
Oracle® Fusion Middleware
Use Cases for Securing Web Services Using
Oracle Web Services Manager

12c (12.2.1.3.0)
E80885-02
April 2018

Oracle Fusion Middleware Use Cases for Securing Web Services Using Oracle Web Services Manager, 12c
(12.2.1.3.0)

E80885-02

Copyright © 2016, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions x

 What's New In This Guide

New and Changed Features for 12c (12.2.1.3.0) xi

New and Changed Features for 12c (12.2.1.2.0) xi

New and Changed Features for 12c (12.2.1.1.0) xi

1 Introduction to the Use Cases

2 Securing Inbound SOAP Requests Using SAML Message
Protection

2.1 Use Case: Securing Inbound SOAP Requests Using SAML-based
Authentication 2-1

2.2 Securing Inbound SOAP requests using SAML Message Protection 2-2

2.2.1 Message Protection Via Symmetric Keys 2-2

2.2.2 What Keys Must Be in the Keystore? 2-3

2.2.3 Multi-Domain Use Case (Keystore Hardening) 2-3

2.2.4 When to Override the SAML Issuer 2-4

2.3 Implementing SAML Message Protection 2-4

2.3.1 Implementing SAML Message Protection - Prerequisites 2-5

2.3.2 Creating a WebLogic Server User 2-5

2.3.3 Creating a Java Keystore 2-6

2.3.4 Configuring the OWSM Keystore for Securing Web Services 2-7

2.3.5 Storing the Password for the Decryption Key in the Credential Store 2-7

2.3.6 Attaching the Policy to Your Web Service 2-7

iii

2.3.7 Attaching the Policy to Your Web Service Client 2-7

3 Securing RESTful Web Services Using Basic Authentication

3.1 Use Case: Secure a RESTful Web Service Using Basic Authentication 3-1

3.2 Implementing the Use Case: RESTful Web Service Using Basic
Authentication 3-2

3.2.1 Implementing RESTful Web Service Using Basic Authentication-
Prerequisites 3-2

3.2.2 Securing All RESTful Resources by Default 3-3

3.2.3 Creating a RESTful Web Service 3-4

3.2.4 Authenticating the User Using SecurityContext 3-6

3.2.5 Packaging With an Application Subclass 3-6

3.2.6 Deploying the RESTful Web Service 3-7

3.3 Verifying the Use Case: RESTful Web Service 3-8

3.4 Additional Resources for RESTful Web Services Use Case 3-9

4 Propagating Security Identity with RESTful Web Services

4.1 Use Case: Propagate Security Identity with RESTful Web Services 4-1

4.2 Implementing Use Case: Propagating Security Identity with RESTful Web
Services 4-2

4.2.1 Propagating Security Identity with RESTful Web Services -
Prerequisites 4-2

4.2.2 Create, Secure, and Deploy a RESTful Web Service 4-3

4.2.2.1 Creating a RESTful Web Service 4-3

4.2.2.2 Authenticating the User Using SecurityContext 4-5

4.2.2.3 Modifying the Servlet Name for the Web Project 4-6

4.2.2.4 Securing the RESTful Web Service 4-6

4.2.2.5 Deploying the RESTful Web Service 4-7

4.2.2.6 Testing the RESTful Web Service Using Fusion Middleware
Control 4-8

4.2.3 Create, Secure, and Deploy a RESTful Client 4-8

4.2.3.1 Creating a RESTful Client 4-9

4.2.3.2 Modifying the HTTP Servlet to Call the RESTful Client 4-10

4.2.3.3 Securing the Servlet Web Application 4-10

4.2.3.4 Creating a weblogic.xml Deployment Descriptor 4-11

4.2.3.5 Deploying the RESTful Client 4-12

4.2.3.6 Testing Access to the RESTful Client 4-13

4.2.4 Set Up the Keystore Service (KSS) 4-13

4.2.4.1 Why Use KSS? 4-13

4.2.4.2 Setting Up the Keystore Services 4-14

4.2.5 Creating a Test User 4-16

iv

4.3 Verifying the Use Case: Propagating Security Identity with RESTful Web
Services 4-16

5 Configuring Federation with Microsoft ADFS 2.0 STS as the IP-STS
and OWSM as the RP-STS

5.1 Use Case: Implementing Web Services federation with Microsoft ADFS 2.0
STS as IP-STS and OWSM as RP-STS 5-2

5.1.1 Generating Federation Metadata Document for the RP-STS 5-2

5.1.2 Configuring the Web Service 5-3

5.1.3 Configuring Microsoft ADFS 2.0 STS as the IP-STS 5-3

5.1.4 Configuring the Web Service Client 5-4

6 Configuring Federation with Microsoft ADFS 2.0 STS as the IP-STS
and Oracle STS as the RP-STS

6.1 Use Case: Implementing Web Services federation with Microsoft ADFS2.0
STS 6-2

6.1.1 Configuring the Web Service 6-2

6.1.2 Configuring Oracle STS as the RP-STS 6-3

6.1.3 Configuring Microsoft ADFS 2.0 STS as the IP-STS 6-3

6.1.4 Configuring the Web Service Client 6-3

7 Configuring Federation with Oracle STS as the IP-STS and
Microsoft ADFS 2.0 STS as the RP-STS

7.1 Use Case: Implementing Oracle STS as IP-STS and Microsoft ADFS 2.0 STS
as RP-STS 7-2

7.1.1 Configuring the Web Service 7-2

7.1.2 Configuring Microsoft ADFS 2.0 STS as the RP-STS 7-2

7.1.3 Configuring Oracle STS as the IP-STS 7-3

7.1.4 Configuring the Web Service Client 7-3

8 Configuring SAML HOK Using WS-Trust with OpenSSO STS

8.1 Configuring SAML HOK Using WS-Trust with OpenSSO STS 8-2

8.1.1 Configuring OpenSSO STS to Implement SAML HOK 8-2

8.1.2 Configuring SAML Holder-of-Key With Message Protection Using WS-
Trust with OpenSSO STS 8-4

v

9 Configuring SAML Sender Vouches Using WS-Trust with OpenSSO
STS

9.1 Use Case: Implementing SAML Sender Vouches Using WS-Trust with
OpenSSO STS 9-2

9.1.1 Configuring OpenSSO STS to Implement SAML Sender Vouches 9-2

9.1.2 Configuring SAML Sender Vouches With Message Protection Using
WS-Trust with OpenSSO STS 9-4

10

Configuring SAML Bearer Using WS-Trust with OpenSSO STS

10.1 Use Case: Implementing SAML Bearer Using WS-Trust with OpenSSO STS 10-2

10.1.1 Configuring OpenSSO STS to Implement SAML Bearer 10-2

10.1.2 Configuring SAML Bearer With Message Protection Using WS-Trust
with OpenSSO STS 10-4

vi

List of Figures

4-1 Certificate Details for Alias: orakey Dialog 4-15

vii

List of Tables

1-1 Summary of Use Cases 1-1

2-1 Multiple-Domain Use Case Requirements 2-3

viii

Preface

This section describes the intended audience, how to use this guide, and provides
information about documentation accessibility.

Audience
The Oracle Web Services Manager (OWSM) security use cases in this guide are
intended for:

• System and security administrators who administer web services and manage
security.

• Application developers who are developing web services and testing the security
prior to deployment of the web services.

• Security architects who create security policies.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Fusion Middleware
Web services documentation set:

• Administering Web Services

• "Developing and Securing Web Services" in Developing Applications with Oracle
JDeveloper

• Developing Extensible Applications for Oracle Web Services Manager

• Developing Fusion Web Applications with Oracle Application Development
Framework

• Developing JAX-RPC Web Services for Oracle WebLogic Server

• Developing JAX-WS Web Services for Oracle WebLogic Server

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Developing Oracle Infrastructure Web Services

• Interoperability Solutions Guide for Oracle Web Services Manager

• Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

• Oracle Fusion Middleware Developer's Guide for Oracle WebCenter

• Securing WebLogic Web Services for Oracle WebLogic Server

• Securing Web Services and Managing Policies with Oracle Web Services
Manager

• Understanding WebLogic Web Services for Oracle WebLogic Server

• Understanding Web Services

• WebLogic Web Services Reference for Oracle WebLogic Server

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

x

What's New In This Guide

The following topics introduce the new and changed features of Oracle Web Services
Manager (OWSM) and other significant changes that are described in this guide, and
provides pointers to additional information.

Follow the pointers into this guide to get more information about the features and how
to use them.

New and Changed Features for 12c (12.2.1.3.0)
A new use case has been provided that demonstrates how to configure web services
federation with Microsoft ADFS 2.0 STS as the Identity Provided STS (IP-STS) and
OWSM as the Relying Party (RP-STS).

See Configuring Federation with Microsoft ADFS 2.0 STS as the IP-STS and OWSM
as the RP-STS.

New and Changed Features for 12c (12.2.1.2.0)
Minor updates, such as fixes or corrections, were made to this document.

New and Changed Features for 12c (12.2.1.1.0)
Minor updates, such as fixes or corrections, were made to this document.

xi

1
Introduction to the Use Cases

You can secure web services using various methods in Oracle Web Services Manager
(OWSM).

Table 1-1 Summary of Use Cases

Solution Description

Securing Inbound SOAP
Requests Using SAML
Message Protection

Secure inbound SOAP requests to:

• Enforce message-level protection (that is, message integrity
and message confidentiality).

• Provide SAML-based authentication for inbound SOAP
requests in accordance with the WS-Security 1.1 standard.

Securing RESTful Web
Services Using Basic
Authentication

Secure a RESTful web service using identity propagation.

Propagating Security
Identity with RESTful Web
Services

Propagate security identity with RESTful web services.

Configuring Federation with
Microsoft ADFS 2.0 STS as
the IP-STS and Oracle STS
as the RP-STS

Configure web services federation with Microsoft ADFS 2.0 STS
as the IP-STS and Oracle STS as the RP-STS.

Configuring Federation with
Oracle STS as the IP-STS
and Microsoft ADFS 2.0
STS as the RP-STS

Configure web services federation with Oracle STS as the IP-
STS and Microsoft ADFS 2.0 STS as the RP-STS.

Configuring SAML HOK
Using WS-Trust with
OpenSSO STS

Configure SAML holder-of-key (HOK) with message protection
using WS-Trust with OpenSSO STS.

Configuring SAML Sender
Vouches Using WS-Trust
with OpenSSO STS

Configure SAML sender vouches using WS-Trust with OpenSSO
STS.

Configuring SAML Bearer
Using WS-Trust with
OpenSSO STS

Configure SAML bearer using WS-Trust with OpenSSO STS.

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1-1

2
Securing Inbound SOAP Requests Using
SAML Message Protection

You can refer to the use case provided in this chapter to understand how to secure
inbound SOAP requests using SAML message protection. To implement SAML
message protection, you need to perform a sequence of tasks: such as creating a
WebLogic Server user, creating a Java Keystore, and so on.

• Use Case: Securing Inbound SOAP Requests Using SAML-based Authentication

• Securing Inbound SOAP requests using SAML Message Protection

• Implementing SAML Message Protection

2.1 Use Case: Securing Inbound SOAP Requests Using
SAML-based Authentication

You can refer to the use case description, solution summary, components involved,
and the linked documentation resources to secure inbound SOAP requests using
SAML-based authentication.

Use Case
Secure inbound SOAP requests to:

• Enforce message-level protection (that is, message integrity and message
confidentiality).

• Provide SAML-based authentication for inbound SOAP requests in accordance
with the WS-Security 1.1 standard.

Solution
Attach an Oracle Web Services Manager (OWSM) SAML policy that is in accordance
with WS-Security 1.1 to the web service and client, and configure the required keys
and keystores.

Components

• Oracle Fusion Middleware

• Oracle Web Services Manager (OWSM)

• Web service and client applications to be secured

Required Documentation
To complete this use case, see the following documentation resources:

• Securing Web Services and Managing Policies with Oracle Web Services
Manager

• Understanding Oracle Web Services Manager

2-1

• keytool Javadoc at: http://download.oracle.com/javase/6/docs/technotes/tools/
windows/keytool.html

This use case demonstrates the steps required to:

• Attach the appropriate OWSM security policies to enforce message-level
protection using SAML-based authentication for inbound SOAP requests.

Specifically, you attach the following policies to the client and service, respectively:

– wss11_saml_token_with_message_protection_client_policy

– wss11_saml_token_with_message_protection_service_policy

• Configure the required keys and keystores.

Messages are protected using WS-Security's Basic 128 suite of symmetric key
technologies, specifically RSA key mechanisms for message confidentiality, SHA-1
hashing algorithm for message integrity, and AES-128 bit encryption. Therefore, when
you use the keytool (or other tool) to create the signature and encryption keys needed
by this policy, you need to make sure you use the RSA key mechanism, the SHA-1
algorithm, and AES-128 bit encryption to satisfy the policy requirements for the key.
For more information about supported algorithm suites, see "Supported Algorithm
Suites" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

2.2 Securing Inbound SOAP requests using SAML Message
Protection

Before configuring your web services, you need to determine the type of private keys
and certificates required, and the names for the keys and keystores. Then you can set
up your environment accordingly.

The following sections provide additional background about the SAML message
protection use case:

• "Message Protection Via Symmetric Keys"

• "What Keys Must Be in the Keystore?"

• "Multi-Domain Use Case (Keystore Hardening)"

• "When to Override the SAML Issuer"

For more information, see "Understanding Keys and Certificates" and "wss11" in
Understanding Oracle Web Services Manager.

2.2.1 Message Protection Via Symmetric Keys
Symmetric key cryptography relies on a single, shared secret key. The client creates
the symmetric key, uses it to sign and encrypt the message, encrypts the symmetric
key by using the web service's certificate, and shares it with the web service in the
request message. The web service uses the symmetric key in the request message to
verify the signature of the request message and decrypt it, and to then sign and
encrypt the response message.

Consider the following process flow.

To create the request, the OWSM agent performs the following steps:

Chapter 2
Securing Inbound SOAP requests using SAML Message Protection

2-2

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

1. Generates the shared symmetric key and uses it to both sign and encrypt the
request message.

2. Uses its own private key to "endorse" the signature of the request message.

3. Uses the web service's public key to encrypt the symmetric key.

4. Sends the symmetric key along with the request to the web service. The client
sends its public key in the request so that the web service can verify the
endorsement.

When the web service receives the request, it performs the following steps:

1. Decrypts the symmetric key using its private key.

2. Decrypts the request message and to verify its signature using the symmetric key.

3. Verifies the endorsement signature using the client's public key in the request
message.

To send the response back to the client, the web service performs the following steps:

1. Signs the response message using the same client-generated symmetric key sent
along with the request.

2. Encrypts the response message using the same client-generated symmetric key.

When the OWSM agent receives the response message, it performs the following
steps:

1. Decrypts the response messages using the symmetric key it generated initially.

2. Verifies the signature of the response messages using the symmetric key it
generated initially.

2.2.2 What Keys Must Be in the Keystore?
If the client and web service are in the same domain with access to the same keystore,
then they can share the same private/public key pair.

Specifically, the client can use the private key orakey to endorse the signature of the
request message and the public key orakey to encrypt the symmetric key. The web
service in turn uses the public key orakey to verify the endorsement, and the private
key orakey to decrypt the symmetric key.

2.2.3 Multi-Domain Use Case (Keystore Hardening)
If the client and web service are not in the same domain and do not have access to the
same keystore, the client and web service must each have a private/public key pair.

Consider the requirements in a multiple-domain use case, described in Table 2-1.

Table 2-1 Multiple-Domain Use Case Requirements

Web Service Client Web Service

Needs its own private/public key
pair in the client keystore.

Needs its own private/public key pair in the service
keystore.

