
[image: Oracle Corporation]

Oracle® Fusion Middleware

Solutions Guide for Oracle TopLink

12c (12.1.3)

E79108-01

October 2016

This document describes a number of scenarios, or use cases, that illustrate TopLink features and typical TopLink development processes.

Oracle Fusion Middleware Solutions Guide for Oracle TopLink, 12c (12.1.3)

E79108-01

Copyright © 2013, 2016 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle.

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your access to and use of this confidential material is subject to the terms and conditions of your Oracle Master Agreement, Oracle License and Services Agreement, Oracle PartnerNetwork Agreement, Oracle distribution agreement, or other license agreement which has been executed by you and Oracle and with which you agree to comply. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide

	New and Changed Features for 12c (12.1.3)
	Other Significant Changes in this Document for 12c (12.1.3)
	New and Changed Features for 12c (12.1.2)
	Other Significant Changes in this Document for 12c (12.1.2)

1 Introduction

	1.1 About This Guide
	1.2 About the Terminology Used in this Documentation
	1.3 What You Need to Know First
	1.4 The Use Cases

2 Installing Oracle TopLink

	2.1 Introduction
	2.2 Task 1: Prerequisites
	2.3 Task 2: Download TopLink
	2.4 Task 3: Run the Installer
	2.5 Additional Resources

3 Using TopLink with WebLogic Server

	3.1 Introduction to the Solution
	3.1.1 Advantages to Using TopLink with WebLogic Server
	3.1.2 TopLink and Other Fusion Middleware Products

	3.2 Implementing the Solution
	3.2.1 Task 1: Prerequisites
	3.2.2 Optional Task: Update the Release of EclipseLink in WebLogic Server (Optional)
	3.2.3 Task 3: Configure JMX MBean Extensions in WebLogic Server
	3.2.4 Task 4: Use or Reconfigure the Logging Integration
	3.2.4.1 How the Logging Integration Works
	3.2.4.2 Viewing Persistence Unit Logging Levels in the Administration Console
	3.2.4.3 Overriding the Default Logging Integration
	3.2.4.4 Configuring WebLogic Server to Expose EclipseLink Logging
	3.2.4.5 Other Considerations

	3.2.5 Task 5: Add Persistence to Your Java Application Using EclipseLink
	3.2.6 Task 6: Configure a Data Source
	3.2.6.1 Ways to Configure Data Sources for JPA Applications
	3.2.6.2 Configure a Globally Scoped JTA Data Source
	3.2.6.3 Configure an Application-Scoped JTA Data Source
	3.2.6.4 Configure a non-JTA Data Source and Manage Transactions in the Application
	3.2.6.5 Ensure the Settings Match

	3.2.7 Task 7: Extend the Domain to Use Advanced Oracle Database Features
	3.2.8 Task 8: Start WebLogic Server and Deploy the Application
	3.2.9 Task 9: Run the Application
	3.2.10 Task 10: Configure and Monitor Persistence Settings in WebLogic Server

	3.3 Additional Resources

4 Using TopLink with GlassFish Server

	4.1 Introduction to the Solution
	4.1.1 Advantages to Using TopLink with GlassFish Server
	4.1.2 Relationship of GlassFish Server and TopLink to Fusion Middleware Products

	4.2 Implementing the Solution
	4.2.1 Task 1: Prerequisites
	4.2.2 Task 2: Install GlassFish Server
	4.2.3 Task 3: Set Up the Data Source
	4.2.3.1 Integrate the JDBC Driver for Oracle Database into GlassFish Server
	4.2.3.2 Create a JDBC Connection Pool for the Resource
	4.2.3.3 Create the JDBC Resource

	4.2.4 Task 4: Create the persistence.xml File
	4.2.4.1 Specify the Persistence Provider
	4.2.4.2 Specify an Oracle Database
	4.2.4.3 Specify Logging

	4.2.5 Task 5: Set Up GlassFish Server for JPA
	4.2.6 Task 6: Create the Application
	4.2.7 Task 7: Deploy the Application to GlassFish Server
	4.2.8 Task 8: Run the Application
	4.2.9 Task 9: Monitor the Application

	4.3 Additional Resources

5 Using TopLink with JBoss 7 Application Server

	5.1 Introduction to the Solution
	5.2 Implementing the Solution
	5.2.1 Task 1: Prerequisites
	5.2.2 Task 2: Configure EclipseLink as a Module in JBoss
	5.2.3 Task 3: Add ojdbc6.jar as a Module in JBoss
	5.2.4 Task 4: Create the Driver Definition and the Datasource
	5.2.5 Task 5: Create Users
	5.2.6 Task 6: Modify JBoss Properties
	5.2.7 Task 7: Other Requirements
	5.2.8 Task 8: Start JBoss

	5.3 Additional Resources

6 Using TopLink with IBM WebSphere Application Server

	6.1 Introduction to the Solution
	6.2 Implementing the Solution
	6.2.1 Task 1: Prerequisites
	6.2.2 Task 2: Configure Persistence Units
	6.2.3 Task 3: Configure the Server and the Application to Use EclipseLink
	6.2.3.1 Modify Server to Make EclipseLink Available Globally
	6.2.3.2 Package EclipseLink in the Application EAR
	6.2.3.3 Package EclipseLink in the WAR

	6.3 Additional Resources

7 Migrating from Native TopLink

	7.1 Introduction to the Solution
	7.2 Implementing the Solution
	7.2.1 Task 1: Prerequisites
	7.2.2 Task 2: Replace Deprecated and Removed Native APIs
	7.2.2.1 APIs Replaced
	7.2.2.2 Deprecated APIs
	7.2.2.3 Removed API
	7.2.2.4 Miscellaneous API Changes

	7.2.3 Task 3: Rename Packages
	7.2.4 Task 4: Convert XML Configuration Files
	7.2.4.1 Sessions XML
	7.2.4.2 Deployment XML
	7.2.4.3 Persistence XML
	7.2.4.4 ORM XML

	7.2.5 Task 5: Convert Oracle TopLink Workbench Projects (Optional)

	7.3 Additional Resources

8 Migrating from Hibernate to TopLink

	8.1 Introduction to the Solution
	8.2 Main Tasks
	8.2.1 Task 1: Prerequisites
	8.2.2 Task 1: Convert the Hibernate Entity Annotation
	8.2.2.1 Convert the SelectBeforeUpdate, dynamicInsert and dynamicUpdate Attributes
	8.2.2.2 Convert the OptimisticLock Attribute

	8.2.3 Task 2: Convert the Hibernate Custom Sequence Generator Annotation
	8.2.4 Task 3: Convert Hibernate Mapping Annotations
	8.2.4.1 Convert the @ForeignKey Annotation
	8.2.4.2 Convert the @Cache Annotation

	8.2.5 Task 4: Modify the persistence.xml File
	8.2.5.1 Modified persistence.xml File
	8.2.5.2 Drop and Create the Database Tables
	8.2.5.3 Create or Extend Database Tables

	8.2.6 Task 5: Convert Hibernate API to EclipseLink API

	8.3 Additional Resources

9 Using Multiple Databases with a Composite Persistence Unit

	9.1 Introduction to the Solution
	9.1.1 Composite Persistence Unit Requirements

	9.2 Implementing the Solution
	9.2.1 Task 1: Configure the Composite Persistence Unit
	9.2.2 Task 2: Use Composite Persistence Units
	9.2.3 Task 3: Deploy Composite Persistence Units

	9.3 Additional Resources
	9.3.1 Related Javadoc

10 Scaling Applications in Clusters

	10.1 Introduction to the Solution
	10.2 Implementing the Solution
	10.2.1 Task 1: Configure Cache Consistency
	10.2.1.1 Disabling Entity Caching
	10.2.1.2 Refreshing the Cache
	10.2.1.3 Setting Entity Caching Expiration
	10.2.1.4 Setting Optimistic Locking
	10.2.1.5 Using Cache Coordination

	10.2.2 Task 2: Ensure EclipseLink Is Enabled
	10.2.3 Task 3: Ensure All Application Servers Are Part of the Cluster
	10.2.4 Using Data Partitioning to Scale Data
	10.2.4.1 Clustered Databases and Oracle RAC

	10.3 Additional Resources

11 Providing Software as a Service

	11.1 Introduction to the Solution

12 Making JPA Entities and JAXB Beans Extensible

	12.1 Making JPA Entities Extensible
	12.1.1 Main Tasks for Creating and Supporting an Extensible JPA Entity
	12.1.1.1 Task 1: Configure the Entity
	12.1.1.2 Task 2: Design the Schema
	12.1.1.3 Task 3: Provide Additional Mappings
	12.1.1.4 Task 4: Externalizing Extensions Using a MetaDataSource

	12.1.2 Code Examples

	12.2 Making JAXB Beans Extensible
	12.2.1 Main Steps
	12.2.1.1 Task 1: Configure the Bean
	12.2.1.2 Task 2: Provide Additional Mappings

	12.2.2 Code Examples
	12.2.2.1 Basic Setup
	12.2.2.2 Define the Tenants

	12.3 Additional Resources

13 Using an External MetaData Source

	13.1 Introduction to the Solution
	13.2 Using the eclipselink-orm.xml File Externally
	13.3 Main Tasks
	13.3.1 Task 1: Configure the Persistence Unit
	13.3.2 Task 2: Configure the Server

	13.4 Additional Resources

14 Tenant Isolation Using TopLink

	14.1 Introduction to the Solution
	14.2 Using Single-Table Multi-Tenancy
	14.2.1 Main Tasks for Using Single-Table Multi-Tenancy
	14.2.1.1 Task 1: Prerequisites
	14.2.1.2 Task 2: Enable Single-Table Multi-Tenancy
	14.2.1.3 Task 3: Specify Tenant Discriminator Columns
	14.2.1.4 Configure Context Properties and Caching Scope
	14.2.1.5 Task 4: Perform Operations and Queries
	14.2.1.6 Task 5: Use Single-Table Multi-Tenancy in an Inheritance Hierarchy

	14.3 Using Table-Per-Tenant Multi-Tenancy
	14.3.1 Main Tasks for Using Table-Per-Tenant Multi-Tenancy
	14.3.1.1 Task 1: Prerequisites
	14.3.1.2 Task 2: Enable Table-Per-Tenant Multi-Tenancy
	14.3.1.3 Task 3: Specify Tenant Table Discriminator
	14.3.1.4 Task 4: Specify a Context Property at Runtime
	14.3.1.5 Task 5: Perform Operations and Queries

	14.4 Using VPD Multi-Tenancy
	14.4.1 Main Tasks for Using VPD Multi-Tenancy
	14.4.1.1 Task 1: Prerequisites
	14.4.1.2 Task 2: Configure the Virtual Private Database
	14.4.1.3 Task 3: Configure the Entity or Mapped Superclass
	14.4.1.4 Task 4: Disable Criteria Generation
	14.4.1.5 Task 5: Configure persistence.xml

	14.5 Additional Resources

15 Mapping JPA to XML

	15.1 Introduction to the Solution
	15.1.1 Understanding XML Binding
	15.1.2 Understanding JAXB
	15.1.3 Understanding MOXy
	15.1.4 Understanding an XML Data Representation

	15.2 Binding JPA Entities to XML
	15.2.1 Binding JPA Relationships to XML
	15.2.1.1 Task 1: Define the Accessor Type and Import Classes
	15.2.1.2 Task 2: Map Privately-Owned Relationships
	15.2.1.3 Task 3: Map the Shared Reference Relationship
	15.2.1.4 JPA Entities

	15.2.2 Binding Compound Primary Keys to XML
	15.2.2.1 Task1: Define the XML Accessor Type
	15.2.2.2 Task 2: Create the Target Object
	15.2.2.3 Task 3: Create the Source Object

	15.2.3 Binding Embedded ID Classes to XML
	15.2.3.1 Task1: Define the XML Accessor Type
	15.2.3.2 Task 2: Create the Target Object
	15.2.3.3 Task 3: Create the Source Object
	15.2.3.4 Task 5: Implement the DescriptorCustomizer as PhoneNumberCustomizer Class

	15.2.4 Using the EclipseLink XML Binding Document

	15.3 Mapping Simple Java Values to XML Text Nodes
	15.3.1 Mapping a Value to an Attribute
	15.3.1.1 Mapping from the Java Object
	15.3.1.2 Defining the Mapping in OXM Metadata Format

	15.3.2 Mapping a Value to a Text Node
	15.3.2.1 Mapping a Value to a Simple Text Node
	15.3.2.2 Mapping Values to a Text Node in a Simple Sequence
	15.3.2.3 Mapping a Value to a Text Node in a Sub-element
	15.3.2.4 Mapping Values to a Text Node by Position

	15.4 Using XML Metadata Representation to Override JAXB Annotations
	15.4.1 Task 1: Define Advanced Mappings in the XML
	15.4.2 Task 2: Configure Usage in JAXBContext
	15.4.3 Task 3: Specify the MOXy as the JAXB Implementation

