
Oracle® Fusion Middleware
Developing Remote Clients for Oracle
Coherence

12c (12.2.1.3.0)
E80348-01
August 2017



Oracle Fusion Middleware Developing Remote Clients for Oracle Coherence, 12c (12.2.1.3.0)

E80348-01

Copyright © 2008, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xv

Documentation Accessibility xv

Related Documents xvi

Conventions xvi

 What's New in This Guide

New and Changed Features xvii

Other Significant Changes in This Document xviii

Part I   Getting Started

1   Introduction to Coherence*Extend

1.1 Overview of Coherence*Extend 1-1

1.2 Extend Clients 1-2

1.3 Extend Client APIs 1-3

1.4 POF Serialization 1-3

1.5 Understanding Extend Client Configuration Files 1-3

1.6 Non-Native Client Support 1-4

1.6.1 REST Client Support 1-5

1.6.2 Memcached Client Support 1-5

2   Building Your First Extend Application

2.1 Overview of the Extend Example 2-1

2.2 Step 1: Configure the Cluster Side 2-1

2.3 Step 2: Configure the Client Side 2-2

2.4 Step 3: Create the Sample Client 2-3

2.5 Step 4: Start the Cache Server Process 2-5

iii



2.6 Step 5: Run the Application 2-5

3   Configuring Extend Proxies

3.1 Overview of Configuring Extend Proxies 3-1

3.2 Defining Extend Proxy Services 3-1

3.2.1 Defining a Single Proxy Service Instance 3-2

3.2.2 Defining Multiple Proxy Service Instances 3-2

3.2.3 Defining Multiple Proxy Services 3-3

3.2.4 Explicitly Configuring Proxy Addresses 3-3

3.2.5 Disabling Cluster Service Proxies 3-4

3.2.6 Specifying Read-Only NamedCache Access 3-5

3.3 Defining Caches for Use By Extend Clients 3-5

3.4 Disabling Storage on a Proxy Server 3-8

3.5 Starting a Proxy Server 3-9

4   Configuring Extend Clients

4.1 Overview of Configuring Extend Clients 4-1

4.2 Defining a Remote Cache 4-1

4.3 Using a Remote Cache as a Back Cache 4-3

4.4 Defining Remote Invocation Schemes 4-4

4.5 Connecting to Specific Proxy Addresses 4-5

4.6 Detecting Connection Errors 4-6

4.7 Disabling TCMP Communication 4-7

5   Advanced Extend Configuration

5.1 Using Address Provider References for TCP Addresses 5-1

5.2 Using a Custom Address Provider for TCP Addresses 5-2

5.3 Load Balancing Connections 5-3

5.3.1 Using Proxy-Based Load Balancing 5-3

5.3.2 Understanding the Proxy-Based Load Balancing Default Algorithm 5-4

5.3.3 Implementing a Custom Proxy-Based Load Balancing Strategy 5-5

5.3.4 Using Client-Based Load Balancing 5-6

5.4 Using Network Filters with Extend Clients 5-6

6   Best Practices for Coherence*Extend

6.1 Do Not Run a Near Cache on a Proxy Server 6-1

6.2 Configure Heap NIO Space to be Equal to the Max Heap Size 6-1

6.3 Configure Proxy Service Thread Pooling 6-1

iv



6.3.1 Understanding Proxy Service Threading 6-2

6.3.2 Setting Proxy Service Thread Pooling Thresholds 6-2

6.3.3 Setting an Exact Number of Threads 6-3

6.4 Be Careful When Making InvocationService Calls 6-3

6.5 Be Careful When Placing Collection Classes in the Cache 6-3

6.6 Configure POF Serializers for Cache Servers 6-4

6.7 Configuring Firewalls for Extend Clients 6-5

Part II   Creating Java Extend Clients

Part III   Creating C++ Extend Clients

7   Introduction to Coherence C++ Clients

7.1 Overview of Coherence for C++ 7-1

7.2 Setting Up C++ Application Builds 7-1

7.2.1 Setting up the Compiler for Coherence-Based Applications 7-2

7.2.2 Including Coherence Header Files 7-2

7.2.3 Linking the Coherence Library 7-2

7.2.4 Setting the run-time Library and Search Path 7-3

7.2.5 Deploying Coherence for C++ 7-4

8   Configuration and Usage for C++ Clients

8.1 General Instructions 8-1

8.2 Implement the C++ Application 8-1

8.3 Compile and Link the Application 8-2

8.4 Configure Paths 8-3

8.5 Obtaining a Cache Reference with C++ 8-3

8.6 Cleaning up Resources Associated with a Cache 8-3

8.7 Configuring and Using the Coherence for C++ Client Library 8-3

8.7.1 Setting the Configuration File Location with an Environment Variable 8-3

8.7.2 Setting the Configuration File Location Programmatically 8-4

8.8 Operational Configuration File (tangosol-coherence-override.xml) 8-4

8.9 Configuring a Logger 8-5

9   Using the Coherence C++ Object Model

9.1 Using the Object Model 9-1

9.1.1 Coherence Namespaces 9-1

v



9.1.2 Understanding the Base Object 9-2

9.1.3 Automatically Managed Memory 9-2

9.1.3.1 Referencing Managed Objects 9-2

9.1.3.2 Using handles 9-3

9.1.3.3 Managed Object Instantiation 9-3

9.1.4 Managed Strings 9-4

9.1.4.1 String Instantiation 9-4

9.1.4.2 Auto-Boxed Strings 9-4

9.1.5 Type Safe Casting 9-4

9.1.5.1 Down Casting 9-5

9.1.6 Managed Arrays 9-5

9.1.7 Collection Classes 9-6

9.1.8 Managed Exceptions 9-6

9.1.9 Object Immutability 9-7

9.1.10 Integrating Existing Classes into the Object Model 9-7

9.2 Writing New Managed Classes 9-8

9.2.1 Specification-Based Managed Class Definition 9-8

9.2.2 Equality, Hashing, Cloning, Immutability, and Serialization 9-11

9.2.3 Threading 9-12

9.2.4 Weak References 9-13

9.2.5 Virtual Constructors 9-14

9.2.6 Advanced Handle Types 9-14

9.2.7 Thread Safety 9-15

9.2.7.1 Synchronization and Notification 9-16

9.2.7.2 Thread Safe Handles 9-16

9.2.7.3 Escape Analysis 9-19

9.2.7.4 Thread-Local Allocator 9-20

9.3 Diagnostics and Troubleshooting 9-20

9.3.1 Thread-Local Allocator Logs 9-20

9.3.2 Thread Dumps 9-21

9.3.3 Memory Leak Detection 9-21

9.3.4 Memory Corruption Detection 9-22

9.4 Application Launcher - Sanka 9-22

9.4.1 Command line syntax 9-23

9.4.2 Built-in Executables 9-23

9.4.3 Sample Custom Executable Class 9-23

10  
 

Using the Coherence for C++ Client API

10.1 CacheFactory 10-1

10.2 NamedCache 10-1

vi



10.3 QueryMap 10-2

10.4 ObservableMap 10-2

10.5 InvocableMap 10-3

10.6 Filter 10-3

10.7 Value Extractors 10-4

10.8 Entry Processors 10-5

10.9 Entry Aggregators 10-5

11  
 

Building Integration Objects (C++)

11.1 Overview of Building Integration Objects (C++) 11-1

11.2 POF Intrinsics 11-1

11.3 Serialization Options 11-2

11.3.1 Overview of Serialization Options 11-2

11.3.2 Managed<T> (Free-Function Serialization) 11-3

11.3.3 PortableObject (Self-Serialization) 11-5

11.3.4 PofSerializer (External Serialization) 11-7

11.4 Using POF Object References 11-10

11.4.1 Enabling POF Object References 11-10

11.4.2 Registering POF Object Identities for Circular and Nested Objects 11-11

11.5 Registering Custom C++ Types 11-13

11.6 Implementing a Java Version of a C++ Object 11-13

11.7 Understanding Serialization Performance 11-14

11.8 Using POF Annotations to Serialize Objects 11-14

11.8.1 Annotating Objects for POF Serialization 11-15

11.8.2 Registering POF Annotated Objects 11-16

11.8.3 Enabling Automatic Indexing 11-16

11.8.4 Providing a Custom Codec 11-16

12  
 

Querying a Cache (C++)

12.1 Overview of Query Functionality 12-1

12.2 Performing Simple Queries 12-1

12.3 Understanding Query Concepts 12-3

12.4 Performing Queries Involving Multi-Value Attributes 12-4

12.5 Using a Chained Extractor in a Query 12-4

12.6 Using a Query Recorder 12-5

13  
 

Performing Continuous Queries (C++)

13.1 Overview of Performing Continuous Queries (C++) 13-1

13.2 Understanding the Use Cases for Continuous Query Caching 13-2

vii



13.3 Understanding the Continuous Query Caching Implementation 13-2

13.4 Defining a Continuous Query Cache 13-3

13.5 Cleaning up Continuous Query Cache Resources 13-3

13.6 Caching Only Keys Versus Keys and Values 13-3

13.6.1 CacheValues Property and Event Listeners 13-4

13.6.2 Using ReflectionExtractor with Continuous Query Caches 13-4

13.7 Listening to a Continuous Query Cache 13-4

13.7.1 Avoiding Unexpected Results 13-5

13.7.2 Achieving a Stable Materialized View 13-5

13.8 Making a Continuous Query Cache Read-Only 13-5

14  
 

Performing Remote Invocations (C++)

14.1 Overview of Performing Remote Invocations (C++) 14-1

14.2 Configuring and Using the Remote Invocation Service 14-1

14.3 Registering Invocable Implementation Classes 14-2

15  
 

Using Cache Events (C++)

15.1 Overview of Map Events (C++) 15-1

15.2 Caches and Classes that Support Events 15-1

15.3 Signing Up for all Events 15-2

15.4 Using a Multiplexing Map Listener 15-3

15.5 Configuring a MapListener for a Cache 15-4

15.6 Signing Up for Events on Specific Identities 15-4

15.7 Filtering Events 15-4

15.8 Using Lite Events 15-5

15.9 Listening to Queries 15-6

15.10 Using Synthetic Events 15-8

15.11 Using Backing Map Events 15-9

15.12 Using Synchronous Event Listeners 15-9

16  
 

Performing Transactions (C++)

16.1 Using the Transaction API within an Entry Processor 16-1

16.2 Creating a Stub Class for a Transactional Entry Processor 16-3

16.3 Registering a Transactional Entry Processor User Type 16-4

16.4 Configuring the Cluster-Side Transactional Caches 16-4

16.5 Configuring the Client-Side Remote Cache 16-5

16.6 Using a Transactional Entry Processor from a C++ Client 16-6

viii



Part IV   Creating .NET Extend Clients

17  
 

Introduction to Coherence .NET Clients

17.1 Overview of Coherence for .NET 17-1

17.2 Configuration and Usage for .NET Clients 17-1

17.2.1 General Instructions 17-1

17.2.2 Configuring Coherence*Extend for .NET 17-2

17.2.3 Obtaining a Cache Reference with .NET 17-2

17.2.4 Cleaning Up Resources Associated with a Cache 17-2

17.2.5 Using Network Filters 17-3

17.2.5.1 Custom Filters 17-3

17.2.5.2 Configuring Filters 17-3

18  
 

Building Integration Objects (.NET)

18.1 Overview of Building Integration Objects (.NET) 18-1

18.2 Creating an IPortableObject Implementation 18-2

18.3 Implementing a Java Version of a .NET Object 18-2

18.3.1 Creating a PortableObject Implementation (Java) 18-4

18.4 Registering Custom Types on the .NET Client 18-4

18.5 Registering Custom Types in the Cluster 18-6

18.6 Evolvable Portable User Types 18-6

18.7 Making Types Portable Without Modification 18-9

18.8 Using POF Object References 18-11

18.8.1 Enabling POF Object References 18-12

18.8.2 Registering POF Object Identities for Circular and Nested Objects 18-13

18.9 Using POF Annotations to Serialize Objects 18-14

18.9.1 Annotating Objects for POF Serialization 18-14

18.9.2 Registering POF Annotated Objects 18-15

18.9.3 Enabling Automatic Indexing 18-16

18.9.4 Providing a Custom Codec 18-17

19  
 

Using the Coherence .NET Client Library

19.1 Setting Up the Coherence .NET Client Library 19-1

19.2 Using the Coherence .NET APIs 19-3

19.2.1 CacheFactory 19-4

19.2.2 IConfigurableCacheFactory 19-4

19.2.3 DefaultConfigurableCacheFactory 19-5

19.2.4 Logger 19-5

ix



19.2.5 Using the Common.Logging Library 19-6

19.2.6 INamedCache 19-7

19.2.7 IQueryCache 19-8

19.2.8 QueryRecorder 19-8

19.2.9 IObservableCache 19-9

19.2.9.1 Responding to Cache Events 19-10

19.2.10 IInvocableCache 19-10

19.2.11 Filters 19-11

19.2.12 Value Extractors 19-12

19.2.13 Entry Processors 19-12

19.2.14 Entry Aggregators 19-13

19.3 Configuring .NET Clients Programmatically 19-14

20  
 

Performing Continuous Queries (.NET)

20.1 Overview of Performing Continuous Queries (.NET) 20-1

20.2 Understanding Use Cases for Continuous Query Caching 20-1

20.3 Understanding the Continuous Query Caching Implementation 20-2

20.4 Constructing a Continuous Query Cache 20-2

20.5 Cleaning Up Continuous Query Cache Resources 20-3

20.6 Caching Only Keys Versus Keys and Values 20-3

20.7 Listening to a Continuous Query Cache 20-4

20.7.1 Achieving a Stable Materialized View 20-5

20.7.2 Support for Synchronous and Asynchronous Listeners 20-5

20.8 Making a Continuous Query Cache Read-Only 20-5

21  
 

Performing Remote Invocations (.NET)

21.1 Overview of Performing Remote Invocations 21-1

21.2 Configuring and Using the Remote Invocation Service 21-1

22  
 

Performing Transactions (.NET)

22.1 Using the Transaction API within an Entry Processor 22-1

22.2 Creating a Stub Class for a Transactional Entry Processor 22-3

22.3 Registering a Transactional Entry Processor User Type 22-3

22.4 Configuring the Cluster-Side Transactional Caches 22-4

22.5 Configuring the Client-Side Remote Cache 22-5

22.6 Using a Transactional Entry Processor from a .NET Client 22-6

x



23  
 

Managing ASP.NET Session State

23.1 Overview of ASP.NET Session State 23-1

23.2 Setting Up Coherence ASP.NET Session Management 23-1

23.2.1 Overview of Setting Up Coherence Session Management 23-2

23.2.2 Enable the Coherence Session Provider 23-2

23.2.3 Configure the Cluster-Side ASP Session Caches 23-2

23.2.4 Configure a Client-Side ASP Session Remote Cache 23-3

23.2.5 Overriding the Default Session Cache Name 23-4

23.3 Selecting a Session Model 23-5

23.3.1 Overview of Session Models 23-5

23.3.2 Specify the Session Model 23-5

23.3.3 Registering the Backing Map Listener 23-6

23.4 Configuring a Serializer 23-7

23.4.1 Specifying a Serializer 23-7

23.4.2 Using POF for Session Serialization 23-8

23.5 Sharing ASP.NET Session State Across Applications 23-8

Part V   Using Coherence REST

24  
 

Introduction to Coherence REST

24.1 Overview of Coherence REST 24-1

24.2 Dependencies for Coherence REST 24-1

24.3 Overview of Configuration for Coherence REST 24-2

24.4 Understanding Data Format Support 24-2

24.4.1 Using XML as the Data Format 24-3

24.4.2 Using JSON as the Data Format 24-4

24.5 Authenticating and Authorizing Coherence REST Clients 24-5

25  
 

Building Your First Coherence REST Application

25.1 Overview of the Basic Coherence REST Example 25-1

25.2 Step 1: Configure the Cluster Side 25-1

25.3 Step 2: Create a User Type 25-2

25.4 Step 3: Configure REST Services 25-3

25.5 Step 4: Start the Cache Server Process 25-4

25.6 Step 5: Access REST Services From a Client 25-5

xi



26  
 

Performing Grid Operations with REST

26.1 Specifying Key and Value Types 26-1

26.2 Performing Single-Object REST Operations 26-2

26.3 Performing Multi-Object REST Operations 26-3

26.4 Performing Partial-Object REST Operations 26-4

26.5 Performing Queries with REST 26-4

26.5.1 Using Direct Queries 26-5

26.5.2 Using Named Queries 26-5

26.5.3 Specifying a Query Sort Order 26-6

26.5.4 Limiting Query Result Size 26-7

26.5.5 Retrieving Only Keys 26-7

26.5.6 Using Custom Query Engines 26-8

26.5.6.1 Implementing Custom Query Engines 26-8

26.5.6.2 Enabling Custom Query Engines 26-10

26.6 Performing Aggregations with REST 26-10

26.6.1 Aggregation Syntax for REST 26-11

26.6.2 Listing of Pre-Defined Aggregators 26-11

26.6.3 Creating Custom Aggregators 26-12

26.7 Performing Entry Processing with REST 26-13

26.7.1 Entry Processor Syntax for REST 26-13

26.7.2 Listing of Pre-defined Entry Processors 26-13

26.7.3 Creating Custom Entry Processors 26-14

26.8 Understanding Concurrency Control 26-14

26.9 Specifying Cache Aliases 26-15

26.10 Using Server-Sent Events 26-16

26.10.1 Receiving Server-Sent Events 26-16

27  
 

Deploying Coherence REST

27.1 Deploying with the Embedded HTTP Server 27-1

27.2 Deploying to WebLogic Server 27-2

27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST 27-2

27.2.2 Task 2: Package the Coherence REST Web Application 27-2

27.2.3 Task 3: Package the Coherence Application 27-3

27.2.4 Task 4: Package the Enterprise Application 27-4

27.2.5 Task 5: Deploy the Enterprise Application 27-4

27.3 Deploying to a Java EE Server (Generic) 27-5

27.3.1 Packaging Coherence REST for Deployment 27-5

27.3.2 Deploying to a Servlet Container 27-6

xii



27.4 Configuring REST Server Access to POF-Enabled Services 27-6

28  
 

Modifying the Default REST Implementation

28.1 Using the Pass-Through Resource 28-1

28.2 Using Custom Providers and Resources 28-2

28.3 Changing the Embedded HTTP Server 28-4

28.3.1 Using Grizzly HTTP Server 28-4

28.3.2 Using Simple HTTP Server 28-4

28.3.3 Using Jetty HTTP Server 28-5

A   REST Configuration Elements

A.1 REST Configuration File A-1

A.2 REST Configuration Element Reference A-2

A.2.1 REST Configuration Element Index A-2

A.2.2 aggregator A-3

A.2.3 aggregators A-3

A.2.4 engine A-3

A.2.5 marshaller A-4

A.2.6 processor A-4

A.2.7 processors A-5

A.2.8 query A-5

A.2.9 query-engines A-6

A.2.10 resource A-6

A.2.11 resources A-8

A.2.12 rest A-8

B   Integrating with F5 BIG-IP LTM

B.1 Basic Concepts B-1

B.2 Creating Nodes B-2

B.3 Configuring a Load Balancing Pool B-3

B.3.1 Creating a Load Balancing Pool B-4

B.3.2 Adding a Load Balancing Pool Member B-5

B.4 Configuring a Virtual Server B-6

B.5 Configuring Coherence*Extend to Use BIG-IP LTM B-8

B.6 Using Advanced Health Monitoring B-9

B.6.1 Creating a Custom Health Monitor to Ping Coherence B-10

B.6.2 Manually Creating a Custom Health Monitor to Ping Coherence B-11

B.6.3 Associating a Custom Health Monitor With a Load Balancing Pool B-13

B.7 Using SSL Offloading B-14

xiii



B.7.1 Enabling SSL Offloading B-15

B.7.2 Import the Server's SSL Certificate and Key B-15

B.7.3 Create the Client SSL Profile B-16

B.7.4 Associate the Client SSL Profile B-17

Index

xiv



Preface

Developing Remote Clients for Oracle Coherence describes how to configure
Coherence*Extend and how to develop remote clients in Java, C++, and .NET. This
document also includes instructions for developing remote clients using Coherence
REST.
This preface includes the following sections:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Developing Remote Clients for Oracle Coherence is intended for the following
audiences:

• Primary Audience – Application developers who want to write and deploy clients
that use C++, .NET, and REST to interact with remote caches that reside in a
Coherence cluster.

• Secondary Audience – System architects who want to understand core Oracle
Coherence concepts and want to build data grid-based solutions that include
remote clients.

The audience must be familiar with the respective client technologies as well as Java
to use this guide. In addition, the examples in this guide require the installation and
use of the Oracle Coherence product. For details about installing Coherence for Java
and the respective client technologies, see Installing Oracle Coherence. The use of an
IDE is not required to use this guide, but is recommended to facilitate working through
the examples.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Related Documents
For more information, see the following documents that are included in the Oracle
Coherence documentation set:

• Administering HTTP Session Management with Oracle Coherence*Web

• Administering Oracle Coherence

• Developing Applications with Oracle Coherence

• Installing Oracle Coherence

• Integrating Oracle Coherence

• Managing Oracle Coherence

• Securing Oracle Coherence

• Java API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

Preface

xvi



What's New in This Guide

New and significant changes in Developing Remote Clients for Oracle Coherence.
This preface includes the following sections:

• New and Changed Features
New and changed features in Developing Remote Clients for Oracle Coherence
that are organized by release.

• Other Significant Changes in This Document
Other significant changes in Developing Remote Clients for Oracle Coherence that
are organized by release.

New and Changed Features
New and changed features in Developing Remote Clients for Oracle Coherence that
are organized by release.

New and Changed Features for 12c (12.2.1.3)

Oracle Coherence 12c (12.2.1.3) does not contain any new and changed features for
this document.

New and Changed Features for 12c (12.2.1.2)

Oracle Coherence 12c (12.2.1.2) does not contain any new and changed features for
this document.

New and Changed Features for 12c (12.2.1.1)

Oracle Coherence 12c (12.2.1.1) does not contain any new and changed features for
this document.

New and Changed Features for 12c (12.2.1)

Oracle Coherence 12c (12.2.1) includes the following new and changed features for
this document.

• Proxy addresses, which allow extend clients to connect to a cluster automatically
bind to a name service address. See Defining a Single Proxy Service Instance.

• Remote cache addresses, which are used to connect to a proxy service do not
need to be specified if the client runs on the same network as the cluster. See 
Defining a Remote Cache.

• DNS names, which can be used to connect to a proxy server can be associated
with a list of IP addresses. See Connecting to Specific Proxy Addresses.

• Server-Sent events, which allow Coherence REST applications to automatically
receive cache events from the Coherence cluster. See Using Server-Sent Events.

xvii



• Jetty HTTP Server integration, which allows Coherence REST to use Jetty. See 
Using Jetty HTTP Server.

Other Significant Changes in This Document
Other significant changes in Developing Remote Clients for Oracle Coherence that are
organized by release.

Other Significant Changes in This Document for 12c (12.2.1.3)

For 12c (12.2.1.3), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Updated XML Data format example. See Using XML as the Data Format.

• Updated instructions for deploying Coherence REST on WebLogic Server. See 
Deploying to WebLogic Server.

• Updated Coherence REST pass-through instructions to include container
deployment instructions. See Using the Pass-Through Resource.

• Added support statement for NAT addresses. See Explicitly Configuring Proxy
Addresses , Defining a Remote Cache, and Deploying with the Embedded HTTP
Server.

Other Significant Changes in This Document for 12c (12.2.1.2)

For 12c (12.2.1.2), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Updated the Coherence REST instructions to include steps for enabling pass-
through to caches. See Using the Pass-Through Resource.

Other Significant Changes in This Document for 12c (12.2.1.1)

For 12c (12.2.1.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Removed recommendation for storage disabled proxies.

• Updated F5 instructions for configuring advanced health monitoring. See Using
Advanced Health Monitoring.

Other Significant Changes in This Document for 12c (12.2.1)

For 12c (12.2.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Removed the instructions for installing Coherence C++ and .NET client
components. See Installing a Client Distribution in Installing Oracle Coherence.

• Revised the instructions for setting up Coherence*Extend. The content is now
organized into a chapter about proxy configuration and a chapter about client
configuration. See Configuring Extend Proxies and Configuring Extend Clients ,
respectively.

• Added a new chapter that organizes advanced configuration topics. See Advanced
Extend Configuration .

What's New in This Guide

xviii



• Revised the proxy setup configuration instructions to use the name service over
explicit proxy address configuration, which is documented in a separate section.
See Defining Extend Proxy Services.

• Revised the extend client setup configuration instructions to use the name service
over explicit socket address configuration, which is documented in a separate
section. See Defining a Remote Cache.

• Added instructions for configuring firewalls. See Configuring Firewalls for Extend
Clients.

• Revised the instructions on REST dependencies to us Apace Maven. See 
Dependencies for Coherence REST.

• Revised the instructions for deploying Coherence REST to WebLogic Server. See 
Deploying to WebLogic Server.

What's New in This Guide

xix





Part I
Getting Started

Learn about Coherence*Extend proxies, clients, configuration, and best practices. Try
creating a simple Coherence*Extend application.
Part I contains the following chapters:

• Introduction to Coherence*Extend

• Building Your First Extend Application

• Configuring Extend Proxies

• Configuring Extend Clients

• Advanced Extend Configuration

• Best Practices for Coherence*Extend





1
Introduction to Coherence*Extend

Coherence*Extend includes support for native Coherence clients (Java, C++,
and .NET) and non-native Coherence clients (REST and Memcached).
This chapter includes the following sections:

• Overview of Coherence*Extend

• Extend Clients

• Extend Client APIs

• POF Serialization

• Understanding Extend Client Configuration Files

• Non-Native Client Support

1.1 Overview of Coherence*Extend
Coherence*Extend "extends" the reach of the core Coherence TCMP cluster to a
wider range of consumers, including desktops, remote servers, and computers located
across WAN connections. Typical uses of Coherence*Extend include providing
desktop applications with access to Coherence caches (including support for Near
Cache and Continuous Query) and linking multiple Coherence clusters connected
through a high-latency, unreliable WAN.
Coherence*Extend consists of two basic components: an extend client running outside
the cluster and an extend proxy service running in the cluster hosted by one or more
cache servers (DefaultCacheServer) that are storage disabled. The client APIs include
implementations of both the CacheService and InvocationService interfaces which route
all requests to the proxy. The proxy responds to client requests by delegating to an
actual Coherence clustered services (for example, a partitioned or replicated cache
service or an invocation service).

Coherence*Extend uses the Extend-TCP transport binding (a low-level messaging
protocol) to communicate between the client and the cluster. The protocol is a high
performance, scalable TCP/IP-based communication layer. The transport binding is
configuration-driven and is completely transparent to the client application that uses
Coherence*Extend.

Figure 1-1 provides a conceptual view of the Coherence*Extend components and
shows an extend client connecting to an extend proxy service using Extend-TCP.

1-1



Figure 1-1    Conceptual View of Coherence*Extend Components

Like cache clients, an extend client retrieves Coherence clustered service using a
cache factory. After a service is obtained, a client uses the service in the same way as
if it were part of the Coherence cluster. The fact that operations are being sent to a
remote cluster node is transparent to the client application.

1.2 Extend Clients
Extend clients (also referred to as real-time clients) can be created for the Java, .NET,
and C++ platforms and have access to the same API as the standard Coherence API
without being full data members of the cluster. Typically, client applications are
granted only read access to cluster data, although it is possible to enable direct read/
write access.
Extend clients provide:

• Key-based cache access through the NamedCache interface

• Attribute-based cache access using filters

• Custom processing and aggregation of cluster side entries using the InvocableMap
interface

• In-Process caching through LocalCache

• Remote invocation of custom tasks in the cluster through the Invocation Service

• Event Notifications using the standard Coherence event model. Data changes that
occur within the cluster are visible to the client application. Only events that a
client application registers for are delivered over the wire. This model results in
efficient use of network bandwidth and client processing.

• Near Caching and Continuous Query Caching to maintain cache data locally. If the
server to which the client application is attached happens to fail, the connection is
automatically reestablished to another server, and any locally cached data is re-
synchronized with the cluster.

Chapter 1
Extend Clients

1-2



For a complete list of real-time client features, see Oracle Coherence Products in
Oracle Fusion Middleware Licensing Information User Manual.

1.3 Extend Client APIs
Java, C++, and .NET (C#) native libraries are available for building extend clients.
Each API is delivered in its own distribution and must be installed separately. Extend
clients use their respective APIs to perform cache operations such as access, modify,
and query data that is in a cluster.
The C++ and C# APIs follow the Java API as close as possible to provide a consistent
experience between platforms. As an example, a Java client gets a NamedCache
instance using the CacheFactory.getCache method as follows:

NamedCache cache = CacheFactory.getCache("dist-extend");

For C++, the API is as follows:

NamedCache::Handle hCache = CacheFactory::getCache("dist-extend");

For C#, the API is as follows:

INamedCache cache = CacheFactory.GetCache("dist-extend");

This and many other API features are discussed throughout this guide:

• Java – See Creating Java Extend Clients for details on using the API and refer to 
Java API Reference for Oracle Coherence for detailed API documentation.

• C++ – See Creating C++ Extend Clients for details on using the API and refer to C
++ API Reference for Oracle Coherence for detailed API documentation.

• .NET – See Creating .NET Extend Clients for details on using the API and refer
to .NET API Reference for Oracle Coherence for detailed API documentation.

1.4 POF Serialization
Like cache clients, extend clients must serialize objects that are to be stored in the
cluster. C++ and C# clients use Coherence's Portable Object Format (POF), which is a
language agnostic binary format. Java extend clients typically use POF for serialization
as well; however, there are several other options for serializing Java objects, such as
Java native serialization and custom serialization routines.
Clients that serialize objects into the cluster can perform get and put based operations
on the objects. However, features such as queries and entry processors require Java-
based cache servers to interact with the data object, rather then simply holding onto a
serialized representation of it. To interact with the object and access its properties, a
Java version of the object must be made available to the cache servers.

See Using Portable Object Format in Developing Applications with Oracle Coherence
for detailed information on using POF with Java. For more information on using POF
with C++ and C#, see Building Integration Objects (C++), and Building Integration
Objects (.NET) , respectively.

1.5 Understanding Extend Client Configuration Files
Extend clients use many of the same cluster-side configuration files except they are
packaged and deployed with the client.

Chapter 1
Extend Client APIs

1-3



Extend client configuration files include:

• Cache Configuration Deployment Descriptor – This file is used to define client-side
cache services and invocation services and must provide the address and port of
the cluster-side extend proxy service to which the client connects. The schema for
this file is the coherence-cache-config.xsd file for Java and C++ clients and the
cache-config.xsd file for .NET clients. See Cache Configuration Elements in
Developing Applications with Oracle Coherence.

At run time, the first cache configuration file that is found on the classpath is used.
The coherence.cacheconfig system property can also be used to explicitly specify a
cache configuration file. The file can also be set programmatically. See Specifying
a Cache Configuration File in Developing Applications with Oracle Coherence.

• POF Configuration Deployment Descriptor – This file is used to specify custom
data types when using POF to serialize objects. The schema for this file is the
coherence-pof-config.xsd file for Java and C++ clients and the pof-config.xsd file
for .NETclients. See POF User Type Configuration Elements in Developing
Applications with Oracle Coherence.

At run time, the first POF configuration file that is found on the classpath is used.
The coherence.pof.config system property can also be used to explicitly specify a
POF configuration file. When using POF, a client application uses a Coherence-
specific POF configuration file and a POF configuration file that is specific to the
user types used in the client. See Specifying a POF Configuration File in
Developing Applications with Oracle Coherence.

• Operational Override File – This file is used to override the operational deployment
descriptor, which is used to specify the operational and run-time settings that are
used to create, configure and maintain clustering, communication, and data
management services. For extend clients, this file is typically used to override
member identity, logging, security, and licensing. The schema for this file is the
coherence-operational-config.xsd file for Java and C++ clients and the
coherence.xsd file for .NET clients. See Operational Configuration Elements in
Developing Applications with Oracle Coherence.

At run time, the first operational override file (tangosol-coherence-override.xml)
that is found on the classpath is used. The coherence.override system property
can also be used to explicitly specify an operational override file. The file can also
be set programmatically. See Using the Default Operational Override File in
Developing Applications with Oracle Coherence.

1.6 Non-Native Client Support
Coherence provides remote access to caches from REST-based or Memcached-
based clients. As with Coherence*Extend clients, non-native clients use the resources
of a cluster without becoming cluster members.
REST and Memcached client APIs are available for many popular programming
languages, allowing Coherence to be used in heterogeneous environments. Non-
native clients can also be used to ease the migration to a Coherence solution that
uses the native Coherence client APIs.

This section includes the following topics:

• REST Client Support

• Memcached Client Support

Chapter 1
Non-Native Client Support

1-4



1.6.1 REST Client Support
Coherence provides a REST implementation that provides access to cache operations
over the HTTP protocol. Any REST client API can use Coherence caching. REST
support is provided either through an embedded HTTP server that is configured as an
extend-like acceptor on a proxy server, or through deployment to any Java EE-based
application server. See Using Coherence REST .

1.6.2 Memcached Client Support
Coherence can be used as a drop-in replacement for memcached servers. Any
memcached client API that supports the memcached binary protocol can use
Coherence distributed caching. Memcached support is provided through a
memcached adaptor that is implemented as an extend-like acceptor that runs on a
proxy server. See Using Memcached Clients with Oracle Coherence in Integrating
Oracle Coherence.

Chapter 1
Non-Native Client Support

1-5



Chapter 1

Non-Native Client Support

1-6



2
Building Your First Extend Application

Build and run a simple Coherence*Extend client that accesses and uses a Coherence
cache. The example client that is used in this chapter is a Java-based extend client;
however, the concepts that are demonstrated are common to both C++ and .NET
extend clients. For complete C++ and .NET examples, see the Coherence Examples
that are distributed as part of the Coherence for Java distribution.
This chapter includes the following sections:

• Overview of the Extend Example

• Step 1: Configure the Cluster Side

• Step 2: Configure the Client Side

• Step 3: Create the Sample Client

• Step 4: Start the Cache Server Process

• Step 5: Run the Application

2.1 Overview of the Extend Example
The Coherence*Extend example is organized into a set of steps that are used to
create, configure, and run a basic Coherence*Extend client. The steps demonstrate
many fundamental Coherence*Extend concepts, such as: configuring an extend proxy,
configuring a remote cache, configuring the remote invocation service, and using the
Coherence API.
Coherence for Java must be installed to complete the steps. For simplicity and ease of
deployment, the client and cache server in this example are run on the same
computer. Typically, extend clients and cache servers are located on separate
systems.

2.2 Step 1: Configure the Cluster Side
The example extend client requires a proxy and cache to be configured in the cluster's
cache configuration deployment descriptor. The extend proxy configured in this
example is automatically assigned a proxy port to listen for client TCP/IP
communication. A distributed cache named dist-extend is defined and is used to store
client data in the cluster.
To configure the cluster side:

1. Create an XML file named example-config.xml.

2. Copy the following XML to the file.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <caching-scheme-mapping>

2-1



      <cache-mapping>
         <cache-name>dist-extend</cache-name>
         <scheme-name>extend</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>

   <caching-schemes>
      <distributed-scheme>
         <scheme-name>extend</scheme-name>
         <lease-granularity>member</lease-granularity>
         <backing-map-scheme>
            <local-scheme/>
         </backing-map-scheme>
         <autostart>true</autostart>
      </distributed-scheme>

      <proxy-scheme>
         <service-name>ExtendTcpCacheService</service-name>
         <autostart>true</autostart>
      </proxy-scheme>
   </caching-schemes>
</cache-config>

3. Save and close the file.

2.3 Step 2: Configure the Client Side
The example client queries a remote cache and also invokes a task which is run on a
remote cluster node. To complete these operations, the example extend client requires
a remote cache scheme and a remote invocation scheme. Invoking tasks is
considered a more advanced use case.
The remote cache scheme includes a service name that matches the service name of
a proxy service on the cluster to which the client connects. In addition, the cache name
that is used in the cluster must also be used as the name of the remote cache
scheme. For this example (based on Step 1), the remote cache scheme service name
is ExtendTcpCacheService and the cache name is dist-extend. Lastly, the remote cache
scheme includes the address and port of the cluster's name service, which is used to
find a proxy. The name service runs on the cluster port which is 7574 by default.

The example extend client invokes a task on the remote cache and therefore requires
a remote invocation scheme. The remote invocation scheme defines the
ExtendTcpInvocationService service, which allows the client to create an Invocable
instance and send it to the cluster for processing. The remote invocation scheme uses
the name service to find a proxy and includes the name of the proxy service to which it
connects.

To configure the client side:

1. Create an XML file named example-client-config.xml.

2. Copy the following XML to the file.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>

Chapter 2
Step 2: Configure the Client Side

2-2



         <cache-name>dist-extend</cache-name>
         <scheme-name>remote</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>
  
   <caching-schemes>
      <remote-cache-scheme>
         <scheme-name>remote</scheme-name>
         <service-name>ExtendTcpCacheService</service-name>
         <initiator-config>
            <tcp-initiator>
               <name-service-addresses>
                  <socket-address>
                     <address>127.0.0.1</address>
                     <port>7574</port>
                  </socket-address>
               </name-service-addresses>
            </tcp-initiator>
            <outgoing-message-handler>
               <request-timeout>5s</request-timeout>
            </outgoing-message-handler>
         </initiator-config>
      </remote-cache-scheme>
 
      <remote-invocation-scheme>
         <scheme-name>extend-invocation</scheme-name>
         <service-name>ExtendTcpInvocationService</service-name>
         <proxy-service-name>ExtendTcpCacheService</proxy-service-name>
         <initiator-config>
            <tcp-initiator>
               <name-service-addresses>
                  <socket-address>
                     <address>127.0.0.1</address>
                     <port>7574</port>
                  </socket-address>
               </name-service-addresses>
            </tcp-initiator>
            <outgoing-message-handler>
               <request-timeout>5s</request-timeout>
            </outgoing-message-handler>
         </initiator-config>
      </remote-invocation-scheme>
   </caching-schemes>
</cache-config>

3. Save and close the file.

2.4 Step 3: Create the Sample Client
The client application for this example is a simple client that increments an Integer
value in a remote cache using the CacheService and then retrieves the value from the

Chapter 2
Step 3: Create the Sample Client

2-3



cache using the InvocationService. The client writes the value to the system output
before exiting.

Note:

• The client class must be on the classpath for all cache servers in the
cluster. The TestClient$1 class is an anonymous inner class that is
generated during compilation. It is serialized and sent to the
InvocationService running on a cluster member. In this example, the client
and cluster member run on a single computer. Therefore, both Java
invocations use the same classpath.

• This example could also be run on a Coherence node (that is, within the
cluster) as is. The fact that operations are being sent to a remote cluster
node over TCP/IP is completely transparent to the client application.

To create the sample application:

1. Create a text file.

2. Copy the following Java code to the file:

import com.tangosol.net.AbstractInvocable;
import com.tangosol.net.CacheFactory;
import com.tangosol.net.InvocationService;
import com.tangosol.net.NamedCache;
import java.util.Map;

public class TestClient {
    public static void main(String[] asArgs)
            throws Throwable
        {
        NamedCache cache  = CacheFactory.getCache("dist-extend");
        Integer IValue = (Integer) cache.get("key");
        if (IValue == null)
            {
            IValue = new Integer(1);
            }
        else
            {
            IValue = new Integer(IValue.intValue() + 1);
            }
        cache.put("key", IValue);
 
        InvocationService service = (InvocationService)
                CacheFactory.getConfigurableCacheFactory()
                    .ensureService("ExtendTcpInvocationService");
 
        Map map = service.query(new AbstractInvocable()
            {
                public void run()
                    {
                    System.out.println("This has been run by 
                       ExtendTcpInvocationService on: " +
                       CacheFactory.getCluster().getLocalMember());
                    setResult(CacheFactory.getCache("dist-extend").get("key"));

Chapter 2
Step 3: Create the Sample Client

2-4



                    }
            }, null);
 
        Integer IValue1 = (Integer) map.get(service.getCluster().
            getLocalMember());
        System.out.print("The value of the key is " + IValue1);
        }
}

3. Save the file as TestClient.java and close the file.

4. Compile TestClient.java:

javac -cp .;COHERENCE_HOME\lib\coherence.jar TestClient.java

Coherence*Extend InvocationService

Since, by definition, a Coherence*Extend client has no direct knowledge of the cluster
and the members running within the cluster, the Coherence*Extend InvocationService
only allows Invocable tasks to be executed on the JVM to which the client is
connected. Therefore, you should always pass a null member set to the query()
method. As a consequence, the single result of the execution is keyed by the local
Member, which is null if the client is not part of the cluster. This Member can be retrieved
by calling service.getCluster().getLocalMember(). Additionally, the Coherence*Extend
InvocationService only supports synchronous task execution (that is, the execute()
method is not supported).

2.5 Step 4: Start the Cache Server Process
Extend Proxies are started as part of a cache server process(DefaultCacheServer). The
cache server must be configured to use the cache configuration that was created in
Step 1. In addition, the cache server process must be able to find the TestClient
application on the classpath at run time.
The following command line starts a cache server process and explicitly names the
cache configuration file created in Step 1 by using the coherence.cacheconfig system
property:

java -cp COHERENCE_HOME\lib\coherence.jar;PATH_TO_CLIENT -Dcoherence.cacheconfig=PATH
\example-config.xml com.tangosol.net.DefaultCacheServer

Check the console output to verify that the proxy service is started. The output
message is similar to the following:

(thread=Proxy:ExtendTcpProxyService:TcpAcceptor, member=1): TcpAcceptor now
 listening for connections on 192.168.1.5:7077

2.6 Step 5: Run the Application
The TestClient application is started using the java command and must be configured
to use the cache configuration file.
The following command line runs the application and assumes that the TestClient
class is located in the current directory. The cache configuration file is explicitly named
using the coherence.cacheconfig system property:

java -cp .;COHERENCE_HOME\lib\coherence.jar -Dcoherence.cacheconfig=PATH\example-
client-config.xml TestClient

Chapter 2
Step 4: Start the Cache Server Process

2-5



The output displays (among other things) that the client successfully connected to the
extend proxy TCP address and the current value of the key in the cache. Run the
client again to increment the key's value.

Note:

Check the cache server process output for the message confirming that the
invocation task was executed remotely using the ExtendTcpInvocationService
service.

This has been run...

Chapter 2
Step 5: Run the Application

2-6



3
Configuring Extend Proxies

Extend proxies must be configured to allow clients to access and use the caches that
are defined in a Coherence cluster. The instructions in this chapter provide basic setup
and do not represent a complete configuration reference.
This chapter includes the following sections:

• Overview of Configuring Extend Proxies

• Defining Extend Proxy Services

• Defining Caches for Use By Extend Clients

• Disabling Storage on a Proxy Server

• Starting a Proxy Server
A proxy server can be started using the DefaultCacheServer class.

3.1 Overview of Configuring Extend Proxies
Extend proxies are Coherence cluster members that host one or more proxy services.
A proxy service is the underlying cluster service that extend clients use to access
caches in a cluster. Proxies and caches must be configured before extend clients can
retrieve and store data in a cluster.
Extend proxies and cache servers run in the same cluster member process
(DefaultCacheServer process). Collocating extend proxies with cache servers simplifies
cluster setup and ensures that proxies automatically scale with the cluster. However,
extend proxies can also be configured as separate members of the cluster. In this
case, the proxies and cache servers are organized as separate tiers that can scale
independently.

Extend proxy services are configured in a cache configuration deployment descriptor.
This deployment descriptor is often referred to as the cluster-side cache configuration
file. It is the same cache configuration file that is used to set up caches on the cluster.
See Specifying a Cache Configuration File in Developing Applications with Oracle
Coherence.

3.2 Defining Extend Proxy Services
The extend proxy service (ProxyService) is a cluster service that allows extend clients
to access a Coherence cluster using TCP/IP. A proxy service proxies two types of
cluster services: the CacheService cluster service, which is used by clients to access
caches; and, the InvocationService cluster service, which is used by clients to execute
Invocable objects on the cluster.
This section includes the following topics:

• Defining a Single Proxy Service Instance

• Defining Multiple Proxy Service Instances

• Defining Multiple Proxy Services

3-1



• Explicitly Configuring Proxy Addresses

• Disabling Cluster Service Proxies

• Specifying Read-Only NamedCache Access

3.2.1 Defining a Single Proxy Service Instance
Extend proxy services are configured within a <caching-schemes> node using the
<proxy-scheme> element. Example 3-1 defines a proxy service named
ExtendTcpProxyService and includes the <autostart> element that is set to true so that
the service automatically starts at a cluster node. See proxy-scheme in Developing
Applications with Oracle Coherence.

As configured in Example 3-1, a proxy address and ephemeral port is automatically
assigned and registered with a cluster name service. Extend clients connect to the
name service, which then redirects the client to the address of the requested proxy.
The use of the name service allows proxies to run on ephemeral addresses, which
simplifies port management and configuration. See Explicitly Configuring Proxy
Addresses .

Example 3-1    Extend Proxy Service Configuration

...
<caching-schemes>
   <proxy-scheme>
      <service-name>ExtendTcpProxyService</service-name>
      <autostart>true</autostart>
   </proxy-scheme>
</caching-schemes>
...

3.2.2 Defining Multiple Proxy Service Instances
Multiple extend proxy service instances can be defined in order to support an expected
number of client connections and to support fault tolerance and load balancing. Client
connections are automatically balanced across proxy service instances. The algorithm
used to balance connections depends on the load balancing strategy that is
configured. See Load Balancing Connections.

To define multiple proxy service instances, include a proxy service definition in multiple
proxy servers and use the same service name for each proxy service. Proxy services
that share the same service name are considered peers.

The following examples define two instances of the ExtendTcpProxyService proxy
service. The proxy service definition is included in each cache server's respective
cache configuration file within the <proxy-scheme> element. The same configuration can
be used on all proxies including proxies that are co-located on the same machine.

On proxy server 1:

...
<caching-schemes>
   <proxy-scheme>
      <service-name>ExtendTcpProxyService</service-name>
      <autostart>true</autostart>
   </proxy-scheme>
</caching-schemes>
...

Chapter 3
Defining Extend Proxy Services

3-2



On proxy server 2:

...
<caching-schemes>
   <proxy-scheme>
      <service-name>ExtendTcpProxyService</service-name>
      <autostart>true</autostart>
   </proxy-scheme>
</caching-schemes>
...

3.2.3 Defining Multiple Proxy Services
Multiple extend proxy services can be defined in order to provide different applications
with their own proxies. Extend clients for a particular application can be directed
toward specific proxies to provide a more predictable environment.

The following example defines two extend proxy services: ExtendTcpProxyService1 and
ExtendTcpProxyService2:

...
<caching-schemes>
   <proxy-scheme>
      <service-name>ExtendTcpProxyService1</service-name>
      <autostart>true</autostart>
   </proxy-scheme>
   <proxy-scheme>
      <service-name>ExtendTcpProxyService2</service-name>
      <autostart>true</autostart>
   </proxy-scheme>
</caching-schemes>
...

3.2.4 Explicitly Configuring Proxy Addresses
Older extend clients that predate the name service or clients that have specific firewall
constraints may require specific proxy addresses. In this case, the proxy can be
explicitly configured to listen on a specific address and port. See Configuring Firewalls
for Extend Clients.

The <tcp-acceptor> subelement includes the address (IP, or DNS name, and port) that
an extend proxy service listens to for TCP/IP client communication. The address can
be explicitly defined using the <address-provider> element, or the address can be
defined within an operational override configuration file and referenced using the
<address-provider> element. The latter approach decouples the address configuration
from the proxy scheme definition and allows the address to change at runtime without
having to change the proxy definition. See Using Address Provider References for
TCP Addresses.

Example 3-2 defines a proxy service named ExtendTcpProxyService and is set up to
listen for client requests on a TCP/IP socket that is bound to 198.168.1.5 and port 7077.

Example 3-2    Explicitly Configured Proxy Service Address

...
<caching-schemes>
   <proxy-scheme>
      <service-name>ExtendTcpProxyService</service-name>
      <acceptor-config>

Chapter 3
Defining Extend Proxy Services

3-3



         <tcp-acceptor>
            <address-provider>
               <local-address>
                  <address>192.168.1.5</address>
                  <port>7077</port>
               </local-address>
            </address-provider>
         </tcp-acceptor>
      </acceptor-config>
      <autostart>true</autostart>
   </proxy-scheme>
</caching-schemes>
...

The specified port should be outside of the computer's ephemeral port range to ensure
that it is not automatically assigned to other applications. If the specified port is not
available, then the default behavior is to select the next available port. To disable
automatic port adjustment, add a <port-auto-adjust> element that includes the value
false. Or, to specify a range of ports from which the port is selected, include a port
value that represents the upper limit of the port range. The following example sets a
port range from 7077 to 8000:

<acceptor-config>
   <tcp-acceptor>
      <local-address>
         <address-provider>
            <address>192.168.1.5</address>
            <port>7077</port>
            <port-auto-adjust>8000</port-auto-adjust>
         </address-provider>
      </local-address>
   </tcp-acceptor>
</acceptor-config>

The <address> element supports using CIDR notation as a subnet and mask (for
example 192.168.1.0/24). CIDR simplifies configuration by allowing a single address
configuration to be shared across computers on the same sub-net. Each cluster
member specifies the same CIDR address block and a local NIC on each computer is
automatically found that matches the address pattern. The /24 prefix size matches up
to 256 available addresses: from 192.168.1.0 to 192.168.1.255. The <address> element
also supports external NAT addresses that route to local addresses; however, both
addresses must use the same port number.

For solutions that do not require a firewall, you can omit the IP and port values which
causes the proxy to use the same IP address and port as TCMP (7574 by default).
The port can also be configured with a listen port of 0, which causes the proxy to listen
on a system assigned ephemeral port. This configuration is the same as omitting the
<acceptor-config> element as shown in Defining a Single Proxy Service Instance. If
the proxy is configured to use ephemeral ports, then clients must use the cluster name
service to locate the proxy.

3.2.5 Disabling Cluster Service Proxies
The cache service and invocation service proxies can be disabled within an extend
proxy service definition. Both of these proxies are enabled by default and can be
explicitly disabled if a client does not require a service.

Chapter 3
Defining Extend Proxy Services

3-4



Cluster service proxies are disabled by setting the <enabled> element to false within
the <cache-service-proxy> and <invocation-service-proxy> respectively.

The following example disables the inovcation service proxy so that extend clients
cannot execute Invocable objects within the cluster:

<proxy-scheme>
   ...
   <proxy-config>
      <invocation-service-proxy>
         <enabled>false</enabled>
      </invocation-service-proxy>
   </proxy-config>
   ...
</proxy-scheme>

Likewise, the following example disables the cache service proxy to restrict extend
clients from accessing caches within the cluster:

<proxy-scheme>
   ...
   <proxy-config>
      <cache-service-proxy>
         <enabled>false</enabled>
      </cache-service-proxy>
   </proxy-config>
   ...
</proxy-scheme>

3.2.6 Specifying Read-Only NamedCache Access
By default, extend clients are allowed to both read and write data to proxied NamedCache
instances. The <read-only> element can be specified within a <cache-service-proxy>
element to prohibit extend clients from modifying cached content on the cluster. For
example:

<proxy-scheme>
   ...
   <proxy-config>
      <cache-service-proxy>
         <read-only>true</read-only>
      </cache-service-proxy>
   </proxy-config>
   ...
</proxy-scheme>

3.3 Defining Caches for Use By Extend Clients
Extend clients read and write data to a cache on the cluster. Any of the cache types
can store client data. For extend clients, the cache on the cluster must have the same
name as the cache that is being used on the client side. See Defining a Remote
Cache. See also Using Caches in Developing Applications with Oracle Coherence.
This section provides basic examples of three cache types that are commonly used be
extend clients.

A Basic Partitioned (distributed) Cache

The following example defines a basic partitioned cache named dist-extend.

Chapter 3
Defining Caches for Use By Extend Clients

3-5



...
<caching-scheme-mapping>
   <cache-mapping>
      <cache-name>dist-extend</cache-name>
      <scheme-name>dist-default</scheme-name>
   </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
   <distributed-scheme>
      <scheme-name>dist-default</scheme-name>
      <backing-map-scheme>
         <local-scheme/>
      </backing-map-scheme>
      <autostart>true</autostart>
   </distributed-scheme>
</caching-schemes>
...

A Basic Near Cache

A typical near cache is configured to use a local cache (thread safe, highly concurrent,
size-limited and possibly auto-expiring) as the front cache and a remote cache as a
back cache. A near ache is configured by using the near-scheme which has two child
elements: a front-scheme for configuring a local (front) cache and a back-scheme for
defining a remote (back) cache.

A Near Cache is configured by using the <near-scheme> element in the coherence-
cache-config file. This element has two required subelements: front-scheme for
configuring a local (front-tier) cache and a back-scheme for defining a remote (back-tier)
cache. While a local cache (<local-scheme>) is a typical choice for the front-tier, you
can also use non-JVM heap based caches, (<external-scheme> or <paged-external-
scheme>) or schemes based on Java objects (<class-scheme>).

The remote or back-tier cache is described by the <back-scheme> element. A back-tier
cache can be either a distributed cache (<distributed-scheme>) or a remote cache
(<remote-cache-scheme>). The <remote-cache-scheme> element enables you to use a
clustered cache from outside the current cluster.

Optional subelements of <near-scheme> include <invalidation-strategy> for specifying
how the front-tier and back-tier objects are kept synchronized and <listener> for
specifying a listener which is notified of events occurring on the cache.

Example 3-3 demonstrates a near cache configuration.

Example 3-3    Near Cache Configuration

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>dist-extend-near</cache-name>
         <scheme-name>extend-near</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>
   <caching-schemes>

Chapter 3
Defining Caches for Use By Extend Clients

3-6



      <near-scheme>
         <scheme-name>extend-near</scheme-name>
         <front-scheme>
            <local-scheme>
               <high-units>1000</high-units>
            </local-scheme>
         </front-scheme>
         <back-scheme>
            <remote-cache-scheme>
               <scheme-ref>extend-dist</scheme-ref>
            </remote-cache-scheme>
         </back-scheme>
         <invalidation-strategy>all</invalidation-strategy>
      </near-scheme>
   </caching-schemes>
</cache-config>

A Basic Local Cache

A local cache is a cache that is local to (completely contained within) a particular
application. There are several attributes of a local cache that are particularly
interesting:

• A local cache implements the same interfaces that the remote caches implement,
meaning that there is no programming difference between using a local and a
remote cache.

• A local cache can be size-limited. Size-limited means that the local cache can
restrict the number of entries that it caches, and automatically evict entries when
the cache becomes full. Furthermore, both the sizing of entries and the eviction
policies can be customized, for example allowing the cache to be size-limited
based on the memory used by the cached entries. The default eviction policy uses
a combination of Most Frequently Used (MFU) and Most Recently Used (MRU)
information, scaled on a logarithmic curve, to determine what cache items to evict.
This algorithm is the best general-purpose eviction algorithm because it works well
for short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are
also supported, and the ability to plug in custom eviction policies.

