
Oracle® Fusion Middleware
Metadata Repository Builder's Guide for
Oracle Business Intelligence Enterprise
Edition

12c (12.2.1.3.0)
E80927-03
October 2018



Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise
Edition, 12c (12.2.1.3.0)

E80927-03

Copyright © 2010, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Helen Gilmore

Contributing Authors: Marla Azriel, Kate Price, Stefanie Rhone

Contributors: Oracle Business Intelligence development, product management, and quality assurance team

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience xxiii

Documentation Accessibility xxiii

Related Documentation and Other Resources xxiii

Conventions xxiv

 New Features for Oracle BI Metadata Repository Builders

New Features for Oracle BI EE 12c (12.2.1.1.0) xxv

New Features for Oracle BI EE 12c Release (12.2.1.0) xxv

1   Introduction to Building Your Metadata Repository

About Oracle BI Server Architecture 1-1

About Layers in the Oracle BI Repository 1-2

Analyzing Your Business Model Requirements 1-4

Identifying the Content of the Business Model 1-5

Identifying Logical Fact Tables 1-5

Identifying Logical Dimension Tables 1-6

Identifying Dimensions 1-7

About Dimensions with Multiple Hierarchies 1-8

Identifying Lookup Tables 1-9

Identifying the Data Source Content for the Physical Layer 1-9

About Types of Physical Schemas in Relational Data Sources 1-10

About Cubes in Multidimensional Data Sources 1-11

Identifying the Data Source Table Structure 1-11

Guidelines for Designing a Repository 1-12

Design Strategies for Structuring the Repository 1-12

Design Tips for the Physical Layer 1-12

Design Tips for the Business Model and Mapping Layer 1-13

Modeling Outer Joins 1-15

Design Tips for the Presentation Layer 1-15

Topics of Interest in Other Guides 1-16

iii



System Requirements and Certification 1-17

2   Before You Begin

Opening the Administration Tool 2-1

Setting Administration Tool Options 2-2

Oracle BI Administration Tool General Options 2-2

Oracle BI Administration Tool Repository Options 2-4

Editing, Deleting, and Reordering Objects in the Repository 2-6

About Naming Requirements for Repository Objects 2-6

Changing Icons for Repository Objects 2-6

Sorting Objects in the Administration Tool 2-7

About the Oracle BI Server Command-Line Utilities 2-7

About Options in NQSConfig.INI 2-10

About the SampleApp.rpd Demonstration Repository 2-10

Download Repository Command 2-11

What You Need to Know Before Using the Command 2-12

Using Online and Offline Repository Modes 2-13

Editing Repositories in Offline Mode 2-13

Opening Repositories in Offline Mode 2-14

Publish Offline Changes 2-14

Editing Repositories in Online Mode 2-14

Opening Repositories in Online Mode 2-15

Publishing Online Changes 2-15

Guidelines for Using Online Mode 2-16

Checking Out Objects 2-17

Checking In Changes 2-17

About Read-Only Mode 2-18

Opening a MDX XML Repository 2-18

Checking the Consistency of a Repository or a Business Model 2-19

About the Consistency Check Manager 2-19

Running the Consistency Check Manager 2-21

Using the validaterpd Utility to Check Repository Consistency 2-21

Common Consistency Check Messages 2-23

3   Setting Up and Using the Multiuser Development Environment

About the Multiuser Development Environment 3-1

About the Multiuser Development Process 3-2

Setting Up Projects 3-3

About Projects 3-4

iv



Creating Projects 3-4

About Converting Older Projects During Repository Upgrade 3-5

Setting Up the Multiuser Development Directory 3-6

Identifying the Multiuser Development Directory 3-6

Copying the Master Repository to the Multiuser Development Directory 3-7

Setting Up a Pointer to the Multiuser Development Directory 3-7

Making Changes in a Multiuser Development Environment 3-8

About Changing and Testing Metadata 3-8

Making Changes to a Repository Using Projects 3-9

About Repository Project Checkout 3-9

Checking Out Projects 3-10

Using the extractprojects Utility 3-10

Refreshing the Local Project Extract 3-12

Making Changes to an Entire Repository 3-12

About Multiuser Development Options 3-12

Publishing Changes to Multiuser Development Repositories 3-13

About the Multiuser Development Merge Process 3-14

How Are Multiuser Merges Different from Standard Repository Merges? 3-15

Publishing to the Network 3-15

Enforcing Consistent Repositories When Publishing Changes 3-16

Branching in Multiuser Development 3-16

About Branching 3-16

Using the Multi-Team, Multi-Release Model in Oracle Business Intelligence 3-18

Synchronizing RPD Branches 3-18

Viewing and Deleting History for Multiuser Development 3-19

Viewing Multiuser Development History 3-19

Deleting Multiuser Development History 3-19

Setting Multiuser Development Options 3-20

4   Using a Source Control Management System for Repository
Development

About Using a Source Control Management System with the Administration Tool 4-1

About MDS XML 4-2

Setting Up Your System for Repository Development Under Source Control
Management 4-4

Creating an SCM Configuration File 4-4

Creating an MDS XML Repository and Checking In Files to the SCM System 4-6

Saving an Existing Repository File in MDS XML Format 4-6

Creating a New Repository in MDS XML Format 4-7

Linking to Source Control Files to Convert Your Repository (Small
Repositories Only) 4-7

v



Using Source Control Management in Day to Day Repository Development 4-8

Updating, Saving, and Checking In Changes for Repositories Under Source
Control 4-8

Handling Errors 4-9

Testing Repositories Under Source Control 4-10

Viewing the Source Control Log 4-10

Using Source Control Management with MUD 4-11

Putting the MUD Master Repository and MUD Log File Under Source Control 4-11

Checking In New Versions of the MUD Master and MUD Log File to Source
Control 4-12

Manually Checking In the Updated MUD Master Repository and Log File 4-12

Using a Script to Check In the Updated MUD Master Repository and Log
File 4-12

5   Importing Metadata and Working with Data Sources

About Importing Metadata and Working with Data Sources 5-1

Creating an Oracle BI Repository 5-2

Performing Data Source Preconfiguration Tasks 5-2

Setting Up ODBC Data Source Names (DSNs) 5-3

Setting Up Oracle Database Data Sources 5-4

Oracle 12c Database In-Memory Data Sources 5-4

Oracle 12c on Exadata Data Sources 5-4

Advanced Oracle Database Features Supported by Oracle BI Server 5-5

Oracle Database Fast Application Notification and Fast Connection Failover 5-6

Additional Oracle Database Configuration for Client Installations 5-6

Configuring Oracle BI Server When Using a Firewall 5-6

DataDirect Drivers and Oracle Database 5-6

Oracle Database Connection Errors in Windows 7 64-bit Environments 5-7

About Setting Up Oracle OLAP Data Sources 5-7

Java Data Sources 5-7

Loading Java Data Sources 5-8

About Setting Up Oracle TimesTen In-Memory Database Data Sources 5-8

Configuring TimesTen Data Sources 5-8

Improving Use of System Memory Resources with TimesTen Data Sources 5-9

Configuring OBIS to Access the TimesTen DLL on Windows 5-10

About Setting Up Essbase Data Sources 5-10

About Setting up Cloudera Impala Data Sources 5-11

Obtaining Windows ODBC Driver for Cloudera 5-11

Importing Cloudera Impala Metadata Using the Windows ODBC Driver 5-11

About Setting Up Apache Hive Data Sources 5-12

Obtaining Windows ODBC Driver for Client Installation 5-12

vi



Limitations on the Use of Apache Hive with Oracle Business Intelligence 5-12

About Setting Up Hyperion Financial Management Data Sources 5-15

Performing Additional Hyperion Configuration for Client Installations 5-17

Setting Up SAP/BW Data Sources 5-17

Setting Up Oracle RPAS Data Sources 5-18

Setting Up Teradata Data Sources 5-18

Avoiding Spool Space Errors for Queries Against Teradata Data Sources 5-19

Enabling NUMERIC Data Type Support for Oracle Database and TimesTen 5-20

Configuring Essbase to Use a Shared Logon 5-20

Configuring SSO for Essbase, Hyperion Financial Management, or Hyperion
Planning Data Sources 5-21

Importing Metadata from Relational Data Sources 5-21

Importing Metadata from Multidimensional Data Sources 5-23

Multidimensional Data Source Connection Options 5-24

About Importing Metadata from Oracle RPAS Data Sources 5-27

About Importing Metadata from XML Data Sources 5-28

About Using XML as a Data Source 5-28

Importing Metadata from XML Data Sources Using the XML Gateway 5-29

Examples of XML Documents Generated by the Oracle BI Server XML
Gateway 5-30

About Using HTML Tables as a Data Source 5-36

Importing Metadata from XML Data Sources Using XML ODBC 5-37

Example of an XML ODBC Data Source 5-38

Examples of XML Documents 5-39

About Using a Standby Database with Oracle Business Intelligence 5-42

Configuring a Standby Database with Oracle Business Intelligence 5-42

Creating the Database Object for the Standby Database Configuration 5-43

Creating Connection Pools for the Standby Database Configuration 5-44

Updating Write-Back Scripts in a Standby Database Configuration 5-44

Setting Up Usage Tracking in a Standby Database Configuration 5-45

Setting Up Event Polling in a Standby Database Configuration 5-45

Setting Up Oracle BI Scheduler in a Standby Database Configuration 5-45

6   Working with ADF Data Sources

What Are ADF Business Components? 6-1

About Operational Reporting with ADF Business Components 6-2

About Importing ADF Business Components Into Oracle Business Intelligence 6-2

About Specifying a SQL Bypass Database 6-3

Setting Up ADF Data Sources 6-4

Creating a WebLogic Domain for ADF Business Components Used with Oracle
Business Intelligence 6-4

vii



Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server 6-5

Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper
6-6

Setting Up a JDBC Data Source in the WebLogic Server 6-9

Setting the Logging Level for the Deployed Application in Oracle WebLogic
Server 6-10

Importing Metadata from ADF Data Sources 6-10

Performing an Initial Import from ADF Data Sources 6-11

Using Incremental Import to Propagate Flex Object Changes 6-12

Automatically Mapping Flex Object Changes to the Logical Model 6-13

Customizing the Mapping Behavior 6-14

Manually Mapping Flex Object Changes to the Logical Model 6-14

Automatically Mapping Flex Object Changes Using the biserverextender Utility 6-15

Configuring SSL in Oracle WebLogic Server 6-16

Configuring One-Way SSL in Oracle WebLogic Server 6-16

Configuring Two-Way SSL in Oracle WebLogic Server 6-16

Enabling the Ability to Pass Custom Parameters to the ADF Application 6-18

Propagating Labels and Tooltips from ADF Data Sources 6-19

What are Labels and Tooltips? 6-19

About the Session Variable Naming Scheme for UI Hints 6-20

About Determining the Physical Column for a Presentation Column 6-21

About Initializing Session Variables Automatically for Propagating UI Hints 6-21

Using UI Hints From an Oracle ADF Data Source When Creating Analyses 6-22

Using XML Code in Initialization Blocks to Query UI Hints 6-22

ADFQuery Element Reference 6-23

7   Setting Up Database Objects and Connection Pools

Setting Up Database Objects 7-1

About Database Types in the Physical Layer 7-1

Creating a Database Object Manually in the Physical Layer 7-2

Database General Properties Reference 7-3

When to Allow Direct Database Requests by Default 7-3

SQL Features Supported by a Data Source 7-4

Viewing Database Properties 7-6

Reviewing Supported Database Features 7-7

About Connection Pools 7-7

About Connection Pools for Initialization Blocks 7-8

Creating or Changing Connection Pools 7-9

Setting Connection Pool Properties in the General Tab 7-9

Common Connection Pool Properties in the General Tab 7-9

Multidimensional Connection Pool Properties in the General Tab 7-13

viii



Setting Connection Pool Properties in the Connection Scripts Tab 7-15

Setting Connection Pool Properties in the XML Tab 7-16

Setting Connection Pool Properties in the Write Back Tab 7-17

Connection Pool Properties in the Miscellaneous Tab 7-18

Specifying Application Properties for JDBC (Direct Driver) or JDBC (JNDI)
Data Sources 7-19

EXECUTE PHYSICAL DATABASE 7-20

Setting Up Persist Connection Pools 7-20

Removing the Persist Connection Pool Property 7-21

About Setting the Buffer Size and Transaction Boundary 7-21

List Connection Pool Command 7-21

Update Connection Pool Command 7-23

Using the BIServerT2PProvisioner.jar Utility to Change Connection Pool Passwords 7-24

8   Working with Physical Tables, Cubes, and Joins

About Working with the Physical Layer 8-1

Working with the Physical Diagram 8-2

Creating Physical Layer Folders 8-4

Creating Physical Layer Catalogs and Schemas 8-4

Creating Catalogs 8-4

Creating Schemas 8-5

Using a Variable to Specify the Name of a Catalog or Schema 8-5

Setting Up Display Folders in the Physical Layer 8-6

Working with Physical Tables 8-6

About Tables in the Physical Layer 8-6

About Physical Alias Tables 8-8

Creating and Managing Physical Tables and Physical Cube Tables 8-10

Creating Physical Tables 8-10

Creating Alias Tables 8-12

Setting Physical Table Properties for XML Data Sources 8-13

Creating and Managing Columns and Keys for Relational and Cube Tables 8-13

Creating and Editing a Column in a Physical Table 8-13

Specifying a Primary Key for a Physical Table 8-15

Deleting Physical Columns for All Data Sources 8-15

Viewing Physical Column Properties 8-15

Viewing Data in Physical Tables or Columns 8-15

Working with Multidimensional Sources in the Physical Layer 8-16

About Physical Cube Tables 8-16

About Measures in Multidimensional Data Sources 8-16

About Externally Aggregated Measures 8-17

About Working with Physical Dimensions and Physical Hierarchies 8-18

ix



Working with Physical Dimension Objects 8-18

Working with Physical Hierarchy Objects 8-18

Working with Cube Variables for SAP/BW Data Sources 8-21

Viewing Members in Physical Cube Tables 8-22

Working with Essbase Data Sources 8-22

About Using Essbase Data Sources 8-23

About Incremental Import 8-25

Working with Essbase Alias Tables 8-26

Determining the Value to Use for Display 8-26

Explicitly Defining Columns for Each Alias 8-26

Modeling User-Defined Attributes 8-27

Associating Member Attributes to Dimensions and Levels 8-27

Modeling Alternate Hierarchies 8-27

Modeling Measure Hierarchies 8-29

Improving Performance by Using Unqualified Member Names 8-30

Working with Hyperion Financial Management and Hyperion Planning Data Sources 8-30

Importing Metadata From Hyperion Financial Management Data Sources 8-30

Importing Metadata From Hyperion Planning Data Sources 8-31

About Query Support for Hyperion Financial Management and Hyperion
Planning Data Sources 8-32

Working with Oracle OLAP Data Sources 8-33

About Importing Metadata from Oracle OLAP Data Sources 8-33

Working with Oracle OLAP Analytic Workspace (AW) Objects 8-34

Working with Oracle OLAP Dimensions, Hierarchies, and Levels 8-34

Working with Oracle OLAP Cubes and Columns 8-36

Working with Physical Foreign Keys and Joins 8-36

About Physical Joins 8-37

About Primary Key and Foreign Key Relationships 8-37

About Complex Joins 8-38

About Multi‐Database Joins 8-38

About Fragmented Data 8-38

Defining Physical Joins with the Physical Diagram 8-39

Defining Physical Joins with the Joins Manager 8-40

Deploying Opaque Views 8-41

About Deploying Opaque Views 8-41

Deploying Opaque View Objects 8-42

Using the Create View SELECT Statement 8-42

Undeploying a Deployed View 8-44

When to Delete Opaque Views or Deployed Views 8-44

When to Redeploy Opaque Views 8-44

Using Hints in SQL Statements 8-45

x



How to Use Oracle Hints 8-45

About the Index Hint 8-45

About the Leading Hint 8-46

About Performance Considerations for Hints 8-46

Creating Hints 8-46

Displaying and Updating Row Counts for Physical Tables and Columns 8-47

Displaying Row Counts in the Physical Layer 8-48

9   Working with Logical Tables, Joins, and Columns

About Working with the Business Model and Mapping Layer 9-1

Creating the Business Model and Mapping Layer 9-2

Creating Business Models 9-2

Automatically Creating Business Model Objects 9-3

Automatically Creating Business Model Objects for Multidimensional Data
Sources 9-3

Duplicating a Business Model and Subject Area 9-3

About Working with the Business Model Diagram 9-4

Creating and Managing Logical Tables 9-5

Creating Logical Tables 9-6

Enabling Data Driven Fragment Selection in Logical Table Sources 9-7

Specifying a Primary Key in a Logical Table 9-7

Reviewing Foreign Keys for a Logical Table 9-7

Defining Logical Joins 9-8

Defining Logical Joins with the Business Model Diagram 9-9

Defining Logical Joins with the Joins Manager 9-10

Creating Logical Joins with the Joins Manager 9-10

Creating Logical Foreign Key Joins with the Joins Manager 9-11

Specifying a Driving Table 9-12

Factors That Determine Join Trimming 9-13

Identifying Physical Tables That Map to Logical Objects 9-16

Creating and Managing Logical Columns 9-16

Creating Logical Columns 9-17

Basing the Sort for a Logical Column on a Different Column 9-17

Enabling Double Column Support by Assigning a Descriptor ID Column 9-18

Creating Derived Columns 9-18

Configuring Logical Columns for Multicurrency Support 9-19

Setting Default Levels of Aggregation for Measure Columns 9-20

Setting Up Dimension-Specific Aggregate Rules for Logical Columns 9-22

Specifying Dimension-Specific Aggregation Rules for Multiple Logical
Columns 9-22

Defining Aggregation Rules for Multidimensional Data Sources 9-23

xi



Associating an Attribute with a Logical Level in Dimension Tables 9-25

Moving or Copying Logical Columns 9-25

Enabling Write Back On Columns 9-26

Setting Up Display Folders in the Business Model and Mapping Layer 9-28

Modeling Bridge Tables 9-29

Creating Joins in the Physical Layer for Bridge and Associated Dimension
Tables 9-30

Modeling the Associated Dimension Tables in a Single Dimension 9-30

Modeling the Associated Dimension Tables in Separate Dimensions 9-31

Modeling Binary Large Object (BLOB) Data and Character Large Object (CLOB)
Data 9-32

10  
 

Working with Logical Dimensions

About Working with Logical Dimensions 10-1

Creating and Managing Dimensions with Level-Based Hierarchies 10-2

About Level-Based Hierarchies 10-2

About Using Dimension Hierarchy Levels in Level-Based Hierarchies 10-5

Manually Creating Dimensions, Levels, and Keys with Level-Based Hierarchies 10-6

Creating Dimensions in Level-Based Hierarchies 10-6

Creating Logical Levels in a Dimension 10-7

Associating a Logical Column and Its Table with a Dimension Level 10-8

Identifying the Primary Key for a Dimension Level 10-11

Selecting and Sorting Chronological Keys in a Time Dimension 10-12

Adding a Dimension Level to the Preferred Drill Path 10-13

Adding Sequence Numbers to a Time Dimension's Logical Level 10-13

Rules for Automatically Created Dimensions with Level-Based Hierarchies 10-13

Automatically Creating Dimensions with Level-Based Hierarchies 10-15

Populating Logical Level Counts Automatically 10-15

Creating and Managing Dimensions with Parent-Child Hierarchies 10-16

About Parent-Child Hierarchies 10-16

About Levels and Distances in Parent-Child Hierarchies 10-17

About Parent-Child Relationship Tables 10-18

Creating Dimensions with Parent-Child Hierarchies 10-19

Defining Parent-Child Relationship Tables 10-20

Modeling Aggregates for Parent-Child Hierarchies 10-21

Storing Facts for Parent-Child Hierarchies 10-21

Aggregating Parent-Child Hierarchies 10-23

Adding the Parent-Child Relationship Table to the Model 10-25

Maintaining Parent-Child Hierarchies Based on Relational Tables 10-25

Modeling Time Series Data 10-26

About Time Series Functions 10-26

xii



About the AGO Function 10-27

About the TODATE Function 10-28

About the PERIODROLLING Function 10-29

Creating Logical Time Dimensions 10-30

Selecting the Time Option in the Logical Dimension Dialog 10-31

Setting Chronological Keys for Each Level 10-31

Creating AGO, TODATE, and PERIODROLLING Measures 10-32

11  
 

Managing Logical Table Sources (Mappings)

About Logical Table Sources 11-1

How Fact Logical Table Sources Are Selected to Answer a Query 11-1

How Dimension Logical Table Sources Are Selected to Answer a Query 11-2

Changing the Default Selection Criteria for Dimension Logical Table
Sources 11-2

Consistency Among Data in Multiple Sources 11-3

Creating Logical Table Sources 11-3

Setting Priority Group Numbers for Logical Table Sources 11-4

Defining Physical to Logical Table Source Mappings and Creating Calculated Items 11-7

Unmapping a Logical Column from Its Source 11-9

Defining Content of Logical Table Sources 11-9

Verifying Joins from Dimension Tables to Fact Tables 11-10

Joins from Dimension Tables to Fact Tables 11-11

Logical Table Source Options Reference 11-12

About WHERE Clause Filters 11-13

About Working with Parent-Child Settings in the Logical Table Source 11-14

Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data 11-14

Setting Up Fragmentation Content for Aggregate Navigation 11-15

Specifying Fragmentation Content for Single Column, Value-Based Predicates 11-15

Specifying Fragmentation Content for Single Column, Range-Based Predicates 11-16

Specifying Multicolumn Content Descriptions 11-17

Specifying Parallel Content Descriptions 11-17

Specifying Unbalanced Parallel Content Descriptions 11-19

Specifying Fragmentation Content for Aggregate Table Fragments 11-19

Specifying the Aggregate Table Content 11-21

Defining a Physical Layer Table with a Select Statement to Complete the
Domain 11-21

Specifying the SQL Virtual Table Content 11-21

Creating Physical Joins for the Virtual Table 11-22

xiii



12  
 

Creating and Maintaining the Presentation Layer

About the Presentation Layer 12-1

Creating and Customizing the Presentation Layer 12-2

About Creating Subject Areas 12-2

Automatically Creating Subject Areas Based on Logical Stars and
Snowflakes 12-3

About Removing Columns 12-4

Renaming Presentation Columns to User-Friendly Names 12-5

Exporting Logical Keys in the Subject Area 12-5

Setting an Implicit Fact Column in the Subject Area 12-6

Maintaining the Presentation Layer 12-6

Working with Subject Areas 12-6

Working with Presentation Tables and Columns 12-8

Creating and Managing Presentation Tables 12-8

Reordering Presentation Layer Tables 12-9

About Presentation Columns 12-9

Changing the Presentation Column Name 12-10

Reordering Presentation Columns 12-10

Nesting Folders in Answers and BI Composer 12-10

Working with Presentation Hierarchies and Levels 12-11

Creating and Managing Presentation Hierarchies 12-12

Modeling Dimensions with Multiple Hierarchies in the Presentation Layer 12-13

Editing Presentation Hierarchy Objects 12-15

Creating and Managing Presentation Levels 12-16

Setting Permissions for Presentation Layer Objects 12-17

Generating a Permission Report for Presentation Layer Objects 12-18

Sorting Columns in the Permissions Dialog 12-18

Creating Aliases (Synonyms) for Presentation Layer Objects 12-19

Controlling Presentation Object Visibility 12-20

13  
 

Creating and Persisting Aggregates for Oracle BI Server Queries

About Aggregate Persistence in Oracle Business Intelligence 13-2

Aggregate Persistence Improvements 13-3

About Aggregate Persistence Errors 13-4

Identifying Query Candidates for Aggregation 13-4

Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation 13-5

About Oracle BI Summary Advisor 13-5

Gathering Summary Advisor Statistics 13-6

Generating and Using Summary Advisor Recommendations 13-6

About Measure Subset Recommendations 13-6

xiv



Setting Up the Statistics Database 13-7

Columns in the S_NQ_SUMMARY_ADVISOR Table 13-7

Turning On Usage Tracking 13-8

Turning On Summary Advisor Logging 13-8

Generating an Aggregate Specification Script 13-9

Summary Advisor Stop Criteria Run Constraints 13-12

Using the nqaggradvisor Utility to Run the Oracle BI Summary Advisor 13-12

Using the Aggregate Persistence Wizard to Generate the Aggregate Specification 13-14

Using Model Check Manager to Check for Modeling Problems 13-16

About Model Check Manager 13-17

Running Model Check Manager 13-17

Resolving Model Errors 13-18

Checking Models Using the validaterpd Utility 13-18

Writing the Create Aggregates Specification Manually 13-20

What Constraints Are Imposed During the Create Process? 13-20

Writing the Create Aggregates Specification 13-21

Delete Statement for Aggregate Specification 13-21

Create Statement for Aggregate Specification 13-22

Multiple Aggregates in Aggregate Specification 13-22

Where Clause for Aggregate Specification 13-22

Adding Surrogate Keys to Dimension Aggregate Tables 13-24

About the Create/Prepare Aggregates Syntax 13-24

About Surrogate Key Output from Create/Prepare Aggregates 13-24

Running the Aggregate Specification Script 13-25

Life Cycle Use Cases for Aggregate Persistence 13-27

Using Double Buffering to Refresh Highly Available Aggregates 13-29

Creating Aggregates on TimesTen Sources 13-30

Enabling PL/SQL for TimesTen 13-30

Enabling Performance Enhancement Features for TimesTen 13-30

14  
 

Applying Data Access Security to Repository Objects

About Data Access Security 14-2

Where to Find Information About Security Tasks 14-2

Row-Level Security 14-3

Setting Up Row-Level Security 14-4

Data Filters 14-5

Setting Up Data Filters in the Repository 14-6

Specifying a Functional Group for an Application Role 14-7

Setting Up Row-Level Security in the Database 14-8

Object Permissions 14-9

xv



Setting Up Object Permissions 14-10

About Permission Inheritance for Users and Application Roles 14-11

Overview of User and Application Role Commands 14-13

Rename Application Role Command 14-13

Delete Application Role Command 14-15

Rename Users Command 14-17

Delete Users Command 14-18

Setting Query Limits 14-20

Accessing the Query Limits Functionality in the Administration Tool 14-20

Limiting Queries By the Number of Rows Received 14-21

Limiting Queries By Maximum Run Time and Restricting to Particular Time
Periods 14-21

Allowing or Disallowing Direct Database Requests 14-22

Allowing or Disallowing the Populate Privilege 14-23

About Applying Data Access Security in Offline Mode 14-23

Setting Up Placeholder Application Roles for Offline Repository Development 14-23

15  
 

Completing Oracle BI Repository Setup

Configuring the Repository for Oracle Scorecard and Strategy Management 15-1

Configuring the Repository for Comments and Status Overrides 15-2

Saving the Repository and Checking Consistency 15-3

Using nqcmd to Test and Refine the Repository 15-4

nqcmd Command Line Arguments 15-4

Upload Repository Command 15-6

Making the Repository Available for Queries 15-8

Creating Data Source Connections to the Oracle BI Server for Client Applications 15-8

Publishing to the User Community 15-8

16  
 

Setting Up Data Sources on Linux and UNIX

About Setting Up Data Sources on Linux and UNIX 16-1

Settings for Data Source Connections Using Native Gateways 16-2

Sample obis.properties Entries for Oracle Database and DB2 (32-Bit) 16-3

Configuring Data Source Connections Using Native Gateways 16-5

About Updating Row Counts in Native Databases 16-5

Troubleshooting OCI Connections 16-6

Using DataDirect Connect ODBC Drivers on Linux and UNIX 16-7

Configuring Oracle Business Intelligence to Use DataDirect 16-7

Additional DataDirect Configuration for Oracle Essbase 16-8

Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server
Database 16-8

xvi



Configuring the DataDirect Connect ODBC Driver for MySQL Database 16-9

Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database 16-10

Configuring the DataDirect Connect ODBC Driver for Informix Database 16-12

Configuring the DataDirect Connect ODBC Driver for Cloudera Impala Database
16-13

Configuring Impala 1.3.x to Include a LIMIT Clause 16-15

Modifying the Impala DefaultOrderByLimit Alternate Methods 16-15

Configuring the DataDirect Connect ODBC Driver for Apache Hive Database 16-16

Configuring Database Connections Using Native ODBC Drivers 16-18

Defining Dimension Tables as Not Normalized in Oracle RPAS ODBC Data
Sources on AIX UNIX 16-19

Setting Up Oracle TimesTen In-Memory Database on Linux and UNIX 16-20

Configuring Oracle RPAS ODBC Data Sources on AIX UNIX 16-20

Configuring Essbase Data Sources on Linux and UNIX 16-21

Configuring DB2 Connect on IBM z/OS and s/390 Platforms 16-21

17  
 

Managing Oracle BI Repository Files

Comparing Repositories 17-1

Comparing Repositories Using the Compare Dialog 17-1

Comparing Repositories Using comparerpd 17-2

Turning Off Compare Mode 17-3

Equalizing Objects 17-4

About Equalizing Objects 17-4

Viewing the Upgrade ID for Repository Objects 17-5

Using the Equalize Objects Dialog 17-5

Using the equalizerpds Utility 17-6

About Values for TypeName 17-8

Merging Repositories 17-9

Performing Full Repository Merges 17-9

About Full Repository Merges 17-10

Performing Full Repository Merges With a Common Parent 17-12

Performing Full Repository Merges Without a Common Parent 17-16

Performing Patch Merges 17-17

About Patch Merges 17-18

Generating a Repository Patch 17-18

Applying a Repository Patch 17-19

Querying and Managing Repository Metadata 17-22

Querying Related Objects 17-23

Repository Query Options 17-23

Querying the Repository 17-24

Constructing a Filter for Query Results 17-24

xvii



Query Filter Examples 17-25

Configuring the Repository for Large Complex Queries 17-26

Changing the Oracle BI Repository Password 17-27

Changing the Oracle BI Repository Password Using the Administration Tool 17-27

Changing the Oracle BI Repository Password Using the obieerpdpwdchg Utility 17-28

OBIS Metadata Compatibility 17-28

18  
 

Using Expression Builder and Other Utilities

Using Expression Builder 18-1

About the Expression Builder Dialogs 18-1

About the Expression Builder Toolbar 18-2

About the Categories in the Category Pane 18-2

Setting Up an Expression 18-3

Navigating Within Expression Builder 18-5

Building an Expression 18-5

About the INDEXCOL Conversion Function 18-6

Using Administration Tool Utilities 18-6

Using the Replace Column or Table Wizard 18-7

Using the Oracle Business Intelligence Event Tables Utility 18-8

Using the Externalize Strings Utility 18-8

Using the Rename Wizard 18-9

Using the Update Physical Layer Wizard 18-10

Generating Documentation of Repository Mappings 18-11

Generating a Metadata Dictionary 18-11

Providing Access to Metadata Dictionary Information 18-13

Removing Unused Physical Objects 18-14

Persisting Aggregates 18-14

Using the Convert Presentation Folders Utility 18-14

Generating a List of Logical Column Types 18-15

Using the biservergentypexml Utility to Generate a List of Logical Column
Types 18-15

Sample Output for a Logical Column Types Document 18-16

Comparing Logical Column Types 18-17

Fixing Upgrade IDs 18-17

Setting Permissions In Bulk 18-18

Using the Calculation Wizard 18-18

Associating S_NQ_ACCT Record with the BI Query Log 18-19

xviii



19  
 

Using Variables in the Oracle BI Repository

Working with Repository Variables 19-1

About Repository Variables 19-2

About Static Repository Variables 19-2

About Dynamic Repository Variables 19-2

Creating Repository Variables 19-3

Using Repository Variables in Expression Builder 19-4

Working with Session Variables 19-4

About Session Variables 19-4

About System Session Variables 19-5

About Nonsystem Session Variables 19-7

Creating Session Variables 19-7

Working with Initialization Blocks 19-8

About Using Initialization Blocks with Variables 19-8

Initializing Dynamic Repository Variables 19-9

Initializing Session Variables 19-9

About Row-Wise Initialization 19-10

Creating Initialization Blocks 19-11

Creating Session Variable Initialization Blocks 19-12

Assigning a Name and Schedule to Initialization Blocks 19-12

Selecting and Testing the Data Source and Connection Pool 19-13

Variable Order in Initialization Blocks 19-19

Associating Variables with Initialization Blocks 19-20

Establishing Execution Precedence 19-20

When Execution of Session Variable Initialization Blocks Cannot Be Deferred 19-21

Enabling and Disabling Initialization Blocks 19-22

Working with Multi-Source Session Variables 19-22

Example to Illustrate the Creation and Usage of Multi-Source Session Variables 19-23

List Repository Variables Command 19-25

Update Repository Variables Command 19-27

A   Managing the Repository Lifecycle in a Multiuser Development
Environment

Planning Your Multiuser Development Deployment A-1

About Business Organization and Governance Process Best Practices A-2

About Technical Team Roles and Responsibilities A-2

Multiuser Development Architecture A-3

About Multiuser Development Concepts A-4

About Multiuser Development Styles A-5

xix



Multiuser Development Sandbox Architecture A-10

Multiuser Development and Lifecycle Management Architecture A-12

Understanding the Multiuser Development Environment A-14

About Multiuser Development Environment Task Flow A-15

About Multiuser Development Projects A-16

How to Create Branches A-17

How to Create a Main Branch A-17

How to Create a Side Branch A-17

How to Create a Delegated Administration Branch A-19

Which Merge Utility Should I Use? A-20

MUD Tips and Best Practices A-21

Best Practices for Branching A-21

Best Practices for Setting Up Projects A-22

Best Practices for Three-Way Merges A-22

Best Practices for MUD Merges A-23

Best Practices for Two-Way Merges A-24

Best Practices for Production Migration A-25

Best Practices for Application Roles and Users A-25

Troubleshooting Multiuser Development A-26

B   MUD Case Study: Eden Corporation

About the Eden Corporation Fictional Case Study B-1

Phase I - Initiating Multiuser Development (MUD) B-3

Starting Initiative S B-4

Setting Up MUD Projects B-5

First Developer Checks Out B-6

Second Developer Checks Out B-9

First Developer Publishes Changes to the Master MUD Repository B-10

Second Developer Publishes Changes to the Master MUD Repository B-11

MUD Administrator Test Migration Activities B-12

Phase I Testing B-12

Phase I Migration to Production B-13

Phase I Summary B-14

Phase II - Branching, Fixing, and Patching B-14

Setting Up the Second Branch B-15

Developers Check Out Projects B-15

Patch Fix for the Main Branch B-15

Finishing and Merging Phase II Branch B-18

Phase II Summary B-19

Phase III - Independent Semantic Model Development B-19

xx



Security Considerations for Multiple Independent Semantic Models B-20

HR Semantic Model Developer Builds Content B-21

Phase III Summary B-22

C   Merge Rules

About the Merge Process C-1

Merge Rules and Behavior for Full Merges C-2

Special Merge Algorithms for Logical Table Sources and Other Objects C-3

Merging Objects that Use the Vector Merge Algorithm C-3

Merging Logical Table Sources C-5

Merging Security Filters C-5

Inferring the Use Logical Column Property for Presentation Columns C-6

Merging Aliases C-6

Merge Rules and Behavior for Multiuser Development Merges C-6

Merge Rules and Behavior for Patch Merges C-7

Using Patchrpd to Automate the Patch Process C-7

D   Deleting Unwanted Objects from the Repository

About the Object Pruning Utility D-1

Using the Object Pruning Utility D-1

Creating the Input File D-1

Running the prunerpd Utility D-2

Deletion Rules for the Object Pruning Utility D-3

E   Data Types Supported by Oracle BI Enterprise Edition

Data Type Categories Supported by Oracle BI EE E-1

Textual Data E-1

Numeric Data E-1

Date and Time Data E-2

Binary Data E-2

Using the NQSGetSQLDataTypes Procedure to Access Data Type Information E-2

Oracle BI EE Data Type Limitations E-2

Floating Point Limitations E-4

Other Oracle BI Server Limitations E-5

Oracle Database to Oracle BI EE Data Type Mapping E-5

xxi



F   Exchanging Metadata with Databases to Enhance Query
Performance

About Exchanging Metadata with Databases F-1

Generating the Import File F-1

Running the Generator F-2

About the Metadata Input File F-4

About the Output Files F-5

Troubleshooting Errors from the Generator F-5

Metadata Conversion Rules and Error Messages F-6

Conversion Rules for Oracle Databases F-6

Conversion Rules for IBM DB2 Databases F-7

Using Materialized Views in the Oracle Database with Oracle Business Intelligence F-11

About Using the SQL Access Advisor with Materialized Views F-11

Deploying Metadata for Oracle Database F-12

Executing the SQL File for Oracle Database F-12

Defining Constraints for the Existence of Joins F-13

Creating the Query Workload F-13

Creating Materialized Views F-15

Using IBM DB2 Cube Views with Oracle Business Intelligence F-15

About Using IBM DB2 Cube Views F-16

Deploying Cube Metadata F-16

Executing the Alias-SQL File for IBM Cube Views F-17

Importing the XML File F-17

Guidelines for Creating Materialized Query Tables (MQTs) F-18

G   XML Schema Files for ADF Mapping Customizations

app_segment_rule.xsd XML Schema File G-1

app_segment_rules_*.xml Example G-5

mapping_rules.xsd XML Schema File G-9

mapping_rules_*.xml Example G-11

H   Administration Tool Keyboard Shortcuts

Menu Keyboard Shortcuts H-1

Dialog Keyboard Shortcuts H-2

Physical Diagram and Business Model Diagram Keyboard Shortcuts H-4

xxii



Preface

The Oracle Business Intelligence Foundation Suite is a complete, open, and integrated
solution for all enterprise business intelligence needs, including reporting, ad hoc
queries, OLAP, dashboards, scorecards, and what-if analysis. The Oracle Business
Intelligence Foundation Suite includes Oracle Business Intelligence Enterprise Edition.

Oracle Business Intelligence Enterprise Edition (Oracle BI EE) is a comprehensive set
of enterprise business intelligence tools and infrastructure, including a scalable and
efficient query and analysis server, an ad-hoc query and analysis tool, interactive
dashboards, proactive intelligence and alerts, and an enterprise reporting engine.

The components of Oracle BI EE share a common service-oriented architecture, data
access services, analytic and calculation infrastructure, metadata management
services, semantic business model, security model and user preferences, and
administration tools. Oracle BI EE provides scalability and performance with data-
source specific optimized request generation, optimized data access, advanced
calculation, intelligent caching services, and clustering.

This guide contains information about building an Oracle BI metadata repository and
includes topics on setting up and connecting to data sources, building the Physical
layer, Business Model and Mapping layer, and Presentation layer, and how to use the
multiuser development environment.

Audience
The intended audience is anyone who plans to design and build a metadata repository
using the Oracle BI Administration Tool such as a Business Intelligence strategist,
metadata provider, or ETL developer.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documentation and Other Resources
See the Oracle Business Intelligence documentation library for a list of related Oracle
Business Intelligence documents.

xxiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


In addition:

• Go to the Oracle Learning Library for Oracle Business Intelligence-related online
training resources.

• Go to the Product Information Center support note (Article ID 1267009.1) on My
Oracle Support at https://support.oracle.com.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxiv

https://support.oracle.com


New Features for Oracle BI Metadata
Repository Builders

Learn about new features in this release.

This preface describes changes to metadata repository features for Oracle Business
Intelligence Enterprise Edition 12c Release.

This preface contains the following topics:

• New Features for Oracle BI EE 12c Release (12.2.1.1.0)

• New Features for Oracle BI EE 12c Release (12.2.1.0)

New Features for Oracle BI EE 12c (12.2.1.1.0)
This preface describes changes to metadata repository features for Oracle Business
Intelligence Enterprise Edition 12c (12.2.1.1.0).

New metadata repository features in Oracle BI EE 12c Release (12.2.1.1.0) include:

• Data Driven Fragment Selection in Logical Table Sources

You can improve the performance of models using fragmented logical table
sources by enabling the Data Driven Fragment Selection option. See Enabling
Data Driven Fragment Selection.

New Features for Oracle BI EE 12c Release (12.2.1.0)
This preface describes changes to the Oracle BI metadata repository for Oracle
Business Intelligence Enterprise Edition 12c Release 1 (12.2.1).

New metadata repository features in Oracle BI EE 12c Release (12.2.1) include:

• Logical Level Sequence Numbers for Time Dimensions

• DISPLAY | SORTKEY Syntax Supported in the SQL ORDER BY expression

• Oracle Database Fast Application Notification and Fast Connection Failover
Supported by Oracle BI Server

• Generate Fragmented Aggregates in Aggregate Persistence

• New Command Line Utilities

Logical Level Sequence Numbers for Time Dimensions

The Logical Level dialog has a new Sequence Numbers tab. You can add absolute or
relative sequence numbers to time dimensions in the new tab. These mappings
provide direct column references in the Time dimension table that creates a query that

xxv



Oracle BI Server can execute against the data source. See Adding Sequence
Numbers to a Time Dimension's Logical Level.

DISPLAY | SORTKEY Syntax Supported in the SQL ORDER BY Expression

The Oracle BI Server accepts the DISPLAY and SORTKEY keywords in the SQL ORDER BY
expression. You can use the DISPLAY keyword to override a logical column's assigned
sort order column. See ORDER BY Clause Syntax in Logical SQL Reference Guide
for Oracle Business Intelligence Enterprise Edition.

Oracle Database Fast Application Notification and Fast Connection Failover
Supported by Oracle BI Server

The Oracle BI Server supports the Fast Application Notification (FAN) event and Fast
Connection Failover (FCF) Oracle Database configuration. Fast Connection Failover
enables quick failover when the data source's Oracle database is not available. See
Oracle Database Fast Application Notification and Fast Connection Failover.

Generate Fragmented Aggregates in Aggregate Persistence

The aggregate persistence functionality has been enhanced to generate fragmented
aggregates from a manually written aggregate specification. You can generate
fragmented aggregates by adding a Where clause to the Logical SQL CREATE
statement. See Writing the Create Aggregates Specification.

New Command Line Utilities

New command line utilities are available. See the following topics:

• Download Repository Command

• Upload Repository Command

• List Connection Pool Command

• Update Connection Pool Command

• Rename Application Role Command

• Delete Application Role Command

• Rename Users Command

• Delete Users Command

• List Repository Variables Command

• Update Repository Variables Command

New Features for Oracle BI Metadata Repository Builders

xxvi



1
Introduction to Building Your Metadata
Repository

This chapter explains how to plan and design your Oracle Business Intelligence
metadata repository, including how to plan your business model, how to work with the
physical content for your business model, and general repository design guidelines.
To effectively plan and build your metadata repository, you need to have experience
with SQL queries and be familiar with reporting and analysis. You should also have
experience with industry-standard data warehouse modeling practices, and be familiar
with general relational entity-relationship modeling.

This chapter contains the following topics:

• About Oracle BI Server Architecture

• About Layers in the Oracle BI Repository

• Identifying the Data Source Content for the Physical Layer

• Guidelines for Designing a Repository

• System Requirements and Certification

About Oracle BI Server Architecture
The Oracle BI Server is an Oracle Business Intelligence component that processes
user requests and queries in underlying data sources.

The Oracle BI Server maintains the logical data model and provides client access to
the model using ODBC connectivity or native APIs, such as OCI for the Oracle
Database.

The Oracle BI Server uses the metadata in the Oracle BI repository to perform the
following two tasks:

• Interpret Logical SQL queries and write corresponding physical queries against the
appropriate data sources.

• Transform and combine the physical result sets and perform final calculations.

The Administration Tool client is a Windows application that you can use to create and
edit your Oracle BI repository. The Administration Tool can connect directly to the
repository in offline mode, or it can connect to the repository through the Oracle BI
Server. Some options are only available in online mode. See Using Online and Offline
Repository Modes.

The image shows how the Oracle BI Server interacts with query clients, data sources,
the Oracle BI repository, and the Administration Tool.

1-1



The example shows how the Oracle BI Server interprets and converts Logical SQL
queries.

Logical Requests Are Transformed Into Complex Physical Queries

Assume the Oracle BI Server receives the following simple client request:

SELECT
"D0 Time"."T02 Per Name Month" saw_0,
"D4 Product"."P01 Product" saw_1,
"F2 Units"."2-01 Billed Qty (Sum All)" saw_2
FROM "Sample Sales"
ORDER BY saw_0, saw_1

The Oracle BI Server can then convert the Logical SQL query into a sophisticated
physical query, as follows:

WITH SAWITH0 AS (
select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,
   sum(T835.Units) as c3, T879.Prod_Key as c4
from
   Product T879 /* A05 Product */ ,
   Time_Mth T986 /* A08 Time Mth */ ,
   FactsRev T835 /* A11 Revenue (Billed Time Join) */
where ( T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid)
group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month
)
select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3
from SAWITH0
order by c1, c2

About Layers in the Oracle BI Repository
Layers in the Oracle BI Repository define the objects and their relationships.

Chapter 1
About Layers in the Oracle BI Repository

1-2



An Oracle BI Repository has the following layers:

• Physical layer

This layer defines the objects and relationships that the Oracle BI Server needs to
write native queries against each physical data source. You create this layer by
importing tables, cubes, and flat files from your data sources.

Separating the logical behavior of the application from the physical model provides
the ability to federate multiple physical sources to the same logical object, enabling
aggregate navigation and partitioning, as well as, dimension conformance and
isolation from changes in the physical sources. This separation also enables the
creation of portable Oracle BI Applications.

• Business Model and Mapping layer

This layer defines the business or logical model of the data and specifies the
mapping between the business model and the physical schemas. This layer
determines the analytic behavior seen by users, and defines the superset of
objects and relationships available to users. Business Model and Mapping layer
hides the complexity of the source data models.

Each column in the business model maps to one or more columns in the Physical
layer. At run time, the Oracle BI Server evaluates Logical SQL requests against
the business model, and then uses the mappings to determine the best set of
physical tables, files, and cubes for generating the necessary physical queries.
The mappings often contain calculations and transformations, and might combine
multiple physical tables.

• Presentation layer

This layer provides a way to present customized, secure, role based views of a
business model to users. It adds a level of abstraction over the Business Model
and Mapping layer and provides the view of the data seen by users building
requests in Presentation Services and other clients.

You can create multiple subject areas in the Presentation layer that map to a
single business model, effectively breaking up the business model into
manageable pieces.

Before you build repository layers in the Administration Tool, create a high-level design
of the Business Model and Mapping layer based on the analytic requirements of your
users. After you have a conceptual design to work toward, you can then build your
metadata objects.

You should create the Physical layer objects first, next create the Business Model and
Mapping layer objects, and then create Presentation layer objects. You can work on
each layer at any stage. After you complete all three layers, you can set up security
when you are ready to begin testing the repository.

The figure shows how a Logical SQL query traverses the layers of an Oracle BI
Repository.

Chapter 1
About Layers in the Oracle BI Repository

1-3



A single Oracle BI Repository can contain two or more independent semantic models,
rather than a single, integrated, enterprise-wide model. A semantic model consists of
one business model, its related objects in the Presentation and Physical layers, and
additional related objects like variables, initialization blocks, and application roles. A
semantic model is also known as a Common Enterprise Information Model (CEIM).

See About Multiuser Development Styles for a visual representation of multiple
semantic models.

Analyzing Your Business Model Requirements
You must thoroughly analyze your business data to understand and plan your
business model requirements.

Planning your business model is the first step in developing a usable data model for
decision support. After planning, you can begin to create your repository.

You must understand the requirements of the business model before you can
determine the components of the Physical layer.

In a decision support environment, the objective of data modeling is to design a model
that presents business information in a manner that parallels business analysts'
understanding of the business structure. A successful model allows the query process
to become a natural process by enabling analysts to structure queries in the same
intuitive fashion as they would ask business questions. This model must be one that
business analysts inherently understand and that answers meaningful questions
correctly.

Unlike visual SQL tools such as Oracle BI Publisher, the business model defines the
analytic behavior of your BI application. In contrast, the Physical layer only provides
the components used to assemble a physical query mapped from business model
logic.

This requires breaking down your business into several components to answer the
following questions:

Chapter 1
Analyzing Your Business Model Requirements

1-4



• What kinds of business questions are analysts trying to answer?

• What are the measures required to understand business performance?

• What are all the dimensions under which the business operates? Or, in other
words, what are the dimensions used to break down the measurements and
provide headers for the reports?

• Are there hierarchical elements in each dimension, and what types of relationships
define each hierarchy?

After you have answered these questions, you can identify and define the elements of
your business model.

Identifying the Content of the Business Model
To determine what content to include in your business model, you must first identify
the logical columns on which users need to query.

Then, you must identify each column's role as either a measure column or a
dimensional attribute. Finally, you need to arrange the logical columns in a
dimensional model based on the relevant roles, relationships between columns, and
logic.

Businesses are analyzed by relevant dimensional criteria, and the business model is
developed from these relevant dimensions. These dimensional models form the basis
of the valid business models to use with the Oracle BI Server.

Although not all dimensional models are built around a star schema, it is a best
practice to use a simple star schema in the business model layer. In other words, the
dimensional model should represent some measurable facts that are viewed in terms
of various dimensional attributes.

After you analyze your business model requirements, you need to identify the specific
logical tables and hierarchies that you need to include in your business model.

This section contains the following topics:

• Identifying Logical Fact Tables

• Identifying Logical Dimension Tables

• Identifying Dimensions

• Identifying Lookup Tables

Identifying Logical Fact Tables
Logical fact tables in the Business Model and Mapping layer contain measures that
have aggregations built into their definitions.

Logical fact tables are different from physical fact tables in relational models. Physical
tables in rational models define facts at the lowest possible grain. Logical fact table
can contain measures of different grains,

You must define measures aggregated from facts in a logical fact table. Measures are
calculated data such as dollar value or quantity sold. You can specify measures in
terms of dimensions. For example, you might want to determine the sum of dollars for
a given product in a given market over a given time period.

Chapter 1
Identifying the Content of the Business Model

1-5



Each measure has its own aggregation rule such as SUM, AVG, MIN, or MAX. A business
might want to compare values of a measure and need a calculation to express the
comparison. You can specify aggregation rules to specific dimensions. You can define
complex, dimension-specific aggregation rules in the Oracle BI Server.

You don't explicitly label tables in the Business Model and Mapping layer as fact tables
or dimension tables. The Oracle BI Server treats tables at the one end of a join as
dimension tables, and tables at the many end of a join as fact tables.

The image shows the many-to-one joins to a fact table in a Business Model diagram.
In the Business Model diagram, all joins have an arrow, indicating the one side,
pointing away from the Fact-Pipeline table; no joins are pointing to it. For an example
of this in a business model, open a repository in the Administration Tool, right-click a
fact table, select Business Model Diagram, and then select Whole Diagram.

Identifying Logical Dimension Tables
Dimension tables contain attributes that describe business entities such as Customer
Name, Region, Address and Country.

A business uses facts to measure performance using established dimensions such as
by time, product, and market. Every dimension has a set of descriptive attributes.
Dimension tables contain primary keys that identify each member.

Dimension table attributes provide context to numeric data, for example, by providing
the ability to categorize Service Requests. Attributes stored in a service requests
dimension table could include Service Request Owner, Area, Account, and Priority.

Dimensions in the business model are conformed dimensions, that is those
dimensions that are consistent across. If a specific data source has five different
instances of a specific Customer table, the business model should only have one
Customer table. To achieve conformance, all five physical source instances of
Customer are mapped to a single Customer logical table, with transformations in the
logical table source as necessary. Conformed dimensions hide the complexity of the
Physical layer from users, and enable combining data from multiple fact sources at
different grains. Conformed dimensions enable combining multiple data sources.

The business model uses business keys for a dimension and level keys instead of
generated surrogate keys. For example, you would use Customer Name with values

Chapter 1
Identifying the Content of the Business Model

1-6



like Oracle instead of Customer Key with values like 1076823. Using business keys in
the business model ensures that all sources for that dimension can conform to the
same logical dimension table with the same logical key and level key.

Generated surrogate keys can exist in the Physical layer where the keys are useful for
their query performance advantages on joins. The Business Model and Mapping layer
does not have surrogate key columns.

Identifying Dimensions
Dimensions are categories of attributes by which the business is defined.

Common dimensions are time periods, products, markets, customers, suppliers,
promotion conditions, raw materials, manufacturing plants, transportation methods,
media types, and time of day. Within a given dimension, there are many attributes. For
example, the time period dimension can contain the attributes day, week, month,
quarter, and year. Exactly what attributes a dimension contains depends on the way
the business is analyzed.

Dimensions contain hierarchies that are sets of top-down relationships between
members within a dimension. There are two types of hierarchies:

• level-based hierarchies (structure hierarchies)

• parent-child hierarchies (value hierarchies)

In level-based hierarchies, members of the same type occur only at a single level,
while members in parent-child hierarchies all have the same type. Oracle Business
Intelligence supports a time dimension level-based hierarchy that provides functionality
for modeling time series data. In level-based hierarchies, levels roll up from a lower
level to higher level, for example, months can roll up into a year. These roll ups occur
over the hierarchy elements and span natural business relationships.

In parent-child hierarchies, the business relationships occur between different
members of the same real-world type such as the manager-employee relationship in
an organizational hierarchy tree. Parent-child hierarchies don't have explicitly named
levels. There is no limit to the number of implicit levels in a parent-child hierarchy.

To define your hierarchies, you define the contains relationships in your business to
drive roll up aggregations in all calculations, as well as drill-down navigation in reports
and dashboards. For example, if month rolls up into year and an aggregate table
exists at the month level, you can use the table to answer questions at the year level
by adding up all of the month-level data for a year.

You must use the right type of hierarchy for your needs. To determine the appropriate
type to use, consider the following:

• Are all the members of the same type such as employee, assembly, or account, or
are they of different types that naturally fall into levels such as year-quarter-month,
continent-country-state/province, or brand-line-product?

• Do members have the same set of attributes? For example, in a parent-child
hierarchy like Employees, all members might have a Hire Date attribute. In a level-
based hierarchy like Time, the Day type might have a Holiday attribute, while the
Month type does not have the Holiday attribute.

• Are the levels fixed at design time (year-quarter-month), or can runtime business
transactions add or subtract levels? For example, if you can add a level when the

Chapter 1
Identifying the Content of the Business Model

1-7



current lowest-level employee hires a subordinate, who then is the new lowest
level.

• Are there constraints in your primary data source that require a certain hierarchy
type? If your primary data source is modeled in one way, you might need to use
the same hierarchy type in your business model, regardless of other factors.

About Dimensions with Multiple Hierarchies
Dimensions can contain multiple hierarchies.

For example, time dimensions often have one hierarchy for the calendar year, and
another hierarchy for the fiscal year.

Note:

Dimensions with multiple hierarchies must always end with the same leaf
table.

The image shows a dimension with multiple hierarchies in the Business Model and
Mapping layer of the Oracle BI Administration Tool.

Chapter 1
Identifying the Content of the Business Model

1-8



Identifying Lookup Tables
When you need to display translated field information from multilingual schemas, you
create a logical lookup table that corresponds to a lookup table in the Physical layer.

A lookup table stores multilingual data corresponding to rows in the base tables.
Before using a specific logical lookup table, you must designate the table as a lookup
table in the General tab of the Logical Table dialog. See Localizing Metadata Names in
the Repository in System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition .

You can use lookup tables to display one set of values to users, while using a
different, corresponding set of values in the physical query. You can use the lookup
table to provide human-readable values that are looked up in a different data source.

Identifying the Data Source Content for the Physical Layer
After you have determined the requirements for your business model, you can look at
what data source content you need in the Physical layer.

Chapter 1
Identifying the Data Source Content for the Physical Layer

1-9



Unlike the Business Model and Mapping layer that is always dimensional, each
physical model mirrors the shape of the source, for example, normalized, and cube.

This section contains the following topics:

• About Types of Physical Schemas in Relational Data Sources

• About Cubes in Multidimensional Data Sources

• Identifying the Data Source Table Structure

About Types of Physical Schemas in Relational Data Sources
You can successfully model any physical schema in the Oracle BI repository,
regardless of its type, because you can break down the model of any physical source
into overlapping subsets that are dimensional.

There are four types of physical schemas (models):

• Star Schemas

A star schema is a set of dimensional schemas (stars) that each have a single fact
table with foreign key join relationships to several dimension tables. When you
map a star to the business model, you first map the physical fact columns to one
or more logical fact tables. Then, for each physical dimension table that joins to
the physical fact table for that star, you map the physical dimension columns to the
appropriate conformed logical dimension tables.

• Snowflake Schemas

A snowflake schema is similar to a star schema, except that each dimension is
made up of multiple tables joined together. Like star schemas, you first map the
physical fact columns to one or more logical tables. Then, for each dimension, you
map the snowflake physical dimension tables to a single logical table. You can
achieve this by either having multiple logical table sources, or by using a single
logical table source with joins.

• Normalized Schemas

Normalized schemas distribute data entities into multiple tables to minimize data
storage redundancy and optimize data updates. Before mapping a normalized
schema to the business model, you need to understand how the distributed
structure is understood in terms of facts and dimensions.

After analyzing the structure, you pick a table that has fact columns and then map
the physical fact columns to one or more logical fact tables. Then, for each
dimension associated with that set of physical fact columns, you map the
distributed physical tables containing dimensional columns to a single logical table.
Like with snowflake schemas, you can achieve this by having multiple logical table
sources, or by using a single logical table source with joins. Mapping normalized
schemas is an iterative process because you first map a certain set of facts, then
the associated dimensions, and then you move on to the next set of facts.

When a single physical table has both fact and dimension columns, you may need
to create a physical alias table to handle the multiple roles played by that table.

• Fully Denormalized Schemas

This type of dimensional schema combines the facts and dimensions as columns
in one table (or flat file), and is mapped differently than other types of schemas.
When you map a fully denormalized schema to the star-shaped business model,

Chapter 1
Identifying the Data Source Content for the Physical Layer

1-10



you map the physical fact columns from the single physical fact table to multiple
logical fact tables in the business model. Then, you map the physical dimension
columns to the appropriate conformed logical dimension tables.

About Cubes in Multidimensional Data Sources
Cubes are made up of measures and are organized by dimensions.

Cube are already dimensional, each cube maps to the logical fact and dimension
tables in the business model.

• Measures in multidimensional cubes and relational fact columns map to logical
measures in the Business Model and Mapping layer. Measures in
multidimensional cubes include calculations and aggregations. Relational fact
columns require applying the calculations and aggregations in the business model.
The Oracle BI Server takes advantage of the pre-aggregated data and powerful
calculations in the cube.

• Multidimensional physical objects and relational physical objects map to logical
dimensions in the Business Model and Mapping layer. Dimensional and
hierarchical semantics are built into multidimensional data sources. The Oracle BI
Server takes advantage of the hierarchy and dimensional support in the cube
during import and at query time.

Identifying the Data Source Table Structure
The Oracle BI Administration Tool provides an interface to map logical tables to the
underlying physical tables in your data sources.

Before you can map the tables, you need to identify the contents of the physical data
sources as it relates to your business model. To do this correctly, you need to identify
the following contents of the physical data source:

• Identify the contents of each table

• Identify the detail level for each table

• Identify the table definition for each aggregate table. This lets you set up
aggregate navigation. The following detail is required by the Oracle BI Server:

– The columns by which the table is grouped (the aggregation level)

– The type of aggregation (SUM, AVG, MIN, MAX, or COUNT)

To set up aggregate navigation in a repository, see Managing Logical Table
Sources (Mappings).

• Identify the contents of each column

• Identify how each measure is calculated

• Identify the joins defined in the database

To acquire this information about the data, you could refer to any available
documentation that describes the data elements created when the data source was
implemented, or you might need to spend some time with the DBA for each data
source to get this information. To fully understand all the data elements, you might
also need to ask people in the organization who are users of the data, owners of the
data, or the application developers of applications that create the data.

Chapter 1
Identifying the Data Source Content for the Physical Layer

1-11



Guidelines for Designing a Repository
After analyzing your business model needs and identifying the database content that
your business requires, you can complete your repository design.

This section contains some design best practices that can help you implement a more
efficient repository.

You should not make performance tuning changes until importing and testing your
databases. Execute performance tuning tasks during the final steps in completing the
setup of your repository. See Completing Oracle BI Repository Setup.

This section contains the following topics:

• Design Strategies for Structuring the Repository

• Design Tips for the Physical Layer

• Design Tips for the Business Model and Mapping Layer

• Design Tips for the Presentation Layer

Design Strategies for Structuring the Repository
Use these recommended design strategies for structuring your Oracle BI repository.

• If you work in online mode, save backups of the online repository before and after
every completed unit of work. If needed, use Copy As on the File menu to make
an offline copy containing the changes.

• Use the Physical Diagrams in the Administration Tool to verify sources and joins.

• Decide whether you want to set up row-level security controls in the database, or
in the repository. This decision determines whether you share connection pools
and cache, and may limit the number of separate source databases you want to
include in your deployment. See Applying Data Access Security to Repository
Objects.

Design Tips for the Physical Layer
The Physical layer contains information about the physical data sources.

The most common way to create the schema in the Physical layer is by importing
metadata from databases and other data sources. If you import metadata, many of the
properties are configured automatically based on the information gathered during the
import process. You can also define other attributes of the physical data source, such
as join relationships, that might not exist in the data source metadata.

The Physical layer can contain data sources of many different types, including
multidimensional, relational, and XML sources. See System Requirements and
Certification for supported databases.

For each data source, there is at least one corresponding connection pool. The
connection pool contains data source name (DSN) information used to connect to a
data source, the number of connections allowed, timeout information, and other
connectivity-related administrative details. See About Connection Pools.

The following is a list of tips to use when designing the Physical layer:

Chapter 1
Guidelines for Designing a Repository

1-12



• You should use table aliases in the Physical layer to eliminate extraneous joins,
including the following:

– Eliminate all physical joins that cross dimensions (inter-dimensional circular
joins) by using aliases.

– Eliminate all circular joins (intra-dimensional circular joins) in a logical table
source in the Physical Model by creating physical table aliases.

A circular join involves using different joins from the same table to get results,
for example, you have a Customer table that is used to look up ship-to
addresses, and you use a different join to the Customer table to look up bill-to
addresses. You can avoid the circular joins by creating an alias table in the
Physical layer so that only one table instance is used for each purpose, with
separate joins.

If you don't eliminate circular joins, you could get erroneous report results. In
addition, query performance is negatively impacted by circular joins.

• You should use alias tables to create separate physical joins when you need the
join to perform as an inner join in one logical table source, and as an outer join in
another logical table source.

• You might import some tables into the Physical layer that you might not use right
away, but that you don't want to delete. To identify tables that you do want to use
right away in the Business Model and Mapping layer, you can assign aliases to
physical tables before mapping them to the business model layer.

Note:

To display the original name of a table that has an assigned alias, select
Tools, select Options, select General, and then select Display original
name for alias in diagrams.

• Use an opaque view only if there is no other solution to your modeling problem.
You should create a physical table or a materialized view. Opaque views prevent
the Oracle BI Server from generating optimized SQL because opaque views
contain fixed SQL statements that are sent to the underlying data source.

Design Tips for the Business Model and Mapping Layer
The Business Model and Mapping layer organizes information by business model. In
this layer, each business model is effectively a separate application.

The logical schema defined in each business model must contain at least two logical
tables. You must define relationships between all the logical tables. See About Layers
in the Oracle BI Repository and Working with Logical Tables, Joins, and Columns.

When designing the Business Model and Mapping layer:

• Create the business model with one-to-many logical joins between logical
dimension tables and the fact tables wherever possible. The business model
should resemble a simple star schema in which each fact table is joined directly to
its dimensions.

• Join every logical fact table to at least one logical dimension table. When the
source is a fully denormalized table or flat file, you must map its physical fact

Chapter 1
Guidelines for Designing a Repository

1-13



columns to one or more logical fact tables, and its physical dimension columns to
logical dimension tables.

• Associate every logical dimension table with a dimensional hierarchy. This rule
holds true even if the hierarchy has only one level such as a scenario dimension
(actual, forecast, or plan).

• Map all appropriate fact sources map to the appropriate level in the hierarchy
using aggregation content when creating level-based measures. You set up
aggregation content in the Levels tab of the Logical Column dialog for the
measure.

Set up aggregation content in the Levels tab of the Logical Column dialog for level-
based measures. For measures that aren't level-based, leave the Logical Level
field blank.

• Create aggregate sources as separate logical table sources. For fact aggregates,
use the Content tab of the Logical Table Source dialog to assign the correct logical
level to each dimension.

• Create a unique level key for each dimension level in a hierarchy. Each logical
dimension table must have a unique primary key. The key is also used as the level
key for the lowest hierarchy level.

• Ensure that each logical level of a dimension hierarchy contains the correct value
in the field named Number of elements at this level to prevent problems with
aggregate navigation. Fact sources are selected on a combination of the fields
selected as well as the levels in the dimensions to which they map. By adjusting
these values, you can alter the fact source selected by the Oracle BI Server. See 
Creating Logical Levels in a Dimension.

Logical Fact Tables

• Logical fact tables can contain measures of different grains. Do not use the grain
as a reason to split up logical fact tables.

• Logical fact tables should not contain any keys, except when you need to send
Logical SQL queries against the Oracle BI Server from a client that requires keys.
In this case, you need to expose those keys in both the logical fact tables, and in
the Presentation layer.

• All columns in logical fact tables are aggregated measures, except for keys
required by external clients, or dummy columns used as a divider. Other non-
aggregated columns should exist in a logical dimension table.

• You can use multiple logical fact tables in a single business model. For Logical
SQL queries, the multiple logical fact tables behave as if they are one table.
Reasons to have multiple logical fact tables include:

– To assign projects, see Setting Up Projects.

– To automatically create small subject areas in the Presentation layer, see 
Automatically Creating Subject Areas Based on Logical Stars and Snowflakes.

– For organization and simplicity of understanding.

If you plan to use Oracle Scorecard and Strategy Management, as a best practice in
the Oracle BI repository used for your KPIs, implement at least one time dimension.
This action is necessary because you use KPIs in scorecards to measure progress
and performance over time. An individual scorecard automatically includes any
dimension used by KPIs in that scorecard.

Chapter 1
Guidelines for Designing a Repository

1-14



Renaming columns in the Business Model and Mapping layer automatically creates
aliases (synonyms) for Presentation layer columns that have the property Use Logical
Column Name selected. This occurs because Presentation layer columns with this
option selected are automatically renamed so that the logical column and presentation
column names are in sync. Renaming Presentation layer columns directly when Use
Logical Column Name is not selected creates an alias.

Calculations

• You can define calculations in the following ways:

– Before the aggregation, in the logical table source. For example:

sum(col_A *( col_B))

– After the aggregation, in a logical column derived from two other logical
columns. For example:

sum(col A) * sum(col B)

You can also define post-aggregation calculations in Answers or in Logical SQL
queries.

Modeling Outer Joins
Use these guidelines on how to model outer joins.

• Due to the nature of outer joins, queries that use them are usually slower.
Because of this, define outer joins only when necessary. Where possible, use ETL
techniques to eliminate the need for outer joins in the reporting SQL.

• Outer joins are always defined in the Business Model and Mapping layer. Physical
layer joins don’t specify inner or outer.

• You can define outer joins by using logical table joins, or in logical table sources.
Which type of outer join you use is determined by whether the physical join maps
to a business model join, or to a logical table source join.

• If you must define an outer join, try to create two separate dimensions, one that
uses the outer join and one that doesn’t. Make sure to name the dimension with
the outer join in a way that clearly identifies it, so that client users can use it as
little as possible.

• Avoid using more than one outer join. Instead, to achieve the same effect as a
logical outer join, Oracle recommends that the logical join be an inner join and that
the analysis designer at design time selects the Include Null Value option in the
corresponding analysis. See Understanding Null Suppression in User's Guide for
Oracle Business Intelligence Enterprise Edition.

Design Tips for the Presentation Layer
You set up the user view of a business model in the Presentation layer.

The names of folders and columns in the Presentation layer can appear in localized
language translations. The Presentation layer is the appropriate layer in which to set
user permissions. See Creating and Maintaining the Presentation Layer.

In this layer, you can do the following:

Chapter 1
Guidelines for Designing a Repository

1-15



• You can show fewer columns than exist in the Business Model and Mapping layer.
For example, you can exclude the key columns because they have no business
meaning.

• You can organize columns using a different structure from the table structure in
the Business Model and Mapping layer.

• You can display column names that are different from the column names in the
Business Model and Mapping layer.

• You can set permissions to grant or deny users access to individual subject areas,
tables, and columns.

• You can export logical keys to ODBC-based query and reporting tools.

• You can create multiple subject areas for a single business model.

• You can create a list of aliases (synonyms) for presentation objects that are used
in Logical SQL queries. You can change presentation column names without
breaking existing reports.

The following is a list of tips to use when designing the Presentation layer:

• Because there is no automatic way to synchronize all changes between the
Business Model and Mapping layer and the Presentation layer, it is best to wait
until the Business Model and Mapping layer is relatively stable before adding
customizations in the Presentation layer.

• There are many ways to create subject areas, such as dragging and dropping the
entire business model, dragging and dropping incremental pieces of the model, or
automatically creating subject areas based on logical stars or snowflakes. See 
About Creating Subject Areas. Dragging and dropping incrementally works well if
certain parts of your business model are still changing.

• It is a best practice to rename objects in the Business Model and Mapping layer
rather than the Presentation layer, for better maintainability. Giving user-friendly
names to logical objects rather than presentation objects ensures that you can use
the names in multiple subject areas. Also, it ensures that the names persist even
when you need to delete and re-create subject areas to incorporate changes to
your business model.

• Members in a presentation hierarchy are not visible in the Presentation layer. You
can see hierarchy members in Oracle BI Answers.

• You can use the Administration Tool to update Presentation layer metadata to give
the appearance of nested folders in Answers. See Nesting Folders in and BI
Composer.

• When setting up data access security for a large number of objects, consider
setting object permissions by role rather than setting permissions for individual
columns. See Applying Data Access Security to Repository Objects .

• When setting permissions on presentation objects, you can change the default
permission by setting the NQSConfig.INI file. See NQSConfig.INI File Configuration
Settings in System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

Topics of Interest in Other Guides
Some topics of interest to metadata repository builders are covered in other guides.

Chapter 1
Topics of Interest in Other Guides

1-16



Topic Where to Go for More Information

Starting and stopping
Oracle Business
Intelligence processes

System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

Using the Oracle BI
ServerXML API to work
with your repository

XML Schema Reference for Oracle Business Intelligence
Enterprise Edition

Using the Oracle BI
Serverweb services

Integrator's Guide for Oracle Business Intelligence Enterprise
Edition

Setting up and managing
query caching

System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

Managing configuration
settings that affect
repository development in
Fusion Middleware Control
and NQSConfig.INI

System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

Managing users, groups,
and application roles

Security Guide for Oracle Business Intelligence Enterprise Edition

Moving from test to
production environments

Administering Oracle Fusion Middleware

Managing Oracle Business
Intelligence Application
Module metadata in BI
Archive (BAR)

System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

Setting up DSNs for the
Oracle BI Server

Integrator's Guide for Oracle Business Intelligence Enterprise
Edition

Localizing Oracle Business
Intelligence deployments

System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

Information about the SA
System subject area

Scheduling Jobs Guide for Oracle Business Intelligence
Enterprise Edition

Managing logging System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

Managing usage tracking System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

General information about
managing Oracle
WebLogic Server

Administering Oracle Fusion Middleware

System Requirements and Certification
Refer to the system requirements and certification documentation for information about
hardware and software requirements, platforms, databases, and other information.

Both of these documents are available on Oracle Technology Network (OTN).

The system requirements document covers information such as memory
requirements, and required system libraries, packages, or patches:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-

requirements-100147.html

Chapter 1
System Requirements and Certification

1-17

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-requirements-100147.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-requirements-100147.html


The certification document covers supported third-party products:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-

certification-100350.html

Chapter 1
System Requirements and Certification

1-18

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html


2
Before You Begin

These topics provides an overview of the Oracle BI Administration tool, and explains
other concepts that you must know before building a metadata repository.
This chapter contains the following topics:

• Opening the Administration Tool

• Setting Administration Tool Options

• Editing, Deleting, and Reordering Objects in the Repository

• About Naming Requirements for Repository Objects

• Changing Icons for Repository Objects

• Sorting Objects in the Administration Tool

• About the Oracle BI Server Command-Line Utilities

• About Options in NQSConfig.INI

• About the SampleApp.rpd Demonstration Repository

• Download Repository Command

• Using Online and Offline Repository Modes

• Checking the Consistency of a Repository or a Business Model

Note:

The Oracle BI Administration Tool requires administrator privileges on the
machine on which it’s installed. Before installing or running the tool, ensure
that you are logged in with administrator privileges.

Opening the Administration Tool
Learn how to open the Oracle BI Administration Tool.

Note:

Don’t use double-click to open a repository file. The resulting Administration
Tool window is not initialized to your Oracle instance, resulting in errors.

1. Do one of the following:

• Choose Start, expand Programs, select Oracle Business Intelligence, and
then select BI Administration.

2-1



• Launch the Administration Tool from the admintool utility located in
ORACLE_HOME/bitools/bin.

Setting Administration Tool Options
Use these steps to set preferences and options for the Oracle BI Administration Tool.

1. In the Administration Tool, select Tools, then select Options.

2. In the Options dialog, on the General tab, select the options to use.

3. On the Repository tab, select Show tables and dimensions only under display
folders or Hide level based measure.

4. On the Sort Objects tab, specify which repository objects appear in the
Administration Tool in alphabetical order.

5. On the Source Control tab, create or edit a configuration file to integrate with a
source control management system, or change the status of an MDS XML
repository.

6. On the Cache Manager tab, select the columns you want to display in the Cache
Manager.

7. Select an item to change the order of columns in the Cache Manager, then use the
Up and Down buttons to change its position.

8. On the Multiuser tab, specify the path to the multiuser development directory and
the name of the local developer for this Administration Tool.

9. On the More tab, you can set the scrolling speed for Administration Tool dialogs.
To set the scrolling speed, position the cursor on the slider.

10. Click OK when you are finished setting preferences.

Oracle BI Administration Tool General Options
The table describes some of the Oracle BI Administration Tool options available in the
Options dialog on the General tab.

Option Action When Selected

Display qualified names in
diagrams

Displays fully qualified names in the Physical Diagram and
Business Model Diagram. For example, selecting this option
displays "B - Sample Fcst Data"..."B02 Market" rather than B02
Market in the Physical Diagram.

Selecting this option can help identify objects by including the
name of the parent database or business model, but it can also
make the diagram harder to read because the fully qualified
names are longer.

If you choose not to select this option, you can still see fully
qualified names by moving the cursor over an object in the
diagram, or by selecting an object in the diagram and then
viewing the text in the status bar.

Display original names for
alias in diagrams

Displays the names of original physical tables rather than the
names of alias tables in the Physical diagram. Select this option
when you want to identify the original table rather than the alias
table name.

Chapter 2
Setting Administration Tool Options

2-2



Option Action When Selected

Show Wizard introduction
page

Displays the Calculation Wizard introduction page. The
introduction page also contains an option to suppress its display
in the future.

Use the Calculation Wizard to create new calculation columns
that compare two existing columns and to create metrics in bulk
(aggregated), including existing error trapping for NULL and
divide by zero logic. See Using the Calculation Wizard.

Check out objects
automatically

Automatically checks out an object when you double-click it. If
you don't select this option, you are prompted to check out
objects before you can edit them.

This option only applies when the Administration Tool is open in
online mode. See Editing Repositories in Online Mode.

Show row count in physical
view

Displays row counts for physical tables and columns in the
Physical layer. Row counts are not initially displayed until they
are updated.

Row counts are not shown for items that are stored procedure
calls from the Table Type list in the General tab of the Physical
Table dialog. Row counts are not available for XML, XML Server,
or multidimensional data sources. When you are working in
online mode, you cannot update row counts on any new objects
until you check them in.

Prompt when moving logical
columns

Lets you ignore, specify an existing, or create a new logical table
source for a moved column.

Remove unused physical
tables after Merge

Executes a utility to clean the repository of unused physical
objects. It might make the resulting repository smaller.

Allow import from repository When selected, the Import from Repository option on the File
menu becomes available.

By default, the Import from Repository option on the File menu
is disabled. It is recommended that you create projects in the
repository that contain the objects that you want to import, and
then use repository merge to bring the projects into your current
repository. See Merging Repositories.

Allow logical foreign key join
creation

When selected, provides the capability to create logical foreign
key joins with the Joins Manager. This option is provided for
compatibility with previous releases and is generally not
recommended.

Skip Gen 1 levels in
Essbase drag and drop
actions

When selected, excludes Gen 1 levels when you drag and drop
Essbase cubes or dimensions from the Physical layer to the
Business Model and Mapping layer.

See Working with Essbase Data Sources.

Hide unusable logical table
sources in Replace wizard

By default, the Replace Wizard shows all logical table sources,
even ones that are not valid for replacement. When this option is
selected, unusable logical table sources are hidden in the
Replace Wizard screens. Click Info for details on why a logical
table source that maps to that column does not appear in the list.

Selecting this option might result in the Wizard page loading
more quickly, especially for large repositories.

Chapter 2
Setting Administration Tool Options

2-3



Option Action When Selected

Allow first Connection Pool
for Init Blocks

Selecting this option is not a best practice and might cause
performance issues.

By default, when you select a connection pool for an initialization
block, the first connection pool under the database object in the
Physical layer does not display as available for selection. This
behavior ensures that you cannot use the same connection pool
for initialization blocks that you use for queries. If the same
connection pool is used for initialization blocks and for queries,
then queries might be blocked whenever initialization blocks run.
Alternatively, initialization blocks used for authentication might
be blocked by long-running queries, causing delayed or hanging
logins.

Select this option to change the default behavior and allow the
first connection pool to be selected for initialization blocks.

See About Connection Pools for Initialization Blocks .

Show Upgrade ID in Query
Repository

Upgrade IDs are not displayed by default in the Query
Repository dialog. When this option is selected, Upgrade IDs are
displayed as a column in the Query Repository results. In
addition, you can set a filter on Upgrade ID to search for a
particular value.

This option is useful for MDS XML format repositories in which
the Upgrade ID is included in the file name.

Extender For BIAPPS The availability of this option depends on your configuration.

Show Tenant Info in Online
Login

If you are working in a multi-tenant environment, then select this
option to show the Tenant info field in the Open Online dialog.

Display Translation Key in
the presentation tree

Select this option to instead display the translation key values for
all presentation objects.

Edit presentation names By default, the presentation object names are read-only.

Select this option to allow the names of presentation objects to
be modified.

Drag and drop: Show only
hierarchal columns

For Essbase data sources, selecting this option hides
presentation columns and shows only hierarchal columns in
Answers.

Oracle BI Administration Tool Repository Options
You can set preferences for the repository in the Oracle BI Administration Tool.

Repository tab options include the following:

• Show tables and dimensions only under display folders

You can create display folders to organize objects in the Physical and Business
Model and Mapping layers. They have no metadata meaning. After you create a
display folder, the selected objects appear in the folder as a shortcut and in the
database or business model tree as an object. You can hide the objects so that
only the shortcuts appear in the display folder.

See Setting Up Display Folders in the Physical Layer and Setting Up Display
Folders in the Business Model and Mapping Layer.

• Hide level based measure

Chapter 2
Setting Administration Tool Options

2-4



By default, each level of a dimension hierarchy in the Business Model and
Mapping layer shows both dimension columns that are assigned to that level, and
level-based measures that have been fixed at that level. Level-based measures
are objects that are not part of the dimension table, but that have been explicitly
defined as being at a particular level.

Hiding level-based measures in dimension hierarchies can reduce clutter. The
measures are still visible in the logical fact tables.

See Level-Based Measure Calculations.

• System logging level

This option determines the default query logging level for the internal BISystem
user. The BISystem user owns the Oracle BI Server system processes and is not
exposed in any user interface.

A query logging level of 0 (the default) means no logging. Set this logging level to
2 to enable query logging for internal system processes like event polling and
initialization blocks.

See Managing the Query Log in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition.

• LDAP

If you are using any alternative LDAP servers, the Oracle BI Server maintains an
authentication cache in memory for user identifiers and properties to improve
performance when using LDAP to authenticate large numbers of users. Disabling
the authentication cache can slow performance when authenticating hundreds of
session. The authentication cache is not used for Oracle WebLogic Server's
embedded directory server.

Properties for the authentication cache include:

– Cache refresh interval

The interval at which the authentication cache entry for a logged on user is
refreshed.

– Number of Cache Entries option (authentication cache) and Number of
Cache Entries

The maximum number of entries in the authentication cache, pre-allocated
when the Oracle BI Server starts. If the number of users exceeds this limit,
cache entries are replaced using the LRU algorithm. If this value is 0, then the
authentication cache is disabled.

You need to specify some additional LDAP properties when you are using a
secure connection to your LDAP server. In other words, provide the following
information when you have selected SSL on the Advanced tab of the LDAP Server
dialog:

– Wallet directory

The location of the Oracle wallet that holds the client certificate and Certificate
Authority (CA) certificate.

– Password and Confirm password

The password for the Oracle wallet.

The authentication cache properties and Oracle wallet properties are shared for all
defined LDAP server objects.

Chapter 2
Setting Administration Tool Options

2-5



See Setting Administration Tool Options.

Editing, Deleting, and Reordering Objects in the Repository
Learn how to edit objects in the repository.

This section provides information about editing, deleting, and reordering objects.

• To edit objects, double-click an object, or right-click an object and select
Properties. Then, complete the fields in the dialog that is displayed. In some
dialogs, you can click Edit to open the appropriate dialog.

• To delete objects, select one or more objects and click Delete, or press the delete
key. You can also right-click an object and select Delete.

• To reorder objects, drag and drop an object to a new location. Note the following:

– Reordering is only possible for certain objects and in certain dialogs.

– In some dialogs, you can use an up or down arrow to move objects to a new
location.

– In the Oracle BI Administration Tool main window, you can drag and drop an
object onto its parent to duplicate the object. For top-level objects like
business models and subject areas, drag and drop the object onto white space
to duplicate it.

About Naming Requirements for Repository Objects
You can learn about the repository object naming requirements.

All repository object names must follow these requirements:

• Names that are 128 characters or less

• Names that don’t contain leading or trailing spaces

• Names that don’t contain characters such as single quotes, hash marks, question
marks, or asterisks

Note:

Repository object names can include multi-byte characters.

Changing Icons for Repository Objects
In the Oracle BI Administration Tool, you can change the icon that represents a
particular object in the repository.

Changing the icon for a particular object does not have any functional effect, and is not
visible in Answers or other clients. Changing the icon is a useful way to visually
distinguish objects for the convenience of repository developers.

For example, you can:

Chapter 2
Editing, Deleting, and Reordering Objects in the Repository

2-6



• Use a special icon for objects that are in the Business Model and Mapping layer,
but not the Presentation layer, for easier maintenance of the repository.

• Mark objects that are logical calculations with a separate icon.

• Choose an icon to visually distinguish tables in the Presentation layer that appear
as nested folders in Answers.

• Use an icon to denote objects in a logical table that pertain to a specific functional
area, or that are sourced from a particular logical table source.

You can only change the icon for individual objects. You cannot globally change the
icon for all objects of a particular type.

1. In the Administration Tool, right-click an object in the Physical, Business Model
and Mapping, or Presentation layer, for example, a particular logical table.

2. Select Set Icon.

3. In the Select Icon dialog, select the icon you want to use for that object and click
OK.

Sorting Objects in the Administration Tool
Many dialogs in the Administration Tool show lists of objects, such as a list of physical
columns in the Physical Table dialog, a list of logical levels for Preferred Drill Path in
the Logical Level dialog, and a list of presentation hierarchies in the Presentation
Table dialog.

You can click the header to sort the objects in ascending or descending order. An up
arrow or down arrow icon is displayed next to the header name, indicating how the list
has been sorted.

Each list also has a default order that is persisted from session to session. The default
order appears when you view a list in a dialog for the first time each session. The
default order is displayed when there is no ascending or descending arrow icon in the
header. Click the header three times to toggle between ascending, descending, and
default order. In some cases, the default order is the ascending or descending order.

Some dialogs provide the capability to move items up or down in a list. In these
dialogs, if you click Up or Down while the list is sorted in ascending or descending
order, the selected item moves, and the resulting order becomes the new default
order. Clicking the header eliminates any manually determined order.

About the Oracle BI Server Command-Line Utilities
You can use command-line utilities with the Oracle BI Server to make programmatic
changes to your repository file, run sample queries, delete unwanted repository
objects, and perform other tasks.

The table describes the Oracle BI Server command-line utilities.

Chapter 2
Sorting Objects in the Administration Tool

2-7



Important:

When using Oracle BI EE tools such as nqcmd, biserverxmlcli, and
comparerpd, you must edit the input to match the format expected by SQL, for
example, do not include a single quote in your XML content.

Utility Name Description Where to Go for More Information

biserverextender Use to import flex object changes from
ADF data sources and map them to the
Business Model and Mapping layer and
Presentation layer.

Automatically Mapping Flex Object
Changes Using the biserverextender
Utility

biservergentypexml Usedto compare data types of logical
columns between a particular repository
and a generated list of logical column
types to ensure that the types match as
expected.

Generating a List of Logical Column
Types

Comparing Logical Column Types

XML utilities
(biserverxmlgen,
biserverxmlexec,
biserverxmlcli)

Use to leverage the Oracle BI Server XML
API for metadata migration, programmatic
metadata generation and manipulation,
metadata patching, and other functions.

The XML utilities include:

• biserverxmlgen: generates XML from
an existing RPD file. Also includes an
option to generate repositories in
MDS XML format.

• biserverxmlexec: executes the XML
in offline mode to create or modify a
repository file. Also includes an option
to execute XML in MDS XML format.

• biserverxmlcli: executes the XML
against the Oracle BI Server.

XML Schema Reference for Oracle
Business Intelligence Enterprise Edition

comparerpd Used to compare two repositories and
generate a CSV diff file, an XML patch file,
or an MDS XML diff.

Comparing Repositories Using
comparerpd

deleteapproles Use to upload a JSON file containing a list
of application roles to delete from a
specific server instance.

Delete Application Role Command

deleteusers Used to upload a JSON file containing a
list of users to delete from a specific server
instance.

Delete Users Command

downloadpd Use to download the repository to work
offline on diagnostics and development
tasks.

Download Repository Command

equalizerpds Use to equalize objects in two repositories
that have the same name, but different
Upgrade IDs. Running this utility before
merging repositories prevents unintended
renaming during the merge.

Equalizing Objects

externalizestrings Use to localize the names of Presentation
layer subject areas, tables, hierarchies,
columns and their descriptions.

Using the Externalize Strings Utility

Chapter 2
About the Oracle BI Server Command-Line Utilities

2-8



Utility Name Description Where to Go for More Information

extractprojects Use to extract projects from a given
repository.

Using the extractprojects Utility

listConnectionPool Use to create a list of connection pools in
JSON format for a specific server instance.

List Connection Pool Command

listrpdvariable Use to create a list of repository variables
in JSON format for a specific service
instance.

List Repository Variables Command

mhlconverter Use to convert MUD history files from .mhl
format to .xml format so that you can
check in the files under source control.

Checking In New Versions of the MUD
Master and MUD Log File to Source
Control

nqaggradvisor Use to invoke the Oracle BI Summary
Advisor to generate an aggregate
specification script that is run to create
aggregates. This utility is only available for
Oracle Business Intelligence running on an
Oracle Exalytics machine.

Using the nqaggradvisor Utility to Run
the Oracle BI Summary Advisor

nqcmd Use to run test queries against the
repository. Connects using an Oracle BI
Server ODBC DSN.

Using nqcmd to Test and Refine the
Repository

nqlogviewer Use to view the query log. System Administrator's Guide for
Oracle Business Intelligence Enterprise
Edition

obieerpdpwdchg Used to change the Oracle BI repository
password.

Changing the Oracle BI Repository
Password Using the obieerpdpwdchg
Utility

patchrpd Use to apply an XML patch file. This utility
is especially useful for patching repository
files on Linux or UNIX systems.

Using patchrpd to Apply a Patch

prunerpd Use to delete unwanted repository objects
from your repository file, such as
databases, tables, columns, initialization
blocks, and variables.

Deleting Unwanted Objects from the
Repository

renameapproles Use to upload a JSON file containing
information about the application roles to
rename for a specific server instance.

Rename Application Role
CommandRename Application Role
Command

renameusers Used to upload a JSON file containing a
list of information about users to rename
for a specific server instance.

Rename Users Command

sametaexport Use to generate the information necessary
for the Oracle Database SQL Access
Advisor or IBM DB2 Cube Views tool to
preaggregate relational data and improve
query performance.

Exchanging Metadata with Databases
to Enhance Query Performance

updateConnectionPool Use to upload a modified JSON file
containing updated connection pool values
to a specific server instance.

Update Connection Pool Command

updaterpdvariable Use to upload a JSON file or a modified
JSON file containing variable information
to a specific server instance.

Update Repository Variables
Command

Chapter 2
About the Oracle BI Server Command-Line Utilities

2-9



Utility Name Description Where to Go for More Information

uploadrpd Use to upload the repository to the Oracle
BI Server and include changes in the
Oracle Business Intelligence archive
(BAR) file.

Upload Repository Command

validaterpd Use to check the consistency of a
repository.

Using the validaterpd Utility to Check
Repository Consistency

About Options in NQSConfig.INI
Many configuration settings that affect the Oracle BI Administration Tool and
repository development are managed in the NQSConfig.INI configuration file.

Repository developers must be familiar with the NQSConfig.INI configuration
settings to effectively work with the Administration Tool and with their repositories.

Common configuration settings that affect repository development include:

• LOCALE

Set LOCALE in NQSConfig.INI to specify the place (geographical, political. or cultural)
to return the data from the server, and to determine the localized names of days
and months.

• DATE_TIME_DISPLAY_FORMAT, DATE_DISPLAY_FORMAT, and TIME_DISPLAY_FORMAT

Set these options in NQSConfig.INI to control the display of data/time formats.

• DEFAULT_PRIVILEGES

Set DEFAULT_PRIVILEGES in NQSConfig.INI to specify the default privilege, NONE or
READ, granted to users and application roles for repository objects without explicit
permissions set.

See System Administrator's Guide for Oracle Business Intelligence Enterprise Edition
for full information about NQSConfig.INI configuration settings.

About the SampleApp.rpd Demonstration Repository
Oracle BI provides a sample repository called SampleApp.rpd that provides best
practices for modeling many different types of objects described in this guide.

Oracle BI EE provides a sample repository called SampleApp.rpd that provides best
practices for modeling many different types of objects described in this guide.

A basic version of SampleApp.rpd, called SampleAppLite.rpd, is automatically installed as
the default repository when you install Oracle BI EE.

The full version of SampleApp.rpd contains many additional examples and features. You
can find this version on the Oracle Technology Network at:

http://oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html

The default password for Admin123. For security reasons, you must immediately
change this default password the first time you open SampleAppLite.rpd in the
Administration Tool, see Changing the Oracle BI Repository Password.

Chapter 2
About Options in NQSConfig.INI

2-10

http://oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html


Download Repository Command
Use the downloadrpd command to download the repository used by the service
instance.

The Download Repository command extracts the repository from the Oracle Business
Intelligence archive (BAR) file for the service instance. Oracle recommends only
working with the downloaded repository for offline diagnostic and development
purposes such as testing. In all other repository development and maintenance
situations, you should use BAR to utilize BAR's repository upgrade and patching
capabilities and benefits.