	15.5 Using XPath Predicates for Mapping
	15.5.1 Understanding XPath Predicates
	15.5.2 Mapping Based on Position
	15.5.3 Mapping Based on an Attribute Value
	15.5.3.1 Task 1: Create the Customer Entity
	15.5.3.2 Task 2: Create the Address Entity
	15.5.3.3 Task 3: Create the PhoneNumber Entity

	15.5.4 "Self" Mappings

	15.6 Using Dynamic JAXB/MOXy
	15.6.1 Task 1: Bootstrap a Dynamic JAXBContext from an XML Schema
	15.6.1.1 Bootstrapping from an XML Schema
	15.6.1.2 The XML Schema
	15.6.1.3 Handling Schema Import/Includes
	15.6.1.4 Implementing and Passing an EntityResolver
	15.6.1.5 Error Handling
	15.6.1.6 Specifying a ClassLoader

	15.6.2 Task 2: Create Dynamic Entities and Marshal Them to XML
	15.6.2.1 Creating the Dynamic Entities
	15.6.2.2 Marshalling the Dynamic Entities to XML

	15.6.3 Task 3: Unmarshal the Dynamic Entities from XML
	15.6.3.1 Unmarshal DynamicEntities from XML
	15.6.3.2 Get Data from the Dynamic Entity
	15.6.3.3 Use DynamicType to Introspect Dynamic Entity

	15.7 Additional Resources

16 Converting Objects to and from JSON Documents

	16.1 Introduction to the Solution
	16.2 Implementing the Solution
	16.2.1 Task 1: Marshalling and Unmarshalling JSON Documents
	16.2.2 Task 2: Specifying JSON Bindings
	16.2.3 Task 3: Specifying JSON Data Types
	16.2.4 Task 4: Supporting Attributes
	16.2.5 Task 5: Supporting no Root Element
	16.2.6 Task 5 Using Namespaces
	16.2.7 Task 6: Using Collections
	16.2.8 Task 7: Mapping Root-Level Collections
	16.2.9 Task 8: Wrapping Text Values

	16.3 Additional Resources

17 Testing JPA Outside a Container

	17.1 Understanding JPA Deployment
	17.1.1 Using EntityManager

	17.2 Configuring the persistence.xml File
	17.2.1 Main Tasks
	17.2.1.1 Task 1: Use the persistence.xml File
	17.2.1.2 Task 2: Instantiate EntityManagerFactory

	17.3 Using a Property Map
	17.3.1 Main Tasks
	17.3.1.1 Task 1: Configure the persistence.xml File
	17.3.1.2 Task 2: Configure the Bootstrapping API
	17.3.1.3 Task 3: Instantiate the EntityManagerFactory

	17.4 Using Weaving
	17.4.1 How to Disable or Enable Weaving in a Java SE Environment
	17.4.2 How to Disable or Enable Weaving in a Java EE Environment

	17.5 Additional Resources
	17.5.1 Related Javadoc

18 Enhancing Performance

	18.1 Performance Features
	18.1.1 Object Caching
	18.1.1.1 Caching Annotations
	18.1.1.2 Using the @Cache Annotation

	18.1.2 Querying
	18.1.2.1 Read-only Queries
	18.1.2.2 Join Fetching
	18.1.2.3 Batch Reading
	18.1.2.4 Fetch Size
	18.1.2.5 Pagination
	18.1.2.6 Cache Usage

	18.1.3 Mapping
	18.1.3.1 Read-Only Objects
	18.1.3.2 Weaving

	18.1.4 Transactions
	18.1.5 Database
	18.1.5.1 Connection Pooling
	18.1.5.2 Parameterized SQL and Statement Caching
	18.1.5.3 Batch Writing
	18.1.5.4 Serialized Object Policy

	18.1.6 Automated Tuning
	18.1.7 Tools

	18.2 Monitoring and Optimizing EclipseLink-Enabled Applications
	18.2.1 Performance Optimization Recommendations and Tips
	18.2.2 Task 1: Measure EclipseLink Performance with the EclipseLink Profiler
	18.2.2.1 Enabling the EclipseLink Profiler
	18.2.2.2 Accessing and Interpreting Profiler Results

	18.2.3 Task 2: Measure EclipseLink Performance in the Server Environment
	18.2.4 Task 3: Measure Fetch Group Field Usage
	18.2.5 Task 4: Identify Sources of Application Performance Problems
	18.2.6 Task 5: Modify Poorly-Performing Application Components
	18.2.6.1 Identifying General Performance Optimizations
	18.2.6.2 Schema
	18.2.6.3 Mappings and Descriptors
	18.2.6.4 Cache
	18.2.6.5 Data Access
	18.2.6.6 Queries
	18.2.6.7 Application Server and Database Optimization

	18.2.7 Task 6: Measure Performance Again

19 Scaling JPA Applications Using TopLink Grid with Oracle Coherence

	19.1 Introduction to the Solution
	19.2 Implementing the Solution
	19.3 Additional Resources

20 Exposing JPA Entities Through RESTful Data Services

	20.1 Introduction to the Solution
	20.2 Implementing the Solution
	20.2.1 Step 1: Prerequisites
	20.2.2 Step 2: Create and Configure the Application
	20.2.3 Step 3: Understand RESTful Data Services URI Basics
	20.2.4 Step 4: Represent Entities Using JPA, JAXB, or JSON
	20.2.4.1 Relationships

	20.2.5 Step 5: Issue Client Calls for Operations on the Persistence Unit
	20.2.5.1 Specify Media Format in the Header
	20.2.5.2 About Logging

	20.2.6 Step 6: Implement Security
	20.2.7 Step 7: Understand the Structure of RESTful Data Services Responses
	20.2.7.1 Basic Data Types
	20.2.7.2 Links and Relationships

	20.3 Additional Resources
	20.4 RESTful Data Services API Reference
	Entity Operations
	FIND
	PERSIST
	MERGE
	DELETE

	Entity Operations on Relationships
	READ
	ADD
	REMOVE

	Query Operations
	Query Returning List of Results
	Update/Delete Query

	Single Result Queries
	Base Operations
	List Existing Persistence Units

	Metadata Operations
	List Types in a Persistence Unit
	List Queries in a Persistence Unit
	Describe a Specific Entity

21 Keeping Data Fresh Using TopLink Live Data Queries

	21.1 Introduction to the Solution
	21.1.1 About Oracle Database CQN and TopLink Cache Tracking
	21.1.2 Creating and Using TopLink Live Data Queries

	21.2 Implementing the Solution
	21.2.1 Step 1: Prerequisites
	21.2.2 Step 2: Grant Database Privileges
	21.2.3 Step 3: Create the Live Data Query and CQN Subscription

	21.3 Additional Resources

22 Using Database Events to Invalidate the Cache

	22.1 Introduction to the Solution
	22.2 Implementing the Solution
	22.2.1 Task 1: Set up the Database and Tables
	22.2.2 Task 2: Grant User Permissions
	22.2.3 Task 3: Set the Classpath
	22.2.4 Task 4: Identify Classes that will Participate in Change Notification
	22.2.5 Task 5: Add the Database Event Listener
	22.2.6 Task 6: Edit the Java Files
	22.2.6.1 Set Optimistic Locking
	22.2.6.2 Exclude Classes from Change Notification (Optional)
	22.2.6.3 Track Changes in Secondary Tables (Optional)

	22.3 Limitations on the Solution
	22.4 Additional Resources

23 Using TopLink with NoSQL Databases

	23.1 Introduction to the Solution
	23.2 Implementing the Solution
	23.2.1 Task 1: Prerequisites
	23.2.2 Task 2: Mapping the Data
	23.2.3 Task 3: Defining IDs
	23.2.4 Task 4: Defining Mappings
	23.2.5 Task 5: Using Locking
	23.2.6 Task 6: Defining Queries
	23.2.6.1 JPQL Queries
	23.2.6.2 Native Queries

	23.2.7 Task 7: Connecting to the Database

	23.3 Additional Resources

24 Using Oracle TopLink with the Oracle Database

	24.1 Introduction to the Solution
	24.2 Implementing the Solution
	24.2.1 Using Oracle Platform-Specific APIs
	24.2.2 Using Oracle PL/SQL With EclipseLink
	24.2.2.1 Executing an Oracle PL/SQL Stored Function
	24.2.2.2 Handling PL/SQL arguments for Oracle Stored Procedures

	24.2.3 Using Oracle Virtual Private Database
	24.2.4 Using Oracle Proxy Authentication
	24.2.4.1 Main Tasks:
	24.2.4.2 Caching and security
	24.2.4.3 Using Oracle Virtual Private Database for Row-Level Security

	24.2.5 Using EclipseLink with Oracle RAC
	24.2.5.1 Accessing a RAC-Enabled database from Java EE Applications
	24.2.5.2 Accessing a RAC-Enabled Database from Standalone Applications

	24.2.6 Using Oracle Spatial and Graph

	24.3 Additional Resources

25 Optimizing Persistence Applications for Oracle Exalogic

	25.1 Introduction to the Solution
	25.2 Implementing the Solution
	25.2.1 Task 1: Enable the Exalogic Automated Tuner
	25.2.2 Task 2: Use Serialized Object Policy on Exalogic
	25.2.3 Task 3: Use Cache Coordination with WebLogic Server Clusters on Exalogic
	25.2.4 Task 4: Configure Heterogeneous Batch Writing on Exalogic

	25.3 Additional Resources

Preface

Oracle TopLink, with its core features provided by EclipseLink, the open source persistence framework from the Eclipse Foundation, delivers a standards-based enterprise Java solution for all of your relational, XML, and JSON persistence requirements, based on high performance and scalability, developer productivity, and flexibility in architecture and design.

Audience

A variety of engineers use TopLink. Users of TopLink are expected to be proficient in the use of technologies and services related to TopLink (for example, Java Persistence API). This guide does not include details about related common tasks, but focuses on TopLink functionality.

Users of this guide include:

	
Developers who want to develop applications using any of the following technologies for persistence services:

	
Java Persistence API (JPA) 2.n plus EclipseLink JPA extensions

	
Java Architecture for XML Binding 2.n (JAXB) plus EclipseLink Object-XML extensions

	
EclipseLink Database Web Services (DBWS)

Developers should be familiar with the concepts and programming practices of Java Platform, Standard Edition (Java SE platform), and Java Platform, Enterprise Edition (Java EE platform).

Developers using EclipseLink JPA should be familiar with the concepts and programming practices of JPA 2.1, as specified in the Java Persistence Architecture 2.1 specification at http://jcp.org/en/jsr/detail?id=338.

Developers using EclipseLink Object-XML should be familiar with the concepts and programming practices of JAXB 2.0, as specified in the Java Architecture for XML Binding 2.0 specification at http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html.

Developers using EclipseLink DBWS should be familiar with the concepts and programming practices of JAX-WS 2.0, as specified in the Java API for XML-Based Web Services 2.0 specification at http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html.

	
Administrators and deployers who want to deploy and manage applications using TopLink persistence technologies. These users should be familiar with basic operations of the chosen application server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=accid=info or visit http://www.oracle.com/pls/topic/lookup?ctx=accid=trs if you are hearing impaired.

Related Documents

For more information, see the following documents:

	
Understanding Oracle TopLink

	
Java Persistence API (JPA) Extensions Reference for Oracle TopLink

	
Developing Persistence Architectures Using Oracle TopLink Database Web Services Developer's Guide

	
Developing JAXB Applications Using Oracle TopLink

	
Java API Reference for Oracle TopLink

	
EclipseLink Documentation Center at http://www.eclipse.org/eclipselink/documentation/

	
Integrating Oracle Coherence

	
Oracle TopLink Release Notes

Conventions

The following text conventions are used in this guide:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
	bold monospace	Bold monospace type is used in code examples to emphasize certain items.

What's New in This Guide

The following topics introduce the new and changed features of Oracle TopLink and other significant changes that are described in this guide, and provides pointers to additional information. This book is the new edition of the formerly titled Solution Guide for Oracle TopLink.

New and Changed Features for 12c (12.1.3)

Oracle TopLink 12c (12.1.3) includes the following new and changed features that are documented in this book. This list does not necessarily include all new or changed features in this release. It only includes the new features that are documented in this book.

	
Serialized object policy, for storing a serialized version of an entity into a single column in the database. See "Serialized Object Policy".

	
Auomated tuning, for a dynamic single tuning option. See "Automated Tuning" on page 18-8.

Other Significant Changes in this Document for 12c (12.1.3)

For 12c (12.1.3), this guide has been updated in several ways. Following are the sections that have been added or changed.

	
Added new chapter, Chapter 25, "Optimizing Persistence Applications for Oracle Exalogic," that describes how to configure and enable features when deploying on Oracle Exalogic.

New and Changed Features for 12c (12.1.2)

Oracle TopLink 12c (12.1.2) includes the following new and changed features that are documented in this book. This list does not necessarily include all new or changed features in this release. It only includes the new features that are documented in this book.

	
Quick installer, which installs TopLink into a location of your choice, including over an existing Oracle home. See Chapter 2, "Installing Oracle TopLink."

	
Client isolation, where multiple application tenants may share database tables and schemas. This allows applications to manage entities for multiple tenants in the same application. See Chapter 14, "Tenant Isolation Using TopLink."

