
Oracle® Fusion Middleware
Developing Oracle WebCenter Content:
Imaging

12c (12.2.1.3.0)
E48250-02
March 2018

Oracle Fusion Middleware Developing Oracle WebCenter Content: Imaging, 12c (12.2.1.3.0)

E48250-02

Copyright © 2010, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Divya Ramabhadran

Contributors: Sonia Nagar, Brian Gray

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Documents vii

Conventions vii

 What's New in This Guide

Significant Documentation Changes for 12c (12.2.1.3.0) ix

Part I Getting Started with Customizing Oracle WebCenter Content:
Imaging

1 Introduction to Oracle WebCenter Content: Imaging

1.1 Overview of Integration Options 1-1

1.2 Common API Model 1-2

1.2.1 Understanding Services 1-2

1.2.1.1 Definition Services 1-2

1.2.1.2 Document Services 1-3

1.2.1.3 System Services 1-4

1.2.2 Understanding Data Objects 1-5

1.2.2.1 Identification 1-5

1.2.2.2 Sections 1-5

1.2.2.3 Properties 1-6

1.2.2.4 Permissions 1-6

1.2.2.5 Security 1-6

1.2.2.6 Audit Events 1-6

1.3 Requirements 1-6

1.4 Sample of the Imaging Integration API 1-6

iii

Part II Configuring the Imaging Client Side and Security

2 Configuring the Class Path for the Imaging API

2.1 Configuring the Class Path for the Imaging API 2-1

2.2 Copying the API Files to a Client Directory 2-2

2.3 Setting the Class Path 2-2

3 Configuring Authentication and Security Policies

3.1 About Configuring Authentication and Security Policies 3-1

3.2 Providing SSL Communication for Basic Authentication 3-1

3.3 Applying OWSM Security Polices to Imaging Web Services 3-2

3.4 Reconfiguring Client-Side Security Policies for Java API Login 3-3

Part III Managing Documents in the Imaging Repository

4 Creating Documents

4.1 About Creating Documents 4-1

4.2 Listing Applications 4-1

4.3 Getting Application Properties and Field Definitions 4-2

4.4 Uploading Document Content 4-2

4.5 Providing Metadata for a Document 4-2

4.6 Create Document Sample 4-3

5 Searching for Documents

5.1 About Searching for Documents 5-1

5.2 Listing Saved Searches 5-1

5.3 Providing Search Arguments 5-1

5.4 Executing a Search 5-2

5.5 Parsing Search Results 5-2

5.6 Execute Search Sample 5-2

6 Retrieving Documents

6.1 About Retrieving Documents 6-1

6.2 Retrieving an Original Document 6-1

6.3 Retrieving a Rendition of a Document with Annotations 6-1

6.4 Retrieving Individual Pages from a Document 6-2

iv

6.5 Retrieve Document Sample 6-2

7 Updating a Document

7.1 About Updating a Document 7-1

7.2 Uploading Revised Document Content 7-1

7.3 Updating Metadata for a Document 7-1

7.4 Update Document Sample 7-2

Part IV Integrating Imaging Into Your Environment

8 Using the Imaging API as Pure Web Services

8.1 About Using the Imaging API as Pure Web Services 8-1

8.1.1 Locating Web Service WSDLs 8-1

8.2 Using Web Services in Stateless Sessions 8-1

8.3 Using Web Services in a Stateful Session 8-2

8.4 Using the AXF Web Service 8-2

8.4.1 Locating the AXF Web Service WSDL File 8-2

8.4.2 WSDL File Structure 8-2

8.4.3 Data Type 8-3

8.4.4 Message 8-4

8.4.5 Port Type 8-4

8.4.6 Binding 8-5

8.4.7 Service and Port 8-5

9 Integrating Imaging with BPEL

9.1 About Integrating Imaging with BPEL 9-1

9.2 Invoking Imaging Web Services from a BPEL Process 9-1

9.3 Updating Imaging Metadata from a BPEL Process 9-2

10

Accessing User Interface Functions Through URL Tools

10.1 About Accessing User Interface Functions Through URL Tools 10-1

10.2 Using URL Tools 10-1

10.2.1 Supported URL Tool Parameters 10-2

10.2.2 Supported URL Tools 10-2

10.2.2.1 Search URL Tool 10-3

10.2.2.2 Viewer URL Tool 10-5

10.2.2.3 Upload URL Tool 10-6

v

10.2.2.4 User Preferences URL Tool 10-7

10.2.2.5 Original Document Download Using the Native Viewer 10-7

11

Making REST Paged Rendition Requests

11.1 REST URL Format 11-1

vi

Preface

Oracle WebCenter Content: Imaging integrates electronic document storage, retrieval,
and annotation with business processes to facilitate document use across an
enterprise. Documents are uploaded into a repository managed by Oracle WebCenter
Content using an application within Imaging. Applications are predefined by you based
on your business need. The application used to upload the document is chosen based
on the type of document being uploaded. For example, one application would be used
to upload an invoice and a different application would be used to upload a contract.
The application determines the metadata that is associated with a document, as well
as security permissions to the document and any document annotations. This guide
details how to define applications and searches, connect to a workflow server to
integrate with other business processes, and configure Imaging to best meet your
company needs.

Audience
This document is intended for developers responsible for customizing Oracle
WebCenter Content: Imaging functionality.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
The complete Oracle WebCenter Content documentation set is available from the
Oracle Help Center at http://www.oracle.com/pls/topic/lookup?
ctx=fmw122130&id=wccdocs.

Conventions
The following text conventions are used in this document:

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=fmw122130&id=wccdocs
http://www.oracle.com/pls/topic/lookup?ctx=fmw122130&id=wccdocs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

What's New in This Guide

The following topic introduces the significant changes that are described in this guide,
and provides pointers to additional information.

Significant Documentation Changes for 12c (12.2.1.3.0)
There are no significant changes to this guide for the 12c (12.2.1.3.0) release.

ix

Part I
Getting Started with Customizing Oracle
WebCenter Content: Imaging

Part I contains the following chapters:

• Introduction to Oracle WebCenter Content: Imaging

1
Introduction to Oracle WebCenter Content:
Imaging

This chapter provides an overview of Oracle WebCenter Content: Imaging, including
the integration options, the common API model, software requirements, and a sample
of the Imaging integration API.
This chapter includes the following sections:

• Overview of Integration Options

• Common API Model

• Requirements

• Sample of the Imaging Integration API

1.1 Overview of Integration Options
Imaging provides the following two integration options: native Java API and Web
services.

Native Java API

The Imaging native Java API offers a comprehensive set of Java classes providing
access to all aspects of Imaging. It is the easiest option from environments that can
directly reference Java code. Because it is implemented with client-side Java code, the
API provides a number of convenience utilities for common tasks such as populating
data structures, searching and sorting collections, and enumerating data types.
Moreover, the native Java API acts as a wrapper for Web services. In this way, an
integrator can use the Java API and need not worry about the underlying Web
services implementation.

Web Services

Imaging functionality is available directly as Simple Object Access Protocol (SOAP)
based Web services. These services allow access to Imaging functionality in non-Java
environments that support calling Web services. All of the core functionality of the
Imaging API is available in the Web service set.

Because the Imaging API is exposed as Web services, access to Imaging functionality
is available to any programming environment supporting Web services. Access
Imaging like any Web service by using the Imaging Web Services Description
Language (WSDL) to generate implementation classes for those services.

Application Extension Framework

Oracle provides productized integrations with business applications like Oracle E-
Business Suite. These integrations are enabled by the Application Extension
Framework (AXF) component of Imaging. The AXF provides a command-driven, web
services integration that allows administrators to configure and modify multiple
business process solutions separate from the systems themselves. For more details

1-1

about the AXF and AXF imaging solutions, see About Application Extension
Framework (AXF) in Administering the Application Adapters for Oracle WebCenter.

1.2 Common API Model
The Imaging API has been implemented based on service-oriented architecture design
patterns. The components of the model can be broken down into the following two
categories: services and objects.

Services

The services translate into Web service requests. These services do not contain data,
but provide methods to accomplish common tasks such as creating a document. The
services move data objects back and forth to the Imaging servers.

Objects

Objects contain only data. The only methods they provide are simple get and set
operations for the object properties.

See the Imaging Java API Reference guide for detailed information about Imaging
services, methods, and parameters. Code samples that demonstrate many key API
features are provided throughout this guide.

1.2.1 Understanding Services
Imaging services can be divided into the following categories:

• Definition: The definition services provide the functionality to manage the
structure of the Imaging system including applications, searches, and inputs.

• Document: The document services provide the functionality to manage the
content within an Imaging system.

• System: The system services provide the functionality to manage the Imaging
system.

The following common methods are available among these services when applicable:

Methods Description

list...() The list method is used to find definitions with which the current user
can interact. The type of interaction, such as view or modify, is
defined using the Ability enumeration and is provided as a
parameter.

get...() The get method is used to retrieve a definition object. This method
includes an array of SectionFlag enumeration values used for
requesting specific portions of the object.

create...()

update...()

delete...()

The create, update, and delete methods provide standard
maintenance functions for their respective objects within the limits of
the current user context.

1.2.1.1 Definition Services
The following definition services provide basic creation and maintenance of the
structure of the Imaging system.

Chapter 1
Common API Model

1-2

• ApplicationService

• SearchService

• InputService

• ConnectionService

• ImportExportService

1.2.1.1.1 ApplicationService
An Imaging application represents a document repository with a uniquely configured
set of metadata, privilege assignments, document lifecycle specifications, workflow
integrations, auditing configurations, and other items necessary to properly manage
documents and transactions. ApplicationService provides the facilities to find, create,
modify, and delete applications. The definition of the application resides within an
application object that contains multiple subobjects.

1.2.1.1.2 SearchService
Imaging is designed to provide storage for a large number of documents. Because it
can be difficult for users to navigate a large number of documents by browsing folders,
the Imaging system provides a comprehensive searching solution as a more efficient
way to find desired content. SearchService is used to find, delete, and execute
searches. Because search definitions are complex entities, it is best practice to create
a search using the Imaging user interface and then save it in the system. Saved
searches provide an effective mechanism to leverage complex queries through an
integration. It only requires that you know the name of the search and the desired
search parameter values.

1.2.1.1.3 InputService
InputService is used to find, create, modify, and delete input definition objects.
InputService allows state modifications as well as toggling an input online/offline. It
allows users to upload sample data as well as to get definition file information.

1.2.1.1.4 ConnectionService
ConnectionService is used to find, create, modify, and delete connection definition
objects. Connections are used to connect Imaging to workflow servers and Content
Server repositories.

1.2.1.1.5 ImportExportService
ImportExportService is used to create applications, searches and inputs in bulk within
an Imaging system.