You execute the utility through a launcher script, datamodel.sh on UNIX and
datamodel.cmd on Windows.

If the domain is installed in default folder then the location of the launcher script looks
like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/datamodel.sh or
datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

See What You Need to Know Before Using the Command.

Important:

You must have Oracle BI EE BI Service Administrator privileges to run the
downloadrpd command and issue any of the commands. You must also have
membership in the Administrators group in WebLogic security.

Syntax

The downloadrpd command takes the following parameters:

downloadrpd -O RPDname [-W RPDpwd] -SI service_instance -U cred_username [-P 
cred_password] [-S hostname] [-N port_number] [-SSL] [-H]

Where

O specifies the name of the repository that you want to download.

W specifies the password for the repository. If you do not supply the password, you are
prompted for the password when the command is run. For security purposes, Oracle
recommends that you include a password in the command, only when using
automated scripting to run the command.

SI specifies the name of the service instance.

U specifies a valid user's name to be used for Oracle BI EE authentication.

Chapter 2
Download Repository Command

2-11



P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, a prompt displays for the password when the
command is run.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

datamodel.sh downloadrpd -O sampleapplite.rpd -SI bi -U weblogic -S

server1.example.com -N 7777 -SSL

What You Need to Know Before Using the Command
You can learn about the download and upload repository commands, and to the list
and update connection pool, rename and delete users and application roles, list and
update repository commands.

System Privileges

For either the Oracle BI EE installation or client installation, you must have Oracle BI
EE BI Service Administrator privileges to run the command line utility and issue any of
the commands.

Passwords in Commands

The commands provide options for including a user's password and a repository
passwords. If you do not supply passwords, then you are prompted for passwords
when you run the command.

For security purposes, Oracle recommends that you include passwords in the
command only if you are using automated scripting to run the command.

Trust Store Key File for SSL

WebLogic Server provides Secure Sockets Layer (SSL) support for encrypting data
transmitted between WebLogic Server clients and servers, Java clients, Web
browsers, and other servers. When using SSL, you must use the WebLogic Server's
trusted keys file if the server is using a self-signed certificate. This is the case when a
domain is first created, as the server's identity certificate is generated when the
domain is created.

If you replace the WebLogic Server's default self-signed identity certificate with a
certificate signed by a recognized signing authority, then the standard Java trusted
certificate list validates it and the extra settings are not needed.

The location of the WebLogic Server's trusted key file is:

ORACLE_HOME/wlserver/server/lib/DemoTrust.jks

Chapter 2
Download Repository Command

2-12



The default password for the DemoTrust.jks file is:

DemoTrustKeyStorePassPhrase

The location of the trusted key file and its password are passed to the system
properties javax.net.ssl.trustStore and javax.net.ssl.trustStorePassword. For
example,

java \
-Djavax.net.ssl.trustStore=$ORACLE_HOME/wlserver/server/lib/DemoTrust.jks \
-Djavax.net.ssl.trustStorePassword=DemoTrustKeyStorePassPhrase \
-jar bi-commandline-tools.jar <args…>

Upon installation, the data-model-cmd.sh and data-model-cmd.cmd scripts are delivered
with the trusted key file locations included. For Oracle BI EE installations, you do not
need to update the trusted key file locations.

For Oracle BI EE client installation, you must put the trusted keys file in the correct
location. Oracle recommends that you copy and paste the files from the WebLogic
Server to the proper location.

Hostname, Port Number, and Use of SSL

For Oracle BI EE installations, the command line utility by default queries the Oracle BI
EE endpoint manager which provides the host name, port number, and whether SSL is
available. For Oracle BI EE installations, the user does not need to include these
options in the command.

For Oracle BI EE client installation, you must include the S Oracle BI EE host name, N
Oracle BI EE port number, and SSL, use SSL to connect to the WebLogic Server to run
the command options in the commands.

Using Online and Offline Repository Modes
You can open a repository for editing in either online or offline mode. The tasks you
can perform depend on the mode in which you opened the repository.

This section contains the following topics:

• Editing Repositories in Offline Mode

• Editing Repositories in Online Mode

• Checking Out Objects

• Checking In Changes

• About Read-Only Mode

Editing Repositories in Offline Mode
Use offline mode to view and modify a repository while it is not loaded into the Oracle
BI Server.

If you attempt to open a repository in offline mode while it is loaded into the Oracle BI
Server, the repository opens in read-only mode. Only one Administration Tool session
at a time can edit a repository in offline mode. See About Read-Only Mode.

You do not need to enter a user name and password to open a repository in offline
mode. You only need to enter the repository password.

Chapter 2
Using Online and Offline Repository Modes

2-13



This section contains the following topics:

• Opening Repositories in Offline Mode

• Publish Offline Changes

Opening Repositories in Offline Mode
Use these steps to open an RPD-format repository in offline mode.

If the server is running and the repository you are trying to open is loaded, the
repository opens in read-only mode. If you want to edit the repository while it is loaded,
you must open it in online mode. Also, if you open a repository in offline mode and
then start the server, the repository becomes available to users. Any changes you
make become available only when the server is restarted.

When you open an RPD-format repository in the Administration Tool in offline mode,
the title bar displays the name of the open repository, for example, SampleAppLite.

1. In the Administration Tool, select File, select Open, and then select Offline.

2. Navigate to the repository to open, and then select Open.

3. In the Open Offline dialog, enter the repository password, and then click OK.

Publish Offline Changes
Use these steps to publish changes made to your repository in offline mode.

See Upload Repository Command.

1. Publish the repository using the upload repository command.

You cannot upload MDS XML format repositories. To publish changes made to
MDS XML repositories, you must first convert the repository to RPD format.

2. Restart all Oracle BI Server instances. You do not need to restart other BI system
components.

3. In Presentation Services, click the Reload Files and Metadata link from the
Administration page.

Editing Repositories in Online Mode
Use online mode to view and modify a repository while it is loaded into the Oracle BI
Server.

The Oracle BI Server must be running to open a repository in online mode. There are
certain things you can do in online mode that you cannot do in offline mode. In online
mode, you can perform the following tasks:

• Manage user sessions

• Manage the query cache

• Manage clustered servers

• Use the Oracle BI Summary Advisor (Oracle Exalytics Machine deployments only)

This section contains the following topics:

• Opening Repositories in Online Mode

Chapter 2
Using Online and Offline Repository Modes

2-14



• Publishing Online Changes

• Guidelines for Using Online Mode

Opening Repositories in Online Mode
Use these steps to open a repository in online mode.

The Oracle BI Server data source names (DSNs) that have been configured on your
computer are displayed in the Open Online Repository dialog. If no additional DSNs
have been configured for this version of the Oracle BI Server, you might see only the
default DSN that is configured for you during installation.

See “Integrating Other Clients with Oracle Business Intelligence” in Integrator's Guide
for Oracle Business Intelligence Enterprise Edition for information about how to create
an ODBC DSN for the Oracle BI Server.

The user name that you provide must have the Manage Repositories permission. See
Security Guide for Oracle Business Intelligence Enterprise Edition.

For multitenancy, provide the details in the form tenantguid:servicename, for example
1234101:service1. Contact the tenant administrator to obtain the GUID and service
name. See System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition for information on GUIDs for tenants in the Identity Store. The Oracle BI Server
uses the details that you specify to open the repository that is appropriate for your
tenant.

If you expect to work extensively with the repository and check out many objects, use
the Load all objects on startup option to loads all objects immediately, rather than as
selected. The initial connect time might increase slightly, but opening items in the tree
and checking out items is faster.

Leave the Tenant info field blank if multitenancy is not configured.

1. In the Administration Tool, select File, select Open, and then select Online.

2. In the Open Online Repository dialog, provide a valid user name and password.

3. In a multitenant environment, specify the details for your tenant in the Tenant info
field.

4. (Optional) Select the Load all objects on startup option.

5. Select the appropriate DSN and click OK.

When you open a repository in the Administration Tool in online mode, the title bar
displays the DSN for the Oracle BI Server to which you are connected rather than the
name of the current repository.

Publishing Online Changes
When performing a single-node deployment, changes made using the Oracle BI
Administration Tool, in online mode are available after reloading the metadata in
Presentation Services.

In a clustered deployment, Oracle BI Server consumes these changes automatically,
but you must restart all destination Oracle BI Servers for them to get the latest
changes, and then reload metadata in Presentation Services by clicking the Reload
Files and Metadata link from the Administration page.

Chapter 2
Using Online and Offline Repository Modes

2-15



See Using nqcmd to Test and Refine the Repository.

You can restart the destination Oracle BI Servers using the RollingRestart ODBC
procedure, or you can restart the destination servers using Fusion Middleware Control:

• Use the RollingRestart ODBC procedure, and enter the following in nqcmd:

call RollingRestart(timeout);

where timeout is the number of seconds to wait for each destination Oracle BI
Server to restart before moving on to the next one.

For example:

call RollingRestart(300);

In this example, the system waits five minutes for each Oracle BI Server to restart.
If the given Oracle BI Server restarts sooner, the system moves on to the next one
immediately.

Note:

You must run the RollingRestart procedure directly against the source
Oracle BI Server. Because the DSN created upon install for each Oracle
BI Server is clustered by default, you must manually create a non-
clustered DSN for the source Oracle BI Server to run the procedure
against.

See “Integrating Other Clients with Oracle Business Intelligence” in
Integrator's Guide for Oracle Business Intelligence Enterprise Edition for
how to create an ODBC DSN for the Oracle BI Server.

• To restart the destination servers using Fusion Middleware Control, first use the
Cluster Manager in the Oracle BI Administration Tool, in online mode, to determine
which Oracle BI Server is the source, and which are the destination servers. Use
the Process tab of the Availability page Fusion Middleware Control to restart the
destination Oracle BI Servers. See Using Fusion Middleware Control to Start and
Stop Oracle Business Intelligence System Component Processes in System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

It is a best practice to avoid making other configuration changes in Fusion Middleware
Control or the configuration files when using the RollingRestart ODBC procedure or
when restarting the destination Oracle BI Servers in Fusion Middleware Control.
Because only the destination servers are restarted, a situation might result where the
source Oracle BI Server has a different set of configuration settings loaded than the
destination Oracle BI Servers. If this occurs, restart the source Oracle BI Server.

Guidelines for Using Online Mode
Use online mode only for small changes that do not require running consistency
checks.

Running consistency checks against the full online repository can take a long time.
Instead, make more complex changes that require consistency checks in offline mode
against a project extract of the repository.

The table provides guidelines for when to perform online and offline edits.

Chapter 2
Using Online and Offline Repository Modes

2-16



Mode Use This Mode For... Example Use Cases

Online • Small changes that are required to
fix things in a running system

• Changes that need to be deployed
quickly

• Renaming Presentation layer
metadata

• Reorganizing Presentation layer
metadata

• Setting the logging level for an
application role

Offline • Full-scale development or
customization activities that require
running consistency checks multiple
times and iterating

• Customizing existing fact or
dimension tables

• Adding new fact or dimension
tables

You should limit the number of concurrent online users. The best practice is to have
only one user working in online mode at a time. Even when users have different
objects checked out, dependencies between the objects could cause conflicts when
the changes are checked in. Only one user should make online changes in a single
business model at a time.

If you must have multiple concurrent users in online mode, do not have more than five
users. For situations where you need more than five users, use the multiuser
development environment. See Setting Up and Using the Multiuser Development
Environment.

Even with a single user making changes, be aware that online mode is riskier than
offline mode because you are working against a running server. If you check in
changes that are not consistent, it might cause the Oracle BI Server to shut down.
When you work in online mode, make sure to have a backup of the latest repository so
that you can revert to it if needed. You can also use Undo All Changes available on
the File menu to roll back all changes made since the last check-in.

Checking Out Objects
When you are working in a repository open in online mode, you are prompted to check
out objects when you attempt to perform various operations.

• To check out objects, do one of the following:

– Select the objects you want to check out and click Yes to check out the
objects.

– If you are performing a task in a wizard, Checkout displays a summary of the
objects that you need to check out to complete the operation. Click Next to
check out the objects and complete the task.

Checking In Changes
When you are working in a repository that was opened in online mode, you are
prompted to perform a consistency check before checking in the changes you make to
a repository.

If you have made changes to a repository and then attempt to close the repository
without first checking in your changes, a dialog opens automatically asking you to
select an action to take. If you move an object from beneath its parent and then
attempt to delete the parent, you are prompted to check in changes before the delete
is allowed to proceed.

Chapter 2
Using Online and Offline Repository Modes

2-17



Use the Check in Changes dialog to make changes available immediately for use by
other applications. Applications that query the Oracle BI Server after you have
checked in the changes recognize the changes immediately. Applications that are
currently querying the server recognize the changes the next time they access any
items that have changed.

If the Administration Tool detects an invalid change, a message is displayed to alert
you to the nature of the problem. Correct the problem and perform the check-in again.
You can

In some cases, you might see the error, 97005 (Transaction Failed). This error
occurs when the Oracle BI Server does not accept the changes. You can check the
server log files to determine the cause of the problem.

You must save changes to persist the changes to disk. You must check in changes
before you can save, but you do not need to save to check in changes.

• In the Administration Tool, select File, then select Check In Changes.

About Read-Only Mode
Only one component, the Oracle BI Server or a single Oracle BI Administration Tool
client in offline mode can have a repository open in read/write mode at a time.

If a second component opens a repository that is already in use, the repository is
opened in read-only mode.

For example, assume the Oracle BI Server loads a repository in read/write mode. Any
Administration Tool clients connecting to that repository in online mode also get read/
write mode because they are accessing the repository through the Oracle BI Server.
However, Administration Tool clients opening that repository in offline mode get read-
only mode because the repository is already open for read/write through the Oracle BI
Server.

If the Administration Tool client opens a repository offline in read/write mode, when the
Oracle BI Server starts, the server and any Administration Tool client are also opened
in read-only mode.

To enable the server to load the repository in read/write mode, you must first close the
Administration Tool client that has the repository locked, and then restart the Oracle BI
Server.

The Administration Tool opens a repository in read-only mode when Oracle Business
Intelligence has been clustered, and the Administration Tool is connected in online
mode to a dependent server. The cluster’s controlling BI Server holds a lock on the
repository. To avoid this lockout situation when running in a clustered environment,
ensure that the Oracle BI Server ODBC data source name (DSN) used by the
Administration Tool is configured to point to the cluster controllers rather than to a
specific Oracle BI Server.

Opening a MDX XML Repository
Use these steps to open a MDS XML file.

When you open a MDS XML format repository in the Administration Tool, the title bar
displays the format and root folder location, for example, MDS XML C:
\Root_Folder.

Chapter 2
Using Online and Offline Repository Modes

2-18



1. In the Administration Tool, select File, select Open, and then select MDS XML.

2. Select the root folder location for the MDS XML files and click OK.

3. If this is the first time you have opened this MDS XML repository, specify whether
this repository is a standalone MDS XML repository, or whether it is under source
control.

4. click OK.

Checking the Consistency of a Repository or a Business
Model

Repository metadata must pass a consistency check before you can make the
repository available for queries.

The Consistency Check Manager lets you enable and disable rules for consistency
checks, find and fix inconsistent objects, and limit the consistency check to specific
objects. You can also use the validaterpd utility to check the validity of all metadata
objects.

Note:

The Model Check Manager identifies modeling problems that affect Oracle BI
Summary Advisor and aggregate persistence performance and results. Run
Model Check Manager before running Oracle BI Summary Advisor or the
Aggregate Persistence Wizard. See Using Model Check Manager to Check
for Modeling Problems.

This section contains the following topics:

• About the Consistency Check Manager

• Checking the Consistency of Repository Objects

• Using the validaterpd Utility to Check Repository Consistency

• Common Consistency Check Messages

About the Consistency Check Manager
The Consistency Check Manager checks the validity of your repository to ensure that it
can load at run time, and to identify any syntax or semantic errors that may cause
queries to fail.

Running a consistency check might result in updates to your repository metadata
when you run the Global Consistency Check or the Check Consistency option
against an object. You must save the repository when using those options. For
example, invalid objects are deleted during Consistency Checks. This behavior might
result in deleted expressions and filters on logical table sources and logical columns.
Invalid references can occur when objects were deleted in the Physical layer without
properly accounting for the references in the Business Model and Mapping layer
objects.

Chapter 2
Checking the Consistency of a Repository or a Business Model

2-19



The Show Consistency Check option is read-only and does not implement changes
in the repository.

The Consistency Check Manager does not check the validity of objects outside the
metadata using the connection. It only checks the consistency of the metadata and not
the mapping to the physical objects outside the metadata. If the connection is not
working or objects were deleted in the database, the Consistency Check Manager
does not report these errors.

The Consistency Check Manager identifies application roles that defined in the
Administration Tool, but that were not added to the policy store. Messages about
placeholder application roles only appear when you perform a consistency check in
online mode. The set of consistency check messages returned for your repository
might contain different results depending on whether you have opened the repository
in offline or online mode.

If you use lookup tables to store translated field names with multilingual schemas, the
consistency checking rules are relaxed for the lookup tables. See Localizing Oracle
Business Intelligence.

The consistency checker returns the following types of messages:

• Errors

These messages describe errors that you must fix. Use the information in the
message to correct the inconsistency, then run the consistency checker again.
The following is an example of an error message:

[38082] Type of Hierarchy '"0RT_C41"..."0RT_C41/MDF_BW_Q02"."Product Hierarchy 
for Material MARA"' in Cube Table '"0RT_C41"..."0RT_C41/MDF_BW_Q02"' needs to be 
set.

If you disable an object and it is inconsistent, a message is displayed, asking if you
want to make the object unavailable for queries.

• Warnings

These messages indicate conditions that you might need to fix. For example, you
might receive a warning message about a disabled join that was intentionally
disabled to eliminate a circular join condition. Other messages may warn of
inconsistent values, or feature table changes that do not match the defaults. The
following is an example of a warning message:

[39024] Dimension '"Paint"."MarketDim"' has defined inconsistent values in its 
levels' property 'Number of elements'.

Note:

After upgrading from a previous software version and checking the
consistency of your repository, you might notice messages that you had not
received in previous consistency checks. The inconsistencies are the result
of issues that were undetected before the upgrade, not new errors.

Chapter 2
Checking the Consistency of a Repository or a Business Model

2-20



Running the Consistency Check Manager
Use the Oracle BI Administration Tool to run the consistency checker on all of the
repository objects, on a specific physical database or data source, physical database,
business model, or subject area.

You can view the Consistency Check Manager’s results without performing a global
consistency check, by selecting the Show Consistency Checker from Tools menu. If
you have checked consistency in the current session, the messages from the last
check appear in the Messages pane.

Note:

If a disabled object is inconsistent, you are prompted to make the object
unavailable for queries. If an object is not consistent, the Consistency Check
Manager appears and displays a list of messages.

1. In the Administration Tool, open a repository.

2. Do one of the following:

• From the File menu, select Check Global Consistency , then select Report
Only. This option reviews all of the objects in the repository and generates a
list of errors.

• From the File menu, select Check Global Consistency , then select Auto-
fix. This option reviews all of the objects in the repository and automatically
fixes any errors where possible. When this option is chosen, a list of all fixes is
logged to the following file: orainst\servers\obis1\logs
\username_NQSAdminTool.log.

• In the repository, select an object, right-click, and select Check Consistency.
This option reviews all of the objects in the repository and automatically fixes
any errors where possible. When this option is chosen, a list of all fixes is
logged to the following file: orainst\servers\obis1\logs
\username_NQSAdminTool.log

Review the output. If you have chosen to automatically fix problems in the repository,
you must save the fixed repository. If your repository is read-only the auto-fix option
will be disabled and the right-click Check Consistency option will generate a report
without making fixes.

Using the validaterpd Utility to Check Repository Consistency
You can use the Oracle BI Server validaterpd utility to check the validity of all
metadata objects in a repository.

Running this utility performs the same validation checks as the Consistency Check
Manager in the Administration Tool.

The validaterpd utility is available on both Windows and UNIX systems. You can run
validaterpd against a binary RPD file, against an XML file based on the Oracle BI
Server XML API, or against a set of MDS XML documents.

Chapter 2
Checking the Consistency of a Repository or a Business Model

2-21



The location of the validaterpd utility is:

BI_DOMAIN/bitools/bin

Using validaterpd with the -L option checks your repository metadata for issues that
might affect the success of Oracle BI Summary Advisor or the aggregate persistence
engine. See Checking Models Using the validaterpd Utility to learn about using
validaterpd with the -L option.

Syntax

The validaterpd utility takes the following parameters:

validaterpd {-R repository_name | -I input_file_pathname | 
-D MDS_XML_document_directory} [-P repository_password] {-O output_txt_file_name |
-C output_csv_file_name | -X output_xml_file_name} [-8] [-F fixed_rpd_name|-E] [-S] 
[-B]

Where:

repository_name is the name and path of the binary RPD file that you want to validate.

input_file_pathname is the name and path of the XML input file that you want to
validate.

MDS_XML_document_directory is the location of the input MDS XML documents.

repository_password is the password for the repository that you want to validate.

The repository_password argument is optional. If you do not provide the password
argument, you are prompted to enter the password when you run the command. To
minimize the risk of security breaches, Oracle recommends that you do not provide
password arguments either on the command line or in scripts. The password argument
is supported for backward compatibility only, and are removed in a future release. For
scripting purposes, you can pass the password through standard input.

output_txt_file_name is the name and path of a text file where the validation results
are recorded.

output_csv_file_name is the name and path of a csv file where the validation results
are recorded.

output_xml_file_name is the name and path of an XML file where the validation results
are recorded.

Specify -M to specify that you want to execute MDS XML documents. If you specify -D,
the -M argument is not needed. You only need to specify -M when you have a single
MDS XML file that contains all the object definitions.

-8 specifies UTF-8 encoding in the output file.

Specify -F to create a new version of the repository in RPD format that includes
automatic fixes for some internal validation errors. For fixed_rpd_name, provide the
name and path of a binary RPD file where you want to save the fixes. When this option
is chosen, a list of all fixes is logged to the following file: orainst\servers
\obis1\logs\username_NQSAdminTool.log.

Specify -E to save the changes into the input repository (-R must also be specified).
When this option is chosen, a list of all fixes is logged to the following file: orainst
\servers\obis1\logs\username_NQSAdminTool.log.

Chapter 2
Checking the Consistency of a Repository or a Business Model

2-22



Specify -S to check server errors and navigation spaces only.

Specify -B to skip checks for business models availability.

Examples

The following example generates an output file called results.txt that contains
validation information for the repository called repository.rpd, and saves a fixed version
to fixed_repository.rpd:

validaterpd -R repository.rpd -O results.txt -F fixed_repository.rpd
Give password: my_rpd_password

The following example generates an output file called results.csv that contains
validation information for the repository contained in the MDS XML documents located
at C:\MDS_dir:

validaterpd -D C:\MDS_dir -C results.csv
Give password: my_rpd_password

Note:

You must provide the full path names to your repository files, both the input
files and the output files, if they are located in a different directory.

Common Consistency Check Messages
Review the table to get information about some commonly seen consistency check
warnings and errors.

Note:

The table provides a partial list only and does not show all possible warnings
and errors.

Validation Rule Example Type Description

[14031] The content filter of a
source for logical table:
FACT_TABLE_NAME references
multiple dimensions.

Error The given logical table has a logical table source with a
WHERE clause filter that references multiple dimensions. A
WHERE clause with multiple dimensions is invalid.

[38126] 'Logical Table'
'"Technology - WFA"."Fact WFA
WO "' has name with leading or
trailing space(s).

Error Identifies an object with leading or trailing spaces in the
object name.

Repository objects can no longer have leading or trailing
spaces in their names. Leading and trailing spaces in object
names can cause query and reporting issues.

Chapter 2
Checking the Consistency of a Repository or a Business Model

2-23



Validation Rule Example Type Description

[38012] Logical column
DIM_Start_Date.YEAR_QUARTER
_NBR does not have a physical
data type mapping, nor is it a
derived column.

[38001] Logical column
DIM_Start_Date.YEAR_QUARTER
_NBR has no physical data source
mapping.

Error Logical columns that are not mapped to any logical table
source are reported as consistency errors, because the
logical table source mappings are invalid and would cause
queries to fail.

Both of the given validation rules are related to the same
issue.

[39062] Initialization Block
'Authorization' uses Connection
Pool '"My_DB".

"My_CP"' which is used for report
queries. This may impact query
performance.

Warning Indicates that the same connection pool is being used for
both queries and for initialization blocks. This configuration is
not recommended. Instead, create a dedicated connection
pool for initialization blocks. Otherwise, query performance
might suffer, or user logins might hang if authorization
initialization blocks cannot run.

[39028] The features in Database
'MyDB' do not match the defaults.
This can cause query problems.

Warning Some database feature defaults were changed in this
release of Oracle BI EE. Unless you have specific
customizations to your feature set, it is recommended that
you reset your database features to the new defaults.

[39003] Missing functional
dependency association for
column:
DIM_Offer_End_Date.CREATE_DT
.

Warning This warning indicates that the given column is only mapped
to logical table sources that are disabled. The warning brings
this issue to the repository developer's attention in case the
default behavior is not desired.

[39059] Logical dimension table
MY_DIM has a source
MY_DIM_DAILY at level Daily that
joins to a higher level fact source
MY_FACT_SUM.MTHLY_SUM

Warning Even though this fact logical table source has an aggregate
grain set in this dimension, no join was found that connects
to any logical table source in this dimension (or a potentially
invalid join was found).

This means that either no join exists at all, or it does exist
but is potentially invalid because it connects a higher-level
fact source to a lower-level dimensional source. Such joins
are potentially invalid because if followed, they might lead to
double counting in query answers.

For example, consider Select year, yearlySales. Even if a
join exists between monthTable and yearlySales table on
yearId, it should not be used because such a join would
overstate the results by a factor of 12 (the number of months
in each year).

If you get a 39059 warning after upgrading, verify that the
join is as intended and does not result in incorrect double
counting. If the join is as intended, then ignore the 39059
warning.

[39055] Fact table "HR"."FACT -
HC Budget" is not joined to tables
in logical dimension "HR"."DIM -
HR EmployeeDim". This can cause
problems when extracting
project(s).

Warning This warning indicates that there is a physical join between
the given fact and dimension sources, but there is not a
corresponding logical join between the fact table and the
dimension table.

Chapter 2
Checking the Consistency of a Repository or a Business Model

2-24



Validation Rule Example Type Description

[39054] Fact table "Sales -
STAR"."Fact - STAR Statistics" is
not joined to logical dimension table
"Sales - STAR"."Dim - Plan". This
can cause problems when
extracting project(s).

Warning This warning indicates that the aggregation content filter
"Group by Level" in the logical table source of a fact table
references logical dimension tables that are not joined to
that fact table. If that fact table is extracted in the
extract/MUD process, the dimensions that are not joined not
be extracted. In this case, the aggregation content of the
extracted logical table source would not be the same as in
the original logical table source.

[39057] There are physical tables
mapped in Logical Table Source
""HR"."Dim -
Schedule"."SCH_DEFN"" that are
not used in any column mappings
or expressions.

Warning This warning indicates that the given logical table source has
irrelevant tables added that are not used in any mapping.
This situation not cause any errors.

Chapter 2
Checking the Consistency of a Repository or a Business Model

2-25



3
Setting Up and Using the Multiuser
Development Environment

This chapter explains how to set up and use the multiuser development environment in
Oracle Business Intelligence, including defining projects, setting up the multiuser
development directory, checking out and publishing changes to projects, and merging
metadata.
Multiuser development (MUD) provides a mechanism for concurrent development on
overlapping code bases. Oracle Business Intelligence provides a MUD environment
that manages subsets of metadata, in addition to multiple users, by providing a built-in
versioning system for repository development.

See also the following resources:

• Managing the Repository Lifecycle in a Multiuser Development Environment

• Using a Source Control Management System for Repository Development

This chapter contains the following topics:

• About the Multiuser Development Environment

• Setting Up Projects

• Setting Up the Multiuser Development Directory

• Making Changes in a Multiuser Development Environment

• Publishing Changes to Multiuser Development Repositories

• Branching in Multiuser Development

• Viewing and Deleting History for Multiuser Development

• Setting Multiuser Development Options

About the Multiuser Development Environment
Oracle Business Intelligence multiuser development facilitates creating application
metadata in enterprise-scale deployments.

Application metadata is stored in a centralized metadata repository (RPD) file. The
Administration Tool is used to work with these repositories. You do not use a multiuser
development environment with MDS XML-format repositories.

Master repository refers to the copy of a repository in the multiuser development
directory

The following are examples of how you might use a multiuser development
environment:

• Several developers work concurrently on subsets of the metadata and then merge
these subsets back into a master repository without their work conflicting with
other developers. For example, after completing an implementation of data

3-1



warehousing at a company, an administrator might want to deploy Oracle
Business Intelligence to other functional areas.

• A single developer manages all development. For simplicity and performance, this
developer might want to use the multiuser development environment to maintain
metadata code in smaller chunks instead of in a large repository.

In both examples, an administrator creates projects in the repository file in the
Administration Tool, then copies this repository file to a shared network directory,
called the multiuser development directory. Developers are able to check out projects,
make changes and then merge the changes into the master repository. When
developers check out projects, using the Administration Tool, files are automatically
copied and overwritten in the background. Your administrator must perform setup
tasks. Developers must pay close attention to the Administration Tool messages that
appear during check-out, merge, and publish procedures.

When developers check out projects, repository files are not automatically copied or
overwritten. The Administration Tool creates two new files when projects are checked
out, one to hold the original project data, and one to hold the project changes.

For example, when a repository developer checks out project A from master.rpd in the
C:\multiuser development directory, the Administration Tool extracts all metadata
related to project A and prompts the developer for a new file name to save the data.
When the developer chooses a new file name, for example, Mychanges.rpd, the
Administration Tool creates two new files:

• A file called MyChanges.rpd that contains the changes made by the developer

• A file called originalMyChanges.rpd that contains the original project data

The Administration Tool determines the developer's changes by comparing the
Mychanges.rpd with the originalChanges.rpd. The information about what has
changed is required during the multiuser development merge process.

Note:

To reduce storage needs, repositories in Oracle Business Intelligence
Enterprise Edition 12c are stored in a compressed format. You might notice
that the size of an RPD file opened and saved in this release is significantly
smaller than the size of RPD files from previous releases.

About the Multiuser Development Process
Multiuser development presupposes a clear understanding of customer technical and
business objectives.

It also requires that you follow clearly defined development processes and adhere
rigorously to those processes, including consistent merging and reconciliation
practices.

The following procedure shows the general steps to follow when deploying a multiuser
development environment. The first three steps are usually performed by an
administrator, and the remaining steps are usually performed by one or more
developers. See Creating Projects.

Chapter 3
About the Multiuser Development Environment

3-2



Tip:

Oracle recommends merging changes as soon as possible and as often as
possible. Frequent merges makes conflict resolution easier and simplifies the
merge.

1. Define projects to organize voluminous metadata into manageable components.
Consider these tips:

• Use smaller RPDs to shorten and simplify development effort and unit testing.

• Organize development resources by projects to spread workload and reduce
inconsistencies and overwrites.

2. Set up a shared network directory to use as the multiuser development directory.

3. Copy the master repository to the multiuser development directory.

4. Extract one or more projects or the entire repository for local development.

5. Merge repository objects and resolve conflicts.

• Because metadata objects are often highly interrelated, several developers
could be working on the same objects.

• You can perform regular subset refreshes to merge your local changes with
the latest version of the master. When configuration conflicts occur during the
merge process, developers are prompted for the correct process.

6. Publish changes to the network.

• A final subset refresh (merge) is performed during the publishing step. Many
developers can simultaneously work on the same objects, but only one can
publish at a time. The repository is locked during the publishing step.

7. Use Logging and Backup features to identify points of erroneous or incorrect
configuration.

• The log file tracks multi-development activity, along with comments.

• The master repository and developer repositories are automatically backed up
for future reference and for use in manual rollback.

Setting Up Projects
Projects are the central enabler of metadata management.

A project consists of a discretely-defined subset of the repository metadata, in the form
of groups of logical stars with associated metadata. A project has the following
characteristics:

• Is largely defined by logical fact tables in the applicable business model

• Automatically adds related logical dimension tables and other metadata during
extract

• Can have one-to-many logical fact tables

For projects that are just beginning, the best practice is to begin with a repository
containing all the necessary physical table and join definitions. In this repository, you

Chapter 3
Setting Up Projects

3-3



create a logical fact table as a placeholder in the Business Model and Mapping layer
and a subject area as a placeholder in the Presentation layer. As you add business
model and subject area metadata, new projects based on individual subject areas and
logical facts can be created.

Follow these guidelines when setting up projects:

• Only one person at a time can create projects in a master repository.

• Do not delete projects unless they are no longer under active development.

• Choose your project name carefully when creating a project. Do not rename
projects.

• Use care when removing objects from projects to avoid problems with repository
extract/check-out.

This section contains the following topics:

• About Projects

• Creating Projects

• About Converting Older Projects During Repository Upgrade

About Projects
Projects can consist of Presentation layer subject areas and their associated business
model logical facts, dimensions, groups, users, variables, and initialization blocks.

You can create projects so that developers can work on projects in their area of
responsibility. The primary reason to create projects is to support multiuser
development. During the development process, you can split up the work (metadata)
between different teams within your company by extracting the metadata into projects
so that each project group can access a different part of the metadata.

You might want to create projects for licensing reasons. Before releasing a new
software version, you might want to ensure that only the metadata that is relevant to
the licensed application is in a project and that everything is consistent and complete.
You add only the fact tables that are relevant to the application. Project extractions are
fact table-centric to ensure that project extracts are consistent, and to make licensing
manageable.

Creating Projects
A project can represent a subject area or a subset of logical fact tables related to the
selected subject area. The Oracle BI Administration Tool automatically adds the
related business model and Physical layer objects to the project.

You can use the same object in multiple projects. You can choose to group facts by
business model or you can select a business model or a set of logical fact tables that
are part of a business model to use in a project. You need to explicitly add
Presentation layer objects to your project.

Although the project definition does not include Physical layer objects, these objects
are determined and extracted through the project definition.

After you create projects, they become part of the metadata and are available to
multiple developers who need to perform development tasks on the same master

Chapter 3
Setting Up Projects

3-4



repository. When defined this way, projects become a consistent repository after a
developer checks out the projects and saves them as a new repository file.

In your project, it is more common to select Group Facts By Subject Area.

You can include objects in your project that are not referenced such as variables and
initialization blocks that are directly referenced by other extracted objects. You can add
the top node for each object type, for example, Variables, then selectively remove
individual objects.

• If you are using initialization blocks for authentication, include any necessary
initialization blocks.

• You can include repository variables or other objects that are not yet referenced by
other objects, but that you might want to use in future repository development.

• You can include users and application roles as part of your data access security
settings.

If you do not see the set of subject areas you expect after the project is created, edit
the project to explicitly add the subject areas you need.

1. In the Administration Tool, choose File, select Open, and then select Offline.

2. In the Open dialog, select the repository that you want to make available for
multiuser development, then click OK. Provide the repository password, then click
OK again.

3. Select Manage, then select Projects.

4. In the Project Manager dialog, in the right pane, right-click and then select New
Project.

5. In the Project dialog, in Name, type a name for the project.

6. In Group Facts By, select Business Model, or Subject Area.

7. Perform one or more of the following steps to add fact tables to your project:

• Under the Group Facts By area, select a subject area or business model, and
then click Add.

• Expand the subject areas or business models and select one or more logical
fact tables, then click Add.

8. (Optional) Click Remove to remove fact tables from the project.

9. (Optional) Add any application roles, users, variables, initialization blocks, or
lookup tables needed for the project.

10. Select the Presentation layer objects to include in your project and click Add.

11. Click OK.

About Converting Older Projects During Repository Upgrade
When you upgrade a repository from Oracle Business Intelligence versions before
10.1.3.2, the project definition is upgraded.

During the upgrade, the project definition, subject areas, target levels, list catalogs,
and existing fact tables are automatically converted into simple fact tables in the
following way:

• Get presentation columns related to the target levels through the qualifying keys.

Chapter 3
Setting Up Projects

3-5



• Get presentation columns related to the list catalogs through the qualifying keys.

• Get presentation columns related to the subject areas.

• Get all the logical columns from all the presentation columns.

• Get all the logical columns from the fact tables in the project.

• Get the fact tables from all the logical columns.

After the upgrade, projects contain only simple fact tables. All the security objects
remain unchanged.

Projects in repositories from any version before 12c are upgraded to explicitly contain
Presentation layer objects.

Setting Up the Multiuser Development Directory
Your administrator needs to perform these tasks to prepare for multiuser development.

To prepare for multiuser development:

• Identify or create a shared network directory dedicated to multiuser development
projects.

• After creating all projects, copy the repository file with the projects to the multiuser
development directory to use as your master repository for multiuser development.

After the administrator has identified the multiuser development directory and copied
the repository file, developers must set up the Administration Tool to point to the
multiuser development directory before they can check out projects.

This section contains the following topics:

• Identifying the Multiuser Development Directory

• Copying the Master Repository to the Multiuser Development Directory

• Setting Up a Pointer to the Multiuser Development Directory

Identifying the Multiuser Development Directory
After defining all projects, the administrator must identify or create a shared network
directory, called the multiuser development directory.

Developers can access, and then upload the master repository to the multiuser
development directory.

Use the shared network directory only for multiuser development. The multiuser
development directory contains copies of repositories that are maintained by multiple
developers. You must use a Windows system for the multiuser development directory.

Developers create a pointer to the multiuser development directory when they set up
the Administration Tool on their computers.

Chapter 3
Setting Up the Multiuser Development Directory

3-6



Important:

The administrator must set up a separate, shared network directory that is
dedicated to multiuser development. If not set up and used as specified,
critical repository files can be unintentionally overwritten and repository data
can be lost.

Copying the Master Repository to the Multiuser Development Directory
After the multiuser development directory is identified, the administrator must copy the
master repository file to the multiuser development directory.

Projects from this master repository are extracted and downloaded by the developers
who make changes and then merge these changes back into the master repository.

After you copy the repository to the multiuser development network directory, notify
developers that the multiuser development environment is ready.

Even after starting repository development, it might be necessary to make manual
changes to the master repository from time to time. See Manually Updating the Master
MUD Repository in Troubleshooting Multiuser Development.

Setting Up a Pointer to the Multiuser Development Directory
Before checking out projects, developers working in the multiuser development
environment must set up their local copies of the Administration Tool to point to the
multiuser development directory on the network.

The Administration Tool uses this location when the developer checks out and checks
in objects in the multiuser development directory.

Note:

Until the pointer is set up, the multiuser options are not available in the
Administration Tool.

Initially, the network directory contains the master repositories. The repositories in this
location are shared with other developers. Later, the network directory contains
additional multiuser development history files, including historical subsets and
repository versions. Do not manually delete any files in the multiuser development
directory; these files are important and are used by the system.

When setting up the pointer, the developer can also complete the Full Name field.
Although the Full Name field is optional, Oracle recommends completing this field to
allow other developers to know who has locked the repository.

1. From the Administration Tool menu, choose Tools, and select Options.

2. In the Options dialog, click the Multiuser tab.

3. In the Multiuser tab, for Multiuser development directory, enter the full path to
the network directory.

Chapter 3
Setting Up the Multiuser Development Directory

3-7



4. In the Full Name field, type your complete name, then click OK.

Making Changes in a Multiuser Development Environment
Each developer can publish (merge) changes into the master repository or discard the
changes in a multiuser development environment.

During check-out, refresh, and publish, a copy of the master repository is temporarily
copied to the developer's local repository directory, similar to the following location,
ORACLE_INSTANCE\bifoundation\OracleBIServerComponent
\coreapplication_obisn\repository by default.

This section contains the following topics:

• About Changing and Testing Metadata

• Making Changes to a Repository Using Projects

• Making Changes to an Entire Repository

• About Multiuser Development Menu Options

About Changing and Testing Metadata
Most types of changes that can be made to standard repository files are also
supported for local repository files.

Developers can add new logical columns, add new logical tables, change table
definitions, and change logical table sources. Developers might also work
simultaneously on the same projects or entire repository locally. Oracle Business
Intelligence assumes the individual developer understands the implications that these
changes might have on the master repository. For example, if a developer deletes an
object in a local repository, this change is propagated to the master repository when
local changes are merged without a warning prompt.

To ensure metadata integrity, do not remove a physical column unless there are no
logical table source mappings to that physical column. Because of this, if you use a
multiuser development environment, you cannot delete a logical column and its
associated physical column at the same time. Instead, you must first delete the logical
column and perform a merge. Then, you can delete the physical column and perform
another merge to safely remove the object.

In some cases, logical column types can change over the course of MUD development
that results in unexpected logical column types. When this occurs, you can generate a
list of logical columns and their types using the Generate Logical Column Type
Document utility in the Administration Tool or biservergentypexml. Then use the
Compare Logical Column Types utility for subsequent MUD versions to ensure that the
logical column types match as expected. For example, you can generate a logical
column type list for repository version 20, and use the Compare Logical Column Types
utility to compare the list against repository version 30. See Generating a List of
Logical Column Types and Comparing Logical Column Types.

Changes to physical connection settings are not propagated to the master repository
upon merge and publish. This ensures that developers can apply settings for their
local test data sources to perform unit testing of their model changes without impacting
other developers.

Chapter 3
Making Changes in a Multiuser Development Environment

3-8



In addition to physical connection settings, security settings and database feature table
changes are not retained in a multiuser development merge to prevent developers
from overwriting passwords and other important objects in the master repository.

After making changes to a local repository, the developer uploads the repository and
tests the edited metadata.

Note:

DSNs that are specified in the metadata must exist on the developer's
workstation.

Making Changes to a Repository Using Projects
These topics provide information on making changes in a multiuser development
environment using projects.

• About Repository Project Checkout

• Checking Out Projects

• Using the extractprojects Utility

• Refreshing the Local Project Extract

About Repository Project Checkout
The Oracle Administration Tool performs the following tasks during checkout.

• In the developer's local repository directory, the Administration Tool makes a
temporary copy of the master repository.

Important:

If a repository with that name exists in this location, the developer is
asked to confirm overwriting the existing repository. If the developer
clicks Yes, the existing local repository is immediately overwritten in the
background and after the new repository is saved, the temporary master
repository file is automatically deleted.

• In the developer's local repository directory, the Administration Tool saves a local
copy of the selected projects in a new repository such as Metadata1.rpd. The
developer provides a name for the local copy. The developer makes metadata
changes in this file. The number is incremented by 1 for each checkout for that
session.

• In the developer's local repository directory, the Administration Tool saves a
second local copy of the new repository, adding original as the prefix, for example,
originalMetadata1.rpd.

• After the developer saves the new repository file, check out is complete. In the
developer's local repository directory, the temporary copy of the master repository
is automatically deleted.

Chapter 3
Making Changes in a Multiuser Development Environment

3-9



Important:

When the developer selects and saves the projects to a local repository
file, the Administration Tool does not place a lock on the projects in the
master repository on the shared network drive. Therefore, nothing
physically prevents others from working on the same project. To
determine if a project has been checked out, you need to look in the log
file in the multiuser development directory on the shared network drive.

Checking Out Projects
Use this task to check out projects using the Oracle BI Administration Tool.

The Multiuser Development Checkout dialog does not displayed if there is only one
repository in the multiuser development directory.

1. From the Administration Tool menu, choose File , select Multiuser , and then
select Checkout.

2. If there is more than one repository in the multiuser development directory, then
the Multiuser Development Checkout dialog is displayed. Select the appropriate
repository, and click OK.

3. In the Extract from dialog, type the repository password, and click OK.

4. If there is more than one project in the master repository, then the Browse dialog is
displayed. Select the projects that you want to be part of your project extract, and
click OK.

5. In the Create new subset repository dialog, type a name for the new repository, for
example, Metadata1.rpd, and click Save.

A working project extract repository is saved on your local computer. The name is
exactly as you specified and is opened in offline mode. A log file is also created.

Note:

A second copy of the project extract repository is saved in the same
location. The name of this version contains the word original added to
the beginning of the name that you assigned to the repository extract. Do
not change the original project extract repository. It is used during the
multiuser development merge process, and when you want to compare
your changes to the original projects.

Using the extractprojects Utility
You can use the Oracle BI Server extractprojects utility to cut projects from a given
repository without the overhead of the MUD environment.

The extractprojects utility is available for Windows and UNIX systems. You can use
extractprojects only with binary repositories in the RPD format.

The extractprojects utility generates an RPD file that includes the set of projects that
you specify. The utility does not perform the tasks that are performed when you check

Chapter 3
Making Changes in a Multiuser Development Environment

3-10



out projects using the Administration Tool, such as saving an original repository file or
tracking the extract as a check-out in the MUD directory.

The extractprojects utility is located in the following directory:

BI_DOMAIN/bitools/bin

Syntax

The extractprojects utility takes the following parameters:

extractprojects -B base_repository_name -O output_repository_name {-I 
input_project_name} [-P repository_password] [-L] [-E project_list_file_name]

The variables are as follows:

base_repository_name is the name and path of the repository from which you want to
extract projects.

output_repository_name is the name and path of the repository generated by the
utility.

input_project_name is the name of a project you want to extract. You can enter
multiple projects. Precede each project entry with -I, for example, -I project1 -I
project2. If the project name contains spaces, enclose it in double quotes, for
example, "project 1".

repository_password is the password for the repository from which you want to extract
projects.
The repository_password argument is optional. If you do not provide the password
argument, you are prompted to enter the password when you run the command. To
minimize the risk of security breaches, Oracle recommends that you do not provide the
password arguments in the command line or in scripts. The password argument is
supported for backward compatibility only. For scripting purposes, you can pass the
password through standard input.

- L enables logging. When logging is enabled, a log file with the name format,
ProjExtr.YYYYMMDD.HHMMSS.xml, is created in the Oracle BI Server logging
directory. For example:

ORACLE_INSTANCE/diagnostics/logs/OracleBIServerComponent/coreapplication_obisn/
ProjExtr.20100616.082904.xml

-E is an optional argument that lets you print a list of all projects contained in a
repository into a file. Specify project_list_file_name after the option to specify the file
name and location in which you want to store the project names. -E is only used with -
B and -P and does not actually perform a project extract.

The -U and -F are visible in the syntax list, but are for internal use only.

Example

The following example extracts project1 and project2 from my_repos.rpd and creates a
new repository called extract_repos.rpd.

extractprojects -B my_repos.rpd -O extract_repos.rpd -I project1 -I project2
Give password: my_rpd_password

Chapter 3
Making Changes in a Multiuser Development Environment

3-11



Note:

Provide the full path names to your repository files, both the input file and the
output file, if they are located in a different directory.

Refreshing the Local Project Extract
Use the Refresh Subset option to update the local project extract with any changes
that were made to the master repository.

The Refresh Subset option merges the latest changes with the local project extract.
Use he Refresh Subset as an incremental step during development before publishing
your final changes at the end of your development session.

As a best practice, you should refresh your local project extract frequently to enable
resolving conflicts during merge. If too many changes are merged at one time, then
making the appropriate merge decisions for conflicts is confusing and error-prone.

Making Changes to an Entire Repository
The preferred method for making changes to a repository in a multiuser development
environment is to use projects.

You might encounter situations during which you want to make changes that involve
you accessing the entire repository at one time.

Use this method only when necessary, because system performance is likely
decrease, especially during merges of large repositories.

• In the Oracle BI Administration Tool, from the File menu, select Multiuser, and
then select Whole Rpd Checkout to access the entire repository, including
objects not assigned to projects.

About Multiuser Development Options
You can perform many tasks from the Multiuser menu.

After the local developer makes changes, tests the changes, and saves the repository
locally, the local developer can perform the following tasks:

• Compare with Original. Compares the working extracted local repository to the
original extracted repository. When you select this option, the Compare
repositories dialog is displayed and lists all the changes that were made to the
working extracted repository since you checked out the projects or the entire
repository.

• Refresh Subset. Refreshes the local project extract with any changes that were
made to the master repository. The changes from the master are merged with your
local changes.

If changes have been made to the master repository, then the old project extract
file, originalfilename.rpd, is replaced with a new project extract file called
currentfilename.rpd.

Chapter 3
Making Changes in a Multiuser Development Environment

3-12



• Publish to Network. Publishes changes made to the local project extract or the
entire repository to the master repository. A lock is acquired to lock the master
repository during the publish step. Publishing the changes automatically performs
a Refresh Subset operation to merge the local changes with any additional
changes from the master. Then, the merged changes are published to the master
repository, the lock is released, and the local repository is closed.

• Undo Publishing. Used when mandatory consistency checks are enforced during
the publishing step, and errors occur. When you are notified of consistency check
errors during publishing, you can choose to fix the errors immediately, as part of
the publishing step. The master repository is locked during this process. If you
need to release the lock on the master and fix the changes later, then select Undo
Publishing to release the lock and return to the latest subset extract repository.

• Discard Local Changes. Any time after check out and before publishing, you can
discard your changes. When you select this option, the working repository closes
without giving you an opportunity to save your work.

Note:

If you select this option, there is no opportunity to change your mind. For
example, no confirmation dialog is displayed.

Publishing Changes to Multiuser Development Repositories
After changing and testing the metadata on a local computer, the developer must
publish local changes to the master repository in the multiuser development directory.

The Oracle BI repository development process uses a three-way merge to manage
concurrent development. Metadata merges are done first on local environments and
then merged with the master repository. A three-way merge identifies local changes
based on the following repository characteristics:

• The Master RPD

• The Baseline RPD or Master RPD snapshot at time of project extraction

• The current locally developed and changed RPD

Changes are managed by merge and reconciliation. Most of the merging process is
automatic, and changes do not conflict. In case of any conflicting metadata sources,
developers can locate and resolve them.

An administrator can also merge the changes from multiple repositories manually, or
import objects from different repositories outside of a particular MUD environment.

Ensure that you merge changes frequently. The merge process is very complex and
can become difficult if there are too many changes. See Merge Rules for how objects
are merged during the merge process.

It is a best practice to refresh your subset repository regularly to identify conflicts early.
Refreshing your subset performs a subset remerge with the latest version of the
master, then leaves the repository open for you to continue making changes until you
are ready to publish.

This section contains the following topics:

Chapter 3
Publishing Changes to Multiuser Development Repositories

3-13



• About the Multiuser Development Process

• Publishing to the Network

• Enforcing Consistent Repositories When Publishing Changes

About the Multiuser Development Merge Process
The topic describes the multiuser development merge process.

The merge process involves the following files:

• Local (subset) repository, either original or current (refreshed). The local subset
repository is one of the following:

– If no subset refresh has been performed, contains the state of the projects or
the entire repository as originally extracted. This repository name begins with
original, for example, originalDevelopment2.rpd.

– If a subset refresh has been performed, contains the state of the projects or
the entire repository since the last merge that occurred during the subset
refresh. The repository name begins with current, for example,
currentDevelopment2.rpd.

• Modified local (subset) repository. Contains the extracted projects after being
modified by the developer. This version is stored in the same location as the
original or current version of the local subset repository.

• Latest master repository. The latest master is copied locally for the merge, then
published to the multiuser development directory after the merge. Other
developers could have made changes to file before this merge.

During the merge, the Administration Tool checks for added objects and if found, a
warning message is displayed. The following list describes what happens during this
step:

• Warning about added objects. A developer who checks out a project has the ability
to modify that project in any way and check it back in. Deletions and modifications
are ways in which the integrity of the project is maintained. However, adding
objects might introduce objects into the repository that do not belong to any
project. Therefore, all project-related objects are checked and if a new object is
found, a warning message is displayed.

Important:

You must add newly created metadata to the project definition in the
master repository for it to be visible in future extracted versions of the
project. For example, if a developer checks out a project, adds a new
object, and checks it in, then the new object is not visible in extracted
versions of the project until it is explicitly added to the project definition.
See Creating Projects for instructions.

• Aggregation of related objects. In the warning message, only the parent object is
reported. The Administration Tool aggregates all the objects to make the message
more usable. For example, if a developer added a new business model, only the
business model name is included in the warning message to the user. The names
of the tables, columns, and dimensions are not displayed to the user.

Chapter 3
Publishing Changes to Multiuser Development Repositories

3-14



When a developer publishes changes to the network, the following actions occur:

• The master repository in the multiuser development directory is overwritten with
the repository that contains the developer's changes.

• The master_repository.lck file is deleted. If another developer checks out the
changed project from the master repository or checks out the entire repository,
then the changes made by the first developer are exposed to the other developer.

How Are Multiuser Merges Different from Standard Repository Merges?
The multiuser development publishing process uses the same technology as the
standard repository merge process with a few important differences.

In multiuser development merges, you should not want to retain changes to security
settings and data sources, to prevent developers from overwriting passwords and
other important objects in the master repository. Changes to security settings and data
source connections are not retained when you perform a MUD merge. In addition,
inserts (created objects) are applied automatically.

See Merge Rules and Behavior for Multiuser Development Merges.

Publishing to the Network
When the publishing process begins, the Oracle BI Administration Tool automatically
copies the current version of the master repository from the multiuser development
directory to the local repository directory on the developer's computer.

The published location is similar to ORACLE_INSTANCE\bifoundation
\OracleBIServerComponent\coreapplication_obisn\repository. The publishing process
also updates the log files in the local and multiuser development directories. This is
necessary because the master repository in the multiuser development directory might
have changed after the developer checked out the projects, or since the last subset
refresh.

A lack of conflicts does not mean that there are no differences between the
repositories. Instead, it means that there are no decisions that have to be explicitly
made by the developer to publish changes. See How Are Multiuser Merges Different
from Standard Repository Merges? .

1. In the Administration Tool, from the File menu, select Multiuser, and then select
Publish to Network.

2. Click Yes if prompted to save changes.

3. In the Lock Information dialog, in the Comment field, type a description of the
changes that you made, then click OK.

4. If there are any conflicts, then the Merge Repository Wizard opens and the Define
Merge Strategy screen is displayed. Make merge decisions about whether to
include or exclude objects by selecting Current or Modified from the Decision
list. When you select an object in the decision table, the read-only text box below
the decision table describes what changes were made to that object in the current
repository. You can also click View Change Statistics to see a summary of
changes. Click Finish when you are finished making merge decisions.

A CSV file is created in the local directory that contains details of the merged
changes.

Chapter 3
Publishing Changes to Multiuser Development Repositories

3-15



5. After you confirm all the changes, click Save.

The master repository in the multiuser development directory is overwritten with
the copy of the repository containing the developer's changes.

Enforcing Consistent Repositories When Publishing Changes
You can enforce a mandatory consistency check during the Publish to Network step by
setting the Mandatory Consistency Check option to Yes in the multiuser development
options file.

See Setting Multiuser Development Options.

• If consistency errors occur, do one of the following:

– Click Yes to fix the consistency check errors immediately; the master
repository remains locked.

– Click No to cancel the publishing step, fix the consistency check errors later,
and unlock the master repository.

– In the Oracle BI Administration Tool, from the File menu, select Multiuser,
and then select Undo Publishing to release the lock on the master, or when
fixing the changes is more complex than you anticipated.

Branching in Multiuser Development
Branching is a further refinement of the merging development process.

Branching can provide higher efficiencies over large development teams that have
overlapping releases, but it requires significant administrative overhead.

This section contains the following topics:

• About Branching

• Using the Multi-Team, Multi-Release Model in Oracle Business Intelligence

• Synchronizing RPD Branches

About Branching
In branching, developers work on private branches to isolate their code from other
developers and merge changes back to the main branch.

Different strategies can be followed, depending on the size of the development team.

In the Simple Development Model, all development occurs on a single main branch.
This strategy has the following characteristics:

• Only for emergency fixes

• Checkouts might not be the most current code

• Carries a stability risk for the mainline branch

The figure shows the Simple Development Model.

Chapter 3
Branching in Multiuser Development

3-16



In the Small Team Development Model, development occurs on a single Dev branch,
with a separate Main branch strictly for releases. This strategy has the following
characteristics:

• The Mainline is the official release branch

• Development occurs on a separate branch

• Stable code is merged back to Main at key milestones

• Branches are synchronized periodically

The figure shows the Small Team Development Model.

In the Multi-Team, Multi-Release Model, development occurs on multiple Dev
branches, again with a separate Main branch strictly for releases. This strategy has
the following characteristics:

• Supports more efficiency over disparate teams

• Development occurs on separate branches

• Stable code is merged back to Main at key milestones

• Branches are synchronized periodically

The figure shows the Multi-Team, Multi-Release Model.

Chapter 3
Branching in Multiuser Development

3-17



Using the Multi-Team, Multi-Release Model in Oracle Business
Intelligence

Using complex branching strategies in Oracle Business Intelligence requires attentive
organization of repository files, as well as altering the Multiuser setting in the Oracle BI
Administrative Tool.

The following provides an overview of the required steps.

1. Create a Main repository (Master Repository) and store it in the Master multiuser
development directory.

• Projects must be explicitly defined.

• Branch developers should not have access to the Master directory.

2. Create a subset of branch repositories by extracting from Main and storing them
as the Team1 and Team2 multiuser development directories. The Main and Team
RPDs must be stored and secured in separate directories on the network.

3. Developers must check out, develop, merge, and publish from their respective
Team RPDs. Developers A1 through A3 and B1 through B3 should manage their
metadata work and merge to their Team repository.

• Teams 1 and 2 must maintain their own repositories and periodically
synchronize from Main to Team branches.

• The Team repositories must be merged back into and published in the Main
repository.

4. One specific group, for example, release management, should manage all project
definitions, perform merges, publish, and synchronize the Team RPDs back to
Main.

Synchronizing RPD Branches
For large development teams, it is a good practice to perform periodic branch
synchronization as Main changes, in order to ease the ultimate Team publishing step.

Use the Administration Tool to synchronize repositories in a three-way merge.

Chapter 3
Branching in Multiuser Development

3-18



1. Publish all changes from your Team development branch and open the repository
(RPD) in the Administration Tool. This the current repository.

2. Extract a fresh Branch subset from Main. This is the modified repository.

3. In the Administration Tool, select File, then select Merge and browse to the
backup of the previous Branch subset. This is the original repository.

4. Resolve all issues and perform the merge.

The RPD named in the Save merged repository as field becomes the new
branch development RPD and is called the Original in future synchronizations.

Viewing and Deleting History for Multiuser Development
You can view and delete the development history of a multiuser development
repository.

This section contains the following topics:

• Viewing Multiuser Development History

• Deleting Multiuser Development History

Viewing Multiuser Development History
You can view the development history of a multiuser development repository.

In the Administration Tool, multiuser development history is only available when no
repository is open and after the administrator sets up the shared network directory.
This prevents the confusion that could occur if a user opened a history log that did not
match an open, unrelated repository.

1. Open the Administration Tool.

2. Without opening a repository, from the File menu, select Multiuser , and the
select History.

3. In the Multiuser Development History dialog, select a repository.

4. In the Open Offline dialog, type the password for the repository.

5. In the Multi User History dialog, right-click a row and select an option. The table
describes the options in the Multi User History dialog.

Tip:

To see details for all revisions, right-click in the background with no rows
selected and select View , and select Details.

Deleting Multiuser Development History
Only multiuser development administrators can delete history.

Administrators are defined in a special hidden option file in the multiuser development
directory. See Setting Multiuser Development Options.

Chapter 3
Viewing and Deleting History for Multiuser Development

3-19



You can delete the entire MUD history, or the oldest 1 to n versions. You cannot delete
versions in the middle of the range. For example, an administrator cannot delete
version 3 if there are still versions 1 and 2. If an administrator deletes the entire MUD
history, newly assigned version numbers restart at version 1.

If an administrator deletes a MUD history version from which a developer has checked
out a subset, and the developer is still working on it, the developer cannot publish to
the MUD directory. Deleting all MUD history prevents any developer who has currently
checked out a subset from publishing it. Administrators should communicate with
developers before the MUD history is cleared.

Setting Multiuser Development Options
You can create a multiuser development option file to specify options for multiuser
development. The option file is a text file, in standard Windows INI format.

The option file has the following properties and characteristics:

• The option file must be placed in the multiuser development directory. The file has
the same name as the corresponding master repository, but with an .opt
extension. For example, for \\network\MUD\sales.rpd, create an option file called \
\network\MUD\sales.opt.

• The file should have the Hidden flag turned on.

• In general, the option file should be managed only by multiuser development
administrators. To ensure this, you may want to change the sharing permissions
for the file.

The following example shows a multiuser development option file:

[Options]
BuildNumber = Yes
Enforce Build Number = 11.1.1.7.0
Enforce MUD Protocol Version Number = 1
Prevent Rpd Upgrade = Yes 
Admin = admin1;admin2
Mandatory Consistency Check = Yes
Equalize During Merge = Yes

Options that are not explicitly set are turned off by default. To turn an option on, set its
value to Yes. To turn an option off, either remove it from the option file, or set its value
to No.

The table explains the options in the multiuser development option file.

Option Description

BuildNumber When set to Yes, the build version of the Administration Tool is
displayed in the MUD history.

Enforce Build Number When specified, ensures that only users with an exact match of
the given version of the Administration Tool can perform MUD
operations. Select the Help menu, then select About to view the
Administration Tool version.

Use this option in conjunction with Enforce MUD Protocol
Version Number and Prevent Rpd Upgrade.

Remove this line if you do not want to enforce Administration
Tool version consistency for MUD operations.

Chapter 3
Setting Multiuser Development Options

3-20



Option Description

Enforce MUD Protocol
Version Number

When specified, ensures that only users with an exact match of
the given MUD version can perform MUD operations. Select the
Help menu, then select About to view the MUD version.

Use this option in conjunction with Enforce Build Number and
Prevent Rpd Upgrade.

Remove this line if you do not want to enforce MUD version
consistency for MUD operations.

Prevent Rpd Upgrade When specified, ensures that only users with an exact match of
the given repository version can perform MUD operations. Select
the Help menu, then select About to view the repository version.

Use this option in conjunction with Enforce Build Number and
Enforce MUD Protocol Version Number.

Remove this line if you do not want to enforce repository version
consistency for MUD operations.

Admin Lists multiuser development administrators. Administrators must
be defined in the option file before they can delete MUD history.

Administrators are defined by their computer/network login
names. When multiple administrators exist, separate
administrator names by semicolons, for example,

Admin=jsmith;mramirez;plafleur

Mandatory Consistency
Check

When set to Yes, the publish step performs a consistency check.
Publishing cannot proceed unless there are no errors in the
given repository.

Equalize During Merge When set to Yes, the multiuser development merge process
performs mandatory equalization during MUD merges. Setting
this option to Yes affects the performance of the merge process.

Chapter 3
Setting Multiuser Development Options

3-21



4
Using a Source Control Management
System for Repository Development

You can integrate the Administration Tool with third-party source control management
systems for Oracle BI repository development.
The Administration Tool achieves this integration through the ability to save repository
metadata as a set of XML documents in MDS XML format rather than as a single
binary repository file (RPD). Using this integration, you can configure the
Administration Tool to work with your own source control management system and
save your repository output as MDS XML.

This chapter contains the following topics:

• About Using a Source Control Management System with the Administration Tool

• Setting Up Your System for Repository Development Under Source Control
Management

• Using Source Control Management in Day to Day Repository Development

• Using Source Control Management with MUD

About Using a Source Control Management System with the
Administration Tool

You can integrate Oracle Administration Tool with a third-party source control
management systems such as Subversion, Rational ClearCase, or Git during your
repository development process.

In the Administration Tool:

• Convert your binary RPD file to a set of MDS XML documents.

You can save your repository in MDS XML format rather than using a single large
binary repository file. In the MDS XML format, each repository object such as a
connection pool, physical table, or business model is represented in its own XML
file. You can manage the set of XML files that make up your repository in your
source control management system.

• Set up a Source Control Management (SCM) configuration file.

Use the SCM Configuration Editor in the Administration Tool to specify commands
specific to your SCM system such as add file, delete, and check out and specify
environment variables required by your SCM system.

• Designate your repository as under source control.

The first time you open your MDS XML repository in the Administration Tool, you
are prompted to specify whether the repository is a standalone MDS XML
repository, or whether it is under source control. Choose Use Source Control to
enable SCM integration for this repository in the Administration Tool.

4-1



About MDS XML
MDS XML format is used for repositories under source control.

MDS XML represents the Oracle BI Repository across a set of XML files rather than in
a single file.

Each repository connection pool is stored in its own file, with an XML representation
like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<ConnectionPool mdsid="m80ca62c5-0bd5-0000-714b-e31d00000000"
name="SampleApp_Lite_Xml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.oracle.com/obis/repository"
password="94F9321C85340FC48E4D9093AA941FF28844074B88D5AA6364E4815DEED7F9B
8792EF452219C2155DB68F61EE1555B4FA886F77E060E2E17F45AD8D18CAB2E4D3EFA15B75E
30D8B4BFA8C7B2D70552BD" timeout="4294967295" maxConnDiff="10" maxConn="10"
dataSource="VALUEOF(BI_EE_HOME)/sample/SampleAppFiles/Data" type="Default"
reqQualifedTableName="false" isSharedLogin="false"
isConcurrentQueriesInConnection="false" isCloseAfterEveryRequest="true"
xmlRefreshInterval="2147483647" outputType="xml" ignoreFirstLine="false"
bulkInsertBufferSize="0" transactionBoundary="0" xmlaUseSession="false"
multiThreaded="false" supportParams="false" isSiebelJDBSecured="false"
databaseRef="/oracle/bi/server/base/Database/Sample App Lite Data_80ca62c4
-0bcf-0000-714b-e31d00000000.xml#m80ca62c4-0bcf-0000-714b-e31d00000000"
>
<Description>
<![CDATA[ 
SampleAppLite connection pool to XML datasource. This connection pool points the 
database to the location where physical XML files are stored. The location uses 
the value of an RPD variable : BI_EE_HOME.
This variable needs to be correctly set in order for the server to connect to the 
files.
]]>
</Description>
</ConnectionPool>

The SampleAppLite repository generates MDS XML files in a structure like the
following:

Chapter 4
About Using a Source Control Management System with the Administration Tool

4-2



Note:

There is no one-to-one relationship between repository objects in the
Administration Tool and the set of files produced as XML output. For
example, physical columns appear as independent objects in the
Administration Tool, but in MDS XML they are considered part of the
Physical Table object.

See “About the Oracle BI Server MDS XML API” in XML Schema Reference
for Oracle Business Intelligence Enterprise Edition for full information about
the MDS XML schema representation of repository objects.

Chapter 4
About Using a Source Control Management System with the Administration Tool

4-3



Setting Up Your System for Repository Development Under
Source Control Management

To set up your system for repository development under source control management,
you must set up an SCM configuration file with commands specific to your SCM
system, and generate an MDS XML repository and check it into your SCM system.

This section contains the following topics:

• Creating an SCM Configuration File

• Creating an MDS XML Repository and Checking In Files to the SCM System

Creating an SCM Configuration File
To integrate the Oracle BI Administration Tool with your source control management
system (SCM), you must create an XML configuration file based on your specific SCM
system.

The configuration file contains the SCM system commands for adding, deleting,
checking out, and renaming files. The Administration Tool issues these commands to
the SCM system when repository objects are created or updated, resulting in
corresponding new or changed MDS XML files.

Note:

The Oracle BI Administration Tool does not commit the changes to the SCM
system. The repository developer must always check the files into the SCM
system directly. The separate check-in in the SCM system facilitates viewing
any conflicts or implementing merge decisions in the SCM environment
rather than the Administration Tool environment.

If you create or edit an SCM configuration file while an MDS XML repository is open,
you must ensure that Use Source Control is selected to enable the New or Edit
buttons.

The default location for SCM configuration files is ORACLE_INSTANCE/config/
OracleBIServerComponent/coreapplication_obisn. Although templates are also available
in this location, do not select a template file during this step. Instead, you can load a
template in the next step.

The SCM configuration template files are called scm-conf-ade.template.xml and scm-
conf-svn.template.xml. In addition to being available in the ORACLE_INSTANCE location
indicated, they are also available on the Oracle Technology Network (OTN) at:

http://www.oracle.com/technetwork/middleware/bi-foundation/downloads/

obieescmconfigfiles-1568980.zip

Unless it is your intention to modify the configuration file template itself, ensure that
Edit in Configuration Editor is not selected. If you select this option, the file name
displayed in the Configuration File field in the SCM Configuration Editor changes

Chapter 4
Setting Up Your System for Repository Development Under Source Control Management

4-4

http://www.oracle.com/technetwork/middleware/bi-foundation/downloads/obieescmconfigfiles-1568980.zip
http://www.oracle.com/technetwork/middleware/bi-foundation/downloads/obieescmconfigfiles-1568980.zip


from the file name you provided in the proceeding step to the template file name, and
changes are saved by default to the template file.

You should not store security-sensitive environment variables in the configuration file.
If security-sensitive variables are required by your SCM system, to avoid the security
risk, you can launch the Administration Tool from Windows Command Prompt with any
security-sensitive variables already set.

1. Open the Administration Tool and select Tools, then select Options.

2. Select the Source Control tab.

3. Click New to create a new configuration file. The Specify new configuration file
window is displayed.

4. Provide a file name using the XML file extension, and click Save.

5. Click Load in the SCM Configuration Editor. Then,

6. Select a template file, and click Open.

7. In the SCM Configuration Editor, provide an optional description, then enter or edit
commands for your system in the Commands tab.

For longer commands, click the ellipsis button to enter commands in the
Command Editor window.

Use the ${file}, ${filelist}, ${from}, and ${to} tokens to define the commands. You
can also use the List File option in conjunction with the ${filelist} command to set
the behavior. The tokens can be used as follows:

• ${file} specifies that a command must be run sequentially, one file at a
time. ${file} is required for the Add Folder and Add File commands.

• The behavior of ${filelist} varies, depending on whether List File is
selected:

– ${filelist} without List File selected causes the Administration Tool to
group as many files as possible for the given command such as Pre-
Delete, Delete, or Check-out, staying under the 32k character limit for
launching a process. Execution is repeated until all files have been
processed.

– ${filelist} with List File selected instructs the Administration Tool to
create a temporary file that holds the file list. The file list format is one file
name for each line, which is a typical format among SCM vendors. List
File is valid for Pre-Delete, Delete or Check-out commands. It results in
much faster operations and should always be selected for SCM systems
that support it.

You can use${file} or ${filelist} for Pre-Delete, Delete, and Checkout. List
File only works in conjunction with ${filelist}.

• ${from} and ${to} are used to specify the original file name and new file name
in Rename commands.

Not all SCM systems support file rename operations natively. If this is the
case, leave the Rename field blank rather than attempting to construct a
rename operation by concatenating different commands. The Administration
Tool performs the rename operation.

Chapter 4
Setting Up Your System for Repository Development Under Source Control Management

4-5



Note:

Some SCM systems do not include commands for working with folders.
If this is the case, leave Add Folder blank. The Administration Tool
always creates folders for you when needed.

Even if your SCM system does include folder management commands,
the Administration Tool does not remove folders. You must remove
folders directly in the SCM system if necessary.

8. Select the Environment Variables tab, and then specify environment variables
required by your SCM system.

9. Click Test in the Environment Variables tab to open the Test SCM Configuration
window. Then, enter a command and click Execute to test a particular command.
If the environment is correct, the correct output should appear after executing the
command.

10. Select the Post-save comment tab to enter text that appears after changes are
saved in the Administration Tool. You can use the Post-save comment to remind
developers to check-in there changes.

11. Click OK to save the configuration file, or click Save As to save a copy if you
loaded and modified a template configuration file.

Creating an MDS XML Repository and Checking In Files to the SCM
System

To integrate with an SCM system, you must convert your Oracle BI repository to MDS
XML format.

Use one of the following options to create an MDS XML repository and check it into
your source control system:

• Saving an Existing Repository File in MDS XML Format

• Creating a New Repository in MDS XML Format

• Linking to Source Control Files to Convert Your Repository (Small Repositories
Only)

Saving an Existing Repository File in MDS XML Format
If you have an existing repository file, use these steps for initial import to convert it to
MDS XML.

1. Open your existing repository file (RPD) in the Administration Tool in offline mode.

2. Select File, then select Save As, then select MDS XML Documents.

3. Select a root location for your MDS XML repository files, and then click OK.

4. Perform the steps in your source control management system to add and check in
the files.

Use the specialized commands for bulk file import, available for most SCM
systems. These commands are optimized to deliver entire trees of files to source

Chapter 4
Setting Up Your System for Repository Development Under Source Control Management

4-6



control in a very efficient way. For example, in Subversion, use the following
command:

svn import module_name -m "Initial import"

Note:

You can also use the biserverxmlgen utility with the -M and -D options to
generate MDS XML from an existing RPD. See “Generating MDS XML from
an Existing RPD Using a Command-Line Utility” in the XML Schema
Reference for Oracle Business Intelligence Enterprise Edition.

Creating a New Repository in MDS XML Format
Use these steps to create a new repository in MDS XML format.

1. Open the Administration Tool and select File, then select New Repository to
open the Create New Repository Wizard.

2. Select the MDS XML Documents option in the wizard. Complete the other wizard
steps.

3. Perform the necessary steps in your source control management system to add
and check in the files. For large repositories, use the specialized commands for
bulk file import for your SCM system.

Note:

Do not create a new MDS XML-format repository, add objects, and then
select Link to Source Control. This method does not work, and SCM
commands are not generated.

Linking to Source Control Files to Convert Your Repository (Small Repositories
Only)

For very small repositories, you can use the Link to Source Control files method to
convert a binary RPD file to MDS XML format.

See Creating an SCM Configuration File.

1. Ensure that you have an SCM configuration file defined.

2. Create an empty root folder for the MDS XML repository.

3. Open your existing RPD file in the Administration Tool in offline mode.

4. Select File, then select Source Control, then select Link to Source Control
Files.

5. Select the root folder you created, and the appropriate SCM configuration file.

Chapter 4
Setting Up Your System for Repository Development Under Source Control Management

4-7



Note:

If you need to change the configuration file later, select Tools, select
Options, select Source Control, and then click Edit to change the
configuration file.

6. Click Save. An MDS XML repository is created, and the necessary add file
operations are performed in your source control system.

7. Commit the changes in your SCM system.

Note:

Using the Link to Source Control Files method to initially import your
repository is only recommended for very small repositories. This method is
too slow for large repositories, tens of thousands of files, because the
Administration Tool imports the files one at a time using the standard add
file command, rather than using specialized commands for bulk file import.

The repeated invocation of the add file command might increase the
chances of transient errors. If these occur, you might need to restart the
process a few times before all files are successfully imported to source
control.

Using Source Control Management in Day to Day
Repository Development

These topics describes typical scenarios that occur during day to day repository
development.

This section contains the following topics:

• Updating, Saving, and Checking In Changes for Repositories Under Source
Control

• Handling Errors

• Testing Repositories Under Source Control

• Viewing the Source Control Log

Updating, Saving, and Checking In Changes for Repositories Under
Source Control

After your MDS XML repository is set up under source control, follow these steps to
update, save, and check in changes to your repository.

1. Ensure that you have a local copy of your working MDS XML repository files that
are under source control by issuing the appropriate commands in your SCM
system. For example, for Subversion, you can issue the command svn info as
shown in the following example text:

Chapter 4
Using Source Control Management in Day to Day Repository Development

4-8



C:\myProj\repos>svn info
Path: .
Working Copy Root Path: C:\myProj\repos
URL: file:///C:/SVN/myProj/trunk/sample1
Repository Root: file:///C:/SVN/myProj
Repository UUID: 6b995c92-3ec0-fa4b-9d58-c98e54f41792
Revision: 3
Node Kind: directory
Schedule: normal
Last Changed Author: joe_user
Last Changed Rev: 2
Last Changed Date: 2011-11-19 15:20:42 -0600 (Sat, 19 Nov 2011)

2. In the Administration Tool , from the File menu, select Open, then select MDS
XML.

Open the file in offline mode.

3. Select the root folder location for your MDS XML files and click OK.

4. If this is the first time you have opened this MDS XML repository in the
Administration Tool, you are prompted to specify whether this repository is a
standalone MDS XML repository, or whether it is under source control. Select Use
Source Control and click OK.

This choice is saved for this repository. To view the status of this repository at any
time, select Tools, then select Options, then select the Source Control tab.

5. After you make changes to your repository, select File, then select Save, or click
Save on the toolbar. The Administration Tool displays a list of changes.

6. Click Yes to run the commands in the SCM system.

After accepting the changes, you cannot cancel. Canceling the changes creates
an inconsistent repository. You must continue the SCM commands execution.

When the Administration Tool issues the SCM commands, the commands
rearranged into the most optimal order.

7. Check in the changes directly in your SCM system.

Handling Errors
Learn how to handle errors in the SCM system.

Sometimes errors, such as an expired label or network problem, occur when the
Administration Tool delivers changes to the SCM system.

1. In the Administration Tool, select File, then select Save As to save the repository
to a temporary location in RPD format or MDS XML format. Close the
Administration Tool.

Note:

Saving to a binary RPD is the simplest option for transient problems like
network errors, where you just need to try again later. Saving as MDS
XML is required when some sort of work is required to fix the problem,
such as merging conflicting changes.

Chapter 4
Using Source Control Management in Day to Day Repository Development

4-9



2. Take action to resolve the issue. For example, refresh an expired label or test and
view a failed network connection.

In the case of an expired label, you also need to merge the contents of the
refreshed label with the temporary saved MDS XML repository. Use a third-party
merge tool to do this.

For detailed information about the MDS XML representation of repository objects
so that you can successfully make merge decisions, see XML Schema Reference
for Oracle Business Intelligence Enterprise Edition.

3. Open the saved repository in the Administration Tool.

4. Select File, then select Source Control, then select Link to Source Control.

5. Click Save to save changes from the saved repository into the MDS XML files
under source control.

Steps 4 and 5 of this procedure cause the Administration Tool to keep memory objects
loaded from the saved RPD file or MDS XML files, but to then consider them to belong
to the source control MDS XML repository instead. When you click Save, the
Administration Tool saves the memory objects to the source control repository.

Testing Repositories Under Source Control
During the course of repository development, you need to perform testing in online
mode to validate your repository.

You can only load an Oracle BI repository in RPD format into the Oracle BI Server to
make it available for queries. Because of this, you must save your development MDS
XML repository in RPD format from time to time when you want to perform online
testing.

See Making the Repository Available for Queries.

• In the Oracle BI Administration Tool, open your MDS XML repository in offline
mode, select Save As, then select Repository to make the repository available for
queries.

Viewing the Source Control Log
The Source Control Log window shows the commands that the Oracle Administration
Tool issues to your SCM system.

It also shows any post-save text you specified in the Post-save comment tab of the
SCM Configuration Editor.

By default, the Source Control Log window appears when SCM commands are being
executed. Alternatively, you can select File, then select Source Control, then select
View Logs to see the Source Control Log window.

You can choose the following options for this dialog:

• Close when commands finish: Causes the log window to close automatically
when commands are complete, unless errors occur.

• Only show dialog when errors occur: Hides the window during SCM command
execution unless errors occur. By default, the Source Control Log appears
automatically when SCM commands are being executed unless this option is
selected.

Chapter 4
Using Source Control Management in Day to Day Repository Development

4-10



The text displayed in the Source Control Log is persistent until you close the
repository. This means that all SCM command output is available for view, regardless
of whether the dialog is open during individual operations.

The Source Control Log does have a 32K character limit. When the window buffer
becomes full, then the oldest commands are removed from the Source Control Log
display to make room for the latest command output. To see the full output, go to the
Administration Tool log at:

ORACLE_INSTANCE/diagnostics/logs/OracleBIServerComponent/coreapplication_obisn/
user_name_NQSAdminTool.log

Note:

While SCM commands are being executed, the Close button is disabled until
the SCM commands have finished or have stopped with an error, unless
Only show dialog when errors occur has been selected.

Using Source Control Management with MUD
You can use source control management with your multiuser development
environment.

For example, if you have an existing repository under multiuser development and you
want to begin using source control management, you might follow the steps described
in the following subsections:

• Putting the MUD Master Repository and MUD Log File Under Source Control

• Checking In New Versions of the MUD Master and MUD Log File to Source
Control

Putting the MUD Master Repository and MUD Log File Under Source
Control

Use this procedure to put the MUD master repository and MUD log file under source
control.

Run the mhlconverter command-line utility to convert your MUD log file (*.mhl) to an
XML file.

See Saving an Existing Repository File in MDS XML Format to convert your master
MUD RPD to a set of MDS XML files on the file system.

1. At the command prompt, type mhlconverter with the input MHL file name and path,
and the output XML file name and path. For example:

mhlconverter -I C:\MUD\mud_repository.mhl -O C:\MUD\mud_repository.xml

2. Check the MDS XML files and XML-format MUD log file into your SCM system.

Chapter 4
Using Source Control Management with MUD

4-11



Checking In New Versions of the MUD Master and MUD Log File to
Source Control

After creating and checking in the initial version of the master MUD repository, you
need to check in updated versions of the MUD master repository on an ongoing basis.

This section describes two different ways to perform this task.

• Manually Checking In the Updated MUD Master Repository and Log File

• Using a Script to Check In the Updated MUD Master Repository and Log File

Manually Checking In the Updated MUD Master Repository and Log File
Use these steps to manually check in changes to the master RPD and log file that
have occurred as part of the multiuser development process.

Consider using the automated check-in method described in Using a Script to Check
In the Updated MUD Master Repository and Log File if you have a large repository.
See Creating an SCM Configuration File.

1. Open the latest copy of the master RPD in the Administration Tool.

2. Create or select the appropriate SCM configuration file.

3. Select File, then select Source Control, then select Link to Source Control.
Select the directory that contains the MDS XML version of the master MUD
repository.

Using Link to Source Control is not recommended for large repositories and
might cause time-outs.

4. Click Save to save changes from the master MUD repository into the MDS XML
files under source control. The Administration Tool determines which files to add,
check out, modify, and delete and issues the commands to your SCM system.

5. Close the Administration Tool.

6. Follow these steps to update the MUD log file:

a. In your SCM system, check out the XML-format MUD log file.

b. Use the mhlconverter utility to overwrite the XML-format MUD log file with the
latest changes from the .mhl version.

c. Check in the latest XML-format MUD log file to your SCM system.

7. Check all changes into your SCM system.

It is recommended that you perform the steps in this section regularly to avoid having
too many changes in a single transaction.

Using a Script to Check In the Updated MUD Master Repository and Log File
As an alternative to manually checking in changes, you can create a script to perform
the check-in tasks and then schedule it to run at regular intervals.

See Comparing Repositories Using comparerpd.

Chapter 4
Using Source Control Management with MUD

4-12



1. Identify the latest copy of the master RPD that you want to check into your SCM
system.

2. Identify the last version of the master RPD that was checked into the SCM system.
You can review the latest XML-format MUD log file under source control to
determine this version.

Note:

If you do not have the last checked-in version of the master repository in
RPD format, you can use the biserverxmlexec utility with the -D option to
read the latest MDS XML files checked into source control and re-create
an RPD version.

3. Use the comparerpd utility with the -M option to compare the latest copy of the
master RPD, the modified version, with the version that was last checked in, the
original version. An MDS XML format diff is generated.

4. Create a script that does the following:

a. Reads the MDS XML diff directory to identify which files are present.

b. Issues commands in source control to check out the identified files or add new
files.

c. Copies the latest version of the files from the MDS XML diff directory to the
source control directory.

d. Reads the oracle\bi\server\base\DeletedFiles.txt file inside the MDS XML
diff directory to determine which files to delete.

e. Issues commands in source control to delete the appropriate files.

f. Checks out the MDS XML-format MUD log file, runs the mhlconverter utility to
convert the latest MHL-format log file to XML format, overwrites the existing
MDS XML-format MUD log file with the new one, and checks it in.

g. Performs all necessary check-in steps in the SCM system.

Chapter 4
Using Source Control Management with MUD

4-13



5
Importing Metadata and Working with Data
Sources

This chapter describes how to create a new Oracle BI repository, set up back-end data
sources, and import metadata using the Import Metadata Wizard in the Administration
Tool. It also describes how to use a standby database with Oracle Business
Intelligence.
This chapter contains the following topics:

• About Importing Metadata and Working with Data Sources

• Creating a New Oracle BI Repository

• Performing Data Source Preconfiguration Tasks

• Importing Metadata from Relational Data Sources

• Importing Metadata from Multidimensional Data Sources

• About Importing Metadata from XML Data Sources

• About Using a Standby Database with Oracle Business Intelligence

About Importing Metadata and Working with Data Sources
After creating an Oracle BI Repository file, you can import metadata from your data
sources into the Physical layer of the repository.

In the Oracle BI Administration Tool, the Physical layer of the contains the data
sources the Oracle BI Server uses to submit queries, and the relationships between
physical databases and other data sources used to process multiple data source
queries.

The metadata imported into an Oracle BI Repository must have an ODBC or native
database connection to the underlying data source. You can also import metadata
from software such as Microsoft Excel using an ODBC connection.

When you importing metadata from each data source, the structure of the data source
is also imported into the Physical layer. You can display data from supported data
sources on Oracle BI Server and other clients. You cannot import metadata from
unsupported data sources.

After you import metadata, properties in the associated database object and
connection pool are set automatically. You can adjust database or connection pool
settings, see Setting Up Database Objects and Connection Pools .

Oracle recommends importing metadata rather than manually creating the physical
layer to avoid errors.

5-1



Creating an Oracle BI Repository
You can use the Create New Repository Wizard in the Oracle Administration Tool to
create a new Oracle BI repository in either binary (RPD) or MDS XML format.

If you have a repository, you can use the existing data source settings as a template to
connect to different data sources. To use the existing data source settings and change
the database type and connection pool information, see Setting Up Database Objects
and Creating or Changing Connection Pools.

See Performing Data Source Preconfiguration Tasks.

Refer to the following sections for information about your data source type:

• Importing Metadata from Relational Data Sources

• Importing Metadata from Multidimensional Data Sources

• About Importing Metadata from XML Data Sources

• Working with ADF Data Sources

1. In the Administration Tool, select File, then select New Repository.

If an existing repository is open, you are prompted to save your changes, and the
existing repository is closed.

2. Select Binary to create a repository in RPD format. To create a repository in MDS
XML format, select MDS XML Documents.

3. For binary repositories, type a name for the repository. Keep the name to 156
characters or less to avoid problems with the metadata dictionary URL. An RPD
file extension is automatically added if you do not explicitly specify it.

4. For Location, follow the steps appropriate for your repository type:

• For binary repositories, select a location for the RPD file. By default, new
binary repositories are stored in the repository subdirectory, located at
ORACLE_INSTANCE\bi\bifoundation\server.

• For MDS XML format repositories, select a root folder location for the set of
MDS XML files.

5. If you want to import metadata into the repository now, select Yes (the default) for
Import Metadata. If you do not want to import metadata, select No.

6. Enter and confirm the password you want to use for this repository. The repository
password must be eight characters, containing one or more numerals.

You enter the same repository password that you used to open the repository in
online or offline mode. Your password is used to encrypt the repository contents.

7. If you selected Yes for Import Metadata, click Next.

You might need to set up your data sources before you importing metadata.

8. If you selected No for Import Metadata, click Finish to create an empty repository.

Performing Data Source Preconfiguration Tasks
You might need to perform configuration steps so that Oracle Business Intelligence
can access the data sources.

Chapter 5
Creating an Oracle BI Repository

5-2



These configuration steps are sometimes required before you can import physical
objects from your data sources into your repository file, or set up connection pools to
your data sources.

For many data sources, you need to install client components. Client components are
often installed on the computer hosting the Oracle BI Server for query access, and on
the computer hosting the Administration Tool (if different) for offline operations such as
import. In some cases, you must install client components on the computer where the
JavaHost process is located.

This section contains the following topics:

• Setting Up ODBC Data Source Names (DSNs)

• Setting Up Oracle Database Data Sources

• About Setting Up Oracle OLAP Data Sources

• Java Data Sources

• About Setting Up Oracle TimesTen In-Memory Database Data Sources

• About Setting Up Essbase Data Source

• About Setting up Cloudera Impala Data Sources

• About Setting Up Apache Hive Data Sources

• About Setting Up Hyperion Financial Management Data Sources

• Setting Up SAP/BW Data Sources

• Setting Up Oracle RPAS Data Sources

• Setting Up Teradata Data Sources

• Enabling NUMERIC Data Type Support for Oracle Database and TimesTen

• Configuring SSO for Essbase, Hyperion Financial Management, or Hyperion
Planning Data Sources

Setting Up ODBC Data Source Names (DSNs)
Before you can import from a data source through an ODBC connection, or set up a
connection pool to an ODBC data source, you must first create an ODBC Data Source
Name (DSN) for that data source on the client computer.

You reference the DSN in the Import Metadata Wizard when you import metadata from
the data source.

You can only use ODBC DSNs for import on Windows systems.

1. In Windows, locate and open the ODBC Data Source Administrator. The ODBC
Data Source Administrator dialog appears.

2. In the ODBC Data Source Administrator dialog, click the System DSN tab, and
then click Add.

3. From the Create New Data Source dialog, select the driver appropriate for your
data source, and then click Finish.

The remaining configuration steps are specific to the data source you want to
configure. Refer to the documentation for your data source for more information.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-3



ODBC DSNs on Windows systems are used for both initial import, and for access to
the data source during query execution. On UNIX systems, ODBC DSNs are only
used for data access. See Setting Up Data Sources on Linux and UNIX .

See Setting Up Teradata Data Sources.

Setting Up Oracle Database Data Sources
When you import metadata from an Oracle Database data source or set up a
connection pool, you can include the entire connect string for Data Source Name, or
you can use the net service name defined in the tnsnames.ora file.

If you choose to enter only the net service name, you must set up a tnsnames.ora file in
the following location within the Oracle Business Intelligence environment, so that the
Oracle BI Server can locate the entry:

BI_DOMAIN\config\fmwconfig\bienv\core

You should always use the Oracle Call Interface (OCI) when importing metadata from
or connecting to an Oracle Database. Before you can import schemas or set up a
connection pool, you must add a TNS names entry to your tnsnames.ora file. See the
Oracle Database documentation for more information.

This section contains the following topics:

• Oracle 12c Database In-Memory Data Sources

• Oracle 12c on Exadata Data Sources

• Advanced Oracle Database Features Supported by Oracle BI Server

• Oracle Database Fast Application Notification and Fast Connection Failover

• Additional Oracle Database Configuration for Client Installations

• Configuring Oracle BI Server When Using a Firewall

• Oracle Database Connection Errors in Windows 7 64-bit Environments

See Enabling NUMERIC Data Type Support for Oracle Database and TimesTen.

Oracle 12c Database In-Memory Data Sources
For all Oracle 12c Database In-Memory data sources, the Oracle BI Server creates
tables in memory.

Oracle 12c Database In-Memory is a high-performance in-memory data manager. It
uses In-Memory Column Store to store copies of tables and partitions in a special
columnar format that exists in memory and provides for rapid scans. See the 12c
Release 1 Oracle Database Concepts Guide and Oracle Database Administrator's
Guide for more information.

Oracle 12c on Exadata Data Sources
For Oracle 12c Database on Exadata and Oracle 12c Database In-Memory on
Exadata data sources, the Oracle BI Server creates tables in memory.

Oracle BI Server uses Exadata Hybrid Columnar Compression (EHCC) by default.