	
JSON bindings, for converting objects directly to and from JavaScript Object Notation (JSON). This can be useful when creating RESTful services, using JSON messages with Java API for RESTful Web Services (JAX-RS) services. See Chapter 16, "Converting Objects to and from JSON Documents,"

	
RESTful persistence, where Java Persistence API (JPA) entities can be exposed through standards-based RESTful services such as JAX-RS, using either JSON or XML media. See Chapter 20, "Exposing JPA Entities Through RESTful Data Services."

	
Support for TopLink Database Change Notification (DCN), which allows the database to notify TopLink of database changes so that cached objects can be invalidated in the shared cache. See Chapter 22, "Using Database Events to Invalidate the Cache."

	
NoSQL database support, allowing objects to be mapped to non-relational (NoSQL) data sources. See Chapter 23, "Using TopLink with NoSQL Databases,".

For a complete list of the changes in this release, see http://www.oracle.com/technetwork/middleware/toplink/overview/index.html.

Other Significant Changes in this Document for 12c (12.1.2)

For 12c (12.1.2), this guide has been updated in several ways. Following are the sections that have been added or changed.

	
Moved installation information from appendix to Chapter 2, "Installing Oracle TopLink," and replaced old information with information about the new quick installer.

	
Added new chapter, Chapter 5, "Using TopLink with JBoss 7 Application Server," to describe how TopLink can be used with applications deployed to JBoss Application Server 7.1.

	
Added new chapter, Chapter 6, "Using TopLink with IBM WebSphere Application Server," to describe how TopLink can be used with applications deployed to IBM WebSphere Application Server

	
Added new chapter, Chapter 7, "Migrating from Native TopLink," to describe migrate applications using "native" TopLink object-relational mapping (ORM) APIs to the current EclipseLink APIs, which have been the core libraries in TopLink staring with TopLink 11g, Release 1 (11.1.1).

	
Added information about data partitioning in Chapter 10, "Scaling Applications in Clusters."

	
Split Chapter 11, "Providing Software as a Service." into four chapters:

	
Chapter 11, "Providing Software as a Service." This is now just an overview of the following three chapters.

	
Chapter 12, "Making JPA Entities and JAXB Beans Extensible"

	
Chapter 13, "Using an External MetaData Source"

	
Chapter 14, "Tenant Isolation Using TopLink" and also updated this chapter with information about Virtual Private Database (VPD) multi-tenancy and table-per-tenant multi-tenancy

	
Added new chapter, Chapter 16, "Converting Objects to and from JSON Documents," to describe how to convert objects directly to and from JSON

	
Added information about weaving to Chapter 17, "Testing JPA Outside a Container," to describe how to use the persistence unit JAR file to test an application outside the container (for instance, in applications for the Java Platform, Standard Edition (Java SE platform)).

	
Added new chapter, Chapter 19, "Scaling JPA Applications Using TopLink Grid with Oracle Coherence," to describe how applications can use TopLink Grid to achieve high availability and increase performance.

	
Added new chapter, Chapter 20, "Exposing JPA Entities Through RESTful Data Services," to describe how to expose JPA entities through Java Persistence API-RESTful Services (JPA-RS), using either JSON or XML media.

	
Added new chapter, Chapter 22, "Using Database Events to Invalidate the Cache," to describe how to use EclipseLink Database Change Notification (DCN) for shared caching in a JPA environment. DCN allows the database to notify EclipseLink of database changes. The changed objects are invalidated in the EclipseLink shared cache. Stale data can be discarded, even if other applications access the same data in the database.

	
Added new chapter, Chapter 24, "Using Oracle TopLink with the Oracle Database," to describe how to use the Oracle Database features that are supported by TopLink.

1 Introduction

Oracle TopLink is a powerful and flexible Java persistence framework for storing Java objects in a data store, such as a relational database or a NoSQL database, and for converting Java objects to XML or JSON documents. TopLink provides APIs and a run-time environment for implementing the persistence layer of Java Platform, Standard Edition (Java SE platform), and Java Platform, Enterprise Edition (Java EE platform) applications.

TopLink's core functionality is provided by EclipseLink, the open source persistence framework from the Eclipse Foundation. EclipseLink implements Java Persistence API (JPA), Java Architecture for XML Binding (JAXB), and other standards-based persistence technologies, plus extensions to those standards. TopLink includes all of EclipseLink, plus additional features, including Oracle TopLink Grid, which integrates EclipseLink JPA with the Oracle Coherence cache..

For more information about the EclipseLink project, see "Eclipse Persistence Services Project (EclipseLink) home" at http://www.eclipse.org/eclipselink/.

1.1 About This Guide

This guide, Solutions Guide for Oracle TopLink, documents a number of scenarios, or use cases, that illustrate TopLink features and typical TopLink development processes. These are not tutorials that lead you step-by-step through every task required to complete a project. Rather, they document general processes and key details for solving particular problems and then provide links to other documentation for more information.

1.2 About the Terminology Used in this Documentation

"Oracle TopLink" and "TopLink" describe the full Oracle product, including all the included EclipseLink libraries, features, and APIs, plus the additional Oracle features. The names "Oracle TopLink" and "TopLink" are used in a general way in this documentation to refer to the whole product and at times more specifically to the Oracle-only features. The term "EclipseLink" is used when referring to the EclipseLink features included in TopLink.

1.3 What You Need to Know First

To make good use of this guide, you should already be familiar with the following:

	
The concepts and programming practices of the Java SE platform and the Java EE platform. In the current release, TopLink supports Java EE 6. For more information, see the following.

Java

	
Java home page: http://www.oracle.com/us/technologies/java/index.html

	
Java EE 5 Tutorial: http://download.oracle.com/javaee/5/tutorial/doc/bnbpy.html

	
Java EE 6 Tutorial: http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.html

	
Any of the thousands of books and websites devoted to Java.

Oracle Java EE Application Servers

	
Oracle WebLogic Server home page: http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html

	
Oracle GlassFish Server home page: http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html

Oracle Java EE Integrated Development Environments

	
Oracle JDeveloper: http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html

	
Oracle Enterprise Pack for Eclipse: http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html

	
If you are working with EclipseLink JPA, you should be familiar with the concepts and programming practices of JPA 2.1, as specified in the Java Persistence API, Version 2.1 specification at http://jcp.org/en/jsr/detail?id=338.

	
If you are working with EclipseLink JAXB, you should be familiar with the concepts and programming practices of JAXB 2.0, as specified in the The Java Architecture for XML Binding (JAXB) 2.0 specification at http://jcp.org/en/jsr/detail?id=222.

	
If you are using JSON data-interchange format, you should be familiar with the concepts and programming practices of JSON, as described at http://www.json.org/. For XML, see http://www.w3.org/XML/

	
If you are working with EclipseLink DBWS, you should be familiar with the concepts and programming practices of JAX-WS 2.0, as specified in the Java API for XML-Based Web Services (JAX-WS) 2.0 specification at http://jcp.org/en/jsr/detail?id=224.

	
If you are working with REpresentational State Transfer (REST) service, you should be familiar with concepts and programming practices of REST, as specified in "JSR 311: JAX-RS: The Java API for RESTful Web Services" at http://jcp.org/en/jsr/detail?id=311.

1.4 The Use Cases

The use cases documented in this guide are as follows:

	
Chapter 2, "Installing Oracle TopLink" - How to download and install standalone TopLink.

	
Chapter 3, "Using TopLink with WebLogic Server" - How to use TopLink with WebLogic Server.

	
Chapter 4, "Using TopLink with GlassFish Server" - How to use TopLink with GlassFish Server.

	
Chapter 5, "Using TopLink with JBoss 7 Application Server" - How to use TopLink with JBoss 7 Application Server.

	
Chapter 6, "Using TopLink with IBM WebSphere Application Server" - How to use TopLink with IBM WebSphere Application Server.

	
Chapter 7, "Migrating from Native TopLink" - How to how to migrate applications using native TopLink object-relational mapping (ORM) API to the current EclipseLink API.

	
Section 8, "Migrating from Hibernate to TopLink" - How to migrate applications from using Hibernate JPA to using EclipseLink JPA.

	
Chapter 9, "Using Multiple Databases with a Composite Persistence Unit" - How to expose multiple persistence units (each with unique sets of entity types) as a single persistence context.

	
Chapter 10, "Scaling Applications in Clusters" - How to configure EclipseLink applications to ensure scalability in clustered application server environments.

	
Chapter 11, "Providing Software as a Service" - Overview of TopLink Software as a Service (SaaS) features..

	
Chapter 12, "Making JPA Entities and JAXB Beans Extensible" - How to make JPA entities or JAXB beans extensible.

	
Chapter 13, "Using an External MetaData Source" - How to use an external metadata source.

	
Chapter 14, "Tenant Isolation Using TopLink" - How to support multiple application tenants who share data sources, including tables and schemas.

	
Chapter 15, "Mapping JPA to XML" - How to map JPA entities to XML using EclipseLink JAXB.

	
Chapter 17, "Testing JPA Outside a Container" - How to test your EclipseLink JPA application outside the container.

	
Chapter 18, "Enhancing Performance" - Getting the best performance out of TopLink.

	
Chapter 20, "Exposing JPA Entities Through RESTful Data Services" - How to expose entities through RESTful services using EclipseLink Java Persistence API for RESTful Services (JPA-RS).

	
Chapter 19, "Scaling JPA Applications Using TopLink Grid with Oracle Coherence" - How to use TopLink Grid to achieve high availability and increase performance.

	
Chapter 22, "Using Database Events to Invalidate the Cache" - How to use EclipseLink Database Change Notification (DCN) for caching with a shared database in JPA.

	
Chapter 23, "Using TopLink with NoSQL Databases" - How to use EclipseLink to map objects to non-relational (that is, no SQL) data sources.

2 Installing Oracle TopLink

This chapter describes how to install Oracle TopLink.

The instructions below tell how to install TopLink using the quick installer jar file available from the download site. A zip file is also available. If you choose to download and install using the zip file, instead of the quick installer, follow the instructions in the readme file included with the zip file.

This chapter includes the following sections:

	
Introduction

	
Task 1: Prerequisites

	
Task 2: Download TopLink

	
Task 3: Run the Installer

	
Additional Resources

2.1 Introduction

TopLink is integrated with several Oracle products, including Oracle WebLogic Server, Glassfish Server, Oracle JDeveloper, and Oracle Coherence. You can also download the standalone distribution of TopLink to integrate with other application servers and use as the persistence provider in your applications. This chapter describes how to install the standalone distribution.

2.2 Task 1: Prerequisites

The complete product requirements list and the latest certification information for the current version of TopLink are available at:

http://www.oracle.com/technetwork/middleware/ias/index-099524.html

TopLink requires a Java Virtual Machine (JVM) compatible with JDK 1.6 (or higher). TopLink also requires internet access to use URL-based schemas and hosted documentation.

2.3 Task 2: Download TopLink

To download a TopLink distribution that is not part of another Oracle download,

	
Go to the TopLink download page at http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html.

	
Select Accept License Agreement to accept the license agreement.

	
Find the version of TopLink you want, and download it to your computer.

TopLink is available as a Java quick installer named fmw_version_toplink_quick.jar, where version is the TopLink release number. These instructions explain how to install using the quick installer.

You can download it to any directory.

2.4 Task 3: Run the Installer

You can install TopLink into any empty directory. To run the quick installer,

	
Create a directory where you want to install TopLink, for example C:\toplink. The directory must be completely empty.

	
Open a command window in the new directory.

	
Run the command to unarchive the jar file, as described below.

	
If a JRE or JDK is in the path, run the following:

java -jar path\fmw_version_toplink_quick.jar

where path\ is the path to the directory where you downloaded the JAR file.

	
If a valid JRE or JDK is not in the path, or if you want to use a specific one, run the following:

JAVA_HOME\java -jar path\fmw_version_toplink_quick.jar

In the directory structure created from the installation, the TopLink libraries, schemas, utilities, and documentation are in TOPLINK_HOME\oracle_common\modules\oracle.toplink_version_num and in TOPLINK_HOME\toplink.

2.5 Additional Resources

See the following for more information about the technologies and tools used to implement the solutions in this chapter:

	
For information about using Maven to install TopLink and other Oracle Fusion Middleware products, see Oracle Fusion Middleware Developing Applications Using Continuous Integration.

	
For information about installing Oracle WebLogic Server, see Installing and Configuring Oracle WebLogic Server and Coherence.

	
For information about installing Oracle Glassfish Server, see Oracle GlassFish Server Installation Guide.

3 Using TopLink with WebLogic Server

This chapter describes how to use Oracle TopLink as the persistence provider for applications deployed to Oracle WebLogic Server.

The chapter includes the following sections:

	
Section 3.1, "Introduction to the Solution"

	
Section 3.2, "Implementing the Solution"

	
Section 3.3, "Additional Resources"

Use Case

WebLogic Server developers, administrators, and user want to take advantage of all the persistence and transformation services provided by TopLink.

Solution

While WebLogic Server can use other persistence providers and TopLink can be used with other application servers, using WebLogic Server with TopLink provides a number of advantages.

Components

	
WebLogic Server 12c or later. WebLogic Server includes TopLink.