1.2.1.2 Document Services
The following document services are used to create and maintain document content in
Imaging.

• DocumentService

• DocumentContentService

Chapter 1
Common API Model

1-3

1.2.1.2.1 DocumentService
DocumentService is used to access, lock, move, copy, modify, and delete the
documents within the Imaging repository. All document service method actions are
bounded by the current user context and the associated document security configured
in the application in which the document resides. DocumentService also maintains the
annotations associated with a document and provides the ability to render documents
into image formats.

1.2.1.2.2 DocumentContentService
DocumentContentService is used to upload documents and retrieve documents.

1.2.1.3 System Services
The following system services provide functionality relevant to the management of the
Imaging system.

• LifecycleService

• LoginService

• PreferenceService

• SecurityService

• TicketService

1.2.1.3.1 LifecycleService
LifecycleService provides the ability to obtain information about the storage volumes
that are available for document storage. The volume objects represent the storage
media. Storage volumes are associated with documents in the application definition.

1.2.1.3.2 LoginService
LoginService establishes and terminates user sessions for Imaging. A session must be
established before any of the other services may be used.

1.2.1.3.3 PreferenceService
PreferenceService provides the ability to store preference information at either the
system or the user level. The system level provides a single configuration instance for
an Imaging installation while the user level provides a unique configuration instance for
each user. This service provides basic storage and retrieval of those preference
settings. Note that if setting preferences from the API, you must be mindful of type.
There is no validation against an incorrect setting passed through the API. Validation
occurs only when preferences are set through the user interface.

1.2.1.3.4 SecurityService
SecurityService provides mechanisms to query the system for users and user groups
that exist within the encompassing security environment. It also provides the ability to
retrieve and define the security privileges that are beyond those security elements
defined within each of the system definition objects.

Chapter 1
Common API Model

1-4

1.2.1.3.5 TicketService
TicketService allows users to create or delete a ticket and perform a collective delete
of expired tickets.

1.2.2 Understanding Data Objects
The system services provide management at the Imaging API level. Integrators can
leverage concepts that span multiple Imaging API calls.

1.2.2.1 Identification
The NameID class provides the basic means of identifying an entity, such as an
Application, Search, or Input, within the system. All entities have both a unique
identifier which is numeric and a name which is represented by string data type. Either
the numeric identifier or the name can be used to refer to specific entities within
Imaging. The NameID class will hold the numeric, string, or both identifiers. If both
identifiers are provided, the numeric ID is used. Id must be 0 (not provided) for Name
to be used. This class is returned by all of the list() functions providing the caller with a
list of both the numeric and string identifiers for the objects listed. The get() functions
that accept a NameID allow the integrator to use either the numeric ID or the name to
retrieve the desired entity.

1.2.2.2 Sections
Each object (application, input, search, connection, and document) is composed of
multiple subobjects referred to as sections. Object sections include general properties,
security grants, and audit history, among others. For convenience, the get() services
accept an array of section indicators so that only a subset of the full object's content
can be retrieved from Imaging or sent back to Imaging for update. These indicators are
defined within the SectionFlag class of each object.

The following table lists the sections available for each definition object.

Section Flag Application Input Search Connection Document

DESCRIPTION X X X X

DETAILS X

DOCUMENTPERMISSIONS X

DOCUMENTSECURITY X

EXPRESSIONS X

FIELDDEFINITIONS X

FIELDVALUES X

HISTORY X X X X X

LIFECYCLEPOLICY X

MAPPINGS X

NAME X X X X

PARAMETERS X

Chapter 1
Common API Model

1-5

Section Flag Application Input Search Connection Document

PERMISSIONS X X X X X

PROPERTIES X X X X X

RESULT_COLUMNS X

SECURITY X X X X

SOURCE_PROPERTIES X

WORKFLOWCONFIG X

1.2.2.3 Properties
Each Imaging object contains a subobject called the properties object that defines the
properties of that object. The properties object may contain additional subobjects that
have their own attributes providing additional complex content.

1.2.2.4 Permissions
Many of the objects define a permissions subobject that specifies the permissions the
current user has been granted in relation to the current instance of the object.

1.2.2.5 Security
The definition objects define security subobjects that are used to define what users or
user groups have been assigned what privileges. These privileges cover the basic
object maintenance actions such as creation, modification and deletion, as well as
specific actions unique to the type such as search execution.

1.2.2.6 Audit Events
Many objects include a section for returning the audit history associated with that
object. This history includes the actions taken by various users that have affected that
object. Audited actions would include creation, modification, or viewing of that object.
The audit history records the action that occurred, the user performing it, and the date
upon which it occurred.

1.3 Requirements
Imaging clients not running on an Oracle WebLogic Server have the following
requirements:

• JDK 1.6 or higher

• An installed and operational Imaging system

1.4 Sample of the Imaging Integration API
The following example is a simple demonstration of some of some basic functionality
provided by the Imaging integration API. The example simply logs in to the Imaging
system, lists viewable applications, and logs out.

Chapter 1
Requirements

1-6

Example 1-1 Listing Viewable Applications

package devguidesamples;

import java.util.List;
import java.util.Locale;

import oracle.imaging.Application;
import oracle.imaging.ApplicationService;
import oracle.imaging.BasicUserToken;
import oracle.imaging.ImagingException;
import oracle.imaging.NameId;
import oracle.imaging.ServicesFactory;
import oracle.imaging.UserToken;

public class IntroSample {
 public static void main(String[] args) {

 try { // try-catch
 UserToken credentials = new BasicUserToken("ipmuser", "ipmuserpwd");
 ServicesFactory servicesFactory =
 ServicesFactory.login(credentials, Locale.US, "http://ipmhost:16000/
imaging/ws");

 try { // try-finally to ensure logout
 ApplicationService appService = servicesFactory.getApplicationService();

 // List the viewable applications to confirm that "Invoices" exists
 List<NameId> appsList =
appService.listApplications(Application.Ability.VIEW);
 for (NameId appNameId: appsList) {
 System.out.println(appNameId);
 }
 }
 finally {
 if (servicesFactory != null) {
 servicesFactory.logout();
 }
 }
 }
 catch (ImagingException e) {
 System.out.println(e.getMessage());
 }
 }
}

Chapter 1
Sample of the Imaging Integration API

1-7

Part II
Configuring the Imaging Client Side and
Security

Part II contains the following chapters:

• Configuring the Class Path for the Imaging API

• Configuring Authentication and Security Policies

2
Configuring the Class Path for the Imaging
API

This chapter describes how to configure the class path for the Imaging API, how to
copy the API files to a client directory, and how to set the class path.
This chapter includes the following sections:

• Configuring the Class Path for the Imaging API

• Copying the API Files to a Client Directory

• Setting the Class Path

2.1 Configuring the Class Path for the Imaging API
The imaging API is contained in the .jar file imaging-client.jar. This is the only .jar
reference required to obtain Imaging-specific classes for use in client code.

The imaging-client.jar file is dependent on a number of infrastructure classes for JAX-
WS web services and Oracle Web Service Manager Security. These dependencies
are automatically available when the client API is called from within an Oracle JRF
enabled JEE container.

For standalone JSE clients, Imaging provides a bundled zip file containing all external
dependencies required by imaging-client.jar. The procedure for configuring references
in a standalone JSE environment is shown below. This procedure assumes that
Oracle WebCenter Content is installed to $ORACLE_HOME on a server system, and
the client system has no WebLogic or Oracle WebCenter Content components
installed.

To configure references in a stand-alone JSE environment, do the following:

1. Copy $ORACLE_HOME/ipm/lib/ecm-client.zip from the server to a temporary
directory on the client.

2. Extract ecm-client.zip to a directory on the client. The directory should contain a lib
directory accessible to the client working environment. The .jar files contained
within it will be referenced on the classpath at both compile and run time. A typical
solution is to place it in a lib directory parallel to the client src and classes
directories.)

3. Copy $ORACLE_HOME/ipm/lib/imaging-client.jar from the server to the lib
directory on the client. For example, copy this into the same lib directory to which
ecm-client was extracted.

4. In the classpath during compile and runtime, include imaging-client.jar and ecm-
client.jar from with extracted ecm-client zip directory. For example, assuming
imaging-client.jar and ecm-client.zip are both installed to a project lib directory
within a typical Java project directory, the class path would appear as:

CLASSPATH = classes:lib/imaging-client.jar:lib/ecm-client.jar

2-1

The ecm-client.jar must be included from within the directory to which the ecm-
client.zip was extracted, and all files in the zip must remain in their relative
locations within that directory. The ecm-client.jar is a manifest only jar that
references other jars using relative paths. Other jars contained in the zip need not
be included on the classpath and only ecm-client.jar should be. Future releases
may modify the contents of the zip, so referencing other unzipped jars is
discouraged.

2.2 Copying the API Files to a Client Directory
To configure references in a stand-alone JSE environment, do the following:

1. Copy $ORACLE_HOME/ipm/lib/ecm-client.zip from the server to a temporary
directory on the client.

2. Extract ecm-client.zip to a directory on the client. The directory should contain a lib
directory accessible to the client working environment. The .jar files contained
within it will be referenced on the classpath at both compile and run time. A typical
solution is to place it in a lib directory parallel to the client src and classes
directories.)

3. Copy $ORACLE_HOME/ipm/lib/imaging-client.jar from the server to the lib
directory on the client. For example, copy this into the same lib directory to which
ecm-client was extracted.

2.3 Setting the Class Path
In the classpath during compile and runtime, include imaging-client.jar and ecm-
client.jar from with extracted ecm-client zip directory. For example, assuming imaging-
client.jar and ecm-client.zip are both installed to a project lib directory within a typical
Java project directory, the class path would appear as:

CLASSPATH = classes:lib/imaging-client.jar:lib/ecm-client.jar

The ecm-client.jar must be included from within the directory to which the ecm-
client.zip was extracted, and all files in the zip must remain in their relative locations
within that directory. The ecm-client.jar is a manifest only jar that references other jars
using relative paths. Other jars contained in the zip need not be included on the
classpath and only ecm-client.jar should be. Future releases may modify the contents
of the zip, so referencing other unzipped jars is discouraged.

Chapter 2
Copying the API Files to a Client Directory

2-2

3
Configuring Authentication and Security
Policies

This chapter provides an overview of how to configure authentication and security
policies, how to provide SSL communication for basic authentication, how to apply
OWSM security policies to Imaging web services, and how to reconfigure client-side
security policies for Java API login.
This chapter contains the following sections:

• About Configuring Authentication and Security Policies

• Providing SSL Communication for Basic Authentication

• Applying OWSM Security Polices to Imaging Web Services

• Reconfiguring Client-Side Security Policies for Java API Login

3.1 About Configuring Authentication and Security Policies
Authentication and session management are handled differently depending on the
integration method being used. When first installed, the Imaging Web Services are
configured with no Oracle Web Service Manager security policies applied. When no
security policies are applied, the services leverage either the HTTP Basic
Authentication mechanism, or username token authentication. Note that Basic
Authentication, where user credentials (user ID and password) are transmitted in the
web service HTTP message header mechanism is not very secure because the user
credentials are not encrypted in any way unless a Secure Socket Layer (SSL)
transport mechanism is used.