Oracle Exadata Database Machine is the optimal platform for running Oracle
Database. Both Oracle 12c Database and Oracle 12c Database In-Memory run on the

Chapter 5
Performing Data Source Preconfiguration Tasks

5-4



Oracle Exadata Database Machine. See the documentation included with the Exadata
Database Machine for more information.

Advanced Oracle Database Features Supported by Oracle BI Server
The Oracle BI Server supports the compression, Exadata Hybrid Columnar
Compression, and In-Memory features to take advantage of native Oracle Database
functionality and significantly improve query time.

When you import metadata or specify a database type, the feature set for that
database object is automatically populated with default values appropriate for the
database type. The Oracle BI Server uses the SQL features with this data source.
When a feature is marked as supported (checked) in the Features tab of the Database
dialog, the Oracle BI Server pushes the function or calculation to the data source for
improved performance. When a function or feature is not supported in the data source,
the calculation or processing is performed in the Oracle BI Server.

The following is information about Oracle Database features supported by Oracle BI
Server:

• Compression

Compression reduces the size of the database. Because compressed data is
stored in fewer pages, queries need to read fewer pages from the disk, thereby
improving the performance of I/O intensive workloads. Compression is used by
default. If you create aggregates on your Oracle databases, then compression is
applied to the aggregate tables by default.

When you create a database object for any of the Oracle databases, the
COMPRESSION_SUPPORTED feature is automatically applied to the object.

• Exadata Hybrid Columnar Compression (EHCC)

Oracle's EHCC is optimized to use both database and storage capabilities on
Exadata and enables the highest level of data compression to provide significant
performance improvements. By default, Oracle 11g Database on Exadata, Oracle
12c Database on Exadata, and Oracle 12c Database In-Memory on Exadata use
this type of compression.

When you create a database object for any of the Oracle databases, the
EHCC_SUPPORTED feature is automatically applied to the object.

By default, compression is disabled for objects in the Oracle databases. To enable
compression for an object, set the object's PERF_PREFER_COMPRESSION flag to on.

• In-Memory

– In memory retrieval eliminates seek time when querying the data, which provides
faster and more predictable performance than disk. The in memory feature creates
tables in memory for Oracle 12c Database In-Memory and Oracle 12c Database
In-Memory on Exadata. If you create aggregates on these databases, then the
aggregates are created in memory.

When you create a database object for any of the above mentioned Oracle
databases, the INMEMORY_SUPPORTED feature is automatically applied to the
object.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-5



Oracle Database Fast Application Notification and Fast Connection Failover
If Fast Application Notification (FAN) events and Fast Connection Failover (FCF) are
enabled on the Oracle Database, the Oracle Call Interface (OCI) uses the FAN events
and enables FCF for the Oracle Database data sources.

Fast Application Notification (FAN) events and Fast Connection Failover (FCF) run in
the background. When an Oracle Business Intelligence query initiated by a user fails
due to the unavailability of an Oracle database, the query fails quickly and the user
can then retry the query rather than wait for the database request to time out.

Additional Oracle Database Configuration for Client Installations
You must install the Oracle Database Client on the computer where you performed the
client installation.

After installing the Oracle Database Client, create an environment variable called
ORACLE_HOME and set it to the Oracle home for the Oracle Database Client. Create
an environment variable called TNS_ADMIN, and set the variable to the tnsnames.ora
file location of BI_DOMAIN\config\fmwconfig\bienv\core.

Configuring Oracle BI Server When Using a Firewall
The presence of a firewall between the Oracle BI Server and the Oracle Database can
result in very long query times.

You could experience long query times when using a simple nqcmd query that could
take two to three minutes to return results, or when using Answers, you do not get a
response after executing or validating a SQL statement initiated in Presentation
Services.

To improve query time, go to the sqlnet.ora file in BI_DOMAIN\config\fmwconfig
\bienv\core and add the BREAK_POLL_SKIP and DISABLE_OOB parameters as follows:

BREAK_POLL_SKIP=10000
DISABLE_OOB=ON 

You perform this configuration change only on the Oracle BI Server. You do not need
to change configuration on the Oracle Database or on user client desktops.

DataDirect Drivers and Oracle Database
You must use ODBC DataDirect drivers to establish connections to ODBC data
sources.

ODBC DataDirect drivers are also used by the Oracle Platform Security Services
(OPSS) security store implementation to access credentials.

In Oracle BI Enterprise Edition, DataDirect ODBC framework, version 8.0.2, and
Oracle Wire Protocol, version 8.0.0, support Oracle Database 12c connectivity, and
are configured for data source name (DSN) and DNS-less connectivity without
additional configuration.

The certified Oracle Database versions include:

• 12.2.1.2 or higher

Chapter 5
Performing Data Source Preconfiguration Tasks

5-6



• 11.2.0.4 or higher

You can find additional information about the DataDirect drivers in the Progress
DataDirect documentation located in the following Oracle BI Enterprise Edition 12c
installation directories:

• mwhome\bi\common\ODBC\Merant\7.1.6\help

• mwhome\bi\common\ODBC\Merant\8.0.0\help

• mwhome\bi\common\ODBC\Merant\8.0.2\help

Oracle Database Connection Errors in Windows 7 64-bit Environments
If you are running Oracle BI EE on a Windows 7 64-bit computer, you must ensure that
the default authentication service is not set to use Windows domain credentials.

You might receive a connection error when importing from an Oracle Database
because the Administration Tool attempts to log in using your Windows domain
credentials.

Check the sqlnet.ora file in BI_DOMAIN\config\fmwconfig\bienv\core to
ensure that the AUTHENTICATION_SERVICES parameter appears as follows:

SQLNET.AUTHENTICATION_SERVICES= (NONE)

About Setting Up Oracle OLAP Data Sources
Before you import from an Oracle OLAP data source, ensure that the data source is a
standard form Analytic Workspace.

You must install the Oracle Database Client on the computer where you performed the
client installation before you can import from Oracle OLAP sources.

The biadminservlet Java process must be running to import from Oracle OLAP data
sources, for both offline and online imports. You can use Fusion Middleware Control to
check the status of the biadminservlet Java process.

Use either the Administrator or Runtime client install option.

After installing the Oracle Database Client, create an environment variable called
ORACLE_HOME, and set the variable to the Oracle home for the Oracle Database
Client. Create an environment variable called TNS_ADMIN, and set the variable to the
location of the tnsnames.ora file located in BI_DOMAIN\config\fmwconfig\bienv
\core.

Java Data Sources
If you use the JDBC connection type, then the remote Java data sources must connect
to Weblogic Server.

If you are not using JDBC (Direct Driver) this configuration is not required.

Before you can include JDBC and JNDI data sources in the repository, you must
perform the required set up tasks.

You must configure JDBC in the Oracle WebLogic Server. For information about how
to perform this configuration, see Using JDBC Drivers with WebLogic Server in the
Oracle WebLogic Server documentation.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-7



You must load data sources for importing into the repository. See Loading Java Data
Sources.

Loading Java Data Sources
To make Java data sources available for import into the repository, you must first
connect to the Java Datasource server to load the Java metadata.

1. In the Oracle BI Administration Tool, select File, and select Load Java
Datasources.

2. In the Connect to Java Datasource Server dialog, enter the enter hostname, port,
and credentials to access the server and load the Java metadata.

3. Click OK.

The Java metadata has been loaded from the server and is now available for import
into the repository.

About Setting Up Oracle TimesTen In-Memory Database Data
Sources

Oracle TimesTen In-Memory Database is a high-performance, in-memory data
manager that supports both ODBC and JDBC interfaces.

These preconfiguration instructions assume that you have already installed Oracle
TimesTen, see Oracle Data Integrator for more information.

Note:

If you plan to create aggregates on your TimesTen source, you must also
ensure that PL/SQL is enabled for the instance, and that the PL/SQL first
connection attribute PLSQL is set to 1. You can enable PL/SQL at install
time, or run the ttmodinstall utility to enable it post-install. See TimesTen In-
Memory Database Reference for more information.

This section contains the following topics:

• Configuring TimesTen Data Sources

• Improving Use of System Memory Resources with TimesTen Data Sources

• Configuring OBIS to Access the TimesTen DLL on Windows

See Enabling NUMERIC Data Type Support for Oracle Database and TimesTen.

Configuring TimesTen Data Sources
You must configure TimesTen before you can use it as a data source for Oracle
Business Intelligence.

1. On the computer where TimesTen has been installed, create a Data Manager
DSN, as a system DSN.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-8



2. Perform an initial connection to the data store to load the TimesTen database into
memory, and then create users and grant privileges. The default user of the data
store is the instance administrator, or in other words, the operating system user
who installed the database.

3. On the computer running the Oracle BI Server, install the TimesTen Client.

4. On the computer where the TimesTen Client has been installed, create a Client
DSN, as a system DSN.

If the TimesTen database is installed on the same computer as the TimesTen client,
you can specify either the Data Manager DSN or the Client DSN in the Import
Metadata Wizard.

After importing data from your TimesTen source, or when manually setting up a
database object and connection pool, ensure that your database type and version are
set correctly in the Database field of the General tab of the Database dialog. You must
also ensure that the Call interface field in the General tab of the Connection Pool
dialog is set correctly. See:

• Creating a Database Object Manually in the Physical Layer

• Setting Connection Pool Properties in the General Tab

• Oracle Exalytics In-Memory Machine for specific instructions on setting up
TimesTen sources on the Oracle Exalytics Machine

See System Requirements and Certification for supported TimesTen versions for
Oracle Business Intelligence.

Improving Use of System Memory Resources with TimesTen Data Sources
To improve the use of system memory resources, Oracle recommends that you
increase the maximum number of connections for the TimesTen server.

1. In your TimesTen environment, open the ttendaemon.options file for editing. You
can find this file at:

install_dir\srv\info

2. Add the following line:

-MaxConnsPerServer number_of_connections

To determine number_of_connections, use the following formula: if there are M
connections for each connection pool in the Oracle BI repository, N connection
pools in the Oracle BI repository, and P Oracle BI Servers, then the total number
of connections required is M * N * P.

3. Save and close the file.

4. In the ODBC DSN you are using to connect to the TimesTen server, set the
Connections parameter to the same value you entered in Step 2:

• On Windows, open the TimesTen ODBC Setup wizard from the Windows
ODBC Data Source Administrator. The Connections parameter is located in
the First Connection tab.

• On UNIX, open the odbc.INI file and add the Connections attribute to the
TimesTen DSN entry, as follows:

Connections=number_of_connections

Chapter 5
Performing Data Source Preconfiguration Tasks

5-9



5. Stop all processes connecting to TimesTen, such as the ttisql process and the
Oracle BI Server.

6. Stop the TimesTen process.

7. After you have verified that the TimesTen process has been stopped, restart the
TimesTen process.

Note:

To avoid lock timeouts, you might also want to adjust the LockWait interval
for the connection as appropriate for your deployment. See LockWait in
TimesTen In-Memory Database Reference Guide for more information.

Configuring OBIS to Access the TimesTen DLL on Windows
If the user that starts OBIS does not have the path to the TimesTen DLL
($TIMESTEN_HOME\lib) in their operating system PATH variable, then you must add
the TimesTen DLL path as a variable in the obis.properties file.

1. Open obis.properties for editing. You can find obis.properties at:

BI_DOMAIN\config\fmwconfig\bienv\obis

2. Add the required TimesTen variable TIMESTEN_DLL, and also update the
LD_LIBRARY_PATH variable, as shown in the following example.

TIMESTEN_DLL=$TIMESTEN_HOME\lib\libttclient.so
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TIMESTEN_HOME\lib

3. Save and close the file.

4. Restart OBIS1.

5. Repeat these steps on each computer that runs the Oracle BI Server process. If
you are running multiple Oracle BI Server instances on the same computer, be
sure to update the ias-component tag appropriately for each instance in
obis.properties, for example, ias-component id="coreapplication_obis1”, and ias-
component id="coreapplication_obis2".

About Setting Up Essbase Data Sources
The Oracle BI Server uses the Essbase client libraries to connect to Essbase data
sources.

The Essbase client libraries are installed by default with Oracle BI EE. No additional
configuration is required to enable Essbase data source access for full installations of
Oracle BI EE.

See Configuring SSO for Essbase, Hyperion Financial Management, or Hyperion
Planning Data Sources for configuration used for authentication using a shared token
against Essbase installed with the EPM System Installer.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-10



About Setting up Cloudera Impala Data Sources
These topics provide information about Windows ODBC drivers and Cloudera Impala
Metadata.

Use the information in this section to set up Cloudera Impala data sources in the
Oracle BI repository.

• Obtaining Windows ODBC Driver for Cloudera

• Importing Cloudera Impala Metadata Using the Windows ODBC Driver

Obtaining Windows ODBC Driver for Cloudera
If you performed a client installation, then you do not have the Windows ODBC driver
required for you to import Cloudera Impala metadata.

If you used the Oracle Business Intelligence Installer to install the Oracle BI
Administration Tool, then you do not have to perform this procedure.

1. Go to Cloudera's website.

2. Click the Downloads link and then click the Impala ODBC Drivers & Connectors
link.

3. In the Download list, locate the required ODBC driver for your Administration Tool
platform and click Download Bits to download the installer.

4. Run the ODBC driver installer to install the driver.

Importing Cloudera Impala Metadata Using the Windows ODBC Driver
Cloudera Impala is a massively parallel processing (MPP) SQL query engine that runs
natively in Apache Hadoop. Perform this procedure to import Cloudera Impala
metadata into the Oracle BI repository.

To perform this procedure, you must have the required Windows ODBC driver. If you
have a client installation of the Administration Tool, then you must follow the Obtaining
Windows ODBC Driver for Cloudera procedure to install the required Windows ODBC
driver.

1. In Windows, locate and open the ODBC Data Source Administrator.

2. In the ODBC Data Source Administrator dialog, click the System DSN tab, and
then click Add.

3. In the driver list, locate and select a Cloudera Impala driver. Click Finish.

4. In Cloudera ODBC Driver for Impala DSN Setup, enter the connection details for
your Impala instance in these fields:

• In the Data Source Name field, enter the data source name specified in the
connection pool defined in the repository.

• In the Host field, enter the fully qualified host name or the IP address.

• In the Port field, enter the port number. The default is 21050.

• In the Database field, specify the database. This value is usually Default.

5. If you are setting up a data source for Cloudera Impala driver, then click Test.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-11



6. If you are setting up a data source for DataDirect Impala driver, then click Test
Connect.

7. In the Administration Tool, select File, then select Import Metadata.

8. In the Import Metadata wizard, on the Select Data Source screen, confirm that
ODBC 3.5 displays in the Connection Type field.

9. Select the Impala DSN, provide a user name and password, and click Next.

10. In the Select Metadata Types screen, click Next to accept the default values.

11. In the Select Metadata Objects screen, go to the Data source view list and select
the Impala tables for import and click the > (Import selected) button to move them
to the Repository view list.

12. Click Finish.

13. In the Physical Layer of the repository, double click the Impala database. The
Database dialog appears.

14. In the Database type field, choose Cloudera Impala, and click OK.

15. Click Save to save the repository.

16. (Optional) Model the newly imported data as necessary in the Business Model and
Mapping layer and the Presentation layer.

About Setting Up Apache Hive Data Sources
These topics provide information about Windows ODBC drivers and Apache Hive.

This section contains the following topics:

• Obtaining Windows ODBC Driver for Client Installation

• Limitations on the Use of Apache Hive with Oracle Business Intelligence

Obtaining Windows ODBC Driver for Client Installation
If you have a client install of the Administration Tool, you do not have the Windows
ODBC driver required for you to import Apache Hive metadata.

To obtain the Windows driver required to perform the import, log in to the My Oracle
Support web site support.oracle.com and access DocID 1520733.1. The technical note
associated with this DocID includes the required Windows driver, together with the
instructions to install the driver and to perform the metadata import from the Hive data
source.

Limitations on the Use of Apache Hive with Oracle Business Intelligence
These topics describes the limitations on the use of Hadoop and Hive with Oracle
Business Intelligence.

This section contains the following topics:

• Hive Limitation on Dates

• Hive Does Not Support Count (Distinct M) Together with Group By M

• Hive Does Not Support Differing Case Types

• Exception Thrown for Locate Function with an Out-of-Bounds Start Position Value

Chapter 5
Performing Data Source Preconfiguration Tasks

5-12



• Hive May Crash on Queries Using Substring

• Hive Does Not Support Create Table

• Hive May Fail on Long Queries With Multiple AND and OR Clauses

• Queries with Subquery Expressions May Fail

• Hive Does Not Support Distinct M and M in Same Select List

Hive Limitation on Dates
There are limitations with the DATE type with Hive data sources.

Hive supports the Timestamp data type. Use the DATE or DATETIME data type for
timestamp columns in the repository's Physical layer.

Hive Does Not Support Count (Distinct M) Together with Group By M
Learn the limitations of Hive data sources.

Queries similar to the following could cause Hive to crash.

• SELECT M, COUNT(DISTINCT M) ... FROM ... GROUP BY M ...

The situation occurs when the attribute in the COUNT(DISTINCT... definition is queried
directly and if that attribute is also part of the table or foreign key or level key.

Note:

Because COUNT(DISTINCT X) together with GROUP BY X always results in the
count value of 1, a significant number of occurrences of this case are unlikely
to happen.

To avoid this error when using COUNT(DISTINCT...) on a measure, do not include the
exact attribute or any attribute in the same level.

Hive Does Not Support Differing Case Types
Hive requires a strict check on types of the various parts of the Case statement.

This causes a presentation query such as the following to fail in Hive:

select supplierid, case supplierid when 10 then 'EQUAL TO TEN' when 20 then 
'EQUAL TO TWENTY' else 'SOME OTHER VALUE' end as c2 from supplier order by c2
asc, 1 desc 

The full error message in Hive for this query is:

FAILED: Error in semantic analysis: Line 2:32 Argument type mismatch '10': 
The expressions after WHEN should have the same type with that after CASE: 
"smallint" is expected but "int" is found 

Exception Thrown for Locate Function with an Out-of-Bounds Start Position Value
Learn how to use the Locate function’s syntax.

The full syntax of the Locate function is of the form:

Chapter 5
Performing Data Source Preconfiguration Tasks

5-13



LOCATE ( charexp1, charexp2, [, startpos] )

where charexp1 is the string to search for within the string charexp2.

The optional parameter startpos is the character position within charexp2 at which to
begin the search.

If startpos has a value that is longer than the length of charexp2, such as in the
following example:

select locate('c', 'abcde', 9) from employee 

then Hive throws an exception instead of returning 0.

Hive May Crash on Queries Using Substring
Some queries that use the Substring function with a start position parameter value
might cause Hive to crash.

The following might cause Hive to crash:

select substring(ProductName, 2) from Products 

Hive Does Not Support Create Table
As the Apache Hive ODBC driver does not support SQLTransact, which is used for
creating tables, CREATE TABLE is not supported by Hive.

Hive May Fail on Long Queries With Multiple AND and OR Clauses
The examples show conditions that could cause Hive data sources to fail.

The following WHERE clauses are examples of conditions that might cause queries to fail
in Hive due to their excessive length:

Example 1

        WHERE (Name = 'A' AND Id in (1))
           OR (Name = 'B' AND Id in (2))
           OR  .......
           OR (Name = 'H' AND Id in (8))

Example 2

        WHERE (Id BETWEEN '01' AND '02')
           OR (Id BETWEEN '02' AND '03')
           OR  .......
           OR (Id BETWEEN '07' AND '08'))

Long queries could fail in Hive especially if the queries have conditions with multiple OR
clauses each grouping together combinations of AND and BETWEEN sub-clauses as
shown in the preceding examples.

Queries with Subquery Expressions May Fail
Queries with subquery expressions might fail in Hive.

If subquery expressions are used, the physical query that Oracle BI Server generates
could include mixed data types in equality conditions. Because of Hive issues in
equality operators, you could get an incorrect query result.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-14



For example, for the following query:

select ReorderLevel from Product where ReorderLevel in 
  (select AVG(DISTINCT ReorderLevel) from Product);

Oracle BI Server generates the following physical query that includes 'ReorderLevel =
15.0' where ReorderLevel is of type Int and 15.0 is treated as Float:

Select T3120.ReorderLevel as c1 from Products T3120 
 where (T3120.ReorderLevel = 15.0) 

You can correct the mixed data types issue using the following command:

select ReorderLevel from Product where ReorderLevel in 
  (select cast(AVG(DISTINCT ReorderLevel) as integer) from Product);

Hive Does Not Support Distinct M and M in Same Select List
Learn about the limitations for using Select with Hive data sources.

Queries of the following form are not supported by Hive:

• SELECT DISTINCT M, M  ... FROM TABX

About Setting Up Hyperion Financial Management Data Sources
Use these required steps to configure the Hyperion Financial Management data
source.

Hyperion Financial Management 11.1.2.3.x or 11.1.2.4.x can use the ADM native
driver or the ADM thin client driver. You can install and configure the ADM thin client
driver on Linux and Solaris operating system.

Note:

You can use the Hyperion Financial Management 11.1.2.3.x and 11.1.2.4.x
data sources with Oracle BI EE running in a Windows, Solaris, or Linux
deployment.

Hyperion Financial Management ADM driver includes the ADM native driver and ADM
thin client driver. For both Windows and Linux deployments, ensure that you perform
the configuration using the Enterprise Performance Management Configurator.

• In the Windows and Linux configurations, provide the details for the Hyperion
Shared Services Database to register with the Foundation server and the Hyperion
Financial Management server.

• During configuration, make sure to enable DCOM configuration.

• If you are configuring for Windows, then in the DCOM User Details page, enter a
domain user as the user for connecting to the Hyperion Financial Management
server. If you are configuring the ADM thin client driver for Linux, then you do not
need to perform this step.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-15



In addition, you must edit the obijh.properties file on each system that is running the
Oracle Business Intelligence JavaHost process to include environment variables that
are required by Hyperion Financial Management.

Note:

The JavaHost process must be running to import from Hyperion Financial
Management data sources, for both offline and online imports. If you have a
client installation of the Administration Tool, then see Performing Additional
Hyperion Configuration for Client Installations for JavaHost configuration
steps.

Important:

You should always use forward slashes (/) instead of backslashes (\) when
configuring the EPM paths in the obijh.properties file.

Forward slashes are required in the EPM paths on Windows. Backslashes
do not work when configuring the EPM paths in the obijh.properties file.

1. Locate the obijh.properties at:

ORACLE_HOME/bi/modules/oracle.bi.cam.obijh/env/obijh.properties

2. Open the obijh.properties file for editing.

3. Append the following to the OBIJH_ARGS variable:

DEPM_ORACLE_HOME=C:/Oracle/Middleware/EPMSystem11R1 
-DEPM_ORACLE_INSTANCE=C:/Oracle/Middleware/user_projects/epmsystem1 
-DHFM_ADM_TRACE=2

4. Add the following variables to the end of the obijh.properties file:

EPM_ORACLE_HOME=C:/Oracle/Middleware/EPMSystem11R1

EPM_ORACLE_INSTANCE=C:/Oracle/Middleware/user_projects/
epmsystem1

5. Locate the loaders.xml file in:

ORACLE_HOME/bi/bifoundation/javahost/config/loaders.xml

6. In the loaders.xml file, locate <!-- BI Server integration code -->.

7. In the <ClassPath>, add the fm-adm-driver.jar, fm-web-objectmodel.jar,
epm_j2se.jar, and epm_hfm_web.jar files using the format shown in the following:

<ClassPath>
{%EPM_ORACLE_HOME%}/common/hfm/11.1.2.0/lib/fm-adm-driver.jar;
{%EPM_ORACLE_HOME%}/common/hfm/11.1.2.0/lib/fm-web-objectmodel.jar;
{%EPM_ORACLE_HOME%}/common/jlib/11.1.2.0/epm_j2se.jar;
{%EPM_ORACLE_HOME%}/common/jlib/11.1.2.0/epm_hfm_web.jar;
</ClassPath>

8. Save and close the file.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-16



9. Go to the ORACLE_HOME/bi/bifoundation/javahost/lib/
obisintegration/adm directory and delete all jar files except for
admintegration.jar and admimport.jar.

10. Restart OBIS1.

11. Repeat these steps on each computer that runs the Oracle Business Intelligence
JavaHost process.

Performing Additional Hyperion Configuration for Client Installations
If you install the Administration Tool using the Oracle Business Intelligence Enterprise
Edition Plus Client Installer, you must perform additional configuration before you can
perform offline imports from Hyperion Financial Management data sources.

When importing from Hyperion Financial Management data sources in offline mode,
the Administration Tool must point to the location of a running JavaHost.

The steps in this section are only required for client installations of the Administration
Tool.

1. Close the Administration Tool.

2. On the same computer as the Administration Tool, open the local, use a text editor
to open the NQSConfig.INI file located in:

BI_DOMAIN\config\fmwconfig\biconfig\OBIS

3. Locate the JAVAHOST_HOSTNAME_OR_IP_ADDRESSES parameter.

4. Update the JAVAHOST_HOSTNAME_OR_IP_ADDRESSES parameter to point to a running
JavaHost, using a fully-qualified host name or IP address and port number. For
example:

JAVAHOST_HOSTNAME_OR_IP_ADDRESSES = "myhost.example.com:9810"

Note:

In a full (non-client) Oracle Business Intelligence installation, you cannot
manually edit the JAVAHOST_HOSTNAME_OR_IP_ADDRESSES setting because it is
managed by Fusion Middleware Control.

5. Save and close the file.

Setting Up SAP/BW Data Sources
You can connect to SAP/BW data sources using either the XMLA connection type, or
the SAP BW Native connection type (BAPI).

You should verify that SAP BW Native connections are available for your platform.

See System Requirements and Certification.

To connect to SAP/BW data sources using the SAP BW Native connection type, you
must first download the OBIEE BAPI Adapter for SAP .

Follow the configuration instructions in the documentation provided with the download.

No preconfiguration steps are required to connect to SAP/BW over XMLA.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-17



Setting Up Oracle RPAS Data Sources
Oracle BI Server can connect to Oracle RPAS (Retail Predictive Application Server)
data sources through ODBC DSNs.

To set up Oracle RPAS data sources, you must first install the Oracle RPAS ODBC
driver. During set up of the ODBC DSN, you must select the SQLExtendedFetch
option, select DBMS from the Authentication Method list, and select No from the
Normalize Dimension Tables list. See About Importing Metadata from Oracle RPAS
Data Sources.

On Windows systems, you can connect to Oracle RPAS data sources for both initial
import and for access to the data source during query execution. On UNIX systems,
you can only connect to Oracle RPAS data sources for data access.

See Configuring Oracle RPAS ODBC Data Sources on AIX UNIX.

Setting Up Teradata Data Sources
You can use ODBC to access Teradata data sources.

See Setting Up ODBC Data Source Names (DSNs).

After you have installed the latest Teradata ODBC driver and set up an ODBC DSN,
you must add the lib directory for your Teradata data source to your Windows system
Path environment variable. For example:

C:\Program Files\Teradata\Client\15.00\ODBC Driver for Teradata nt-x8664\Lib

You must edit obis.properties on each computer running the Oracle BI Server to
include required Teradata variables.

1. Open obis.properties located in:

BI_DOMAIN\config\fmwconfig\bienv\obis

2. In PATH, LD_LIBRARY_PATH, and LIBPATH enter the required variable information as
shown in the following example.

PATH=C:\Program Files\Teradata\Client\15.00\ODBC Driver for Teradatant-x8664\Lib;
LD_LIBRARY_PATH=C:\Program Files\Teradata\Client\15.00\ODBC Driver forTeradata 
nt-x8664\Lib;
LIBPATH=C:\Program Files\Teradata\Client\15.00\ODBC Driver for Teradatant-
x8664\Lib; 

Chapter 5
Performing Data Source Preconfiguration Tasks

5-18



Note:

If you use the default location when installing the Teradata client, then
the PATH variable might exceed the 1024 character limit imposed by
Windows. To avoid this issue, install the Teradata client in a directory
with a shortened path name such as C:\TD, or use shortened 8.3 file
names such as C:\PROGRA~1\Teradata\Client\13.10\ODBCDR~1\Bin instead
of C:\Program Files\Teradata\Client\13.10\ODBC Driver for Teradata
\Bin.

To determine the correct 8.3 file names, run dir /x from the appropriate
directory. For example:

C:\>dir /x
 Volume in drive C has no label.
 Volume Serial Number is 0000-XXXX
 Directory of C:\
08/25/2008  03:36 PM   <DIR>    DATAEX~1    DataExplorer
04/20/2007  01:38 PM   <DIR>                dell
08/28/2010  10:49 AM   <DIR>    DOCUME~1    Documents and Settings
07/28/2008  04:50 PM   <DIR>    ECLIPS~2    EclipseWorkspace
09/07/2007  11:50 AM   <DIR>                Ora92
09/07/2007  11:50 AM   <DIR>                oracle
05/21/2009  05:15 PM   <DIR>                OracleBI
05/21/2009  05:12 PM   <DIR>    ORACLE~1    OracleBIData
03/02/2011  04:51 PM   <DIR>    PROGRA~1    Program Files

3. Save and close the file.

4. Restart OBIS1.

5. Repeat these steps on each computer that runs the Oracle BI Server process. If
you are running multiple Oracle BI Server instances on the same computer, be
sure to update the ias-component tag appropriately for each instance in
obis.properties, for example, ias-component id="coreapplication_obis1" and ias-
component id="coreapplication_obis2".

Avoiding Spool Space Errors for Queries Against Teradata Data Sources
Some queries against Teradata might get a No more spool space error from the data
source.

This error can occur for DISTINCT queries resulting from selecting All Choices in the
Filters pane in Answers.

To avoid this error, you can ensure that the Oracle BI Server rewrites the query to use
GROUP BY rather than DISTINCT for these queries by ensuring that the following
conditions are met:

• There is only one dimension column in the projection list, and it is a target column
rather than a combined expression.

• The original query from Answers is requesting DISTINCT, and does not include a
GROUP BY clause

• The FROM table is a real physical table rather than an opaque view.

• The FROM table is an atomic table, not a derived table.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-19



• The following ratio must be less than the threshold:

(the distinct number of the projected column) / (number of rows of FROM table)

Both values used in this ratio come from the repository metadata. To populate
these values, click Update Row Count in the Administration Tool for both of the
following objects:

– The FROM physical table

– The physical column for the projected column

By default, the threshold for this ratio is 0.15. To change the threshold, create an
environment variable on the Oracle BI Server computer called
SA_CHOICES_CNT_SPARSITY and set it to the new threshold.

Enabling NUMERIC Data Type Support for Oracle Database and
TimesTen

You can enable NUMERIC data type support for Oracle Database and TimesTen data
sources.

When NUMERIC data type support is enabled, NUMBER columns in Oracle Database
and TimesTen data sources are treated as NUMERIC in Oracle Business Intelligence
to provide greater precision. In addition, literals are instantiated as NUMERIC instead
of DOUBLE for Oracle Database and TimesTen data sources.

See Numeric Literals in the Logical SQL Reference Guide for Oracle Business
Intelligence Enterprise Edition.

1. Set ENABLE_NUMERIC_DATA_TYPE to YES in NQSConfig.INI file located in BI_DOMAIN/
config/fmwconfig/biconfig/OBIS.

2. Enable the NUMERIC_SUPPORTED database feature in the Physical layer
database object. See Specifying SQL Features Supported by a Data Source for
more about how to set database features.

The decimal/numeric data from other database types is mapped as DOUBLE when the
ENABLE_NUMERIC_DATA_TYPE parameter is set to YES.

The data type of physical columns imported prior to changing the
ENABLE_NUMERIC_DATA_TYPE setting remain unchanged. For existing DOUBLE physical
columns, you must manually update the data type to NUMBER as needed.

Cast numeric data types to other number data types, and cast other number data
types to numeric data types.

Numeric data type support is not available when using the Oracle BI Server JDBC
driver.

Your performance overhead could increase when numeric data types are enabled
resulting from the higher number of bits for numeric data.

Configuring Essbase to Use a Shared Logon
Shared logon is required and enabled by default for all Essbase connection pools.

You cannot disable the Shared logon setting in the General tab of the Connection Pool
Properties dialog.

Chapter 5
Performing Data Source Preconfiguration Tasks

5-20



Configuring SSO for Essbase, Hyperion Financial Management, or
Hyperion Planning Data Sources

If you use Hyperion Financial Management, or Hyperion Planning installed with the
EPM System Installer as a data source for the Oracle BI Server, then you need to
authenticate using a shared token.

If you use Hyperion Financial Management, or Hyperion Planning installed with the
EPM System Installer as a data source for the Oracle BI Server, then you need to
authenticate using a shared token. For Hyperion Financial Management or Hyperion
Planning, you can use either a CSS token or an SSO token.

The Oracle Business Intelligence user and the Enterprise Performance Management
user must use the same identity store.

Note:

Essbase no longer supports CSS token based authentication. As a result,
you must update the connection pools to use EssLoginAs authentication.
EssLoginAS authentication provides reliable and better performance than
CSS token based authentication, and provides the shared logon credentials
of the Essbase administrator in the connection pool.

Importing Metadata from Relational Data Sources
You can import metadata for supported relational data source types by selecting the
appropriate connection type in the Import Metadata Wizard.

To import metadata, you must have all database connections set up on your local
computer. You can import metadata in both offline and online modes.

See Importing Metadata from Multidimensional Data Sources and Working with ADF
Data Sources.

When you import physical tables, be careful to limit the import to only those tables that
contain data that are likely to be used in the business models you create. You can use
the Find feature to locate and select the tables that you want to import. Importing large
numbers of extraneous tables and other objects adds unnecessary complexity and
increases the size of the repository.

When you import metadata for most data sources, the default is to import tables,
primary keys, and foreign keys. It is recommended that you import primary and foreign
keys along with your tables so that the keys are automatically created in the Physical
layer. If you do not import keys, you must create them manually, which can be a time-
consuming process.

You can also import database views, aliases, synonyms, and system tables. Import
these objects only if you want the Oracle BI Server to generate queries against them.

If you are importing metadata into an existing database in the Physical layer, then
confirm that the COUNT_STAR_SUPPORTED option is selected in the Features tab
of the Database properties dialog. If you import metadata without the

Chapter 5
Importing Metadata from Relational Data Sources

5-21



COUNT_STAR_SUPPORTED option selected, then the Update Row Count option
cannot display in the right-click menu for the database's physical tables.

Other data source types are described in other sections:

• See Importing Metadata from Multidimensional Data Sources for Essbase, XMLA,
Oracle OLAP, Hyperion ADM, and SAP BW Native. This section also describes
importing from Oracle RPAS data sources over ODBC 3.5.

• See About Importing Metadata from XML Data Sources for XML.

• See Working with ADF Data Sources for OracleADF_HTTP.

If you want to import joins, select both Keys and Foreign Keys. If you want to import
system tables, you must have the system privilege for your data source. To import
from Customer Relationship Management (CRM) tables, select Metadata from CRM
tables.

To search for a particular item, enter a keyword in the Find box and then click Find
Down or Find Up.

1. In the Administration Tool, select File, then select Import Metadata.

2. In the Select Data Source screen, in the Connection Type field, select the type of
connection appropriate for your data source, such as ODBC 3.5.

Make sure to choose OCI 10/11g if your data source is an Oracle Database. Using
OCI as your connection protocol to an Oracle Database ensures better
performance and provides access to native database features that are not
available through ODBC.

Note:

For non-Oracle databases, it is recommended that you use ODBC 3.5 or
DB2 CLI (Unicode) for importing schemas with International characters,
such as Japanese table and column names.

The remaining fields and options on the Select Data Source screen vary according
to the connection type you selected:

• For ODBC 2.0 and ODBC 3.5 data sources, in the DSN list, select a data
source to import the schema. Then, provide a valid user name and password
for the data source.

• For OCI 10/11g and DB2 CLI (Unicode) data sources, provide the name of
the data source in the Data Source Name field, then provide a valid user
name and password for the data source.

For Oracle Database data sources, the data source name is either a full
connect string or a net service name from the tnsnames.ora file. If you enter a
net service name, you must ensure that you have set up a tnsnames.ora file
within the Oracle BI EE environment, in:

BI_DOMAIN\config\fmwconfig\bienv\core

When you have finished providing information in the Select Data Source screen,
click Next. The Select Metadata Types screen appears.

Chapter 5
Importing Metadata from Relational Data Sources

5-22



If some objects could not be imported, a list of warning messages appears. In the
dialog displaying the messages, you can perform the following actions:

• To search for specific terms, click Find and then Find Again.

• To copy the contents of the window so that you can paste the messages in
another file, click Copy.

3. Select the objects types to import such as Tables, Keys, and Foreign Keys.

4. Click Next. The Select Metadata Objects screen appears.

5. Select the objects to import in the Available list and move them to the Selected
list, using the > (Import selected) or >> (Import all) buttons.

6. (Optional) Select Show complete structure to view all objects.

Deselecting this option shows only the objects that are available for import.

7. Click Finish.

After you import metadata, you should check to ensure that your database and
connection pool settings are correct. In rare cases, the Oracle BI Server cannot
determine the exact database type during import and instead assigns an approximate
type to the database object. See Setting Up Database Objects and Creating or
Changing Connection Pools.

Visually inspect the imported data in the Physical layer such as physical columns and
tables to ensure that the import completed successfully.

Importing Metadata from Multidimensional Data Sources
You can import metadata from a multidimensional data source to the Physical layer of
the Oracle BI repository.

Using multidimensional data sources enables the Oracle BI Server to connect to and
extract data from a variety of sources.

During the import process, each cube in a multidimensional data source is created as
a single physical cube table. The Oracle BI Server imports the cube metadata,
including its metrics, dimensions, and hierarchies. After importing the cubes, you need
to verify that the physical cube columns have the correct aggregation rule, and that the
hierarchy type is correct. See Working with Physical Hierarchy Objects.

Note:

Manually creating a physical schema from a multidimensional data source is
labor-intensive and error prone. Therefore, it is strongly recommended that
you use the import method.

Oracle recommends removing hierarchies and columns from the Physical layer if you
are not going to use the hierarchies and columns in the business model. Eliminating
unnecessary objects in the Administration Tool could result in better performance.

If you are importing metadata into an existing database in the Physical layer, confirm
that the COUNT_STAR_SUPPORTED option is selected on the Features tab in the
Database properties dialog. If you import metadata without the

Chapter 5
Importing Metadata from Multidimensional Data Sources

5-23



COUNT_STAR_SUPPORTED option selected, the Update Row Count option does
not display in the right-click menu for the database's physical tables.

See Multidimensional Connection Options.

1. In the Administration Tool, do one of the following:

• Select File, then select Import Metadata.

• From an existing database, right-click the connection pool in the Physical layer
and select Import Metadata.

2. In Select Data Source, in the Connection Type field, select the type of connection
appropriate for your data source, and click Next.

3. In Select Metadata Types (only Oracle RPAS data sources), select Tables,
Keys, and Foreign Keys and then, click Next.

4. In Select Metadata Objects, from the Available list, select the objects to import
using the Import >, or Import All >>.

5. Select Import UDAs if you want to import user-defined attributes (UDAs) from an
Essbase data source.

6. Click Finish.

A list of warning messages display if some objects were not imported. Resolve the
issues as needed.

After you import metadata, you should verify that your database and connection pool
settings are correct. In rare cases, the Oracle BI Server cannot determine the exact
database type during import and instead assigns an approximate type to the database
object. See Setting Up Database Objects and Creating or Changing Connection Pools.

Visually inspect the imported data in the Physical layer such as physical columns and
hierarchical levels to confirm that the import completed successfully.

For Essbase data sources, all hierarchies are imported as Unbalanced by default.
Review the Hierarchy Type property for each physical hierarchy and change the
value if necessary. Supported hierarchy types for Essbase are Unbalanced, Fully
balanced, and Value.

Multidimensional Data Source Connection Options
In the Oracle BI Administration Tool when importing multidimensional data sources
into your repository, you can use these connection types in the Import Metadata
wizard’s Select Data Source page.

ODBC 3.5

The ODBC 3.5 connection type is used for Oracle RPAS data sources. Select the DSN
entry and provide the user name and password for the selected data source. See 
Setting Up ODBC Data Source Names (DSNs).

Essbase 9+

Use Essbase 9+ connection type for Essbase 9 or Essbase 11 data sources. Provide
the host name of the computer where the Essbase Server is running in the Essbase
Server field, then provide a valid user name and password for the data source. This
information should be obtained from your data source administrator.

Chapter 5
Importing Metadata from Multidimensional Data Sources

5-24



If the Essbase Server is running on a non-default port or in a cluster, include the port
number in the Essbase Server field as hostname:port_number. See Working with
Essbase Data Sources.

XMLA

Use the XMLA connection type for Microsoft Analysis Services and SAP/BW. Enter the
URL of a data source from which to import the schema. You must specify the Provider
Type such as Analysis Services 2000 or SAP/BW 3.5/7.0, and a valid user name and
password for the data source.

You can use a new or existing Target Database.

Oracle OLAP

Provide the net service name in the Data Source Name field, and a valid user name
and password for the data source. The data source name is the same as the entry you
created in the tnsnames.ora file in the Oracle Business Intelligence environment. You
can also choose to enter a full connect string rather than the net service name.
Provide the URL of the biadminservlet. The servlet name is services, for example:

http://localhost:9704/biadminservlet/services

You must start the biadminservlet before you can use it. Check the status of the
servlet in the Administration Console if you receive an import error. You can also
check the Administration Server diagnostic log and the Domain log.

See Working with Oracle OLAP Data Sources.

You can use data sources from an Oracle Database data sources and the OLAP
connection type. The data source can contain both relational tables and
multidimensional tables. You should avoid putting multidimensional and relational
tables in the same database object because you might need to specify different
database feature sets for the different table types.

For example, Oracle OLAP queries fail if the database feature
GROUP_BY_GROUPING_SETS_SUPPORTED is enabled. However, you might need to
GROUP_BY_GROUPING_SETS_SUPPORTED enabled for Oracle Database relational tables.

You should create two separate database objects, one for relational tables, and one
for multidimensional tables.

Hyperion ADM

Provide the URL for the Hyperion Financial Management or Hyperion Planning server.

For Hyperion Financial Management 11.1.2.1 and 11.1.2.2 using the ADM native
driver, include the driver and application name (cube name), in the following format:

adm:native:HsvADMDriver:ip_or_host:application_name

For example:

adm:native:HsvADMDriver:192.0.2.254:UCFHFM

For Hyperion Financial Management 11.1.2.3 and 11.1.2.4 use the ADM thin client
driver, and include the driver and application name (cube name) as follows:

adm:thin:com.hyperion.ap.hsp.HspAdmDriver:ip_or_host:port:application_name

Chapter 5
Importing Metadata from Multidimensional Data Sources

5-25



For example:

adm:thin:com.hyperion.ap.hsp.HspAdmDriver:192.0.2.254:8300:UCFHP

For Hyperion Planning 11.1.2.4 or later, the installer does not deliver all of the required
client driver .jar files. To ensure that you have the required .jar files, go to your
instance of Hyperion, locate and copy the adm.jar, ap.jar, and HspAdm.jar files, and
paste the files into MIDDLEWARE_HOME\oracle_common\modules.

For Hyperion Planning 11.1.2.4 or later using the ADM thin client driver, include the
driver and application name (cube name), in the following format:

adm:thin:com.oracle.hfm.HsvADMDriver:server:application_name

Select the provider type and enter a valid user name and password for your data
source.

Before importing metadata, start the JavaHost process for both offline and online
imports.

See Working with Hyperion Financial Management and Hyperion Planning Data
Sources.

Review and complete the pre-configuration steps in About Setting Up Hyperion
Financial Management Data Sources before importing.

SAP BW Native

The SAP BW Native connection type requires the following information:

• System IP or Hostname: The host name or IP address of the SAP data server.
This field corresponds to the parameter ashost in the SAP/BW connect string.

• System Number: The SAP system number. This is a two-digit number assigned to
an SAP instance, also called Web Application Server, or WAS. This field
corresponds to the parameter sysnr in the SAP/BW connect string.

• Client Number: The SAP client number. This is a three-digit number assigned to
the self-contained unit called Client in SAP. A Client can be a training,
development, testing, or production client, or it can represent different divisions in
a large company. This field corresponds to the parameter client in the SAP/BW
connect string.

• In Language supply the SAP language code used when logging into the data
source, for example, EN for English or DE for German. The Language field
corresponds to the value in the lang parameter in the SAP/BW connect string.

• When supplying additional parameters in the connection string user the format
param=value. Delimit multiple parameters with a colon.

• Provide a valid User Name: A valid user name and password for the data source.

The first five fields constitute the elements of the SAP/BW connect string, in the
format:

ashost=value:sysnr=value:client=value:lang=value:
additional_param=value

For example:

ashost=10.30.0.19:sysnr=00:client=100:lang=EN

Chapter 5
Importing Metadata from Multidimensional Data Sources

5-26



About Importing Metadata from Oracle RPAS Data Sources
Learn about using the Oracle BI Administration to import metadata from Oracle RPAS.

When using the Administration Tool to import metadata from Oracle RPAS:

• Oracle RPAS schemas can only be imported on Windows.

• Before you import RPAS schemas, you must set the Normalize Dimension
Tables field value in the ODBC DSN Setup page to Yes for the following reasons:

– Setting this value to Yes uses an appropriate schema model (the snowflake
schema) that creates joins correctly and enables drill down in the data.

– Setting this value to No uses a star schema model that creates joins between
all of the tables, causing an incorrect drill down. Many of the joins created in
the star schema more are unnecessary. You should remove the unnecessary
joins manually.

See Setting Up ODBC Data Source Names (DSNs).

• When you import RPAS schemas in the Administration Tool, you must import the
data with joins. To do this, select the metadata types Keys and Foreign Keys in
the Import Metadata Wizard.

• After you have imported RPAS schemas, you must change the Normalize
Dimension Tables field value in the ODBC DSN Setup page back to No. You
need to revert this setting back to No after import to enable the Oracle BI Server to
correctly generate optimized SQL against the RPAS driver.

If you do not change the Normalize Dimension Tables setting value to No, most
queries fail with an error message similar to the following:

[nQSError: 16001] ODBC error state: S0022 code: 0 message: [Oracle Retail][RPAS 
ODBC]Column:YEAR_LABEL not found..[nQSError: 16014] SQL statement preparation 
failed. Statement execute failed.

• If Oracle RPAS is the only data source, you must set the value of
NULL_VALUES_SORT_FIRST to ON in the NQSConfig.INI file. See System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition for setting values in
NQSConfig.INI.

After you import metadata from an Oracle RPAS data source, a database object for
the schema is automatically created. Depending on your version of RPAS, you might
need to adjust the data source definition in the Database property.

If RPAS is specified in the data source definition Database field and the version of
RPAS is prior to 1.2.2, then the Oracle BI Server performs aggregate navigation when
the SQL is generated and sent to the database. Because the table name used in the
generated SQL is automatically generated, a mismatch between the generated SQL
and the database table name could result. To enable the SQL to run, you must:

• Change the names of tables listed in the metadata so that the generated names
are correct.

• Create tables in the database with the same names as the generated names.

If the database does not have tables with the same name or if you want to have the
standard aggregate navigation within Oracle Business Intelligence, then you must
change the data source definition Database field from RPAS to ODBC Basic. See 
Creating a Database Object Manually in the Physical Layer.

Chapter 5
Importing Metadata from Multidimensional Data Sources

5-27



About Importing Metadata from XML Data Sources
Learn how to import metadata from Extensible Markup Language (XML) documents.

This section contains the following topics:

• About Using XML as a Data Source

• Importing Metadata from XML Data Sources Using the XML Gateway

• Importing Metadata from XML Data Sources Using XML ODBC

• Examples of XML Documents

About Using XML as a Data Source
The Oracle BI Server supports the use of XML data as a data source for the Physical
layer in the repository.

Depending on the method used to access XML data sources, a URL might represent a
data source.

The following are data sources:

• A static XML file or HTML file that contains XML data islands on the Internet
including intranet or extranet. For example:

tap://216.217.17.176/[DE0A48DE-1C3E-11D4-97C9-00105AA70303].XML

• Dynamic XML generated from a server site. For example:

tap://www.aspserver.com/example.asp

• An XML file or HTML file that contains XML data islands on a local or network
drive. For example:

d:\xmldir\example.xml

d:\htmldir\island.htm

You can also specify a directory path for local or network XML files, or you can use
the asterisk ( * ) as a wildcard with the filenames. If you specify a directory path
without a filename specification like d:/xmldir, all files with the XML suffix are
imported. For example:

d:\xmldir\

d:\xmldir\exam*.xml

d:\htmldir\exam*.htm

d:\htmldir\exam*.html

• An HTML file that contains tables are wrapped in opening and closing <table> and
</table> tags. The HTML file may reside on the Internet including intranet or
extranet, or on a local or network drive, see About Using HTML Tables as a Data
Source.

URLs can include repository or session variables, providing support for HTTP data
sources that accept user IDs and passwords embedded in the URL. For example:

http://somewebserver/cgi.pl?userid=valueof(session_variable1)&password=
valueof(session_variable2)

Chapter 5
About Importing Metadata from XML Data Sources

5-28



This functionality also lets you create an XML data source with a location that is
dynamically determined by some run-time parameters, see Using Variables in the
Oracle BI Repository.

If the Oracle BI Server needs to access any non-local files, for example, network files
or files on the Internet, you must run the Oracle BI Server using a valid user ID and
password with sufficient network privileges to access these remote files.

Importing Metadata from XML Data Sources Using the XML Gateway
When you use Oracle BI Server XML Gateway, the metadata import process flattens
the XML document to a tabular form, and creates the XML file name using the stem of
the table name. The second level element in the XML document is set as the row
delimiter.

The stem is the filename without the suffix. All leaf nodes are imported as columns in
the table. The hierarchical access path to leaf nodes is also imported.

The Oracle BI Server XML Gateway uses the metadata information contained in an
XML schema. The XML schema is contained within the XML document, or is
referenced within the root element of the XML document.

When a schema is not available, all XML data is imported as text data. In building the
repository, you can alter the data types of the columns in the Physical layer, overriding
the data types for the corresponding columns defined in the schema. The gateway
converts the incoming data to the type you specified in the Physical layer. You can
also map the text data type to other data types in the Business Model and Mapping
layer of the Administration Tool using the CAST operator.

The Oracle BI Server XML Gateway does not support:

• Resolution of external references contained in an XML document, other than a
reference to an external XML schema, see Examples of XML Documents
Generated by the Oracle BI Server XML Gateway.

• Element and attribute inheritance contained within the Microsoft XML schema.

• Element types of a mixed content model such as XML elements that contain a
mixture of elements and CDATA such as <p>hello <b>Joe</b>, how are you doing?
</p>.

If you are importing metadata into an existing database in the Physical layer, confirm
that the COUNT_STAR_SUPPORTED option is selected in the Database properties dialog. If
you import metadata without selecting the COUNT_STAR_SUPPORTED option, the
Update Row Count option does not display in the right-click menu for the database's
physical tables.

The Map to Logical Model and Publish to Warehouse screens are available only for
ADF data sources.

URLs for the XML data source can include repository or session variables. If you
browse for the XML data source, you can select a single file. For XML documents, you
must specify the suffix .xml as part of the file name in the URL. If you do not specify
the xml suffix, the documents are treated as HTML documents.

You can type an optional user name and password for connections to HTTP sites that
employ the HTTP Basic Authentication security mode. The Oracle BI Server XML
Gateway also supports Secure HTTP protocol and Integrated Windows Authentication

Chapter 5
About Importing Metadata from XML Data Sources

5-29



(for Windows 2000), formerly called NTLM or Windows NT Challenge/Response
authentication.

See Using Variables in the Oracle BI Repository

1. In the Administration Tool, do one of the following:

a. Select File, then select Import Metadata.

b. For an existing database and connection pool, right-click the connection pool
in the Physical layer, and select Import Metadata.

2. In Import Metadata - Select Data Source, from the Connection Type list, select
XML .

3. In URL, specify the XML data source URL.

4. In Select Data Source, click Next. screen appears.

5. In Select Metadata Types, choose the options for the types of objects that you
want to import, for example, Tables, Keys, and Foreign Keys.

If you want to import joins, select both Keys and Foreign Keys. If you want to
import system tables, you must have the system privilege for your data source.

6. Click Next. The Select Metadata Objects screen appears.

7. Select the objects you want to import in the Available list and move them to the
Selected list, using the > (Import selected) or >> (Import all) buttons.

8. Click Finish.

After you import XML data, you must adjust connection pool settings. See Creating or
Changing Connection Pools. You can do the following:

• In the Connection Pool dialog, type a name and optional description for the
connection on the General tab.

• Click the XML tab to set additional connection properties, including the URL
refresh interval and the length of time to wait for a URL to load before timing out.

Because XML data sources are updated frequently and in real time, you can
specify a refresh interval for Oracle BI Server XML Gateway data sources. The
default timeout interval for queries (URL loading time-out) is 15 minutes. See 
About the Refresh Interval for XML Data Sources in System Administrator's Guide
for Oracle Business Intelligence Enterprise Edition.

Examples of XML Documents Generated by the Oracle BI Server XML
Gateway

These examples show sample XML documents and the corresponding columns that
are generated by the Oracle BI Server XML Gateway.

XML Schema Contained in an External File

The following sample XML data document (mytest.xml) references an XML schema
contained in an external file. The schema file is shown following the data document.
The generated XML schema information available for import to the repository is shown
at the end.

<?xml version="1.0"?>
<test xmlns="x-schema:mytest_sch.xml">

Chapter 5
About Importing Metadata from XML Data Sources

5-30



<row>
<p1>0</p1>
<p2 width="5">
      <p3>hi</p3>
      <p4>
         <p6>xx0</p6>
         <p7>yy0</p7>
      </p4>
      <p5>zz0</p5>
</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6">
      <p3>how are you</p3>
      <p4>
         <p6>xx1</p6>
         <p7>yy1</p7>
      </p4>
      <p5>zz1</p5>
</p2>
</row>

<row>
<p1>a</p1>
<p2 width="7">
      <p3>hi</p3>
      <p4>
         <p6>xx2</p6>
         <p7>yy2</p7>
      </p4>
      <p5>zz2</p5>
</p2>
</row>

<row>
<p1>b</p1>
<p2 width="8">
      <p3>how are they</p3>
      <p4>
         <p6>xx3</p6>
         <p7>yy3</p7>
      </p4>
      <p5>zz2</p5>
</p2>
</row>
</test>

The corresponding schema file follows:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
      xmlns:dt="urn:schemas-microsoft-com:datatypes">
      <ElementType name="test" content="eltOnly" order="many">
         <element type="row"/>
      </ElementType>
      <ElementType name="row" content="eltOnly" order="many">
      <element type="p1"/>
         <element type="p2"/>
      </ElementType>
      <ElementType name="p2" content="eltOnly" order="many">

Chapter 5
About Importing Metadata from XML Data Sources

5-31



         <AttributeType name="width" dt:type="int" />
         <attribute type="width" />
         <element type="p3"/>
         <element type="p4"/>
         <element type="p5"/>
      </ElementType>
      <ElementType name="p4" content="eltOnly" order="many">
         <element type="p6"/>
         <element type="p7"/>
      </ElementType>
      <ElementType name="p1" content="textOnly" dt:type="string"/>
      <ElementType name="p3" content="textOnly" dt:type="string"/>
      <ElementType name="p5" content="textOnly" dt:type="string"/>
      <ElementType name="p6" content="textOnly" dt:type="string"/>
      <ElementType name="p7" content="textOnly" dt:type="string"/>
</Schema>

The name of the table generated from the preceding XML data document (mytest.xml)
would be mytest and the column names would be p1, p3, p6, p7, p5, and width.

In addition, to preserve the context in which each column occurs in the document and
to distinguish between columns derived from XML elements with identical names but
appearing in different contexts, a list of fully qualified column names is generated,
based on the XPath proposal of the World Wide Web Consortium, as follows:

//test/row/p1
//test/row/p2/p3
//test/row/p2/p4/p6
//test/row/p2/p4/p7
//test/row/p2/p5
//test/row/p2@width

Nested Table Structures in an XML Document

The following example is a more complex example that demonstrates the use of
nested table structures in an XML document. You can omit references to an external
schema file, in which case all elements are treated as being of the Varchar character
type.

===Invoice.xml===
<INVOICE>
   <CUSTOMER>
      <CUST_ID>1</CUST_ID>
      <FIRST_NAME>Nancy</FIRST_NAME>
      <LAST_NAME>Fuller</LAST_NAME>
      <ADDRESS>
         <ADD1>507 - 20th Ave. E.,</ADD1>
         <ADD2>Apt. 2A</ADD2>
         <CITY>Seattle</CITY>
         <STATE>WA</STATE>
         <ZIP>98122</ZIP>
      </ADDRESS>
      <PRODUCTS>
           <CATEGORY>
              <CATEGORY_ID>CAT1</CATEGORY_ID>
              <CATEGORY_NAME>NAME1</CATEGORY_NAME>
              <ITEMS>    
                  <ITEM>   
                     <ITEM_ID>1</ITEM_ID>
                     <NAME></NAME>
                     <PRICE>0.50</PRICE>

Chapter 5
About Importing Metadata from XML Data Sources

5-32



                     <QTY>2000</QTY>
                  </ITEM>   
                  <ITEM>   
                     <ITEM_ID>2</ITEM_ID>
                     <NAME>SPRITE</NAME>
                     <PRICE>0.30</PRICE>
                     <QTY></QTY>
                  </ITEM>   
              </ITEMS>    
         </CATEGORY>
           <CATEGORY>
              <CATEGORY_ID>CAT2</CATEGORY_ID>
              <CATEGORY_NAME>NAME2</CATEGORY_NAME>
              <ITEMS>    
                  <ITEM>   
                     <ITEM_ID>11</ITEM_ID>
                     <NAME>ACOKE</NAME>
                     <PRICE>1.50</PRICE>
                     <QTY>3000</QTY>
                  </ITEM>   
                  <ITEM>   
                     <ITEM_ID>12</ITEM_ID>
                     <NAME>SOME SPRITE</NAME>
                     <PRICE>3.30</PRICE>
                     <QTY>2000</QTY>
                  </ITEM>   
              </ITEMS>    
         </CATEGORY>
      </PRODUCTS>
   </CUSTOMER>
   <CUSTOMER>
      <CUST_ID>2</CUST_ID>
      <FIRST_NAME>Andrew</FIRST_NAME>
      <LAST_NAME>Carnegie</LAST_NAME>
      <ADDRESS>
         <ADD1>2955 Campus Dr.</ADD1>
         <ADD2>Ste. 300</ADD2>
         <CITY>San Mateo</CITY>
         <STATE>CA</STATE>
         <ZIP>94403</ZIP>
      </ADDRESS>
      <PRODUCTS>
           <CATEGORY>
              <CATEGORY_ID>CAT22</CATEGORY_ID>
              <CATEGORY_NAME>NAMEA1</CATEGORY_NAME>
              <ITEMS>    
                  <ITEM>   
                     <ITEM_ID>122</ITEM_ID>
                     <NAME>DDDCOKE</NAME>
                     <PRICE>11.50</PRICE>
                     <QTY>2</QTY>
                  </ITEM>   
                  <ITEM>   
                     <ITEM_ID>22</ITEM_ID>
                     <NAME>PSPRITE</NAME>
                     <PRICE>9.30</PRICE>
                     <QTY>1978</QTY>
                  </ITEM>   
              </ITEMS>    
         </CATEGORY>
           <CATEGORY>

Chapter 5
About Importing Metadata from XML Data Sources

5-33



              <CATEGORY_ID>CAT24</CATEGORY_ID>
              <CATEGORY_NAME>NAMEA2</CATEGORY_NAME>
              <ITEMS>    
                  <ITEM>   
                     <ITEM_ID>19</ITEM_ID>
                     <NAME>SOME COKE</NAME>
                     <PRICE>1.58</PRICE>
                     <QTY>3</QTY>
                  </ITEM>   
                  <ITEM>   
                     <ITEM_ID>15</ITEM_ID>
                     <NAME>DIET SPRITE</NAME>
                     <PRICE>9.30</PRICE>
                     <QTY>12000</QTY>
                  </ITEM>   
              </ITEMS>    
         </CATEGORY>
      </PRODUCTS>
   </CUSTOMER>
   <CUSTOMER>
      <CUST_ID>3</CUST_ID>
      <FIRST_NAME>Margaret</FIRST_NAME>
      <LAST_NAME>Leverling</LAST_NAME>
      <ADDRESS>
         <ADD1>722 Moss Bay Blvd.</ADD1>
         <ADD2> </ADD2>
         <CITY>Kirkland</CITY>
         <STATE>WA</STATE>
         <ZIP>98033</ZIP>
      </ADDRESS>
      <PRODUCTS>
           <CATEGORY>
              <CATEGORY_ID>CAT31</CATEGORY_ID>
              <CATEGORY_NAME>NAMEA3</CATEGORY_NAME>
              <ITEMS>    
                  <ITEM>   
                     <ITEM_ID>13</ITEM_ID>
                     <NAME>COKE33</NAME>
                     <PRICE>30.50</PRICE>
                     <QTY>20033</QTY>
                  </ITEM>   
                  <ITEM>   
                     <ITEM_ID>23</ITEM_ID>
                     <NAME>SPRITE33</NAME>
                     <PRICE>0.38</PRICE>
                     <QTY>20099</QTY>
                  </ITEM>   
              </ITEMS>    
         </CATEGORY>
           <CATEGORY>
              <CATEGORY_ID>CAT288</CATEGORY_ID>
              <CATEGORY_NAME>NAME H</CATEGORY_NAME>
              <ITEMS>    
                  <ITEM>   
                     <ITEM_ID>19</ITEM_ID>
                     <NAME>COLA</NAME>
                     <PRICE>1.0</PRICE>
                     <QTY>3</QTY>
                  </ITEM>   
                  <ITEM>   
                     <ITEM_ID>18</ITEM_ID>

Chapter 5
About Importing Metadata from XML Data Sources

5-34



                     <NAME>MY SPRITE</NAME>
                     <PRICE>8.30</PRICE>
                     <QTY>123</QTY>
                  </ITEM>   
              </ITEMS>    
         </CATEGORY>
      </PRODUCTS>
   </CUSTOMER>
</INVOICE>

The generated XML schema consists of one table (INVOICE) with the following column
names and their corresponding fully qualified names.

Column Fully Qualified Name

ADD1 //INVOICE/CUSTOMER/ADDRESS/ADD1

ADD2 //INVOICE/CUSTOMER/ADDRESS/ADD2

CITY //INVOICE/CUSTOMER/ADDRESS/CITY

STATE //INVOICE/CUSTOMER/ADDRESS/STATE

ZIP //INVOICE/CUSTOMER/ADDRESS/ZIP

CUST_ID //INVOICE/CUSTOMER/CUST_ID

FIRST_NAME //INVOICE/CUSTOMER/FIRST_NAME

LAST_NAME //INVOICE/CUSTOMER/LAST_NAME

CATEGORY_ID //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/CATEGORY_ID

CATEGORY_NAME //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/
CATEGORY_NAME

ITEM_ID //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/
ITEM_ID

NAME //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/NAME

PRICE //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/
PRICE

QTY //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/QTY

Only tags with values are extracted as columns. An XML query generates fully
qualified tag names, to help ensure appropriate columns are retrieved.

The following shows the results of a sample query against the INVOICE table:

SELECT first_name, last_name, price, qty, name FROM invoice
------------------------------------------------------------
FIRST_NAME  LAST_NAME         PRICE   QTY    NAME
------------------------------------------------------------
Andrew      Carnegie           1.58     3    SOME COKE
Andrew      Carnegie          11.50     2    DDDCOKE
Andrew      Carnegie           9.30   12000  DIET SPRITE
Andrew      Carnegie           9.30    1978  PSPRITE
Margar      Leverling          0.38   20099  SPRITE33
Margar      Leverling          1.0      3    COLA
Margar      Leverling         30.50   20033  COKE33
Margar      Leverling          8.30    123   MY SPRITE
Nancy       Fuller             0.30          SPRITE
Nancy       Fuller             0.50    2000
Nancy       Fuller             1.50    3000  ACOKE
Nancy       Fuller             3.30    2000  SOME SPRITE

Chapter 5
About Importing Metadata from XML Data Sources

5-35



------------------------------------------------------------
Row count: 12

About Using HTML Tables as a Data Source
The Oracle BI Server XML Gateway also supports the use of tables in HTML files as a
data source. The HTML file can be identified as a URL pointing to a file on the internet,
including intranet or extranet, or as a file on a local or network drive.

Even though tables, defined by the <table> and </table> tag pair, are native constructs
of the HTML 4.0 specification, they are often used by Web designers as a general
formatting device to achieve specific visual effects rather than as a data structure. The
Oracle BI Server XML Gateway is currently the most effective in extracting tables that
include specific column headers, defined by <th> and </th> tag pairs.

For tables that do not contain specific column headers, the Oracle BI Server XML
Gateway employs some simple heuristics to make a best effort to determine the
portions of an HTML file that appear to be genuine data tables.

The following is a sample HTML file with one table.

<html>
   <body>
      <table border=1 cellpadding=2 cellspacing=0>
         <tr>
            <th colspan=1>Transaction</th>
            <th colspan=2>Measurements</th>
         </tr>
         <tr>
            <th>Quality</th>
            <th>Count</th>
            <th>Percent</th>
         </tr>
         <tr>
            <td>Failed</td>
            <td>66,672</td>
            <td>4.1%</td>
         </tr>
         <tr>
            <td>Poor</td>
            <td>126,304</td>
            <td>7.7%</td>
         </tr>
         <tr>
            <td>Warning</td>
            <td>355,728</td>
            <td>21.6%</td>
         </tr>
         <tr>
            <td>OK</td>
            <td>1,095,056</td>
            <td>66.6%</td>
         </tr>
         <tr>
            <td colspan=1>Grand Total</td>
            <td>1,643,760</td>
            <td>100.0%</td>
         </tr>
      </table>

Chapter 5
About Importing Metadata from XML Data Sources

5-36



   </body>
</html>

The table name is derived from the HTML filename, and the column names are formed
by concatenating the headings, defined by the <th> and </th> tag pairs, for the
corresponding columns, separated by an underscore.

Assuming that our sample file is named 18.htm, the table name would include 18_0,
because it is the first table in that HTML file, with the following column names and their
corresponding fully qualified names:

Column Fully Qualified Name

Transaction_Quality \\18_0\Transaction_Quality

Measurements_Count \\18_0\Measurements_Count

Measurements_Percent \\18_0\Measurements_Percent

If the table column headings appear in more than one row, the column names are
formed by concatenating the corresponding field contents of those header rows.

For tables without any heading tag pairs, the Oracle BI Server XML Gateway assumes
the field values, as delimited by the <td> and </td> tag pairs, in the first row to be the
column names. The columns are named by the order in which they appear such as c0,
c1, and c2.

See Importing Metadata from XML Data Sources Using XML ODBC and Examples of
XML Documents.

Importing Metadata from XML Data Sources Using XML ODBC
Learn how to import metadata using ODBC.

Using the XML ODBC database type, you can access XML data sources through an
ODBC interface. The data types of the XML elements representing physical columns
in physical tables are derived from the data types of the XML elements as defined in
the XML schema.

In the absence of a proper XML schema, the default data type of string is used. Data
Type settings in the Physical layer do not override those defined in the XML data
sources. When accessing XML data without XML schema, use the CAST operator to
perform data type conversions in the Business Model and Mapping layer of the
Administration Tool.

If you are importing metadata into an existing database in the Physical layer, confirm
that the COUNT_STAR_SUPPORTED option is selected in the Features tab of the Database
properties dialog. If you import metadata without selecting the COUNT_STAR_SUPPORTED
option, the Update Row Count option does not display in the right-click menu for the
database's physical tables.

When you import through the Oracle BI Server, the data source name (DSN) entries
are on the Oracle BI Server computer, not on the local computer.

Chapter 5
About Importing Metadata from XML Data Sources

5-37



Note:

Due to XML ODBC limitations, you must select the Synonyms option in the
Select Metadata Types screen, or no tables are imported.

1. To access XML data sources through ODBC, you first need to license and install
an XML ODBC driver.

2. Create ODBC DSNs that point to the XML data sources you want to access,
making sure you select the XML ODBC database type.

3. In the Administration Tool, select File, then select Import Metadata.

4. In Select Data Source, from the Connection Type list, choose the connection type
for your data source such as ODBC 3.5.

5. In the DSN list, select a data source to import the schema.

6. Type a valid user name and password for the data source, and click Next.

7. In Select Metadata Types, choose the types of objects to import such as Tables,
Keys, Synonyms, and Foreign Keys, and click Next.

8. In Select Metadata Objects, choose objects to import from the Available list and
move them to the Selected list, using > (Import selected) or >> (Import all).

9. (Optional) Select Show complete structure to view all objects.

Deselecting Show complete structure shows the objects that are available for
import.

10. Click Finish.

Example of an XML ODBC Data Source
The example shows an XML ODBC data source in the Microsoft ADO persisted file
format.

The example in this section shows an XML ODBC data source in the Microsoft ADO
persisted file format. Both the data and the schema could be contained inside the
same document.

XML ODBC Example

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'
  xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'
  xmlns:rs='urn:schemas-microsoft-com:rowset'
  xmlns:z='#RowsetSchema'>
<s:Schema id='RowsetSchema'>
  <s:ElementType name='row' content='eltOnly' rs:CommandTimeout='30'
  rs:updatable='true'>
    <s:AttributeType name='ShipperID' rs:number='1' rs:writeunknown='true'
    rs:basecatalog='Paint' rs:basetable='Shippers' rs:basecolumn='ShipperID'>
      <s:datatype dt:type='i2' dt:maxLength='2' rs:precision='5'
      rs:fixedlength='true' rs:benull='false'/>
    </s:AttributeType>
    <s:AttributeType name='CompanyName' rs:number='2' rs:writeunknown='true'
    rs:basecatalog='Paint' rs:basetable='Shippers' rs:basecolumn='CompanyName'>
      <s:datatype dt:type='string' rs:dbtype='str' dt:maxLength='40'
      rs:benull='false'/>

Chapter 5
About Importing Metadata from XML Data Sources

5-38



    </s:AttributeType>
    <s:AttributeType name='Phone' rs:number='3' rs:nullable='true'
    rs:writeunknown='true' rs:basecatalog='Paint' rs:basetable='Shippers'
    rs:basecolumn='Phone'>
      <s:datatype dt:type='string' rs:dbtype='str' dt:maxLength='24'
      rs:fixedlength='true'/>
    </s:AttributeType>
    <s:extends type='rs:rowbase'/>
  </s:ElementType>
</s:Schema>
<rs:data>
  <z:row ShipperID='1' CompanyName='Speedy Express' Phone='(503)
  555-9831          '/>
  <z:row ShipperID='2' CompanyName='United Package' Phone='(503)
  555-3199          '/>
  <z:row ShipperID='3' CompanyName='Federal Shipping' Phone='(503)
  555-9931          '/>
</rs:data>
</xml>

Examples of XML Documents
These examples of several different situations and explains how the Oracle BI Server
XML access method handles those situations.

• The XML documents 83.xml and 8_sch.xml demonstrate the use of the same
element declarations in different scope. For example, <p3> could appear within
<p2> as well as within <p4>.

Because the element <p3> in the preceding examples appears in two different
scopes, each element is given a distinct column name by appending an index
number to the second occurrence of the element during the import process. In this
case, the second occurrence becomes p3_1. If <p3> occurs in additional contexts,
they become p3_2, p3_3.

• The XML documents 83.xml and 84.xml (shown in demonstrate that multiple XML
files can share the same schema (8_sch.xml).

• Internet Explorer version 5 and higher supports HTML documents containing
embedded XML fragments called XML islands. The XML document island2.htm
demonstrates a simple situation where multiple XML data islands, and therefore
multiple tables, could be generated from one document. One table is generated for
each instance of an XML island. Tables are distinguished by appending an
appropriate index to the document name. For island2.htm, the two XML tables
generated would be island2_0 and island2_1.

83.xml

===83.xml===
<?xml version="1.0"?>
<test xmlns="x-schema:8_sch.xml">|
<row>
<p1>0</p1>
<p2 width="5" height="2">
   <p3>hi</p3>
   <p4>
      <p3>hi</p3>
      <p6>xx0</p6>
      <p7>yy0</p7>
   </p4>

Chapter 5
About Importing Metadata from XML Data Sources

5-39



   <p5>zz0</p5>
</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6" height="3">
   <p3>how are you</p3>
   <p4>
      <p3>hi</p3>
      <p6>xx1</p6>
      <p7>yy1</p7>
   </p4>
   <p5>zz1</p5>
</p2>
</row>
</test>

8_sch.xml

===8_sch.xml===
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
         <AttributeType name="height" dt:type="int" />
   <ElementType name="test" content="eltOnly" order="many">
      <AttributeType name="height" dt:type="int" />
      <element type="row"/>
   </ElementType>
   <ElementType name="row" content="eltOnly" order="many">
         <element type="p1"/>
      <element type="p2"/>
   </ElementType>
   <ElementType name="p2" content="eltOnly" order="many">
         <AttributeType name="width" dt:type="int" />
      <AttributeType name="height" dt:type="int" />
         <attribute type="width" />
      <attribute type="height" />
      <element type="p3"/>
      <element type="p4"/>
      <element type="p5"/>
   </ElementType>
   <ElementType name="p4" content="eltOnly" order="many">
      <element type="p3"/>
      <element type="p6"/>
      <element type="p7"/>
   </ElementType>
   <ElementType name="test0" content="eltOnly" order="many">
      <element type="row"/>
   </ElementType>
      <ElementType name="p1" content="textOnly" dt:type="string"/>
      <ElementType name="p3" content="textOnly" dt:type="string"/>
      <ElementType name="p5" content="textOnly" dt:type="string"/>
      <ElementType name="p6" content="textOnly" dt:type="string"/>
      <ElementType name="p7" content="textOnly" dt:type="string"/>
</Schema>

84.xml

===84.xml===
<?xml version="1.0"?>
<test0 xmlns="x-schema:8_sch.xml">

Chapter 5
About Importing Metadata from XML Data Sources

5-40



<row>
<p1>0</p1>
<p2 width="5" height="2">
   <p3>hi</p3>
   <p4>
      <p3>hi</p3>
      <p6>xx0</p6>
      <p7>yy0</p7>
   </p4>
   <p5>zz0</p5>
</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6" height="3">
   <p3>how are you</p3>
   <p4>
      <p3>hi</p3>
      <p6>xx1</p6>
      <p7>yy1</p7>
   </p4>
   <p5>zz1</p5>
</p2>
</row>
</test0>

Island2.htm

===island2.htm===
<HTML>
   <HEAD>
<TITLE>HTML Document with Data Island</TITLE>
</HEAD>
   <BODY>
<p>This is an example of an XML data island in I.E. 5</p>
   <XML ID="12345">
   test>
      <row>
         <field1>00</field1>
         <field2>01</field2>
   </row>
      <row>
         <field1>10</field1>
         <field2>11</field2>
   </row>
      <row>
         <field1>20</field1>
         <field2>21</field2>
      </row>
   </test>
</XML>
<p>End of first example.</p>
<XML ID="12346">
   <test>
      <row>
         <field11>00</field11>
         <field12>01</field12>
      </row>
      <row>
         <field11>10</field11>

Chapter 5
About Importing Metadata from XML Data Sources

5-41



         <field12>11</field12>
      </row>
      <row>
         <field11>20</field11>
         <field12>21</field12>
      </row>
   </test>
</XML>
<p>End of second example.</p>
</BODY>
</HTML>

About Using a Standby Database with Oracle Business
Intelligence

You should use a standby database for its high availability and failover functions, and
as a backup for the primary database.

You schedule frequent and regular replication jobs from the primary database to a
secondary database in a standby database configuration. Configure short intervals in
the replication to enable writing to the primary database and facilitate reading from the
secondary database without causing any synchronization or data integrity problems.

Because a standby database is essentially a read-only database, you can use the
standby database as a business intelligence query server, relieving the workload of
the primary database and improving query performance.

The following topics explain how to use a standby database with Oracle Business
Intelligence:

• Configuring a Standby Database with Oracle Business Intelligence

• Creating the Database Object for the Standby Database Configuration

• Creating Connection Pools for the Standby Database Configuration

• Updating Write-Back Scripts in a Standby Database Configuration

• Setting Up Usage Tracking in a Standby Database Configuration

• Setting Up Event Polling in a Standby Database Configuration

• Setting Up Oracle BI Scheduler in a Standby Database Configuration

Configuring a Standby Database with Oracle Business Intelligence
In a standby database configuration, you have two databases: a primary database that
handles all write operations and is the source of truth for data integrity, and a
secondary database that is exposed as a read-only source.

When you use a standby database configuration with Oracle Business Intelligence, all
write operations are off-loaded to the primary database, and read operations are sent
to the standby database.

Write operations that need to be routed to the primary source may include the
following:

• Oracle BI Scheduler job and instance data

• Temporary tables for performance enhancements

Chapter 5
About Using a Standby Database with Oracle Business Intelligence

5-42



• Writeback scripts for aggregate persistence

• Usage tracking data, if usage tracking has been enabled

• Event polling table data, if event polling tables are being used

The following list provides an overview of how to configure the Oracle BI Server to use
a standby database.

1. Create a single database object for the standby database configuration, with
temporary table creation disabled.

2. Configure two connection pools for the database object:

• A read-only connection pool that points to the standby database

• A second connection pool that points to the primary database for write
operations

3. Update any connection scripts that write to the database so that they explicitly
specify the primary database connection pool.

4. If usage tracking has been enabled, update the usage tracking configuration to
use the primary connection.

5. If event polling tables are being used, update the event polling database
configuration to use the primary connection.

6. Ensure that Oracle BI Scheduler is not configured to use any standby sources.

Even though there are two separate physical data sources for the standby database
configuration, you create only one database object in the Physical layer. The image
shows the database object and connection pools for the standby database
configuration in the Physical layer.

Creating the Database Object for the Standby Database Configuration
Use the Administration Tool to create a database object in the repository for the
standby database configuration.

When you create the database object, make sure that the persist connection pool is
not assigned, to prevent the Oracle BI Server from creating temporary tables in the
standby database.

1. In the Administration Tool, right-click the Physical layer and select New Database
to create a database object.

Chapter 5
About Using a Standby Database with Oracle Business Intelligence

5-43



2. In Name, provide a name for the database.

3. From the Database Type list, select the type of database.

4. In the Persist connection pool field, verify that the value is not assigned.

Creating Connection Pools for the Standby Database Configuration
After you have created a database object in the repository for the standby database
configuration, use the Administration Tool to create two connection pools, one that
points to the standby database, and another that points to the primary database.

Because the standby connection pool is used for the majority of connections, make
sure that the standby connection pool is listed first.

Note:

Connection pools are used in the order listed, until the maximum number of
connections is achieved. Ensure that the maximum number of connections is
set in accordance with the standby database tuning.

See Creating or Changing Connection Pools.

1. In the Administration Tool, in the Physical layer, right-click the database object for
the standby database configuration and select New Object, then select
Connection Pool.

2. Provide a name for the connection pool, and ensure that the call interface is
appropriate for the standby database type.

3. Provide the Data source name for the standby database.

4. Enter a user name and password for the standby database.

5. Click OK.

6. In the Administration Tool, in the Physical layer, right-click the database object for
the standby database configuration and select New Object, then select
Connection Pool.

7. Provide a name for the connection pool, and ensure that the call interface is
appropriate for the primary database type.

8. Provide the Data source name for the primary database.

9. Enter a user name and password for the primary database.

10. Click OK.

Updating Write-Back Scripts in a Standby Database Configuration
If you use scripts that write to the database such as scripts for aggregate persistence,
you must update the scripts to explicitly refer to the primary connection pool.

Information written through the primary connection is automatically transferred to the
standby database through the regularly scheduled replication between the primary and
secondary databases. The information is available through the standby connection
pool.

Chapter 5
About Using a Standby Database with Oracle Business Intelligence

5-44



The following example shows a write-back script for aggregate persistence that
explicitly specifies the primary connection pool:

create aggregates sc_rev_qty_yr_cat for "DimSnowflakeSales"."SalesFacts"
("Revenue", "QtySold") at levels ("DimSnowflakeSales"."Time"."Year",
"DimSnowflakeSales"."Product"."Category") using connection pool
"StandbyDemo"."Primary Connection" in "StandbyDemo"."My_Schema"

Setting Up Usage Tracking in a Standby Database Configuration
The Oracle BI Server supports the collection of usage tracking data.

When usage tracking is enabled, the Oracle BI Server collects usage tracking data for
each query and writes statistics to a usage tracking log file or inserts them directly to a
database table.

If you want to enable usage tracking on a standby database configuration using direct
insertion, you must create the table used to store the usage tracking data such as
S_NQ_ACCT on the primary database. Then, import the table into the physical layer of the
repository using the Administration Tool.

You must ensure that the database object for the usage tracking table is configured
with both the standby connection pool and the primary connection pool. Then, ensure
that the CONNECTION_POOL parameter for usage tracking points to the primary database.
For example, in NQSConfig.ini:

CONNECTION_POOL = "StandbyDatabaseConfiguration"."Primary Connection";

See Managing Usage Tracking in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition.

Setting Up Event Polling in a Standby Database Configuration
You can use an Oracle BI Server event polling table (event table) as a way to notify
the Oracle BI Server that one or more physical tables have been updated.

The event table is a physical table that resides on a database accessible to the Oracle
BI Server. It is normally exposed only in the Physical layer of the Administration Tool,
where it is identified in the Physical Table dialog as an Oracle BI Server event table.

The Oracle BI Server requires write access to the event polling table. Because of this,
if you are using event polling in a standby database configuration, you must ensure
that the database object for the event table only references the primary connection
pool.

See Cache Event Processing with an Event Polling Table in System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition for full information about
event polling, including how to set up, activate, and populate event tables.

Setting Up Oracle BI Scheduler in a Standby Database Configuration
Oracle BI Scheduler is an extensible application and server that manages and
schedules jobs, both scripted and unscripted.

Oracle BI Scheduler is an extensible application and server that manages and
schedules jobs, both scripted and unscripted. To use Oracle BI Scheduler in a standby

Chapter 5
About Using a Standby Database with Oracle Business Intelligence

5-45



database configuration, you must ensure that the database object for Oracle BI
Scheduler only references the primary connection pool.

See Configuration Tasks for Oracle BI Scheduler in Integrator's Guide for Oracle
Business Intelligence Enterprise Edition for full information about setting up and using
Oracle BI Scheduler.

Chapter 5
About Using a Standby Database with Oracle Business Intelligence

5-46



6
Working with ADF Data Sources

This chapter describes how to set up Oracle ADF Business Components for use with
Oracle Business Intelligence, and how to import metadata from ADF data sources.
Connecting to ADF data sources enables Oracle Business Intelligence users to query
data from any application that is built using the ADF Framework. For example,
because Oracle CRM applications are developed using the ADF Framework, Oracle
Business Intelligence users can report on CRM data using an ADF data source that
implements the required ADF Application Programming Interface (API).

By using the ADF components as a data source to the Oracle BI Server, users can
quickly integrate operational reporting with any application that is built on top of the
ADF Framework.

This chapter contains the following topics:

• What Are ADF Business Components?

• About Importing ADF Business Components Into Oracle Business Intelligence

• About Specifying a SQL Bypass Database

• Setting Up ADF Data Sources

• Importing Metadata from ADF Data Sources

• Configuring SSL in Oracle WebLogic Server

• Enabling the Ability to Pass Custom Parameters to the ADF Application

• Propagating Labels and Tooltips from ADF Data Sources

What Are ADF Business Components?
Oracle Application Development Framework (Oracle ADF) is an object-relational
framework used to create J2EE business services and expose underlying database
objects.

This framework provides an abstraction layer that enables application developers to
build applications quickly and efficiently.

When you use Oracle ADF to build service-oriented Java EE applications, you
implement your core business logic as one or more business services. These back-
end services provide clients with a way to query, insert, update, and delete business
data as required, while enforcing appropriate business rules. ADF Business
Components are prebuilt application objects that provide a ready-to-use
implementation of Java EE design patterns and best practices.

The ADF model is represented through the ADF Business Component constructs
called Entity Objects and View Objects, usually constructed and defined during design
time:

• Entity Objects

6-1



Entity objects are ADF framework components that represent a row in a database
table and simplify modifying its data. Entity object enable encapsulating domain
business logic for those rows to ensure your business policies and rules are
consistently validated.

• View Objects

View objects are ADF framework components that encapsulate a SQL query and
simplify working with its results. In addition to read-only view objects, there are
entity-based view objects that support updatable rows. The view object queries
just the data needed for the client-facing task at hand, then cooperates with one or
more entity objects in your business domain layer to automatically validate and
save changes made to its view rows. An entity-based view object encapsulates a
SQL query. You can link an entity object into master/detail hierarchies using view
links. You can use entity objects in the data model of your application modules.

Applications built using ADF obtain their data by querying the defined View
Objects using the ADF APIs.

The ADF model also includes an application module, which is the transactional
component that UI clients use to work with application data. It defines an updatable
data model along with top-level procedures and functions, called service methods,
related to a logical unit of work related to an end-user task.

The application module serves as a container for multiple View Objects and Entity
Objects, and also contains configuration related to the JDBC data source.

About Operational Reporting with ADF Business Components
You can use the Oracle Business Intelligence integration with ADF Business
Components to generate reports on data within your applications.

For example, you can generate reports based on expense data entered into an
expense application. You would import the expense application metadata into the
Oracle BI Repository using the Administration Tool, map the data from the Physical
layer to the Business Model and Mapping layer, and then map the data to the
Presentation layer. After you restart the Oracle BI Server and reload the metadata into
Oracle BI Presentation Services, you can log in to Oracle BI Answers and drag and
drop the columns to generate a report using the expense application data. You could
select columns to view a report of your expenses grouped by a specific category such
as airline travel expenses.

About Importing ADF Business Components Into Oracle
Business Intelligence

During import, the required physical tables and complex joins are automatically
created.

The ViewObject and ViewLink instances are imported into Oracle Business
Intelligence. During query execution, the definitions retrieved from these instances are
used to create the CompositeVO (view objects) in Oracle Application Development
Framework (ADF).

These complex joins are dummy joins and are not executed in Oracle Business
Intelligence. Instead, the dummy joins denote ViewLink instances that connect pairs of
View Objects in the ADF model. The physical table and complex join names

Chapter 6
About Importing ADF Business Components Into Oracle Business Intelligence

6-2



correspond to the fully qualified ViewObject and ViewLink instance names. This
convention allows arbitrary nesting of ApplicationModules in the ADF model.

Note:

The External Expression field in the Complex Join dialog for ADF data
sources is populated with the join condition defined in the view link.

The name of the automatically generated joins uses a naming convention similar to
ViewObjectName1_ViewObjectName2, for example,
AppModuleAM.AP_VO1_AppModuleAM_BU_VO1. The ViewLink instance name
appears in the ViewLink Name field of the Complex Join dialog.

The complex joins are created automatically if a ViewLink instance is available.
Complex joins are not created for ViewLink definitions. You must create joins using
ViewLink definitions manually. To manually create a join using ViewLink definitions,
specify the ViewLink definition name in the ViewLink Name field of the Complex Join
dialog.

If custom properties are defined on the ApplicationModule, Oracle Business
Intelligence joins between view objects in different ApplicationModules are created on
import from ADF. The format for the property name and value are as follow:

• The property name format is BI_VIEW_LINK_property_name

• The property value format is source_view_object_instance_name,
ViewLink_definition_name, destination_view_object_instance_name

Be sure to use the fully qualified view object instance names for the source and
destination view objects, as well as the fully qualified package name for the ViewLink
definition.

About Specifying a SQL Bypass Database
The Oracle BI Server can automatically create composite View Objects at run time
enabling an ad-hoc BI query to reference multiple View Objects in the ADF layer.

For improved performance, a SQL bypass query is generated that incorporates the
projection columns, filters, and joins required by the BI query.

The SQL Bypass feature directly queries the database so that aggregations and other
transformations are pushed down where possible, reducing the amount of data
streamed and worked on in Oracle Business Intelligence. When using a SQL Bypass
database, the Oracle BI Server gets the view object query from the ADF data source
and then wraps it with the aggregations in the Logical SQL query. The query, including
the aggregations, is then executed in the database. Because the database computes
the aggregation and fewer rows are streamed back to Oracle Business Intelligence,
using a SQL Bypass database can result in significant performance gains.

Multiple View Objects are modeled as separate BI physical tables and are connected
with dummy complex joins. These joins only represent the ViewLinks in the ADF
model and are not executed by the Oracle BI Server.

You can specify the name of the SQL Bypass database in the connection pool for the
ADF data source. The SQL Bypass database must be a physical database in the

Chapter 6
About Specifying a SQL Bypass Database

6-3



Physical layer of the repository. The database object for the SQL Bypass database
must have a valid connection pool, with connection information that points to the same
database that is being used by the JDBC Data source defined in the Oracle WebLogic
Server that runs the ADF application.

The SQL Bypass database does not need to have any tables under it. After a valid
database name is supplied, the SQL Bypass feature is enabled for all queries against
that ADF database.

Setting Up ADF Data Sources
These topics explain how to configure your ADF Business Components for use with
Oracle Business Intelligence.

See System Requirements and Certification.

This section contains the following topics:

• Creating a WebLogic Domain for ADF Business Components Used with Oracle
Business Intelligence

• Deploying OBIEEBroker as a Shared Library in

• Deploying the Application EAR File to from JDeveloper

• Setting Up a JDBC Data Source in the WebLogic Server

• Setting the Logging Level for the Deployed Application in Oracle WebLogic Server

Creating a WebLogic Domain for ADF Business Components Used
with Oracle Business Intelligence

To configure your ADF Business Components for use with Oracle Business
Intelligence, you need to create a WebLogic Domain for your ADF Business
Components that supports WebLogic Server, Oracle Application Core (Webapp), and
Oracle JRF.

1. Start the WebLogic Configuration Wizard.

For example, on Windows, run MW_HOME\wlserver\common\bin\config.cmd.

2. Select Create a new WebLogic domain and click Next.

3. On the Select Domain Source screen, ensure that Basic WebLogic Server
Domain, Oracle JRF, and Oracle Application Core (Webapp) are selected.

4. Follow the remaining steps in the wizard, providing values appropriate for your
environment.

5. Click Create on the Configuration Summary screen to create the domain.

You can start and stop the Oracle WebLogic Server for this domain using command-
line scripts in the domain directory. For example, on Windows, use the following:

• BI_DOMAIN\bin\startWebLogic.cmd

• BI_DOMAIN\bin\stopWebLogic.cmd

Chapter 6
Setting Up ADF Data Sources

6-4



Deploying OBIEEBroker as a Shared Library in Oracle WebLogic
Server

To configure your ADF Business Components for use with Business Intelligence, you
need to install OBIEEBroker, making its physical file or directory known to Oracle
WebLogic Server, and start it.

This process deploys the OBIEEBroker library as a shared library in Oracle WebLogic
Server.

After the library has been installed and started, other deployed modules can reference
the library. The OBIEEBroker shared library is installed as part of your Oracle
Business Intelligence installation.

1. Ensure that Oracle WebLogic Server is running. If it is not running, start it. For
example, on Windows, run BI_DOMAIN\bin\startWebLogic.cmd.

