTP Server Logs
	8.5.1 Viewing Logs Using Fusion Middleware Control
	8.5.2 Viewing Logs Using WLST
	8.5.3 Viewing Logs in a Text Editor

	8.6 Recording ECID Information
	8.6.1 About ECID Information
	8.6.2 Configuring Error Logs for ECID Information
	8.6.3 Configuring Access Logs for ECID Information

	9 Managing Application Security
	9.1 About Oracle HTTP Server Security
	9.2 Classes of Users and Their Privileges
	9.3 Authentication, Authorization and Access Control
	9.3.1 Access Control
	9.3.2 User Authentication and Authorization
	9.3.2.1 Authenticating Users with Apache HTTP Server Modules
	9.3.2.2 Authenticating Users with WebGate

	9.3.3 Support for FMW Audit Framework
	9.3.3.1 Managing Audit Policies Using Fusion Middleware Control

	9.4 Implementing SSL
	9.4.1 Global Server ID Support
	9.4.2 PKCS #11 Support
	9.4.3 SSL and Logging
	9.4.4 Terminating SSL Requests
	9.4.4.1 About Terminating SSL at the Load Balancer
	9.4.4.1.1 Terminating SSL at the Load Balancer

	9.4.4.2 About Terminating SSL at Oracle HTTP Server
	9.4.4.2.1 Terminating SSL at Oracle HTTP Server

	9.5 Using mod_security
	9.6 Using Trust Flags

	A Oracle HTTP Server WLST Custom Commands
	A.1 Getting Help on Oracle HTTP Server WLST Custom Commands
	A.2 Names of WLST Custom Commands Have Changed
	A.3 Oracle HTTP Server Commands
	A.3.1 ohs_addAdminProperties
	A.3.2 ohs_addNMProperties
	A.3.3 ohs_createInstance
	A.3.4 ohs_deleteInstance
	A.3.5 ohs_exportKeyStore
	A.3.6 ohs_postUpgrade
	A.3.7 ohs_updateInstances

	B Migrating to the mod_proxy_fcgi and mod_authnz_fcgi Modules
	B.1 Task 1: Replace LoadModule Directives in htttpd.conf File
	B.2 Task 2: Delete mod_fastcgi Configuration Directives From the htttpd.conf File
	B.3 Task 3: Configure mod_proxy_fcgi to Act as a Reverse Proxy to an External FastCGI Server
	B.4 Task 4: Setup an External FastCGI Server
	B.5 Task 5: Setup mod_authnz_fcgi to Work with FastCGI Authorizer Applications

	C Frequently Asked Questions
	C.1 How Do I Create Application-Specific Error Pages?
	C.2 What Type of Virtual Hosts Are Supported for HTTP and HTTPS?
	C.3 Can I Use Different Language and Character Set Versions of Document?
	C.4 Can I Apply Apache HTTP Server Security Patches to Oracle HTTP Server?
	C.5 Can I Upgrade the Apache HTTP Server Version of Oracle HTTP Server?
	C.6 Can I Compress Output From Oracle HTTP Server?
	C.7 How Do I Create a Namespace That Works Through Firewalls and Clusters?
	C.8 How Can I Enhance Website Security?
	C.9 Why is REDIRECT_ERROR_NOTES not set for "File Not Found" errors?
	C.10 How can I hide information about the Web Server Vendor and Version
	C.11 Can I Start Oracle HTTP Server by Using apachectl or Other Command-Line Tool?
	C.12 How Do I Configure Oracle HTTP Server to Listen at Port 80?
	C.13 How Do I Terminate Requests Using SSL Within Oracle HTTP Server?
	C.14 How Do I Configure End-to-End SSL Within Oracle HTTP Server?
	C.15 Can Oracle HTTP Server Front-End Oracle WebLogic Server?
	C.16 What is the Difference Between Oracle WebLogic Server Domains and Standalone Domains?
	C.17 Can Oracle HTTP Server Cache the Response Data?
	C.18 How Do I Configure a Virtual Server-Specific Access Log?
	C.19 How to Enable SSL for Oracle HTTP Server by Using Fusion Middleware Control?
	C.19.1 Start Node Manager and Admin Server
	C.19.2 Create Keystore
	C.19.3 Generate Keypair
	C.19.4 Generate CSR for a Certificate
	C.19.5 Import the Trusted Certificate
	C.19.6 Import the Trusted Certificate to WebLogic Domain
	C.19.7 Import the User Certificate
	C.19.8 Export Keystore to Wallet
	C.19.9 Enable SSL

	D Troubleshooting Oracle HTTP Server
	D.1 Oracle HTTP Server Fails to Start Due to Port Conflict
	D.2 System Overloaded by Number of httpd Processes
	D.3 Permission Denied When Starting Oracle HTTP Server On a Port Below 1024
	D.4 Using Log Files to Locate Errors
	D.4.1 Rewrite Log
	D.4.2 Script Log
	D.4.3 Error Log

	D.5 Recovering an Oracle HTTP Server Instance on a Remote Host
	D.6 Oracle HTTP Server Performance Issues
	D.6.1 Special Runtime Files Reside on a Network File System
	D.6.2 UNIX Sockets on a Network File System
	D.6.3 DocumentRoot on a Slow File System
	D.6.4 Instances Created on Shared File Systems

	D.7 Out of DMS Shared Memory
	D.8 Node Manager 12c (12.1.2) Oracle HTTP Server Throws Java Exception on AIX
	D.9 Oracle HTTP Server Fails to Start When mod_security is Enabled on RHEL or Oracle Linux 7
	D.10 Oracle HTTP Server Fails to Start due to Certificates Signed Using the MD5 Algorithm

	E Configuration Files
	F Property Files
	F.1 ohs_addAdminProperties
	F.2 ohs_nm.properties File
	F.3 ohs.plugins.nodemanager.properties File
	F.3.1 Cross-platform Properties
	F.3.2 Environment Variable Configuration Properties
	F.3.3 Properties Specific to Oracle HTTP Server Instances Running on Linux and UNIX

	G Oracle HTTP Server Module Directives
	G.1 mod_wl_ohs Module
	G.2 mod_certheaders Module
	G.2.1 AddCertHeader Directive
	G.2.2 SimulateHttps Directive

	G.3 mod_ossl Module
	G.3.1 SSLCARevocationFile Directive
	G.3.2 SSLCARevocationPath Directive
	G.3.3 SSLCipherSuite Directive
	G.3.4 SSLEngine Directive
	G.3.5 SSLFIPS Directive
	G.3.6 SSLHonorCipherOrder Directive
	G.3.7 SSLInsecureRenegotiation Directive
	G.3.8 SSLOptions Directive
	G.3.9 SSLProtocol Directive
	G.3.10 SSLProxyCipherSuite Directive
	G.3.11 SSLProxyEngine Directive
	G.3.12 SSLProxyProtocol Directive
	G.3.13 SSLProxyWallet Directive
	G.3.14 SSLRequire Directive
	G.3.15 SSLRequireSSL Directive
	G.3.16 SSLSessionCache Directive
	G.3.17 SSLSessionCacheTimeout Directive
	G.3.18 SSLTraceLogLevel Directive
	G.3.19 SSLVerifyClient Directive
	G.3.20 SSLWallet Directive