3.2 Providing SSL Communication for Basic Authentication
If SSL is properly configured for the Imaging server instance, Imaging can be
configured to force the use of SSL in all web service communication. This is done by
setting the Imaging configuration MBean RequireBasicAuthSSL to true. By default, it is
false.

Note:

The RequireBasicAuthSSL setting only applies when no HTTP Basic
Authentication is in use because no OWSM security policies have been
applied.

Using OWSM Security Policies

When higher degrees of security are desirable, Imaging web services support the
following Oracle Web Services Management (OWSM) security policies.

3-1

• wss_username_token

• wss_username_token_over_ssl

• wss11_username_token_with_message_protection

When applying a security policy to the Imaging web services, remember that the same
policy must be applied to all of the web services with the exception of the
DocumentContentService. The DocumentContentService is designed to use
streaming MTOM that is incompatible with OWSM security policies. Security for
DocumentContentService first requires a separate, stateful login through the
LoginService, which does leverage OWSM security policy. (This information is
primarily significant for making direct web services calls. The proper login sequence
occurs automatically when using the native Java API.)

3.3 Applying OWSM Security Polices to Imaging Web
Services

Security policies are applied to Imaging web services from the WebLogic Server
Administration Console using the following procedure.

1. Log in to Administration Console.

2. Click Deployments. The Summary of Deployments page is displayed.

3. Click the plus (+) icon next to imaging in the Name column of the Deployments
table. The imaging deployment expands.

4. For each imaging web service under Web Services except
DocumentContentService, do the following:

a. Select the web service. The setting page for the service is displayed.

b. Select the Configuration tab. The configuration tab becomes active.

c. Select the WS-Policy tab. The WS-Policy tab becomes active.

d. Click the web service port in the Service Endpoints and Operations column of
the WS-Policy Files Associated With This Web Service table. The Configure
the Policy Type for a Web Service page is displayed.

e. Ensure OWSM is selected and click Next. Note that WebLogic polices are not
supported. The Configure a WebService Policy page ID displayed.

f. Choose a supported service policy from the Available Endpoint Policies field.
Supported polices are listed in the Providing SSL Communication for Basic
Authentication.

g. Click the right arrow to move the selected policy to the Chosen Endpoint
Policies field. Note that only one security policy should be selected.

h. Click Finish. The Save Deployment Plan Assistant page is displayed.

i. Click OK to save the deployment plan.

j. Repeat step Applying OWSM Security Polices to Imaging Web Services for
each web service except DocumentContentService until the same policy is
applied for all services.

5. Click Deployments to return to the Deployments page.

Chapter 3
Applying OWSM Security Polices to Imaging Web Services

3-2

6. Enable the check box next to imaging in the Name column of the Deployments
table and click Update. The Update Application Assistant page is displayed with
the new deployment plan specified next to Deployment plan path.

7. Click Finish. The new policies are applied and the deployment updated.

3.4 Reconfiguring Client-Side Security Policies for Java API
Login

When OWSM security policies are applied to the Imaging web service, Java API code
must use the WsmUserToken class to login rather than the BasicUserToken class.
The WsmUserToken class is a helper class for configuring OWSM client side security
polices, including a set of static constants for setting the correct client side policy.
Depending on the policy being used, addition configuration setting may be required as
well. Refer to OWSM document for complete details on the meaning of the various
configuration options.

The code fragments in Example 3-1 demonstrate possible usages of the
WsmUserToken class for various policy types.

Example 3-1 WsmUserToken Class for Various Policy Types

WsmUserToken userToken = new WsmUserToken ("weblogic", "weblogic");
userToken.setClientPolicy(WsmUserToken.USERNAME_TOKEN_POLICY);
ServicesFactory.login(userToken, wsurl);

Chapter 3
Reconfiguring Client-Side Security Policies for Java API Login

3-3

Part III
Managing Documents in the Imaging
Repository

Part III contains the following chapters:

• Creating Documents

• Searching for Documents

• Retrieving Documents

• Updating a Document

4
Creating Documents

This chapter describes the basic tasks in Imaging, including how to create documents,
list applications, get application properties and field definitions, upload document
content, how to provide metadata for a document, and how to create a document
sample.
This chapter includes the following sections:

• About Creating Documents

• Listing Applications

• Getting Application Properties and Field Definitions

• Uploading Document Content

• Providing Metadata for a Document

• Create Document Sample

4.1 About Creating Documents
The Imaging APIs ApplicationService and DocumentService interfaces are used to
manage applications and documents in the imaging system. All documents must be
associated with an imaging application. The application defines many default features
that are then applied to the documents that are associated with the application. In this
way, an application may be thought of as a template that defines a single document
type. Typically, a single application is created for documents of a single type (for
example, invoices, proposals, contracts, and so on).

This chapter details how to use basic methods used for creating documents in an
application including mechanisms for list and getting existing application definitions
and mechanisms for uploading and indexing documents. At the end of the chapter,
Example 4-1 provides a code sample of the topics presented here.

4.2 Listing Applications
The Imaging API provides two mechanisms for enumerating the list of applications
defined within and Imaging system: ApplicationService.listApplications and
DocumentService.listTargetApplications. Each operation accepts an “Ability"
parameter that specifies which applications to return based the user's security settings.
However, they differ in one which security filter is used.

The ApplicationService.listApplications returns applications based on Application
definition security. Ability.VIEW returns all applications to which the calling user has
view permission. The Ability.MANAGE parameter returns all applications to which that
user has either delete or modify permissions. The intended purpose of this operation is
primarily for code written to manage application definitions.

The DocumentService.listTargetApplications returns applications based on the user's
document permissions within the application, i.e., whether the user has either view

4-1

document or create document permissions for that application. This operation is the
best choice when the client is working with directly documents.

Both of these operations return a java.util.List of NameId objects identifying both the
numerical ID and the textual name for the application.

4.3 Getting Application Properties and Field Definitions
As with list applications, the Imaging API provides two distinct operations for getting
details of the field defined for an application: ApplicationService.getApplication and
DocumentService.getTargetApplication. These operations again differ by the
permissions used to determine whether or not the user is allowed to get the requested
application. ApplicationService.getApplication requires application view permissions.
DocumentService.getTargetApplication requires document view permissions.

Application.getApplication operation is intended for use when managing the definition
itself and provides a parameter for specifying which sections of the definition are
desired. Sections are requested using a SectionSet, which is a container for passing in
a list of SectionFlags. For example, in order to get the application's properties and field
definitions sections, calling code would pass in a SectionSet defined as follows:

sectionSet =
 Application.SectionSet.of(Application.SectionFlag.PROPERTIES,
 Application.SectionFlag.FIELDDEFINITIONS);

The DocumentService.getTargetApplication, however, returns a fixed section set that
automatically includes both the properties and field definitions because these sections
typically required when working with documents.

4.4 Uploading Document Content
Creating a document in an Imaging application is a two step process. In the first step,
the documents binary data is uploaded to the Imaging server using the
DocumentContentService.uploadDocument operation. This operation returns a unique
token (and upload token) that is then used in a subsequent call to
DocumentService.createDocument to index the document into the application. This
uploadToken is valid until the user logs out or until it is used in either a
createDocument or updateDocument call. It may only be used once.

The upload operation accepts data in the form a javax.activation.DataHandler, which
in turn wraps the document content as a javax.activation.DataSource, typically a
javax.activation.FileDataSource. The javax.mail.util package also contains a
ByteArrayDataSource which can wrap the document content from and InputStream.
However, the ByteArrayDataSource will load the entire document into memory on the
client before performing the upload, so it should be used with caution for very large
documents Please refer to the Javadoc for the javax.activation and javax.mail.util
packages for complete details on the use of DataHandlers and DataSources.

4.5 Providing Metadata for a Document
The Document.FieldValue class in the Imaging API is used to provide document
metadata when indexing a document. FieldValues are passed to createDocument as a
java.util.List of Document.FieldValue instances. Each FieldValue in the list will map to
a FieldDefinition in the application.

Chapter 4
Getting Application Properties and Field Definitions

4-2

The Document.FieldValue object behaves similarly to NameId definition classes in that
they can be defined to map to an application field definition by either Field ID or Field
Name. If both are supplied, then the ID value supersedes the name value.

A Document.FieldValue also contains a value property. The type of the value must be
compatible with the Imaging FieldType of the field definition. The Imaging type of the
value is automatically determined by the Java type used. The following table lists the
Imaging field types and the corresponding compatible Java types.

Imaging Field Type Java Type

FieldType.Date java.util.Date, java.util.GregorianCalendar

FieldType.Decimal java.math.BigDecimal, float, decimal

FieldType.Number Integer, Long,

FieldType.Text String

In the table, the Java types in bold are the native types associated with the FieldType.
The FieldValue will coerce other types in the table into the native type. Caution should
be used when using types other than the native types since precision on the value
may sometime be lost during the coercion process.

When FieldValues are use with createDocument, all field values that are defined as
required must be supplied. For fields that are not required, it is also possible to
deliberately set the value to null by including the FieldValue in the list but setting the
FieldValue's value to null. When doing this, the FieldValue cannot determine the
necessary field type based on the null Java type, so the FieldValue constructor
accepting an Imaging FieldType must be used.

4.6 Create Document Sample
Example 4-1 demonstrates the basic concepts discussed in this section.

Example 4-1 text

package devguidesamples;

import java.math.BigDecimal;

import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Locale;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;

import oracle.imaging.Application;
import oracle.imaging.ApplicationService;
import oracle.imaging.BasicUserToken;
import oracle.imaging.Document;
import oracle.imaging.DocumentContentService;
import oracle.imaging.DocumentService;
import oracle.imaging.ImagingException;
import oracle.imaging.NameId;
import oracle.imaging.ServicesFactory;
import oracle.imaging.UserToken;

Chapter 4
Create Document Sample

4-3

public class CreateDocumentSample {
 public static void main(String[] args) {

 try { // try-catch
 UserToken credentials = new BasicUserToken("ipmuser", "ipmuserpwd");
 ServicesFactory servicesFactory =
 ServicesFactory.login(credentials, Locale.US,
 "http://ipmhost:16000/imaging/ws");
 try { // try-finally to ensure logout
 DocumentService docService = servicesFactory.getDocumentService();
 DocumentContentService docContentService =
 servicesFactory.getDocumentContentService();
 NameId invoicesAppNameId = null;

 // List the viewable applications to confirm that "Invoices" exists
 List<NameId> appsList =
 docService.listTargetApplications(Document.Ability.CREATEDOCUMENT);
 for (NameId nameId: appsList) {
 if (nameId.getName().equals("Invoices")) {
 invoicesAppNameId = nameId;
 }
 }
 if (invoicesAppNameId == null) {
 System.out.println("Invoices application not found.");
 return;
 }

 // Upload document content
 String fileName = "C:/PathToImages/invoice1234.tif";
 DataHandler fileData = new DataHandler(new FileDataSource(fileName));
 String uploadToken = docContentService.uploadDocument(fileData,
 "invoice1234.tif");

 // Index the document
 List<Document.FieldValue> fieldValues = new
 ArrayList<Document.FieldValue>();
 fieldValues.add(new Document.FieldValue("Invoice Number", 1234));
 fieldValues.add(new Document.FieldValue("Purchase Order", 4321));
 fieldValues.add(new Document.FieldValue("Vendor", "Acme Supply"));
 fieldValues.add(new Document.FieldValue("Amount", new
 BigDecimal("99.95")));
 fieldValues.add(new Document.FieldValue("Receive Date", new Date()));
 docService.createDocument(uploadToken, invoicesAppNameId,
 fieldValues, true);
 }
 finally {
 if (servicesFactory != null) {
 servicesFactory.logout();
 }
 }
 }
 catch (ImagingException e) {
 System.out.println(e.getMessage());
 }
 }
}

Chapter 4
Create Document Sample

4-4

5
Searching for Documents

This chapter has the following sections:

• About Searching for Documents

• Listing Saved Searches

• Providing Search Arguments

• Executing a Search

• Parsing Search Results

• Execute Search Sample

5.1 About Searching for Documents
The Imaging API provides the SearchService for enumerating and executing saved
searches. The execution of a saved search requires the user to provide the NameId of
the search and a List of SearchArguments objects for the search. The arguments form
the variable portion of the WHERE clause in the search. These are passed to the
SearchService. executeSavedSearch operation, which returns a Search.ResultSet. At
the end of the chapter, Example 5-1 provides a code sample of the topics presented
here.