2. Open the WebLogic Server Administration Console. For example, if your Oracle
WebLogic Server is running locally on port 7001, go to http://localhost:7001/
console.

3. Log in to the WebLogic Server Administration Console with the credentials you
created when you set up your WebLogic domain.

4. In the Change Center, click Lock & Edit.

5. On the Home Page, in the left pane, click Deployments.

6. In the right pane, click Install.

7. Using the Install Application Assistant, locate the OBIEEBroker EAR file in:

ORACLE_HOME\bi\bifoundation\javahost\lib\obisintegration\adf\
oracle.bi.integration.adf.ear

8. Click Next.

9. Select Install this deployment as a library and click Next.

10. Select the servers and/or clusters to which you want to deploy the OBIEEBroker
library.

Make sure to select all servers and clusters to which modules or applications that
reference the library are deployed.

11. Click Next.

12. (Optional) Update settings about the deployment.

13. Click Next, then click Finish to complete the installation.

14. In the Change Center, click Activate Changes.

Chapter 6
Setting Up ADF Data Sources

6-5



Deploying the Application EAR File to Oracle WebLogic Server from
JDeveloper

To configure your ADF Business Components for use with Oracle Business
Intelligence, you need to deploy the application EAR file to Oracle WebLogic Server
from JDeveloper.

Before beginning this procedure, ensure that the following conditions are true:

• You have an ADF Model project that contains ApplicationModules and view objects
that are exposed to Oracle Business Intelligence.

• You have deployed OBIEEBroker as a shared library in Oracle WebLogic Server.
See Deploying OBIEEBroker as a Shared Library in .

• Oracle WebLogic Server is running.

1. Start JDeveloper, on Windows, run MW_HOME\jdeveloper\jdev\bin\jdev.exe.

2. Select File, then select Open to open the project that contains your ADF Business
Components in JDeveloper. If prompted, allow JDeveloper to migrate the project
to the latest version.

3. Create a new Application Module configuration, as follows:

a. In the Model project, double-click the application module, then click the
Configurations tab for that application module.

b. Create a new configuration with the following characteristics:

• Select JDBC DataSource for Connection Type.

• Keep the default DataSource Name, for example, java:comp/env/jdbc/
ApplicationDBDS.

When you set up the JDBC data source in Oracle WebLogic Server in a later
step, you use part of this DataSource Name as the JNDI name required by
Oracle WebLogic Server. The JNDI name is the DataSource Name without the
java:comp/env context prefix, for example, jdbc/ApplicationDBDS.

4. Create a Business Component Archive deployment profile, as follows:

a. In the Projects window, right-click the Model project and choose New.

b. Select Deployment Profiles under General in the left pane, then choose
Business Components Archive in the right pane and click OK.

c. Provide a name for the deployment profile, for example,
MyApplication_Archive, and click OK.

d. On the Deployment page, click OK.

5. In the Projects window, right-click the Model project and select
Deployyour_deployment_profile_name from Deploy, or use the deployment
wizard by selecting Deploy to File.

After the project has been deployed, two jar files are created in the deploy
directory for the Model project, for example, MyApplication_Archive_Common.jar and
MyApplication_Archive_MiddleTier.jar.

6. Create a new web project for the application, as follows:

a. Right-click the global application and select New Project.

Chapter 6
Setting Up ADF Data Sources

6-6



b. Select Projects from the left pane, then select Web Project from the right
pane.

c. Provide a project name, for example, OBIEEBroker.

d. Click Next until you reach the Web Project Profile page.

e. Modify the Java EE Context Root to a name that better represents your
application, for example, MyApplication.

This value determines the URL that you use to connect to the application from
Oracle Business Intelligence, for example, http://localhost:7001/
MyApplication/obieebroker.

7. Edit the Profile Dependencies of the WAR deployment, as follows:

a. Right-click the Web Project you just created, for example, OBIEEBroker, and
select Project Properties.

b. From the left pane, select Deployment. Then, open the WAR File deployment
profile on the right pane.

c. Select Profile Dependencies from the left pane, and then, on the right pane,
select the Common and Middle Tier deployment profiles of your Model project.

8. Expand the Web Project and open web.xml. Then, go to the source view of the file.

9. In the web.xml source, replace the content within the <web-app> element with the
following:

<context-param>
  <description>This holds the Principals (CSV) that a valid end user should 
have (at least one) in order to query the ADF layer from BI.</description>
  <param-name>oracle.bi.integration.approle.whitelist</param-name>
  <param-value>Application_Roles_List</param-value>
</context-param>

<filter>
  <filter-name>ServletADFFilter</filter-name>
  <filter-class>oracle.adf.share.http.ServletADFFilter</filter-class>
</filter>

<filter-mapping>
  <filter-name>ServletADFFilter</filter-name>
  <servlet-name>OBIEEBroker</servlet-name>
  <dispatcher>FORWARD</dispatcher>
  <dispatcher>REQUEST</dispatcher>
</filter-mapping>
 
<servlet>
  <servlet-name>OBIEEBroker</servlet-name>
  <servlet-class>oracle.bi.integration.adf.v11g.obieebroker.OBIEEBroker
  </servlet-class>
</servlet>
 
<servlet-mapping>
  <servlet-name>OBIEEBroker</servlet-name>
  <url-pattern>/obieebroker</url-pattern>
</servlet-mapping>

Following this step ensures that the OBIEEBroker servlet is used to access your
application from Oracle Business Intelligence

Chapter 6
Setting Up ADF Data Sources

6-7



For application_roles_list, provide a list of application roles in CSV form. For
example:

<param-value>FBI_TRANSACTION_ANALYSIS_GENERIC_DUTY, OBIA_ANALYSIS_GENERIC_DUTY, 
OBIA_EXTRACT_TRANSFORM_LOAD_DUTY, FUSION_APPS_BI_APPID</param-value>

If you provide a list of application roles, a user's application role is checked before
access is allowed to the application. This run-time check requires the following
grant to be present in thedomain_name/config/fmwconfig/system-jazn-data.xml file
for the WebLogic domain:

<grant>
  <grantee>
    <codesource>
      <url>file:${domain.home}/servers/${weblogic.Name}/tmp/
      _WL_user/oracle.bi.integration.adf/-</url>
    </codesource>
  </grantee>
  <permissions>
    <permission>
      <class>oracle.security.jps.JpsPermission</class>
      <name>IdentityAssertion</name>
      <actions>execute</actions>
    </permission>
    <permission>
      <class>oracle.security.jps.JpsPermission</class>
      <name>AppSecurityContext.setApplicationID.obi</name>
    </permission>
  </permissions>
</grant>

If you do not want application roles to be checked by the OBIEEBroker servlet, use
DISABLE_WHITELIST_ROLE_CHECK as the value for the <context-param> in
web.xml. For example:

<param-value>DISABLE_BI_WHITELIST_ROLE_CHECK</param-value>

10. Create an EAR deployment profile for the application, as follows:

a. Right-click the global application and select Application Properties.

b. From the left pane, select Deployment, then click New on the right pane to
create a new deployment profile.

c. For Archive Type, select EAR File. Then, provide a name for the deployment
profile, for example, MyApplication.

The deployment profile name is used as the name displayed in the list of
deployments in Oracle WebLogic Server.

d. From the left pane, select Application Assembly. Then, on the right pane,
select the webapp deployment profile of your Web Project.

Following this step ensures that the WAR file from your Web Project is
included in the EAR file.

11. Under Application Resources, select Descriptors, select META-INF , and then
select weblogic-application.xml.

12. On the left, select the Libraries tab.

13. Create two new Shared Library References, as follows:

• Create the first Shared Library Reference with the following characteristics:

Chapter 6
Setting Up ADF Data Sources

6-8



– Library Name: oracle.bi.integration.adf

– Implementation Version: 11.1.1.2.0

• Create the second Shared Library Reference with the following characteristics:

– Library Name: oracle.applcore.model

– Implementation Version: 11.1.1.0.0

These two Shared Library References create the following entries in the weblogic-
application.xml file for the application:

<library-ref>
  <library-name>oracle.bi.integration.adf</library-name>
  <implementation-version>11.1.1.2.0</implementation-version>
</library-ref>
<library-ref>
  <library-name>oracle.applcore.model</library-name>
  <implementation-version>11.1.1.0.0</implementation-version>
</library-ref>

14. Right-click and select Deploy EAR_deployment_profile_name to deploy the EAR
file to Oracle WebLogic Server by the global application.

15. From the dialog that appears, select Deploy to Application Server, and then
follow the instructions in the wizard.

16. To verify that the application has been deployed, log in to the WebLogic Server
Administration Console and click Deployments under Your Deployed
Resources. Verify that your application appears in the list, for example,
obieebroker_app_name.

Setting Up a JDBC Data Source in the WebLogic Server
You must configure the ADF Business Components that you plan to use with Oracle
Business Intelligence.

To configure your ADF Business Components for use with Oracle Business
Intelligence, you must set up a JDBC data source in Oracle WebLogic Server for your
application.

1. Ensure that Oracle WebLogic Server is running. If it is not running, start it. For
example, on Windows, run BI_DOMAIN\bin\startWebLogic.cmd.

2. Open the WebLogic Server Administration Console. For example, if your Oracle
WebLogic Server is running locally on port 7001, go to http://localhost:7001/
console.

3. Log in to the WebLogic Server Administration Console with the credentials you
created when you set up your WebLogic domain.

4. On the Home Page, select JDBC, then select Data Sources.

5. Click New.

6. Provide information for your data source. For Name and JNDI Name, provide the
DataSource Name you specified in the Application Module configuration for the
application, without the java:comp/env context prefix, for example, jdbc/
ApplicationDBDS. In addition, make sure to select the target on which you want to
deploy the data source before exiting the wizard.

7. Click Finish when you are done providing JDBC data source settings.

Chapter 6
Setting Up ADF Data Sources

6-9



Setting the Logging Level for the Deployed Application in Oracle
WebLogic Server

The server_name-diagnostic.log file for the server where your application is deployed
contains information about your deployed application.

You can find this file in the server-specific directory within your domain. For example,
on Windows, the log file for the AdminServer is located in:

BI_DOMAIN\servers\AdminServer\logs.

Log levels include:

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

1. Open the Oracle WebLogic Server file logging.xml for editing, located in:

BI_DOMAIN\servers\server_name

2. Within the <loggers> element, add the following child elements:

<logger name="oracle.bi.integration.adf" level="LOG_LEVEL"/>
<logger name="oracle.bi.integration.adf.v11g.obieebroker" level="LOG_LEVEL"/>

3. Save and close the file.

4. Restart Oracle WebLogic Server.

Importing Metadata from ADF Data Sources
There are different ways to import metadata from ADF data sources into Oracle
Business Intelligence.

Before you can import metadata from ADF sources, you must complete the steps in 
Setting Up ADF Data Sources

This section contains the following topics:

• Performing an Initial Import from ADF Data Sources

• Using Incremental Import to Propagate Flex Object Changes

• Automatically Mapping Flex Object Changes to the Logical Model

• Automatically Mapping Flex Object Changes Using the biserverextender Utility

Chapter 6
Importing Metadata from ADF Data Sources

6-10



Performing an Initial Import from ADF Data Sources
You can use the Import Metadata Wizard to perform an initial import from the Oracle
Application Development Framework (ADF) data sources.

In the Import Metadata wizard, you can search for a specific item by typing a keyword
in Find.

Use Show complete structure to view all objects, including those that have already
been imported. Deselecting this option shows only the objects that are available for
import. When this option is selected, objects that have already been imported appear
grayed out.

If this import is creating a new connection to the data source, when you move the
items from the Data source view to the Repository View list, the Connection Pool
dialog opens to show the values that you provided in Select Data Source page of the
Import Metadata Wizard. You can provide the name of a SQL Bypass Database field.

• See Automatically Mapping Flex Object Changes to the Logical Model.

• See Create a new Application Module configuration, in Deploying the Application
EAR File to Oracle WebLogic Server from JDeveloper.

• See About Specifying a SQL Bypass Database.

1. In the Administration Tool, do one of the following:

• From the File menu, select Import Metadata.

• If you have an existing ADF data source and connection pool, right-click the
connection pool in the Physical layer, and select Import Metadata.

2. In the Import Metadata Select Data Source page, from the for Connection Type
list, choose OracleADF_HTTP .

When you have finished providing information The Select Metadata Objects
screen appears.

3. Under Connection Pool, select New Connection, or select Existing Connection
and click Browse to locate and select an existing connection pool.

If you are using an Existing Connection, the values in Data Source, AppModule
Definition, AppModule Config, or URL, and the User Name and Password
fields are populated from the connection pool definition.

4. In the Data Source field leave the field blank to use the default JDBC data source,
or type a JDBC data source name such as jdbc/nWindORA05 to use a different
data source.

5. In AppModule Definition, type the fully qualified Java package name of the root
application module to use for the connection such as
oracle.apps.fii.receivables.model.RootAppModule, or
snowflakesales.SnowflakeSalesApp.

6. In URL, type the URL to the Oracle Business Intelligence broker servlet using the
following format:

http://host:port/APP_DEPLOYMENT_NAME/obieebroker

The URL is case-sensitive, for example:

http://localhost:7001/MyApp/obieebroker

Chapter 6
Importing Metadata from ADF Data Sources

6-11



7. In User Name and Password, provide a valid user name and password for the
Oracle ADF application.

You must set up the user name and password in the Oracle WebLogic Server
security realm.

8. In the Data source view, select the objects to import and move them to the
Repository View.

9. In Select Data Source, click Next.

10. Click Finish .

11. Expand the database object for the ADF data source in the Physical layer to
validate that your import was successful, right-click a physical table, and click
View Data.

Using Incremental Import to Propagate Flex Object Changes
If you make changes to flexfields in your ADF applications, then you can use the
Import Metadata Wizard in the Oracle BI Administration Tool to incrementally import
the changes to the Physical layer of the Oracle BI repository.

The Import Metadata Wizard includes a synchronization feature for ADF data sources
that enables you to import only the changes made to objects. Synchronization detects
the changed objects, including new joined dimensions (KFF) and new attributes (DFF
and EFF) to enable adding the objects automatically, without the need to search for
the changed object.

The synchronization feature detects the following:

• Changes in columns

• Additions or deletions of tables and columns

• Additions of keys and foreign keys

• Newly joined tables

New tables that are joined to any existing table are only imported when you select
the option Automatically include any missing joined objects on the Select
Metadata Objects screen.

After import, the ADF data is modeled as shown in the table.

ADF Metadata Imported BI Metadata

Root Application Module Database

View Objects Physical Tables

View Object Attribute Physical Column

View Object Key Physical Key

View Links Physical Joins

Chapter 6
Importing Metadata from ADF Data Sources

6-12



Note:

As data is imported incrementally, modifications to properties of attributes
are detected and propagated. For example, if an attribute changes its data
type, that change is propagated to the physical layer objects.

If you are importing metadata into an existing database in the Physical layer, then
confirm that the COUNT_STAR_SUPPORTED option is selected in the Features tab
of the Database properties dialog. If you import metadata without the
COUNT_STAR_SUPPORTED option selected, the Update Row Count option does
not display in the right-click menu for the database's physical tables.

See Automatically Mapping Flex Object Changes to the Logical Model.

1. In the Administration Tool, in the Physical layer, right-click the connection pool for
your ADF OLTP source and select Import Metadata.

2. Click Synchronize to locate and automatically select all recent changes for import.

3. Review the selected metadata to locate the new attributes.

4. Click Finish to close the wizard, or click Next to continue to Map to Logical
Model .

Automatically Mapping Flex Object Changes to the Logical Model
After importing changes to flexfields in your ADF application, you can use the Map to
Logical Model screen of the Import Metadata Wizard in the Oracle BI Administration
Tool to automatically propagate the changes to the Business Model and Mapping layer
and Presentation layer.

You can override the default mapping behavior during by renaming logical tables,
splitting a view object into multiple tables, and combining multiple view objects into a
single logical table.

See Customizing the Mapping Behavior.

You can keep the default behavior, or customize the behavior for your needs. For
example, you might want to rename tables and columns in the Business Model and
Mapping layer, map to an existing logical table, or map a logical column to multiple
source columns. The Column Mapping grid shows alias columns as well as regular
columns, so that you can handle customized mappings that include alias columns. The
Table Mapping grid enables a single physical table to map to multiple logical tables,
and the reverse.

The Table Mapping grid includes a VO Type column. Options include Normal, ETL
Only, and Query Only. ETL Only view objects exist only to extend the ETL mappings,
and are not used for queries. Logical table sources that reference imported view
objects of this type are marked as disabled in the Business Model and Mapping layer.
Query Only view objects are only used for queries, and are not passed to the BI
Extender for extension into the data warehouse.

The Table Mapping grid also includes a Hierarchy column to use with hierarchies.

Select Create Logical Joins if the imported tables are being mapped to a new
business model that is created during the Map to Logical Model step. If the required

Chapter 6
Importing Metadata from ADF Data Sources

6-13



logical joins in place, do not select the Create Logical Joins option to avoid creating
erroneous multiple logical joins.

See Using Incremental Import to Propagate Flex Object Changes.

1. In the Administration Tool, in the Physical layer, right-click Properties.

2. In Properties, select the Connection Pool tab, ADF OLTP source and select
Import Metadata.

3. Complete the fields in Select Metadata Objects, and click Next.

4. In Map to Logical Model, review the Table Mapping and Column Mapping grids
display the results of a default drag-and-drop.

5. (Optional) In the VO Type, select the option to use.

6. (Optional) In the Hierarchy column, select this option for objects in hierarchies.

7. (Optional) Select Create Logical Joins when the imported logical joins do not
already exist.

8. Click Finish to close the wizard.

Customizing the Mapping Behavior
When setting up automatic mapping to the Logical Model, you can create a set of XML
files that specify custom requirements for the mappings displayed in the Map to
Logical Model screen.

The Administration Tool reads the XML files and then automatically maps the KFF,
DFF, and EFF segments according to the specified logic. Each XML file has a top-
level element with an appName attribute that specifies the application to which the file
applies.

You must create your XML files according to the logic in the XML schema files
app_segment_rule.xsd and mapping_rules.xsd. You can find these files in:

ORACLE_HOME\bi\bifoundation\javahost\lib\obisintegration
\biextender

All XML files in this directory with the prefix mapping_rules and app_segment_rules
are parsed by the Administration Tool for ADF data sources.

You can use the existing app_segment_rules_*.xml and mapping_rules_*.xml in this
directory as examples.

See XML Schema Files for ADF Mapping Customizations.

Manually Mapping Flex Object Changes to the Logical Model
You can drag and drop the physical objects to the Business Model and Mapping layer
and Presentation layer and skip the logical mapping step in the Import Metadata
Wizard.

The Oracle BI Administration Tool supports incremental drag-and-drop for ADF data
sources, which enables physical database and schema objects to be dragged and
dropped into an existing business model, resulting in updates made only for the
incremental changes.

Chapter 6
Importing Metadata from ADF Data Sources

6-14



The current logic includes data source-specific default rules that can enable, for
example, logical dimensions and hierarchies to be automatically created.

Automatically Mapping Flex Object Changes Using the
biserverextender Utility

You can use the biserverextender utility to import flex object changes from your ADF
sources and map them to the Business Model and Mapping layer and Presentation
layer.

Because this feature does not require the Administration Tool, it is especially useful
when you want to map flex object changes on Linux and UNIX systems where the
Administration Tool is not available.

To use the biserverextender utility, you must first create an XML parameter file that
contains the connection pool for an existing ADF data source. The biserverextender
utility retrieves the existing ADF connection pool name from the parameter file,
synchronizes the ADF data source, updates the deployed objects in the source, and
then maps physical metadata to the Business Model and Mapping and Presentation
layers based on the default rule files in the following directory:

ORACLE_HOME/bi/bifoundation/javahost/lib/obisintegration/biextender

See Customizing the Mapping Behavior for information about rule files.

Syntax

biserverextender -R base_repository_name [-P repository_password]
-O output_repository_name -I input_XML_file [-S]

Where:

-R base_repository_name is the name and path of the repository into which you want to
import and map flex object changes.

-P repository_password is the Oracle BI repository password for the base repository.

The repository_password argument is optional. If you do not provide the password
argument, you are prompted to enter the password when you run the command. To
minimize the risk of security breaches, Oracle recommends that you do not provide
password arguments from the command line or in scripts. The password argument is
supported for backward compatibility only. For scripting purposes, you can pass the
password through standard input.

-O output_repository_name is the name and path of the repository generated by the
utility.

-I input_XML_file is the name and path of an input XML parameter file that contains
the fully-qualified name of a connection pool for an ADF data source.

-S is optional. If -S is not specified, only the changes from the ADF source's DFF, KFF,
and EFF objects are synchronized to the Oracle BI Repository. If -S is specified,
Oracle BI Administration Tool reimports all of the DFF, KFF, and EFF objects from the
ADF source based on the ADF source's database properties, and re-synchronizes the
Oracle BI Repository.

-S also incorporates the following changes in the app_segment_rules.xml rules file:

Chapter 6
Importing Metadata from ADF Data Sources

6-15



• New mapping rules segments

• New alias table creation

• New ADF VO To Be Exposed subject area or presentation table

Example

biserverextender -R /scratch/my_repos.rpd -O /scratch/my_repos_modelled.rpd 
-I /scratch/ADFSource.xml -S
Give password: password

Sample XML Parameter File

<BIExtenderParameters>
 <ConnectionDetails>
  <ConnectionPool>
   <ConnectionPoolName>"oracle.apps.fscm.model.analytics.applicationModule.Fscm
   TopModelAM_FscmTopModelAMLocal"."Connection Pool"</ConnectionPoolName>
  </ConnectionPool>
 </ConnectionDetails>
</BIExtenderParameters>

Configuring SSL in Oracle WebLogic Server
You can configure one-way and two-way SSL in Oracle WebLogic Server.

This section contains the following topics:

• Configuring One-Way SSL in Oracle WebLogic Server

• Configuring Two-Way SSL in Oracle WebLogic Serve

Configuring One-Way SSL in Oracle WebLogic Server
One-way SSL is required to properly secure the communication between Oracle
Business Intelligence and Oracle WebLogic Server.

1. From the Oracle WebLogic Server Administration Console home page, click
Servers under the Environment heading.

2. In the Servers table, select the name of the server you want to manage.

3. On the General tab in the Configuration tab, select SSL Listen Port Enabled.

4. Use the Administration Tool to update the appropriate connection pool object in
the Physical layer to use https:// instead of http://.

5. Update the port number to use the SSL port number, 7002, by default.

Configuring Two-Way SSL in Oracle WebLogic Server
You can set up two-way SSL to secure the communication between the Oracle BI
Server and Oracle WebLogic Server.

Perform queries against ADF using your Oracle BI Server client of choice such as
nqcmd. The Oracle BI Server should communicate with the ADF Oracle WebLogic
Server using mutual SSL / client certificates.

Chapter 6
Configuring SSL in Oracle WebLogic Server

6-16



See Authentication Concepts in Security Guide for Oracle Business Intelligence
Enterprise Edition.

In the Oracle WebLogic Server Administration Console modify the ADF Oracle
WebLogic Server to accept SSL connections and to perform mutual SSL.

If you generate a client certificate file, the cacert.pem file is stored in:

ORACLE_HOME/user_projects/domains/bifoundation_domain/config/fmwconfig/biinstances/
coreapplication/ssl

Your trust keystore might use a location similar to the following:

/scratch/user_name/view_storage/user_name_fmw/fmwtools/mw_home/wlserver_10.3/server/
lib

1. (Optional) Create client certificates in the Oracle BI Server, if they do not already
exist.

2. Log in to the Oracle WebLogic Server Administration Console and click Servers
under the Environment heading, then click the server name.

3. In the Change Center, click Lock & Edit to enable configuration changes.

4. In the General tab, select SSL Listen Port Enabled, record the SSL Listen Port
number, and then click Save.

5. Select the SSL tab, then select Advanced.

6. For Two Way Client Cert Behavior, select Client Certs Requested and
Enforced, and then click Save.

7. Select the Keystores tab and record the location and file name for the Trust
Keystore.

8. Click Activate Changes.

9. On the Oracle BI Server computer, find the CA file for the client certificate verify
that the Certificate Authority (CA) for the Oracle BI Server client certificate is
trusted by the ADF Oracle WebLogic Server.

10. Copy the cert.pem file to a known location.

11. On the ADF Oracle WebLogic Server computer, open a command window and go
to the location of the trust keystore.

12. Copy the client CA file, for example, cacert.pem to the trust keystore location.

13. Use the following command in the JDK keytool utility to import the client CA into
the trust keystore for the ADF server, making it a trusted CA:

keytool -import -file client_CA_file -keystore 
keystore_file -keystorepass keystore_password

For example:

/scratch/my_name/view_storage/my_name_fmw/jdk6/bin/keytool -import -file
~/Downloads/SSL/cacert.pem -keystore DemoTrust.jks -keystorepass
DemoTrustKeyStorePassPhrase

14. In the Administration Tool, in the Physical layer, open the first ADF connection
pool object and select the Miscellaneous tab to update the Physical layer of the
Oracle BI repository.

Chapter 6
Configuring SSL in Oracle WebLogic Server

6-17



15. Update the URL field to use the https protocol and the SSL port, and then click
OK.

16. Repeat the previous two steps for each additional ADF connection pool object.

17. Save the repository and restart the Oracle BI Server.

18. Configure the Oracle BI Server ODBC DSN to use SSL.

For example, on Windows do the following:

a. Open the ODBC Data Source Administrator and select the System DSN tab.

b. Double-click the DSN for the Oracle BI Server.

The DSN should start with coreapplication_OH.

c. Select Use SSL.

d. Click Next, click Next again, and then click Finish.

Enabling the Ability to Pass Custom Parameters to the ADF
Application

Some ADF applications have custom properties defined on the ApplicationModule
such as EFFECTIVE_DATE or TREE_VERSION.

You can include these custom properties in your application queries, and the Oracle BI
Server passes them to the Oracle ADF application.

You cannot use this feature to pass any custom property to your Oracle ADF
application. Only certain custom properties, like EFFECTIVE_DATE and TREE_VERSION, are
supported.

1. Open your repository in the Administration Tool.

2. Select Manage, and then select Variables.

3. Select Action, select New, select Repository, and then select Variable.

4. For Name, enter ADF_PARAM_LIST. Do not enter the name of the custom
property as the name of the variable.

5. Ensure that the Type is Static.

6. For Default Initializer, enter the name or names of the custom properties as a
character string. If you have multiple custom properties, include them as a comma
delimited list. For example:

'PARAM_EFFECTIVE_DATE'

'PARAM_EFFECTIVE_DATE, ApplicationIdBind, KeyFlexfieldCodeBind'

7. Click OK.

8. Save and close the repository.

After you register the custom properties as a repository variable, you can include these
variables in queries. For example:

set variable PARAM_EFFECTIVE_DATE=2001-01-01 : SELECT c1 FROM t1;

or

Chapter 6
Enabling the Ability to Pass Custom Parameters to the ADF Application

6-18



set variable ApplicationIdBind = '0', KeyFlexfieldCodeBind = 'KFF1' :
select_physical ApplicationID, KeyFlexfieldCode, DataSecurityObjectName,
SegmentLabelCode from adfdb..."AppModule.KFFHierFilterVO1";

When you are including a custom property of type PARAM_EFFECTIVE_DATE, the date
format for the property value must use the format, yyyy-mm-dd.

Propagating Labels and Tooltips from ADF Data Sources
You can propagate user interface hints such as labels and tooltips, from ADF data
sources to display when users work with analyses.

When translated labels and tooltips, based on user locale, are maintained within an
ADF data source, you can query the data source to access this translated data. You
use the Administration Tool to configure presentation columns to use when creating
analyses.

This section contains the following topics:

• What are Labels and Tooltips?

• About the Session Variable Naming Scheme for UI Hints

• About Determining the Physical Column for a Presentation Column

• About Initializing Session Variables Automatically for Propagating UI Hints

• Using UI Hints From an Oracle ADF Data Source When Creating Analyses

• Using XML Code in Initialization Blocks to Query UI Hints

What are Labels and Tooltips?
The propagation of UI hints enables a presentation column in the Oracle BI
Administration Tool to use a label and tooltip as its Custom display name and
Description respectively.

A label is the text that is used in prompts or table headers that precedes the value of a
data item. A tooltip is the text that is displayed when a user hovers over the item. Each
attribute of a view object has an associated label and tooltip. A view object is the
Oracle ADF component that enables a developer to work easily with SQL query
results.

The image shows the Label Text and Tooltip Text options in the Edit Attribute dialog in
JDeveloper.

Chapter 6
Propagating Labels and Tooltips from ADF Data Sources

6-19



About the Session Variable Naming Scheme for UI Hints
Learn about the session variable naming scheme.

Session variable names are generated by the Oracle BI EE broker servlet in Oracle
WebLogic Server in the following format:

ADF_UI Hint Type_Database Name_View Object Name_Attribute's Name

Where:

UI Hint Type is a LABEL or TOOLTIP.

Database Name is the value for the database attribute of the ADFQuery element in the
XML query. Special characters such single quotes ('), double quotes ("), and spaces
are replaced by the underscore character.

View Object Name is the name attribute of the view object. Oracle ADF prohibits
special characters and spaces in the name.

Attribute's Name is the name of the attribute for the session variable. Oracle ADF
prohibits special characters and spaces in the name.

Every character in the session variable name is uppercase. The XML query example,
in Using XML Code in Initialization Blocks to Query UI Hints, generates four session
variables with the following names:

ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_FIRSTNAME

ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_FIRSTNAME

ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME

ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME

Chapter 6
Propagating Labels and Tooltips from ADF Data Sources

6-20



About Determining the Physical Column for a Presentation Column
Each presentation column must map to a physical column as required by the naming
scheme for session variables .

When you choose to Generate ADF Labelor or Generate ADF Tooltip for a
presentation layer object, the physical column is located using the following rules:

• Examine the presentation column and determine its logical column. If the logical
column is derived from an existing logical column, then the physical column cannot
be found.

• If the default aggregation rule for the logical column is not None or Sum, then the
physical column cannot be found. It does not make sense semantically to use the
ADF UI hints for aggregation rules other than Sum.

• A logical column can be mapped to physical columns by multiple logical table
sources. Only logical table sources that are not disabled are searched.

• Do not search logical table sources that map the logical column using non-trivial
expressions, that is, anything more than a physical column name. If no logical
table sources are searched, then the physical column cannot be found.

• From the remaining ordered list of logical table sources, examine the physical
column that is mapped by the first logical table source. A physical column must
map to a view object attribute. The physical column must exists as part of a
physical database of type Oracle ADF 12c.

– If this condition is satisfied, then the physical column for obtaining UI hints is
found.

– If this condition is not satisfied, then continue to examine the physical column
that is mapped by the next logical table source until the physical column that is
mapped to a view object attribute is found.

If all logical table source are searched without satisfying the condition, then the
physical column cannot be found.

If the physical column for obtaining UI hints is found using these rules, then the custom
display name or description is populated with a session variable that has a name
based on a predetermined naming scheme. See About the Session Variable Naming
Scheme for UI Hints.

If the physical column for obtaining UI hints is not found using these rules, then the
Generate ADF Label and Generate ADF Tooltip options are shown as disabled in
the right-click menu.

As an alternative to using the physical column found using these rules, you can use
XML code in an initialization block to initialize your own session variables with ADF UI
hints. You must then enter these session variable names in the Custom display
name and Custom description fields manually. See Using XML Code in Initialization
Blocks to Query UI Hints.

About Initializing Session Variables Automatically for Propagating UI
Hints

Learn when session variables are created.

Chapter 6
Propagating Labels and Tooltips from ADF Data Sources

6-21



If the Generate ADF Label and Generate ADF Tooltip options were used to
successfully generate the session variable names for UI hints from Oracle ADF, then
the session variables are created and initialized when Oracle BI Presentation Services
queries them during the session.

The variables are not created and initialized during the session logon stage for
performance reasons. Variables are created, using Allow deferred execution, and
initialized when the variables are needed by a specific query in a session.

When Oracle BI Presentation Services queries the custom display names and custom
descriptions through ODBC, the Oracle BI Server checks to determine if the
associated session variables have been created. If the variables were not created, the
Oracle BI Server dynamically generates the appropriate XML query to retrieve the UI
hints from the Oracle ADF data source. The Oracle BI Server uses the UI hints to
create and initialize the session variables. To optimize performance, the Oracle BI
Server queries UI hints for each view object. If the Oracle BI Server needs the UI hints
of a view object's attributes, then the UI hints for all the attributes under the view object
are queried and propagated through session variables.

Using UI Hints From an Oracle ADF Data Source When Creating
Analyses

You can use UI hints from an Oracle ADF data source when creating analyses.

Before you can perform this task, the following prerequisites must be met:

• UI hints must have been configured in the Oracle ADF data source.

• A working repository must have been configured for the Oracle ADF data source in
the Administration Tool.

• Right-click the column in the Presentation layer and select Externalize Display
Names, select Generate ADF Label, select Externalize Descriptions, and then
select Generate ADF Tooltip to generate tooltip strings for all of the columns.

Using XML Code in Initialization Blocks to Query UI Hints
You can use specialized XML code in place of SQL statements in initialization blocks
to query the data source for UI hints, within a single repository and subject area.

See About the Session Variable Naming Scheme for UI Hints.

After configuring the initialization blocks, you must manually enter the session variable
names in the Custom display name and Custom description text fields for the
appropriate presentation column.

Follow the procedure in the example in Using UI Hints From an Oracle ADF Data
Source When Creating Analyses, but replace the first step with the following ones:

Create session initialization blocks in the Administration Tool, see Creating Session
Variables.

1. In the Session Variable Initialization Block Data Source dialog, enter the
Initialization string.

2. In the Session Variable Initialization Block dialog, from the Variable Target list,
select Row-wise initialization.

Chapter 6
Propagating Labels and Tooltips from ADF Data Sources

6-22



3. Click Test to test the query against the Oracle ADF data source.

4. Configure a custom display name and write a description in presentation columns.

5. Right-click a physical table, select Query Related Objects, select Presentation,
and then select Presentation Table.

6. In Query Related Objects, select the required presentation table and click Go To.

7. Expand the presentation table to view the presentation columns.

8. Double-click the presentation column to display the Presentation Column dialog.

9. Select Custom display name and enter a value similar to the following:

VALUEOF(NQ_SESSION.ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME)

10. Select Custom description and enter a value similar to the following:

VALUEOF(NQ_SESSION.ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME)

11. Click OK.

12. Save the changes in the repository and restart the Oracle BI Server.

ADFQuery Element Reference
Use the ADFQuery element and its mode, database, and locale attributes in your XML
code.

The element requires zero or more child elements. The following is the syntax of the
element:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="mode" database="database_name"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
     <ViewObject><![CDATA[view_object_name]]></ViewObject>
     <Attribute>
     <ViewObject><![CDATA[attribute_view_object_name]]></ViewObject>
     <Name><![CDATA[attribute_name]]></Name>
     </Attribute>
</ADFQuery>

Where:

mode specifies what you want to query:

• label for querying attributes' label

• tooltip for querying attributes' tooltip

• ui_hints for querying attributes' label and tooltip

database_name specifies the name of the physical database object in the Administration
Tool, which contains the physical columns that correspond to the attributes in the
Oracle ADF data source.

view_object_name specifies the name of the view object to obtain the UI hints of all
attributes in it.

attribute_view_object_name specifies the name of the view object that contains the
attribute.

attribute_name specifies the name of the attribute that belongs to the associated view
object to obtain the UI hints of this attribute.

Chapter 6
Propagating Labels and Tooltips from ADF Data Sources

6-23



Querying Labels for All View Objects

Do not include child elements in the ADFQuery element when querying the UI hints of
all attributes in all View Objects. For example, to query the labels of all attributes in all
View Objects under the My_orclADF physical database object, use the following XML
code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="label" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
</ADFQuery>

Querying Tooltips for Specific View Objects

The ADFQuery element can contain zero or more child elements named ViewObject if
UI hints of all attributes in specific View Objects are queried. Each ViewObject element
has a text content that contains the View Object's name. The ViewObject element is
used to specify the View Objects from which the UI hints of all attributes are queried.
For example, to query the tooltips of all attributes in the View Object that is named
EmployeesView and CustomersView under the My_orclADF physical database object,
use the following XML code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="tooltip" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
   <ViewObject><![CDATA[EmployeesView]]></ViewObject>
   <ViewObject><![CDATA[CustomersView]]></ViewObject>
</ADFQuery>

Querying UI Hints for Specific Attributes

The ADFQuery element can contain zero or more child elements named Attribute.
Each Attribute element has two required child elements named ViewObject and Name.
The Attribute element is used to specify the attributes from which the UI hints are
queried. The ViewObject child element has a text content that contains the View
Object's name. This element specifies the View Object that the attribute belongs to.
The Name child element has a text content which contains the attribute's name. For
example, to query the labels and tooltips of the attributes named Firstname and
Lastname in the EmployeesView View Object under the My_orclADF physical
database object, use the following XML code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="ui_hints" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
   <Attribute>
      <ViewObject><![CDATA[EmployeesView]]></ViewObject>
      <Name><![CDATA[Firstname]]></Name>
   </Attribute>
   <Attribute>
      <ViewObject><![CDATA[EmployeesView]]></ViewObject>
      <Name><![CDATA[Lastname]]></Name>
   </Attribute>
</ADFQuery>

Chapter 6
Propagating Labels and Tooltips from ADF Data Sources

6-24



7
Setting Up Database Objects and
Connection Pools

This chapter describes the properties of the database and connection pool objects in
the Physical layer.
Properties for database objects and connection pools are set automatically when you
import metadata from your data sources. You might want to adjust database or
connection pool settings, or create a database object or connection pool manually.

This chapter contains the following sections:

• Setting Up Database Objects

• About Connection Pools

• Creating or Changing Connection Pools

• Setting Up Persist Connection Pools

• List Connection Pool Command

• Update Connection Pool Command

• Using the BIServerT2PProvisioner.jar Utility to Change Connection Pool
Passwords

Setting Up Database Objects
Importing metadata from a data source automatically creates a database object for the
schema, but you may need to adjust or view the database properties.

You might to manually create a database object and connection pool for certain
situations like configuring usage tracking, setting up Oracle Scorecard and Strategy
Management, or configuring aggregate persistence targets.

See System Requirements and Certification.

The following sections provide information about how to create, edit, or view properties
for database objects in the Physical layer:

• About Database Types in the Physical Layer

• Creating a Database Object Manually in the Physical Layer

• SQL Features Supported by a Data Source

• Viewing Database Properties

• Reviewing Supported Database Features

About Database Types in the Physical Layer
If you import the physical schema into the Physical layer, the Administration tool
usually assigns database type automatically.

7-1



The following list contains additional information about automatic assignment of
database types:

• Relational data sources

During the import process, ODBC drivers provide the Oracle BI Server with the
database type. If the server cannot determine the database type, an approximate
ODBC type is assigned to the database object. Replace the ODBC type with the
closest matching entry from the Database list.

• Multidimensional data sources

Microsoft Analysis Services and SAP/BW are the only supported XMLA-compliant
data sources currently available. After you import metadata from a
multidimensional data source, check the database object and update the
appropriate database type and version if necessary.

Creating a Database Object Manually in the Physical Layer
When you create a database object manually, you must also manually set up an
associated connection pool.

For multidimensional data sources, if you create the physical schema in the Physical
layer of the repository, you need to create one database in the physical layer for each
cube, or set of cubes, that are in the same catalog (database) in the data source. A
physical database can have more than one cube. The cubes must belong to the same
catalog in the data source. To learn the properties to specify and their values when
creating a database, see Database General Properties Reference.

Important:

Oracle strongly recommends importing your physical schema.

1. In the Administration Tool, in the Physical layer without any objects selected, right-
click and select New Database.

2. In the Database dialog on the General tab, type a Name for the database.

3. In Data source definition, from the Database Type list, select Database as the
value.

4. (Optional) Select CRM metadata tables only for relational data sources and
legacy Siebel Systems sources.

5. (Optional) Select Virtual Private Database to identify the physical database
source as a virtual private database (VPD).

6. (Optional) Select Allow populate queries by default to give users the ability to
populate the database.

7. (Optional) Select Allow direct database requests by default to allow users to
execute queries.

Chapter 7
Setting Up Database Objects

7-2



Database General Properties Reference
Review the database properties in the table to learn which properties to configure and
when you can or should specify values.

Option Description

Data source definition:
Database

The database type for your database.

CRM metadata tables When selected, indicates that the definition of physical tables
and columns for Siebel CRM tables was derived from the Siebel
metadata dictionary.

Data source definition:
Virtual Private Database

Identifies the physical database source as a virtual private
database (VPD). When a VPD is used, returned data results are
contingent on the user's authorization credentials. Therefore, it is
important to identify these sources. These data results affect the
validity of the query result set that is used with caching.

Always select this option for Essbase, Hyperion Financial
Management, and Hyperion Planning data sources that are
configured for SSO in the corresponding connection pool.

Note:

If you select this option, you also
should select the Security
Sensitive option in the Session
Variable dialog.

Persist connection pool To use a persistent connection pool, you must set up a
temporary table first.

Allow populate queries by
default

When selected, allows everyone to execute POPULATE SQL. If you
want most, but not all, users to be able to execute POPULATE
SQL, select this option and then limit queries for specific users or
groups.

Allow direct database
requests by default

When selected, allows all users to execute physical queries. The
Oracle BI Server sends unprocessed, user-entered, physical
SQL directly to an underlying database. The returned results set
can be rendered in Oracle BI Server, and then charted, rendered
in a dashboard, and treated as an Oracle Business Intelligence
request.

If you want most, but not all, users to be able to execute physical
queries, select this option and then limit queries for specific
users or groups.

When to Allow Direct Database Requests by Default
The property, Allow direct database requests by default, provides the ability for users
to execute physical queries.

If configured incorrectly, it can expose sensitive data to an unintended audience.

Use the following recommended guidelines when setting this database property:

Chapter 7
Setting Up Database Objects

7-3



• The Oracle BI Server should be configured to accept connection requests only
from a computer on which the Oracle BI Server, Oracle BI Presentation Services,
or Oracle BI Scheduler are running. This restriction should be established at the
TCP/IP level using the Oracle BI Server IP address. This allows only a TCP/IP
connection from the IP address of Oracle BI Server.

• To prevent users from running nqcmd, a utility that executes SQL scripts, by logging
in remotely to this computer, you should disallow access by the following to the
computer on which you installed Oracle BI Presentation Services:

– TELNET

– Remote shells

– Remote desktops

– Teleconferencing software such as Windows NetMeeting

If necessary, you might want to make an exception for users with administrator
permissions.

• Only users with administrator permissions should be allowed to perform the
following tasks:

– TELNET into the Oracle BI Server and Oracle BI Presentation Services
computers to perform tasks such as running nqcmd for cache seeding.

– Access the advanced SQL page of Answers to create requests.

• Set up group/user-based permissions on Oracle BI Presentation Services to
control access to editing, preconfigured to allow access by Oracle BI Presentation
Services administrators, and executing, preconfigured to not allow access by
anyone, direct database requests.

SQL Features Supported by a Data Source
When you import metadata or specify a database type in the General tab of the
Database dialog, the set of SQL features for that database object is automatically
populated with default values appropriate for the database type.

The Oracle BI Server uses the supported SQL features with the specified data source.

When a feature is marked as supported, checked in the Default column on the
Features tab of the Database dialog, the Oracle BI Server pushes the function or
calculation down to the data source for improved performance. When a function or
feature is not supported in the data source, the calculation or processing is performed
in the Oracle BI Server.

The supported features list uses the defaults defined in the DBFeatures.defaults file,
located in ORACLE_HOME/bi/bifoundation/server/bin. You should not modify this file. You
can review the DBFeatures.defaults file to compare the features supported by different
data source types.

Note:

The content found in DBFeatures.defaults in 12c was previously found in the
file DBFeatures.INI in the directory ORACLE_INSTANCE/.../config in 11g.

Chapter 7
Setting Up Database Objects

7-4



You can tailor the query features for a data source such as when upgrading to a new
version of a data source to see if the updated feature is reflected in the Oracle BI
Server defaults. When the supported feature is not shown in the Features tab, you can
update the settings in the Features tab to reflect the actual features supported by the
new version of the data source. If a data source supports a particular feature such as
left outer join queries but you want to prohibit the Oracle BI Server from sending such
queries to a particular data source, you can change this default setting in the Features
tab. If you have federated data sources that execute functions differently, to ensure
that query results are consistent, you can disable the appropriate functions on the
Features tab so that the calculations are performed in a consistent manner in the
Oracle BI Server.

Important:

If you enable SQL features that the data source does not support, your query
may return errors and unexpected results. If you disable supported SQL
features, the server could issue less efficient SQL to the data source.

In most cases, you should keep the default values. If you do change the
defaults to mark a feature as supported in the Features tab, make sure that
the feature is actually supported by the data source.

Note:

Do not change the OPTIMIZE_MDX_FILTER_QUALIFICATION value.

See Reviewing Supported Database Features.
The table lists the options available on the Features tab of the Database dialog.

Option Description

Feature The name of the database feature, such as
COUNT_DISTINCT_SUPPORTED.

Value Shows the current value for the given feature. Selected indicates
that the feature is supported in the data source, and that the
function or feature should be performed in the data source rather
than in the Oracle BI Server.

Some features show a default value in the Value column rather
than selected/not selected, such as 10 for
MAX_ENTRIES_PER_IN_LIST.

It is strongly recommended that you keep the default selections
and default values.

Default Shows the default value for the given feature. The defaults listed
in this column are specified in the file DBFeatures.defaults.

Find Searches for a feature in the list.

Find Again This option becomes available after you click Find. It lets you
perform multiple searches for the same string.

Chapter 7
Setting Up Database Objects

7-5



Option Description

Query DBMS Use Query DBMS only when you are installing and querying a
data source that has no set of feature defaults in the Oracle BI
Server. Query DBMS enables querying the type of data source
for Feature table entries so that you can find out which SQL
features are supported. You can then change the entries that
appear in the Features tab based on your query results. Query
DBMS is not available if you are using an XML or a
multidimensional data source.

Note:

The Query DBMS feature results
are not always an accurate
reflection of the SQL features
actually supported by the data
source. When using this feature,
you should verify that the list of
supported features in the Features
tab matches the actual features
supported by your data source.
Refer to the documentation for
your data source for details.

Reset to defaults This button restores the default values for this data source type
from the DBFeatures.defaults file.

Viewing Database Properties
You can extend the Physical layer metadata for some data sources.

For example, for Oracle ADF data sources, you can view custom database properties
that are passed to the Administration Tool from Oracle ADF BI view objects. These
properties are not usually edited.

The table shows examples of custom properties.

Category Key Name Value Description

FscmTopModelAM.
AccountBIAM

BIObject_FLEX_TREE_VS
_COST_CENTER_LABEL
_VI

Dim - Cost Center FLEX_TREE_VS_COST_CENTE
R_LABEL_VI view object needs to
map to the Dim - Cost Center
logical dimension.

FscmTopModelAM.
AccountBIAM

BIFlexfieldViewUsage FLEX_BI_AcctKff_VI FLEX_BI_AcctKff_VI is the CCID
view object for
FscmTopModelAM.AccountBIAM.

FscmTopModelAM.
AccountBIAM

EnforceCustomDataType_
FscmTopModelAM.Accoun
tBIAM

"Segment 1":"VARCHAR";
"Segment ID":"DOUBLE"

For
FscmTopModelAM.AccountBIAM
view objects, the data type of
some physical columns, the values
are overridden with values passed
in the property.

Chapter 7
Setting Up Database Objects

7-6



Reviewing Supported Database Features
In the Oracle BI Administration Tool, you can review the features supported by
databases and data sources. You can use Database Features when trying to
troubleshoot a query or other operation that is not working as expected.

Features are the SQL expressions, statements, function, operations, and other Oracle
BI EE features that you can execute against the database such as a query that uses
an ISDESCENDANT statement, operations such as ADD or SQRT (square root) operations are
supported. If a check displays in the Value or Default columns, the feature is
supported. For specific information about the Value or Default columns, see SQL
Features Supported by a Data Source.

1. Open the Oracle BI Administration Tool.

2. From the File menu, select Online Mode or Offline Mode.

3. In the Open Repository dialog, select a repository, and click Open.

4. In the Physical column, right-click a database or data source, and select
Properties.

5. In Database Properties, click the Features tab to review the supported features for
the specific database or data source.

About Connection Pools
The connection pool is an object in the Physical layer that describes access to the
data source.

The connection pool contains information about the connection between the Oracle BI
Server and that data source.

The Physical layer in the BI Server contains at least one connection pool for each
database. When you create the Physical layer by importing a schema for a data
source, the connection pool is created automatically. You can configure multiple
connection pools for a database. Connection pools allow multiple concurrent data
source requests (queries) to share a single database connection, reducing the
overhead of connecting to a database.

Note:

It is recommended that you create a dedicated connection pool for
initialization blocks. See About Connection Pools for Initialization Blocks.

For each connection pool, you must specify the maximum number of concurrent
connections allowed. After this limit is reached, the connection request waits until a
connection becomes available.

Increasing the allowed number of concurrent connections can potentially increase the
load on the underlying database accessed by the connection pool. Test and consult
with your DBA to make sure the data source can handle the number of connections
specified in the connection pool. Also, if the data sources have a charge back system

Chapter 7
About Connection Pools

7-7



based on the number of connections, you might want to limit the number of concurrent
connections to keep the charge-back costs down.

In addition to the potential load and costs associated with the database resources, the
Oracle BI Server allocates shared memory for each connection upon server startup.
This raises the number of connections and increases Oracle BI Server memory usage.

About Connection Pools for Initialization Blocks
You should create a dedicated connection pool for initialization blocks.

Do not use this connection pool for queries.

You should isolate the connections pools for different types of initialization blocks. By
isolating the connection pools, you can ensure that authentication and login-specific
initialization blocks do not slow down the login process. The following types of
initialization blocks should have separate connection pools:

• All authentication and login-specific initialization blocks such as language,
externalized strings, and group assignments.

• All initialization blocks that set session variables.

• All initialization blocks that set repository variables. Run initialization blocks that
set repository variables using credentials with administrator privileges.

Be aware of the number of these initialization blocks, their scheduled refresh rate,
and when they are scheduled to run. It would take an extreme case for this
scenario to affect resources. For example, refresh rates set in minutes, greater
than 15 initialization blocks that refresh concurrently, and a situation in which
either of these scenarios could occur during prime user access time frames.

You should design initialization blocks to set the maximum number of Oracle BI Server
variables for each block. For example, if you have five variables, it is more efficient
and less resource intensive to construct a single initialization block containing all five
variables. When using one initialization block, the values are resolved with one call to
the back end tables using the initialization string. Constructing five initialization blocks,
one for each variable, would result in five calls to the back end tables for assignment.

If an initialization block fails for a particular connection pool during Oracle BI Server
start-up, no more initialization blocks using that connection pool are processed.
Instead, the connection pool is blacklisted and subsequent initialization blocks for that
connection pool are skipped. This behavior ensures that the Oracle BI Server starts in
a timely manner, even when a connection pool has a large number of associated
initialization blocks or variables.

If this occurs, a message similar to the following appears in the server log:

[OracleBIServerComponent] [ERROR:1] [43143] Blacklisted connection pool 
name_of_connection_pool

If you see this error, check the initialization blocks for the given connection pool to
ensure they are correct.

Chapter 7
About Connection Pools

7-8



Creating or Changing Connection Pools
If you did not import physical schemas, you must create a database object before you
create a connection pool.

Database objects and connection pools are created automatically when you import
physical schemas, for both relational and multidimensional data sources.

You create or change a connection pool in the Physical layer of the Administration
Tool.

To modify more than one connection pool, use the List Connection Pool Command
and the Update Connection Pool Command

If you have already defined an existing database and connection pool, you can right-
click the connection pool in the Physical layer and select Import Metadata to import
metadata for this data source. The Import Metadata Wizard appears with the
information on the Select Data Source screen pre-filled. See Importing Metadata and
Working with Data Sources.

To automate connection pool changes for use in a process such as production
migration, consider using the XML API. See “About the Oracle BI Server XML API” in
Security Guide for Oracle Business Intelligence Enterprise Edition.

1. In the Physical layer of the Administration Tool, right-click a database, select New
Object, and then select Connection Pool.

2. Specify or adjust the properties as needed, then click OK.

Setting Connection Pool Properties in the General Tab
You can learn about the properties in the General tab of the Connection Pool dialog.

The properties listed in the General tab vary according to the data source type. For
example, XMLA data sources have a connection pool property for URL, while
relational and XML data sources have the option Require fully qualified table
names.

• In the Connection Pool dialog, click the General tab, and then complete the fields.

Common Connection Pool Properties in the General Tab
The topic describes connection pool properties in the General tab that are common
among most data source types.

The table describes the properties in the General tab of the Connection Pool dialog
that are common for different data source types.

Property Description

Name The name for the connection pool. The name is assigned automatically for
connection pools created on import.

Chapter 7
Creating or Changing Connection Pools

7-9



Property Description

Permissions Use this option to assign permissions for individual users or application roles to
access the connection pool. For example, you can set up a privileged group of
users to have its own connection pool.

These permissions are not intended for use as data access security. For
example, connection pool permissions do not protect cache entries.

See Applying Data Access Security to Repository Objects .

Call interface Identifies the application programming interface (API) to access the data
source. You can access some databases using native APIs, using ODBC, or
with APIs and ODBC together. Java data sources are accessed using JDBC/
JNDI.

If the call interface is XML, the XML tab is displayed for you to update the
applicable properties.

Maximum
connections

The maximum number of connections allowed for this connection pool. The
default is 10. You can determined the value by the database make and model
and the configuration of the hardware for the computer on which the database
runs, as well as the number of concurrent users who require access.

For Microsoft Analysis Services data sources, you might encounter 503 Service
Not Available errors if the Max Connections setting in the connection pool
(default 10) is greater than the XMLA MaxThreadsPerClient setting configured in
Analysis Services (default 4). To avoid these errors, increase the
MaxThreadsPerClient setting in the msmdpump.ini file, or reduce the Max
Connections setting in the repository connection pool.

See Improving Use of System Memory Resources with TimesTen Data
Sources.

For deployments with Oracle BI Interactive Dashboards pages, consider
estimating this value at 10% to 20% of the number of simultaneous users
multiplied by the number of requests on a dashboard. You can adjust the
number based on usage. Define the total number of all connections in the
repository to less than 800. To estimate the maximum connections needed for
a connection pool dedicated to an initialization block, you might use the number
of users concurrently logged on during initialization block execution.

Chapter 7
Creating or Changing Connection Pools

7-10



Property Description

Require fully
qualified
table names

Select this option if the database or database configuration requires fully
qualified table names. This option is not available for some data source types.

When this option is selected, all requests sent from the connection pool use
fully qualified names to query the underlying database. The fully qualified
names are based on the physical object names in the repository. If you are
querying the same tables from which the Physical layer metadata was
imported, you can safely select this option. If you have migrated your repository
from one physical database to another physical database that has different
database and schema names, the fully qualified names are invalid in the newly
migrated database. In this case, if you do not select this option, the queries
succeed against the new database objects.

For some data sources, fully qualified names are a safer because they
guarantee that the queries are directed to the desired tables in the desired
database. For example, if the RDBMS supports a master database concept, a
query against a table named Customer first looks for that table in the master
database, and then looks for it in the specified database. If the table named
Customer exists in the master database, that table is queried, not the table
named Customer in the specified database.

It is sometimes necessary to select this option when you are using an Oracle
Database, and you are accessing the database with a user that is not the
owner of the schema containing the tables. When the Oracle Database
interprets table names in SQL, it assumes that the user that made the query is
the owner if the table name is not fully qualified in the query. This can result in
an incorrect qualified name.

For example, if the user SAMPLE creates a table called CUSTOMER, the fully
qualified table name is SAMPLE.CUSTOMER. When the SAMPLE user
references the CUSTOMER table in a query, the Oracle Database assumes the
fully qualified table name is SAMPLE.CUSTOMER, and the access is
successful. However, if the JANEDOE user references the CUSTOMER table in
a query, the Oracle Database assumes the fully qualified table name is
JANEDOE.CUSTOMER, and a Table or view not found error can result. To
enable access for JANEDOE, you must select Require fully qualified table
names in the connection pool so that the Oracle BI Server specifies
SAMPLE.CUSTOMER in all queries.

Data source
name

The name of the data source to which you want this connection pool to connect
and send physical queries. The value you enter in this field depends on the
selected call interface:

• If the call interface is OCI, enter a full connect string or a net service name
from the tnsnames.ora file you set up within the Oracle Business
Intelligence environment, in BI_DOMAIN/config/fmwconfig/
bienv/core.

• If you are using a native interface for a different database, enter the name
of the database for that system.

• If the call interface is ODBC, the data source name field displays a list
containing all the User and System DSNs defined for ODBC on the local
computer. Select the correct one for the data source to which you want
connect.

If you are using Microsoft SQL Server, then enter an ODBC data source name
or a full connect string. The following is the syntax for the full connect string:

Driver={Driver Name};Address=Host Name;Database=Database Name

Where Driver Name refers to the Microsoft SQL Server ODBC driver name.
This driver name must exist in odbcinst.ini, and the environment variable
ODBCINST should point to odbcinst.ini.

Chapter 7
Creating or Changing Connection Pools

7-11



Property Description

Shared logon Select this option if you want all users whose queries use the connection pool
to access the underlying database using the same user name and password.

If this option is selected, then all connections to the database that use the
connection pool use the user name and password specified in the connection
pool, even if the user has specified a database user name and password in the
DSN or in user configuration.

If this option is not selected, connections through the connection pool use the
database user ID and password specified in the DSN or in the user profile.

The Shared logon option is enabled by default in Essbase connection pools.
You cannot disable this option.

Enable
connection
pooling

When selected, allows a single database connection to remain open for the
specified time for use by future query requests. Connection pooling saves the
overhead of opening and closing a new connection for every query. If you do
not select this option, each query sent to the database opens a new
connection.

Timeout Specify the amount of time and in what increment such as minutes that a
connection to the data source remains open after a request completes. During
this time, new requests use this connection rather than open a new one, up to
the number specified for the maximum connections. The time is reset after
each completed connection request.

If you are using an ADF data source and the call interface is OracleADF_HTTP
and the query mode is SQLBypass, then Timeout specifies the maximum
execution time before the connection is canceled.

Use
multithreaded
connections

When this option is selected, the Oracle BI Server terminates idle physical
queries (threads). When not selected, one thread is tied to one database
connection, number of threads = maximum connections. Even if threads are
idle, they consume memory.

The parameter DB_GATEWAY_THREAD_RANGE in the Server section of
NQSConfig.ini establishes when the Oracle BI Server terminates idle threads.
The lower number in the range is the number of threads that are kept open
before the Oracle BI Server takes action. If the number of open threads
exceeds the low point in the range, the Oracle BI Server terminates idle
threads. For example, if DB_GATEWAY_THREAD_RANGE is set to 40-200 and 75
threads are open, the Oracle BI Server terminates any idle threads.

Parameters
supported

If this option is not selected, and the database features table supports
parameters, special code executes that allows the Oracle BI Server to push
filters (or calculations) with parameters to the database. The Oracle BI Server
does this by simulating parameter support within the gateway/adapter layer by
sending extra SQLPrepare calls to the database.

Chapter 7
Creating or Changing Connection Pools

7-12



Property Description

Isolation level For ODBC and DB2 gateways only. The value sets the transaction isolation
level on each connection to the back-end database. The isolation level setting
controls the default transaction locking behavior for all statements issued by a
connection. You can only set one at a time. It remains set for that connection
until it is explicitly changed.

The following options are available:

Dirty read. Implements dirty read, isolation level 0 locking. This is the least
restrictive isolation level. When this option is set, it is possible to read
uncommitted or dirty data, change values in the data, and have rows appear or
disappear in the data set before the end of the transaction.

Dirty data is data to clean before executing a query to obtain correct results, for
example, duplicate records, records with inconsistent naming conventions, or
records with incompatible data types.

Committed read. Specifies that shared locks are held while the data is read to
avoid dirty reads. You can change the data before the end of the transaction,
resulting in non repeatable reads or phantom data.

Repeatable read. Places locks on all data that is used in a query, preventing
other users from updating the data. You can insert new phantom rows into the
data set by another user and are included in later reads in the current
transaction.

Serializable. Places a range lock on the data set, preventing other users from
updating or inserting rows into the data set until the transaction is complete.
This is the most restrictive of the four isolation levels. Because concurrency is
lower, use this option only if necessary.

Multidimensional Connection Pool Properties in the General Tab
Learn how to use the connection pool properties.

The table describes the properties in the General tab of the Connection Pool dialog
that are specific to multidimensional data sources. Some properties only appear for
certain types of multidimensional data sources.

• URL

This property is only displayed for XMLA data sources. Specify the URL to connect
to the XMLA provider. This URL points to the XMLA virtual directory of the
computer hosting the cube. This virtual directory must be associated with
msxisapi.dll, part of the Microsoft XML for Analysis SDK installation. For example,
the URL might look like the following:

http://SDCDL360i101/xmla/msxisap.dll

• Essbase Server

This property is only displayed for Essbase data sources. Specify the host name of
the computer where the Essbase Server is running.

If the Essbase Server is running on a non-default port, or if it is part of an Essbase
Cluster, you must include the port number in the Essbase Server field, in the
format hostname:port.

Chapter 7
Creating or Changing Connection Pools

7-13



Note:

You can import metadata from an Essbase cluster, but you must still
specify an individual Essbase Server host name and port number in the
Essbase Server field.

• SSO

This property is only displayed for Essbase, Hyperion Financial Management, and
Hyperion Planning data sources.

For Essbase, select this option if you want Essbase to be able to enforce security
policies that provide different cube access or member-level access to different
users. If you select this option then you must also select the Shared logon option.

Do not select this option if all users are expected to have the same access to the
Essbase cube. In this case, all the users have the same access to the cube based
on the shared credentials specified in the connection pool. If you do not select this
option then you must also select the Shared logon option.

For Hyperion Financial Management or Hyperion Planning, select this option and
be sure that the Shared logon option is unchecked to authenticate against
Hyperion Financial Management or Hyperion Planning using a shared token,
rather than using a set of shared credentials in the connection pool.

If you select this option, you should also select Virtual Private Database in the
corresponding database object to protect cache entries.

For Essbase, Hyperion Financial Management, and Hyperion Planning data
sources installed with the EPM System Installer, preconfiguration is required
before you select this option. See Configuring SSO for Essbase, Hyperion
Financial Management.

• Shared logon

This property is only displayed for Essbase, Hyperion Financial Management, and
Hyperion Planning data sources.

For all Essbase data sources, it is required that you select this option. See 
Configuring Essbase to Use a Shared Logon.

For Hyperion Financial Management or Hyperion Planning, you set this option
based on how you set the SSO property.

– If you checked the SSO property, then do not check this option. Not checking
this option causes authentication against Hyperion Financial Management or
Hyperion Planning using a shared token, rather than using a set of shared
credentials in the connection pool.

– If you did not check the SSO property, then check this option to enable the
Oracle BI Server to use the same shared logon credentials to connect to the
data source for all Oracle BI users. All users share the same access to the
data source.

• Data Source

Specify the vendor-specific information used to connect to the multidimensional
data source. Consult your multidimensional data source administrator for setup
instructions because specifications can change. For example, if you use v 1.0 of

Chapter 7
Creating or Changing Connection Pools

7-14



the XML for Analysis SDK, then use the value Provider-MSOLAP;Data Source-local.
If you use v 1.1, use the value, Local Analysis Server.

• Catalog

Specify the list of catalogs available, if you imported data from your data source.
The cube tables correspond to the catalog you use in the connection pool.

• System IP or Hostname

This property is only displayed for SAP/BW data sources. Provide the host name
or IP address of the SAP data server. This field corresponds to the parameter
ashost in the SAP/BW connect string.

• System Number

This property is only displayed for SAP/BW data sources. Provide the SAP system
number. This is a two-digit number assigned to an SAP instance, also called Web
Application Server, or WAS. This field corresponds to the parameter sysnr in the
SAP/BW connect string.

• Client Number

This property is only displayed for SAP/BW data sources. Provide the SAP client
number. This is a three-digit number assigned to the self-contained unit called
Client in SAP. A Client can represent a training, development, testing, or
production client, or different divisions in a large company. This field corresponds
to the parameter client in the SAP/BW connect string.

• Language

This property is only displayed for SAP/BW data sources. Provide the SAP
language code used when logging in to the data source, for example, EN for
English or DE for German. This field corresponds to the parameter lang in the
SAP/BW connect string.

• Additional Parameters

This property is only displayed for SAP/BW data sources. Optionally, provide
additional connection string parameters in the format param=value. Delimit multiple
parameters with a colon.

• Use session

This property is only displayed for XMLA data sources. An option that controls
whether queries go through a common session. Consult your multidimensional
data source administrator to determine whether this option is enabled. Default is
Off, not selected.

Setting Connection Pool Properties in the Connection Scripts Tab
You can create connection scripts and set the scripts to run before the connection is
established, before a query is run, after a query is run, or after the connection is
disconnected.

For example, you can create a connection script that, on connect, inserts the name of
the user and the connection time into a table.

This topic describes the properties in the Connection Scripts tab of the Connection
Pool dialog. The Connection Scripts tab is available for ODBC, OCI, Oracle OLAP,
ADF, and DB2 data sources.

Chapter 7
Creating or Changing Connection Pools

7-15



Connection scripts can contain any commands accepted by the database, such as a
command to turn on quoted identifiers. In a mainframe environment, a script could be
used to set the secondary authorization ID when connecting to DB2 to force a security
exit to a mainframe security package such as RACF. This enables mainframe
environments to maintain security in one central location.

Because the connection script is sent directly to the data source, the script should use
native SQL or another language understood by the data source, not Oracle BI Server
Logical SQL.

• In the Connection Pool dialog, click the Connection Scripts tab, and then complete
the fields using the information in the following table.

To enter a new connection script, click New next to the appropriate script type.
Then, enter or paste the SQL statements for the script and click OK.

You can edit existing scripts by clicking the ellipsis button to launch the Physical
SQL window. Use the Up Arrow and Down Arrow buttons to reorder existing
scripts.

Click Delete to remove a script.

The table describes the properties in the Connection Scripts tab of the Connection
Pool dialog.

Property Description

Execute on connect Contains SQL queries that are executed before the connection is
established.

Execute before query Contains SQL queries that are executed before the query is run.

Execute after query Contains SQL queries that are executed after the query is run.

Execute on disconnect Contains SQL queries that are executed after the connection is
closed.

Setting Connection Pool Properties in the XML Tab
Use the Connection Pool Properties in the XML tab to set properties for XML data
sources.

Note:

The XML tab in the Connection Pool dialog provides the same functionality
as the XML tab of the Physical Table dialog. The properties in the XML tab of
the Physical Table dialog override the corresponding settings in the
Connection Pool dialog.

• In the Connection Pool dialog, click the XML tab, and then complete the fields
using the information in the table that follows.

The table describes the properties in the XML tab of the Connection Pool dialog.

Chapter 7
Creating or Changing Connection Pools

7-16



Property Description

Connection method:

Search script

This property is only displayed for XML Server data sources.
Click Browse to locate the appropriate search script.

Connection properties:

URL refresh interval

This property is used for XML data sources and is not available
for XML Server data sources. The refresh interval is analogous
to setting cache persistence for database tables. The URL
refresh interval is the time interval after which the XML data
source is queried again directly rather than using results in
cache. The default setting is infinite, meaning the XML data
source is never refreshed.

If you specified a URL to access the data source, set the URL
refresh interval.

• Select a value from the list (Infinite, Days, Hours, Minutes or
Seconds).

• Specify a whole number as the numeric portion of the
interval.

Connection properties:

URL loading time-out

The timeout interval for queries. The default is 15 minutes.

If you specified a URL to access the data source, set the URL
loading time-out as follows:

• Select a value from the list (Infinite, Days, Hours, Minutes or
Seconds).

• Specify a whole number as the numeric portion of the
interval.

Connection properties:

Maximum connections

The maximum number of connections. The default is 10.

Query input supplements:

Header file/Trailer file

This property is only displayed for XML Server data sources.
Click Browse to locate the header and trailer files.

Query output format For XML data sources, choose only XML.

Other output formats are available for XML Server data sources.

Setting Connection Pool Properties in the Write Back Tab
Use the Write Back tab to set write back properties for ODBC, OCI, Oracle OLAP,
ADF, and DB2 data sources.

• In the Connection Pool dialog, click the Write Back tab, and then complete the
fields using the information in the table.

See About Setting the Buffer Size and Transaction Boundary.

The table describes the properties in the Write Back tab of the Connection Pool dialog.

Property Description

Temporary table:

Prefix

When the Oracle BI Server creates a temporary table, these are
the first two characters in the temporary table name. The default
value is TT.

Temporary table:

Owner

Table owner name used to qualify a temporary table name in a
SQL statement, for example to create the table
owner.tablename. If left blank, the user name specified in the
writeable connection pool is used to qualify the table name. Set
the Shared logon field on the General tab.

Chapter 7
Creating or Changing Connection Pools

7-17



Property Description

Temporary table:

Database name

Database where the temporary table is created. This property
applies only to IBM OS/390 because IBM OS/390 requires
database name qualifier as part of the CREATE TABLE statement.
If left blank, OS/390 defaults the target database to a system
database for which the users may not have Create Table
privileges.

Temporary table:

Tablespace name

Tablespace where the temporary table is created. This property
applies to OS/390 only as OS/390 requires tablespace name
qualifier as part of the CREATE TABLE statement. If left blank,
OS/390 defaults the target database to a system database for
which the users may not have Create Table privileges.

Bulk insert:

Buffer size (KB)

Used for limiting the number of bytes each time data is inserted
in a database table. For optimum performance, consider setting
this parameter to 128.

Bulk insert:

Transaction boundary

Controls the batch size for an insert in a database table. For
optimum performance, consider setting this parameter to 1000.

Unicode database type Select this option when working with columns of an explicit
Unicode data type, such as NCHAR, in a Unicode database. This
makes sure that the binding is correct and that data is inserted
correctly. Different database vendors provide different character
data types and different levels of Unicode support. Use the
following general guidelines to determine when to set this option:

• On a database where CHAR data type supports Unicode and
there is no separate NCHAR data type, do not select this
option.

• On a database where NCHAR data type is available, it is
recommended to select this option.

• On a database where CHAR and NCHAR data type are
configured to support Unicode, selecting this option is
optional.

Unicode and non-Unicode data types cannot coexist in a single
non-Unicode database. For example, mixing the CHAR and NCHAR
data types in a single non-Unicode database environment is not
supported.

Connection Pool Properties in the Miscellaneous Tab
Use the Miscellaneous tab of the Connection Pool dialog to set application properties
for ADF, JDBC, and JNDI data sources.

To set application properties, see Specifying Application Properties for JDBC (Direct
Driver) or JDBC (JNDI) Data Sources.

The table describes the properties in the Miscellaneous tab of the Connection Pool
dialog.

Property Description

AppModule Definition The fully qualified Java package name of the Root Application
Module to which you want to connect, such as
oracle.apps.fii.receivables.model.RootAppModule.

Chapter 7
Creating or Changing Connection Pools

7-18



Property Description

AppModule Config Determines which application configuration is used in the
connection, such as RootAppModuleShared.

URL The URL to the Oracle Business Intelligence broker servlet, in
the format:

http://host:port/APP_DEPLOYMENT_NAME/obieebroker

For example:

http://localhost:7001/SnowflakeSalesApp/obieebroker

The URL is case-sensitive.

SQL Bypass Database (Optional) The name of the SQL Bypass database. The SQL
Bypass database must be a physical database in the Physical
layer of the repository. The database object for the SQL Bypass
database must have a valid connection pool, with connection
information that points to the same database that is being used
by the JDBC Data source defined in the Oracle WebLogic
Server.

The SQL Bypass database does not need to have any tables
under it. After a valid database name is supplied, the SQL
Bypass feature is enabled for all queries.

The SQL Bypass feature directly queries the database so that
aggregations and other transformations are pushed down where
possible, reducing the amount of data streamed and worked on
in Oracle Business Intelligence . See About Specifying a SQL
Bypass Database.

Specifying Application Properties for JDBC (Direct Driver) or JDBC (JNDI) Data
Sources

Use the steps to set application properties for JDBC (Direct Driver) or JDBC (JNDI)
data sources.

1. In the Oracle BI Administration Tool, double-click the physical database to set
application properties for JDBC (Direct Driver) or JDBC (JNDI) data sources.

2. In Properties, click the Connection Pools tab.

3. Select the Connection and click Edit to open the Connection Pool dialog.

4. In the Connection Pool dialog, click the Miscellaneous tab.

5. Complete the fields using the following information:

• Required Cartridge Version defaults to 12.1.

• Use SQL Over HTTP for JDBC (JNDI) call interface, only. If you are using
Oracle BI Cloud Service, set this field to false to use HTTP to communicate
between networks. For example, set this field to false if the Oracle BI Server
and the data source you are accessing reside on different Oracle clouds.

• Javads Server URL for JDBC (Direct Driver) call interface, only. The field is
populated with the hostname and port that was specified in the Connect to
Java Datasource Server dialog. The Javads Server URL is the URL for the
Java Datasource server that supplies the Java metadata into the Physical
layer.

Chapter 7
Creating or Changing Connection Pools

7-19



• Driver Class for JDBC (Direct Driver) call interface, only. Specify the driver to
connect to the database such as the DB2 JDBC driver. You must select a
driver that is deployed in Oracle WebLogic Server.

By default the Oracle JDBC driver, oracle.jdbc.OracleDriver, is available in
Oracle WebLogic Server.

EXECUTE PHYSICAL DATABASE
Use EXECUTE PHYSICAL DATABASE statement to send physical SQL to the Oracle
BI Server to connect to data sources.

The EXECUTE PHYSICAL DATABASE statement enables executing physical queries from the
client without knowing the connection pool information.

Syntax

EXECUTE PHYSICAL DATABASE DatabaseName/*add a valid SQL statement

Setting Up Persist Connection Pools
A persist connection pool is a database property used for specific types of queries
such as queries used to support Marketing.

In some queries, all of the logical query cannot be sent to the transactional database
because that database might not support all of the functions in the query. This issue
might be solved by temporarily constructing a physical table in the database and
rewriting the Oracle BI Server query to reference the new temporary physical table.

You can use the persist connection pool in the following situations:

• Populate stored procedures. Use to rewrite the Logical SQL result set to a
managed table. Typically used by Oracle's Siebel Marketing Server to write
segmentation cache result sets.

• Perform a generalized subquery. Stores a nonfunction subquery in a temporary
table, and then rewrites the original subquery result against this table. Reduces
data movement between the Oracle BI Server and the database, supports
unlimited IN list values, and might result in improved performance.

In these situations, the user issuing the Logical SQL query must have been
granted the Populate privilege on the target database.

The persist connection pool functionality designates a connection pool with write-back
capabilities for processing this type of query. You can assign one connection pool in a
single database as a persist connection pool. If this functionality is enabled, the user
name specified in the connection pool must have the privileges to create DDL (Data
Definition Language) and DML (Data Manipulation Language) in the database.

See Setting Connection Pool Properties in the Write Back Tab.

1. In the Physical layer of the Administration Tool, double-click the database object
for which you want to assign a persist connection pool.

2. In the Database dialog, click the General tab.

3. In the Persist connection pool area, click Clear.

The database name is replaced by not assigned in the Persist connection pool
field.

Chapter 7
Setting Up Persist Connection Pools

7-20



4. If there are multiple connection pools, in the Browse dialog, select the appropriate
connection pool, and then click OK.

The selected connection pool name appears in the Persist connection pool field.

5. (Optional) click the Connection Pools tab to set write-back properties.

6. In the connection pool list, double-click the connection pool.

7. In the Connection Pool dialog, click the Write Back tab.

8. Click OK, then click OK again to save the persist connection pool.

Removing the Persist Connection Pool Property
Use these steps to remove the Persist Connection Pool property.

1. In the Physical layer of the Oracle BI Administration Tool, double-click the
database object that contains the persist connection pool you want to remove.

2. In the Database dialog, click the General tab

3. In the Persist connection pool area, click Clear.

The database name is replaced by not assigned in the Persist connection pool
field.

4. Click OK.

About Setting the Buffer Size and Transaction Boundary
If each row size in a result set is 1 KB and the buffer size is 20 KB, then the maximum
array size is 20 KB.

If there are 120 rows, there are 6 batches with each batch size limited to 20 rows.

If you set Transaction boundary to 3, the server commits twice. The first time, the
server commits after row 60 (3 * 20). The second time, the server commits after row
120. If there is a failure when the server commits, the server only rolls back the current
transaction. For example, if there are two commits and the first commit succeeds but
the second commit fails, the server only rolls back the second commit.

For optimum performance, consider setting the buffer size to 128 and the transaction
boundary to 1000.

List Connection Pool Command
Use the listConnectionpool command to create a list of connection pools in JSON
format for a specific service instance.

Use the listConnectionpool command and the updateConnectionpool utility when you
need to update more than one connection pool.

You execute the utility through a launcher script, datamodel.sh on UNIX and
datamodel.cmd on Windows.

If the domain is installed in default folder then the location of the launcher script looks
like the following:

Chapter 7
List Connection Pool Command

7-21



Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/
datamodel.sh or datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

See What You Need to Know Before Using the Command.

Syntax

The listConnectionpool command takes the following parameters:

listConnectionpool -SI <service_instance> -U <cred_username> [-P <cred_password>] [-
S <hostname>] [-N <port_number>] [-V <true/false>] [-O <outputFile.json>] [-SSL] [-H]

Where

SI specifies the name of the service instance.

U specifies a valid user's name to be used for Oracle BI EE authentication.

P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, then you are prompted for the password when the
command is run. Oracle recommends that you include a password in the command
only if you are using automated scripting to run the command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

V specifies whether to include repository variables used in the connection pool. The
default is false.

O specifies the output file name with the .json suffix.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

datamodel.sh listConnectionpool -SI bi -U weblogic -P password -S 
server1.example.com -N 7777  -SSL -V true -O output.json

Sample JSON List Connection Pool Output

{    "Title":"List Connection Pools",
   "Conn-Pool-Info":[
       {
           "uid":"80ca62c5-0bd5-0000-714b-e31d00000000",
           "connPool":"SampleApp_Lite_Xml",
           "parentName":"\"Sample App Lite Data\"",
           "user":"VALUEOF(REPO_STATIC_VAR)_Tushar",
           "password":"B25F85BC2A170AD4349DEF26E4D1295D 
7C2E35213306F12832914CBE7A9DD95561D771DED06484112B1FC6F27B6D0D58",

Chapter 7
List Connection Pool Command

7-22



           "dataSource":"VALUEOF(NQ_SESSION.SERVICEINSTANCEROOT)/data/SampleAppLite"
       }
   ],
   "Variables-In-Conn-Pool":[
       {
           "uid":"40000000-3c25-155b-991a-0af2537d0000",
           "variable":"REPO_STATIC_VAR",
           "value":"'RepoStaticVariable'"
       }
   ]}

Update Connection Pool Command
Use the update updateConnectionpool command to upload a modified JSON file
containing updated connection pool values to a specific server instance.

Use the updateConnectionpool command and the listConnectionpool utility when you
need to update more than one connection pool.

Use the listConnectionpool command to create a JSON file containing a list of
connection pools for a specific service instance. Modify the connection pool
information in this file and then upload it to the service instance using the
updateConnectionpool command. You must not modify the uid and connPool values in
the file. See List Connection Pool Command.

You execute the utility through a launcher script, datamodel.sh on UNIX and
datamodel.cmd on Windows.

If the domain is installed in default folder then the location of the launcher script looks
like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/datamodel.sh or
datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

See What You Need to Know Before Using the Command.

Syntax

The updateConnectionpool command takes the following parameters:

updateConnectionpool -C <connectionpoolList.json> -SI <service_instance> -U 
<cred_username> [-P <cred_password>] [-S <hostname>] [-N <port_number>] [-SSL] [-H]

Where

C specifies the name of the modified JSON file that you want to upload. This file must
not contain modified uid and connPool values.

SI specifies the name of the service instance.

U specifies a valid user's name to use for Oracle BI EE authentication.

P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, you are prompted for the password when the
command is run. For security purposes, Oracle recommends that you include a

Chapter 7
Update Connection Pool Command

7-23



password in the command only if you are using automated scripting to run the
command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

datamodel.sh updateConnectionpool -C connpool.json -SI bi -U weblogic -P password -S 
server1.example.com -N 7777 -SSL

Using the BIServerT2PProvisioner.jar Utility to Change
Connection Pool Passwords

When moving your Oracle BI repository from one environment to another, you often
need to change connection pool information for data sources, because the connection
information in one environments is typically different from the connection information in
another environments.

Note:

Although you can use BIServerT2PProvisioner.jar to update connection pool
passwords, Oracle's preferred method is the updateConnectionpool command.
See Update Connection Pool Command.

Connection pool passwords are encrypted and stored inside the encrypted repository
file. Because of this, encrypt plain-text passwords before using with an Oracle BI
repository.

You can use the BIServerT2PProvisioner.jar utility to programmatically change and
encrypt connection pool passwords in a repository. The utility only works with
repositories in RPD format; you cannot use the utility with MDS XML-format
repositories. In addition, the utility requires JDK 1.6.

To use the BIServerT2PProvisioner.jar utility to change connection pool passwords:

The location of BIServerT2PProvisioner.jar is:

Oracle_Home/bi/bifoundation/server

Oracle does not recommend leaving clear-text passwords available on the system.
Instead, delete the input password file completely, or encrypt it to prevent seeing the
password.

Chapter 7
Using the BIServerT2PProvisioner.jar Utility to Change Connection Pool Passwords

7-24



1. Run BIServerT2PProvisioner.jar using the -generate option to generate a template
file where you can input the new passwords, as follows:

java -jar ORACLE_HOME/bifoundation/server/bin/BIServerT2PProvisioner.jar -
generate repository_name -output password_file

Where:

repository_name is the name and path of the Oracle BI Repository that contains
the connection pools for which you want to change passwords.

password_file is the name and path of the output password text file. This file
contains the connection pool names from the specified repository.

Then, enter the repository password when prompted.

For example:

java -jar BIServerT2PProvisioner.jar -generate original.rpd –output
inputpasswords.txt
Enter the repository password: My_Password

2. Edit the password file to replace <Change Password> with the updated password
for each connection pool. A sample password file might appear as follows:

"SQLDB_UsageTracking"."UTCP" = <Change Password>
"SQLDB_Data"."Db Authentication Pool" = <Change Password>

Tip:

Only edit the text to the right of the equals sign. If you change the text to
the left of the equals sign, the syntax for the connection pool names is
incorrect.

Save and close the password file when your edits are complete.

3. Run BIServerT2PProvisioner.jar again with the -passwords option, as follows:

java -jar BIServerT2PProvisioner.jar -passwords password_file
-input input_repository -output output_repository

Where:

password_file is the name and path of the text file that specifies the connection
pools and their corresponding changed passwords.

input_repository is the name and path of the Oracle BI repository where you want
to apply the changed passwords.

output_repository is the name and path of the output repository that contains the
updated passwords.

Then, enter the repository password when prompted.

For example:

java -jar BIServerT2PProvisioner.jar -passwords inputpasswords.txt -input
original.rpd -output updated.rpd
Enter the repository password: My_Password

Chapter 7
Using the BIServerT2PProvisioner.jar Utility to Change Connection Pool Passwords

7-25



8
Working with Physical Tables, Cubes, and
Joins

Learn how to work with objects in the Physical layer of the Oracle BI repository, and
describes Oracle Essbase, Hyperion Financial Management, and Oracle OLAP
representations in the Physical layer. It also explains other Physical layer concepts like
opaque views, hints, row counts, physical layer folders, and how to use the Physical
Diagram.
This chapter contains the following topics:

• About Working with the Physical Layer

• Working with the Physical Diagram

• Creating Physical Layer Folders

• Working with Physical Tables

• Working with Multidimensional Sources in the Physical Layer

• Working with Essbase Data Sources

• Working with Hyperion Financial Management and Hyperion Planning Data
Sources

• Working with Oracle OLAP Data Sources

• Working with Physical Foreign Keys and Joins

• Deploying Opaque Views

• Using Hints in SQL Statements

• Displaying and Updating Row Counts for Physical Tables and Columns

About Working with the Physical Layer
The Physical layer of the Oracle BI repository contains objects that represent physical
data constructs from back-end data sources.

The Physical layer defines the objects and relationships available to the Oracle BI
Server for writing physical queries. This layer encapsulates data source dependencies
to enable portability and federation.

Each data source of the repository model typically has its own discrete physical model
in the Physical layer. The top-level object in the Physical layer is a database, and the
type of database determines which features and rules apply to that physical model.
For example, a relational database such as Oracle 12c has relational objects such as
physical tables and joins. In contrast, a multidimensional source such as Essbase has
cube tables and physical hierarchies. Therefore, some sections of this chapter apply to
only certain database types.

Physical tables, cubes, joins, and other objects in the Physical layer are typically
created automatically when you import metadata from the data sources. After these
objects have been imported, you can perform tasks such as create additional join

8-1



paths that are not in the data source, create alias tables for physical tables that need
to serve in different roles, and adjust properties of physical hierarchies from
multidimensional data sources.

Working with the Physical Diagram
In the Oracle BI Administration Tool, you can open the Physical Diagram view to
access a graphical model of tables and joins.

Note:

The Physical Diagram is typically used with relational and XML sources
rather than multidimensional sources. Although the Physical Diagram view
for a multidimensional source does display a denormalized table
representation of a cube table, the primary means of working with a
multidimensional physical model is by working in the physical tree using
dimensions, hierarchies, and columns.

To access the Physical Diagram, right-click an object in the Physical layer tree view
such as a physical database or table, and select Physical Diagram. Then, select one
of the following options:

• Selected Object(s) Only. Displays only the selected objects. Joins appear only if
they exist between the objects that you select.

• Object(s) and Direct Joins. Displays the selected objects and any tables that join
to the objects that you select.

• Object(s) and All Joins. Displays the selected objects, and each object that is
related directly or indirectly to the selected object through some join path. If all the
objects in a schema are related, then using this option diagrams every table, even
if you only select one table.

Note:

The Physical Diagram displays only physical tables and joins. It does not
display other Physical layer objects, such as connection pools, physical
hierarchies, or levels.

The image shows the Physical Diagram.

Chapter 8
Working with the Physical Diagram

8-2



You can also open the Physical Diagram by selecting one or more objects in the tree
view and clicking the Physical Diagram button on the toolbar:

Only the objects you selected appear. Joins appear only if they exist between the
selected objects. Joins are represented by a line with an arrow at the one end of the
join.

To help you better understand the model's logical-to-physical mappings, you can view
the physical objects that are associated with a particular logical object by selecting one
or more business models, logical tables, or logical table sources in the Business Model

Chapter 8
Working with the Physical Diagram

8-3



and Mapping layer tree view and clicking the Physical Diagram button on the toolbar.
Only physical objects that are related to the objects you selected appear. You can
view the same information by right-clicking a logical object and selecting Objects and
Direct Join(s) within Business Model from the Physical Diagram submenu. You can
also choose one of the other Physical Diagram display options.

To add tables to the Physical Diagram, leave the Physical Diagram window open and
right-click the table or tables you want to add. Then, select Physical Diagram and
choose one of the display options.

Additional options are available in the right-click menu for the graphical tables and
joins displayed in the Physical Diagram. For example, you can delete objects or view
their properties, or you can add related objects using the right-click options Add Direct
Joins, Add Tables Joined to Whole Selection, and Add All Joins. You can also
select Find in Tree View to locate a particular object in the Physical layer tree view in
the right pane, or check out objects in online mode.

You can also right-click an object in the Physical Diagram view and select Hide to hide
particular objects in the diagram. The hide effect is temporary and does not persist.

Use the Print and Print Preview options on the File menu to manage printing options
for the Physical Diagram. You can also use the Print option on the toolbar.

See Defining Physical Joins with the Physical Diagram.

Creating Physical Layer Folders
Use folders to organize the contents of the Physical layer.

This section contains the following topics:

• Creating Physical Layer Catalogs and Schemas

• Using a Variable to Specify the Name of a Catalog or Schema

• Setting Up Display Folders in the Physical Layer

Creating Physical Layer Catalogs and Schemas
Physical layer catalogs are optional ways to group different schemas.

A catalog contains all the schemas (metadata) for a physical database object. A
schema contains only the metadata information for a particular user or application.

• You must create a physical database object before you can create a physical
catalog object or a physical schema object.

• After you implement a certain type of grouping, you cannot change it later. For
example, if you decide to implement database then schema then table, you cannot
add a catalog afterward.

Creating Catalogs
In the Physical layer of a large repository, administrators can create physical catalogs
that contain one or more physical schemas.

1. In the Physical layer of the Administration Tool, right-click a physical database and
select New Object, then select Physical Catalog.

Chapter 8
Creating Physical Layer Folders

8-4



2. In the Physical Catalog dialog, type a name for the catalog.

3. Type a description for the catalog and click OK.

Creating Schemas
The schema object contains tables and columns for a physical schema.

Schema objects are optional in the Physical layer of the Oracle BI Administration Tool.

1. Open the repository in the Administration Tool.

2. In the Physical layer right-click a physical database or physical catalog, select
New Object, and then select Physical Schema.

3. In Physical Schema, in Name, type a name for the schema.

4. Type a description for the schema, and click OK.

Using a Variable to Specify the Name of a Catalog or Schema
You can use a variable to specify the names of catalog and schema objects.

For example, you have data for multiple clients and you structured the data source so
that data for each client was in a separate catalog. You would initialize a session
variable named Client, for example, that could be used to set the name for the catalog
object dynamically when a user signs on to the Oracle BI Server.

You specify the session variable to use in the Dynamic Name tab of the Physical
Catalog or Physical Schema dialog.

Note:

The Dynamic Name tab is active when at least one session variable is
defined.

The name of the variable is displayed in the dynamic name field, and the Select button
toggles to the Clear button.

1. In the Name column of the Dynamic Name tab, click the name of the session
variable that you want to use.

2. To select the highlighted variable, click Select.

3. (Optional) In the Default Initializer column, update the variable value.

To remove assignment for a session variable in the Dynamic Name tab:

• Click Clear to remove the assignment for the variable as the dynamic name.

The value not assigned is displayed in the dynamic name field, and the Clear
button toggles to the Select button.

To sort column entries in the Dynamic Name tab:

• Click the Name or Default Initializer column heading to sort the entries in a
column. Clicking a column heading toggles the order of the entries in that column
between ascending and descending order, according to the column type.

Chapter 8
Creating Physical Layer Folders

8-5



Setting Up Display Folders in the Physical Layer
You can create display folders to organize table objects in the Physical layer. They
have no effect on query processing.

After you create a display folder, the selected tables appear in the folder as a shortcut
and in the Physical layer tree as an object. You can hide the objects so that you only
view the shortcuts in the display folder. See the information about the Repository tab
of the Options dialog in Setting Administration Tool Options.

Note:

Deleting a table in a display folder deletes only the shortcut to that object.
When you delete a column in a display folder, however, the column is
actually deleted.

1. In the Physical layer of the Administration Tool, right-click a physical database and
select New Object, then select Physical Display Folder.