• A local cache supports automatic expiration of cached entries, meaning that each
cache entry can be assigned a time-to-live value in the cache. Furthermore, the
entire cache can be configured to flush itself on a periodic basis or at a preset
time.

• A local cache is thread safe and highly concurrent.

• A local cache provides cache "get" statistics. It maintains hit and miss statistics.
These run-time statistics accurately project the effectiveness of the cache and are
used to adjust size-limiting and auto-expiring settings accordingly while the cache
is running.

The element for configuring a local cache is <local-scheme>. Local caches are
generally nested within other cache schemes, for instance as the front-tier of a near-
scheme. The <local-scheme> provides several optional subelements that let you define
the characteristics of the cache. For example, the <low-units> and <high-units>
subelements allow you to limit the cache in terms of size. When the cache reaches its
maximum allowable size, it prunes itself back to a specified smaller size, choosing
which entries to evict according to a specified eviction-policy (<eviction-policy>). The
entries and size limitations are measured in terms of units as calculated by the
scheme's unit-calculator (<unit-calculator>).

Chapter 3
Defining Caches for Use By Extend Clients

3-7



You can also limit the cache in terms of time. The <expiry-delay> subelement
specifies the amount of time from last update that entries are kept by the cache before
being marked as expired. Any attempt to read an expired entry results in a reloading of
the entry from the configured cache store (<cachestore-scheme>). Expired values are
periodically discarded from the cache based on the flush-delay.

If a <cache-store-scheme> is not specified, then the cached data only resides in
memory, and only reflect operations performed on the cache itself. See <local-
scheme> for a complete description of all of the available subelements.

Example 3-4 demonstrates a local cache configuration.

Example 3-4    Local Cache Configuration

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
  <caching-scheme-mapping>
    <cache-mapping>
      <cache-name>example-local-cache</cache-name>
      <scheme-name>example-local</scheme-name>
    </cache-mapping>
  </caching-scheme-mapping>
  <caching-schemes>
    <local-scheme>
      <scheme-name>example-local</scheme-name>
      <eviction-policy>LRU</eviction-policy>
      <high-units>32000</high-units>
      <low-units>10</low-units>
      <unit-calculator>FIXED</unit-calculator>
      <expiry-delay>10ms</expiry-delay>
      <cachestore-scheme>
        <class-scheme>
          <class-name>ExampleCacheStore</class-name>
        </class-scheme>
      </cachestore-scheme>
      <pre-load>true</pre-load>
    </local-scheme>
  </caching-schemes>
</cache-config>

3.4 Disabling Storage on a Proxy Server
You must explicitly configure a proxy service to not store any data.

Consider disabling storage on a proxy only if you plan to run proxies and storage
nodes in two separate tiers and scale them independently; although, this is generally
not necessary and requires more careful planning. A best practice is to run proxy
services on cluster members that also store data in the cluster (cache servers)
because scaling cache servers increases both cluster storage capacity as well as
aggregate proxy bandwidth.

Chapter 3
Disabling Storage on a Proxy Server

3-8



Note:

Storage-enabled proxies bypass the front cache of a near cache and operate
directly against the back cache if it is a partitioned cache.

To disable storage on a proxy server, use the coherence.distributed.localstorage
Java property set to false when starting the cluster member. For example:

-Dcoherence.distributed.localstorage=false

Storage can also be disabled in the cache configuration file as part of a distributed
cache definition by setting the <local-storage> element to false. See distributed-
scheme in Developing Applications with Oracle Coherence.

...
<distributed-scheme>
   <scheme-name>dist-default</scheme-name>
   <local-storage>false</local-storage>
   <backing-map-scheme>
      <local-scheme/>
   </backing-map-scheme>
   <autostart>true</autostart>
</distributed-scheme>
...

3.5 Starting a Proxy Server
A proxy server can be started using the DefaultCacheServer class.
To start a proxy server:

1. Change the current directory to the Oracle Coherence library directory
(%COHERENCE_HOME%\lib on Windows and $COHERENCE_HOME/lib on UNIX).

2. Make sure that the paths are configured so that the Java command runs.

3. Run the DefaultCacheServer class and include the location of the cache
configuration file and the operational configuration file. For example:

java -cp path_to_configuration_files;coherence.jar
   com.tangosol.net.DefaultCacheServer

Chapter 3
Starting a Proxy Server

3-9



Chapter 3

Starting a Proxy Server

3-10



4
Configuring Extend Clients

Coherence*Extend clients are configured to connect to a proxy service on the cluster
and access to Coherence caches. The instructions provide basic setup and do not
represent a complete configuration reference. In addition, refer to the platform-specific
parts of this guide for additional configuration instructions.
This chapter includes the following sections:

• Overview of Configuring Extend Clients

• Defining a Remote Cache

• Using a Remote Cache as a Back Cache

• Defining Remote Invocation Schemes

• Connecting to Specific Proxy Addresses

• Detecting Connection Errors

• Disabling TCMP Communication

4.1 Overview of Configuring Extend Clients
Coherence*Extend requires configuration both on the client side and the cluster side.
On the client side, remote cache services and the remote invocation services are
configured and used by clients to access cluster data through the extend proxy
service. On the cluster side, extend proxy services are setup to accept client requests.
Extend clients and extend proxy services communicate using TCP/IP.
Extend clients are configured using a cache configuration deployment descriptor. This
deployment descriptor is deployed with the client and is often referred to as the client-
side cache configuration file. Extend proxy services are configured in a cache
configuration deployment descriptor. This deployment descriptor is often referred to as
the cluster-side cache configuration file. It is the same cache configuration file that is
used to set up caches on the cluster. See Specifying a Cache Configuration File in
Developing Applications with Oracle Coherence.

Extend clients use the remote cache service and the remote invocation service to
interact with a Coherence cluster. Both remote cache services and remote invocation
services are configured in a cache configuration deployment descriptor that must be
found on the classpath when an extend client application starts.

4.2 Defining a Remote Cache
A remote cache is specialized cache service that routes cache operations to a cache
on the Coherence cluster. The remote cache and the cache on the cluster must have
the same cache name. Extend clients use the NamedCache interface as normal to get an
instance of the cache. At run time, the cache operations are not executed locally but
instead are sent using TCP/IP to an extend proxy service on the cluster. The fact that
the cache operations are delegated to a cache on the cluster is transparent to the
extend client.

4-1



A remote cache is defined within a <caching-schemes> node using the <remote-cache-
scheme> element. Example 4-1 creates a remote cache scheme that is named
ExtendTcpCacheService and connects to the name service, which then redirects the
request to the address of the requested proxy service. The use of the name service
simplifies port management and firewall configuration. See remote-cache-scheme in
Developing Applications with Oracle Coherence.

Example 4-1    Remote Cache Definition

...
<caching-scheme-mapping>
   <cache-mapping>
      <cache-name>dist-extend</cache-name>
         <scheme-name>extend-dist</scheme-name>
   </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
   <remote-cache-scheme>
      <scheme-name>extend-dist</scheme-name>
      <service-name>ExtendTcpCacheService</service-name>
      <initiator-config>
         <tcp-initiator>
            <name-service-addresses>
               <socket-address>
                  <address>198.168.1.5</address>
                  <port>7574</port>
               </socket-address>
            </name-service-addresses>
         </tcp-initiator>
         <outgoing-message-handler>
            <request-timeout>5s</request-timeout>
         </outgoing-message-handler>
      </initiator-config>
   </remote-cache-scheme>
</caching-schemes>
...

If the <service-name> value is different than the proxy scheme <service-name> value on
the cluster, use the <proxy-service-name> element to enter the value of the <service-
name> element that is configured in the proxy scheme. For example:

   <remote-cache-scheme>
      <scheme-name>extend-dist</scheme-name>
      <service-name>ExtendTcpCacheService</service-name>
      <proxy-service-name>SomeOtherProxyService</proxy-service-name>
      ...

As configured in Example 4-1, the remote cache scheme uses the <name-service-
addresses> element to define the socket address (IP, or DNS name, and port) of the
name service on the cluster. The <address> element also supports external NAT
addresses that route to local addresses; however, both addresses must use the same
port number. The name service listens on the cluster port (7574) by default and is
available on all machines running cluster nodes. If the target cluster uses the default
cluster port, then the port can be omitted from the configuration. Moreover, extend
clients by default use the cluster discovery addresses to find the cluster and proxy. If
the extend client is on the same network as the cluster, then no specific configuration
is required as long as the client uses a cache configuration file that specifies the same
cluster-side cluster name.

Chapter 4
Defining a Remote Cache

4-2



The <name-services-addresses> element also supports the use of the <address-
provider> element for referencing a socket address that is configured in the
operational override configuration file. See Using Address Provider References for
TCP Addresses and Connecting to Specific Proxy Addresses.

Note:

Clients that are configured to use a name service can only connect to
Coherence versions that also support the name service. In addition, for
previous Coherence releases, the name service automatically listened on a
member's unicast port instead of the cluster port.

4.3 Using a Remote Cache as a Back Cache
Extend clients typically use remote caches as part of a near cache. In such scenarios,
a local cache is used as a front cache and the remote cache is used as the back
cache.
The following example creates a near cache that uses a local cache and a remote
cache.

...
<caching-scheme-mapping>
   <cache-mapping>
      <cache-name>dist-extend-near</cache-name>
      <scheme-name>extend-near</scheme-name>
   </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
   <near-scheme>
      <scheme-name>extend-near</scheme-name>
      <front-scheme>
         <local-scheme>
            <high-units>1000</high-units>
         </local-scheme>
      </front-scheme>
      <back-scheme>
         <remote-cache-scheme>
            <scheme-ref>extend-dist</scheme-ref>
         </remote-cache-scheme>
      </back-scheme>
      <invalidation-strategy>all</invalidation-strategy>
   </near-scheme>

   <remote-cache-scheme>
      <scheme-name>extend-dist</scheme-name>
      <service-name>ExtendTcpCacheService</service-name>
      <initiator-config>
         <tcp-initiator>
            <name-service-addresses>
               <socket-address>
                  <address>198.168.1.5</address>
                  <port>7574</port>
               </socket-address>
            </name-service-addresses>
         </tcp-initiator>

Chapter 4
Using a Remote Cache as a Back Cache

4-3



         <outgoing-message-handler>
            <request-timeout>5s</request-timeout>
         </outgoing-message-handler>
      </initiator-config>
   </remote-cache-scheme>
</caching-schemes>
...

4.4 Defining Remote Invocation Schemes
A remote invocation scheme defines an invocation service that is used by clients to
execute tasks on the remote Coherence cluster. Extend clients use the
InvocationService interface as normal. At run time, a TCP/IP connection is made to an
extend proxy service and an InvocationService implementation is returned that
executes synchronous Invocable tasks within the remote cluster JVM to which the
client is connected.
Remote invocation schemes are defined within a <caching-schemes> node using the
<remote-invocation-scheme> element. Example 4-2 defines a remote invocation scheme
that is called ExtendTcpInvocationService and uses the <name-service-address> element
to configure the address that the name service is listening on. See remote-invocation-
scheme in Developing Applications with Oracle Coherence.

Example 4-2    Remote Invocation Scheme Definition

...
<caching-schemes>
   <remote-invocation-scheme>
      <scheme-name>extend-invocation</scheme-name>
      <service-name>ExtendTcpInvocationService</service-name>
      <initiator-config>
         <tcp-initiator>
            <name-service-addresses>
               <socket-address>
                  <address>198.168.1.5</address>
                  <port>7574</port>
               </socket-address>
            </name-service-addresses>
         </tcp-initiator>
         <outgoing-message-handler>
            <request-timeout>5s</request-timeout>
         </outgoing-message-handler>
      </initiator-config>
   </remote-invocation-scheme>
</caching-schemes>
...

If the <service-name> value is different than the proxy scheme <service-name> value on
the cluster, then use the <proxy-service-name> element to enter the value of the
<service-name> element that is configured in the proxy scheme. For example:

   <remote-cache-scheme>
      <scheme-name>extend-dist</scheme-name>
      <service-name>ExtendTcpInvocationService</service-name>
      <proxy-service-name>SomeOtherProxyService</proxy-service-name>
      ...

Chapter 4
Defining Remote Invocation Schemes

4-4



4.5 Connecting to Specific Proxy Addresses
Clients can connect to specific proxy addresses if the client predates the name service
feature or if the client has specific firewall constraints. See Configuring Firewalls for
Extend Clients.
Example 4-1 uses the <socket-address> element to explicitly configure the address that
an extend proxy service is listening on (198.168.1.5 and port 7077). The <address>
element also supports external NAT addresses that route to local addresses; however,
both addresses must use the same port number. The address can also be defined
within an operational override configuration file and referenced using the <address-
provider> element. The latter approach decouples the address configuration from the
remote cache definition and allows the address to change at runtime without having to
change the remote cache definition. See Using Address Provider References for TCP
Addresses.

Example 4-3    Remote Cache Definition with Explicit Address

...
<caching-scheme-mapping>
   <cache-mapping>
      che-name>dist-extend</cache-name>
         <scheme-name>extend-dist</scheme-name>
   </cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
   <remote-cache-scheme>
      <scheme-name>extend-dist</scheme-name>
      <service-name>ExtendTcpCacheService</service-name>
      <initiator-config>
         <tcp-initiator>
            <remote-addresses>
               <socket-address>
                  <address>198.168.1.5</address>
                  <port>7077</port>
               </socket-address>
            </remote-addresses>
         </tcp-initiator>
         <outgoing-message-handler>
            <request-timeout>5s</request-timeout>
         </outgoing-message-handler>
      </initiator-config>
   </remote-cache-scheme>
</caching-schemes>
...

If multiple proxy service instances are configured, then a remote cache scheme or
invocation scheme can include each proxy service addresses to ensure a client can
always connect to the cluster. The algorithm used to balance connections depends on
the load balancing strategy that is configured. See Load Balancing Connections.

To configure multiple addresses, add additional <socket-address> child elements within
the <tcp-initiator> element of a <remote-cache-scheme> and <remote-invocation-
scheme> node as required. The following example defines two extend proxy addresses
for a remote cache scheme:

...
<caching-schemes>

Chapter 4
Connecting to Specific Proxy Addresses

4-5



   <remote-cache-scheme>
      <scheme-name>extend-dist</scheme-name>
      <service-name>ExtendTcpCacheService</service-name>
      <initiator-config>
         <tcp-initiator>
            <remote-addresses>
               <socket-address>
                  <address>192.168.1.5</address>
                  <port>7077</port>
               </socket-address>
               <socket-address>
                  <address>192.168.1.6</address>
                  <port>7077</port>
               </socket-address>
            </remote-addresses>
         </tcp-initiator>
      </initiator-config>
   </remote-cache-scheme>
</caching-schemes>
...

While either an IP address or DNS name can be used, DNS names have an additional
advantage: any IP addresses that are associated with a DNS name are automatically
resolved at runtime. This allows the list of proxy addresses to be stored in a DNS
server and centrally managed and updated in real time. For example, if the proxy
address list is going to be 192.168.1.1, 192.168.1.2, and 192.168.1.3, then a single
DNS entry for hostname ExtendTcpCacheService can contain those addresses and a
single address named ExtendTcpCacheService can be specified for the proxy address:

<tcp-initiator>
   <remote-addresses>
      <socket-address>
         <address>ExtendTcpCacheService</address>
         <port>7077</port>
      </socket-address>
   </remote-addresses>
</tcp-initiator>

4.6 Detecting Connection Errors
Coherence*Extend can detect and notify clients when connection errors occur. Various
configuration options are available for controlling dropped connections.
When a Coherence*Extend service detects that the connection between the client and
cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is, CacheService or
InvocationService) dispatches a MemberEvent.MEMBER_LEFT event to all registered
MemberListeners and the service is stopped. For cases where the application calls
CacheFactory.shutdown(), the service implementation dispatches a
MemberEvent.MEMBER_LEAVING event followed by a MemberEvent.MEMBER_LEFT event. In both
cases, if the client application attempts to subsequently use the service, the service
automatically restarts itself and attempts to reconnect to the cluster. If the connection
is successful, the service dispatches a MemberEvent.MEMBER_JOINED event; otherwise, a
irrecoverable error exception is thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some mechanisms are inherit to the underlying protocol (such as TCP/IP
in Extend-TCP), whereas others are implemented by the service itself. The latter
mechanisms are configured by using the <outgoing-message-handler> element. See 

Chapter 4
Detecting Connection Errors

4-6



outgoing-message-handler in Developing Applications with Oracle Coherence. In
particular, the <request-timeout> value controls the amount of time to wait for a
response before abandoning the request. The <heartbeat-interval> and <heartbeat-
timeout> values control the amount of time to wait for a response to a ping request
before the connection is closed. As a best practice, the heartbeat timeout should be
less than the heartbeat interval to ensure other members are not unnecessarily pinged
and to not have multiple pings outstanding.

The following example is taken from Example 4-1 and demonstrates setting the
request timeout to 5 seconds.

...
<initiator-config>
   ...
   <outgoing-message-handler>
      <request-timeout>5s</request-timeout>
   </outgoing-message-handler>
</initiator-config>
...

The following example sets the heartbeat interval to 3 seconds and the heartbeat
timeout to 2 seconds.

...
<initiator-config>
   ...
   <outgoing-message-handler>
      <heartbeat-interval>3s</heartbeat-interval>
      <heartbeat-timeout>2s</heartbeat-timeout>
   </outgoing-message-handler>
</initiator-config>
...

4.7 Disabling TCMP Communication
Java-based extend clients that are located within the network must disable TCMP
communication to exclusively connect to clustered services using extend proxies. If
TCMP is not disabled, Java-based extend clients may cluster with each other and may
even join an existing cluster. TCMP is disabled in the client-side tangosol-coherence-
override.xml file.
To disable TCMP communication, set the <enabled> element within the <packet-
publisher> element to false. For example:

...
<cluster-config>
   <packet-publisher>
         <enabled system-property="coherence.tcmp.enabled">false
      </enabled>
   </packet-publisher>
</cluster-config>
...

The coherence.tcmp.enabled system property is used to specify whether TCMP is
enabled instead of using the operational override file. For example:

-Dcoherence.tcmp.enabled=false

Chapter 4
Disabling TCMP Communication

4-7



Chapter 4

Disabling TCMP Communication

4-8



5
Advanced Extend Configuration

There are several advanced configuration options for extend clients and extend
proxies that are typically used to change operational defaults or to address specific
use cases.
This chapter includes the following sections:

• Using Address Provider References for TCP Addresses

• Using a Custom Address Provider for TCP Addresses

• Load Balancing Connections

• Using Network Filters with Extend Clients

5.1 Using Address Provider References for TCP Addresses
Proxy service, remote cache, and remote invocation definitions can use the <address-
provider> element to reference a TCP socket address that is defined in an operational
override configuration file instead of explicitly defining an addresses in a cache
configuration file. Referencing socket address definitions allows network addresses to
change without having to update a cache configuration file.
To use address provider references for TCP addresses:

1. Edit the tangosol-coherence-override.xml file (both on the client side and cluster
side) and add a <socket-address> definition, within an <address-provider> element,
that includes the socket's address and port. Use the <address-provider> elements's
id attribute to define a unique ID for the socket address. See address-provider in
Developing Applications with Oracle Coherence. The following example defines an
address with proxy1 ID:

...
<cluster-config>
   <address-providers>
      <address-provider id="proxy1">
         <socket-address>
            <address>198.168.1.5</address>
            <port>7077</port>
         </socket-address>
      </address-provider>
   </address-providers>
</cluster-config>
...

2. Edit the cluster-side coherence-cache-config.xml and create, or update, a proxy
service definition and reference a socket address definition by providing the
definition's ID as the value of the <address-provider> element within the <tcp-
acceptor> element. The following example defines a proxy service that references
the address that is defined in step 1:

...
<caching-schemes>
   <proxy-scheme>
      <service-name>ExtendTcpProxyService</service-name>

5-1



      <acceptor-config>
         <tcp-acceptor>
            <address-provider>proxy1</address-provider>
         </tcp-acceptor>
      </acceptor-config>
      <autostart>true</autostart>
   </proxy-scheme>
</caching-schemes>
...

3. Edit the client-side coherence-cache-config.xml and create, or update, a remote
cache or remote invocation definition and reference a socket address definition by
providing the definition's ID as the value of the <address-provider> element within
the <tcp-initiator> element. The following example defines a remote cache that
references the address that is defined in step 1:

<remote-cache-scheme>
   <scheme-name>extend-dist</scheme-name>
   <service-name>ExtendTcpCacheService</service-name>
   <initiator-config>
      <tcp-initiator>
         <remote-addresses>
            <address-provider>proxy1</address-provider>
         </remote-addresses>
      </tcp-initiator>
      <outgoing-message-handler>
         <request-timeout>5s</request-timeout>
      </outgoing-message-handler>
   </initiator-config>
</remote-cache-scheme>

5.2 Using a Custom Address Provider for TCP Addresses
Custom address providers dynamically assigns TCP address and port settings when
binding to a server socket. The address provider must be an implementation of the
com.tangosol.net.AddressProvider interface. Dynamically assigning addresses is
typically used to implement custom load balancing algorithms.
Address providers are defined using the <address-provider> element, which can be
used within the <tcp-acceptor> element for extend proxy schemes and within the <tcp-
initiator> element for remote cache and remote invocation schemes.

The following example demonstrates configuring an AddressProvider implementation
called MyAddressProvider for a TCP acceptor when configuring an extend proxy
scheme.

...
<proxy-scheme>
   <service-name>ExtendTcpProxyService</service-name>
   <acceptor-config>
      <tcp-acceptor>
         <address-provider>
            <class-name>com.MyAddressProvider</class-name>
         </address-provider>
      </tcp-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>
...

Chapter 5
Using a Custom Address Provider for TCP Addresses

5-2



The following example demonstrates configuring an AddressProvider implementation
called MyClientAddressProvider for a TCP initiator when configuring a remote cache
scheme.

...
<remote-cache-scheme>
   <scheme-name>extend-dist</scheme-name>
   <service-name>ExtendTcpCacheService</service-name>
   <initiator-config>
      <tcp-initiator>
         <remote-addresses>
            <address-provider>
               <class-name>com.MyClientAddressProvider</class-name>
            </address-provider>
         </remote-addresses>
      </tcp-initiator>
      <outgoing-message-handler>
         <request-timeout>5s</request-timeout>
      </outgoing-message-handler>
   </initiator-config>
</remote-cache-scheme>
...

In addition, the <address-provider> element also supports the use of a <class-factory-
name> element to use a factory class that is responsible for creating AddressProvider
instances and a <method-name> element to specify the static factory method on the
factory class that performs object instantiation.

5.3 Load Balancing Connections
Extend client connections are load balanced across proxy service members. The
default load balancing strategy can be changed as required.
The default proxy-based strategy distributes client connections to proxy service
members that are being utilized the least. Custom proxy-based strategies can be
created or the default strategy can be modified as required. As an alternative, a client-
based load balance strategy can be implemented by creating a client-side address
provider or by relying on randomized client connections to proxy service members.
The random approach provides minimal balancing as compared to proxy-based load
balancing.

Coherence*Extend can be used with F5 BIG-IP Local Traffic Manager (LTM), which
provides hardware-based load balancing. See Integrating with F5 BIG-IP LTM.

This section includes the following topics:

• Using Proxy-Based Load Balancing

• Understanding the Proxy-Based Load Balancing Default Algorithm

• Implementing a Custom Proxy-Based Load Balancing Strategy

• Using Client-Based Load Balancing

5.3.1 Using Proxy-Based Load Balancing
Proxy-based load balancing is the default strategy that is used to balance client
connections between two or more members of the same proxy service. The strategy is

Chapter 5
Load Balancing Connections

5-3



weighted by a proxy's existing connection count, then by its daemon pool utilization,
and lastly by its message backlog.

The proxy-based load balancing strategy is configured within a <proxy-scheme>
definition using a <load-balancer> element that is set to proxy. For clarity, the following
example explicitly specifies the strategy. However, the strategy is used by default if no
strategy is specified and is not required in a proxy scheme definition.

...
<proxy-scheme>
   <service-name>ExtendTcpProxyService</service-name>
   <load-balancer>proxy</load-balancer>
   <autostart>true</autostart>
</proxy-scheme>
...

Note:

If multiple proxy address are explicitly specified, clients are not required to list
the full set of proxy service members in their cache configuration. However, a
minimum of two proxy service members should always be configured for
redundancy sake.

5.3.2 Understanding the Proxy-Based Load Balancing Default
Algorithm

The proxy-based load balancing algorithm distributes client connections equally across
proxy service members. The algorithm redirects clients to proxy service members that
are being utilized the least. The following factors are used to determine a proxy's
utilization:

• Connection Utilization – this utilization is calculated by adding the current
connection count and pending connection count. If a proxy has a configured
connection limit and the current connection count plus pending connection count
equals the connection limit, the utilization is considered to be infinite.

• Daemon Pool Utilization – this utilization equals the current number of active
daemon threads. If all daemon threads are currently active, the utilization is
considered to be infinite.

• Message Backlog Utilization – this utilization is calculated by adding the current
incoming message backlog and the current outgoing message backlog.

Each proxy service maintains a list of all members of the proxy service ordered by
their utilization. The ordering is weighted first by connection utilization, then by
daemon pool utilization, and then by message backlog. The list is resorted whenever a
proxy service member's utilization changes. The proxy service members send each
other their current utilization whenever their connection count changes or every 10
seconds (whichever comes first).

When a new connection attempt is made on a proxy, the proxy iterates the list as
follows:

• If the current proxy has the lowest connection utilization, then the connection is
accepted; otherwise, the proxy redirects the new connection by replying to the

Chapter 5
Load Balancing Connections

5-4



connection attempt with an ordered list of proxy service members that have a
lower connection utilization. The client then attempts to connect to a proxy service
member in the order of the returned list.

• If the connection utilizations of the proxies are equal, the daemon pool utilization of
the proxies takes precedence. If the current proxy has the lowest daemon pool
utilization, then the connection is accepted; otherwise, the proxy redirects the new
connection by replying to the connection attempt with an ordered list of proxy
service members that have a lower daemon pool utilization. The client then
attempts to connect to a proxy service member in the order of the returned list.

• If the daemon pool utilization of the proxies are equal, the message backlog of the
proxies takes precedence. If the current proxy has the lowest message backlog
utilization, then the connection is accepted; otherwise, the proxy redirects the new
connection by replying to the connection attempt with an ordered list of proxy
service members that have a lower message backlog utilization. The client then
attempts to connect to a proxy service member in the order of the returned list.

• If all proxies have the same utilization, then the client remains connected to the
current proxy.

5.3.3 Implementing a Custom Proxy-Based Load Balancing Strategy
The com.tangosol.coherence.net.proxy package includes the APIs that are used to
balance client load across proxy service members.

A custom strategy must implement the ProxyServiceLoadBalancer interface. New
strategies can be created or the default strategy (DefaultProxyServiceLoadBalancer)
can be extended and modified as required. For example, to change which utilization
factor takes precedence on the list of proxy services, extend
DefaultProxyServerLoadBalancer and pass a custom Comparator object in the
constructor that imposes the desired ordering. Lastly, the client's Member object (which
uniquely defines each client) is passed to a strategy. The Member object provides a
means for implementing client-weighted strategies. See Specifying a Cluster Member's
Identity in Developing Applications with Oracle Coherence.

To enable a custom load balancing strategy, include an <instance> subelement within
the <load-balancer> element and provide the fully qualified name of a class that
implements the ProxyServiceLoadBalancer interface. The following example enables a
custom proxy-based load balancing strategy that is implemented in the
MyProxyServiceLoadBalancer class:

...
<load-balancer>
   <instance>
      <class-name>package.MyProxyServiceLoadBalancer</class-name>
   </instance>
</load-balancer>
...

In addition, the <instance> element also supports the use of a <class-factory-name>
element to use a factory class that is responsible for creating ProxyServiceLoadBalancer
instances, and a <method-name> element to specify the static factory method on the
factory class that performs object instantiation. See instance in Developing
Applications with Oracle Coherence.

Chapter 5
Load Balancing Connections

5-5



5.3.4 Using Client-Based Load Balancing
The client-based load balancing strategy relies upon a client address provider
implementation to dictate the distribution of clients across proxy service members. If
no client address provider implementation is provided, the extend client tries each
configured proxy service in a random order until a connection is successful. See Using
a Custom Address Provider for TCP Addresses.

The client-based load balancing strategy is configured within a <proxy-scheme>
definition using a <load-balancer> element that is set to client. For example:

...
<proxy-scheme>
   <service-name>ExtendTcpProxyService1</service-name>
   <load-balancer>client</load-balancer>
   <autostart>true</autostart>
</proxy-scheme>
...

The above configuration sets the client strategy on a single proxy service and must be
repeated for all proxy services that are to use the client strategy. To set the client
strategy as the default strategy for all proxy services if no strategy is specified,
override the load-balancer parameter for the proxy service type in the operational
override file. For example:

...
<cluster-config>
   <services>
      <service id="7">
         <init-params>
            <init-param id="12">
               <param-name>load-balancer</param-name>
               <param-value>client</param-value>
            </init-param>
         </init-params>
      </service>
   </services>
</cluster-config>
...

5.4 Using Network Filters with Extend Clients
Coherence*Extend services support pluggable network filters in the same way as
Coherence clustered services. Filters modify the contents of network traffic before it is
placed on the wire. For more information on configuring filters, see Using Network
Filters in Developing Applications with Oracle Coherence.
To use network filters with Coherence*Extend, a <use-filters> element must be added
to the <initiator-config> element in the client-side cache configuration descriptor and
to the <acceptor-config> element in the cluster-side cache configuration descriptor.

Chapter 5
Using Network Filters with Extend Clients

5-6



Note:

The contents of the <use-filters> element must be the same in the client and
cluster-side cache configuration descriptors.

For example, to compress network traffic exchanged between an extend client and the
clustered service using the predefined gzip filter, configure the client-side <remote-
cache-scheme> and <remote-invocation-scheme> elements as follows:

<remote-cache-scheme>
  <scheme-name>extend-dist</scheme-name>
  <service-name>ExtendTcpCacheService</service-name>
  <initiator-config>
    <tcp-initiator>
      <remote-addresses>
        <socket-address>
          <address>localhost</address>
          <port>7077</port>
        </socket-address>
      </remote-addresses>
    </tcp-initiator>
    <outgoing-message-handler>
      <request-timeout>5s</request-timeout>
    </outgoing-message-handler>
    <use-filters>
      <filter-name>gzip</filter-name>
    </use-filters>    
  </initiator-config>
</remote-cache-scheme>

<remote-invocation-scheme>
  <scheme-name>extend-invocation</scheme-name>
  <service-name>ExtendTcpInvocationService</service-name>
  <initiator-config>
    <tcp-initiator>
      <remote-addresses>
        <socket-address>
          <address>localhost</address>
          <port>7077</port>
        </socket-address>
      </remote-addresses>
    </tcp-initiator>
    <outgoing-message-handler>
      <request-timeout>5s</request-timeout>
    </outgoing-message-handler>
    <use-filters>
      <filter-name>gzip</filter-name>
    </use-filters>    
  </initiator-config>
</remote-invocation-scheme>

For the cluster side, add a <use-filters> element within the <proxy-scheme> element
that specifies a filter with the same name as the client-side configuration:

<proxy-scheme>
  <service-name>ExtendTcpProxyService</service-name>
  <acceptor-config>
    <tcp-acceptor>

Chapter 5
Using Network Filters with Extend Clients

5-7



      <local-address>
        <address>localhost</address>
        <port>7077</port>
      </local-address>
    </tcp-acceptor>
    <use-filters>
      <filter-name>gzip</filter-name>
    </use-filters>
  </acceptor-config>
  <autostart>true</autostart>
</proxy-scheme>

Chapter 5
Using Network Filters with Extend Clients

5-8



6
Best Practices for Coherence*Extend

There are best practices and guidelines to consider when configuring and running
Coherence*Extend.
This chapter includes the following sections:

• Do Not Run a Near Cache on a Proxy Server

• Configure Heap NIO Space to be Equal to the Max Heap Size

• Configure Proxy Service Thread Pooling

• Be Careful When Making InvocationService Calls

• Be Careful When Placing Collection Classes in the Cache

• Configure POF Serializers for Cache Servers

• Configuring Firewalls for Extend Clients

6.1 Do Not Run a Near Cache on a Proxy Server
Running a near cache on a proxy server results in higher heap usage and more
network traffic on the proxy nodes with little to no benefit. By definition, a near cache
provides local cache access to both recently and often-used data. If a proxy server is
configured with a near cache, it locally caches data accessed by its remote clients. It is
unlikely that these clients are consistently accessing the same subset of data, thus
resulting in a low hit ratio on the near cache. For these reasons, it is recommended
that a near cache not be used on a proxy server. To ensure that the proxy server is not
running a near cache, remove all near schemes from the cache configuration being
used for the proxy.

6.2 Configure Heap NIO Space to be Equal to the Max Heap
Size

NIO memory is used for TCP connections into the proxy and for POF serialization and
deserialization. The amount of off-heap NIO space should be equal to the maximum
heap space.
On Oracle JVMs, NIO memory can be set manually if it is not already set:

-XX:MaxDirectMemorySize=MAX_HEAP_SIZE

6.3 Configure Proxy Service Thread Pooling
You can change the thread pool default settings to optimize client performance. Proxy
services use a dynamic thread pool for daemon (worker) threads. The thread pool
automatically adds and removes threads based on the number of client requests, total
backlog of requests, and the total number of idle threads. The thread pool helps
ensure that there are enough threads to meet the demand of extend clients and that
resources are not waisted on idle threads.

6-1



This section includes the following topics:

• Understanding Proxy Service Threading

• Setting Proxy Service Thread Pooling Thresholds

• Setting an Exact Number of Threads

6.3.1 Understanding Proxy Service Threading
Each application has different thread requirements based on the number of clients and
the amount of operations being performed. Performance should be closely monitored
to ensure that there are enough threads to service client requests without saturating
clients with too many threads. In addition, log messages are emitted when the thread
pool is using its maximum amount of threads, which may indicate additional threads
are required.

Client applications are classified into two general categories: active applications and
passive applications. In active applications, the extend clients send many requests
(put, get, and so on) which are handled by the proxy service. The proxy service
requires a large number of threads to sufficiently handle these numerous tasks.

In passive applications, the client waits on events (such as map listeners) based on
some specified criteria. Events are handled by a distributed cache service. This
service uses worker threads to push events to the client. For these tasks, the thread
pool configuration for the distributed cache service should include enough worker
threads. See distributed-scheme in Developing Applications with Oracle Coherence.

Note:

Near caches on extend clients use map listeners when performing invalidation
strategies of ALL, PRESENT, and AUTO. Applications that are write-heavy that use
near caches generate many map events.

6.3.2 Setting Proxy Service Thread Pooling Thresholds
To set thread pooling thresholds for a proxy service, add the <thread-count-max> and
<thread-count-min> elements within the <proxy-scheme> element. See proxy-scheme in
Developing Applications with Oracle Coherence. The following example changes the
default pool settings.

Note:

• The thread pool is enabled by default and does not require configuration.
The default setup allows Coherence to automatically tune the thread count
based on the load at any given point in time. Consider explicitly
configuring the thread pool only if the automatic tuning proves insufficient.

• Setting a minimum and maximum thread count of zero forces the proxy
service thread to handle all requests; no worker threads are used. Using
the proxy service thread to handle client requests is not a best practice.

Chapter 6
Configure Proxy Service Thread Pooling

6-2



<proxy-scheme>
   <service-name>ExtendTcpProxyService</service-name>
   <thread-count-max>75</thread-count-max>
   <thread-count-min>10</thread-count-min>
   <autostart>true</autostart>
</proxy-scheme>

The coherence.proxy.threads.max and coherence.proxy.threads.min system properties
specify the dynamic thread pooling thresholds instead of using the cache configuration
file. For example:

-Dcoherence.proxy.threads.max=75
-Dcoherence.proxy.threads.min=10

6.3.3 Setting an Exact Number of Threads
In most scenarios, dynamic thread pooling is the best way to ensure that a proxy
service always has enough threads to handle requests. In controlled applications
where client usage is known, an explicit number of threads can be specified by setting
the <thread-count-min> and <thread-count-max> element to the same value. The
following example sets 10 threads for use by a proxy service. Additional threads are
not created automatically.

<proxy-scheme>
   <service-name>ExtendTcpProxyService</service-name>
   <thread-count-min>10</thread-count-min>
   <thread-count-max>10</thread-count-max>
   <autostart>true</autostart>
</proxy-scheme>

6.4 Be Careful When Making InvocationService Calls
You cannot choose the particular node on which invocation code runs when sending
the call through a proxy. The InvocationService allows a service member to invoke
arbitrary code on any node in the cluster. On Coherence*Extend however,
InvocationService calls are serviced by the proxy that the client is connected to by
default.

6.5 Be Careful When Placing Collection Classes in the
Cache

Collection objects (such as an ArrayList, HashSet, HashMap, and so on) are deserialized
as immutable arrays when cached by Coherence*Extend clients. A
ClassCastExceptions is returned if the objects are extracted and cast to their original
types.
As an alternative, use a Java interface object (such as a List, Set, Map, and so on) or
encapsulate the collection object in another object. Both of these techniques are
illustrated in the following example:

Example 6-1    Casting an ArrayList Object

public class ExtendExample 
    {
    @SuppressWarnings({ "unchecked" })
    public static void main(String asArgs[])

Chapter 6
Be Careful When Making InvocationService Calls

6-3



        {
        System.setProperty("coherence.cacheconfig", "client-config.xml");
        NamedCache cache = CacheFactory.getCache("test");
        
        // Create a sample collection
        List list  = new ArrayList();
        for (int i = 0; i < 5; i++)
            {
            list.add(String.valueOf(i));
            }
        cache.put("list", list);
        
        List listFromCache = (List) cache.get("list");
        
        System.out.println("Type of list put in cache: " + list.getClass());
        System.out.println("Type of list in cache: " + listFromCache.getClass());

        Map map = new TreeMap();
        for (Iterator i = list.iterator(); i.hasNext();)
            {
            Object o = i.next();
            map.put(o, o);
            }
        cache.put("map", map);
        
        Map mapFromCache = (Map) cache.get("map");
        
        System.out.println("Type of map put in cache: " + map.getClass());
        System.out.println("Type of map in cache: " + mapFromCache.getClass());
        }
    }

6.6 Configure POF Serializers for Cache Servers
Proxy servers are responsible for deserializing POF data into Java objects. If you run
C++ or .NET applications and store data to the cache, then the conversion to Java
objects could be viewed as an unnecessary step.
Coherence provides the option of configuring a POF serializer for cache servers and
has the effect of storing POF format data directly in the cache.

This can have the following impact on your applications:

• .NET or C++ clients that only perform puts or gets do not require a Java version of
the object. Java versions are still required if deserializing on the server side (for
entry processors, cache stores, and so on).

• POF serializers remove the requirement to serialize/deserialze on the proxy, thus
reducing their memory and CPU requirements.

• Key manipulation within the proxy is discouraged. This could interfere with the
Object decoration used by the POF serializer causing the extend client to not
recognize the key.

Example 6-2 illustrates a fragment from a cache configuration file, which configures
the default POF serializer that is defined in the operational deployment descriptor.

Example 6-2    Configuring a POFSerializer for a Distributed Cache

...
<distributed-scheme>

Chapter 6
Configure POF Serializers for Cache Servers

6-4



   <scheme-name>dist-default</scheme-name>
   <serializer>pof</serializer>
   <backing-map-scheme>
      <local-scheme/>
   </backing-map-scheme>
   <autostart>true</autostart>
</distributed-scheme>
...

6.7 Configuring Firewalls for Extend Clients
Firewalls are often used between extend clients and cluster proxies. When using
firewalls, the recommended best practice is to configure the proxy to use a range of
ports and then open that range of ports in the firewall. In addition, the cluster port
(7574 by default) must be opened for TCP if the name service is used. Alternatively, a
fixed (non-ephemeral, non-range) port can be used. In this legacy configuration, only
the specific fixed port needs to be opened in the firewall, and clients need to be
configured to connect directly to the proxy's IP and port.

Chapter 6
Configuring Firewalls for Extend Clients

6-5



Chapter 6

Configuring Firewalls for Extend Clients

6-6



Part II
Creating Java Extend Clients

Coherence for Java allows Java applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses for Java extend clients include desktop and Web applications that require
access to Coherence caches.
The Coherence for Java library connects to a Coherence*Extend clustered service
instance running within the Coherence cluster using a high performance TCP/IP-based
communication layer. This library sends all client requests to the Coherence*Extend
clustered service which, in turn, responds to client requests by delegating to an actual
Coherence clustered service (for example, a partitioned or replicated cache service).

Like cache clients that are members of the cluster, Java extend clients use the
CacheFactory.getCache() API call to retrieve a NamedCache instance. After it is obtained,
a client accesses the NamedCache in the same way as it would if it were part of the
Coherence cluster. The fact that NamedCache operations are being sent to a remote
cluster node (over TCP/IP) is completely transparent to the client application.

Unlike the C++ and .NET distributions, Java does not have a separate client
distribution. The API that is delivered with Coherence for Java is used to create extend
clients. See Performing Data Grid Operations in Developing Applications with Oracle
Coherence. For basic Coherence*Extend setup, see Getting Started.





Part III
Creating C++ Extend Clients

Learn how to use the Coherence*Extend C++ object model and API to create C++
clients that access Coherence caches on the cluster.
Coherence for C++ contains the following chapters:

• Introduction to Coherence C++ Clients

• Configuration and Usage for C++ Clients

• Using the Coherence C++ Object Model

• Using the Coherence for C++ Client API

• Building Integration Objects (C++)

• Querying a Cache (C++)

• Performing Continuous Queries (C++)

• Performing Remote Invocations (C++)

• Using Cache Events (C++)

• Performing Transactions (C++)





7
Introduction to Coherence C++ Clients

Learn about Coherence for C++ and how to set up Coherence C++ application builds.
This chapter includes the following sections:

• Overview of Coherence for C++

• Setting Up C++ Application Builds
Coherence C++ application builds require updating compiler settings, building
header files, library linking, and setting environment variables.

7.1 Overview of Coherence for C++
Coherence for C++ allows C++ applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for C++ include desktop and web applications that require
access to Coherence caches. See Installing the C++ Client Distribution in Installing
Oracle Coherence.
Coherence for C++ consists of a native C++ library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
partitioned or replicated cache service).

A NamedCache instance is retrieved by using the CacheFactory::getCache(...) API call.
After it is obtained, a client accesses the NamedCache in the same way as it would if it
were part of the Coherence cluster. The fact that NamedCache operations are being sent
to a remote cluster node (over TCP/IP) is completely transparent to the client
application.

Note:

The C++ client follows the interface and concepts of the Java client, and users
familiar with Coherence for Java should find migrating to Coherence for C++
straight forward.

7.2 Setting Up C++ Application Builds
Coherence C++ application builds require updating compiler settings, building header
files, library linking, and setting environment variables.
This section includes the following topics:

• Setting up the Compiler for Coherence-Based Applications

• Including Coherence Header Files

• Linking the Coherence Library

7-1



• Setting the run-time Library and Search Path

• Deploying Coherence for C++

7.2.1 Setting up the Compiler for Coherence-Based Applications
When integrating Coherence for C++ into your application's build process, it is
important that certain compiler and linker settings be enabled. Some settings are
optional, but still highly recommended.

*MSVC (Visual Studio)*

Table 7-1    Compiler Settings for MSVC (Visual Studio)

Setting Build Type Required? Description

/EHsc All Yes Enables C++ exception support

/GR All Yes Enables C++ RTTI

/O2 Release No Enables speed optimizations

/MD Release Yes Link against multi-threaded DLLs

/MDd Debug Yes Link against multi-threaded debug DLLs

g++ / SunPro

Table 7-2    Compiler Settings for g++

Setting Build Type Required Description

-O3 Release No Enables speed optimizations

-m32 / -m64 All No Explicitly set compiler to 32 or 64 bit mode

7.2.2 Including Coherence Header Files
Coherence ships with a set of header files that uses the Coherence API and must be
compiled with your application. The header files are available under the installation's
include directory. The include directory must be part of your compiler's include search
path.

7.2.3 Linking the Coherence Library
Coherence for C++ ships with a release version of the Coherence library. This library
is also suitable for linking with debug versions of application code. The library is
located in the installation's lib directory. During linking, this directory must be part of
your linkers library path.

Chapter 7
Setting Up C++ Application Builds

7-2



Table 7-3    Names of Linking Libraries for Release and Debug Versions

Operating System Library

Windows coherence.lib

Solaris libcoherence.so

Linux libcoherence.so

Apple OS X libcoherence.dylib

7.2.4 Setting the run-time Library and Search Path
During execution of a Coherence enabled application the Coherence for C++ shared
library must be available from your application's library search path. This is achieved
by adding the directory which contains the shared library to an operating system
dependent environment variable. The installation includes libraries in its lib
subdirectory.

Table 7-4    Name of the Coherence for C++ Library and Environment Variables

Operating System Environment Variable

Windows PATH

Solaris LD_LIBRARY_PATH

Linux LD_LIBRARY_PATH

Apple (Mac) OS X DYLD_LIBRARY_PATH

For example, to set the PATH environment variable on Windows execute:

c:\coherence\coherence-cpp\examples> set PATH=%PATH%;c:\coherence\coherence-cpp\lib

As with the Java version of Coherence, the C++ version supports a concept of System
Properties to override configuration defaults. System Properties in C++ are set by
using standard operating system environment variables, and use the same names as
their Java counterparts. The coherence.cacheconfig system property specifies the
location of the cache configuration file. You may also set the configuration location
programmatically (CacheFactory::configure()) from application code, the examples
however do not do this.

Table 7-5    Cache Configuration System Property Value for Various Operating
Systems

Operating System System Property

Windows coherence.cacheconfig

Linux CoherenceCacheConfig

Solaris CoherenceCacheConfig

Chapter 7
Setting Up C++ Application Builds

7-3



Table 7-5    (Cont.) Cache Configuration System Property Value for Various
Operating Systems

Operating System System Property

Apple (Mac) OS X CoherenceCacheConfig

Note:

Some operating system shells, such as the UNIX bash shell, do not support
environment variables which include the '.' character. In this case, you may
specify the name in camel case, where the first letter, and every letter
following a '.' is capitalized. That is, "coherence.cacheconfig" becomes
"CoherenceCacheConfig".

For example, to set the configuration location on Windows execute:

c:\coherence\coherence-cpp\examples> set coherence.cacheconfig=config\extend-cache-
config.xml

7.2.5 Deploying Coherence for C++
Coherence for C++ requires no specialized deployment configuration. Simply link your
application with the Coherence library. See the C++ examples included in the
Coherence Examples for sample build scripts and configuration. The examples are
included as part of the Coherence for Java distribution.

Chapter 7
Setting Up C++ Application Builds

7-4



8
Configuration and Usage for C++ Clients

Learn the main steps that are required to use Coherence C++ clients.
This chapter includes the following sections:

• General Instructions

• Implement the C++ Application

• Compile and Link the Application

• Configure Paths

• Obtaining a Cache Reference with C++

• Cleaning up Resources Associated with a Cache

• Configuring and Using the Coherence for C++ Client Library

• Operational Configuration File (tangosol-coherence-override.xml)

• Configuring a Logger

8.1 General Instructions
You can follow a basic set of steps for creating and using Coherence C++ clients.
The general steps include:

1. Implement the C++ Application

2. Compile and Link the Application

3. Configure Paths

4. Defining Extend Proxy Services

5. Defining Caches for Use By Extend Clients

6. Defining a Remote Cache

7. Building Integration Objects (C++)

8. Starting a Proxy Server

9. Launch the client application.

8.2 Implement the C++ Application
Coherence for C++ provides an API that allows C++ applications to access Coherence
clustered services, including data, data events, and data processing from outside the
Coherence cluster.
The Coherence for C++ API consists of:

• a set of C++ public header files

• version of static libraries build by all supported C++ compilers

• several samples

8-1



The library allows C++ applications to connect to a Coherence*Extend clustered
service instance running within the Coherence cluster using a high performance
TCP/IP-based communication layer. The library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a Partitioned or
Replicated cache service).

See Using the Coherence for C++ Client API.

8.3 Compile and Link the Application
Review a sample Windows build file that demonstrates how to compiles a C++
application.
The platforms on which you can compile applications that employ Coherence for C++
are listed in the Supported Platforms and Operating Systems topic.

For example, the following build.cmd file for the Windows 32-bit platform builds,
compiles, and links the files for the Coherence for C++ demo.

@echo off
setlocal

set EXAMPLE=%1%

if "%EXAMPLE%"=="" (
   echo You must supply the name of an example to build.
   goto exit
   )

set OPT=/c /nologo /EHsc /Zi /RTC1 /MD /GR /DWIN32
set LOPT=/NOLOGO /SUBSYSTEM:CONSOLE /INCREMENTAL:NO
set INC=/I%EXAMPLE% /Icommon /I..\include
set SRC=%EXAMPLE%\*.cpp common\*.cpp
set OUT=%EXAMPLE%\%EXAMPLE%.exe
set LIBPATH=..\lib
set LIBS=%LIBPATH%\coherence.lib

echo building %OUT% ...
cl %OPT% %INC% %SRC%
link %LOPT% %LIBS% *.obj /OUT:%OUT%

del *.obj

echo To run this example execute 'run %EXAMPLE%'

:exit

The variables in the file have the following meanings:

• OPT and LOPT point to compiler options

• INC points to the Coherence for C++ API files in the include directory

• SRC points to the C++ header and code files in the common directory

• OUT points to the file that the compiler/linker should generate when it is finished
compiling the code

• LIBPATH points to the library directory

• LIBS points to the Coherence for C++ shared library file

Chapter 8
Compile and Link the Application

8-2



After setting these environment variables, the file compiles the C++ code and header
files, the API files and the OPT files, links the LOPT, the Coherence for C++ shared
library, the generated object files, and the OUT files. It finishes by deleting the object
files.

8.4 Configure Paths
Set up the configuration path to the Coherence for C++ library. This involves setting an
environment variable to point to the library. The name of the environment variable and
the file name of the library are different depending on your platform environment. See 
Introduction to Coherence C++ Clients.

8.5 Obtaining a Cache Reference with C++
You can obtained a reference to a configured cache by name using the
coherence::net::CacheFactory class.
For example:

NamedCache::Handle hCache = CacheFactory::getCache("cache_name");

8.6 Cleaning up Resources Associated with a Cache
NamedCache implementations should be explicitly released by calling the
NamedCache::release() method when they are no longer needed.
If the particular NamedCache is used for the duration of the application, then the
resources are cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its release() method
when finished using it.

8.7 Configuring and Using the Coherence for C++ Client
Library

To use the Coherence for C++ library in your applications, link the library to your
application and provide a cache configuration file. The location of the cache
configuration file can be set by an environment variable or programmatically.
This section includes the following topics:

• Setting the Configuration File Location with an Environment Variable

• Setting the Configuration File Location Programmatically

8.7.1 Setting the Configuration File Location with an Environment
Variable

The coherence.cacheconfig system property specifies the location of the cache
configuration file. See Setting the run-time Library and Search Path .

To set the configuration location on Windows execute:

c:\coherence_cpp\examples> set coherence.cacheconfig=config\extend-cache-config.xml

Chapter 8
Configure Paths

8-3



8.7.2 Setting the Configuration File Location Programmatically
You can set the location programmatically by using either
DefaultConfigurableCacheFactory::create or CacheFactory::configure (using the
CacheFactory::loadXmlFile helper method, if needed).

The create method of the DefaultConfigurableCacheFactory class creates a new
Coherence cache factory. The vsFile parameter specifies the name and location of the
Coherence configuration file to load. For example:

static Handle coherence::net::DefaultConfigurableCacheFactory::create (String::View 
vsFile = String::NULL_STRING)

The configure method configures the CacheFactory and local member. The vXmlCache
parameter specifies an XML element corresponding to a coherence-cache-config.xsd
and vXmlCoherence specifies an XML element corresponding to coherence-operational-
config.xsd. For example:

static void coherence::net::CacheFactory::configure (XmlElement::View vXmlCache, 
XmlElement::View  vXmlCoherence = NULL)

The loadXmlFile method reads an XmlElement from the named file. This method does
not configure the CacheFactory, but obtains a configuration which can be supplied to
the configure method. The parameter vsFile specifies the name of the file to read
from. For example:

static XmlElement::Handle coherence::net::CacheFactory::loadXmlFile (String::View 
vsFile)

The CacheFactory::configure method is used to set the location of the cache
configuration files for the server/cluster (coherence-extend-config.xml) and for the C++
client (tangosol-operation-config.xml). For example:

...
// Configure the cache
CacheFactory::configure(CacheFactory::loadXmlFile(String::create(
   "C:\coherence-extend-config.xml")), CacheFactory::loadXmlFile(String::create(
   "C:\tangosol-operation-config.xml")));
...

8.8 Operational Configuration File (tangosol-coherence-
override.xml)

The operational configuration override file (called tangosol-coherence-override.xml by
default), controls the operational and run-time settings used by Oracle Coherence to
create, configure and maintain its clustering, communication, and data management
services. See Using the Default Operational Override File in Developing Applications
with Oracle Coherence.
For a C++ client, the file specifies or overrides general operations settings for a
Coherence application that are not specifically related to caching. For a C++ client, the
key elements are for logging, the Coherence product edition, and the location and role
assignment of particular cluster members.

The operational configuration can be configured either programmatically or in the
tangosol-coherence-override.xml file. To configure the operational configuration

Chapter 8
Operational Configuration File (tangosol-coherence-override.xml)

8-4



programmatically, specify an XML file that follows the coherence-operational-
config.xsd schema and contains an element in the vXmlCoherence parameter of the
CacheFactory::configure method (coherence::net::CacheFactory::configure (View
vXmlCache, View vXmlCoherence)):

• license-config—The license-config element contains subelements that allow you
to configure the edition and operational mode for Coherence. The edition-name
subelement specifies the product edition (such as Grid Edition, Enterprise Edition,
Real Time Client, and so on) that the member uses. This allows multiple product
editions to be used within the same cluster, with each member specifying the
edition that it uses. Only the RTC (real time client) and DC (data client) values are
recognized for the Coherence for C++ client. The license-config is an optional
subelement of the coherence element, and defaults to RTC.

• logging-config— The logging-config element contains subelements that allow you
to configure how messages are logged for your system. This element enables you
to specify destination of the log messages, the severity level for logged messages,
and the log message format. The logging-config is a required subelement of the
coherence element.

• member-identity—The member-identity element specifies detailed identity
information that is useful for defining the location and role of the cluster member.
You can use this element to specify the name of the cluster, rack, site, computer
name, role, and so on, to which the member belongs. The member-identity is an
optional subelement of the cluster-config element.

The following example illustrates a sample tangosol-coherence.xml file.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-operational-config
   coherence-operational-config.xsd">
   <cluster-config>
      <member-identity>
         <site-name>extend site</site-name>
         <rack-name>rack 1</rack-name>
         <machine-name>computer 1</machine-name>
      </member-identity>
   </cluster-config>
  
   <logging-config>
      <destination>stderr</destination>
      <severity-level>5</severity-level>
      <message-format>(thread={thread}): {text}</message-format>
      <character-limit>8192</character-limit>
   </logging-config>
  
   <license-config>
      <edition-name>RTC</edition-name>
      <license-mode>prod</license-mode>
   </license-config>
</coherence>

8.9 Configuring a Logger
The Coherence logger is configured using the logging-config element in the
operational configuration file. See Operational Configuration File (tangosol-coherence-

Chapter 8
Configuring a Logger

8-5



override.xml) . The element provides the following attributes that can record detailed
information about logged errors.