5.2 Listing Saved Searches
The Imaging API provides the SearchService.listSearches methods for listing
searches that are available for the logged in user. This operation accepts an Ability
parameter that specifies which applications to return based the user's security settings.
It returns applications based on search definition security. Ability.VIEW returns all
searches to which the calling user has view permission. The Ability.MANAGE
parameter returns all searches to which that user has either delete or modify
permissions.

The operation returns a java.util.List of NameId objects identifying both the numerical
ID and the textual name for the search.

5.3 Providing Search Arguments
A saved search may define one or more search parameters that Imaging will assemble
into the WHERE clause for the search. In the Imaging API, the SearchArgument class
is used to pass arguments for these parameters. The constructor for SearchArgument
accepts the name of the parameter as well as SearchValue object specifying its value.
The operator for the argument must be set using the SearchArgument.setOperator
method.

Multiple SearchArguments are passed as a java.util.List. The order of the arguments in
the list is not significant.

5-1

When calling SearchService.getSearchParameters and passing search NameId,
SearchParameters are returned. This defines the parameters defined by the search
and can help you build the SearchArguments necessary to execute the search. The
SearchParameters also defines whether each parameter is required.

5.4 Executing a Search
The SearchService.executeSavedSearch method returns the results of the search in
the form of a Search.ResultSet. The column labels are available in the Search.Result
from the getColumns method, which returns an ordered java.util.List of Strings.

5.5 Parsing Search Results
The rows of the results are available from the Search.Results getResults method
which returns a java.util.List of Search.Result objects. Each Search.Result represents
a single document found by the search.

The search result columns are returned by the getColumnValues which is an ordered
list of TypedValues. The order matches the order of the column labels list. System field
values for the document are accessible from Document object returned by
Search.Result.getDocument.

5.6 Execute Search Sample
Example 5-1 demonstrates the basic concepts discussed in this section.

Example 5-1 Sample Search Execution

package devguidesamples;

import java.util.ArrayList;
import java.util.List;
import java.util.Locale;

import oracle.imaging.BasicUserToken;
import oracle.imaging.ImagingException;
import oracle.imaging.NameId;
import oracle.imaging.Search;
import oracle.imaging.SearchArgument;
import oracle.imaging.SearchService;
import oracle.imaging.SearchValue;
import oracle.imaging.ServicesFactory;
import oracle.imaging.TypedValue;
import oracle.imaging.UserToken;

public class ExecuteSearchSample {
 public static void main(String[] args) {
 try { // try-catch
 UserToken credentials = new BasicUserToken("ipmuser", "ipmuserpwd");
 ServicesFactory servicesFactory =
 ServicesFactory.login(credentials, Locale.US,
 "http://ipmhost:16000/imaging/ws");

 try { // try-finally to ensure logout
 SearchService searchService = servicesFactory.getSearchService();

 NameId invoiceSearchNameId = null;

Chapter 5
Executing a Search

5-2

 // List the viewable applications to confirm that "Invoices" exists
 List<NameId> searchList =
 searchService.listSearches(Search.Ability.VIEW);
 for (NameId nameId: searchList) {
 if (nameId.getName().equals("Invoices")) {
 invoiceSearchNameId = nameId;
 }
 }

 if (invoiceSearchNameId == null) {
 System.out.println("Invoices search not found.");
 return;
 }

 SearchValue searchValue = new SearchValue(SearchValue.Type.NUMBER, 1234);
 SearchArgument searchArgument =
 new SearchArgument("Invoice Number", searchValue);
 searchArgument.setOperatorValue(Search.Operator.EQUAL);

 List<SearchArgument> searchArguments =
 new ArrayList<SearchArgument>();
 searchArguments.add(searchArgument);

 Search.ResultSet resultSet =
searchService.executeSavedSearch(invoiceSearchNameId,searchArguments);

 // Display Column Headers
 System.out.print("DocumentId" + " ");
 for (String column: resultSet.getColumns()) {
 System.out.print(column + " ");
 }
 System.out.println();

 // Display result Rows
 for (Search.Result row: resultSet.getResults()) {
 System.out.println(row.getDocument().getId());
 for (TypedValue typedValue: row.getColumnValues()) {
 System.out.print(typedValue.getStringValue() + " ");
 }
 System.out.println();
 }
 }
 finally {
 if (servicesFactory != null) {
 servicesFactory.logout();
 }
 }
 }
 catch (ImagingException e) {
 System.out.println(e.getMessage());
 }
 }
}

Chapter 5
Execute Search Sample

5-3

6
Retrieving Documents

This chapter has the following sections:

• About Retrieving Documents

• Retrieving an Original Document

• Retrieving a Rendition of a Document with Annotations

• Retrieving Individual Pages from a Document

• Retrieve Document Sample

6.1 About Retrieving Documents
The Imaging API provides several document retrieval operations on the
DocumentContentService. All of the retrieval methods accept the unique document
identifier as input and return document content as a javax.activation.DataHandler.

When processing the DataHandler results, calling code should assume that the
DataHandler is a wrapper around an open stream to the server and should process
the results immediately, either by persisting the content to an output stream, such as a
file, using the DataHandler.writeTo method, or by reading the input stream directly by
using the DataHandler.getInputStream method. If the input stream is accessed
directly, the caller must be sure to close the stream when the reading of the stream is
complete.

Some of the retrieval methods that perform rendering operations on the original
document in its native format, also accept additional parameters for controlling the
rendering process. At the end of the chapter, Example 6-1 provides a code sample of
the topics discussed.

6.2 Retrieving an Original Document
The original document is retrieved using the DocumentContentService.retrieve
operation. This operation is the simple retrieval method and takes only the document
ID as an argument. It returns the binary content of the document as a DataHandler.
The Imaging render engine does no processing on the document in this case. Note,
however, that this operation will return an exception if the document has secure
annotations associated with it and the calling user does not have permissions to
remove those annotations.

6.3 Retrieving a Rendition of a Document with Annotations
The document can be rendered along with its associated annotations using the
DocumentContentService.retrieveRendition operation. This operation accepts a
number of arguments including the documentId and a flag indicating whether or not to
include annotations. It also includes a parameter for specify the page set that is to be
rendered. Specifying multiple pages for this parameter will results in single, multi-page

6-1

document containing only those pages. Passing a null, or page zero, for this
parameter will render the entire document. Refer the Javadoc for the retrieveRendition
for complete details other parameters to the method.

The retrieveRendition method returns a Rendition class instance. The DataHandler
containing the document content is accessible from the Rendition.getContent()
method.

6.4 Retrieving Individual Pages from a Document
While the retrieveRendition method is used to return a single, possible multiple page
rendition of the document, individual pages can be retrieved using the
DocumentContentService.retrievePage. This method provides detailed control over
how the page is rendered by accepting a RenderOptions class instance.
RenderOptions provides options for specifying page rotation, page scaling, fit mode,
output format, and others.

The retrievePage method returns a RenderResult class instance, which contains a List
of RenderPage. The DataHandler content for page is accessible from
RenderPage.getPageData().

6.5 Retrieve Document Sample
Example 6-1 demonstrates the basic concepts discussed in this section.

Example 6-1 Sample Document Retrieval

package devguidesamples;

import java.io.FileOutputStream;

import java.io.IOException;
import java.io.InputStream;

import java.util.ArrayList;
import java.util.List;
import java.util.Locale;

import javax.activation.DataHandler;

import oracle.imaging.BasicUserToken;
import oracle.imaging.DocumentContentService;
import oracle.imaging.DocumentService;
import oracle.imaging.ImagingException;
import oracle.imaging.NameId;
import oracle.imaging.RenderOptions;
import oracle.imaging.RenderPage;
import oracle.imaging.RenderResult;
import oracle.imaging.Rendition;
import oracle.imaging.Search;
import oracle.imaging.SearchArgument;
import oracle.imaging.SearchService;
import oracle.imaging.SearchValue;
import oracle.imaging.ServicesFactory;
import oracle.imaging.UserToken;

public class RetrieveDocumentSample {
 public static void main(String[] args)

Chapter 6
Retrieving Individual Pages from a Document

6-2

 throws IOException {
 try { // try-catch
 UserToken credentials = new BasicUserToken("ipmuser", "ipmuserpwd");
 ServicesFactory servicesFactory =
 ServicesFactory.login(credentials, Locale.US, "http://ipmhost:16000/
imaging/ws");

 try { // try-finally to ensure logout
 SearchService searchService = servicesFactory.getSearchService();
 DocumentContentService docContentService =
 servicesFactory.getDocumentContentService();

 // The find the document with invoice number 1234 using the Invoices
search
 List<SearchArgument> searchArguments = new ArrayList<SearchArgument>();
 SearchValue searchValue = new SearchValue(SearchValue.Type.NUMBER, 1234);
 SearchArgument searchArgument = new SearchArgument("Invoice Number",
searchValue);
 searchArgument.setOperatorValue(Search.Operator.EQUAL);
 searchArguments.add(searchArgument);
 Search.ResultSet resultSet =
 searchService.executeSavedSearch(new NameId("Invoices"),
searchArguments);
 if (resultSet.getTotalResults() == 0) {
 System.out.println("Document not found");
 }
 String documentId = resultSet.getResults().get(0).getDocumentId();
 String documentName =
resultSet.getResults().get(0).getDocument().getName();

 DataHandler fileData = null;
 FileOutputStream outputStream = null;