2. In the Physical Display Folder dialog, type a name for the folder.

3. To add tables to the display folder, click Add. Then, in the Browse dialog, select
the fact or physical tables you want to add to the folder and click Select.

4. Click OK.

Working with Physical Tables
Learn about the different things you can do with physical table objects in the Physical
layer of the Oracle BI repository.

Both physical tables from relational data sources and physical cube tables from
multidimensional data sources use the table type, Physical Table.

Many of the tasks described in this section apply to relational and multidimensional
data sources. See Working with Multidimensional Sources in the Physical Layer.

This section contains the following topics:

• About Tables in the Physical Layer

• About Physical Alias Tables

• Creating and Managing Physical Tables and Physical Cube Tables

• Creating and Managing Columns and Keys for Relational and Cube Tables

• Viewing Data in Physical Tables or Columns

About Tables in the Physical Layer
A physical table is an object in the Physical layer of the Oracle BI repository that
corresponds to a table in a data source.

Chapter 8
Working with Physical Tables

8-6



Metadata for physical tables is usually imported from the data source. This metadata
enables the Oracle BI Server to access the data source tables with SQL requests.

When you delete a physical table, all dependent objects are deleted, for example,
columns, keys, and foreign keys. When you delete a physical cube table, hierarchies
are also deleted. The deletion fails if an alias exists on the physical table.

In addition to importing data source tables into the Physical layer, you can create
virtual physical tables in the Physical layer, using values in the Table Type field in the
Physical Table dialog. Creating virtual tables can provide the Oracle BI Server and the
underlying data sources with the proper metadata to perform some advanced query
requests.

You can store a virtual physical table as a stored procedure or a SELECT statement. A
virtual physical table created from a SELECT statement is also called an opaque view.
You can define an opaque view, and deploy it in the data source to create a deployed
view, see Deploying Opaque Views.

Use the Table Type list in the General tab of the Physical Table dialog to specify the
physical table object type. The following table describes the available object types.

Table Type Description

Physical Table Specifies that the physical table object represents a data source
table. This table type is used for both relational physical tables
and multidimensional cube tables.

Stored Proc Specifies that the physical table object is a stored procedure.
When you select this option, you type the stored procedure in
the text box. Requests for this table call the stored procedure.

For stored procedures that are data source-specific, select Use
database specific SQL. When you select this option, the
Database column displays supported data sources by brand,
with Default as the root. You can enter data source-specific
initialization strings by selecting the database type on the left
and entering the corresponding string on the right. The
initialization string for the Default option is run when the queried
database type does not have a corresponding database-specific
string defined.

Stored procedures within an Oracle Database might not return
result sets. You cannot initiate stored procedures from within
Oracle Business Intelligence. You need to rewrite the procedure
as an Oracle function, use the Oracle function in a SELECT
statement in the Administration Tool initialization block, and
associate the Oracle function with the appropriate Oracle BI
Server session variables in the Session Variables dialog.

The following example shows a SQL initialization string using the
GET_ROLES function that is associated with the USER, GROUP, and
DISPLAYNAME variables. The function takes a user Id as a
parameter and returns a semicolon-delimited list of group
names:

SELECT user_id, get_roles(user_id), first_name || ' ' || 
last_name
FROM csx_security_table
WHERE user_id = ':USER' and password = ':PASSWORD'

Chapter 8
Working with Physical Tables

8-7



Table Type Description

Select Specifies that the physical table object is a SELECT statement.
When you select this option, you type the SELECT statement in
the text field, and you also need to manually create the table
columns. The column names must match the ones specified in
the SELECT statement. Column aliases are required for advanced
SQL functions, such as aggregates and CASE statements.

Requests for this table execute the SELECT statement.

For SELECT statements that are data source-specific, select Use
database specific SQL. When you select this option, the
Database column displays supported data sources by brand,
with Default as the root. You can enter data source-specific
initialization strings by selecting the database type on the left
and entering the corresponding string on the right. The
initialization string for the Default option is run when the queried
database type does not have a corresponding database-specific
string defined.

If you are using Physical SQL to deploy an opaque view, then
you must use the VALUELISTOF function.

This type of table is also called an opaque view.

About Physical Alias Tables
An alias table (alias) is a physical table that references a different physical table as its
source, called the original table.

Alias tables are an important part of designing a Physical layer because they enable
you to reuse an existing table more than once, without having to import it several
times.

There are two main reasons to create an alias table:

• To set up multiple tables, each with different keys, names, or joins, when a single
data source table needs to serve in different semantic roles. Setting up alias tables
in this case is a way to avoid triangular or circular joins.

For example, an order date and a shipping date in a fact table may both point to
the same column in the time dimension data source table, but alias the dimension
table so that each role is presented as a separately labeled alias table with a
single join. These separate roles carry over into the business model, so that Order
Date and Ship Date are part of two different logical dimensions. If a single logical
query contains both columns, the physical query uses aliases in the SQL
statement so that it can include both of them.

You can also use aliases to enable a data source table to play the role of both a
fact table, and a dimension table that joins to another fact table, often called a fan
trap.

• To include best practice naming conventions for physical table names. For
example, you can prefix the alias table name with the table type such as fact,
dimension, or bridge, and not change the original physical table names. Some
organizations create alias tables for all physical tables to enforce best practice
naming conventions. In this case, all mappings and joins are based on the alias
tables rather than the original tables.

Chapter 8
Working with Physical Tables

8-8



Alias table names appear in physical SQL queries. Using alias tables to provide
meaningful table names can make SQL queries referencing those tables easier to
read. For example:

WITH
SAWITH0 AS (select sum(T835.Dollars) as c1
from
     FactsRevT835/*AllRevenue(Billed Time Join)*/)
select distinct 0 as c1,
     D1.c1 as c2
from
     SAWITH0 D1
order by c1

In this query, the meaningful alias table name A11 Revenue (Billed Time Join) has
been applied to the terse original physical table name FACTSREV. In this case, the
alias table name provides information about which role the table was playing each time
it appears in SQL queries.

Alias tables can have cache properties that differ from their original tables. To set
different cache properties for an alias table, select the option Override Source Table
Caching Properties in the Physical Table dialog for the alias table. In alias tables, you
cannot add, delete, or modify columns. Because columns are automatically
synchronized, no manual intervention is required.

Synchronization ensures that the original tables and their related alias tables have the
same column definitions. For example, if you delete a column in the original table, the
column is automatically removed from the alias table.

You cannot delete an original table unless you delete all its alias tables first.
Alternatively, you can select the original table and all its alias tables and delete them at
the same time.

You can change the original table of an alias table, if the new original table is a
superset of the current original table. However, this could result in an inconsistent
repository if changing the original table deletes columns that are being used. If you
attempt to do this, a warning message appears to let you know that this could cause a
problem and lets you cancel the action. Running a consistency check identifies
orphaned aliases.

When you edit a physical table or column in online mode, you must check out all alias
tables and columns. The behavior of online checkout uses the following conventions:

• If an original table or column is checked out, all its alias tables and columns are
checked out.

• If an alias table or column is checked out, its original table and column are
checked out.

• The checkout option is available for online repositories (if not read-only) and for all
original and alias tables and columns.

Alias tables inherit some properties from their original tables. A property that is proxied
is a value that is always the same as the original table. The proxied properties are the
ones that are dimmed in the alias table dialog. If the original table changes its value for
that particular property, the same change is applied on the alias table.

The following is a list of the properties that are proxied:

• Cacheable, the inherited property is overridden

Chapter 8
Working with Physical Tables

8-9



• Cache never expires and Cache persistence time, the inherited properties are
overridden

• Row Count

• Last Updated

• Table Type

• External Db Specifications

The following is a list of the properties that are not proxied:

• Name

• Description

• Display Folder Containers

• Foreign Keys

• Columns

Note:

Alias tables and original tables never share columns. Aliases and original
tables have distinctly different columns that alias each other.

• Table Keys

• Complex Joins

• Source Connection Pool

• Polling Frequency

• All XML attributes

Creating and Managing Physical Tables and Physical Cube Tables
Use the General tab of the Physical Table dialog to create or edit physical tables and
physical cube tables in the Physical layer of the Administration Tool.

This section contains the following topics:

• Creating or Editing Physical Tables

• Creating Alias Tables

• Setting Physical Table Properties for XML Data Sources

Creating Physical Tables
You can create or edit the general properties for a table, including both relational
physical tables and physical cube tables.

In the properties for physical tables, you can view the name-value pairs used for data
sources as a generic mechanism for extending the Physical layer metadata. These
values are passed from the data source, but you can edit the values as needed. See 
Viewing Physical Column Properties.

Chapter 8
Working with Physical Tables

8-10



There are additional configuration settings that affect the behavior of the query cache.
See Configuring Query Caching.

Review Physical Table Properties before you create the physical table to understand
the configuration options.

Important:

Oracle strongly recommends that you import cube tables, not create them
manually.

1. In the Administration Tool, expand a database in the Physical layer, right-click the
database schema, and select New Physical Table.

2. In the Physical Table dialog, specify a Name for the table.

3. From the Table Type list, select Physical Table.

4. (Optional) Select Use Dynamic Name when using a non-multidimensional data
source.

5. In Browse, select the value to use for the table.

6. Select Cacheable when the table is not accessed in real time.

7. If you selected Cacheable, select the persistence time frame for the table.

8. (Optional) In Hint, specify a value.

9. (Optional) In Description, provide brief information about the table, and click OK.

Physical Table Properties
Review this table before creating physical tables, stored procedure tables, or selection
tables.

Property Description

Name Indicates the physical table name.

Table Type Indicates the physical table type. The valid values are Physical Table, Stored
Proc (stored procedure), or Select.

Use Dynamic
Name

Select Use Dynamic Name to use a session variable to specify the physical
table name, similar to catalog and schema objects. This option is available
for non-multidimensional data source tables when you select Physical
Table.

You can choose Use Dynamic Name if you have a multi-tenancy
implementation, and you want to define a separate physical table name for
each customer. Another example would be to select between primary and
shadow tables that are valid at different times in the ETL cycle. In both
cases, you can assign session variables to dynamically select the
appropriate table.

Chapter 8
Working with Physical Tables

8-11

onlink:BIESG-GUID-452B01C9-AA9C-41F4-B495-8991CFEC0823


Property Description

Default
Initialization
String / Use
database
specific SQL

When creating a physical table for non-multidimensional data source tables
(not alias tables), this option is available in the Physical Table dialog if you
choose the Stored Proc or Select table types. For multidimensional data
source tables, this option is available in the Physical Table dialog if you
choose the Select table type.

When you select Default Initialization String / Use database specific SQL
option, you can specify the data source and type the SQL statements.

Cacheable Select Cacheable to include the table in the Oracle BI Server query cache.
Typically, select this option for tables that do not need to be accessed in real
time.

When you select this option, the Cache persistence time settings become
active.

Cache never
expires

When you select Cache never expires, cache entries do not automatically
expire. This option is useful when a table is important to a large number of
queries that users might run. For example, if most queries have a reference
to an account object, keeping it cached indefinitely could actually improve
performance rather than compromise it.

Selecting Cache never expires does not mean that an entry always remains
in the cache. Other invalidation techniques, such as manual purging, LRU
(Least Recently Used) replacement, metadata changes, or use of the cache
polling table can result in entries being removed from the cache.

Cache
persistence time

Specifies the time period in which the table entries are persisted in the query
cache.

Setting a cache persistence time is useful for OLTP data sources and other
data sources that are updated frequently. For example, you could set this
option to refresh the underlying physical tables daily for a particular
dashboard.

If a query references multiple physical tables with different persistence times,
the cache entry for the query exists for the shortest persistence time set for
any of the tables referenced in the query. This makes sure that no
subsequent query gets a cache hit from an expired cache entry.

See Troubleshooting Problems with Event Polling Tables in System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

External name Applies to physical cube tables from multidimensional data sources. The
external name is the physical name that is used when referencing the cube
table in physical SQL queries. This value must reflect the external name
defined in the data source.

Display Column For Essbase data sources only, see Working with Essbase Data Sources.

Hint Available only for some data sources, see Using Hints in SQL Statements.

Creating Alias Tables
You can also create aliases on opaque views and stored procedures.

The following table describes properties that are specific to alias tables. See Creating
or Editing Physical Tables.

Property Description

Source Table Applies to alias tables. Click Select to choose the original
physical table from which to create an alias table.

Chapter 8
Working with Physical Tables

8-12



Property Description

Override Source Table
Caching Properties

Applies to alias tables. Click this field to enable the cacheable
properties. You can select or clear the appropriate cacheable
options.

• In the Oracle BI Administration Tool, with a repository open, right-click an existing
physical table and select New Object, then select Alias to create an alias table.

Setting Physical Table Properties for XML Data Sources
Use the XML tab to set or edit properties for an XML data source.

The XML tab of the Physical Table dialog provides the same functionality as the XML
tab of the Connection Pool dialog. However, setting properties in the Physical Table
dialog overrides the corresponding settings in the Connection Pool dialog. See Setting
Connection Pool Properties in the XML Tab.

Creating and Managing Columns and Keys for Relational and Cube
Tables

Each physical table and physical cube table in the Physical layer of the Oracle BI
Administration Tool has one or more physical columns.

You can use the Columns, Keys, and Foreign Keys tabs in the Physical Table dialog to
view, create new, and edit existing columns, keys, and foreign keys that are
associated with the table.

This section contains the following topics:

• Creating and Editing a Column in a Physical Table

• Specifying a Primary Key for a Physical Table

• Deleting Physical Columns for All Data Sources

• Viewing Physical Column Properties

Creating and Editing a Column in a Physical Table
An imported column's properties are set automatically. After import, you can modify
the column's property, including its type and whether null values are allowed for the
column.

The following list contains information about nullable and data type values for columns
imported into the Physical layer.

• Nullable indicates whether null values are allowed for the column. If null values
can exist in the underlying table, you need to select this option. This allows null
values to be returned to the user, which is expected with certain functions and with
outer joins. It is generally safe to change a non-nullable value to a nullable value in
a physical column.

• Type indicates the data type of the column. Use caution when changing the data
type. Setting the values to data types that are incorrect in the underlying data
source might cause unexpected results. If there are any data type mismatches,

Chapter 8
Working with Physical Tables

8-13



correct them in the repository or reimport the columns that have mismatched data
types.

If you reimport columns, you also need to remap any logical column sources that
reference the remapped columns. The data type of a logical column in the
business model must match the data type of its physical column source. The
Oracle BI Server passes these logical column data types to client applications.

Longvarchar and longvarbinary data types are supported for writing complete
Logical SQL statements into usage tracking tables for debugging purposes. They
are not supported for general-purpose queries, and cannot be displayed in Oracle
BI Server. Use direct SQL utilities to access columns with these data types.

Except when stated otherwise, the characteristics and behavior of a physical cube
column are the same as for other physical columns.

Note:

Creating, modifying, or deleting a column in an original physical table also
creates, modifies, or deletes the same column on all its alias tables.

For XML data sources, this field stores and displays the unqualified name of a column
(attribute) in an XML document.

A new physical cube column is created as a measure by default. See Working with
Multidimensional Sources in the Physical Layer.

1. In the Administration Tool, in the Physical layer, right-click a physical table and
select New Object, then select Physical Column to create a column.

2. Right-click a physical cube table, select New Object, and then select Physical
Cube Column to create a physical cube column for a multidimensional data
source.

3. Double-click the physical column object in the Physical layer to edit an existing
physical column.

4. In the Physical Column dialog, type a name for the physical column.

5. In the Type field, select a data type for the physical column.

6. If applicable, specify the length of the data type.

When using multidimensional data sources, if you select VARCHAR, you must type a
value in the Length field.

7. Select the Nullable option if the column is allowed to have null values.

8. In the External Name field, type an external name.

• Required if the same name such as STATE is used in multiple hierarchies.

• Optional for XML documents. The External Name field stores and displays the
fully qualified name of a column (attribute).

9. In multidimensional data sources when the physical cube column is a measure,
from the Aggregation role list, select the appropriate value.

10. Click OK.

Chapter 8
Working with Physical Tables

8-14



Specifying a Primary Key for a Physical Table
Use the Physical Key dialog to specify the column or columns that define the primary
key of the physical table.

1. In the Physical layer of the Administration Tool, right-click a physical table and
select Properties.

2. In the Physical Table dialog, click the Keys tab.

3. In the Keys tab, click New.

4. In the Physical Key dialog, type a name for the key.

5. Select the column that defines the primary key of the physical table.

6. (Optional) Type a description for the key.

7. Click OK.

Deleting Physical Columns for All Data Sources
Learn what happens when you delete a physical column.

When you delete a physical column, the following occurs:

• Multidimensional data sources. If you delete property or key columns from a
level, the association is deleted and the column changes to a measure under the
parent cube table.

• Alias tables. Deleting a column in an original physical table deletes the same
column on all its alias tables.

Viewing Physical Column Properties
The Properties tab for physical columns displays name-value pairs that are used for
some data sources as a generic mechanism for extending the Physical layer
metadata.

The values are passed up from the data source, but you can edit the values if needed.

Viewing Data in Physical Tables or Columns
You can view the data in a physical table or an individual physical column by right-
clicking the object and choosing View Data.

In online editing mode, you must check in changes before you can use this option.

View Data is not available for physical cube tables or columns. See Viewing Members
in Physical Cube Tables.

Because the View Data feature issues a row count, it is not available for data sources
that do not support row counts. See Displaying and Updating Row Counts for Physical
Tables and Columns.

Chapter 8
Working with Physical Tables

8-15



Note:

View Data does not work in online mode if you set the user name and
password for connection pools to :USER and :PASSWORD. In offline mode, the
Set values for variables dialog appears so that you can populate :USER
and :PASSWORD as part of the viewing process.

Working with Multidimensional Sources in the Physical
Layer

Learn about physical cube tables, dimensions, and hierarchies from multidimensional
data sources.

This section contains the following topics:

• About Physical Cube Tables

• About Measures in Multidimensional Data Sources

• About Working with Physical Dimensions and Physical Hierarchies

• Working with Cube Variables for SAP/BW Data Sources

• Viewing Members in Physical Cube Tables

About Physical Cube Tables
Each cube from a multidimensional data source is structured as a physical cube table,
a type of physical table.

A cube has all the elements of a table such as physical cube columns and keys
(optional) and foreign keys (optional). A cub also has specific metadata such as
hierarchies and levels.

When you import the physical schema, the Oracle BI Server imports the metadata for
the cube, including its metrics, hierarchies, and levels. Expanding the hierarchy object
in the Physical layer reveals the levels in the hierarchy.

Each multidimensional catalog in the data source can contain multiple physical cubes.
You can import the metadata for one or more of these cubes into the Oracle BI
Repository. Although you can create a cube table manually, Oracle recommends
importing the metadata for cube tables and their components.

If you create cubes manually, you must build each cube one hierarchy at a time and
test each one before building another. For example, create the time hierarchy and a
measure and test it. When the cube is correct, create the geography hierarchy and test
it. Creating and testing manually created cubes helps ensure that you have set up
each cube correctly, and helps you identify any setup errors.

About Measures in Multidimensional Data Sources
You need to select the aggregation rule for a physical cube column carefully to make
sure the measures are correct.

Chapter 8
Working with Multidimensional Sources in the Physical Layer

8-16



Setting it correctly might improve performance.

Always verify aggregation rules after importing cube metadata. Typically, aggregation
rules are assigned correctly when you import cube metadata. However, if a measure is
a calculated measure, the aggregation rule is reported as None. Therefore, you must
examine the aggregation rule for all measures after importing a cube to verify that the
aggregation rule has been assigned correctly.

For all measures assigned None as the aggregation rule value, contact the
multidimensional data source administrator to verify that the value is accurate. If you
need to change the aggregation rule, you can change it in the Physical Cube Column
dialog.

Use the following guidelines to assign the correct aggregation rule:

• If the generated physical queries to the database should send an aggregation
function, such as SUM(revenue), then set that function as the aggregation rule. With
this setting, the Oracle BI Server typically sends the aggregation to the database
in the query, but might also perform aggregations itself in certain situations.

• If the data for this measure should not be aggregated in the query or by the Oracle
BI Server, use the External Aggregation rule. It is important to choose this setting
when the measure uses a more complex calculation inside the data source than
the Oracle BI Server can replicate with a simple aggregation rule such as
calculations for ratios, consolidations and allocations. This option is also useful
when the cube persists a full set of pre-aggregated results.

About Externally Aggregated Measures
In a multidimensional data source, some cubes contain very complex, multi-level
based measures.

If you assign an aggregation rule of External Aggregation, the Oracle BI Server
bypasses its internal aggregation mechanisms and uses the pre-aggregated
measures. When imported, these measures are assigned an aggregate value of None.

The following are some guidelines for working with pre-aggregated measures:

• External aggregation only applies to multidimensional data sources such as
Essbase, Hyperion Financial Management, Microsoft Analysis Services, and
SAP/BW that support these complex calculations.

• You cannot assign external aggregation to measures from non-multidimensional
data sources. If the required aggregation rule is supported by the Oracle BI Server
and can be mapped to a relational data source, then it is not complex and does
not require external aggregation.

• There is only one aggregation rule for a logical measure. Therefore, a single
logical column cannot federate a non-complex aggregation rule for a mapping to a
non-multidimensional source, with a complex aggregation rule for a mapping to a
multidimensional source. Instead, you need to create one logical measure for each
source, and create a third logical measure that derives from the first two.

• You can mix non-complex measures from non-multidimensional data sources with
non-complex measures from multidimensional data sources if they are aggregated
through the Oracle BI Server.

Chapter 8
Working with Multidimensional Sources in the Physical Layer

8-17



About Working with Physical Dimensions and Physical Hierarchies
Most dimensions and hierarchies are imported into the Physical layer from
multidimensional data sources, rather than created manually.

If a particular hierarchy is not imported, any columns associated with that hierarchy are
also not imported. If users need access to columns that are not imported, first add
these columns to the Physical layer by manually creating them and associate them
with a level in a hierarchy.

Each level in a hierarchy has a level key. The first cube column associated with
(added to) the level of a hierarchy is the level key. This must match with the data
source definition of the cube. The icon for the column that you select first changes to
the key icon after it is associated with the level of a hierarchy.

Oracle Business Intelligence supports unbalanced hierarchies for all multidimensional
data sources. In general, you can configure unbalanced hierarchies in the Physical
layer by changing the hierarchy type.

You can view and edit properties for physical dimensions and hierarchies by double-
clicking physical dimension and physical hierarchy objects in the Physical layer of the
Answers. You can also view and edit these objects from the Dimensions and
Hierarchies tabs of the Cube Table dialog.

This section contains the following topics:

• Working with Physical Dimension Objects

• Working with Physical Hierarchy Objects

Working with Physical Dimension Objects
In the Physical Dimension dialog, you can view and edit the name and description of
the dimension.

You can also add, remove, or edit hierarchies for that dimension, and add, remove, or
edit columns that represent dimension properties.

Working with Physical Hierarchy Objects
When you select columns to add to a hierarchy, it is recommended that you select
them in hierarchical order, starting with the highest level.

If you select multiple columns and bring them into the hierarchy at the same time, the
order of the selected group of columns remains the same. After adding columns to the
hierarchy, you can change the order of the columns in the Browse dialog.

In the Physical Hierarchy dialog, you can view and edit the name and description of
the hierarchy, along with the properties described in the table. For level-based
hierarchies, you can add, remove, edit, or reorder levels. For value-based hierarchies,
click the Column tab to add, remove, or edit columns. To specify a key column,
double-click a column name.

In the Physical Level dialog, you can view and edit the name, external name, and
description of the level. You can also add, remove, or edit columns for that level. To
designate a column as a level key, double-click a column name.

Chapter 8
Working with Multidimensional Sources in the Physical Layer

8-18



Always review the hierarchy type after import to ensure that it is set appropriately. The
way this parameter is set upon import depends on the data source. For example, all
Essbase hierarchies are initially set to Unbalanced. Review the hierarchy type for each
hierarchy and change it as appropriate.

Typically, you always need to manually set the hierarchy type for parent-child (value)
hierarchies, except for Hyperion Financial Management hierarchies, which are always
set to Value by default upon import. Review the hierarchy type and change the type to
Value as appropriate. Parent-child (value) hierarchies are those in which a business
transaction, or a cube refresh, can change the number of levels.

For parent-child hierarchies, you must manually set the physical hierarchy type to
Value before dragging metadata to the Business Model and Mapping layer. The
hierarchy type in the Business Model and Mapping layer is set automatically based on
the physical hierarchy setting. For all other types, you can determine the hierarchy
type later, without needing to rebuild the logical model.

You must also ensure that the corresponding logical dimension properties are correct
for queries to work. See Working with Logical Dimensions .

For SAP/BW data sources, all hierarchies default to fully balanced hierarchies on
import. The hierarchy type for two-level hierarchies (which typically correspond to
characteristic primary hierarchies) should not be changed. Review all SAP/BW multi-
level (external) hierarchies to determine whether any are parent-child hierarchies, and
set them to Value as needed.

Property Description

External Name The physical name that is used when referencing the hierarchy
in physical MDX queries. This value must reflect the external
name defined in the data source.

Dimension Name (Dimension Unique Name) Dimension to which the hierarchy
belongs.

Dimension Type Identifies whether this hierarchy belongs to a time dimension,
measure dimension, or other type of dimension.

Chapter 8
Working with Multidimensional Sources in the Physical Layer

8-19



Property Description

Hierarchy Type Identifies the type of hierarchy, as follows:

• Fully balanced: A level-based hierarchy with no unbalanced
or skip characteristics. Corresponds to a level-based
hierarchy in the Business Model and Mapping layer.

• Unbalanced: Also called ragged. A hierarchy where the
leaves (members with no children) do not necessarily have
the same depth. Corresponds to a level-based hierarchy
with the Ragged option selected in the Business Model and
Mapping layer.

• Ragged balanced: Also called skip. A hierarchy where there
are members that do not have a value for a particular
ancestor level. Corresponds to a level-based hierarchy with
the Skipped Levels option selected in the Business Model
and Mapping layer.

• Network: This hierarchy type is not used.
• Value: Also called parent-child. A hierarchy of members that

all have the same type. This contrasts with level-based
hierarchies, where members of the same type occur only at
a single level of the hierarchy. Corresponds to a parent-child
hierarchy in the Business Model and Mapping layer.

For level-based hierarchies with both unbalanced and skip-level
characteristics, choose either Unbalanced or Ragged balanced
as the physical hierarchy type. Then, ensure that both Ragged
and Skipped Levels are selected for the corresponding logical
dimension in the Business Model and Mapping layer.

Default member type ALL This option is not used.

Use unqualified member
name for better performance

Select this option when member names, including aliases are
unique in a given hierarchy so that the Oracle BI Server can take
advantage of specific MDX syntax to optimize performance.

Adding or Removing Cube Columns in a Hierarchy
After importing a hierarchy, you may need to add or remove a column.

If you remove a cube column from a hierarchy, it is deleted from the hierarchy but
remains in the cube table and is available for selection to add to other levels.

1. In the Physical layer of the Administration Tool, double-click the physical hierarchy
to add or remove a cube column.

2. For level-based hierarchies, double-click the level for which you want to add or
remove columns. Then, in the Physical Level dialog, you can add, remove, or edit
columns. When you are finished, click OK in the Physical Level dialog.

3. For value-based hierarchies, click the Columns tab. You can add, remove, or edit
columns, and designate member key and parent key columns.

4. Click OK in the Hierarchy dialog.

Chapter 8
Working with Multidimensional Sources in the Physical Layer

8-20



Working with Cube Variables for SAP/BW Data Sources
In SAP/BW data sources, cube variables are used as a means of parameterizing
queries. Cube variable objects are imported into the Physical layer when metadata is
imported from Querycubes/Bex Queries in SAP/BW data sources.

You do not edit the cube variable objects directly, except to keep them synchronized
with the SAP Business Explorer (Bex) queries in the data source, and except to
specify overrides for key characteristics values.

The table describes the properties of cube variables for SAP/BW data sources. See
the SAP/BW documentation for additional information.

Property Description

Name Name of the cube variable.

Caption A description (label or caption) associated with the cube
variable, mainly used for display purposes.

Variable Type The type of cube variable. Variable types include:

• SAP_VAR_TYPE_MEMBER: A placeholder for a selection
for MEMBER_UNIQUE_NAMES.

• SAP_VAR_TYPE_HIERARCHY: A placeholder for a
HIERARCHY_UNIQUE_NAME.

• SAP_VAR_TYPE_NUMERIC: A placeholder for a numeric
value in formulas.

Selection Type The selection type of the cube variable, for cube variables of
type SAP_VAR_TYPE_MEMBER.

Selection types include:

• SAP_VAR_SEL_TYPE_VALUE: The variable is replaced by
a single value. Cube variables of NUMERIC type must have
this selection type.

• SAP_VAR_SEL_TYPE_INTERVAL: A placeholder for an
interval.

• SAP_VAR_SEL_TYPE_COMPLEX: A placeholder for a
complex selection.

Entry Type Indicates whether replacing variables is optional or mandatory.
Entry types include:

• SAP_VAR_INPUT_TYPE_OPTIONAL: Specifying a value is
optional for this variable.

• SAP_VAR_INPUT_TYPE_MANDATORY: You must specify
a value for this variable.

• SAP_VAR_INPUT_TYPE_MANDATORY_NOT_INITIAL:
You must specify a value for this variable. An initial field is
not a valid entry.

Reference Dimension This column contains a DIMENSION_UNIQUE_NAME for the
parameter type SAP_VAR_TYPE_HIERARCHY.

Reference Hierarchy This column contains a HIERARCHY_UNIQUE_NAME for the
variable type SAP_VAR_TYPE_MEMBER.

Default Low This property contains a default value for the variable or is zero.

Default High This property contains a default value for the variable or is zero.
This property is only important for variables with the selection
type SAP_VAR_SEL_TYPE_INTERVAL and
SAP_VAR_SEL_TYPE_SELECTION.

Chapter 8
Working with Multidimensional Sources in the Physical Layer

8-21



Property Description

Override Default Low Provide a default value for the cube variable in this field if the
Default Low is zero.

You must specify a value for this property for mandatory
variables that do not specify a default value.

Override Default High Provide a default value for the cube variable in this field if the
Default High is zero.

You must specify a value for this property for mandatory
variables that do not specify a default value.

Viewing Members in Physical Cube Tables
You can view members of hierarchies or levels in the Physical layer of repositories.

Viewing the list of members by level in the hierarchy can help you determine if the
connection pool is set up properly. You might want to reduce the time it takes to return
data or the size of the returned data by specifying a starting point (Starting from
option) and the number of rows you want returned (Show option).

1. Open the Administration Tool in online mode.

2. In the Physical layer, right-click a hierarchy or level.

3. Select View Members.

A window opens showing the number of members in the hierarchy and a list of the
levels. You might need to enlarge the window and the columns to view all the
returned data.

4. Click Query to display results.

5. When finished, click Close.

Working with Essbase Data Sources
Learn how Essbase data is modeled by default in the Physical layer of the Oracle BI
repository, and describes the tasks you can perform to model the data in different
ways.

This section contains the following topics:

• About Using Essbase Data Sources with Oracle BI

• Working with Essbase Alias Tables

• Modeling User-Defined Attributes

• Associating Member Attributes to Dimensions and Levels

• Modeling Alternate Hierarchies

• Modeling Measure Hierarchies

• Improving Performance by Using Unqualified Member Names

Chapter 8
Working with Essbase Data Sources

8-22



About Using Essbase Data Sources
When you import metadata from Essbase data sources, the cube metadata is mapped
to the Physical layer in a way that supports the Oracle BI logical model.

Metadata that applies to all members of the dimension such as aliases are modeled as
dimension properties by default. Level-based properties such as outline sort or
memnor information are mapped as separate physical cube columns in the dimension.

The following physical column types are used for Essbase metadata:

• Member Alias: Indicates an Alias column.

• UDA: Indicates the column is a User Defined Attribute (UDA).

• Outline Sort: Indicates the column is of memnor type, used for outline sorts in the
logical layer. Imported at the lowest level of each dimension.

• Attribute: Indicates the column is of attribute type, for attribute dimensions.

• Other: The type is different than those listed, or unknown.

• Ancestor Reference: References the ancestor of a dimension.

• Member Key: Indicates the column is a member key.

• Leaf: Indicates that the column is the lowest member of the hierarchy.

• Root: Indicates that the column is the root member of the hierarchy.

• Parent Reference: References the parent of a dimension.

The column types Outline Sort, Ancestor Reference, Member Key, Leaf, Root, and
Parent Reference are used internally by the system and should not be changed.

The image shows Essbase data that has been imported into the Physical layer.

Chapter 8
Working with Essbase Data Sources

8-23



There are different options in the Physical layer that let you control how you want to
model certain types of metadata. Choose the option that best meets the needs of the
user base. For example, many types of Essbase metadata are modeled as dimension
properties by default in the Physical layer.

You can choose to flatten the Essbase metadata in the Physical layer for ease of use
with the attribute-style reporting supported in previous releases of Oracle BI.

The following list summarizes some of these modeling options:

• Aliases. Aliases are modeled as dimension properties by default, but you can also
choose to flatten them using the Create Columns for Alias Table feature, see 
Working with Essbase Alias Tables.

• UDAs. UDAs are modeled as dimension properties by default, but you can also
choose to flatten them using the Create Columns for UDA feature, see Modeling
User-Defined Attributes.

• Alternate Hierarchies. Alternate hierarchies are modeled as separate hierarchies
by default, but you can choose to view them in as a single hierarchy using the
Convert to single hierarchy view feature, see Modeling Alternate Hierarchies.

Chapter 8
Working with Essbase Data Sources

8-24



• Measure Hierarchies By default, measures are imported as a single measure
column that represents all the measures, but you can also choose to view each
measure as an individual column using the Convert measure dimension to flat
measures feature, see Modeling Measure Hierarchies.

Using Essbase data sources with Oracle BI repository includes:

• Substitution variables. Essbase substitution variables are automatically retrieved
and populated into corresponding Oracle BI Server repository variables.
Depending on the scope of the Essbase variable, the naming convention for the
Oracle BI Server variable is as follows:

Server instance scope: server_name:var_name

Application scope: server_name:app_name:var_name

Cube scope: server_name:app_name:cube_name:var_name

A single initialization block is also created in the repository for the Essbase
variables. Set the appropriate refresh interval in the initialization block to reflect
anticipated update cycles for Essbase variables.

• Essbase Generations. Essbase Generations are mapped to physical level objects.

• Time series functions. The Oracle BI Server time series functions AGO, TODATE, and
PERIODROLLING are sent to Essbase to take advantage of the native capabilities of
the Essbase server.

• Database functions. You can use the database SQL functions EVALUATE and
EVALUATE_AGGREGATE to leverage functions specific to Essbase data sources.

The EVALUATE_PREDICATE is not supported for use with Essbase data sources.

• Gen 1 levels. By default, Gen 1 levels are included when you drag and drop an
Essbase cube or dimension from the Physical layer to the Business Model and
Mapping layer. However, because Gen 1 levels are not usually needed for
analysis, you can choose to exclude Gen 1 levels when you drag and drop
Essbase objects to the business model. To do this, select Skip Gen 1 levels in
Essbase drag and drop actions in the General tab of the Options dialog, see 
Setting Administration Tool Options.

• Hierarchy types. For Essbase data sources, all hierarchies are imported as
Unbalanced by default. Review the Hierarchy Type property for each physical
hierarchy and change the value if necessary. Supported hierarchy types for
Essbase are Unbalanced, Fully balanced, and Value.

About Incremental Import
You can import Essbase metadata incrementally by performing an initial import and
then performing another import.

You might want to use an incremental import when information in the data source has
changed, or when the first import only included a subset of the metadata.

• When you re-import metadata that already exists in the Physical layer, a message
appears, warning you that the Physical objects are overwritten in the import
operation.

• If you delete data in the source, re-importing the metadata does not automatically
delete the same data in the Physical layer. You must manually delete the
corresponding Physical objects.

Chapter 8
Working with Essbase Data Sources

8-25



• If you rename an object in the source, the renamed object is imported as a new
object. The old object and the new (renamed) object are both displayed in the
Physical layer.

• Customizations in the Physical layer data such as creating an alias column to use
for display are retained after an incremental import. If you want to revert to the
default imported view, you must delete the existing Physical layer objects, and re-
import the metadata.

Working with Essbase Alias Tables
Essbase cubes support aliases which are alternate names for members or shared
members. Members might have separate aliases for each user language to enable
users to view member names in their own language.

For example, the member name might be a product code (100), with a default alias for
the product name (Cola) and an additional alias for the long name (Cherry Cola).

Aliases are stored in alias tables that map a specific set of alias names to member
names. A default alias table exists for each cube.

This section contains the following topics:

• Determining the Value to Use for Display

• Explicitly Defining Columns for Each Alias

Determining the Value to Use for Display
When you import metadata from Essbase into the Oracle BI repository, the Essbase
cube table object in the Physical layer has a property that determines which value to
display for members.

The values are for the member name, the default alias name, or some other alias
name. By default, the columns display the default alias name.

1. In the Physical layer of the Administration Tool, double-click an Essbase cube
table.

2. In the General tab of the Cube Table dialog, choose the appropriate value for
Display Column, select one of the following:

• Member Names.

• Alias and choose an alias table name from the list.

• Variable and choose a variable that contains a valid display column name.

3. Click OK.

Explicitly Defining Columns for Each Alias
Aliases are modeled as dimension properties in the Physical layer after import.

If you want to work with more than one alias, such as when you want to flatten
attributes for reporting purposes or externalize strings for translation, you can explicitly
define columns for each alias. You can define alias columns at the cube, dimension, or
hierarchy level.

Chapter 8
Working with Essbase Data Sources

8-26



1. In the Administration Tool, in the Physical layer, right-click the cube table, physical
dimension, or physical hierarchy for which you want to define alias columns.

2. Select Create Columns for Alias Table. Then, from the sub-list, select the alias
table for which you want to create columns.

3. Click Create.

4. Drag the new alias columns to the appropriate location in the Business Model and
Mapping layer.

To externalize strings for translation based on the alias columns, see Localizing
Business Intelligence.

Modeling User-Defined Attributes
Essbase supports the concept of user-defined attributes (UDAs). A UDA is any
arbitrary textual string that you can associate with any member from a dimension.

A member can have multiple strings associated to it.

You can choose whether to import UDAs in the Import Metadata Wizard. If you choose
to import UDAs, then by default, each UDA is modeled as a dimension property in the
Physical layer of the repository.

You can also choose to model each UDA as a separate physical column. To do this,
perform one of the following tasks:

• To model all UDAs, do one of the following:

– Right-click the cube table and select Create columns for UDA. All UDAs in
the cube are modeled as separate physical columns.

– Right-click the dimension object and select Create columns for UDA, then
select All UDAs. All UDAs in the dimension are modeled as separate physical
columns.

– Right-click the dimension object and select Create columns for UDA, then
select the specific UDA you want to model. The selected UDA is modeled as a
separate physical column for each level.

Associating Member Attributes to Dimensions and Levels
Member attributes are not automatically associated to corresponding dimensions and
levels during the import process.

• Open the Oracle BI Administration Tool, drag and drop the columns from the
attribute dimension in the Physical layer to the appropriate logical tables in the
Business Model and Mapping layer.

Modeling Alternate Hierarchies
Alternate hierarchies are modeled as separate hierarchies in the Physical layer.

You can choose to view them as separate hierarchies, called the multi-hierarchy view,
or as a single hierarchy.

To view alternate hierarchies as a single hierarchy, right-click the dimension object
containing the alternate hierarchies and select Convert to single hierarchy view. To

Chapter 8
Working with Essbase Data Sources

8-27



return to the multi-hierarchy view, right-click the dimension object again and select
Convert to multi-hierarchy view.

For example, the image shows the multi-hierarchy view for an alternate hierarchy.

Chapter 8
Working with Essbase Data Sources

8-28



Modeling Measure Hierarchies
Measures are imported as measure hierarchies. The cube contains a single measure
column that represents all the measures.

You can choose to flatten the measure hierarchy to view each measure as an
individual column.

• In the Administration Tool, right-click the cube object, and select Convert
measure dimension to flat measures to view an individual column.

Chapter 8
Working with Essbase Data Sources

8-29



Improving Performance by Using Unqualified Member Names
When member names (including aliases) are unique in a given hierarchy, the Oracle
BI Server can take advantage of specific MDX syntax to optimize performance.

The import process cannot verify that member names are unique for a given hierarchy.
You must confirm member name uniqueness. Query errors result when a hierarchy is
specified as having unique members when it does not.

• Do one of the following:

– From the Essbase outline, update each offending member variable by adding
a prefix or suffix to make the member name unique, update SQL queries, and
reload the data and members in the Essbase outline.

– In the Hierarchy dialog, select Use unqualified member name for better
performance to enable this capability.

Working with Hyperion Financial Management and Hyperion
Planning Data Sources

Learn about importing and querying metadata from Hyperion Financial Management
and Planning data sources.

This topic contains the following sections:

• Importing Metadata From Hyperion Financial Management Data Sources

• Importing Metadata From Hyperion Planning Data Sources

• About Query Support for Hyperion Financial Management and Hyperion Planning
Data Sources

Importing Metadata From Hyperion Financial Management Data
Sources

When you import metadata from Hyperion Financial Management data sources, both
measures and dimensions are imported into the Physical layer.

The Hyperion Financial Management hypercube model is exposed in the Physical
layer in the following ways:

• Hyperion Financial Management has one measure, called Value. The Value
measure is modeled as a single fact column in the Physical layer. The column is
called Value.

• The Value measure column uses the DOUBLE data type.

• The Value measure has three base properties: CellText, CurrencyType, and
Attribute. These properties are all represented as additional fact columns.

• The Attribute property has additional properties such as IsReadOnly. These
properties are exposed as additional columns.

Chapter 8
Working with Hyperion Financial Management and Hyperion Planning Data Sources

8-30



All Hyperion Financial Management dimensions are modeled as parent-child
hierarchies in the Physical layer. Alternate hierarchies and unbalanced hierarchies are
supported.

Shared members from Hyperion Financial Management or Hyperion Planning data
sources aren’t supported. The Oracle BI Server cannot support shared members on
Hyperion Financial Management sources because the shared member key value
returned by HFM does not always match the member key value for the parent
member. If the Oracle BI Server ignores the prefix for the shared member key, the
result negates the uniqueness of the member key making it impossible for the Oracle
BI Server to differentiate instances of the shared members and the parent. For
example, if Hyperion Financial Management returns the ConsolGroup3.EasternUSA
value for a shared member of the parent key value, DomesticEntities.EasternUSA, and
the Oracle BI Server removes the ConsolGroup3 prefix to try to match the group
members, the instances all have the key, EasternUSA. Modify the data model modified
in the Hyperion Financial Management layer to ensure unique member keys on the
Hyperion Financial Management server.

Dimension member properties are exposed as columns such as Name, Description,
and ShortName. An additional column called Sort Order is also displayed for each
dimension. This column contains custom sort information retrieved from the Hyperion
Financial Management data source.

Each Hyperion Financial Management dimension has a corresponding Point of View
(POV) value that provides customized information for different users. This POV value
is exposed as the Default Member in the Hierarchies tab of the Dimension dialog.
Although the Default Member field is populated upon import, you might need to
update the default values according to your user needs.

Note:

Do not select the Default member type ALL option for Hyperion Financial
Management hierarchies.

Importing Metadata From Hyperion Planning Data Sources
When you import data from Hyperion Planning data sources, both measures and
dimensions are imported into the Physical layer.

Hyperion Planning Server version 11.1.2.4 or above is required for importing and
querying metadata from Hyperion Planning Data Sources.

The Hyperion Planning model is exposed in the Physical layer in the following ways:

• The imported Hyperion Planning data source contains multiple Value columns to
support measures of different data types.

• Some measures specific to Hyperion Financial Management are not imported for
Hyperion Planning data sources.

• The Attribute property has additional sub-properties, such as IsReadOnly. These
properties are also exposed as additional columns.

Chapter 8
Working with Hyperion Financial Management and Hyperion Planning Data Sources

8-31



All Hyperion Planning dimensions are modeled as parent-child hierarchies in the
Physical layer. Shared members, alternate hierarchies, and unbalanced hierarchies
are supported.

Dimension member properties are exposed as columns such as Name, Description,
and ShortName. An additional column called Sort Order is also displayed for each
dimension. This column contains custom sort information retrieved from the Hyperion
Planning data source.

Each Hyperion Planning dimension has a corresponding Point of View (POV) value
that provides customized information for different users. This POV value is exposed as
the Default Member in the Hierarchies tab of the Dimension dialog. The Default
Member field is populated upon import. You might need to update the default values
according to the user needs.

Note:

Do not select the Default member type ALL option for Hyperion Planning
hierarchies.

About Query Support for Hyperion Financial Management and
Hyperion Planning Data Sources

Both member queries (dimensional browsing) and data queries (measure analysis) are
supported for Hyperion Financial Management and Hyperion Planning data sources.

Use the EVALUATE_PREDICATE Logical SQL function to access these functions specific to
Hyperion Financial Management and Hyperion Planning:

• PeriodOffset used to access prior or future periods through an offset.

• SuppressDerived, SuppressInvalidIntersection, SuppressNoAccess, SuppressZero,
SuppressError NA suppression functions specific to Hyperion Financial
Management.

• Base to return the leaf members below a given ancestor member.

• CommonChildren.

• User-defined functions.

See EVALUATE_PREDICATE for detailed information about syntax and usage.

Oracle BI EE supports PERF_PREFER_SUPPRESS_EMPTY_TUPLES for inserting the
SuppressMissing function into the Hyperion Financial Management or Hyperion
Planning data query to suppress missing cells. The PERF_PREFER_SUPPRESS_EMPTY_TUPLES
function controls whether empty tuples with empty cell values are eliminated.
PERF_PREFER_SUPPRESS_EMPTY_TUPLES does not change the null suppression behavior on
the final result set.

There is no native support for time series functions. Time series functions are only
supported through data modeling.

Chapter 8
Working with Hyperion Financial Management and Hyperion Planning Data Sources

8-32



Working with Oracle OLAP Data Sources
Oracle Database has an OLAP Option that provides an embedded, full-featured online
analytical processing server.

The OLAP Option is used in the following roles:

• A summary management solution to SQL-based business intelligence tools and
applications.

• A calculation engine that provides SQL-based business intelligence tools with rich
analytic content.

• A full-featured multidimensional server, servicing dimensionally oriented business
intelligence tools and applications.

Oracle Business Intelligence supports Oracle OLAP as a data source. When you
import metadata from an Oracle OLAP source, the Oracle OLAP objects appear in the
Physical layer of the Administration Tool. This section provides information about the
Oracle OLAP objects in the Physical layer.

This section contains the following topics:

• About Importing Metadata from Oracle OLAP Data Sources

• Working with Oracle OLAP Analytic Workspace (AW) Objects

• Working with Oracle OLAP Dimensions, Hierarchies, and Levels

• Working with Oracle OLAP Cubes and Columns

About Importing Metadata from Oracle OLAP Data Sources
Learn how to use the Oracle BI Administration Tool to import metadata from Oracle
OLAP.

When using the Oracle BI Administration Tool:

• For Oracle OLAP cubes with multi-language metadata, only the default language
is imported.

• Only dimensions that contain at least one hierarchy are imported.

• Multiple hierarchies in a single query are not supported. If a query includes
columns from multiple hierarchies in a given dimension, the Oracle BI Server
returns an error.

• The default aggregation rule in the Business Model and Mapping layer for Oracle
OLAP measures is External Aggregation. The External Aggregation rule means
that the Oracle BI Server is not aware of the underlying aggregation rule for the
specific measure and does not compute it internally. Instead, the Oracle BI Server
always sends the query to the underlying multidimensional data source for
aggregation.

In some cases, you may want to set the aggregation rule for a measure to
something other than External Aggregation. For example, you can have federated
multiple data sources, or you might want to perform higher-level aggregation along
dimension attributes that are not represented by a level in Oracle OLAP. In both of
these cases, you can change the default aggregation rule to match the rule in the

Chapter 8
Working with Oracle OLAP Data Sources

8-33



underlying data source or sources. The aggregation is performed in the Oracle
OLAP data source where possible.

See System Requirements and Certification for the latest versions of Oracle OLAP
supported by Oracle Business Intelligence.

Working with Oracle OLAP Analytic Workspace (AW) Objects
You can view Oracle OLAP Analytic Workspace (AW) objects in the Physical layer of
the Oracle BI Administration Tool.

These objects correspond to the analytic workspace object in the Oracle OLAP
metadata, and are similar to physical catalog and physical schema objects. Analytic
workspaces are containers for storing related cubes. You create dimensions, cubes,
and other dimensional objects within the context of an analytic workspace.

Oracle OLAP Analytic Workspace objects have properties for Name, Description, and
Dynamic Name. You can use the Dynamic Name tab to provide a variable that
specifies the name of the Analytic Workspace object. You must define at least one
session variable to make the Dynamic Name tab is not active. See Using a Variable to
Specify the Name of a Catalog or Schema.

Working with Oracle OLAP Dimensions, Hierarchies, and Levels
Oracle OLAP dimensions are lists of unique values that identify and categorize data.

They form the edges of a cube, and thus of the measures within the cube. In a report,
the dimension values or their descriptive attributes provide labels for the rows and
columns.

There are three types of Oracle OLAP dimensions:

• Level-based dimensions Members of level-based dimensions naturally group
into levels based on their type such as month and year. Most dimensions are
level-based.

• Value-based dimensions These dimensions have parent-child relationships
among their members, but the members are all the same type such as Employee
or Account, so these relationships do not form meaningful levels.

• List or flat dimensions These dimensions have no levels or hierarchies.

Note:

Oracle Business Intelligence does not support dimensions that have no
hierarchies (flat dimensions). Importing flat dimensions from an Oracle OLAP
data source results in an error. If you have flat dimensions, replace the flat
dimensions with single-level hierarchies in the data source before you
attempt to import into Oracle Business Intelligence.

You can edit the name and description of the dimension and the following dimension
properties:

• Time Indicates that this dimension is a time dimension.

Chapter 8
Working with Oracle OLAP Data Sources

8-34



• Ragged Indicates that this dimension contains a hierarchy that has at least one
member with a different base, creating a ragged base level for the hierarchy

• Skipped levels Indicates that this dimension contains a hierarchy that has at least
one member whose parents are more than one level above it, creating a hole in
the hierarchy. An example of a skip-level hierarchy is City-State-Country, where at
least one city has a country as its parent, for example, Washington D.C. in the
United States.

• External Name The physical name that is used when referencing the dimension in
physical SQL queries. This value must reflect the external name defined in the
data source.

• Cache properties. Select Cacheable to include this dimension in the Oracle BI
Server query cache. To specify that cache entries do not expire, select Cache
never expires. Alternatively, you can select Cache persistence time and enter a
value to specify how long entries should persist in the query cache. If a query
references multiple physical objects with different persistence times, the cache
entry for the query exists for the shortest persistence time set for any of the tables
referenced in the query. This makes sure that no subsequent query gets a cache
hit from an expired cache entry.

The Columns and Hierarchies tabs of the Oracle OLAP Dimension dialog list the
dimension members and hierarchies that belong to the dimension. In the Columns tab,
you can add or remove columns, and edit particular columns. In the Hierarchies tab,
you can add, remove, or edit hierarchies. You can also use the type (key) button to
select the default hierarchy for the dimension.

Dimensions can contain one or more hierarchies. Most hierarchies are level-based
and consist of one or more levels of aggregation. Members roll up into the next higher
level in a many-to-one relationship, and these members roll up into the next higher
level, and then to the top level. Ragged and skip-level hierarchies are also supported.

Dimensions can contain value-based hierarchies which are parent-child hierarchies
that do not support levels. For example, an employee dimension might have a parent-
child relationship that identifies each employee's supervisor. The levels that group
together first-, second-, and third-level supervisors might not prove meaningful for
analysis.

For value-based hierarchies, the Nullable option is selected by default for the root
member physical cube column. You must select the Nullable option for the root
member for value-based hierarchies to work correctly.

Multiple hierarchies for a dimension typically share the base-level dimension members
and branch into separate hierarchies. They can share the top level if they use all the
same base members and use the same aggregation operators. Otherwise, they need
different top levels to store different aggregate values.

Use the Oracle OLAP Hierarchy dialog to view and edit the name, external name, and
description of the hierarchy. For level-based hierarchies, you can add, remove, edit, or
reorder levels. For value-based hierarchies, you can add, remove, or edit columns.

1. In the Business Model and Mapping column, right-click an OLAP table, select
Query Related Objects, and select Oracle OLAP Hierarchy.

2. Double-click a column name to designate a column as a level key,

Chapter 8
Working with Oracle OLAP Data Sources

8-35



Working with Oracle OLAP Cubes and Columns
Oracle OLAP cubes are informational objects that identify measures with the exact
same dimensions and thus are candidates for being processed together at all stages:
data loading, aggregation, storage, and querying.

Cubes define the shape of the business measures and are defined by a set of ordered
dimensions. The dimensions form the edges of a cube, and the measures are the cells
in the body of the cube.

Oracle OLAP cubes have properties similar to other cubes. You can view, edit the
name and description of the cube, and update the following cube properties:

• External Name. The physical name that is used when referencing the cube in
physical SQL queries. This value must reflect the external name defined in the
data source.

• Density and Materialization. For Oracle OLAP cubes that are sparse and fully
materialized, specify values for these properties to optimize queries. If you set the
Density option to Sparse and the Materialization option to Fully Materialized,
the Oracle BI Server generates a loop clause to skip empty cells. If you leave the
Density option blank, the Oracle BI Server assumes the data is sparse.

If you set these values, make sure that you set them to reflect the actual properties
of the data source. Do not specify that the data is sparse and fully materialized
unless this is true for the data source.

You do not need to set these values for Oracle OLAP 11g cubes. For these
objects, optimization happens automatically.

• Cache properties. Select Cacheable to include the cube in the Oracle BI Server
query cache.

To specify that cache entries do not expire, select Cache never expires or select
Cache persistence time and enter a value to specify how long entries should
persist in the query cache.

If a query references multiple physical objects with different persistence times, the
cache entry for the query exists for the shortest persistence time set for any of the
tables referenced in the query. This makes sure that no subsequent query gets a
cache hit from an expired cache entry.

The Columns tab on the Oracle OLAP Cube dialog lists the columns that belong to the
cube. You can add or remove columns, and edit particular columns.

You can define measures, calculated measures, attributes, or level keys as Oracle
OLAP columns. The Oracle OLAP columns have the same properties as other
physical columns. See Creating and Editing a Column in a Physical Table.

Working with Physical Foreign Keys and Joins
You can create physical foreign keys and complex joins using either the Physical
Diagram, or the Joins Manager.

However, you do not create joins for multidimensional data sources.

This section contains the following topics:

• About Physical Joins

Chapter 8
Working with Physical Foreign Keys and Joins

8-36



• Defining Physical Joins with the Physical Diagram

• Defining Physical Joins with the Joins Manager

About Physical Joins
When you import keys in a physical schema, the primary key-foreign key joins are
automatically defined.

You must explicitly define any other joins in each data source or between data sources
to express relationships between tables in the Physical layer.

You do not have to use imported key and foreign key joins in metadata. Joins that are
defined to enforce referential integrity constraints can result in specifying incorrect
joins in queries. For example, joins between a multipurpose lookup table and several
other tables can result in unnecessary or invalid circular joins in the SQL queries
issued by the Oracle BI Server.

This section contains the following topics:

• About Primary Key and Foreign Key Relationships

• About Complex Joins

• About Multi‐Database Joins

• About Fragmented Data

About Primary Key and Foreign Key Relationships
A primary key and foreign key relationship defines a one-to-many relationship between
two tables.

A foreign key is a column or a set of columns in one table that references the primary
key columns in another table. The primary key is defined as a column or set of
columns where each value is unique and identifies a single row of the table.

Note:

There are two cases where multiple foreign key columns in a table point to
the same table:

• When the primary key of the foreign table is concatenated, meaning that
it consists of a set of columns. This is a single join between two tables
that happens to use multiple columns.

• When you have created an alias to the foreign table, because the foreign
table needs to serve in different roles. Each foreign key joins to a primary
key in a role-playing alias, see About Physical Alias Tables.

You can specify primary key and foreign keys in the Physical Diagram, or by using the
Keys and Foreign Keys tabs of the Physical Table dialog, see Defining Physical Joins
with the Physical Diagram and Creating and Managing Columns and Keys for
Relational and Cube Tables.

Chapter 8
Working with Physical Foreign Keys and Joins

8-37



About Complex Joins
In the Physical layer of the repository, complex joins are joins over non-foreign key
and primary key columns. In other words, physical complex joins are joins that use an
expression rather than key column relationships.

When you create a complex join in the Physical layer, you specify the expression for
the join.

For most data sources, foreign key joins are preferred for performance reasons.
Complex joins usually do not perform as well because they do not use key column
relationships to form the join. The exception is ADF data sources, which use physical
complex joins exclusively to denote ViewLink instances that connect pairs of View
Objects in the ADF model.

About Multi‐Database Joins
A multi‐database join is defined as a table under one metadata database object that
joins to a table under a different metadata database object.

You must specify multi‐database joins to combine the data from different databases.
Use the Physical Diagram to specify multi‐database joins, see Defining Physical Joins
with the Physical Diagram.

You can create multi-database joins between tables in most types of databases. You
cannot create multi-database joins to tables in Oracle OLAP data sources.

While the Oracle BI Server has several strategies for optimizing the performance of
multi-database joins, these joins are significantly slower than joins between tables
within the same database. As a result of the negative performance impact, you should
avoid using multi-database joins whenever possible.

About Fragmented Data
Fragmented data is data from a single domain that is split between multiple tables.

For example, a data source might store sales data for customers with last names
beginning with the letter A through M in one table and last names from N through Z in
another table. With fragmented tables, you need to define all of the join conditions
between each fragment and all the related tables. The figure shows the physical joins
with a fragmented sales table and a fragmented customer table where the data are
fragmented the same way (A through M and N through Z).

Chapter 8
Working with Physical Foreign Keys and Joins

8-38



You could have a fragmented fact table and a fragmented dimension table with
fragments across different values. You create the joins to the fragmented table and
define a one-to-many join, as shown in the Customer A to F and from Customer G to Z
to Sales A to M example.

Note:

Avoid adding join conditions where they are not necessary, for example,
between Sales A to M and Customer N to Z. Extra join conditions can cause
performance degradations.

Defining Physical Joins with the Physical Diagram
You can define foreign keys and complex joins between tables, whether or not the
tables are in the same data source.

When you use the Physical Diagram to create joins, the Administration Tool
determines what type of join to create based on the selected object types and the join
expression.

In the Physical Diagram, the join is represented by a line between the two selected
tables, with an arrow at the one end of the join. The image shows a join in the Physical
Diagram.

The physical foreign key joins are the default join type. The object type might change
to a complex join after you define the join and click OK.

If you do not want the Administration Tool to automatically determine what type of join
to create, use the Joins manager to explicitly create the join. See Defining Physical
Joins with the Joins Manager.

Chapter 8
Working with Physical Foreign Keys and Joins

8-39



See Using Hints in SQL Statements and Specifying a Driving Table. The driving table
option is not available for selection because the Oracle BI Server implements driving
tables only in the Business Model and Mapping layer.

1. In the Physical layer of the Administration Tool, right-click a table, from Physical
Diagram, select an option.

2. From the Diagram menu, click New Join.

3. In the Physical Diagram, select the first table in the join, the table representing
many in the one‐to‐many join.

4. Move the cursor to the table to which you want to join, the table representing one
in the one‐to‐many join, and select the second table.

5. Select the joining columns from the left and the right tables.

6. (Optional) For complex joins, you can set the cardinality for each side of the join,
for example, N, 0,1, 1, or Unknown.

To set the cardinality to unknown, you only need to select Unknown for one side of
the join. For example, choosing unknown-to-1 is equivalent to unknown-to-
unknown and appears as such the next time you open the dialog for this join.

7. If appropriate, specify a database hint.

8. If you are creating a complex join for ADF ViewObject or ViewLink instances,
specify the ViewLink instance name or the ViewLink definition name in the
ViewLink Name field.

9. To open Expression Builder, click the button to the right of the Expression pane.
The expression displays in the Expression pane.

The default join expression for ViewObject or ViewLink instances is arbitrary and
has no meaning.

10. Click OK to apply the selections.

Defining Physical Joins with the Joins Manager
You can use the Joins Manager to view join relationships and to create physical
foreign key joins and complex joins.

See Using Hints in SQL Statements.

1. In the Administration Tool toolbar, select Manage, then select Joins.

2. In the Joins Manager dialog, perform one of the following tasks:

• From Action , select New , and then select Complex Join.

• From Action, select New, select Physical Foreign Key, and then click
Browse and double-click a table.

3. In the Complex Join or Physical Foreign Key dialog, type a name for the join.

4. Click the Browse button for the Table field on the left side of the dialog, and locate
the table that the foreign key references.

5. Select the columns in the left table that the key references.

6. Select the columns in the right table that comprise the foreign key columns.

Chapter 8
Working with Physical Foreign Keys and Joins

8-40



7. (Optional) For complex joins, you can set the cardinality for each side of the join,
for example, N, 0,1, 1, or Unknown.

To set the cardinality to unknown, you only need to select Unknown for one side
of the join. For example, choosing unknown-to-1 is equivalent to unknown-to-
unknown and appears as such the next time you open the dialog for this join.

8. If appropriate, specify a database hint.

9. If you are creating a complex join for ADF ViewObject or ViewLink instances,
specify the ViewLink instance name or the ViewLink definition name in the
ViewLink Name field.

10. Click the button to the right of the Expression pane to open the Expression Builder.

The default join expression for ViewObject or ViewLink instances is arbitrary and
has no meaning.

11. Click OK to save.

Deploying Opaque Views
An opaque view is a Physical layer table that consists of a SELECT statement.

When you need a new table, you must create a physical table or a materialized view.
Use an opaque view only if there is no other solution.

See Exchanging Metadata with Databases to Enhance Query Performance.

This section contains the following topics:

• About Deploying Opaque Views

• Deploying Opaque View Objects

• Undeploying a Deployed View

• When to Delete Opaque Views or Deployed Views

• When to Redeploy Opaque Views

About Deploying Opaque Views
You deploy an opaque view in the data source using the Deploy Views utility.

In the repository, opaque views appear as view tables in the data source, but the view
does not actually exist until you deploy it.

After deploying an opaque view, it is called a deployed view. Opaque views can be
used without deploying them, but the Oracle BI Server has to generate a more
complex query when an opaque view is encountered.

Note:

Data sources such as XLS and non-relational data sources do not support
opaque views and cannot run the view deployment utility.

Chapter 8
Deploying Opaque Views

8-41



To verify that opaque views are supported by a data source, check whether the
CREATE_VIEW_SUPPORTED SQL feature is selected in the Database dialog, in the Features
tab. See Specifying SQL Features Supported by a Data Source.

Deploying Opaque View Objects
In offline mode, the Deploy Views utility is available when importing from data sources
with ODBC and DB2 CLI data sources.

Oracle Native (client) drivers are also supported in the offline mode for deploying
views. In online mode, view deployment is available for supported data sources using
Import through server, the settings on the client are ignored.

Using the Create View SELECT Statement
The SQL statement for deploying opaque views in the Physical layer of the repository
is available for supported data sources.

To determine which data sources support opaque views, contact your system
administrator or consult your data source documentation.

Use only repository variables in the definition. The system generates an error if the
view definition contains a session variable.

Syntax

CREATE VIEW view_name AS select_statement,

Where:

• select_statement is the user-entered SQL statement in the opaque view object. If
the SQL statement is invalid, the create view statement fails during view
deployment.

• view_name is one of the two following formats: schema.viewname, or viewname. The
connection pool settings determine if the schema name is added.

Note:

If you want your SELECT statement to reference a row-wise initialization
variable, then you must use the VALUELISTOF function. For example, to get the
customers assigned to the user names in the variable LIST_OF_USERS, use the
following syntax:

RW.CUSTOMERS.USER_NAME in (VALUELISTOF(NQ_SESSION.LIST_OF_USERS))

To filter by only specific values in the list, then use ValueNameof as show in
the below example. The first value is 0, not 1.

RW.CUSTOMERS.USER_NAME in '(ValueNameOf(0,NQ_SESSION.LIST_OF_USERS))

For opaque view objects, the right-click menu contains the Deploy View(s) option.
When you select Deploy View(s), the Create View SQL statement executes and
attempts to create the deployed view objects. The following list describes how to
initiate view deployment and the results of each method:

Chapter 8
Deploying Opaque Views

8-42



• Right-click a single opaque view object. When you select Deploy View(s), the
Create View SQL statement executes and attempts to create a deployed view for
the object.

• Right-click several objects. If at least one of the selected objects is an opaque
view object, the right-click menu contains the Deploy View(s) option. When you
select Deploy View(s), the Create View SQL statement executes and attempts to
create the deployed views for any qualifying objects.

• Right-click a physical schema or physical catalog. If any opaque view object exists
in the schema or catalog, the right-click menu contains the Deploy View(s) option.
When you select Deploy View(s), the Create View SQL statements for all
qualifying objects execute and attempt to create deployed views for the qualifying
objects contained in the selected schema or catalog.

During deployment, names are assigned to the views. If you change the preassigned
name, the new name must use alphanumeric characters with a maximum length of 18
characters. If these guidelines are not followed, the object name is automatically
transformed to a valid name using the following Name Transform algorithm:

• All non-alphanumeric characters are removed.

• If there are 16 or more characters after Step 1, the first 16 characters are kept.

• Two digits starting from 00 to 99 are appended to the name to make the name
unique in the corresponding context.

After the deployment process completes, the following occurs:

• Views that have been successfully and unsuccessfully deployed appear in a list.

• For unsuccessful deployments, a brief reason appears in the list.

• If deployment is successful, the object type of the opaque view changes from
Select to None and the deployed view is treated as a regular table.

If you change the type back to Select, the associated opaque views are dropped
from the data source, or an error message appears. See When to Delete Opaque
Views or Deployed Views.

• In the Administration Tool, the view icon changes to the deployed view icon for
successfully deployed views.

1. In the Physical layer of the Administration Tool, right-click the opaque view that
you want to deploy.

2. In the right-click menu, select Deploy View(s).

3. (Optional) In the View Deployment - Deploy View(s) dialog, in the New Table
Name column, change the new deployed view names.

If the change does not conform to the naming rules, a new name is assigned and
the dialog appears again so that you can accept or change it. This action repeats
until all names pass validation.

If you do not want to deploy one or more of the views, clear the appropriate rows.

4. In the Select Connection Pool dialog, choose a connection pool, and click Select.

5. In the View Deployment Messages dialog, search for views using Find and Find
Again, or copy the contents.

6. When you are finished, click OK.

Chapter 8
Deploying Opaque Views

8-43



Undeploying a Deployed View
Running the Undeploy Views utility on a deployed view deletes the view and converts
the view table back to an opaque view with its original SELECT statement.

1. In the Physical layer of the Administration Tool, right-click a physical database,
catalog, schema, or table.

If a deployed view exists that is related to the selected object, the right-click menu
contains the Undeploy View(s) option.

2. Select Undeploy View(s).

A list of views to be undeployed appears.

3. If you do not want to undeploy one or more of the views, clear the appropriate
rows.

4. In the View Deployment - Undeploy View(s) dialog, click OK to remove the views.

A message appears if the undeployment was successful.

5. In the View Deployment Messages dialog, search for undeployed views using
Find and Find Again, or copy the contents.

6. When you are finished, click OK.

When to Delete Opaque Views or Deployed Views
Use these guidelines to remove opaque or deployed view objects in the repository.

• Removing an undeployed opaque view in the repository

If the opaque view has not been deployed, you can delete it from the repository.

• Removing a deployed view

When you deploy an opaque view, a view table is created physically in both the
data source and the repository. Therefore, you must undeploy the view before
deleting it. You use the Undeploy Views utility in the Administration Tool. This
utility removes the opaque view from the back-end data source, changes the Table
Type from None to Select, and restores the SELECT statement of the object in the
Physical layer of repository.

Important:

Do not manually delete the view table in the data source. If this table is
deleted, then the Oracle BI Server cannot query the view object. When
you undeploy the view, it is removed automatically from the data source.

When to Redeploy Opaque Views
After removing an opaque view, you can redeploy the same opaque view.

The Administration Tool does not distinguish between a first-time deployment and a
redeployment. Make sure that you remove a deployed view before deploying the
opaque view again. The deploy operation fails and the data source returns error

Chapter 8
Deploying Opaque Views

8-44



messages if you do not remove the deployed view before deploying the opaque view
again.

Using Hints in SQL Statements
Hints are instructions that you place within a SQL statement that tell the data source
query optimizer the most efficient way to execute the statement.

Hints override the optimizer's execution plan, so you can use hints to improve
performance by forcing the optimizer to use a more efficient plan. Hints are only
supported for Oracle Database data sources.

Using the Administration Tool, you can add hints to a repository, in both online and
offline modes, to optimize the performance of queries. When you add a hint to the
repository, you associate it with Physical layer objects. When the object associated
with the hint is queried, the Oracle BI Server inserts the hint into the SQL statement.

The table shows the physical objects with which you can associate hints. It also shows
the Administration Tool dialog that corresponds to the physical object. Each of these
dialogs contains a Hint field, into which you can type a hint to add it to the repository.

Database Object Dialog

Complex join Complex Join

Physical foreign key Physical Foreign Key

Physical table Physical Table - General tab

Hints are only supported when the Table Type is set to Physical Table. For other
table types, the hint text is ignored. For physical tables with a table type of Select, you
can provide the hint text as part of the SQL statement entered in the Default
Initialization String field.

How to Use Oracle Hints
Review theses topics about using Oracle hints with the Oracle BI Server.

See Oracle hints in the SQL reference guide for the version of the Oracle Database
that you use.

This section contains the following topics:

• About the Index Hint

• About the Leading Hint

About the Index Hint
The Index hint explains how the optimizer scans a specified index rather than a table.

If queries against the ORDER_ITEMS table are slow, you can review the execution plan of
the query optimizer. If the FAST_INDEX was not used, you can create an Index hint to
force the optimizer to scan the FAST_INDEX rather than the ORDER_ITEMS table. The syntax
for the Index hint is as follows:

index(table_name,index_name)

Chapter 8
Using Hints in SQL Statements

8-45



To add this hint to the repository, open the Physical Table dialog in the Administration
Tool, and type the following text in the Hint field:

index(ORDER_ITEMS, FAST_INDEX)

About the Leading Hint
The Leading hint forces the optimizer to build the join order of a query with a specified
table.

The syntax for the Leading hint is leading(table_name). If you were creating a foreign
key join between the Products table and the Sales Fact table and wanted to force the
optimizer to begin the join with the Products table, you would go to the Physical
Foreign Key dialog in the Administration Tool and type the following text in the Hint
field:

leading(Products)

About Performance Considerations for Hints
Hints that are well researched and planned can result in significantly better query
performance.

However, hints can also negatively affect performance if they result in a suboptimal
execution plan.

Follow these guidelines to create hints to optimize query performance:

• Only add hints to a repository after you have tried to improve performance in the
following ways such as:

– Adding physical indexes or other physical changes to the Oracle Database.

– Makin modeling changes within the server.

• Avoid creating hints for physical table and join objects that are queried often. If you
drop or rename a physical object that is associated with a hint, you must also alter
the hints accordingly.

Creating Hints
You can add hints to the repository using the Oracle BI Administration Tool.

1. In the Administration Tool, go to one of the following dialogs:

• Physical Table—General tab

• Physical Foreign Key

• Complex Join

2. Type the text of the hint in the Hint field and click OK.

For a description of available Oracle hints and hint syntax, see SQL reference for
the version of the Oracle Database that you use.

Chapter 8
Using Hints in SQL Statements

8-46



Note:

Although hints are identified using SQL comment markers (/* or --), do
not type SQL comment markers when you type the text of the hint. The
Oracle BI Server inserts the comment markers when the hint is
executed.

Displaying and Updating Row Counts for Physical Tables
and Columns

When you request row counts, the Oracle Administration Tool retrieves the number of
rows from the data source for all, or selected tables and columns (distinct values are
retrieved for columns), and stores those values in the repository.

The amount of time required to count the number of rows depends upon the number of
row counts retrieved.

When updating all row counts, the Updating Row Counts window appears while row
counts are retrieved and stored. If you click Cancel, the retrieve process stops after
the in-process table and its columns have been retrieved. Row counts include all
tables and columns for which values were retrieved before the cancel operation.

Updating all row counts for a large repository might take a long time to complete. You
might want to update only selected table and column counts.

Row counts are not available for the following:

• Stored Procedure object types

• XML data sources and XML Server data sources

• Multidimensional data sources

• Data sources that do not support the COUNTDISTINCT function, such as Microsoft
Access and Microsoft Excel, or data sources for which COUNT_STAR_SUPPORTED has
been disabled in the database features table

• In online mode, Update Row Count does not work with connection pools in which
the session variables :USER and :PASSWORD are set as the user name and
password.

In offline mode, the Set values for variables dialog appears so that you can
populate the session variables :USER and :PASSWORD.

• In online mode, after importing or manually creating a physical table or column, the
Oracle BI Server does not recognize the new objects until you check them in.
Update Row Count is not available in the menu until you check in the objects.

• To update the row count in the Administration Tool, do one of the following:

– In the Physical layer, select Tools, then select Update All Row Counts.

– In the Physical layer, right-click a single table, column, or select multiple
objects, right-click and select Update Row Count.

If the repository is open in online mode, and the Check Out Objects window
opens, click Yes to check out the objects

Chapter 8
Displaying and Updating Row Counts for Physical Tables and Columns

8-47



Any row counts that have changed since the last update are refreshed.

Displaying Row Counts in the Physical Layer
Use these steps to display the row count in the Physical layer.

1. In the Administration Tool, select Tools, then select Options.

2. In the Options dialog, on the General tab, select Show row count in physical
view, and click OK.

Chapter 8
Displaying and Updating Row Counts for Physical Tables and Columns

8-48



9
Working with Logical Tables, Joins, and
Columns

This chapter explains how to work with objects in the Business Model and Mapping
layer of the Oracle BI repository, such as logical tables, joins, and columns. It also
explains other Business Model and Mapping layer concepts like display folders, bridge
tables, the Business Model Diagram, and how to enable write back on columns.
This chapter contains the following sections:

• About Working with the Business Model and Mapping Layer

• Creating the Business Model and Mapping Layer

• About Working with the Business Model Diagram

• Creating and Managing Logical Tables

• Defining Logical Joins

• Creating and Managing Logical Columns

• Enabling Write Back On Columns

• Setting Up Display Folders in the Business Model and Mapping Layer

• Modeling Bridge Tables

• Modeling Binary Large Object (BLOB) Data and Character Large Object (CLOB)
Data

About Working with the Business Model and Mapping Layer
The Business Model and Mapping layer of the Oracle BI repository defines the
business, or logical, model of the data and specifies the mapping between the
business model and the Physical layer schemas.

Business models are always dimensional, unlike objects in the Physical layer, which
reflect the organization of the data sources. The Business Model and Mapping layer
can contain one or more business models. Each business model contains logical
tables, columns, and joins.

Even though similar terminology is used for logical table and physical table objects,
such as the concept of keys, logical tables and joins in the Business Model and
Mapping layer have their own set of rules that differ from those of relational models.
For example, logical fact tables are not required to have keys, and logical joins can
represent many possible physical joins.

Logical tables, joins, mappings, and other objects in the Business Model and Mapping
layer are typically created automatically when you drag and drop objects from the
Physical layer to a particular business model. After these objects have been created,
you can perform tasks like creating additional logical joins, performing calculations and
transformations on columns, and adding and removing keys from dimension and fact
tables.

9-1



Creating the Business Model and Mapping Layer
After creating all of the elements of the Physical layer, you can drag tables or columns
from the Physical layer to a business model in the Business Model and Mapping layer
to create logical objects in the metadata.

This section contains the following topics:

• Creating Business Models

• Automatically Creating Business Model Objects

• Automatically Creating Business Model Objects for Multidimensional Data Sources

• Duplicating a Business Model and Subject Area

Creating Business Models
The Business Model and Mapping layer of the Administration Tool can contain one or
more business models.

A business model contains the business model definitions and the mappings from
logical to physical tables for the business model.

When you work in a repository in offline mode, remember to save your repository from
time to time. You can save a repository in offline mode even though the business
models may be inconsistent.

1. In the Administration Tool, right-click in the Business Model and Mapping layer
below existing objects.

2. Select the option New Business Model from the shortcut menu.

3. Specify a name for the business model.

4. New business models are disabled by default. If you want to make the
corresponding Presentation layer available for queries, deselect Disabled.

Note:

The business model should be consistent before you deselect this
option.

5. (Optional) Type a description of the business model.

6. Click OK.

After you create a business model, you can create business model objects by
dragging and dropping objects from the Physical layer.

Chapter 9
Creating the Business Model and Mapping Layer

9-2



Automatically Creating Business Model Objects
To automatically map objects in the Business Model and Mapping layer to sources in
the Physical layer, you can drag and drop Physical layer objects to a particular
business model in the logical layer.

When you drag a physical table to the Business Model and Mapping layer, a
corresponding logical table is created. For each physical column in the table, a
corresponding logical column is created. If you drag multiple tables at once, a logical
join is created for each physical join, but only the first time the tables are dragged onto
a new business model.

Automatically Creating Business Model Objects for Multidimensional
Data Sources

Setting up objects in the Business Model and Mapping layer for multidimensional data
sources is similar to setting up logical layer objects for a relational data source.

When creating the business model layer, you can drag and drop the Physical layer
cube to the logical layer. Oracle Business Intelligence automatically creates a fully
configured and consistent business model that retains all metrics, attributes and
dimensions.

For Essbase data sources, Oracle recommends creating a separate business model
for each Essbase cube by dragging each cube individually to the Business Model and
Mapping layer.

Duplicating a Business Model and Subject Area
Learn how to make copies of a selected business model and assign new names to the
copy.

You can select a business model and its corresponding subject area, make a copy,
and assign new names to the duplicate objects.

Note:

Aliases are not copied.

1. In the Administration Tool with the repository open, right-click a business model,
and select Duplicate with Subject Area.

2. In the Copy Business Model and Subject Area dialog, select the business model
and corresponding subject area you want to copy.

3. Specify new names for the business model and subject area in the appropriate
name fields, and then click OK.

The copied business model appears in the Business Model and Mapping layer,
and the copied subject area appears in the Presentation layer.

Chapter 9
Creating the Business Model and Mapping Layer

9-3



About Working with the Business Model Diagram
Open the Business Model Diagram to see a graphical model of logical tables and
joins.

To access the Business Model Diagram, right-click an object in the Business Model
and Mapping layer such as a dimension or fact table, and select Business Model
Diagram. Then, select one of the following options:

• Whole Diagram. Displays all logical tables and joins in the business model.

• Selected Tables Only. Displays only the selected logical tables. Logical joins
appear only if they exist between the objects that you selected. This option is only
available when you select one or more logical tables.

• Selected Tables and Direct Joins. Displays the selected logical tables and any
logical tables that join to the tables that you selected. This option is only available
when you select one or more logical tables.

• Selected Fact Tables and Dimensions. Displays the selected logical tables and
their associated logical dimensions. This option is only available when your
selection includes at least one fact table.

Note:

The Business Model Diagram displays only logical tables and joins. It does
not display other Business Model and Mapping layer objects, such as
business models, dimensions, or hierarchies. Joins are represented by a line
with an arrow at the one end of the join.

Chapter 9
About Working with the Business Model Diagram

9-4



To add additional tables to the Business Model Diagram, leave the Business Model
Diagram window open and then right-click the table or tables you want to add. Then,
select Business Model Diagram and choose one of the display options.

Additional options are available in the right-click menu for the graphical tables and
joins displayed in the Business Model Diagram. For example, you can delete objects
or view their properties, or you can add additional related objects using the right-click
options Add Direct Joins, Add Tables Joined to Whole Selection, and Add All
Joins. You can also select Find in Tree View to locate a particular object in the
Business Model and Mapping layer view in the middle pane, or check out objects in
online mode.

You can also right-click an object in the Business Model Diagram view and select
Hide to hide particular objects in the diagram. The hide effect is temporary and does
not persist.

Use the Print and Print Preview options on the File menu to manage printing options
for the Business Model Diagram. You can also use the Print option on the toolbar.

See Defining Logical Joins with the Business Model Diagram to learn about defining
logical joins.

Creating and Managing Logical Tables
Logical tables exist in the Business Model and Mapping layer.

Chapter 9
Creating and Managing Logical Tables

9-5



The logical schema defined in each business model must contain at least two logical
tables, and you must define relationships between them.

Each logical table is associated with one or more logical columns and one or more
logical table sources. You can add a new logical table source, edit or delete an
existing table source, create or change mappings to the table source, or define when
to use logical tables sources. See Creating Logical Table Sources.

You can change the logical table name, reorder the logical table sources, and
configure the logical keys, both primary and foreign

This section contains the following topics:

• Creating Logical Tables

• Specifying a Primary Key in a Logical Table

• Reviewing Foreign Keys for a Logical Table

Creating Logical Tables
Dragging and dropping physical tables from the Physical layer to the Business Model
and Mapping layer is the recommended method for creating logical tables. If a table
does not exist in your physical schema, you can create the logical table manually.

If you drag and drop physical tables from the Physical layer to the Business Model and
Mapping layer, the columns in the table are also to the logical table along with key and
foreign key relationships. Logical keys and joins are created that mirror the keys and
joins in the Physical layer.

After creating a logical table using the menu option method, you must create all keys
and joins manually.

After adding objects to the Business Model and Mapping layer, you can modify the
objects in the logical table without affecting the objects in the Physical layer.

If you create new tables or drag additional tables from the Physical layer to the
Business Model and Mapping layer, you must create the logical mappings between the
new or newly dragged tables and the previously dragged tables.

See Defining Logical Joins with the Joins Manager and Defining Logical Joins with the
Business Model Diagram.

A lookup table stores multilingual data corresponding to rows in the base tables. See 
Localizing Business Intelligence in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition.

1. In the Administration Tool, to create a logical table, do one of the following:

• (Recommended method) Select one or more table objects in the Physical
layer, then drag and drop the table objects to a business model in the
Business Model and Mapping layer.

• (Manual method) In the Business Model and Mapping layer, right-click the
business model, select New Object , and then select Logical Table.

2. For manually created tables, right-click the table, and select Properties.

3. For manually created tables, in the Logical Table General tab, in Name, type a
name for the logical table.

Chapter 9
Creating and Managing Logical Tables

9-6



4. (Optional) Select Lookup table when you intend to use the table as a lookup
table.

5. (Optional) In Description, type a explanation of the table’s use.

6. Click OK.

Enabling Data Driven Fragment Selection in Logical Table Sources
You can improve the performance of fragmented logical table sources by enabling the
data driven fragment selection option in the

Data driven fragment selection is disabled by default.

1. In the Administration Tool, from the Business Model and Mapping column, right-
click a model that uses fragmented logical table sources and select Query
Related Objects , and then select Logical Table Source.

2. In Query Related Objects, select a logical table source, and click Edit.

3. In Logical Table Sources, in the Content tab, click Enable Data Driven Fragment
Selection, and click OK.

Specifying a Primary Key in a Logical Table
After creating tables in the Business Model and Mapping layer, you specify a primary
key for each dimension table.

Logical dimension tables must have a logical primary key. Logical keys can be
composed of one or more logical columns.

Note:

Oracle recommends that you do not specify logical keys for logical fact
tables.

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a table.

2. In the Logical Table dialog, select the Keys tab and then click New.

3. In the Logical Key dialog, type a name for the key and select the column that
defines the key of the logical table.

4. Click OK.

Reviewing Foreign Keys for a Logical Table
Oracle recommends that you do not use foreign key joins in logical tables.

You must enable the Allow logical foreign key join creation option in the Options
dialog to create joins with foreign keys.

See Creating Logical Foreign Key Joins with the Joins Manager.

The Foreign Keys tab of the Logical Table dialog exists so that you can view logical
foreign keys you might have had in a previous release of Oracle Business Intelligence.

Chapter 9
Creating and Managing Logical Tables

9-7



Defining Logical Joins
Relationships between logical tables are expressed by logical joins.

Logical joins are conceptual, rather than physical, joins. Logical joins do not join to
specific keys or columns. A single logical join can correspond to many possible
physical joins.

A key property of a logical join is cardinality. Cardinality expresses how rows in one
table are related to rows in the table to which it is joined. A one-to-many cardinality
means that for every row in the first logical dimension table, there are 0, 1, or many
rows in the second logical table. The Administration Tool considers a table to be a
logical fact table if it is at the Many end of all logical joins that connect it to other logical
tables.

Specifying the logical table joins is required so that the Oracle BI Server can have the
necessary metadata to translate a logical request against the business model to SQL
queries against the physical data sources. The logical join information provides the
Oracle BI Server with the many‐to‐one relationships between the logical tables. This
logical join information is used when the Oracle BI Server generates queries against
the underlying databases.

You do not need to create logical joins in the Business Model and Mapping layer if
both of the following statements are true:

• You create the logical tables by simultaneously dragging and dropping all required
physical tables to the Business Model and Mapping layer.

• The logical joins are the same as the joins in the Physical layer.

You might need to create some logical joins in the Business Model and Mapping layer,
because you cannot drag and drop all physical tables simultaneously except in very
simple models.

You can create logical joins using either the Joins Manager or the Business Model
Diagram. When you create a complex join in the Physical layer, you can specify
expressions and the specific columns on which to create the join. When you create a
logical join in the Business Model and Mapping layer, you cannot specify expressions
or columns on which to create the join. The existence of a join in the Physical layer
does not require a matching join in the Business Model and Mapping layer.

Note:

It is recommended that you do not have foreign keys for logical tables.
However, for backward compatibility, you can create logical foreign key joins
using the Joins Manager if you select Allow logical foreign key join
creation in the Options dialog.

Compose a logical key for a fact table using the key columns that join to the
attribute tables. You might need logical foreign key joins if the Oracle BI
Server is used as an ODBC data source for certain third-party query and
reporting tools.

This section contains the following topics:

Chapter 9
Defining Logical Joins

9-8



• Defining Logical Joins with the Business Model Diagram

• Defining Logical Joins with the Joins Manager

• Specifying a Driving Table

• Factors That Determine Join Trimming

• Identifying Physical Tables That Map to Logical Objects

Defining Logical Joins with the Business Model Diagram
The Business Model Diagram shows logical tables and any defined joins between
them.

In the Business Model Diagram, the join is represented by a line between the two
selected tables, with an arrow at the one end of the join. The image shows a join in the
Business Model Diagram.

You can use the Business Model Diagram to define logical joins between tables. See 
Specifying a Driving Table.

This driving table option is useful for optimizing the manner in which the Oracle BI
Server processes multi-database inner joins when one table is very small and the
other table is very large. Do not select a driving table unless multi-database joins are
going to occur.

Important:

Use extreme caution in deciding whether to specify a driving table. Driving
tables are used for query optimization only under rare circumstances and
when the driving table is extremely small (fewer than 1000 rows). Choosing a
driving table incorrectly can lead to severe performance degradation.

1. In the Administration Tool, right-click a business model and select Business
Model Diagram, then select Whole Diagram.

2. From the Diagram menu, click the New Join button on the Administration Tool
toolbar.

3. In the Business Model Diagram, click to select the first table in the join, the table
representing many in the one‐to‐many join.

4. Move the cursor to the table to use for the join, the table representing one in the
one‐to‐many join, and then click the second table to select it.

5. (Optional) To specify a driving table for the key, select a table from the Driving
table list, and an applicable cardinality.

6. Select the join type from the Type list, or keep the default value.

Chapter 9
Defining Logical Joins

9-9



7. Set the Cardinality for each side of the join, or keep the default values.

8. Click OK.

Defining Logical Joins with the Joins Manager
You can use the Joins Manager to view logical join relationships and to create logical
joins.

You can also use the Joins Manager to create logical foreign key joins if you select
Allow logical foreign key join creation in the Options dialog, although this is not
recommended.

This section contains the following topics:

• Creating Logical Joins with the Joins Manager

• Creating Logical Foreign Key Joins with the Joins Manager

Creating Logical Joins with the Joins Manager
Logical joins are recommended over logical foreign key joins in the Business Model
and Mapping layer.

Use the driving option for optimizing the manner in which the Oracle BI Server
processes multi-database inner joins when one table is very small and the other table
is very large. Do not select a driving table unless multi-database joins are going to
occur.

Note:

Use extreme caution in deciding whether to specify a driving table. Driving
tables are used for query optimization only under rare circumstances and
when the driving table is extremely small, that is, less than 1000 rows.
Choosing a driving table incorrectly can lead to severe performance
degradation.

See Specifying a Driving Table.

1. In the Administration Tool, select Manage, then select Joins.

2. In the Joins Manager, select Action, select New , and then select Logical Join.

3. In the Logical Join dialog, type a name for the logical join.

4. In the Table lists on the left and right side of the dialog, select the tables that the
logical join references.

5. (Optional) To specify a driving table for the key, select a table from the Driving list,
and an applicable cardinality.

6. Select the join type from the Type list, or keep the default value.

7. Set the Cardinality for each side of the join, or keep the default values.

8. Click OK.

Chapter 9
Defining Logical Joins

9-10



Creating Logical Foreign Key Joins with the Joins Manager
You might need logical foreign key joins if you plan to use the Oracle BI Server as an
ODBC data source for certain third-party query and reporting tools.

You should not create logical foreign keys. See Specifying a Driving Table.

The driving table option is useful for optimizing the manner in which the Oracle BI
Server processes multi-database inner joins when one table is very small and the
other table is very large. Do not select a driving table unless multi-database joins are
going to occur.

Important:

Use extreme caution in deciding whether to specify a driving table. Driving
tables are used for query optimization only under rare circumstances and
when the driving table is extremely small, that is, less than 1000 rows.
Choosing a driving table incorrectly can lead to severe performance
degradation.

1. In the Administration Tool, select Tools, then select Options.

2. In the General tab of the Options dialog, select Allow logical foreign key join
creation.

3. Click OK.

4. Select Manage, then select Joins to display the Joins Manager.

5. Select Action, select New, and then select Logical Foreign Key.

6. In the Browse dialog, double-click a table.

7. In the Logical Foreign Key dialog, type a name for the foreign key.

8. In the Table list on the left side of the dialog, select the table that the foreign key
references.

9. Select the columns in the left table that the foreign key references.

10. Select the columns in the right table that make up the foreign key columns.

11. (Optional) To specify a driving table for the key, select a table from the Driving list,
and an applicable cardinality.

12. Select the join type from the Type list, or keep the default value.

13. Set the Cardinality for each side of the join, or keep the default values.

14. In Expression Builder, type an expression for the join.

15. Click OK to save your work.

Chapter 9
Defining Logical Joins

9-11



Specifying a Driving Table
Driving tables are useful for optimizing how the Oracle BI Server processes cross-
database joins when one table is very small and the other table is very large.

Specifying driving tables leads to query optimization only when the number of rows
being selected from the driving table is much smaller than the number of rows in the
table to which it is being joined.

Important:

To avoid problems, only specify driving tables when the driving table is
extremely small - less than 1000 rows.

You can specify a driving table for logical joins from the Logical Joins window. When
you specify a driving table, the Oracle BI Server uses the driving table if the query plan
determines that the table’s use can optimize query processing. The small table (the
driving table) is scanned, and parameterized queries are issued to the large table to
select matching rows. The other tables, including other driving tables, are then joined
together.