Chapter 2
Securing Inbound SOAP requests using SAML Message Protection

2-3

Table 2-1 (Cont.) Multiple-Domain Use Case Requirements

Web Service Client Web Service

Needs the web service public key. Needs the intermediary and root certificate corresponding
to the client's public key in the keystore.

These certificates will be used to verify the signature by
generating a trusted certificate chain.

Generates symmetric key at run
time

Needs the symmetric key, but this is sent in the request
message.

For the public key the client uses to encrypt the symmetric key—that is, the public key
of the web service—you have two approaches:

• The web service's base64-encoded public certificate is published in the WSDL for
use by the web service client, as described in "Using the Service Identity
Certificate Extensions" in Securing Web Services and Managing Policies with
Oracle Web Services Manager. In this case, the web service's public key does not
have to be in the client's keystore.

• If the certificates is not published in the WSDL, you can specify a value for
keystore.recipient.alias on the Configurations page, or override it on a per-client
basis using the Security Configuration Details control when you attach the policy.
The keystore recipient alias specifies the alias used to look up the public key in the
keystore when retrieving a key for encryption of outbound SOAP messages. In this
approach, the web service's public key must be in the client's keystore.

2.2.4 When to Override the SAML Issuer
The saml.issuer.name property of the client policy identifies the issuer of the SAML
token, and defaults to a value of www.oracle.com. You can optionally specify a value for
saml.issuer.name on the Configurations page, or override it on a per-client basis using
the Security Configuration Details control when you attach the policy.

If you do use a different SAML authority (issuer) in the policy, that issuer name must
be configured in the client and included in the list of possible issuers in the SAML login
module. For more information, see "Adding an Additional SAML Assertion Issuer
Name" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

2.3 Implementing SAML Message Protection
To implement SAML message protection, you need to perform a sequence of tasks:
creating a WebLogic Server user, creating a Java Keystore, configuring the OWSM
Keystore, storing the password for the decryption key in the Credential Store,
attaching the policy to your web service and web service client.

• Implementing SAML Message Protection - Prerequisites

• Creating a WebLogic Server User

• Creating a Java Keystore

• Configuring the OWSM Keystore for Securing Web Services

• Storing the Password for the Decryption Key in the Credential Store

Chapter 2
Implementing SAML Message Protection

2-4

• Attaching the Policy to Your Web Service

• Attaching the Policy to Your Web Service Client

2.3.1 Implementing SAML Message Protection - Prerequisites
Before implementing SAML message protection, download and install product
components, configure WebLogic domain, start the Administration Server, and get the
access to Oracle Enterprise Manager Fusion Middleware Control and Oracle
WebLogic Server Administration Console.

Before you begin, ensure that you have performed the following tasks:

1. Download and install the following product components:

• Oracle Fusion Middleware—includes OWSM

For more information, see "Preparing for Oracle Fusion Middleware
Installation" in Planning an Installation of Oracle Fusion Middleware.

• Oracle JDeveloper

This is required only for a subset of use cases in this document.

For more information about locating and downloading Oracle Fusion
Middleware products, see the Oracle Fusion Middleware Download,
Installation, and Configuration Readme Files on OTN.

2. Configure a WebLogic domain.

For the complete procedure, see "Creating a WebLogic Domain" in Creating
WebLogic Domains Using the Configuration Wizard.

3. Start the Administration Server in the domain.

For the complete procedure, see "Starting and Stopping Servers" in Administering
Server Startup and Shutdown for Oracle WebLogic Server.

4. Ensure that you can access the following administration tools:

• Oracle Enterprise Manager Fusion Middleware Control:

http://localhost:7001/em

• Oracle WebLogic Server Administration Console

http://localhost:7001/console

2.3.2 Creating a WebLogic Server User
Ensure that the user in the SAML token exists in the WebLogic Server identity store. If
it does not, you must create it. Add a user to the identity store by using the WebLogic
Server Administration Console.

It is described in "Create users" in Oracle WebLogic Server Administration Console
Online Help.

The web service run time extracts the SAML token from the WS-Security header and
uses the name in the SAML token to validate the user against the WebLogic Server
identity store. Specifically, the SAML login module verifies the SAML tokens on behalf
of the web service. The SAML login module then extracts the username from the
verified token and (indirectly) passes it to Oracle Platform Security Services (OPSS) to
complete the authentication. For more information, see "Configuring the SAML and

Chapter 2
Implementing SAML Message Protection

2-5

SAML2 Login Modules Using Fusion Middleware Control" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

Any configured WebLogic Server authentication provider can then be invoked,
including the default Authentication provider.

2.3.3 Creating a Java Keystore
Create a keystore and load the private key and trusted CA certificates. You can create
and manage the Java keystore by using the keytool utility.

This use case uses the JKS keystore. For the complete procedure, see "Generating
Private Keys and Creating the Java Keystore" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Note:

You specify an alias when you perform either of the following tasks:

• Add an entity to the keystore using the -genkey command to generate a
key pair (public and private key).

• Add a certificate or certificate chain to the list of trusted certificates using
the -import command.

Subsequent keytool commands must use this same alias to refer to the
entity.

1. Create a new key pair and self-signed certificate.

Use the genkey command to create the key pair (public and private key). genKey
creates a new private key if one does not exist.

The following command generates in the default-keystore.jks keystore an RSA
key with RSA-SHA1 as the signature algorithm and alias name orakey. You can
specify any alias name; you do not need to set the alias name to orakey.

keytool -genkey -alias orakey -keyalg "RSA" -sigalg "SHA1withRSA" -dname
"CN=test, C=US" -keystore default-keystore.jks

The keytool utility prompts for the required key and keystore passwords. You need
these passwords later.

2. Generate a certificate request to the certificate authority (CA).

Use the -certreq command to generate the request. The CA will return a
certificate or a certificate chain.

The following command generates a certificate request for the orakey alias.

keytool -certreq -alias orakey -sigalg "SHA1withRSA" -file certreq_file -
storetype jks -keystore default-keystore.jks

3. Replace (import) the self-signed certificate with the trusted CA certificate.

You must replace the existing self-signed certificate with the certificate returned
from the CA. To do this, use the -import command. The following command
replaces the trusted CA certificate in the default-keystore.jks keystore. The keytool
utility prompts for the needed password.

Chapter 2
Implementing SAML Message Protection

2-6

keytool -import -alias orakey -file certreq_file -keystore default-keystore.jks

2.3.4 Configuring the OWSM Keystore for Securing Web Services
OWSM provides support for KSS, JKS, HSM, and PKCS11 keystores. After you create
the keystores, you need to configure OWSM so that it can access and use the
keystore. You can configure the OWSM keystore using the configureWSMKeystore
command.

When you configure OWSM to use the JKS keystore, entries are created in the
credential store for the credential map oracle.wsm.security, and any keys that you
define.

Note that there is one OWSM keystore per domain, and it is shared by all web
services and clients running in the domain.

To know how to configure the OWSM keystore, see "Configuring the OWSM Keystore"
in Securing Web Services and Managing Policies with Oracle Web Services Manager.

2.3.5 Storing the Password for the Decryption Key in the Credential
Store

Store the password for the decryption key in the credential store. Use
keystore.enc.csf.key as the key name.

For the complete procedure, see "Adding Keys and User Credentials to the Credential
Store" in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

2.3.6 Attaching the Policy to Your Web Service
Attach wss11_saml_token_with_message_protection_service_policy to your web service
and configure the policy assertion for message signing and message encryption.

For the complete procedure, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

By default, the policy signs and encrypts the entire body for the request and response.
You have the option to specify individual body elements that you want to sign and
encrypt. Additionally, you can specify header elements that you want to sign and
encrypt. You can configure the messaging signing and encryption as desired;
however, it must match the client policy settings.

For more information about configuring the policy, see "oracle/
wss11_saml_token_with_message_protection_service_policy" in Securing Web
Services and Managing Policies with Oracle Web Services Manager

2.3.7 Attaching the Policy to Your Web Service Client
Attach wss11_saml_token_with_message_protection_client_policy to your web service
client and configure the policy assertion for message signing, message encryption, or
both.

For the complete procedure, see "Attaching Policies" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Chapter 2
Implementing SAML Message Protection

2-7

By default, the policy signs and encrypts the entire body for the request and response.
You have the option to specify individual body elements that you want to sign and
encrypt. Additionally, you can specify header elements that you want to sign and
encrypt. You can configure the messaging signing and encryption as desired;
however, it must match the service policy settings.

The saml.issuer.name property of the client policy identifies the issuer of the SAML
token, and defaults to a value of www.oracle.com. This use case uses the
www.oracle.com default. For more information about overriding the saml.issuser.name
property, see When to Override the SAML Issuer.

For more information about configuring the policy, see "oracle/
wss11_saml_token_with_message_protection_client_policy" in Securing Web
Services and Managing Policies with Oracle Web Services Manager

Chapter 2
Implementing SAML Message Protection

2-8

3
Securing RESTful Web Services Using
Basic Authentication

You can refer to the use case description, solution summary, components involved,
and the linked documentation resources to secure RESTful web services using basic
authentication.

This chapter contains the following sections:

• Use Case: Secure a RESTful Web Service Using Basic Authentication

• Implementing the Use Case: RESTful Web Service Using Basic Authentication

• Verifying the Use Case: RESTful Web Service

• Additional Resources for RESTful Web Services Use Case

3.1 Use Case: Secure a RESTful Web Service Using Basic
Authentication

You can develop a RESTful web service and secure it by attaching an Oracle Web
Services Manager (OWSM) basic authentication policy.

Use Case
Secure a RESTful web service using basic authentication.

Implementation Summary
Develop a RESTful web service and secure it by attaching an Oracle Web Services
Manager (OWSM) basic authentication policy.

Components

• Oracle WebLogic Server

• Oracle Web Services Manager (OWSM)

• Oracle JDeveloper

Required Documentation
To complete this use case, see the following documentation resources:

• Developing RESTful Web Services

• Securing RESTful Web Services and Clients

• "Developing and Securing RESTful Web Services" in Developing Applications
with Oracle JDeveloper

This use case demonstrates the steps required to:

• Create a simple HelloWorld RESTful web service using JDeveloper.

3-1

• Display the name of the authenticated user in the output message using
javax.ws.rs.core.SecurityContext.

• Package the RESTful web service with an Application subclass to define the
components of a RESTful web service application deployment and provide
additional metadata.

• Secure all RESTful web services, by default, by defining an OWSM global policy.

• Deploy the RESTful web service as a WAR file to WebLogic Server using the
WebLogic Server Administration Console.

• Verify the HelloWorld web service using a browser.

3.2 Implementing the Use Case: RESTful Web Service
Using Basic Authentication

To implement RESTful web service using basic authentication, develop a RESTful
web service and secure it by attaching an Oracle Web Services Manager (OWSM)
basic authentication policy.

To implement this use case, complete the following steps in sequence:

• Implementing RESTful Web Service Using Basic Authentication- Prerequisites

• Securing All RESTful Resources by Default

• Creating a RESTful Web Service

• Authenticating the User Using SecurityContext

• Packaging With an Application Subclass

• Deploying the RESTful Web Service

3.2.1 Implementing RESTful Web Service Using Basic Authentication-
Prerequisites

Before implementing RESTful Web Service by using basic authentication, download
and install product components, configure WebLogic domain, start the Administration
Server, and get the access to Oracle Enterprise Manager Fusion Middleware Control
and Oracle WebLogic Server Administration Console.

Before you begin, ensure that you have performed the following tasks:

1. Download and install the following product components:

• Oracle Fusion Middleware—includes OWSM

For more information, see "Preparing for Oracle Fusion Middleware
Installation" in Planning an Installation of Oracle Fusion Middleware.

• Oracle JDeveloper Studio Edition

This is required only for a subset of use cases in this document.

For more information about locating and downloading Oracle Fusion
Middleware products, see the Oracle Fusion Middleware Download,
Installation, and Configuration Readme Files on OTN.

2. Configure a WebLogic domain.

Chapter 3
Implementing the Use Case: RESTful Web Service Using Basic Authentication

3-2

For the complete procedure, see "Creating a WebLogic Domain" in Creating
WebLogic Domains Using the Configuration Wizard.

3. Start the Administration Server in the domain.

For the complete procedure, see "Starting and Stopping Servers" in Administering
Server Startup and Shutdown for Oracle WebLogic Server.

4. Ensure that you can access the following administration tools:

• Oracle Enterprise Manager Fusion Middleware Control:

http://localhost:7001/em

• Oracle WebLogic Server Administration Console

http://localhost:7001/console

3.2.2 Securing All RESTful Resources by Default
Before you deploy RESTful resources, first define a global policy to secure all RESTful
resources by default.

The following procedure defines an OWSM global policy set and assigns it to all
RESTful resources. The oracle/wss_http_token_service_policy policy is attached to the
policy configure basic authentication for all RESTful resources.

For more information about the web service WLST commands, see "Web Services
WLST Custom WLST Commands" in WLST Command Reference for Infrastructure
Components.

To secure all RESTful resources by default:

Note:

For the complete procedure, see "Attaching Policies Globally Using WLST"
in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

1. Ensure that the WebLogic Server is running.

2. Start WLST and connect to the running instance of WebLogic Server, as described
in "Accessing the Web Services Custom WLST Commands" in Administering Web
Services.

wls:/offline> connect('weblogic', 'password', 't3://localhost:7001')
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server "AdminServer" that belongs to domain
"base_domain".

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

3. Start a session.

wls:/base_domain/serverConfig> beginWSMSession()
Location changed to domainRuntime tree. This is a read-only tree with
DomainMBean as the root.

Chapter 3
Implementing the Use Case: RESTful Web Service Using Basic Authentication

3-3

For more help, use help('domainRuntime')

Session started for modification.

4. Define an OWSM global policy set for all RESTful resources.

wls:/base_domain/serverConfig> createWSMPolicySet('rest-policy-set','rest-
resource', 'Service("*")')

Description defaulted to "Global policy attachments for RESTful Resource
resources."
The policy set was created successfully in the session.

5. Attach the oracle/wss_http_token_service_policy policy to the policy set to require
basic authentication for all RESTful resources.

wls:/base_domain/serverConfig> attachPolicySetPolicy('oracle/
wss_http_token_service_policy')

Policy reference "oracle/wss_http_token_service_policy" added.

6. Commit the session.

wls:/base_domain/serverConfig> commitWSMSession()

The policy set rest-policy-set is valid.
Creating policy set rest-policy-set in repository.

Session committed successfully.

3.2.3 Creating a RESTful Web Service
You can create a simple HelloWorld RESTful web service by using JDeveloper.

Procedure:

Note:

For assistance at anytime when using JDeveloper, press F1 or click Help.

1. Start JDeveloper.

For the complete procedure, see "Next Steps After Installing Oracle JDeveloper
Studio" in Installing Oracle JDeveloper.

2. Create an application and project using the Create Custom Application wizard.

Invoke the Create Custom Application wizard by selecting File > New >
Application and then General > Applications > Custom Application.

• Application Name: RESTfulApplication

• Project Name: RESTfulService

• Project Features: Java

• Default Package: samples.helloworld

For all other values, accept the defaults.

Chapter 3
Implementing the Use Case: RESTful Web Service Using Basic Authentication

3-4

For the complete procedure, see "Creating Applications and Projects" in
Developing Applications with Oracle JDeveloper.

3. Create a new Java class using the Create Java Class wizard.

Invoke the Create Java Class wizard by right-clicking the RESTfulService project
and selecting New > Java Class.

Define the following characteristics:

• Name: HelloWorldResource

• Constructors from Superclass: Deselect

• Implement Abstract Methods: Deselect

For all other values, accept the defaults.

For the complete procedure, see "How to Create a New Java Class or Interface" in
Developing Applications with Oracle JDeveloper.