• destination—determines the type of LogOutput used by the Logger. Valid values
are:

– stderr for Console.Error

– stdout for Console.Out

– file path if messages should be directed to a file

• severity-level—determines the log level that a message must meet or exceed to
be logged.

• message-format—determines the log message format.

• character-limit—determines the maximum number of characters that the logger
daemon processes from the message queue before discarding all remaining
messages in the queue.

The following example illustrates an operational configuration that contains a logging
configuration:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-operational-config
   coherence-operational-config.xsd">
   <logging-config>
      <destination>stderr</destination>
      <severity-level>5</severity-level>
      <message-format>(thread={thread}): {text}</message-format>
      <character-limit>8192</character-limit>
   </logging-config>
</coherence>

Chapter 8
Configuring a Logger

8-6



9
Using the Coherence C++ Object Model

Learn how to use the C++ object model on which Coherence for C++ is built.
This chapter includes the following sections:

• Using the Object Model
Coherence C++ clients use the C++ object model which provides a standard
approach to building Coherence applications.

• Writing New Managed Classes

• Diagnostics and Troubleshooting

• Application Launcher - Sanka

9.1 Using the Object Model
Coherence C++ clients use the C++ object model which provides a standard approach
to building Coherence applications.
This section includes the following topics:

• Coherence Namespaces

• Understanding the Base Object

• Automatically Managed Memory

• Managed Strings

• Type Safe Casting

• Managed Arrays

• Collection Classes

• Managed Exceptions

• Object Immutability

• Integrating Existing Classes into the Object Model

9.1.1 Coherence Namespaces
This coherence namespace contains the following general purpose namespaces:

• coherence::lang—the essential classes that comprise the object model

• coherence::util—utility code, including collections

• coherence::net—network and cache

• coherence::stl—C++ Standard Template Library integration

• coherence::io—serialization

Although each class is defined within its own header file, you can use namespace-
wide header files to facilitate the inclusion of related classes. As a best practice
include, at a minimum, coherence/lang.ns in code that uses this object model.

9-1



9.1.2 Understanding the Base Object
The coherence::lang::Object class is the root of the class hierarchy. This class
provides the common interface for abstractly working with Coherence class instances.
Object is an instantiable class that provides default implementations for the following
functions.

• equals

• hashCode

• clone (optional)

• toStream (that is, writing an Object to an std::ostream)

See coherence::lang::Object in the C++ API for more information.

9.1.3 Automatically Managed Memory
In addition to its public interface, the Object class provides several features used
internally. Of these features, the reference counter is perhaps the most important. It
provides automatic memory management for the object. This automatic management
eliminates many of the problems associated with object reference validity and object
deletion responsibility. This management reduces the potential of programming errors
which may lead to memory leaks or corruption. This results in a stable platform for
building complex systems.

The reference count, and other object "life-cycle" information, operates in an efficient
and thread-safe manner by using lock-free atomic compare-and-set operations. This
allows objects to be safely shared between threads without the risk of corrupting the
count or of the object being unexpectedly deleted due to the action of another thread.

This section includes the following topics:

• Referencing Managed Objects

• Using handles

• Managed Object Instantiation

9.1.3.1 Referencing Managed Objects
To track the number of references to a specific object, there must be a level of
cooperation between pointer assignments and a memory manager (in this case the
object). Essentially the memory manager must be informed each time a pointer is set
to reference a managed object. Using regular C++ pointers, the task of informing the
memory manager would be left up to the programmer as part of each pointer
assignment. In addition to being quite burdensome, the effects of forgetting to inform
the memory manager would lead to memory leaks or corruption. For this reason the
task of informing the memory manager is removed from the application developer, and
placed on the object model, though the use of smart pointers. Smart pointers offer a
syntax similar to normal C++ pointers, but they do the bookkeeping automatically.

The Coherence C++ object model contains a variety of smart pointer types, the most
prominent being:

• View—A smart pointer that can call only const methods on the referenced object

Chapter 9
Using the Object Model

9-2



• Handle—A smart pointer that can call both const and non-const methods on the
referenced object.

• Holder—A special type of handle that enables you to reference an object as either
const or non-const. The holder remembers how the object was initially assigned,
and returns only a compatible form.

Other specialized smart pointers are described later in this section, but the View,
Handle, and Holder smart pointers are used most commonly.

Note:

In this documentation, the term handle (with a lowercase "h") refers to the
various object model smart pointers. The term Handle (with an uppercase "H")
refers to the specific Handle smart pointer.

9.1.3.2 Using handles
By convention each managed class has these nested-types corresponding to these
handles. For instance the managed coherence::lang::String class defines
String::Handle, String::View, String::Holder.

This section includes the following topics:

Assignment of handles

Assignment of handles follows normal inheritance assignment rules. That is, a Handle
may be assigned to a View, but a View may not be assigned to a Handle, just like a
const pointer cannot be assigned to a non-const pointer.

Dereferencing handles

When dereferencing a handle that references NULL, the system throws a
coherence::lang::NullPointerException instead of triggering a traditional segmentation
fault.

For example, this code would throw a NullPointerException if hs == NULL:

String::Handle hs = getStringFromElsewhere();
cout << "length is " << hs->length() << end1;

9.1.3.3 Managed Object Instantiation
All managed objects are heap allocated. The reference count—not the stack—
determines when an object can be deleted. To prevent against accidental stack-based
allocations, all constructors are marked protected, and public factory methods are
used to instantiate objects.

The factory method is named create and there is one create method for each
constructor. The create method returns a Handle rather than a raw pointer. For
example, the following code creates a new instance of a string:

String::Handle hs = String::create("hello world");

By comparison, these examples are incorrect and do not compile:

Chapter 9
Using the Object Model

9-3



String str("hello world");
String* ps = new String("hello world");

9.1.4 Managed Strings
All objects within the model, including strings, are managed and extend from Object.
Instead of using char* or std::string, the object model uses its own managed
coherence::lang::String class. The String class supports ASCII and the full Unicode
BML character set.

This section includes the following topics:

• String Instantiation

• Auto-Boxed Strings

9.1.4.1 String Instantiation
String objects can easily be constructed from char* or std::string strings. For
example:

const char*    pcstr = "hello world";
std:string     stdstr(pcstr);
String::Handle hs   = String::create(pcstr);
String::Handle hs2  = String::create(stdstr);

The managed string is a copy of the supplied string and contains no references or
pointers to the original. You can convert back, from a managed String to any other
string type, by using getCString() method. This returns a pointer to the original const
char*. Strings can also be created using the standard C++ << operator, when coupled
with the COH_TO_STRING macro.

String::Handle hs = COH_TO_STRING("hello " << getName() << " it is currently " << 
getTime());

9.1.4.2 Auto-Boxed Strings
To facilitate the use of quoted string literals, the String::Handle and String::View
support auto-boxing from const char*, and const std::string. Auto-boxing allows the
code shown in the prior samples to be rewritten:

String::Handle hs  = "hello world";
String::Handle hs2 = stdstr;

Auto-boxing is also available for other types. See coherence::lang::BoxHandle for
details.

9.1.5 Type Safe Casting
Handles are type safe, in the following example, the compiler does not allow you to
assign an Object::Handle to a String::Handle, because not all Objects are Strings.

Object::Handle ho = getObjectFromSomewhere();
String::Handel hs = ho; // does not compile

However, the following example does compile, as all Strings are Objects.

Chapter 9
Using the Object Model

9-4



String::Handle hs = String::create("hello world");
Object::Handle ho = hs; // does compile

This section includes the following topics:

• Down Casting

9.1.5.1 Down Casting
For situations in which you want to down-cast to a derived Object type, you must
perform a dynamic cast using the C++ RTTI (run-time type information) check and
ensure that the cast is valid. The Object model provides helper functions to ease the
syntax.

• cast<H>(o)—attempt to transform the supplied handle o to type H, throwing an
ClassCastException on failure

• instanceof<H>(o)—test if a cast of o to H is allowable, returning true for success, or
false for failure

These functions are similar to the standard C++ dynamic_cast<T>, but do not require
access to the raw pointer.

The following example shows how to down cast a Object::Handle to a String::Handle:

Object::Handle ho = getObjectFromSomewhere();
String::Handle hs = cast<String::Handle>(ho);

The cast<H> function throws a coherence::lang::ClassCastException if the supplied
object was not of the expected type. The instanceof<H> function tests if an Object is of
a particular type without risking an exception being thrown. Such checks or generally
only needed for places where the actual type is in doubt. For example:

Object::Handle ho = getObjectFromSomewhere();

if (instanceof<String::Handle>(ho))
  {
  String::Handle hs = cast<String::Handle>(ho);
  }
else if (instanceof<Integer32::Handle>(ho))
  {
  Integer32::Handle hn = cast<Integer32::Handle>(ho);
  }
else
  {
  ...
  }

9.1.6 Managed Arrays
Managed arrays are provided by using the coherence::lang::Array<T> template class.
In addition to being managed and adding safe and automatic memory management,
this class includes the overall length of the array, and bounds checked indexing.

You can index an array by using its Handle's subscript operator, as shown in this
example:

Array<int32_t>::Handle harr = Array<int32_t>::create(10);

int32_t nTotal = 0;

Chapter 9
Using the Object Model

9-5



for (size32_t i = 0, c = harr->length; i < c; ++i)
    {
    nTotal += harr[i];
    }

The object model supports arrays of C++ primitives and managed Objects. Arrays of
derived Object types are not supported, only arrays of Object, casting must be
employed to retrieve the derived handle type. Arrays of Objects are technically
Array<MemberHolder<Object> >, and defined to ObjectArray for easier readability.

9.1.7 Collection Classes
The coherence::util* namespace includes several collection classes and interfaces
that may be useful in your application. These include:

• coherence::util::Collection —interface

• coherence::util::List—interface

• coherence::util::Set—interface

• coherence::util::Queue—interface

• coherence::util::Map—interface

• coherence::util::Arrays—implementation

• coherence::util::LinkedList—implementation

• coherence::util::HashSet—implementation

• coherence::util::DualQueue—implementation

• coherence::util::HashMap—implementation

• coherence::util::SafeHashMap—implementation

• coherence::util::WeakHashMap—implementation

• coherence::util::IdentityHashMap—implementation

These classes also appear as part of the Coherence Extend API.

Similar to ObjectArray, Collections contain Object::Holders, allowing them to store any
managed object instance type. For example:

Map::Handle  hMap = HashMap::create();
String::View vKey = "hello world";

hMap->put(vKey, Integer32::create(123));

Integer32::Handle hValue = cast<Integer32::Handle>(hMap->get(vKey));

9.1.8 Managed Exceptions
In the object model, exceptions are also managed objects. Managed Exceptions allow
caught exceptions to be held as a local variable or data member without the risk of
object slicing.

All Coherence exceptions are defined by using a throwable_spec and derive from the
coherence::lang::Exception class, which derives from Object. Managed exceptions are
not explicitly thrown by using the standard C++ throw statement, but rather by using a
COH_THROW macro. This macro sets stack information and then calls the exception's

Chapter 9
Using the Object Model

9-6



raise method, which ultimately calls throw. The resulting thrown object may be caught
an the corresponding exceptions View type, or an inherited View type. Additionally
these managed exceptions may be caught as standard const std::exception classes.
The following example shows a try/catch block with managed exceptions:

try
    {
    Object::Handle h = NULL;
    h->hashCode(); // trigger an exception
    }
catch (NullPointerException::View e)
    {
    cerr << "caught" << e <<endl;
    COH_THROW(e); // rethrow
    }

Note:

This exception could also have been caught as Exception::View or const
std::exception&.

9.1.9 Object Immutability
In C++ the information of how an object was declared (such as const) is not available
from a pointer or reference to an object. For instance a pointer of type const Foo*, only
indicates that the user of that pointer cannot change the objects state. It does not
indicate if the referenced object was actually declared const, and is guaranteed not to
change. The object model adds a run-time immutability feature to allow the
identification of objects which can no longer change state.

The Object class maintains two reference counters: one for Handles and one for
Views. If an object is referenced only from Views, then it is by definition immutable, as
Views cannot change the state, and Handles cannot be obtained from Views. The
isImmutable() method (included in the Object class) can test for this condition. The
method is virtual, allowing subclasses to alter the definition of immutable. For example,
String contains no non-const methods, and therefore has an isImmutable() method
that always returns true.

Note that when immutable, an object cannot revert to being mutable. You cannot cast
away const-ness to turn a View into a Handle as this would violate the proved
immutability.

Immutability is important with caching. The Coherence NearCache and
ContinuouQueryCache can take advantage of the immutability to determine if a direct
reference of an object can be stored in the cache or if a copy must be created.
Additionally, knowing that an object cannot change allows safe multi-threaded
interaction without synchronization.

9.1.10 Integrating Existing Classes into the Object Model
Frequently, existing classes must be integrated into the object model. A typical
example would be to store a data-object into a Coherence cache, which only supports
storage of managed objects. As it would not be reasonable to require that pre-existing
classes be modified to extend from coherence::lang::Object, the object model provides

Chapter 9
Using the Object Model

9-7



an adapter which automatically converts a non-managed plain old C++ class instance
into a managed class instance at run time.

This is accomplished by using the coherence::lang::Managed<T> template class. This
template class extends from Object and from the supplied template parameter type T,
effectively producing a new class which is both an Object and a T. The new class can
be initialized from a T, and converted back to a T. The result is an easy to use, yet very
powerful bridge between managed and non-managed code.

See the API doc for coherence::lang::Managed for details and examples.

9.2 Writing New Managed Classes
You can write new managed classes, which are classes that extend
the Object class.

The creation of new managed classes is required when you are creating new
EventListeners, EntryProcessors, or Filter types. They are not required when you are
working with existing C++ data objects or making use of the Coherence C++ API. See
the previous section for details on integration non-managed classes into the object
model.

Note:

For Microsoft Visual Studio 2017, Coherence managed classes cannot be
declared in an anonymous namespace. There are two helper macros for using
pseudo anonymous namespaces: COH_OPEN_NAMESPACE_ANON(NAME) and
COH_CLOSE_NAMESPACE_ANON. Further details on the macros are provided in
compatibility.hpp.

This section includes the following topics:

• Specification-Based Managed Class Definition

• Equality, Hashing, Cloning, Immutability, and Serialization

• Threading

• Weak References

• Virtual Constructors

• Advanced Handle Types

• Thread Safety

9.2.1 Specification-Based Managed Class Definition
Specification-based definitions (specs) enable you to quickly define managed classes
in C++.

Specification-based definitions are helpful when you are writing your own
implementation of managed objects.

There are various forms of specs used to create different class types:

• class_spec—standard instantiatable class definitions

Chapter 9
Writing New Managed Classes

9-8



• cloneable_spec—cloneable class definitions

• abstract_spec—non-instantiatable class definitions, with zero or more pure virtual
methods

• interface_spec—for defining interfaces (pure virtual, multiply inheritable classes)

• throwable_spec—managed classes capable of being thrown as exceptions

Specs automatically define these features on the class being spec'd:

• Handles, Views, Holders

• static create() methods which delegate to protected constructors

• virtual clone() method delegating to the copy constructor

• virtual sizeOf() method based on ::sizeof()

• super typedef for referencing the class from which the defined class derives

• inheritance from coherence::lang::Object, when no parent class is specified by
using extends<>

To define a class using specs, the class publicly inherits from the specs above. Each
of these specs are parametrized templates. The parameters are as follows:

• The name of the class being defined.

• The class to publicly inherit from, specified by using an extends<> statement,
defaults to extends<Object>

– This element is not supplied in interface_spec

– Except for extends<Object>, the parent class is not derived from virtually

• A list of interfaces implemented by the class, specified by using an implements<>
statement

– All interfaces are derived from using public virtual inheritance

Note that the extends<> parameter is note used in defining interfaces.

The following example illustrates using interface_spec to define a Comparable interface:

class Comparable
    : public interface_spec<Comparable>
    {
    public:
        virtual int32_t compareTo(Object::View v) const = 0;
    };

The following example illustrates using interface_spec to define a derived interface
Number:

class Number
    : public interface_spec<Number,
        implements<Comparable> >
    {
    public:
        virtual int32_t getValue() const = 0;
    };

The following example uses cloneable_spec to produce an implementation.

Chapter 9
Writing New Managed Classes

9-9



Note:

To support the auto-generated create methods, instantiatable classes must
declare the coherence::lang::factory<> template as a friend. By convention
this is the first statement within the class body.

class Integer
    : public cloneable_spec<Integer,
        extends<Object>,
        implements<Number> >
    {
    friend class factory<Integer>;

    protected:
        Integer(int32_t n)
            : super(), m_n(n)
            {
            }

        Integer(const Integer& that)
            : super(that), m_n(that.m_n)
            {
            }

    public:
        virtual int32_t getValue() const
            {
            return m_n;
            }

        virtual int32_t compareTo(Object::View v) const
            {
            return getValue() - cast<Integer::View>(v)->getValue();
            }

        virtual void toStream(std::ostream& out) const
            {
            out << getValue();
            }

    private:
        int32_t m_n;
    };

The class definition can also be defined without the use of specs. For example:

class Integer
    : public virtual Object, public virtual Number
    {
    public:
        typedef TypedHandle<const Integer> View;   // was auto-generated
        typedef TypedHandle<Integer>       Handle; // was auto-generated
        typedef TypedHolder<Integer>       Holder; // was auto-generated
        typedef super                      Object; // was auto-generated

        // was auto-generated
        static Integer::Handle create(const int32_t& n)
            {

Chapter 9
Writing New Managed Classes

9-10



            return new Integer(n);
            }

    protected:
        Integer(int32_t n)
            : super(), m_n(n)
            {
            }

        Integer(const Integer& that)
            : super(that), m_n(that.n)
            {
            }

    public:
        virtual int32_t getValue() const
            {
            return m_n;
            }

        virtual int32_t compareTo(Object::View v) const
            {
            return getValue() - cast<Integer::View>(v)->getValue();
            }

        virtual void toStream(std::ostream& out) const
            {
            out << getValue();
            }

        // was auto-generated
        virtual Object::Handle clone() const
            {
            return new Integer(*this);
            }

        // was auto-generated
        virtual size32_t sizeOf() const
            {
            return ::sizeof(Integer);
            }

    private:
        int32_t m_n;
    };

The following example illustrates using the spec'd class:

Integer::Handle hNum1 = Integer::create(123);
Integer::Handle hNum2 = Integer::create(456);

if (hNum1->compareTo(hNum2) > 0)
    {
    std::cout << hNum1 << " is greater then " << hNum2 << std::endl;
    }

9.2.2 Equality, Hashing, Cloning, Immutability, and Serialization
Equality, Hashing, Cloning, Immutability, and Serialization all identify the state of an
object and generally have similar implementation concerns. Simply put, all data

Chapter 9
Writing New Managed Classes

9-11



members referenced in one of these methods, are likely referenced in all of the
methods. Conversely any data members which are not referenced by one, should
likely not be referenced by any of these methods.

Consider the simple case of a HashSet::Entry, which contains the well known key and
value data members. These are to be considered in the equals method and would
likely be tested for equality by using a call to their own equals method rather than
through reference equality. If Entry also contains, as part of the implementation of the
HashSet, a handle to the next Entry within the HashSet's bucket and perhaps also
contains a handle back to the HashSet itself, should these be considered in equals as
well? Likely not, it would seem reasonable that comparing two entries consisting of
equal keys and values from two maps should be considered equal. Following this line
of thought the hashCode method on Entry would completely ignore data members
except for key and value, and hashCode would be computed using the results of its key
and value hashCode, rather then using their identity hashCode. that is, a deep equality
check in equals implies a deep hash in hashCode.

For clone, only the key and value (not all the data members) require cloning. To clone
the parent Map as part of clone, the Entry would make no sense and a similar argument
can be made for cloning the handle to the next Entry. This line of thinking can be
extended to the isImmutable method, and to serialization as well. While it is certainly
not a hard and fast rule, it is worth considering this approach when implementing any
of these methods.

9.2.3 Threading
The object model includes managed threads, which allows for easy creation of
platform independent, multi-threaded, applications. The threading abstraction includes
support for creating, interrupting, and joining threads. Thread local storage is available
from the coherence::lang::ThreadLocalreference class. Thread dumps are also
available for diagnostic and troubleshooting purposes. The managed threads are
ultimately wrappers around the system's native thread type, such as POSIX or
Windows Threads. This threading abstraction is used internally by Coherence, but is
available for the application, if necessary.

The following example illustrates how to create a Runnable instance and spawn a
thread:

class HelloRunner
      : public class_spec<HelloRunner,
          extends<Object>,
          implements<Runnable> >
     {
     friend class factory<HelloRunner>;

     protected:
          HelloRunner(int cReps)
              : super(), m_cReps(cReps)
              {
              }

     public:
          virtual void run()
              {
              for (int i = 0; i < m_Reps; ++i)
                  {
                  Thread::sleep(1000);
                  std::cout << "hello world" << std::endl;

Chapter 9
Writing New Managed Classes

9-12



                  }
              }

      protected:
          int m_cReps;
      };

...

Thread::Handle hThread = Thread::create(HelloRunner::create(10));
hThread->start();
hThread->join();

Refer to coherence::lang::Thread and coherence::lang::Runnable for more information.

9.2.4 Weak References
The primary functional limitation of a reference counting scheme is automatic cleanup
of cyclical object graphs. Consider the simple bi-directional relationship illustrated in 
Figure 9-1.

Figure 9-1    A Bi-Directional Relationship

In this picture, both A and B have a reference count of one, which keeps them active.
What they do not realize is that they are the only things keeping each other active, and
that no external references to them exist. Reference counting alone is unable to
handle these self sustaining graphs and memory would be leaked.

The provided mechanism for dealing with graphs is weak references. A weak
reference is one which references an object, but not prevent it from being deleted. As
illustrated in Figure 9-2, the A->B->A issue could be resolved by changing it to the
following.

Figure 9-2    Establishing a Weak Reference

Where A now has a weak reference to B. If B were to reach a point where it was only
referenced weakly, it would clear all weak references to itself and then be deleted. In
this simple example that would also trigger the deletion of A, as B had held the only
reference to A.

Weak references allow for construction of more complicated structures then this. But it
becomes necessary to adopt a convention for which references are weak and which
are strong. Consider a tree illustrated in Figure 9-3. The tree consists of nodes A, B, C;
and two external references to the tree X, and Y.

Chapter 9
Writing New Managed Classes

9-13



Figure 9-3    Weak and Strong References to a Tree

In this tree parent (A) use strong references to children (B, C), and children use weak
references to their parent. With the picture as it is, reference Y could navigate the
entire tree, starting at child B, and moving up to A, and then down to C. But what if
reference X were to be reset to NULL? This would leave A only being weakly
referenced and it would clear all weak references to itself, and be deleted. In deleting
itself there would no longer be any references to C, which would also be deleted. At
this point reference Y, without having taken any action would now refer to the situation
illustrated in Figure 9-4.

Figure 9-4    Artifacts after Deleting the Weak References

This is not necessarily a problem, just a possibility which must be considered when
using weak references. To work around this issue, the holder of Y would also likely
maintain a reference to A to ensure the tree did not dissolve away unexpectedly.

See the Javadoc for coherence::lang::WeakReference, WeakHandle, and WeakView for
usage details.

9.2.5 Virtual Constructors
As is typical in C++, referencing an object under construction can be dangerous.
Specifically references to this are to be avoided within a constructor, as the object
initialization has not yet completed. For managed objects, creating a handle to this
from the constructor usually causes the object to be destructed before it ever finishes
being created. Instead, the object model includes support for virtual constructors. The
virtual constructor onInit is defined by Object and can be overridden on derived
classes. This method is called automatically by the object model just after construction
completes, and just before the new object is returned from its static create method.
Within the onInit method, it is safe to reference this to call virtual functions and to
hand out references to the new object to other class instances. Any derived
implementation of onInit must include a call to super::onInit() to allow the parent
class to also initialize itself.

9.2.6 Advanced Handle Types
In addition to the Handle and View smart pointers (discussed previously), the object
model contains several other specialized variants that can be used. For the most part

Chapter 9
Writing New Managed Classes

9-14



use of these specialized smart pointers is limited to writing new managed classes, and
they do not appear in normal application code.

Table 9-1    Advanced Handle Types Supported by Coherence for C++

Type Thread-safe? View Notes

coherence:lang:TypedHandle<T> No Conditional on T The implementation of Handle
and View

coherence:lang:BoxHandle<T> No Conditional on T Allows automatic creating of
managed objects from primitive
types.

coherence:lang:TypedHolder<T> No May May act as a Handle or a View.
Basic types stored in collections

coherence:lang:Immutable<T> No Yes Ensures const-ness of referring
object.

coherence:lang:WeakHandle<T> Yes No Does not prevent destruction of
referring object.

coherence:lang:WeakView<T> Yes Yes Does not prevent destruction of
referring object.

coherence:lang:WeakHolder<T> Yes Yes Does not prevent destruction of
referring object.

coherence:lang:MemberHandle<T> Yes No Transfers const-ness of
enclosing object.

coherence:lang:MemberView<T> Yes Yes Thread-safe View.

coherence:lang:MemberHolder<T> Yes May May act a thread-safe Handle or
View.

coherence:lang:FinalHandle<T> Yes No Thread-safe const transferring
read-only Handle.

coherence:lang:FinalView<T> Yes Yes Thread-safe read-only View.

coherence:lang:FinalHolder<T> Yes May May act a thread-safe read-only
Handle or View.

9.2.7 Thread Safety
Although the base Object class is thread-safe, this cannot provide automatic thread
safety for the state of derived classes. As is typical it is up to each individual derived
class implementation to provide for higher level thread-safety. The object model
provides some facilities to aid in writing thread-safe code.

This section includes the following topics:

• Synchronization and Notification

• Thread Safe Handles

• Escape Analysis

Chapter 9
Writing New Managed Classes

9-15



• Thread-Local Allocator

9.2.7.1 Synchronization and Notification
Every Object in the object model can be a point of synchronization and notification. To
synchronize an object and acquire its internal monitor, use a COH_SYNCHRONIZED macro
code block. For example:

SomeClass::Handle h = getObjectFromSomewhere();

COH_SYNCHRONIZED (h)
    {
    // monitor of Object referenced by h has been acquired

    if (h->checkSomeState())
        {
        h->actOnThatState();
        }
    } // monitor is automatically released

The COH_SYNCHRONIZED block performs the monitor acquisition and release. You can
safely exit the block with return, throw, COH_THROW, break, continue, and goto
statements.

The Object class includes wait(), wait(timed), notify(), and notifyAll() methods for
notification purposes. To call these methods, the caller must have acquired the
Objects's monitor. Refer to coherence::lang::Object for details.

Read-write locks are also provided, see coherence::util::ThreadGate for details.

9.2.7.2 Thread Safe Handles
The Handle, View, and Holder nested types defined on managed classes are
intentionally not thread-safe. That is it is not safe to have multiple threads share a
single handle. There is an important distinction here: thread-safety of the handle is
being discussed not the object referenced by the handle. It is safe to have multiple
distinct handles that reference the same object from different threads without
additional synchronization.

This lack of thread-safety for these handle types offers a significant performance
optimization as the vast majority of handles are stack allocated. So long as references
to these stack allocated handles are not shared across threads, there is no thread-
safety issue to be concerned with.

Thread-safe handles are needed any time a single handle may be referenced by
multiple threads. Typical cases include:

• Global handles - using the standard handle types as global or static variable is not
safe.

• Non-managed multi-threaded application code - Use of standard handles within
data structures which may be shared across threads is unsafe.

• Managed classes with handles as data members - It should be assumed that any
instance of a managed class may be shared by multiple threads, and thus using
standard handles as data members is unsafe. Note that while it may not be strictly
true that all managed classes may be shared across threads, if an instance is
passed to code outside of your explicit control (for instance put into a cache), there
is no guarantee that the object is not visible to other threads.

Chapter 9
Writing New Managed Classes

9-16



The use of standard handles should be replaced with thread-safe handles in such
cases. The object model includes the following set of thread-safe handles.

• coherence::lang::MemberHandle<T>—thread-safe version of T::Handle

• coherence::lang::MemberView<T>—thread-safe version of T::View

• coherence::lang::MemberHolder<T>—thread-safe version of T::Holder

• coherence::lang::FinalHandle<T>—thread-safe final version of T::Handle

• coherence::lang::FinalView<T>—thread-safe final version of T::View

• coherence::lang::FinalHolder<T>—thread-safe final version of T::Holder

• coherence::lang::WeakHandle<T>—thread-safe weak handle to T

• coherence::lang::WeakView<T>—thread-safe weak view to T

• coherence::lang::WeakHolder<T>—thread-safe weak T::Holder

These handle types may be read and written from multiple thread without the need for
additional synchronization. They are primarily intended for use as the data-members of
other managed classes, each instance is provided with a reference to a guardian
managed Object. The guardian's internal thread-safe atomic state is used to provide
thread-safety to the handle. When using these handle types it is recommended that
they be read into a normal stack based handle if they are continually accessed within a
code block. This assignment to a standard stack based handle is thread-safe, and,
after completed, allows for essentially free dereferencing of the stack based handle.
Note that when initializing thread-safe handles a reference to a guardian Object must
be supplied as the first parameter, this reference can be obtained by calling self() on
the enclosing object.

The following example demonstrates a thread-safe handle.

class Employee
    : public class_spec<Employee>
    {
    friend class factory<Employee>;

    protected:
        Employee(String::View vsName, int32_t nId)
            : super(), m_vsName(self(), vsName), m_nId(nId)
            {
            }

    public:
        String::View getName() const
            {
            return m_vsName; // read is automatically thread-safe
            }

        void setName(String::View vsName)
            {
            m_vsName = vsName; // write is automatically thread-safe
            }

        int32_t getId() const
            {
            return m_nId;
            }          

    private:

Chapter 9
Writing New Managed Classes

9-17



        MemberView<String>    m_vsName;
        const int32_t         m_nId;
    };

The same basic technique can be applied to non-managed classes as well. Since non-
managed classes do not extend coherence::lang::Object, they cannot be used as the
guardian of thread-safe handles. It is possible to use another Object as the guardian.
However, it is crucial to ensure that the guardian Object outlives the guarded thread-
safe handle. When using another object as the guardian, obtain a random immortal
guardian from coherence::lang::System through a call to System::common(). For
example:

class Employee
    {
    public:
        Employee(String::View vsName, int32_t nId)
            : m_vsName(System::common(), vsName), m_nId(nId)
            {
            }

    public:
        String::View getName() const
            {
            return m_vsName;
            }

        void setName(String::View vsName)
            {
            m_vsName = vsName;
            }

        int32_t getId() const
            {
            return m_nId;
            }          

    private:
         MemberView<String> m_vsName;
         const int32_t m_nId;
    };

When writing managed classes it is preferable to obtain a guardian through a call to
self() then to System::common().

Note:

In the rare case that one of these handles is declared through the mutable
keyword, it must be informed of this fact by setting fMutable to true during
construction.

Thread-safe handles can also be used in non-class shared data as well. For example,
global handles:

MemberView<NamedCache> MY_CACHE(System::common());

int main(int argc, char** argv)
    {

Chapter 9
Writing New Managed Classes

9-18



    MY_CACHE = CacheFactory::getCache(argv[0]);
    }

9.2.7.3 Escape Analysis
The object model includes escape analysis based optimizations. The escape analysis
is used to automatically identify when a managed object is only visible to a single
thread and in such cases optimize out unnecessary synchronizations. The following
types of operations are optimized for non-escaped objects.

• reference count updates

• COH_SYNCHRONIZED acquisition and release

• reading/writing of thread-safe handles

• reading of thread-safe handles from immutables

Escape analysis is automatic and is completely safe so long as you follow the rules of
using the object model. Most specifically is that it is not safe to pass a managed object
between threads without using a provided thread-safe handle. Passing it by an
external mechanism does not allow escape analysis to identify the "escape" which
could cause memory corruption or other run-time errors.

This section includes the following topics:

• Shared handles

• Const Correctness

9.2.7.3.1 Shared handles
Each managed class type includes nested definitions for a Handles, View, and Holder.
These handles are used extensively throughout the Coherence API, and is application
code. They are intended for use as stack based references to managed objects. They
are not intended to be made visible to multiple threads. That is a single handle should
not be shared between two or more threads, though it is safe to have a managed
Object referenced from multiple threads, so long as it is by distinct Handles, or a
thread-safe MemberHandle/View/Holder.

It is important to remember that global handles to managed Objects should be
considered to be "shared", and therefore must be thread-safe, as demonstrated
previously. The failure to use thread-safe handles for globals causes escaped objects
to not be properly identified leading to memory corruption.

In 3.4 these non thread-safe handles could be shared across threads so long as
external synchronization was employed, or if the handles were read-only. In 3.5 and
later this is no longer true, even when used in a read-only mode or enclosed within
external synchronization these handles are not thread-safe. This is due to a
fundamental change in implementation which drastically reduces the cost of assigning
one handle to another, which is an operation which occurs constantly. Any code which
was using handles in this fashion should be updated to make use of thread-safe
handles. See Thread Safe Handles.

9.2.7.3.2 Const Correctness
Coherence escape analysis, among other things, leverages the computed mutability of
an object to determine if state changes on data members are still possible. Namely,
when an object is only referenced from views, it is assumed that its data members do

Chapter 9
Writing New Managed Classes

9-19



not undergo further updates. The C++ language provides some mechanisms to
bypass this const-only access and allow mutation from const methods. For instance,
the use of the mutable keyword in a data member declaration, or the casting away of
constness. The arguably cleaner and supported approach for the object model is the
mutable keyword. For the Coherence object model, when a thread-safe data member
handle is declared as mutable this information must be communicated to the data
member. All thread-safe data members support an optional third parameter fMutable
which should be set to true if the data member has been declared with the mutable
keyword. This informs the escape analysis routine to not consider the data member as
"const" when the enclosing object is only referenced using Views. Casting away of the
constness of managed object is not supported, and can lead to run time errors if the
object model believes that the object can no longer undergo state changes.

9.2.7.4 Thread-Local Allocator
Coherence for C++ includes a thread-local allocator to improve performance of
dynamic allocations which are heavily used within the API. By default, each thread
grows a pool to contain up to 64KB of reusable memory blocks to satisfy the majority
of dynamic object allocations. The pool is configurable using the following system
properties:

• coherence.heap.slot.size controls the maximum size of an object which is
considered for allocation from the pool, the default is 128 bytes. Larger objects call
through to the system's malloc routine to obtain the required memory.

• coherence.heap.slot.count controls the number of slots available to each thread for
handling allocations, the default is 512 slots. If there are no available slots,
allocations fall back on malloc.

• coherence.heap.slot.refill controls the rate at which slots misses trigger refilling
the pool. The default of 10000 causes 1/10000 pool misses to force an allocation
which is eligible for refilling the pool.

The pool allocator can be disabled by setting the size or count to 0.

9.3 Diagnostics and Troubleshooting
Learn how to diagnosing issues in applications that use the Coherence C++ object
model.
This section includes the following topics:

• Thread-Local Allocator Logs

• Thread Dumps

• Memory Leak Detection

• Memory Corruption Detection

9.3.1 Thread-Local Allocator Logs
Logs can be enabled to view the efficiency of the thread-local allocator pool. To enable
the logs, set the coherence.heap.logging system property to true.

The log entries indicate the memory location of the pool, the size of the pool, how
many allocation areas are in the pool and the fraction of successful hits on the pool
(the rate of finding a slot within the pool). The following example demonstrates a
typical allocator log entry:

Chapter 9
Diagnostics and Troubleshooting

9-20



(thread=main): Allocator hit: pool=0x7f8e5ac039d0, size=128, slots=512, hit 
rate=0.62963

9.3.2 Thread Dumps
Thread dumps are available for diagnostic and troubleshooting purposes. These
thread dumps also include the stack trace. You can generate a thread dump by
performing a CTRL+BREAK (Windows) or a CTRL+BACKSLASH (UNIX). The following output
illustrates a sample thread dump:

Thread dump Oracle Coherence for C++ v3.4b397 (Pre-release) (Apple Mac OS X x86 
debug) pid=0xf853; spanning 190ms

"main" tid=0x101790 runnable: <native>
    at coherence::lang::Object::wait(long long) const
    at coherence::lang::Thread::dumpStacks(std::ostream&, long long)
    at main
    at start

"coherence::util::logging::Logger" tid=0x127eb0 runnable: 
Daemon{State=DAEMON_RUNNING, Notification=false, 
StartTimeStamp=1216390067197, WaitTime=0, 
ThreadName=coherence::util::logging::Logger}
    at coherence::lang::Object::wait(long long) const
    at coherence::component::util::Daemon::onWait()
    at coherence::component::util::Daemon::run()
    at coherence::lang::Thread::run()

9.3.3 Memory Leak Detection
While the managed object model reference counting helps prevent memory leaks they
are still possible. The most common way in which they are triggered is through cyclical
object graphs. The object model includes heap analysis support to help identify if leaks
are occurring, by tracking the number of live objects in the system. Comparing this
value over time provides a simple means of detecting if the object count is consistently
increasing, and thereby likely leaking. After a probable leak has been detected, the
heap analyzer can help track it down as well, by provided statistics on what types of
objects appeared to have leaked.

Coherence provides a pluggable coherence::lang::HeapAnalyzer interface. The
HeapAnalyzer implementation can be specified by using the coherence.heap.analyzer
system property. The property can be set to the following values:

• none—No heap analysis is performed. This is the default.

• object—The coherence::lang::ObjectCountHeapAnalyzer is used. It provides simple
heap analysis based solely on the count of the number of live objects in the
system.

• class—The coherence::lang::ClassBasedHeapAnalyzer is used. It provides heap
analysis at the class level, that is it tracks the number of live instances of each
class, and the associated byte level usage.

• alloc —Specialization of coherence::lang::ClassBasedHeapAnalyzer which
additionally tracks the allocation counts at the class level.

• custom—Lets you define your own analysis routines. You specify the name of a
class registered with the SystemClassLoader.

Chapter 9
Diagnostics and Troubleshooting

9-21



Heap information is returned when you perform a CTRL+BREAK (Windows) or CTRL
+BACKSLASH (UNIX).

The following output illustrates heap analysis information returned by the class-based
analyzer. It returns the heap analysis delta resulting from the insertion of a new entry
into a Map.

Space           Count           Class
44 B            1               coherence::lang::Integer32
70 B            1               coherence::lang::String
132 B           1               coherence::util::SafeHashMap::Entry

Total: 246 B, 3 objects, 3 classes

9.3.4 Memory Corruption Detection
For all that the object model does to prevent memory corruption, it is typically used
along side non-managed code which could cause corruption. Therefore, the object
model includes memory corruption detection support. When enabled, the object
model's memory allocator pads the beginning and end of each object allocation by a
configurable number of pad bytes. This padding is encoded with a pattern which can
later be validated to ensure that the pad has not been touched. If memory corruption
occurs, and affects a pad, subsequent validations detect the corruption. Validation is
performed when the object is destroyed.

The debug version of the Coherence C++ API has padding enabled by default, using a
pad size of 2*(word size), on each side of an object allocation. In a 32-bit build, this
adds 16 bytes per object. Increasing the size of the padding increases the chances of
corruption affecting a pad, and thus the chance of detecting corruption.

The size of the pad can be configured by using the coherence.heap.padding system
property, which can be set to the number of bytes for the pre/post pad. Setting this
system property to a nonzero value enables the feature, and is available even in
release builds.

The following output illustrates the results from an instance of memory corruption
detection:

Error during ~MemberHolder: coherence::lang::IllegalStateException: memory 
corruption detected in 5B post-padding at offset 4 of memory allocated at 0x132095

9.4 Application Launcher - Sanka
Coherence uses an application launcher for invoking executable classes embedded
within a shared library. The launcher allows for a shared library to contain utility or test
executables without shipping individual standalone executable binaries.
This section includes the following topics:

• Command line syntax

• Built-in Executables

• Sample Custom Executable Class

Chapter 9
Application Launcher - Sanka

9-22



9.4.1 Command line syntax
The launcher named sanka works similar to java, in that it is provided with one or more
shared libraries to load, and a fully qualified class name to execute.

ge: sanka [-options] <native class> [args...]
 
available options include:
    -l <native library list>  dynamic libraries to load, separated by : or ;
    -D<property>=<value>      set a system property
    -version                  print the Coherence version
    -?                        print this help message
    <native class>            the fully qualified class. For example,
                              coherence::net::CacheFactory

The specified libraries must either be accessible from the operating system library path
(PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH), or they may be specified with an absolute
or relative path. Library names may also leave off any operating specific prefix or
suffix. For instance the UNIX libfoo.so or Windows foo.dll can be specified simply as
foo. The Coherence shared library which the application was linked against must be
accessible from the system's library path as well.

9.4.2 Built-in Executables
Several utility executables classes are included in the Coherence shared library:

• coherence::net::CacheFactory runs the Coherence C++ console

• coherence::lang::SystemClassLoader prints out the registered managed classes

• coherence::io::pof::SystemPofContext prints out the registered POF types

The later two executables can be optionally supplied with shared libraries to inspect, in
which case they output the registration which exists in the supplied library rather then
all registrations.

Note:

The console which was formerly shipped as an example, is now shipped as a
built-in executable class.

9.4.3 Sample Custom Executable Class
Applications can of course still be made executable in the traditional C++ means using
a global main function. If desired you can make your own classes executable using
Sanka as well. The following is a simple example of an executable class:

#include "coherence/lang.ns"
 
COH_OPEN_NAMESPACE2(my,test)
 
using namespace coherence::lang;
 
class Echo

Chapter 9
Application Launcher - Sanka

9-23



    : public class_spec<Echo>
    {
    friend class factory<Echo>;
 
    public:
        static void main(ObjectArray::View vasArg)
            {
            for (size32_t i = 0, c = vasArg->length; i < c; ++i)
                {
                std::cout << vasArg[i] << std::endl;
                }
            }
    };
COH_REGISTER_EXECUTABLE_CLASS(Echo); // must appear in .cpp
 
COH_CLOSE_NAMESPACE2

As you can see the specified class must have been registered as an ExecutableClass
and have a main method matching the following signature:

static void main(ObjectArray::View)

The supplied ObjectArray parameter is an array of String::View objects corresponding
to the command-line arguments which followed the executable class name.

When linked into a shared library, for instance libecho.so or echo.dll, the Echo class
can be run as follows:

> sanka -l echo my::test::Echo Hello World
Hello
World

Chapter 9
Application Launcher - Sanka

9-24



10
Using the Coherence for C++ Client API

The Coherence for C++ API allows C++ applications to use Coherence clustered
services from outside the Coherence cluster.
Coherence for C++ API documentation is available at C++ API Reference for Oracle
Coherence and in the doc directory of the Coherence for C++ distribution.

This chapter includes the following sections:

• CacheFactory

• NamedCache

• QueryMap

• ObservableMap

• InvocableMap

• Filter

• Value Extractors

• Entry Processors
An entry processor is an agent that operates against the entry objects within a
cache.

• Entry Aggregators

10.1 CacheFactory
CacheFactory provides several static methods for retrieving and releasing NamedCache
instances.

• NamedCache::Handle getCache(String::View vsName)—retrieves a NamedCache
implementation that corresponds to the NamedCache with the specified name running
within the remote Coherence cluster.

• void releaseCache(NamedCache::Handle hCache)—releases all local resources
associated with the specified instance of the cache. After a cache is released, it
can no longer be used. The content of the cache, however, is not affected.

• void destroyCache(NamedCache::Handle hCache)—destroys the specified cache
across the Coherence cluster.

This section includes the following topics:

10.2 NamedCache
A NamedCache is a map of resources shared among members of a cluster. The
NamedCache provides methods used to retrieve the name of the cache and the service,
and to release or destroy the cache.

• String::View getCacheName()—returns the name of the cache as a String.

10-1



• CacheService::Handle getCacheService()—returns a handle to the CacheService that
this NamedCache is a part of.

• bool isActive()—specifies whether this NamedCache is active.

• void release()—releases the local resources associated with this instance of the
NamedCache. The cache is no longer usable, but the cache contents are not
affected.

• void destroy()—releases and destroys this instance of the NamedCache.

NamedCache interface also extends the following interfaces: QueryMap, InvocableMap,
ConcurrentMap, CacheMap and ObservableMap.

10.3 QueryMap
A QueryMap can be thought of as an extension of the Map class with additional query
features. These features allow the ability to query a cache using various filters. See 
Filter .

• Set::View keySet(Filter::View vFilter)—returns a set of the keys contained in
this map for entries that satisfy the criteria expressed by the filter.

• Set::View entrySet(Filter::View vFilter)—returns a set of the entries contained
in this map that satisfy the criteria expressed by the filter. Each element in the
returned set is a Map::Entry object.

• Set::View entrySet(Filter::View vFilter, Comparator::View vComparator)—
returns a set of the entries contained in this map that satisfy the criteria expressed
by the filter. Each element in the returned set is a Map::Entry object. This version
of entrySet further guarantees that its iterator traverses the set in ascending order
based on the entry values which are sorted by the specified Comparator or
according to the natural ordering.

Additionally, the QueryMap class includes the ability to add and remove indexes.
Indexes are used to correlate values stored in the cache to their corresponding keys
and can dramatically increase the performance of the keySet and entrySet methods.

• void addIndex(ValueExtractor::View vExtractor, boolean_t fOrdered,
Comparator::View vComparator)—adds an index to this QueryMap. The index
correlates values stored in this indexed Map (or attributes of those values) to the
corresponding keys in the indexed Map and increase the performance of keySet and
entrySet methods.

• void removeIndex(ValueExtractor::View vExtractor)—removes an index from this
QueryMap.

See Querying a Cache (C++) and Performing Simple Queries.

10.4 ObservableMap
An ObservableMap provides an application with the ability to listen for cache changes.
Applications that implement ObservableMap can add key and filter listeners to receive
events from any cache, regardless of whether that cache is local, partitioned, near,
replicated, using read-through, write-through, write-behind, overflow, disk storage, and
so on. ObservableMap also provides methods to remove these listeners.

• void addKeyListener(MapListener::Handle hListener, Object::View vKey, bool

fLite)—adds a map listener for a specific key.

Chapter 10
QueryMap

10-2



• void removeKeyListener(MapListener::Handle hListener, Object::View vKey)—
removes a map listener that previously signed up for events about a specific key.

• void addFilterListener(MapListener::Handle hListener, Filter::View vFilter =

NULL, bool fLite = false)—adds a map listener that receives events based on a
filter evaluation.

• void removeFilterListener(MapListener::Handle hListener, Filter::View vFilter

= NULL)—removes a map listener that previously signed up for events based on a
filter evaluation.

See Signing Up for all Events.

10.5 InvocableMap
An InvocableMap is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
efficient in a distributed environment because it localizes processing: the processing of
the cache contents are moved to the location at which the entries-to-be-processed are
being managed. See Entry Processors and Entry Aggregators.

• Object::Holder invoke(Object::View vKey, EntryProcessor::Handle hAgent)—
invokes the passed processor (EntryProcessor) against the entry (Entry) specified
by the passed key, returning the result of the invocation.

• Map::View invokeAll(Collection::View vCollKeys, EntryProcessor::Handle hAgent)

—invokes the passed processor (EntryProcessor) against the entries (Entry
objects) specified by the passed keys, returning the result of the invocation for
each.

• Map::View invokeAll(Filter::View vFilter, EntryProcessor::Handle hAgent)—
invokes the passed processor (EntryProcessor) against the entries (Entry objects)
that are selected by the given filter, returning the result of the invocation for each.

• Object::Holder aggregate(Collection::View vCollKeys, EntryAggregator::Handle

hAgent)—performs an aggregating operation against the entries specified by the
passed keys.

• Object::Holder aggregate(Filter::View vFilter, EntryAggregator::Handle hAgent)

—performs an aggregating operation against the entries that are selected by the
given filter.

10.6 Filter
The Filter API provides the ability to filter results and only return objects that meet a
given set of criteria. All filters must implement Filter. Filters are commonly used with
the QueryMap API to query the cache for entries that meet a given criteria. See 
QueryMap.

• bool evaluate(Object::View v)—applies a test to the specified object and returns
true if the test passes, false otherwise.

Coherence for C++ includes many concrete Filter implementations in the
coherence::util::filter namespace. Below are several commonly used filters:

• EqualsFilter is used to test for equality. The following example creates an
EqualsFilter to test that an object equals 5:

Chapter 10
InvocableMap

10-3



EqualsFilter::View vEqualsFilter = 
EqualsFilter::create(IdentityExtractor::getInstance(), Integer32::valueOf(5));

• GreaterEqualsFilter is used to test a "Greater or Equals" condition. The following
example creates a GreaterEqualsFilter that tests that an objects value is >= 55:

GreaterEqualsFilter::View vGreaterEqualsFilter = 
GreaterEqualsFilter::create(IdentityExtractor::getInstance(), 
Integer32::valueOf(55));

• LikeFilter is used for pattern matching. The followiung example creates a
LikeFilter that tests that the string representation of an object begins with "Belg":

LikeFilter::View vLikeFilter = 
LikeFilter::create(IdentityExtractor::getInstance(), "Belg%");

• Some filters combine two filters to create a compound condition. AndFilter is
used to combine two filters to create an "AND" condition. The following example
creates an AndFilter that tests that an objects value is greater than 10 and less
than 20:

AndFilter::View vAndFilter = AndFilter::create(
        GreaterFilter::create(IdentityExtractor::getInstance(), 
Integer32::valueOf(10)),
        LessFilter::create(IdentityExtractor::getInstance(), 
Integer32::valueOf(20)));

• OrFilter is used to combine two filters to create an "OR" condition. The following
example create an OrFilter that tests that an object's value is less than 10 or
greater than 20:

OrFilter::View vOrFilter = OrFilter::create(
        LessFilter::create(IdentityExtractor::getInstance(), 
Integer32::valueOf(10)),
        GreaterFilter::create(IdentityExtractor::getInstance(), 
Integer32::valueOf(20)));

10.7 Value Extractors
A value extractor is used to extract values from an object and to provide an identity for
the extraction.
All extractors must implement ValueExtractor.

Note:

All concrete extractor implementations must also explicitly implement the
hashCode and equals functions in a way that is based solely on the object's
serializable state.

• Object::Holder extract(Object::Holder ohTarget)—extracts the value from the
passed object.

• bool equals(Object::View v)—compares the ValueExtractor with another object to
determine equality. Two ValueExtractor objects, ve1 and ve2 are considered equal
if and only if ve1->extract(v) equals ve2->extract(v) for all values of v.

• size32_t hashCode()—determine a hash value for the ValueExtractor object
according to the general Object#hashCode() contract.

Chapter 10
Value Extractors

10-4



Coherence for C++ includes the following extractors:

• ChainedExtractor—is a composite ValueExtractor implementation based on an
array of extractors. The extractors in the array are applied sequentially left-to-right,
so a result of a previous extractor serves as a target object for a next one.

• ComparisonValueExtractor—returns a result of comparison between two values
extracted from the same target.

• IdentityExtractor—is a trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

• KeyExtractor—is a special purpose implementation that serves as an indicator that
a query should be run against the key objects rather than the values.

• MultiExtractor—is a composite ValueExtractor implementation based on an array
of extractors. All extractors in the array are applied to the same target object and
the result of the extraction is a List of extracted values.

• ReflectionExtractor—extracts a value from a specified object property.

See the C++ examples in Understanding Query Concepts.

10.8 Entry Processors
An entry processor is an agent that operates against the entry objects within a cache.
All entry processors must implement EntryProcessor.

• Object::Holder process(InvocableMap::Entry::Handle hEntry)—process the
specified entry.

• Map::View processAll(Set::View vSetEntries)—process a collection of entries.

Coherence for C++ includes several EntryProcessor implementations in the
coherence::util::processor namespace.

See the C++ examples that are part of the Coherence Java distribution.

10.9 Entry Aggregators
An entry aggregator represents processing that can be directed to occur against some
subset of the entries in an InvocableMap, resulting in an aggregated result. Common
examples of aggregation include functions such as minimum, maximum, sum, and
average. However, the concept of aggregation applies to any process that must
evaluate a group of entries to come up with a single answer. Aggregation is explicitly
capable of being run in parallel, for example in a distributed environment.
All aggregators must implement the EntryAggregator interface:

• Object::Holder aggregate(Collection::View vCollKeys)— processes a collection of
entries to produce an aggregate result.

Coherence for C++ includes several EntryAggregator implementations in the
coherence::util::aggregator namespace.

Chapter 10
Entry Processors

10-5



Note:

Like cached value objects, all custom Filter, ValueExtractor, EntryProcessor,
and EntryAggregator implementation classes must be correctly registered in
the POF context of the C++ application and cluster-side node to which the
client is connected. As such, corresponding Java implementations of the
custom C++ types must be created, compiled, and deployed on the cluster-
side node. Note that the actual execution of these custom types is performed
by the Java implementation and not the C++ implementation. See Building
Integration Objects (C++).

Chapter 10
Entry Aggregators

10-6



11
Building Integration Objects (C++)

You can use Portable Object Format (POF) serialization when creating C++ clients.

Note:

This document assumes familiarity with the Coherence C++ Object Model,
including advanced concepts such as specification-based class definitions.
See Using the Coherence C++ Object Model.

This chapter includes the following sections:

• Overview of Building Integration Objects (C++)

• POF Intrinsics
POF supports many internal types that do not require special handing.

• Serialization Options

• Using POF Object References

• Registering Custom C++ Types

• Implementing a Java Version of a C++ Object

• Understanding Serialization Performance

• Using POF Annotations to Serialize Objects

11.1 Overview of Building Integration Objects (C++)
Enabling C++ clients to successfully store C++ based objects within a Coherence
cluster relies on a platform-independent serialization format known as POF (Portable
Object Format). POF allows value objects to be encoded into a binary stream in such
a way that the platform and language origin of the object is irrelevant. The stream can
then be deserialized in an alternate language using a similar POF-based class
definition. See The PIF-POF Binary Format in Developing Applications with Oracle
Coherence.
While the Coherence C++ API includes several POF serializable classes, custom data
types require serialization support as described in this chapter.

11.2 POF Intrinsics
POF supports many internal types that do not require special handing.
POF intrinsic types include:

• String

• Integer16 .. Integer64

11-1



• Float32, Float64

• Array<> of primitives

• ObjectArray

• Boolean

• Octet

• Character16

Additionally, automatic POF serialization is provided for classes implementing these
common interfaces:

• Map

• Collection

• Exception

11.3 Serialization Options
While the Coherence C++ API offers a single serialization format (POF), it offers a
variety of APIs for making a class serializable. Ultimately whichever approach is used,
the same binary POF format is produced.
This section includes the following topics:

• Overview of Serialization Options

• Managed<T> (Free-Function Serialization)

• PortableObject (Self-Serialization)

• PofSerializer (External Serialization)

11.3.1 Overview of Serialization Options
The following approaches are available for making a class serializable:

• Use the Managed<T> adapter template, and add external free-function serializers.
See Managed<T> (Free-Function Serialization) .