Important:

If large numbers of rows are being selected from the driving table, specifying
a driving table could lead to significant performance degradation or, if the
MAX_QUERIES_PER_DRIVE_JOIN limit is exceeded, the query terminates.

Use driving tables with inner joins, and for outer joins when the driving table is the left
table for a left outer join, or the right table for a right outer join. Driving tables are not
used for full outer joins. See Defining Logical Joins for instructions on specifying a
driving table.

There are two entries in the database features table that control and tune driving table
performance.

• MAX_PARAMETERS_PER_DRIVE_JOIN

This is a performance tuning parameter. The larger its value, the fewer
parameterized queries are generated. Values that are too large can result in
parameterized queries that fail due to back-end database limitations. Setting the
value to 0 (zero) turns off drive table joins.

• MAX_QUERIES_PER_DRIVE_JOIN

This is used to prevent runaway drive table joins. If the number of parameterized
queries exceeds its value, the query is terminated and an error message is
returned to the user.

Chapter 9
Defining Logical Joins

9-12



Factors That Determine Join Trimming
When determining which joins Oracle BI Server can trim from a physical query, the
Oracle BI Server considers the factors described in this section.

The following join trimming rules are enforced for tables within a logical table source:

• Join Outerness (Inner, Left Outer, Right Outer, or Full Outer).

• Join Cardinality, {0...1, 1, N, Unknown} to {0...1, 1, N, Unknown}; for example, 0...1
to N represents a zero or one-to-many join. There are nine join cardinality
combinations excluding those with Unknown cardinality on at least one side of the
join.

• Whether the logical table source contains a WHERE clause filter.

• Whether the physical join is a complex join or a foreign key join.

For the Oracle BI Server to trim a join, meeting the following criteria is required.

• No references to the trimmed table can exists anywhere in the query such as in
the projected list of columns or in the WHERE clause.

• The trimmed table must not cause the cardinality of the result set to change. If
removing a join could potentially change the number of rows selected, then the
Oracle BI Server does not trim it.

A join is considered to have the potential to change the number of rows in the
result set if any of the following conditions are true. If any of these conditions are
true, then the join is not trimmed from the query:

– The join is a full outer join, only inner joins, left outer joins, and right outer joins
are candidates for trimming

– The join cardinality is unknown on either side

– The table to trim is on the many side of a join, in other words, the detail table is
never trimmed in a master-detail relationship

– The table to trim has a 0..1 cardinality and the join is an inner join. 0..1
cardinality implies that a possible matching row in the table. A join with 0..1
cardinality on one side is effectively like a filter. Oracle BI Server cannot trim
the table without changing the number of rows selected.

– The table to trim is on the left side of a left outer join or on the right side of a
right outer join, the row-preserving table is never trimmed. There is an
exception to this rule for queries that select only attributes in which a
DISTINCT clause is added to the query. Because of the DISTINCT clause,
trimming the row-preserving table does not affect the number of rows returned
from the null-supplying table. In the special case of distinct queries on
attributes, you can trim the row-preserving table from an outer join.

The following table provides examples of when the Oracle BI Server can trim joins
from the query.

Chapter 9
Defining Logical Joins

9-13



Scenario Result

Employee INNER JOIN Department

Oracle BI Server can trim
Department because it is on
the one side of an inner join.

Oracle BI Server cannot trim
Employee because it is on
the many side of an inner
join.

Employee LEFT OUTER JOIN Department

Oracle BI Server can trim
Department because it is on
the one side of the join and it
is on the right side of a LEFT
OUTER JOIN, the null
supplying table.

Oracle BI Server cannot trim
Employee because it is on
the many side, and because
it is on the left side of a LEFT
OUTER JOIN, the row
preserving table.

Employee RIGHT OUTER JOIN Department

Oracle BI Server cannot trim
Department because it is on
the right side of a RIGHT
OUTER JOIN, the row
preserving table.

Oracle BI Server cannot trim
Employee because it is on
the many side of the join.

Employee INNER JOIN EmployeeInfo

Oracle BI Server can trim
either side because both
tables are on the one side of
an inner join.

Employee LEFT OUTER JOIN EmployeeInfo

Oracle BI Server can trim
EmployeeInfo since it is on
the one side of the join, and
it is on the right side of a
LEFT OUTER JOIN, the null
supplying table.

Oracle BI Server cannot trim
Employee because it is on
the left side of a LEFT
OUTER JOIN, the row
preserving table.

Chapter 9
Defining Logical Joins

9-14



Scenario Result

Employee RIGHT OUTER JOIN EmployeeInfo

Oracle BI Server can trim
EmployeeInfo because it is
on the right side of a RIGHT
OUTER JOIN, the row
preserving table.

You can trim Employee
because it is on the "one"
side of the join, and it is on
the left side of a RIGHT
OUTER JOIN, the null
supplying table.

Employee INNER JOIN Department

Oracle BI Server can trim
Department because it is on
the 0..1 side of an inner join.

Oracle BI Server can trim
Employee because it is on
the many side of an inner
join.

Employee LEFT OUTER JOIN Department

Oracle BI Server can trim
Department because it is on
the 0..1 side of an outer join,
and it is on the right side of a
LEFT OUTER JOIN, the null
supplying table.

The Oracle BI Server allows
trimming the null supplying
table on the 0..1 side of an
outer join, because in this
case, trimming Department
from the query would not
change the number of rows
selected from the Employee
table.

Oracle BI Server can trim
Employee since it is on the
many side of an outer join.

Employee FULL OUTER JOIN Department

Oracle BI Server cannot trim
either side because the join
is a FULL OUTER JOIN.

Chapter 9
Defining Logical Joins

9-15



Scenario Result

Employee MANY TO MANY Project

Oracle BI Server cannot trim
either side because the join
is many-to-many.

Employee UNKNOWN Department

Oracle BI Server cannot trim
either side because the join
has unknown cardinality.

Identifying Physical Tables That Map to Logical Objects
The Physical Diagram shows the physical tables that map to the selected logical
object and the physical joins between each table.

One of the joins options, Object(s) and Direct Joins within Business Model, is
unique to the logical layer. It creates a physical diagram of the tables that meet both of
the following conditions:

• Tables in the selected objects and tables that join directly

• Tables that are mapped, exist in logical table sources in the business model, in the
business model

1. In the Administration Tool Business Model and Mapping layer, right-click a
business model, logical table, or logical table source.

2. Select Physical Diagram and then one of the joins options.

3. Click and drag any object to more clearly view the relationship lines such as one-
to-many.

Creating and Managing Logical Columns
Many logical columns are automatically created by dragging tables from the Physical
layer to the Business Model and Mapping layer.

Other logical columns, especially ones that involve calculations based on other logical
columns, can be created later.

Logical columns are displayed in a tree structure expanded out from the logical table
to which they belong. If the column is a primary key column or participates in a primary
key, the column is displayed with a key icon. If the column has an aggregation rule, it
is displayed with a ruler icon. You can also reorder logical columns in the Business
Model and Mapping layer.

Chapter 9
Creating and Managing Logical Columns

9-16



This section contains the following topics:

• Creating Logical Columns

• Basing the Sort for a Logical Column on a Different Column

• Enabling Double Column Support by Assigning a Descriptor ID Column

• Creating Derived Columns

• Setting Default Levels of Aggregation for Measure Columns

• Associating an Attribute with a Logical Level in Dimension Tables

• Moving or Copying Logical Columns

Creating Logical Columns
Use this procedure to create logical columns in the Business Model and Mapping
layer.

1. In the Business Model and Mapping layer, right-click a logical table.

2. From the shortcut menu, select New Object, then select Logical Column.

3. In the General tab, type a name for the logical column.

The name of the business model and the associated logical table appear in the
Belongs to Table field.

4. Select Writeable to enable write back for this column.

5. Click OK.

Basing the Sort for a Logical Column on a Different Column
For a logical column, you can specify a different column on which to base the sort
order.

Change the sort order of a column when you do not want to order the values
alphabetically (lexical order).

In a lexical order sort, numbers are ordered by their alphabetic spelling and not divided
into a separate group.

For example, if you sorted on month (using a column such as MONTH_NAME), the results
return February, January, March in their lexicographical sort order. You might want
sort months in chronological order. Your table needs to have a month key such as
MONTH_KEYwith values of 1 (January), 2 (February), 3 (March) to achieve the
chronological sort order. You set the Sort order column field for the MONTH_NAME column
to the MONTH_KEY and then, a request to order by MONTH_NAME would return January,
February, and March.

The sort column is automatically defined for Essbase data sources when business
models are created by dragging and dropping cubes from the Physical layer.

1. In the Logical Column dialog, in the General tab, click Set next to the Sort order
column field.

2. In the Browse dialog, select a column.

3. To view the column details, click View to open the Logical Column dialog for that
column, and then click Cancel.

Chapter 9
Creating and Managing Logical Columns

9-17



You can make some changes in this dialog. If you make changes, click OK to
accept the changes instead of Cancel.

4. In the Browse dialog, click OK.

Enabling Double Column Support by Assigning a Descriptor ID
Column

When multilingual columns are based on a lookup function, it is common to specify the
non-translated lookup key column as the descriptor ID column of the translated
column.

Assigning a descriptor ID column to a logical column enables double column support.
You can use double column support to defining language-independent filters. For
example, in Answers, users see the display column, but the query filters on the hidden
descriptor ID column.

See Supporting Multilingual Data.

Double column support provides a mechanism for associating two columns. One
column provides the display and description values such as the description of an item.
The second column provides a descriptor ID or code column. For example, you can
use the actual column to provide the project list, and hide the ID column associated
with the first column, as in Clinic and Clinic ID. Only the Clinic description is displayed
to the user. Using the double column approach helps satisfy the uniqueness
requirements of Essbase. In the Clinic example, you would add an association to a
column that contains the clinic ID using the steps in the procedure.

1. Open the repository in the Oracle BI Administration Tool.

2. In the Business Model and Mapping layer, expand the business model, and
expand the table contain the column to update.

3. Right-click the column, select Query Related Objects, select Business Model
and Mapping, and then select Logical Column.

4. In the Logical Column(s) related to the selected column dialog, click the column
to associate with the selected column, and click Edit.

5. In the Logical Column dialog, next to the Descriptor ID column field, click Set

6. In the Browse dialog, select a column to use as the Descriptor ID, and click OK.

Creating Derived Columns
Some columns are derived from other logical columns as a way to apply post-
aggregation calculations to measures.

You specify the derived column expression in the Column Source tab of the Logical
Column dialog.

You can also create a set of derived columns using the Calculation Wizard. See Using
the Calculation Wizard.

If the parameter PREVENT_DIVIDE_BY_ZERO is set to YES in NQSConfig.INI, the Oracle BI
Server prevents errors in divide-by-zero situations, even for Answers column
calculations. The Oracle BI Server creates a divide-by-zero prevention expression
using nullif() or a similar function when it writes the physical SQL. Because of this,

Chapter 9
Creating and Managing Logical Columns

9-18



you do not have to use CASE statements to avoid divide-by-zero errors, as long as
PREVENT_DIVIDE_BY_ZERO is set to YES (the default value).

You can also apply calculations pre-aggregation. See Defining Physical to Logical
Table Source Mappings and Creating Calculated Items.

To optimize performance, do not define aggregations in Expression Builder. Instead,
use the Aggregation tab of the Logical Column dialog. See Setting Default Levels of
Aggregation for Measure Columns.

1. In the Logical Column dialog, select the Column Source tab.

2. Select the option Derived from existing columns using an expression.

3. Click the Expression Builder button to open Expression Builder.

4. In the Expression Builder - Derived logical column dialog, specify the expression
from which the logical column should be derived.

5. Click OK.

You can display data from multilingual database schemas by using Expression Builder
to create a lookup function. See Supporting Multilingual Data in System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition.

Configuring Logical Columns for Multicurrency Support
You can configure logical columns so that Oracle Business Intelligence users can
select the currency in which they prefer to view currency columns in analyses and
dashboards.

You can set up this feature so that all users see the same static list of currency
options, or you can provide a dynamic list of currency options that changes based on a
Logical SQL statement you specify.

When you use session variables in an expression for Presentation Services, you must
preface their names with NQ_SESSION. Edit any logical columns that display currency
values to use the appropriate conversion factor using the PREFERRED_CURRENCY session
variable.

See Creating Session Variables and Creating Initialization Blocks.

The following logical column expression uses the value of the
NQ_SESSION.PREFERRED_CURRENCY variable to switch between different currency columns.
The currency columns are expected to have the appropriate converted values.

INDEXCOL( CASE VALUEOF(NQ_SESSION.PREFERRED_CURRENCY) WHEN 'gc1' THEN 0
WHEN 'gc2' THEN 1 WHEN 'orgc' THEN 2 WHEN 'lc1' THEN 3 ELSE 4 END,
"Paint"."Sales Facts"."USDCurrency",
"Paint"."Sales Facts"."DEMCurrency" ,
"Paint"."Sales Facts"."EuroCurrency" ,
"Paint"."Sales Facts"."JapCurrency" ,
"Paint"."Sales Facts"."USDCurrency" )

1. Create a session variable named PREFERRED_CURRENCY, along with an
initialization block to use in the variable.

Select Enable any user to set the value when you create the session variable.

2. In the Business Model and Mapping layer, double-click the appropriate logical
column, select the Column Source tab, and create a derived expression that uses
the PREFERRED_CURRENCY variable.

Chapter 9
Creating and Managing Logical Columns

9-19



3. (Optional)To provide a dynamic list of currency options, create a table in your data
source that provides the entries you want to display for the user-preferred
currency. This table must include the following columns:

• The first column contains the values used to set the session variable
PREFERRED_CURRENCY. Each value in this column is a string that uniquely
identifies the currency (for example, gc2).

• The second column contains currency tags from the currencies.xml file. The
displayMessage values for each tag are used to populate the Currency box and
currency prompts, for example, int:euro-1. The currencies.xml file is located
in ORACLE_HOME\bi\bifoundation\web\display.

• You can provide a third column that contains the values used to set the
presentation variable currency.userPreference. Each value in this column is a
string that identifies the currency, for example, Global Currency 2. If you omit
this column, then the values for the displayMessage attributes for the
corresponding currency tags in the currencies.xml file are used.

The following table shows a sample table with user-preferred currency entries.

UserPreference CurrencyTag UserPreferenceName

char char char

orgc1 loc:en-BZ Org currency

gc2 int:euro-1 Global currency 2

lc1 int:DEM Ledger currency

gc1 int:USD Global Currency 1

Additional configuration is required in Presentation Services to enable this feature. For
full information about the Oracle BI Presentation Services configuration, see Defining
User-Preferred Currency Options in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition.

Setting Default Levels of Aggregation for Measure Columns
You need to specify aggregation rules for mapped logical columns that are measures.

Only perform aggregation on measure columns, with the possible exception of the
aggregation COUNT and COUNTDISTINCT. Measure columns should exist only in logical fact
tables.

You can select different aggregation rules for different dimensions that are associated
with this logical column. For example, if someone queries the aggregate column along
with one dimension, you may want to use one type of aggregation rule, whereas with
another dimension, you may want to use a different aggregation rule.

When the default aggregation rule is Count Distinct, you can specify an override
aggregation expression for specific logical table sources. For example, you may want
to specify override aggregation expressions when you are querying different aggregate
table sources that already contain some level of aggregation. If you do not specify any
override, then the default rule prevails.

You can choose the EVALUATE_AGGR aggregation rule to enable queries to call
custom functions in the data source. See EVALUATE_AGGR in Oracle® Fusion
Middleware Logical SQL Reference Guide for Oracle Business Intelligence Enterprise
Edition and Defining Aggregation Rules for Multidimensional Data Sources.

Chapter 9
Creating and Managing Logical Columns

9-20



By default, data is considered sparse. However, you might have a logical table source
with dense data. A logical table source is considered to have dense data if it has a row
for every combination of its associated dimension levels. When setting up aggregate
rules for a measure column, you can specify that data is dense only if all the logical
table sources to which it is mapped are dense.

See Setting Up Dimension-Specific Aggregate Rules for Logical Columns.

For measures in which the additivity is the same in all dimensions, select one of the
aggregate functions from the Default Aggregation Rule list. The function you select is
always applied when a user or an application requests the column in a query, unless
an override aggregation expression has been specified. When you select Count
Distinct as the default aggregation rule, you can specify an override aggregation
expression for specific logical table sources. Choose this option when you have more
than one logical table source mapped to a logical column and you want to apply a
different aggregation rule to each source.

1. In the Business Model and Mapping layer, double-click a logical column.

2. In the Logical Column dialog, click the Aggregation tab.

3. In the Aggregation tab, choose one of the following options:

• Select one of the aggregate functions from the Default Aggregation Rule list.

a. Click the Add button to select logical table sources for which you want to
specify individual aggregation rules.

b. In the Browse dialog, select the logical table source you want to add, and
click OK.

c. In the Formula list for that logical table source, select the aggregation rule
you want to use.

• Select Based on dimensions if your measure has different additivity for
different dimensions, for semi-additive measures.

a. Click the Add button to select additional dimensions for which you want to
specify aggregation rules.

b. In the Browse dialog, select the dimension you want to add, and then click
OK.

c. In the Formula list for that dimension, select the aggregation rule you
want to use, or click the Expression Builder button to build the
aggregation rule using Expression Builder.

d. The Data is dense option appears when you select Based on
dimensions. Select this option only if all the logical table sources to which
this column is mapped are dense.

Selecting Data is dense indicates that all sources to which this column is
mapped have a row for every combination of dimension levels that they
represent. Selecting this option when any table source that is used by this
column does not contain dense data returns incorrect results.

4. Click OK.

Chapter 9
Creating and Managing Logical Columns

9-21



Setting Up Dimension-Specific Aggregate Rules for Logical Columns
The majority of measures have the same aggregation rule for each dimension. Some
measures can have different aggregation rules for different dimensions.

For example, bank could calculate account balances averages over a specific time,
but calculated averages on individual accounts with a simple summation for a period.
You can configure dimension‐specific aggregation rules. You can specify one
aggregation rule for a given dimension and specify other rules to apply to other
dimensions.

You need to configure dimensions in the Business Model and Mapping layer to set up
dimension‐specific aggregation. See Managing Logical Table Sources (Mappings).

After selecting rules for specified dimensions, set the aggregation rule for any
remaining dimensions by using the dimension labeled Other.

When calculating the measure, aggregation rules are applied in the order (top to
bottom) established in the dialog. If you have multiple dimensions, use Up or Down to
change the order in which the dimension-specific rules are performed.

1. In the Business Model and Mapping layer, double-click a logical column.

2. In the Logical Column dialog, click the Aggregation tab.

3. In the Aggregation tab, select Based on dimensions.

4. In the Browse dialog, select a dimension over which you want to aggregate, and
then click OK.

5. In the Aggregation tab, from the Formula list, select a rule.

6. (Optional) If you need to create more complex formulas, click the Expression
Builder button to open Expression Builder.

7. Click OK.

Specifying Dimension-Specific Aggregation Rules for Multiple Logical Columns
You can specify aggregation rules for multiple logical fact columns using the steps in
this task.

When calculating the measure, aggregation rules are applied in the order (top to
bottom) established in the dialog.

Select a minimum of two columns to enable the Set Aggregation menu item. Set
Aggregation is not enables if one or more of the columns are derived columns.

1. In the Business Model and Mapping layer, select multiple logical fact columns.

2. Right-click and select Set Aggregation.

3. In the Aggregation dialog, select All columns the same or select Clear and select
specific columns.

4. In the Aggregation tab, select Based on dimensions.

5. In the Browse dialog, select a dimension over which you want to perform
aggregation, and then click OK.

6. After setting up the rule for a dimension, specify aggregation rules for any other
dimensions in the entry labeled Other.

Chapter 9
Creating and Managing Logical Columns

9-22



7. Click the Expression Builder button to the right of the Formula column.

8. In the Expression Builder - Aggregate dialog, from the Formula list, select the
aggregation to perform over the dimension.

9. To change the order in which the dimension-specific rules are performed, click Up
or Down, and then click OK.

Defining Aggregation Rules for Multidimensional Data Sources
Learn the best practices for defining aggregation rules for logical measures sourced
from Essbase, Oracle OLAP, and other multidimensional data sources, like Microsoft
Analysis Services and SAP/BW.

When you import Essbase and some other multidimensional cubes into the Physical
layer, Oracle BI Server cannot read the aggregation rules set within the data source.
As a result of the default behavior, the measures are imported automatically with the
default aggregation rule of External Aggregation.

External Aggregation means that the Oracle BI Server:

• is not aware of the underlying aggregation rule for the specific measure.

• cannot compute the measure.

• always ships the query to the underlying multidimensional data source for
aggregation.

Because the underlying data sources are extremely efficient, pushing the aggregation
rules down to the data source ensures that the Oracle BI Server returns the results
without adding any additional overhead in processing. Oracle recommends updating
the aggregation rule for each measure in Oracle Business Intelligence, both in the
Physical layer and Business Model and Mapping layer, with the corresponding
aggregation rule defined in the data source. Updating the aggregation rule for each
measure ensures that the Oracle BI Server can do additional computations when
needed. There is no query performance impact, since the Oracle BI Server still pushes
down optimized queries wherever possible.

Note:

If the Oracle BI Server needs to do additional aggregation for a particular
query, and the aggregation rule is set to the default of External Aggregation,
the server returns the following error:

An external aggregate is found in an outer query block.

This error occurs because the Oracle BI Server cannot read the aggregation
rule in the underlying data source. To ensure that correct results are returned
for these queries, you should change the aggregation rules set in the Oracle
BI Repository to match the aggregation rules set in the underlying data
source.

You must ensure that the aggregation rule defined in Oracle Business Intelligence
matches the rule in the underlying data source. Also, you must set the appropriate
aggregation rule in both the Physical layer and Business Model and Mapping layer, as
shown in the following image.

Chapter 9
Creating and Managing Logical Columns

9-23



For custom aggregations or aggregations which do not have a corresponding function
within the Oracle BI Server, it is recommended to leave the aggregation as External
Aggregation for both the physical measure column and its corresponding logical
measure column.

Note:

For Oracle OLAP data sources, you do not explicitly set Physical layer
aggregation rules for Oracle OLAP columns. Because of this, you only need
to set the aggregation rule for Oracle OLAP columns in the Business Model
and Mapping layer.

In addition, if a query requests an aggregate that does not exist in the Oracle
OLAP data source, and the aggregation rule is set to External Aggregation,
then the Oracle BI Server returns an error. To avoid this error, make sure to
explicitly set the aggregation rule for the Oracle OLAP column in the
Business Model and Mapping layer.

If you do not explicitly set the aggregation rule for Oracle OLAP columns to
something other than External Aggregation, requests from Oracle BI
Presentation Services custom groups fail, because custom groups always
request aggregates that do not exist in the data source.

Chapter 9
Creating and Managing Logical Columns

9-24



Associating an Attribute with a Logical Level in Dimension Tables
You can associate attributes with a logical level.

You can associate measures with levels from multiple dimensions and aggregate to
the levels specified. A measure is associated to a level is called a level-based
measure. A level-based measure is computed at that grain, even when the query
context has a lower grain. For example, if yearlySales is associated to year level, it is
computed at the yearly level in the following query: Select month, yearlySales.

Dimensions appear in the Dimensions list. If this attribute is associated with a logical
level, the level appears in the Levels list.

Another way to associate a measure with a level in a dimension is to expand the
dimension tree in the Business Model and Mapping layer, and then use drag-and-drop
to drop the column on the target level. See Level-Based Measure Calculations.

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a logical column to associate a measure with a logical level in a dimension.

2. In the Logical Column dialog, click the Levels tab.

3. In the Levels tab, click the row containing the logical dimension to associate with a
logical level.

4. From the Logical Level list, select the level.

5. Click OK.

Moving or Copying Logical Columns
Dragging and dropping a logical column from one table to another moves the logical
column.

If a column with the same name already exists, the new column is renamed, for
example, mycolumn#1.

You can also choose the option Prompt when moving logical columns in the
Options dialog to cause the Sources for moved columns dialog to be displayed when
you drag and drop a logical column. This dialog gives you options about the drag and
drop behavior.

See Setting Administration Tool Options to read about the Prompt when moving
logical columns option.

After completing this procedure, the column that you move or copy is associated with
the logical source. The action list values are as follows:

• If you select Ignore, no logical source is added in the Sources folder of the
destination table.

• If you select Create new, a copy of the logical source associated with the logical
column is created in the Sources folder of the destination table.

• If you select Use existing, you must select a logical source from the Sources
folder of the destination table.

1. In the Business Model and Mapping layer, drag and drop a logical column to a
different logical table.

Chapter 9
Creating and Managing Logical Columns

9-25



2. In the Sources for moved columns dialog, select from the Action list.

Enabling Write Back On Columns
You can configure individual logical columns so that users in Oracle BI Presentation
Services can update column data and write the changes back to the data source.

To enable write back on a particular column, you must select the Writeable option for
the logical column, and enable the Read/Write permission for the corresponding
presentation column. You must also disable caching on the corresponding physical
table.

You must perform additional tasks to enable write back in Oracle BI Presentation
Services. See Configuring for Write Back in Analyses and Dashboards in System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full
information.

1. In the Administration Tool, in the Physical layer, double-click the physical table that
contains the column for which you want to enable write back.

2. On the General tab of the Physical Table dialog, ensure that Cacheable is not
selected. Deselecting this option ensures that Oracle BI Presentation Services
users can see updates immediately.

3. In the Business Model and Mapping layer, double-click the corresponding logical
column.

The image shows the Logical Column dialog.

Chapter 9
Enabling Write Back On Columns

9-26



4. In the Logical Column dialog, select Writeable, then click OK.

5. In the Presentation layer, double-click the column that corresponds to the logical
column for which you enabled write back. The Presentation Column dialog opens.

6. Click Permissions.

7. Select the Read/Write permission for the appropriate users and application roles.

The image shows the Permissions dialog with the Read/Write permission
selected..

Chapter 9
Enabling Write Back On Columns

9-27



8. Click OK in the Permissions dialog.

9. Click OK in the Presentation Column dialog.

Setting Up Display Folders in the Business Model and
Mapping Layer

You can create display folders to organize objects in the Business Model and Mapping
layer. Display folders have no effect on query processing.

After you create a display folder, the selected tables and dimensions appear in the
folder as a shortcut and in the business model tree as the object. You can hide the
objects so that you only view the shortcuts in the display folder. See the information
about the Repository tab of the Options dialog in Setting Administration Tool Options
about hiding these objects.

Note:

Deleting a table in a display folder deletes only the shortcut to that object.
When you delete a column in a display folder, however, the column is
actually deleted.

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
business model and select New Object, then select Logical Display Folder.

2. In the Logical Display Folder dialog, in the Tables tab, type a name for the folder.

3. To add tables to the display folder, click Add. In the Browse dialog, select the fact
or dimension tables you want to add to the folder and click Select.

Alternatively, you can drag one or more logical tables to the display folder after
you close the dialog.

Chapter 9
Setting Up Display Folders in the Business Model and Mapping Layer

9-28



4. To add dimensions to the display folder, click the Dimensions tab and click Add. In
the Browse dialog, select the dimensions that you want to add to the folder and
click Select.

Alternatively, you can drag one or more dimensions to the display folder after you
close the dialog.

5. Click OK.

Modeling Bridge Tables
A bridge table enables you to resolve many-to-many relationships between tables.

For example, you might hold information about employees in an Employees table, and
information about the jobs they do in a Jobs table. However, an organization's
employees can have multiple jobs, and the same job can be performed by multiple
employees. This situation would result in a many-to-many relationship between the
Employees table and the Jobs table.

To resolve the many-to-many relationship, you can create a bridge table or
intermediate table called Assignments. Each row in the Assignments table is unique,
representing one employee doing one job. If an employee has several jobs, there are
several rows in the Assignments table for that employee. If a job is done by several
employees, there are several rows in the Assignments table for that job. The primary
key of the Assignments table is a composite key, made up of a column containing the
employee ID and a column containing the job ID.

By acting as a bridge table between the Job and Employee tables, the Assignments
table enables you to resolve the many-to-many relationship between Employees and
Jobs into:

• A one-to-many relationship between Employees and Assignments

• A one-to-many relationship between Assignments and Jobs

The image shows a Physical layer view of the example bridge and associated
dimension tables.

Chapter 9
Modeling Bridge Tables

9-29



You should include Weight Factor as an additional column in the bridge table, and to
calculating during ETL for efficient query processing.

The following sections explain how to model bridge tables in the Physical and
Business Model and Mapping layers:

• Creating Joins in the Physical Layer for Bridge and Associated Dimension Tables

• Modeling the Associated Dimension Tables in Separate Dimensions

• Modeling the Associated Dimension Tables in a Single Dimension

Creating Joins in the Physical Layer for Bridge and Associated
Dimension Tables

To model bridge tables in the Physical layer, create joins between the bridge table and
the associated dimension tables.

1. In the Administration Tool, in the Physical layer, select the fact, bridge, and
associated dimension tables.

2. Right-click the objects, select Physical Diagram, and then choose Selected
Object(s) Only.

3. Click New Join, select the bridge table, and then select one of the dimension
tables.

4. Click OK in the Physical Foreign Key dialog.

5. Repeat steps 2 and 3 for the other associated dimension table.

6. Ensure that one of the associated dimension tables is joined to the fact table.

Modeling the Associated Dimension Tables in a Single Dimension
In the Business Model and Mapping layer, you can choose to model the two dimension
tables associated with a bridge table in a single dimension, or in two separate
dimensions.

To model the associated dimension tables in one dimension, create a second logical
table source that maps to the bridge table and the other dimension table, and then add
columns from the other dimension table. Do not drag the bridge table and the
associated dimension table that is not joined to the fact table. For the example
described in the previous sections, you would drag all objects except for the
Assignment and Employee tables.

Providing two separate logical table sources makes queries more efficient, because it
ensures that queries against a single dimension table do not involve the bridge table.

It is a good practice to use the bridge table name as the name of the source.

1. Drag objects from the Physical layer to the Business Model and Mapping layer.

2. In the Business Model and Mapping layer, right-click the dimension table that is
joined to the fact table, and select New Object, then select Logical Table
Source.

3. In the Logical Table Source dialog, provide a name for the new bridge table
source.

4. Click the Add button in the upper right corner of the Logical Table Source dialog.

Chapter 9
Modeling Bridge Tables

9-30



5. Select the bridge table from the Name list, and then click Select.

6. Click Add, select the associated dimension table that is not joined to the fact table,
and then click Select.

7. In the Logical Table Source dialog, click OK .

8. Drag columns from the dimension table that is not joined to the fact table,
Employees in this example, from the Physical layer to the logical table source that
you just created.

You can create dimensions based on your logical tables, including the logical table
with the bridge table source.

Modeling the Associated Dimension Tables in Separate Dimensions
As an alternative to modeling the two dimension tables associated with a bridge table
in a single dimension, you can choose to model them in separate dimensions.

Create a logical join between the fact table and the dimension table that is not
physically joined to the fact table, and then modify the logical table source for that
same dimension table to add the other table mappings.

1. Drag objects from the Physical layer to the Business Model and Mapping layer.

Because you want to model the dimension tables in separate dimensions, drag
both of the dimension tables associated with the bridge table. You do not need to
drag and drop the bridge table object.

2. In the Business Model and Mapping layer, select the fact table and the two
dimension tables that are associated with the bridge table.

3. Right-click the objects and select Business Model Diagram, and then choose
Selected Tables Only.

4. With the Business Model Diagram displayed, click New Join on the toolbar.

5. Select the fact table, and then select the dimension table not currently joined to the
fact table.

6. Click OK in the Logical Join dialog.

7. Double-click the logical table source for the logical table for which you created the
logical join.

8. In the Logical Table Source dialog, click the Add.

9. Select the bridge table from the Name list, and click Select.

10. Click the Add button again and select the other associated dimension table and
then click Select.

11. In the Logical Table Source dialog, click OK.

You can create dimensions based on your logical tables, including both logical tables
associated with the bridge table.

Chapter 9
Modeling Bridge Tables

9-31



Modeling Binary Large Object (BLOB) Data and Character
Large Object (CLOB) Data

Learn how to model binary large object (BLOB) data and character large object
(CLOB) data in the Oracle BI repository.

CLOB data is a large plain text document in any character set. The supported BLOB
image types are: GIF, PNG, TIFF, JPEG, and BMP. BLOB formats not supported are:
PDF, audio, or video.

The default data type for BLOB columns after the import is LongVarBinary, while for
CLOB columns it is LongVarChar. The column for the BLOB or CLOB cannot exceed
the t Oracle BI Server MaxFieldSize limit of 32 KB. The 32 KB limit is also a limitation of
Microsoft Internet Explorer.

When configuring the physical joins create a physical join between the tables using the
primary key when the primary key is used as a foreign key in the other table.

1. Import the physical table containing the BLOB or CLOB data from the data source
using the Import Metadata Wizard.

2. After import, open the Physical Column dialog for the BLOB or CLOB column, and
change the Length field.

3. Configure physical joins.

4. Drag the BLOB or CLOB column to the Business Model and Mapping layer to
generate a logical column.

5. Configure a physical lookup for the logical column to ensure that the Oracle BI
Server does not generate a group by or order by on the logical column.

6. In the Logical Column dialog on the General tab, configure the Descriptor ID
column to ensure that Presentation Services uses the correct column when
generating filters.

7. Configure the Sort order column, configure the sort order column to ensure that
the Oracle BI Server orders column as expected.

8. Save the changes.

Chapter 9
Modeling Binary Large Object (BLOB) Data and Character Large Object (CLOB) Data

9-32



10
Working with Logical Dimensions

This chapter explains how to work with logical dimension objects in the Business
Model and Mapping layer of the Oracle BI repository.
This chapter contains the following topics:

• About Working with Logical Dimensions

• Creating and Managing Dimensions with Level-Based Hierarchies

• Creating and Managing Dimensions with Parent-Child Hierarchies

• Modeling Time Series Data

About Working with Logical Dimensions
In the Business Model and Mapping layer, a dimension object represents a
hierarchical organization of logical columns (attributes).

You can associate one or more logical dimension tables with one dimension object.

Common dimensions include time periods, products, markets, customers, suppliers,
promotion conditions, raw materials, manufacturing plants, transportation methods,
media types, and time of day. Dimensions exist in the Business Model and Mapping
(logical) layer and in the Presentation layer.

In each dimension, you organize logical columns into the structure of the hierarchy.
The structure represents the organization rules and reporting needs required by your
business and provides the metadata the Oracle BI Server uses to drill into and across
dimensions to get detailed views of the data.

There are two types of logical dimensions:

• Dimensions with level-based hierarchies (structure hierarchies)

In level-based hierarchies, members are of several types, and members of the
same type occur only at a single level.

• Dimensions with parent-child hierarchies (value hierarchies)

In parent-child hierarchies, members all have the same type.

Oracle Business Intelligence also supports a special type of level-based dimension,
called a time dimension, that provides special functionality for modeling time series
data.

Because dimensions for multidimensional data sources are defined in the source, you
do not create dimension level keys. A dimension is specific to a particular
multidimensional data source. You cannot create and manipulate a dimension
individually. Each cube in the data source should have at least one dimension and one
measure in the Business Model and Mapping layer.

You can expose logical dimensions to Oracle BI Answers users by creating
presentation hierarchy objects that are based on particular logical dimensions.

10-1



Creating hierarchies in the Presentation layer enables users to create hierarchy-based
queries, see Working with Presentation Hierarchies and Levels.

You can also expose dimension hierarchies by adding one or more columns from each
hierarchy level to a subject area in the Presentation layer. Oracle BI Answers supports
drill-down on these hierarchical columns.

Creating and Managing Dimensions with Level-Based
Hierarchies

Each business model can have one or more dimensions, each dimension can have
one or more logical levels, and each logical level has one or more attributes (columns)
associated with it.

The following sections explain how to create dimensions:

• About Level-Based Hierarchies

• Manually Creating Dimensions, Levels, and Keys with Level-Based Hierarchies

• Rules for Automatically Creating Dimensions and Level-Based Hierarchies

• Automatically Creating Dimensions with Level-Based Hierarchies

• Populating Logical Level Counts Automatically

About Level-Based Hierarchies
A dimension contains two or more logical levels. When creating logical levels, you
should create a Grand Total level and then create child levels, working down to the
lowest level.

The following are the parts of a dimension:

• Grand Total level

The Grand Total level represents the sum of all totals for a dimension. Each
dimension can have just one Grand Total level. The Grand Total level does not
contain dimensional attributes and does not have a level key. You can associate
measures with a Grand Total level. The aggregation level for those measures is
the grand total for the dimension. The Grand Total level can exists without any
columns.

• Level

Levels must have at least one column. You do not need to explicitly associate all
of the columns from a table with logical levels. Any column that you do not
associate with a logical level is automatically associated with the lowest level in
the dimension that corresponds to that dimension table. You must associate all
logical columns in the same dimension table with the same dimension.

You can have an unlimited number of levels in a dimension. When using extremely
complex SQL queries, a few levels in a dimension can impact query performance.

• Hierarchy

Each dimension contains one or more hierarchies. All hierarchies must have a
common leaf level. For example, a time dimension might contain a fiscal hierarchy
and a calendar hierarchy, with a common leaf level of Day. In this example, Day

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-2



has two named parent levels, Fiscal Year and Calendar Year that are both
children of the All root level.

In the Business Model and Mapping layer, logical hierarchies are not defined as
independent metadata objects, unlike hierarchies in the Presentation layer. Logical
hierarchies exist implicitly through the relationships between levels.

You can define intermediate levels in your hierarchies to avoid having very large
numbers of members at one level. For example, if you are creating a Product
dimension for an automotive company that tracks data on 500 different car
models, you might want to create some finer-grained hierarchical levels such as
Minivans, Subcompacts, and Midsize Sedans. You could improve query
performance and make reports and diagrams easier to read and navigate.

• Level keys

Each logical level, except the Grand Total level, must have one or more attributes
that compose a level key. The level key defines the unique elements in each
logical level. You must associate the dimension table logical key with the lowest
level of a dimension.

A logical level can have multiple level keys. When a logical level has multiple level
keys, specify a key as the primary key for the level. All dimension sources that
have aggregate content at a specified level need to contain the column that is the
primary key of that level. Each logical level should have one level key that is
displayed when an Oracle BI Server user selects the object to drill down. You can
use any level key to provide user access to the level.

You must create an unique level key. Month is not an unique level key. To create
an unique level key with month include the year attribute as part of the key.

If you do not ensure that your level key is unique by including higher-level
attributes, then queries might return unexpected results. For example, when the
Oracle BI Server needs to combine result sets from multiple physical queries,
some expected rows might be dropped because they are not considered unique
according to the level key definition.

Create meaningful level keys using common business keys such as
Month_name='2010 July', rather than generated surrogate keys such as
time_key='1023793'. The generated surrogate keys are physical artifacts that only
apply to a single instance of a source table. A business key can map to any
physical instance for that logical column, for example, month_name might map to
a detailed table, an aggregate table from an aggregate star, or a column in a
federated spreadsheet. The Physical layer uses the surrogate keys in the joins.
Using a business key does not impose a performance or flexibility penalty in the
business model.

• Time dimensions and chronological keys

You can identify a dimension as a time dimension. At least one level of a time
dimension must have a chronological key. Use the following guidelines when
setting up and using time dimensions:

– At least one level of a time dimension must have a chronological key, see 
Selecting and Sorting Chronological Keys in a Time Dimension.

– All time series measures using the AGO, TODATE, and PERIODROLLING functions
must be on time levels. AGO, TODATE, and PERIODROLLING aggregates are created
as derived logical columns.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-3



– AGO, TODATE, and PERIODROLLING functionality is not supported either on
fragmented dimensional logical table sources, or on fact sources fragmented
on the same time dimension. Fact sources may be fragmented on other
dimensions.

See About Time Series Functions.

• Unbalanced or ragged hierarchy
An unbalanced or ragged hierarchy is a hierarchy where the leaves (members with
no children) might not have the same depth. For example, a site can choose to
have data for the current month at the day level, previous months data at the
month level, and the previous 5 years data at the quarter level.

User applications can use the ISLEAF function to determine whether to allow
moving down from any particular member.

A missing member is implemented in the data source with a null value for the
member value. All computations treat the null value as a unique child within its
parent. Level-based measures and aggregate-by calculations group all missing
nodes together.

Unbalanced hierarchies are not necessarily the same as parent-child hierarchies.
Parent-child hierarchies are unbalanced by nature. Unbalanced level-based
hierarchies are possible.

• Skip-level hierarchy
A skip-level hierarchy is a hierarchy where there are members that do not have a
value for a particular ancestor level. For example, in a Country-State-City-District
hierarchy, the city Washington, D.C. does not belong to a State. In this case, you
can drill down from the Country level (USA) to the City level (Washington, D.C.)
and below.

In a query, skipped levels are not displayed, and do not affect computations. When
sorted hierarchically, members appear under their nearest ancestors.

A missing member at a particular level is implemented in the data source with a
null value for the member value. All computations treat the null value as a unique
child within its parent. Level-based measures and aggregate-by calculations group
all skip-level nodes together.

The image shows a hierarchy with both unbalanced and skip-level characteristics. For
example, A-Brand 4, B-LOB 3, and Type 5 are unbalanced branches, while skips are
present between A-Brand 2 and Type 3, B-LOB 2 and Product 6, and others.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-4



About Using Dimension Hierarchy Levels in Level-Based Hierarchies
Learn how to use dimension hierarchical levels.

Dimension hierarchical levels can be used to perform the following actions:

• Set up aggregate navigation.

• Configure level‐based measure calculations, see Level-Based Measure
Calculations.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-5



• Determine what attributes appear when Oracle BI Presentation Services users drill
down in their data requests.

Manually Creating Dimensions, Levels, and Keys with Level-Based
Hierarchies

Learn how to create and manage hierarchy level in level-based hierarchies.

Perform the tasks described in the following sections:

• Creating Dimensions in Level-Based Hierarchies

• Creating Logical Levels in a Dimension

• Associating a Logical Column and Its Table with a Dimension Level

• Identifying the Primary Key for a Dimension Level

• Selecting and Sorting Chronological Keys in a Time Dimension

• Adding a Dimension Level to the Preferred Drill Path

• Adding Sequence Numbers to a Time Dimension's Logical Level

Creating Dimensions in Level-Based Hierarchies
After creating a dimension, each dimension can be associated with attributes
(columns) from one or more logical dimension tables and level-based measures from
logical fact tables.

After you associate logical columns with a dimension level, the tables in which these
columns exist appear in the Tables tab of the Dimension dialog. See Working with
Physical Hierarchy Objects.

Note:

It is a best practice to ensure that the physical hierarchy type set in the
Physical layer matches the dimension properties you select in the Business
Model and Mapping layer.

In addition, you must ensure that the Ragged and Skipped Levels dimension
properties are set correctly for queries to work.

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
business model, select New Object, select Logical Dimension, and then select
Dimension with Level-Based Hierarchy.

Note:

This option is only available when there is at least one dimension table
that has no dimension associated with it.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-6



2. In the Logical Dimension dialog, in the General tab, type a name for the
dimension.

The Default root level field is automatically populated after you associate logical
columns with a dimension level.

3. If the dimension is a time dimension, select Time.

4. If the dimension is an unbalanced dimension, select Ragged.

5. If the dimension is a skip-level dimension, select Skipped Levels.

6. (Optional) Type a description of the dimension.

7. Click OK.

Creating Logical Levels in a Dimension
When creating logical levels in a dimension, you also create the hierarchy by
identifying the type of level and defining child levels.

See Automatically Creating Business Model Objects for Multidimensional Data
Sources.

If you are defining the level as a Grand Total level, leave this field blank. The default
value is 1.

The number does not have to be exact, but ratios of numbers from one logical level to
another should be accurate. For relational sources, you can retrieve the row count for
the level key and use that number as the number of elements. For multidimensional
sources, you can use the number of members at that level.

The Oracle BI Server uses this number when selecting which aggregate source to use.
For example, when aggregate navigation is used, multiple fact sources exist at
different grains. The Oracle BI Server multiplies the number of elements at each level
for each qualified source as a way to estimate the total number of rows for that source.
Then, the Oracle BI Server compares the result for each source and selects the
source with the lowest number of total elements to answer the query. The source with
the lowest number of total elements is assumed to be the fastest.

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
dimension and select New Object, then select Logical Level.

2. In the Logical Level dialog, in the General tab, specify a name for the logical level.

3. For Number of elements at this level, specify the number of elements that exist
at this logical level.

4. Choose one of the following options, if appropriate:

• If the logical level is the Grand Total level, select Grand total level. There
should be only one Grand Total level for a dimension.

• If measure values at a particular level fully constitute aggregated measures at
its parent level, select Supports rollup to higher level of aggregation

5. Click Add to define child logical levels.

6. In the Browse dialog, select the child logical levels and click OK.

7. In the Child Level pane, remove a previously defined child level, select the level in
the Child Levels pane and click Remove.

8. (Optional) Type a description of the logical level.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-7



9. Click OK.

Associating a Logical Column and Its Table with a Dimension Level
After you create all logical levels within a dimension, drag and drop one or more
columns from the dimension table to each logical level, except the Grand Total level.

The first time you drag a column to a dimension it associates the logical table to the
dimension. The drag and drop action associates the logical column with that level of
the dimension. To associate the logical level with that logical column, drag a column
from one logical level to another.

You must associate the logical column or columns that comprise the logical key of a
dimension table with the lowest level of the dimension.

After you associate a logical column with a dimension level, the tables in which these
columns exist appear in the Tables tab of the Dimensions dialog.

For examples, see:

• Level-Based Measure Calculations

• Grand Total Dimensional Hierarchy

For time dimensions, ensure that all time-related logical columns in the source table
are defined in the time dimension. For example, if a time-related logical table contains
the columns Month Name and Month Code, you must ensure that both columns are
dragged to the appropriate level within the dimension. The image shows how to
associate logical columns with a logical level.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-8



1. In the Business Model and Mapping layer of the Administration Tool, double-click
a dimension to verify tables that are associated with a dimension.

2. In the Dimensions dialog, click the Tables tab.

The Tables tab list contains tables that you associated with that dimension. If you
created level-based measures, the list only includes one logical dimension table
and one or more logical fact tables.

3. Click OK or Cancel to close the Dimensions dialog.

Level-Based Measure Calculations
A level-based measure is a column whose values are always calculated to a specific
level of aggregation.

You can set up columns to measure CountryRevenue, RegionRevenue, and
CityRevenue. For example, a company might want to measure its revenue based on
the country, region, and city.

When a query containing a presentation hierarchy includes a level-based measure
column, and the query grain is higher than the level of aggregation specific to the

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-9



column, the query results return null. If the request only contains ordinary columns and
no hierarchical columns, the level-based measure is not replaced with null.

The AllProductRevenue measure is an example of a level-based measure at the
Grand Total level. Level-based measures allow a single query to return data at
multiple levels of aggregation. Level-based measures are also useful in creating share
measures, calculated by taking some measure and dividing it by a level-based
measure to calculate a percentage. For example, you can divide salesperson revenue
by regional revenue to calculate the share of the regional revenue each salesperson
generates.

For example, to set up these calculations, you need to build a dimensional hierarchy in
your repository that contains the Grandtotal, Country, Region, and City levels. This
hierarchy contains the metadata that defines a one-to-many relationship between
Country and Region and a one-to-many relationship between Region and City. For
each country, there are many regions, but each region is in only one country. Similarly,
for each region, there are many cities, but each city is in only one region.

After building a dimensional hierarchy, you need to create three logical columns one
each for CountryRevenue, RegionRevenue, and CityRevenue. The columns use the
Revenue logical column as its source. The Revenue column has a default aggregation
rule of SUM and has sources in the underlying databases.

Drag the CountryRevenue, RegionRevenue, and CityRevenue columns into the
Country, Region, and City levels, respectively. Each query that requests one of these
columns returns the revenue aggregated to its associated level.

The image shows the business model in the Business Model and Mapping layer for
this example.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-10



Grand Total Dimensional Hierarchy
Learn how to use a grand total dimensional hierarchy with revenue.

If you have a product dimensional hierarchy with TotalProducts (Grand Total level),
Brands, and Products levels, and a Revenue column defined with a default
aggregation rule of Sum, you can then create an AllProductRevenue logical column.
The AllProductRevenue column uses Revenue as its source. Drag the
AllProductRevenue column to the Grand Total level. Each query that includes the
AllProductRevenue column returns the total revenue for all products. The value is
returned regardless of any constraints on Brands or Products.

If you have constraints on columns in other tables, the grand total is limited to the
scope of the query. For example, if the scope of the query asks for data from 1999 and
2000, the grand total product revenue is for all products sold in 1999 and 2000.

If you have three products, A, B, and C with total revenues of 100, 200, and 300
respectively, then the grand total product revenue is 600, the sum of each product's
revenue. If you have set up a repository as described in this example, the following
query produces the results listed:

SELECT product, productrevenue, allproductrevenue
FROM sales_subject_area
WHERE product IN 'A' or 'B'            

The results are as follows:

PRODUCT;;PRODUCTREVENUE;;ALLPRODUCTREVENUE
A;;;;;;;;100;;;;;;;;;;;;;600
B;;;;;;;;200;;;;;;;;;;;;;600            

The AllProductRevenue column always returns a value of 600, regardless of the
products on which the query constrains.

Identifying the Primary Key for a Dimension Level
Use the Keys tab in the Logical Level dialog to identify the primary key for a level.

1. In the Business Model and Mapping layer of the Administration Tool, expand a
dimension and then expand the highest level (Grand Total level) of the dimension.

2. Double-click a logical level below the Grand Total level.

3. In the Logical Level dialog, click the Keys tab.

4. In the Keys tab, from the Primary key list, select a level key.

If only one level key exists, it is the primary key by default.

5. To add a column to the list, perform the following steps:

a. In the Logical Level dialog, click New.

b. In the Logical Level Key dialog, type a name for the key.

c. In the Logical Level Key dialog, select a column or click Add.

d. If you click Add, in the Browse dialog, select the column, and then click OK.

The column you selected appears in the Columns list of the Logical Level Key
dialog and is automatically selected.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-11



Note:

You cannot use a derived logical column that is the result of a LOOKUP
function as part of a primary logical level key. This limitation exists
because the LOOKUP operation is applied after aggregates are computed,
but level key columns must be available before the aggregates are
computed because they define the granularity at which the aggregates
are calculated.

You can use a derived logical column that is the result of a LOOKUP
function as a secondary logical level key.

6. If the level is in a time dimension, you can select chronological keys and sort the
keys by name.

7. (Optional) Type a description for the key and then click OK.

8. Repeat Step 2 through Step 7 to add primary keys to other logical levels.

9. In the Logical Level dialog, click OK.

Selecting and Sorting Chronological Keys in a Time Dimension
At least one level of a time dimension must have a chronological key. Although you
can select one or more chronological keys for any level and then sort keys in the level,
only the first chronological key is used.

Pay attention when the column order in a chronological key has many columns. You
set the column order using a SQL ORDER BY clause on the columns reflecting the real-
world chronological order in the Chronological Key dialog of the Oracle BI
Administration Tool. Since the range for quarters is 1 to 4 with 4 quarters in a year,
using an ORDER BY clause with the Quarter before the Year (Quarter, Year) is incorrect.
The incorrect order shows all first quarters across all years, before displaying any
second quarters, and so on. To correct the results, use (Year, Quarter) in the ORDER BY
clause.

To recognize a dimension as a time dimension, you must select Time on the General
tab of the Dimension dialog.

1. In the Business Model and Mapping layer of the Administration Tool, expand a
time dimension and then expand the highest level (Grand Total level) of the
dimension.

2. Double-click a logical level below the Grand Total level.

3. In the Logical Level dialog, click the Keys tab.

4. To select a chronological key, in the Keys tab, select the Chronological Key
option.

5. To sort chronological keys, in the Keys tab, select a chronological key and then
click Edit.

6. In the Chronological Key dialog, select a chronological key column, click Up or
Down to reorder the column, and then click OK.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-12



Adding a Dimension Level to the Preferred Drill Path
You can use the Preferred Drill Path tab to identify the drill path to use when Oracle BI
Presentation Services users drill down in their data requests.

You should use this only to specify a drill path that is outside the normal drill path
defined by the dimensional level hierarchy. It is most commonly used to drill from one
dimension to another. You can delete a logical level from a drill path or reorder a
logical level in the drill path.

1. To add a dimension level to the preferred drill path, click Add to open the Browse
dialog, then select the logical levels to include in the drill path. You can select
logical levels from the current dimension, or from other dimensions.

2. Click OK to return to the Level dialog.

Adding Sequence Numbers to a Time Dimension's Logical Level
Adding absolute or relative sequence numbers to time dimensions optimizes time
series functions and in some cases improves query time.

By default Oracle BI Server uses a complex RANK Physical SQL expression to
generate sequence numbers for time dimensions. Adding an absolute or relative
sequence number to the time dimension's logical level provides direct column
references in the Time dimension table that contain the precomputed results of the
rank expressions. This mapping, while optional, generates a simpler query that is
easier for Oracle BI Server to execute against the data source.

Sequence numbers are enumerations of time dimensional members at a certain level.
Use an enumeration without gaps (dense). The enumeration must correspond to a real
time order, for example, you can enumerate the months in a year from 1 to 12.

The sequence number type options are:

• Absolute - Choose this option to configure an absolute sequence number when
the column enumerates the members of the time dimension without any reference,
for example, calendar year.

• Relative - Chose this option to configure relative sequence numbers when you
have a column that enumerates members of the time dimension relative to some
parent level, for example, months in year from 1 to 12.

1. In the Business Model and Mapping layer of the Administration Tool, locate a time
dimension and then double click a corresponding logical level.

2. In the Logical Level dialog, click the Sequence Numbers tab, specify the type of
sequence numbers to add to the logical level.

3. Click OK.

Rules for Automatically Created Dimensions with Level-Based
Hierarchies

The Create Dimensions option is only available if the selected logical table is a
dimension table as defined by 1:N logical joins, and a dimension has not been
associated with the table.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-13



The following rules are applied:

• An automatically created dimension uses the same name as the logical table,
adding Dim as a suffix. For example, if a table is named Periods, the dimension is
named Periods Dim.

• A Grand Total level is automatically named logical_table_name Total. For
example, the Grand Total level of the Periods Dim table is Periods Total.

• When there are multiple tables in a source, the join relationships between tables in
the source determine the physical table containing the lowest-level attributes. The
lowest level in the hierarchy is named logical_table_name Detail. For example, the
lowest level of the periods table is Periods Detail.

• The logical key of the dimension table is mapped to the lowest level of the
hierarchy and specified as the level key. This logical column should map to the key
column of the lowest level table in the dimension source.

– If there are two or more physical tables in a source, the columns that map to
the keys of those tables become additional logical levels. These additional
level names use the logical column names of these key columns.

– The order of joins determines the hierarchical arrangement of the logical
levels. The level keys of these new logical levels are set to the logical columns
that map to the keys of the tables in the source.

• If there are multiple logical table sources, the tool uses attribute mappings and
physical joins to determine the hierarchical order of the tables in the physical
sources. For example, you might have three sources (A, B, C) each containing a
single physical table and attribute mappings for 10, 15, and 3 attributes,
respectively, not counting columns that are constructed from other logical
columns. The following is a list of the results of creating a dimension for this table
automatically:

– The Administration Tool creates a dimension containing four logical levels,
counting the Grand Total and detail levels.

– The key of the table in source B, which has the greatest number of columns
mapped and contains the column mapping for the logical table key, is the level
key for the detail level.

– The parent of the detail level is the logical level named for the logical column
that maps to the key of the physical table in source A.

– Any attributes that are mapped to both A and B should be associated with
level A.

– The parent of level A should be the logical level named for the logical column
that maps to the key of the physical table in source C.

– Any columns that are mapped to both A and C should be associated with level
C.

• Table joins in a physical source might represent a pattern that results in a split
hierarchy. For example, the Product table can join to the Flavor table and a
Subtype table. This would result in two parents of the product detail level, one
flavor level and one subtype level.

• You cannot create a dimension automatically in the following situations:

– If a dimension with joins and levels has already been created, Create
Dimension does not appear on the right-click menu.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-14



– If the table is not yet joined to any other table, the option is not available
because it is considered a fact table.

• In a snowflake schema, if you use a table with only one source and create the
dimension automatically, the child tables are automatically incorporated into a
hierarchy. The child tables form intermediate levels between the Grand Total level
and detail level. If more than one child table exists for a dimension table, the
hierarchy is a split hierarchy.

Automatically Creating Dimensions with Level-Based Hierarchies
You can set up a dimension automatically from a logical dimension table if a
dimension for that table does not exist.

To create a dimension automatically, the Administration Tool examines the logical
table sources and the column mappings in those sources and uses the joins between
physical tables in the logical table sources to determine logical levels and level keys.
As a best practice, create a dimension table after all the logical table sources have
been defined for a dimension table.

1. In the Administration Tool, open a repository.

2. In the Business Model and Mapping layer, right-click a logical dimension table that
is not associated with any dimension .

3. From the right-click menu, select Create Logical Dimension, then select the
Dimension with Level-Based Hierarchy or Dimension with Parent-Child
Hierarchy.

The new dimension is displayed in the Business Model and Mapping layer.

Populating Logical Level Counts Automatically
You can use Estimate Levels to automatically populate level counts for one or more
dimension hierarchies.

Level counts are used by the query engine to determine the optimal query plan and to
improve overall system performance.

You must open the repository in online mode and ensure that the business model is
available for queries. In the Business Model and Mapping layer, you can select any of
the following logical layer elements, and then execute the Estimate Levels command:

• Business model. If you select the business model object, the Oracle BI
Administration Tool attempts to check out all objects in the business model.

• Dimension. Run a consistency check on dimensions to ensure that the dimension
is logically sound.

• A combination of business models and dimensions. You can select multiple
dimensions and multiple business models individually.

When run, the Estimate Levels command also launches a consistency check on the
level counts as described in the following list:

• Checks that a level key is valid. Columns in levels have referential integrity.

• Checks the parent-child relationship. If the parent level count is greater that the
child level count, an error is returned.

Chapter 10
Creating and Managing Dimensions with Level-Based Hierarchies

10-15



• Generates a run report that lists all the counts that were estimated and any errors
or consistency warnings.

• The queries and errors are logged to nqquery.log when using an 11g version on
the Oracle BI Server. When using Oracle BI EE 12c, the queries and errors are
logged in the obis1_query.log located in the DOMAIN_Home/servers/obis1/logs.

Set the log level at 4 or higher to write this information to the log file. See 
Diagnosing and Resolving Issues in Oracle Business Intelligence in System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

1. In the Administration Tool, open a repository in online mode.

2. Right-click one or more business models and dimension objects, and select
Estimate Levels.

3. In the Check Out Objects dialog, click Yes to check out the objects that appear in
the list.

If you click No, the action terminates because you must check out items to run
Estimate Levels.

In the Administration Tool dialog, a list of the dimension level counts and any
errors or warning messages appear.

When you check in the objects, you can check the global consistency of your
repository.

Creating and Managing Dimensions with Parent-Child
Hierarchies

A parent-child hierarchy is a hierarchy of members that all have the same type.

This contrasts with level-based hierarchies, where members of the same type occur
only at a single level of the hierarchy.

This section contains the following topics:

• About Parent-Child Hierarchies

• Creating Dimensions with Parent-Child Hierarchies

• Defining Parent-Child Relationship Tables

• Modeling Aggregates for Parent-Child Hierarchies

• Adding the Parent-Child Relationship Table to the Model

• Maintaining Parent-Child Hierarchies Based on Relational Tables

About Parent-Child Hierarchies
A common real-life parent-child hierarchy occurrence is an organizational reporting
hierarchy chart.

In an organizational reporting hierarchy chart, the following can apply:

• Each individual in the organization is an employee.

• Each employee, apart from the top-level managers, reports to a single manager.

• The reporting hierarchy has many levels.

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-16



These conditions illustrate the basic features that define a parent-child hierarchy,
namely:

• A parent-child hierarchy is based on a single logical table, for example, the
Employees table

• Each row in the table contains two identifying keys, one to identify the member
itself, the other to identify the parent of the member, for example, Emp_ID and
Mgr_ID.

The image shows an example of a multi-level parent-child hierarchy.

The following table shows how this parent-child hierarchy could be represented by the
rows and key values in an Employees table.

Emp_ID Mgr_ID

Andrew null

Barbara Andrew

Carlos Andrew

Dawn Barbara

Emre Barbara

You can expose logical dimensions with parent-child hierarchies to Oracle BI Answers
users by creating presentation hierarchies that are based on particular logical
dimensions. Creating hierarchies in the Presentation layer enables users to create
hierarchy-based queries. See Working with Presentation Hierarchies and Levels.

This section contains the following topics:

• About Levels and Distances in Parent-Child Hierarchies

• About Parent-Child Relationship Tables

About Levels and Distances in Parent-Child Hierarchies
All the dimension members of a parent-child hierarchy occur in a single logical column.

In a parent-child hierarchy, the parent of a member is in another row in the same
logical column, pointed to by the parent key. In a level-based hierarchy, the parent of a

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-17



member is in a different logical column in the same row. Navigation in a parent-child
hierarchy follows data values, while navigation in a level-based hierarchy follows the
metadata structure.

In level-based hierarchies, each level is named, and occupies a position in the
hierarchy that corresponds to a real-world attribute or category useful for analysis. In
level-based hierarchies the number of levels is fixed at design time. There is no limit to
the depth of a parent-child hierarchy, and the depth can change at run time due to new
data.

Every parent-child hierarchy has two system-generated entities, Total and Detail, that
are automatically defined when the logical dimension is created. The Detail entity
contains all the hierarchy members. These two system-generated entities are different
from the implicit, inter-member levels between ancestors and descendants in a parent-
child hierarchy. The implicit levels are referred to as parent-child hierarchical levels.

Closely associated with levels is the concept of distance in parent-child hierarchies.
The distance of one member from another is the number of parent-child hierarchical
levels from the member to an ancestor or to a descendant. For example, the distance
from a member to its parent is always 1. See About Parent-Child Hierarchies for an
example.

About Parent-Child Relationship Tables
In relational tables, the relationships between different members in a parent-child
hierarchy are implicitly defined by the identifier key values in the associated base
table.

For each Oracle BI Server parent-child hierarchy defined on a relational table, you
must also explicitly define the inter-member relationships in a separate parent-child
relationship table.

The parent-child relationship table must include four columns, as follows:

• A column that identifies the member

• A column that identifies an ancestor of the member

An ancestor is the parent of the member, or a higher-level ancestor.

• A distance column that specifies the number of parent-child hierarchical levels
from the member to the ancestor

• A leaf column that indicates if the member is a leaf member (1=Yes, 0=No)

The column names can be user defined. The data types of the columns must satisfy
the following conditions:

• The member and ancestor identifier columns have the same data type as the
associated columns in the logical table that contains the hierarchy members.

• The distance and leaf columns are INTEGER columns.

For the rows in a parent-child relationship table:

• Each member must have a row pointing at itself, with distance zero.

• Each member must have a row pointing at each of its ancestors. For a root
member, this is a termination row with null for the parent and distance values.

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-18



The example shown in the table uses text strings for readability, but you normally use
integer surrogate keys for member_key and ancestor_key, if they exist in the source
dimension table.

The table shows an example of a parent-child relationship table with rows that
represent the inter-member relationships for the employees. See the figure in About
Parent-Child Hierarchies.

Member_Key Ancestor_Key Distance Isleaf

Andrew Andrew 0 0

Barbara Barbara 0 0

Carlos Carlos 0 0

Dawn Dawn 0 0

Emre Emre 0 0

Andrew null null 0

Barbara Andrew 1 0

Carlos Andrew 1 1

Dawn Barbara 1 1

Dawn Andrew 2 1

Emre Barbara 1 1

Emre Andrew 2 1

You generate scripts to create and populate the parent-child relationship table through
a wizard that you can invoke when you define the parent-child hierarchy. Note the
following about the create and load scripts:

• You run the create script only once, to create the parent-child relationship table in
the data source.

• You must run the load script after each time the data changes in the dimension
table. Because of this, you typically call the load script in your ETL processing.
The load script reloads the entire parent-child relationship table; it is not
incremental.

If you do not choose to use the wizard, then you must create the parent-child
relationship table manually and then import it into the Physical layer before associating
it with the parent-child hierarchy. In this latter case, it is also your responsibility to
populate the table with the data required to describe the inter-member relationships in
the parent-child hierarchy.

Creating Dimensions with Parent-Child Hierarchies
The key elements that you must define for a parent-child hierarchy are the identifier
columns for the member and the parent of the member.

This basic principle applies to all parent-child hierarchies, regardless of the data
source from which the hierarchy is derived.

Parent-child hierarchies that are based on relational tables must have an
accompanying parent-child relationship table. See About Parent-Child Relationship
Tables and Defining Parent-Child Relationship Tables.

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-19



The Dimension with Parent-Child Hierarchy option is only available if there is at least
one logical dimension table in the business model that does not have an associated
dimension. The Browse window shows the logical dimension tables in the business
model, each with their primary keys and the other columns in the table.

1. In the Business Model and Mapping layer of the Administration Tool, do one of the
following:

• Right-click a business model, select New Object, select Logical Dimension,
and then select Dimension with Parent-Child Hierarchy.

• Right-click a dimension table that is not associated with any dimension and
select Create Logical Dimension, then select Dimension with Parent-Child
Hierarchy.

2. In the Logical Dimension dialog on the General tab, type a name for the
dimension.

3. Click Browse located next to the Member Key field.

4. Select a Member Key for the parent-child hierarchy, and click OK.

5. Click Browse beside the Parent Key field.

6. Select a column for the Parent Key for the parent-child hierarchy and click OK.

7. If the logical table is not from a relational table source, click OK to finish the
process of creating the dimension.

If the logical table is from a relational table source, you must continue the dimension
definition process by setting up the parent-child relationship table for the hierarchy.

Defining Parent-Child Relationship Tables
Use these steps to define a parent-child relationship table for parent-child hierarchies
based on relational tables.

When you create the parent-child relationship table, you must choose one of the
following options:

• (Recommended method) Use a wizard that generates scripts to create and
populate the parent-child relationship table.

When you select Create Parent-Child Relationship Table, the Generate Parent-
Child Relationship Table Wizard generates SQL scripts for creating and populating
the parent-child relationship table. At the end of the wizard, the Oracle BI Server
stores the scripts into directories chosen during the wizard session. The scripts,
when executed, make the parent-child relationship table available to the metadata
repository.

In the Generate Parent-Child Relationship Table wizard, you must provide a enter
name for the DDL Script to Generate the Parent-Child Table, and select the
location for storing the generate script. You must also supply a name for the
parent-child relationship table and select the catalog or schema for the parent-
child relationship table. You can preview the generated scripts.

• Select a previously-created parent-child relationship table.

The parent-child relationship table must have at least four columns that describe how
the inter-member relationships are derived in the logical table selected for the
hierarchy. See About Parent-Child Relationship Tables.

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-20



1. In the Logical Dimension dialog, click Parent-Child Settings.

2. Do one of the following to define the parent-child relationship table for the
hierarchy:

• (Recommended method) Click Create Parent-Child Relationship Table
follow the wizard prompts.

• Click Select Parent-Child Relationship Table to start the manual method of
defining the parent-child relationship table for the parent-child hierarchy.

3. When using the manual method, select the physical table that acts as the parent-
child relationship table for your parent-child hierarchy.

The table must already exist in the Physical layer.

4. Map the four columns from the physical parent-child relationship table to the fields
in the Parent-Child Table Column Details area, as follows:

a. Select the Member Key column.

b. Select the Parent Key column.

c. Select the Relationship Distance column.

d. Select the Leaf Node Identifier column.

5. Click OK, then click OK again to finish the manual process of defining the parent-
child relationship table.

6. If you used the Generate Parent-Child Relationship Table Wizard to generate
create and load scripts, run the scripts to create and load the parent-child
relationship table in your data source.

Modeling Aggregates for Parent-Child Hierarchies
Fact tables in level-based hierarchies might only contain facts for a single level of the
hierarchy.

Facts for higher-level dimension members can be calculated by aggregating the facts
from the lower-level fact table or from a higher-level summary table.

In contrast, parent-child hierarchies require data modelers to make some additional
decisions related to the following:

• How to store the base facts in the fact table

• How to aggregate the base facts to obtain the facts for higher-level members of
the parent-child hierarchy

This section describes how to store and aggregate facts for parent-child hierarchies
and contains the following topics:

• Storing Facts for Parent-Child Hierarchies

• Aggregating Parent-Child Hierarchies

Storing Facts for Parent-Child Hierarchies
There are two options for storing the base facts in the fact table for parent-child
hierarchies.

You can use the following options:

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-21



• Store facts for only the leaf members of the parent-child hierarchy.

• Store facts for members at any level of the parent-child hierarchy, including non-
leaf members.

The first option is more appropriate if the facts for the non-leaf members of the parent-
child hierarchy can be derived entirely from the facts of the leaf members. For
example, if you have a parent-child product hierarchy in which the actual product
members appear only as leaf members of the hierarchy, then it makes sense for a
revenue fact table to only record revenue facts for the leaf members of this product
hierarchy. The revenue figures for the non-leaf members of the product hierarchy such
as the product categories can be derived entirely by aggregating the facts for the leaf
product members at the bottom of the hierarchy.

The image shows example data for a situation where facts are stored only for leaf
members in a parent-child hierarchy.

The following table shows example data for the dimension table PRODUCT_DIM:

MemberKey Name ParentKey

P1 Product1 C1

P2 Product2 C1

C1 Category1 C2

C2 Category2 C3

C3 Category3 -

The following table shows example data for the fact table REVENUE_FACTS:

ProductKey YearKey Revenue

P1 2011 100,000

P1 2012 105,000

P2 2011 75,000

P2 2012 80,000

The second option in which facts are stored for members at any level of the parent-
child hierarchy is necessary when the facts for the non-leaf members are not
completely derived from facts of the leaf members. A good example is a sales person
hierarchy in which a sales person might report to a manager who is also a sales
person. Each individual sales person, including the manager, could have a different
revenue figure stored in the fact table.

The table shows example data for this situation.

Facts Stored for Both Leaf and Non-Leaf Members

The following table shows example data for the dimension table SALES_REP_DIM:

MemberKey Name ParentKey

101 Phillip 201

102 Vivian 201

201 Jacob 301

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-22



MemberKey Name ParentKey

202 Audrey 301

301 Ryan -

The following table shows example data for the fact table REVENUE_FACTS:

SalesRepKey YearKey Revenue

101 2012 1,200,000

102 2012 1,100,000

201 2012 250,000

202 2012 1,400,000

Another case in which storing facts for both leaf and non-leaf members is appropriate
is when the rules for aggregating the parent-child hierarchy are complex, or when
aggregating the hierarchy at query time is expensive and would lead to unacceptably
long query response times. In this case, the fact table would store preaggregated facts
for the non-leaf members in addition to the facts stored for the leaf members.

Aggregating Parent-Child Hierarchies
As a data modeler, you must determine how to aggregate the stored facts to calculate
the aggregated facts for higher level members of the parent-child hierarchy.

In addition to choosing the correct aggregation function for the measure, you must
decide if you need to roll up the fact values recorded for lower-level members to
calculate the values for higher-level members. In some cases, rolling up the facts of
lower-level members of the parent-child hierarchy makes sense. In other cases such
as with a pre-aggregated fact table or a measure that is intended to show each
member's individual contribution, rolling up the facts from lower-level members of the
parent-child hierarchy is incorrect.

Rolling up Facts from Lower-Level Members of a Parent-Child Hierarchy

If a fact table only stores facts for the leaf members of a parent-child hierarchy or if the
fact table only records each member's individual contribution, then most likely the
values stored in the fact table must be rolled up to obtain the correct aggregated value
for higher-level members of the parent-child hierarchy. Rolling up the facts along a
parent-child hierarchy is achieved by joining the fact table to the dimension table
through the parent-child relationship table, see Adding the Parent-Child Relationship
Table to the Model.

For a fact table that stores facts only for the leaf members such as the product
revenue fact table, this modeling technique calculates aggregate values that correctly
summarize all the facts for the leaf-level members.

For a fact table that stores the individual contribution of both leaf members and non-
leaf members, this technique computes a hierarchical aggregate that summarizes the
individual contributions of the member and all its members.

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-23



Modeling Individual Contribution Measures

To report the individual contribution of each member, in addition, to reporting the
summarized hierarchical aggregate that rolls up the individual contributions of multiple
members, you must create two separate fact logical table sources. One fact logical
table source maps the base fact table and the parent child relationship table. This is
the logical table source for the hierarchical aggregate measure. The second fact
logical table source maps only an alias of the fact table. This fact table alias should
join directly with the dimension table rather that joining indirectly through the parent-
child relationship table. This is the logical table source for the individual contribution
measure.

Modeling Pre-aggregated Measures

Some fact tables contain pre-aggregated data that is populated for all members of the
parent-child hierarchy. For example, the fact value for a root member might be
populated with the aggregation of the data for all of its descendent members. It is
important to ensure that queries do not aggregate the members from this dimension to
avoid erroneous results.

To correctly model this type of parent-child hierarchy, you must create a parent-child
relationship table to support hierarchical filter functions like IsAncestor and
IsDescendant. You can join the parent-child dimension table directly with the fact table
rather than joining through the parent-child relationship table to ensure that the pre-
aggregated member value is returned, rather than rolling up all the descendants.

Note:

Do not modify the parent-child relationship table script to only include the self
rows, because doing so would break the IsAncestor and IsDescendant
functions.

To achieve the correct aggregation for dimensions of this type, you must determine
what you want to see as a grand total when the parent-child hierarchy is aggregated.
For example, assume that your hierarchy contains a single root member, and you want
to display the pre-aggregated value for this root member. You must first create an
additional fact logical table source mapped at the Total level of the parent-child
hierarchy. Next, in the logical table source, create a WHERE clause filter that selects only
the root member.

With this model in place, for queries that are at the Total level of the parent-child
hierarchy, the Oracle BI Server selects the aggregate logical table source and applies
the root member WHERE clause filter. For queries that are at the Detail level, the Oracle
BI Server selects the detailed logical table source and returns the pre-aggregated
member values. In either case, it does not matter how the aggregation rule is set,
because there is a pre-aggregated source at each level.

Use this approach only if the queries are at the Total or Detail level of the parent-child
dimension. For queries that group by some non-unique attribute of the parent-child
dimension, the aggregation might not be correct. For example, if an Employee
dimension has a Location attribute, and a query groups by Employee.Location, then
double counting is likely because an employee often reports to other employees at the
same location. Because of this, when fact tables contain pre-aggregated member

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-24



values, you should avoid grouping by non-unique attributes of the parent-child
dimension. If grouping by those attributes is unavoidable, then you should model them
as separate dimensions.

Adding the Parent-Child Relationship Table to the Model
For measures in fact tables that are aggregated by rolling up the facts from lower-level
members, you must edit Physical layer joins to include the parent-child relationship
table.

You need to add the parent-child relationship table to the appropriate logical table
source.

For fact tables containing pre-aggregated data for a parent-child hierarchy or for
individual contribution measures, you should join the parent-child dimension table
directly with the fact table rather than joining through the parent-child relationship
table.

Joining the parent-child dimension table directly with the fact table ensures that the
pre-aggregated value or individual contribution value is returned, rather than rolling up
all the descendants. When pre-aggregated data is populated for all members, do not
add the parent-child relationship table to the logical table source to avoid over
counting.

1. In the Administration Tool, right-click a physical table, select Physical Diagram ,
and then select Selected Object(s) Only.

2. Delete the direct joins from the dimension table to each of the fact tables.

3. Create a join from the parent-child relationship table to the dimension table using
the ancestor key.

4. Create joins from the fact tables to the parent-child relationship table using the
member key.

5. In the Business Model and Mapping layer, double-click the logical table source for
the logical fact table that is used in your parent-child hierarchy.

6. In the General tab on the Logical Table Source dialog, click the Add button.

7. Click Browse to locate the parent-child relationship table in the Physical layer and
click Select.

8. Click OK in the Logical Table Source dialog.

Maintaining Parent-Child Hierarchies Based on Relational Tables
For parent-child hierarchies based on relational tables, you must ensure that the data
in the parent-child relationship table accurately reflects the inter-member relationships
in the dimension.

If you wrote scripts to create and populate the parent-child relationship table or used
the Generate Parent-Child Relationship Table Wizard to create the scripts, you must
run these scripts, adapting them to guarantee the integrity of the parent-child
relationships in the hierarchy. You should add the Populate script to your extract-
transform-load (ETL) process so that the script runs after the dimension table is
updated.

Chapter 10
Creating and Managing Dimensions with Parent-Child Hierarchies

10-25



Modeling Time Series Data
Time series functions provide the ability to compare business performance with
previous time periods, allowing you to analyze data that spans multiple time periods.

For example, time series functions enable comparisons between current sales and
sales a year ago, a month ago, and so on.

Because SQL does not provide a direct way to make time comparisons, you must
model time series data in the Oracle BI repository. First, set up time dimensions based
on the period table in your data warehouse. Then, you can define measures that take
advantage of this time dimension to use the AGO, TODATE, and PERIODROLLING functions.
At query time, the Oracle BI Server then generates highly optimized SQL that pushes
the time offset processing down to the database whenever possible, resulting in the
best performance and functionality.

This section contains the following topics:

• About Time Series Functions

• Creating Logical Time Dimensions

• Creating AGO, TODATE, and PERIODROLLING Measures

About Time Series Functions
Time series functions operate on time-oriented dimensions.

To use these functions on a particular dimension, you must designate the dimension
as a Time dimension and set one or more keys at one or more levels as chronological
keys. These keys identify the chronological order of the members within a dimension
level.

Time series functions include TODATE, and PERIODROLLING. These functions let you use
Expression Builder to call a logical function to perform time series calculations instead
of aliasing physical tables and modeling logically. The time series functions calculate
AGO, TODATE, and PERIODROLLING functions based on the calendar tables in your data
warehouse, not on standard SQL date manipulation functions.

The image shows a sample report that includes several measures derived using time
series functions.

Several different grains may be used in the time query, such as:

• Query grain

The lowest time grain of the request.

Chapter 10
Modeling Time Series Data

10-26



• Time Series grain

The time series grain indicates the aggregation or offset is requested, for the AGO
and TODATE functions. In the report example shown in the image, the time series
grain is Quarter. Time series queries are valid only if the time series grain is at the
query grain or higher. The PERIODROLLING function does not have a time series
grain; instead, you specify a start and end period in the function.

• Storage grain

You can generate the report, shown in the example, from daily sales or monthly
sales. The grain of the source is called the storage grain. A chronological key must
be defined at this level for the query to work, but performance is generally much
better if a chronological key is also defined at the query grain.

Queries against time series data must exactly match to access the query cache.

The following sections describe the time series conversion functions:

• About the AGO Function

• About the TODATE Function

• About the PERIODROLLING Function

About the AGO Function
The AGO function offsets the time dimension to display data from a past period.

This function is useful for comparisons such as Dollars compared to Dollars a Quarter
Ago.

Note:

The value of Dollars Qago for month 2008/08 equals the value of Dollars for
month 2008/05.

The image shows example values for the Dollars and Dollars Qago measures.

In the example shown above, the Dollars Qago measure is derived from the Dollars
measure.

In Expression Builder, the AGO function has the following template:

Ago(<<Measure>>, <<Level>>, <<Number of Periods>>)

<<Measure>> represents the logical measure column from which you want to derive. In
this example, you would select the measure "Dollars" from your existing logical fact
tables.

Chapter 10
Modeling Time Series Data

10-27



<<Level>> is the optional time series grain you want to use. In this example, you would
select "Quarter" from your time dimension.

<<Number of Periods>> is the size of the offset, measured in the grain you provided in
the <<Level>> argument. For example, if the <<Level>> is Quarter and the <<Number of
Periods>> is 2, the function displays dollars from two quarters ago.

Using this function template, you can create an expression for a One Quarter Ago
measure, as follows:

Ago("Sales"."Base Measures"."Dollars" , "Sales"."Time MonthDim"."Quarter" , 1)

The <<Level>> parameter is optional. If you do not want to specify a time series grain in
the AGO function, the function uses the query grain as the time series grain.

For example, you could define Dollars_Ago as Ago(Dollars, 1). Then, you could
perform the following logical query:

SELECT Month, Dollars, Dollars_Ago

The result is the same as if you defined Dollars_Ago as Ago(Dollars, Month, 1), or you
could perform the following logical query:

SELECT Quarter, Dollars, Dollars_Ago

The result is the same as if you defined Dollars_Ago as Ago(Dollars, Quarter, 1).

See AGO in the Logical SQL Reference Guide for Oracle Business Intelligence
Enterprise Edition.

About the TODATE Function
The TODATE function accumulates the measure from the beginning of the time series
grain period to the current displayed query grain period.

For example, the image shows a report with the measure Dollars QTD, the Quarter To
Date version of the Dollars measure.

In the example, Dollars QTD for Month 2008/05 is the sum of Dollars for 2008/04 and
2008/05. Dollars QTD is the sum of the values for all the query grain periods (month)
for the current time series grain period (quarter). The accumulation starts over for the
next quarter.

In the example, the Dollars QTD measure is derived from the Dollars measure.

In Expression Builder, the TODATE function uses the following format:

ToDate(<<Measure>>, <<Level>>)

<<Measure>> represents the logical measure column from which you want to derive.
In this example, you select the measure Dollars from your existing logical fact tables.

Chapter 10
Modeling Time Series Data

10-28



<<Level>> is the time series grain you want to use. In this example, you select Quarter
from your time dimension.

Using this function format, you can create the following expression for the measure:

ToDate("Sales"."Base Measures"."Dollars" , "Sales"."Time MonthDim"."Quarter" )

The query grain is specified in the query itself at run time. For example, this measure
can display Quarter To Date at the Day grain, and accumulates up to the end of the
Quarter.

See TODATE in the Logical SQL Reference Guide for Oracle Business Intelligence
Enterprise Edition.

About the PERIODROLLING Function
The PERIODROLLING function lets you perform an aggregation across a specified set
of query grain periods, rather than within a fixed time series grain.

The most common use is to create rolling averages such as a 13-week Rolling
Average.

The PERIODROLLING function does not have a time series grain, the length of the rolling
sequence is determined by the query grain. For example, the Dollars 3-Period Rolling
Average calculates the mean of values from the last 3 months if the query grain is
Month, but calculates the mean of the last 3 years if the query grain is Year.

The image shows a report with these two measures.

In the example above , the Dollars 3-Period Rolling Sum and Dollars 3-Period Rolling
Avg measures are derived from the Dollars measure.

In Expression Builder, the PERIODROLLING function has the following format:

PeriodRolling(<<Measure>>, <<Starting Period Offset>>, <<Ending Period Offset>>)

<<Measure>> represents the logical measure column from which you want to derive. To
create the measure Dollars 3-Period Rolling Sum, you select the measure, Dollars
from your existing logical fact tables.

<<Starting Period Offset>> and <<Ending Period Offset>> identify the first period and
last period used in the rolling aggregation. The integer is the relative number of
periods from the displayed period. In this example, the query grain is month, and the
3-month rolling sum starts 2 periods in the past and includes the current period, that is,
for month 2008/07, the rolling sum includes 2008/05, 2008/06 and 2008/07. To create
the measure, Dollars 3-Period Rolling Sum, the integers to indicate these offsets are
-2 and 0.

Using this function format, you can create the following expression for the measure:

PeriodRolling("Sales"."Base Measures"."Dollars" , -2, 0)

Chapter 10
Modeling Time Series Data

10-29



The example also shows a 3-month rolling average. To compute this measure, you
can divide the rolling sum that you previously created by 3 to get a 3-period rolling
average. The assumption to divide the rolling sum by 3 results from the <<Starting
Period Offset>> and <<Ending Period Offset>> fields for the rolling sum that are -2 and
0.

The expression for the 3-month rolling average is:

PeriodRolling("Sales"."Base Measures"."Dollars" , -2, 0) /3

Do not use the AVG function to create a rolling average. The AVG function computes the
average of the database rows accessed at the storage grain. To perform the rolling
average, you need an average where the denominator is the number of rolling periods
at the query grain.

The PERIODROLLING function includes a fourth optional hierarchy argument that lets you
specify the name of a hierarchy in a time dimension such as yr, mon, day, that you
want to use to compute the time window. This option is useful when there are multiple
hierarchies in a time dimension, or when you want to distinguish between multiple time
dimensions. See PERIODROLLING in the Logical SQL Reference Guide for Oracle
Business Intelligence Enterprise Edition.

Creating Logical Time Dimensions
Creating time dimensions requires selecting a Time option and designating a
chronological key for every level of every dimension hierarchy.

Use these guidelines when modeling time series data:

• Use a time series function when the data source contains history. A relational
database that contains history might use a star or snowflake schema with an
explicit time dimension table. A normalized, historical database might include a
time hierarchy with levels in a schema similar to a snowflake. A simple date field is
not adequate for use with a time series function.

• Oracle Business Intelligence requires the time dimension physical table or set of
normalized tables that are separate from its related physical fact table.

A common source schema pattern is a fully denormalized relational table or flat file
that has time dimension columns are in the same table as facts and other
dimensions. This common source schema pattern cannot qualify as a time
dimension, because the time dimension table is combined with the fact table.
Because you cannot change the source model, you can create an Opaque View of
the physical table containing the time columns to act as the distinct physical time
dimension table. You must join the Opaque View time dimension to the physical
table that contains the facts.

• In the Physical layer, the time dimension table or lowest-level table in the
normalized/snowflake must join directly to the fact table without an intervening
tables. Create the join as a foreign key join.

• The tables in the physical model containing the time dimension cannot join to other
data sources, except at the most detailed level.

• A member value, a row in relational sources, must be physically present for every
period at every hierarchy level. The must not contain rows that are skipped in the
sequence. You do not need a fact data for every period. Only the dimension data
must be complete.

Chapter 10
Modeling Time Series Data

10-30



• You must model each unit of distance between members such as month, half, or
year, in a separate hierarchy level.

Selecting the Time Option in the Logical Dimension Dialog
Select the Time option in the General tab of the Logical Dimension dialog to enable
time series functions on this dimension.

You can only use logical dimensions with the Time option selected as the time
dimension for the time series functions AGO, TODATE, and PERIODROLLING.

The image shows the Time option in the Logical Dimension dialog.

Setting Chronological Keys for Each Level
Designate a chronological key for every level of each dimension hierarchy.

The chronological keys must be comparable with the standard SQL ORDER BY clause.
The ORDER BY clause on the chronological key must reflect the real world chronological
order of the time dimension members represented by the key. For example, if the time
dimension members are: Jan-3-2013, Jan-4-2013, Jan-5-2013 then the following
chronological keys can be assigned to them in the same order: 1, 5, 9. However,
assigning chronological keys such as 2,1,3 would result in Jan-4-2013, Jan-3-2013,
Jan-5-2013, which is an incorrect chronological order.

Chapter 10
Modeling Time Series Data

10-31



The Oracle BI Server uses the chronological key to create mathematically correct time
series predictions, such as Jan + 2 months = Mar. You should set a chronological key
for every level, except for the Grand Total level, so that you can perform time series
operations on all levels with good performance. This enables you to use an AGO,
TODATE, or PERIODROLLING function for any level of any time dimension hierarchy, such as
fiscal month ago, calendar year ago, and day ago.

Theoretically, time series functions operate correctly if only the bottom level key in the
Logical Dimension is chronological. In practice, however, this causes performance
problems because it forces the physical query to use the lowest grain, causing joins of
orders of magnitude more rows, for example, 365 times more rows for a "year ago"
joining at the "day" grain.

As with any level key, be sure the key is unique at its level. For example, a column
containing simple month names such as "January" is not unique unless it is
concatenated to a column containing year names.

The image shows how to designate a chronological key in the Logical Level dialog.

Creating AGO, TODATE, and PERIODROLLING Measures
You can build time series measures by creating derived expressions from base
measures.

To create a derived expression, you must create a new logical column and select
Derived from existing columns using an expression, then open Expression Builder
to build the appropriate time series function.

Follow these guidelines when modeling time series functions:

• You cannot derived time series functions from measures that use the
fragmentation form of federation. This rule prevents some complex boundary
conditions and cross-source assumptions in the query generation and result
merging, such as the need to join some time dimension rows from one source to
some of the fact rows in a different source. To reduce maintenance and increase
accuracy, it is best to create a single base measure, and then derive a family of
time series measures from it. For example, start with a base measure, then define
variations for month-ago, year-ago, and month-to-date.

• You must define the unit as a level of the time dimension, so that it can take
advantage of the chronological keys built in the time dimension.

The following example shows how to build the AGO measure. See the Logical SQL
Reference Guide for Oracle Business Intelligence Enterprise Edition for detailed
syntax for the other time series functions, TODATE and PERIODROLLING.

Chapter 10
Modeling Time Series Data

10-32



Creating the AGO Measure

This example shows how to create the derived AGO measures in the Sampleapp
demonstration repository.

1. In the Business Model and Mapping layer, create a new logical column.

2. Name the column 2-04 Billed Qty (Mago).

3. In the Column Source tab, select Derived from existing columns using an
expression and click the Expression Builder.

4. In Expression Builder, from Category, select Functions.

5. From Functions, select Time Series Functions, and then from Times Series
Functions, select Ago.

6. Select Measure, then use the selection panes to select the base measure from
which to derive this column.

7. Select Level, then use the selection panes to select the unit of the ago offset.

8. Select Number of Periods, and enter the size of the offset for this measure. In
this example, type 1.

9. In the Expression Builder, click OK .

10. In the Logical Column dialog, click OK.

Chapter 10
Modeling Time Series Data

10-33



11
Managing Logical Table Sources
(Mappings)

This chapter explains how to work with logical table source objects and their mappings
in the Business Model and Mapping layer of the Oracle BI repository.
This chapter contains the following topics:

• About Logical Table Sources

• Creating Logical Table Sources

• Setting Priority Group Numbers for Logical Table Sources

• Defining Physical to Logical Table Source Mappings and Creating Calculated
Items

• Defining Content of Logical Table Sources

• About Working with Parent-Child Settings in the Logical Table Source

• Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data

• Setting Up Fragmentation Content for Aggregate Navigation

About Logical Table Sources
Logical table sources define the mappings from a single logical table to one or more
physical tables.

Use the physical to logical mapping to specify transformations that occur between the
Physical layer and the Business Model and Mapping layer, and to enable aggregate
navigation and fragmentation.

You can view logical table sources in the Business Model and Mapping layer.

Logical tables can have many physical table sources. A single logical column might
map to many physical columns from multiple physical tables, including aggregate
tables that map to the column such as if a query asks for the appropriate level of
aggregation on that column.

This section contains the following topics:

• How Fact Logical Table Sources Are Selected to Answer a Query

• How Dimension Logical Table Sources Are Selected to Answer a Query

• Consistency Among Data in Multiple Sources

How Fact Logical Table Sources Are Selected to Answer a Query
The system uses criteria to select the fact logical table source to answer a query.

The following criteria is listed from the highest precedence to the lowest precedence:

11-1



• Logical table source priority group. A higher priority logical table source is used
before a lower priority logical table source, even if the higher priority source is at a
more detailed grain. A lower number indicates a higher priority. See Setting
Priority Group Numbers for Logical Table Sources.