4. Add the hello() method to the Java class, as shown in bold below.

package samples.helloworld;
public class HelloWorldResource {
 public String hello() {
 return "Hello!";
 }
}

5. Create a RESTful service from the Java class using the Create RESTful Service
from Java Class wizard.

Invoke the Create RESTful Service from Java Class wizard by right-clicking
HelloWorldResource.java and selecting Create RESTful Service.

Define the following characteristics:

• Root Path: helloworld

• Configure HTTP Methods: hello

- Type: Get
- Produces: text/plain

For all other values, accept the defaults.

The code is updated as follows:

package samples.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

@Path("helloworld")
public class HelloWorldResource {

 @GET
 @Produces("text/plain")
 public String hello() {
 return "Hello!";
 }
}

For the complete procedure, see "Creating a RESTful Web Service" in Developing
Applications with Oracle JDeveloper

Chapter 3
Implementing the Use Case: RESTful Web Service Using Basic Authentication

3-5

3.2.4 Authenticating the User Using SecurityContext
You can authenticate a user by using javax.ws.rs.core.SecurityContext.

For more information, see "Securing RESTful Web Services Using SecurityContext" in
Developing and Securing RESTful Web Services for Oracle WebLogic Server.

To get the authenticated user using SecurityContext:

1. Access the SecurityContext by injecting an instance into a class field, setter
method, or method parameter using the javax.ws.rs.core.Context annotation.

Update the hello() method, created in the previous step, to print the authenticated
user name obtained using the SecurityContext, as follows:

package samples.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.SecurityContext;
import javax.ws.rs.core.Context;
import java.security.Principal;

@Path("helloworld")
public class HelloWorldResource {

 @GET
 @Produces("text/plain")
 public String hello(@Context SecurityContext sc) {
 String user = "";
 if (sc != null) {
 Principal p = sc.getUserPrincipal();
 if (p != null) {
 user = p.getName();
 }
 }
 return "Hello " + user + "!";
 }
}

3.2.5 Packaging With an Application Subclass
You can create a class that extends javax.ws.rs.core.Application to define the
components of a RESTful web service application deployment and provides additional
metadata.

For more information, see "Packaging With an Application Subclass" in Developing
and Securing RESTful Web Services for Oracle WebLogic Server.

To package the RESTful web service with an Application subclass:

1. Create a new Java class using the Create Java Class wizard.

Invoke the Create Java Class wizard by right-clicking the samples.helloworld
package and selecting New > Java Class. For assistance at anytime, press F1 or
click Help.

Define the following characteristics:

Chapter 3
Implementing the Use Case: RESTful Web Service Using Basic Authentication

3-6

• Name: MyApplication

• Package: samples.helloworld

• Extends: javax.ws.rs.core.Application

• Constructors from Superclass: Deselect

• Implement Abstract Methods: Deselect

For all other values, accept the defaults.

For the complete procedure, see "How to Create a New Java Class or Interface" in
Developing Applications with Oracle JDeveloper.

2. Override the getClasses() method to return the list of RESTful web service
resources (in this case, HelloWorldResource), by adding the code show in bold
below.

package samples.helloworld;

import javax.ws.rs.core.Application;
import java.util.HashSet;
import java.util.Set;

public class MyApplication extends Application {
 public Set<java.lang.Class<?>> getClasses() {
 Set<java.lang.Class<?>> s = new HashSet<Class<?>>();
 s.add(HelloWorldResource.class);
 return s;
 }
}

3. Add the javax.ws.rs.ApplicationPath annotation to define the base URI pattern
that gets mapped to the servlet. For more information about how this information is
used in the base URI of the resource, see "What Happens at Runtime: How the
Base URI is Constructed" in Developing and Securing RESTful Web Services for
Oracle WebLogic Server.

package samples.helloworld;

import javax.ws.rs.core.Application;
import java.util.HashSet;
import java.util.Set;

import javax.ws.rs.ApplicationPath;

@ApplicationPath("resources")
public class MyApplication extends Application {
 public Set<java.lang.Class<?>> getClasses() {
 Set<java.lang.Class<?>> s = new HashSet<Class<?>>();
 s.add(HelloWorldResource.class);
 return s;
 }
}

3.2.6 Deploying the RESTful Web Service
Deploy the RESTful web service application as a WAR file to WebLogic Server.

To deploy the RESTful web service:

1. Create a deployment profile for the Web application:

Chapter 3
Implementing the Use Case: RESTful Web Service Using Basic Authentication

3-7

a. Define the profile type and name using the Create Deployment Profile wizard.

Invoke the Create Deployment Profile wizard by right-clicking on the RESTful
Service application and selecting Deploy > New Deployment Profile. For
assistance at anytime, press F1 or click Help.

Define the following characteristics.

- Profile Type: WAR File

- Deployment Profile Name: helloworld

b. Define the context root for the Web application using the Edit WAR
Deployment Profile Properties wizard.

The Edit WAR Deployment Profile Properties wizard is invoked automatically
when you click OK in the Create Deployment Profile wizard. For assistance at
anytime, press F1 or click Help.

Define the following characteristics:

- Specify Java EE Web Context Root: restservice

2. Deploy the web application with the following characteristics using the Deploy
<application> wizard.

Invoke the Deploy <application> wizard by right-clicking the RESTfulService
application and selecting Deploy > helloworld. For assistance at anytime, press
F1 or click Help.

Define the following characteristics:

• Deployment Action: Deploy to WAR

3. View the WAR file in your configured project directory. For example:

c:\JDeveloper\mywork\RESTfulApplication\RESTfulService\deploy\helloworld.war

4. Deploy the WAR file on WebLogic Server. For more information, see "Deploy
applications and modules" in Oracle WebLogic Server Administration Console
Online Help.

3.3 Verifying the Use Case: RESTful Web Service
You can verify a RESTful web service from a browser. You can test basic and
advanced features of your web service by using the Web Services Test Client or Test
Web Service page in Fusion Middleware Control.

To access the RESTful web service in a browser, enter the following URL in a browser
to test the RESTful web service:

http://<host>:<port>/restservice/resources/helloworld

For example, http://localhost:7001/restservice/resources/helloworld.

Enter the WebLogic Server username and password when prompted. For example,
weblogic and password.

The following message is returned in the browser:

Hello weblogic!

Chapter 3
Verifying the Use Case: RESTful Web Service

3-8

You can test basic and advanced features of your web service using the Web Services
Test Client or Test Web Service page in Fusion Middleware Control. For more
information, see "Testing Web Services" in Administering Web Services.

3.4 Additional Resources for RESTful Web Services Use
Case

Additional resources that provide more information about developing and securing
RESTful web services and clients.

• Build RESTful web services with JAX-RS sample, as described in "Java EE 6
Examples" in Understanding Oracle WebLogic Server.

• Developing RESTful Web Services

• Securing RESTful Web Services and Clients

• "Developing and Securing RESTful Web Services" in Developing Applications with
Oracle JDeveloper

Chapter 3
Additional Resources for RESTful Web Services Use Case

3-9

4
Propagating Security Identity with RESTful
Web Services

You can propagate security identity with RESTful web services. For example, if a user
is trying to access a web portal via the browser and is prompted to enter credentials,
then these credentials may be propagated to a back-end service that the web portal
needs to access to complete the user request.

This chapter contains the following sections:

• Use Case: Propagate Security Identity with RESTful Web Services

• Implementing Use Case: Propagating Security Identity with RESTful Web Services

• Verifying the Use Case: Propagating Security Identity with RESTful Web Services

4.1 Use Case: Propagate Security Identity with RESTful
Web Services

You can refer to the use case description, solution summary, components involved,
and the linked documentation resources to propagate security identity with RESTful
web services.

Use Case
Propagate security identity with RESTful web services. For example, if a user is trying
to access a web portal via the browser and is prompted to enter credentials, then
these credentials may be propagated to a back-end service that the web portal needs
to access to complete the user request.

Implementation Summary
Develop a RESTful web service and client and secure them using Oracle Web
Services Manager (OWSM) SAML policy.

Components

• Oracle Fusion Middleware—includes Oracle Web Services Manager (OWSM)

• Oracle JDeveloper

Required Documentation
To complete this use case, see the following documentation resources:

• Developing and Securing RESTful Web Services for Oracle WebLogic Server

• "Developing and Securing RESTful Web Services" in Developing Applications
with Oracle JDeveloper

This use case demonstrates the steps required to:

• Create a simple HelloWorld RESTful web service using JDeveloper.

4-1

• Display the name of the authenticated user in the output message using
javax.ws.rs.core.SecurityContext.

• Deploy the RESTful web service as a WAR file to WebLogic Server.

• Test the HelloWorld RESTful web service.

• Build and secure a RESTful client proxy for the RESTful web service using
JDeveloper.

• Set up the keystore and certificates required for SAML security.

• Verify the RESTful client proxy.

4.2 Implementing Use Case: Propagating Security Identity
with RESTful Web Services

To implement the Propagating Security Identity with RESTful Web Services use case,
you need to perform the following tasks in sequence: create, secure, and deploy a
RESTful web service and a RESTful client, create a test user, and set up the Keystore
Service (KSS).

• Propagating Security Identity with RESTful Web Services - Prerequisites

• Create, Secure, and Deploy a RESTful Web Service

– Creating a RESTful Web Service

– Authenticating the User Using SecurityContext

– Modifying the Servlet Name for the Web Project

– Securing the RESTful Web Service

– Deploying the RESTful Web Service

• Create, Secure, and Deploy a RESTful Client

– Creating a RESTful Client

– Modifying the HTTP Servlet to Call the RESTful Client

– Securing the Servlet Web Application

– Creating a weblogic.xml Deployment Descriptor

– Deploying the RESTful Client

• Creating a Test User

• Set Up the Keystore Service (KSS)

4.2.1 Propagating Security Identity with RESTful Web Services -
Prerequisites

Before implementing the use case, download and install product components,
configure WebLogic domain, start the Administration Server, and get the access to
Oracle Enterprise Manager Fusion Middleware Control and Oracle WebLogic Server
Administration Console.

Before you begin, ensure that you have performed the following tasks:

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-2

1. Download and install the following product components:

• Oracle Fusion Middleware—includes OWSM

For more information, see "Preparing for Oracle Fusion Middleware
Installation" in Planning an Installation of Oracle Fusion Middleware.

• Oracle JDeveloper

This is required only for a subset of use cases in this document.

For more information about locating and downloading Oracle Fusion
Middleware products, see the Oracle Fusion Middleware Download,
Installation, and Configuration Readme Files on OTN.

2. Configure a WebLogic domain.

For the complete procedure, see "Creating a WebLogic Domain" in Creating
WebLogic Domains Using the Configuration Wizard.

3. Start the Administration Server in the domain.

For the complete procedure, see "Starting and Stopping Servers" in Administering
Server Startup and Shutdown for Oracle WebLogic Server.

4. Ensure that you can access the following administration tools:

• Oracle Enterprise Manager Fusion Middleware Control:

http://localhost:7001/em

• Oracle WebLogic Server Administration Console

http://localhost:7001/console

4.2.2 Create, Secure, and Deploy a RESTful Web Service
To create, secure, and deploy a RESTful web service, perform the following tasks in
sequence: create a RESTful web service, authenticate the user by using
SecurityContext, modify the servlet name for the web project, and secure and deploy
the RESTful web service.

• Creating a RESTful Web Service

• Authenticating the User Using SecurityContext

• Modifying the Servlet Name for the Web Project

• Securing the RESTful Web Service

• Deploying the RESTful Web Service

4.2.2.1 Creating a RESTful Web Service
To create a simple helloworld RESTful web service using JDeveloper:

Note:

For assistance at anytime when using JDeveloper, press F1 or click Help.

1. Start JDeveloper.

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-3

For the complete procedure, see "Next Steps After Installing Oracle JDeveloper
Studio" in Installing Oracle JDeveloper.

2. Create an application and project using the Java Desktop Application wizard.

Invoke the Java Desktop Application wizard by selecting File > New >
Application and then General > Applications > Java Desktop Application.

Define the following characteristics:

• Application Name: rest-saml-idprop

• Application Package Prefix: examples.wsm.helloworld

• Project Name: service

• Default Package: examples.wsm.helloworld

For all other values, use the defaults.

For the complete procedure, see "Creating Applications and Projects" in
Developing Applications with Oracle JDeveloper.

3. Create a new Java class under the service project using the Create Java Class
wizard.

Invoke the Create Java Class wizard by right-clicking the service project and
selecting New > Java Class.

Define the following characteristics:

• Name: HelloWorldIdPropSample

• Package: examples.wsm.helloworld

For all other values, use the defaults.

The HelloWorldIdPropSample.java file is created and opened in JDeveloper.

For the complete procedure, see "How to Create a New Java Class or Interface" in
Developing Applications with Oracle JDeveloper.

4. Add the hello() method to the Java class, as shown in bold below.

package examples.wsm.helloworld;

public class HelloWorldIdPropSample {
 public HelloWorldIdPropSample() {
 super();
 }

 public String hello() {
 return "Hello";
 }
}

5. Create a RESTful service from the Java class using the Create RESTful Service
from Java Class wizard.

Invoke the Create RESTful Service from Java Class wizard by right-clicking
HelloWorldIdPropSample.java and selecting Create RESTful Service.

Define the following characteristics:

• Platform: JAX-RS 1.x Style

• Root Path: helloworld

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-4

• Configure HTTP Methods: hello

– Method: GET

– Produces: text/plain

– Path: user

For the complete procedure, see "Creating a RESTful Web Service" in Developing
Applications with Oracle JDeveloper.

The code is updated as follows:

package examples.wsm.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

@Path("helloworld")
public class HelloWorldIdPropSample {
 public HelloWorldIdPropSample() {
 super();
 }

 @GET
 @Produces("text/plain")
 @Path("user")
 public String hello() {
 return "Hello";
 }
}

4.2.2.2 Authenticating the User Using SecurityContext
The following procedure illustrates how to get the authenticated user using
javax.ws.rs.core.SecurityContext.

For more information, see "Securing RESTful Web Services Using SecurityContext" in
Developing and Securing RESTful Web Services for Oracle WebLogic Server.

To get the authenticated user using SecurityContext:

• Access the SecurityContext by injecting an instance into a class field, setter
method, or method parameter using the javax.ws.rs.core.Context annotation.

Update the hello() method, created in the previous step, to print the authenticated
user name obtained using the SecurityContext, as follows:

package examples.wsm.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.SecurityContext;
import javax.ws.rs.core.Context;
import java.security.Principal;

@Path("helloworld")
public class HelloWorldIdPropSample {
 public HelloWorldIdPropSample() {
 super();
 }

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-5

 @GET
 @Produces("text/plain")
 @Path("user")
 public String hello(@Context SecurityContext sc) {
 String user = "No user";
 if (sc != null) {
 Principal p = sc.getUserPrincipal();
 if (p != null) {
 user = p.getName();
 }
 }
 return "Hello " + user;
 }
}

4.2.2.3 Modifying the Servlet Name for the Web Project
When you created the RESTful web service using the Create RESTful Service from
Java Class wizard, as described in "Creating a RESTful Web Service", JDeveloper
automatically changed the project to a web project and added the web.xml file. By
default, the servlet name for the web project is jersey.

Edit the web.xml file located in the Web Content/WEB-INF folder to specify a more user-
friendly name, such as helloworld. For example:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>helloworld</servlet-name>
 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-
class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>helloworld</servlet-name>
 <url-pattern>/resources/*</url-pattern>
 </servlet-mapping>
</web-app>

4.2.2.4 Securing the RESTful Web Service
To secure RESTful web services, you can attach one of the OWSM predefined
security policies described in "OWSM Policies Supported for RESTful Web Services
and Clients" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

Secure the RESTful web service by attaching the following policy using the Policy
wizard: oracle/multi_token_rest_service_policy

Invoke the Policy wizard by right-clicking on the web.xml file and selecting Secure
RESTful Application.