• Modify the data object to extend Object, and implement the PortableObject
interface, to allow for object to self-serialize. See PortableObject (Self-
Serialization) .

• Modify the data object to extend Object, and produce a PofSerializer class to
perform external serialization. See PofSerializer (External Serialization) .

Table 11-1lists some requirements and limitations of each approach.

Table 11-1    Requirements and Limitations of Serialization Options

Approach Coherence
headers in
data-object

Requires
derivation
from Object

Supports
const data-
members

External
serializatio
n routine

Requires
zero-arg
constructor

Managed<T> No No Yes Yes Yes

PortableObject Yes Yes No No Yes

Chapter 11
Serialization Options

11-2



Table 11-1    (Cont.) Requirements and Limitations of Serialization Options

Approach Coherence
headers in
data-object

Requires
derivation
from Object

Supports
const data-
members

External
serializatio
n routine

Requires
zero-arg
constructor

PofSerializer Yes Yes Yes Yes No

All of these approaches share certain similarities:

• Serialization routines that allow the data items to be encoded to POF must be
implemented.

• The data object's fields are identified by using numeric indexes.

• The data object class and serialization mechanism must be registered with
Coherence.

• Data objects used as cache keys must support equality comparisons and hashing.

11.3.2 Managed<T> (Free-Function Serialization)
For most pre-existing data object classes, the use of Managed<T> offers the easiest
means of integrating with Coherence for C++.

For a non-managed class to be compatible with Managed<T> it must have the following
characteristics:

• zero parameter constructor (public or protected): CustomType::CustomType()

• copy constructor (public or protected): CustomType::CustomType(const
CustomType&)

• equality comparison operator: bool operator==(const CustomType&, const
CustomType&)

• std::ostream output function: std::ostream& operator<<(std::ostream&, const
CustomType&)

• hash function: size_t hash_value(const CustomType&)

The following example presents a simple Address class, which has no direct knowledge
of Coherence, but is suitable for use with the Managed<T> template.

Note:

In the interest of brevity, example class definitions are in-lined within the
declaration.

Example 11-1    A Non-Managed Class

#include <iostream>
#include <string>
using namespace std;

class Address

Chapter 11
Serialization Options

11-3



  {
  public:
    Address(const std::string& sCity, const std::string& sState, int nZip)
       : m_sCity(sCity), m_sState(sState), m_nZip(nZip) {}

    Address(const Address& that) // required by Managed<T>
       : m_sCity(that.m_sCity), m_sState(that.m_sState), m_nZip(that.m_nZip) {}

  protected:
    Address() // required by Managed<T>
      : m_nZip(0) {}

  public:
    std::string  getCity()  const {return m_sCity;}
    std::string  getState() const {return m_sState;}
    int          getZip()   const {return m_nZip;}

  private:
    const std::string m_sCity;
    const std::string m_sState;
    const int         m_nZip;
  };

bool operator==(const Address& addra, const Address& addrb) // required by Managed<T>
  {
  return addra.getZip()   == addrb.getZip() &&
         addra.getState() == addrb.getState() &&
         addra.getCity()  == addrb.getCity();
  }

std::ostream& operator<<(std::ostream& out, const Address& addr) // required by 
Managed<T>
  {
  out << addr.getCity() << ", " << addr.getState() << "  " << addr.getZip();
  return out;
  }

size_t hash_value(const Address& addr) // required by Managed<T>
  {
  return (size_t) addr.getZip();
  }

When combined with Managed<T>, this simple class definition becomes a true "managed
object", and is usable by the Coherence C++ API. This definition has yet to address
serialization. Serialization support is added Example 11-2:

Example 11-2    Managed Class using Serialization

#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"

using namespace coherence::io::pof;

COH_REGISTER_MANAGED_CLASS(1234, Address); // type ID registration—this must
                                           // appear in the .cpp not the .hpp 

template<> void serialize<Address>(PofWriter::Handle hOut, const Address& addr)
  {
  hOut->writeString(0, addr.getCity());
  hOut->writeString(1, addr.getState());

Chapter 11
Serialization Options

11-4



  hOut->writeInt32 (2, addr.getZip());
  }

template<> Address deserialize<Address>(PofReader::Handle hIn)
  {
  std::string sCity  = hIn->readString(0);
  std::string sState = hIn->readString(1);
  int         nZip   = hIn->readInt32 (2);
  return Address(sCity, sState, nZip);
  }

Note:

The serialization routines must have knowledge of Coherence. However, they
are not required as part of the class definition file. They can be placed in an
independent source file, and if they are linked into the final application, they
take effect.

With the above pieces in place, Example 11-3 illustrates instances of the Address class
wrapped by using Managed<T> as Managed<Address>, and supplied to the Coherence
APIs:

Example 11-3    Instances of a Class Wrapped with Managed<T>

// construct the non-managed version as usual
Address office("Redwood Shores", "CA", 94065);

// the managed version can be initialized from the non-managed version
// the result is a new object, which does not reference the original
Managed<Address>::View vOffice = Managed<Address>::create(office);
String::View           vKey    = "Oracle";

// the managed version is suitable for use with caches
hCache->put(vKey, vAddr);
vOffice = cast<Managed<Address>::View>(hCache->get(vKey));

// the non-managed class's public methods/fields remain accessible
assert(vOffice->getCity()  == office.getCity());
assert(vOffice->getState() == office.getState());
assert(vOffice->getZip()   == office.getZip());

// conversion back to the non-managed type may be performed using the
// non-managed class's copy constructor.
Address officeOut = *vOffice;

11.3.3 PortableObject (Self-Serialization)
The PortableObject interface is similar in concept to java.io.Externalizable, which
allows an object to control how it is serialized. Any class which extends from
coherence::lang::Object is free to implement the coherence::io::pof::PortableObject
interface to add serialization support. Note that the class must extend from Object,
which then dictates its life cycle.

In Example 11-4, the above Address example can be rewritten as a managed class,
and implement the PortableObject interface, which fully embraces the Coherence

Chapter 11
Serialization Options

11-5



object model as part of the definition of the class. For example, using
coherence::lang::String rather then std::string for data members.

Example 11-4    A Managed Class that Implements PortableObject

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"

#include "coherence/io/pof/SystemPofContext.hpp"

using namespace coherence::lang;

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;

class Address
  : public cloneable_spec<Address,
      extends<Object>,
      implements<PortableObject> >
  {
  friend class factory<Address>;

  protected: // constructors
    Address(String::View vsCity, String::View vsState, int32_t nZip)
       : m_vsCity(self(), vsCity), m_vsState(self(), vsState), m_nZip(nZip) {}

    Address(const Address& that)
       : super(that), m_vsCity(self(), that.m_vsCity), m_vsState(self(), 
       that.m_vsState), m_nZip(that.m_nZip) {}

    Address() // required by PortableObject
       : m_vsCity(self()),
         m_vsState(self()),
         m_nZip(0) {}

  public: // Address interface   
    virtual String::View  getCity()  const {return m_vsCity;}
    virtual String::View  getState() const {return m_vsState;}
    virtual int32_t       getZip()   const {return m_nZip;}

  public: // PortableObject interface    virtual void 
writeExternal(PofWriter::Handle hOut) const
      {
      hOut->writeString(0, getCity());
      hOut->writeString(1, getState());
      hOut->writeInt32 (2, getZip());
      }

    virtual void readExternal(PofReader::Handle hIn)
      {
       initialize(m_vsCity, hIn->readString(0));
       initialize(m_vsState, hIn->readString(1));
       m_nZip    = hIn->readInt32 (2);
      }

  public: // Objectinterface    virtual bool equals(Object::View that) const
      {

Chapter 11
Serialization Options

11-6



      if (instanceof<Address::View>(that))
        {
        Address::View vThat = cast<Address::View>(that);

        return getZip() == vThat->getZip() &&
               Object::equals(getState(), vThat->getState()) &&
               Object::equals(getCity(), vThat->getCity());
        }

      return false;
      }

    virtual size32_t hashCode() const
      {
      return (size32_t) m_nZip;
      }

    virtual void toStream(std::ostream& out) const
      {
      out << getCity() << ", " << getState() << "  " << getZip();
      }

  private:
     FinalView<String> m_vsCity;
     FinalView<String> m_vsState;
     int32_t     m_nZip;
  };
COH_REGISTER_PORTABLE_CLASS(1234, Address); // type ID registration—this must
                                            // appear in the .cpp not the .hpp 

Example 11-5 illustrates a managed variant of the Address that does not require the
use of the Managed<T> adapter and can be used directly with the Coherence API:

Example 11-5    A Managed Class without Managed<T>

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View  vKey  = "Oracle";

hCache->put(vKey, vAddr);
Address::View vOffice = cast<Address::View>(hCache->get(vKey));

Serialization by using PortableObject is a good choice when the application has
decided to make use of the Coherence object model for representing its data objects.
One drawback to PortableObject is that it does not easily support const data members,
as the readExternal method is called after construction, and must assign these values.

11.3.4 PofSerializer (External Serialization)
The third serialization option is also the lowest level one. PofSerializers are classes
that provide the serialization logic for other classes. For example, an AddressSerializer
is written which can serialize a non-PortableObject version of the above managed
Address class. Under the covers the prior two approaches were delegating through
PofSerializers, they were just being created automatically rather then explicitly.
Typically, it is not necessary to use this approach, as either the Managed<T> or
PortableObject approaches suffice. This approach is primarily of interest when you
have a managed object with const data members. Consider Example 11-6, a non-
PortableObject version of a managed Address.

Chapter 11
Serialization Options

11-7



Example 11-6    A non-PortableObject Version of a Managed Class

#include "coherence/lang.ns"

using namespace coherence::lang;

class Address
  : public cloneable_spec<Address> // extends<Object> is implied
  {
  friend class factory<Address>;

  protected: // constructors
    Address(String::View vsCity, String::View vsState, int32_t nZip)
       : m_vsCity(self(), vsCity), m_vsState(self(), vsState), m_nZip(nZip) {}

    Address(const Address& that)
       : super(that), m_vsCity(self(), that.getCity()), m_vsState(self(),
         that.getState()), m_nZip(that.getZip()) {}

  public: // Address interface    
    virtual String::View  getCity()  const {return m_vsCity;}
    virtual String::View  getState() const {return m_vsState;}
    virtual int32_t getZip() const {return m_nZip;}

  public: // Objectinterface    
       virtual bool equals(Object::View that) const
      {
      if (instanceof<Address::View>(that))
        {
        Address::View vThat = cast<Address::View>(that);

        return getZip() == vThat->getZip() &&
               Object::equals(getState(), vThat->getState()) &&
               Object::equals(getCity(), vThat->getCity());
        }

      return false;
      }

    virtual size32_t hashCode() const
      {
      return (size32_t) m_nZip;
      }

    virtual void toStream(std::ostream& out) const
      {
      out << getCity() << ", " << getState() << "  " << getZip();
      }

  private:
    const MemberView<String> m_vsCity;
    const MemberView<String> m_vsState;
    const int32_t      m_nZip;
  };

Note that this version uses const data members, which makes it not well-suited for
PortableObject. Example 11-7 illustrates an external class, AddressSerializer, which is
registered as being responsible for serialization of Address instances.

Chapter 11
Serialization Options

11-8



Example 11-7    An External Class Responsible for Serialization

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/io/pof/PofSerializer.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"

using namespace coherence::lang;

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PofSerializer;

class AddressSerializer
  : public class_spec<AddressSerializer,
      extends<Object>,
      implements<PofSerializer> >
  {
  friend class factory<AddressSerializer>;

  protected:
    AddressSerializer();

  public: // PofSerializer interface    virtual void serialize(PofWriter::Handle 
hOut, Object::View v) const
        {
        Address::View vAddr = cast<Address::View>(v);
        hOut->writeString(0, vAddr->getCity());
        hOut->writeString(1, vAddr->getState());
        hOut->writeInt32 (2, vAddr->getZip());
        hOut->writeRemainder(NULL);
        }

    virtual Object::Holder deserialize(PofReader::Handle hIn) const
      {
      String::View vsCity  = hIn->readString(0);
      String::View vsState = hIn->readString(1);
      int32_t      nZip    = hIn->readInt32 (2);
      hIn->readRemainder();

      return Address::create(vsCity, vsState, nZip);
      }
  };
COH_REGISTER_POF_SERIALIZER(1234, 
TypedBarrenClass<Address>::create(),AddressSerializer::create()); // This must 
appear in the .cpp not the .hpp

Usage of the Address remains unchanged:

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View  vKey  = "Oracle";

hCache->put(vKey, vAddr);
Address::View vOffice = cast<Address::View>(hCache->get(vKey));

Chapter 11
Serialization Options

11-9



11.4 Using POF Object References
POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its
identity.
Using references avoids encoding the same object multiple times and helps reduce
the data size. References are typically used when a large number of sizeable objects
are created multiple times or when objects use nested or circular data structures.
However, for applications that contain large amounts of data but only few repeats, the
use of object references provides minimal benefits due to the overhead incurred in
keeping track of object identities and references.

The use of object identity and references has the following limitations:

• Object references are only supported for user defined object types.

• Object references are not supported for Evolvable objects.

• Object references are not supported for keys.

• Objects that have been written out with a POF context that does not support
references cannot be read by a POF context that supports references. The
opposite is also true.

• POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the ValueExtractor API to query object values or disable
object references.

• The use of the PofNavigator and PofValue API has the following restrictions when
using object references:

– Only read operations are allowed. Write operations result in an
UnsupportedOperationException.

– User objects can be accessed in non-uniform collections but not in uniform
collections.

– For read operations, if an object appears in the data stream multiple times,
then the object must be read where it first appears before it can be read in the
subsequent part of the data. Otherwise, an IOException: missing identity:
<ID> may be thrown. For example, if there are 3 lists that all contain the same
person object, p. The p object must be read in the first list before it can be read
in the second or third list.

This section includes the following topics:

• Enabling POF Object References

• Registering POF Object Identities for Circular and Nested Objects

11.4.1 Enabling POF Object References
Object references are not enabled by default and must be enabled using
setReferenceEnabled when creating a POF context. For example:

SystemPofContext::Handle hCtx = SystemPofContext::getInstance();
hCtx->setReferenceEnabled(true);

Chapter 11
Using POF Object References

11-10



11.4.2 Registering POF Object Identities for Circular and Nested
Objects

Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in
the reference map. Object identities can be registered from a serializer during the
deserialization routine using the PofReader.registerIdentity method.

The following examples demonstrate two objects (Customer and Product) that contain a
circular reference and a serializer implementation that registers an identity on the
Customer object.

The Customer object is defined as follows:

class Customer
   : public class_spec<Customer,
      extends<Object> >
   {
   friend class factory<Customer>;
 
   protected:
      Customer()
         : m_vsName(self(), String::null_string),
         m_vProduct(self(), NULL)
         {
         }
 
         Customer(String::View vsName)
            : m_vsName(self(), vsName),
            m_vProduct(self(), NULL)
            {
         }
 
         Customer(String::View vsName, Product::View vProduct)
         : m_vsName(self(), vsName),
         m_vProduct(self(), vProduct)
         {
         }
 
   public:
      String::View getName() const
         {
         return m_vsName;
         }
 
      void setName(String::View vsName)
         {
         m_vsName = vsName;
         }
 
      Product::View getProduct() const
         {
         return m_vProduct;
         }
 
      void setProduct(Product::View vProduct)
         {
         m_vProduct = vProduct;

Chapter 11
Using POF Object References

11-11



         }
 
   private:
      MemberView<String> m_vsName;
      MemberView<Product> m_vProduct;
   };

The Product object is defined as follows:

class Product
   : public class_spec<Product,
      extends<Object> >
   {
   friend class factory<Product>;
 
   protected:
      Product()
         : m_vCustomer(self(), NULL)
         {
         }
 
      Product(Customer::View vCustomer)
         : m_vCustomer(self(), vCustomer)
         {
         }
 
   public:
      Customer::View getCustomer() const
         {
         return m_vCustomer;
         }
 
      void setCustomer(Customer::View vCustomer)
         {
         m_vCustomer= vCustomer;
         }
 
   private:
         MemberView<Customer> m_vCustomer;
   };

The serializer implementation registers an identity during deserialization and is defined
as follows:

class CustomerSerializer
   : public class_spec<CustomerSerializer,
      extends<Object>,
      implements<PofSerializer> >
   {
   friend class factory<CustomerSerializer>;
 
   public:
      void serialize(PofWriter::Handle hOut, Object::View v) const
         {
         Customer::View vCustomer = cast<Customer::View>(v);
         hOut->writeString(0, vCustomer->getName());
         hOut->writeObject(1, vCustomer->getProduct());
         hOut->writeRemainder(NULL);
         }

      Object::Holder deserialize(PofReader::Handle hIn) const

Chapter 11
Using POF Object References

11-12



         {
         String::View vsName = cast<String::View>(hIn->readString(0));
         Customer::Holder ohCustomer = Customer::create(vsName);
 
         hIn->registerIdentity(ohCustomer);
         ohCustomer->setProduct(cast<Product::View>(hIn->readObject(1)));
         hIn->readRemainder();
         return ohCustomer;
         }
   };

11.5 Registering Custom C++ Types
In addition to being made serializable, each class must also be associated with
numeric type IDs. These IDs are well-known across the cluster. Within the cluster, the
ID-to-class mapping is configured by using POF user type configuration elements;
within C++, the mapping is embedded within the class definition in the form of an ID
registration, which is placed within the class's .cpp source file.

The registration technique differs slightly with each serialization approach:

• COH_REGISTER_MANAGED_CLASS(ID, TYPE)—for use with Managed<T>

• COH_REGISTER_PORTABLE_CLASS(ID, TYPE)—for use with PortableObject

• COH_REGISTER_POF_SERIALIZER(ID, CLASS, SERIALIZER)—for use with PofSerializer

Examples of these registrations can be found in above examples.

Note:

Registrations must appear only in the implementation (.cpp) files. A POF
configuration file is only needed on the nodes where objects are serialized and
deserialize.

11.6 Implementing a Java Version of a C++ Object
A C++ object must have a parallel Java implementation on the cluster if direct access
to the deserialized object is required.
The use of POF allows key and value objects to be stored within the cluster without
the need for parallel Java implementations. This is ideal for performing basic get and
put based operations. In addition, the PofExtractor and PofUpdater APIs add flexibility
in working with non-primitive types in Coherence. For many extend client cases, a
corresponding Java classes in the grid is not required. Because POF extractors and
POF updaters can navigate the binary, the entire key and value does not have to be
deserialized into object form. This implies that indexing can be achieved by simply
using POF extractors to pull a value to index on.

When to Include a Parallel Java Implementation

A parallel Java implementation is required whenever the Java-based cache servers
must directly interact with a data object rather then simply holding onto a serialized
representation of it. For example, a Java class is still required when using a cache
store. In this case, the deserialized version of the key and value is passed to the cache

Chapter 11
Registering Custom C++ Types

11-13



store to write to the back end. In addition, queries, filters, entry processors, and
aggregators require a Java implementation if direct access to the object is desired.

If a Java implementation is required, then the implementation must be located on the
cache servers. The approach to making the Java version serializable over POF is
similar to the above examples, see PortableObject and PofSerializer for details. These
APIs are compatible with all three of the C++ approaches.

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class
specifies data affinity using KeyAssociation. Key classes are checked on the client side
and a decorated binary is created and used by the cluster. However, existing client
implementations that do rely on a Java key class for key association must set the
defer-key-association-check parameter in order to force the use of the Java key class.
Existing client applications that use key association but want to leverage client-side
key binaries, must port the getAssociatedKey() implementation from the existing Java
class to the corresponding client class.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <defer-key-association-check> element, within a <remote-cache-
scheme> element, in the client-side cache configuration to true. For example:

<remote-cache-scheme>
   ...
   <defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Note:

If the parameter is set to true, a Java key class implementation must be found
on the cluster even if key association is no being used.

11.7 Understanding Serialization Performance
Both Managed<T> and PortableObject use PofSerializer to perform serialization. Each of
these approaches also adds some of its own overhead, for instance the Managed<T>
approach involves the creation of a temporary version of non-managed form of the
data object during deserialization. For PortableObject, the lack of support for const
data members can have a cost as it avoids optimizations which would have been
allowed for const data members. Overall the performance differences may be
negligible, but if seeking to achieve the maximum possible performance, direct
utilization of PofSerializer may be worth consideration.

11.8 Using POF Annotations to Serialize Objects
POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the PofAnnotationSerializer class which is an implementation of the
PofSerializer interface. Annotations offer an alternative to using the Managed<T>
adapter, PortableObject interface, and PofSerializer interface and reduce the amount
of time and code that is required to make objects serializable.

Chapter 11
Understanding Serialization Performance

11-14



This section includes the following topics:

• Annotating Objects for POF Serialization

• Registering POF Annotated Objects

• Enabling Automatic Indexing

• Providing a Custom Codec

11.8.1 Annotating Objects for POF Serialization
Two annotations are available to indicate that a class and its methods are POF
serializable:

• Portable – Marks the class as POF serializable. The annotation is only permitted
at the class level and has no members.

• PortableProperty – Marks a method accessor as a POF serialized property.
Annotated methods must conform to accessor notation (get, set, is). Members
can be used to specify POF indexes as well as custom codecs that are executed
before or after serialization or deserialization. Index values may be omitted and
automatically assigned. If a custom codec is not entered, the default codec is
used.

The following example demonstrates annotating a class and method and also explicitly
assigns property index values. Note that the class must be registered with the system
class loader COH_REGISTER_CLASS.

class Person
   : public class_spec<Person>
   {
   friend class factory<Person>;

   Public:
      String::View getFirstName() const
         {
         return m_vsFirstName;
         }

      void setFirstName(String::View vsFirstName)
         {
         m_vsFirstName = vsFirstName;
         }

   private: String m_firstName;
      MemberView<String> m_vsFirstName;
      MemberView<String> m_vsLastName;
      int32_t            m_nAge;

   public:
      static const int32_t FIRST_NAME = 0;
      static const int32_t LAST_NAME  = 1;
      static const int32_t AGE        = 2;
   };

COH_REGISTER_CLASS(TypedClass<Person>::create()
   ->annotate(Portable::create())
   ->declare(COH_PROPERTY(Person, FirstName, String::View)
      ->annotate(PortableProperty::create(Person::FIRST_NAME)))
   ->declare(COH_PROPERTY(Person, LastName, String::View)

Chapter 11
Using POF Annotations to Serialize Objects

11-15



      ->annotate(PortableProperty::create(Person::LAST_NAME)))
   ->declare(COH_PROPERTY(Person, Age, BoxHandle<const Integer32>)
      ->annotate(PortableProperty::create(Person::AGE)))
      );

11.8.2 Registering POF Annotated Objects
POF annotated objects must be registered as a user type using the
COH_REGISTER_POF_ANNOTATED_CLASS macro. The following example registers a user type
for an annotated Person object:

COH_REGISTER_POF_ANNOTATED_CLASS(1001, Person);

11.8.3 Enabling Automatic Indexing
POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. The index value can be omitted whenever defining
the PortableProperty annotation. Any property that does assign an explicit index value
is not assigned an automatic index value. The automatic index algorithm can be
described as follows:

Name Explicit Index Determined
Index

c 1 1

a omitted 0

b omitted 2

Note:

Automatic indexing does not currently support evolvable classes.

To enable automatic indexing, use the COH_REGISTER_POF_ANNOTATED_CLASS_AI pre-
processor macro when registering the user type. The following example registers a
user type for an annotated Person object that uses automatic indexing:

COH_REGISTER_POF_ANNOTATED_CLASS_AI(1001, Person);

11.8.4 Providing a Custom Codec
Codecs allow code to be executed before or after serialization or deserialization. The
codec defines how to encode and decode a portable property using the PofWriter and
PofReader interfaces. Codecs are typically used for concrete implementations that
could get lost when being deserialized or to explicitly call a specific method on the
PofWriter interface before serializing an object.

To create a codec, create a class that implements the Codec interface. The following
example demonstrates a codec that defines the concrete implementation of a linked
list type:

Chapter 11
Using POF Annotations to Serialize Objects

11-16



class LinkedListCodec
   : public class_spec<LinkedListCodec,
      extends<Object>,
      implements<Codec> >
   {
   friend class factory<LinkedListCodec>;
 
   public:
      void encode(PofWriter::Handle hOut, int32_t nIndex, Object::View ovValue)
         const
         {
            hOut->writeCollection(nIndex, cast<Collection::View>(ovValue));
         }

      Object::Holder decode(PofReader::Handle hIn, int32_t nIndex) const
         {
            LinkedList::Handle hLinkeList = LinkedList::create();
            return hIn->readCollection(nIndex, hLinkeList);
         }
   };
COH_REGISTER_TYPED_CLASS(LinkedListCodec);

To assign a codec to a property, enter the codec as a member of the PortableProperty
annotation. If a codec is not specified, a default codec (DefaultCodec) is used. The
following example demonstrates assigning the above LinkedListCodec codec:

COH_REGISTER_CLASS(TypedClass<Person>::create()
   ->annotate(Portable::create())
   ->declare(COH_PROPERTY(Person, FirstName, String::View)
      ->annotate(PortableProperty::create(Person::FIRST_NAME)))
   ->declare(COH_PROPERTY(Person, LastName, String::View)
      ->annotate(PortableProperty::create(Person::LAST_NAME)))
   ->declare(COH_PROPERTY(Person, Age, BoxHandle<const Integer32>)
      ->annotate(PortableProperty::create(Person::ALIASES,
SystemClassLoader::getInstance()->loadByType(typeid(LinkedListCodec)) )))
);

Chapter 11
Using POF Annotations to Serialize Objects

11-17



Chapter 11

Using POF Annotations to Serialize Objects

11-18



12
Querying a Cache (C++)

You can query Coherence caches from C++ clients.
This chapter includes the following sections:

• Overview of Query Functionality

• Performing Simple Queries

• Understanding Query Concepts

• Performing Queries Involving Multi-Value Attributes

• Using a Chained Extractor in a Query

• Using a Query Recorder

12.1 Overview of Query Functionality
Coherence can perform queries and indexes against currently cached data that meets
a given set of criteria. Queries and indexes can be simple, employing filters packaged
with Coherence, or they can be run against multi-value attributes such as collections
and arrays. The result set may be sorted if desired. Queries are evaluated with Read
Committed isolation.
It should be noted that queries apply only to currently cached data (and do not use the
CacheLoader interface to retrieve additional data that may satisfy the query). Thus, the
data set should be loaded entirely into cache before queries are performed. In cases
where the data set is too large to fit into available memory, it may be possible to
restrict the cache contents along a specific dimension (for example, "date") and
manually switch between cache queries and database queries based on the structure
of the query. For maintainability, this is usually best implemented inside a cache-aware
data access object (DAO).

Indexing requires the ability to extract attributes on each Partitioned cache node; For
dedicated CacheServer instances, this implies (usually) that application classes must be
installed in the CacheServer classpath.

For Local and Replicated caches, queries are evaluated locally against unindexed
data. For Partitioned caches, queries are performed in parallel across the cluster,
using indexes if available. Coherence includes a Cost-Based Optimizer (CBO). Access
to unindexed attributes requires object deserialization (though indexing on other
attributes can reduce the number of objects that must be evaluated).

12.2 Performing Simple Queries
You can use a value extractor and filter to query a cache.
The following example uses an a value extractor and filter to query a cache.

ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor, 
Integer32::valueOf(18));

12-1



for (Iterator::Handle hIter = hCache->entrySet(vFilter)->iterator(); hIter-
>hasNext(); )
    {
    Map::Entry::Handle hEntry  = cast<Map::Entry::Handle>(hIter->next());
    Integer32::View    vKey    = cast<Integer32::View>(hEntry->getKey());
    Person::Handle     hPerson = cast<Person::Handle>(hEntry->getValue());
    std::cout << "key=" << vKey << " person=" << hPerson;
    }

Coherence provides a wide range of filters in the coherence::util::Filter package. A
LimitFilter may be used to limit the amount of data sent to the client, and also to
provide "paging" for users:

int32_t                nPageSize  = 25;
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View           vFilter    = GreaterEqualsFilter::create(hExtractor, 
Integer32::valueOf(18));

// get entries 1-25
LimitFilter::Handle    hLimitFilter = LimitFilter::create(vFilter, nPageSize);
Set::View              vEntries     = hCache->entrySet(hLimitFilter);

// get entries 26-50
hLimitFilter->nextPage();
vEntries = hCache->entrySet(hLimitFilter);

Any queryable attribute may be indexed with the addIndex method of the QueryMap
class:

// addIndex(ValueExtractor::View vExtractor, boolean_t fOrdered, Comparator::View 
vComparator)
hCache->addIndex(hExtractor, true, NULL);

The fOrdered argument specifies whether the index structure is sorted. Sorted indexes
are useful for range queries, including "select all entries that fall between two dates"
and "select all employees whose family name begins with 'S'". For "equality" queries,
an unordered index may be used, which may have better efficiency in terms of space
and time.

The comparator argument provides a custom java.util.Comparator for ordering the
index.

Note:

This method is only intended as a hint to the cache implementation, and as
such it may be ignored by the cache if indexes are not supported or if the
desired index (or a similar index) exists. It is expected that an application calls
this method to suggest an index even if the index exists, just so that the
application is certain that index has been suggested. For example, in a
distributed environment each server likely suggests the same set of indexes
when it starts, and there is no downside to the application blindly requesting
those indexes regardless of whether another server has requested the same
indexes.

Note that queries can be combined by Coherence if necessary, and also that
Coherence includes a cost-based optimizer (CBO) to prioritize the usage of indexes.

Chapter 12
Performing Simple Queries

12-2



To take advantage of an index, queries must use extractors that are equal ((Object-
>equals()) to the one used in the query.

Querying Partitioned Caches

The Partitioned Cache implements the QueryMap interface using the Parallel Query
feature and results in high performance queries even for large data sets.

Querying Near Caches

Although queries can be executed through a near cache, the query does not use the
front portion of a near cache. If using a near cache with queries, the best approach is
to use the following sequence:

Set::View vSetKeys   = hCache->keySet(vFilter);
Map::View vMapResult = hCache->getAll(vSetKeys);

12.3 Understanding Query Concepts
The concept of querying is based on the ValueExtractor interface. A value extractor is
used to extract an attribute from a given object for querying (and similarly, indexing).
Most developers only need the ReflectionExtractor implementation of this interface.
The ReflectionExtractor uses reflection to extract an attribute from a value object by
referring to a method name, typically a "getter" method like getName().

ReflectionExtractor::Handle hExtractor = ReflectionExtractor::create("getName");

Any void argument method can be used, including Object methods like toString()
(useful for prototyping/debugging). Indexes may be either traditional field indexes
(indexing fields of objects) or function-based indexes (indexing virtual object
attributes). For example, if a class has field accessors getFirstName and getLastName,
the class may define a function getFullName which concatenates those names, and this
function may be indexed.

To query a cache that contains objects with getName attributes, a Filter must be used.
A filter has a single method which determines whether a given object meets a criterion.

Filter::Handle hEqualsFilter = EqualsFilter::create(hExtractor, String::create("Bob 
Smith"));

To select the entries of a cache that satisfy a particular filter:

for (Iterator::Handle hIter = hCache->entrySet(hEqualsFilter)->iterator(); hIter-
>hasNext(); )
    {
    Map::Entry::Handle hEntry  = cast<Map::Entry::Handle>(hIter->next());
    Integer32::View    vKey    = cast<Integer32::View>(hEntry->getKey());
    Person::Handle     hPerson = cast<Person::Handle>(hEntry->getValue());
    std::cout << "key=" << vKey << " person=" << hPerson;
    }

To select and also sort the entries:

// entrySet(Filter::View vFilter, Comparator::View vComparator)
Iterator::Handle hIter = hCache->entrySet(hEqualsFilter, NULL)->iterator();

The additional NULL argument specifies that the result set should be sorted using the
"natural ordering" of Comparable objects within the cache. The client may explicitly
specify the ordering of the result set by providing an implementation of Comparator.

Chapter 12
Understanding Query Concepts

12-3



Note that sorting places significant restrictions on the optimizations that Coherence
can apply, as sorting requires that the entire result set be available before sorting.

Using the keySet form of the queries—combined with getAll()—may provide more
control over memory usage:

// keySet(Filter::View vFilter)
Set::View   vSetKeys     = hCache->keySet(vFilter);
Set::Handle hSetPageKeys = HashSet::create();
int32_t     PAGE_SIZE    = 100;
for (Iterator::Handle hIter = vSetKeys->iterator(); hIter->hasNext();)
    {
    hSetPageKeys->add(hIter->next());
    if (hSetPageKeys->size() == PAGE_SIZE || !hIter->hasNext())
        {
        // get a block of values
        Map::View vMapResult = hCache->getAll(hSetPageKeys);

        // process the block
        // ...

        hSetPageKeys->clear();
        }
    }

12.4 Performing Queries Involving Multi-Value Attributes
Coherence supports indexing and querying of multi-value attributes including
collections and arrays. When an object is indexed, Coherence verifies if it is a multi-
value type, and then indexes it as a collection rather than a singleton.
The ContainsAllFilter, ContainsAnyFilter, and ContainsFilter are used to query
against collections with multi-value attributes.

Set::Handle hSearchTerms = HashSet::create();
hSearchTerms->add(String::create("java"));
hSearchTerms->add(String::create("clustering"));
hSearchTerms->add(String::create("books"));

// The cache contains instances of a class "Document" which has a method
// "getWords" which returns a Collection<String> containing the set of
// words that appear in the document.
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getWords");
Filter::View           vFilter    = ContainsAllFilter::create(hExtractor, 
hSearchTerms);

Set::View vEntrySet = hCache->entrySet(vFilter);

// iterate through the search results
// ...

12.5 Using a Chained Extractor in a Query
The ChainedExtractor implementation allows chained invocation of zero-argument
(accessor) methods.
The following example extractor first uses reflection to call getName() on each cached
Person object, and then use reflection to call length() on the returned String. This
extractor could be passed into a query, allowing queries (for example) to select all
people with names not exceeding 10 letters.

Chapter 12
Performing Queries Involving Multi-Value Attributes

12-4



ChainedExtractor::Handle hExtractor = 
ChainedExtractor::create(ChainedExtractor::createExtractors("getName.length"));

Method invocations may be chained indefinitely, for example: getName.trim.length.

POF extractors and POF updaters offer the same functionality as ChainedExtractors
through the use of the SimplePofPath class. See Using POF Extractors and POF
Updaters in Developing Applications with Oracle Coherence.

12.6 Using a Query Recorder
The QueryRecorder class produces an explain or trace record for a given filter. The
class is an implementation of a parallel aggregator that is capable querying all nodes
in a cluster and aggregating the results. The class supports two record types: an
QueryRecorder::explain record that provides the estimated cost of evaluating a filter as
part of a query operation and a QueryRecorder::trace record that provides the actual
cost of evaluating a filter as part of a query operation. Both query records take into
account whether or not an index can be used by a filter. See Interpreting Query
Records in Developing Applications with Oracle Coherence.
To create a query record, create a new QueryRecorder instance that specifies a
RecordType parameter. Include the instance and the filter to be tested as parameters of
the Aggregate method. The following example creates an explain record:

NamedCache::Handle hCache = CacheFactory::getCache("MyCache");

IdentityExtractor::View hExtract = IdentityExtractor::getInstance();
OrFilter::Handle hFilter = OrFilter::create(
   GreaterEqualsFilter::create(hExtract, Integer32::create(50)),
   LessEqualsFilter::create(hExtract, Integer32::create(20)));
 
QueryRecord::View vRecord = cast<QueryRecord::View>(hCache->aggregate(
   (Filter::View) hFilter, QueryRecorder::create(QueryRecorder::explain)));

cout << vRecord;

To create a trace record, change the RecordType parameter to trace:

QueryRecord::View vRecord = cast<QueryRecord::View>(hCache->aggregate(
   (Filter::View) hFilter, QueryRecorder::create(QueryRecorder::trace)));

Chapter 12
Using a Query Recorder

12-5



Chapter 12

Using a Query Recorder

12-6



13
Performing Continuous Queries (C++)

You can use Continuous Query Caching in a C++ client to ensure that a query always
retrieves the latest results from a cache in real-time.
This chapter includes the following sections:

• Overview of Performing Continuous Queries (C++)

• Understanding the Use Cases for Continuous Query Caching

• Understanding the Continuous Query Caching Implementation

• Defining a Continuous Query Cache

• Cleaning up Continuous Query Cache Resources

• Caching Only Keys Versus Keys and Values

• Listening to a Continuous Query Cache

• Making a Continuous Query Cache Read-Only

13.1 Overview of Performing Continuous Queries (C++)
Queries provide the ability to obtain a point in time query result from a Coherence
cache and it is possible to receive events that would change the result of that query.
However, the continuous query feature combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times
every millisecond.
A continuous query cache is similar to a materialized view in the Oracle database. A
materialized view copies data queried from the database tables into the view. If there
are any changes to the data in the database, then the data in the view is automatically
updated. Materialized views enable you to see changes to the result set. In continuous
query, a local copy of the cache is created on the client. Filters allow you to limit the
size and content of the cache. Combined with an event listener, the cache can be
updated in real time.

For example, to monitor, in real time, all sales orders for several customers. You can
create a continuous query cache and set up an event listener that listens for any
events pertaining to the customers. Coherence queries for all of the data objects on
the grid that pertain to a particular customer and copies them to a local cache. The
event listener on the query listens for any inserts, updates, or deletes that take place
on the grid for the customer. When an event occurs, the local copy of the customer
data is updated.

13-1



13.2 Understanding the Use Cases for Continuous Query
Caching

Continuous Query Caching is ideal for many use cases, such as event processing and
instant access to up-to-date query results.
Consider using Continuous Query Caching in the following situations:

• A Continuous Query Cache is an ideal building block for Complex Event
Processing (CEP) systems and event correlation engines.

• A Continuous Query Cache is ideal for situations in which an application repeats a
particular query and would benefit from always having instant access to the up-to-
date result of that query.

• A Continuous Query Cache is analogous to a materialized view and is useful for
accessing and manipulating the results of a query using the standard NamedCache
API, and receiving an ongoing stream of events related to that query.

• A Continuous Query Cache can be used in a manner similar to a Near Cache
because it maintains an up-to-date set of data locally where it is being used, for
example, on a particular server node or on a client. Note that while a Near Cache
is invalidation-based, a Continuous Query Cache actually maintains its data in an
up-to-date manner.

By combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

Note:

Continuous Query Caches are useful in almost every type of application,
including both client-based and server-based applications, because they
provide the ability to very easily and efficiently maintain an up-to-date local
copy of a specified sub-set of a much larger and potentially distributed cached
data set.

13.3 Understanding the Continuous Query Caching
Implementation

The Coherence implementation of Continuous Query is found in the
ContinuousQueryCache class. This class, like all Coherence caches, implements the
standard NamedCache interface, which includes the following capabilities:

• Cache access and manipulation using the Map interface: NamedCache extends the
Map interface, which is based on the Map interface from the Java Collections
Framework.

• Events for all object modifications that occur within the cache: NamedCache extends
the ObservableMap interface.

• Querying the objects in the cache: NamedCache extends the QueryMap interface.

Chapter 13
Understanding the Use Cases for Continuous Query Caching

13-2



• Distributed Parallel Processing and Aggregation of objects in the cache:
NamedCache extends the InvocableMap interface.

Since the ContinuousQueryCache implements the NamedCache interface, which is the same
API provided by all Coherence caches, it is extremely simple to use, and it can be
easily substituted for another cache when its functionality is called for.

13.4 Defining a Continuous Query Cache
Continuous query caching requires an underlying cache and a query filter.
The underlying cache can be any Coherence cache, including another Continuous
Query Cache. The most straight-forward way of obtaining a cache is by using the
CacheFactory class. This class enables you to create a cache simply by specifying its
name. It is created automatically and its configuration is based on the application's
cache configuration elements. For example, the following line of code creates a cache
named orders:

NamedCache::Handle hCache = CacheFactory::getCache("orders");

The query is the same type of query that would be used to query any other cache. The
following example illustrates how you can use code filters to find a given trader with a
given order status:

ValueExtractor::Handle hTraderExtractor = ReflectionExtractor::create("getTrader");
ValueExtractor::Handle hStatusExtractor = ReflectionExtractor::create("getStatus");

Filter::Handle hFilter = AndFilter::create(EqualsFilter::create(hTraderExtractor, 
vTraderId),
   EqualsFilter::create(hStatusExtractor, vStatus));

Normally, to query a cache, you could use a method from the QueryMap class. For
example, to obtain a snap-shot of all open trades for this trader:

Set::View vSetOpenTrades = hCache->entrySet(hFilter);

In contrast, the Continuous Query Cache is constructed from the
ContinuousQueryCache::create method, passing the cache and the filter:

ContinuousQueryCache::Handle hCacheOpenTrades  = 
ContinuousQueryCache::create(hCache, hFilter);

13.5 Cleaning up Continuous Query Cache Resources
A Continuous Query Cache places one or more event listeners on its underlying
cache. If a Continuous Query Cache is used for the duration of the application, then
the resources is cleaned up when the node is shut down or otherwise stops. If a
Continuous Query Cache is only used for a period of time, then the application must
call the release method.

13.6 Caching Only Keys Versus Keys and Values
When constructing a Continuous Query Cache, you can specify that the cache should
only keep track of the keys that result from the query and obtain the values from the
underlying cache only when they are asked for. This feature may be useful for creating
a Continuous Query Cache that represents a very large query result set or if the
values are never or rarely requested.

Chapter 13
Defining a Continuous Query Cache

13-3



To specify that only the keys should be cached, pass false when creating the
ContinuousQueryCache; for example:

ContinuousQueryCache::Handle hCacheOpenTrades  = 
        ContinuousQueryCache::create(hCache, hFilter, false);

If necessary, the CacheValues property can be modified after the cache has been
instantiated; for example:

hCacheOpenTrades->setCacheValues(true);

• CacheValues Property and Event Listeners

• Using ReflectionExtractor with Continuous Query Caches

13.6.1 CacheValues Property and Event Listeners
If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the CacheValues property is automatically set to
true. This is because the Continuous Query Cache uses the locally cached values to
filter events and to supply the old and new values for the events that it raises.

13.6.2 Using ReflectionExtractor with Continuous Query Caches
When the Continuous Query Cache is configured to cache values, the use of the
ReflectionExtractor is not supported. This is because the ReflectionExtractor does
not support reflection in C++. In this case, you must provide a custom extractor. When
the Continuous Query Cache is not caching values locally, the ReflectionExtractor
can be used since it does not perform the extraction on the client but instead passes
the necessary extraction information to the cluster to perform the query.

13.7 Listening to a Continuous Query Cache
A client can place one or more event listeners onto a Continuous Query Cache.
For example:

ContinuousQueryCache::Handle hCacheOpenTrades  = 
ContinuousQueryCache::create(hCache, hFilter);
hCacheOpenTrades->addFilterListener(hListener);

If your application has to perform some processing against every item that is in the
cache and every item added to the cache, then provide the listener during
construction. The resulting cache receives one event for each item that is in the
Continuous Query Cache, whether it was there to begin with (because it was in the
query) or if it got added during or after the construction of the cache. One form of the
factory create method of ContinuousQueryCache enables you to specify a cache, a filter,
and a listener:

ContinuousQueryCache::Handle hCacheOpenTrades  = ContinuousQueryCache::create(
        hRemoteCache, hFilter, true, hListener);

By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the ContinuousQueryCache implementation does respect the
option for synchronous events as provided by the SynchronousListener interface.

This section includes the following topics:

Chapter 13
Listening to a Continuous Query Cache

13-4



• Avoiding Unexpected Results

• Achieving a Stable Materialized View

13.7.1 Avoiding Unexpected Results
There are two alternate approaches to processing the items in the Continuous Query
Cache, both of which could yield unexpected and unwanted results. First, if you
perform the processing and then add the listener to handle any later additions, then
events that occur in the split second after the iteration and before the listener is added
are missed. For example:

ContinuousQueryCache::Handle hCacheOpenTrades  = 
ContinuousQueryCache::create(hCache, hFilter);

for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator(); hIter-
>hasNext(); )
    {
    Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
    // .. process the cache entry
    }
hCacheOpenTrades->addFilterListener(hListener);

The second approach is to add a listener first, so that no events are missed, and then
do the processing. Although, the same entry may appear in both an event and in the
Iterator. The events can be asynchronous, so the sequence of operations cannot be
guaranteed.

ContinuousQueryCache::Handle hCacheOpenTrades  = 
        ContinuousQueryCache::create(hRemoteCache, hFilter);

hCacheOpenTrades->addFilterListener(hListener);
for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator(); hIter-
>hasNext(); )
    {
    Map::Entry::View vEntry = cast<Map::Entry::View>(hIter->next());
    // .. process the cache entry
    }

13.7.2 Achieving a Stable Materialized View
The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts.
First, Coherence supports an option for synchronous events, which provides a set of
ordering guarantees. Secondly, the Continuous Query Cache has a two-phase
implementation of its initial population that allows it to first query the underlying cache
and then subsequently resolve all of the events that came in during the first phase.
Since achieving these guarantees of data visibility without any missing or repeated
events is fairly complex, the ContinuousQueryCache allows a developer to pass a listener
during construction, thus avoiding exposing these same complexities to the application
developer.

13.8 Making a Continuous Query Cache Read-Only
A Continuous Query Cache can be made into a read-only cache by using the boolean
setReadOnly method on the ContinuousQueryCache class.

Chapter 13
Making a Continuous Query Cache Read-Only

13-5



For example:

hCacheOpenTrades->setReadOnly(true);

A read-only Continuous Query Cache does not allow objects to be added to, changed
in, removed from, or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed
back to read/write.

Chapter 13
Making a Continuous Query Cache Read-Only

13-6



14
Performing Remote Invocations (C++)

You can perform remote invocations on Coherence caches from C++ clients.
This chapter includes the following sections:

• Overview of Performing Remote Invocations (C++)

• Configuring and Using the Remote Invocation Service

• Registering Invocable Implementation Classes

14.1 Overview of Performing Remote Invocations (C++)
An Invocable can execute any arbitrary action and can use any cluster-side services
(cache services, grid services, and so on) necessary to perform their work. The
Invocable operations can also be stateful, which means that their state is serialized
and transmitted to the grid nodes on which the Invocable is run.
Coherence for C++ provides a Remote Invocation Service which allows the
execution of Invocables within the cluster-side JVM to which the client is connected. In
Java, Invocables are simply runnable application classes that implement the
com.tangosol.net.Invocable interface. To employ an Invocable in Coherence for C++,
you must deploy a compiled Java implementation of the Invocable task on the cluster-
side node, in addition to providing a C++ implementation of Invocable:
coherence::net::Invocable. Since execution is server-side (that is, Java), the C++
invocable need only be concerned with state; the methods themselves can be no-
operations.

14.2 Configuring and Using the Remote Invocation Service
A Remote Invocation Service is configured using the remote-invocation-scheme
element in the cache configuration descriptor.
The following example illustrates a remote invocation scheme configuration.

<remote-invocation-scheme>
    <scheme-name>example-invocation</scheme-name>
    <service-name>ExtendTcpInvocationService</service-name>
    <initiator-config>
      <tcp-initiator>
        <remote-addresses>
          <socket-address>
            <address>localhost</address>
            <port>7077</port>
          </socket-address>
        </remote-addresses>
      </tcp-initiator>

      <outgoing-message-handler>
        <request-timeout>30s</request-timeout>
      </outgoing-message-handler>
    </initiator-config>
</remote-invocation-scheme>

14-1



A reference to a configured Remote Invocation Service can then be obtained by name
by using the coherence::net::CacheFactory class:

InvocationService::Handle hService = 
hService::getService("ExtendTcpInvocationService");

To execute an agent on the grid node to which the client is connected requires only
one line of code:

Map::View hResult = hService->query(myTask::create(), NULL);

The Map returned from query is keyed by the member on which the query is run. For
Extend clients, there is no concept of membership, so the result is keyed by the local
member which can be retrieved by calling
CacheFactory::getConfigurableCacheFactory()::GetLocalMember()

14.3 Registering Invocable Implementation Classes
Like cached value objects, all Invocable implementation classes must be correctly
registered in the POF context of the C++ application and cluster-side node to which
the client is connected. See PortableObject (Self-Serialization) . As such, a Java
implementation of the Invocable task (a com.tangosol.net.Invocable implementation)
must be created, compiled, and deployed on the cluster-side node. See Registering
Custom C++ Types.

Chapter 14
Registering Invocable Implementation Classes

14-2



15
Using Cache Events (C++)

You can use map event listeners to receive cache events and events from any class in
Coherence that implements the ObservableMap interface.
This chapter includes the following sections:

• Overview of Map Events (C++)

• Caches and Classes that Support Events

• Signing Up for all Events

• Using a Multiplexing Map Listener

• Configuring a MapListener for a Cache

• Signing Up for Events on Specific Identities

• Filtering Events

• Using Lite Events

• Listening to Queries

• Using Synthetic Events

• Using Backing Map Events

• Using Synchronous Event Listeners

15.1 Overview of Map Events (C++)
The event model is comprised of an EventListener interface that all listeners must
extend. Coherence provides a MapListener interface, which allows application logic to
receive events when data in a Coherence cache is added, modified or removed.
An application object that implements the MapListener interface can sign up for events
from any Coherence cache or class that implements the ObservableMap interface,
simply by passing an instance of the application's MapListener implementation to an
addMapListener() method.

The MapEvent object that is passed to the MapListener carries all of the necessary
information about the event that has occurred, including the source (ObservableMap)
that raised the event, the identity (key) that the event is related to, what the action was
against that identity (insert, update or delete), what the old value was and what the
new value is.

15.2 Caches and Classes that Support Events
All Coherence caches implement the ObservableMap interface, which allows an
application to receive cache events. Any cache can receive events, regardless of
whether that cache is local, partitioned, near, replicated, using read-through, write-
through, write-behind, overflow, disk storage, and so on.

15-1



Note:

Regardless of the cache topology and the number of servers, and even if the
modifications are being made by other servers, the events are delivered to the
application's listeners.

In addition to the Coherence caches (those objects obtained through a Coherence
cache factory), several other supporting classes in Coherence also implement the
ObservableMap interface:

• ObservableHashMap

• LocalCache

• OverflowMap

• NearCache

• ReadWriteBackingMap

• AbstractSerializationCache, SerializationCache, and SerializationPagedCache

• WrapperObservableMap, WrapperConcurrentMap, and WrapperNamedCache

For a full list of published implementing classes, see the Coherence API for
ObservableMap.

15.3 Signing Up for all Events
To sign up for events, pass an object that implements the MapListener interface to an
addMapListener method on ObservableMap.
For example:

virtual void addKeyListener(MapListener::Handle hListener, Object::View vKey, bool 
fLite) = 0;
virtual void removeKeyListener(MapListener::Handle hListener, Object::View vKey) = 0;
virtual void addFilterListener(MapListener::Handle hListener, Filter::View vFilter = 
NULL, bool fLite = false) = 0;
virtual void removeFilterListener(MapListener::Handle hListener, Filter::View 
vFilter = NULL) = 0;

Let's create an example MapListener implementation:

#include "coherence/util/MapEvent.hpp"
#include "coherence/util/MapListener.hpp"

#include <iostream>

using coherence::util::MapEvent;
using coherence::util::MapListener;
using namespace std;

/**
* A MapListener implementation that prints each event as it receives
* them.
*/
class EventPrinter 
    : public class_spec<EventPrinter,
        extends<Object>,

Chapter 15
Signing Up for all Events

15-2



        implements<MapListener> >
    {    
    friend class factory<EventPrinter>;

    public:
        virtual void entryInserted(MapEventView vEvent)
            {
            cout << vEvent << endl;
            }

        virtual void entryUpdated(MapEventView vEvent)
            {
            cout << vEvent << endl;
            }

        virtual void entryDeleted(MapEventView vEvent)
            {
            cout << vEvent << endl;
            }
    };

Using this implementation simplifies printing all events from any given cache (since all
caches implement the ObservableMap interface):

NamedCache::Handle hCache;
...
hCache->addFilterListener(EventPrinter::create());

Of course, to be able to later remove the listener, it is necessary to hold on to a
reference to the listener:

MapListener::Handle hListener = EventPrinter::create();
hCache->addFilterListener(hListener);
m_hListener = hListener; // store the listener in a member field

Later, to remove the listener:

MapListener::Handle hListener = m_hListener;
if (hListener != NULL)
    {
    hCache->removeFilterListener(hListener);
    m_hListener = NULL; // clean up the listener field
    }

Each add*Listener method on the ObservableMap interface has a corresponding
remove*Listener method. To remove a listener, use the remove*Listener method that
corresponds to the add*Listener method that was used to add the listener.

15.4 Using a Multiplexing Map Listener
The MultiplexingMapListener class routes all events to a single method for handling.
The following example illustrates a simple EventPrinter class:

#include "coherence/util/MultiplexingMapListener.hpp"

#include <iostream>

using coherence::util::MultiplexingMapListener;

Chapter 15
Using a Multiplexing Map Listener

15-3



class EventPrinter 
    : public class_spec<EventPrinter,
        extends<MultiplexingMapListener> >
    {
    public:
        virtual void onMapEvent(MapEventView vEvent)
            {
            std::cout << vEvent << std::endl;
            }
    };

15.5 Configuring a MapListener for a Cache
You can register a listener on a cache using the <listener> element in the cache
configuration. If configured, then Coherence automatically adds the listener when it
configures the cache. Registering a listener in the configuration is useful when a
listener should always be on a particular cache.

15.6 Signing Up for Events on Specific Identities
You can sign up for events that occur against specific identities (keys). The following
code in prints all events that occur against the Integer key 5:

hCache->addKeyListener(EventPrinter::create(), Integer32::create(5), false);

The following code only triggers an event when the Integer key 5 is inserted or
updated:

for (int32_t i = 0; i < 10; ++i)
    {
    Integer32::View vKey   = Integer32::create(i);
    Integer32::View vValue = vKey;
    hCache->put(vKey, vValue);
    }

15.7 Filtering Events
You can use a filter to listen for specific events. In the following example, a listener is
added to the cache with a filter that allows the listener to only receive delete events.

// Filters used with partitioned caches must implement 
coherence::io::pof::PortableObject

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/util/Filter.hpp"
#include "coherence/util/MapEvent.hpp"

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;
using coherence::util::Filter;
using coherence::util::MapEvent;

class DeletedFilter
    : public class_spec<DeletedFilter,

Chapter 15
Configuring a MapListener for a Cache

15-4



        extends<Object>,
        implements<Filter, PortableObject> >
    {
    public:
        // Filter interface        virtual bool evaluate(Object::View v) const
            {
            MapEvent::View vEvt = cast<MapEvent::View>(v);
            return MapEvent::entry_deleted == vEvt->getId();
            }

        // PortableObject interface        virtual void 
readExternal(PofReader::Handle hIn)
            {
            }

        virtual void writeExternal(PofWriter::Handle hOut) const
            {
            }
    };

hCache->addFilterListener(EventPrinter::create(), DeletedFilter::create(), false);

For example, if the following sequence of calls were made:

cache::put(String::create("hello"), String::create("world"));
cache::put(String::create("hello"), String::create("again"));
cache::remove(String::create("hello"));

The result would be:

CacheEvent{LocalCache deleted: key=hello, value=again}

See Listening to Queries .