• The grain of the logical table source . A higher-grain logical table source is used
before a lower-grain logical table source, given that the priority group numbers are
the same.

• Number of elements at this level. If the grains are not comparable, the number
specified for the Number of elements at this level field is considered.

For example, assume you have the following two logical table sources with grains
that are not comparable: LTS1(year, city) and LTS2(month, state). If you have 10
years, 100 cities, 120 months, and 9 states, the worst case size of LTS1 is 10 x
100 = 1000, and the worst case size of LTS2 is 120 x 9 = 1080. In this scenario,
LTS1 is selected because the source with the lowest estimated number of total
elements is assumed to be the fastest.

See Creating Logical Levels in a Dimension.

• First logical table source listed. If all other criteria are equal, the first logical
table source listed is selected, as shown in the Business Model and Mapping
layer.

Every column in a query is sourced from a single logical table source based on these
expected performance factors. Queries are not load-balanced across multiple logical
table sources.

How Dimension Logical Table Sources Are Selected to Answer a
Query

After the appropriate fact logical table sources have been selected, the system selects
the best dimensional logical table sources to answer the query.

Oracle BI Server uses the following criteria to select the dimension logical table
source. The criteria are listed from the highest precedence to the lowest precedence:

• Logical table source priority group

A higher priority dimension logical table source is used before a lower priority
dimension logical table source. A lower number indicates higher priority.

• Lower join cost

The dimension logical table source with the lowest join cost is selected before
dimension logical tables sources with higher join costs, given that the priority
group numbers are the same.

• Higher level

If the priority group and join cost are the same, the higher level logical table source
is chosen, because that logical table source could require joining fewer rows.

Changing the Default Selection Criteria for Dimension Logical Table Sources
You can change the default logical table source selection criteria to favor dimension
logical table sources that are at the same level as the fact logical table source before
considering the higher level logical table source.

Chapter 11
About Logical Table Sources

11-2



In Oracle BI Administration Tool, set the DIMENSION_LTS_JOIN_RESTRICTIONS session
variable to PREFER_SAME_LEVEL.

If a suitable dimension logical table source at the same level as the fact logical table
source does not exists, then Oracle BI Server selects the highest level dimension
logical table source that is joinable to the fact. These factors are only considered after
priority group and join cost.

The PREFER_SAME_LEVEL value for the DIMENSION_LTS_JOIN_RESTRICTIONS session variable
sets the following criteria for selecting the dimension logical table source to answer the
query:

• Logical table source priority group

• Lower join cost

• Same level as the fact logical table source

• Higher level than other dimension logical table sources if no other logical table
source is at the same level as the fact logical table source

When DIMENSION_LTS_JOIN_RESTRICTIONS is set to NONE, the default value, you can join
fact logical table sources to a higher level dimension logical table source even if there
is another joinable dimension logical table source at the same level as the fact.

Consistency Among Data in Multiple Sources
It is important to ensure that the data in your sources is consistent.

For example, your year-level logical table source and your month-level logical table
source for your time dimension should cover the same time period.

Be aware that consistency issues with data in your sources might become apparent
when you issue queries that override null suppression, in other words, when you
create an analysis in Oracle BI Answers and select Include Null Values. For example,
some aggregate tables might not include the dimension records that correspond to the
null fact values such as a yearly sales aggregate table that does not include years with
no sales. All years in the year dimension must exist for the null values to be included in
the result.

Creating Logical Table Sources
When you create logical tables and columns by dragging and dropping from the
Physical layer, the logical table sources are generated automatically.

When you create logical tables and columns by dragging and dropping from the
Physical layer, the logical table sources are generated automatically. If you create the
logical tables manually, you need to also create the sources manually.

You also add new logical table sources when multiple physical tables can be the
source of information. For example, many tables could hold information for revenue.
You might have three different business units, each with its own order system, where
you get revenue information. In another example, you might periodically summarize
revenue from an orders system or a financial system and use this table for high-level
reporting.

Chapter 11
Creating Logical Table Sources

11-3



Use the Allow Unmapped Tables option for snowflake physical tables in an A > B > C
configuration, where a logical table only maps to columns in A and C, but B needs to
be included in the logical table source because it is in the join path between A and C.

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
logical table and select New Object, then select Logical Table Source.

2. In the Logical Table Source dialog, on the General tab, type a name for the logical
table source.

3. (Optional) Select Disabled to make this logical table source inactive.

4. (Optional) Select Allow Unmapped Tables to enable this logical table source to
have physical tables that are not mapped to logical columns.

5. Click the Add button. In the Browse dialog, you can view joins and select tables
for the logical table source. When there are two or more tables in a logical table
source, all of the participating tables must have joins defined between them.

6. (Optional) To view the joins, in the Browse dialog, select a table and click View.
After reviewing the joins in the Physical Table dialog, click Cancel.

7. (Optional) To add tables to the table source, select the desired tables in the Name
list and click Select.

8. Click OK.

Setting Priority Group Numbers for Logical Table Sources
You can set priority group numbers to determine which logical table source to use for
queries for which there is more than one logical table source that can satisfy the
requested set of columns.

For example, you might have user queries that are fulfilled by both a data warehouse
and an OLTP source. Often, access to an operational system is expensive, while
access to a data warehouse is cheap. In this situation, you can assign a higher priority
to the data warehouse to ensure that all queries are fulfilled by the data warehouse if
possible.

The priority group of a given logical table source does not always ensure that a
particular query is fulfilled by that source. Priority group assignments are only one of
many factors used by the Oracle BI Server to determine which logical table source to
select for a given query. However, the logical table source priority is the most
significant metric and is considered before any other cost metric.

To assign priority group numbers, rank your logical table sources in numeric order,
with 0 being the highest-priority source. You can assign the same number to multiple
sources. For example, you can have two logical table sources in priority group 0, two
logical table sources in priority group 1, and so on. Often, only two priority groups are
necessary (0 and 1).

Assigning priority groups is optional. All logical table sources are set to priority 0 by
default. It is important that you do not use priority groups as a method fine tuning the
choice of logical table sources used to answer queries. Oracle BI Server tries to
automatically use the most optimal logical table sources, but only within the same
priority group. When you set a different priority group to each logical table source, it
might cause Oracle BI Server to use suboptimal logical table sources.

In some situations, you might want to allow users to reverse the normal logical table
source priority ranking at query time. To accomplish this, you can use a combination of

Chapter 11
Setting Priority Group Numbers for Logical Table Sources

11-4



session variables and request variables with logical table source priority groups. This
feature provides a way to dynamically select a source at run time, depending on user
preference.

To enable this dynamic selection, you must first create the
REVERSIBLE_LTS_PRIORITY_SA_VEC session variable in the repository. Create this variable
as a string vector session variable that uses a row-wise session initialization block.
REVERSIBLE_LTS_PRIORITY_SA_VEC should list the subject areas for which you want to
allow users to reverse the logical table source priority ranking. You must define this
variable to enable priority ranking reversal.

After you have defined the set of subject areas for which you want to allow priority
ranking reversal, users can include the request variable REVERSE_LTS_PRIORITY with their
queries to reverse the logical table source priority ranking. You can set this request
variable to 1 to reverse the logical table source priority, or 0 to keep the normal logical
table source priority.

As an alternative to using a request variable at query time, you can define a
predetermined set of subject areas for which the logical table source priority is
permanently reversed. To do this, create the session variable
REVERSED_LTS_PRIORITY_SA_VEC in the repository. Create this variable as a string vector
session variable that uses a row-wise session initialization block.
REVERSED_LTS_PRIORITY_SA_VEC should list the subject areas for which you want the
logical table source priority set to permanently reversed.

See Creating Session Variables.

REVERSIBLE_LTS_PRIORITY_SA_VEC

You could create a table called SA_TABLE that contains two columns:
SUBJECT_AREA_NAME and REVERSIBLE. This table could contain rows mapping
subject area names to their reversible values (1 or 0), as follows:

SUBJECT_AREA_NAME REVERSIBLE

my_sa_1 1

my_sa_2 0

Then, you would create a string vector session variable called
REVERSIBLE_LTS_PRIORITY_SA_VEC with a row-wise session initialization block.
The initialization string for this initialization block is similar to the following:

SELECT 'REVERSIBLE_LTS_PRIORITY_SA_VEC', SUBJECT_AREA_NAME FROM SA_TABLE
WHERE REVERSIBLE=1

The image shows the Session Variable Initialization Block dialog for this example.

Chapter 11
Setting Priority Group Numbers for Logical Table Sources

11-5



Chapter 11
Setting Priority Group Numbers for Logical Table Sources

11-6



Defining Physical to Logical Table Source Mappings and
Creating Calculated Items

Use the Column Mapping tab of the Logical Table Source dialog to map logical
columns to physical columns.

The physical to logical mapping can also be used to specify transformations that occur
between the Physical layer and the Business Model and Mapping layer. The
transformations can be simple, such as changing an integer data type to a character,
or more complex, such as applying a formula to find a percentage of sales per unit of
population. Applying these transformations is typically referred to as creating
calculated items.

The data type of a logical column is determined by its logical table source mappings.
For example, if a logical column has one physical source with a data type of
VARCHAR(50) not-nullable, and another physical source with a VARCHAR(20) data type,
nullable, then the data type of the logical column is VARCHAR(50) nullable. This final type
is called a promoted type. Because of the rules governing logical table source
mappings, you cannot map physical sources with data types that are promotable such
as an INT with a VARCHAR.

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a logical table source.

2. In the Logical Table Source dialog, click the Column Mapping tab.

3. In the Column Mapping tab, maximize or enlarge the dialog to show all the
contents, as shown in the image.

In the Column Mapping tab, in the Logical column to physical column mapping
area, sort the rows by clicking a column heading.

Chapter 11
Defining Physical to Logical Table Source Mappings and Creating Calculated Items

11-7



4. In the Physical Table column, select the table that contains the column you want
to map.

When you select a cell in the Physical Table column, a list appears. It contains a
list of tables currently included in this logical table source.

5. In the Expression column, select the physical column corresponding to each
logical column.

When you select a cell in the Expression column, a list appears. It contains a list
of physical columns currently included in this logical table source.

6. To open Expression Builder, click the Expression Builder button.

All columns used in creating physical expressions must be in tables included in the
logical table source. You cannot create expressions involving columns in tables
outside the source.

You can use Expression Builder to create calculated items, in which formulas are
applied pre-aggregation. For example, to create the measure tons sold using the
columns units_sold and unit_weight, you apply a pre-aggregation formula
(fact.units_sold*product.unit_weight), and then apply the aggregation rule SUM in
the measure object. Another example is using CAST to transform a column of type
TIMESTAMP to type DATE for faster display in Answers and other clients, for example,
CAST("DB"."."TABLE"."COL" AS DATE).

Chapter 11
Defining Physical to Logical Table Source Mappings and Creating Calculated Items

11-8



You can also change data sources by creating expressions that perform
transformations on physical data. For example, you can use the CAST function to
transform a column with a character data type to an integer data type, to match
data coming from a second logical table source. Other examples include using
CONCATENATE or math functions to make similar transformations on physical data.

See Answers for calculations that need to occur post-aggregation.

7. To remove a column mapping, click the Delete button.

8. After you map the appropriate columns, click OK.

Unmapping a Logical Column from Its Source
You can edit the logical table sources from which the column derives its data, or
unmap it from its sources.

In the Logical Column dialog, the Column Source tab contains information about the
logical column.

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a logical column.

2. In the Logical Column dialog, click the Column Source tab.

3. In the Logical Table Source list, select a source and click Unmap.

4. Click OK.

Defining Content of Logical Table Sources
To use a source correctly, the Oracle BI Server has to know what each source
contains in terms of the business model.

Therefore, you need to define aggregation content for each logical table source of a
fact table. The aggregation content rule defines at what level of granularity the data is
stored in this fact table. For each dimension that relates to this fact logical table, define
the level of granularity, making sure that every related dimension is defined. See 
Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data.

If a logical table is sourced from a set of fragments, it is not required that every
individual fragment maps the same set of columns. However, the server returns
different answers depending on how columns are mapped.

• If all the fragments of a logical table map the same set of columns, then the set of
fragmented sources is considered to be the whole universe of logical table sources
for the logical table. This means that measure aggregations can be calculated
based on the set of fragments.

• If the set of mapped columns differ across the fragments, then the Oracle BI
Server assumes that it does not have the whole universe of fragments, and
therefore it would be incorrect to calculate aggregate rollups, since some
fragments are missing. In this case, the server returns NULL as measure
aggregates.

Chapter 11
Defining Content of Logical Table Sources

11-9



Note:

Oracle highly recommends that all the fragments map to the same set of
columns.

Use the Content tab of the Logical Table Source dialog to define any aggregate table
content definitions, fragmented table definitions for the source, and WHERE clauses, if
you want to limit the number of rows returned. See Setting Up Fragmentation Content
for Aggregate Navigation.

Verifying Joins from Dimension Tables to Fact Tables
Joins tells the Oracle BI Server where to send queries for physical aggregate fact
tables joined to and constrained by values in the physical aggregate dimension tables.

Oracle recommends that you use logical levels exclusively as the Aggregation
content, group-by option. Do not mix aggregation by logical level and column in the
same business model.

See About WHERE Clause Filters and Setting Up Fragmentation Content for
Aggregate Navigation.

You can type the formula directly into the Fragmentation content text area , or click
Expression Builder. In the Expression Builder for Fragmentation Content, you can
specify content in terms of existing logical columns. See Setting Up Fragmentation
Content for Aggregate Navigation.

Choose This source should be combined with other sources at this level if all
fragments on this level are disjointed. Consider the following examples:

• Example 1 - Suppose you have two fragments, all sales including current year,
and current year sales with the fragmentation predicate set to year = 2015. You
should not select the This source should be combined with other sources at
this level option because the two fragments overlap. Oracle BI Server can use
any single fragment based on query predicate or fragmentation predicate
compatibility.

• Example 2 - Suppose you have two fragments, sales for year 2000 and before,
according to the fragmentation predicate, and sales for year 2001 and after,
according to the fragmentation predicate. You should select the This source
should be combined with other sources at this level option because the
fragments do not overlap. The Oracle BI Server creates a union of all the logical
table sources on this level that cannot be disqualified based on query predicate or
fragmentation predicate compatibility.

See Logical Table Source Options Reference to learn which option to use in the
Logical Table Source dialog.

1. In the Business Model and Mapping layer of the Administration Tool, expand a
logical fact table, expand Sources, and double-click a logical fact source table.

2. In the Logical Table Source dialog, click the Content tab.

3. If a logical source is an aggregate table and you have defined logical dimensions,
in the Logical Table Source dialog, select Logical Level from the Aggregation
content, group-by list.

Chapter 11
Defining Content of Logical Table Sources

11-10



4. Specify a logical level for each dimension, unless you are specifying the Grand
Total level. Dimensions with no level specified are interpreted as being at the most
detailed level, in the Logical Level list, select the appropriate level for each logical
dimension table to which the logical fact table is joined.

a. After specifying the appropriate logical level, skip to step 8.

5. (Optional, not recommended) To specify aggregate content by column, from the
Aggregation content, group-by list, select Column.

6. Click the Table column, and select each logical dimension table that defines the
aggregation level of the source.

7. Click Column, and select the logical column for each dimension that defines how
the aggregations were grouped.

When there are many logical columns to choose from, select the column that
maps to the key of the source physical table. For example, if data has been
aggregated to the Region logical level, pick the logical column that maps to the
key of the Region table.

8. (Optional) Use the Fragmentation content text are to describe the range of
values included in the source when a source represents a portion of the data at a
given level of aggregation to specify fragmented table definitions for the source.

9. (Optional) Select This source should be combined with other sources at this
level if all fragments on this level are disjointed.

10. (Optional) To limit the number of rows the source uses in the resultant table,
specify WHERE clause filters in Use this "WHERE clause" filter to limit rows
returned (exclude the "WHERE"). You can enter the WHERE clause directly, or you
can click the Expression Builder button to open the Expression Builder, create the
WHERE clause, and click OK.

11. (Optional) If the values for the source are unique, select the option Select distinct
values.

Joins from Dimension Tables to Fact Tables
You must create joins between the aggregate fact tables and the aggregate dimension
tables in the Physical layer.

You can verify joins by selecting a fact logical table and opening a Business Model
Diagram (Selected Tables and Direct Joins). Only the dimension logical tables that are
directly joined to this fact logical table appear in the diagram. It does not show
dimension tables if the same physical table is used in logical fact and dimension
sources.

The image shows a Fact- Assess logical fact table in a Business Model Diagram in the
Selected Tables and Direct Joins view.

Chapter 11
Defining Content of Logical Table Sources

11-11



The table contains a list of the logical level for each dimension table that is directly
joined the Fact - Assess fact table.

Dimension Logical Level

Account Geography Postal Code Detail

Person Geography Postal Code Detail

Time Day Detail

Account Organization Account Detail

Opportunity Opty Detail

Primary Visibility
Organization

Detail

Employee Detail

Assessment Detail

Contact (W_PERSON_D) Detail

FINS Time Day

Positions Details

Logical Table Source Options Reference
Learn how to use the options from the Logical Table Source dialog.

Options Description

Aggregation content, group
by

Specifies how the content is aggregated.

Chapter 11
Defining Content of Logical Table Sources

11-12



Options Description

Copy The Copy option is only available with fact tables. Copies
aggregation content to the Windows clipboard. You can paste
the Dimension.Level info into a text editor and use it for
searching or for adding to documentation.

Copy is not available if the expression is empty.

Copy from The Copy from option is available for fact tables and dimension
tables. Copies aggregation content from another logical table
source in the same business model. You need to specify the
source from which to copy the aggregation content. Multiple
business models appear but only the logical table sources from
the current business model are selectable.

Get Levels The Get Levels option is only available for fact tables. Changes
aggregation content. If joins do not exist between fact table
sources and dimension table sources, for example, if the same
physical table is in both sources, the aggregation content
determined by the Administration Tool does not include the
aggregation content of this dimension.

Check Levels The Check Levels option is only available for fact tables.
Checks the aggregation content of logical fact table sources, not
dimension table sources. The information returned depends on
the existence of dimensions and hierarchies with logical levels
and level keys, and physical joins between tables in dimension
table sources and the tables in the fact table source. If the same
tables exist in the fact and dimension sources and there are no
physical joins between tables in the sources, Check Levels does
not include the aggregation content of this dimension.

Fragmentation content A description of the contents of a data source in business model
terms. Data is fragmented when information at the same level of
aggregation is split into multiple tables depending on the values
of the data. A common situation would be to have data
fragmented by time period. .

This source should be
combined with other
sources at this level

Select this option when data sources at the same level of
aggregation do not contain overlapping information. In this
situation, all sources must be combined to get a complete
picture of information at this level of aggregation.

Select distinct values Used if the values for the source are unique.

About WHERE Clause Filters
The WHERE clause filter is used to constrain the physical tables referenced in the
logical table source.

If there are no constraints on the aggregate source, leave the WHERE clause filter blank.

Each logical table source should contain data at a single intersection of aggregation
levels. You would not want to create a source, for example, that had sales data at both
the Brand and Manufacturer levels. If the physical tables include data at multiple
levels, add an appropriate WHERE clause constraint to filter values to a single level.

Any constraints in the WHERE clause filter are made on the physical tables in the source.

Chapter 11
Defining Content of Logical Table Sources

11-13



About Working with Parent-Child Settings in the Logical
Table Source

Learn about when a logical table is part of a dimension with a parent-child hierarchy
that is based on relational tables.

When this is the case, the logical table includes both a physical source and a source
for the parent-child relationship table required for the parent-child hierarchy. Parent-
child relationship tables explicitly define the inter-member relationships for parent-child
hierarchies.

Typically, logical table sources for parent-child relationship tables are created
automatically when you run the scripts created by the Generate Parent-Child Table
Wizard. You access this wizard from the Parent-Child Table Settings dialog, available
in the dimension object.

The Generate Parent-Child Table Wizard feature is not available from the Logical
Table Source dialog. You must go to the dimension object to create scripts to generate
the parent-child relationship table.

You can view details for the parent-child relationship table source in the Parent-Child
Settings tab of the Logical Table Source dialog. The following information appears in
the tab:

• Parent-Child Table: Shows the name of the parent-child relationship table on
which this source is based.

• Member Key: The name of the column in the parent-child relationship table that
identifies the member.

• Parent Key: The name of the column in the parent-child relationship table that
identifies an ancestor of the member.

• Relationship Distance: The name of the column in the parent-child relationship
table that specifies the number of parent-child hierarchical levels from the member
to the ancestor.

• Leaf Node Identifier: The name of the column in the parent-child relationship
table that indicates if the member is a leaf member (1=Yes, 0=No).

See Creating Dimensions with Parent-Child Hierarchies.

Setting Up Aggregate Navigation by Creating Sources for
Aggregated Fact Data

Aggregate tables store precomputed results from measures that have been
aggregated over a set of dimensional attributes.

Each aggregate table column contains data at a given set of levels. For example, a
monthly sales table might contain a precomputed sum of the revenue for each product
in each store during each month. You configure this metadata in the Content tab of the
Logical Table Source dialog.

When you create a logical table source for an aggregate fact table, you should create
corresponding logical dimension table sources at the same levels of aggregation.

Chapter 11
About Working with Parent-Child Settings in the Logical Table Source

11-14



You need to have at least one logical dimension table source for each level of
aggregation. If the sources at each level already exist, you do not need to create new
ones.

For example, you might have a monthly sales fact table containing a precomputed
sum of the revenue for each product in each store during each month. You need to
have the following three other dimension sources, one for each of the logical
dimension tables referenced in the example:

• A source for the Product logical table with one of the following content
specifications:

– By logical level: ProductDimension.ProductLevel

– By column: Product.Product_Name

• A source for the Store logical table with one of the following content specifications:

– By logical level: StoreDimension.StoreLevel

– By column: Store.Store_Name

• A source for the Time logical table with one of the following content specifications:

– By logical level: TimeDimension.MonthLevel

– By column: Time.Month

At query time, the Oracle BI Server first determines which sources have enough detail
to answer the query. Out of these sources, the Oracle BI Server chooses the most
aggregated source to answer the query, because it is assumed to be the fastest. The
most aggregated source is the one with the lowest multiplied number of elements. See 
Creating Logical Levels in a Dimension to learn how to specify the number of elements
at each level.

Setting Up Fragmentation Content for Aggregate Navigation
When a logical table source does not contain the entire set of data at a given level,
you need to specify the portion, or fragment, of the set that it does contain.

You describe the content in terms of logical columns in the Fragmentation content
box in the Content tab of the Logical Table Source dialog.

The examples in this section illustrate techniques and rules for specifying the
fragmentation content of sources.

This section contains the following topics:

• Specifying Fragmentation Content for Single Column, Value-Based Predicates

• Specifying Fragmentation Content for Single Column, Range-Based Predicates

• Specifying Fragmentation Content for Aggregate Table Fragments

Specifying Fragmentation Content for Single Column, Value-Based
Predicates

You can replace the IN predicates with either an equality predicate or multiple equality
predicates separated by the OR connective.

Fragment 1:

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-15



logicalColumn IN <valueList1>

Fragment n:

logicalColumn IN <valueListN>

Specifying Fragmentation Content for Single Column, Range-Based
Predicates

When a logical table source does not contain the entire set of data at a given level,
you need to specify the fragment of the set that it does contain.

Fragment 1:

logicalColumn >= valueof(START_VALUE) AND logicalColumn < valueof(MID_VALUE1)

Fragment 2:

logicalColumn >= valueof(MID_VALUE1) AND logicalColumn < valueof(MID_VALUE2)

Fragment n:

logicalColumn >= valueof(MID_VALUEN-1) AND logicalColumn < valueof(END_VALUE)

Pick your start point, midpoints, and endpoint carefully.

Note:

Use >= and < predicates to ensure that the fragment content descriptions do
not overlap. For each fragment, you must express the upper value as <. An
error occurs if you use <=. You cannot use the BETWEEN predicate to describe
fragment range content.

The valueof referenced here is the value of a repository variable. If you use repository
values in your expression, the following construct does not work for Fragment 2:

logicalColumn >= valueof(MID_VALUE1)+1 AND logicalColumn < valueof(MID_VALUE2)

Use another repository variable instead of valueof(MID_VALUE1)+1.

The same variables, for example, valueof(MID_VALUE1), are not required to appear in
the content of both fragments. You could set another variable, and create statements
of the following form:

Fragment 1:

logicalColumn >= valueof(START_VALUE) AND logicalColumn < valueof(MID_VALUE1)

Fragment 2:

logicalColumn >= valueof(MID_VALUE2) AND logicalColumn < valueof(MID_VALUE3)

See Using Variables in the Oracle BI Repository.

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-16



Specifying Multicolumn Content Descriptions
An arbitrary number of predicates on different columns can be included in each
content filter. Each column predicate can be value-based or range-based.

Fragment 1:

<logicalColumn1 predicate> AND <logicalColumn2 predicate > ... AND <logicalColumnM 
predicate>

Fragment n:

<logicalColumn1 predicate> AND <logicalColumn2 predicate > ... AND <logicalColumnM 
predicate>

Ideally, all fragments have predicates on the same M columns. If there is no predicate
constraint on a logical column, the Oracle BI Server assumes that the fragment
contains data for all values in that logical column. See Specifying Parallel Content
Descriptions for exceptions using the OR predicate.

Specifying Parallel Content Descriptions
Use the parallel OR to handle dates that cross logical columns such as across years,
or across months in a date range.

Use the parallel OR technique to handle the multiple hierarchical relationships across
logical columns such as from year to year month to date, and from month to year
month to date. For example, consider fragments delineated by different points in time
such as year and month. Constraining sufficiently far back in a year is enough to drive
the selection of just the historical fragment. The parallel OR technique supports this,
as shown in the next example. This example assumes that the snapshot month was
April 1, 12:00 a.m. in the year 1999.

Fragment 1 (Historical):

EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode < VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Month in Year" < VALUEOF("Snapshot Month") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Monthname" IN ('Mar', 'Feb', 'Jan')

Fragment 2 (Current):

EnterpriseModel.Period."Day" >= VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode >= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" > VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Month in Year" >= VALUEOF("Snapshot Month") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Monthname" IN ('Dec', 'Nov', 'Oct', 'Sep', 'Aug', 'Jul',
  'Jun', '', 'Apr')

If the logical model does not go down to the date level of detail, then omit the predicate
on EnterpriseModel.Period."Day" in the preceding example.

Notice the use of the OR connective to support parallel content description tracks.

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-17



Examples of Parallel Content Descriptions
These examples explain how to use labels with fragment content statements.

The Track number labels in the examples are shown to help relate the examples to the
discussion that follows. You would not include these labels in the actual fragmentation
content statement.

Fragment 1 (Historical)

Track 1  EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
Track 2  EnterpriseModel.Period.MonthCode < VALUEOF("Snapshot Year Month") OR
Track 3  EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR
Track 4  EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Month in Year" < VALUEOF("Snapshot Month") OR
Track 5  EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Monthname" IN ('Mar', 'Feb', 'Jan')

For example, consider the first track on EnterpriseModel.Period."Day." In the historical
fragment, the < predicate tells the Oracle BI Server that any queries that constrain on
Day before the Snapshot Date fall within the historical fragment. Conversely, the >=
predicate in the current fragment on Day indicates that the current fragment does not
contain data before the Snapshot Date.

The second track on MonthCode, for example, 199912, is similar to Day. It uses the <
and >= predicates, as there is a non-overlapping delineation on month because the
snapshot date is April 1. The key rule to remember is that each additional parallel track
must reference a different column set. You can use common columns, but the overall
column set must be unique. The Oracle BI Server uses the column set to select the
most appropriate track.

The third track on Year, < in the historical fragment and > in the current fragment, tells
the Oracle BI Server that optimal (single) fragment selections can be made on queries
that just constrain on year. For example, a logical query on Year IN (1997, 1998)
should only hit the historical fragment. Likewise, a query on Year = 2000 should only
hit the current fragment. However, a query that hits the year 1999 cannot be answered
by the content described in this track, and therefore hits both fragments, unless
additional information can be found in subsequent tracks.

The fourth track describes the fragment set for Year and Month in Year (month
integer). Notice the use of the multi-column content description technique, described
previously. Notice the use of < and >= predicates, as there is no ambiguity or overlap
for these two columns.

The fifth track describes fragment content in terms of Year and Month name. It uses
the value-based IN predicate technique.

As an embellishment, suppose the snapshot date fell on a specific day within a month:
therefore, multi-column content descriptions on just year and month would overlap on
the specific snapshot month. To specify this ambiguity, <= and >= predicates are used.

Fragment 1 (Historical):

EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode <= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR 
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Month in Year" <= VALUEOF("Snapshot Month") OR

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-18



EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Monthname" IN ('Apr', 'Mar', 'Feb', 'Jan')

Fragment 2 (Current):

EnterpriseModel.Period."Day" >= VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode >= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" > VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Month in Year" >= VALUEOF("Snapshot Month") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
  EnterpriseModel.Period."Monthname" IN ('Dec', 'Nov', 'Oct', 'Sep', 'Aug', 'Jul',
  'Jun', '', 'Apr')

Specifying Unbalanced Parallel Content Descriptions
In an order entry application, time-based fragmentation between historical and current
fragments is insufficient.

For example, records might still be volatile, even though they are historical records
entered into the database before the snapshot date.

Assume, in the following example, that open orders can be directly updated by the
application until the order is shipped or canceled. After the order has shipped,
however, the only change that can be made to the order is to type a separate
compensating return order transaction.

There are two parallel tracks in the following content descriptions. The first track uses
the multicolumn, parallel track techniques described in the preceding section. Notice
the parentheses nesting the parallel calendar descriptions within the Shipped-or-
Canceled order status multicolumn content description.

The second parallel track is present only in the Current fragment and specifies that all
Open records are in the Current fragment only.

Fragment 1 (Historical):

Marketing."Order Status"."Order Status" IN ('Shipped', 'Canceled') AND
  Marketing.Calendar."Calendar Date" <= VALUEOF("Snapshot Date") OR
Marketing.Calendar."Year" <= VALUEOF("Snapshot Year") OR
Marketing.Calendar."Year Month" <= VALUEOF("Snapshot Year Month")

Fragment 2 (Current):

Marketing."Order Status"."Order Status" IN ('Shipped', 'Canceled') AND
  Marketing.Calendar."Calendar Date" > VALUEOF("Snapshot Date") OR
Marketing.Calendar."Year" >= VALUEOF("Snapshot Year") OR
Marketing.Calendar."Year Month" >= VALUEOF("Snapshot Year Month") OR
Marketing."Order Status"."Order Status" = 'Open'

The overlapping Year and Month descriptions in the two fragments do not cause a
problem, as overlap is permissible when there are parallel tracks. The rule is that at
least one of the tracks has to be non-overlapping. The other tracks can have overlap.

Specifying Fragmentation Content for Aggregate Table Fragments
Information at a given level of aggregation is sometimes stored in multiple physical
tables.

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-19



Information at a given level of aggregation is sometimes stored in multiple physical
tables. When individual sources at a given level contain information for a portion or
fragment of the domain, the Oracle BI Server needs to know the content of the
sources in order to pick the appropriate source for the query.

For example, suppose you have a database that tracks the sales of soft drinks in all
stores. The detail level of data is at the store level. Aggregate information, as
described in the image, is stored at the city level for the sales of Coke and Pepsi, but
there is no aggregate information for the sales of 7‐Up or any other of the sodas.

The goal of this type of configuration is to maximize the use of the aggregate table. If a
query asks for sales figures for Coke and Pepsi, the data should be returned from the
aggregate table. If a query asks for sales figures for all soft drinks, the aggregate table
should be used for Coke and Pepsi and the detail data for the other brands.

The Oracle BI Server handles this type of partial aggregate navigation. To configure a
repository to use aggregate fragments for queries whose domain spans multiple
fragments, you need to define the entire domain for each level of aggregate data, even
if you must configure an aggregate fragment as being based on a less summarized
physical source.

This section contains the following topics:

• Specifying the Aggregate Table Content

• Defining a Physical Layer Table with a Select Statement to Complete the Domain

• Specifying the SQL Virtual Table Content

• Creating Physical Joins for the Virtual Table

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-20



Specifying the Aggregate Table Content
You configure the aggregate table navigation in the logical table source mappings.

In the soft drink example, the aggregate table contains data for Coke and Pepsi sales
at the city level. Its Aggregate content specification, in the Content tab of the Logical
Table Source window, is similar to the following:

Group by logical level:

GeographyDim. CityLevel, ProductDim.ProductLevel

Its Fragmentation content specification also in the Content tab of the Logical Table
Source dialog is similar to the following:

SoftDrinks.Products.Product IN ('Coke', 'Pepsi')

This content specification tells the Oracle BI Server that the source table has data at
the city and product level for two of the products. Additionally, because this source is a
fragment of the data at this level, you must select This source should be combined
with other sources at this level, in the Content tab of the Logical Table Source
dialog, to indicate that the source combines with other sources at the same level.

Defining a Physical Layer Table with a Select Statement to Complete the
Domain

The data for the rest of the domain (the other types of sodas) is all stored at the store
level.

To define the entire domain at the aggregate level, for example, city and product, you
need to have a source that contains the rest of the domain at this level. Because the
data at the store level is at a lower, more detailed level than at the city level, it is
possible to calculate the city and product level detail from the store and product detail
by adding up the product sales data of all of the stores in a city. You can use a query
involving the store and product level table.

One way to do this is to define a table in the Physical layer with a Select statement
that returns the store level calculations. To define the table, create a table in the
Physical layer on the physical schema object that the SELECT statement uses for the
query and selecting New Physical Table. Choose Select from the Table Type list,
and type the SQL statement in the Default Initialization String box.

The SQL statement must define a virtual table that completes the domain at the level
of the other aggregate tables. In this case, there is one existing aggregate table, and it
contains data for Coke and Pepsi by city. Therefore, the SQL statement has to return
all of the data at the city level, except for the Coke and Pepsi data.

Specifying the SQL Virtual Table Content
Create a new logical table source for the Sales column that covers the remainder of
the domain at the city and product level.

This source contains the virtual table created in the previous section. Map the Dollars
logical column to the US Dollars physical column in this virtual table.

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-21



The Aggregate content specification, in the Content tab of the Logical Table Source
dialog, for this source is:

Group by logical level:

GeographyDim.CityLevel, ProductDim.ProductLevel

This tells the Oracle BI Server this source has data at the city and product level.

The Fragmentation content specification might be:

SoftDrinks.Products.Product = '7-Up'

Additionally, because it combines with the aggregate table containing the Coke and
Pepsi data at the city and product level to complete the domain, you need to select the
option in the Content tab of the Logical Table Source dialog indicating that the source
is combined with other sources at the same level.

Creating Physical Joins for the Virtual Table
Provides an image that shows how to construct physical joins.

Construct the correct physical joins for the virtual table. Notice that CityProductSales2
joins to the Cities and Products tables in the image below.

In this example, the two sources comprise the whole domain for soda sales. A domain
can have many sources. The sources have to all follow the rule that each level must
contain sources that, when combined, comprise the whole domain of values at that
level. Setting up the entire domain for each level helps ensure that queries asking for
Coke, Pepsi, and 7‐Up do not leave out 7‐Up. It also helps ensure that queries
requesting information that has been precomputed and stored in aggregate tables can

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-22



retrieve that information from the aggregate tables, even if the query requests other
information that is not stored in the aggregate tables.

Chapter 11
Setting Up Fragmentation Content for Aggregate Navigation

11-23



12
Creating and Maintaining the Presentation
Layer

You can learn how to use the Oracle BI Administration Tool to create, edit, and
maintain objects in the Presentation layer of the Oracle BI repository.
This chapter contains the following topics:

• About the Presentation Layer

• Creating and Customizing the Presentation Layer

• Working with Subject Areas

• Working with Presentation Tables and Columns

• Working with Presentation Hierarchies and Levels

• Setting Permissions for Presentation Layer Objects

• Creating Aliases (Synonyms) for Presentation Layer Objects

• Controlling Presentation Object Visibility

About the Presentation Layer
You can provide customized, secure, role-based views of a business model to users in
the Presentation layer.

Role-based views provide object security and also provide a way to hide some of the
complexity of the business model.

In the Presentation layer, you can set an implicit fact column. The primary function of
the Presentation layer is to provide custom names, dictionary entries, organization,
and security for different groups of users.

Presentation layer views are called subject areas. In previous versions, subject areas
were called presentation catalogs. You can create a subject area that is identical to
your business model, or you can create role-based subject areas that show a single
subject or that supports a specific business role. Subject areas are not abstract views.
You should create subject areas that organize your content in a way that benefits your
users.

Subject areas in the Presentation layer appear as catalogs to client tools that use the
Oracle BI Server as an ODBC data source. Subject areas contain presentation tables,
columns, hierarchies, and levels.

Even though the Logical SQL requests from Answers and other clients query the
presentation tables and columns, the logic for entities, relationships, and joins is in the
Business Model and Mapping layer.

12-1



Creating and Customizing the Presentation Layer
After you have created the Business Model and Mapping layer, you can drag and drop
entire business models to the Presentation layer in the Administration Tool to create
subject areas.

You can create subject areas and other Presentation layer objects manually.

This section contains the following topics:

• About Creating Subject Areas

• About Removing Unneeded or Unwanted Columns

• Renaming Presentation Columns to User-Friendly Names

• Exporting Logical Keys in the Subject Area

• Setting an Implicit Fact Column in the Subject Area

• Maintaining the Presentation Layer

About Creating Subject Areas
There are several ways to create subject areas in the Presentation layer.

The recommended method is to drag and drop a business model from the Business
Model and Mapping layer to the Presentation layer, and then modify the Presentation
layer based on what you want users to see. You can move columns between
presentation tables, remove columns that do not need to be seen by the users, or
even present all of the data in a single presentation table. You can create presentation
tables to organize and categorize measures in a way that makes sense to your users.

You can also duplicate an existing subject area and its corresponding business model.
See Duplicating a Business Model and Subject Area.

Although each subject area must be populated with contents from a single business
model, you can create multiple subject areas for one business model. For very large
business models, you may want to do this to help users work with the content. Users
in Oracle BI Server can create queries that span multiple subject areas, as long as the
subject areas correspond to the same business model.

There are many ways to create multiple subject areas from a single business model.
One method is to drag a particular business model to the Presentation layer multiple
times, then edit the properties or objects of the resulting subject areas as needed.

For example, if you have a business model called ABC that contains the Geography and
Products dimensions, you can drag it to the Presentation layer twice. Two subject
areas are created, with the default names ABC and ABC#1. You can then edit the subject
areas as follows:

• Rename the ABC subject area to DEF, then delete the Geography presentation
hierarchy

• Rename the ABC#1 subject area to XYZ, then delete the Products presentation
hierarchy

Users in Oracle BI Server can run queries that span the DEF subject area containing
the Products hierarchy, and the XYZ subject area containing the Geography hierarchy.

Chapter 12
Creating and Customizing the Presentation Layer

12-2



Note:

When you query a single subject area, all the columns exposed in that
subject area are compatible with all the dimensions exposed in the same
subject area. However, when you combine columns and dimensions from
multiple subject areas, you must ensure that you do not include combinations
of columns and dimensions that are incompatible with one another.

For example, a column in one subject area might not be dimensioned by
Project. If columns from the Project dimension from another subject area are
added to the request along with columns that are not dimensioned by
Project, then the query might fail to return results, or cause the Oracle BI
Server error, "No fact table exists at the requested level of
detail: XXXX."

Automatically Creating Subject Areas Based on Logical Stars and Snowflakes
You can automatically create one subject area for each logical star or logical
snowflake in your business model.

Logical stars and logical snowflakes are both composed of a centralized fact table
connected to multiple dimension tables. This feature provides another way to create
multiple subject areas from a single business model.

To create a subject area for each fact table that is part of a logical star or snowflake,
right-click the business model and select Create Subject Areas for Logical Stars
and Snowflakes. The new subject areas are automatically created, each containing a
fact table and only the dimension tables with which it is associated. This option is
available for any business model that contains logical stars or logical snowflakes.

For example, if you choose this option for the SampleApp business model with nine
fact tables, nine corresponding subject areas are created, each with one fact table and
its associated dimension tables. Subject areas are also created for lookup tables. The
image shows exactly how the logical fact tables and dimension tables are modeled in
the Presentation layer.

Chapter 12
Creating and Customizing the Presentation Layer

12-3



About Removing Columns
One important reason to use a custom Presentation layer is to make the schema as
easy to use and understand as possible.

Customize the presentation layer prevent users from seeing columns that provide no
meaningful content.

Chapter 12
Creating and Customizing the Presentation Layer

12-4



The following columns are examples of columns that you might want to remove from
the Presentation layer:

• Key columns that have no business meaning.

• Columns that users do not need to view, for example, codes, when text
descriptions exist.

• Columns that users are not authorized to read.

Renaming Presentation Columns to User-Friendly Names
You should try to keep presentation column names and their source logical column
names synchronized to reduce maintenance.

By default, presentation columns have the same name as the corresponding logical
column in the Business Model and Mapping layer.

To synchronize presentation column names and their source logical column names,
select Use Logical Column Name in the Presentation Column dialog.

In some cases, however, you may want a different presentation column name to be
shown to users. To do this, change the name of the presentation column in the
Presentation Column dialog.

When you change the name of a presentation column, an alias is automatically
created for the old name, so compatibility to the old name remains. See Creating
Aliases (Synonyms) for Presentation Layer Objects.

Note:

You cannot rename a Presentation layer object to a name that is already in
use as an alias for an object of the same type.

Exporting Logical Keys in the Subject Area
For each subject area in the Presentation layer, you can decide whether to export any
logical keys as key columns to tools that access it.

Exporting logical keys is irrelevant to users of Oracle BI Presentation Services, but it
may be advantageous for some query and reporting tools.

If you decide to export logical keys, make sure that the logical key columns exist in the
table folders. In this situation, your business model should use logical key/foreign key
joins.

When you select the option Export logical keys in the Subject Area dialog, any
columns in the Presentation layer that are key columns in the Business Model and
Mapping layer are listed as key columns to any ODBC client. This is the default
selection. In most situations, this option should be selected.

Chapter 12
Creating and Customizing the Presentation Layer

12-5



Note:

If you are using a tool that issues parameterized SQL queries, such as
Microsoft Access, do not select the option Export logical keys. This stops
the tool from issuing parameterized queries.

Setting an Implicit Fact Column in the Subject Area
For each subject area in the Presentation layer, you can set an implicit fact column.

The implicit fact column is added to a query when it contains columns from two or
more dimension tables and no measures.

The column is not visible in the results. It is used to specify a default join path between
dimension tables when there are several possible alternatives or contexts.

If an implicit fact is not configured, Oracle BI Server uses any fact Logical Table
Source (LTS) to answer dimension-only subrequest that contains multiple dimensional
references but no fact reference.

The Oracle BI Server can also use any fact LTS, if the configured implicit fact column
is not relevant to the dimensions that are joined. This could happen, for example,
when implicit fact column is a level based measure at a level higher than the
dimensional only subrequest.

Maintaining the Presentation Layer
There is no automatic way to synchronize all changes between the Business Model
and Mapping layer and the Presentation layer.

For example, if you add logical columns to an existing logical table, or edit existing
columns, you must manually update the corresponding Presentation layer objects.

However, the Administration Tool can automatically synchronize the name of
presentation columns with their corresponding logical column names. To take
advantage of this feature, ensure that Use Logical Column Name is selected in the
Presentation Column dialog.

In some cases, if there are many changes to a logical table or even to an entire
business model, it is easiest to delete the corresponding presentation table or subject
area, and then and drag and drop the updated logical objects to the Presentation
layer. For this reason, it is best to wait until the Business Model and Mapping layer is
relatively stable before adding customizations in the Presentation layer.

Working with Subject Areas
In the Presentation layer, subject areas enable you to show different views of a
business model to different sets of users.

Populate subject areas using the contents from a single business model. Subject
areas cannot span business models.

Subject areas are created automatically by dragging and dropping business models
from the logical layer.

Chapter 12
Working with Subject Areas

12-6



See Setting Permissions for Presentation Layer Objects.

See Localizing Oracle Business Intelligence in System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition.

See Controlling Presentation Object Visibility and Creating Aliases (Synonyms) for
Presentation Layer Objects.

1. In the Presentation layer, double-click a subject area.

2. In the General tab, you can change the name for the subject area.

Note:

Aliases are created automatically whenever presentation objects are
renamed, so that any queries using the original name do not break.

A subject area cannot have the same name as any of its child presentation tables.
For example, you cannot have a subject area called Customer that has a
Customer table within it.

3. To set permissions for this subject area, click Permissions.

4. Select Custom display name to dynamically display a name based on a session
variable and to edit the Translation Key field. Select Custom description to
dynamically display a custom description based on a session variable.

These options are used typically for localization purposes. When you externalize
strings in the Presentation layer and run the Externalize Strings utility, the results
contain the session variable information and the translation key.

5. The Business model list displays the business model for this subject area.

6. Select the option Export logical keys to expose the logical keys to other
applications.

In most situations, this option should be selected. Many client tools differentiate
between key and non-key columns, and the option Export logical keys provides
client tools access to the key column metadata. Any join conditions the client tool
adds to the query, however, are ignored, because the Oracle BI Server uses the
joins defined in the repository.

Note:

If you are using a tool that issues parameterized SQL queries, such as
Microsoft Access, do not select the Export logical keys option. Not
exporting logical keys stops the tool from issuing parameterized queries.

7. (Optional) Set an Implicit Fact Column.

This column is added to a query when it contains columns from two or more
dimension tables and no measures. The column is not visible in the results. It is
used to specify a default join path between dimension tables when there are
several possible alternatives or contexts.

Chapter 12
Working with Subject Areas

12-7



8. (Optional) Specify an expression in the Hide object if field that controls whether
this subject area is visible in the Subject Area Tree in Answers and BI Composer.
Leave this field blank (the default) to show the object.

9. (Optional) Type a description. This description appears in a mouse-over tool tip for
the subject area in Oracle BI Answers.

10. In the Presentation Tables tab, you can add, remove, edit, or reorder the
presentation tables for this subject area.

11. Use the Aliases tab to specify or delete aliases for this subject area.

12. Click OK.

Working with Presentation Tables and Columns
Learn how to customize presentation tables and columns in these topics.

Presentation tables and presentation columns appear as folders and columns in
Oracle BI Answers. You can customize presentation tables and presentation columns
to help users craft queries based on their business needs.

This section contains the following topics:

• Creating and Managing Presentation Tables

• Reordering Presentation Layer Tables

• About Presentation Columns

• Nesting Folders in and BI Composer

Creating and Managing Presentation Tables
You can use presentation tables to organize columns into categories that make sense
to the user community.

A presentation table can contain columns from one or more logical tables. The names
and object properties of the presentation tables are independent of the logical table
properties. Presentation tables are created automatically by dragging and dropping
logical tables from the logical layer. A presentation table cannot have the same name
as its parent subject area. For example, you cannot have a subject area called
Customer that has a Customer table within it.

Aliases are created automatically whenever presentation objects are renamed, so that
any queries using the original name do not break. Use the Aliases tab to specify or
delete aliases for this presentation table. See Creating Aliases (Synonyms) for
Presentation Layer Objects.

For localization when creating presentation tables:

• Use the Custom display name to dynamically display a name based on a session
variable.

• Use Custom description to dynamically display a custom description based on a
session variable.

• Use the Translation Key along with the custom display name to localize the user
interface.

Chapter 12
Working with Presentation Tables and Columns

12-8



When you externalize strings in the Presentation layer and run the Externalize Strings
utility, the results contain the session variable information and the translation key. See 
Localizing Business Intelligence in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition .

Use the Child Presentation Tables tab to specify presentation tables that you want to
show as nested folders in Oracle BI Answers and BI Composer. See Nesting Folders
in and BI Composer and Controlling Presentation Object Visibility.

See Setting Permissions for Presentation Layer Objects.

1. In the Presentation layer, from a subject area, double-click a presentation table to
open the Properties dialog.

2. (Optional) In the Properties dialog for the presentation table, in the General tab,
change the name for the presentation table.

3. Leave the Hide object if field blank.

4. (Optional) In the Columns tab, add, remove, edit, or reorder the presentation
columns for the selected presentation table.

5. In the Hierarchies tab, add, remove, edit, or reorder the presentation hierarchies
for the selected presentation table.

6. When you have completed your changes, click OK.

Reordering Presentation Layer Tables
Use this task to reorder a table or sort all tables in a subject area.

1. In the Presentation layer, double-click a subject area.

2. In the Subject Area dialog, click the Presentation Tables tab.

3. In the Name list, select the table and use drag-and-drop to reposition the table, or
click the Up and Down buttons to move a table.

4. Click the Name column heading to sort all tables in alphanumeric order.

The sort operation changes the order between ascending (A to Z) and descending
( Z to A) alphanumeric order.

About Presentation Columns
Presentation columns provide business intelligence data for display in web clients.

You can create presentation columns by dragging and dropping logical columns from
the Oracle BI Administration Tool Business Model and Mapping (logical) layer to the
Presentation layer. New columns added to presentation tables cannot use the same
name or alias same name of an existing column.

You can drag and drop a column from a single logical table in the Business Model and
Mapping layer onto multiple presentation tables. For example, you can create several
presentation tables that contain different classes of measures such as one containing
volume measures, one containing share measures, and one containing measures from
a year ago.

You must enable the Edit presentation names in the Administration Tool option
before you can edit the presentation column's name. See Setting Administration Tool
Options and Setting Permissions for Presentation Layer Objects.

Chapter 12
Working with Presentation Tables and Columns

12-9



You can use the Custom display name, Custom description, and Translation Key
fields for localization purposes. When you externalize strings in the Presentation layer
and run the Externalize Strings utility, the results contain the session variable
information and the translation key. See Localizing Business Intelligence in System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

You can use the Custom display name and Custom description fields to propagate
UI hints (labels and tooltips) from an ADF data source to display in Oracle BI Answers.
See Propagating Labels and Tooltips from ADF Data Sources.

Aliases are created automatically whenever presentation objects are renamed, so that
any queries using the original name do not break.

Changing the Presentation Column Name
The presentation column names, by default, are identical to the logical column names
in the Business Model and Mapping layer. You can change the presentation column
name.

1. Open the Oracle BI Administration Tool.

2. In the Presentation layer, double-click a presentation column to change.

3. In the Presentation Column dialog, remove the check from the Use Logical
Column Name field.

4. Click Edit next to the Logical Column Name field.

5. In the Logical Column dialog, in the Name field, type a new name to use for the
Presentation Column.

6. In the Logical Column dialog, implement other changes, and click OK.

7. In the Presentation Column dialog, click Custom display name, and then click
OK.

Reordering Presentation Columns
You can change the order of the columns in your presentation.

1. Open the Oracle BI Administration Tool

2. In the Presentation layer, right-click a presentation table and select Properties.

3. Click the Columns tab.

4. Select the column you want to reorder.

5. Use drag-and-drop to reposition the column, or click the Up and Down buttons.

6. Click OK.

Nesting Folders in Answers and BI Composer
You can designate child presentation tables using the Child Presentation Tables tab in
the Presentation Table dialog.

Designate child presentation tables to give the appearance of nested folders in
Answers and BI Composer. You can add multiple layers of nesting using this method.

The image shows how a designated child presentation table appears nested in
Answers.

Chapter 12
Working with Presentation Tables and Columns

12-10



The folders only appear nested, but they are not actually nested in drill-down, and the
qualified names of the objects remain the same. The Presentation layer in the
Administration Tool does not display the nesting; the nesting only appears in Answers
and BI Composer. This feature only works for presentation tables, and not for other
Presentation layer objects.

When you run a consistency check, the Consistency Check Manager detects any
circularity in parent-child presentation table assignment. It also detects and reports
project definitions that include child presentation tables without parent presentation
tables.

If you previously used hyphens at the beginning of presentation table names or arrows
at the beginning of presentation table descriptions to achieve nesting, you should run
the Convert Presentation Folders utility to convert your metadata to the new structure.
See Using the Convert Presentation Folders Utility.

Working with Presentation Hierarchies and Levels
Presentation hierarchies and presentation levels provide an explicit way to expose the
multidimensional model in Oracle BI Answers.

When presentation hierarchies and levels are defined in the Presentation layer, roll-up
information is displayed in the Oracle BI Answers navigation pane, providing users
with important contextual information.

Members in a presentation hierarchy are not visible in the Presentation layer. You can
see hierarchy members in Oracle BI Answers.

Chapter 12
Working with Presentation Hierarchies and Levels

12-11



Users can create hierarchy-based queries using objects in presentation hierarchies
and levels. Presentation hierarchies expose analytic functionality such as member
selection, custom member groups, and asymmetric queries.

You can also provide localization information and apply fine-grained access control to
presentation hierarchies and levels.

If you have a repository from a previous release, the presentation hierarchies do not
appear in the Presentation layer automatically as part of the Oracle BI repository
upgrade process. You must manually create the presentation hierarchies and levels
objects by dragging logical dimensions from the Business Model and Mapping layer to
the appropriate presentation tables.

This section contains the following topics:

• Creating and Managing Presentation Hierarchies

• Creating and Managing Presentation Levels

Creating and Managing Presentation Hierarchies
To create a presentation hierarchy, you can drag a logical dimension hierarchy from
the Business Model and Mapping layer to a table in the Presentation layer.

The presentation hierarchy object must be located within a presentation table, unlike in
the Business Model and Mapping layer, where logical dimensions are peer objects of
tables. Presentation hierarchies are also displayed within their associated tables in
Oracle BI Answers, providing a conceptually simpler model.

If a logical dimension spans multiple logical tables in the Business Model and Mapping
layer, it is a best practice to model the separate logical tables as a single presentation
table in the Presentation layer.

There are several ways to create presentation hierarchies:

• When you drag an entire business model to the Presentation layer, the
presentation hierarchies and constituent levels appear automatically, along with
other presentation objects.

• When you drag a logical dimension table to the Presentation layer, presentation
hierarchies and levels based on those dimensions are created automatically.

• You can also drag individual logical dimensions to the appropriate presentation
tables to create corresponding presentation hierarchies within those tables.

• As with most other objects in the repository, you can right-click a presentation
table, select New Object, and then select Presentation Hierarchy to manually
define the object.

You can also drag an individual logical level from the Business Model and Mapping
layer to a presentation table to create a presentation hierarchy that is a subset of the
logical dimension hierarchy.

For example, suppose a logical dimension has the levels All Markets, Total US,
Region, District, Market, and Market Key. Dragging and dropping the entire logical
dimension to the corresponding presentation table appears as follows:

Chapter 12
Working with Presentation Hierarchies and Levels

12-12



However, dragging and dropping the Region level to the same presentation table
appears as follows:

Modeling Dimensions with Multiple Hierarchies in the Presentation Layer
For logical dimensions that contain multiple logical hierarchies, multiple separate
presentation hierarchies are created.

For example, the following logical dimension called Product contains the two
hierarchies Category and Country:

Chapter 12
Working with Presentation Hierarchies and Levels

12-13



In the Business Model and Mapping layer, this logical dimension is modeled as a
single dimension object that contains multiple hierarchies. In contrast, the Presentation
layer models this dimension as two separate objects: one that displays the drill path
through the Category level, and another that shows the drill path through the Country
level, as follows:

Chapter 12
Working with Presentation Hierarchies and Levels

12-14



Editing Presentation Hierarchy Objects
Learn how to edit presentation hierarchy properties.

You can edit presentation hierarchy properties, including setting permissions to apply
role-based access control, setting a custom display name for localization purposes,
and changing the levels in a hierarchy.

The Display Columns tab is only available for parent-child hierarchies. Because
parent-child hierarchies do not contain levels, display columns are defined for the
presentation hierarchy object as a whole. Use the Display Columns tab to define which
columns should be used for display for this parent-child hierarchy.

You can add, delete, or reorder display columns. You can also click the Edit button to
edit properties for a particular column.

The Levels tab lists the levels within the hierarchy and their order. This tab is not
available for parent-child hierarchies. You can add, delete, or reorder levels. You can
also click the Edit button to edit properties for a particular level. See Creating and
Managing Presentation Levels.

See Setting Permissions for Presentation Layer Objects.

Use the Aliases tab to specify or delete aliases for this presentation hierarchy. See 
Creating Aliases (Synonyms) for Presentation Layer Objects.

See Controlling Presentation Object Visibility and Localizing Oracle Business
Intelligence in System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition .

1. In the Presentation layer, double-click a presentation hierarchy to display the
Presentation Hierarchy dialog.

2. In the General tab, you can change the following:

• Name. Aliases are created automatically whenever presentation objects are
renamed, so that any queries using the original name do not break.

Note:

You must enable the Edit presentation names Administration Tool
option before you can edit the presentation hierarchy's name.

• Permissions.

Chapter 12
Working with Presentation Hierarchies and Levels

12-15



• Custom display name and Custom description. Select Custom display
name to dynamically display a name based on a session variable and to edit
the Translation Key field. Select Custom description to dynamically display
a custom description based on a session variable.

These options are used typically for localization purposes. When you
externalize strings in the Presentation layer and run the Externalize Strings
utility, the results contain the session variable information and the translation
key.

• Logical Dimension. This field displays the name of the logical dimension for
this presentation hierarchy. Click Browse to select a different logical
dimension.

• Hide object if. This field lets you specify an expression that controls whether
this presentation hierarchy is visible in the Subject Area Tree in Answers and
BI Composer. Leave this field blank (the default) to show the object.

Creating and Managing Presentation Levels
Presentation levels are typically created automatically when presentation hierarchies
are created.

Presentation levels are displayed within hierarchical columns in Oracle BI Answers.

See the following:

• Setting Permissions for Presentation Layer Objects

• Localizing Business Intelligence in System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition.

• Creating Aliases (Synonyms) for Presentation Layer Objects

You must enable the Edit presentation names Administration Tool option before you
can edit a presentation level's name.

Aliases are created automatically whenever presentation objects are renamed, so that
any queries using the original name do not break.

The Logical Level field displays the name of the logical level for this presentation level.

The Custom display name and the Custom description options are used typically
for localization purposes. When you externalize strings in the Presentation layer and
run the Externalize Strings utility, the results contain the session variable information
and translation key.

Specifying an expression in the Hide object if field has no effect on the visibility of
presentation levels in the Subject Area Tree in Oracle BI Answers and BI Composer.

The Drill To Levels and Drill From Levels tabs, and the Generate Drill Graph are not
currently used.

Use the Display Columns tab to define columns used for display for that level on drill-
down. For example, if two columns called Name and ID at the same level, you can
choose to display Name because it is the more user-friendly option. The display
columns that appear by default when a presentation level is created are based on
which key columns for the corresponding logical level have the Use for display option
selected.

Chapter 12
Working with Presentation Hierarchies and Levels

12-16



You can add, delete, or reorder display columns. You can also click the Edit button to
edit properties for a particular column.

1. In the Presentation layer, double-click a presentation level to display the
Presentation level dialog.

2. In the General tab, type a Name for the presentation level.

3. Click Permissions to specify access to the presentation level by application roles
and users.

4. (Optional) Select Custom display name to dynamically display a name based on
a session variable and to edit the Translation Key field.

5. (Optional) Select Custom description to dynamically display a custom description
based on a session variable.

6. (Optional) Click Browse to select a different Logical Level.

7. Drag a presentation column to the presentation level in the Presentation layer to
automatically add the column as a display column for the presentation level.

8. In the Aliases tab to specify or delete aliases for a presentation level.

Setting Permissions for Presentation Layer Objects
You can apply access control to restrict which individual users or application roles
(groups) can access particular presentation layer objects.

For example, you can provide read-only access to a set of presentation tables for a
particular application role, read-write access for a second application role, and no
access for a third application role. See Granting Permissions To Users Using Groups
and Application Roles .

You can also use the Identity Manager to set up privileges and permissions. The
Identity Manager is useful for setting permissions for individual application roles to
many objects at once, unlike permissions in the Presentation layer, which you can only
set for one object at a time. See Setting Up Object Permissions and Applying Data
Access Security to Repository Objects.

You can control what level of privilege is granted by default to the AuthenticatedUser
application role, which is the default application role associated with new repository
objects. To do this, set the DEFAULT_PRIVILEGES parameter in the NQSConfig.INI file.

To set permissions for presentation layer objects:

1. In the Presentation layer, double-click a presentation object, such as a subject
area, table, column, or hierarchy.

2. In the General tab, click Permissions.

3. In the Permissions dialog, any users or application roles with the Default
permission do not appear in the User/Application Roles list. Select Show all
users/application roles to see users and application roles with the Default
permission.

In online mode only, by default, no users are retrieved, even when Show all
users/application roles is selected. Click Set online user filter to specify the set
of users you want to retrieve.

The filter is empty by default, which means that no users are retrieved. Enter * to
retrieve all users, or enter a combination of characters for a specific set of users,

Chapter 12
Setting Permissions for Presentation Layer Objects

12-17



such as A* to retrieve all users whose names begin with the letter A. The filter is
not case-sensitive.

4. For each user and application role, you can allow or disallow access privileges for
this presentation object by selecting one of the following options:

• Read. Only allows read access to this object.

• Read/Write. Provides both read and write access to this object.

• No Access. Explicitly denies all access to this object.

• Default. The permission is inherited from the parent object. For subject areas,
because they are a top-level object, Default is equivalent to the permission
granted to the AuthenticatedUser application role.

5. Click OK.

6. Click OK in the Properties dialog for this presentation object.

Generating a Permission Report for Presentation Layer Objects
You can generate a permission report for individual presentation layer objects to see a
summary of how permissions have been applied for that object.

The Permission Report displays the name and a description of the presentation object,
along with a list of users/application roles and their permissions.

1. In the Oracle BI Administration Tool, open a repository in online or offline mode.

2. In the Presentation layer, right-click an object and select Permission Report.

Sorting Columns in the Permissions Dialog
There are six ways that you can sort the types and User/Application Role names in the
Permissions dialog.

To change the sort, click the heading of the first or second column. The first column
has no heading and contains an icon that represents the type of user or application
role. The second column contains the name of the User/Application Role object.

Note:

You cannot sort on the columns for individual object permissions such as
Read, and Read/Write.

There are three ways to sort by type, and two ways to sort the list of user and
application role names. This results in a total of six possible sort results (3 x 2 = 6).
The following list shows the sort results available by clicking the type column:

• AuthenticatedUser, Application Roles, Users, ascending by name of type

• Users, Application Roles, AuthenticatedUser, descending by name of type

• Type column is in no particular order. The Type value is ignored, as all names in
User/Application Role column are sorted in ascending order by value in User/
Application Role column.

Chapter 12
Setting Permissions for Presentation Layer Objects

12-18



The following list shows the sort results available by clicking the User/Application Role
column:

• Ascending within the type

• Descending within the type

Creating Aliases (Synonyms) for Presentation Layer Objects
Each presentation object can have a list of aliases (synonyms) for its name that you
can use in Logical SQL queries.

Use the Alias tab in the Properties dialog for the appropriate presentation object such
as subject area, presentation table, presentation hierarchy, presentation level, or
presentation column to create the list of aliases.

Because Presentation layer objects are often deleted and then re-created during the
repository development process, it is best to wait until your logical business model is
relatively stable before creating aliases for presentation objects.

You can use this feature to rename presentation objects without breaking references
that any existing requests have to the old names, including requests from Answers,
Oracle BI Publisher, or other Logical SQL clients. If you are still developing a new
repository, you might want to wait until the repository is stable before renaming
objects.

For example, consider a subject area called Sample Sales Reduced that contains a
presentation table called Facts Other. If you rename the presentation column called #
of Customers to Number of Customers, any requests that use # of Customers fail.
However, if you add # of Customers to the list of synonyms in the Alias tab for the
Number of Customers column, then queries containing both # of Customers and
Number of Customers succeed and return the same results.

• Aliases for presentation objects do not appear in Answers or other query clients
when creating new queries. Only the primary names of subject areas, hierarchies,
levels, tables, and columns appear.

• This feature works in a different way from SQL aliases or the alias feature in the
Physical layer. It simply provides synonyms for object names, much like synonyms
in SQL.

• Aliases are created automatically when you rename presentation objects. For
example, if you change Catalog to Catalog1, the original name Catalog is added to
the Aliases list.

• You cannot rename a Presentation layer object to a name that is already in use as
an alias for an object of the same type.

1. In the Oracle BI Administration Tool, in the Presentation layer, double-click a
presentation object such as a subject area, table, column, or hierarchy.

2. In the Properties dialog for the presentation object, click the Aliases tab.

3. Click the New button to create an alias, and then type the text string to use for the
alias.

4. Click OK.

Chapter 12
Creating Aliases (Synonyms) for Presentation Layer Objects

12-19



Controlling Presentation Object Visibility
You can use the Hide object if field to hide selected Presentation layer objects in the
Subject Area Tree in Answers and BI Composer. You can hide subject areas, tables,
columns, and hierarchies.

Although the Hide object if field is shown for presentation levels, it is a placeholder for
a future release and currently has no effect on presentation level objects.

The Hide object if field only controls object visibility and does not affect object access.
For example, you can query objects that are hidden using tools like nqcmd.
There are three different types of expressions that you can use in the Hide object if
field to determine Presentation layer object visibility:

• Constant. Use any non-zero constant in the field to hide the object. Use zero (0)
or leave the field blank to display the object.

• Session variable. You can use a session variable in the expression to control
whether the object is hidden. If the expression evaluates to a non-zero value, the
object is hidden. If the expression evaluates to zero, is empty, or has no value
definition, the object is displayed. The session variable must be populated using a
session initialization block or a row-wise initialization block. You must properly
populate the session variable to control the visibility.

The SQL for the init block can use CASE statements to control whether to return
zero or a non-zero number in the session variable, for example:

VALUEOF(NQ_SESSION."VISIBLE")

Session variable names that include periods must be enclosed in double quotes.

• Session variable comparison. You can use an equality or inequality comparison
to control whether the object is hidden, using the following form:

'session_variable_expression' '=|<>' 'constant'

If the expression evaluates to zero, null, or empty, the object is displayed. If the
expression evaluates to a non-zero value, the object is hidden, for example:

NQ_SESSION."VISIBLE" = 'ABC'
NQ_SESSION."VISIBLE" <> 'ABC'

You must enclose session variable names that include periods in double quotes.

You can use any scalar function supported by Oracle BI EE in the Hide object if
expression. Scalar functions include any function that accepts a simple value for
each of its arguments and returns a single value. You can use the functions listed,
except for functions that return non-deterministic results like RAND, NOW,
CURRENT_DATE, CURRENT_TIMESTAMP, and CURRENT_TIME.

– All String Functions, see String Functions.

– Math Functions, see Math Functions, except RAND.

– Calendar Date/Time Functions, except NOW, and CURRENT_DATE.

– Conversion Functions such as CAST, IFNULL, TO_DATETIME, and
VALUEOF.

For example, the following expression checks to see if the NQ_SESSION.VISIBLE
session variable begins with the letters ABC:

Chapter 12
Controlling Presentation Object Visibility

12-20

onlink:BIESQ-GUID-68C1AA2B-6055-460F-B108-161ADCC538B0
onlink:BIESQ-GUID-E7689EE7-0E2C-47A4-B127-D389DD9B2B90


LEFT(VALUEOF(NQ_SESSION."VISIBLE"), 3) = 'ABC'

The following expression checks to see if the given variable begins with
ExtnAttribute:

Left(VALUEOF(NQ_SESSION."ADF_LABEL_ORACLE.APPS.CRM.MODEL.ANALYTICS.
APPLICATIONMODULE.CRMANALYTICSAM_CRMANALYTICSAMLOCAL_CRMANALYTICSAM.
OPPORTUNITYAM.OPPORTUNITY_EXTNATTRIBUTECHAR001"), 13) = 'ExtnAttribute'

Run the Consistency Check Manager to detect any inconsistencies in the visibility filter
expression.

Chapter 12
Controlling Presentation Object Visibility

12-21



13
Creating and Persisting Aggregates for
Oracle BI Server Queries

Learn how to set up and use aggregate persistence in Oracle Business Intelligence.
Most data warehouse practitioners create aggregated data tables to improve the
performance of highly summarized queries. The aggregate tables store precomputed
results that are combined measures, usually summed, over a set of dimensional
attributes. Use aggregate tables to improve query response times in decision support
systems.

If you write SQL queries or use a tool that only understands what physical tables exist
and not their meaning, then using aggregate tables becomes more complex as the
number of aggregate tables increases. The Oracle BI Server’s aggregate navigation
capability enabled queries to use the information stored in aggregate tables
automatically. The Oracle BI Server lets you concentrate on asking the right business
question, and then the server decides which tables provide the fastest answers.

Oracle Business Intelligence takes advantage of the aggregates in source databases.
See Managing Logical Table Sources (Mappings). The Oracle Business Intelligence
aggregate persistence automates the creation and loading of the aggregate tables and
their corresponding Oracle Business Intelligence metadata mappings to minimize the
time required to create and maintain the data aggregation, as well as load database
scripts and the corresponding metadata mappings.

This chapter contains the following topics:

• About Aggregate Persistence in Oracle Business Intelligence

• Aggregate Persistence Improvements

• About Aggregate Persistence Errors

• Identifying Query Candidates for Aggregation

• Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

• Using the Aggregate Persistence Wizard to Generate the Aggregate Specification

• Using Model Check Manager to Check for Modeling Problems

• Writing the Create Aggregates Specification Manually

• Running the Aggregate Specification Script

• Life Cycle Use Cases for Aggregate Persistence

• Using Double Buffering to Refresh Highly Available Aggregates

• Creating Aggregates on TimesTen Sources

13-1



About Aggregate Persistence in Oracle Business
Intelligence

Use the Aggregate Persistence feature to create aggregates for Oracle BI Server
queries.

The Aggregate Persistence Wizard lets you automate the creation of the aggregate
specification script. When you run this script against a live Oracle BI Server, aggregate
tables are created by the aggregate persistence engine and are mapped into the
metadata for navigation. When aggregates are persisted, indexes and statistics are
created on relational tables for greater performance.

The Aggregate Persistence Wizard creates a SQL script that you can run on a
scheduled basis against the Oracle BI Server. In the Aggregate Persistence Wizard,
you specify the measures, dimensionality, and other parameters of each star or cube
based on your performance design. The script should run after each load of the base-
level tables, so that the aggregates are always synchronized with the detail-level data
when the load window completes and users begin to run queries.

Aggregate creation runs against the master server in a cluster. It takes some time for
the metadata changes to propagate to the slaves. The cluster refresh time is a user
controlled option and you could get incorrect results if a query hits a dependent child
server before it is refreshed. It is the administrator's responsibility to set an appropriate
cluster refresh interval.

Aggregate persistence requires a dedicated connection pool to create tables or cubes
in the target database that holds the aggregates. Because the Oracle BI Repository
enables federation, the aggregated target can use the same database as the detailed
source, or in a completely different database. You must create the dedicated
connection pool before you run the Aggregate Persistence Wizard, so the correct
connection pool is selected during the appropriate step of the wizard.

The default prefix SA_ is automatically added to dimension (level) aggregates. You can
change this default prefix by updating the AGGREGATE_PREFIX parameter in the
AGGREGATE_PERSISTENCE section of the NQSConfig.INI file:

AGGREGATE_PREFIX = "prefix_name" ;

You must appropriately secured and restrict access to the target schema used to store
aggregates. The schema should have privileges to connect, create, and drop tables
and indexes. By default, only users who have administrator privileges can manage
aggregates.

Do not use aggregate persistence against tables with active Virtual Private Database
(VPD) security filters. There is a possibility that the aggregate information could persist
without the VPD filter, posing a security risk.

Chapter 13
About Aggregate Persistence in Oracle Business Intelligence

13-2



Aggregate Persistence Improvements
Oracle Business Intelligence automatically creates more usable aggregates and
creates aggregates without the need to fix data set errors or modeling problems.

Surrogate Keys

Aggregate persistence can create surrogate keys for joining dimensions to fact
aggregate tables.

In most cases the source and the target databases are not the same instance.

The Oracle BI Server uses the hash join method to improve surrogate key creation.
Where possible, a new request variable is automatically added to the fact aggregate
population query and when this request variable is set, the query engine builds hash
joins for the dimension tables in parallel before joining to the fact table.

The Oracle BI Summary wizard displays the Use surrogate keys option to suggests
when you should use surrogate keys. When this option is selected, the
using_surrogate_key clause is added to all levels in the aggregate specification.

Auto Correction (Hardening) of Level Keys

Aggregate persistence auto-corrects or hardens level keys that are not unique.

The Oracle BI Summary Advisor recommends aggregates with level keys that are
unique as defined, or with level keys that are auto-corrected (hardened) to make
unique keys. Modifications to underlying data might impact such aggregates.

To improve performance, Oracle suggests creating aggregates using surrogate key
rather than natural keys. Auto-correction, or hardening, is not as effective when natural
keys are used, especially in the prepare-create mode of operation.

Unbalanced (Ragged) and Skip-Level Hierarchies

Aggregate persistence creates aggregates for logical dimensions with unbalanced or
skip-level hierarchies. You can create aggregates with or without using surrogate keys.
The Oracle BI Summary Advisor recommends aggregates that contain logical
dimensions with unbalanced and skip-level hierarchies.

Chronological Keys

The Oracle BI Server requires chronological keys to support time series functions such
as AGO, TODATE, and PERIODROLLING.

Time series functions operate correctly when only the lowest key in the logical
dimension is chronological.

Aggregate persistence generates chronological keys with the CK_ prefix for time levels
without chronological keys. A new column is added to the physical dimension
aggregate table to store the chronological key value, and a new logical column is
added to the logical table of the time dimension. The column is mapped to the new
column added to the physical dimension aggregate table.

The delete aggregates statement automatically removes all metadata created to
support generated chronological keys.

Chapter 13
Aggregate Persistence Improvements

13-3



Count Distinct Measures

The Oracle BI Server uses aggregates with count distinct measures to serve queries
for these measures at higher grains.

The Aggregate Persistence wizard includes the Persist Count Distinct Measures as
raw values option, when selected appends as_raw_values to all the valid count distinct
measures specified. When the Persist Count Distinct Measures as raw values
option is selected, aggregate persistence sets an aggregation expression override on
the corresponding logical column for the system-generated aggregate logical table
source. The Oracle BI Summary Advisor recommends both methods of persistence for
count distinct measures.

About Aggregate Persistence Errors
Occurrences such as a network failure, no disk space on the database, or a bad
aggregate request result in aggregate persistence errors.

When a series of aggregates are being created, and the creation of one aggregate
fails, the aggregate persistence engine skips creation of the failed aggregate and its
dependencies and proceeds to the next aggregate in the list. Check the log files to
identify failed aggregates.

If there are errors, you must remove the failed aggregates in one of the following ways:

• Manually remove the aggregates from the metadata and the database. To identify
the aggregate metadata, you can query the repository using the Is System
Generated filter for physical tables and logical table sources. See Querying the
Repository.

• Automatically remove the failed aggregates using the Delete Aggregates
specification. In particular, use this technique to remove any orphan aggregate
dimensions, those not joined to any other fact table.

Run the Model Check Manager to ensure that your repository does not contain
modeling problems that can affect Oracle BI Summary Advisor and aggregate
persistence performance and results. See Using Model Check Manager to Check for
Modeling Problems.

Identifying Query Candidates for Aggregation
When creating aggregates, you must identify which queries would benefit substantially
from aggregated data.

You can achieve the best results by aggregating to the highest level possible.

To identify slow-running queries, perform the following tasks:

• Enable usage tracking in the Oracle BI Server. Usage tracking statistics can be
used in a variety of ways, such as database optimization, aggregation strategies,
and billing users or departments based on the resources they consume. The
Oracle BI Server tracks usage at the detailed query level. When you enable usage
tracking, statistics for every query are written to a usage tracking log file or
inserted into a database table.

Chapter 13
About Aggregate Persistence Errors

13-4



Note:

It is strongly recommended that you use the direct insertion into a
database method for usage tracking. See Managing Usage Tracking for
in System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition information about usage tracking.

• Analyze the query run times and identify the slowest running queries as
candidates for aggregation. The run time for creating aggregates is dependent
on the type of aggregates selected by the user. Creating aggregates from large
fact tables is slower than from smaller tables. You should carefully select the
aggregates to create.

Using Oracle BI Summary Advisor to Identify Query
Candidates for Aggregation

If you are running Oracle Business Intelligence on the Oracle Exalytics Machine, you
can use the Oracle BI Summary Advisor feature to identify which aggregates increase
query performance and to generate a script for creating the recommended aggregates.

Note:

If you are not running Oracle Business Intelligence on the Oracle Exalytics
Machine, the Oracle BI Summary Advisor feature is not available.

This section contains the following topics:

• About Oracle BI Summary Advisor

• Setting Up the Statistics Database

• Turning On Usage Tracking

• Turning On Summary Advisor Logging

• Generating an Aggregate Specification Script

• Summary Advisor Stop Criteria Run Constraints

• Using the nqaggradvisor Utility to Run the Oracle BI Summary Advisor

About Oracle BI Summary Advisor
To reduce query time, you can create aggregate tables that store precomputed results
for queries that include rolled-up data.

Before creating aggregates, you need to analyze usage tracking statistics to identify
which aggregates could increase query performance. You can use the Summary
Advisor to get an optimal list of aggregate tables based on query patterns that might
achieve maximum query performance gain while meeting specific resource
constraints. The Summary Advisor generates an aggregate creation script that you
can run to create the recommended aggregate tables.

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-5



This section contains the following topics:

• Gathering Summary Advisor Statistics

• Generating and Using Summary Advisor Recommendations

• About Measure Subset Recommendations

Gathering Summary Advisor Statistics
Before Summary Advisor can generate recommendations, you must obtain a
representative sample of usage statistics for Summary Advisor to use.

Enabling Usage Tracking and Summary Advisor Logging has a minor system
performance impact on production systems.

Use one of the following approaches to gather Summary Advisory statistics:

• Enable Usage Tracking and Summary Advisor Logging on a production system,
and let users run queries against Oracle BI Server for several days. The Summary
Advisor Statistics Table is populated with usage statistics. See Turning On Usage
Tracking and Turning On Summary Advisor Logging.

• In a test environment, run a representative workload against the Oracle BI Server
to gather Summary Advisor statistics. A representative workload is a list of
commonly requested Logical SQL statements. You typically obtain a
representative workload from your production environment.

After you have the representative workload, enable Usage Tracking and Summary
Advisor Logging on the Oracle BI Server in your test environment, and use the
nqcmd utility to run the workload against the Oracle BI Server. See Using nqcmd to
Test and Refine the Repository. The Summary Advisor Statistics Table is
populated with usage statistics.

Generating and Using Summary Advisor Recommendations
After the Summary Advisor Statistics table is populated with representative data, the
Summary Advisor can analyze the data and generate aggregate recommendations to
speed up queries.

Run the Oracle BI Summary Advisor Wizard in the Administration Tool to generate an
aggregate specification, and then use the aggregate specification to create aggregates
using nqcmd. See Generating an Aggregate Specification Script and Running the
Aggregate Specification Against the Oracle BI Server.

Oracle BI Summary Advisor supports aggregate creation on Oracle TimesTen In-
Memory Database, Oracle BI EE, or when using Oracle Database In-Memory on
Oracle Exalytics. Refer to System Requirements and Certification.

You can also save your Summary Advisor options to a file, and re-run the Oracle BI
Summary Advisor Wizard later without re-entering the same options.

About Measure Subset Recommendations
Learn about using the Summary Advisor with aggregates and specific measures.

When the Only include measures used in queries option is set in the Summary
Advisor wizard, the Summary Advisor only recommends aggregates that contain

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-6



specific measures that are both present in the analyzed query workload, and that can
optimize the query workload if aggregates are created.

Note:

• The Summary Advisor does not include measures that are not used in
the query workload in its recommended aggregates.

• The size estimation of aggregate fact tables is based on the
recommended measure subset, instead of using all the measures of a
logical fact table during estimation.

• The Summary Advisor does not include measures that are invalid for
aggregate persistence in its recommended aggregates.

Setting Up the Statistics Database
Before you can use the Oracle BI Summary Advisor feature, you must set up a
database to store the collected statistics.

You must run the Repository Creation Utility (RCU) on the target database to create
the required statistics schema.

See Installing and Configuring Oracle Business Intelligence.

• You use the database you installed for use with Oracle Business Intelligence as
the statistics database because this database already has the RCU-created
schemas. The RCU-created table name for Summary Advisor is
S_NQ_SUMMARY_ADVISOR.

• You also need to import the database into the Physical layer of the Oracle BI
repository.

• You must use the same database for Summary Advisor that you use for usage
tracking. If you already have a database and schema set up for usage tracking,
you can skip the steps in this section.

See Importing Metadata from Relational Data Sources.

1. Run the Repository Creation Utility on an external database of your choice.

You can skip this step if you choose to use the database you installed for use with
Oracle Business Intelligence for Summary Advisor statistics, because this
database has the RCU-created tables already.

2. Open the Administration Tool and import the database into the Physical layer.

3. Save and close the repository.

Use the Upload Repository Command to upload the repository and make it available
for queries. See Making the Repository Available for Queries.

Columns in the S_NQ_SUMMARY_ADVISOR Table
Review the columns in the S_NQ_SUMMARY_ADVISOR table.

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-7



Column Description

GROUPBYCOLUMNIDVECTOR Upgrade IDs for logical column objects that
represent group-by columns in a processing path.

A processing path is an internal Oracle BI Server
term. It represents a subquery that involves a single
fact logical table source.

LOGICALFACTTABLEID Upgrade ID of the logical fact table.

LOGICALTABLESOURCEIDVECTOR Upgrade IDs of the logical table sources.

LOGICAL_QUERY_ID Foreign key that references the ID column in
S_NQ_ACCT. This column helps identify the Logical
SQL that generated this processing path.

MEASURECOLUMNIDVECTOR Upgrade IDs for logical column objects that
represent measures in a processing path.

PROCESSINGTIMEINMILLISEC Time spent on this processing path, in milliseconds.

QUERYLEVELIDVECTOR Upgrade IDs of the logical levels in a processing
path.

QUERYSTATUS For internal use only.

ROW_COUNT The number of rows retrieved in a processing path.
Data in this column is reserved for use by Oracle BI
Summary Advisor.

SOURCECELLLEVELIDVECTOR Upgrade IDs of the logical levels in the logical table
source.

VERSION Version number of the Oracle BI Server.

Turning On Usage Tracking
You must enable usage tracking before collecting Summary Advisor statistics.

See Managing Usage Tracking in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition.

Turning On Summary Advisor Logging
When you are ready to collect statistics, you can enable Summary Advisor logging.
For new (non-upgraded) installations, the Summary Advisor parameters are centrally
managed. For upgrading customers, the Summary Advisor parameters are not
centrally managed by default.

Enabling Summary Advisor logging

You can manage the Summary Advisor parameters using NQSConfig.INI.

To enable Summary Advisor logging in NQSConfig.INI when central management is
disabled for these parameters, follow these steps:

1. On the Oracle BI Server computer, open the NQSConfig.INI file in a text editor.
You can find this file at:

ORACLE_INSTANCE/config/OracleBIServerComponent/coreapplication_obisn

Make a backup copy of the file before editing.

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-8



2. In the [USAGE_TRACKING] section, update the following parameters:

• Set SUMMARY_STATISTICS_LOGGING to one of the following options:

– YES: Enables Summary Advisor logging.

– LOG_OUTER_JOINT_QUERIES_ONLY: Enables Summary Advisor logging only for
logical queries that contain outer joins. Consider using this option when
the minor performance impact of enabling full Summary Advisor logging is
a concern.

• Set SUMMARY_ADVISOR_TABLE_NAME to the name of the fully-qualified database
table for collecting statistics, as it appears in the Physical layer of the Oracle
BI repository. For example:

SUMMARY_ADVISOR_TABLE_NAME = "My_DB"."DEV_BIPLATFORM"."S_NQ_SUMMARY_ADVISOR";

The table name you specify must belong to the same database object and
connection pool that you are using for usage tracking.

3. Save and close the file.

4. Restart the Oracle BI Server.

5. If you have multiple Oracle BI Server instances, then repeat these steps in each
NQSConfig.INI file for all Oracle BI Server instances.

Adding Summary Advisor to the Administration Tool Menu

If you open the repository file in online mode on an Exalytics Server, and the Oracle
BI Summary Advisor menu option is not listed under Tools/Utilities, you may need
to enable it manually.

1. Open bi-config.xml

• UNIX: $DOMAIN_HOME/config/fmwconfig/biconfig/core/bi-
config.xml

• Windows: %DOMAIN_HOME%\config\fmwconfig\biconfig\core\bi-
config.xml

2. Search for the following attribute: <bi:hw-acceleration>.

3. Set this attribute to true.

4. Restart the Business Intelligence services. The menu option should now be
visible.

Generating an Aggregate Specification Script
After generating Summary Advisor statistics, you can run the Oracle BI Summary
Advisor Wizard to generate an aggregate specification script that you can later run to
create the aggregates.

You can only run the Summary Advisor Wizard in online mode. You can also run the
Oracle BI Summary Wizard from the command line. See Using the nqaggradvisor
Utility to Run the Oracle BI Summary Advisor.

Before you run the Summary Advisor Wizard, you must map the target database, used
for creating the aggregates, into the Physical layer. You must manually create the
necessary database, connection pool, and physical schema objects.

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-9



If you have used the Oracle BI Summary Advisor Wizard previously and saved your
filter criteria, targets, and other options as an XML file, you can click Load Parameters
from File to load the previously saved options into your current wizard session.

The Oracle BI Summary Advisor Wizard is available if you are running Oracle BI EE or
when using Oracle Database In-Memory on Oracle Exalytics. You can execute the
aggregate script, recommended by Summary Advisor or manually defined aggregates
using Oracle Database In-Memory on Oracle Exalytics as the target.

If your Summary Advisor table, specified in the SummaryAdvisorTableName in the System
MBean Browser, or the SUMMARY_ADVISOR_TABLE_NAME parameter in
NQSConfig.INI is empty, Summary Advisor cannot proceed.

Summary Advisor Setting Recommendations

In the Summary Advisor’s Miscellaneous page, Oracle recommends:

• Selecting Use surrogate keys to improve the performance of queries using the
aggregates.

• Selecting Prefer optimizer estimates to improve performance during the
Summary Advisor process.

The Prefer optimizer estimates option enables using cardinality estimates that
originate out of the database query optimizer whenever possible, rather than
issuing actual count queries. You can use the Prefer optimizer estimates option
with Oracle Database, Microsoft SQL Server, and IBM DB2.

For Summary Advisor to use database query optimizer estimates, obtain up-to-
date statistics on the concerned database objects. See the Oracle Database
documentation for more information.

If you do not select the Prefer optimizer estimates option, Summary Advisor
issues count queries to the back-end data sources to obtain row counts
(cardinality) for certain queries on the data sources that can sometimes take a
long time to execute. Refer the appropriate database documentation for guidelines
on how to obtain the best estimates. For example, when using Oracle Database,
you might want to use the column group feature to improve cardinality estimates
for multiple column queries.

A query that attempts to sample a particular grain is not issued by Summary
Advisor if an entry for that particular grain already exists in the Summary Advisor
cache files, regardless of whether it is an actual count query or a cardinality
estimate query.

You should remove the Summary Advisor cache files when selecting or
deselecting the Prefer optimizer estimates option. To do this, delete
NQAggregate.Stats.Cache.txt and NQAggregate.LTS.Stats.Cache.txt in the following
directory on the Oracle BI Administration Tool computer:

ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\
coreapplication_obisn\aggr

• Select Only include measures used in queries to include measures used in
queries. See About Measure Subset Recommendations.

If you do not select this option, all measures in a logical fact table are included in
the recommendation, including measures that were not used in the workload
analyzed by Summary Advisor.

See Summary Advisor Stop Criteria Run Constraints.

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-10



Oracle recommends running the Model Check Manager to ensure that your repository
does not contain modeling problems that could affect Oracle BI Summary Advisor
performance and results. See Using Model Check Manager to Check for Modeling
Problems.

Oracle recommends running the Model Check during off-peak periods. The Model
Check Manager runs queries against back-end data sources for some checks.
Running the Model Check Manager for large repositories can take a long time. Use
Filtered by Statistics, or run it only for selected objects, to improve performance.

1. Open your repository in the Administration Tool in online mode.

2. Select Tools, and then select Utilities.

3. Select Oracle BI Summary Advisor, and then click Execute.

4. (Optional) In Filter Logs - Logical Fact Tables, generate Summary Advisor
recommendations for all logical fact tables, or select specific logical fact tables,
and click Next.

5. (Optional) In Filter Logs - Time Window, enter a Start Date and End Date to filter
the Summary Advisor logging statistics based on time period, and click Update to
refresh the view after entering a time period.

6. (Optional) In Filter Logs - Execution Time Threshold, specify the number of
seconds for Minimum Cumulative Time to filter by a minimum query time
threshold for each logical table source.

7. In Targets, select the target container and associated connection pool for the
location of aggregate tables.

You can specify more than one target container.

8. Specify the Database Schema, Connection Pool, and Capacity for the target in
megabytes, then click Add Target to add it to the list.

9. In Select File Location, click Browse to select the location for storing the
aggregate specification, a SQL script, and click Next.

10. (Optional) In Stopping Criteria, specify run constraints for the set of
recommendations.

11. (Optional) In Miscellaneous, specify the maximum size of any single aggregate, in
megabytes.

You can also specify the location of an XML output file that stores the criteria and
options from this session to re-use in a future Summary Advisor session.

12. In Run, click Run to generate recommendations using the Summary Advisor
process.

(Optional) You can click Stop at any point to stop the process. When Summary
Advisor stops or runs to completion, the aggregate recommendations are
displayed.

13. When the process completes, click Next.

14. In Filter Aggregates, review the current set of aggregate recommendations.

You can exclude certain aggregates from the creation process by deselecting the
Include option for that row.

15. On the Finish Script screen, review the script, and then click Finish to save the
script.

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-11



See Running the Aggregate Specification Against the Oracle BI Server.

Summary Advisor Stop Criteria Run Constraints
In the Summary Advisor wizard Stopping Criteria page, you can specify run constraints
for the set of recommendations.

Consider the following:

• You can specify the maximum time that Summary Advisor runs before returning
results.

• You can specify a minimum percentage improvement to performance gain of all
affected queries in the workload when adding a new aggregate.

Summary Advisor uses an iterative optimization algorithm. For each round of the
iteration, Summary Advisor Summary Advisor evaluates a different set of
aggregates. When you specify a minimum percentage improvement on this
screen, Summary Advisor compares the estimated gain between two consecutive
rounds, and stops when the incremental improvement is less than the specified
minimum percentage.

The following formula describes the estimated gain between rounds:

Estimated Gain = [(total query time at the beginning of the round) - 
(total query time at the end of the round)] / (Initial total query time 
prior to the first round)

For example:

– Initial total query time = 1000s

– End of Round 1:

Total query time = 500s

Gain = (1000 - 500)/1000 = 50%

– End of Round 2:

Total query time = 250s

Gain = (500 - 250)/1000 = 25%

Using the nqaggradvisor Utility to Run the Oracle BI Summary Advisor
You can use the Oracle BI Server utility nqaggradvisor to run the Summary Advisor
from the command line instead of using the Oracle BI Administration Tool.