	
Note:

TopLink's core functionality is provided by EclipseLink, the open source persistence framework from the Eclipse Foundation. EclipseLink implements Java Persistence API (JPA), Java Architecture for XML Binding (JAXB), and other standards-based persistence technologies, plus extensions to those standards. TopLink includes all of EclipseLink, plus additional functionality from Oracle.

	
A compliant Java Database Connectivity (JDBC) database including Oracle Database, Oracle Express, MySQL, and so on.

	
While it is not required, you may want to use a Java EE integrated development environment (IDE) for convenience during development.

Samples

See the following EclipseLink samples for related information:

	
http://wiki.eclipse.org/EclipseLink/Examples/JPA/WebLogic_Web_Tutorial

	
http://wiki.eclipse.org/EclipseLink/Examples/JPA/WLS_AppScoped_DataSource

	
http://wiki.eclipse.org/EclipseLink/Examples/Distributed

3.1 Introduction to the Solution

WebLogic Server is a scalable, enterprise-ready Java Platform, Enterprise Edition (Java EE platform) application server. WebLogic Server's complete implementation of the Java EE 6 specification provides a standard set of APIs for creating distributed Java applications that can access a wide variety of services, such as databases, messaging services, and connections to external enterprise systems. In addition to the Java EE implementation, WebLogic Server enables enterprises to deploy critical applications in a robust, secure, highly available, and scalable environment. These features allow enterprises to configure clusters of WebLogic Server instances to distribute load, and provide extra capacity in case of hardware or other failures. For more details about these and other WebLogic Server features, see Introduction to WebLogic Server.

TopLink provides APIs and a run-time environment for implementing the persistence layer of Java EE applications (as well as Java SE applications).

3.1.1 Advantages to Using TopLink with WebLogic Server

While WebLogic Server can use other persistence providers and TopLink can be used with other application servers, using WebLogic Server with TopLink provides a number of advantages:

	
EclipseLink is the default persistence provider for WebLogic Server domains, with support for JPA 2.1.

	
The EclipseLink implementation of Java Architecture for XML Binding (JAXB) is the default JAXB implementation in WebLogic Server. EclipseLink fully implements JAXB and also includes other advanced features. By default, you can take advantage of EclipseLink JAXB in Java API for XML Web Services (JAX-WS) and Java API for RESTful Web Services (JAX-RS) applications.

	
Oracle WebLogic Suite includes Oracle Coherence, which is a Java-based in-memory data-grid product that provides data caching, data replication, and distributed computing services. WebLogic Server and Coherence are tightly integrated to allow applications to use Coherence data caches. EclipseLink applications deployed to WebLogic Server can use Oracle TopLink Grid to integrate EclipseLink JPA with Coherence, using it as a level 2 (L2) cache and persistence layer for entities. See Developing Applications with Oracle Coherence and Integrating Oracle Coherence for more information.

	
Note:

You can also obtain Coherence as a separately licensed product to use WebLogic Server Standard Edition and WebLogic Server Enterprise Edition.

	
EclipseLink logging integration in WebLogic Server provides a comprehensive, integrated logging infrastructure. See Section 3.2.4, "Task 4: Use or Reconfigure the Logging Integration."

	
WebLogic Server supports Oracle Application Development Framework (Oracle ADF), an end-to-end Java EE framework, based on Struts and JavaServer Faces (JSF). Oracle ADF simplifies application development by providing infrastructure services and a visual and declarative development experience. TopLink and Oracle ADF together provide a complete Java EE application infrastructure. How to use Oracle ADF is beyond the scope of this guide. See Developing Fusion Web Applications with Oracle Application Development Framework.

	
WebLogic Server, TopLink, and Oracle ADF are all integrated with Oracle JDeveloper, Oracle's integrated development environment (IDE) that provides support for modeling, developing, debugging, optimizing, and deploying Java EE applications, including applications that use TopLink as the persistence provider and that are deployed to WebLogic Server. How to use JDeveloper is beyond the scope of this guide. See http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.html for general information about JDeveloper. For information about JDeveloper tasks, see the JDeveloper online help in the JDeveloper IDE.

3.1.2 TopLink and Other Fusion Middleware Products

Figure 3-1 shows how WebLogic Server and TopLink are related to and used with other Oracle products. You might use the products together as follows:

	
Use JDeveloper (or Oracle Enterprise Pack for Eclipse or NetBeans) to develop Java EE applications.

	
Use EclipseLink as the persistence provider.

	
Use Oracle Coherence (via TopLink Grid integration) for data caching, data replication and distributed computing services.

	
Use WebLogic as the application server.

	
Use the Oracle database for persisting data from EclipseLink JPA applications or XML for persisting data from EclipseLink JAXB applications.

Figure 3-1 Relationship of WebLogic Server, TopLink, and Related Products

[image: Description of Figure 3-1 follows]

3.2 Implementing the Solution

To run EclipseLink JPA applications in WebLogic Server, you must configure WebLogic Server and coordinate certain settings in it and in your application, as described in the following tasks:

	
Task 1: Prerequisites

	
Optional Task: Update the Release of EclipseLink in WebLogic Server (Optional)

	
Task 3: Configure JMX MBean Extensions in WebLogic Server

	
Task 4: Use or Reconfigure the Logging Integration

	
Task 5: Add Persistence to Your Java Application Using EclipseLink

	
Task 6: Configure a Data Source

	
Task 7: Extend the Domain to Use Advanced Oracle Database Features

	
Task 8: Start WebLogic Server and Deploy the Application

	
Task 9: Run the Application

	
Task 10: Configure and Monitor Persistence Settings in WebLogic Server

3.2.1 Task 1: Prerequisites

This document is based on the following products and tools, although the principles apply to any supported database or development environment. It is assumed that the software is already installed, except where noted in later sections.

	
WebLogic Server 12c or later.

For more information and downloads, see http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html on the Oracle Technology Network.

	
Any compliant Java Database Connectivity (JDBC) database including Oracle Database, Oracle Express, MySQL, and so on.

For Oracle Database, see http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html. For Oracle Database, Express Edition, see http://www.oracle.com/technetwork/database/express-edition/overview/index.html. For MySQL, see http://www.oracle.com/us/products/mysql/index.html.

	
While it is not required, you may want to use a Java development environment (IDE) for convenience during development. For example JDeveloper, Oracle Enterprise Pack for Eclipse, and NetBeans all provide sophisticated Java EE development tools. Both JDeveloper and Oracle Enterprise Pack for Eclipse include embedded versions of WebLogic Server, although this guide describes a standalone instance of WebLogic Server.

For JDeveloper, see http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html. For Oracle Enterprise Pack for Eclipse, see http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html. For NetBeans, see http://www.oracle.com/us/products/tools/050845.html.

3.2.2 Optional Task: Update the Release of EclipseLink in WebLogic Server (Optional)

If you have an older version of WebLogic Server, you can upgrade the version of EclipseLink used in it. Obtain eclipselink.jar from a newer TopLink distribution and then use the WebLogic Server filtering class loader and the shared library feature, as described in the instructions below.

The FilteringClassLoader class provides a mechanism for configuring deployment descriptors to specify that certain packages are always loaded from the application, rather than being loaded by the system class loader. You can use this mechanism to specify that a newer release of EclipseLink be used by an application. For more information about filtering class loaders in WebLogic Server, see "Using a Filtering Classloader" in Developing Applications for Oracle WebLogic Server.

A shared library is a Java EE module that can be shared by multiple enterprise applications. A shared library is deployed to a WebLogic Server target, and it can then be referenced by applications. Upon deployment, WebLogic Server merges the contents of the shared library with the application. In addition, because shared libraries can be packaged as standard Java EE archives, any descriptors are also merged with the application at deployment. For more information about WebLogic Server shared libraries, see "Creating Shared Java EE Libraries and Optional Packages" in Developing Applications for Oracle WebLogic Server.

For what is supported in various releases, see the following:

	
"Oracle TopLink: JPA Certification" at http://www.oracle.com/technetwork/middleware/ias/jpa-082702.html#eclipselink

	
"Oracle TopLink and WebLogic Support" at http://www.oracle.com/technetwork/middleware/ias/weblogic-086699.html

To update the release of EclipseLink in WebLogic Server, do the following:

	
Download the TopLink version you want from http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html and find the eclipselink.jar file. In the directories created by using the TopLink quick installer, the eclipselink.jar file is in oracle_common\modules\oracle.toplink_version_no. For more information about the quick installer, see Chapter 2, "Installing Oracle TopLink."

	
Put the eclipselink.jar file in the lib directory of your application.

	
Prepare the shared library as a standard Java EE Enterprise Archive (EAR), named, for example, eclipselink-shared-lib.ear, containing the following items:

META-INF/weblogic-application.xml
META-INF/application.xml
lib/eclipselink.jar

For more information about creating EARs, see "Creating and Configuring Web Applications" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

	
In the application's weblogic-application.xml descriptor file, add a prefer-application-packages element, with the subelement <package-name>org.eclipse.persistence.*</package-name>, as follows:

<weblogic-application>
 <prefer-application-packages>
 <package-name>org.eclipse.persistence.*</package-name>
 </prefer-application-packages>
</weblogic-application>

	
Create an application.xml file for the application. This file is necessary to support the runtime library merging. The minimum configuration is as follows:

<application>
 <display-name>eclipselink-shared-lib</display-name>
 <module>
 <java></java>
 </module>
</application>

	
Add the extension name, the specification version, and the implementation version to the EAR's META-INF/MANIFEST.MF file. For example, if you are using Apache Ant, you can do the following:

<target name="package" depends="prepare">
 <jar destfile="dist/${ant.project.name}.ear">
 <metainf dir="etc" includes="*.xml"/>
 <manifest>
 <attribute name="Extension-Name" value="eclipselink"/>
 <attribute name="Specification-Version" value="2.0"/>
 <attribute name="Implementation-Version" value="2.2.0"/>
 </manifest>
 <fileset dir="build" includes="**/*"/>
 </jar>
</target>

At deployment time, WebLogic Server uses the attributes as metadata for the deployed shared library.

The final EAR file should look like this:

META-INF/
META-INF/MANIFEST.MF
META-INF/application.xml
META-INF/weblogic-application.xml
lib/
lib/eclipselink.jar

	
Deploy the eclipselink-shared-lib.ear file to WebLogic Server. This results in a new library being available on the server, eclipselink#2.0@2.2.0.

	
In the weblogic-application.xml file of any applications that will use the updated release of EclipseLink, add a reference to the shared library, as follows:

<weblogic-application>
 <library-ref>
 <library-name>eclipselink</library-name>
 <specification-version>2.0</specification-version>
 <implementation-version>2.2.0</implementation-version>
 </library-ref>
</weblogic-application>

3.2.3 Task 3: Configure JMX MBean Extensions in WebLogic Server

WebLogic Server uses Java Management Extensions (JMX) MBeans to configure, monitor, and manage WebLogic Server resources. For EclipseLink applications, MBeans are used to monitor and configure aspects of persistence units and are also used for logging.

	
Note:

When deployed to WebLogic Server, EclipseLink applications deploy MBeans when they connect to the database, not at deployment time.

For information about how MBeans are used in WebLogic Server, see Developing Custom Management Utilities Using JMX for Oracle WebLogic Server and Developing Manageable Applications Using JMX for Oracle WebLogic Server.

For information about EclipseLink logging in WebLogic Server, see Section 3.2.4, "Task 4: Use or Reconfigure the Logging Integration."

By default, when you deploy an EclipseLink application to WebLogic Server, the EclipseLink runtime deploys the following JMX MBeans to the WebLogic Server JMX service for each EclipseLink session:

	
org.eclipse.persistence.services.DevelopmentServices - This class provides facilities for managing an EclipseLink session internal to EclipseLink over JMX.

	
org.eclipse.persistence.services.RuntimeServices - This class provides facilities for managing an EclipseLink session external to EclipseLink over JMX.

Use the API that this JMX MBean exposes to access and configure your EclipseLink sessions at runtime, using JMX code that you write, or to integrate your EclipseLink application with a third-party JMX management application, such as JConsole.

To find out how to access information about custom MBeans, you must first enable anonymous lookup and then use a separate tool to access the MBean information.

To enable anonymous lookup in the WebLogic Server Administration Console, do the following:

	
If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.

	
In the left pane, select your domain to open the Settings page for your domain.

	
Expand Security > General.

	
Select Anonymous Admin Lookup Enabled.

	
To activate these changes, in the Change Center of the Administration Console, click Activate Changes.

For the information about accessing the MBean information using various tools, see "Accessing Custom MBeans," in Developing Manageable Applications Using JMX for Oracle WebLogic Server.

For information about monitoring custom MBeans in the Administration Console, see "Monitor Custom MBeans" in Oracle WebLogic Server Administration Console Online Help.

3.2.4 Task 4: Use or Reconfigure the Logging Integration

By default, EclipseLink logging is integrated into the WebLogic Server logging infrastructure. Details about how the integration works and how to override it are described in the following sections. For detailed information about WebLogic Server logging, see the following:

	
Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic Server

	
Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server

	
The logging topics in Oracle WebLogic Server Administration Console Online Help

For information about configuring logging for JPA persistence units, see "How to Configure Logging" in the EclipseLink documentation at http://wiki.eclipse.org/EclipseLink/Examples/JPA/Logging.