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-6

The security policy configuration is saved to the wsm-assembly.xml deployment
descriptor file, shown below, in the Web Content/WEB-INF folder. If the wsm-assembly.xml
file does not exist, it will be created.

<orawsp:wsm-assembly xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy">
 <sca11:policySet xmlns:sca11="http://docs.oasis-open.org/ns/opencsa/sca/200912"
name="policySet"
 appliesTo="REST-RESOURCE()" attachTo="SERVICE('helloworld')"
orawsp:highId="1"
 xml:id="REST-RESOURCE__SERVICE__helloworld__">
 <wsp:PolicyReference xmlns:wsp="http://www.w3.org/ns/ws-policy"
 DigestAlgorithm="http://www.w3.org/ns/ws-policy/Sha1Exc"
 URI="oracle/multi_token_rest_service_policy" orawsp:status="enabled"
orawsp:id="1"/>
 </sca11:policySet>
</orawsp:wsm-assembly>

For the complete procedure, see "Attaching Policies to RESTful Services" in
Developing Applications with Oracle JDeveloper.

4.2.2.5 Deploying the RESTful Web Service
Deploy the RESTful web service application as a WAR file to WebLogic Server.

To deploy the RESTful web service:

1. Create a deployment profile for the Web application:

a. Define the profile type and name using the Create Deployment Profile wizard:

Invoke the Create Deployment Profile wizard by right-clicking on the service
project and selecting Deploy > New Deployment Profile.

Define the following characteristics:

- Profile Type: WAR File

- Deployment Profile Name: helloworld

b. Define the context root for the Web application using the Edit WAR
Deployment Profile Properties wizard.

The Edit WAR Deployment Profile Properties wizard is invoked automatically
when you click OK in the Create Deployment Profile wizard.

Define the following characteristics:

- Specify Java EE Web Context Root: rest-saml-idprop

2. Deploy the web application using the Deploy <application> wizard.

Invoke the Deploy <application> wizard by right-clicking the service application
and selecting Deploy > helloworld.

Define the following characteristics:

• Deployment Action: Deploy to WAR

3. View the WAR file in your configured project directory. For example:

c:\JDeveloper\mywork\rest-saml-idprop\service\deploy\helloworld.war

4. Ensure that you have started WebLogic Server to which you want to deploy the
RESTful web service.

Invoke Fusion Middleware Control and deploy the WAR file.

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-7

http://localhost:7001/em

5. Deploy the WAR file using the Deploy Java EE Application Assistant.

Access the Deploy Java EE Application Assistant, by selecting WebLogic
Domain > domainname > AdminServer in the navigation pane, selecting
WebLogic Server > Deployments in the content pane, and clicking Deploy.

For more information, see "Deploying Java EE Applications" in Administering
Oracle Fusion Middleware.

4.2.2.6 Testing the RESTful Web Service Using Fusion Middleware Control
Test the RESTful web service application using Fusion Middleware Control.

To test the RESTful web service:

1. Invoke Fusion Middleware Control.

http://localhost:7001/em

2. View the summary page for the RESTful web service application.

a. In the navigation pane, expand the Application Deployments folder to expose
the applications in the domain, expand the application deployment, and select
the helloworld (AdminServer) application name.

b. In the content pane, select Application Deployment, then Web Services.

c. In the Web Service Details section of the page, click the RESTful Services
tab and click the application name helloworld to navigate to the RESTful
Service Application page.

For the complete procedure, see "Viewing the Details for a RESTful Service
Application" in Administering Web Services.

3. Click Test RESTful Service.

The RESTful web service application WADL file is parsed automatically. By
default, the GET(hello) method is selected (since this is the only method available
in the application).

4. Configure the test client:

a. On the Request tab, select OWSM Security Policies.

b. Select oracle/wss_http_token_client_policy in the Client Policies list.

c. Enter weblogic and password in the Configuration Properties Username and
Password field.

5. Click Test Web Service.

The following information is returned on the Response tab:

Hello weblogic

For more information, see "Testing Web Services" in Administering Web Services.

4.2.3 Create, Secure, and Deploy a RESTful Client
After deploying a RESTful web service, you should create, secure, and deploy a
RESTful client to implement the use case of propagating security identity.

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-8

• Creating a RESTful Client

• Modifying the HTTP Servlet to Call the RESTful Client

• Securing the Servlet Web Application

• Creating a weblogic.xml Deployment Descriptor

• Deploying the RESTful Client

4.2.3.1 Creating a RESTful Client
To create a simple RESTful client using JDeveloper:

1. Create a new web project using the Create Web Project wizard.

Invoke the Java Desktop Application wizard by selecting File > New > Project and
then Web Project.

Define the following characteristics:

• Location

- Project Name: rest-client

• Web Application

- Servlet 3.0/JSP 2.2 (Java EE 6)

• Web Project Profile

- Java EE Web Application Name: rest-saml-idprop-client

- Java EE Context Root: rest-saml-idprop-client

For all other values, use the defaults.

For the complete procedure, see "Creating Applications and Projects" in
Developing Applications with Oracle JDeveloper.

2. Create an HTTP servlet that will serve as the RESTful client using the Create
HTTP Servlet wizard.

Invoke the Create HTTP Servlet wizard by right-clicking the rest-client project and
selecting New > From Gallery and then Web Tier > Servlets > HTTP Servlet.

Define the following characteristics:

• Servlet Information

- Class: HelloWorldServlet

• Servlet Mapping

- URL Pattern: /hellorestclient

For all other values, use the defaults.

The HelloWorldServlet.java file is created within the project directory and opened
automatically in JDeveloper.

For the complete procedure, see "How to Generate an HTTP Servlet" in
Developing Applications with Oracle JDeveloper.

3. Create a RESTful client proxy using the Create RESTful Client and Proxy wizard.

Invoke the Create RESTful Client and Proxy wizard by right-clicking the rest-client
project and selecting New > From Gallery and then Business Tier > Web
Services > RESTful Client and Proxy.

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-9

Define the following characteristics:

• Select Deployment Platform

- Jersey 1.x Style

• Select WADL

- URL: http://localhost:7001/rest-saml-idprop/resources/application.wadl

• Customize Proxy Names

- Class Name: HelloWorldRestClient

• Client Policy Configuration

- Security Policy: oracle/http_saml20_token_bearer_client_policy

For all other values, use the defaults.

For the complete procedure, see "How to Create RESTful Web Service Clients" in
Developing Applications with Oracle JDeveloper.

4.2.3.2 Modifying the HTTP Servlet to Call the RESTful Client
Modify the HelloWorldServlet HTTP servlet to call the RESTful client, as shown in bold
below:

package examples.wsm.helloworld;
...
import com.sun.jersey.api.client.Client;
import examples.wsm.helloworld.HelloWorldRestClient.Helloworld;
...
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType(CONTENT_TYPE);
 Client client = HelloWorldRestClient.createClient();
 HelloWorldRestClient.Helloworld
 hello = HelloWorldRestClient.helloworld(client);
 String output = hello.user().getAsTextPlain(String.class);
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>HelloWorldServlet</title></head>");
 out.println("<body>");
 out.println("<p>The servlet has received a GET. This is the reply.</p>");
 out.println("<p>Output from RESTful service:" + output + "</p>");
 out.println("</body></html>");
 out.close();
 }
}

4.2.3.3 Securing the Servlet Web Application
Secure the servlet web application by editing the web.xml file for the rest-client project,
located in the Web Content/WEB-INF folder, as follows:

1. Under Servlets, add an entry for the HelloWorldServlet as follows:

• Name: HelloWorldServlet

• Type: Servlet Class

• Servlet Class/JSP File: examples.wsm.helloworld.HelloWorldServlet

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-10

2. Under Security, configure the following values:

• Login Authentication

- Http Basic Authentication

• Security Roles

- webuser

• Security Constraints: Web Resource Collection

- Web Resource Name: Success

- Applies to: All HTTP Methods

- URL Patterns: /hellorestclient

• Security Constraints: Authorization

- Authorize: Enabled

- Security Role: webuser

The web.xml is updated as follows:

<?xml version = '1.0' encoding = 'windows-1252'?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://
java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <servlet>
 <servlet-name>HelloWorldServlet</servlet-name>
 <servlet-class>examples.wsm.helloworld.HelloWorldServlet</servlet-class>
 </servlet>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Success</web-resource-name>
 <url-pattern>/hellorestclient</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>webuser</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
 <security-role>
 <role-name>webuser</role-name>
 </security-role>
</web-app>

4.2.3.4 Creating a weblogic.xml Deployment Descriptor
To create a weblogic.xml deployment descriptor:

1. Create a weblogic.xml deployment descriptor using the Create WebLogic
Deployment Descriptor wizard.

Invoke the Create WebLogic Deployment Descriptor wizard by right-clicking the
rest-client project and selecting New > From Gallery, and then General >
Deployment Descriptors > WebLogic Deployment Descriptor.

Define the following characteristics:

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-11

• Select Descriptor

- Descriptor: weblogic.xml

• Select Version

- Version: 12.2.1

The weblogic.xml file is created in the WebContent/WEB-INF folder and opened
automatically in JDeveloper.

2. Under Security, configure the following values:

• Run-As Role Assignments

- Role Name: webuser

- Principals: weblogic

The weblogic.xml file is created, as follows:

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-
app http://xmlns.oracle.com/weblogic/weblogic-web-app/1.5/weblogic-web-app.xsd"
 xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app">
 <security-role-assignment>
 <role-name>webuser</role-name>
 <principal-name>weblogic</principal-name>
 </security-role-assignment>
</weblogic-web-app>

4.2.3.5 Deploying the RESTful Client
Deploy the RESTful client application as a WAR file to WebLogic Server.

To deploy the client:

1. Create a deployment profile for the Web application:

a. Define the profile type and name using the Create Deployment Profile wizard.

Invoke the Create Deployment Profile wizard by right-clicking on the rest-
client project and selecting Deploy > New Deployment Profile.

Define the following characteristics:

- Profile Type: WAR File

- Deployment Profile Name: helloworld-restclient

b. Define the context root for the Web application using the Edit WAR
Deployment Profile Properties wizard.

The Edit WAR Deployment Profile Properties wizard is invoked automatically
when you click OK in the Create Deployment Profile wizard.

Define the following characteristics:

- General: Specify Java EE Web Context Root: rest-saml-idprop-client

2. Deploy the web application using the Deploy <application> wizard:

Invoke the Deploy <application> wizard by right-clicking the rest-client application
and selecting Deploy > helloworld-restclient.

Define the following characteristics:

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-12

• Deployment Action: Deploy to WAR

3. View the WAR file in your configured project directory. For example:

c:\JDeveloper\mywork\rest-saml-idprop\rest-client\deploy\helloworld-
restclient.war

4. Invoke Fusion Middleware Control and deploy the WAR file.

http://localhost:7001/em

For more information, see "Deploying Java EE Applications" in Administering
Oracle Fusion Middleware.

4.2.3.6 Testing Access to the RESTful Client
Until the keystore service (KSS) is configured, as described in the next step, "Set Up
the Keystore Service (KSS)", access to the RESTful web service client will fail.

To access the RESTful web service client in a browser, enter the following URL in a
browser to test the RESTful web service:

http://<host>:<port>/rest-saml-idprop-client/hellorestclient

Enter the WebLogic Server username and password when prompted. For example,
weblogic and password.

Note that the following error is returned: Error 500--Internal Server Error.

4.2.4 Set Up the Keystore Service (KSS)
OWSM uses public key cryptography to sign the SAML bearer token and requires you
to set up a keystore.

Keys and the keystore provide the basis for configuring message protection.

4.2.4.1 Why Use KSS?
KSS is a service provided by Oracle Platform Security Services (OPSS).

KSS offers the following benefits over JKS:

• Integrated tooling

- Use Fusion Middleware Control or WLST to perform CRUD operations on KSS
keys and certificates.

- Internal CA for generating CA-signed keys and certificates.

• Improved lifecycle management

- Ability for multiple domains to share the same keystore is simplified with
centralized storage (for example, database storage).

- Ability to segregate keystores (for example, OWSM can have its own keystore
via the concept of a "stripe".

- Simplified management as passwords are not required for accessing private keys
in the keystore.

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-13

4.2.4.2 Setting Up the Keystore Services
To set up the KSS keystore:

1. Invoke Fusion Middleware Control.

http://localhost:7001/em

2. Create a keystore from the Keystore page.

To navigate to the Keystore page, select WebLogic Domain > Security >
Keystore.

a. Click Create Stripe and define the following characteristics:

- Stripe Name: owsm

b. Select owsm in the list, and click Create Keystore and define the following
characteristics:

- Keystore Name: keystore

- Protection: Policy

- Grant Permission: Disabled

For the complete procedure, see "Using the OPSS Keystore Service for Message
Protection" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

3. Generate a key-pair using the Generate Keypair dialog.

To navigate to the Generate Keypair dialog, select owsm > keystore on the
Keystore page, click Manage, and click Generate Keypair.

Define the following characteristics:

• Alias: orakey

• Common Name: orakey

• Organization Unit: us

• Country: United States

• RSA Key Size: 1024

For the complete procedure, see "Using the OPSS Keystore Service for Message
Protection" in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

4. Import the democa CA certificate into the owsm stripe.

By default, the keypair is signed by the democa CA that ships with KSS.

To view the certificate in use, select owsm > keystore on the Keystore page, click
Manage, and click the orakey alias to display the Certificate Details for Alias:
orakey dialog.

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-14

Figure 4-1 Certificate Details for Alias: orakey Dialog

Validation of the certificate on the service side will fail until you import the CA into
the owsm keystore, as the OWSM Agent is unable to validate the certificate path for
the signing certificate.

Export the democa CA certificate from the castore keystore in the system stripe and
import it into the orakey keystore in the owsm stripe.

a. To export the democa CA certificate, select system > castore on the Keystore
page, click Manage, select the democa alias, and click Export.

In the Certificate dialog, click Export Certificate to save it to a local file (or copy
and paste the contents into a file of your choice).

For the complete procedure, see "Exporting a Certificate or Trusted Certificate
with Fusion Middleware Control" in Securing Applications with Oracle Platform
Security Services.

b. To import the democa CA certificate, select owsm > keystore on the Keystore
page, click Manage, and click Import.

Define the following characteristics:

- Certificate Type: Trusted Certificate

- Alias: democa

- Select a file that contains the Certificate or Certificate Chain: Enabled

Click Choose File, navigate to the exported certificate file, click Open, and
click OK to import the certificate.

For the complete procedure, see "Importing a Certificate or Trusted Certificate
with Fusion Middleware Control" in Securing Applications with Oracle Platform
Security Services.

Chapter 4
Implementing Use Case: Propagating Security Identity with RESTful Web Services

4-15

4.2.5 Creating a Test User
After deploying a RESTful web service and client, create a test user.

To create a test user:

1. Invoke the WebLogic Server Administration Console. For example:

http://localhost:7001/console

For the complete procedure, see "Starting the Administration Console" in Oracle
WebLogic Server Administration Console Online Help.

2. Create a user named testuser, with the password password.

For the complete procedure, see "Create users" in Oracle WebLogic Server
Administration Console Online Help.

3. In JDeveloper, edit the weblogic.xml file for the rest-client project, located in the
Web Content/WEB-INF folder, to map testuser to the webuser role.

Under Security > Security Role Assignments, select webuser and add testuser
as a valid principal.

4.3 Verifying the Use Case: Propagating Security Identity
with RESTful Web Services

You can verify the Propagating Security Identity with RESTful Web Services use case
from a browser. You can test basic and advanced features of your web service by
using the Web Services Test Client or Test Web Service page in Fusion Middleware
Control.