Filtering Events Versus Filtering Cached Data

When building a Filter for querying, the object that is passed to the evaluate method
of the Filter is a value from the cache, or, if the Filter implements the EntryFilter
interface, the entire Map::Entry from the cache. When building a Filter for filtering
events for a MapListener, the object that is passed to the evaluate method of the Filter
is always of type MapEvent.

15.8 Using Lite Events
You can save resources by using lite events if an application does not require the old
and the new value to be included in the event. By default, Coherence provides both
the old and the new value as part of an event. Consider the following example:

MapListener::Handle hListener = EventPrinter::create();
// add listener with the default"lite" value of falsehCache-
>addFilterListener(hListener);

// insert a 1KB value
String::View vKey = String::create("test");
hCache->put(vKey, Array<octet_t>::create(1024));

// update with a 2KB value
hCache->put(vKey, Array<octet_t>::create(2048));

Chapter 15
Using Lite Events

15-5



// remove the value
hCache->remove(vKey);

When the above code is run, the insert event carries the new 1KB value, the update
event carries both the old 1KB value and the new 2KB value and the remove event
carries the removed 2KB value.

When adding a listener, you can request lite events by using either the
addFilterListener or the addKeyListener method that takes an additional boolean fLite
parameter. In the above example, the only change would be:

cache->addFilterListener(hListener, (Filter::View) NULL, true);

Note:

A lite event's old value and new value may be NULL. However, even if you
request lite events, the old and the new value might be included if there is no
additional cost to generate and deliver the event. In other words, requesting
that a MapListener receive lite events is simply a hint to the system that the
MapListener does not require knowledge of the old and new values for the
event.

15.9 Listening to Queries
Coherence caches support querying by any criteria. When an application queries for
data from a cache, the result is a point-in-time snapshot, either as a set of identities
(keySet) or a set of identity/value pairs (entrySet). The mechanism for determining the
contents of the resulting set is referred to as filtering, and it allows an application
developer to construct queries of arbitrary complexity using a rich set of out-of-the-box
filters (for example, equals, less-than, like, between, and so on), or to provide their
own custom filters (for example, XPath).
The same filters that are used to query a cache are used to listen to events from a
cache. For example, in a trading system it is possible to query for all open Order
objects for a particular trader.

Note:

The following example uses the
coherence::util::extractor::ReflectionExtractor class. While the C++ client
does not support reflection, ReflectionExtractor can be used for queries which
are executed in the cluster. In this case, the ReflectionExtractor simply
passes the necessary extraction information to the cluster to perform the
query. In cases where the ReflectionExtractor would extract the data on the
client, such as the ContinuousQueryCache when caching values locally, the use
of the ReflectionExtractor is not supported. For these cases, you must
provide a custom extractor.

NamedCache::Handle hMapTrades = ...
Filter::Handle hFilter = AndFilter::create(
        EqualsFilter::create(ReflectionExtractor::create("getTrader"), vTraderId),

Chapter 15
Listening to Queries

15-6



        EqualsFilter::create(ReflectionExtractor::create("getStatus"), 
Status::OPEN));
Set::View vSetOpenTrades = hMapTrades->entrySet(hFilter);

To receive notifications of new trades being opened for that trader, closed by that
trader or reassigned to or from another trader, the application can use the same filter:

// receive events for all trade IDs that this trader is interested in
hMapTrades->addFilterListener(hListener, MapEventFilter::create(hFilter), true);

The MapEventFilter converts a query filter into an event filter.

Note:

Filtering events versus filtering cached data: When building a Filter for
querying, the object that is passed to the evaluate method of the Filter is a
value from the cache, or, if the Filter implements the EntryFilter interface,
the entire Map::Entry from the cache. When building a Filter for filtering
events for a MapListener, the object that is passed to the evaluate method of
the Filter is always be of type MapEvent.

The MapEventFilter converts a Filter that is used to do a query into a Filter
that is used to filter events for a MapListener. In other words, the
MapEventFilter is constructed from a Filter that queries a cache, and the
resulting MapEventFilter is a filter that evaluates MapEvent objects by converting
them into the objects that a query Filter would expect.

The MapEventFilter has several very powerful options, allowing an application listener
to receive only the events that it is specifically interested in. More importantly for
scalability and performance, only the desired events have to be communicated over
the network, and they are communicated only to the servers and clients that have
expressed interest in those specific events. For example:

// receive all events for all trades that this trader is interested in
int32_t nMask = MapEventFilter::e_all;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter), 
true);

// receive events for all this trader's trades that are closed or
// re-assigned to a different trader
nMask = MapEventFilter::e_updated_left | MapEventFilter::e_deleted;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter), 
true);

// receive events for all trades as they are assigned to this trader
nMask = MapEventFilter::e_inserted | MapEventFilter::e_updated_entered;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter), 
true);

// receive events only for new trades assigned to this trader
nMask = MapEventFilter::e_inserted;
hMapTrades->addFilterListener(hListener, MapEventFilter::create(nMask, hFilter), 
true);

Chapter 15
Listening to Queries

15-7



15.10 Using Synthetic Events
An application can listen for synthetic events, which originate from operations within a
cache. Synthetic events are different than client events.
Events usually reflect the changes being made to a cache. For example, one server is
modifying one entry in a cache; while, another server is adding several items to a
cache; while, a third server is removing an item from the same cache; while, fifty
threads on each server in the cluster is accessing data from the same cache. All the
modifying actions produce events that any server within the cluster can choose to
receive. These actions are referred to as client actions and the events as being
dispatched to clients, even though the clients in this case are actually servers. This is
a natural concept in a true peer-to-peer architecture, such as a Coherence cluster:
Each and every peer is both a client and a server, both consuming services from its
peers and providing services to its peers. In a typical Java Enterprise application, a
peer is an application server instance that is acting as a container for the application,
and the client is that part of the application that is directly accessing and modifying the
caches and listening to events from the caches.

Some events originate from within a cache itself. There are many examples, but the
most common cases are:

• When entries automatically expire from a cache;

• When entries are evicted from a cache because the maximum size of the cache
has been reached;

• When entries are transparently added to a cache as the result of a Read-Through
operation;

• When entries in a cache are transparently updated as the result of a Read-Ahead
or Refresh-Ahead operation.

Each of these represents a modification, but the modifications represent natural (and
typically automatic) operations from within a cache. These events are referred to as
synthetic events.

When necessary, an application can differentiate between client-induced and synthetic
events simply by asking the event if it is synthetic. This information is carried on a sub-
class of the MapEvent, called CacheEvent. Using the previous EventPrinter example, it is
possible to print only the synthetic events:

class EventPrinter
    : public class_spec<EventPrinter,
        extends<MultiplexingMapListener> >
    {
    friend class factory<EventPrinter>;

    public:
        void onMapEvent(MapEvent::View vEvt)
            {
            if (instanceof<CacheEvent::View>(vEvt) &&
                (cast<CacheEvent::View>(vEvt)->isSynthetic()))
                {
                std::cout << vEvt;
                }
            }
    };

Chapter 15
Using Synthetic Events

15-8



For more information on this feature, see the API documentation for CacheEvent.

15.11 Using Backing Map Events
For some advanced use cases, you can listen to events on the map behind a service.
Replication, partitioning and other approaches to managing data in a distributed
environment are all distribution services. The data structure that actually manages the
data for a service is called a backing map.
Backing maps are configurable. If all the data for a particular cache should be kept in
object form on the heap, then use an unlimited and non-expiring LocalCache (or a
SafeHashMap if statistics are not required). If only a small number of items should be
kept in memory, use a LocalCache. If data are to be read on demand from a database,
then use a ReadWriteBackingMap (which knows how to read and write through an
application's DAO implementation), and in turn give the ReadWriteBackingMap a backing
map such as a SafeHashMap or a LocalCache to store its data in.

Some backing maps are observable. The events coming from these backing maps are
not usually of direct interest to the application. Instead, Coherence translates them into
actions that must be taken (by Coherence) to keep data synchronized and properly
backed up, and it also translates them when appropriate into clustered events that are
delivered throughout the cluster as requested by application listeners. For example, if
a partitioned cache has a LocalCache as its backing map, and the local cache expires
an entry, that event causes Coherence to expire all of the backup copies of that entry.
Furthermore, if any listeners have been registered on the partitioned cache, and if the
event matches their event filter(s), then that event is delivered to those listeners on the
servers where those listeners were registered.

In some advanced use cases, an application must process events on the server where
the data are being maintained, and it must do so on the structure (backing map) that is
actually managing the data. In these cases, if the backing map is an observable map,
a listener can be configured on the backing map or one can be programmatically
added to the backing map. (If the backing map is not observable, it can be made
observable by wrapping it in an WrapperObservableMap.)

15.12 Using Synchronous Event Listeners
Some events are delivered asynchronously, so that application listeners do not disrupt
the cache services that are generating the events. In some rare scenarios,
asynchronous delivery can cause ambiguity of the ordering of events compared to the
results of ongoing operations.

A MapListener implementation can use the SynchronousListener
marker interface to guarantee that the cache API operations and the
events are ordered as if the local view of the clustered system were
single-threaded.

One example in Coherence itself that uses synchronous listeners is the Near Cache,
which can use events to invalidate locally cached data.

Chapter 15
Using Backing Map Events

15-9



Chapter 15

Using Synchronous Event Listeners

15-10



16
Performing Transactions (C++)

You can use the Transaction Framework API to ensure cache
operations are performed within a transaction when using a C++
client.

The instructions do not provide detailed transaction API usage. See Using the
Transaction Framework API in Developing Applications with Oracle Coherence.

The following sections are included in this chapter and are required to perform
transactions:

• Using the Transaction API within an Entry Processor

• Creating a Stub Class for a Transactional Entry Processor

• Registering a Transactional Entry Processor User Type

• Configuring the Cluster-Side Transactional Caches

• Configuring the Client-Side Remote Cache

• Using a Transactional Entry Processor from a C++ Client

16.1 Using the Transaction API within an Entry Processor
C++ clients perform cache operations within a transaction by leveraging the
Transaction Framework API. The transaction API is not supported natively on C++ and
must be used within an entry processor. The entry processor is implemented in Java
on the cluster and an entry processor stub class is implemented in C++ on the client.
Both classes use POF to serialize between Java and C++.
Example 16-1 demonstrates an entry processor that performs a simple update
operation within a transaction using the transaction API. At run time, the class must be
located on the classpath of the extend proxy server.

Example 16-1    Entry Processor for Extend Client Transaction

package coherence.tests;

import com.tangosol.coherence.transaction.Connection;
import com.tangosol.coherence.transaction.ConnectionFactory;
import com.tangosol.coherence.transaction.DefaultConnectionFactory;
import com.tangosol.coherence.transaction.OptimisticNamedCache;
import 
com.tangosol.coherence.transaction.exception.PredicateFailedException;
import com.tangosol.coherence.transaction.exception.RollbackException;
import 
com.tangosol.coherence.transaction.exception.UnableToAcquireLockException;
import com.tangosol.util.Filter;
import com.tangosol.util.InvocableMap;
import com.tangosol.util.extractor.IdentityExtractor;
import com.tangosol.util.filter.EqualsFilter;
import com.tangosol.util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor implements PortableObject

16-1



   {
   public Object process(InvocableMap.Entry entry)
   {
      // obtain a connection and transaction cache
      ConnectionFactory connFactory = new DefaultConnectionFactory();
      Connection conn = connFactory.createConnection("TransactionalCache");
      OptimisticNamedCache cache = conn.getNamedCache("MyTxCache");
 
      conn.setAutoCommit(false);
 
      // get a value for an existing entry
      String sValue = (String) cache.get("existingEntry");
 
      // create predicate filter
      Filter predicate = new EqualsFilter(IdentityExtractor.INSTANCE, sValue);
 
      try
         {
            // update the previously obtained value
            cache.update("existingEntry", "newValue", predicate);
         }
      catch (PredicateFailedException e)
         {
            // value was updated after it was read
            conn.rollback();
            return false;
         }
      catch (UnableToAcquireLockException e)
         {
            // row is being updated by another tranaction
            conn.rollback();
            return false;
         }
      try
         {
            conn.commit();
         }
      catch (RollbackException e)
         {
            // transaction was rolled back
            return false;
         }
      return true;
   }

   public void readExternal(PofReader in)
      throws IOException
   {
   }
 
    public void writeExternal(PofWriter out)
      throws IOException
   {
   }
}

Chapter 16
Using the Transaction API within an Entry Processor

16-2



16.2 Creating a Stub Class for a Transactional Entry
Processor

An entry processor stub class allows a client to use the transactional entry processor
on the cluster. The stub class is implemented in C++ and uses POF for serialization.
POF allows an entry processor to be serialized between C++ and Java. The entry
processor stub class does not require any transaction logic and is a skeleton of the
transactional entry processor. See Building Integration Objects (C++).
Example 16-2 and Example 16-3 demonstrate a stub class and associated header file
for the transactional entry processor created in Example 16-1. In the example, POF
registration is performed within the class.

Example 16-2    Transaction Entry Processor C++ Stub Class

#include "coherence/tests/MyTxProcessor.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

COH_OPEN_NAMESPACE2(coherence,tests)
COH_REGISTER_PORTABLE_CLASS(1599, MyTxProcessor);

MyTxProcessor::MyTxProcessor()
   {
   }

void MyTxProcessor::readExternal(PofReader::Handle hIn)
   {
   }
 
void MyTxProcessor::writeExternal(PofWriter::Handle hOut) const
   {
   }
 
Object::Holder MyTxProcessor::process(InvocableMap::Entry::Handle hEntry) const
   {
   return NULL;
   }
 
COH_CLOSE_NAMESPACE2

Example 16-3    Transaction Entry Processor C++ Stub Class Header File

#ifndef COH_TX_EP_HPP
#define COH_TX_EP_HPP

#include "coherence/lang.ns"
#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/util/InvocableMap.hpp"
#include "coherence/util/processor/AbstractProcessor.hpp";

COH_OPEN_NAMESPACE2(coherence,tests)

using coherence::io::pof::PofReader;
using coherence::io::pof::PofWriter;
using coherence::io::pof::PortableObject;
using coherence::util::InvocableMap;

Chapter 16
Creating a Stub Class for a Transactional Entry Processor

16-3



using coherence::util::processor::AbstractProcessor;

class MyTxProcessor
   : public class_spec<MyTxProcessor,
      extends<AbstractProcessor>,
      implements<PortableObject> >

      { 
      friend class factory<MyTxProcessor>;
   
      protected:
         MyTxProcessor();
 
      public:
         virtual Object::Holder process(InvocableMap::Entry::Handle hEntry) 
const;    
 
      public:
         virtual void readExternal(PofReader::Handle hIn);
         virtual void writeExternal(PofWriter::Handle hOut) const;
      };

COH_CLOSE_NAMESPACE2
#endif // COH_TX_EP_HPP

16.3 Registering a Transactional Entry Processor User Type
An entry processor class must be registered as a POF user type in the cluster-side
POF configuration file. The registration must use the same type ID that was used to
register the stub class on the client side.
The following example demonstrates registering the MyTxProcessor class that was
created in Example 16-1 and uses the same type ID that was registered in 
Example 16-2

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
   coherence-pof-config.xsd">
   <user-type-list>
      <include>coherence-pof-config.xml</include>
      <include>txn-pof-config.xml</include>
      <user-type>
         <type-id>1599</type-id>
         <class-name>coherence.tests.MyTxProcessor</class-name>
      </user-type>
   </user-type-list>
</pof-config>

16.4 Configuring the Cluster-Side Transactional Caches
Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. Transactional caches are used by the Transaction Framework to
provide transactional guarantees. See Defining Transactional Caches in Developing
Applications with Oracle Coherence.
The following example creates a transactional cache that is named MyTxCache, which is
the cache name that was used by the entry processor in Example 16-1. The

Chapter 16
Registering a Transactional Entry Processor User Type

16-4



configuration also includes a proxy scheme and a distributed cache scheme that are
required to execute the entry processor from a remote client. The proxy is configured
to accept client TCP/IP connections on localhost at port 7077. See Configuring Extend
Proxies .

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <defaults>
      <serializer>pof</serializer>
   </defaults>
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>MyTxCache</cache-name>
         <scheme-name>example-transactional</scheme-name>
      </cache-mapping>
      <cache-mapping>
         <cache-name>dist-example</cache-name>
         <scheme-name>example-distributed</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>
 
   <caching-schemes>
      <transactional-scheme>
         <scheme-name>example-transactional</scheme-name>
         <service-name>TransactionalCache</service-name>
         <thread-count-min>2</thread-count-min>
         <thread-count-max>10</thread-count-max>
         <high-units>15M</high-units>
         <task-timeout>0</task-timeout>
         <autostart>true</autostart>
      </transactional-scheme>

      <distributed-scheme>
         <scheme-name>example-distributed</scheme-name>
         <service-name>DistributedCache</service-name>
         <backing-map-scheme>
            <local-scheme/>
         </backing-map-scheme>
         <autostart>true</autostart>
      </distributed-scheme>

      <proxy-scheme>
         <service-name>ExtendTcpProxyService</service-name>
         <autostart>true</autostart>
      </proxy-scheme>
   </caching-schemes>
</cache-config>

16.5 Configuring the Client-Side Remote Cache
Remote clients require a remote cache to connect to the cluster's proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file. See Configuring Extend Proxies .
The following example configures a remote cache to connect to a proxy that is located
on localhost at port 7077. In addition, the name of the remote cache (dist-example)

Chapter 16
Configuring the Client-Side Remote Cache

16-5



must match the name of a cluster-side cache that is used when initiating the
transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <defaults>
      <serializer>pof</serializer>
   </defaults>
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>dist-example</cache-name>
         <scheme-name>extend</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>
 
   <caching-schemes>
      <remote-cache-scheme>
         <scheme-name>extend</scheme-name>
         <service-name>ExtendTcpCacheService</service-name>
         <initiator-config>
            <tcp-initiator>
               <remote-addresses>
                  <socket-address>
                     <address>localhost</address>
                     <port>7077</port>
                  </socket-address>
               </remote-addresses>
            </tcp-initiator>
            <outgoing-message-handler>
               <request-timeout>30s</request-timeout>
            </outgoing-message-handler>
         </initiator-config>
      </remote-cache-scheme>
   </caching-schemes>
</cache-config>

16.6 Using a Transactional Entry Processor from a C++
Client

A client invokes an entry processor stub class the same way any entry processor is
invoked. However, at run time, the cluster-side entry processor is invoked. The client is
unaware that the invocation has been delegated to the Java class.
The following example demonstrates a client that uses the entry processor stub class
and results in an invocation of the transactional entry processor that was created in 
Example 16-1:

String::View vsCacheName = "dist-example";
String::View vsKey       = "AnyKey";
 
// retrieve the named cache
NamedCache::Handle hCache = CacheFactory::getCache(vsCacheName);
 
// invoke the cache

Chapter 16
Using a Transactional Entry Processor from a C++ Client

16-6



Object::View oResult = hCache->invoke(vsKey, MyTxProcessor::create());
std::cout << "Result of extend transaction execution: " << oResult << std::endl;

Chapter 16
Using a Transactional Entry Processor from a C++ Client

16-7



Chapter 16

Using a Transactional Entry Processor from a C++ Client

16-8



Part IV
Creating .NET Extend Clients

Learn how to use the Coherence*Extend .NET client library to create .NET clients that
access Coherence caches on the cluster.
Coherence for .NET contains the following chapters:

• Introduction to Coherence .NET Clients

• Building Integration Objects (.NET)

• Using the Coherence .NET Client Library

• Performing Continuous Queries (.NET)

• Performing Remote Invocations (.NET)

• Performing Transactions (.NET)

• Managing ASP.NET Session State





17
Introduction to Coherence .NET Clients

Learn about Coherence for .NET and how to set up Coherence .NET applications.
This chapter includes the following sections:

• Overview of Coherence for .NET

• Configuration and Usage for .NET Clients

17.1 Overview of Coherence for .NET
Coherence for .NET allows .NET applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for .NET include desktop and web applications that require
access to Coherence caches. See Installing the .NET Client Distribution in Installing
Oracle Coherence.
Coherence for .NET consists of a lightweight .NET library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
Partitioned or Replicated cache service).

An INamedCache instance is retrieved by using the CacheFactory.GetCache(...) API call.
After it is obtained, a client accesses the INamedCache in the same way as it would if it
were part of the Coherence cluster. The fact that INamedCache operations are being
sent to a remote cluster node (over TCP/IP) is completely transparent to the client
application.

17.2 Configuration and Usage for .NET Clients
Learn the main steps that are required to use Coherence .NET clients.
This section includes instructions for setting up .NET applications to use Coherence.
This section includes the following topics:

• General Instructions

• Configuring Coherence*Extend for .NET

• Obtaining a Cache Reference with .NET

• Cleaning Up Resources Associated with a Cache

• Using Network Filters

17.2.1 General Instructions
You can follow a basic set of steps for creating and using Coherence .NET clients. The
general steps include:

1. Configuring Coherence*Extend for .NET

17-1



2. Building Integration Objects (.NET)

3. Using the Coherence .NET APIs

4. Starting a Proxy Server

5. Launching the .NET client application

17.2.2 Configuring Coherence*Extend for .NET
Coherence for .NET clients use a specific XML schema for the Coherence cache
configuration file. Make sure the cache configuration file uses the following schema:

<cache-config xmlns="http://schemas.tangosol.com/cache"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://schemas.tangosol.com/cache
  assembly://Coherence/Tangosol.Config/cache-config.xsd">
  ...

For general instructions on setting up and configuring Coherence*Extend, refer to:

• Defining Extend Proxy Services

• Defining Caches for Use By Extend Clients

• Defining a Remote Cache

17.2.3 Obtaining a Cache Reference with .NET
A reference to a configured cache can be obtained by name by using the CacheFactory
class:

INamedCache cache = CacheFactory.GetCache("example-local-cache");

17.2.4 Cleaning Up Resources Associated with a Cache
INamedCache instances, including LocalCache, should be explicitly released by calling the
INamedCache.Release method when they are no longer needed. If the particular
INamedCache is used for the duration of the application, then the resources are cleaned
up when the application is shut down or otherwise stops. However, if the instance is
only used for a period of time, then the application should call its Release method when
finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable and that
all cache implementations delegate a call to IDisposable.Dispose to
INamedCache.Release. If you want to obtain and release a cache instance within a single
method, you can do so with a using block:

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{
   // use cache as usual
}

After the using block terminates, IDisposable.Dispose is called on the INamedCache
instance, and all resources associated with it are released.

Chapter 17
Configuration and Usage for .NET Clients

17-2



17.2.5 Using Network Filters
A network filter is a mechanism that allows transformation of data sent through TCP/IP
sockets to be performed in a pluggable, layered fashion. Coherence for .NET supports
custom filters, thus enabling users to modify the contents of the network traffic and is
commonly used to add compression and encryption to data.

This section includes the following topics:

• Custom Filters

• Configuring Filters

17.2.5.1 Custom Filters
To create a filter, create a .NET class that implements the
Tangosol.IO.IWrapperStreamFactory interface and optionally implements the
Tangosol.Util.IXmlConfigurable interface. The IWrapperStreamFactory interface defines
two methods:

Stream GetInputStream(Stream stream);
Stream GetOutputStream(Stream stream);

that provide the I/O stream to be wrapped ("filtered") (on input—received message, or
output—sending message) and expects a stream back that wraps the original stream.
This method is called for each incoming and outgoing message.

17.2.5.2 Configuring Filters
There are two steps to configuring a filter. The first step is to declare the filter in the
<filters> XML element in an operational override file. See filter in Developing
Applications with Oracle Coherence.

...
<cluster-config>
   <filters>
      <filter>
         <filter-name>gzip</filter-name>
         <filter-class>Tangosol.Net.CompressionFilter, Coherence</filter-class>
      </filter>
   </filters>
</cluster-config>
...

Note:

GZip compression filter is supported in .NET framework version 2.0 or higher.

The second step is to attach the filter to one or more specific services. To specify the
filter for a specific service, for example the ExtendTcpCacheService service, add a
<filter-name> element to the <use-filters> element of the service declaration in the
cache configuration file.

Chapter 17
Configuration and Usage for .NET Clients

17-3



...
<remote-cache-scheme>
   <scheme-name>extend-direct</scheme-name>
   <service-name>ExtendTcpCacheService</service-name>
   <initiator-config>
      ...
      <use-filters>
         <filter-name>gzip</filter-name>
      </use-filters>
      ...
   </initiator-config>
</remote-cache-scheme>
...

If the filter implements IXmlConfigurable, after instantiating the filter, Coherence sets
the Config property with the following XML element:

<config>
  <param1>value1</param1>
  <param2>value2</param2>
</config>

Chapter 17
Configuration and Usage for .NET Clients

17-4



18
Building Integration Objects (.NET)

You can use Portable Object Format (POF) serialization when creating .NET clients.
This chapter includes the following sections:

• Overview of Building Integration Objects (.NET)

• Creating an IPortableObject Implementation

• Implementing a Java Version of a .NET Object

• Registering Custom Types on the .NET Client

• Registering Custom Types in the Cluster

• Evolvable Portable User Types

• Making Types Portable Without Modification

• Using POF Object References

• Using POF Annotations to Serialize Objects

18.1 Overview of Building Integration Objects (.NET)
Coherence caches are used to cache value objects. .NET clients require a platform-
independent serialization format that allows both .NET clients and Coherence JVMs to
properly serialize and deserialize value objects that are stored in Coherence caches.
The Coherence for .NET client library and Coherence*Extend clustered service use a
serialization format known as Portable Object Format (POF). POF allows value objects
to be encoded into a binary stream in such a way that the platform and language origin
of the object is irrelevant. See The PIF-POF Binary Format in Developing Applications
with Oracle Coherence.
POF supports all common .NET types out-of-the-box. Custom .NET classes can also
be serialized to a POF stream by completing the following steps:

1. Create a .NET class that implements the IPortableObject interface. See Creating
an IPortableObject Implementation.

2. Create a matching Java class that implements the PortableObject interface in the
same way. See Creating a PortableObject Implementation (Java).

3. Register your custom .NET class on the client. See Registering Custom Types on
the .NET Client.

4. Register your custom Java class on each of the servers running the
Coherence*Extend clustered service. See Registering Custom Types in the
Cluster.

After these steps are complete, you can cache your custom .NET classes in a
Coherence cache in the same way as a built-in data type. Additionally, you can
retrieve, manipulate, and store these types from a Coherence or Coherence*Extend
JVM using the matching Java classes.

18-1



18.2 Creating an IPortableObject Implementation
Each class that implements IPortableObject can self-serialize and deserialize its state
to and from a POF data stream. This is achieved in the ReadExternal (deserialize) and
WriteExternal (serialize) methods. Conceptually, all user types are composed of zero
or more indexed values (properties) which are read from and written to a POF data
stream one by one. The only requirement for a portable class, other than the
requirement to implement the IPortableObject interface, is that it must have a default
constructor which allows the POF deserializer to create an instance of the class during
deserialization.
Example 18-1 illustrates a user-defined portable class:

Example 18-1    A User-Defined Portable Class

public class ContactInfo : IPortableObject
{
    private string name;
    private string street;
    private string city;
    private string state;
    private string zip;
    public ContactInfo()
    {}

    public ContactInfo(string name, string street, string city, string state, string 
zip)
    {
        Name   = name;
        Street = street;
        City   = city;
        State  = state;
        Zip    = zip;
    }
    public void ReadExternal(IPofReader reader)
    {
        Name   = reader.ReadString(0);
        Street = reader.ReadString(1);
        City   = reader.ReadString(2);
        State  = reader.ReadString(3);
        Zip    = reader.ReadString(4);
    }
    public void WriteExternal(IPofWriter writer)
    {
        writer.WriteString(0, Name);
        writer.WriteString(1, Street);
        writer.WriteString(2, City);
        writer.WriteString(3, State);
        writer.WriteString(4, Zip);
    }
    // property definitions ommitted for brevity
}

18.3 Implementing a Java Version of a .NET Object
A .NET object must have a parallel Java implementation on the cluster if direct access
to the deserialized object is required.

Chapter 18
Creating an IPortableObject Implementation

18-2



The use of POF allows key and value objects to be stored within the cluster without
the need for parallel Java implementations. This is ideal for performing basic get and
put based operations. In addition, the PofExtractor and PofUpdater APIs add flexibility
in working with non-primitive types in Coherence. For many extend client cases, a
corresponding Java classes in the grid is not required. Because POF extractors and
POF updaters can navigate the binary, the entire key and value does not have to be
deserialized into object form. This implies that indexing can be achieved by simply
using POF extractors to pull a value to index on.

When to Include a Parallel Java Implementation

A parallel Java implementation is required whenever the Java-based cache servers
must directly interact with a data object rather then simply holding onto a serialized
representation of it. For example, a Java class is still required when using a cache
store. In this case, the deserialized version of the key and value is passed to the cache
store to write to the back end. In addition, queries, filters, entry processors, and
aggregators require a Java implementation if direct access to the object is desired.

If a Java implementation is required, then the implementation must be located on the
cache servers. The approach to making the Java version serializable over POF is
demonstrated in Creating a PortableObject Implementation (Java).

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class
specifies data affinity using the IKeyAssociation interface. Key classes are checked on
the client side and a decorated binary is created and used by the cluster. However,
existing client implementations that do rely on a Java key class for key association
must set the defer-key-association-check parameter in order to force the use of the
Java key class. Existing client applications that use key association but want to
leverage client-side key binaries, must port the getAssociatedKey() implementation
from the existing Java class to the corresponding client class (see
IKeyAssociation.AssociatedKey.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <defer-key-association-check> element, within a <remote-cache-
scheme> element, in the client-side cache configuration to true. For example:

<remote-cache-scheme>
   ...
   <defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Note:

If the parameter is set to true, a Java key class implementation must be found
on the cluster even if key association is no being used.

This section includes the following topic:

• Creating a PortableObject Implementation (Java)

Chapter 18
Implementing a Java Version of a .NET Object

18-3



18.3.1 Creating a PortableObject Implementation (Java)
An implementation of the portable class in Java is very similar to the one in .NET. 
Example 18-2 illustrates the Java version of the .NET class in Example 18-1.

Example 18-2    A User-Defined Class in Java

public class ContactInfo implements PortableObject
    {    private String m_sName;

    private String m_sStreet;
    private String m_sCity;
    private String m_sState;
    private String m_sZip;
    public ContactInfo()
        {
        }
    public ContactInfo(String sName, String sStreet, String sCity, String sState, 
String sZip)
        {
        setName(sName);
        setStreet(sStreet);
        setCity(sCity);
        setState(sState);
        setZip(sZip);
        }
    public void readExternal(PofReader reader)
            throws IOException
        {
        setName(reader.readString(0));
        setStreet(reader.readString(1));
        setCity(reader.readString(2));
        setState(reader.readString(3));
        setZip(reader.readString(4));
        }
    public void writeExternal(PofWriter writer)
            throws IOException
        {
        writer.writeString(0, getName());
        writer.writeString(1, getStreet());
        writer.writeString(2, getCity());
        writer.writeString(3, getState());
        writer.writeString(4, getZip());
        }
    // accessor methods omitted for brevity
}

18.4 Registering Custom Types on the .NET Client
Each POF user type is represented within the POF stream as an integer value. As
such, POF requires an external mechanism that allows a user type to be mapped to its
encoded type identifier (and the opposite is true as well). The POF XML configuration
file maps user types to a type identifier. See POF User Type Configuration Elements in
Developing Applications with Oracle Coherence.
The following example demonstrates a POF configuration file:

<?xml version="1.0"?>
<pof-config xmlns="http://schemas.tangosol.com/pof">

Chapter 18
Registering Custom Types on the .NET Client

18-4



   <user-type-list>
    <!-- include all "standard" Coherence POF user types -->
      <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
      </include>
    <!-- include all application POF user types -->
      <user-type>
         <type-id>1001</type-id>
         <class-name>My.Example.ContactInfo, MyAssembly</class-name>
      </user-type>
   </user-type-list>
</pof-config>

There are few things to note:

• Type identifiers for your custom types should start from 1001 or higher, as the
numbers below 1000 are reserved for internal use. As shown in the above
example, the <user-type-list> includes the coherence-pof-config.xml file. This is
where Coherence specific user types are defined and should be included in all of
your POF configuration files

• You need not specify a fully qualified type name within the class-name element.
The type and assembly name is enough.

After you have configured mappings between type identifiers and your custom types,
you must configure Coherence for .NET to use them by adding a serializer element to
your cache configuration descriptor. The following examples assumes that the user
type mappings are saved in the my-dotnet-pof-config.xml file:

<remote-cache-scheme>
   <scheme-name>extend-direct</scheme-name>
   <service-name>ExtendTcpCacheService</service-name>
   <initiator-config>
   ...
      <serializer>
         <class-name>Tangosol.IO.Pof.ConfigurablePofContext, Coherence
         </class-name>
         <init-params>
            <init-param>
               <param-type>string</param-type>
               <param-value>my-dotnet-pof-config.xml</param-value>
            </init-param>
         </init-params>
      </serializer>
   </initiator-config>
</remote-cache-scheme>

If a serializer is not explicitly specified, the ConfigurablePofContext type is used for the
POF serializer and uses a default configuration file called pof-config.xml. The
Coherence .Net application looks for the default POF configuration file in both the
folder where the application is deployed and, for Web applications, in the root of the
Web application. If a POF configuration file is not found, it tries to located the file by
the contents of the pof-config element in the Coherence for .NET application
configuration file. For example:

<?xml version="1.0"?>
<configuration>
  <configSections>
    <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler, 
Coherence"/>
  </configSections>
  <coherence>

Chapter 18
Registering Custom Types on the .NET Client

18-5



    <pof-config>my-dotnet-pof-config.xml</pof-config>
  </coherence>
</configuration>

18.5 Registering Custom Types in the Cluster
Each Coherence node running the TCP/IP Coherence*Extend clustered service
requires a similar POF configuration for the custom types to be able to send and
receive objects of these types. The cluster-side POF configuration file looks similar to
the file created on the client. The only difference is that instead of .NET class names,
you must specify the fully qualified Java class names within the class-name element.
The following illustrates a sample cluster-side POF configuration file called my-java-
pof-config.xml:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
   coherence-pof-config.xsd">
   <user-type-list>
   <!-- include all "standard" Coherence POF user types -->
      <include>coherence-pof-config.xml</include>
   <!-- include all application POF user types -->
      <user-type>
         <type-id>1001</type-id>
         <class-name>com.mycompany.example.ContactInfo</class-name>
      </user-type>
   </user-type-list>
</pof-config>

After your custom types have been added, you must configure the server to use your
POF configuration when serializing objects:

<proxy-scheme>
   <service-name>ExtendTcpProxyService</service-name>
   <acceptor-config>
   ...
      <serializer>
         <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
         <init-params>
            <init-param>
               <param-type>string</param-type>
               <param-value>my-java-pof-config.xml</param-value>
            </init-param>
         </init-params>
      </serializer>
   </acceptor-config>
  ...
</proxy-scheme>

18.6 Evolvable Portable User Types
POF includes native support for both forward- and backward-compatibility of the
serialized form of portable user types. In .NET, this is accomplished by making user
types implement the IEvolvablePortableObject interface instead of the IPortableObject
interface.

Chapter 18
Registering Custom Types in the Cluster

18-6



The IEvolvablePortableObject interface is a marker interface that extends both the
IPortableObject and IEvolvable interfaces. The IEvolvable interface adds three
properties to support type versioning.An IEvolvable class has an integer version
identifier n, where n >= 0. When the contents, or semantics, or both of the serialized
form of the IEvolvable class changes, the version identifier is increased. Two versions
identifiers, n1 and n2, indicate the same version if n1 == n2; the version indicated by n2
is newer than the version indicated by n1 if n2 > n1.

The IEvolvable interface is designed to support the evolution of types by the addition
of data. Removal of data cannot be safely accomplished if a previous version of the
type exists that relies on that data. Modifications to the structure or semantics of data
from previous versions likewise cannot be safely accomplished if a previous version of
the type exists that relies on the previous structure or semantics of the data.

When an IEvolvable object is deserialized, it retains any unknown data that has been
added to newer versions of the type, and the version identifier for that data format.
When the IEvolvable object is subsequently serialized, it includes both that version
identifier and the unknown future data.

When an IEvolvable object is deserialized from a data stream whose version identifier
indicates an older version, it must default and calculate the values for any data fields
and properties that have been added since that older version. When the IEvolvable
object is subsequently serialized, it includes its own version identifier and all of its
data. Note that there is no unknown future data in this case; future data can only exist
when the version of the data stream is newer than the version of the IEvolvable type.

Example 18-3 demonstrates how the ContactInfo .NET type can be modified to
support class evolution:

Example 18-3    Modifying a Class to Support Class Evolution

public class ContactInfo : IEvolvablePortableObject
{
    private string name;
    private string street;
    private string city;
    private string state;
    private string zip;
    // IEvolvable members
    private int    version;
    private byte[] data;
    public ContactInfo()
    {}
    public ContactInfo(string name, string street, string city, string state, string 
zip)
    {
        Name   = name;
        Street = street;
        City   = city;
        State  = state;
        Zip    = zip;
    }
    public void ReadExternal(IPofReader reader)
    {
        Name   = reader.ReadString(0);
        Street = reader.ReadString(1);
        City   = reader.ReadString(2);
        State  = reader.ReadString(3);
        Zip    = reader.ReadString(4);
    }

Chapter 18
Evolvable Portable User Types

18-7



    public void WriteExternal(IPofWriter writer)
    {
        writer.WriteString(0, Name);
        writer.WriteString(1, Street);
        writer.WriteString(2, City);
        writer.WriteString(3, State);
        writer.WriteString(4, Zip);
    }
    public int DataVersion
    {
        get { return version; }
        set { version = value; }
    }
    public byte[] FutureData
    {
        get { return data; }
        set { data = value; }
    }
    public int ImplVersion
    {
        get { return 0; }
    }
    // property definitions ommitted for brevity
}

Likewise, the ContactInfo Java type can also be modified to support class evolution by
implementing the EvolvablePortableObject interface:

Example 18-4    Modifying a Java Type Class to Support Class Evolution

public class ContactInfo
        implements EvolvablePortableObject
    {
    private String m_sName;
    private String m_sStreet;
    private String m_sCity;
    private String m_sState;
    private String m_sZip;

    // Evolvable members
    private int    m_nVersion;
    private byte[] m_abData;

    public ContactInfo()
        {}

    public ContactInfo(String sName, String sStreet, String sCity,
            String sState, String sZip)
        {
        setName(sName);
        setStreet(sStreet);
        setCity(sCity);
        setState(sState);
        setZip(sZip);
        }

    public void readExternal(PofReader reader)
            throws IOException
        {
        setName(reader.readString(0));
        setStreet(reader.readString(1));

Chapter 18
Evolvable Portable User Types

18-8



        setCity(reader.readString(2));
        setState(reader.readString(3));
        setZip(reader.readString(4));
        }

    public void writeExternal(PofWriter writer)
            throws IOException
        {
        writer.writeString(0, getName());
        writer.writeString(1, getStreet());
        writer.writeString(2, getCity());
        writer.writeString(3, getState());
        writer.writeString(4, getZip());
        }

    public int getDataVersion()
        {
        return m_nVersion;
        }

    public void setDataVersion(int nVersion)        {
        m_nVersion = nVersion;
        }

    public Binary getFutureData()
        {
        return m_binData;
        }

    public void setFutureData(Binary binFuture)
        {
        m_binData = binFuture;
        }

    public int getImplVersion()
        {
        return 0;
        }

    // accessor methods omitted for brevity
    }

18.7 Making Types Portable Without Modification
In some cases, it may be undesirable or impossible to modify an existing user type to
make it portable. You can externalize the portable serialization of a user type by
creating an IPofSerializer implementation.
Example 18-5 illustrates, an implementation of the IPofSerializer interface for the
ContactInfo type.

Example 18-5    An Implementation of IPofSerializer for the .NET Type

public class ContactInfoSerializer : IPofSerializer
{
    public object Deserialize(IPofReader reader)
    {
        string name   = reader.ReadString(0);
        string street = reader.ReadString(1);
        string city   = reader.ReadString(2);
        string state  = reader.ReadString(3);

Chapter 18
Making Types Portable Without Modification

18-9



        string zip    = reader.ReadString(4);

        ContactInfo info = new ContactInfo(name, street, city, state, zip);
        info.DataVersion = reader.VersionId;
        info.FutureData  = reader.ReadRemainder();

        return info;
    }

    public void Serialize(IPofWriter writer, object o)
    {
        ContactInfo info = (ContactInfo) o;

        writer.VersionId = Math.Max(info.DataVersion, info.ImplVersion);
        writer.WriteString(0, info.Name);
        writer.WriteString(1, info.Street);
        writer.WriteString(2, info.City);
        writer.WriteString(3, info.State);
        writer.WriteString(4, info.Zip);
        writer.WriteRemainder(info.FutureData);
    }
}

An implementation of the PofSerializer interface for the ContactInfo Java type would
look similar:

Example 18-6    An Implementation of PofSerializer for the Java Type Class

public class ContactInfoSerializer
        implements PofSerializer
    {
    public Object deserialize(PofReader in)
            throws IOException
        {
        String sName   = in.readString(0);
        String sStreet = in.readString(1);
        String sCity   = in.readString(2);
        String sState  = in.readString(3);
        String sZip    = in.readString(4);

        ContactInfo info = new ContactInfo(sName, sStreet, sCity, sState, sZip);
        info.setDataVersion(in.getVersionId());
        info.setFutureData(in.readRemainder());

        return info;
        }

    public void serialize(PofWriter out, Object o)
            throws IOException
        {
        ContactInfo info = (ContactInfo) o;

        out.setVersionId(Math.max(info.getDataVersion(), info.getImplVersion()));
        out.writeString(0, info.getName());
        out.writeString(1, info.getStreet());
        out.writeString(2, info.getCity());
        out.writeString(3, info.getState());
        out.writeString(4, info.getZip());
        out.writeRemainder(info.getFutureData());
        }
    }

Chapter 18
Making Types Portable Without Modification

18-10



To register the IPofSerializer implementation for the ContactInfo .NET type, specify
the class name of the IPofSerializer within a serializer element under the user-type
element for the ContactInfo user type in the POF configuration file. For example:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://schemas.tangosol.com/pof
   assembly://Coherence/Tangosol.Config/pof-config.xsd">
   <user-type-list>
   <!-- include all "standard" Coherence POF user types -->
      <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
      </include>
   <!-- include all application POF user types -->
      <user-type>
         <type-id>1001</type-id>
         <class-name>My.Example.ContactInfo, MyAssembly</class-name>
         <serializer>
            <class-name>My.Example.ContactInfoSerializer, MyAssembly</class-name>
         </serializer>
      </user-type>
   </user-type-list>
</pof-config>

Similarly, you can register the PofSerializer implementation for the ContactInfo Java
type:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
   coherence-pof-config.xsd">
   <user-type-list>
   <!-- include all "standard" Coherence POF user types -->
      <include>example-pof-config.xml</include>
   <!-- include all application POF user types -->
      <user-type>
         <type-id>1001</type-id>
         <class-name>com.mycompany.example.ContactInfo</class-name>
         <serializer>
            <class-name>com.mycompany.example.ContactInfoSerializer</class-name>
         </serializer>
      </user-type>
   </user-type-list>
</pof-config>

18.8 Using POF Object References
POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its
identity.
Using references avoids encoding the same object multiple times and helps reduce
the data size. References are typically used when a large number of sizeable objects
are created multiple times or when objects use nested or circular data structures.
However, for applications that contain large amounts of data but only few repeats, the

Chapter 18
Using POF Object References

18-11



use of object references provides minimal benefits due to the overhead incurred in
keeping track of object identities and references.

The use of object identity and references has the following limitations:

• Object references are only supported for user defined object types.

• Object references are not supported for IEvolvable objects.

• Object references are not supported for keys.

• Objects that have been written out with a POF context that does not support
references cannot be read by a POF context that supports references. The
opposite is also true.

• POF objects that use object identity and references cannot be queried using POF
extractors. Instead, use the IValueExtractor API to query object values or disable
object references.

• The use of the IPofNavigator and IPofValue API has the following restrictions when
using object references:

– Only read operations are allowed. Write operations result in an
UnsupportedOperationException.

– User objects can be accessed in non-uniform collections but not in uniform
collections.

– For read operations, if an object appears in the data stream multiple times,
then the object must be read where it first appears before it can be read in the
subsequent part of the data. Otherwise, an IOException: missing identity:
<ID> may be thrown. For example, if there are 3 lists that all contain the same
person object, p. The p object must be read in the first list before it can be read
in the second or third list.

This section includes the following topics:

• Enabling POF Object References

• Registering POF Object Identities for Circular and Nested Objects

18.8.1 Enabling POF Object References
Object references are not enabled by default and must be enabled either within a pof-
config.xml configuration file or programmatically when using the SimplePofContext
class.

To enable object references in the POF configuration file, include the <enable-
references> element, within the <pof-config> element, and set the value to true. For
example:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://schemas.tangosol.com/pof
   assembly://Coherence/Tangosol.Config/pof-config.xsd">
   ...
   <enable-references>true</enable-references>
</pof-config>

Chapter 18
Using POF Object References

18-12



To enable object references when using the SimplePofContext class, call the
setReferenceEnabled method and set it to true. For example:

SimplePofContext ctx = new SimplePofContext();
ctx.IsReferenceEnabled = true;

18.8.2 Registering POF Object Identities for Circular and Nested
Objects

Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in
the reference map. Object identities can be registered from a serializer during the
deserialization routine using the Tangosol.IO.Pof.IPofReader.RegisterIdentity method.

The following examples demonstrate two objects (Customer and Product) that contain a
circular reference and a serializer implementation that registers an identity on the
Customer object.

The Customer object is defined as follows:

public class Customer
   {
      String m_name;
      Product m_product;
 
   public Customer(String name)
      {
      m_name = name;
      }
 
   public Customer(String name, Product product)
      {
      m_name = name;
      m_product = product;
      }
 
   public String getName()
      {
      return m_name;
      }
 
   public Product getProduct()
      {
      return m_product;
      }
 
   public void setProduct(Product product)
      {
         m_product = product;
      }
   }

The Product object is defined as follows:

public class Product
   {
      private Customer m_customer;
 
   public Product(Customer customer)

Chapter 18
Using POF Object References

18-13



      {
      m_customer = customer;
      }
 
   public Customer getCustomer()
      {
      return m_customer;
      }
   }

The serializer implementation registers an identity during deserialization and is defined
as follows:

public class CustomerSerializer : IPofSerializer
   {
   public void Serialize(IPofWriter pofWriter, object o)
      {
      var c = (Customer) o;
      pofWriter.WriteString(0, c.getName());
      pofWriter.WriteObject(1, c.getProduct());
      pofWriter.WriteRemainder(null);
   }
 
   public object Deserialize(IPofReader pofReader)
      {
      String name = pofReader.ReadString(0);
      var customer = new Customer(name);
 
      pofReader.RegisterIdentity(customer);
      customer.setProduct((Product) pofReader.ReadObject(1));
      pofReader.ReadRemainder();
      return customer;
      }
   }

18.9 Using POF Annotations to Serialize Objects
POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the PofAnnotationSerializer class which is an implementation of the
IPofSerializer interface. Annotations offer an alternative to using the IPortableObject
and IPofSerializer interfaces and reduce the amount of time and code that is required
to make objects serializable.

This section includes the following topics:

• Annotating Objects for POF Serialization

• Registering POF Annotated Objects

• Enabling Automatic Indexing

• Providing a Custom Codec

18.9.1 Annotating Objects for POF Serialization
Two annotations are available to indicate that a class and its properties are POF
serializable:

Chapter 18
Using POF Annotations to Serialize Objects

18-14



• [Portable] – Marks the class as POF serializable. The annotation is only permitted
at the class level and has no members.

• [PortableProperty] – Marks a property, accessor, or member variable as a POF
serialized property. Annotated methods must conform to accessor notation (Get,
Set, Is). Members can be used to specify POF indexes as well as custom codecs
that are executed before or after serialization or deserialization. Index values may
be omitted and automatically assigned. If a custom codec is not entered, the
default codec is used.

The following example demonstrates annotating a class, property, and member
variable. In addition PortableProperty indexes are explicitly specified.

[Portable]
public class Person
{
   [PortableProperty(0)]
   public string GetFirstName()
   {
      return m_firstName;
   }

   private String m_firstName;

   [PortableProperty(1)]
   public string LastName;
   {
      get; set;
   }

   [PortableProperty(2)]
   private int m_age;
}

18.9.2 Registering POF Annotated Objects
POF annotated objects must be registered in a pof-config.xml file within a <user-type>
element. See POF User Type Configuration Elements in Developing Applications with
Oracle Coherence. POF annotated objects use the PofAnnotationSerializer serializer
if an object does not implement IPortableObject and is annotated as Portable;
however, the serializer is automatically assumed if an object is annotated and does not
need to be included in the user type definition. The following example registers a user
type for an annotated Person object:

<?xml version='1.0'?>
<pof-config xmlns="http://schemas.tangosol.com/pof">
   <user-type-list>
    <!-- include all "standard" Coherence POF user types -->
      <include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
      <!-- User types must be above 1000 -->
      <user-type>
         <type-id>1001</type-id>
         <class-name>My.Examples.Person, MyAssembly</class-name>
      </user-type>
   </user-type-list>
</pof-config>

Chapter 18
Using POF Annotations to Serialize Objects

18-15



18.9.3 Enabling Automatic Indexing
POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. Omit the index value when defining the
[PortableProperty] annotation. Index allocation is determined by the property name.
Any property that does assign an explicit index value is not assigned an automatic
index value. The following table demonstrates the ordering semantics of the automatic
index algorithm. Notice that automatic indexing maintains explicitly defined indexes (as
shown for property c) and assigns an index value if an index is omitted.

Name Explicit Index Determined
Index

c 1 1

a omitted 0

b omitted 2

Note:

Automatic indexing does not currently support evolvable classes.

To enable automatic indexing, the PofAnnotationSerializer serializer class must be
explicitly defined when registering the object as a user type in the POF configuration
file. The autoIndex boolean parameter in the constructor enables automatic indexing
and must be set to true. For example:

<user-type>
   <type-id>1001</type-id>
   <class-name>Examples.Person</class-name>
   <serializer>
      <class-name>Tangosol.IO.Pof.PofAnnotationSerializer, Coherence</class-name>
         <init-params>
         <init-param>
            <param-type>int</param-type>
            <param-value>{type-id}</param-value>
         </init-param>
         <init-param>
            <param-type>class</param-type>
            <param-value>{class}</param-value>
         </init-param>
         <init-param>
            <param-type>bool</param-type>
            <param-value>true</param-value>
         </init-param>
      </init-params>
   </serializer>
</user-type>

Chapter 18
Using POF Annotations to Serialize Objects

18-16



18.9.4 Providing a Custom Codec
Codecs allow code to be executed before or after serialization or deserialization. A
codec defines how to encode and decode a portable property using the IPofWriter and
IPofReader interfaces. Codecs are typically used for concrete implementations that
could get lost when being deserialized or to explicitly call a specific method on the
IPofWriter interface before serializing an object.

To create a codec, create a class that implements the ICodec interface. The following
example demonstrates a codec that defines the concrete implementation of a linked
list type:

public class LinkedListCodec<T> : ICodec
{
   public object Decode(IPofReader reader, int index)
      {
         return reader.ReadCollection(index, (ICollection)new LinkedList<T>());
      }

   public void Encode(IPofWriter writer, int index, object value)
      {
         writer.WriteCollection(index, (ICollection)value);
      }
}

To assign a codec to a property, enter the codec as a member of the
[PortableProperty] attribute. If a codec is not specified, a default codec (DefaultCodec)
is used. The following example demonstrates assigning the above LinkedListCodec
codec:

[PortableProperty(typeof(LinkedListCodec<string>))]

Chapter 18
Using POF Annotations to Serialize Objects

18-17



Chapter 18

Using POF Annotations to Serialize Objects

18-18



19
Using the Coherence .NET Client Library

Learn about the Coherence for .NET API and how to add the .NET client library to an
application. Coherence for .NET API documentation is available at .NET API
Reference for Oracle Coherence and in the doc directory of the Coherence for .NET
distribution.
This chapter includes the following sections:

• Setting Up the Coherence .NET Client Library

• Using the Coherence .NET APIs

• Configuring .NET Clients Programmatically

19.1 Setting Up the Coherence .NET Client Library
To use the Coherence for .NET library in your .NET applications, you must add a
reference to the Coherence.dll library in your project and create the necessary
configuration files.

To create a reference to the Coherence.dll:

1. In your project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference.... The Add Reference Window
displays.

2. From the Add Reference window, choose the Browse tab and find the
Coherence.dll library on your file system as shown in Figure 19-1.

19-1



Figure 19-1    Add Reference Window

3. Click OK.

4. Create the necessary configuration files and specify their paths in the application
configuration settings. This is done by adding an application configuration file to
your project (if one does not exist) and adding a Coherence for .NET configuration
section (that is, <coherence/>) to it.

Note:

If these configuration files are not specified in the app.config/web.config,
Coherence looks for them in both the folder where the application is deployed
or, for Web applications, in the root of the Web application. You can also
specify the cache configuration file programmatically. See Configuring .NET
Clients Programmatically.

<?xml version="1.0"?>
<configuration>
  <configSections>
    <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler, 
Coherence"/>
  </configSections>
  <coherence>
    <cache-factory-config>my-coherence.xml</cache-factory-config>
    <cache-config>my-cache-config.xml</cache-config>
    <pof-config>my-pof-config.xml</pof-config>
  </coherence>
</configuration>

Chapter 19
Setting Up the Coherence .NET Client Library

19-2



Elements within the Coherence for .NET configuration section are:

• cache-factory-config—contains the path to a operational configuration descriptor
used by the CacheFactory to configure IConfigurableCacheFactory and Logger.

• cache-config—contains the path to a cache configuration file which contains the
cache configuration. The cache configuration descriptor is used by
DefaultConfigurableCacheFactory.

• pof-config—contains the path to the configuration descriptor used by the
ConfigurablePofContext to register custom types used by the application. See 
Using the Coherence .NET Client Library.

Figure 19-2 illustrates what the solution should look like after adding the configuration
files:

Figure 19-2    File System Displaying the Configuration Files

19.2 Using the Coherence .NET APIs
The Coherence .NET API includes many classes that are used to interact with
Coherence caches within a .NET application.
This section includes the following topics:

• CacheFactory

• IConfigurableCacheFactory

• DefaultConfigurableCacheFactory

• Logger

• Using the Common.Logging Library

• INamedCache

• IQueryCache

Chapter 19
Using the Coherence .NET APIs

19-3



• QueryRecorder

• IObservableCache

• IInvocableCache

• Filters

• Value Extractors

• Entry Processors

• Entry Aggregators

19.2.1 CacheFactory
The CacheFactory is the entry point for Coherence for .NET client applications. The
CacheFactory is a factory for INamedCache instances and provides various methods for
logging. If not configured explicitly, it uses the default configuration file coherence.xml
which is an assembly embedded resource. It is possible to override the default
configuration file by adding a cache-factory-config element to the Coherence for .NET
configuration section in the application configuration file and setting its value to the
path of the desired configuration file. You can also specify the cache configuration file
programmatically. See Configuring .NET Clients Programmatically.