3.2.4.1 How the Logging Integration Works

By default, the WebLogic Server logging implementation is injected into the persistence context, which results in all EclipseLink logging messages being produced according to the WebLogic Server logging configuration.

As a result of this integration, EclipseLink logging levels are converted to WebLogic Server logging levels as shown in Table 3-1.

Table 3-1 Mapping of EclipseLink Logging Levels to WebLogic Server Logging Levels

	EclipseLink Logging Levels	WebLogic Server Logging Levels
	
ALL, FINEST, FINER, FINE

	
DEBUG

	
CONFIG

	
INFO

	
INFO

	
NOTICE

	
WARNING

	
WARNING

	
SEVERE

	
ALERT

	
OFF

	
OFF

WebLogic Server logging levels are mapped to EclipseLink levels as shown in Table 3-2.

Table 3-2 Mapping of WebLogic Server Logging Levels to EclipseLink Logging Levels

	WebLogic Server Logging Levels	EclipseLink Logging Levels
	
TRACE, DEBUG

	
FINEST

	
INFO

	
CONFIG

	
NOTICE

	
INFO

	
WARNING

	
WARNING

	
ERROR, CRITICAL, ALERT

	
SEVERE

	
EMERGENCY, OFF

	
OFF

3.2.4.2 Viewing Persistence Unit Logging Levels in the Administration Console

You can see the EclipseLink logging level defined for the persistence unit in the Administration Console, as described in Section 3.2.10, "Task 10: Configure and Monitor Persistence Settings in WebLogic Server." However, be aware that this logging level, set in the persistence.xml file, is overridden when the default WebLogic Server and EclipseLink logging integration is used. For information about overriding the integration, see Section 3.2.4.3, "Overriding the Default Logging Integration."

When the default integration is used, the Enterprise JavaBeans (EJB) logging options for persistence are mapped through and control EclipseLink's logging output in the Administration Console.

3.2.4.3 Overriding the Default Logging Integration

You set EclipseLink logging levels in the persistence.xml file. However, when you accept the default logging integration with WebLogic Server, those settings are ignored, and the logging configuration set in WebLogic Server is used. The EclipseLink logging levels are used only when you use the native EclipseLink logging implementation.

You can override the default logging integration by setting the eclipselink.logging.logger property name to a different setting. For example, to enable the default EclipseLink logging, set the eclipselink.logging.logger property as follows:

<property name="eclipselink.logging.logger" value="DefaultLogger"/>

You can also use a different logging implementation for EclipseLink messages, for example the java.util.logging package:

<property name="eclipselink.logging.logger" value="JavaLogger"/>

3.2.4.4 Configuring WebLogic Server to Expose EclipseLink Logging

If you use the native EclipseLink logging implementation, you can still display EclipseLink logging messages in the WebLogic Server domain's log files by configuring WebLogic Server to redirect Java Virtual Machine (JVM) output to the registered log destinations.

For more information and instructions for redirecting, see "Redirecting JVM Output" in Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server. To set this option in the Administration Console, see "Redirect JVM output" in Oracle WebLogic Server Administration Console Online Help.

3.2.4.5 Other Considerations

Other things to consider include the following:

	
The message ID 2005000 is used for all EclipseLink log messages.

	
Some logging messages handled by the WebLogic Server integrated logger may show up in the WebLogic Server console or the server log (depending on the settings of logging levels) during deployment, even though at runtime the application's entity manager factory will use only the EclipseLink logging infrastructure and only the EclipseLink logging settings.

	
If you use a different release of EclipseLink than the release bundled in your WebLogic Server installation (by using a filtering class loader), then trying to use the default integrated logging can lead to errors, due to classloading conflicts. To work around this issue, explicitly set the eclipselink.logging.logger property to something other than the integrated WebLogic Server logger.

3.2.5 Task 5: Add Persistence to Your Java Application Using EclipseLink

Using EclipseLink JPA to provide persistence for an application is the fundamental task presumed by all the other tasks described in this chapter; yet the actual JPA programming practice is mostly outside the scope of this guide. WebLogic Server imposes no special requirements on your EclipseLink application, other than the details described in this chapter.

This chapter describes features, settings, and tasks that are specific to using EclipseLink (runtime and API) with WebLogic Server. For information about developing, packaging, and deploying a Java application using JPA, see the following:

	
The EclipseLink project wiki at http://wiki.eclipse.org/EclipseLink

	
The EclipseLink Documentation Center at http://wiki.eclipse.org/EclipseLink/Documentation_Center

	
The Java Persistence API, Version 2.1 specification at http://jcp.org/en/jsr/detail?id=317

	
"Part V, Persistence" in "The Java EE 6 Tutorial" at http://download.oracle.com/javaee/6/tutorial/doc/bnbpy.html

	
Any third-party book that describes programming Java applications using JPA

For more information about TopLink features and concepts, see Chapter 1, "Introduction" and Understanding Oracle TopLink.

For related WebLogic Server programming topics, see any book in the WebLogic Server documentation set, in particular the following:

	
Developing Enterprise JavaBeans for Oracle WebLogic Server

	
Developing Applications for Oracle WebLogic Server

	
Deploying Applications to Oracle WebLogic Server

	
Developing JDBC Applications for Oracle WebLogic Server

3.2.6 Task 6: Configure a Data Source

In WebLogic Server, you configure database connectivity by adding JDBC data sources to WebLogic Server domains. Each WebLogic data source contains a pool of database connections. Applications look up the data source on the Java Naming and Directory Interface (JNDI) tree or in the local application context and then reserve a database connection with the getConnection() method. Data sources and their connection pools provide connection management processes to keep the system running efficiently.

For information about using JDBC with WebLogic Server, see the following:

	
For complete documentation about working with JDBC in WebLogic Server, see Administering JDBC Data Sources for Oracle WebLogic Server, in particular:

	
"Configuring WebLogic JDBC Resources"

	
"Configuring JDBC Data Sources"

	
For information about working with JDBC data sources in the WebLogic Server Administration Console, see the topics under "Configure JDBC" in Oracle WebLogic Server Administration Console Online Help.

3.2.6.1 Ways to Configure Data Sources for JPA Applications

You can configure data sources for JPA applications deployed to WebLogic Server in a variety of ways, including the following:

	
Configure a Globally Scoped JTA Data Source

	
Configure an Application-Scoped JTA Data Source

	
Configure a non-JTA Data Source and Manage Transactions in the Application

3.2.6.2 Configure a Globally Scoped JTA Data Source

The most common data source configuration is a globally-scoped JNDI data source, using Java Transaction API (JTA) for transaction management, specified in the persistence.xml file. Configuration is straightforward, as shown in the following steps, and multiple applications can access the data source:

	
Create the Data Source in WebLogic Server

	
Configure the persistence.xml File

3.2.6.2.1 Create the Data Source in WebLogic Server

To set up a globally scoped JNDI data source in the WebLogic Server Administration Console, do the following:

	
Create a new data source, as described in "Configure JDBC generic data sources" in Oracle WebLogic Server Administration Console Online Help.

	
Note:

EclipseLink is compatible with any WebLogic Server data source that can be accessed using standard JNDI data source lookup by name. These instructions describe the wizard for a generic data source.

	
Enter values in the Create a New JDBC data source wizard, according to your requirements. For more information, see "Create a JDBC Data Source" in Oracle WebLogic Server Administration Console Online Help.

	
Important:

The value used for JNDI Name (on the JDBC Datasource Properties page must be the same as the value used for the <jta-data-source> element in the persistence.xml file.

	
Configure connection pools, as described in "Configuring Connection Pool Features" in Administering JDBC Data Sources for Oracle WebLogic Server. The connection pool configuration can affect EclipseLink's ability to handle concurrent requests from the application. Properties should be tuned in the same way any connection pool would be tuned to optimize resources and application responsiveness.

3.2.6.2.2 Configure the persistence.xml File

In the persistence.xml file, specify that transaction-type is JTA, and provide the name of the data source in the jta-data-source element (prefaced by jdbc/ or not), as shown in Example 3-1:

Example 3-1 persistence.xml File With JNDI Data Source Using JTA

...
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>JDBC Data Source-1</jta-data-source>
 <class>org.eclipse.persistence.example.jpa.server.business.Cell</class>
 <class>org.eclipse.persistence.example.jpa.server.business.CellAttribute</class>
 </persistence-unit>

3.2.6.3 Configure an Application-Scoped JTA Data Source

To configure an application-scoped data source that uses JTA for transaction management, perform the following steps:

	
"Specify that the Data Source Is Application-Scoped"

	
"Add the JDBC Module to the WebLogic Server Application Configuration"

	
"Configure the JPA Persistence Unit to Use the JTA Data Source"

3.2.6.3.1 Specify that the Data Source Is Application-Scoped

To define an application-scoped data source, create a name-jdbc.xml JDBC module file and place it in the META-INF folder of the application's EAR file. In that file, add <scope>Application</scope> to the jdbc-data-source-params section, as shown in Example 3-2.

Example 3-2 JDBC Data Source Defined in the name-jdbc.xml File

<jdbc-data-source ...>
...
 <jdbc-data-source-params>
 <jndi-name>SimpleAppScopedDS</jndi-name>
 <scope>Application</scope>
 </jdbc-data-source-params>
</jdbc-data-source>

	
Hint:

You can create the framework for the a name-jdbc.xml file by creating a globally scoped data source from the WebLogic Server Administration Console, as described in Section 3.2.6.2, "Configure a Globally Scoped JTA Data Source," with these differences:
	
Do not associate the data source with a server.

	
Add the <scope> element manually.

For more information about JDBC module configuration files and jdbc-data-source (including <jdbc-driver-params> and <jdbc-connection-pool-params>), see "Configuring WebLogic JDBC Resources" in Administering JDBC Data Sources for Oracle WebLogic Server.

3.2.6.3.2 Add the JDBC Module to the WebLogic Server Application Configuration

Add a reference to the JDBC module in the /META-INF/weblogic-application.xml application deployment descriptor in the EAR file, as shown in Example 3-3. This registers the data source for use in the application.

Example 3-3 JDBC Module Defined in the weblogic-application.xml File

<wls:module>
 <wls:name>SimpleAppScopedDS</wls:name>
 <wls:type>JDBC</wls:type>
 <wls:path>META-INF/simple-jdbc.xml</wls:path>
</wls:module>

For more information about weblogic-application.xml application deployment descriptors, see "Understanding Application Deployment Descriptors" in Deploying Applications to Oracle WebLogic Server and "Enterprise Application Deployment Descriptor Elements" in Developing Applications for Oracle WebLogic Server.

3.2.6.3.3 Configure the JPA Persistence Unit to Use the JTA Data Source

To make it possible for EclipseLink runtime to lazily look up an application-scoped data source, you must specify an additional data source property in the definition of the persistence unit in the persistence.xml file. For a JTA data source, add a fully qualified javax.persistence.jtaDataSource property, with the value java:/app/jdbc/data_source_name, as shown in Example 3-4.

The values of the <jta-data-source> and <javax.persistence.jtaDataSource> properties must match.

Example 3-4 JTA Data Source Definition in the persistence.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="employee" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>java:/app/jdbc/SimpleAppScopedDS</jta-data-source>
 <properties>
 <property name="javax.persistence.jtaDataSource"
 value="java:/app/jdbc/SimpleAppScopedDS" />
 </properties>
 </persistence-unit>
</persistence>

3.2.6.4 Configure a non-JTA Data Source and Manage Transactions in the Application

To configure a non-JTA data source managed by the application, follow the procedures described in Section 3.2.6.3, "Configure an Application-Scoped JTA Data Source," but configure the JPA persistence unit to use a non-JTA data source by specifying a not-JTA data source, as shown in Example 3-5.

Example 3-5 non-JTA Data Source Definition in the persistence.xml File

<?xml version="1.0" encoding="windows-1252" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="employee" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <non-jta-data-source>OracleDS</non-jta-data-source>
 <properties>
 <property name="javax.persistence.nonJtaDataSource"
 value="OracleDS" />
 </properties>
 </persistence-unit>
</persistence>

Write the code in your application to handle the transactions as described, for example, in "Transactions in EJB Applications" in Developing JTA Applications for Oracle WebLogic Server.

3.2.6.5 Ensure the Settings Match

Certain settings in the data source configuration must match certain settings in the application's ejbModule/META-INF/persistence.xml file. For the data source configuration in WebLogic Server, you can check the settings in the configuration files or in the Administration Console.

In the Administration Console, review the settings as follows:

	
In the Domain Structure tree, expand Services, then select Data Sources.

	
On the Summary of JDBC Data Sources page, click the name of the data source.

	
On the Settings for data_source_name > Configuration > General page, find the value for JNDI Name, for example localDS. If you are using JTA, then the name must match <jta-data-source> in the persistence.xml file.