To access the RESTful web service client in a browser, enter the following URL in a
browser to test the RESTful web service:

http://<host>:<port>/rest-saml-idprop-client/hellorestclient

Enter the WebLogic Server username and password when prompted. For example,
weblogic and password or testuser and password.

The following message is returned in the browser:

The servlet has received a GET. This is the reply.
Output from RESTful service: Hello testuser

You can test basic and advanced features of your web service using the Web Services
Test Client or Test Web Service page in Fusion Middleware Control. For more
information, see "Testing Web Services" in Administering Web Services.

Chapter 4
Verifying the Use Case: Propagating Security Identity with RESTful Web Services

4-16

5
Configuring Federation with Microsoft
ADFS 2.0 STS as the IP-STS and OWSM
as the RP-STS

You can configure web services federation with Microsoft ADFS 2.0 STS as the
Identity Provided STS (IP-STS) and OWSM as the Relying Party (RP-STS).

Use Case
Configure web service federation with Microsoft ADFS 2.0 STS as the IP-STS and
OWSM as the RP-STS.

Solution
Attach Oracle Web Services Manager (OWSM) WS-Trust policies to the web service
and client, and configure Microsoft ADFS 2.0 STS to establish trust across security
domains.

Components

• Oracle WebLogic Server

• Oracle Web Services Manager (OWSM)

• Microsoft ADFS 2.0 STS

• Web service and client applications to be secured

Additional Resources on Oracle Web Services Manager

• Overview of Oracle Web Services Manager

• Securing Web Services

• Managing and Troubleshooting Oracle Web Services Manager

• Microsoft ADFS 2.0 STS: http://technet.microsoft.com/en-us/library/
adfs2(v=ws.10).aspx

This use case demonstrates the steps required to:

• Attach the appropriate OWSM security policies to enforce message-level
protection using SAML bearer authentication. You must attach the following
service policy :

oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

• Configure web services federation using Microsoft ADFS 2.0 STS as the IP-STS
and OWSM is used as the RP-STS.

Transport security with SSL is used to protect the service, the RP-STS, and IP-STS.

For more information on how to implement this use case, see Use Case: Implementing
Web Services federation with Microsoft ADFS 2.0 STS as IP-STS and OWSM as RP-
STS.

5-1

http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

5.1 Use Case: Implementing Web Services federation with
Microsoft ADFS 2.0 STS as IP-STS and OWSM as RP-STS

To implement the use case, complete the following tasks in sequence: configure
OWSM as the RP-STS, configure Microsoft ADFS 2.0 STS as the IP-STS, and
configure the Web Service Client.

• Generating Federation Metadata Document for the RP-STS

• Configuring the Web Service

• Configuring Microsoft ADFS 2.0 STS as the IP-STS

• Configuring the Web Service Client

Note:

In the following sections, high-level configuration steps for Microsoft ADFS
2.0 STS is provided. For detailed information about how to perform these
configuration steps, refer to the documentation:http://
technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

5.1.1 Generating Federation Metadata Document for the RP-STS
You must generating a federation metadata document for the RP-STS using the
exportFederationMetadata command or the REST API.

To generate an unsigned federation metadata document using the WLST command,
do the following:

1. Connect to the running instance of the server in the domain for which you want to
generate the document as described in Accessing the Web Services Custom
WLST Commands in Administering Web Services.

2. Run the exportFederationMetadata command to generating an unsigned federation
metadata document.

exportFederationMetadata(federationFile, metadataType, issuer, signMetadata ,
[signAliases=None], [encAliases=None])

In the following example, unsigned federation metadata document is generated for
Service provider and the role descriptor does not have an encryption key.

wls:/wls-domain/serverConfig> exportFederationMetadata('/home/ABC/Downloads/
FederationMetadata.xml','SP','www.example.com')

This is URL for the service.

See, exportFederationMetadata in WLST Command Reference for Infrastructure
Components

To generate an unsigned federation metadata document using the REST API, see
Export Federation Metadata Document Method in Oracle Fusion Middleware
REST API for Managing Credentials and Keystores with Oracle Web Services
Manager.

Chapter 5
Use Case: Implementing Web Services federation with Microsoft ADFS 2.0 STS as IP-STS and OWSM as RP-STS

5-2

http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

5.1.2 Configuring the Web Service
To implement the use case configure web services federation with Microsoft ADFS 2.0
STS as the Identity Provided STS (IP-STS) and Web Service as the Relying Party
(RP-STS)., first you need to configure the web service.

To configure the web service:

1. Attach the oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy
policy to the web service. For the complete procedure, see Attaching Policies in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

2. Import the signing certificate and configure the WS-Trust for the Relying Party
(RP-STS) in OWSM. To do so, run the WLST command:

a. Connect to the running instance of the server in the domain for which you want
to generate the document as described in Accessing the Web Services
Custom WLST Commands in Administering Web Services.

b. Run the importFederationMetadata command to import the signing certificate
for the Microsoft ADFS 2.0 STS endpoint into the OWSM keystore and
configure the WS-Trust for the Relying Party (RP-STS).

importFederationMetadata(federationFile,nameIdAttribute=None,
[filterValues=None],userAttribute=None,userMappingAttribute=None)

For example:

wls:/wls-domain/serverConfig> importFederationMetadata('https://example.com/
FederationMetadata/2007-06/Federation.xml',"Unique_name",
['filter'],'mail','uid')

This is the federation metadata document URL of Microsoft ADFS 2.0 STS.

For more information see, importFederationMetadata in WLST Command
Reference for Infrastructure Components

3. Define the OWSM endpoint as a trusted issuer and a trusted DN. For the complete
procedure, see Defining Trusted Issuers and Trusted Distinguished Names List for
SAML Signing Certificates in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

5.1.3 Configuring Microsoft ADFS 2.0 STS as the IP-STS
To implement the use case Web Services federation with Microsoft ADFS2.0 STS, you
need to configure Microsoft ADFS 2.0 STS as the IP-STS.

For the complete procedure, see the Microsoft ADFS 2.0 STS documentation at
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx.)

Perform the following steps:

1. From the AD FS 2.0 console, expand Trust Relationships, right-click the Relying
Party Trusts folder and then select Add Relying Party Trust to open the Add
Relying Party Trust Wizard.

2. Confirm that the endpoint is enabled.

Chapter 5
Use Case: Implementing Web Services federation with Microsoft ADFS 2.0 STS as IP-STS and OWSM as RP-STS

5-3

http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

3. Add the OWSM instance acting as the IP-STS as a relying party using the ADFS
2.0 management console.

a. On the Select Data Source page, click Import data about the relying party
from a file, and then click Next.

b. Click Browse and navigate to the directory where the federation metadata file
is located.

4. Configure ADFS 2.0 STS for claims-based authentication using the ADFS 2.0
management console.

a. On the Select Rule Template page, select the optionSend LDAP Attributes
as Claims as the rule type.

b. On the Configure Rule page, enter Name ID as the Claim rule name, select
Active Directory option as the Attribute store, SAM-Account-Name as the
LDAP Attribute, and Name ID as the Outgoing Claim Type.

5.1.4 Configuring the Web Service Client
To implement the use case Web Services federation with Microsoft ADFS2.0 STS,
finally you need to configure the web service client.

To configure the web service client:

1. Ensure that you have create JAX-WS Client Application. For more information, see
Creating JAX-WS Web Services and Clients in the Developing Applications with
Oracle JDeveloper.

2. Creating a Web Service Proxy using JDeveloper by completing the following
steps:

a. Right-click the JAX-WS Client Application you have created and select New
and then From Gallery .

b. In the New Gallery, expand the Business Tier node and select Web Services
in the Categories list. Select the Web Service Client and Proxy item and click
OK.

c. The Create Web Service Client and Proxy page is displayed.

d. In the Select Web Service Description page, specify the location of the
WSDL service (For example: https://www.example.com:8002/
JaxWsWssStsIssuedBearerTokenWithADFSWssUNOverSsl/

JaxWsWssStsIssuedBearerTokenWithADFSWssUNOverSslService?WSDL) and select
Copy WSDL Into Project and click Next.

e. In the Asynchronous Methods page, select Don’t generate any
asynchronous methods and click Finish.

3. Attach the policy oracle/
wss_sts_issued_saml_bearer_token_over_ssl_service_policy and configure it to refer
to the web service. For the complete procedure, see Attaching Policies in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

Additionally, set sts.in.order to the URI of the ADFS 2.0 STS endpoint. For
example:

http://http://m1.example.com/adfs/services/trust/13/usernamemixed

4. Create a policy from oracle/sts_trust_config_service_template, modify it as
follows, and attach it to the client:

Chapter 5
Use Case: Implementing Web Services federation with Microsoft ADFS 2.0 STS as IP-STS and OWSM as RP-STS

5-4

• Set Port URI to the ADFS 2.0 STS endpoint. For example:

http://m1.example.com/adfs/services/trust/13/usernamemixed

• Set Client Policy URI oracle/
wss_sts_issued_saml_bearer_token_over_ssl_client_policy.

For the complete procedure, see Creating and Editing Web Service Policies in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

5. Create a policy from oracle/sts_trust_config_client_template, modify it as follows,
and attach it to the client:

• Set Port URI to the ADFS 2.0 STS endpoint. For example:

http://m1.example.com/adfs/services/trust/13/usernamemixed

• Set WSDL Uri to the Web Service endpoint. For example:

http://m2.example.com:14100/sts/wss11user?wsdl

For the complete procedure, see Creating and Editing Web Service Policies in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

Chapter 5
Use Case: Implementing Web Services federation with Microsoft ADFS 2.0 STS as IP-STS and OWSM as RP-STS

5-5

6
Configuring Federation with Microsoft
ADFS 2.0 STS as the IP-STS and Oracle
STS as the RP-STS

You can refer to the use case description, solution summary, components involved,
and the linked documentation resources to configure web services federation with
Microsoft ADFS 2.0 STS as the Identity Provided STS (IP-STS) and Oracle STS as
the Replying Party (RP-STS).

Use Case
Configure web services federation with Microsoft ADFS 2.0 STS as the IP-STS and
Oracle STS as the RP-STS.

Solution
Attach Oracle Web Services Manager (OWSM) WS-Trust policies to the web service
and client, and configure Oracle STS and Microsoft ADFS 2.0 STS to establish trust
across security domains.

Components

• Oracle WebLogic Server

• Oracle Web Services Manager (OWSM)

• Oracle STS

• Microsoft ADFS 2.0 STS

• Web service and client applications to be secured

Additional Resources on Oracle Web Services Manager

• Overview of Oracle Web Services Manager

• Securing Web Services

• Managing and Troubleshooting Oracle Web Services Manager

• Oracle STS documentation at http://www.oracle.com/technetwork/middleware/id-
mgmt/overview/oraclests-166231.html

• Microsoft ADFS 2.0 STS: http://technet.microsoft.com/en-us/library/
adfs2(v=ws.10).aspx

This use case demonstrates the steps required to:

• Attach the appropriate OWSM security policies to enforce message-level
protection using SAML bearer authentication.

Specifically, you attach the following policies to the client and service, respectively:

– oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy and policies
based on oracle/sts_trust_config_client_template

– oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy

6-1

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

• Configure web services federation using Microsoft ADFS 2.0 STS as the IP-STS
and Oracle STS is used as the RP-STS.

Transport security with SSL is used to protect the service, the RP-STS, and IP-STS.

For more information on how to implement this use case, see Use Case: Implementing
Web Services federation with Microsoft ADFS2.0 STS.

6.1 Use Case: Implementing Web Services federation with
Microsoft ADFS2.0 STS

To implement the use case, complete the following tasks in sequence: configure the
Web Service, configure Oracle STS as the RP-STS, configure Microsoft ADFS 2.0
STS as the IP-STS, and configure the Web Service Client.

• Configuring the Web Service

• Configuring Oracle STS as the RP-STS

• Configuring Microsoft ADFS 2.0 STS as the IP-STS

• Configuring the Web Service Client

Note:

In the following sections, high-level configuration steps for Oracle STS and
Microsoft ADFS 2.0 STS are provided. For detailed information about how to
perform these configuration steps, refer to the documentation for the
particular STS:

• For Oracle STS: http://www.oracle.com/technetwork/middleware/id-mgmt/
overview/oraclests-166231.html

• For Microsoft ADFS 2.0 STS: http://technet.microsoft.com/en-us/
library/adfs2(v=ws.10).aspx

6.1.1 Configuring the Web Service
To implement the use case Web Services federation with Microsoft ADFS2.0 STS, first
you need to configure the web service.

To configure the web service:

1. Attach the oracle/wss_sts_issued_saml_bearer_token_over_ssl_service_policy
policy to the web service. For the complete procedure, see "Attaching Policies" in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

2. Import the signing certificate for the Oracle STS /wssbearer endpoint into the
OWSM keystore.

3. Define the Oracle STS endpoint as a trusted issuer and a trusted DN. For the
complete procedure, see "Defining Trusted Issuers and Trusted Distinguished
Names List for SAML Signing Certificates" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Chapter 6
Use Case: Implementing Web Services federation with Microsoft ADFS2.0 STS

6-2

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

6.1.2 Configuring Oracle STS as the RP-STS
To implement the use case Web Services federation with Microsoft ADFS2.0 STS, you
need to configure Oracle STS as the RP-STS.

For the complete procedure, see the Oracle STS documentation at http://
www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html.

To configure Oracle STS as the RP-STS, perform the following steps:

1. Configure WebLogic Server to enable one-way SSL on port 14101.

2. Configure the Oracle STS /wssbearer endpoint as follows:

• Attach the policy with the URI sts/
wss_sts_issued_saml_bearer_token_over_ssl_service_policy.

• Create an OWSM LRG SAML Validation validation template to validate the
incoming SAML token and apply it to the endpoint.

3. Add the service as a replying party partner in Oracle STS.

4. Add the Microsoft ADFS 2.0 STS instance acting as the IP-STS as a trusted
identity provider:

a. Configure an issuing authority partner profile for the Microsoft ADFS 2.0 STS
instance.

b. Add the Microsoft ADFS 2.0 STS instance as an issuing authority partner,
giving as the partner name the issuer of the SAML assertion for the instance.

c. Import the signing certificate for the Microsoft ADFS 2.0 STS instance into the
OWSM keystore.

6.1.3 Configuring Microsoft ADFS 2.0 STS as the IP-STS
To implement the use case Web Services federation with Microsoft ADFS2.0 STS, you
need to configure Microsoft ADFS 2.0 STS as the IP-STS.

For the complete procedure, see the Microsoft ADFS 2.0 STS documentation at
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx.)

Perform the following steps:

1. Confirm that the /usernamemixed endpoint is enabled.

2. Add the Oracle STS instance acting as the IP-STS as a relying party using the
ADFS 2.0 management console.

3. Configure ADFS 2.0 STS to issue SAML bearer tokens for the RP-STS.

6.1.4 Configuring the Web Service Client
To implement the use case Web Services federation with Microsoft ADFS2.0 STS,
finally you need to configure the web service client.

To configure the web service client:

1. Attach the policy oracle/wss_sts_issued_saml_bearer_token_over_ssl_client_policy
and configure it to refer to the web service. For the complete procedure, see

Chapter 6
Use Case: Implementing Web Services federation with Microsoft ADFS2.0 STS

6-3

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

"Attaching Policies" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

Additionally, set sts.in.order to the URI of the Oracle STS endpoint followed by
the ADFS 2.0 STS endpoint. For example:

http://m2.example.com:14100/sts/wssbearer;
http://http://m1.example.com/adfs/services/trust/13/usernamemixed

2. Create a policy from oracle/sts_trust_config_client_template, modify it as follows,
and attach it to the client:

• Set Port URI to the ADFS 2.0 STS endpoint. For example:

http://m1.example.com/adfs/services/trust/13/usernamemixed

• Set Client Policy URI oracle/
wss_sts_issued_saml_bearer_token_over_ssl_client_policy.