<?xml version="1.0"?>

<configuration>
  <configSections>
    <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler, 
Coherence"/>
  </configSections>
  <coherence>
    <cache-factory-config>my-coherence.xml</cache-factory-config>
    ...
  </coherence>
</configuration>

This file contains the configuration of two components exposed by the CacheFactory by
using static properties:

• CacheFactory.ConfigurableCacheFactory—the IConfigurableCacheFactory
implementation used by the CacheFactory to retrieve, release, and destroy
INamedCache instances.

• CacheFactory.Logger—the Logger instance used to log messages and exceptions.

When you are finished using the CacheFactory (for example, during application
shutdown), the CacheFactory should be shutdown by using the Shutdown() method. This
method terminates all services and the Logger instance.

19.2.2 IConfigurableCacheFactory
The IConfigurableCacheFactory implementation is specified by the contents of the
<configurable-cache-factory-config> element:

• class-name—specifies the implementation type by it's assembly qualified name.

• init-params—defines parameters used to instantiate the
IConfigurableCacheFactory. Each parameter is specified by using a corresponding
param-type and param-value child element.

Chapter 19
Using the Coherence .NET APIs

19-4



<coherence>
  <configurable-cache-factory-config>
    <class-name>Tangosol.Net.DefaultConfigurableCacheFactory, Coherence</class-name>
    <init-params>
      <init-param>
        <param-type>string</param-type>
        <param-value>simple-cache-config.xml</param-value>
      </init-param>
    </init-params>
  </configurable-cache-factory-config>
</coherence>

If an IConfigurableCacheFactory implementation is not defined in the configuration, the
default implementation is used (DefaultConfigurableCacheFactory).

19.2.3 DefaultConfigurableCacheFactory
The DefaultConfigurableCacheFactory provides a facility to access caches declared in
the cache configuration descriptor. The default configuration file used by the
DefaultConfigurableCacheFactory is $AppRoot/coherence-cache-config.xml,
where $AppRoot is the working directory (for a Windows Forms application) or the root
of the application (for a Web application).

If you want to specify another cache configuration descriptor file, you can do so by
adding a cache-config element to the Coherence for .NET configuration section in the
application configuration file with its value set to the path of the configuration file. You
can also specify the cache configuration file programmatically. See Configuring .NET
Clients Programmatically.

<?xml version="1.0"?>
<configuration>
  <configSections>
    <section name="coherence" type="Tangosol.Config.CoherenceConfigHandler, 
Coherence"/>
  </configSections>
  <coherence>
    <cache-config>my-cache-config.xml</cache-config>
    ...
  </coherence>
</configuration>

19.2.4 Logger
The Logger is configured using the logging-config element:

• destination—determines the type of LogOutput used by the Logger. Valid values
are:

– common-logger for Common.Logging

– stderr for Console.Error

– stdout for Console.Out

– file path if messages should be directed to a file

• severity-level—specifies the log level that a message must meet or exceed to be
logged.

• logger-name—specifies the name of the logger. The default value is Coherence.

Chapter 19
Using the Coherence .NET APIs

19-5



• message-format—determines the log message format.

• character-limit—determines the maximum number of characters that the logger
daemon processes from the message queue before discarding all remaining
messages in the queue.

...
<logging-config>
   <destination>common-logger</destination>
   <logger-name>Coherence</logger-name>
   <severity-level>5</severity-level>
   <message-format>(thread={thread}): {text}</message-format>
   <character-limit>8192</character-limit>
</logging-config>
...

The CacheFactory provides several static methods for retrieving and releasing
INamedCache instances:

• GetCache(String cacheName)—retrieves an INamedCache implementation that
corresponds to the NamedCache with the specified cacheName running within the
remote Coherence cluster.

• ReleaseCache(INamedCache cache)—releases all local resources associated with the
specified instance of the cache. After a cache is release, it can no longer be used.

• DestroyCache(INamedCache cache)—destroys the specified cache across the
Coherence cluster.

Methods used to log messages and exceptions are:

• IsLogEnabled(int level)—determines if the Logger would log a message with the
given severity level.

• Log(Exception e, int severity)—logs an exception with the specified severity
level.

• Log(String message, int severity)—logs a text message with the specified
severity level.

• Log(String message, Exception e, int severity)—logs a text message and an
exception with the specified severity level.

Logging levels are defined by the values of the CacheFactory.LogLevel enum values (in
ascending order):

• Always

• Error

• Warn

• Info

• Debug—(default log level)

• Quiet

• Max

19.2.5 Using the Common.Logging Library
Common.Logging is an open source library that enables you to plug in various popular
open source logging libraries behind a well-defined set of interfaces. The libraries

Chapter 19
Using the Coherence .NET APIs

19-6



currently supported are Log4Net (versions 1.2.9 and 1.2.10) and NLog. Common.Logging
is currently used by the Spring.NET framework and are likely to be used in the future
releases of IBatis.NET and NHibernate, so you might want to consider it if you are
using one or more of these frameworks in combination with Coherence for .NET, as it
allows logging to be consistently configured throughout the application layers.

Coherence for .NET does not include the Common.Logging library. To use the common-
logger Logger configuration, download the Common.Logging assembly and include a
reference to it in your project. You can download the Common.Logging assembly
for .NET from the following location:

http://netcommon.sourceforge.net/

The Coherence for .NET Common.Logging Logger implementation was compiled
against the signed release version of these assemblies.

19.2.6 INamedCache
The INamedCache interface extends IDictionary, so it can be manipulated in ways
similar to a dictionary. When obtained, INamedCache instances expose several
properties:

• CacheName—the cache name.

• Count—the cache size.

• IsActive—determines if the cache is active (that is, it has not been released or
destroyed).

• Keys—collection of all keys in the cache mappings.

• Values—collection of all values in the cache mappings.

The value for the specified key can be retrieved by using cache[key]. Similarly, a new
value can be added, or an old value can be modified by setting this property to the
new value: cache[key] = value.

The collection of cache entries can be accessed by using GetEnumerator() which
iterates over the mappings in the cache.

The INamedCache interface provides several methods used to manipulate the contents
of the cache:

• Clear()—removes all the mappings from the cache.

• Contains(Object key)—determines if the cache has a mapping for the specified
key.

• GetAll(ICollection keys)—returns all values mapped to the specified keys
collection.

• Insert(Object key, Object value)—places a new mapping into the cache. If a
mapping for the specified key exists, its value is overwritten by the specified value
and the old value is returned.

• Insert(Object key, Object value, long millis)—places a new mapping into the
cache, but with an expiry period specified by several milliseconds.

• InsertAll(IDictionary dictionary)—copies all the mappings from the specified
dictionary to the cache.

Chapter 19
Using the Coherence .NET APIs

19-7

http://netcommon.sourceforge.net/


• Remove(Object key)—Removes the mapping for the specified key if it is present
and returns the value it was mapped to.

INamedCache interface also extends the following three interfaces: IQueryCache, 
IObservableCache, and IInvocableCache.

19.2.7 IQueryCache
The IQueryCache interface exposes the ability to query a cache using various filters.

• GetKeys(IFilter filter)—returns a collection of the keys contained in this cache
for entries that satisfy the criteria expressed by the filter.

• GetEntries(IFilter filter)—returns a collection of the entries contained in this
cache that satisfy the criteria expressed by the filter.

• GetEntries(IFilter filter, IComparer comparer)—returns a collection of the
entries contained in this cache that satisfy the criteria expressed by the filter. It is
guaranteed that the enumerator traverses the collection in the order of ascending
entry values, sorted by the specified comparer or according to the natural ordering
if the "comparer" is null.

Additionally, the IQueryCache interface includes the ability to add and remove indexes.
Indexes are used to correlate values stored in the cache to their corresponding keys
and can dramatically increase the performance of the GetKeys and GetEntries methods.

• AddIndex(IValueExtractor extractor, bool isOrdered, IComparer comparator)—
adds an index to this cache that correlates the values extracted by the given
IValueExtractor to the keys to the corresponding entries. Additionally, the index
information can be optionally ordered.

• RemoveIndex(IValueExtractor extractor)—removes an index from this cache.

The following example performs an efficient query of the keys of all entries that have
an age property value greater or equal to 55.

IValueExtractor extractor = new ReflectionExtractor("getAge");

cache.AddIndex(extractor, true, null);
ICollection keys = cache.GetKeys(new GreaterEqualsFilter(extractor, 55));

19.2.8 QueryRecorder
The QueryRecorder class produces an explain or trace record for a given filter. The
class is an implementation of a parallel aggregator that is capable querying all nodes
in a cluster and aggregating the results. The class supports two record types: an
Explain record that provides the estimated cost of evaluating a filter as part of a query
operation and a Trace record that provides the actual cost of evaluating a filter as part
of a query operation. Both query records take into account whether or not an index can
be used by a filter. See Interpreting Query Records in Developing Applications with
Oracle Coherence.

To create a query record, create a new QueryRecorder instance that specifies a
RecordType parameter. Include the instance and the filter to be tested as parameters of
the Aggregate method. The following example creates an explain record:

INamedCache cache = CacheFactory.GetCache(MyCache);

IFilter filter = new OrFilter( 

Chapter 19
Using the Coherence .NET APIs

19-8



   new GreaterFilter(IdentityExtractor.Instance, 100),
   new LessFilter(IdentityExtractor.Instance, 30));

QueryRecorder aggregator = new QueryRecorder(QueryRecorder.RecordType.Explain);
IQueryRecord record = (IQueryRecord) cache.Aggregate(filter, aggregator);

Console.WriteLine(record.ToString());

To create a trace record, change the RecordType parameter to Trace:

QueryRecorder aggregator = new QueryRecorder(QueryRecorder.RecordType.Trace);

19.2.9 IObservableCache
IObservableCache interface enables an application to receive events when the contents
of a cache changes. To register interest in change events, an application adds a
Listener implementation to the cache that receives events that include information
about the event type (inserted, updated, deleted), the key of the modified entry, and
the old and new values of the entry.

• AddCacheListener(ICacheListener listener)—adds a standard cache listener that
receives all events (inserts, updates, deletes) emitted from the cache, including
their keys, old, and new values.

• RemoveCacheListener(ICacheListener listener)—removes a standard cache
listener that was previously registered.

• AddCacheListener(ICacheListener listener, object key, bool isLite)—adds a
cache listener for a specific key. If isLite is true, the events may not contain the
old and new values.

• RemoveCacheListener(ICacheListener listener, object key)—removes a cache
listener that was previously registered using the specified key.

• AddCacheListener(ICacheListener listener, IFilter filter, bool isLite)—adds a
cache listener that receive events based on a filter evaluation. If isLite is true, the
events may not contain the old and new values.

• RemoveCacheListener(ICacheListener listener, IFilter filter)—removes a cache
listener that previously registered using the specified filter.

Listeners that are registered using the filter-based method receives all event types
(inserted, updated, and deleted). To further filter the events, wrap the filter in a
CacheEventFilter using a CacheEventMask enumeration value to specify which type of
events should be monitored.

The following example filter evaluates to true if an Employee object is inserted into a
cache with an IsMarried property value set to true.

new CacheEventFilter(CacheEventMask.Inserted, new EqualsFilter("IsMarried", true));

The following example filter evaluates to true if any object is removed from a cache.

new CacheEventFilter(CacheEventMask.Deleted);

The following example filter evaluates to true when an Employee object LastName
property is changed from Smith.

new CacheEventFilter(CacheEventMask.UpdatedLeft, new EqualsFilter("LastName", 
"Smith"));

Chapter 19
Using the Coherence .NET APIs

19-9



This section includes the following topic:

• Responding to Cache Events

19.2.9.1 Responding to Cache Events
A feature of the INamedCache interface is the ability to add cache listeners that receive
events emitted by a cache as its contents change. These events are sent from the
server and dispatched to registered listeners by a background thread.

The .NET Single-Threaded Apartment model prohibits windows form controls created
by one thread from being updated by another thread. If one or more controls should be
updated because of an event notification, you must ensure that any event handling
code that must run as a response to a cache event is executed on the UI thread. The
WindowsFormsCacheListener helper class allows end users to ignore this fact and to
handle Coherence cache events (which are always raised by a background thread) as
if they were raised by the UI thread. This class ensures that the call is properly
marshalled and executed on the UI thread.

Here is the sample of using this class:

public partial class ContactInfoForm : Form
{
    ...
    listener = new WindowsFormsCacheListener(this);
    listener.EntryInserted += new CacheEventHandler(AddRow);
    listener.EntryUpdated  += new CacheEventHandler(UpdateRow);
    listener.EntryDeleted  += new CacheEventHandler(DeleteRow);
    ...
    cache.AddCacheListener(listener);
    ...
}

The AddRow, UpdateRow and DeleteRow methods are called in response to a cache event:

private void AddRow(object sender, CacheEventArgs args)
{
...
}

private void UpdateRow(object sender, CacheEventArgs args)
{
...
}

private void DeleteRow(object sender, CacheEventArgs args)
{
...
}

The CacheEventArgs parameter encapsulates the IObservableCache instance that raised
the cache event; the CacheEventType that occurred; and the Key, NewValue and OldValue
of the cached entry.

19.2.10 IInvocableCache
An IInvocableCache is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly

Chapter 19
Using the Coherence .NET APIs

19-10



useful in a distributed environment, because it enables the processing to be moved to
the location at which the entries-to-be-processed are being managed, thus providing
efficiency by localization of processing.

• Invoke(object key, IEntryProcessor agent)—invokes the passed processor
against the entry specified by the passed key, returning the result of the
invocation.

• InvokeAll(ICollection keys, IEntryProcessor agent)—invokes the passed
processor against the entries specified by the passed keys, returning the result of
the invocation for each.

• InvokeAll(IFilter filter, IEntryProcessor agent)—invokes the passed processor
against the entries that are selected by the given filter, returning the result of the
invocation for each.

• Aggregate(ICollection keys, IEntryAggregator agent)—performs an aggregating
operation against the entries specified by the passed keys.

• Aggregate(IFilter filter, IEntryAggregator agent)—performs an aggregating
operation against the entries that are selected by the given filter.

19.2.11 Filters
The IQueryCache interface provides the ability to search for cache entries that meet a
given set of criteria, expressed using a IFilter implementation.

All filters must implement the IFilter interface:

• Evaluate(object o)—apply a test to the specified object and return true if the test
passes, false otherwise.

Coherence for .NET includes several IFilter implementations in the
Tangosol.Util.Filter namespace.

The following example retrieves the keys of all entries that have a value equal to 5.

EqualsFilter equalsFilter = new EqualsFilter(IdentityExtractor.Instance, 5);
ICollection  keys         = cache.GetKeys(equalsFilter);

The following example retrieves all keys that have a value greater or equal to 55.

GreaterEqualsFilter greaterEquals = new 
GreaterEqualsFilter(IdentityExtractor.Instance, 55);
ICollection         keys          = cache.GetKeys(greaterEquals);

The following example retrieves all cache entries that have a value that begins with
Belg.

LikeFilter  likeFilter = new LikeFilter(IdentityExtractor.Instance, "Belg%", '\\', 
true);
ICollection entries    = cache.GetEntries(likeFilter);

The following example retrieves all cache entries that have a value that ends with an
(case sensitive) or begins with An (case insensitive).

OrFilter    orFilter = new OrFilter(new LikeFilter(IdentityExtractor.Instance, 
"%an", '\\', false), new LikeFilter(IdentityExtractor.Instance, "An%", '\\', true));
ICollection entries  = cache.GetEntries(orFilter);

Chapter 19
Using the Coherence .NET APIs

19-11



19.2.12 Value Extractors
Extractors are used to extract values from an object. All extractors must implement the
IValueExtractor interface:

• Extract(object target)—extract the value from the passed object.

Coherence for .NET includes the following extractors:

• IdentityExtractor is a trivial implementation that does not actually extract anything
from the passed value, but returns the value itself.

• KeyExtractor is a special purpose implementation that serves as an indicator that a
query should be run against the key objects rather than the values.

• ReflectionExtractor extracts a value from a specified object property.

• MultiExtractor is composite IValueExtractor implementation based on an array of
extractors. All extractors in the array are applied to the same target object and the
result of the extraction is a IList of extracted values.

• ChainedExtractor is composite IValueExtractor implementation based on an array
of extractors. The extractors in the array are applied sequentially left-to-right, so a
result of a previous extractor serves as a target object for a next one.

POF extractors and POF updaters offer the same functionality as
ChainedExtractors through the use of the SimplePofPath class. See Using POF
Extractors and POF Updaters in Developing Applications with Oracle Coherence.

The following example retrieves all cache entries with keys greater than 5:

IValueExtractor extractor = new KeyExtractor(IdentityExtractor.Instance);
IFilter         filter    = new GreaterFilter(extractor, 5);
ICollection     entries   = cache.GetEntries(filter);

The following example retrieves all cache entries with values containing a City
property equal to city1:

IValueExtractor extractor = new ReflectionExtractor("City");
IFilter         filter    = new EqualsFilter(extractor, "city1");
ICollection     entries   = cache.GetEntries(filter);

19.2.13 Entry Processors
An entry processor is an agent that operates against the entry objects within a cache.
All entry processors must implement the IEntryProcessor interface:

• Process(IInvocableCacheEntry entry)—process the specified entry.

• ProcessAll(ICollection entries)—process a collection of entries.

Coherence for .NET includes several IEntryProcessor implementations in the
Tangosol.Util.Processor namespace.

The following example demonstrates a conditional put. The value mapped to key1 is
set to 680 only if the current mapped value is greater than 600.

IFilter         greaterThen600 = new GreaterFilter(IdentityExtractor.Instance, 600);
IEntryProcessor processor      = new ConditionalPut(greaterThen600, 680);
cache.Invoke("key1", processor);

Chapter 19
Using the Coherence .NET APIs

19-12



The following example uses the UpdaterProcessor to update the value of the Degree
property on a Temperature object with key BGD to the new value 26.

cache.Insert("BGD", new Temperature(25, 'c', 12));
IValueUpdater   updater   = new ReflectionUpdater("setDegree");
IEntryProcessor processor = new UpdaterProcessor(updater, 26);
object          result    = cache.Invoke("BGD", processor);

19.2.14 Entry Aggregators
An entry aggregator represents processing that can be directed to occur against some
subset of the entries in an IInvocableCache, resulting in an aggregated result. Common
examples of aggregation include functions such as minimum, maximum, sum and
average. However, the concept of aggregation applies to any process that must
evaluate a group of entries to come up with a single answer. Aggregation is explicitly
capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the IEntryAggregator interface:

• Aggregate(ICollection entries)—process a collection of entries to produce an
aggregate result.

Coherence for .NET includes several IEntryAggregator implementations in the
Tangosol.Util.Aggregator namespace.

The following example returns the size of the cache:

IEntryAggregator aggregator = new Count();
object           result     = cache.Aggregate(cache.Keys, aggregator);

The following example returns an IDictionary with keys equal to the unique values in
the cache and values equal to the number of instances of the corresponding value in
the cache:

IEntryAggregator aggregator = 
GroupAggregator.CreateInstance(IdentityExtractor.Instance, new Count());
object           result     = cache.Aggregate(cache.Keys, aggregator);

Note:

The above examples are simple examples and not practical for passing a
large amount of keys or keys that are themselves very large. In such
scenarios, use the GroupAggregator.CreateInstance(String, IEntryAggregator,
IFilter) method and pass an AlwaysFilter object.

Like cached value objects, all custom IFilter, IExtractor, IProcessor and IAggregator
implementation classes must be correctly registered in the POF context of the .NET
application and cluster-side node to which the client is connected. As such,
corresponding Java implementations of the custom .NET types must be created,
compiled, and deployed on the cluster-side node. Note that the actual execution of
these custom types is performed by the Java implementation and not the .NET
implementation. See Building Integration Objects (.NET) .

Chapter 19
Using the Coherence .NET APIs

19-13



19.3 Configuring .NET Clients Programmatically
Clients can load Coherence configuration files programmatically at runtime. The
configuration files overwrite any configuration files that are specified in the application
configuration file. See Setting Up the Coherence .NET Client Library.
The following example loads the pofConfig.xml, cacheConfig.xml, and
coherenceConfig.xml files.

using System;
using System.IO;
using Tangosol.IO.Pof;
using Tangosol.Net;
using Tangosol.Run.Xml;

namespace configExample
{
    internal class TestPofContext : ConfigurablePofContext
    {
        public TestPofContext()
 
            : base("config/pofConfig.xml")
        {
        }
    }
 
    internal class TestClient
    {
        private static void Main(string[] args)
        {
            try
            {
                CacheFactory.Configure("config/cacheConfig.xml",
                   "config/coherenceConfig.xml");
                var cache = CacheFactory.GetCache("dist-test");
                cache["key"] = new TestValue(1, "Test");
                Console.Out.WriteLine("key=" + cache["key"]);
            }
            catch (Exception e)
            {
                Console.WriteLine(e);
            }
            Console.ReadLine();
        }
    }
}

Chapter 19
Configuring .NET Clients Programmatically

19-14



20
Performing Continuous Queries (.NET)

You can use Continuous Query Caching in a .NET client to ensure that a query always
retrieves the latest results from a cache in real-time.
This chapter includes the following sections:

• Overview of Performing Continuous Queries (.NET)

• Understanding Use Cases for Continuous Query Caching

• Understanding the Continuous Query Caching Implementation

• Constructing a Continuous Query Cache

• Cleaning Up Continuous Query Cache Resources

• Caching Only Keys Versus Keys and Values

• Listening to a Continuous Query Cache

• Making a Continuous Query Cache Read-Only

20.1 Overview of Performing Continuous Queries (.NET)
Queries provide the ability to obtain a point in time query result from a Coherence
cache and it is possible to receive events that would change the result of that query.
However, the continuous query feature combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times
every millisecond.
Coherence for .NET implements the Continuous Query functionality by materializing
the results of the query into a Continuous Query Cache, and then keeping that cache
up-to-date in real-time using event listeners on the query. In other words, a Coherence
for .NET Continuous Query is a cached query result that never gets out-of-date.

20.2 Understanding Use Cases for Continuous Query
Caching

Continuous Query Caching is ideal for many use cases, such as event processing and
instant access to up-to-date query results.
Consider using Continuous Query Caching in the following situations:

• A Continuous Query Cache is an ideal building block for Complex Event
Processing (CEP) systems and event correlation engines.

• A Continuous Query Cache is ideal for situations in which an application repeats a
particular query, and would benefit from always having instant access to the up-to-
date result of that query.

20-1



• A Continuous Query Cache is analogous to a materialized view, and is useful for
accessing and manipulating the results of a query using the standard INamedCache
API, and receiving an ongoing stream of events related to that query.

• A Continuous Query Cache can be used in a manner similar to a near cache,
because it maintains an up-to-date set of data locally where it is being used, for
example on a particular server node or on a client desktop; note that a Near
Cache is invalidation-based, but the Continuous Query Cache actually maintains
its data in an up-to-date manner.

An example use case is a trading system desktop in which a trader's open orders and
all related information must always be maintained in an up-to-date manner. By
combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

Note:

Continuous Query Caches are useful in almost every type of application,
including both client-based and server-based applications, because they
provide the ability to very easily and efficiently maintain an up-to-date local
copy of a specified sub-set of a much larger and potentially distributed cached
data set.

20.3 Understanding the Continuous Query Caching
Implementation

The Coherence for .NET implementation of Continuous Query is found in the
Tangosol.Net.Cache.ContinuousQueryCache class. This class, like all Coherence for .NET
caches, implements the standard INamedCache interface, which includes the following
capabilities:

• Cache access and manipulation using the IDictionary interface: INamedCache
extends the standard IDictionary interface from the .NET Collections Framework,
which is the same interface implemented by the .NET Hashtable class.

• Events for all objects modifications that occur within the cache: INamedCache
extends the IObservableCache interface.

• Querying the objects in the cache: INamedCache extends the IQueryCache interface.

• Distributed Parallel Processing and Aggregation of objects in the cache:
INamedCache extends the IInvocableCache interface.

Since the ContinuousQueryCache class implements the INamedCache interface, which is
the same API provided by all Coherence for .NET caches, it is extremely simple to
use, and it can be easily substituted for another cache when its functionality is called
for.

20.4 Constructing a Continuous Query Cache
The ContinuousQueryCache class is used for continuous query caching and requires an
underlying cache and a query filter.

Chapter 20
Understanding the Continuous Query Caching Implementation

20-2



The underlying cache is any Coherence for .NET cache, including another Continuous
Query Cache. A cache is usually obtained from a CacheFactory, which allows the
developer to simply specify the name of the cache and have it automatically
configured based on the application's cache configuration information; for example:

INamedCache cache = CacheFactory.GetCache("orders");

The query is the same type of query that would be used to query any other cache; for
example:

Filter filter = new AndFilter(new EqualsFilter("getTrader", traderid),
                              new EqualsFilter("getStatus", Status.OPEN));

Normally, to query a cache, a method from the IQueryCache is used; for examples, to
obtain a snap-shot of all open trades for this trader:

ICollection setOpenTrades = cache.GetEntries(filter);

Similarly, the Continuous Query Cache is constructed from those same two pieces:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);

20.5 Cleaning Up Continuous Query Cache Resources
Instances of all INamedCache implementations, including ContinuousQueryCache, should
be explicitly released by calling the INamedCache.Release() method when they are no
longer needed, to free up any resources they might hold.
If the particular INamedCache is used for the duration of the application, then the
resources is cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release() method
when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable and that
all cache implementations delegate a call to IDisposable.Dispose() to
INamedCache.Release(). If you want to obtain and release a cache instance within a
single method, you can do so by using a using block:

using (INamedCache cache = CacheFactory.GetCache("my-cache"))
{
   // use cache as usual
}

After the using block terminates, IDisposable.Dispose() is called on the INamedCache
instance, and all resources associated with it are released.

20.6 Caching Only Keys Versus Keys and Values
When constructing a Continuous Query Cache, it is possible to specify that the cache
should only keep track of the keys that result from the query, and obtain the values
from the underlying cache only when they are asked for. This feature may be useful for
creating a Continuous Query Cache that represents a very large query result set, or if
the values are never or rarely requested.
To specify that only the keys should be cached, use the constructor that allows the
IsCacheValues property to be configured; for example:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter, 
false);

Chapter 20
Cleaning Up Continuous Query Cache Resources

20-3



If necessary, the IsCacheValues property can also be modified after the cache has been
instantiated; for example:

cacheOpenTrades.IsCacheValues = true;

IsCacheValues Property and Event Listeners

If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the IsCacheValues property is automatically set to
true, because the Continuous Query Cache uses the locally cached values to filter
events and to supply the old and new values for the events that it raises.

This section includes the following topics:

20.7 Listening to a Continuous Query Cache
A client can place one or more event listeners onto a Continuous Query Cache.
For example:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCacheListener(listener);

Assuming some processing has to occur against every item that is in the cache and
every item added to the cache, there are two approaches. First, the processing could
occur then a listener could be added to handle any later additions:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)
    {
    // .. process the cache entry
    }
cacheOpenTrades.AddCacheListener(listener);

However, that code is incorrect because it allows events that occur in the split
second after the iteration and before the listener is added to be missed! The
alternative is to add a listener first, so no events are missed, and then do the
processing:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCacheListener(listener);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)
    {
    // .. process the cache entry
    }

However, the same entry may appear in both an event an in the IEnumerator, and the
events can be asynchronous, so the sequence of operations cannot be guaranteed.

The solution is to provide the listener during construction, and it receives one event for
each item that is in the Continuous Query Cache, whether it was there to begin with
(because it was in the query) or if it was added during or after the construction of the
cache:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter, 
listener);

This section includes the following topics:

• Achieving a Stable Materialized View

Chapter 20
Listening to a Continuous Query Cache

20-4



• Support for Synchronous and Asynchronous Listeners

20.7.1 Achieving a Stable Materialized View
The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts.
First, Coherence for .NET supports an option for synchronous events, which provides
a set of ordering guarantees. Secondly, the Continuous Query Cache has a two-phase
implementation of its initial population that allows it to first query the underlying cache
and then subsequently resolve all of the events that came in during the first phase.
Since achieving these guarantees of data visibility without any missing or repeated
events is fairly complex, the Continuous Query Cache allows a developer to pass a
listener during construction, thus avoiding exposing these same complexities to the
application developer.

20.7.2 Support for Synchronous and Asynchronous Listeners
By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the Continuous Query Cache does respect the option for
synchronous events as provided by the CacheListenerSupport.ISynchronousListener
interface.

20.8 Making a Continuous Query Cache Read-Only
A Continuous Query Cache can be made into a read-only cache.
For example:

cacheOpenTrades.IsReadOnly = true;

A read-only Continuous Query Cache does not allow objects to be added to, changed
in, removed from or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed
back to read/write.

Chapter 20
Making a Continuous Query Cache Read-Only

20-5



Chapter 20

Making a Continuous Query Cache Read-Only

20-6



21
Performing Remote Invocations (.NET)

You can perform remote invocations on Coherence caches from .NET clients.
This chapter includes the following sections:

• Overview of Performing Remote Invocations

• Configuring and Using the Remote Invocation Service

21.1 Overview of Performing Remote Invocations
Coherence for .NET provides a Remote Invocation Service which allows execution of
single-pass agents (called IInvocable objects) within the cluster-side JVM to which the
client is connected. Agents are simply runnable application classes that implement the
IInvocable interface. Agents can execute any arbitrary action and can use any cluster-
side services (cache services, grid services, and so on) necessary to perform their
work. The agent operations can also be stateful, which means that their state is
serialized and transmitted to the grid nodes on which the agent is run.

21.2 Configuring and Using the Remote Invocation Service
A Remote Invocation Service is configured using the <remote-invocation-scheme>
element in the cache configuration descriptor.
For example:

...
<remote-invocation-scheme>
   <scheme-name>example-invocation</scheme-name>
   <service-name>ExtendTcpInvocationService</service-name>
   <initiator-config>
      <tcp-initiator>
         <remote-addresses>
            <socket-address>
               <address>localhost</address>
               <port>7077</port>
             </socket-address>
         </remote-addresses>
      </tcp-initiator>
      <outgoing-message-handler>
         <request-timeout>30s</request-timeout>
      </outgoing-message-handler>
   </initiator-config>
</remote-invocation-scheme>
...

A reference to a configured Remote Invocation Service can then be obtained by name
by using the CacheFactory class:

IInvocationService service = (IInvocationService) 
CacheFactory.GetService("ExtendTcpInvocationService");

21-1



To execute an agent on the grid node to which the client is connected requires only
one line of code:

IDictionary result = service.Query(new MyTask(), null);

The single result of the execution are keyed by the local Member, which can be retrieved
by calling CacheFactory.ConfigurableCacheFactory.LocalMember.

Note:

Like cached value objects, all IInvocable implementation classes must be
correctly registered in the POF context of the .NET application and cluster-side
node to which the client is connected. As such, a Java implementation of the
IInvocable task (a com.tangosol.net.Invocable implementation) must be
created, compiled, and deployed on the cluster-side node. Note that the actual
execution of the task is performed by the Java Invocable implementation and
not the .NET IInvocable implementation. See Introduction to Coherence .NET
Clients.

Chapter 21
Configuring and Using the Remote Invocation Service

21-2



22
Performing Transactions (.NET)

You can use the Transaction Framework API to ensure cache
operations are performed within a transaction when using a .NET
client.

The instructions do not provide detailed transaction API usage. See Using the
Transaction Framework API in Developing Applications with Oracle Coherence.

The following sections are included in this chapter and are required to perform
transactions:

• Using the Transaction API within an Entry Processor

• Creating a Stub Class for a Transactional Entry Processor

• Registering a Transactional Entry Processor User Type

• Configuring the Cluster-Side Transactional Caches

• Configuring the Client-Side Remote Cache

• Using a Transactional Entry Processor from a .NET Client

22.1 Using the Transaction API within an Entry Processor
.NET clients perform cache operations within a transaction by leveraging the
Transaction Framework API. The transaction API is not supported natively on .NET
and must be used within an entry processor. The entry processor is implemented in
Java on the cluster and an entry processor stub class is implemented in C# on the
client. Both classes use POF to serialize between Java and C#.
Example 22-1 demonstrates an entry processor that performs a simple update
operation within a transaction using the transaction API. At run time, the class must be
located on the classpath of the Coherence proxy server.

Example 22-1    Entry Processor for Extend Client Transaction

package coherence.tests;

import com.tangosol.coherence.transaction.Connection;
import com.tangosol.coherence.transaction.ConnectionFactory;
import com.tangosol.coherence.transaction.DefaultConnectionFactory;
import com.tangosol.coherence.transaction.OptimisticNamedCache;
import 
com.tangosol.coherence.transaction.exception.PredicateFailedException;
import com.tangosol.coherence.transaction.exception.RollbackException;
import 
com.tangosol.coherence.transaction.exception.UnableToAcquireLockException;
import com.tangosol.util.Filter;
import com.tangosol.util.InvocableMap;
import com.tangosol.util.extractor.IdentityExtractor;
import com.tangosol.util.filter.EqualsFilter;
import com.tangosol.util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor implements PortableObject

22-1



   {
   public Object process(InvocableMap.Entry entry)
   {
      // obtain a connection and transaction cache
      ConnectionFactory connFactory = new DefaultConnectionFactory();
      Connection conn = connFactory.createConnection("TransactionalCache");
      OptimisticNamedCache cache = conn.getNamedCache("MyTxCache");
 
      conn.setAutoCommit(false);
 
      // get a value for an existing entry
      String sValue = (String) cache.get("existingEntry");
 
      // create predicate filter
      Filter predicate = new EqualsFilter(IdentityExtractor.INSTANCE, sValue);
 
      try
         {
            // update the previously obtained value
            cache.update("existingEntry", "newValue", predicate);
         }
      catch (PredicateFailedException e)
         {
            // value was updated after it was read
            conn.rollback();
            return false;
         }
      catch (UnableToAcquireLockException e)
         {
            // row is being updated by another tranaction
            conn.rollback();
            return false;
         }
      try
         {
            conn.commit();
         }
      catch (RollbackException e)
         {
            // transaction was rolled back
            return false;
         }
      return true;
   }

   public void readExternal(PofReader in)
      throws IOException
   {
   }
 
    public void writeExternal(PofWriter out)
      throws IOException
   {
   }
}

Chapter 22
Using the Transaction API within an Entry Processor

22-2



22.2 Creating a Stub Class for a Transactional Entry
Processor

An entry processor stub class allows a client to use the transactional entry processor
on the cluster. The stub class is implemented in C# and uses POF for serialization.
POF allows an entry processor to be serialized between C# and Java. The entry
processor stub class does not required any transaction logic and is a skeleton of the
transactional entry processor. See Building Integration Objects (.NET) .
Example 22-2 demonstrate an entry processor stub class for the transactional entry
processor created in Example 22-1.

Example 22-2    Transaction Entry Processor .NET Stub Class

using Tangosol.IO.Pof;
using Tangosol.Net.Cache;
using Tangosol.Util.Processor;

namespace Coherence.Tests{
   public class MyTxProcessor : AbstractProcessor, IPortableObject
   {
      public MyTxProcessor()
      {
      }
 
      public override object Process(IInvocableCacheEntry entry)
      {
         return null;
      }
 
      public void ReadExternal(IPofReader reader)
      {
      }
 
      public void WriteExternal(IPofWriter writer)
      {
      }
   }
}

22.3 Registering a Transactional Entry Processor User Type
Custom user types must be registered for the Java transactional entry processor in the
cluster-side POF configuration file and for the client stub in the client-side POF
configuration file. Both registrations must use the same type ID. The following example
demonstrates registering both the MyTxProcessor class that was created in 
Example 22-1 and the client stub class that was created in Example 22-2, respectively.
Cluster-side POF configuration:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
   coherence-pof-config.xsd">
   <user-type-list>
      <include>coherence-pof-config.xml</include>

Chapter 22
Creating a Stub Class for a Transactional Entry Processor

22-3



      <include>txn-pof-config.xml</include>
      <user-type>
         <type-id>1599</type-id>
         <class-name>coherence.tests.MyTxProcessor</class-name>
      </user-type>
   </user-type-list>
</pof-config>

Client-side POF configuration:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://schemas.tangosol.com/pof
   assembly://Coherence/Tangosol.Config/pof-config.xsd">
   <user-type-list>
      <include>coherence-pof-config.xml</include>
      <user-type>
         <type-id>1599</type-id>
         <class-name>Coherence.Tests.MyTxProcessor</class-name>
      </user-type>
   </user-type-list>
</pof-config>

22.4 Configuring the Cluster-Side Transactional Caches
Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. Transactional caches are used by the Transaction Framework to
provide transactional guarantees. See "Defining Transactional Caches" in Developing
Applications with Oracle Coherence.
The following example creates a transactional cache that is named MyTxCache, which is
the cache name that was used by the entry processor in Example 22-1. The
configuration also includes a proxy scheme and a distributed cache scheme that are
required to execute the entry processor from a remote client. The proxy is configured
to accept client TCP/IP connections on localhost at port 7077. See Configuring Extend
Proxies .

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>MyTxCache</cache-name>
         <scheme-name>example-transactional</scheme-name>
      </cache-mapping>
      <cache-mapping>
         <cache-name>dist-example</cache-name>
         <scheme-name>example-distributed</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>
 
   <caching-schemes>
      <transactional-scheme>
         <scheme-name>example-transactional</scheme-name>
         <service-name>TransactionalCache</service-name>

Chapter 22
Configuring the Cluster-Side Transactional Caches

22-4



         <thread-count-min>2</thread-count-min>
         <thread-count-max>10</thread-count-max>
         <high-units>15M</high-units>
         <task-timeout>0</task-timeout>
         <autostart>true</autostart>
      </transactional-scheme>

      <distributed-scheme>
         <scheme-name>example-distributed</scheme-name>
         <service-name>DistributedCache</service-name>
         <backing-map-scheme>
            <local-scheme/>
         </backing-map-scheme>
         <autostart>true</autostart>
      </distributed-scheme>

      <proxy-scheme>
         <service-name>ExtendTcpProxyService</service-name>
         <autostart>true</autostart>
      </proxy-scheme>
   </caching-schemes>
</cache-config>

22.5 Configuring the Client-Side Remote Cache
Remote clients require a remote cache to connect to the cluster's proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file. See Configuring Extend Proxies .

The following example configures a remote cache to connect to a proxy that is located
on localhost at port 7077. In addition, the name of the remote cache (dist-example)
must match the name of a cluster-side cache that is used when initiating the
transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://schemas.tangosol.com/cache
  assembly://Coherence/Tangosol.Config/cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>dist-example</cache-name>
         <scheme-name>extend</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>
 
   <caching-schemes>
      <remote-cache-scheme>
         <scheme-name>extend</scheme-name>
         <service-name>ExtendTcpCacheService</service-name>
         <initiator-config>
            <tcp-initiator>
               <remote-addresses>
                  <socket-address>
                     <address>localhost</address>
                     <port>7077</port>
                  </socket-address>
               </remote-addresses>
            </tcp-initiator>

Chapter 22
Configuring the Client-Side Remote Cache

22-5



            <outgoing-message-handler>
               <request-timeout>30s</request-timeout>
            </outgoing-message-handler>
         </initiator-config>
      </remote-cache-scheme>
   </caching-schemes>
</cache-config>

22.6 Using a Transactional Entry Processor from a .NET
Client

A client invokes an entry processor stub class the same way any entry processor is
invoked. However, at run time, the cluster-side entry processor is invoked on the
cluster. The client is unaware that the invocation has been delegated to the Java
class.
The following example demonstrates a client that uses the entry processor stub class
and results in an invocation of the transactional entry processor that was created in 
Example 22-1:

INamedCache cache  = CacheFactory.GetCache("dist-example");
object      result = cache.Invoke( "AnyKey", new MyTxProcessor());

Console.Out.WriteLine("Result of extend transaction execution: " + result );

Chapter 22
Using a Transactional Entry Processor from a .NET Client

22-6



23
Managing ASP.NET Session State

You can manage ASP.NET session state in a Coherence cluster by using a
Coherence session provider.
This chapter includes the following sections:

• Overview of ASP.NET Session State

• Setting Up Coherence ASP.NET Session Management

• Selecting a Session Model

• Configuring a Serializer

• Sharing ASP.NET Session State Across Applications

23.1 Overview of ASP.NET Session State
Coherence for .NET allows ASP.NET session state to be managed in a Coherence
cluster, which has some benefits as compared to the out-of-the-box options offered by
Microsoft.

• Session state is stored in a highly available Coherence cluster, making sessions
resilient to Web server failures

• Sessions are stored in memory which allows for much faster access than when
they are serialized to disk using SQL Server session provider

• Unlike relational databases, Coherence cluster is easy to scale out to support
additional load

• In some cases, session data can be accessed at in-process speed by leveraging
Coherence near caching features

ASP.NET applications are configured to use Coherence for session state management
by modifying the web.config file and configuring the custom session state provider. In
addition, the Coherence session provider includes configuration options that can
significantly improve performance and scalability of applications.

23.2 Setting Up Coherence ASP.NET Session Management
To manage ASP .NET sessions, you must enable a Coherence session provider and
configure ASP session caches.
This section includes the following topics:

• Overview of Setting Up Coherence Session Management

• Enable the Coherence Session Provider

• Configure the Cluster-Side ASP Session Caches

• Configure a Client-Side ASP Session Remote Cache

• Overriding the Default Session Cache Name

23-1



23.2.1 Overview of Setting Up Coherence Session Management
The following steps are required to use Coherence for ASP.NET session
management:

• Configure Coherence for .NET client library by specifying an operational
configuration, cache configuration, and POF configuration file (if using POF for
session serialization). See Setting Up the Coherence .NET Client Library.

• Enable the Coherence Session Provider

• Configure the Cluster-Side ASP Session Caches

• Configure a Client-Side ASP Session Remote Cache

• Overriding the Default Session Cache Name

After the ASP.NET application and cluster are configured properly, start the cluster
and proxy servers to be used by the application and then start the ASP.NET Web
application. The sessions are automatically stored within the Coherence cluster.

23.2.2 Enable the Coherence Session Provider
ASP.NET uses a provider model to allow custom session state management
implementations. Coherence for .NET implements a custom provider that fulfils the
contract defined by Microsoft. To use the Coherence provider, add the following
provider configuration to an application's web.config file:

<system.web>
   <sessionState mode="Custom" 
                 customProvider="CoherenceSessionProvider" 
                 cookieless="false" 
                 timeout="20">
      <providers>
         <add name="CoherenceSessionProvider" 
            type="Tangosol.Web.CoherenceSessionStore, Coherence"/> 
      </providers>
   </sessionState>
   ... 
</system.web>

The above example configures an ASP.NET application to use the
CoherenceSessionStore provider with the default settings. The Coherence session
provider can be customized, as described in this chapter, to take full advantage of its
included features.

23.2.3 Configure the Cluster-Side ASP Session Caches
The Coherence session provider requires two cache scheme definitions within the
cluster's cache configuration file: A storage cache and an overflow cache. The storage
cache is used for storing session data and the overflow cache is used if the session
size exceeds the limit specified in the externalAttributeSize attribute of the
CoherenceSessionProvider defined in the Web.config file.

When defining the session storage cache and the session overflow cache, the service
name must be AspNetSessionCache and the cache names must be aspnet-session-
storage and aspnet-session-overflow, respectively. In addition, the storage cache must

Chapter 23
Setting Up Coherence ASP.NET Session Management

23-2



be configured to use the ConfigurablePofContext class as the serializer. The scheme
name and backing map configuration can be configured as required.

The following cache scheme definition creates two distributed caches that are used by
the session provider: one for session storage and one for session overflow .

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://schemas.tangosol.com/cache
   assembly://Coherence/Tangosol.Config/cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>aspnet-session-storage</cache-name>
         <scheme-name>aspnet-session-scheme</scheme-name>
      </cache-mapping>
      <cache-mapping>
         <cache-name>aspnet-session-overflow</cache-name>
         <scheme-name>aspnet-session-overflow-scheme</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>

   <caching-schemes>
      <distributed-scheme>
         <scheme-name>aspnet-session-scheme</scheme-name>
         <service-name>AspNetSessionCache</service-name>
         <serializer>
            <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
            <init-params>
               <init-param>
                  <param-type>string</param-type>
                  <param-value>coherence-pof-config.xml</param-value>
               </init-param>
            </init-params>
         </serializer>
         <backing-map-scheme>
            <local-scheme/>
         </backing-map-scheme>
         <autostart>true</autostart>
      </distributed-scheme>

      <distributed-scheme>
         <scheme-name>aspnet-session-overflow-scheme</scheme-name>
         <scheme-ref>dist-default</scheme-ref>
         <service-name>AspNetSessionCache</service-name>
         <autostart>true</autostart>
      </distributed-scheme>
   </caching-schemes>
</cache-config>

23.2.4 Configure a Client-Side ASP Session Remote Cache
The Coherence session provider requires an extend client's cache configuration file to
include remote cache schemes for the session storage and session overflow caches.
As with any remote cache, the cache on the cluster and the cache on the client must
use the same name. See Defining a Remote Cache.

The following example configures a client-side ASP session remote cache scheme
that is used by the Coherence session provider to store session data on the cluster.

Chapter 23
Setting Up Coherence ASP.NET Session Management

23-3



<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://schemas.tangosol.com/cache
   assembly://Coherence/Tangosol.Config/cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>aspnet-session-storage</cache-name>
         <scheme-name>extend-direct</scheme-name>
      </cache-mapping>
      <cache-mapping>
         <cache-name>aspnet-session-overflow</cache-name>
         <scheme-name>extend-direct</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>

   <caching-schemes>
      <remote-cache-scheme>
         <scheme-name>extend-direct</scheme-name>
         <service-name>ExtendTcpCacheService</service-name>
         <initiator-config>
            <tcp-initiator>
               <remote-addresses>
                  <socket-address>
                     <address>localhost</address>
                     <port>7077</port>
                  </socket-address>
               </remote-addresses>
            </tcp-initiator>
            <outgoing-message-handler>
               <request-timeout>30s</request-timeout>
            </outgoing-message-handler>
         </initiator-config>
      </remote-cache-scheme>
   </caching-schemes>
</cache-config>

23.2.5 Overriding the Default Session Cache Name
The Coherence session provider's default behavior is to use a remote session cache
named aspnet-session-storage. The remote cache example in Configure a Client-Side
ASP Session Remote Cache demonstrates creating a remote cache with the default
name. However, a session provider can be configured to use a remote cache with a
name other than the default.

To override the default session cache name, add a cacheName attribute within the
provider configuration. The following example specifies a cache named my-session-
cache.

<system.web>
   <sessionState mode="Custom" 
                 customProvider="CoherenceSessionProvider" 
                 cookieless="false" 
                 timeout="20">
      <providers>
         <add name="CoherenceSessionProvider" 
              type="Tangosol.Web.CoherenceSessionStore, Coherence"/> 
              cacheName="my-session-cache"
      </providers>

Chapter 23
Setting Up Coherence ASP.NET Session Management

23-4



   </sessionState>
   ... 
</system.web>

23.3 Selecting a Session Model
You can configure a Coherence session provider to store session state using different
models depending on an application’s requirements.
This section includes the following topics:

• Overview of Session Models

• Specify the Session Model

• Registering the Backing Map Listener

23.3.1 Overview of Session Models
A session model describes how the Coherence session provider physically represents
and stores session state in the cluster. The provider includes three different session
model implementations out of the box:

• Traditional Model – Stores all session state as a single entity but serializes and
deserializes attributes individually

• Monolithic Model – Stores all session state as a single entity, serializing and
deserializing all attributes as a single operation

• Split Model – Extends the Traditional Model but separates the larger session
attributes into independent physical entities

The traditional model is the default. It is similar to the SessionStateItemCollection
provided by ASP.NET - it deserializes session items lazily to avoid deserialization
penalty for items that are not accessed. However, there are certain scenarios where
monolithic or split model are better choices. See Session Model in Administering
HTTP Session Management with Oracle Coherence*Web. The topic can help
determine which model is the best fit for a particular application. The topic focuses on
Coherence*Web; however, the general concepts are the same for ASP.NET Sessions.

23.3.2 Specify the Session Model
The split model is the recommended session model for most applications. However,
the traditional model may be more optimal for applications that are known to have
small HTTP session objects.

The monolithic model is designed to solve a specific class of problems related to
multiple session attributes that have references to the same shared object, and that
must maintain that object as a shared object. When migrating to the Coherence
session provider from the ASP.NET InProc provider, the monolithic model ensures that
all shared objects are serialized and deserialized properly.

To specify the Coherence session provider's session model, add a model attribute
within the provider configuration. The following example specifies a split model.

<system.web>
   <sessionState mode="Custom" 
                 customProvider="CoherenceSessionProvider" 
                 cookieless="false" 

Chapter 23
Selecting a Session Model

23-5



                 timeout="20">
      <providers>
         <add name="CoherenceSessionProvider" 
              type="Tangosol.Web.CoherenceSessionStore, Coherence"
              model="split"
              externalAttributeSize="512"/> 
      </providers>
   </sessionState>
   ...
</system.web>

The valid values for the model attribute are traditional, monolithic, split, or a fully
qualified name of the class that implements Tangosol.Web.ISessionModelManager
interface and provides a constructor that accepts a single Tangosol.IO.ISerializer
argument. The interface allows custom model implementations to be created if
necessary.

In the example above, the session provider is configured to use the split model. The
split model supports externalAttributeSize attribute, which specifies the minimum size
(in bytes) of the attributes that should be stored separately. If the
externalAttributeSize attribute is omitted, the default value of 1024 bytes is used.

23.3.3 Registering the Backing Map Listener
Session attributes are partitioned into two regions when utilizing the split session
model. Core HTTP session attributes, such as session ID, creation time, last access,
and so on, are managed within one partition and large attributes are split out into
another partition. This allows support for very large HTTP session objects without
incurring overhead for frequently accessed small attributes.

With the .NET session provider implementation, core attributes and large attributes are
stored in separate caches. Therefore; the backing map listener
(AspNetSessionStoreProvider$SessionCleanupListener class) is recommended to keep
both caches synchronized. This ensures that if a session is terminated explicitly by the
user and removed by eviction or expiry, that both the removal of the core and large
segments of the session are coherently removed from the two caches.

The following example demonstrates registering the
AspNetSessionStoreProvider$SessionCleanupListener backing map listener on the
cluster-side ASP .NET session cache:

<caching-schemes>
   <distributed-scheme>
      <scheme-name>aspnet-session-scheme</scheme-name>
      <service-name>AspNetSessionCache</service-name>
      <serializer>
         <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
         <init-params>
            <init-param>
               <param-type>string</param-type>
               <param-value>coherence-pof-config.xml</param-value>
            </init-param>
         </init-params>
      </serializer>
      <backing-map-scheme>
         <local-scheme>
            <class-name>com.tangosol.net.cache.LocalCache</class-name>
            <listener>
               <class-scheme>

Chapter 23
Selecting a Session Model

23-6



                  <class-name>
       com.tangosol.net.internal.AspNetSessionStoreProvider$SessionCleanupListener
                  </class-name>
                  <init-params>
                     <init-param>
                        <param-type>
                           com.tangosol.net.BackingMapManagerContext
                        </param-type>
                        <param-value>{manager-context}</param-value>
                     </init-param>
                  </init-params>
               </class-scheme>
            </listener>
         </local-scheme>
      </backing-map-scheme>
      <autostart>true</autostart>
   </distributed-scheme>

23.4 Configuring a Serializer
You can configure a Coherence session provider to use a specific serializer, including
a Coherence POF serializer.
This section includes the following topics:

• Specifying a Serializer

• Using POF for Session Serialization

23.4.1 Specifying a Serializer
The Coherence session provider can be configured to use a specific serializer for
serializing session items. To specify a serializer, add a serializer attribute within
provider definition. The following example specifies the binary serializer.

<system.web>
   <sessionState mode="Custom" 
                 customProvider="CoherenceSessionProvider" 
                 cookieless="false" 
                 timeout="20">
      <providers>
         <add name="CoherenceSessionProvider" 
              type="Tangosol.Web.CoherenceSessionStore, Coherence"
              model="split"
              externalAttributeSize="512"
              serializer="binary"/> 
      </providers>
   </sessionState>
   ...
</system.web>

The valid values for the serializer attribute are binary (default), pof, or a fully qualified
name of the class that implements the Tangosol.IO.ISerializer interface. The interface
is used to create a custom serializer if necessary. However, the existing serializers are
sufficient more often than not.

Chapter 23
Configuring a Serializer

23-7



23.4.2 Using POF for Session Serialization
Portable Object Format (POF) is the recommended serialization format when using
Coherence to manage ASP.NET sessions and provides many benefits over
standard .NET binary serialization. In particular, POF serialization is faster and has a
significantly more compact format. The compact format typically results in a binary
form that is 3 to 5 times smaller than the standard binary serializer. This translates
directly into a lower memory footprint within the cluster and can result in significant
cost savings.

To use POF, ensure that all custom classes that are stored either directly or indirectly
within the session are registered within the POF context and either implement the
IPortableObject interface or have an external IPofSerializer configured. See Building
Integration Objects (.NET) .

The following discussion summarizes some implementation details that should be
considered when using POF. See The PIF-POF Binary Format in Developing
Applications with Oracle Coherence.

When session items are deserialized by the POF serializer, there is no guarantee that
the type of the resulting object equals the type of the original value. For example,
integer values between -1 and 22 (inclusive) are returned as Int32 values, regardless
of the original type, so they may require a cast to the appropriate type.

Collections may also be deserialized to a different type. For example, an ArrayList
might be stored within the session, but an immutable object array may be received
after the object is read back. This is expected behavior and the reason why the
IPofReader interface provides a template to read values as an argument to all methods
that read collections from the POF stream.

Session items are not typed and there is no way to specify how they should be
deserialized. Therefore, a default collection type is always received. This is typically
acceptable when reading from the collection. However, if the collection must be
modified, either of the following two options can be used:

• Create an instance of a mutable collection of a desired type and add elements
from the deserialized collection to it. When using this option, do not forget to
update corresponding session items with the new collection, or the changes are
not saved.

• Instead of storing "bare" collections directly, create a wrapper class that
implements necessary serialization logic and register it within the POF context.
This allows full control over collection serialization and can avoid the issues
described above.

These steps do require extra work; however, the performance gains and reduced
memory footprint are likely worth the trouble.

23.5 Sharing ASP.NET Session State Across Applications
In some cases, it is beneficial to share sessions across ASP.NET applications. By
default, a session key is determined by combining the application identifier (as
returned by the HostingEnvironment.ApplicationID property) with the session identifier.
This effectively prevents session sharing.

Chapter 23
Sharing ASP.NET Session State Across Applications

23-8



The Coherence session provider can be configured to use a specific application
identifier. To specify an application identifier, add an applicationId attribute within a
provider definition. The following examples specifies MyApplication as the application
ID.

<system.web>
   <sessionState mode="Custom" 
                 customProvider="CoherenceSessionProvider" 
                 cookieless="false" 
                 timeout="20">
      <providers>
         <add name="CoherenceSessionProvider" 
              type="Tangosol.Web.CoherenceSessionStore, Coherence"
              applicationId="MyApplication"
              model="split"
              externalAttributeSize="512"
              serializer="pof"/> 
      </providers>
   </sessionState>
   ...
</system.web>

To enable session sharing across the applications, configure multiple applications with
the same applicationId and ensure that they share the cookie containing the session
identifier.