	
On the Settings for data_source_name > Configuration > Connection Pool page, review these settings:

	
The value for URL must match the javax.persistence.jdbc.url value in the persistence.xml file, for example, jdbc:oracle:thin:@127.0.0.1:1521:XE.

	
The value for Driver Class Name must match the javax.persistence.jdbc.driver value in the persistence.xml file, for example (for a JTA data source), oracle.jdbc.xa.client.OracleXADataSource.

Example 3-6 shows the values that must be shared in the domain's config.xml file and the application's persistence.xml file.

Example 3-6 Server Domain config.xml File

...
<domain...>
 <jdbc-system-resource>
 <name>localJTA</name>
 <target>AdminServer,ManagedServer_1,ManagedServer_2</target>
 <descriptor-file-name>jdbc/localJTA-4636-jdbc.xml</descriptor-file-name>
 </jdbc-system-resource>
</domain>

3.2.7 Task 7: Extend the Domain to Use Advanced Oracle Database Features

To fully support Oracle Spatial and Oracle XDB mapping capabilities (in both standalone WebLogic Server and the JDeveloper Integrated WebLogic Server), you must use the toplink-spatial-template.jar file and the toplink-xdb-template.jar file to extend the WebLogic Server domain to support Oracle Spatial and Oracle XDB, respectively.

To extend your WebLogic Server domain:

	
Download the toplink-spatial-template.jar (to support Oracle Spatial) and toplink-xdb-template.jar (to support Oracle XDB) files from:

	
http://download.oracle.com/otn/java/toplink/111110/toplink-spatial-template.jar

	
http://download.oracle.com/otn/java/toplink/111110/toplink-xdb-template.jar

	
Copy the files, as shown in Table 3-3 and Table 3-4.

Table 3-3 File to Support Oracle Spatial

	File	From...	To...
	
sdoapi.jar

	
ORACLE_DATABASE_HOME/md/jlib

	
WL_HOME/server/lib

Table 3-4 Files to Support Oracle XDB

	File	From...	To...
	
xdb.jar

	
ORACLE_DATABASE_HOME/rdbms/jlib

	
WL_HOME/server/lib

	
xml.jar

	
ORACLE_DATABASE_HOME/lib

	
WL_HOME/server/lib

	
xmlparserv2.jar

	
ORACLE_DATABASE_HOME/lib

	
WL_HOME/server/lib

	
Start the Config wizard (WL_HOME/common/bin/config.sh (or .bat)).

	
Select Extend an existing WebLogic domain.

	
Browse and select your WebLogic Server domain.

	
Select Extend my domain using an existing extension template.

	
Browse and select the required template JAR file (toplink-spatial-template.jar for Oracle Spatial, toplink-xdb-template.jar for Oracle XDB).

	
Complete the remaining pages of the wizard.

For information about using WebLogic Server domain templates, see Domain Template Reference.

3.2.8 Task 8: Start WebLogic Server and Deploy the Application

For information about deploying to WebLogic Server, see Deploying Applications to Oracle WebLogic Server. See also "Deploying Fusion Web Applications" in Developing Fusion Web Applications with Oracle Application Development Framework.

3.2.9 Task 9: Run the Application

For instructions for starting a deployed application from the WebLogic Server Administration Console, see "Start and stop a deployed Enterprise application" in Oracle WebLogic Server Administration Console Online Help.

3.2.10 Task 10: Configure and Monitor Persistence Settings in WebLogic Server

In the WebLogic Server Administration Console, you can configure a persistence unit and configure JTA and non-JTA data sources of a persistence unit, as follows:

	
If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.

	
In the left pane of the Administration Console, select Deployments.

	
In the right pane, select the application or module you want to configure.

	
Select Configuration.

	
Select Persistence.

	
Select the persistence unit that you want to configure from the table.

	
Review and edit properties on the configuration pages. For help on any page, click the Help link at the top of the Administration Console.

Properties that can be viewed include:

	
Name

	
Provider

	
Description

	
Transaction type

	
Data cache time out

	
Fetch batch size

	
Default schema name

	
Values of persistence unit properties defined in the persistence.xml file, for example, eclipselink.session-name, eclipselink.logging.level, and eclipselink.target-server

You can also set attributes related to the transactional and non-transactional data sources of a persistence unit, on the Data Sources configuration page.

	
To activate these changes, in the Change Center of the Administration Console, click Activate Changes.

For links to other help topics about working with persistence in the Administration Console, search for "Persistence" in the Table of Contents of Oracle WebLogic Server Administration Console Online Help.

3.3 Additional Resources

See the following resources for more information about the technologies and tools used to implement the solutions in this chapter:

	
Oracle WebLogic Server documentation

	
Java API Reference for Oracle TopLink, including:

	
org.eclipse.persistence

	
org.eclipse.persistence.jpa.PersistenceProvider

	
org.eclipse.persistence.services.mbean

4 Using TopLink with GlassFish Server

This chapter describes how to use Oracle TopLink as the persistence provider for applications deployed to Oracle GlassFish Server.

This chapter includes the following sections:

	
Section 4.1, "Introduction to the Solution"

	
Section 4.2, "Implementing the Solution"

	
Section 4.3, "Additional Resources"

Use Case

Users want to run applications that employ JPA on Oracle GlassFish Server.

Solution

The Oracle GlassFish platform provides full support for EclipseLink. Developers writing applications for the GlassFish Server platform can achieve full Java-to-data source integration that complies with the Java Persistence API (JPA) 2.0 specification. EclipseLink allows you to integrate Java applications with any data source, without compromising ideal application design or data integrity.

Components

	
GlassFish Server 3.1.2.

	
TopLink 12c (12.1.2.0.0) or later.

	
Note:

TopLink's core functionality is provided by EclipseLink, the open source persistence framework from the Eclipse Foundation. EclipseLink implements Java Persistence API (JPA), Java Architecture for XML Binding (JAXB), and other standards-based persistence technologies, plus extensions to those standards. TopLink includes all of EclipseLink, plus additional functionality from Oracle.

	
Any compliant JDBC database including Oracle Database, Oracle Database Express Edition, MySQL, and so on.

	
While it is not required, you may want to use a Java EE integrated development environment (IDE) for convenience during development.

4.1 Introduction to the Solution

Oracle GlassFish Server is the reference implementation of the Java Platform, Enterprise Edition (Java EE platform) specification. Built using the GlassFish Server Open Source Edition, GlassFish Server delivers a flexible, lightweight, and production-ready Java EE platform.

GlassFish Server is part of the Oracle Fusion Middleware application grid portfolio of products and is ideally suited for applications requiring lightweight infrastructure with the most up-to-date implementation of the Java EE platform. GlassFish Server complements Oracle WebLogic Server, which is designed to run the broader portfolio of Oracle Fusion Middleware and large-scale enterprise applications.

4.1.1 Advantages to Using TopLink with GlassFish Server

By adding TopLink support, developers writing applications for the GlassFish Server platform can achieve full Java-to-data source integration that complies with the Java Persistence API (JPA) 2.0 specification. TopLink allows you to integrate Java applications with any data source, without compromising ideal application design or data integrity. In addition, TopLink gives your GlassFish Server platform applications the ability to store (that is, persist) and retrieve business domain objects using a relational database or an XML data source as a repository.

While GlassFish Server can use other persistence providers and TopLink can be used with other application servers, using GlassFish Server with TopLink provides a number of advantages:

	
TopLink is included in all GlassFish Server distributions and is the default JPA provider.

	
TopLink allows applications running on GlassFish Server to use Oracle Coherence caches. Coherence is a Java-based in-memory application grid product that provides data caching, data replication, and distributed computing services. TopLink includes features that allow deployed applications to use Coherence data caches and to incorporate TopLink Grid as an object-to-relational persistence framework. How to use this feature is beyond the scope of this guide. See Integrating Oracle Coherence for more information.

	
TopLink logging integration in GlassFish Server provides a comprehensive, integrated logging infrastructure.

	
EclipseLink JAXB is also included in GlassFish versions 3.1.2 and later. Although it is not the default JAXB implementation, it can be used in JAX-WS and JAX-RS applications. For more information, see: http://blog.bdoughan.com/2012/02/glassfish-312-is-full-of-moxy.html

	
GlassFish Server supports the Oracle Application Development Framework (Oracle ADF), an end-to-end Java EE framework, based on Struts and JavaServer Faces (JSF). Oracle ADF simplifies application development by providing infrastructure services and a visual and declarative development experience. TopLink and Oracle ADF together provide a complete Java EE application infrastructure. Oracle ADF is beyond the scope of this guide. See Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

4.1.2 Relationship of GlassFish Server and TopLink to Fusion Middleware Products

Figure 4-1 illustrates how GlassFish Server and TopLink are related to and used with other Oracle products. The following are examples of using GlassFish Server and TopLink with other Oracle Middleware products:

	
Use EclipseLink as the persistence provider.

	
Use Oracle Coherence (through Oracle TopLink Grid integration) for data caching, data replication and distributed computing services.

	
Use GlassFish as the application server.

	
Use the Oracle database for persisting data.

	
Note:

Oracle Coherence and TopLink Grid are beyond the scope of this guide. For information about Coherence, see Developing Applications with Oracle Coherence, and follow links to other Coherence documentation. For information about TopLink Grid, see Integrating Oracle Coherence.

Figure 4-1 GlassFish Server, TopLink and Other Products in the Oracle Fusion Middleware Stack

[image: Description of Figure 4-1 follows]

4.2 Implementing the Solution

To run EclipseLink JPA applications in GlassFish Server, you must configure the server and coordinate certain server and application settings. These are described in the following tasks.

	
Task 1: Prerequisites

	
Task 2: Install GlassFish Server

	
Task 3: Set Up the Data Source

	
Task 4: Create the persistence.xml File

	
Task 5: Set Up GlassFish Server for JPA

	
Task 6: Create the Application

	
Task 7: Deploy the Application to GlassFish Server

	
Task 8: Run the Application

	
Task 9: Monitor the Application

4.2.1 Task 1: Prerequisites

This document is based on the following products and tools, although the principles apply to any supported database or development environment. It is assumed that the software is already installed, except where noted in later sections.

	
GlassFish Server 3.1.2.

For more information and downloads, see http://www.oracle.com/technetwork/middleware/glassfish/overview/index.html on the Oracle Technology Network.

	
EclipseLink 2.4.1.

For more information and downloads, see http://www.eclipse.org/eclipselink/ on the EclipseLink website.

	
Any compliant JDBC database including Oracle Database, Oracle Database Express Edition, MySQL, and so on.

For Oracle Database, see http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html.

For Oracle Database Express Edition, see http://www.oracle.com/technetwork/database/express-edition/overview/index.html.

For MySQL, see http://www.oracle.com/us/products/mysql/index.html.

	
While it is not required, you may want to use a Java EE integrated development environment (IDE) for convenience during development. For example, Oracle JDeveloper, Oracle Enterprise Pack for Eclipse, and NetBeans all provide sophisticated Java EE development tools.

For JDeveloper, see http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html.

For Oracle Enterprise Pack for Eclipse, see http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html.

For NetBeans, see http://www.oracle.com/us/products/tools/050845.html.

4.2.2 Task 2: Install GlassFish Server

EclipseLink is included with the GlassFish Server distribution. You can find instructions for installing and configuring GlassFish Server at this URL:

http://docs.oracle.com/cd/E26576_01/index.htm

The EclipseLink modules appear as separate JAR files in the modules directory.

* \glassfish\modules
 .
 .
 .
 o org.eclipse.persistence.antlr.jar
 o org.eclipse.persistence.asm.jar
 o org.eclipse.persistence.core.jar
 o org.eclipse.persistence.jpa.jar
 o org.eclipse.persistence.jpa.modelgen.jar
 o org.eclipse.persistence.moxy.jar
 o org.eclipse.persistence.oracle.jar
 .
 .
 .

	
Note:

	
The toplink-grid.jar file, which provides support for Coherence caches, is available only if you purchase the license for Oracle Coherence. For more information about the functionality provided by the toplink-grid.jar file, see Integrating Oracle Coherence.

	
The org.eclipse.persistence.oracle.jar file is available with GlassFish and provides Oracle Database-specific functionality for EclipseLink. This file is used only for applications running against an Oracle Database.

Object-XML (also known as JAXB support) is a component that enables you to bind Java classes to XML schemas. This support is provided by the org.eclipse.persistence.moxy.jar.

4.2.3 Task 3: Set Up the Data Source

Configuring an Oracle database as a JDBC resource for a Java EE application involves the following steps:

	
Integrate the JDBC Driver for Oracle Database into GlassFish Server

	
Create a JDBC Connection Pool for the Resource

	
Create the JDBC Resource

4.2.3.1 Integrate the JDBC Driver for Oracle Database into GlassFish Server

To integrate the JDBC driver, copy its JAR file into the domain and then restart the domain and instances to make the driver available.

	
Copy the JAR file for the JDBC driver into the domain's lib subdirectory, for example:

cd /home/gfuser/glassfish3
cp oracle-jdbc-drivers/ojdbc6.jar glassfish/domains/domain1/lib

Note that you do not have to restart GlassFish Server; the drivers are picked up dynamically.