For the complete procedure, see "Creating and Editing Web Service Policies" in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

3. Create a policy from oracle/sts_trust_config_client_template, modify it as follows,
and attach it to the client:

• Set Port URI to the Oracle STS endpoint. For example:

http://m2.example.com:14100/sts/wssbearer

• Set WSDL Uri to the Oracle STS endpoint. For example:

http://m2.example.com:14100/sts/wss11user?wsdl

For the complete procedure, see "Creating and Editing Web Service Policies" in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

Chapter 6
Use Case: Implementing Web Services federation with Microsoft ADFS2.0 STS

6-4

7
Configuring Federation with Oracle STS as
the IP-STS and Microsoft ADFS 2.0 STS
as the RP-STS

You can refer to the use case description, solution summary, components involved,
and the linked documentation resources to configure web services federation with
Oracle STS as the Identity Provided STS (IP-STS) and Microsoft ADFS 2.0 STS as
the Replying Party (RP-STS).

Use Case
Configure web services federation with Oracle STS as the IP-STS and Microsoft
ADFS 2.0 STS as the RP-STS.

Solution
Attach Oracle Web Services Manager (OWSM) WS-Trust policies to the web service
and client, and configure Oracle STS and Microsoft ADFS 2.0 STS to establish trust
across security domains.

Components

• Oracle WebLogic Server

• Oracle Web Services Manager (OWSM)

• Oracle STS

• Microsoft ADFS 2.0 STS

• Web service and client applications to be secured

Additional Resources on Oracle Web Services Manager
Additional resources provides more information about the technologies and tools used
to implement the use case configuring web services federation with Oracle STS as IP-
STS and Microsoft ADFS 2.0 STS as RP-STS.

• Oracle Web Services Manager Predefined Policies

• Wss11 Issued Token with Saml Holder of Key with Message Protection Client
Policy

• Oracle STS documentation at http://www.oracle.com/technetwork/middleware/id-
mgmt/overview/oraclests-166231.html

• Microsoft ADFS 2.0 STS: http://technet.microsoft.com/en-us/library/
adfs2(v=ws.10).aspx

This use case demonstrates the steps required to:

• Attach the appropriate OWSM security policies to enforce message-level
protection using SAML holder-of-key (HOK) authentication.

Specifically, you attach the following policies to the client and service, respectively:

7-1

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

– oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy and
policies based on oracle/sts_trust_config_client_template

– oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy

• Configure web services federation using Oracle STS as the IP-STS and Microsoft
ADFS 2.0 STS is used as the RP-STS.

For more information on how to implement this use case, see Use Case: Implementing
Oracle STS as IP-STS and Microsoft ADFS 2.0 STS as RP-STS.

7.1 Use Case: Implementing Oracle STS as IP-STS and
Microsoft ADFS 2.0 STS as RP-STS

To implement the use case configuring web services federation with Oracle STS as IP-
STS and Microsoft ADFS 2.0 STS as RP-STS: first configure the web service, then
configure Microsoft ADFS 2.0 STS as the RP-STS, followed by configuring Oracle
STS as the IP-STS, and in the end configure the Web Service Client.

• Configuring the Web Service

• Configuring Microsoft ADFS 2.0 STS as the RP-STS

• Configuring Oracle STS as the IP-STS

• Configuring the Web Service Client

7.1.1 Configuring the Web Service
To implement the use case configuring web services federation with Oracle STS as IP-
STS and Microsoft ADFS 2.0 STS as RP-STS, first you need to configure the web
service.

To configure the web service:

1. Attach oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy
to the web service. For the complete procedure, see "Attaching Policies" in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

2. Import the signing certificate for the ADFS 2.0 STS /issuedtokensymmetricbasic256
endpoint into the OWSM keystore.

3. Define the ADFS 2.0 STS endpoint as a trusted issuer and a trusted DN. For the
complete procedure, see "Defining Trusted Issuers and Trusted Distinguished
Names List for SAML Signing Certificates" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

7.1.2 Configuring Microsoft ADFS 2.0 STS as the RP-STS
To implement the use case configuring web services federation with Oracle STS as IP-
STS and Microsoft ADFS 2.0 STS as RP-STS, after configuring the web service, you
need to configure Microsoft ADFS 2.0 STS as RP-STS.

For the complete procedure, see the Oracle STS documentation at http://
technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx.

To configure Microsoft ADFS 2.0 STS as the RP-STS, perform the following steps:

Chapter 7
Use Case: Implementing Oracle STS as IP-STS and Microsoft ADFS 2.0 STS as RP-STS

7-2

http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/adfs2(v=ws.10).aspx

1. Confirm that the /issuedtokensymmetricbasic256 endpoint is enabled.

2. Add the service as a relying party using the ADFS 2.0 management console.

3. Add the Oracle STS instance acting as the IP-STS as a trusted claim provider
using the ADFS 2.0 management console.

7.1.3 Configuring Oracle STS as the IP-STS
To implement the use case configuring web services federation with Oracle STS as IP-
STS and Microsoft ADFS 2.0 STS as RP-STS, after configuring the web service and
RP-STS, you need to configure Oracle STS as the IP-STS.

For the complete procedure, see the Oracle STS documentation at http://
www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html.

To configure Oracle STS as the IP-STS, perform the following steps:

1. Configure the Oracle STS /wss11user endpoint as follows:

• Attach the policy with the URI sts/wss11_username_token_with
message_protection_service_policy.

• Create an OWSM LRG UN Validation validation template to validate the incoming
token and apply it to the endpoint.

2. In Oracle STS, add the Microsoft ADFS 2.0 STS instance acting as the RP-STS as
a relying partner party.

3. Enable the Audience Restriction Condition in Oracle STS.

This step is necessary because ADFS 2.0 requires the SAML assertion for a claim
provider to have AudienceRestrictionUri set, and assertions issued by Oracle STS
do not have this set by default.

4. Configure a separate issuance template that issues 256 byte proof keys for Oracle
STS to use.

7.1.4 Configuring the Web Service Client
To implement the use case configuring web services federation with Oracle STS as IP-
STS and Microsoft ADFS 2.0 STS as RP-STS, finally you need to configure the web
service client.

To configure the web service client:

1. Create a policy from oracle/
wss11_sts_issued_saml_hok_with_message_protection_client_policy, modify it as
follows, and attach it to the client:

• Set Algorithm Suite to Basic256 instead of Basic128.

• Set Derived Keys to enabled.

• Set sts.in.order to the URI of the ADFS 2.0 STS endpoint followed by the
Oracle STS endpoint. For example:

http://m1.example.com/adfs/services/trust/13/issuedtokensymmetricbasic256;
http://m2.example.com:14100/sts/wss11user

2. Create a policy from oracle/sts_trust_config_client_template, modify it as follows,
and attach it to the client:

Chapter 7
Use Case: Implementing Oracle STS as IP-STS and Microsoft ADFS 2.0 STS as RP-STS

7-3

http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html
http://www.oracle.com/technetwork/middleware/id-mgmt/overview/oraclests-166231.html

• Set Port URI to the ADFS 2.0 STS endpoint. For example:

http://m1.example.com/adfs/services/trust/13/issuedtokensymmetricbasic256

• Set Client Policy URI to the policy you created in Step 1.

oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy_adfs

3. Create a policy from oracle/sts_trust_config_client_template, modify it as follows,
and attach it to the client:

• Set Port URI to the Oracle STS endpoint; for example:

http://m2.example.com:14100/sts/wss11user

• Set WSDL URI to the Oracle STS endpoint.

Chapter 7
Use Case: Implementing Oracle STS as IP-STS and Microsoft ADFS 2.0 STS as RP-STS

7-4

8
Configuring SAML HOK Using WS-Trust
with OpenSSO STS

You can refer to the use case description, solution summary, components involved,
and the linked documentation resources to configure SAML holder-of-key (HOK) with
message protection using WS-Trust with OpenSSO STS.

Use Case
Configure SAML holder-of-key (HOK) with message protection using WS-Trust with
OpenSSO STS.

Solution
Attach Oracle Web Services Manager (OWSM) SAML HOK with message protection
using WS-Trust policies to the web service and client, and configure OpenSSO STS.

Components

• Oracle WebLogic Server

• Oracle Web Services Manager (OWSM)

• OpenSSO STS

• Web service and client applications to be secured

Additional Resources on Oracle Web Services Manager

• Oracle Web Services Manager Predefined Policies

• Overview of SAML Holder of Key and SAML Bearer as Issued Tokens

• keytool Javadoc at: http://download.oracle.com/javase/6/docs/technotes/tools/
windows/keytool.html

This use case demonstrates the steps required to:

• Attach the appropriate OWSM security policies to enforce SAML HOK with
message-level protection using WS-Trust with OpenSSO STS.

The WS-Trust 1.3 specification defines extensions to WS-Security that provide a
framework for requesting and issuing security tokens, and to broker trust
relationships. WS-Trust extensions provide methods for issuing, renewing, and
validating security tokens. To secure communication between a Web service client
and a Web service, the two parties must exchange security credentials. As defined
in the WS-Trust specification, these credentials can be obtained from a trusted
Security Token Service (STS), which acts as trust broker. That is, the Web service
client and the Web service do not explicitly trust each other; instead, they implicitly
trust each other because they both trust the STS. For more information, see
"Overview of Web Services WS-Trust" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Specifically, you attach the following policies to the client and service, respectively:

– oracle/wss11_sts_issued_saml_hok_with_message_protection_client_policy

8-1

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

– oracle/wss11_sts_issued_saml_hok_with_message_protection_service_policy

and oracle/sts_trust_config_service_policy

• Configure OpenSSO STS.

This use case consists of a Java EE web service and SOA Composite client.

For more information on how to implement this use case, see Configuring SAML HOK
Using WS-Trust with OpenSSO STS

8.1 Configuring SAML HOK Using WS-Trust with OpenSSO
STS

To implement the use case configuring SAML HOK with message protection using
WS-Trust with OpenSSO STS, first configure OpenSSO STS and then configure
SAML HOK by using WS-Trust with OpenSSO STS.

• Configuring OpenSSO STS to Implement SAML HOK

• Configuring SAML Holder-of-Key With Message Protection Using WS-Trust with
OpenSSO STS

8.1.1 Configuring OpenSSO STS to Implement SAML HOK
To implement the use case configuring SAML HOK with message protection using
WS-Trust with OpenSSO STS, first configure OpenSSO STS.

To configure OpenSSO STS:

1. Log in to the OpenSSO STS instance.

2. Navigate to Configuration > Global > Security Token Service.

3. Under Security: Security Mechanism: Security Token Accepted by STS Services,
enable all options.

4. Under the Credential for User Token section, add a new credential for the token
with the username and password set as required.

For this example, set the username and password both to password.

5. Under the On Behalf of Token section, select ldapService from the
Authentication Chain for On Behalf of Token drop-down list.

6. Under the Signing section, enable the following options:

- Is Request Signature Verified

- Is Response Signed Enabled (select Body and Timestamp)

7. Under the Encryption section, enable the following options:

- Is Request Decrypted (select Body and Header)

- Is Response Encrypted

8. Select AES from the Encryption Algorithm drop-down list, and select 128 from
the Encryption Strength drop-down list.

9. To support the WS-Security 1.1 Kerberos token with message protection requestor
token, under the Kerberos Configuration section and configure the following
values:

Chapter 8
Configuring SAML HOK Using WS-Trust with OpenSSO STS

8-2

• Kerberos Domain Server

Fully qualified hostname of the domain server.

• Kerberos Domain

Domain name.

• Kerberos Service Principal

Service principal name in the following format: <host>/<machine
name>@<REALM NAME>

• Kerberos Key Tab File

Location of the key tab file created for the STS.

• Is Verify Kerberos Signature

Enable only when JDK6 is used.

10. To support SSL, perform the following steps:

a. In the Token Issuance Attributes section, edit the SSL Endpoint based on your
OpenSSO instance.

b. Under Signing, enable the Disable signature validation when transport is
secured with SSL option.

c. Under Encryption, enable the Disable decryption when transport is
secured with SSL option.

11. To support SSL on the server hosting the OpenSSO STS:

• On the WebLogic Server hosting the OpenSSO STS, to configure SSL,
perform the steps described in "Configuring Keystores for SSL" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

• On GlassFish server hosting the Open SSO STS, perform the following steps:

a. Generate a new key pair for the application server by issuing the following
command:

keytool -genkey -keyalg <algorithm for generating the key pair> -

keystore keystore.jks -validity <days> -alias <alias_name>

For example:

keytool -genkey -keyalg RSA -keystore <glassfish_install_dir>/domains/

<sts_deploy_domain>/config/keystore.jks -validity 365 -alias owsm

When prompted for first and last name, enter the hostname of the
machine for which the certificate is to be generated. Enter the appropriate
details for the other prompts.

b. Generate a Certificate Signing Request (CSR) by issuing the following
command:

keytool -certreq -alias owsm -file owsm.csr -keystore keystore.jks -

storepass changeit

The request that is generated and written to the owsm.csr file needs to be
submitted to a Certificate Authority in order to get a valid certificate. For
example, consider the Certificate Management Server maintained by the
OpenSSO QA team at https://example.com.

Chapter 8
Configuring SAML HOK Using WS-Trust with OpenSSO STS

8-3

c. Access the Certificate Management Server at https://example.com, click
SSL Server in the left pane, and paste the contents of the .csr file,
starting from BEGIN CERTIFICATE REQUEST and ending at END CERTIFICATE
REQUEST, into the PKCS # 10 Request field.

Fill out the other fields, as appropriate, and submit the request. Once the
request is approved, the certificate can be retrieved from the retrieval tab
on the same page.

d. Copy the certificate content (PKCS # 7 format) starting from BEGIN
CERTIFICATE to END CERTIFICATE into a file with .cert extension and import
the server certificate into the <glassfish_install_dir>/domains/
<sts_deploy_domain>/config/keystore.jks file by using the following keytool
command:

keytool -import -v -alias owsm -file owsm.cert -keystore keystore.jks -

storepass changeit

Enter YES when prompted if you trust the certificate.

e. Access the Certificate Authority's SSL Certificate. Go to https://
example.com and navigate to SSL Server -> Retrieval tab -> List
Certificates -> Find. Click on the first Details button on the page and
copy the Base 64 encoded certificate into another .cert file. For example:
mahogany.cert

f. Import this certificate with alias as rootca into the <glassfish_install_dir>/
domains/<sts_deploy_domain>/config/cacerts.jks file, using the following
command:

keytool -import -v -alias rootca -file mahogany.cert -keystore

cacerts.jks -storepass changeit

g. The previous step may need to be repeated for client side truststore.jks
file. Delete any existing rootca aliases from that file and import the new
one as shown above (changing the location of the keystore file).

h. To configure GlassFish with the new certificate, access the Administration
Console at http://hostname:admin-port/, navigate to Configuration ->
HTTP Service -> http-listener2 (default SSL enabled port) -> SSL, and
change the certificate nickname from s1as (self-signed cert) to owsm.

i. Restart Glassfish.

8.1.2 Configuring SAML Holder-of-Key With Message Protection Using
WS-Trust with OpenSSO STS

After configuring OpenSSO STS, configure SAML holder-of-key with message
protection using WS-Trust with OpenSSO STS.

To configure SAML holder-of-key with message protection using WS-Trust with
OpenSSO STS:

1. Configure the STS service policy. For the complete procedure, see "Configuring a
Policy for Automatic Policy Configuration" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Make a copy of oracle/sts_trust_config_service_policy and edit the policy
configuration, as described below, based on the requestor token type.