 // retrieve original native document content.
 fileData = docContentService.retrieve(documentId);
 outputStream = new FileOutputStream(documentName);
 fileData.writeTo(outputStream);
 outputStream.close();

 // Retrieve a document rendition with annotations
 Rendition rendition = docContentService.retrieveRendition(documentId,
 true,
 true,

RenderOptions.RenditionOutput.ORIGINALORTIFF,
 null);

 fileData = rendition.getContent();
 outputStream = new FileOutputStream(documentName);
 fileData.writeTo(outputStream);
 outputStream.close();

 //Render a specific page to JPEG format.
 RenderOptions renderOptions = new RenderOptions();
 renderOptions.setPageNumber(2);
 renderOptions.setFormat(RenderOptions.OutputFormat.JPEG);
 RenderResult result = docContentService.retrievePage(documentId,
renderOptions);
 RenderPage page = result.getPages()[0];

 fileData = page.getPageData();

Chapter 6
Retrieve Document Sample

6-3

 outputStream = new FileOutputStream(documentName);
 fileData.writeTo(outputStream);
 outputStream.close();
 }
 finally {
 if (servicesFactory != null) {
 servicesFactory.logout();
 }
 }
 }
 catch (ImagingException e) {
 System.out.println(e.getMessage());
 }
 }
}

Chapter 6
Retrieve Document Sample

6-4

7
Updating a Document

This chapter has the following sections:

• About Updating a Document

• Uploading Revised Document Content

• Updating Metadata for a Document

• Update Document Sample

7.1 About Updating a Document
The Imaging API provides the DocumentService.updateDocument operation for
updating both a document's metadata as well as a document's content. This operation
accepts both an uploadToken returned from a
DocumentContentService.uploadDocument operation, and a List for FieldValue
instances containing field value changes. Either or both of these parameters may be
supplied meaning that the updated can either be a field value only update, a document
content only update, or it can update both field values and content. At the end of the
chapter, Example 7-1 provides a code sample of the topics presented here.

7.2 Uploading Revised Document Content
Updating document content in an Imaging application is a two step process. In the first
step, the documents binary data is uploaded to the Imaging server using the
DocumentContentService.uploadDocument operation. This operation returns a unique
upload token that is then used in a subsequent call to
DocumentService.updateDocument to index the document into the application. This
uploadToken is valid until the user logs out or until it is used in either a
createDocument or updateDocument call. It may only be used once.

7.3 Updating Metadata for a Document
The Document.FieldValue class in the Imaging API is used to provide document
metadata when indexing a document. FieldValues are passed to udpateDocument as
a java.util.List of Document.FieldValue instances. Each FieldValue in the list will maps
to a FieldDefinition in the application.

The Document.FieldValue object behaves similarly to NameId definition classes in that
they can be defined to map to an application field definition by either Field ID or Field
Name. If both are supplied, then the ID value supersedes the name value.

A Document.FieldValue also contains a value property. The type of the value must be
compatible with the Imaging FieldType of the field definition. The Imaging type of the
value is automatically determined by the Java type used. The following table lists the
Imaging field types and the corresponding compatible java types.

7-1

Imaging Field Type Java Type

FieldType.Date java.util.Date, java.util.GregorianCalendar

FieldType.Decimal java.math.BigDecimal, float, decimal

FieldType.Number Integer, Long,

FieldType.Text String

In the table, the Java types in bold are the native types associated with the FieldType.
The FieldValue will coerce other types in the table into the native type. Caution should
be used when using types other than the native types since precision on the value
may sometime be lost during the coercion process.

When FieldValues are use with updateDocument, the list need not contain every field
defined in the document's application. Only those field values needing to change
should be supplied. And field that is not supplied with be ignored when updating the
document. For fields that are not defines as required, it is also possible to deliberately
set a document field value to null by including the FieldValue in the list but setting the
FieldValue's value to null. When doing this, the FieldValue cannot determine the
necessary field type based on the null Java type, so the FieldValue constructor
accepting an Imaging FieldType must be used.

7.4 Update Document Sample
Example 7-1 demonstrates the basic concepts discussed in this section:

Example 7-1 Sample Document Update

package devguidesamples;

import java.io.FileOutputStream;
import java.io.IOException;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Locale;

import javax.activation.DataHandler;
import javax.activation.FileDataSource;

import oracle.imaging.BasicUserToken;
import oracle.imaging.Document;
import oracle.imaging.DocumentContentService;
import oracle.imaging.DocumentService;
import oracle.imaging.ImagingException;
import oracle.imaging.NameId;
import oracle.imaging.RenderOptions;
import oracle.imaging.RenderPage;
import oracle.imaging.RenderResult;
import oracle.imaging.Rendition;
import oracle.imaging.Search;
import oracle.imaging.SearchArgument;
import oracle.imaging.SearchService;
import oracle.imaging.SearchValue;
import oracle.imaging.ServicesFactory;
import oracle.imaging.TypedValue;

Chapter 7
Update Document Sample

7-2

import oracle.imaging.UserToken;

public class UpdateDocumentSample {
 public static void main(String[] args)
 throws IOException {
 try { // try-catch
 UserToken credentials = new BasicUserToken("ipmuser", "ipmuserpwd");
 ServicesFactory servicesFactory =
 ServicesFactory.login(credentials, Locale.US, "http://ipmhost:16000/
imaging/ws");

 try { // try-finally to ensure logout
 SearchService searchService = servicesFactory.getSearchService();
 DocumentService docService = servicesFactory.getDocumentService();
 DocumentContentService docContentService =
 servicesFactory.getDocumentContentService();

 // The find the document with invoice number 1234 using the Invoices
search
 List<SearchArgument> searchArguments = new ArrayList<SearchArgument>();
 SearchValue searchValue = new SearchValue(SearchValue.Type.NUMBER, 1234);
 SearchArgument searchArgument = new SearchArgument("Invoice Number",
searchValue);
 searchArgument.setOperatorValue(Search.Operator.EQUAL);
 searchArguments.add(searchArgument);
 Search.ResultSet resultSet =
 searchService.executeSavedSearch(new NameId("Invoices"),
searchArguments);
 if (resultSet.getTotalResults() == 0) {
 System.out.println("Document not found");
 }
 String documentId = resultSet.getResults().get(0).getDocumentId();
 // update field values only.
 List<Document.FieldValue> fieldValues = new
ArrayList<Document.FieldValue>();
 fieldValues.add(new Document.FieldValue("Amount", new
BigDecimal("99.95")));
 docService.updateDocument(documentId, null, fieldValues, false);

 // update document content
 String fileName = "C:/PathToImages/NewInvoice1234.tif";
 DataHandler fileData = new DataHandler(new FileDataSource(fileName));
 String uploadToken = docContentService.uploadDocument(fileData,
"invoice1234.tif");
 docService.updateDocument(documentID, uploadToken, null, false);

 // update field values and document content at once
 fieldValues = new ArrayList<Document.FieldValue>();
 fieldValues.add(new Document.FieldValue("Receive Date", new Date())); //
now
 fileName = "C:/PathToImages/AnotherNewInvoice1234.tif";
 fileData = new DataHandler(new FileDataSource(fileName));
 uploadToken = docContentService.uploadDocument(fileData,
"invoice1234.tif");
 docService.updateDocument(documentID, uploadToken, fieldValues, false);
 }
 finally {
 if (servicesFactory != null) {
 servicesFactory.logout();
 }
 }

Chapter 7
Update Document Sample

7-3

 }
 catch (ImagingException e) {
 System.out.println(e.getMessage());
 }
 }
}

Chapter 7
Update Document Sample

7-4

Part IV
Integrating Imaging Into Your Environment

Part IV contains the following chapters:

• Using the Imaging API as Pure Web Services

• Integrating Imaging with BPEL

• Accessing User Interface Functions Through URL Tools

• Making REST Paged Rendition Requests

8
Using the Imaging API as Pure Web
Services

This chapter has the following sections:

• About Using the Imaging API as Pure Web Services

• Using Web Services in Stateless Sessions

• Using Web Services in a Stateful Session

• Using the AXF Web Service

8.1 About Using the Imaging API as Pure Web Services
Although the Native Java API is the most convenient way to leverage Imaging
services, it is mostly a set of proxy and utility classes that wrap calls to the Imaging
web services set. All of the functionality exposed by the native Java API is available
using direct web service calls as well. Use of the API through direct web services
requires an in depth understanding of WSDL documents and of environment specific
techniques for invoking web services.

8.1.1 Locating Web Service WSDLs
Understanding how to invoke Imaging web services starts with knowing where to
access the WSDL documentation. The following is a complete list of the Imaging
service WSDL locations. The host name and port number will vary depending on your
installation.

• http://<ipmhost>:<port>/imaging/ws/ApplicationService?wsdl

• http://<ipmhost>:<port>/imaging/ws/ConnectionService?wsdl

• http://<ipmhost>:<port>/imaging/ws/DocumentContentService?wsdl

• http://<ipmhost>:<port>/imaging/ws/DocumentService?wsdl

• http://<ipmhost>:<port>/imaging/ws/ImportExportService?wsdl

• http://<ipmhost>:<port>/imaging/ws/LoginService?wsdl

• http://<ipmhost>:<port>/imaging/ws/PreferenceService?wsdl

• http://<ipmhost>:<port>/imaging/ws/SearchService?wsdl

• http://<ipmhost>:<port>/imaging/ws/SecurityService?wsdl

• http://<ipmhost>:<port>/imaging/ws/TicketService?wsdl

8.2 Using Web Services in Stateless Sessions
The majority of Imaging web services are capable of operating in either stateless or
stateful mode. In stateless mode, authentication credentials passed in each service

8-1

request are used to transparently log the user in, perform the requested operation, and
then log out before returning.

8.3 Using Web Services in a Stateful Session
In stateful operation, a call is first made to the LoginService.login operation to establish
the user session with Imaging. Credentials to the login method are provided by the
security policy currently in effect, or through HTTP Basic Auth if no policy is applied.

The jsessionid cookie returned by the log in operation is subsequently passed to call
other services, thus maintaining session state from call to call. Note that web service
security still requires that each call pass user credentials in order to comply with
OWSM security policy enforcement. A call to LoginService.logout ends the user
session.

As mentioned above, most Imaging services operate in either mode. The exception to
this is the DocumentContentService. DocumentContentService operations are capable
of leveraging a streaming Message Transmission Optimization Mechanism (MTOM)
feature that is incompatible with OWSM security policies. Therefore, the stateful mode
is required to wrap appropriate security around DocumentContentService operations.

8.4 Using the AXF Web Service
You can generate WSDL files for interfacing with the AXF Server services. The WSDL
files provide the ability to pass data that can be understood by the AXF Server
services, which enables access to the various commands within WebCenter Content.

8.4.1 Locating the AXF Web Service WSDL File
The AXF Web Service file can be found at the following location. The host name and
port number will vary depending on your installation.

http://<host>:<port>/axf-ws2/AxfSolutionMediatorService?wsdl

Note:

The above URL is valid only for the IPM Server.