Chapter 23
Sharing ASP.NET Session State Across Applications

23-9



Chapter 23

Sharing ASP.NET Session State Across Applications

23-10



Part V
Using Coherence REST

Learn how to use Coherence REST to allow applications written in any programming
language to interact with cached data. Try creating a simple Coherence REST
application.
Part V contains the following chapters:

• Introduction to Coherence REST

• Building Your First Coherence REST Application

• Performing Grid Operations with REST

• Deploying Coherence REST

• Modifying the Default REST Implementation





24
Introduction to Coherence REST

Before using Coherence REST, take some time learn how Coherence REST is
implemented. Users should be familiar with Web services and JAX-RS to use
Coherence REST.
This chapter includes the following sections:

• Overview of Coherence REST

• Dependencies for Coherence REST

• Overview of Configuration for Coherence REST

• Understanding Data Format Support

• Authenticating and Authorizing Coherence REST Clients

24.1 Overview of Coherence REST
Coherence REST provides easy access to Coherence caches and cache entries over
the HTTP protocol. It is similar to Coherence*Extend, as it allows remote clients to
access data stored in Coherence without being members of the cluster themselves.
However, unlike Coherence*Extend, which is a proprietary protocol, Coherence REST
uses HTTP as the underlying protocol and can marshal data in both JSON and XML
representation formats.The benefit of Coherence REST is that it allows applications
written in others languages, such as Ruby and Python (that are not natively supported
by Coherence), to interact with cached data.

Coherence REST Example

The Coherence distribution includes an end-to-end example of a REST application.
See Coherence REST Examples in Installing Oracle Coherence.

24.2 Dependencies for Coherence REST
The Coherence REST implementation is packaged in the COHERENCE_HOME/lib/
coherence-rest.jar library and depends on the coherence.jar library. In addition, the
Coherence REST implementation has many library dependencies and also supports
various HTTP server implementations (Grizzly HTTP Server, Simple HTTP Server,
and Jetty HTTP Server). To manage these dependencies, it is strongly recommended
that applications use Maven. If you are new to Maven, see: https://maven.apache.org/.
To use Coherence REST with the Grizzly HTTP Server, add the following
dependencies in the in the Maven pom.xml file:

<dependencies>
   <dependency>
      <groupId>com.oracle.coherence</groupId>
      <artifactId>coherence</artifactId>
      <version>12.2.1-0-0</version>
   </dependency>
   <dependency>
      <groupId>com.oracle.coherence</groupId>

24-1

https://maven.apache.org/


      <artifactId>coherence-rest</artifactId>
      <version>12.2.1-0-0</version>
   </dependency>
   <dependency>
      <groupId>org.glassfish.grizzly</groupId>
      <artifactId>grizzly-http-server</artifactId>
      <version>2.3.19</version>
   </dependency>
</dependencies>

All the required libraries are automatically downloaded. To see the complete list of
libraries, run the following Maven command:

mvn dependency:list

Refer to the Coherence REST examples for a complete pom.xml file.

24.3 Overview of Configuration for Coherence REST
Coherence REST is configured using the cache configuration file and
the REST configuration file.

Note:

When deploying Coherence REST to a JavaEE server, configuration of the
web.xml file is also required. See Deploying to a Java EE Server (Generic).

• Cache Configuration Deployment Descriptor – This file is used to define client-side
cache services and the HTTP acceptor which accepts connections from remote
REST clients over HTTP. The acceptor includes the address and port of the
cluster-side HTTP server to which clients connects. The schema for this file is the
coherence-cache-config.xsd file. See http-acceptor in Developing Applications with
Oracle Coherence.

At run time, the first cache configuration file that is found on the classpath is used.
The coherence.cacheconfig system property can also be used to explicitly specify a
cache configuration file. The file can also be set programmatically. See Specifying
a Cache Configuration File in Developing Applications with Oracle Coherence.

• REST Configuration Deployment Descriptor – This file is used to configure the
Jersey resource configuration class as well as custom aggregators and custom
entry processors. The default name of the descriptor is coherence-rest-config.xml
and the schema is defined in the coherence-rest-config.xsd file. The file must be
found on the classpath and the name can be overridden using the
coherence.rest.config system property. See REST Configuration Elements.

24.4 Understanding Data Format Support
Coherence REST supports both XML and JSON formats as input and output. To use
these formats, the correct bindings are required when creating a user type. Both
formats are demonstrated in this section.
This section includes the following topics:

• Using XML as the Data Format

Chapter 24
Overview of Configuration for Coherence REST

24-2



• Using JSON as the Data Format

24.4.1 Using XML as the Data Format
Objects that are represented in XML must have the appropriate JAXB bindings defined
in order to be stored in a cache. The following example creates an object that uses
annotations to add JAXB bindings:

@XmlRootElement(name="Address")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Address implements Serializable{
    private String street;
    private String city;
    private String country;

    public String getStreet() {
        return street;
    }

    public void setStreet(String street) {
        this.street = street;
    }

    public String getCity() {
        return city;
    }

    public void setCity(String city) {
        this.city = city;
    }

    public String getCountry() {
        return country;
    }

    public void setCountry(String country) {
        this.country = country;
    }
}

@XmlRootElement(name="Person")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Person implements Serializable {
    private Long id;
    private String name;
    private Address address;
    public Long getId() {
        return id;
    }

    public void setId(Long id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;

Chapter 24
Understanding Data Format Support

24-3



    }

    @XmlElement(name = "address")
    public Address getAddr() {
        return address;
    }

    public void setAddr(Address addr) {
        this.addr = addr;
    }
}

24.4.2 Using JSON as the Data Format
Objects that are represented in JSON must have the appropriate Jackson bindings or
JAXB bindings defined in order to be stored in a cache. The default Coherence REST
JSON marshaller gives priority to Jackson bindings. If Jackson bindings are not found,
JAXB bindings are used instead. Using Jackson annotations gives user more power
on controlling the output JSON format. However, in case when both XML and JSON
formats are needed, JAXB annotations can be enough for both formats.

The following example creates an object that uses annotations to add Jackson
bindings:

@JsonTypeInfo(use=JsonTypeInfo.Id.CLASS, include= JsonTypeInfo.As.PROPERTY,
   property="@type")
public class Address implements Serializable {
   private String street;
   private String city;
   private String country;

   public String getStreet() {
       return street;
   }

   public void setStreet(String street) {
       this.street = street;
   }

   public String getCity() {
      return city;
   }

   public void setCity(String city) {
      this.city = city;
   }

   public String getCountry() {
      return country;
   }

   public void setCountry(String country) {
      this.country = country;
   }
}

@JsonTypeInfo(use=JsonTypeInfo.Id.CLASS, include= JsonTypeInfo.As.PROPERTY,
   property="@type")
public class Person implements Serializable {
   private Long id;

Chapter 24
Understanding Data Format Support

24-4



   private String name;
   private Address address;

   public Long getId() {
      return id;
   }

   public void setId(Long id) {
      this.id = id;
   }

   public String getName() {
      return name;
   }

   public void setName(String name) {
      this.name = name;
   }

   @JsonProperty("address")
   public Address getAddr() {
      return address;
   }

   public void setAddr(Address addr) {
      this.addr = addr;
   }
}

24.5 Authenticating and Authorizing Coherence REST
Clients

Coherence REST provides both authentication and authorization to restrict access to
cluster resources. Authentication support includes both HTTP basic authentication and
SSL authentication. Authorization is implemented using Coherence*Extend-styled
authorization, which relies on interceptor classes that provide fine-grained access for
named cache and invocation service operations. See Securing Oracle Coherence
REST in Securing Oracle Coherence.

Chapter 24
Authenticating and Authorizing Coherence REST Clients

24-5



Chapter 24

Authenticating and Authorizing Coherence REST Clients

24-6



25
Building Your First Coherence REST
Application

Build and run a simple Coherence REST application that accesses and uses a
Coherence cache.
The Coherence examples that ship with the distribution also include an end-to-end
example of a REST application. See Coherence REST Examples in Installing Oracle
Coherence.

This chapter includes the following sections:

• Overview of the Basic Coherence REST Example

• Step 1: Configure the Cluster Side

• Step 2: Create a User Type
Create the Person user type, which is stored in the cache and used to demonstrate
basic REST operations.

• Step 3: Configure REST Services

• Step 4: Start the Cache Server Process

• Step 5: Access REST Services From a Client

25.1 Overview of the Basic Coherence REST Example
The Coherence REST example is organized into a set of steps that are used to
configure and run a basic Coherence REST application. The steps demonstrate
fundamental concepts, such as: configuring a proxy server responsible for handling
HTTP request, configuring a remote cache, and using the Coherence REST API.
The example in this chapter uses an embedded HTTP server in order to deploy a
standalone application that does not require an application server. Additional
deployment options are available. See Deploying Coherence REST .

Coherence for Java must be installed to complete the steps in this chapter. In addition,
the following user-defined variables are used in this example:

• DEV_ROOT - The path to root folder where user is performing all of the listed steps, or
in other words all of the following folders are relative to DEV_ROOT.

• COHERENCE_HOME - The path to folder containing Coherence JARs (coherence.jar and
coherence-rest.jar)

25.2 Step 1: Configure the Cluster Side
Coherence REST requires both a cache and a proxy scheme. The proxy scheme must
define an HTTP acceptor to handle an incoming HTTP request.
The cluster-side cache configuration deployment descriptor configures a cache and
proxy. For this example, the proxy is configured to accept client HTTP requests on

25-1



localhost and port 8080. A distributed cache named dist-http-example is defined and is
used to store client data in the cluster.

To configure the cluster side:

1. Create an XML file named example-server-config.xml in the DEV_ROOT\config folder.

2. Copy the following XML to the file:

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
   coherence-cache-config.xsd">
   <caching-scheme-mapping>
      <cache-mapping>
         <cache-name>dist-http-example</cache-name>
         <scheme-name>dist-http</scheme-name>
      </cache-mapping>
   </caching-scheme-mapping>

   <caching-schemes>
      <distributed-scheme>
         <scheme-name>dist-http</scheme-name>
         <backing-map-scheme>
            <local-scheme/>
         </backing-map-scheme>
         <autostart>true</autostart>
      </distributed-scheme>

      <proxy-scheme>
         <service-name>ExtendHttpProxyService</service-name>
         <acceptor-config>
            <http-acceptor>
               <local-address>
                  <address>localhost</address>
                  <port>8080</port>
               </local-address>
            </http-acceptor>
         </acceptor-config>
         <autostart>true</autostart>
      </proxy-scheme>
   </caching-schemes>
</cache-config>

3. Save and close the file.

25.3 Step 2: Create a User Type
Create the Person user type, which is stored in the cache and used to demonstrate
basic REST operations.
To create the Person object:

1. Create a text file in a DEV_ROOT\example folder.

2. Copy the following Java code to the file:

package example;
import java.io.Serializable;
import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;

Chapter 25
Step 2: Create a User Type

25-2



import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name="person")
@XmlAccessorType(XmlAccessType.PROPERTY)
public class Person implements Serializable {

    public Person() {}

    public Person(String name, int age)
        {
        m_name = name;
        m_age  = age;
        }

    public String getName() { return m_name; }

    public void setName(String name) { m_name = name; }

    public int getAge() { return m_age; }

    public void setAge(int age) {  m_age = age; }

    protected String m_name;
    protected int    m_age;
}

3. Save the file as Person.java and close the file.

4. Compile Person.java:

javac example\Person.java

25.4 Step 3: Configure REST Services
The Coherence REST services require metadata about the cache that it exposes. The
metadata includes the cache entry's key and value types as well as key converters
and value marshallers. The key and value types are required in order for Coherence to
be able to use built-in converters and marshallers (XML and JSON supported).
To configure the REST services:

1. Create an XML file named coherence-rest-config.xml in DEV_ROOT\config folder.

2. Copy the following XML to the file:

<?xml version="1.0"?>
<rest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-rest-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-rest-config
   coherence-rest-config.xsd">
   <resources>
      <resource>
         <cache-name>dist-http-example</cache-name>
         <key-class>java.lang.String</key-class>
         <value-class>example.Person</value-class>
      </resource>
   </resources>
</rest>

Chapter 25
Step 3: Configure REST Services

25-3



Note:

The <key-class> and <value-class> element can either be defined within the
<resource> element or within the <cache-mapping> element in the cache
configuration file.

3. Save and close the file

25.5 Step 4: Start the Cache Server Process
REST services are exposed as part of a cache server process (DefaultCacheServer).
The cache server's classpath must be configured to find all the configuration files that
were created in the previous steps as well as the Person.class. The classpath must
also contain the required dependency libraries. See Dependencies for Coherence
REST. For the sake of brevity, all of the dependencies are placed in DEV_ROOT\libs
folder and are not individually listed.
The DEV_ROOT folder should appear as follows:

\
\config
\config\example-server-config.xml
\config\coherence-rest-config.xml
\example
\example\Person.class
\libs
\libs\*

The following command line starts a cache server process and explicitly names the
cache configuration file created in Step 1 by using the coherence.cacheconfig system
property. In addition it sets all the needed libraries and configuration files (replace
dependencies with all the required library dependencies):

java -cp DEV_ROOT\config;DEV_ROOT;DEV_ROOT\libs\dependencies; 
COHERENCE_HOME\coherence-rest.jar -Dcoherence.clusterport=8090 
-Dcoherence.ttl=0 
-Dcoherence.cacheconfig=DEV_ROOT\config\example-server-config.xml 
com.tangosol.net.DefaultCacheServer

An example script for UNIX-based system follows:

#!/bin/bash

export CLASSPATH=${DEV_ROOT}/config:${DEV_ROOT}:
${DEVROOT}/lib/dependencies:${COHERENCE_HOME}/lib/coherence.jar:
${COHERENCE_HOME}/lib/coherence-rest.jar

java -cp ${CLASSPATH} -Dcoherence.clusterport=8090 
-Dcoherence.ttl=0 -Dcoherence.cacheconfig=
${DEV_ROOT}/config/example-server-config.xml com.tangosol.net.DefaultCacheServer

Check the console output to verify that the proxy service has started. The output
message should include the following:

(thread=Proxy:ExtendHttpProxyService:HttpAcceptor, member=1): Started: 
HttpAcceptor{Name=Proxy:ExtendHttpProxyService:HttpAcceptor, 
State=(SERVICE_STARTED), 
HttpServer=com.tangosol.coherence.rest.server.DefaultHttpServer, 

Chapter 25
Step 4: Start the Cache Server Process

25-4



LocalAddress=localhost, LocalPort=8080, 
ResourceConfig=com.tangosol.coherence.rest.server.DefaultResourceConfig, 
RootResource=com.tangosol.coherence.rest.DefaultRootResource}

25.6 Step 5: Access REST Services From a Client
Client applications use Coherence REST services to perform cache operations. There
are many application platforms that provide client libraries to build HTTP-based clients.
For example, the Jersey project provides Java support for client-side communication
with HTTP-based REST Web services.
The following sections demonstrate the semantics for PUT, GET, and Post operations
that a client would use to access the dist-http-example cache. An example Java client
built using Jersey follows and requires the Jersey-client-2.12.jar library. See 
Performing Grid Operations with REST .

Put Operations

PUT http://localhost:8080/dist-http-example/1 
Content-Type=application/json 
Request Body: {"name":"chris","age":30}

PUT http://localhost:8080/dist-http-example/2 
Content-Type=application/json
Request Body: {"name":"adam","age":26}

GET Operations

GET http://localhost:8080/dist-http-example/1.json

GET http://localhost:8080/dist-http-example/1.xml

GET http://localhost:8080/dist-http-example?q=name is 'adam'

GET http://localhost:8080/dist-http-example;p=name

GET http://localhost:8080/dist-http-example/count()

GET http://localhost:8080/dist-http-example/double-average(age)

Post Operation

POST http://localhost:8080/dist-http-example/increment(age,1)

Sample Jersey REST Client

package example;

import java.io.IOException;

import java.net.MalformedURLException;

import java.net.URISyntaxException;

import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Entity;
import javax.ws.rs.client.WebTarget;

import javax.ws.rs.core.MediaType;

Chapter 25
Step 5: Access REST Services From a Client

25-5



import javax.ws.rs.core.Response;

public class RestExample {
    public static void PUT(String url, MediaType mediaType, String data) {
        process(url, "put", mediaType, data);
    }

    public static void GET(String url, MediaType mediaType) {
        process(url, "get", mediaType, null);
    }

    public static void POST(String url, MediaType mediaType, String data) {
        process(url, "post", mediaType, data);
    }

    public static void DELETE(String url, MediaType mediaType) {
        process(url, "delete", mediaType, null);
    }

    public static void process(String sUrl, String action,
            MediaType mediaType,
            String data) {
        Client client = ClientBuilder.newClient();
        Response response = null;

        WebTarget webTarget = client.target(sUrl);
        String responseType = MediaType.APPLICATION_XML;
        if (mediaType == MediaType.APPLICATION_JSON_TYPE) {
            responseType = MediaType.APPLICATION_JSON;
        }

        if (action.equalsIgnoreCase("get")) {
            response = webTarget.request(responseType).get();
        } else if (action.equalsIgnoreCase("post")) {
            Entity<String> person = Entity.entity(data, responseType);
            response = webTarget.request(responseType).post(person);
        } else if (action.equalsIgnoreCase("put")) {
            Entity<String> person = Entity.entity(data, responseType);
            response = webTarget.request(responseType).put(person);
        } else if (action.equalsIgnoreCase("delete")) {
            Entity<String> person = Entity.entity(data, responseType);
            response = webTarget.request(responseType).delete();
        }
        System.out.println(response.readEntity(String.class));
    }

    public static void main(String[] args) throws URISyntaxException,
            MalformedURLException, IOException {
        PUT("http://localhost:8080/dist-http-example/1",
                MediaType.APPLICATION_JSON_TYPE,
                "{\"name\":\"chris\",\"age\":32}");
        PUT("http://localhost:8080/dist-http-example/2",
                MediaType.APPLICATION_JSON_TYPE,
                "{\"name\":\"\ufeff\u30b8\u30e7\u30f3A\",\"age\":66}");
        PUT("http://localhost:8080/dist-http-example/3",
                MediaType.APPLICATION_JSON_TYPE,
                "{\"name\":\"adm\",\"age\":88}");
        POST("http://localhost:8080/dist-http-example/increment(age,1)",
                MediaType.APPLICATION_XML_TYPE, null);
        GET("http://localhost:8080/dist-http-example/1",
                MediaType.APPLICATION_JSON_TYPE);

Chapter 25
Step 5: Access REST Services From a Client

25-6



        GET("http://localhost:8080/dist-http-example/1",
                MediaType.APPLICATION_XML_TYPE);
        GET("http://localhost:8080/dist-http-example/count()",
                MediaType.APPLICATION_XML_TYPE);
    }
}

Chapter 25
Step 5: Access REST Services From a Client

25-7



Chapter 25

Step 5: Access REST Services From a Client

25-8



26
Performing Grid Operations with REST

You can perform grid operations using the Coherence REST API. The Coherence
REST API pre-defines many operations that can be used to interact with a cache. In
addition, custom operations such aggregators and entry processors can be created as
required.
This chapter includes the following sections:

• Specifying Key and Value Types

• Performing Single-Object REST Operations

• Performing Multi-Object REST Operations

• Performing Partial-Object REST Operations

• Performing Queries with REST

• Performing Aggregations with REST

• Performing Entry Processing with REST

• Understanding Concurrency Control

• Specifying Cache Aliases

• Using Server-Sent Events

26.1 Specifying Key and Value Types
The Coherence REST services require metadata about the cache that they expose.
The metadata includes the cache entry's key and value types as well as key
converters and value marshallers. The key and value types are required in order for
Coherence to be able to use built-in converters and marshallers (both XML and JSON
are supported).
To define the key and value types for a cache entry, edit the coherence-rest-
config.xml file and include the <key-class> and the <value-class> elements within the
<resource> element whose values are set to key and value types, respectively. See 
resource.

Note:

The <key-class> and <value-class> element can either be defined within the
<resource> element or within the <cache-mapping> element in the cache
configuration file.

The following example defines a String key class and a value class for a Person user
type:

<resources>
   <resource>

26-1



      <cache-name>person</cache-name>
      <key-class>java.lang.String</key-class>
      <value-class>example.Person</value-class>
   </resource>
</resources>

26.2 Performing Single-Object REST Operations
The REST API includes support for performing GET, PUT, and DELETE operations on
a single object in a cache.

GET Operation

GET http://host:port/cacheName/key

Returns a single object from the cache based on a key. A 404 (Not Found) status code
returns if the object with the specified key does not exist. The get operation supports
partial results. See Performing Partial-Object REST Operations. Conditional gets are
supported if an object implements the com.tangosol.util.Versionsable interface. The
version is added to the response and used to determine if a client has the latest
version of an object. If a client already has the latest version of an object, a 304 (Not
Modified) status code returns.

The following sample output demonstrates the response of a GET operation:

* Client out-bound request
> GET http://127.0.0.1:8080/dist-http-example/1
> Accept: application/xml
 
* Client in-bound response
< 200
< Content-Length: 212
< Content-Type: application/xml
<
<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Person><id>1</id><name>
Mark</name><address><street>500 Oracle Parkway</street><city>Redwood Shores</city>
<country>United States</country></address></Person>

* Client out-bound request
> GET http://127.0.0.1:8080/dist-http-example/1
> Accept: application/json

* Client in-bound response
< 200
< Content-Type: application/json
<
{"@type":"rest.Person","address":{"@type":"rest.Address","city":"Redwood Shores",
"country":"United States","street":"500 Oracle Parkway"},"id":1,"name":"Mark"}

PUT Operations

PUT http://host:port/cacheName/key

Creates or updates a single object in the cache. A 200 (OK) status code returns if the
object was updated. If optimistic concurrency check fails, a 409 (Conflict) status code
returns with the current object as an entity. See Understanding Concurrency Control.

The following sample output demonstrates the response of a PUT operation:

Chapter 26
Performing Single-Object REST Operations

26-2



* Client out-bound request
> PUT http://127.0.0.1:8080/dist-test-sepx/1
> Content-Type: application/xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Person><id>1</id><name>
Mark</name><address><street>500 Oracle Parkway</street><city>Redwood Shores</city>
<country>United States</country></address></Person>
 
* Client in-bound response
< 200
< Content-Length: 0
<
 
* Client out-bound request
> PUT http://127.0.0.1:8080/dist-test-sepj/1
> Content-Type: application/json
{"@type":"rest.Person","id":1,"name":"Mark","address":{"@type":"rest.Address","str
eet":"500 Oracle Parkway","city":"Redwood Shores","country":"United States"}}
 
* Client in-bound response
< 200
< Content-Length: 0
<

Delete Operation

DELETE http://host:port/cacheName/key

Deletes a single object from the cache based on a key. A 200 (OK) status code returns
if the object is successfully deleted, or a 404 (Not Found) status code returns if the
object with the specified key does not exist.

26.3 Performing Multi-Object REST Operations
Multi-object operations allow users to retrieve or delete multiple objects in a single
network request and can significantly reduce the network usage and improve network
performance.

Note:

PUT operations are not supported as it may produce tainted data. Specifically,
it would require that individual objects (in serialized form) within the entity body
to be in the same order as the corresponding keys in the URL. In addition,
since updates result in a replacement, an entire object serialized form must be
provided which can lead to overhead.

GET Operations

GET http://host:port/cacheName/(key1, key2, ...)

Returns a set of objects from the cache based on the specified keys. The ordering of
returned objects is undefined and does not need to match the key order in the URL.
Missing objects are silently omitted from the results. A 200 (OK) status code always
returns. An empty result set is returned if there are no objects in the result set. The get
operation supports partial results. See Performing Partial-Object REST Operations.

Chapter 26
Performing Multi-Object REST Operations

26-3



DELETE Operations

DELETE http://host:port/cacheName/(key1, key2, ...)

Deletes multiple objects from the cache based on the specified keys. A 200 (OK) status
code always returns even if no objects for the specified keys were present in the
cache.

26.4 Performing Partial-Object REST Operations
You can specify which object attributes to retrieve when performing GET operations.
An application may not want (or need) to retrieve a whole object. For example, in order
to populate a drop down with a list of options, the application may only need two
properties of a potentially large object with many other properties. In order to support
this use case, each read operation should accept a list of object properties that the
user is interested in as a matrix parameter p.
The following example performs a get operation that retrieves just the id and name
attributes for a person:

GET http://localhost:8080/people/123;p=id,name

To include a country attribute of the address as well, the request URL is as follows:

GET http://localhost:8080/people/123;p=id,name,address:(country)

This approach allows an application to selectively retrieve only the properties that are
required using a simple, URL-friendly notation.

The following sample output demonstrates the response of a GET operation:

* Client out-bound request
> GET http://127.0.0.1:8080/dist-test-sepj/1;p=name
> Accept: application/json
 
* Client in-bound response
< 200
< Transfer-Encoding: chunked
< Content-Type: application/json
<
{"name":"Mark"}

26.5 Performing Queries with REST
Coherence REST allows users to query a cache. CohQL is the default query syntax;
however, additional query syntaxes can be created and used as required.
The section includes the following topics:

• Using Direct Queries

• Using Named Queries

• Specifying a Query Sort Order

• Limiting Query Result Size

• Retrieving Only Keys

• Using Custom Query Engines

Chapter 26
Performing Partial-Object REST Operations

26-4



26.5.1 Using Direct Queries
Direct queries are query expression that are submitted as the value of the parameter q
in a REST URL. By default, the query expression must be specified as a URL-encoded
CohQL expression (the predicate part of CohQL). See Filtering Entries in a Result Set
in Developing Applications with Oracle Coherence. The syntax of a direct query is as
follows:

GET http://host:port/cacheName?q=query

For example, to query the person cache for person objects where age is less than 18:

GET http://host:port/person?q=age%3C18

Direct queries are disabled by default. To enabled direct queries, edit the coherence-
rest-config.xml file and add a <direct-query> element for each resource to be queried
and set the enabled attribute to true. For example:

<resource>
   <cache-name>persons</cache-name>
   <key-class>java.lang.Integer</key-class>
   <value-class>example.Person</value-class>
   <direct-query enabled="true"/>
</resource>

A 403 (Forbidden) response code is returned if a query is performed on a resource that
does not have direct queries enabled.

26.5.2 Using Named Queries
Named queries are query expression that are configured for a resource in the
coherence-rest-config.xml file. By default, the query expression must be specified as a
CohQL expression (the predicate part of CohQL). Since this expression is configured
in an XML file, any special characters (such as < and >) must be escaped using the
corresponding entity. See Filtering Entries in a Result Set in Developing Applications
with Oracle Coherence. In addition, named queries can include context values as
required. The syntax of a named query is as follows:

GET http://host:port/cacheName/namedQuery?param1=value1,param2=value2...

To specify named queries, add any number of <query> elements, within a <resource>
element, that each contain a query expression and name binding. See query. For
example:

<resource>
   <cache-name>persons</cache-name>
   <key-class>java.lang.Integer</key-class>
   <value-class>example.Person</value-class>
   <query>
      <name>minors</name>
      <expression>age &lt; 18</expression>
   </query>
   <query>
      <name>first-name</name>
      <expression>name is :name</expression>
   </query>
</resource>

Chapter 26
Performing Queries with REST

26-5



To use a named query, enter the name of the query within the REST URL. The
following example uses the minors named query that is defined in the above example.

GET http://host:port/persons/minors

Parameters provide flexibility by allowing context values to be replaced in the query
expression. The following example uses the :name parameter that is defined in the
first-name query expression above to only query entries whose name property is Mark.

http://host:port/persons/first-name?name=Mark

Parameter names must be prefixed by a colon character (:paramName). Parameter
bindings do not have access to type information, so it's possible to get a false where a
true is expected on the comparison operators. To avoid such behavior, specify type
hints as part of a query parameter (:paramName;int). Table 26-1 lists the supported type
hints.

Table 26-1    Parameter Type Hints

Hint Type

i, int java.lang.Integer

s, short java.lang.Short

l, long java.lang.Long

f, float java.lang.Float

d, double java.lang.Double

I java.math.BigInteger

D java.math.BigDecimal

date java.util.Date

uuid com.tagosol.util.UUID

uid com.tangosol.util.UID

package.MyClas
s

package.MyClass

Named queries can also be used in conjunction with aggregation and entry
processing. See Performing Aggregations with REST and Performing Entry
Processing with REST, respectively. For example:

http://host:port/persons/first-name?name=Mark/long-max(age)

http://host:port/persons/first-name?name=Mark/increment(age,1)

26.5.3 Specifying a Query Sort Order
The sort matrix parameter is an optional parameter used within a REST URL that
provides the ability to order the returned results of a query. The sort parameter is
available for both direct queries and named queries. The value of the sort parameters
is a comma-separated list of properties to sort on, each of which can have an

Chapter 26
Performing Queries with REST

26-6



optional :asc (default) or :desc qualifier that determines the order of the sort. For
example, to sort a list of people by last name with family members sorted from the
oldest to the youngest, the sort parameter is defined as follows:

GET http://host:port/persons/minors;sort=lastName,age:desc

The following example uses the sort parameter as part of a direct query.

GET http://host:port/persons;sort=lastName,age:desc?q=age%3C18

26.5.4 Limiting Query Result Size
Queries against large caches can potentially return large result sets that may cause
out-of-memory errors. You should always use keys when querying large caches even
though the use of keys in queries is optional. If keys are omitted, then the query may
return all cache entries.

There are two ways to limit the number of results that are returned to a client: the start
and count matrix parameters and the max-results attribute. Both ways are supported
for direct and named queries.

The start and count parameters are optional integer arguments that determine the
subset of the results to return. The following example uses the parameters as part of a
named query and returns the first 10 entries sorted by name.

http://host:port/persons/minors;start=0;count=10;order=name:asc

The following example uses the parameters as part of a direct query.

GET http://host:port/persons;start=0;count=10?q=age%3C18

The max-results attribute is used within the coherence-rest-config.xml file and explicitly
limits how many results are returned to the client. Note that this attribute does not limit
the number of entries that are returned from a cache. The following example sets the
max-results attribute:

<resource max-results="50">
   <cache-name>persons</cache-name>
   <key-class>java.lang.Integer</key-class>
   <value-class>example.Person</value-class>
   <direct-query enabled="true" max-results="25">
   <query max-results="25">
      <name>minors</name>
      <expression>age &lt; 18</expression>
   </query>
</resource>

The max-results value for a direct or named query overrides the resource's max-results
value if both are specified. If a query includes a count parameter and a max-results
element is also specified, the lesser value is used.

26.5.5 Retrieving Only Keys
It is possible to retrieve just keys of entries stored in cache. Key operations do not
support paging and sorting, therefore those query parameters, if submitted, are
ignored. The following key retrieval operations are supported:

GET http://host:port/cacheName/keys

Chapter 26
Performing Queries with REST

26-7



Returns the keys of all entries in the cache.

GET http://host:port/cacheName/keys?q=query

Returns the keys of all entries satisfying the direct query criteria.

GET http://host:port/cacheName/namedQuery/keys

Returns the keys of all entries that satisfy the named query criteria.

26.5.6 Using Custom Query Engines
A query engine executes queries for both direct and named queries. The default query
engine executes queries that are expressed using a CohQL syntax (the predicate part
of CohQL). Implementing a custom query engine allows the use of different query
expression syntaxes or the ability to execute queries against data sources other than
Coherence (for example, to query a database for entries that are not present in a
cache).

This section includes the following topics:

• Implementing Custom Query Engines

• Enabling Custom Query Engines

26.5.6.1 Implementing Custom Query Engines
Custom query engines must implement the
com.tangosol.coherence.rest.query.QueryEngine and
com.tangosol.coherence.rest.query.Query interfaces. Custom implementations can also
extend the com.tangosol.coherence.rest.query.AbstractQueryEngine base class which
provides convenience methods for parsing query expression and handling parameter
bindings. The base class also supports parameter replacement at execution time and
type hints that are submitted as part of the query parameter value. Both parameter
names and type hints follow the CohQL specification and can be used for other query
engine implementations. See Using Named Queries.

The following example is a simple query engine implementation that executes SQL
queries directly against a database and forces cache read-through. In reality, a query
engine implementation would probably support runtime parameter binding, which is
not shown in the example.

public class SqlQueryEngine
   extends AbstractQueryEngine
   {
   protected Connection m_con;
   private static final String DB_DRIVER = "oracle.jdbc.OracleDriver";
   private static final String DB_URL = "jdbc:oracle:thin:@localhost:1521:orcl";
   private static final String DB_USERNAME = "username";
   private static final String DB_PASSWORD = "password";
 
   public SqlQueryEngine()
      {
      configureConnection();
      }
 
   @Override
   public Query prepareQuery(String sQuery, Map<String, Object> mapParams)
      {

Chapter 26
Performing Queries with REST

26-8



      ParsedQuery parsedQuery = parseQueryString(sQuery);
      String  sSQL            = createSelectPKQuery(parsedQuery.getQuery());
      return new SqlQuery(sSQL);
      }
 
   protected void configureConnection()
      {
      try
         {
         Class.forName(DB_DRIVER);
         m_con = DriverManager.getConnection(DB_URL, DB_USERNAME, DB_PASSWORD);
         m_con.setAutoCommit(true);
         }
      catch (Exception e)
         {
         throw new RuntimeException(e);
         }
      }
 
   protected String createSelectPKQuery(String sSQL)
      {
      return "SELECT id,name,age FROM " +
         sSQL.substring(sSQL.toUpperCase().indexOf("FROM") + 4);
      }
 
   private class SqlQuery
      implements Query
      {
      protected String m_sql;

      public SqlQuery(String sql)
         {
         m_sql = sql;
         }
 
      @Override
      public Collection values(NamedCache cache, String sOrder, int nStart, 
         int cResults)
         {
         // force read through
         Set setKeys = keySet(cache);
         return cache.getAll(setKeys).values();
         }
 
      @Override
      public Set keySet(NamedCache cache)
         {
         Set setKeys = new HashSet();
         try
            {
            PreparedStatement stmt   = m_con.prepareStatement(m_sql);
            ResultSet         result = stmt.executeQuery();
            while (result.next())
               {
               Object oKey = result.getLong(1);
               setKeys.add(oKey);
               Person person = new Person(result.getString("name"),
                  result.getInt("age"));
               cache.put(oKey, person);
               }
               stmt.close();

Chapter 26
Performing Queries with REST

26-9



            }
         catch (SQLException e)
            {
            throw new RuntimeException(e);
            }
            return setKeys;
         }
   }
}

26.5.6.2 Enabling Custom Query Engines
Custom query engines are enabled in the coherence-rest-config.xml file. To enable a
custom query engine, first register the implementation by adding an <engine> element,
within the <query-engines> element, that includes a name for the query engine and the
fully qualified name of the implementation class. See engine. For example:

<query-engines>
   <engine>
      <name>SQL-ENGINE</name>
      <class-name>package.SqlQueryEngine</class-name>
   </engine>
</query-engines>

To explicitly specify a custom query engine for a named query or a direct query, add
the engine attribute, within a <direct-query> element or a <query> element, that refers
to the custom query engine's registered name. For example:

<resource>
   <cache-name>persons</cache-name>
   <key-class>java.lang.Integer</key-class>
   <value-class>example.Person</value-class>
   <query engine="SQL-ENGINE">
      <name>less-than-1000</name>
      <expression>select * from PERSONS where id &lt; 1000</expression>
   </query>
   <direct-query enabled="true" engine="SQL-ENGINE"/>
 </resource>

To make a custom query engine the default query engine, use DEFAULT (uppercase
mandatory) as the registered name. The following definition overrides the default
CohQL-based query engine and is automatically used whenever an engine attribute is
not specified.

<query-engines>
   <engine>
      <name>DEFAULT</name>
      <class-name>package.SqlQueryEngine</class-name>
   </engine>
</query-engines>

26.6 Performing Aggregations with REST
Aggregations can be performed on data in a cache. Coherence REST includes a set of
pre-defined aggergators and custom aggregators can be created as required.

This section includes the following topics:

• Aggregation Syntax for REST

Chapter 26
Performing Aggregations with REST

26-10



• Listing of Pre-Defined Aggregators

• Creating Custom Aggregators

26.6.1 Aggregation Syntax for REST
The following examples demonstrate how to perform aggregations using REST. If the
aggregation succeeds, a 200 (OK) status code returns with the aggregation result as
an entity.

• Aggregates all entries in the cache.

GET http://host:port/cacheName/aggregator(args, ...)

• Aggregates query results. The query must be specified as a URL-encoded CohQL
expression (the predicate part of CohQL).

GET http://host:port/cacheName/aggregator(args, ...)?q=query

GET http://host:port/cacheName/namedQuery/aggregator(args, ...)?param1=value1

• Aggregates specified entries.

GET http://host:port/cacheName/(key1, key2, ...)/aggregator(args, ...)

Coherence REST provides a simple strategy for aggregator creation (out of aggregator
related URL segments). Out-of-box, Coherence REST can resolve any registered
(either built-in or user registered) aggregator with a constructor that accepts a single
parameter of type com.tangosol.util.ValueExtractor (such as LongMax, DoubleMax, and
so on). If an aggregator call within a URL doesn't contain any parameters, the
aggregator is created using com.tangosol.util.extractor.IdentityExtractor.

If an aggregator segment within the URL doesn't contain any parameters nor a
constructor accepting a single ValueExtractor exists, Coherence REST tries to
instantiate the aggregator using a default constructor which is the desired behavior for
some built-in aggregators (such as count).

The following example retrieves the oldest person in a cache:

GET http://host:port/people/long-max(age)

The following example calculates the max number in a cache containing only
numbers:

GET http://host:port/numbers/comparable-max()

The following example calculates the size of the people cache:

GET http://host:port/people/count()

26.6.2 Listing of Pre-Defined Aggregators
The following pre-defined aggregators are supported:

Aggregator Name Aggregator

big-decimal-average BigDecimalAverage.class

big-decimal-max BigDecimalMax.class

Chapter 26
Performing Aggregations with REST

26-11



Aggregator Name Aggregator

big-decimal-min BigDecimalMin.class

big-decimal-sum BigDecimalSum.class

double-average DoubleAverage.class

double-max DoubleMax.class

double-min DoubleMin.class

double-sum DoubleSum.class

long-max LongMax.class

long-min LongMin.class

long-sum LongSum.class

comparable-max ComparableMax.class

comparable-min ComparableMin.class

distinct-values DistinctValues.class

count Count.class

26.6.3 Creating Custom Aggregators
Custom aggregator types can be defined by specifying a name to be used in the REST
URL and a class implementing either the
com.tangosol.util.InvocableMap.EntryAggregator interface or the
com.tangosol.coherence.rest.util.aggregator.AggregatorFactory interface.

An EntryAggregator implementation is used for simple scenarios when aggregation is
either performed on single property or on cache value itself (as most of the pre-defined
aggregators do).

The AggregatorFactory interface is used when a more complex creation strategy is
required. The implementation must be able to resolve the URL segment containing
aggregator parameters and use the parameters to create the appropriate aggregator.

Custom aggregators are configured in the coherence-rest-config.xml file within the
<aggregators> elements. See aggregator. The following example configures both a
custom EntryAggregator implementation and a custom AggregatorFactory
implementation:

<aggregators>
   <aggregator>
      <name>my-simple-aggr</name>
      <class-name>com.foo.MySimpleAggregator</class-name>
   </aggregator>
   <aggregator>
      <name>my-complex-aggr</name>
      <class-name>com.foo.MyAggreagatorFactory</class-name>
   </aggregator>
</aggregators>

Chapter 26
Performing Aggregations with REST

26-12



26.7 Performing Entry Processing with REST
Entry Processors can be invoked on one or more objects in a cache. Coherence REST
includes a set of pre-defined entry processors and custom entry processors can be
created as required.
This section includes the following topics:

• Entry Processor Syntax for REST

• Listing of Pre-defined Entry Processors

• Creating Custom Entry Processors

26.7.1 Entry Processor Syntax for REST
The following examples demonstrate how to perform entry processing using REST. If
the processing succeeds, a 200 (OK) status code returns with the processing result as
an entity.

• Process all entries in the cache.

POST http://host:port/cacheName/processor(args, ...)

• Process query results.

POST http://host:port/cacheName/processor(args, ...)?q=query

POST http://host:port/cacheName/namedQuery?param1=value1/processor(args, ...)

• Process specified entries.

POST http://host:port/cacheName/(key1, key2, ...)/processor (args, ...)

Unlike aggregators, processors (even the pre-defined processors) have more diverse
creation patterns, so Coherence REST does not assume anything about processor
creation. Instead, for each entry processor implementation, there needs to be an
implementation of the com.tangosol.coherence.rest.util.processor.ProcessorFactory
interface that can handle an input string from a URL section and instantiate the
processor instance. Out-of-box, Coherence REST provides two such factories for
NumberIncrementor and NumberMultiplier.

The following example increments each person's age in a cache by 5:

POST http://localhost:8080/people/increment(age, 5)

The following example multiplies each number in a cache containing only numbers by
the factor 10:

POST http://localhost:8080/numbers/multiply(10)

26.7.2 Listing of Pre-defined Entry Processors
The following pre-defined processors are supported:

Chapter 26
Performing Entry Processing with REST

26-13



Processor
Name

Processor

increment A NumberIncrementor instance that always returns the new (incremented)
value

post-increment A NumberIncrementor instance that always returns the old (not
incremented) value

multiply A NumberMultiplier instance that always returns the new (multiplied)
value

post-multiply A NumberMultiplier instance that always returns the old (not multiplied)
value

26.7.3 Creating Custom Entry Processors
Custom entry processors can be defined by specifying a name to be used in a REST
URL and a class that implements the
com.tangosol.coherence.rest.util.processor.ProcessorFactory interface.

Custom entry processors are configured in the coherence-rest-config.xml file within
the <processors> elements. See processors. The following example configures a
custom ProcesorFactory implementation:

<processors>
   <processor>
      <name>my-processor</name>
      <class-name>com.foo.MyProcessorFactory</class-name>
   </processor>
</processors>

26.8 Understanding Concurrency Control
Coherence REST supports optimistic concurrency only as it maps cleanly to the HTTP
protocol. When an application submits a GET request for an object that implements the
com.tangosol.util.Versionable interface, the current version identifier is returned in an
HTTP ETag (as well as in the representation of the object, assuming the version
identifier is included in the JSON/XML serialized form). If the application then submits
the same GET request for the resource, but this time with an If-None-Match header with
the same ETag value, Coherence REST returns a status of 304, indicating that the
application has the latest version of the resource.
Likewise, when an application submits a PUT request to update an object that
implements the com.tangosol.util.Versionable interface, Coherence REST performs
an update only if the existing and new object versions match; otherwise a 409 Conflict
status is returned along with the current object so that the client can reapply the
changes and retry.

The following example illustrates these concepts:

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.WebResource;
import javax.ws.rs.core.MediaType;
import org.codehaus.jettison.json.JSONObject;

Chapter 26
Understanding Concurrency Control

26-14



public class ConcurrencyTests
   {
   public static void main(String[] asArg)
      throws Exception
      {
      Client      client      = Client.create();
      String      url         = "http://localhost:" + getPort() + "/dist-test1/2";
      WebResource webResource = client.resource(url);
 
      // perform a GET of a server-side resource that implements Versionable
      ClientResponse response = webResource
         .accept(MediaType.APPLICATION_JSON).get(ClientResponse.class);
      assert 200 == response.getStatus(); /* OK */
 
      // verify that the current version of the resource is 1
      JSONObject json    = new JSONObject(response.getEntity(String.class));
      String     version = json.getString("versionIndicator");
      assert "1".equals(version);
      assert new EntityTag("1").equals(response.getEntityTag());
 
      // perform a conditional GET of the same resource and verify that we
      // get a response status of 304: Not Modified
      response = webResource
         .accept(MediaType.APPLICATION_JSON)
         .header ("If-None-Match", '"' + version + '"').get(ClientResponse.class);
      assert 304 == response.getStatus(); /* Not Modified */
 
      // simulate a version change on the server-side by rolling back the
      // version indicator on our representation of the resource
      json.put("versionIndicator", String.valueOf(0));
 
      // perform a conditional PUT of the same resource and verify that we
      // get a response status of 409: Conflict
      response = webResource
         .accept(MediaType.APPLICATION_JSON)
         .put(ClientResponse.class, json);
      assert 409 == response.getStatus(); /* Conflict */
 
      // retry again with the returned value and verify that we now get a
      // response status of 200: OK
      json = new JSONObject(response.getEntity(String.class));
      response = webResource
         .accept(MediaType.APPLICATION_JSON)
         .put(ClientResponse.class, json);
      assert 200 == response.getStatus(); /* OK */
      }
   }

26.9 Specifying Cache Aliases
Cache aliases are used to specify simplified cache names that are used when a cache
name is not ideal for the REST URL path segment. The simplified names are mapped
to the real cache names.
To define a cache alias, edit the coherence-rest-config.xml file and include the <name>
attribute within the <resource> element whose value is set to a simplified cache name.

The following example creates a cache alias named people for a cache with the name
dist-extend-not-ideal-name-for-a-cache*:

Chapter 26
Specifying Cache Aliases

26-15



<resources>
   <resource name="people">
      <cache-name>dist-extend-not-ideal-name-for-a-cache*</cache-name>
      ...
   </resource>
</resources>

26.10 Using Server-Sent Events
Server-sent events allow Coherence REST applications to automatically receive cache
events from the Coherence cluster. For example, events can be received when cache
entries are inserted or deleted. For a complete example of using server-sent events,
see the Coherence REST examples in Coherence REST Examples in Installing Oracle
Coherence.
Server-sent events require the use of either the Grizzly HTTP server or the Jetty HTTP
server. See Using Grizzly HTTP Server and Using Jetty HTTP Server, respectively. In
addition, server-sent events must be supported by your web browser. Refer to your
browser documentation for support details.

This section includes the following topic:

• Receiving Server-Sent Events

26.10.1 Receiving Server-Sent Events
Web pages use the EventSource object to receive server-sent events. The EventSource
object connects to a specified URI where events are generated and custom
EventListeners are added to listen and process the incoming server-sent events. The
following code from the Coherence REST example uses JavaScript to create a new
EventSource object that listens to the /cache/contacts URI and adds event listeners for
insert, update, delete, and error events.

$scope.startListeningContacts = function() {
   $scope.contacts.listening = true;
   $scope.contacts.started   = true;

   if ($scope.contacts.filter == 'all') {
      query = '';
   }
   else if ($scope.contacts.filter == '>=45') {
      query = '?q=age%20>=%2045';
      $scope.contacts.filter = 'age >= 45';
   }
   else {
      query = '?q=age%20<%2045';
      $scope.contacts.filter = 'age < 45';
   }

   $scope.contacts.status  = 'Listening: ' + $scope.contacts.filter;
   var eventSourceContacts = new EventSource('/cache/contacts' + query);

   eventSourceContacts.addEventListener('insert', function(event) {
      $scope.contacts.insertCount++;
      $scope.contacts.allCount++;
      $scope.updateContactEvent(JSON.parse(event.data), 'insert');
      $scope.$apply();
   });

Chapter 26
Using Server-Sent Events

26-16



   eventSourceContacts.addEventListener('update', function(event) {
      $scope.contacts.updateCount++;
      $scope.contacts.allCount++;
      $scope.updateContactEvent(JSON.parse(event.data), 'update');
      $scope.$apply();
   });

   eventSourceContacts.addEventListener('delete', function(event) {
      $scope.contacts.deleteCount++;
      $scope.contacts.allCount++;
      $scope.updateContactEvent(JSON.parse(event.data), 'delete');
      $scope.$apply();
   });

   eventSourceContacts.addEventListener('error', function(event) {
      var eventData = JSON.parse(event.data);
      alert('error');
   });
};

When an event is received, an application can choose take some meaningful action
based on the event. For example:

$scope.updateContactEvent = function(eventData, eventType) {
   $scope.contacts.eventType = eventType;
   $scope.contacts.eventKey  = eventData.key.firstName + ' ' + 
      eventData.key.lastName;

   $scope.contacts.eventNewValue = 'N/A';
   $scope.contacts.eventOldValue = 'N/A';

   if (eventType == 'insert' || eventType == 'update') {
      $scope.contacts.eventNewValue = $scope.getContactString(eventData.newValue);
   }
   if (eventType == 'delete' || eventType == 'update') {
      $scope.contacts.eventOldValue = $scope.getContactString(eventData.oldValue);
   }
};

Chapter 26
Using Server-Sent Events

26-17



Chapter 26

Using Server-Sent Events

26-18



27
Deploying Coherence REST

You can deploy Coherence REST to an embedded HTTP server, WebLogic Server,
and any generic servlet container.
This chapter includes the following sections:

• Deploying with the Embedded HTTP Server

• Deploying to WebLogic Server

• Deploying to a Java EE Server (Generic)

• Configuring REST Server Access to POF-Enabled Services

27.1 Deploying with the Embedded HTTP Server
Coherence provides multiple embedded HTTP server implementations that can be
used to host RESTful Web services. See Changing the Embedded HTTP Server.

• DefaultHttpServer (backed by Oracle's lightweight HTTP server)

• GrizzlyHttpServer (backed by Grizzly HTTP server and recommended for
production environments)

• SimpleHttpServer (backed by Simple HTTP server)

• JettyHttpServer (backed by Jetty HTTP server)

The HTTP server must be enabled on a Coherence proxy server. To enable the HTTP
server, edit the proxy's cache configuration file and add an <http-acceptor> element,
within the <proxy-scheme> element, and include the host and port for the HTTP server.
The <address> element also supports external NAT addresses that route to local
addresses; however, both addresses must use the same port number.

The following example configures the HTTP server to accept requests on localhost
127.0.0.1 and port 8080. The example explicitly defines the HTTP server class and
Jersey resource configuration class and uses / as the context path for the Coherence
REST application. However; these are default values and need not be included. The
context path can be changed as required and additional Coherence REST applications
can be defined with different context paths. See http-acceptor in Developing
Applications with Oracle Coherence.

<proxy-scheme>
   <service-name>ExtendHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         <class-name>
            com.tangosol.coherence.rest.server.DefaultHttpServer</class-name>
         <local-address>
            <address>127.0.0.1</address>
            <port>8080</port>
         </local-address>
         <resource-config>
            <context-path>/</context-path>
            <instance>

27-1



               <class-name>
                  com.tangosol.coherence.rest.server.DefaultResourceConfig
               </class-name>
            </instance>
         </resource-config>
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

If you are using POF, make sure that the pof-config.xml file includes the location of
the REST POF types. See Configuring REST Server Access to POF-Enabled
Services.

27.2 Deploying to WebLogic Server
WebLogic Server includes a Coherence integration that standardizes the way
Coherence applications are packaged, deployed, and managed within a WebLogic
Server domain. Coherence REST must follow the integration standards. See 
Configuring and Managing Coherence Clusters in Administering Clusters for Oracle
WebLogic Server. In addition, Coherence applications must be packaged as a Grid
ARchive (GAR). See Packaging Coherence Applications in Developing Applications
with Oracle Coherence.
This section includes the following topics:

• Task 1: Configure a WebLogic Server Domain for Coherence REST

• Task 2: Package the Coherence REST Web Application

• Task 3: Package the Coherence Application

• Task 4: Package the Enterprise Application

• Task 5: Deploy the Enterprise Application

27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence
REST

Create a managed Coherence server in your WebLogic Server domain that will host
Coherence REST. The server should be configured as a storage disabled member of
a Coherence cluster. If more than one managed Coherence server is required for a
Coherence REST solution, then the servers should be managed as a tier in a
WebLogic Server cluster. See Setting Up a Coherence Cluster in Administering
Clusters for Oracle WebLogic Server.

27.2.2 Task 2: Package the Coherence REST Web Application
To package the Coherence REST Web application:

1. Create a Web application directory structure as follows:

/
/WEB-INF/
/WEB-INF/classes/
/WEB-INF/lib/

2. Create a Web application deployment descriptor (web.xml) and include a servlet
definition for the REST application as follows:

Chapter 27
Deploying to WebLogic Server

27-2



Note:

The WebLogic Server classpath contains the coherence-rest.jar library which
includes a default servlet context listener that shuts down the cluster member
during the REST application shutdown. The listener is registered as shown
below. If the cluster member is not shut down, a variety of exceptions are
thrown post shutdown.

<web-app>
   ...
   <listener>
      <listener-class>
         com.tangosol.coherence.rest.servlet.DefaultServletContextListener
      </listener-class>
   </listener>
   <servlet>
      <servlet-name>Coherence REST</servlet-name>
      <servlet-class>org.glassfish.jersey.servlet.ServletContainer
      </servlet-class>
      <init-param>
         <param-name>javax.ws.rs.Application</param-name>
         <param-value>
            com.tangosol.coherence.rest.server.ContainerResourceConfig
         </param-value>
      </init-param>
      <load-on-startup>1</load-on-startup>
   </servlet>
   <servlet-mapping>
      <servlet-name>Coherence REST</servlet-name>
      <url-pattern>/rest/*</url-pattern>
    </servlet-mapping>
      ...
</web-app>

3. Save the web.xml file to the /WEB-INF/ directory.

4. Create a WAR file using the jar utility. For example, issue the following command
from a command prompt at the root of the Web application directory:

jar -cvf coherence_rest.war *

27.2.3 Task 3: Package the Coherence Application
To package the Coherence application:

1. Copy the coherence-rest-config.xml file to the root of your Coherence application.
The structure should be as follows:

/
/com/myco/MyClass.class
/lib/
/META-INF/
/META-INF/coherence-application.xml
/META-INF/coherence-cache-config.xml
/META-INF/pof-config.xml
coherence-rest-config.xml

Chapter 27
Deploying to WebLogic Server

27-3



2. Edit the pof-config.xml file to include the coherence-rest-pof-config.xml POF
configuration file that contains the Coherence REST default user types. See 
Configuring REST Server Access to POF-Enabled Services.

3. Create a GAR file using the jar utility. For example, issue the following command
from a command prompt at the root of the GAR directory:

jar -cvf MyCohApp.gar *

27.2.4 Task 4: Package the Enterprise Application
To package the enterprise application:

1. Create an enterprise application directory structure and copy the Coherence REST
WAR file and the Coherence application GAR file to the root of the EAR. For
example:

/
/META-INF/
/META-INF/application.xml
/META-INF/weblogic-application.xml
/coherence_rest.war
/MyCohApp.gar

2. Edit the application.xml file and add a module definition for the Coherence REST
Web application. For example:

<application>
   <module>
      <web>
         <web-uri>coherence_rest.war</web-uri>
         <context-root>/</context-root>
      </web>
   </module>
</application>

3. Edit the weblogic-application.xml file and add a module reference for the
Coherence application GAR file. For example:

<weblogic-application>
   <module>
      <name>person</name>
      <type>GAR</type>
      <path>MyCohApp.gar</path>
   </module>
</weblogic-application>

4. Create the EAR file using the jar utility. For example, issue the following command
from a command prompt at the root of the EAR directory:

jar -cvf MyCohRestApp.ear *

27.2.5 Task 5: Deploy the Enterprise Application
To deploy the Enterprise application:

1. Use the WebLogic Server Administration Console or WLST tool to deploy the EAR
to the managed Coherence server created in Task 1.