Chapter 8
Configuring SAML HOK Using WS-Trust with OpenSSO STS

8-4

To support WS-Security 1.0 username token with message protection requestor
token:

• orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10un"

• orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss10un?wsdl"

(Optional)

To support WS-Security 1.0 username token over SSL with message protection
requestor token:

• orasp:port-uri="https://<host>:<sslport>/openssosts/sts/tlswss10un"

• orasp:wsdl-uri="https://<host>:<sslport>/openssosts/sts/tlswss10un?wsdl"

(Optional)

To support WS-Security 1.0 X509 token with message protection requestor token:

• orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10x509"

• orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss10x509?wsdl"

(Optional)

To support WS-Security 1.1 Kerberos token with message protection requestor
token:

• orasp:port-uri="http://<host>:<port>/openssosts/sts/wss11kerberos"

• orasp:wsdl-uri="http://<host>:<port> (Optional)

2. Configure the Web service. For the complete procedure, see "Configuring a Web
Service for Automatic Policy Configuration" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Attach the policy created in step 1, followed by the oracle/
wss11_sts_issued_saml_hok_with_message_protection_service_policy to the Java EE
web service. For the complete procedure, see "Attaching Policies Directly to a
Single Subject Using Fusion Middleware Control" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Note:

By default, the oracle/
wss11_sts_issued_saml_hok_with_message_protection_service_policy

policy is configured with token type of SAML 1.1. If you wish to configure
the token type to be SAML 2.0, you will need to make a copy of the
policy and edit it, as described in "Cloning a Web Service Policy" in
Securing Web Services and Managing Policies with Oracle Web
Services Manager. (This value should match the client policy.)

3. Configure the Web service client policy. For the complete procedure, see
"Configuring a Web Service Client for Automatic Policy Configuration" in Securing
Web Services and Managing Policies with Oracle Web Services Manager.

Attach the oracle/
wss11_sts_issued_saml_hok_with_message_protection_client_policy policy to the
SOA composite client and override the client configuration properties, described in
"oracle/ws11_sts_issued_saml_hok_with_message_protection_client_template" in
Securing Web Services and Managing Policies with Oracle Web Services
Manager, as required for your requestor token.

Chapter 8
Configuring SAML HOK Using WS-Trust with OpenSSO STS

8-5

The sts.auth.user.csf.key should be set to the user credentials available in the
default OpenSSO STS configuration. Namely, username test, with password set
to password. Though, it is not required to be set for the X509 requestor token.

For more information about overriding client configuration properties when
attaching a policy, see "Attaching Policies Directly to Web Service Clients Using
Fusion Middleware Control" in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

Note:

By default, the oracle/
wss11_sts_issued_saml_hok_with_message_protection_client_policy

policy is configured with token type of SAML 1.1. If you wish to configure
the token type to be SAML 2.0, you will need to make a copy of the
policy and edit it, as described in "Cloning a Web Service Policy" in
Securing Web Services and Managing Policies with Oracle Web
Services Manager.

Chapter 8
Configuring SAML HOK Using WS-Trust with OpenSSO STS

8-6

9
Configuring SAML Sender Vouches Using
WS-Trust with OpenSSO STS

You can refer to the use case description, solution summary, components involved,
and the linked documentation resources to configure SAML sender vouches using
WS-Trust with OpenSSO STS.

Use Case
Configure SAML sender vouches using WS-Trust with OpenSSO STS.

Solution
Attach Oracle Web Services Manager (OWSM) SAML sender vouches with message
protection using WS-Trust policies to the web service client, an OWSM SAML sender
vouches with message protection policy to the web service, and configure OpenSSO
STS.

Components

• Oracle WebLogic Server

• Oracle Web Services Manager (OWSM)

• OpenSSO STS

• Web service and client applications to be secured

Additional Resources on Oracle Web Services Manager

• Understanding SAML Sender Vouches as Issued Tokens

• About SAML Configuration

• keytool Javadoc at: http://download.oracle.com/javase/6/docs/technotes/tools/
windows/keytool.html

This use case demonstrates the steps required to:

• Attach the appropriate OWSM security policies to enforce SAML sender vouches
with message-level protection using WS-Trust with OpenSSO STS.

The WS-Trust 1.3 specification defines extensions to WS-Security that provide a
framework for requesting and issuing security tokens, and to broker trust
relationships. WS-Trust extensions provide methods for issuing, renewing, and
validating security tokens. To secure communication between a Web service client
and a Web service, the two parties must exchange security credentials. As defined
in the WS-Trust specification, these credentials can be obtained from a trusted
Security Token Service (STS), which acts as trust broker. That is, the Web service
client and the Web service do not explicitly trust each other; instead, they implicitly
trust each other because they both trust the STS. For more information, see
"Overview of Web Services WS-Trust" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Specifically, you attach the following policies to the client and service, respectively:

9-1

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

– oracle/wss11_sts_issued_saml_with_message_protection_client_policy and
oracle/sts_trust_config_client_policy

– oracle/wss11_saml_token_with_message_protection_service_policy

• Configure OpenSSO STS.

This use case consists of a Java EE web service and SOA Composite client.

For more information on how to implement this use case, see Use Case: Implementing
SAML Sender Vouches Using WS-Trust with OpenSSO STS.

9.1 Use Case: Implementing SAML Sender Vouches Using
WS-Trust with OpenSSO STS

To implement the use case first configure OpenSSO STS, and then configure SAML
sender vouches message protection using WS-Trust with OpenSSO STS.

• Configuring OpenSSO STS to Implement SAML Sender Vouches

• Configuring SAML Sender Vouches With Message Protection Using WS-Trust with
OpenSSO STS

9.1.1 Configuring OpenSSO STS to Implement SAML Sender
Vouches

To implement the use case Configuring SAML Sender Vouches Using WS-Trust with
OpenSSO STS, first configure Open SSO STS.

To configure OpenSSO STS:

1. Log in to the OpenSSO STS instance.

2. Navigate to Configuration > Global > Security Token Service.

3. Under Security: Security Mechanism: Security Token Accepted by STS Services,
enable all options.

4. Under the Credential for User Token section, add a new credential for the token
with the username and password set as required.

For this example, set the username and password both to password.

5. Under the On Behalf of Token section, select ldapService from the
Authentication Chain for On Behalf of Token drop-down list.

6. Under the Signing section, enable the following options:

- Is Request Signature Verified

- Is Response Signed Enabled (select Body and Timestamp)

7. Under the Encryption section, enable the following options:

- Is Request Decrypted (select Body and Header)

- Is Response Encrypted

8. Select AES from the Encryption Algorithm drop-down list, and select 128 from
the Encryption Strength drop-down list.

Chapter 9
Use Case: Implementing SAML Sender Vouches Using WS-Trust with OpenSSO STS

9-2

9. To support the WS-Security 1.1 Kerberos token with message protection requestor
token, under the Kerberos Configuration section and configure the following
values:

• Kerberos Domain Server

Fully qualified hostname of the domain server.

• Kerberos Domain

Domain name.

• Kerberos Service Principal

Service principal name in the following format: <host>/<machine name>@<REALM
NAME>

• Kerberos Key Tab File

Location of the key tab file created for the STS.

• Is Verify Kerberos Signature

Enable only when JDK6 is used.

10. To support SSL, perform the following steps:

a. In the Token Issuance Attributes section, edit the SSL Endpoint based on your
OpenSSO instance.

b. Under Signing, enable the Disable signature validation when transport is
secured with SSL option.

c. Under Encryption, enable the Disable decryption when transport is
secured with SSL option.

11. To support SSL on the server hosting the OpenSSO STS:

On the WebLogic Server hosting the OpenSSO STS, to configure SSL, perform
the steps described in "Configuring Keystores for SSL" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

On GlassFish server hosting the Open SSO STS, perform the following steps:

a. Generate a new key pair for the application server by issuing the following
command:

keytool -genkey -keyalg <algorithm for generating the key pair> -keystore

keystore.jks -validity <days> -alias <alias_name>

For example:

keytool -genkey -keyalg RSA -keystore <glassfish_install_dir>/domains/

<sts_deploy_domain>/config/keystore.jks -validity 365 -alias owsm

When prompted for first and last name, enter the hostname of the machine for
which the certificate is to be generated. Enter the appropriate details for the
other prompts.

b. Generate a Certificate Signing Request (CSR) by issuing the following
command:

keytool -certreq -alias owsm -file owsm.csr -keystore keystore.jks -

storepass changeit

The request that is generated and written to the owsm.csr file needs to be
submitted to a Certificate Authority in order to get a valid certificate. For

Chapter 9
Use Case: Implementing SAML Sender Vouches Using WS-Trust with OpenSSO STS

9-3

example, the Certificate Management Server maintained by the OpenSSO QA
team at https://example.com.

c. Access the Certificate Management Server at https://example.com, click SSL
Server in the left pane, and paste the contents of the .csr file, starting from
BEGIN CERTIFICATE REQUEST and ending at END CERTIFICATE REQUEST, into the
PKCS # 10 Request field.

Fill out the other fields, as appropriate, and submit the request. Once the
request is approved, the certificate can be retrieved from the retrieval tab on
the same page.

d. Copy the certificate content (PKCS # 7 format) starting from BEGIN CERTIFICATE
to END CERTIFICATE into a file with .cert extension and import the server
certificate into the <glassfish_install_dir>/domains/<sts_deploy_domain>/
config/keystore.jks file by using the following keytool command:

keytool -import -v -alias owsm -file owsm.cert -keystore keystore.jks -

storepass changeit

Enter YES when prompted if you trust the certificate.

e. Access the Certificate Authority's SSL Certificate. Go to https://example.com
and navigate to SSL Server -> Retrieval tab -> List Certificates -> Find.
Click on the first Details button on the page and copy the Base 64 encoded
certificate into another .cert file. For example: mahogany.cert

f. Import this certificate with alias as rootca into the <glassfish_install_dir>/
domains/<sts_deploy_domain>/config/cacerts.jks file, using the following
command:

keytool -import -v -alias rootca -file mahogany.cert -keystore cacerts.jks

-storepass changeit

g. The previous step may need to be repeated for client side truststore.jks file.
Delete any existing rootca aliases from that file and import the new one as
shown above (changing the location of the keystore file).

h. To configure GlassFish with the new certificate, access the Administration
Console at http://hostname:admin-port/, navigate to Configuration -> HTTP
Service -> http-listener2 (default SSL enabled port) -> SSL, and change
the certificate nickname from s1as (self-signed cert) to owsm.

i. Restart Glassfish.

9.1.2 Configuring SAML Sender Vouches With Message Protection
Using WS-Trust with OpenSSO STS

After configuring OpenSSO STS, configure SAML sender vouches with message
protection using WS-Trust with OpenSSO STS.

To configure SAML sender vouches with message protection using WS-Trust with
OpenSSO STS:

1. Configure the client-side STS policy. For the complete procedure, see "Configuring
a Policy for Automatic Policy Configuration" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Chapter 9
Use Case: Implementing SAML Sender Vouches Using WS-Trust with OpenSSO STS

9-4

Note:

Automatic Policy Configuration cannot be used for SAML sender
vouches confirmation because the trust is between the Web service and
the client. For more information, see "Configuring SAML Sender
Vouches with WS-Trust" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Make a copy of oracle/sts_trust_config_client_policy and edit the policy
configuration based on the requestor token type.

To support WS-Security 1.0 username token with message protection requestor
token:

• orasp:policy-reference-uri="oracle/

wss10_username_token_with_message_protection_client_policy"

• orasp:port-endpoint="http://<host>:<port>/openfm/SecurityTokenService/

#wsdl.endpoint(SecurityTokenService/

ISecurityTokenService_Port_UN_WSS10_SOAP12)"

• orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10un"

• orasp:sts-keystore-recipient-alias="test"

To support WS-Security 1.0 username token over SSL with message protection
requestor token:

• orasp:policy-reference-uri="oracle/

wss_username_token_over_ssl_client_policy"

• orasp:port-endpoint="http://localhost:8080/openfm/SecurityTokenService/

#wsdl.endpoint(SecurityTokenService/

ISecurityTokenService_Port_TLS_UN_WSS10_SOAP12)"

• orasp:port-uri="https://<host>:<sslport>/openssosts/sts/tlswss10un"

• orasp:sts-keystore-recipient-alias="test"

To support WS-Security 1.0 X509 token with message protection requestor token:

• orasp:policy-reference-uri="oracle/

wss10_x509_token_with_message_protection_client_policy"

• orasp:port-endpoint="http://localhost:8080/openfm/SecurityTokenService/

#wsdl.endpoint(SecurityTokenService/

ISecurityTokenService_Port_X509_WSS10_SOAP12)"

• orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10x509"

• orasp:sts-keystore-recipient-alias="test"

2. Attach the oracle/wss11_saml_token_with_message_protection_service_policy policy
to the Java EE web service (there is no corresponding issued token policy for
SAML sender vouches scenarios) and override the keystore.enc.csf.key to specify
the service encryption key alias and password. For the complete procedure, see
"Attaching Policies Directly to a Single Subject Using Fusion Middleware Control"
in Securing Web Services and Managing Policies with Oracle Web Services
Manager.

Chapter 9
Use Case: Implementing SAML Sender Vouches Using WS-Trust with OpenSSO STS

9-5

Note:

By default, the oracle/
wss11_saml_hok_with_message_protection_service_policy policy is
configured with token type of SAML 1.1. If you wish to configure the
token type to be SAML 2.0, you will need to make a copy of the policy
and edit it, as described in "Cloning a Web Service Policy" in Securing
Web Services and Managing Policies with Oracle Web Services
Manager.

3. Attach the policy created in step 1 followed by the oracle/
wss11_sts_issued_saml_with_message_protection_client_policy policy to the SOA
composite client and override the client configuration properties described in
"wss11_sts_issued_saml_with_message_protection_client_template" in Securing
Web Services and Managing Policies with Oracle Web Services Manager, as
required for your requestor token.

For the complete procedure, see "Attaching Policies Directly to a Single Subject
Using Fusion Middleware Control" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

The "On Behalf Of" use case relies on the sts.auth.on.behalf.of.csf.key and
on.behalf.of properties, as described in
"wss11_sts_issued_saml_with_message_protection_client_template" in Securing
Web Services and Managing Policies with Oracle Web Services Manager. For
more information, see "On Behalf Of Use Cases" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

The on.behalf.of property should be set to true. The
sts.auth.on.behalf.of.csf.key should be set to the user credentials available in
the default OpenSSO STS configuration that support the "on behalf of" use case.
Namely, demo, with password set to password.

Note:

For more information about overriding client configuration properties
when attaching a policy, see "Attaching Policies Directly to Web Service
Clients Using Fusion Middleware Control" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

4. To grant permission to the client application to request a token from OpenSSO
STS "on behalf of" a user, grant the WSIdentityPermission to wsm-agent-core.jar.
For the complete procedure, see "Set the WSIdentityPermission Permission" in
Securing Web Services and Managing Policies with Oracle Web Services
Manager.

Chapter 9
Use Case: Implementing SAML Sender Vouches Using WS-Trust with OpenSSO STS

9-6

10
Configuring SAML Bearer Using WS-Trust
with OpenSSO STS

You can refer to the use case description, solution summary, components involved,
and the linked documentation resources to configure SAML bearer using WS-Trust
with OpenSSO STS.

Use Case
Configure SAML bearer using WS-Trust with OpenSSO STS.

Solution
Attach Oracle Web Services Manager (OWSM) SAML bearer with message
protection using WS-Trust policies to the web service and client, and configure
OpenSSO STS.