If the application uses Oracle Database-specific extensions provided by EclipseLink, then the driver must be copied to the lib/ext directory. For more information, see "Oracle Database Enhancements" in the Oracle GlassFish Server Application Development Guide at:

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm#giqbi

	
You can use the GlassFish Server Administration Console or the command line to restart instances in the domain to make the JDBC driver available to the instances.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Cluster node. Select the node for the cluster and on its General Information page, click the Instances tab. Select the instances you want to restart. For more information, see "To Start Clustered GlassFish Server Instances" in GlassFish Server Administration Console Online Help.

To start a standalone instance, expand the Standalone Instances node. For each instance that you are starting, select the instance in the Server Instances table. Click Start. The status of each instance is updated in the Server Instances table when the instance is started. For more information, see "To Start Standalone GlassFish Server Instances" in GlassFish Server Administration Console Online Help.

To use the command line:

Run the restart-instance subcommand to restart the instances. These commands assume that your instances are named pmd-i1 and pmd-i2.

restart-instance pmd-i1
restart-instance pmd-i2

4.2.3.2 Create a JDBC Connection Pool for the Resource

You can create a JDBC connection pool from the GlassFish Server Administration Console or from the command line.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Common Tasks node, then click the Create New JDBC Connection Pool button in the Common Tasks page. Specify the name of the pool, the resource type, the name of the database provider, the data source and driver class names, and other details. For more information, see "To Create a JDBC Connection Pool" in GlassFish Server Administration Console Online Help.

To use the command line:

	
Use the create-jdbc-connection-pool subcommand to create the JDBC connection pool, specifying the database connectivity values. In this command, note the use of two backslashes (\\) preceding the colons in the URL property value. These backslashes cause the colons to be interpreted as part of the property value instead of as separators between property-value pairs, for example:

create-jdbc-connection-pool
 --datasourceclassname oracle.jdbc.pool.OracleDataSource
 --restype javax.sql.DataSource
 --property User=smith\\:Password=password\\:url=jdbc\\:oracle\\:thin\\:@node_name.example.com\\:1521\\:smithdb
 poolbvcallbackbmt

	
Verify connectivity to the database.

ping-connection-pool pool_name

4.2.3.3 Create the JDBC Resource

You can use the GlassFish Server Administration Console to create the JDBC resource or you can use the command line.

To use the GlassFish Server Administration Console:

In the GlassFish Server Administration Console, expand the Resources node, then the JDBC node, then the JDBC Resources node to open the JDBC Resources page. Provide a unique JNDI resource name and associate the resource with a connection pool. For more information, see "To Create a JDBC Resource" in the GlassFish Server Administration Console Online Help.

To use the command line:

Use the create-jdbc-resource subcommand to create the JDBC resource, and name it so that the application can discover it using JNDI lookup, for example:

create-jdbc-resource --connectionpoolid poolbvcallbackbmt jdbc/bvcallbackbmt

4.2.4 Task 4: Create the persistence.xml File

Example 4-1 illustrates a sample persistence.xml file that specifies the default persistence provider for EclipseLink, org.eclipse.persistence.jpa.PersistenceProvider. For more information about this file, see "About the Persistence Unit" in Understanding Oracle TopLink.

If you are using the default persistence provider, then you can specify additional database properties described in Java Persistence API (JPA) Extensions Reference for Oracle TopLink.

Several of the values you enter in the file must match the values you chose when you defined the cluster, connection, and connection pool properties in GlassFish Server, as follows:

JDBC Data Source Properties:

	
Name: The name of the data source, which is typically the same as the JNDI name, for example jdbc/bvcallbackbmt.

	
JNDI Name: The JNDI path to where this data source is bound. This must be the same name as the value for the <jta-data-source> element in persistence.xml, for example jdbc/bvcallbackbmt.

	
Database Type: Oracle

	
Database Driver: (default) Oracle's Driver (Thin XA) for Instance connections; Versions: 9.0.1 and later

Connection Properties:

	
Database Name: The name of the database, for example, XE for Oracle Database Express Edition samples.

	
Host Name: The IP address of the database server, for example 127.0.0.1 for a locally hosted database.

	
Port: The port number on which your database server listens for connection requests, for example, 1521, the default for Oracle Database Express Edition 11g.

	
Database User Name: The database account user name used to create database connections, for example hr for Oracle Database Express Edition 11g samples.

	
Password: Your password.

Select Targets:

	
Servers / Clusters: Select the administration server, managed servers, or clusters to which you want to deploy the data source. You can choose one or more.

The sample persistence.xml file in Example 4-1 highlights the properties defining the persistence provider, the JTA data source, and logging details. In this example, the logging level is set to FINE. At this level, SQL code generated by EclipseLink is logged to the server.log file. For more information about these properties, see:

	
Section 4.2.4.1, "Specify the Persistence Provider."

	
Section 4.2.4.2, "Specify an Oracle Database."

	
Section 4.2.4.3, "Specify Logging."

Example 4-1 Sample persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="2.0">
 <persistence-unit name="pu1" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/bvcallbackbmt</jta-data-source>
 <properties>
 <property name="eclipselink.logging.level" value="FINE"/>
 <property name="eclipselink.ddl-generation"
 value="drop-and-create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

4.2.4.1 Specify the Persistence Provider

The persistence provider defines the implementation of JPA. It is defined in the provider element of the persistence.xml file. Persistence providers are vendor-specific. The persistence provider for EclipseLink is org.eclipse.persistence.jpa.PersistenceProvider.

4.2.4.2 Specify an Oracle Database

You specify the database connection details in the persistence.xml file. GlassFish Server uses the bundled Java DB (Derby) database by default, named jdbc/__default. To use a nondefault database, such as the Oracle Database, either specify a value for the jta-data-source element, or set the transaction-type element to RESOURCE_LOCAL and specify a value for the non-jta-data-source element.

If you are using the default persistence provider, org.eclipse.persistence.jpa.PersistenceProvider, then the provider attempts to automatically detect the database type based on the connection metadata. This database type is used to issue SQL statements specific to the detected database type. You can specify the optional eclipselink.target-database property to guarantee that the database type is correct.

For more information about specifying database properties in a persistence.xml file for GlassFish Server, see "Specifying the Database for an Application" in the Oracle GlassFish Server Application Development Guide, at:

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm#gbwmj

4.2.4.3 Specify Logging

EclipseLink provides a logging utility even though logging is not part of the JPA specification. Hence, the information provided by the log is EclipseLink JPA-specific. With EclipseLink, you can enable logging to view the following information:

	
Configuration details

	
Information to facilitate debugging

	
The SQL that is being sent to the database

You can specify logging in the persistence.xml file. EclipseLink logging properties let you specify the level of logging and whether the log output goes to a file or standard output. Because the logging utility is based on java.util.logging, you can specify a logging level to use.

The logging utility provides nine levels of logging control over the amount and detail of the log output. Use eclipselink.logging.level to set the logging level, for example:

<property name="eclipselink.logging.level" value="FINE"/>

By default, the log output goes to System.out or to the console. To configure the output to be logged to a file, set the property eclipselink.logging.file, for example:

<property name="eclipselink.logging.file" value="output.log"/>

EclipseLink's logging utility is pluggable, and several different logging integrations are supported, including java.util.logging. To enable java.util.logging, set the property eclipselink.logging.logger, for example:

<property name="eclipselink.logging.logger" value="JavaLogger"/>

While running inside GlassFish Server, EclipseLink is configured by GlassFish Server to use JavaLogger by default. The log is always redirected to the GlassFish Server server.log file. For more information, see "Setting Log Levels" in Oracle GlassFish Server Administration Guide, at:

http://docs.oracle.com/cd/E26576_01/doc.312/e24928/logging.htm#gklml

For more information about EclipseLink logging and the levels of logging available in the logging utility, see "Persistence Property Extensions Reference" in Java Persistence API (JPA) Extensions Reference for Oracle TopLink.

4.2.5 Task 5: Set Up GlassFish Server for JPA

GlassFish Server Application Development Guide describes server-specific considerations on setting up GlassFish Server to run applications that employ JPA:

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm

It provides more information about these topics:

	
"Specifying the Database for an Application," for information about database connection properties

	
"Specifying the Persistence Provider for an Application," for setting the default or non-default persistence provider for an application

	
"Primary Key Generation Defaults," for the default persistence provider's primary key generation defaults

	
"Automatic Schema Generation," for information on annotations and options to manage automatic schema generation

	
"Restrictions and Optimizations," for restrictions and performance optimizations that affect using the Java Persistence API

4.2.6 Task 6: Create the Application

To create an application that uses EclipseLink as its JPA persistence provider, you may want to use a Java EE IDE for convenience during development. For example, JDeveloper, Oracle Enterprise Pack for Eclipse, and NetBeans provide sophisticated Java EE development tools, including support for EclipseLink. See "Key Tools" in Understanding Oracle TopLink.

For guidance in writing your application, see these topics from the "Configuring the Java Persistence Provider" chapter in Oracle GlassFish Server Application Development Guide, at:

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/jpa.htm

4.2.7 Task 7: Deploy the Application to GlassFish Server

For information about deploying to GlassFish Server, see "Deploy Applications or Modules," "To Deploy an Enterprise Application," and "To Deploy a Web Application" in GlassFish Server Administration Console Online Help. See also Oracle GlassFish Server Application Deployment Guide, at:

http://docs.oracle.com/cd/E26576_01/index.htm

4.2.8 Task 8: Run the Application

For instructions for starting a deployed application from the GlassFish Server Administration Console, see "Application Client Launch" and "To Launch an Application" in GlassFish Server Administration Console Online Help.

4.2.9 Task 9: Monitor the Application

GlassFish Server provides a monitoring service to track the health and performance of an application. For information about monitoring an application from the console, see the "Monitoring" and "Monitoring Data" topics in GlassFish Server Administration Console Online Help. For information about monitoring the application from the command line, see "Administering the Monitoring Service" in Oracle GlassFish Server Administration Guide, at:

http://docs.oracle.com/cd/E26576_01/doc.312/e24928/monitoring.htm

4.3 Additional Resources

See the following resources for more information about the technologies and tools used to implement the solutions in this chapter:

	
Oracle GlassFish Server Administration Guide

http://docs.oracle.com/cd/E26576_01/doc.312/e24928/toc.htm

	
Oracle GlassFish Server Application Deployment Guide

http://docs.oracle.com/cd/E26576_01/doc.312/e24929/toc.htm

	
Oracle GlassFish Server Application Development Guide

http://docs.oracle.com/cd/E26576_01/doc.312/e24930/toc.htm

	
Oracle GlassFish Server 3.1.2 to 3.1.2.2 Documentation Library

http://docs.oracle.com/cd/E26576_01/index.htm

5 Using TopLink with JBoss 7 Application Server

This chapter introduces and describes how to use Oracle TopLink as the persistence provider for applications deployed to JBoss Application Server 7.1.

This chapter includess the following sections:

	
Introduction to the Solution

	
Implementing the Solution

	
Additional Resources

Use Case

TopLink can be used with a number of popular Java EE application servers, including JBoss Application Server.

Solution

Configure JBoss to use EclipseLink runtime, and deploy applications developed using EclipseLink APIs.

Components

	
TopLink 12c (12.1.2.0.0) or later.

	
Note:

TopLink's core functionality is provided by EclipseLink, the open source persistence framework from the Eclipse Foundation. EclipseLink implements Java Persistence API (JPA), Java Architecture for XML Binding (JAXB), and other standards-based persistence technologies, plus extensions to those standards. TopLink includes all of EclipseLink, plus additional functionality from Oracle.

	
JBoss Application Server 7.x.

	
A compliant Java Database Connectivity (JDBC) database, such as Oracle Database, Oracle Express, MySQL, the HSQL database embedded in JBoss Application Server, etc.

5.1 Introduction to the Solution

JBoss Application Server implements the Java Platform, Enterprise Edition (Java EE). JBoss 7 fully supports Java EE 6, while JBoss 6 officially supports only the Java EE 6 Web Profile.

By configuring JBoss to support EclipseLink, you can take advantage of EclipseLink's full support for Java Persistence API (JPA), Java Architecture for XML Binding (JAXB), including EclipseLink's extensions to those technologies, as well as EclipseLink Database Web Services (DBWS) to access to relational database artifacts via a Web service.

5.2 Implementing the Solution

To develop, deploy and run EclipseLink applications in JBoss Application Server 7, you must create EclipseLink as a module of JBoss. You must also create other modules, such as a JDBC driver, etc., in order to run applications.

This section contains the following tasks for using EclipseLink with JBoss 7.1:

	
Task 1: Prerequisites

	
Task 2: Configure EclipseLink as a Module in JBoss

	
Task 3: Add ojdbc6.jar as a Module in JBoss

	
Task 4: Create the Driver Definition and the Datasource

	
Task 5: Create Users

	
Task 6: Modify JBoss Properties

	
Task 7: Other Requirements

	
Task 8: Start JBoss

5.2.1 Task 1: Prerequisites

Ensure that you have installed the following components:

	
JBoss, version 7 or later. These instructions are based on JBoss release 7.1.1.