Chapter 27
Deploying to WebLogic Server

27-4



2. From a browser, verify the deployment by navigating to the managed Coherence
server's listening port and include the cache name as part of the URL. For
example: http://host:port/rest/{cacheName}.

27.3 Deploying to a Java EE Server (Generic)
Coherence REST can be deployed to any standard Java EE environment.
This section includes the following topics:

• Packaging Coherence REST for Deployment

• Deploying to a Servlet Container

27.3.1 Packaging Coherence REST for Deployment
To package a Coherence REST application:

1. Create a basic Web application directory structure as follows:

/
/WEB-INF
/WEB-INF/classes
/WEB-INF/lib

2. Copy the coherence.jar and coherence-rest.jar libraries from the
COHERENCE_HOME/lib directory to the /WEB-INF/lib directory.

3. Copy the Coherence REST dependencies from the ORACLE_HOME/oracle_common/
modules/ directory to the /WEB-INF/lib directory. See Dependencies for Coherence
REST.

4. Create a Web application deployment descriptor (web.xml) and include a servlet
definition for the REST application as follows:

Note:

A default servlet context listener is included in the coherence-rest.jar that
shuts down the cluster member during the REST application shutdown. The
listener is registered as shown below. If the cluster member is not shut down,
a variety of exceptions are thrown post shutdown.

<web-app>
   ...
   <listener>
      <listener-class>
         com.tangosol.coherence.rest.servlet.DefaultServletContextListener
      </listener-class>
   </listener>
   <servlet>
      <servlet-name>Coherence REST</servlet-name>
      <servlet-class>org.glassfish.jersey.servlet.ServletContainer
      </servlet-class>
      <init-param>
         <param-name>javax.ws.rs.Application</param-name>
         <param-value>
            com.tangosol.coherence.rest.server.ContainerResourceConfig

Chapter 27
Deploying to a Java EE Server (Generic)

27-5



         </param-value>
      </init-param>
      <load-on-startup>1</load-on-startup>
   </servlet>
   <servlet-mapping>
      <servlet-name>Coherence REST</servlet-name>
      <url-pattern>/*</url-pattern>
    </servlet-mapping>
      ...
</web-app>

5. Save the web.xml file to the /WEB-INF/ directory.

6. Copy the coherence-rest-config.xml file to the WEB-INF/classes directory.

7. Copy your coherence-cache-config.xml file and tangosol-coherence-override.xml file
to the WEB-INF/classes directory.

8. If you are using POF, copy the pof-config.xml file to the WEB-INF/classes directory.
Make sure that the pof-config.xml file includes the location of the REST POF types.
See Configuring REST Server Access to POF-Enabled Services.

9. Create a Web ARchive file (WAR) using the jar utility. For example, issue the
following command from a command prompt at the root of the Web application
directory:

jar -cvf coherence_rest.war *

The archive should contain the following files:

/WEB-INF/web.xml
/WEB-INF/classes/coherence-rest-config.xml
/WEB-INF/classes/tangosol-coherence-override.xml
/WEB-INF/classes/coherence-cache-config.xml
/WEB-INF/lib/coherence.jar
/WEB-INF/lib/coherence-rest.jar
/WEB-INF/lib/coherence_dependencies

27.3.2 Deploying to a Servlet Container
Coherence REST can be deployed to any servlet container by packaging Coherence
REST as a WAR file. See Packaging Coherence REST for Deployment. Refer to your
vendors documentation for details on deploying WAR files. In addition, See the Jersey
user guide for additional servlet container deployment options:

http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4e194

27.4 Configuring REST Server Access to POF-Enabled
Services

POF-enabled services must include the defined Coherence REST POF user types.
The user types are defined in the coherence-rest-pof-config.xml file that is located in
the coherence-rest.jar library and is automatically loaded at runtime.
To configure the REST default user types, edit the pof-config.xml file to include the
coherence-rest-pof-config.xml POF configuration file. For example:

<pof-config>
   <user-type-list>
      <include>coherence-pof-config.xml</include>

Chapter 27
Configuring REST Server Access to POF-Enabled Services

27-6

http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4e194


      <include>coherence-rest-pof-config.xml</include>
      ...
   </user-type-list>
</pof-config>

Chapter 27
Configuring REST Server Access to POF-Enabled Services

27-7



Chapter 27

Configuring REST Server Access to POF-Enabled Services

27-8



28
Modifying the Default REST
Implementation

You can change the default behavior of the Coherence REST implementation.
This chapter includes the following sections:

• Using the Pass-Through Resource

• Using Custom Providers and Resources

• Changing the Embedded HTTP Server

28.1 Using the Pass-Through Resource
Coherence REST includes a resource implementation that enables pass-through
access to caches. The resource allows static binaries such as graphics to be cached.
The resource is implemented in the PassThroughRootResource class and is registered
using the PassThroughResourceConfig class.
To use the pass-through resource in an application, modify the proxy service definition
in the cache configuration file and add the fully qualified name of the
PassThroughResourceConfig class within the <resource-config> element. The resource is
mapped to a specific context path or the default path (/) if no context is defined. The
following example registers the resource and uses /cache as the context path. Any
cache resources that are defined in the coherence-rest-config.xml configuration file
are prefixed with /cache/ in the URL.

<proxy-scheme>
   <service-name>HttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         ...
         <resource-config>
            <context-path>/cache</context-path>
            <instance>
               <class-
name>com.tangosol.coherence.rest.server.PassThroughResourceConfig</class-name>
            </instance>
         </resource-config>
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

Likewise, the ContainerPassThroughResourceConfig class, which is an extension of the
PassThroughResourceConfig class, is used for container deployments of Coherence
REST when pass-through is required. The resource is configured in the Web
application deployment descriptor included in the Coherence REST application.

<web-app>
   ...
   <listener>
      <listener-class>

28-1



         com.tangosol.coherence.rest.servlet.DefaultServletContextListener
      </listener-class>
   </listener>
   <servlet>
      <servlet-name>Coherence REST</servlet-name>
      <servlet-class>org.glassfish.jersey.servlet.ServletContainer
      </servlet-class>
      <init-param>
         <param-name>javax.ws.rs.Application</param-name>
         <param-value>
            com.tangosol.coherence.rest.server.ContainerPassThroughResourceConfig
         </param-value>
      </init-param>
      <load-on-startup>1</load-on-startup>
   </servlet>
   <servlet-mapping>
      <servlet-name>Coherence REST</servlet-name>
      <url-pattern>/rest/*</url-pattern>
    </servlet-mapping>
      ...
</web-app>

28.2 Using Custom Providers and Resources
Custom providers and resources can be created as required. This section
demonstrates how to register custom providers, and how to override Coherence's
default root resource.
The com.tangosol.coherence.rest.server.DefaultResourceConfig class supports
package scanning, which can be used to register custom providers or resources. The
following example demonstrates registering a custom provider and resource using
package scanning:

public class MyResourceConfig  extends DefaultResourceConfig
   {
   public MyResourceConfig()
      {
      super("com.my.providers;com.my.resources");
      }
   }

As an alternative, the following example demonstrates how to override one or more of
the register methods defined in the DefaultResourceConfig class in order to use
custom providers, a custom root resource, or to add filters and filter factories.

Note:

Never override (unregister) Coherence default Providers without overriding the
root resource class as well (the DefaultRootResource class depends on the
default providers to provide the necessary dependencies and configuration).

public class MyResourceConfig  extends DefaultResourceConfig
    {
    protected void registerRootResource()
        {
        // remove if you don't want Coherence defaults to be registered

Chapter 28
Using Custom Providers and Resources

28-2



        super.registerRootResource(); 
        getClasses().add(MyRootResource.class);
        }
 
    protected void registerProviders()
        {
        // remove if you don't want Coherence defaults to be registered
        super.registerProviders();
        getSingletons().add(new MyProvider());
        }
 
    protected void registerContainerRequestFilters()
        {
        // remove if you don't want Coherencedefaults to be registered
        super.registerContainerRequestFilters();
        getContainerRequestFilters().add(new MyRequestFilter());
        }
 
    protected void registerContainerResponseFilters()
        {
        // remove if you don't want Coherence defaults to be registered
        super.registerContainerResponseFilters();
        getContainerResponseFilters().add(new MyResponseFilter());
        }
 
    protected void registerResourceFilterFactories()
        {
        // remove if you don't want Coherence defaults to be registered
        super.registerResourceFilterFactories();
        getResourceFilterFactories().add(new MyResourceFilterFactory());
        }
    }

Custom resource configuration classes are enabled in the cache configuration file by
adding the fully qualified name of the class using the <resource-config> element within
an HTTP acceptor configuration. The class is mapped to a specific context path or the
default context path (/) if no context path is defined. Multiple resource configuration
class definitions can be added and mapped to different context paths. The following
example registers a custom resource called MyResourceConfig and maps it to the /
MyApplication context path.

<proxy-scheme>
   <service-name>ExtendHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         ...
            <resource-config>
               <context-path>/MyApplication</context-path>
               <instance>
                    <class-name>package.MyResourceConfig</class-name>
               </instance>
            </resource-config>
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

Chapter 28
Using Custom Providers and Resources

28-3



28.3 Changing the Embedded HTTP Server
Coherence REST uses Oracle's lightweight HTTP server by default to handle
requests. However, the implementation is not recommended for production
environments and is typically used during development and testing. For production
environments, Coherence includes implementations for the Grizzly HTTP server, the
Simple HTTP server, and the Jetty HTTP server. These servers are supported in
Jersey. Refer to the Jersey documentation for instructions on integrating additional
HTTP servers, which are beyond the scope of this documentation.
http://jersey.java.net/

This section includes the following topics:

• Using Grizzly HTTP Server

• Using Simple HTTP Server

• Using Jetty HTTP Server

28.3.1 Using Grizzly HTTP Server
Coherence REST provides a Grizzly 2 HTTP server implementation
(com.tangosol.coherence.rest.server.GrizzlyHttpServer) that can be used instead of
the default HTTP server. For more information on the Grizzly HTTP server see:

http://grizzly.java.net/

The Grizzly server is enabled in the cache configuration file by adding the fully
qualified name of the implementation as a value of the <class-name> element within an
HTTP acceptor configuration. For example:

<proxy-scheme>
   <service-name>ExtendHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         <class-name>com.tangosol.coherence.rest.server.GrizzlyHttpServer
         </class-name>
         ...
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

28.3.2 Using Simple HTTP Server
Coherence REST provides a Simple HTTP server implementation
(com.tangosol.coherence.rest.server.SimpleHttpServer) that can be used instead of the
default HTTP server. For more information on the Simple framework see:

http://www.simpleframework.org/

The Simple HTTP server is enabled in the cache configuration file by adding the fully
qualified name of the implementation as a value of the <class-name> element within an
HTTP acceptor configuration. For example:

<proxy-scheme>
   <service-name>ExtendHttpProxyService</service-name>

Chapter 28
Changing the Embedded HTTP Server

28-4

http://jersey.java.net/
http://grizzly.java.net/
http://www.simpleframework.org/


   <acceptor-config>
      <http-acceptor>
         <class-name>com.tangosol.coherence.rest.server.SimpleHttpServer
         </class-name>
         ...
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

28.3.3 Using Jetty HTTP Server
Coherence REST provides a Jetty HTTP server implementation
(com.tangosol.coherence.rest.server.JettyHttpServer) that can be used instead of the
default HTTP server. For more information on the Jetty HTTP server, see:

http://www.eclipse.org/jetty/

The Jetty server is enabled in the cache configuration file by adding the fully qualified
name of the implementation as a value of the <class-name> element within an HTTP
acceptor configuration. For example:

<proxy-scheme>
   <service-name>ExtendHttpProxyService</service-name>
   <acceptor-config>
      <http-acceptor>
         <class-name>com.tangosol.coherence.rest.server.JettyHttpServer
         </class-name>
         ...
      </http-acceptor>
   </acceptor-config>
   <autostart>true</autostart>
</proxy-scheme>

Chapter 28
Changing the Embedded HTTP Server

28-5

http://www.eclipse.org/jetty/


Chapter 28

Changing the Embedded HTTP Server

28-6



A
REST Configuration Elements

The Coherence REST configuration reference provides a detailed description of the
REST configuration deployment descriptor.
This appendix includes the following sections:

• REST Configuration File

• REST Configuration Element Reference

A.1 REST Configuration File
The Coherence REST configuration deployment descriptor specifies the configuration
for the REST implementation. The default name of the descriptor is coherence-rest-
config.xml and must be found on the classpath. The name can be overridden using
the coherence.rest.config system property. For example:

-Dcoherence.rest.config=MyConfig.xml

The REST configuration deployment descriptor schema is defined in the coherence-
rest-config.xsd file. The XSD file is located in the root of the coherence.jar library and
at the following Web URL:

http://xmlns.oracle.com/coherence/coherence-rest-config/1.2/coherence-rest-
config.xsd

The <rest> element is the root element of the configuration file and includes the XSD
and namespace declarations. For example:

<?xml version='1.0'?>

<rest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns="http://xmlns.oracle.com/coherence/coherence-rest-config"
   xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-rest-config
   coherence-rest-config.xsd">

Note:

• The schema located in the coherence.jar library is always used at run time
even if the xsi:schemaLocation attribute references the Web URL.

• The xsi:schemaLocation attribute can be omitted to disable schema
validation.

• When deploying Coherence into environments where the default character
set is EBCDIC rather than ASCII, ensure that the deployment descriptor
file is in ASCII format and is deployed into its run-time environment in the
binary format.

A-1

http://xmlns.oracle.com/coherence/coherence-rest-config/1.2/coherence-rest-config.xsd
http://xmlns.oracle.com/coherence/coherence-rest-config/1.2/coherence-rest-config.xsd


A.2 REST Configuration Element Reference
The Coherence REST configuration element reference includes all non-terminal report
file configuration elements. Each section includes instructions on how to use the
element and also includes descriptions for all valid subelements.

• REST Configuration Element Index

• aggregator

• aggregators

• engine

• marshaller

• processor

• processors

• query

• query-engines

• resource

• resources

• rest

A.2.1 REST Configuration Element Index
Table A-1 lists all non-terminal REST configuration elements.

Table A-1    REST Configuration Elements

Element Used In

aggregator aggregators

aggregators rest

engine query-engines

marshaller resource

processor processors

processors rest

query resource

query-engines rest

resource resources

resources rest

rest root element

Appendix A
REST Configuration Element Reference

A-2



A.2.2 aggregator
Used in: aggregators

Description

The aggregator element is used to define custom aggregators that are used to
aggregate data in a cache. Each aggregator element must contain a single binding
between a name and an aggregator class or aggregator factory class.

Elements

Table A-2 describes the subelements of the aggregator element.

Table A-2    aggregator Subelements

Element Required/ Optional Description

<name> Required Specifies a name to be used in a REST URL that is bound to an
aggregator class or aggregator factory class.

<class> Required Specifies the fully qualified name of a custom aggregator class or
custom aggregator factory class that is bound to a name. The class
must implement the com.tangosol.util.EntryAggregator or
com.tangosol.coherence.rest.util.aggregator.AggregatorFac

tory interfaces, respectively.

A.2.3 aggregators
Used in: rest

Description

The aggregators element contains any number of custom aggregator definitions.

Elements

Table A-3 describes the subelements of the aggregators element.

Table A-3    aggregators Subelements

Element Required/ Optional Description

<aggregator> Required Specifies a single binding between a name and an aggregator
class or aggregator factory class.

A.2.4 engine
Used in: query-engines

Appendix A
REST Configuration Element Reference

A-3



Description

The engines element contains a single binding between a name and a query engine
implementation class. Custom query engines must implement the
com.tangosol.coherence.rest.query.QueryEngine and
com.tangosol.coherence.rest.query.Query interfaces. Custom implementations can also
extend the com.tangosol.coherence.rest.query.AbstractQueryEngine base class which
provides useful methods for parsing query expressions and handling parameter
bindings.

Elements

Table A-4 describes the subelements of the engine element.

Table A-4    engine Subelements

Element Required/ Optional Description

<name> Required Specifies a name for the query engine.

<class-name> Required Specifies the fully qualified name of the query engine
implementation class.

A.2.5 marshaller
Used in: resource

Description

The marshaller element contains bindings between cache entry key/value classes and
a marshaller class that is used to marshall and unmarshall instances of those classes.

Elements

Table A-5 describes the subelements of the marshaller element.

Table A-5    marshaller Subelements

Element Required/ Optional Description

<media-type> Required Specifies the name of the medium that is used to for marshalling.
Coherence provides default implementations for XML and JSON
data output.

<class-name> Required Specifies the fully qualified name of a custom class that
implements the com.tangosol.coherence.rest.io.Marshaller
interface. The implementation is used to marshall/unmarshall
cache entry values that are stored in the cache. Marshallers are
configured for each object type and media type.

A.2.6 processor
Used in: processors

Appendix A
REST Configuration Element Reference

A-4



Description

The processor element is used to define custom entry processors that are used to
process data in a cache. Each processor element must contain a single binding
between a name and the processor factory class.

Elements

Table A-6 describes the subelements of the processor element.

Table A-6    processor Subelements

Element Required/ Optional Description

<name> Required Specifies a name to be used in a REST URL that is bound to a
processor factory class.

<class-name> Required Specifies the fully qualified name of a custom processor factory
class that is bound to a name. The class must implement the
com.tangosol.coherence.rest.util.processor.ProcessorFacto

ry interface.

A.2.7 processors
Used in: rest

Description

The processors element contains any number of custom processor definitions.

Elements

Table A-7 describes the subelements of the processors element.

Table A-7    processors Subelements

Element Required/ Optional Description

<processor> Required Specifies a single binding between a name and a processor factory
class.

A.2.8 query
Used in: resources

Description

The query element defines a named query for a resource. Named queries allow
configured query expressions to be executed by name in the REST URL.

GET http://host:port/cacheName/namedQuery?param1=value1,param2=value2...

Appendix A
REST Configuration Element Reference

A-5



A named query definition consists of a binding between a query name and the query
expression to execute. Multiple named queries can be configured for a resource. The
query element supports the following attributes:

• max-results – Specifies how many results are returned to the client. Note that this
attribute does not limit the number of entries that are returned from a cache. This
value overrides the max-results attribute that is set on the <resource> element.

• engine – Specifies a query engine implementation that is responsible for executing
query expressions against a cache. The default value if the attribute is not
specified is DEFAULT, which indicates a query expression must be specified as a
URL-encoded CohQL expression (the predicate part of CohQL). See query-
engines.

Elements

Table A-8 describes the subelements of the query element.

Table A-8    query Subelements

Element Required/ Optional Description

<name> Required Specifies a name for the query.

<expression> Required Specifies a query expression that is bound to the query name.

A.2.9 query-engines
Used in: rest

Description

The query-engines element contains any number of custom query engine definitions. A
query engine executes query expressions against a cache. Direct queries and named
queries rely on an underlying query engine to perform their queries. A default query
engine is provided for executing query expression that are specified as a URL-
encoded CohQL expression (the predicate part of CohQL). However, custom query
engines can be defined as required.

Elements

Table A-9 describes the subelements of the query-engines element.

Table A-9    query-engines Subelements

Element Required/ Optional Description

<engine> Required Specifies a single binding between a name and a query engine
implementation class.

A.2.10 resource
Used in: resources

Appendix A
REST Configuration Element Reference

A-6



Description

The resource element provides the metadata that is used to marshall and unmarshall
cache entries. The metadata includes a single binding between a cache name and
cache entry key and value classes.

The following attributes are available:

• name – Specifies an alias for the <cache-name> element when the name is not ideal
for the REST URL path segment. The value defaults to the value of the <cache-
name> element if a value is not specified.

• max-results – Specifies how many results are returned to the client. Note that this
attribute does not limit the number of entries that are returned from a cache. This
value is overridden if a max-results attribute is also defined within the <query> or
<direct-query> element.

Elements

Table A-10 describes the subelements of the resource element.

Table A-10    resource Subelements

Element Required/ Optional Description

<cache-name> Required Specifies the name of the cache exposed by this resource. The
cache must be defined in the cache configuration file.

<key-class> Optional Specifies the type of the entry keys stored in this cache.

<value-class> Optional Specifies the type of the entry values stored in this cache.

<key-converter> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.coherence.rest.KeyConverter interface. The class
is used to convert cache entry keys to string and string
representations of the keys that are used in the REST URL into an
appropriate object instance that can be used to access cache
entries. The
com.tangosol.coherence.rest.DefaultKeyConverter class is
used by default if no value is provided. The default class offers
reasonable to string and from string conversions for Java
primitives, dates, and UUIDs.

<marshaller> Optional Specifies the fully qualified name of a class that implements the
com.tangosol.coherence.rest.io.Marshaller interface. The
class is used to marshall/unmarshall cache entry values that are
stored in a cache. Coherence provides default implementations for
XML and JSON data output.

<query> Optional Specifies the configuration information for named queries, which
allow configured query expressions to be executed by name in the
REST URL.

Appendix A
REST Configuration Element Reference

A-7



Table A-10    (Cont.) resource Subelements

Element Required/ Optional Description

<direct-query> Optional Specifies the configuration information for direct queries, which
allow query expressions to be included in the REST URL as the
value of the parameter q.

GET http://host:port/cacheName?q=query

The following attributes are available:

• enabled – Specifies whether a resource supports direct
queries. Valid values are true and false. The default value is
false.

• max-results – Specifies how many results are returned to the
client. Note that this attribute does not limit the number of
entries that are returned from a cache. This value overrides
the <resource> element's max-results attribute.

• engine – Specifies a query engine implementation that is
responsible for executing query expressions against a cache.
The default value if the attribute is not specified is DEFAULT,
which indicates a query expression must be specified as a
URL-encoded CohQL expression (the predicate part of
CohQL). See query-engines.

A.2.11 resources
Used in: rest

Description

The resources element contains any number of resource definitions. A resource
definition provides the metadata that is used to marshall and unmarshall cache entries.

Elements

Table A-11 describes the subelements of the resources element.

Table A-11    resources Subelements

Element Required/ Optional Description

<resource> Required Specifies a single binding between a cache name and cache entry
key and value classes.

A.2.12 rest
root element

Appendix A
REST Configuration Element Reference

A-8



Description

The rest element is the root element of the coherence-rest-config.xml file which is
used to configure the Coherence REST implementation. The implementation uses
REST Web services to allow remote clients to access data in the cluster over HTTP
and does not require the use of POF serialization.

Elements

Table A-12 describes the subelements of each rest element.

Table A-12    rest Subelements

Element Required/ Optional Description

<resources> Optional Specifies any number of resource definitions that provide the
metadata that is used to marshall and unmarshall cache entries.

<processors> Optional Specifies any number of custom processor definitions that are used
to process data in a cache.

<aggregators> Optional Specifies any number of custom aggregator definitions that are
used to aggregate data in a cache.

<query-engines> Optional Specifies any number of custom query engine definitions. A query
engine is responsible for executing queries.

Appendix A
REST Configuration Element Reference

A-9



Appendix A

REST Configuration Element Reference

A-10



B
Integrating with F5 BIG-IP LTM

You can use the F5 BIG-IP Local Traffic Manager (LTM) hardware load balancer to
balance Coherence*Extend client connections. Instructions are also included to use
the BIG-IP system to off load SSL processing.
The instructions are specific to using the BIG-IP Configuration Utility as it pertains to
Coherence*Extend setup. Refer to the Help included with the utility for complete usage
instructions. In addition, the instructions were created based on BIG-IP LTM 10.2.1
and may not be accurate for future releases of BIG-IP LTM.

This appendix includes the following sections:

• Basic Concepts

• Creating Nodes

• Configuring a Load Balancing Pool

• Configuring a Virtual Server

• Configuring Coherence*Extend to Use BIG-IP LTM

• Using Advanced Health Monitoring

• Using SSL Offloading

B.1 Basic Concepts
The F5 BIG-IP LTM is a hardware device that sits between one or more computers
running Coherence*Extend clients (client tier) and one or more computers running
Coherence*Extend proxy servers (proxy tier). The LTM spreads client connections
across multiple clustered proxy servers using a broad range of techniques to secure,
optimize, and load balance application traffic.
Figure B-1 shows a conceptual view of the BIG-IP system that is setup between
external network clients and internal network servers.

B-1



Figure B-1    Conceptual View of F5 BIG-IP LTM

B.2 Creating Nodes
A node is a logical object on the BIG-IP system that identifies the IP address of a
physical resource on the network. For Coherence*Extend, configure a node for each
computer on the internal network that hosts one or more proxy servers.
To create a node:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Nodes.

3. In the upper-right corner of the screen, click Create. The New Node screen
displays.

4. For the Address setting, type the IP address of the node.

5. Specify, retain, or change each of the other settings.

6. Click Finished.

Figure B-2 shows an example node configuration.

Appendix B
Creating Nodes

B-2



Figure B-2    Example Node Configuration

B.3 Configuring a Load Balancing Pool
A load balancing pool is a group of logical devices, such as proxy servers, that receive
and process traffic. Instead of sending client traffic to the destination IP address
specified in the client request, the BIG-IP system sends the request to any of the
servers that are members of that pool. This helps efficiently distribute the load on your
server resources.
When you create a pool, you assign pool members to the pool. A pool member is a
logical object that represents a server endpoint on the network. For
Coherence*Extend, create a pool member for each proxy server JVM running on your
proxy tier computers.

The specific pool member to which the BIG-IP system chooses to send the request is
determined by the load balancing method that you have assigned to that pool. A load
balancing method is an algorithm that the BIG-IP system uses to select a pool member
for processing a request. For example, the default load balancing method is Round
Robin, which causes the BIG-IP system to send each incoming request to the next
available member of the pool, thereby distributing requests evenly across the servers
in the pool.

This section includes the following topics:

Appendix B
Configuring a Load Balancing Pool

B-3



• Creating a Load Balancing Pool

• Adding a Load Balancing Pool Member

B.3.1 Creating a Load Balancing Pool
To create a load balancing pool:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools.
The Pools screen displays.

3. In the upper-right corner of the screen, click Create. The New Pool screen displays.

4. From the Configuration list, select Advanced.

5. For the Name setting, type a name for the pool.

6. Specify, retain, or change each of the other settings.

7. Click Finished.

Figure B-3 demonstrates an example pool configuration.

Figure B-3    Example Pool Configuration

Appendix B
Configuring a Load Balancing Pool

B-4



B.3.2 Adding a Load Balancing Pool Member
To add pool members to load balancing pool:

1. From the Members tab, click the number shown. This lists the existing members of
the pool.

2. In the right side of the screen, click Add. The New Pool Member screen displays.

3. In the Address box, select Node List and select an IP address.

4. In the Service Port box, type the port number on which the corresponding proxy
server is listening.

5. Retain or change each of the other settings.

6. Click Finished.

Figure B-4 shows an example pool configuration. It shows two proxy server pool
members running on the previously created node and listening on ports 7100 and
7077, respectively. Additionally, the pool is configured to use a Least Connections load
balancing policy.

Figure B-4    Example Pool Members

Appendix B
Configuring a Load Balancing Pool

B-5



B.4 Configuring a Virtual Server
A virtual server is a traffic-management object on the BIG-IP system that is
represented by an IP address and port. Clients on an external network can send
application traffic to a virtual server, which then directs the traffic according to your
configuration instructions. The main purpose of a virtual server is often to balance
traffic load across a pool of servers on an internal network. Virtual servers increase the
availability of resources for processing client requests. For Coherence*Extend, you
should configure a virtual server that directs traffic to the pool of proxy servers that you
configured earlier.
To create a virtual server:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

3. From the upper right portion of the screen, click Create. The New Virtual Server
screen displays.

4. In the Name box, type a name for the virtual server.

5. In the Destination box, assign an external IP address on the BIG-IP device and in
the Service Port box, specify a listen port. This is the IP address and port to which
Coherence*Extend clients connect.

6. From the SNAT Pool list, select Automap.

7. Select the pool created earlier in the Default Pool drop-down box.

8. Retain or change each of the other settings.

9. Click Finished.

Figure B-5 shows an example virtual configuration that listens for TCP/IP connections
on 10.196.21.3:7077.

Appendix B
Configuring a Virtual Server

B-6



Figure B-5    Example Virtual Server

Additionally, this virtual server directs traffic to the configured pool as shown in 
Figure B-6.

Appendix B
Configuring a Virtual Server

B-7



Figure B-6    Example Virtual Server Using a Configured Pool

B.5 Configuring Coherence*Extend to Use BIG-IP LTM
Coherence*Extend must be configured to use a BIG-IP LTM virtual server. The
configuration must be completed both on the cluster side and the client side cache
configuration files.
To configure Coherence*Extend to use BIG-IP LTM:

1. Open the proxy server's cache configuration file.

2. Edit the proxy scheme definition and specify a client load balancing strategy by
entering client within the <load-balancer> element. For example:

<proxy-scheme>
   <service-name>ExtendTcpProxyService</service-name>
   <load-balancer>client</load-balancer>
   <autostart>true</autostart>
</proxy-scheme>

3. Save and close the proxy server's cache configuration file. Repeat step 2 for
additional proxy servers.

4. Open the client's cache configuration file.

Appendix B
Configuring Coherence*Extend to Use BIG-IP LTM

B-8



5. In the <remote-cache-scheme> element, list the IP address and port of the BIG-IP
virtual server. See Configuring a Virtual Server. In addition, specify a <heartbeat-
interval> element within the <outgoing-message-handler> element. This causes the
client to periodically send a heartbeat message over its TCP/IP connection at the
configured time interval. This is required to prevent the BIG-IP device from
disconnecting idle clients. For example:

<remote-cache-scheme>
   <scheme-name>extend-direct</scheme-name>
   <service-name>ExtendTcpCacheService</service-name>
   <initiator-config>
      <tcp-initiator>
         <remote-addresses>
            <socket-address>
               <address>10.196.21.3</address>
               <port>7077</port>
            </socket-address>
         </remote-addresses>
      </tcp-initiator>
      <outgoing-message-handler>
         <heartbeat-interval>5s</heartbeat-interval>
      </outgoing-message-handler>
   </initiator-config>
</remote-cache-scheme>

6. Save and close the client's cache configuration file.

B.6 Using Advanced Health Monitoring
A health monitor helps ensure that a server is in an operational state and able to
receive traffic. The BIG-IP system contains many different preconfigured health
monitors that you can associate with pools, depending on the type of traffic you want
to monitor.
For Coherence*Extend, you can use a TCP health monitor to monitor a pool of proxy
servers. This type of monitor marks a proxy server up if the BIG-IP device can
establish a TCP/IP connection with the proxy server. While this is a fairly decent
indication that a proxy server is functional, it does not guarantee that the proxy server
can actually process client traffic. For more detailed monitoring, BIG-IP enables you to
create custom health monitors that send a Coherence*Extend ping request to a proxy
server and validate that an appropriate response is returned. This ensures that the
proxy server is up and able to process client traffic.

Note:

BIG-IP LTM monitors do not support SSL over TCP. Health monitoring checks,
such as ping, are sent as clear text. To ensure all communication with a proxy
server is secure, use SSL offloading. See Enabling SSL Offloading.

This section includes the following topics:

• Creating a Custom Health Monitor to Ping Coherence

• Manually Creating a Custom Health Monitor to Ping Coherence

• Associating a Custom Health Monitor With a Load Balancing Pool

Appendix B
Using Advanced Health Monitoring

B-9



B.6.1 Creating a Custom Health Monitor to Ping Coherence
To create a custom Coherence*Extend health monitor that sends a Coherence*Extend
ping request to a proxy server to ensure that it is operational:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click
Monitors. The Monitors screen displays.

3. In the upper-right corner of the screen, click Create. The New Monitor screen
displays.

4. Enter a name for the monitor in the Name box.

5. Select TCP in the Type drop-down box.

6. Enter the following in the Send String box:

\x07\x00\x03\x00\x00\x42\x00\x40

7. Enter the following in the Receive String box:

\x09\x00\x04\x03\x00\x42\x00\x03\x64\x40

8. Click Finished.

Figure B-7 shows an example custom Coherence*Extend health monitor configuration.

Appendix B
Using Advanced Health Monitoring

B-10



Figure B-7    Example Coherence*Extend Ping Health Monitor

B.6.2 Manually Creating a Custom Health Monitor to Ping Coherence
Solutions that use BIG-IP versions prior 10.2.1 must manually configure an external
health monitor. To do so, create an executable shell script called extend_ping in
the /usr/bin/monitors directory of the BIG-IP device with the following contents:

#! /bin/bash
###############################################################################
###  EXTERNAL MONITOR FOR COHERENCE*EXTEND 
###   INPUTS:
###     $1    The IPV6 formatted IP address of the pool member to test
###     $2    The port number of the pool member to test

Appendix B
Using Advanced Health Monitoring

B-11



###     $3+   White space delimited parms as listed in the monitor "args"
###   OUTPUTS:
###     If null is returned, the member is "down"
###     If any string of one or more characters is returned, the member is "up"
###############################################################################
 
IP=${1:-"127.0.0.1"}
IP=${IP##*:} # This removes the leading ::ffff:
PORT=${2:-"80"}
TIMEOUT=${3:-1}
SLEEP=${4:-1}
 
PID_FILE="/var/run/extend_ping.$IP.$PORT.pid"
HEX_REQUEST="0700030000420040"
HEX_RESPONSE="09000403004200036440"
 
###
### Terminate existing process, if any
###
if [ -f $PID_FILE ]
then
   kill -9 `cat $PID_FILE` > /dev/null 2>&1
fi
echo "$$" > $PID_FILE
 
###
###  Ping the server and return a user friendly result
###
RESULT=`/bin/echo "$HEX_REQUEST" | /usr/bin/xxd -r -p | /usr/bin/nc -i \
    $SLEEP -w $TIMEOUT $IP $PORT | /usr/bin/xxd -p | /bin/grep \
    "$HEX_RESPONSE" 2> /dev/null`
 
if [ "$RESULT" != "" ] ; then
   /bin/echo "$IP:$PORT is \"UP\""
fi
 
rm -f $PID_FILE

To configure BIG-IP to use the extend_ping script:

1. From the Main tab of the navigation pane, expand Local Traffic and click
Monitors. The Monitors screen displays.

2. In the upper-right corner of the screen, click Create. The New Monitor screen
displays.

3. Enter a name for the monitor in the Name box.

4. Select External in the Type drop-down box.

5. Enter the following in the External Program box:

/usr/bin/monitors/extend_ping

6. Click Finished.

Figure B-8 shows an example external Coherence*Extend health monitor
configuration.

Appendix B
Using Advanced Health Monitoring

B-12



Figure B-8    Example Coherence*Extend Health Monitor Implemented in a Shell Script

B.6.3 Associating a Custom Health Monitor With a Load Balancing
Pool

Custom health monitors must be associated with a load balancing pool. After creating
a custom Coherence*Extend monitor, associate it with the Coherence*Extend load
balancing pool.

To associate a custom health monitor with a load balancing pool:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools.
The Pools screen displays.

3. Click the name of your Coherence*Extend pool. The Pool screen displays.

4. Select the name of your custom Coherence*Extend health monitor in the Health
Monitors box.

5. Click Update.

Figure B-9 shows a Coherence*Extend pool that uses a custom health monitor.

Appendix B
Using Advanced Health Monitoring

B-13



Figure B-9    Associating a Coherence*Extend Pool With a Custom Health Monitor

B.7 Using SSL Offloading
Coherence*Extend can be configured to use SSL to secure communication between
client and proxy server processes. However, this confidentially comes at a price.
Specifically, enabling SSL dramatically increases CPU utilization in the proxy tier and
increases the latency of each request. BIG-IP SSL Acceleration frees up proxy servers
from the difficult task of encrypting and decrypting data secured for privacy reasons.
CPU-intensive decryption is migrated onto a high-performance device designed to
handle SSL transactions more efficiently. This approach is known as SSL offloading.
This section includes the following topics:

• Enabling SSL Offloading

• Import the Server's SSL Certificate and Key

• Create the Client SSL Profile

• Associate the Client SSL Profile

Appendix B
Using SSL Offloading

B-14



B.7.1 Enabling SSL Offloading
The following steps are required to enable SSL offloading and should be completed in
the order presented:

1. Enable SSL in the Coherence*Extend client cache configuration file. See Using
SSL to Secure Extend Client Communication in Securing Oracle Coherence.

2. Import the Server's SSL Certificate and Key

3. Create the Client SSL Profile

4. Associate the Client SSL Profile

B.7.2 Import the Server's SSL Certificate and Key
To import the server's SSL certificate and key to the BIG-IP system:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and hover over
SSL Certificates then select Import. The SSL Certificate screen displays.

3. From the Import Type drop-down box, select PKCS12.

4. Enter a name for the certificate in the Certificate Name box.

5. Click Choose File and browse to the server's PKCS12 file.

6. Enter the password for the PKCS12 file.

7. Click Import.

Figure B-10 shows an example server SSL certificate configuration:

Appendix B
Using SSL Offloading

B-15



Figure B-10    Example SSL Certificate Configuration in BIG-IP System

B.7.3 Create the Client SSL Profile
To create the client SSL profile:

1. From the Main tab of the navigation pane, expand Local Traffic and hover over
Profiles then SSL and select Client. The Client SSL Profiles screen displays

2. In the upper-right corner of the screen, click Create. The New Client SSL profile
screen displays.

3. Enter a name for the client SSL profile in the Name box.

4. Click the Custom check box on the right.

5. Select the name of the server certificate that you imported earlier in both the
Certificate and Key drop-down boxes.

6. Click Finished.

Figure B-11 shows an example client SSL profile configuration:

Appendix B
Using SSL Offloading

B-16



Figure B-11    Example SSL Profile Configuration

B.7.4 Associate the Client SSL Profile
To modify the Coherence*Extend virtual server configuration to use the client SSL
profile:

1. From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

2. Click the name of the virtual server.

3. Select the name of the client SSL profile in the SSL Profile (Client) drop-down box.

4. Click Update.

Figure B-12 shows an example virtual server configuration that uses a client SSL
profile:

Appendix B
Using SSL Offloading

B-17



Figure B-12    Example Virtual Server Configuration That Includes a Client SSL Profile

Appendix B
Using SSL Offloading

B-18


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide
	New and Changed Features
	Other Significant Changes in This Document

	Part I Getting Started
	1 Introduction to Coherence*Extend
	1.1 Overview of Coherence*Extend
	1.2 Extend Clients
	1.3 Extend Client APIs
	1.4 POF Serialization
	1.5 Understanding Extend Client Configuration Files
	1.6 Non-Native Client Support
	1.6.1 REST Client Support
	1.6.2 Memcached Client Support


	2 Building Your First Extend Application
	2.1 Overview of the Extend Example
	2.2 Step 1: Configure the Cluster Side
	2.3 Step 2: Configure the Client Side
	2.4 Step 3: Create the Sample Client
	2.5 Step 4: Start the Cache Server Process
	2.6 Step 5: Run the Application

	3 Configuring Extend Proxies
	3.1 Overview of Configuring Extend Proxies
	3.2 Defining Extend Proxy Services
	3.2.1 Defining a Single Proxy Service Instance
	3.2.2 Defining Multiple Proxy Service Instances
	3.2.3 Defining Multiple Proxy Services
	3.2.4 Explicitly Configuring Proxy Addresses
	3.2.5 Disabling Cluster Service Proxies
	3.2.6 Specifying Read-Only NamedCache Access

	3.3 Defining Caches for Use By Extend Clients
	3.4 Disabling Storage on a Proxy Server
	3.5 Starting a Proxy Server

	4 Configuring Extend Clients
	4.1 Overview of Configuring Extend Clients
	4.2 Defining a Remote Cache
	4.3 Using a Remote Cache as a Back Cache
	4.4 Defining Remote Invocation Schemes
	4.5 Connecting to Specific Proxy Addresses
	4.6 Detecting Connection Errors
	4.7 Disabling TCMP Communication

	5 Advanced Extend Configuration
	5.1 Using Address Provider References for TCP Addresses
	5.2 Using a Custom Address Provider for TCP Addresses
	5.3 Load Balancing Connections
	5.3.1 Using Proxy-Based Load Balancing
	5.3.2 Understanding the Proxy-Based Load Balancing Default Algorithm
	5.3.3 Implementing a Custom Proxy-Based Load Balancing Strategy
	5.3.4 Using Client-Based Load Balancing

	5.4 Using Network Filters with Extend Clients

	6 Best Practices for Coherence*Extend
	6.1 Do Not Run a Near Cache on a Proxy Server
	6.2 Configure Heap NIO Space to be Equal to the Max Heap Size
	6.3 Configure Proxy Service Thread Pooling
	6.3.1 Understanding Proxy Service Threading
	6.3.2 Setting Proxy Service Thread Pooling Thresholds
	6.3.3 Setting an Exact Number of Threads

	6.4 Be Careful When Making InvocationService Calls
	6.5 Be Careful When Placing Collection Classes in the Cache
	6.6 Configure POF Serializers for Cache Servers
	6.7 Configuring Firewalls for Extend Clients


	Part II Creating Java Extend Clients
	Part III Creating C++ Extend Clients
	7 Introduction to Coherence C++ Clients
	7.1 Overview of Coherence for C++
	7.2 Setting Up C++ Application Builds
	7.2.1 Setting up the Compiler for Coherence-Based Applications
	7.2.2 Including Coherence Header Files
	7.2.3 Linking the Coherence Library
	7.2.4 Setting the run-time Library and Search Path
	7.2.5 Deploying Coherence for C++


	8 Configuration and Usage for C++ Clients
	8.1 General Instructions
	8.2 Implement the C++ Application
	8.3 Compile and Link the Application
	8.4 Configure Paths
	8.5 Obtaining a Cache Reference with C++
	8.6 Cleaning up Resources Associated with a Cache
	8.7 Configuring and Using the Coherence for C++ Client Library
	8.7.1 Setting the Configuration File Location with an Environment Variable
	8.7.2 Setting the Configuration File Location Programmatically

	8.8 Operational Configuration File (tangosol-coherence-override.xml)
	8.9 Configuring a Logger

	9 Using the Coherence C++ Object Model
	9.1 Using the Object Model
	9.1.1 Coherence Namespaces
	9.1.2 Understanding the Base Object
	9.1.3 Automatically Managed Memory
	9.1.3.1 Referencing Managed Objects
	9.1.3.2 Using handles
	9.1.3.3 Managed Object Instantiation

	9.1.4 Managed Strings
	9.1.4.1 String Instantiation
	9.1.4.2 Auto-Boxed Strings

	9.1.5 Type Safe Casting
	9.1.5.1 Down Casting

	9.1.6 Managed Arrays
	9.1.7 Collection Classes
	9.1.8 Managed Exceptions
	9.1.9 Object Immutability
	9.1.10 Integrating Existing Classes into the Object Model

	9.2 Writing New Managed Classes
	9.2.1 Specification-Based Managed Class Definition
	9.2.2 Equality, Hashing, Cloning, Immutability, and Serialization
	9.2.3 Threading
	9.2.4 Weak References
	9.2.5 Virtual Constructors
	9.2.6 Advanced Handle Types
	9.2.7 Thread Safety
	9.2.7.1 Synchronization and Notification
	9.2.7.2 Thread Safe Handles
	9.2.7.3 Escape Analysis
	9.2.7.3.1 Shared handles
	9.2.7.3.2 Const Correctness

	9.2.7.4 Thread-Local Allocator


	9.3 Diagnostics and Troubleshooting
	9.3.1 Thread-Local Allocator Logs
	9.3.2 Thread Dumps
	9.3.3 Memory Leak Detection
	9.3.4 Memory Corruption Detection

	9.4 Application Launcher - Sanka
	9.4.1 Command line syntax
	9.4.2 Built-in Executables
	9.4.3 Sample Custom Executable Class


	10 Using the Coherence for C++ Client API
	10.1 CacheFactory
	10.2 NamedCache
	10.3 QueryMap
	10.4 ObservableMap
	10.5 InvocableMap
	10.6 Filter
	10.7 Value Extractors
	10.8 Entry Processors
	10.9 Entry Aggregators

	11 Building Integration Objects (C++)
	11.1 Overview of Building Integration Objects (C++)
	11.2 POF Intrinsics
	11.3 Serialization Options
	11.3.1 Overview of Serialization Options
	11.3.2 Managed<T> (Free-Function Serialization)
	11.3.3 PortableObject (Self-Serialization)
	11.3.4 PofSerializer (External Serialization)

	11.4 Using POF Object References
	11.4.1 Enabling POF Object References
	11.4.2 Registering POF Object Identities for Circular and Nested Objects

	11.5 Registering Custom C++ Types
	11.6 Implementing a Java Version of a C++ Object
	11.7 Understanding Serialization Performance
	11.8 Using POF Annotations to Serialize Objects
	11.8.1 Annotating Objects for POF Serialization
	11.8.2 Registering POF Annotated Objects
	11.8.3 Enabling Automatic Indexing
	11.8.4 Providing a Custom Codec


	12 Querying a Cache (C++)
	12.1 Overview of Query Functionality
	12.2 Performing Simple Queries
	12.3 Understanding Query Concepts
	12.4 Performing Queries Involving Multi-Value Attributes
	12.5 Using a Chained Extractor in a Query
	12.6 Using a Query Recorder

	13 Performing Continuous Queries (C++)
	13.1 Overview of Performing Continuous Queries (C++)
	13.2 Understanding the Use Cases for Continuous Query Caching
	13.3 Understanding the Continuous Query Caching Implementation
	13.4 Defining a Continuous Query Cache
	13.5 Cleaning up Continuous Query Cache Resources
	13.6 Caching Only Keys Versus Keys and Values
	13.6.1 CacheValues Property and Event Listeners
	13.6.2 Using ReflectionExtractor with Continuous Query Caches

	13.7 Listening to a Continuous Query Cache
	13.7.1 Avoiding Unexpected Results
	13.7.2 Achieving a Stable Materialized View

	13.8 Making a Continuous Query Cache Read-Only

	14 Performing Remote Invocations (C++)
	14.1 Overview of Performing Remote Invocations (C++)
	14.2 Configuring and Using the Remote Invocation Service
	14.3 Registering Invocable Implementation Classes

	15 Using Cache Events (C++)
	15.1 Overview of Map Events (C++)
	15.2 Caches and Classes that Support Events
	15.3 Signing Up for all Events
	15.4 Using a Multiplexing Map Listener
	15.5 Configuring a MapListener for a Cache
	15.6 Signing Up for Events on Specific Identities
	15.7 Filtering Events
	15.8 Using Lite Events
	15.9 Listening to Queries
	15.10 Using Synthetic Events
	15.11 Using Backing Map Events
	15.12 Using Synchronous Event Listeners

	16 Performing Transactions (C++)
	16.1 Using the Transaction API within an Entry Processor
	16.2 Creating a Stub Class for a Transactional Entry Processor
	16.3 Registering a Transactional Entry Processor User Type
	16.4 Configuring the Cluster-Side Transactional Caches
	16.5 Configuring the Client-Side Remote Cache
	16.6 Using a Transactional Entry Processor from a C++ Client


	Part IV Creating .NET Extend Clients
	17 Introduction to Coherence .NET Clients
	17.1 Overview of Coherence for .NET
	17.2 Configuration and Usage for .NET Clients
	17.2.1 General Instructions
	17.2.2 Configuring Coherence*Extend for .NET
	17.2.3 Obtaining a Cache Reference with .NET
	17.2.4 Cleaning Up Resources Associated with a Cache
	17.2.5 Using Network Filters
	17.2.5.1 Custom Filters
	17.2.5.2 Configuring Filters



	18 Building Integration Objects (.NET)
	18.1 Overview of Building Integration Objects (.NET)
	18.2 Creating an IPortableObject Implementation
	18.3 Implementing a Java Version of a .NET Object
	18.3.1 Creating a PortableObject Implementation (Java)

	18.4 Registering Custom Types on the .NET Client
	18.5 Registering Custom Types in the Cluster
	18.6 Evolvable Portable User Types
	18.7 Making Types Portable Without Modification
	18.8 Using POF Object References
	18.8.1 Enabling POF Object References
	18.8.2 Registering POF Object Identities for Circular and Nested Objects

	18.9 Using POF Annotations to Serialize Objects
	18.9.1 Annotating Objects for POF Serialization
	18.9.2 Registering POF Annotated Objects
	18.9.3 Enabling Automatic Indexing
	18.9.4 Providing a Custom Codec


	19 Using the Coherence .NET Client Library
	19.1 Setting Up the Coherence .NET Client Library
	19.2 Using the Coherence .NET APIs
	19.2.1 CacheFactory
	19.2.2 IConfigurableCacheFactory
	19.2.3 DefaultConfigurableCacheFactory
	19.2.4 Logger
	19.2.5 Using the Common.Logging Library
	19.2.6 INamedCache
	19.2.7 IQueryCache
	19.2.8 QueryRecorder
	19.2.9 IObservableCache
	19.2.9.1 Responding to Cache Events

	19.2.10 IInvocableCache
	19.2.11 Filters
	19.2.12 Value Extractors
	19.2.13 Entry Processors
	19.2.14 Entry Aggregators

	19.3 Configuring .NET Clients Programmatically

	20 Performing Continuous Queries (.NET)
	20.1 Overview of Performing Continuous Queries (.NET)
	20.2 Understanding Use Cases for Continuous Query Caching
	20.3 Understanding the Continuous Query Caching Implementation
	20.4 Constructing a Continuous Query Cache
	20.5 Cleaning Up Continuous Query Cache Resources
	20.6 Caching Only Keys Versus Keys and Values
	20.7 Listening to a Continuous Query Cache
	20.7.1 Achieving a Stable Materialized View
	20.7.2 Support for Synchronous and Asynchronous Listeners

	20.8 Making a Continuous Query Cache Read-Only

	21 Performing Remote Invocations (.NET)
	21.1 Overview of Performing Remote Invocations
	21.2 Configuring and Using the Remote Invocation Service

	22 Performing Transactions (.NET)
	22.1 Using the Transaction API within an Entry Processor
	22.2 Creating a Stub Class for a Transactional Entry Processor
	22.3 Registering a Transactional Entry Processor User Type
	22.4 Configuring the Cluster-Side Transactional Caches
	22.5 Configuring the Client-Side Remote Cache
	22.6 Using a Transactional Entry Processor from a .NET Client

	23 Managing ASP.NET Session State
	23.1 Overview of ASP.NET Session State
	23.2 Setting Up Coherence ASP.NET Session Management
	23.2.1 Overview of Setting Up Coherence Session Management
	23.2.2 Enable the Coherence Session Provider
	23.2.3 Configure the Cluster-Side ASP Session Caches
	23.2.4 Configure a Client-Side ASP Session Remote Cache
	23.2.5 Overriding the Default Session Cache Name

	23.3 Selecting a Session Model
	23.3.1 Overview of Session Models
	23.3.2 Specify the Session Model
	23.3.3 Registering the Backing Map Listener

	23.4 Configuring a Serializer
	23.4.1 Specifying a Serializer
	23.4.2 Using POF for Session Serialization

	23.5 Sharing ASP.NET Session State Across Applications


	Part V Using Coherence REST
	24 Introduction to Coherence REST
	24.1 Overview of Coherence REST
	24.2 Dependencies for Coherence REST
	24.3 Overview of Configuration for Coherence REST
	24.4 Understanding Data Format Support
	24.4.1 Using XML as the Data Format
	24.4.2 Using JSON as the Data Format

	24.5 Authenticating and Authorizing Coherence REST Clients

	25 Building Your First Coherence REST Application
	25.1 Overview of the Basic Coherence REST Example
	25.2 Step 1: Configure the Cluster Side
	25.3 Step 2: Create a User Type
	25.4 Step 3: Configure REST Services
	25.5 Step 4: Start the Cache Server Process
	25.6 Step 5: Access REST Services From a Client

	26 Performing Grid Operations with REST
	26.1 Specifying Key and Value Types
	26.2 Performing Single-Object REST Operations
	26.3 Performing Multi-Object REST Operations
	26.4 Performing Partial-Object REST Operations
	26.5 Performing Queries with REST
	26.5.1 Using Direct Queries
	26.5.2 Using Named Queries
	26.5.3 Specifying a Query Sort Order
	26.5.4 Limiting Query Result Size
	26.5.5 Retrieving Only Keys
	26.5.6 Using Custom Query Engines
	26.5.6.1 Implementing Custom Query Engines
	26.5.6.2 Enabling Custom Query Engines


	26.6 Performing Aggregations with REST
	26.6.1 Aggregation Syntax for REST
	26.6.2 Listing of Pre-Defined Aggregators
	26.6.3 Creating Custom Aggregators

	26.7 Performing Entry Processing with REST
	26.7.1 Entry Processor Syntax for REST
	26.7.2 Listing of Pre-defined Entry Processors
	26.7.3 Creating Custom Entry Processors

	26.8 Understanding Concurrency Control
	26.9 Specifying Cache Aliases
	26.10 Using Server-Sent Events
	26.10.1 Receiving Server-Sent Events


	27 Deploying Coherence REST
	27.1 Deploying with the Embedded HTTP Server
	27.2 Deploying to WebLogic Server
	27.2.1 Task 1: Configure a WebLogic Server Domain for Coherence REST
	27.2.2 Task 2: Package the Coherence REST Web Application
	27.2.3 Task 3: Package the Coherence Application
	27.2.4 Task 4: Package the Enterprise Application
	27.2.5 Task 5: Deploy the Enterprise Application

	27.3 Deploying to a Java EE Server (Generic)
	27.3.1 Packaging Coherence REST for Deployment
	27.3.2 Deploying to a Servlet Container

	27.4 Configuring REST Server Access to POF-Enabled Services

	28 Modifying the Default REST Implementation
	28.1 Using the Pass-Through Resource
	28.2 Using Custom Providers and Resources
	28.3 Changing the Embedded HTTP Server
	28.3.1 Using Grizzly HTTP Server
	28.3.2 Using Simple HTTP Server
	28.3.3 Using Jetty HTTP Server



	A REST Configuration Elements
	A.1 REST Configuration File
	A.2 REST Configuration Element Reference
	A.2.1 REST Configuration Element Index
	A.2.2 aggregator
	A.2.3 aggregators
	A.2.4 engine
	A.2.5 marshaller
	A.2.6 processor
	A.2.7 processors
	A.2.8 query
	A.2.9 query-engines
	A.2.10 resource
	A.2.11 resources
	A.2.12 rest


	B Integrating with F5 BIG-IP LTM
	B.1 Basic Concepts
	B.2 Creating Nodes
	B.3 Configuring a Load Balancing Pool
	B.3.1 Creating a Load Balancing Pool
	B.3.2 Adding a Load Balancing Pool Member

	B.4 Configuring a Virtual Server
	B.5 Configuring Coherence*Extend to Use BIG-IP LTM
	B.6 Using Advanced Health Monitoring
	B.6.1 Creating a Custom Health Monitor to Ping Coherence
	B.6.2 Manually Creating a Custom Health Monitor to Ping Coherence
	B.6.3 Associating a Custom Health Monitor With a Load Balancing Pool

	B.7 Using SSL Offloading
	B.7.1 Enabling SSL Offloading
	B.7.2 Import the Server's SSL Certificate and Key
	B.7.3 Create the Client SSL Profile
	B.7.4 Associate the Client SSL Profile