8.4.2 WSDL File Structure
WSDL files are formally structured with elements that contain a description of the data
to be passed to the web service. This structure enables both the sending application
and the receiving application to interpret the data being exchanged.

WSDL elements contain a description of the operation to perform on the data and a
binding to a protocol or transport. This permits the receiving application to both
process the data and interpret how to respond or return data. Additional sub elements
may be contained within each WSDL element.

The WSDL file structure includes these major elements:

• Data Types: Generally in the form of XML schema to be used in the messages.

Chapter 8
Using Web Services in a Stateful Session

8-2

• Message: The definition of the data in the form of a message either as a complete
document or as arguments to be mapped to a method invocation.

• Port Type: A set of operations mapped to an address. This defines a collection of
operations for a binding.

• Binding: The actual protocol and data formats for the operations and messages
defined for a particular port type.

• Service and Port: The service maps the binding to the port and the port is the
combination of a binding and the network address for the communication
exchange.

8.4.3 Data Type
The Data Type <types> defines the complex types and associated elements. Web
services supports both simple data types (such as string, integer, or boolean) and
complex data types. A complex type is a structured XML document that contains
several simple types or an array of subelements.

The following code fragment for the AxfRequest set defines the
CommandNamesapce, solutionNamespace request Parameters, UserContext and
username elements and specifies that they are strings.

<xs:complexType name="axfRequest">
 <xs:sequence>
 <xs:element name="commandNamespace" type="xs:string"
 minOccurs="0" />
 <xs:element name="conversationId" type="xs:string"
 minOccurs="0" />
 <xs:element name="requestParameters">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="entry" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="key" minOccurs="0"
 type="xs:string" />
 <xs:element name="value" minOccurs="0"
 type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="role" type="xs:string" minOccurs="0" />
 <xs:element name="solutionNamespace" type="xs:string"
 minOccurs="0" />
 <xs:element name="systemName" type="xs:string" minOccurs="0" />
 <xs:element name="userContext">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="entry" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="key" minOccurs="0"
 type="xs:string" />

Chapter 8
Using the AXF Web Service

8-3

 <xs:element name="value" minOccurs="0"
 type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="username" type="xs:string" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

Similarly, the following code fragment for the AxfResponse set defines the
ConversationId, Errorcode, ErrorMessage and response commands elements and
specifies that they are strings.

<xs:complexType name="executeResponse">
 <xs:sequence>
 <xs:element name="response" type="tns:axfResponse"
 minOccurs="0" />
 </xs:sequence>
</xs:complexType>
<xs:complexType name="axfResponse">
 <xs:sequence>
 <xs:element name="conversationId" type="xs:string"
 minOccurs="0" />
 <xs:element name="errorCode" type="xs:string" minOccurs="0" />
 <xs:element name="errorMessage" type="xs:string"
 minOccurs="0" />
 <xs:element name="pid" type="xs:string" minOccurs="0" />
 <xs:element name="responseCommands" type="tns:responseCommand"
 nillable="true" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>
<xs:complexType name="responseCommand">
 <xs:sequence>
 <xs:element name="command" type="xs:string" minOccurs="0" />
 <xs:element name="value" type="xs:string" minOccurs="0" />
 </xs:sequence>
</xs:complexType>

8.4.4 Message
The Message <message> defines the data as arguments to be mapped to a method
invocation.

<message name="execute">
 <part name="parameters" element="tns:execute" />
</message>
<message name="executeResponse">
 <part name="parameters" element="tns:executeResponse" />
</message>

8.4.5 Port Type
The Port Type <portType> defines a collection of operations for a binding. The
DocInfo.wsdl file provides the DocInfoSoap and the DocInfo operation name (method
name) with I/O information for processing the message.

Chapter 8
Using the AXF Web Service

8-4

<portType name="AxfSolutionMediatorWS">
 <operation name="execute">
 <input message="tns:execute" />
 <output message="tns:executeResponse" />
 </operation>
</portType>

8.4.6 Binding
The binding <binding> defines the actual protocol and data formats for the operations
and messages for the particular port type.

<binding name="AxfSolutionMediatorPortBinding" type="tns:AxfSolutionMediatorWS">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="execute">
 <soap:operation soapAction="execute" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
</binding>

8.4.7 Service and Port
The service <service> maps the binding to the port. The port is the combination of a
binding and the network address for the communication exchange. The port is used to
expose a set of port types (operations) on the defined transport.

<service name="AxfSolutionMediatorService">
 <port name="AxfSolutionMediatorPort" binding="tns:AxfSolutionMediatorPortBinding">
 <soap:address location="http://<MachineName>:<Port>/axf-ws2/
AxfSolutionMediatorService" />
 </port>
</service>

Chapter 8
Using the AXF Web Service

8-5

9
Integrating Imaging with BPEL

This chapter has the following sections:

• About Integrating Imaging with BPEL

• Invoking Imaging Web Services from a BPEL Process

• Updating Imaging Metadata from a BPEL Process

9.1 About Integrating Imaging with BPEL
For additional information on workflow integration points, connection configuration,
security and fault reporting, see Integrating with a Workflow in Administering Oracle
WebCenter Content: Imaging.

9.2 Invoking Imaging Web Services from a BPEL Process
One possible integration point between Imaging and BPEL is a service call into BPEL
from Workflow Agent to create a new process instance using document metadata
stored in Imaging. It is also possible for the BPEL process to make web service calls
back to Imaging. Such calls can retrieve the latest document metadata, additional
metadata, or update document metadata to synchronize changes made during the
execution of the process instance.

Calls to any Imaging web service from BPEL will use the same general procedure:

1. On the composite design diagram, select the Web Service service adapter from
the Component Palette and drag it to the External References swim lane.

2. Enter a name for the service and the WSDL URL for the service. Imaging web
service WSDLS take the form:

http://<host>:<port>/imaging/ws/<service>?wsdl

Where <service> would be one of the possible Imaging Web Service end points
(ApplicationService, DocumentService, etc.).

3. On the composite diagram, link the BPEL process to the newly create external
reference.

4. Open the BPEL process diagram. In this diagram, the external reference added to
the composite will appear in the Partner Links swim lane.

5. Add an Invoke activity to the diagram and link it to the web service partner link.

6. In the invoke properties dialog, select the desired operation, and then click the +
button next to the Input and Output variables to link the Invoke activity.

7. Click OK. The dialog box closes.

8. Add a Transform activity to the BPEL process diagram before the Invoke activity.

9-1

9. In the properties for the Transform Activity, select an appropriate source variable
from the process, and select the input variable of the Invoke activity created in
step 5 as the Target Variable.

10. Click the + next to the Mapper File to define the transformation mapping of
process data into the web service input payload.

11. If output is expected to be returned from the Imaging web service invoke, a
Transform or Assign activity can be used after the Invoke to transfer data from the
Invoke output variable back into process variables.

9.3 Updating Imaging Metadata from a BPEL Process
As mentioned above, the transform definition from BPEL instance variables to Imaging
web service input variables is a complex topic that is dependent on the specific
schemas involved. However, because updating document metadata is a common use
case for BPEL to Imaging interaction, Example 9-1 shows how the transform might be
defined for a DocumentService.updateDocument operation used to modify document
field values.

Example 9-1 Invoking DocumentService.updateDocument Sample

In this example, a purchase order document is indexed into Imaging and a BPEL
process instance is created in an approval process. During the execution of the
approval process, the instance is approved or denied. At the end of the process,
Imaging needs to be updated with the approval status and the name of the user setting
the status. This example assumes the following configuration.

Application Definition contains the following fields:

• PurchaseOrder: id=1, type string

• ApprovedBy: id=2, type string

• ApprovedStatus: id=3, type string

The BPEL Process variable is defined as follows:

<element name="process">
 <complexType>
 <sequence>
 <element name="docId" type="string"/>
 <element name="docURL" type="string"/>
 <element name="poNumber" type="string"/>
 <element name="approvedBy" type="string"/>
 <element name="approvedStatus" type="string"/>
 </sequence>
 </complexType>
</element>

An external partner link is defined using the document service WSDL:

http://host:port/imaging/ws/DocumentService?wsdl.

The updateDocument operation payload type is defined as follows:

<xs:complexType name="updateDocument">
 <xs:sequence>
 <xs:element name="documentId" type="xs:string" minOccurs="0"/>
 <xs:element name="uploadToken" type="xs:string" minOccurs="0"/>
 <xs:element name="fieldValues" type="tns:FieldValue"

Chapter 9
Updating Imaging Metadata from a BPEL Process

9-2

 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="updateAnnotations" type="xs:boolean"/>
 </xs:sequence>
</xs:complexType>

For modifying document field values, the elements that are significant are the
documented elements and the fieldValues element. The FieldValue type and the type's
references are defined as follows:

<xs:complexType name="FieldValue">
 <xs:complexContent>
 <xs:extension base="tns:baseId">
 <xs:sequence>
 <xs:element name="value" type="tns:TypedValue" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="id" type="xs:long" use="required"/>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="TypedValue">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="tns:FieldType"/>
 </xs:extension>
 </xs:simpleContent>
</xs:complexType>
<xs:simpleType name="FieldType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="TEXT"/>
 <xs:enumeration value="NUMBER"/>
 <xs:enumeration value="DECIMAL"/>
 <xs:enumeration value="DATE"/>
 </xs:restriction>
 </xs:simpleType>

Although the XSD for FieldValue looks rather complicated, the following sample XML
instance of FieldValue demonstrates that it is actually fairly simple.

<fieldValues name="ApprovedStatus", id="3">
 <value type="TEXT">
 APPROVED
 </value>
</fieldValues>

The name and ID attributes in the fieldValues node are the name and ID of the
document field value to be modified. In practice, providing one or the other is enough
to identify the field. The value element provides the new value of the document field,
and the type attribute, which is one of TEXT, NUMBER, DECIMAL, or DATE) indicates
the Imaging type of data being provided.

The updateDocument type XSD indicates that the fieldValues has an unbounded
maxOccurs attribute. In fact, the service expects that there be one instance of the
element for each document field value that is being modified. Field Values that are not
being modified need not be supplied.