Download JBoss from http://www.jboss.org/jbossas/downloads/ . The version of JBoss must be identified as "Certified Java EE6." Version 7.1.1 or later is recommended.

	
TopLink 12c (12.1.2.0.0) or later.

Download TopLink from http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html.

	
Any compliant Java Database Connectivity (JDBC) database including Oracle Database, Oracle Express, MySQL, the HSQL database embedded in JBoss Application Server, and so on.

	
Note:

Oracle XML DB (XDB) and JBoss Application Server both use port 8080 by default. If you have both available at the same URI, for example localhost, you must reconfigure one or the other to use a different port, for example 8081.

For the Oracle Database, see http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.html. For the Oracle Database, Express Edition, see http://www.oracle.com/technetwork/database/express-edition/overview/index.html. For MySQL, see http://www.oracle.com/us/products/mysql/index.html. For information about the embedded HSQL database, see the JBoss documentation.

	
While it is not required, you may want to use a Java development environment (IDE) for convenience during development. For example JDeveloper, Oracle Enterprise Pack for Eclipse, and NetBeans all provide sophisticated Java EE development tools that support TopLink.

For JDeveloper, see http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html. For Oracle Enterprise Pack for Eclipse, see http://www.oracle.com/technetwork/developer-tools/eclipse/overview/index.html. For NetBeans, see http://www.oracle.com/us/products/tools/050845.html.

5.2.2 Task 2: Configure EclipseLink as a Module in JBoss

To configure EclipseLink as a module in JBoss:

	
Create a directory as follows:

JBOSS_ HOME\modules\org\eclipse\persistence\main

	
Copy eclipselink.jar to the directory created in step 1. (The eclipselink.jar file is located in the oracle_common\modules\oracle.toplink_ver_no directory created by the TopLink quick installer.)

	
Create a module.xml file in the directory created in step 1, with the following content:

<module xmlns="urn:jboss:module:1.1" name="org.eclipse.persistence">
 <resources>
 <resource-root path="eclipselink.jar"/>
 <!-- Insert resources here -->
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.persistence.api"/>
 <module name="javax.transaction.api"/>
 <module name="javax.validation.api"/>
 <module name="javax.xml.bind.api"/>
 <module name="org.antlr"/>
 <module name="org.apache.commons.collections"/>
 <module name="org.dom4j"/>
 <module name="org.javassist"/>
 <module name="org.jboss.logging"/>
 <module name="com.oracle.ojdbc6"/>
 </dependencies>
</module>

5.2.3 Task 3: Add ojdbc6.jar as a Module in JBoss

Add the Oracle thin driver ojdbc6.jar as a module within JBoss, as follows:

	
Create the module directory:

JBOSS_ HOME\modules\com\oracle\ojdbc6\main

	
Copy ojdbc6.jar to the module directory created in step 1.

	
Create a module.xml file in the module directory created in step 1, with the following contents:

<module xmlns="urn:jboss:module:1.1" name="com.oracle.ojdbc6">
 <resources>
 <resource-root path="ojdbc6.jar"/>
 <!-- Insert resources here -->
 </resources>
 <dependencies>
 <module name="javax.api"/>
 </dependencies>
</module>

5.2.4 Task 4: Create the Driver Definition and the Datasource

Create the driver definition and create the datasource.

The following instructions tell how to configure JBoss for running in standalome mode, using the standalone.xml configuration file. For instructions on how to use domain.xml to configure JBoss for running in domain mode, see the JBoss documentation.

	
In the standalone configuration file JBOSS_ HOME\standalone\configuration\standalone.xml, find the following:

<subsystem xmlns="urn:jboss:domain:datasources:1.0">

	
In that section, configure the datasource. The following example shows a configuration for the Oracle Database, using the Oracle JDBC Thin driver. For instructions on configuring other datasources, see the JBoss documentation.

<subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 <datasource jndi-name="java:/EclipseLinkDS"
 pool-name="EclipseLinkDS"
 enabled="true"
 jta="true"
 use-java-context="true"
 use-ccm="true">
 <connection-url>jdbc:oracle:thin:node_name.example.com:1521:TOPLINK</connection-url>
 <driver>oracle</driver>
 <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-isolation>
 <pool>
 <prefill>true</prefill>
 <use-strict-min>false</use-strict-min>
 <flush-strategy>FailingConnectionOnly</flush-strategy>
 </pool>
 <security>
 <user-name>Smith</user-name>
 <password>password</password>
 </security>
 </datasource>
 <driver name="oracle" module="com.oracle.ojdbc6">
 <xa-datasource-class>oracle.jdbc.OracleDriver</xa-datasource-class>
 </driver>
 </datasources>
</subsystem>

5.2.5 Task 5: Create Users

Starting with JBoss Application Server 7.1, you must create an Application User to get started, because remote access to the JNDI tree is secured by default, and you must provide login credentials. Therefore, at a minimum, you just create an Application User to be able to deploy an application to the server. If you want to use the JBoss administration console for administration tasks, for example to view the JNDI tree, you must also create an Administration User.

To create user credentials, use the JBoss add-user.bat utility, located in JBOSS_HOME\bin\.

For more information about security in JBoss Application Server, refer to the JBoss documentation.

5.2.6 Task 6: Modify JBoss Properties

Modify JBoss properties, as follows:

JBoss-7.x
server.factory=org.jboss.naming.remote.client.InitialContextFactory
java.naming.factory.url.pkgs=org.jboss.ejb.client.naming
server.depend=jboss-client.jar
jboss.server=${jboss.home}/standalone
server.lib=${jboss.home}/bin/client
server.url=remote://localhost:4447
server.user=usera
server.pwd=passworda
jboss.naming.client.ejb.context=true

5.2.7 Task 7: Other Requirements

	
Add junit.jar in the ear under the \lib directory.

	
Because of a classloading issue in JBoss, you must list all your entity classes in persistence.xml. You can use either <class> elements or a global <exclude-unlisted-classes>false</exclude-unlisted-classes> element.

	
Add both jndi.properties and jboss-ejb-client.properties in the client classpath.

5.2.8 Task 8: Start JBoss

Start JBoss by running standalone.bat (for a single-server configuration) or domain.bat file (in a clustered environment) in JBOSS_ HOME\bin\.

For information on different ways to configure and start JBoss, see the JBoss documentation.

5.3 Additional Resources

See the following resources for more information about the technologies and tools used to implement the solutions in this chapter:

	
JBoss Community at http://www.jboss.org.

6 Using TopLink with IBM WebSphere Application Server

This chapter describes how to use Oracle TopLink as the persistence provider for applications deployed to IBM WebSphere Application Server.

This chapter includes the following sections:

	
Introduction to the Solution

	
Implementing the Solution

	
Additional Resources

Use Case

TopLink can be used with a number of popular Java EE application servers, including WebSphere Application Server.

Solution

Configure WebSphere to use EclipseLink runtime, and deploy applications developed using EclipseLink APIs.

Components

	
TopLink 12c (12.1.2.0.0) or later.

	
Note:

TopLink's core functionality is provided by EclipseLink, the open source persistence framework from the Eclipse Foundation. EclipseLink implements Java Persistence API (JPA), Java Architecture for XML Binding (JAXB), and other standards-based persistence technologies, plus extensions to those standards. TopLink includes all of EclipseLink, plus additional functionality from Oracle.

	
WebSphere Application Server 7 or later. These instructions are based on WebSphere 8.5.

	
A compliant Java Database Connectivity (JDBC) database, such as Oracle Database, Oracle Express, MySQL, the Derby database included in WebSphere Application Server, and so on.

6.1 Introduction to the Solution

WebSphere Application Server implements Java Platform, Enterprise Edition (Java EE). WebSphere V8.5 fully supports Java EE 6 and can support Java Platform, Standard Edition (Java SE) 7 via a plugin.

By configuring WebSphere support EclipseLink, you can create and deploy applications that take advantage of EclipseLink's full support for Java Persistence API (JPA), as well as EclipseLink's many extensions.

6.2 Implementing the Solution

To develop, deploy, and run EclipseLink applications in IBM WebSphere, you must add various modules including EclipseLink to WebSphere, and you must configure various aspects of WebSphere to support EclipseLink.

This section contains the following tasks for using EclipseLink with IBM WebSphere, Version 7 or later:

	
Task 1: Prerequisites

	
Task 2: Configure Persistence Units

	
Task 3: Configure the Server and the Application to Use EclipseLink

6.2.1 Task 1: Prerequisites

Ensure that you have installed the following components:

	
IBM WebSphere, Version 7 or later. These instructions are based on WebSphere, Version 8.5.

Obtain IBM WebSphere from http://www-01.ibm.com/software/webservers/appserv/was/.

	
TopLink 12c (12.1.2.0.0) or later.

Download TopLink from http://www.oracle.com/technetwork/middleware/toplink/downloads/index.html.

You will use the following files:

	
eclipselink.jar, located in the oracle_common\modules\oracle.toplink_ver_no directory created by the TopLink quick installer

	
javax.persistence_ver_no.jar, located in the oracle_common\modules directory created by the TopLink quick installer

6.2.2 Task 2: Configure Persistence Units

Configure persistence units to use EclipseLink as the persistence provider and to use WebSphere as the target server.

Example 6-1 shows a sample configuration for a container-managed persistence unit.

Example 6-1 Sample persistence.xml for a container-managed persistence unit

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="default" transaction-type="JTA">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <jta-data-source>jdbc/EclipseLinkDS</jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.target-server" value="WebSphere_7"/>
 <property name="eclipselink.target-database"
 value="org.eclipse.persistence.platform.database.oracle.Oracle11Platform"/>
 <property name="eclipselink.validate-existence" value="true"/>
 <property name="eclipselink.weaving" value="true"/>
 <property name="eclipselink.logging.level" value="FINEST"/>
 </properties>
 </persistence-unit>
</persistence>

Example 6-2 shows a sample configuration for an application-managed persistence unit.

Example 6-2 Sample persistence.xml for an application-managed persistence unit

<persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence persistence_1_0.xsd" version="1.0">
 <persistence-unit name="default" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <non-jta-data-source>jdbc/ELNonJTADS</non-jta-data-source>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="eclipselink.target-server" value="WebSphere_7"/>
 <property name="eclipselink.target-database"
 value="org.eclipse.persistence.platform.database.oracle.Oracle11Platform"/>
 <property name="eclipselink.validate-existence" value="true"/>
 <property name="eclipselink.weaving" value="true"/>
 <property name="eclipselink.logging.level" value="FINEST"/>
 </properties>
 </persistence-unit>
</persistence>

Note the following about the two examples above:

	
The eclipselink.target-server value WebSphere_7 is used for WebSphere Application Server version 7 and later.

	
Specifying persistence_1_0.xsd" version="1.0" for the persistence schema version works with both JPA 1 and JPA 2. For a JPA 2.n -only application, you can change the version to persistence_2_0.xsd" version="2.n" (WebSphere's support for JPA 2 began in WebSphere Application Server 7.0.0.9.

6.2.3 Task 3: Configure the Server and the Application to Use EclipseLink

The following are typical scenarios for using EclipseLink with the application server:

	
Modify Server to Make EclipseLink Available Globally

	
Package EclipseLink in the Application EAR

	
Package EclipseLink in the WAR

6.2.3.1 Modify Server to Make EclipseLink Available Globally

You can make EclipseLink available globally for both container-managed and application-managed persistence units in either of the following ways:

	
Option 1: Create a Global Shared Library (Recommended)

	
Option 2: Add EclipseLink as a Server Library Extension

Option 1: Create a Global Shared Library (Recommended)

	
Create a global shared library containing the following files:

	
eclipselink.jar

Find this file in the TOPLINK_INSTALLATION\oracle_common\modules\oracle.toplink_ver_no directory created by the TopLink quick installer.

	
xmlparserv2.jar

Find this file in the TOPLINK_INSTALLATION\toplink\modules directory created by the s quick installer.

	
If you use Oracle Database features such as NCHAR, XMLTYPE, and MDSYS.SDO_GEOMETRY with JPA, you must also include xdb.jar and sdoapi.jar in the shared library. Those files are available in your Oracle Database distribution.

See the WebSphere documentation for instructions on how to use WebSphere to facilitate the creation of shared libraries.

	
Associate the shared library with the application.

See the WebSphere documentation for instructions on how to use WebSphere to associate the shared library with an application.

Option 2: Add EclipseLink as a Server Library Extension

To add EclipseLink as a server library extension, copy eclipselink.jar and the other JAR file(s) listed in Option 1, above, to the WAS_HOME\lib\ext directory.

6.2.3.2 Package EclipseLink in the Application EAR

You can also implement container-managed persistence by adding eclipselink.jar in the application EAR, without making any modifications to the server configuration. In this case, the persistence unit is managed by @PersistenceContext entity manager proxy injection on a stateless session bean. The following instructions show a example of this approach.

	
Add eclipselink.jar to the application EAR in the following location:

EAR_archive/APP-INF/lib/

	
Add the path to the eclipselink.jar to the ejbModule/META-INF/MANIFEST.MF file(s) in your EJB JAR(s), as shown below:

Manifest-Version: 1.0
Class-Path: APP-INF/lib/eclipselink.jar

This i