Components

• Oracle WebLogic Server

• Oracle Web Services Manager (OWSM)

• OpenSSO STS

• Web service and client applications to be secured

Additional Resources on Oracle Web Services Manager

• Overview of Oracle Web Services Manager

• Securing Web Services

• Managing and Troubleshooting Oracle Web Services Manager

• keytool Javadoc at: http://download.oracle.com/javase/6/docs/technotes/tools/
windows/keytool.html

This use case demonstrates the steps required to:

• Attach the appropriate OWSM security policies to enforce SAML bearer with
message-level protection using WS-Trust with OpenSSO STS.

The WS-Trust 1.3 specification defines extensions to WS-Security that provide a
framework for requesting and issuing security tokens, and to broker trust
relationships. WS-Trust extensions provide methods for issuing, renewing, and
validating security tokens. To secure communication between a Web service client
and a Web service, the two parties must exchange security credentials. As defined
in the WS-Trust specification, these credentials can be obtained from a trusted
Security Token Service (STS), which acts as trust broker. That is, the Web service
client and the Web service do not explicitly trust each other; instead, they implicitly
trust each other because they both trust the STS. For more information, see
"Overview of Web Services WS-Trust" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Specifically, you attach the following policies to the client and service, respectively:

10-1

http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

– oracle/ws11_sts_issued_saml_bearer_token_over_ssl_client_policy

– oracle/wss11_sts_issued_saml_bearer_token_over_ssl_service_policy and
oracle/sts_trust_config_service_policy

• Configure OpenSSO STS.

This use case consists of a Java EE web service and SOA Composite client.

For more information on how to implement this use case, see Use Case: Implementing
SAML Bearer Using WS-Trust with OpenSSO STS.

10.1 Use Case: Implementing SAML Bearer Using WS-Trust
with OpenSSO STS

To implement the use case configure OpenSSO STS, and then configure SAML
bearer message protection using WS-Trust with OpenSSO STS.

• Configuring OpenSSO STS to Implement SAML Bearer

• Configuring SAML Bearer With Message Protection Using WS-Trust with
OpenSSO STS

10.1.1 Configuring OpenSSO STS to Implement SAML Bearer
To implement the use case SAML Bearer Using WS-Trust with OpenSSO STS, first
configure OpenSSO STS.

To configure OpenSSO STS:

1. Log in to the OpenSSO STS instance.

2. Navigate to Configuration > Global > Security Token Service.

3. Under Security: Security Mechanism: Security Token Accepted by STS Services,
enable all options.

4. Under the Credential for User Token section, add a new credential for the token
with the username and password set as required.

For this example, set the username and password both to password.

5. Under the On Behalf of Token section, select ldapService from the
Authentication Chain for On Behalf of Token drop-down list.

6. Under the Signing section, enable the following options:

- Is Request Signature Verified

- Is Response Signed Enabled (select Body and Timestamp)

7. Under the Encryption section, enable the following options:

- Is Request Decrypted (select Body and Header)

- Is Response Encrypted

8. Select AES from the Encryption Algorithm drop-down list, and select 128 from
the Encryption Strength drop-down list.

9. To support the WS-Security 1.1 Kerberos token with message protection requestor
token, under the Kerberos Configuration section and configure the following
values:

Chapter 10
Use Case: Implementing SAML Bearer Using WS-Trust with OpenSSO STS

10-2

• Kerberos Domain Server

Fully qualified hostname of the domain server.

• Kerberos Domain

Domain name.

• Kerberos Service Principal

Service principal name in the following format: <host>/<machine
name>@<REALM NAME>

• Kerberos Key Tab File

Location of the key tab file created for the STS.

• Is Verify Kerberos Signature

Enable only when JDK6 is used.

10. To support SSL, perform the following steps:

a. In the Token Issuance Attributes section, edit the SSL Endpoint based on your
OpenSSO instance.

b. Under Signing, enable the Disable signature validation when transport is
secured with SSL option.

c. Under Encryption, enable the Disable decryption when transport is
secured with SSL option.

11. To support SSL on the server hosting the OpenSSO STS:

On the WebLogic Server hosting the OpenSSO STS, to configure SSL, perform
the steps described in "Configuring Keystores for SSL" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

On the GlassFish server hosting the Open SSO STS, perform the following steps:

a. Generate a new key pair for the application server by issuing the following
command:

keytool -genkey -keyalg <algorithm for generating the key pair> -keystore

keystore.jks -validity <days> -alias <alias_name>

For example:

keytool -genkey -keyalg RSA -keystore <glassfish_install_dir>/domains/

<sts_deploy_domain>/config/keystore.jks -validity 365 -alias owsm

When prompted for first and last name, enter the hostname of the machine for
which the certificate is to be generated. Enter the appropriate details for the
other prompts.

b. Generate a Certificate Signing Request (CSR) by issuing the following
command:

keytool -certreq -alias owsm -file owsm.csr -keystore keystore.jks -

storepass changeit

The request that is generated and written to the owsm.csr file needs to be
submitted to a Certificate Authority in order to get a valid certificate. For
example, the Certificate Management Server maintained by the OpenSSO QA
team at https://mahogany.red.iplanet.com.

Chapter 10
Use Case: Implementing SAML Bearer Using WS-Trust with OpenSSO STS

10-3

c. Access the Certificate Management Server at https://
mahogany.red.iplanet.com, click SSL Server in the left pane, and paste the
contents of the .csr file, starting from BEGIN CERTIFICATE REQUEST and ending at
END CERTIFICATE REQUEST, into the PKCS # 10 Request field.

Fill out the other fields, as appropriate, and submit the request. Once the
request is approved, the certificate can be retrieved from the retrieval tab on
the same page.

d. Copy the certificate content (PKCS # 7 format) starting from BEGIN CERTIFICATE
to END CERTIFICATE into a file with .cert extension and import the server
certificate into the <glassfish_install_dir>/domains/<sts_deploy_domain>/
config/keystore.jks file by using the following keytool command:

keytool -import -v -alias owsm -file owsm.cert -keystore keystore.jks -

storepass changeit

Enter YES when prompted if you trust the certificate.

e. Access the Certificate Authority's SSL Certificate. Go to https://
mahogany.red.iplanet.com and navigate to SSL Server -> Retrieval tab -> List
Certificates -> Find. Click on the first Details button on the page and copy
the Base 64 encoded certificate into another .cert file. For example:
mahogany.cert

f. Import this certificate with alias as rootca into the <glassfish_install_dir>/
domains/<sts_deploy_domain>/config/cacerts.jks file, using the following
command:

keytool -import -v -alias rootca -file mahogany.cert -keystore cacerts.jks

-storepass changeit

g. The previous step may need to be repeated for client side truststore.jks file.
Delete any existing rootca aliases from that file and import the new one as
shown above (changing the location of the keystore file).

h. To configure GlassFish with the new certificate, access the Administration
Console at http://hostname:admin-port/, navigate to Configuration -> HTTP
Service -> http-listener2 (default SSL enabled port) -> SSL, and change
the certificate nickname from s1as (self-signed cert) to owsm.

i. Restart Glassfish.

10.1.2 Configuring SAML Bearer With Message Protection Using WS-
Trust with OpenSSO STS

After configuring the OpenSSO STS, configure SAML bearer with message protection
using WS-Trust with OpenSSO STS.

To configure SAML bearer with message protection using WS-Trust with OpenSSO
STS:

1. Configure the STS service policy. For the complete procedure, see "Setting Up
Automatic Policy Configuration for STS" in Securing Web Services and Managing
Policies with Oracle Web Services Manager.

Make a copy of oracle/sts_trust_config_service_policy and edit the policy
configuration, as described below, based on the requestor token type.

Chapter 10
Use Case: Implementing SAML Bearer Using WS-Trust with OpenSSO STS

10-4

To support WS-Security 1.0 username token with message protection requestor
token:

• orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10un"

• orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss10un?wsdl"

(Optional)

To support WS-Security 1.0 username token over SSL with message protection
requestor token:

• orasp:port-uri="https://<host>:<sslport>/openssosts/sts/tlswss10un"

• orasp:wsdl-uri="https://<host>:<sslport>/openssosts/sts/tlswss10un?wsdl"

(Optional)

To support WS-Security 1.0 X509 token with message protection requestor token:

• orasp:port-uri="http://<host>:<port>/openssosts/sts/wss10x509"

• orasp:wsdl-uri="http://<host>:<port>/openssosts/sts/wss10x509?wsdl"

(Optional)

To support WS-Security 1.1 Kerberos token with message protection requestor
token:

• orasp:port-uri="http://<host>:<port>/openssosts/sts/wss11kerberos"

• orasp:wsdl-uri="http://<host>:<port> (Optional)

2. Configure the Web service. For the complete procedure, see "Configuring a Web
Service for Automatic Policy Configuration" in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

Attach the policy created in step 1 followed by the oracle/
wss11_sts_issued_saml_bearer_token_over_ssl_service_policy. For the complete
procedure, see "Attaching Policies Directly to a Single Subject Using Fusion
Middleware Control" in Securing Web Services and Managing Policies with Oracle
Web Services Manager.

3. Configure the Web service client. For the complete procedure, see "Configuring a
Web Service Client for Automatic Policy Configuration" in Securing Web Services
and Managing Policies with Oracle Web Services Manager.

Attach the oracle/ws11_sts_issued_saml_bearer_token_over_ssl_client_policy
policy to the SOA composite client and override the client configuration properties
described in "oracle/
ws11_sts_issued_saml_bearer_token_over_ssl_client_template" in Securing Web
Services and Managing Policies with Oracle Web Services Manager, as required
for your requestor token. For the complete procedure, see "Attaching Policies
Directly to a Single Subject Using Fusion Middleware Control" in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

The sts.auth.user.csf.key should be set to the user credentials available in the
default OpenSSO STS configuration. Namely, username test, with password set
to password. Though, it is not required to be set for the X509 requestor token.

For more information about overriding client configuration properties when
attaching a policy, see "Attaching Policies Directly to Web Service Clients Using
Fusion Middleware Control" in Securing Web Services and Managing Policies with
Oracle Web Services Manager.

Chapter 10
Use Case: Implementing SAML Bearer Using WS-Trust with OpenSSO STS

10-5

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New In This Guide
	New and Changed Features for 12c (12.2.1.3.0)
	New and Changed Features for 12c (12.2.1.2.0)
	New and Changed Features for 12c (12.2.1.1.0)

	1 Introduction to the Use Cases
	2 Securing Inbound SOAP Requests Using SAML Message Protection
	2.1 Use Case: Securing Inbound SOAP Requests Using SAML-based Authentication
	2.2 Securing Inbound SOAP requests using SAML Message Protection
	2.2.1 Message Protection Via Symmetric Keys
	2.2.2 What Keys Must Be in the Keystore?
	2.2.3 Multi-Domain Use Case (Keystore Hardening)
	2.2.4 When to Override the SAML Issuer

	2.3 Implementing SAML Message Protection
	2.3.1 Implementing SAML Message Protection - Prerequisites
	2.3.2 Creating a WebLogic Server User
	2.3.3 Creating a Java Keystore
	2.3.4 Configuring the OWSM Keystore for Securing Web Services
	2.3.5 Storing the Password for the Decryption Key in the Credential Store
	2.3.6 Attaching the Policy to Your Web Service
	2.3.7 Attaching the Policy to Your Web Service Client

	3 Securing RESTful Web Services Using Basic Authentication
	3.1 Use Case: Secure a RESTful Web Service Using Basic Authentication
	3.2 Implementing the Use Case: RESTful Web Service Using Basic Authentication
	3.2.1 Implementing RESTful Web Service Using Basic Authentication- Prerequisites
	3.2.2 Securing All RESTful Resources by Default
	3.2.3 Creating a RESTful Web Service
	3.2.4 Authenticating the User Using SecurityContext
	3.2.5 Packaging With an Application Subclass
	3.2.6 Deploying the RESTful Web Service

	3.3 Verifying the Use Case: RESTful Web Service
	3.4 Additional Resources for RESTful Web Services Use Case

	4 Propagating Security Identity with RESTful Web Services
	4.1 Use Case: Propagate Security Identity with RESTful Web Services
	4.2 Implementing Use Case: Propagating Security Identity with RESTful Web Services
	4.2.1 Propagating Security Identity with RESTful Web Services - Prerequisites
	4.2.2 Create, Secure, and Deploy a RESTful Web Service
	4.2.2.1 Creating a RESTful Web Service
	4.2.2.2 Authenticating the User Using SecurityContext
	4.2.2.3 Modifying the Servlet Name for the Web Project
	4.2.2.4 Securing the RESTful Web Service
	4.2.2.5 Deploying the RESTful Web Service
	4.2.2.6 Testing the RESTful Web Service Using Fusion Middleware Control

	4.2.3 Create, Secure, and Deploy a RESTful Client
	4.2.3.1 Creating a RESTful Client
	4.2.3.2 Modifying the HTTP Servlet to Call the RESTful Client
	4.2.3.3 Securing the Servlet Web Application
	4.2.3.4 Creating a weblogic.xml Deployment Descriptor
	4.2.3.5 Deploying the RESTful Client
	4.2.3.6 Testing Access to the RESTful Client

	4.2.4 Set Up the Keystore Service (KSS)
	4.2.4.1 Why Use KSS?
	4.2.4.2 Setting Up the Keystore Services

	4.2.5 Creating a Test User

	4.3 Verifying the Use Case: Propagating Security Identity with RESTful Web Services

	5 Configuring Federation with Microsoft ADFS 2.0 STS as the IP-STS and OWSM as the RP-STS
	5.1 Use Case: Implementing Web Services federation with Microsoft ADFS 2.0 STS as IP-STS and OWSM as RP-STS
	5.1.1 Generating Federation Metadata Document for the RP-STS
	5.1.2 Configuring the Web Service
	5.1.3 Configuring Microsoft ADFS 2.0 STS as the IP-STS
	5.1.4 Configuring the Web Service Client

	6 Configuring Federation with Microsoft ADFS 2.0 STS as the IP-STS and Oracle STS as the RP-STS
	6.1 Use Case: Implementing Web Services federation with Microsoft ADFS2.0 STS
	6.1.1 Configuring the Web Service
	6.1.2 Configuring Oracle STS as the RP-STS
	6.1.3 Configuring Microsoft ADFS 2.0 STS as the IP-STS
	6.1.4 Configuring the Web Service Client

	7 Configuring Federation with Oracle STS as the IP-STS and Microsoft ADFS 2.0 STS as the RP-STS
	7.1 Use Case: Implementing Oracle STS as IP-STS and Microsoft ADFS 2.0 STS as RP-STS
	7.1.1 Configuring the Web Service
	7.1.2 Configuring Microsoft ADFS 2.0 STS as the RP-STS
	7.1.3 Configuring Oracle STS as the IP-STS
	7.1.4 Configuring the Web Service Client

	8 Configuring SAML HOK Using WS-Trust with OpenSSO STS
	8.1 Configuring SAML HOK Using WS-Trust with OpenSSO STS
	8.1.1 Configuring OpenSSO STS to Implement SAML HOK
	8.1.2 Configuring SAML Holder-of-Key With Message Protection Using WS-Trust with OpenSSO STS

	9 Configuring SAML Sender Vouches Using WS-Trust with OpenSSO STS
	9.1 Use Case: Implementing SAML Sender Vouches Using WS-Trust with OpenSSO STS
	9.1.1 Configuring OpenSSO STS to Implement SAML Sender Vouches
	9.1.2 Configuring SAML Sender Vouches With Message Protection Using WS-Trust with OpenSSO STS

	10 Configuring SAML Bearer Using WS-Trust with OpenSSO STS
	10.1 Use Case: Implementing SAML Bearer Using WS-Trust with OpenSSO STS
	10.1.1 Configuring OpenSSO STS to Implement SAML Bearer
	10.1.2 Configuring SAML Bearer With Message Protection Using WS-Trust with OpenSSO STS