Finally, the XSL transform in the BPEL process must assign the docId element from
the BPEL instance variable to the documentId node in updateDocument and transform
the ApprovedBy and ApprovedStatus values in the BPEL process variable into two
FieldValue elements. The transform is defined as follows:

Chapter 9
Updating Imaging Metadata from a BPEL Process

9-3

<xsl:template match="/">
 <tns:updateDocument>
 <documentId>
 <xsl:value-of select="/client:process/client:docId"/>
 </documentId>
 <xsl:for-each select="/client:process/client:approvedBy">
 <fieldValues>
 <xsl:attribute name="name">
 <xsl:text>ApprovedBy</xsl:text>
 </xsl:attribute>
 <value>
 <xsl:attribute name="type">
 <xsl:text>TEXT</xsl:text>
 </xsl:attribute>
 <xsl:value-of select="/client:process/client:approvedStatus"/>
 </value>
 </fieldValues>
 </xsl:for-each>
 <xsl:for-each select="/client:process/client:approvedStatus">
 <fieldValues>
 <xsl:attribute name="name">
 <xsl:text>ApprovedBy</xsl:text>
 </xsl:attribute>
 <value>
 <xsl:attribute name="type">
 <xsl:text>TEXT</xsl:text>
 </xsl:attribute>
 <xsl:value-of select="/client:process/client:approvedStatus"/>
 </value>
 </fieldValues>
 </xsl:for-each>
 </tns:updateDocument>
</xsl:template>

Chapter 9
Updating Imaging Metadata from a BPEL Process

9-4

10
Accessing User Interface Functions
Through URL Tools

This chapter has the following sections:

• About Accessing User Interface Functions Through URL Tools

• Using URL Tools

The examples used in this chapter assume that there is an existing Imaging
application, that it has one or more saved documents, and that it has a search
previously saved.

10.1 About Accessing User Interface Functions Through
URL Tools

URL tools are a set of URLs in the Imaging user interface that provide direct access to
specific user interface functions, such as executing a search or viewing a document.
These tools are exposed through a specific access page and are supported as official
APIs into the application. Imaging 11g URL tools are implemented in a manner similar
to the previous Imaging 10g URL tools.

This section covers basic information about how URL tools are implemented in
Imaging 11g. They are useful for determining what URL tools are installed on a
specific server, or for maintaining installed URL tools. Because of the centralized
nature of URL tool implementations in an imaging-ui project, it is easy to determine
what tools are available on a particular code base. Additionally, through examination of
the code, it is possible to determine the expected parameters and behavior of a
particular URL tool.

10.2 Using URL Tools
The access point for the URL tools is currently the "UrlTools.jspx" page found in the
following location: http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx

The following tools are currently supported:

• Search URL Tool: provides direct access to the search UI tool.

• Viewer URL Tool: provides direct access to the viewer UI tool.

• Upload URL Tool: provides direct access to the upload UI tool.

• User Preferences URL Tool: provides direct access to the user preferences UI
tool.

10-1

10.2.1 Supported URL Tool Parameters
The following URL parameters are used by all the tools and can be added as a
parameter to any of the URL tools. Semicolon delimited Parameter Names indicate
that multiple parameter names mean the same thing. This is for backward compatibility
with the names used in Imaging 10g.

Parameter Name Description Valid Values Default

HideBanner Indicates the banner should be shown or
not shown. By default, the banner is shown.
Not used by the ViewDocument tool.

1 or true:

Hide the banner

0 or false (default):

Show the banner

0 - Show the
banner on all URL
tools unless
otherwise noted

HideWorkcenter Indicates the Navigation Pane of the UI
should not be shown. Not used by the
ViewDocument tool.

1 or true:

Hide the Navigation Pane

0 or false:

Show the Navigation Pane

1 - Hide the
Navigation Pane
on all URL Tools
(unless otherwise
noted)

LockBanner Indicates the banner should be locked or
not locked. Locking the banner means that
it is hidden and there is no way to expand it.

HideBanner=0 will override the existence of
this parameter on the URL.

1 or true:

Lock the banner

0 or false:

Unlock the banner

0 - Unlock banner
on all URL Tools
(unless otherwise
noted)

LockWorkcenter Indicates the Navigation Pane should be
locked or not locked. Locking the
Navigation Pane means that it is hidden
and there is no way to expand it.

HideWorkcenter=0 will override the
existence of this parameter on the URL.

1 or true: Lock the
Navigation Pane

0 or false:

Lock the Navigation Pane

1 - Lock the
Navigation Pane
on all URL tools
(unless otherwise
noted)

ToolName Indicates which tool should be used to
process the request.

Currently there are only
two tools. They are
ExecuteSearch (or
AWSER) and
ViewDocument (or
AWVWR).

None

skin Indicates which skin to use. Any value that is deployed
with the application.
Typically:

• blafplus-rich
• blafplus-medium
• blafplus
• fusion
• fusion-11.1.1.3.0
• skyros

The current user's
preference setting
is used.

10.2.2 Supported URL Tools
The following URL tools are supported:

• Search URL Tool

• Viewer URL Tool

Chapter 10
Using URL Tools

10-2

• Upload URL Tool

• User Preferences URL Tool

• Original Document Download Using the Native Viewer

10.2.2.1 Search URL Tool
The Search URL tool (ExecuteSearch) exposes the Search Results user interface as a
directly accessible tool. The following is a summary of the URL parameters that are
expected by the ExecuteSearch tool. Any remaining parameters are assumed to be
field values that should be inserted into the search conditions.

Parameter Name Description Valid Values Default

SearchId This is the ID of the search that
you want to run. If this is not
specified then SearchName will be
used. If there is no SearchId and
no SearchName specified an error
will be presented to the user.

Any values of Search Ids
that exist in the Imaging
system and the current user
has access to.

None

SearchName If SearchId is not found in the
Parameters then SearchName will
be looked for. If there is no
SearchId and no SearchName
specified an error will be
presented to the user.

Any values of Search
Names that exist in the
Imaging system and the
current user has access to.
Note that the hexadecimal
(base 16) code should be
substituted for any special
ASCII characters used in the
search name. For example,
an ampersand used in a
search named This&That
should be defined in the
URL as http://
machinename:port/imaging/
faces/Pages/UrlTools.jspx?
ToolName=AWSER&Search
Name=This%26That

None

ClearSearches Removes all the searches that
have been run to this point in the
session.

1 or true:

Clear the searches

False or 0

Chapter 10
Using URL Tools

10-3

Parameter Name Description Valid Values Default

_ipmOperator.<FieldName> Specifies the Operator for the field
identified by <FieldName>. For
example a field named Company
would use
_ipmOperator.Company. This
parameter is optional and only
used when Picklist Operators are
used in a search.

String values for the
Search.Operator enum in
the Java API. Options for
text type fields include:

• BEGINS_WITH
• ENDS_WITH
• EQUAL_TEXT
• NOT_EQUAL_TEXT
• CONTAINS
Options for number,
decimal, and date field types
include:

• EQUAL
• GREATER_THAN
• GREATER_THAN_OR_

EQUAL
• LESS_THAN
• LESS_THAN_OR_EQU

AL
• NOT_EQUAL

If no value is
provided then
none is
specified to the
API and the
API will
behave as if
none was
specified.

ORAIPM_EMPTY_URL_PARA
METER

Removes the default value of a
search field if one exists.

ORAIPM_EMPTY_URL_PA
RAMETER

None

When a parameter is entered as a search field in the URL, and that search condition
allows the user to select the operator for the condition, then the operator defaults to
the value specified for the parameter in the saved search unless a different one is
entered by the user. Example 10-1 and Example 10-2 are sample URLs for running a
search using the ExecuteSearch URL Tool.

Example 10-1 Running a Search

In this example, the search named Find HR Docs returns a result listing of all
documents where the Employee Name field equals Jon Doe.

http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx?
ToolName=ExecuteSearch&SearchName=Find+HR+DOCS&EmployeeName=Jon+Doe

Example 10-2 Removing a Search Field Default Value

The ExecuteSearch search tool uses the default value of a search field if one exists. If
you want to remove the default value you can add a URL parameter that indicates an
empty URL parameter. You do this by specifying a value of
"ORAIPM_EMPTY_URL_PARAMETER" for the parameter. For example, if the field
"AText80" normally has a default value that should be removed when running the
search, specify the following URL:

http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx?
ToolName=ExecuteSearch&SearchName=Search
%20Documents&AText80=ORAIPM_EMPTY_URL_PARAMETER

Note that by default the ExecuteSearch tool locks down the banner and the navigation
pane of the Imaging user interface. This tool also locks down the form for the search
results.

Chapter 10
Using URL Tools

10-4

10.2.2.2 Viewer URL Tool
The Viewer URL tool exposes the Imaging Viewer UI tool as a directly accessible tool.
The following is a summary of the URL parameters that are expected by the
ViewDocument tool.

Parameter Name Description Valid Values Default

showHistory Causes the history pane of the viewer to be
shown or hidden

1 or true: Show History

0 or false: Hide history

False

showProperties Causes the Properties pane of the viewer to
be shown or hidden

1 or true:

Show properties

0 or false:

Hide properties

False

showStickyNotes Causes the Sticky Notes pane of the viewer to
be shown or hidden

1 or true:

Show Sticky Notes

0 or false:

Hide Sticky Notes

False

DocumentId The document id of the document that should
be shown to the user. If this is missing the
view of the document will fail with an error.

Any valid document id
obtained through searching
or as a result of indexing a
document through the user
interface or the Web service
API.

None

supportingKey The key for the supporting information that
should be shown

Any valid supporting
information key value.

None

folder The name of the folder the viewer should be
placed in. This is an optional value that allows
different sets of documents to be accumulated
into segregated set in the UI cache.

Any string value that can be
used as a name of a folder.

If this is not
specified the
folder name
will be
"default".
This is the
same folder
the search
results place
viewed
documents.

showTabs Indicates if the tabs should be shown allowing
the user to switch between documents in a
folder.

1 or true - Hide the tabs 0 or
false - Show the tabs

False

closeAllTabs Tells the URL Tool to close all the tabs in the
folder that the document will be opened in.

1 or true - Close all the
documents in the folder. 0 or
false - Do not close any of
the documents in the folder.

False

forceHideProperties Causes the Properties pane of the viewer to
close. This option overrides the system default
and any user preferences.

1 or true - Force close the
Properties pane.

0 or false - Do not force
close the Properties pane.

False

Chapter 10
Using URL Tools

10-5

Parameter Name Description Valid Values Default

forceHideStickyNotes Causes the StickyNotes pane of the viewer to
close. This option overrides the system default
and any user preferences.

1 or true - Force close the
StickyNotes pane.

0 or false - Do not force
close the StickyNotes pane.

False

forceHideHistory Causes the History pane of the viewer to
close. This option overrides the system default
and any user preferences.

1 or true - Force close the
History pane.0 or false - Do
not force close the History
pane.

False

HideBanner Causes the banner in the viewer to be shown
or hidden

1 or true - Hide the banner

0 or false - Show the banner

True

Example 10-3 is a sample URL for opening a document in the viewer using the
ViewDocument URL Tool.

Example 10-3 Opening a Document for Viewing

In this example, the document with the ID of 123.RPO_456 and is placed in a folder
named EBS1. The parameter showTabs=0 suppresses the document tabs in the
viewer to prevent users from switching to other documents in the folder.

http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx?
ToolName=ViewDocument&DocumentId=123.RPO_456&folder=EBS1&showTabs=0

10.2.2.3 Upload URL Tool
The Upload URL tool exposes the Upload user interface as a directly accessible tool.
The following is a summary of the URL parameters that are expected by the
UploadDocument tool. Any remaining parameters are assumed to be field values that
should be used to automatically populate the Application Fields in the Upload form.

Parameter Name Description Valid Values Default

AppId This is the ID of the Application into which you
want to index a document. If this is not
specified then AppName will be used. If there
is no AppId and no AppName specified an
error will be presented to the user.

Any values of Search Ids
that exist in the Imaging
system and the current user
has access to.

None

AppName If AppId is not found in the Parameters then
AppName will be looked for. If there is no
AppId and no AppName specified an error will
be presented to the user.

Any values of Search
Names that exist in the
Imaging system and the
current user has access to.

None

ShowFieldsWithV
alues

Normally all fields that are specified on the
URL will be removed from the Upload form. If
this parameter is set to true then those fields
will be displayed along with the other fields.

1 or true - Clear the
searches

0 or false - Do not clear the
searches

False

Example 10-4 and Example 10-5 are sample URLs used to upload a document using
the UploadDocument URL Tool.

Chapter 10
Using URL Tools

10-6

Example 10-4 Uploading a Document Using AppId

In this example the Upload tool loads and displays the application with an ID of 157.
The fields MyTextField and MyNumberField are populated automatically and removed
from the list of fields available to the user.

http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx?
ToolName=UploadDocument&AppId=157&MyTextField=Text%20Value&MyNumberField=123

Example 10-5 Uploading a Document Using AppName

In this example, the Upload tool loads and displays the Application with name of My
App. The fields MyTextField and MyNumberField would be populated automatically
but are not removed from the list of fields available to the user because the
ShowFieldsWithValues parameter is set to true.

http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx?
ToolName=UploadDocument&AppName=My%20App&MyTextField=Text
%20Value&MyNumberField=123&ShowFieldsWithValues=true

By default the UploadDocument tool locks down the banner and the navigation pane of
the Imaging user interface.

Note:

The required format for a date field is a standard ISO date and time format
which is represented by the following:

yyyy-MM-dd'T'HH:mm:ss.SSSZ

For example:

2022-12-30T00:00:00.000-0700

10.2.2.4 User Preferences URL Tool
The User Preferences URL tool exposes the Preference Page user interface as a
directly accessible tool. There are currently no UserPreferences URL parameters other
than the tool name. Example 10-6 is a sample URL that can be used to access the
User Preferences URL Tool.

Example 10-6 Loading User Preferences

This loads the User Preferences user interface tool showing all of the user's Imaging
user preferences. When using the User Preferences Tool the Close button is removed
from the user interface:

http://<server>:<port>/imaging/faces/Pages/UrlTools.jspx?ToolName=UserPreferences

10.2.2.5 Original Document Download Using the Native Viewer
There is an option to download and open the original document in its native viewer
directly using a URL. This option is particularly useful for MS Office documents,
especially Excel spreadsheets, or PDF documents containing embedded fonts which
sometimes do not render as well in the Imaging viewer.

Chapter 10
Using URL Tools

10-7

Example 10-7 is a sample URL for downloading a document in its native viewer.

Example 10-7 Downloading a Document in the Native Viewer

In this example, the document with the ID of 3.IPM_028745 is opened in its native
viewer.

http://<server>:<port>/imaging/renderimage/originaldoc/3.IPM_028745

Chapter 10
Using URL Tools

10-8

11
Making REST Paged Rendition Requests

This section explains how to format an URL to request single page renditions of
documents via REST (Representational State Transfer). You can use REST requests
to simplify HTML display of a document by allowing the REST URL to be embedded in
the SRC attribute of an IMG tag. This is useful for displaying document pages
regardless of native application or browser support.

Format the REST URL as shown below, using the parameters described in
Table 11-1. Also see the example URLs provided.

11.1 REST URL Format
http[s]://<hostname:port>/imaging/renderimage[/#pct][/#deg][/fitmode][/crop#T#L#H#W]
[/annotations[true|false]][/page#][/download][/version#]/<documentId>.<format>

Note:

Include the parameter name in the same position (before or after) as specified
in the REST URL format. For example, the number precedes the parameter
name for pct and deg parameters, but follows the name for the page
parameter.

REST URL Examples

Example URL Description

http://myserver:16000/imaging/renderimage/IPM7_170001.JPEG Retrieves a JPEG of the 1st page of
document ID IPM7_170001

http://myserver:16000/imaging/renderimage/50pct/page2/
IPM7_170001.PNG

Retrieves a PNG of the 2nd page of a
document at 50% scale

http://myserver:16000/imaging/renderimage/fitbest/
crop0T0L100H100W/page5/IPM7_170001.JPEG

Fits the 5th page of a document into a 100-
pixel square

http://myserver:16000/imaging/renderimage/page5/download/
IPM7_170001.GIF

Downloads page 5 of a document as a gif

http://myserver:16000/imaging/renderimage/180deg/
IPM7_170001.JPEG

Displays the 1st page of a document
rotated 180 degrees

http://myserver:16000/imaging/renderimage/20pct/270deg/
annotationsfalse/page3/download/version2/IPM7_170001.JPEG

Downloads page 3 of version 2 of a
document at 20% of its original height,
rotated 270 degrees, with annotations
turned off

11-1

Table 11-1 REST URL Parameters

Parameters Description

pct Specify the percent (as an integer) by which to scale the
document. For example, 100 keeps the size unchanged, and 50
scales the document to 50% of its original size.

deg Specify the rotation (in degrees) by which to rotate the
document. Available rotations include: 0, 90, 180, and 270.

fitmode To crop pages, specify a fit mode for this parameter (fitwidth,
fitheight, or fitbest) and a crop rectangle using the crop
parameter. The page will fit the fit mode based on the specified
crop dimensions.

(Note that this parameter is ignored if the crop parameter is not
specified.)

crop To crop pages, specify a crop rectangle's dimensions. The page
will fit the specified fit mode (fitwidth, fitheight, or fitbest) based
on the specified crop rectangle's dimensions.

Use the format #T#L#H#W, which corresponds to a
java.awt.Rectangle's top, left, height, and width properties. For
example, for a rectangle where top=10, left=20, height=100, and
width=200, specify the following:

crop10T20L100H200W

(Note that this parameter is ignored if the fitmode parameter is
not specified or if fitmode is specified as fitscale.)

annotations Specify true to apply annotations to the rendered page, or false
to omit them.

page Specify the page to display. For example, specify 2 to display the
second page of a multi-page TIFF file.

Note that the page is returned to the caller as raw page data. It
includes header information that specifies the proper mime type
and suggested file name.

download If this parameter is included, the client downloads the file in the
Open/Save/Cancel browser dialog box, and the rendition is
zipped for return to the caller.

If not included, the page is rendered only.

version Specify the document version to render.

documentId Specify the document ID to render (provided, for example, by the
web interface).

format Specify the format in which to render pages. Supported formats
include: TIFF, PNG, GIF, and JPEG.

Chapter 11
REST URL Format

11-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	Significant Documentation Changes for 12c (12.2.1.3.0)

	Part I Getting Started with Customizing Oracle WebCenter Content: Imaging
	1 Introduction to Oracle WebCenter Content: Imaging
	1.1 Overview of Integration Options
	1.2 Common API Model
	1.2.1 Understanding Services
	1.2.1.1 Definition Services
	1.2.1.1.1 ApplicationService
	1.2.1.1.2 SearchService
	1.2.1.1.3 InputService
	1.2.1.1.4 ConnectionService
	1.2.1.1.5 ImportExportService

	1.2.1.2 Document Services
	1.2.1.2.1 DocumentService
	1.2.1.2.2 DocumentContentService

	1.2.1.3 System Services
	1.2.1.3.1 LifecycleService
	1.2.1.3.2 LoginService
	1.2.1.3.3 PreferenceService
	1.2.1.3.4 SecurityService
	1.2.1.3.5 TicketService

	1.2.2 Understanding Data Objects
	1.2.2.1 Identification
	1.2.2.2 Sections
	1.2.2.3 Properties
	1.2.2.4 Permissions
	1.2.2.5 Security
	1.2.2.6 Audit Events

	1.3 Requirements
	1.4 Sample of the Imaging Integration API

	Part II Configuring the Imaging Client Side and Security
	2 Configuring the Class Path for the Imaging API
	2.1 Configuring the Class Path for the Imaging API
	2.2 Copying the API Files to a Client Directory
	2.3 Setting the Class Path

	3 Configuring Authentication and Security Policies
	3.1 About Configuring Authentication and Security Policies
	3.2 Providing SSL Communication for Basic Authentication
	3.3 Applying OWSM Security Polices to Imaging Web Services
	3.4 Reconfiguring Client-Side Security Policies for Java API Login

	Part III Managing Documents in the Imaging Repository
	4 Creating Documents
	4.1 About Creating Documents
	4.2 Listing Applications
	4.3 Getting Application Properties and Field Definitions
	4.4 Uploading Document Content
	4.5 Providing Metadata for a Document
	4.6 Create Document Sample

	5 Searching for Documents
	5.1 About Searching for Documents
	5.2 Listing Saved Searches
	5.3 Providing Search Arguments
	5.4 Executing a Search
	5.5 Parsing Search Results
	5.6 Execute Search Sample

	6 Retrieving Documents
	6.1 About Retrieving Documents
	6.2 Retrieving an Original Document
	6.3 Retrieving a Rendition of a Document with Annotations
	6.4 Retrieving Individual Pages from a Document
	6.5 Retrieve Document Sample

	7 Updating a Document
	7.1 About Updating a Document
	7.2 Uploading Revised Document Content
	7.3 Updating Metadata for a Document
	7.4 Update Document Sample

	Part IV Integrating Imaging Into Your Environment
	8 Using the Imaging API as Pure Web Services
	8.1 About Using the Imaging API as Pure Web Services
	8.1.1 Locating Web Service WSDLs

	8.2 Using Web Services in Stateless Sessions
	8.3 Using Web Services in a Stateful Session
	8.4 Using the AXF Web Service
	8.4.1 Locating the AXF Web Service WSDL File
	8.4.2 WSDL File Structure
	8.4.3 Data Type
	8.4.4 Message
	8.4.5 Port Type
	8.4.6 Binding
	8.4.7 Service and Port

	9 Integrating Imaging with BPEL
	9.1 About Integrating Imaging with BPEL
	9.2 Invoking Imaging Web Services from a BPEL Process
	9.3 Updating Imaging Metadata from a BPEL Process

	10 Accessing User Interface Functions Through URL Tools
	10.1 About Accessing User Interface Functions Through URL Tools
	10.2 Using URL Tools
	10.2.1 Supported URL Tool Parameters
	10.2.2 Supported URL Tools
	10.2.2.1 Search URL Tool
	10.2.2.2 Viewer URL Tool
	10.2.2.3 Upload URL Tool
	10.2.2.4 User Preferences URL Tool
	10.2.2.5 Original Document Download Using the Native Viewer

	11 Making REST Paged Rendition Requests
	11.1 REST URL Format