After Summary Advisor statistics have been generated, use nqaggradvisor to generate
an aggregate specification script that you can then run to create the aggregates. The
nqaggradvisor utility is only available if you are running Oracle Business Intelligence on
the Oracle Exalytics Machine.

The location of the nqaggradvisor utility is:

BI_DOMAIN/bi/bitools/bin

Syntax

The nqaggradvisor utility takes the following parameters.

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-12



nQAggrAdvisor -d dataSource | -u userName | -o outputFile | 
-c tupleInQuotes [-p password] [-F factFilter] [-z maxSizeAggr]
[-g gainThreshold] [-l minQueryTime] [-t timeoutMinutes] 
[-s startDate] [-e endDate] [-C on/off] [-M on/off] [-K on/off]
            

Where:

dataSource is the ODBC data source name for the Oracle BI Server to which you want
to connect and run Summary Advisor.

userName is the user name with which to log into the data source. The specified user
must have the privilege required to open the Administration Tool in online mode and
use the Oracle BI Summary Advisor Wizard.

outputFile is the fully qualified path and file name of the output aggregate specification
script.

tupleInQuotes is the aggregate persistence target. You must specify the fully qualified
connection pool, fully qualified schema name, and capacity in megabytes.

password is the password corresponding to the userName . If not specified, the user is
prompted for a password when executing nQAggrAdvisor.

factFilter is the fact filter file name. The fact filter file contains the fully qualified names
of logical fact tables for which to generate Summary Advisor recommendations. Add
each logical fact table's fully qualified name on a separate line. If a fact filter file is not
specified, then all logical fact tables in the repository are included in the analysis.

maxSizeAggr is the maximum size of an aggregate in megabytes.

gainThreshold is the minimum percentage improvements to performance gain of all
affected queries in the workload required by Summary Advisor when adding a new
aggregate in its iterative optimization algorithm. Summary Advisor stops when this
value is not satisfied. The default value is 1.

minQueryTime is the minimum query time threshold in seconds for each logical table
source before it is included in the Summary Advisor execution. The default value is 0.

timeoutMinutes is the maximum time in minutes that Summary Advisor runs before
returning results. Specify 0 for unlimited. The default value is 0.

startDate is the start date for statistics to include in the Summary Advisor execution.

endDate is the end date for statistics to include in the Summary Advisor execution.

-C specifies whether to use optimizer estimates. Specify on or off. The default is off.

-M specifies which measures to include in the recommendation. Specify on to include
measures used in the workload. Specify off to include all measures in a logical fact
table including those measures that were not used in the workload analyzed by
Summary Advisor. The default is off.

-K specifies whether to use surrogate keys. Specify on or off. The default is on.

Examples

The following example shows how to correctly specify the tupleInQuotes parameter:

nQAggrAdvisor -d "AnalyticsWeb" -u "Administrator" -p "ADMIN" -o "C:\temp
\aggr_advisor.out.txt" -c "DW_Aggr"."Connection Pool","DW_Aggr".."AGGR",1000
            

Chapter 13
Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

13-13



The following example shows how to correctly specify the gainThreshold , startDate ,
and endDate parameters.

nQAggrAdvisor -d "AnalyticsWeb" -u "Administrator" -p "ADMIN" -o "C:\temp
\aggr_advisor.out.txt" -F "C:\temp\fact_filter.txt" -g 10 -c 
"TimesTen_instance1"."Connection Pool","dbo",2000 -s "2011-05-02 08:00:00" -e 
"2011-05-07 18:30:00" -C on -M on -K off

Using the Aggregate Persistence Wizard to Generate the
Aggregate Specification

You can use the Aggregate Persistence Wizard to create the SQL file used to create
and load aggregate tables and map them into the metadata.

Execute the resulting SQL file against a running Oracle BI Server.

Oracle recommends that you use the Aggregate Persistence Wizard because it
automatically enforces many of the constraints necessary when generating the
aggregate specification. However, you can manually write the aggregate Logical SQL
as an alternative to using the wizard.

Before you run the Aggregate Persistence Wizard, you must map the target database
where you plan to create the aggregates into the Physical layer. To do this, manually
create the necessary database, connection pool, and physical schema objects.

Note:

If you are running Oracle Business Intelligence on Oracle Exalytics machine,
you can use the Summary Advisor feature instead of the Aggregate
Persistence Wizard to identify which aggregates increase query performance
and to generate a script for creating the recommended aggregates.

See the following:

• Using Model Check Manager to Check for Modeling Problems

• Running the Aggregate Specification Against the Oracle BI Server

• Adding Surrogate Keys to Dimension Aggregate Tables

• Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation

• Writing the Create Aggregates Specification Manually

Note:

Because Model Check Manager runs queries against back-end data sources
for some checks, it is recommended to run it during off-peak periods. In
addition, it can take a long time to run Model Check Manager for large
repositories. Use Filtered by Statistics (where available), or run it only for
selected objects, to improve performance.

Chapter 13
Using the Aggregate Persistence Wizard to Generate the Aggregate Specification

13-14



1. Run Model Check Manager to ensure that your repository does not contain
modeling problems that can affect aggregate creation and performance.

2. Open your repository in the Administration Tool, if it is not open already.

You must run Model Check Manager in online mode. However, you can run the
Aggregate Persistence Wizard in either online or offline mode.

3. Select Tools , select Utilities , select Aggregate Persistence, and then click
Execute.

4. In Select File Location, specify the complete path and file name of the aggregate
creation script.

You can specify a new or an existing file name.

Typically, when you run the SQL script against the Oracle BI Server, it creates
DDL and runs it against the target database schema to create the aggregate
tables, then loads them from the source, and finally creates the Oracle BI Server
metadata so the aggregate navigation feature can use the new tables.

You can select Generate target DDL in a separate file if you want the DDL
stored in a separate file from the Oracle BI Server SQL script. Selecting this option
gives you the flexibility to alter the auto-generated DDL and run it independently of
the Oracle BI Server. For example, you may want to alter the storage parameter or
index settings.

When you select Generate target DDL in a separate file, two SQL scripts are
generated in the directory you specify in the Location field:

• The create aggregates script (script_name)

• The prepare aggregates script (script_name_DDL)

After selecting Generate target DDL in a separate file and completing the wizard
steps, you typically do the following:

a. Run the prepare aggregates script against the server. This action creates a
DDL file at the following location:

ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_obisn\
aggr

b. Run the generated DDL file against the target database to create the table.

c. Run the create aggregates script to populate the table.

Click Next after you have finished specifying options on the Select File Location
screen.

5. In the Select Business Measures screen, select the measures on which you want
to aggregate. To do this, select a business model in the upper pane, then select a
single fact table or a set of measures in the lower pane. You cannot select
measures that span multiple fact tables. Use Ctrl-click to select multiple measures,
or use Shift-click to select a range of consecutive measures.

Select Persist 'Count Distinct' measures as raw values to add the
as_raw_values clause to all valid count distinct measures and to set an aggregation
expression override on the corresponding logical column for each system-
generated aggregate logical table source. Setting this option enables aggregate
persistence to store actual values that are distinct-counted. If you do not select this
option, then aggregate persistence stores pre-computed counts for the specified
level combinations.

Chapter 13
Using the Aggregate Persistence Wizard to Generate the Aggregate Specification

13-15



The View Script button is not available during the creation of the first aggregate
table block.

Click Next after you have selected the appropriate measures.

6. In the Select Levels screen, specify the level of aggregation by selecting a logical
level for one or more dimensions. You can specify a surrogate key to use for the
fact-dimension join.

The default join option between the aggregated fact and dimension tables is the
primary key defined in the logical level you selected. If the primary key of the level
is large and complex, the join to the fact table is expensive, so using a surrogate
key is recommended in this case. A surrogate key is an artificially generated key,
usually a number. For example, a surrogate key in the level aggregate table would
simplify this join, removing unnecessary (level primary key) columns from the fact
table and resulting in a leaner fact table.

Using a surrogate key only changes the query response time, not the logical
results of the queries. However, generating the surrogate keys can have the side
effect of increasing the aggregate table load time. Therefore, the recommended
setting is as follows:

• If the primary key for the logical level you have selected is already a single,
numeric column, you typically should not select the Use Surrogate Key option
since it may add to load processing time without producing a performance
benefit.

• If the primary key for the logical level you have selected is a text string, or
consists of multiple logical columns, you typically should use a surrogate key
to improve the performance of the queries that join to that aggregate
dimension. However, keep in mind that generating the surrogate key can
increase the load time for that aggregate dimension table.

Click Next after you have selected the appropriate level of aggregation.

7. In the Select Connection Pool screen, select the appropriate items to specify a
location for the aggregate table.

A default aggregate table name is provided, and a prefix is added to the table
name. The default prefix for the generated fact table is ag. For tables created for
dimension (level) aggregates, the default prefix is SA_ . You can changed the prefix
by updating the AGGREGATE_PREFIX property in NQSConfig.INI.

Click Next after you have provided connection pool information.

8. In the Finish screen, the View Script button becomes available for use, and the
Logical SQL script appears for your review. Choose whether to define another
aggregate (default) or end the wizard, and then click Next.

9. In the Finish Script screen, the complete path and file name appears. Click Finish.

Using Model Check Manager to Check for Modeling
Problems

Learn how to use Model Check Manager to check for modeling problems that might
affect Oracle BI Summary Advisor and the aggregate persistence engine.

This section contains the following topics:

Chapter 13
Using Model Check Manager to Check for Modeling Problems

13-16



• About Model Check Manager

• Running Model Check Manager Using the Administration Tool

• Resolving Model Errors

• Checking Models Using the validaterpd Utility

About Model Check Manager
You can use the Model Check Manager to check your repository metadata for issues
that might affect the success of the Oracle BI Summary Advisor or the aggregate
persistence engine.

• The Model Check Manager requires access to the summary statistics table, when
using Filtered by Statistics, and back-end data sources for some checks. Some
of the back-end queries can impact performance, you should run the Model Check
Manager during off-peak periods.

• You can only run the Model Check Manager in online mode.

• The Model Check Manager does not make any changes to repository metadata.
The Model Check Manager only flags possible problems.

The Model Check Manager returns both error and warning messages. You must fix
errors identified by Model Check Manager. If you do not fix the errors, the Oracle BI
Summary Advisor could provide incorrect recommendations, and the aggregate
persistence engine could fail to create aggregates. You should fix warnings. Issues
identified by warnings result in suboptimal recommendations from Oracle BI Summary
Advisor, or suboptimal performance from the aggregate persistence engine.

Model Check Manager runs parallel queries against the database for better
performance. By default, 24 threads are enabled. To change the default number of
threads for model check manager, create and set an operating system environment
variable called MODEL_CHECKER_MAX_THREADS. The maximum number of threads you can
specify is 100.

Running Model Check Manager
For Oracle BI Summary Advisor, run Model Check Manager after you have gathered
Summary Advisor statistics, but before you run the Oracle BI Summary Advisor
Wizard.

To run Model Check Manager globally using the Administration Tool, select the File
menu, then select Check Models. You can use the following options:

• Complete: Checks all objects in the Business Model and Mapping layer of the
Oracle BI repository.

• Filtered by Statistics: Checks only fact table objects and associated dimensions
in the Business Model and Mapping layer that have been actively queried
according to the statistics table. Select this option to speed up the process for
large repositories.

This option is only available on the Oracle Exalytics Machine. If you attempt to
filter by statistics on a non-Exalytics system, or if you attempt to filter when the
statistics table is not available, a warning appears explaining that Model Check
Manager cannot filter by statistics.

Chapter 13
Using Model Check Manager to Check for Modeling Problems

13-17



See the following sections for information about setting up the Summary Advisor
statistics table:

– Setting Up the Statistics Database

– Turning On Usage Tracking

– Turning On Summary Advisor Logging

To run Model Check Manager for selected objects using the Administration Tool, right-
click one or more business models, dimension objects, or logical fact tables and select
Check Model. Then, choose Complete or Filtered by Statistics from the submenu,
as described in the preceding list. The Filtered by Statistics menu option is only
available for fact table objects and business model objects.

When using Model Check Manager with large repositories, it is recommended that you
use Filtered by Statistics, or run it only for selected objects, to improve performance.

• In the Oracle BI Administration Tool, from the File menu, select Check Models.

Resolving Model Errors
After running the Model Check Manager for one or more objects, the Model Check
Manager opens so that you can correct errors in the repository.

Run the Oracle BI Administration Tool in online mode.

1. In the Model Check Manager results, double-click a row to open the Properties
dialog, or select a row and click Go To.

2. Correct the problems using the information in the Error Description.

3. Rerun the Model Check to verify that all of the issues are resolved.

Checking Models Using the validaterpd Utility
You can check models from the command line using the Oracle BI Server validaterpd
utility with the -L option.

Running this utility with -L performs the same model checks as Model Check Manager
in the Administration Tool. The validaterpd utility is available on both Windows and
UNIX systems.

To run validaterpd in Model Check mode, you must specify the DSN of a running
Administration Tool.

The location of the validaterpd utility is:

BI_DOMAIN/bi/bitools/bin

See Using the validaterpd Utility to Check Repository Consistency.

Syntax

The validaterpd utility takes the following parameters in Model Check mode:

validaterpd -L -D DSN_name -U DSN_user_name [-P DSN_password] 
{-O output_txt_file_name |-C output_csv_file_name | -X output_xml_file_name} [-W]
[-S] [-8]
            

Chapter 13
Using Model Check Manager to Check for Modeling Problems

13-18



Where:

-L: Specifies Model Check mode.

-D: The DSN of a running Oracle BI Server.

-U: The user name for the Oracle BI Server DSN.

-P: The password for the Oracle BI Server DSN.

The password argument is optional. If you do not provide the password argument, you
are prompted to enter the password when you run the command. To minimize the risk
of security breaches, Oracle recommends that you do not provide password
arguments either on the command line or in scripts.

Note:

The password argument is supported for backward compatibility only. For
scripting purposes, you can pass the password through standard input.

-O Use this option to output the results in a text file.

-C Use this option to output the results in a CSV file.

-X Use this option to output the results in an XML file.

-8 Use this option to specify UTF-8 output (optional).

-W You can include a whitelisted objects file. This text file specifies a limited number of
logical objects that you want to check. Enter the fully-qualified name of each logical
object on a single line. If -W is not specified, all logical objects are checked.

-S Use this option to check only objects that have been actively queried according to
the statistics table. If -S is not specified, all objects are checked. If -W is also specified,
the white list file can only contain business models and logical fact tables, other
objects are not checked. This option is only available on the Oracle Exalytics machine.

Examples

validaterpd -L -D DSNName -U Username -O results.txt
Give password: my_dsn_password
            

The preceding example connects to an RPD using the DSNName connection, checks
all models in the RPD, and writes output to results.txt.

validaterpd -L -D DSNName -U Username -O results.txt -W whitelist.txt -S
Give password: my_dsn_password
            

The preceding example connects to an RPD using the DSNName connection,
performs a model check, and writes output to results.txt. Only objects listed in
whitelist.txt are checked. Furthermore, because -S is specified, only objects that have
been actively queried according to the statistics table are checked.

When -W and -S are both specified, the whitelist can only contain business models and
logical fact tables. Other objects are not checked.

Chapter 13
Using Model Check Manager to Check for Modeling Problems

13-19



Writing the Create Aggregates Specification Manually
You can write the script file manually, instead of using the Aggregate Persistence
Wizard to create the script file. Oracle recommends that you use the Aggregate
Persistence Wizard.

If you do not want the Oracle BI Server to modify your databases during aggregate
creation, then you can specify this in the Aggregate Persistence Wizard by selecting
the option Generate target DDL in a separate file. The Aggregate Persistence
Wizard creates a DDL file, the prepare aggregates script, that you can use to create
the empty aggregate tables. After this, you need to run the create aggregates script to
populate the aggregate tables. This option provides some flexibility in case the
database access to create tables is restricted. You must run the prepare aggregates
script before you run the create aggregates script.

This section contains the following topics:

• What Constraints Are Imposed During the Create Process?

• Writing the Create Aggregates Specification

• Adding Surrogate Keys to Dimension Aggregate Tables

What Constraints Are Imposed During the Create Process?
You can learn about constraints are imposed during the create process.

The following constraints are imposed during the create process:

• Valid measures

A valid measure must have a valid aggregation rule. The following constraints
apply to level-based measures:

– If the level is grand total alias, then that dimension must not be present in the
list of levels for that aggregate specification.

– Any other level defined for this measure must be present in the list of levels for
that aggregate specification.

If the above constraints are not met, then the entire aggregate specification is
discarded. In addition, a measure is ignored by the create process if any of the
following conditions are true:

– Measure is mapped to a session or repository variable.

– Measure is a derived measure.

– Measure has a default aggregation rule of None.

Measures that are ignored do not necessarily affect the aggregate specification.
The remaining measures are used to create the aggregate.

• Valid levels

A valid level must have a valid primary key. If a level is invalid, the aggregate
specification is discarded. Attributes of a level or its primary key are ignored if any
of the following conditions are true:

– Attribute is mapped to session or repository variables.

Chapter 13
Writing the Create Aggregates Specification Manually

13-20



– Attributes are not from the same logical table.

• Valid aggregate specification

A valid aggregate specification has the following properties:

– Name length is between 1 and 18 characters (inclusive).

– Specify at least one valid level.

– Specify at least one valid measure.

– Must have a valid connection pool.

– Must have a valid output container (database/catalog/schema).

– Connection pool and container must belong to the same database.

– Only one level per dimension can be specified.

– Measures can only be from the same fact table.

– All logical components of the specification must be from the same subject
area.

An aggregate specification is ignored if the name already exists in the output
container, because level aggregates are reviewed by the entire database.
However, if different catalogs or schemas are specified for the same fact
aggregate name, it is allowed to have multiple facts with the same name but
different scope in the same database.

The aggregate specification is discarded if any dimension is not joined to a fact.

Writing the Create Aggregates Specification
All metadata names, except logical fact columns, are fully qualified.

There are two modes of operation: Create and Delete. It is strongly recommended that
you place all aggregate specifications under a single Create Aggregates statement.

See Adding Surrogate Keys to Dimension Aggregate Tables.

Delete Statement for Aggregate Specification
Begin the script file with a Delete statement. It is essential to delete system-generated
aggregates before creating new ones.

This ensures that data is consistent and removes invalid or incomplete aggregates
before you run the Create operation. The following statement is the syntax for deleting
aggregates:

Delete aggregates [list of fully qualified physical table names];

For example:

Delete aggregates "src".."INCR"."fact_1", "src".."INCR"."fact_2";

You can include a comma-separated list of physical tables to delete. You must include
system-generated tables from a previous run of the aggregate creation script. Any
dimension tables joined to listed fact tables are also deleted.

If a dimension table is joined to more than one fact table, you cannot delete the table
unless the other joined table is also deleted.

Chapter 13
Writing the Create Aggregates Specification Manually

13-21



In addition to fact tables, you can also use the Delete statement to delete orphan
dimension tables, these are dimension tables that are not joined to any other fact
table. Orphan dimension tables sometimes occur when aggregate creation fails.

The Delete statement also removes the logical key and logical column that were
added to the time dimension's logical table when chronological keys were added for
aggregate persistence.

Create Statement for Aggregate Specification
The Create statement should follow the Delete statement.

The following is the syntax for creating aggregates:

Create|Prepare aggregates 
aggr_name_1
for  logical_fact_table_1 [(logical_fact_column_1, logical_fact_column_2, 
count_distinct_logical_fact_column_1 as_raw_values, ...)]   
at levels (level_1, level_2, …)
using connection pool connection_pool_name_1
in schema_name_1
[ ,aggr_name_2
for logical_fact_table_3 [(logical_fact_column_5, logical_fact_column_2,…)]   
at levels (level_3, level_2, …)
using connection pool connection_pool_name_2
in schema_name_2] ;

The as_raw_values must accompany a count-distinct measure with a simple aggregate
rule. A simple aggregate rule has only one rule, which is not dimension-based.

Multiple Aggregates in Aggregate Specification
Use these guideline to specify multiple aggregates in a single Create Aggregates
statement.

• Ensure that each of the multiple aggregate specifications are separated by a
comma, and the entire aggregate creation script is terminated with a semicolon.

• In this file, only one Delete Aggregates statement should be specified at the
beginning. Make sure that only one delete is issued per ETL run, unless a reset is
needed.

Note:

Any aggregate scripts that are run after the first one should not have a
Delete Aggregates statement, or all previously created aggregates are
removed.

Where Clause for Aggregate Specification
You can add an optional Where clause to the Create statement.

The Where clause filters the data that you want to aggregate and creates fragmented
aggregates, or aggregates for only a fragment of data in the base fact table. The
Where clause also sets the Fragmentation content field located on the Logical Table

Chapter 13
Writing the Create Aggregates Specification Manually

13-22



Source dialog. In most cases, the creation of fragmented aggregates maximizes query
acceleration while minimizing the cost of creating and maintaining the aggregate.

The following examples show when you would use fragmented aggregates:

• If you are working with the time dimension and want your aggregates to include
data only from the last three years.

• If your company reports primarily on revenue in the United States and wants the
aggregates to include only United States data.

The following is an example of a valid Create statement with the Where clause:

Create Aggregates
Revenue_By_Year
for  "sales"."sales" at levels("sales".timedim.year)   
where("sales"."time"."calendar year"=2007)
using connection pool aggrtarget.cp1
in aggrtarget..schema1

Logical Column Requirements

The logical column that you specify in the Where clause must meet the following
requirements:

• The logical column must belong to a dimension.

• If the logical column belongs to a dimension included in the aggregate
specification, then it must be at or above the level of the aggregate.

• If you use operational_oper, then the logical column's data type must match the
constant's data type in inlist.

If you use inclusion_oper, then the logical column's data type must match all the
constants' data type in inlist.

Where Clause Grammar

The grammar for the Where clause in the create aggregate specification is a subset of
the Where grammar for a Logical SQL filter. The grammar the Oracle BI Server
supports for the create aggregate specification differs slightly from the Logical SQL
filter.

Review the following Create statement and its Where clause:

create aggregate aggr1 for fact1 at levels(11,12...) where (filter_list) using ....

The following are the acceptable grammar rules:

filter_list ::= filter logical_oper filter_list

    | filter

    | '(' filter_list ')'

filter ::= logical_column relational_oper constant

    | logical_column inclusion_oper '(' inlist ')'

relational_oper ::= '=' | '!=' | '<' | '>' | '<=' | '>=' | 'like'

inlist ::= constant ',' inlist

    | constant

Chapter 13
Writing the Create Aggregates Specification Manually

13-23



logical_oper ::= 'and' | 'or'

inclusion_oper ::= 'in' | 'not in'

Adding Surrogate Keys to Dimension Aggregate Tables
The join option default between fact and level aggregate tables uses primary keys
from the level aggregate.

If the primary key of the level is large and complex, that is composed of many
columns, then the join to the fact table is expensive. A surrogate key is an artificially
generated key, usually a number. A surrogate key in the level aggregate table
simplifies the join and removes unnecessary columns (level primary key) from the fact
table, resulting in a smaller-sized fact table. Adding surrogate keys to the dimension
(level) aggregate tables can simplify joins to the fact tables and might improve query
performance. A surrogate key ensures that each aggregate table has a unique
identifier.

It is possible for sharing a level among multiple fact tables. One fact might use
surrogate keys, and another might use primary keys from the dimension aggregate.
The following are some options for resolving this issue:

• Set a metadata property for levels that indicates whether to use surrogate keys or
primary keys.

• Always create a surrogate key for a level aggregate. You can decide later after
observing performance if you should create a fact aggregate using a surrogate or
primary key.

You could specify using surrogate keys for the entire star which results in simpler
syntax, restricts the available user options, and slows the aggregate creation process.

About the Create/Prepare Aggregates Syntax
The syntax for create/prepare aggregates contains the change for
Using_Surrogate_Key.

You can specify a surrogate key option for each level. If unspecified, the fact and
dimension tables are joined using the primary key from the level aggregate.

Create|Prepare aggregates 
aggr_name_1
[file output_file_name]
for  logical_fact_table_1 [(logical_fact_column_1, logical_fact_column_2,…)]   
at levels (level_1 [Using_Surrogate_Key], level_2, …)
using connection pool connection_pool_name_1
in schema_name_1
[ ,aggr_name_2
for logical_fact_table_3 [(logical_fact_column_5, logical_fact_column_2,…)]   
at levels (level_3, level_2, …)
using connection pool connection_pool_name_2
in schema_name_2] ;

About Surrogate Key Output from Create/Prepare Aggregates
The changes to the current process are restricted to the physical metadata layer in the
repository and the database.

Chapter 13
Writing the Create Aggregates Specification Manually

13-24



• For a level aggregate in the physical metadata, the Using_Surrogate_Key join option
does the following:

The level aggregate table has a new column called levelName_upgradeIDSK, check
for collisions. This is the surrogate key column for the dimension aggregate. The
levelName is truncated if the total number of characters exceeds 18.

• For a level aggregate in the database, the Using_Surrogate_Key join option does the
following:

The level aggregate table also has a corresponding column called
levelName_upgradeIDSK. You can populate the table using RCOUNT().

• For a fact aggregate in the physical metadata, the Using_Surrogate_Key join option
does the following:

– The fact aggregate table no longer contains columns from the level's primary
keys.

– Instead, a new column that corresponds to the level aggregate's surrogate key
is added to the table.

– The type of this column is identical to the level's surrogate key.

– The column has the same name as that in the level aggregate, and checks for
collisions.

– The fact table and the level table are joined using this surrogate key only.

• For a fact aggregate in the database, the Using_Surrogate_Key join option does the
following:

The fact aggregate table has the corresponding surrogate key. The table is
populated using new capabilities available through Populate.

Running the Aggregate Specification Script
Learn how to run the aggregate specification script against the Oracle BI Server.

Before you run the script, you must create an ODBC DSN (data source Name) for the
Oracle BI Server and ensure that the correct log level is set. You must manually create
a DSN for the Oracle BI Server to run the aggregate specification against for a single-
node deployment. When the deployment is a multi-node cluster, you must run the
aggregate specification directly against the source Oracle BI Server. Create a non-
clustered DSN for the source Oracle BI Server to run the aggregate specification
against. Use the Cluster Manager in the Administration Tool in online mode to
determine which Oracle BI Server is the source.

Chapter 13
Running the Aggregate Specification Script

13-25



Note:

In a clustered environment, the aggregate specification script performs a
rolling restart of the destination Oracle BI Servers in the background. As a
best practice, you should avoid making other configuration changes in
Fusion Middleware Control or the configuration files while running the
aggregate persistence script. Only the destination servers are restarted in
the rolling restart. Changing the configuration, might send the Oracle BI
Server a different set of configuration settings than the destination Oracle BI
Servers. If the configuration changed, restart the source Oracle BI Server.

After creating a DSN, you can execute the script using nqcmd as a user who is a
member of the BI Administrators group. See Using nqcmd to Test and Refine the
Repository.

The queries and errors are logged to nqquery.log when using an Oracle BI EE 11g
version. When using Oracle BI EE 12c, the queries and errors are logged in the
obis1_query.log located in the DOMAIN_Home/servers/obis1/logs.

See “Integrating Other Clients with Oracle Business Intelligence” in Integrator's Guide
for Oracle Business Intelligence Enterprise Edition for information about how to create
an ODBC DSN for the Oracle BI Server .

Trace logs are recorded if the logging level is at least 2. The logging events include the
aggregate execution plan and the order in which the aggregates are created and
deleted. Higher logging levels provide more details about the query and execution
plans - for example, specify logging level 4 or higher to see the queries being
executed. Error logs are recorded if the logging level is at least 1, and to nqserver.log
regardless of the logging level.

Use one of the following methods to set the logging level:

• Set the logging level in the repository user object for the user who plan to run the
script. See Managing the Query Log in System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition.

• Create and set the LOGLEVEL system session variable. LOGLEVEL overrides
logging levels set on individual users. See Creating Session Variables.

1. Connect directly to a DSN for a running Oracle BI Server and not to a clustered
DSN.

2. Set an appropriate logging level, least 2, before executing the script.

3. edit the aggregate creation script directly to set the logging level as a request
variable in each delete aggregates or create aggregates statement, for example:

set variable LOGLEVEL=7 : delete aggregates;
set variable LOGLEVEL=7 : create aggregates... ;

Use a colon as a delimiter when setting request variables using nqcmd.

4. As a member of the BI Administrators group, use nqcmd to connect to the non-
clustered DSN for the Oracle BI Server that you created in step 1.

5. Run the aggregate specification script.

Chapter 13
Running the Aggregate Specification Script

13-26



After executing the SQL script, aggregates are created and persisted in the Oracle BI
Server metadata, as well as, in the back-end databases.

When a series of aggregates are being created, and the creation of one aggregate
fails, the aggregate persistence engine skips creation of the failed aggregate and its
dependencies and proceeds to the next aggregate in the list.

Check the log files to identify failed aggregates. If orphan aggregate dimensions, those
not joined to any other fact table, were created, use the Delete Aggregates command to
remove them.

Life Cycle Use Cases for Aggregate Persistence
The table summarizes the user tasks to persist aggregates for different life cycle use
cases.

Life cycle use cases focus on operations against single or multiple aggregate
persistence targets, and do not describe operations for single or multiple-node
deployments. User tasks are the same for both single-node deployments and multiple
node deployments with the only difference is related to a clustered deployment. In a
clustered deployment, you must connect to the controllerOracle BI Server. A rolling
restart of the subordinate servers is performed in the background. See Running the
Aggregate Specification Script.

Num
ber

Use Case Description

1 Creating aggregates for
a single aggregate
persistence target

To only create aggregates, modify the aggregate creation script to remove the
delete aggregates statement at the beginning. Then, use nqcmd to run the script.

2 Deleting aggregates for
a single aggregate
persistence target

To delete aggregates, use nqcmd to run the delete aggregates statement directly,
as follows:

Delete aggregates [list of fully qualified physical fact table names];

For example:

Delete aggregates;

or

Delete aggregates "src".."INCR"."fact_1", "src".."INCR"."fact_2";

3 Refreshing aggregates
for a single aggregate
persistence target

Use nqcmd to run the aggregate creation script, which contains statements to first
delete, then create the aggregates.

Alternatively, you can manually delete the aggregates as described in use case
2, then create aggregates as shown in use case 1. This manual method is useful
for situations where you want to delete all aggregates, but the aggregate
creation script only specifies certain aggregates to be deleted.

Chapter 13
Life Cycle Use Cases for Aggregate Persistence

13-27



Num
ber

Use Case Description

4 Creating aggregates for
multiple redundant
aggregate persistence
targets

To create aggregate clones on multiple targets, modify the aggregate creation
script to copy the create aggregates statements as many times as you have
targets.

For example, say you have a script containing the following create aggregates
statement:

set variable LOGLEVEL=7 : create aggregates
"myfactaggr"
for "FACT_1"("MEASURE_1")
at levels ("INCR"."DIM1_LEVEL1Dim"."DIM1_LEVEL1 Detail")
using connection pool "tgt1"."cp"
in "tgt1".."double1";

You would then copy the block, paste it below the first block, and modify the
connection pool and schema information for your second target. For example:

set variable LOGLEVEL=7 : create aggregates
"myfactaggr"
for "FACT_1"("MEASURE_1")
at levels ("INCR"."DIM1_LEVEL1Dim"."DIM1_LEVEL1 Detail")
using connection pool "tgt2"."cp"
in "tgt2".."double2";

After you have copied and modified the block for all your targets, save the script.
Then, use nqcmd to run the aggregate creation script.

5 Deleting aggregates for
multiple aggregate
persistence targets

To delete aggregates on multiple targets, use nqcmd to run the delete aggregates
statement directly for the affected fact tables. For example:

set variable LOGLEVEL=7 : delete aggregates
"tgt1".."double1"."myfactaggr";
set variable LOGLEVEL=7 : delete aggregates
"tgt2".."double2"."myfactaggr";

6 Refreshing aggregates
for multiple redundant
aggregate persistence
targets

See Using Double Buffering to Refresh Highly Available Aggregates.

7 Refreshing aggregates
for multiple partitioned
aggregate persistence
targets

In some cases, you might have different aggregates partitioned across multiple
targets. This approach maximizes memory use, but does not provide highly
available aggregates. To refresh partitioned aggregates, use one of the following
methods as appropriate for your deployment:

• Run the Aggregate Persistence Wizard multiple times against the different
targets to generate a set of aggregate creation scripts, then run the scripts.

• If you are running Oracle Business Intelligence on the Oracle Exalytics
Machine, run Oracle BI Summary Advisor and specify multiple targets in the
Targets screen. Then, run the aggregate creation script.

Chapter 13
Life Cycle Use Cases for Aggregate Persistence

13-28



Using Double Buffering to Refresh Highly Available
Aggregates

When you have aggregate clones across multiple aggregate persistence targets, you
can use double buffering to avoid downtime when refreshing the aggregates.

You manually call the aggregate create and delete SQL statements in a way that
controls the refresh to set up double buffering.

You start by deleting aggregates on the first target. Next, you create the aggregates on
the first target, specifying the targets where aggregates have not yet been deleted as
inactive schemas, so that the old data is not used in the refresh. Then, you repeat this
process for each target. You do not need to specify inactive schemas when refreshing
the last target because by that point, the data in the other schemas has already been
refreshed.

When specifying inactive schemas, set the request variable INACTIVE_SCHEMAS
before the create aggregates statement, for example:

set variable INACTIVE_SCHEMAS='"tgt2".."double2"' :

Only specify schemas that have not yet been refreshed as inactive schemas. Do not
specify a schema that has already been refreshed or that you have just deleted.

When specifying multiple inactive schemas, use a comma-separated list. Make sure
there are no spaces in the list.

The Refreshing Aggregate Clones on Two Targets example show to use double
buffering to refresh aggregates on two targets.

Note:

When you have aggregate clones across multiple aggregate persistence
targets, the additional instances are hot-spares that take over the query load
while the initial instance is being refreshed. The aggregate clones are not
used for load balancing the incoming queries.

Refreshing Aggregate Clones on Two Targets

Assume that you have the following aggregate clones on targets tgt1 and tgt2:

"myfactaggr"
for "FACT_1"("MEASURE_1")
at levels ("INCR"."DIM1_LEVEL1Dim"."DIM1_LEVEL1 Detail")
using connection pool "tgt1"."cp"
in "tgt1".."double1",

"myfactaggr"
for "FACT_1"("MEASURE_1")
at levels ("INCR"."DIM1_LEVEL1Dim"."DIM1_LEVEL1 Detail")
using connection pool "tgt2"."cp"
in "tgt2".."double2";

1. Delete the aggregate clone for the first target:

Chapter 13
Using Double Buffering to Refresh Highly Available Aggregates

13-29



set variable LOGLEVEL=7 : delete aggregates "tgt1".."double1"."myfactaggr";

2. Create the aggregate for the first target, making sure to specify the second target
as an inactive schema so that the data is not used in the refresh:

set variable LOGLEVEL=7, INACTIVE_SCHEMAS='"tgt2".."double2"' : create aggregates
"myfactaggr"
for "FACT_1"("MEASURE_1")
at levels ("INCR"."DIM1_LEVEL1Dim"."DIM1_LEVEL1 Detail")
using connection pool "tgt1"."cp"
in "tgt1".."double1";

3. Delete the aggregate clone for the second target:

set variable LOGLEVEL=7 : delete aggregates "tgt2".."double2"."myfactaggr";

4. Create the aggregate for the second target. Because the first target has already
been refreshed, do not specify any inactive schemas:

set variable LOGLEVEL=7 : create aggregates
"myfactaggr"
for "FACT_1"("MEASURE_1")
at levels ("INCR"."DIM1_LEVEL1Dim"."DIM1_LEVEL1 Detail")
using connection pool "tgt2"."cp"
in "tgt2".."double2"; 

Creating Aggregates on TimesTen Sources
These topics describe configuration steps and features related to aggregate creation
on TimesTen sources.

To create aggregates with compressed tables in TimesTen, you must enable
COMPRESSED_COLUMNS in the Features tab of the Database dialog in the Oracle
BI Administration Tool. See Specifying SQL Features Supported by a Data Source.

This section contains the following topics:

• Enabling PL/SQL for TimesTen

• Enabling Performance Enhancement Features for TimesTen

See Oracle Exalytics for specific instructions on setting up TimesTen sources.

Enabling PL/SQL for TimesTen
To create aggregates on TimesTen sources, you must ensure that PL/SQL is enabled
for the instance, and that the PL/SQL first connection attribute PLSQL is set to 1.

You can enable PL/SQL at install time, or run the ttmodinstall utility to enable it post-
install, see Oracle TimesTen In-Memory Database Installation Guide.

Enabling Performance Enhancement Features for TimesTen
You can disable redo logging and run database checkpoints in the background to
enhance performance.

1. Edit the obis.properties file located at BI_DOMAIN\config\fmwconfig\bienv\obis.

2. Add the following TimesTen variables:

• ORACLE_BI_TT_DISABLE_REDO_LOGGING=1

Chapter 13
Creating Aggregates on TimesTen Sources

13-30



The ORACLE_BI_TT_DISABLE_REDO_LOGGING=1 element disables redo-logging,
enabling faster creation of aggregates.

Set the ORACLE_BI_TT_DISABLE_REDO_LOGGING=1 element to 0 (zero), to disable
the feature.

• ORACLE_BI_TT_BACKGROUND_CHECKPOINT_INTERVAL=10

The ORACLE_BI_TT_BACKGROUND_CHECKPOINT_INTERVAL element changes how often
TimesTen flushes its data to disk. If the element is missing, the default is every
10 seconds. If you explicitly set
ORACLE_BI_TT_BACKGROUND_CHECKPOINT_INTERVAL=N, for example, to 10, the flush
to disk occurs every N seconds, 10 as in this example. If you set
ORACLE_BI_TT_BACKGROUND_CHECKPOINT_INTERVAL to 0 (zero) background flushing
is disabled. Enabling background flushing speeds up creation of aggregates,
by avoiding a large blocking flush at the end of the aggregate creation
process.

3. Save and close the obis.properties file.

4. Restart the Oracle BI Server.

Chapter 13
Creating Aggregates on TimesTen Sources

13-31



14
Applying Data Access Security to
Repository Objects

Learn about data access security available for Oracle BI repository objects.

Data access security controls the right to view and modify data. You can use the
following data access security methods:

• Row-level security.

• Object permissions.

• Query limits.

Tasks required to implement data access security include managing users, groups,
and application roles, setting up custom LDAP servers, and managing custom
authenticators, are covered in Security Guide for Oracle Business Intelligence
Enterprise Edition.

• Setting up SSL connections.

• Defining application roles and functional groups.

You must create users and application roles before you can implement data
access security.

• Assigning users to application roles and functional groups.

• Setting up LDAP servers.

• Defining and managing custom authenticators.

In the Oracle BI Administration Tool use online mode to implement data access
security. If you are using offline mode, see About Applying Data Access Security in
Offline Mode.Oracle Business Intelligence usage tracking performs data access
security auditing. See Managing Usage Tracking in System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition.

This chapter contains the following topics:

• About Data Access Security

• Row-Level Security

• Setting Up Row-Level Security

• Object Permissions

• Setting Up Object Permissions

• Overview of User and Application Role Commands

• Rename Application Role Command

• Delete Application Role Command

• Rename Users Command

• Delete Users Command

14-1



• Setting Query Limits

• About Applying Data Access Security in Offline Mode

About Data Access Security
After developing your metadata repository, you need to set up your data access
security architecture.

Data access security accomplishes the following goals:

• Protects business data from unauthorized access.

• Protects your repository metadata such as measure definitions.

• Prevents individual users from damaging overall system performance.

You can implement and enforce row-level data security in both the repository and in
the database. Object permissions and query limits are set up in the repository and are
enforced only by the Oracle BI Server.

If you choose to implement row-level security in the database, you should also
implement object permissions and query limits in the repository. Database-level object
restrictions on individual tables or columns, and other objects do not prevent users
without access from seeing these repository objects. However, queries against those
tables, columns, and other objects fail. You should set up object permissions in the
repository to hide these objects from all clients.

Because a variety of clients can connect to the Oracle BI Server, you cannot
implement or enforce data security in Oracle BI Presentation Services. You can use
the Oracle BI Presentation Services set of security controls that enable setting up
privileges to access functionality in the Oracle Business Intelligence user interface, as
well as dashboards and analyses objects. If you only implement security controls in
Oracle BI Server, the repository and database are exposed to SQL injection hacker
attacks and other security vulnerabilities. You must provide object-level security in the
repository to create rules that apply to all incoming clients.

Where to Find Information About Security Tasks
The table lists the location of security task information for Oracle Business Intelligence.

Task Location

Setting up user
authentication with the
default authentication
provider or an alternative
authentication provider

Managing Security Using the Default Security Configuration in
Security Guide for Oracle Business Intelligence Enterprise
Edition

Creating and managing
users and groups in the
default authentication
provider

Managing Users and Groups in the Embedded WebLogic LDAP
Server in Security Guide for Oracle Business Intelligence
Enterprise Edition

Creating application roles
and managing policies in the
default policy store

Managing the Policy Store in Securing Applications with Oracle
Platform Security Services

Chapter 14
About Data Access Security

14-2



Task Location

Viewing and understanding
the default Oracle Business
Intelligence permissions
used with application roles
in the policy store

Default Permissions in Security Guide for Oracle Business
Intelligence Enterprise Edition

Applying data access
security in offline mode and
setting up placeholder
application roles

About Applying Data Access Security in Offline Mode

Setting up row-level data
security

Setting Up Row-Level Security

Setting repository object
permissions

Setting Up Object Permissions

Setting query limits
(governors)

Setting Query Limits

Setting up single sign-on
(SSO)

Enabling SSO Authentication in Security Guide for Oracle
Business Intelligence Enterprise Edition

Enabling SSL
communication

SSO Configuration in Oracle Business Intelligence in Security
Guide for Oracle Business Intelligence Enterprise Edition

Managing custom
authenticators

Authenticating by Using a Custom Authenticator Plug-In in
Security Guide for Oracle Business Intelligence Enterprise
Edition

Row-Level Security
Oracle Business Intelligence requires row-level security in the database.

You can configure your connection pools so that the Oracle BI Server passes the
credentials for each user to the database.

The database uses the credentials to apply the database’s row-level security rules to
user queries.

Row-level database security is different from database authentication. See About
Authentication in the Security Guide for Oracle Business Intelligence Enterprise
Edition. Row-level database security provides database authorization and applies
access security to specific rows in the database.

The image shows how row-level security is enforced in the database for Oracle
Business Intelligence queries. The security rules are applied to all incoming clients and
cannot be breached, even when the Logical SQL query is modified. In this example,
the results returned are different depending on the user that generated the query, even
though the SQL query generated by the Oracle BI Server is the same. The returned
results are based on rules created and enforced in the database.

Chapter 14
Row-Level Security

14-3



You must define the users, permissions, and security policies in the database. Refer to
your database documentation for more information.

When setting up row-level security consider the following configuration information:

• Row-level security does not work when SSO is used, or for any cases that involve
impersonation such as Delivers, because the password for the end user is not
available to the Oracle BI Server.

• A connection script can be used to achieve the same functionality for Oracle
Database data sources.

• For Essbase or Hyperion Financial Management data sources, the connection
pool displays an additional option to implement SSO.

Setting Up Row-Level Security
You can choose to set up row-level security in the repository, or in the database.

Implementing row-level security in the repository provides many benefits, including the
following:

• All users share the same database connection pool for better performance

• All users share cache for better performance

• You can define and maintain security rules that apply across many federated data
sources

Implementing row-level security in the database, in contrast, is good for situations
where multiple applications share the same database. When you design and
implement row-level security in the database, you should also define and apply object
permissions in the repository.

Chapter 14
Row-Level Security

14-4



Although it is possible to set up row-level security in both the repository and in the
database, you typically do not enforce row-level security in both places unless you
have a particular need to do so.

This section contains the following topics:

• Setting Up Data Filters in the Repository

• Setting Up Row-Level Security in the Database

Data Filters
Use the Oracle BI Administration Tool to define data filters on repository objects for
specific application roles.

You typically do not set up data filters if you have implemented row-level security in
the database, because in this case, your row-level security policies are being enforced
by the database rather than the Oracle BI Server.

You can set data filters for objects in the Business Model and Mapping layer and the
Presentation layer. Applying a filter on a logical object impacts all Presentation layer
objects that use the object. If you set a filter on a Presentation layer object, it is applied
to the object along with any other filters that are set on the underlying logical objects.

The image shows how data filter rules are enforced in the Oracle BI Server. The
security rules are applied to all incoming clients and cannot be breached, even when
the Logical SQL query is modified.

In this example, a filter has been applied to an application role. When Anne Green,
who is a member of that role, sends a request, the return results are limited based on
the filter. Because no filters have been applied to the application roles for the
Administrator user, all results are returned. The Oracle BI Server-generated SQL takes
into account any data filters that have been defined.

Chapter 14
Row-Level Security

14-5



Setting Up Data Filters in the Repository
Use these steps to assign data filters to enforce row-level security rules in the
repository.

You should always set up data filters for a specific application roles rather than for
individual users.

To create filters, you first select objects from subject areas on which you want to apply
the filters. Then, you provide the filter expression information for the individual objects.
For example, you might want to define a filter like "Sample Sales"."D2 Market"."M00 Mkt
Key" > 5 to restrict results based on a range of values for another column in the table.

If you are in offline mode, and application roles do not appear in the Identity Manager,
see About Applying Data Access Security in Offline Mode.

You can also use repository and session variables in filter definitions. Use Expression
Builder to include these variables to ensure the correct syntax.

When a repository object such as a logical fact table is accessed by multiple
application roles with different levels of access, create functional groups to prevent
application roles from viewing data restricted from view by that specific application
role. For example, you want your regional sales associates to see the revenue for a
quarter in their assigned region, but you don’t want your regional sales associate to
see to total segment sales for all of the regions, to avoid exposing sensitive
information, you create functional groups with different levels of access as appropriate
for the specific application role to the filter. See Specifying a Functional Group for an
Application Role.

1. In the Oracle BI Administration Tool, open your repository.

2. Select Manage, then select Identity.

3. In the Identity Manager dialog, double-click an application role.

4. In the Application Role dialog, click Permissions.

5. In the Application Role Permissions dialog, click the Data Filters tab.

6. From the Subject Area list, select a repository object to use in the filter.

7. Do one of the following:

• Click Add button to browse to locate the object to use, and then click Select.

• Double-click the Name field in an empty row, then browse to locate the object,
and double-click to select the object.

8. Select the data filter to define, click the Expression Builder icon.

9. In the Expression Builder, define the condition using the repository objects and
operators.

10. (Optional) From the Status list.

11. Click OK, then click OK again to return to the Identity Manager.

Chapter 14
Row-Level Security

14-6



Specifying a Functional Group for an Application Role
Use these steps to specify a functional group for application roles with different data
access filters on the same repository object, usually a logical fact table.

When there are no functional groups defined, all the security filters applied to a given
table, regardless of the associated role, and are combined using the OR operator. Using
the OR operator works in most cases because a user can view a union of all the rows
selected by the security filters. For example, consider the following filters:

Role A is assigned the filter, Product = 'Coke'

Role B is assigned the filter, Product = 'Pepsi'

If a user is given Role A and Role B, then the user can view data for both the Coke
and Pepsi products.

When the two security filters from the same table are combined in the query, the filter
conditions are combined using the OR operator, this is appropriate for most security
filters defined on dimension tables, for example:

Product = 'Coke' OR Product = 'Pepsi'

Using functional groups are necessary is when securing a single fact table, using data
filters from different dimensions.

In this example, a fact table is secured using the following filters:

Role A is assigned the filter, Product = 'Coke'

Role B is assigned the filter, Product = 'Pepsi'

Role C is assigned the filter, Region = 'Southwest'

If you do not use functional groups, a user with roles A, B, and C would have all three
filter conditions combined in the query using the OR operator, for example:

(Product = 'Coke' OR Product = 'Pepsi' OR Region = 'Southwest')

Combining the results of Role A, B, and C does not make sense because Product and
Region are independent dimensions. Combining data filters from different dimensions
using OR operator provides the user access to more data values than the user should
view.

In this example, the user can see data for all products within the Southwest region as
well as data for all regions within the Pepsi and Coke products.

To get the expected behavior, that is allowing the user to see data only for the Pepsi
and Coke products within the Southwest region, you need to change the filter to
combine the product filters with the region filter using the AND operator, for example:

(Product = 'Coke' OR Product = 'Pepsi') AND (Region = 'Southwest')

To achieve this using functional groups, assign the security filters to functional groups
as follows:

Role A is assigned the filter, Product = 'Coke' with functional group "Product"

Role B is assigned the filter, Product = 'Pepsi' with functional group "Product"

Role C is assigned the filter, Region = 'Southwest' with functional group "Region"

Chapter 14
Row-Level Security

14-7



All the filters in the same functional group are combined using the OR operator and all
sets of filters in different functional groups are combined using the AND operator. By
choosing the functional groups associated with each security filter, you can control
how the filters are combined using the OR and AND operators.

To create a data filter, see Setting Up Data Filters in the Repository.

1. In the Oracle BI Administration Tool, from Manage, select Identity.

2. In the Identity Manager, double-click an application role.

3. In Application Role, click Permissions.

4. In Application Role Permissions, click the Data Filters tab.

5. In the Data Filter tab, select the filter to assign to a functional group.

6. In the Functional Group column, select an existing group, or typing the name of a
new group to use.

7. Click OK.

Setting Up Row-Level Security in the Database
You must implement row-level security in the database to set up Oracle Business
Intelligence. You can configure your connection pools so that the Oracle BI Server
passes the credentials for each user to the database.

1. Open your repository in the Administration Tool.

2. Double-click the connection pool associated with the database for which you want
to set up database-level security.

3. In the General tab of the Connection Pool dialog, select Shared logon, and then
enter :USER and :PASSWORD in the User name and Password fields.

The :USER and :PASSWORD syntax automatically passes the value of user credentials
upon login to the database. The :USER and :PASSWORD syntax does not refer to
session variables.

Note:

You can use the database session context to pass end user identity to
the database. Use a connection pool script to set up session context.
This approach does not rely on database authentication.

4. Click OK in the Connection Pool dialog.

5. Double-click the database object for which you want to set up database-level
security.

6. In the Database dialog, select Virtual Private Database. Selecting this option
ensures that the Oracle BI Server protects cache entries for each user.

7. Click OK in the Database dialog.

After you have set up row-level security in the database, you must set up object
permissions in the repository for Presentation layer or other objects. You can also set
query limits (governors). See Setting Up Object Permissions and Setting Query Limits.

Chapter 14
Row-Level Security

14-8



Object Permissions
You can set up object permissions in your repository to control access to Presentation
layer and Business Model and Mapping layer objects

You set object permissions using the Oracle BI Administration Tool.

To set up object permissions:

• Set the data access for specific application roles.

• Specify functional groups when multiple application roles have different levels of
access to the same object.

• Select individual objects in the Presentation layer.

Set up object permissions for application roles when you want to define data access
permissions for a set of objects that are common to users assigned the specific
application role. You should set up object permissions for specific application roles
rather than for individual users to simplify data access management.

The following image shows how object permissions can restrict users from viewing
specific repository object. Security rules are applied to all incoming client queries, and
cannot be breached, even when the Logical SQL query is modified. In this example,
the Administrator application role has been granted access to the Booked Amount
column allowing the Administrator to view the returned results. The user, Anne Green,
who is not a member of an application role with access to the Booked Amount column,
cannot see the column in the Subject Area pane of Oracle BI Answers. Even if the
query is modified, results are not returned for the Booked Amount column because of
the application role-based object permissions have been set.

Chapter 14
Object Permissions

14-9



• If an application role has permissions on an object from multiple sources, for
example, explicitly and through one or more additional application roles, the
permissions are applied based on the order of precedence.

• If you explicitly deny access to an object that has child objects, users who are
members of the individual application role are denied access to the child objects.
For example, if you explicitly deny access to a particular logical table, you are
implicitly denying access to all of the logical columns associated with that table.

• Object permissions do not apply to repository and session variables, so values in
these variables are not secure. Anyone who knows or can guess the name of the
variable can use it in an expression in Oracle BI Answers or in a Logical SQL
query. Do not put sensitive data like passwords in session or repository variables.

• You can control the level of privilege is granted by default to the
AuthenticatedUser application role. The AuthenticatedUser is the default
application role associated with new repository objects.

The AuthenticatedUser application role means any authenticated user. The
AuthenticatedUser application role is internal to the Oracle BI Repository. The
AuthenticatedUser application role appears in the Permissions dialog for
connection pools and Presentation layer objects. The AuthenticatedUser does not
appear in the list of application roles in the Identity Manager.

Update the DEFAULT_PRIVILEGES parameter in the NQSConfig.INI file. See Security
Section Parameters in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition.

Setting Up Object Permissions
Use these steps to set up object permissions for individual application roles in your
repository to control access to Presentation layer and Business Model and Mapping
layer objects.

Application roles are not displayed if you are using offline mode unless you have first
modified them in online mode. See About Applying Data Access Security in Offline
Mode.

1. Open your repository in the Administration Tool.

2. Select Manage, then select Identity.

3. In the Identity Manager dialog, in the tree pane, select BI Repository.

4. In the right pane, select the Application Roles tab, then double-click the application
role for which you want to set object permissions.

5. In the Application Role dialog, click Permissions.

6. In the User/Application Role Permissions dialog, in the Object Permissions tab, do
one of the following to select an object:

• Click the Add button, locate the object, and then click Select.

• Click the Name field in an empty row, locate the object, and then click Select

7. Assign the appropriate permission for each object. You can choose one of the
following options:

• Read: Only allows read access to this object.

• Read/Write: Provides both read and write access to this object.

Chapter 14
Object Permissions

14-10



• No Access: Explicitly denies all access to this object.

8. Click OK, then click OK again to return to the Identity Manager.

About Permission Inheritance for Users and Application Roles
Users can have explicitly granted permissions. They can also have permissions
granted through membership in application roles, that in turn can have permissions
granted through membership in other application roles.

Permissions granted explicitly to a user have precedence over permissions granted
through application roles, and permissions granted explicitly to the application role
take precedence over any permissions granted through other application roles.

If there are multiple application roles acting on a user or application role at the same
level with conflicting security attributes, then the user or application role is granted the
least restrictive security attribute. Oracle currently requires that the application role
with access to an object also have access to the object's container. For example, if
ApplicationRole 1 has permission to access Column A, which is part of Table B, then
ApplicationRole1 must also have permission to access Table B. Any explicit
permissions acting on a user take precedence over any permissions on the same
objects granted to that user through application roles.

In previous releases, the application role did not require access to an object's
container, as described above. To revert to this behavior, go to the Oracle BI Server
machine and create environment variable OBIS_SECURITY_10g_COMPATIBLE and set it to 1.

Filter definitions, however, are always inherited. For example, if User1 is a member of
Role1 and Role2, and Role1 includes a filter definition but Role2 does not, the user
inherits the filter definition defined in Role1.

You should always define object permissions for application roles rather than for
individual users.

Chapter 14
Object Permissions

14-11



These are the resulting permissions:

• User1 is a direct member of Role1 and Role2, and is an indirect member of Role3,
Role4, and Role5.

• Because Role5 is at a lower level of precedence than Role2, its denial of access to
TableA is overridden by the READ permission granted through Role2. The result is
that Role2 provides READ permission on TableA.

• The resultant permissions from Role1 are NO ACCESS for TableA, READ for TableB,
and READ for TableC.

• Because Role1 and Role2 have the same level of precedence and because the
permissions in each cancel the other out (Role1 denies access to TableA, Role2
allows access to TableA), the less restrictive level is inherited by User1. In other
words, User1 has READ access to TableA.

• The total permissions granted to User1 are READ access for TableA, TableB, and
TableC.

Permission Inheritance 1

You might have a user (User1) who is explicitly granted permission to read a given
table (TableA). Suppose also that User1 is a member of Role1, and Role1 explicitly
denies access to TableA. The resultant permission for User1 is to read TableA.

Because permissions granted directly to the user take precedence over those granted
through application roles, User1 has the permission to read TableA.

Chapter 14
Object Permissions

14-12



Overview of User and Application Role Commands
Learn about commands that you can use with the repository and the Oracle BI
Presentation Catalog.

You can use the following commands to update application roles and users stored in
the repository and the Oracle BI Presentation Catalog:

• Rename Application Role Command

• Delete Application Role Command

• Rename Users Command

• Delete Users Command

Note:

The remaining upload and update commands, for example, Upload
Repository Command and Update Repository Variables Command, only
update the repository.

The application roles and users update commands use two plugins, the RPD plugin,
which updates the application roles and users in the repository, and the WEBCAT
plugin, which updates application roles and the users in the Oracle BI Presentation
Catalog.

These plugins function separately, and therefore the failure of one does not impact the
other. In the event of a partial failure, or one of the two plugins failing, Oracle
recommends that you address the root cause of the failure and then re-execute the
command as you initially ran it. Reapplying the successful plugin has no impact on the
results, but re-executing the command reruns the failed plugin.

By default, the application roles and users update commands run the two plugins, and
the order in which they are run is RPD and then WEBCAT. However, the commands
include the -L option which allows you to specify an individual plugin or to reverse the
default order in which the plugins are run. Run the commands in the default order. You
might need to run only one plugin or reverse the order of the plugins.

Rename Application Role Command
Use the renameapproles command to upload a JSON file containing information about
the application roles that you want to rename for a specific server instance.

You execute the renameapproles command through a launcher script, datamodel.sh on
UNIX and datamodel.cmd on Windows.

If the domain is installed in default folder then the location of the launcher script looks
like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/datamodel.sh or
datamodel.cmd on Windows

Chapter 14
Overview of User and Application Role Commands

14-13



If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

See What You Need to Know Before Using the Command and Overview of User and
Application Role Commands.

Syntax

The renameapproles command takes the following parameters:

renameapproles -T inputfile.json[-L plugin list] -SI service instance -U cred 
username[-P cred password] [-S hostname] [-N <port number] [-SSL] [-H]

Where

T specifies the name of the JSON input file containing the application role name
changes for the server instance.

SI specifies the name of the service instance.

L specifies a single plugin to run or to reverse the default plugin execution order. The
plugins determine where the system applies the updates: to the repository, the Oracle
BI Presentation Catalog, or both. See Overview of User and Application Role
Commands.

Note:

The following options are for L:

• RPD: Specify this option to rename application roles in the repository,
only.

• WEBCAT: Specify this option to rename application roles in the Oracle BI
Presentation Catalog. For example, you must use the -L WEBCAT
option when renaming application roles in the Oracle BI Presentation
Catalog.

• WEBCAT,RPD: Specify this option to reverse the default plugin run order.

The default plugin run order is repository (RPD) and then Oracle BI
Presentation Catalog (WEBCAT).

• Omit this option to execute the plugins in their default order, which is
repository (RPD) and then Oracle BI Presentation Catalog .

U specifies a valid user's name to be used for Oracle BI EE authentication.

P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, you are prompted for the password when the
command is run. Oracle recommends that you include a password in the command
only if you are using automated scripting to run the command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

Chapter 14
Rename Application Role Command

14-14



N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

datamodel.sh renameapproles -T approlenames.json -SI bi -U weblogic -P password -S

server1.example.com -N 7777 -SSL

Creating a JSON Rename Application Role Input File

Use the following syntax to create the JSON rename application role input file.

{
    "Title":"Target Application Roles",
    "App-Roles":[
          { "oldname":"<current_approle1>", "newname":"<new_approle1>" },
          { "oldname":"<current_approle2>", "newname":"<new_approle2>" },
          { "oldname":"<current_approle3>", "newname":"<new_approle3>" }
   ]
}

Delete Application Role Command
Use the deleteapproles command to upload a JSON file containing a list of application
roles that you want to delete from a specific server instance.

You execute the utility through a launcher script, datamodel.sh on UNIX and
datamodel.cmd on Windows.

If the domain is installed in default folder then the location of the launcher script looks
like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/datamodel.sh or
datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

See What You Need to Know Before Using the Command and Overview of User and
Application Role Commands.

Syntax

The deleteapproles command takes the following parameters:

deleteapproles -T inputfile.json[-L plugin list] -SI service_instance -U

cred_username[-P cred_password] [-S hostname] [-N port_number] [-SSL} [-H]

Chapter 14
Delete Application Role Command

14-15



Where

T specifies the name of the JSON input file containing the application roles to be
deleted from the server instance.

L specifies a single plugin to run or to reverse the default plugin execution order. The
plugins determine where the system applies the updates: to the repository, the Oracle
BI Presentation Catalog, or both. For RPD and WEBCAT plugin usage information,
see Overview of User and Application Role Commands.

The following options are available for L:

• RPD: Specify this option to delete application roles in the repository, only.

• WEBCAT: Specify this option to delete application roles in the Oracle BI Presentation
Catalog, only. You must use the -L WEBCAT option when deleting application
roles.

• WEBCAT,RPD: Specify this option to reverse the default plugin run order. The default
plugin run order is repository (RPD) and then Oracle BI Presentation Catalog
(WEBCAT).

• Omit this option to execute the plugins in their default order.

SI specifies the name of the service instance.

U specifies a valid user's name to be used for Oracle BI EE authentication.

P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, then you are prompted for the password when the
command is run. Oracle recommends that you include a password in the command
only if you are using automated scripting to run the command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

datamodel.sh deleteapproles -T approlenames.json -SI bi -U weblogic -P password -S

server1.example.com -N 7777 -SSL

Creating a JSON Delete Application Role Input File

Use the following syntax to create the JSON delete application role input file.

{
    "Title":"Target Application Roles",
    "App-Roles":[
         { "name":"<approle1>" },
         { "name":"<approle2>" },
         { "name":"<approle3>" }

Chapter 14
Delete Application Role Command

14-16



   ]
}

Rename Users Command
Use the renameusers command to upload a JSON file containing a list of information
about the users that you want to rename for a specific server instance.

You execute the utility through a launcher script, datamodel.sh on UNIX and
datamodel.cmd on Windows.

If the domain is installed in default folder then the location of the launcher script looks
like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/
datamodel.sh or datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

See What You Need to Know Before Using the Command.

See Overview of User and Application Role Commands.

Syntax

The renameusers command takes the following parameters:

renameusers -T usernames.json[-L plugin list] -SI service instance -U cred

username[-P cred password] [-S hostname] [-N port number] [-SSL] [-H]

Where

T specifies the name of the JSON input file containing the user name changes for the
server instance.

L specifies a single plugin to run or to reverse the default plugin execution order. The
plugins determine where the system applies the updates: to the repository, the Oracle
BI Presentation Catalog, or both.

Note:

The following options are for L:

• RPD: Specify this option to rename users in the repository, only.

• WEBCAT: Specify this option to rename users in the Oracle BI Presentation
Catalog. For example, you must use the -L WEBCAT option when renaming
users in the Oracle BI Presentation Catalog.

• WEBCAT,RPD: Specify this option to reverse the default plugin run order.
The default plugin run order is repository (RPD) and then Oracle BI
Presentation Catalog (WEBCAT).

• Omit this option to execute the plugins in their default order.

Chapter 14
Rename Users Command

14-17



SI specifies the name of the service instance.

U specifies a valid user's name to be used for Oracle BI EE authentication.

P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, then you are prompted for the password when the
command is run. For security purposes, Oracle recommends that you include a
password in the command only if you are using automated scripting to run the
command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

datamodel.sh renameusers -T usernames.json -SI bi -U weblogic -P password -S

server1.example.com -N 7777 -SSL

Creating a JSON Rename Users Input File

Use the following syntax to create the JSON rename users input file.

{
    "Title":"Target Users",
    "Users":[
          { "oldname":"<current_user1>", "newname":"<new_user1>" },
          { "oldname":"<current_user2>", "newname":"<new_user2>" },
          { "oldname":"<current_user3>", "newname":"<new_user3>" }
    ]
}

Delete Users Command
Use the deleteusers command to upload a JSON file containing a list of users that you
want to delete from a specific server instance.

You execute the utility through a launcher script, datamodel.sh on UNIX and
datamodel.cmd on Windows.

If the domain is installed in default folder then the location of the launcher script looks
like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/
datamodel.sh or datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

Chapter 14
Delete Users Command

14-18



See What You Need to Know Before Using the Command and Overview of User and
Application Role Commands

Syntax

The deleteusers command takes the following parameters:

deleteusers -T usernames.json [-L plugin list] -SI service_instance-U cred_username[-
P cred_password] [-S hostname] [-N port_number] [-SSL] [-H]

Where

T specifies the name of the JSON input file containing the users to be deleted from the
server instance. See the syntax in Creating a JSON Delete Users Input File for
information about the correct syntax for the application role input file.

L specifies a single plugin to run or to reverse the default plugin execution order. The
plugins determine where the system applies the updates: to the repository, the Oracle
BI Presentation Catalog, or both.

The following options are for L:

• RPD: Specify this option to delete users in the repository, only.

• WEBCAT: Specify this option to delete users in the Oracle BI Presentation Catalog.
For example, you must use the-L WEBCAT option when deleting users from the
Oracle BI Presentation Catalog.

• WEBCAT,RPD: Specify this option to reverse the default plugin run order. The default
plugin run order is repository (RPD) and then Oracle BI Presentation Catalog
(WEBCAT).

• Omit this option to execute the plugins in their default order, which is repository
(RPD) then Oracle BI Presentation Catalog (WEBCAT).

SI specifies the name of the service instance.

U specifies a valid user's name to be used for Oracle BI EE authentication.

P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, then you are prompted for the password when the
command is run. Oracle recommends that you include a password in the command
only if you are using automated scripting to run the command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

data-model-cmd.sh deleteusers -T usernames.json -SI bi -U weblogic -P password -S

server1.us.example.com -N 777 -SSL

Chapter 14
Delete Users Command

14-19



Creating a JSON Delete Users Input File

Use the following syntax to create the JSON delete users input file.

{
    "Title":"Target Users",
    "Users":[
         { "name":"<user1>" },
         { "name":"<user2>" },
         { "name":"<user3>" }
    ]
}

Setting Query Limits
You can manage the query environment by setting query limits (governors) in the
repository for particular application roles.

You can limit queries by the number of rows received, by maximum run time, and by
restricting to particular time periods. You can also allow or disallow direct database
requests or the Populate privilege.

You should always set query limits for particular application roles rather than for
individual users.

This section contains the following topics:

• Accessing the Query Limits Functionality in the Administration Tool

• Limiting Queries By the Number of Rows Received

• Limiting Queries By Maximum Run Time and Restricting to Particular Time
Periods

• Allowing or Disallowing Direct Database Requests

• Allowing or Disallowing the Populate Privilege

Accessing the Query Limits Functionality in the Administration Tool
Learn how to access the Query Limits tab of the User/Application Role Permissions
dialog.

Note:

If you are in offline mode, no application roles appear in the list unless you
have first modified them in online mode, see About Applying Data Access
Security in Offline Mode.

1. Open your repository in the Administration Tool to access the query limits
functionality for an application role.

2. Select Manage, then select Identity.

3. In the Identity Manager dialog, in the tree pane, select BI Repository.

Chapter 14
Setting Query Limits

14-20



4. In the right pane, select the Application Roles tab, then double-click the application
role for which you want to set query limits.

5. In the Application Role dialog, click Permissions.

6. In the User/Application Role Permissions dialog, click the Query Limits tab.

Limiting Queries By the Number of Rows Received
You can control runaway queries by limiting queries to a specific number of rows.

Any query limits you set should exceed the Presentation Server settings for Maximum
Number of Rows Processed when Rendering a Table View and Maximum Number of
Rows to Download by at least 500 to avoid error messages. If you choose to impose
data source rows limits on certain users or Application Roles using the repository Max
Rows query limits setting, then those users may receive Max Row Limit Exceeded
messages.

See Using Fusion Middleware Control to Set Configuration Options for Data in Tables
and Pivot Tables and Using Fusion Middleware Control to Set the Maximum Number
of Rows Processed to Render a Table in System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition.

The options for Status Max Rows are:

• Enable: This limits the number of rows to the value specified. If the number of
rows exceeds the Max Rows value, the query is terminated.

• Disable: Disables any limits set in the Max Rows field.

• Warn: Does not enforce limits, but logs queries that exceed the set limit in the
Query log.

• Ignore: Limits are inherited from the parent application role. If there is no row limit
to inherit, no limit is enforced.

Follow the steps in Accessing the Query Limits Functionality in the Administration Tool
to access the Query Limits tab.

1. In the Max Rows column, type the maximum number of rows for users to retrieve
from each source database object.

2. In the Status Max Rows field, select an option for each database.

3. Click OK, then click OK again to return to the Identity Manager.

Limiting Queries By Maximum Run Time and Restricting to Particular
Time Periods

You can forbid queries during certain time periods, or you can specify the maximum
time a query can run on a database.

If you do not select a particular time period, access rights remain unchanged. If you
allow or disallow access explicitly in one or more application roles, users are granted
the least restrictive access for the defined time periods. For example, if a user is a
member of an application role that is explicitly allowed access all day on Mondays, but
that user also belongs to another application role that is disallowed access during all
hours of every day, then the user has access on Mondays only.

Chapter 14
Setting Query Limits

14-21



1. Follow the steps in Accessing the Query Limits Functionality in the Administration
Tool to access the Query Limits tab.

2. To specify the maximum time a query can run on a database, in the Max Time
(Minutes) column, enter the maximum number of minutes you want queries to run
on each database object. Then, in the Status Max Time field, select one of the
following options for each database:

• Enable: This limits the time to the value specified.

• Disable: Disables any limits set in the Max Time field.

• Warn: Does not enforce limits, but logs queries that exceed the set time limit
in the Query log.

• Ignore: Limits are inherited from the parent application role. If there is no time
limit to inherit, no limit is enforced.

3. To restrict access to a database during particular time periods, in the Restrict
column, click the Ellipsis button. Then, in the Restrictions dialog, perform the
following steps:

a. To select a time period, click the start time and drag to the end time.

b. To explicitly grant access, click Allow.

c. To explicitly deny access, click Disallow.

d. Click OK.

4. Click OK, then click OK again to return to the Identity Manager.

Allowing or Disallowing Direct Database Requests
Use this task to allow or disallow the ability to execute direct database requests for a
particular application role.

For the selected role, this privilege overrides the Allow direct database requests by
default property for the database object in the Physical layer.

The options for the Execute Direct Database Requests field are:

• Allow
Explicitly grants the ability to execute direct database requests for this database.

• Disallow
Explicitly denies the ability to execute direct database requests for this database.

• Ignore
Limits are inherited from the parent application role. If there is no limit to inherit,
then direct database requests are allowed or disallowed based on the Allow direct
database requests by default property for the database object.

Follow the steps in Accessing the Query Limits Functionality in the Administration Tool
to access the Query Limits tab.

1. In the Query Limits tab for each database object, in the Execute Direct Database
Requests field, select an option.

2. Click OK, then click OK again to return to the Identity Manager.

Chapter 14
Setting Query Limits

14-22



Allowing or Disallowing the Populate Privilege
When a criteria block is cached, the Populate stored procedure writes the Cache/
Saved Result Set value to the database.

You can grant or deny this Populate privilege to particular application roles.

For the selected application role, this privilege overrides the Allow populate queries by
default property for the database object in the Physical layer.

Any Oracle Marketing Segmentation user who writes a cache entry or saves a result
set must be a member of an application role that has been assigned the POPULATE
privilege for the target database.

The options for the Populate Privilege field are:

• Allow
Explicitly grants the Populate privilege for this database. For all Marketing data
warehouses, select Allow.

• Disallow
Explicitly denies the Populate privilege for this database.

• Ignore
Limits are inherited from the parent application role. If there is no limit to inherit,
then the Populate privilege is allowed or disallowed based on the Allow populate
queries by default property for the database object.

Follow the steps in Accessing the Query Limits Functionality in the Administration Tool
to access the Query Limits tab.

1. For each database object, in the Populate Privilege field, select an option.

2. Click OK, and then click OK again to return to the Identity Manager.

About Applying Data Access Security in Offline Mode
You should perform data access security tasks in the Oracle BI Administration Tool in
online mode.

The Administration Tool does not store users in the repository, and you cannot create
a query that returns repository users.

When you open the repository In online mode, you can retrieve the latest list of
application roles from the policy store by selecting Action, then selecting
Synchronize Application Roles in the Identity Manager.

Setting Up Placeholder Application Roles for Offline Repository
Development

Application roles are created and managed in the policy store using the Oracle
WebLogic Administration Console and Fusion Middleware Control.

These application roles are displayed in the Administration Tool in online mode so that
you can use them to set data filters, object permissions, and query limits for particular
roles. The application roles in the policy store are retrieved by the Oracle BI Server
when it starts.

Chapter 14
About Applying Data Access Security in Offline Mode

14-23



In some cases, you may want to proceed with setting up data access security in your
repository for application roles that have not yet been defined in the policy store. You
can do this by creating placeholder application roles in the Administration Tool, then
proceeding with setting up data access security in the repository.

If you create placeholder application roles in the Administration Tool, you must
eventually add them to the policy store. Run a consistency check in online mode to
identify application roles that have been defined in the Administration Tool, but that
have not yet been added to the policy store. Be sure to use the same name in the
policy store that you used for the placeholder role in the Administration Tool.

Note:

Use caution when defining and using placeholder roles. If you make changes
to a role in offline mode that also exists in the policy store, the changes are
overwritten the next time you connect to the Oracle BI Server.

1. Open your repository in the Administration Tool.

2. Select Manage, then select Identity.

3. In the Identity Manager dialog, select Action, select New, and then select
Application Role.

4. In the Application Role dialog, provide the following information:

• Name: Provide a name for the role.

• Display Name: Enter the display name for the role.

• Description: (Optional) provide a description of this application role.

• Members: Use the Add and Remove buttons to add or remove users and
other application roles as appropriate.

• Permissions: Set object permissions, data filters, and query limits for this
application role as appropriate. Refer to the other sections in this chapter for
detailed information.

5. Click OK to return to the Identity Manager.

1. Open your repository in online mode in the Administration Tool.

2. Select File, then select Check Global Consistency.

Record any entries related to application roles, then add the appropriate roles to
the policy store as appropriate. See Using Tools to Configure Security in Oracle
Business Intelligence in the Security Guide for Oracle Business Intelligence
Enterprise Edition for information about adding application roles to the policy store.

3. (Optional) Select individual rows, and click Copy to copy the entries to a text file.

You can check an individual application role by right-clicking the application role in the
Identity Manager dialog and then selecting Check Consistency.

Chapter 14
About Applying Data Access Security in Offline Mode

14-24



15
Completing Oracle BI Repository Setup

This chapter explains how to perform final Oracle BI repository setup tasks like
configuring for Oracle Scorecard and Strategy management, saving the repository and
checking consistency, testing the repository, and uploading the repository using the
upload repository command.
This chapter contains the following topics:

• Configuring the Repository for Oracle Scorecard and Strategy Management

• Saving the Repository and Checking Consistency

• Using nqcmd to Test and Refine the Repository

• Upload Repository Command

• Making the Repository Available for Queries

• Creating Data Source Connections to the Oracle BI Server for Client Applications

• Publishing to the User Community

Configuring the Repository for Oracle Scorecard and
Strategy Management

You can use the organization's licensed Oracle Scorecard and Strategy Management
repository, if you have the appropriate privileges.

The Oracle Scorecard and Strategy Management repository is part of a default
installation with no additional configuration changes are required. Some features such
as comments and status overrides, require repository configuration in order to work.

Note:

See System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition :

• About Comments

• About Status Overrides

15-1



Configuring the Repository for Comments and Status Overrides
Oracle Scorecard and Strategy Management provides the capability to add comments,
also known as annotations, or to override the status associated with specific
dimension values for key performance indicators (KPIs), objectives, and initiatives.

KPI Watchlists offer the capability to add comments or to override statuses for KPIs.
You must configure the repository to include a database object for storing the
comments and status override information.

The database that you installed for use with Oracle Business Intelligence contains the
Business Intelligence Platform schema that includes the required Oracle Scorecard
and Strategy Management schema tables. For more information about installing a
database for Oracle Business Intelligence and running the Repository Creation
Assistant (RCU) to create the required schemas, see Installing and Configuring Oracle
Business Intelligence.

Note:

You should open the Oracle BI Administration Tool in Online mode to
perform data access security tasks.

See Allowing or Disallowing Direct Database Requests.

1. In the Oracle BI Administration Tool , open the repository in online mode.

2. In the Physical layer, right-click and select New Database.

3. In the Databases dialog, in Name, enter BSC.

4. From the Database list, select the type of database to use with Oracle Business
Intelligence such as Oracle 12c.

5. Click the Connection Pool tab, and click Add .

6. In the Connection Pool dialog, in Name, enter BSC.

7. Select the Call interface appropriate for the database, for example, OCI 11g/12c
for Oracle Database.

8. For Data source name, provide the information that is appropriate for the
database that you have installed and configured for use with Oracle Business
Intelligence. For example, for Oracle Database, enter a connection string similar to
the following:

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.100)(PORT=1521))(CONNECT_
DATA=(SERVER=DEDICATED)(SERVICE_NAME=KPIOracle)(SID=KPIOracl)))

When connecting to an Oracle Database data source, you can include the entire
connect string, or you can use the net service name defined in the tnsnames.ora
file. If you choose to enter only the net service name, then you must set up a
tnsnames.ora file in the following location within the Oracle Business Intelligence
environment, so that the Oracle BI Server can locate the entry:

BI_DOMAIN/config/fmwconfig/bienv/core

Chapter 15
Configuring the Repository for Oracle Scorecard and Strategy Management

15-2



9. Select Shared logon and enter values for User name and Password. In this step,
you provide the user/schema name and password that you created when you used
the Repository Creation Utility (RCU) to populate the Business Intelligence
Platform schema in the Oracle Business Intelligence database.

Set up the user with read/write privileges for the ANNOTATIONS and
ASSESSMENT_OVERRIDES tables in the Business Intelligence Platform schema.

10. Click OK in the Connection Pool dialog.

11. Click OK in the Database dialog.

12. Use the Identity Manager in the Administration Tool to allow the BISystem
application role to execute direct database requests by default for the BSC
database object.

13. Save and close the repository.

14. Restart the Oracle BI Server.

Saving the Repository and Checking Consistency
In offline editing, remember to save your repository from time to time.

You can save a repository in offline mode even though the business models may be
inconsistent.

To determine if business models are consistent, use the Check Consistency command
to check for compilation errors. You can check for errors in the whole repository or in a
particular logical business model by selecting a business model and then selecting
Check Consistency from the right‐click menu.

The consistency check analyzes the repository for certain kinds of errors and
inconsistencies. For example, the consistency check finds any logical tables that do
not have logical sources configured or any logical columns that are not mapped to
physical sources, checks for undefined logical join conditions, determines whether any
physical tables referenced in a business model are not joined to the other tables
referenced in the business model, and checks for existence of a subject area for each
business model.

Note:

Passing a consistency check does not guarantee that a business model is
constructed correctly, but it does rule out many common problems.

When you check for consistency, any errors or warnings that occur are displayed in a
dialog. Correct any errors and check for consistency again, repeating this process until
there are no more errors. An error message indicates a problem that must be
corrected. A warning message identifies a possible problem. See Checking the
Consistency of a Repository or a Business Model.

After upgrading from a previous software version and checking the consistency of your
repository, you might observe messages that you had not received in previous
consistency checks. This typically indicates inconsistencies that had been undetected
before the upgrade, not new errors.

Chapter 15
Saving the Repository and Checking Consistency

15-3



• In the Oracle BI Administration Tool with a repository open, from the File menu,
select Check Global Consistency.

Using nqcmd to Test and Refine the Repository
When your repository is complete, you can run sample queries against it to test that it
is created properly.

Correct any problems you find and test again, repeating this process until you are
satisfied with the results.

You can use the Oracle BI Server utility nqcmd to run test queries against the
repository. The utility connects using an Oracle BI Server ODBC DSN. The Oracle BI
Server must be running to use nqcmd.

The nqcmd utility is available on Windows and UNIX systems.

This utility is intended for sanity testing. For heavier load testing, use Answers or
another client. Queries with many thousands of rows do not work with nqcmd.

Although you can use nqcmd to run queries against other ODBC data sources, this
section only describes how to use this utility to query the Oracle BI Server.

Tip:

On Windows, you can see the available local ODBC data source names in
Data Sources (ODBC) available in Administrative Tools. The System DSN
tab displays a list of the available DSNs, for example,
AnalyticsWeb_coreapplications.

You can pass a text file with SQL statements to the utility (script mode), or you can
enter SQL at the command line (interactive mode). Queries are run against the default
subject area, unless the object names used in the query are fully qualified.

See nqcmd Command Line Arguments.

1. On Windows launch nqcmd from the following location:

BI_DOMAIN/bitools/bin

2. At nqcmd, type the argument options to use, for example:

nqcmd -dmy_dsn -umy_username [-pmy_password] -ssql_input_file -omy_result_file

nqcmd Command Line Arguments
Review the table to learn about the valid the command-line arguments for nqcmd.

If you run nqcmd in interactive mode rather than script mode, that is, if you do not pass
a SQL input file, nqcmd shows a menu of options after you provide the data source
name and user credentials. Although many options are shown, you only use Q, T, and
C against the Oracle BI Server.

Use Q to type a query at the command line. You must enter the query on a single line,
and you cannot use a semicolon as a delimiter. Pressing Enter sends the SQL to the
Oracle BI Server.

Chapter 15
Using nqcmd to Test and Refine the Repository

15-4



Use T to browse presentation tables, or C to browse presentation columns. The utility
prompts you for catalog pattern, user pattern, table pattern, and table type pattern
before returning results.

For catalog pattern, enter the subject area that contains the tables you want to see.
For table pattern, enter the specific table. You can enter percent (%) to see all subject
areas or all tables, use % with other characters to replace a set of characters, or use
underscore (_) with other characters to replace a single character.

User pattern and table type pattern are not used in queries against the Oracle BI
Server, use % for these options.

You can use D to view a static list of data types supported by the Oracle BI Server.

The arguments, -C, -R, -f, -H, -q, and -NoFetch are listed by the utility as available
arguments, these options are not used.

Argument Description

-? Lists the available command-line arguments.

-ddata_source_name Specifies the ODBC data source name for the
targetOracle BI Server.

If you omit this parameter, you are prompted at
the command line to enter the data source
name (DSN).

-uuser_name Specifies a valid Oracle Business Intelligence
user name.

-ppassword Specifies the corresponding Oracle Business
Intelligence user password.

The password argument is optional. If you do
not provide a password argument, you are
prompted to enter a password when you run the
command. To minimize the risk of security
breaches, Oracle recommends that you do not
provide a password argument either on the
command line or in scripts. The password
argument is supported for backward
compatibility only. For scripting purposes, you
can pass the password through standard input.

-ssql_input_file_name The name and path of a text file that includes
your test SQL queries.

-ooutput_result_file_name The name and path of a file where the utility
writes the query results. This option is only used
with -s.

-Ddelimiter The delimiter used in the SQL input file, for
example, semicolon (;) or colon (:). This option
is only used with -s.

-a Enables asynchronous processing.

This option is typically used with -s, when you
are passing a SQL input file with multiple SQL
statements.

-z Enables UTF8 output instead of ANSI Code
Page (ACP) in the output result file.

You might need to include this option to display
international characters in query results.

Chapter 15
Using nqcmd to Test and Refine the Repository

15-5



Argument Description

-utf16 Enables UTF16 instead of ACP for
communication between nqcmd and the Oracle
BI ODBC driver.

You might need to include this option to display
international characters in query results.

-NotForwardCursor Disables the ODBC forward only cursor.

Including this argument overrides the setting
specified in the ODBC DSN.

-v Displays the version of the nqcmd utility.

-SessionVar
session_variable_name=session_variable
_value

Includes the specified session variable and sets
it to the specified value.

Upload Repository Command
Use the uploadrpd command to upload the repository to Oracle BI Server.

Uploading the repository to Oracle BI Server allows BI Server to load the repository
into memory on startup and makes the repository available for queries.

Note:

You can only upload the repository to a specific service instance.

Oracle provides the downloadrpd and uploadrpd commands for offline repository
diagnostic and development purposes such as testing, only. In all other repository
development and maintenance situations, you should use BAR to utilize BAR's
repository upgrade and patching capabilities and benefits.

You can use this command to upload the Oracle BI repository in RPD format. You
cannot use this command to upload a repository composed of MDS XML documents.

You execute the utility through a launcher script, datamodel.sh on UNIX and
datamodel.cmd on Windows. If the domain is installed in default folder then the location
of the launcher script looks like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/datamodel.sh or 
datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.sh or datamodel.cmd on Windows

See What You Need to Know Before Using the Command.

Syntax

The uploadrpd command takes the following parameters:

Chapter 15
Upload Repository Command

15-6



uploadrpd -I <RPD filename> [-W <RPD password>] [-D] [KG <groups>] [-RG <groups>] -U 
<cred_username> [-P <cred_password>][SI <service_instance>] [-S <host>] [-N <port>] 
[-SSL] [-H]

Where

I specifies the name of the repository that you want to upload.

W is the repository's password. If you do not supply the password, then you are
prompted for the password when the command is run. Oracle recommends that you
include a password in the command only if you are using automated scripting to run
the command.

SI specifies the name of the service instance.

U specifies a valid user's name to be used for Oracle BI EE authentication.

P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, then you are prompted for the password when the
command is run. Oracle recommends that you include a password in the command
only if you are using automated scripting to run the command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits for the command. Use -H or run .sh without
any parameters to display the help content.

-D removes all the existing customization groups on the server, for example:

datamodel.sh uploadrpd -I orders.rpd -SI ssi -U weblogic -D

You can select to keep some of the existing groups and other all of the other groups,
using -D -KG, for example:

datamodel.sh uploadrpd -I orders.rpd -SI ssi -U weblogic -D -KG "group1, group2"

The upload repository command keeps group1 and group2, and deletes any other
existing groups.

You can delete some of the existing groups, but keep all of the other groups, using -D
-RG, for example:

datamodel.sh uploadrpd -I orders.rpd -SI ssi -U weblogic -D -RG "group1, group2"

The upload repository command deletes group1 and group2, and keeps any other
existing groups.

Example

datamodel.sh uploadrpd -I repository.rpd -SI bi -U weblogic -S server1.example.com

-N 7777 -SSL

Chapter 15
Upload Repository Command

15-7



Making the Repository Available for Queries
Use the upload repository command to make the repository available for queries.

After you build a repository and it is consistent, you need to upload the repository
using the Upload Repository Command so that all Oracle BI Server instances can
access it. Uploading the repository allows the Oracle BI Server to load the repository
into memory upon startup and makes the repository available for queries.

When the repository is uploaded and you can connect to it, run sample queries against
it to test that it is created properly. Correct any problems you find and test again,
repeating this process until you are satisfied with the results.

Note:

You must upload an Oracle BI repository in RPD format. You cannot upload
a repository composed of MDS XML documents.

Creating Data Source Connections to the Oracle BI Server
for Client Applications

If you want to enable end user client applications to connect to the new repository, you
must define an ODBC data source connection to the Oracle BI Server for each
application.

Note:

The Oracle BI Presentation Services has the same relationship to the Oracle
BI Server as any other client application.

See “Integrating Other Clients with Oracle Business Intelligence” in Integrator's Guide
for Oracle Business Intelligence Enterprise Edition to learn about creating ODBC data
source connections for the Oracle BI Server.

Publishing to the User Community
After testing is complete, notify the user community that the data sources are available
for querying.

Presentation Services users only need to know the URL to type in their browser.
Client/server users, for example, users accessing the Oracle BI Server with a query
tool or report writer client application, need to know the subject area names, the
computer on which the server is running, and their user IDs and passwords. They also
need to have the ODBC DSN for the Oracle BI Server installed on their computers,
and they may need to know the logical names of repositories if multiple repositories

Chapter 15
Making the Repository Available for Queries

15-8



are used and the data source name (DSN) being created does not point to the default
repository.

Chapter 15
Publishing to the User Community

15-9



16
Setting Up Data Sources on Linux and
UNIX

You can learn how to set up data sources for use with Oracle Business Intelligence
when the Oracle BI Server is running on Linux or UNIX.
Most repository development is performed on Windows, because the Administration
Tool runs only on Windows. When you move to a production system, however, you
can choose to run the Oracle BI Server on a Linux or UNIX platform.

See System Requirements and Certification.

This chapter contains the following topics:

• About Setting Up Data Sources on Linux and UNIX

• Configuring Data Source Connections Using Native Gateways

• Using DataDirect Connect ODBC Drivers on Linux and UNIX

• Configuring Database Connections Using Native ODBC Drivers

• Setting Up Oracle TimesTen In-Memory Database on Linux and UNIX

• Configuring Oracle RPAS ODBC Data Sources on AIX UNIX

• Configuring Essbase Data Sources on Linux and UNIX

• Configuring DB2 Connect on IBM z/OS and s/390 Platforms

About Setting Up Data Sources on Linux and UNIX
When the Oracle BI Server is running on Linux or UNIX, most data source connections
are for query-only access.

The Administration Tool is used for importing objects and is a Windows-only tool. You
must set up data source connections for import on Windows.

Some data source connections on Linux and UNIX do support write operations for
special functions like data source connections for write-back, usage tracking, and
annotations for Oracle Scorecard and Strategy Management.

When the Oracle BI Server is running on Linux or UNIX and you need to update
database object settings such as the database type or connection pool settings, you
can copy the repository file to a Windows computer, make the changes using the
Administration Tool on Windows, and then copy the repository file back to the Linux or
UNIX computer.

There are three types of data source connections on Linux and UNIX platforms:

• Native data source gateway connections, such as OCI for Oracle Database or
DB2 CLI for IBM DB2

• ODBC connections using the DataDirect Connect ODBC drivers that are bundled
with Oracle Business Intelligence

16-1



• Native ODBC connections using external drivers, such as for Teradata data
sources

You can have a single repository that contains both DataDirect Connect ODBC
connections and native ODBC connections. If you are using the native ODBC drivers
and DataDirect ODBC drivers, you must manage the drivers with the same DataDirect
ODBC driver manager. For example, the Teradata ODBC drivers include their required
ODBC driver managers. When the Teradata ODBC driver is used with Oracle BI EE,
you must manage the driver with the DataDirect ODBC driver manager that is bundled
with Oracle BI EE.

Settings for Data Source Connections Using Native
Gateways

Learn about the environment variable settings that you must configure for Oracle
Database and DB2 using native gateways.

For Oracle Database:

• The Oracle BI Server uses the Oracle Call Interface (OCI) to connect to the
database. OCI is installed by default with Oracle BI EE. You must use the bundled
version to connect.

• In the tnsnames.ora file, the Oracle Database alias, the defined entry name, must
match the Data Source Name used in the repository connection pools of all
physical Oracle databases.

When connecting to an Oracle Database data source, you can include the entire
connect string, or you can use the net service name defined in the tnsnames.ora
file. If you choose to enter only the net service name, you must set up a
tnsnames.ora file in the following location within the Oracle BI EE environment, so
that the Oracle BI Server can locate the entry:

BI_DOMAIN/config/fmwconfig/bienv/core

• Edit the obis.properties file to set environment variables for the database client.

For DB2, you must do the following:

• Install the appropriate database client on the computer running the Oracle BI
Server, then edit the obis.properties file to set environment variables for the
database client.

• For Windows, you can set environment variables for DB2 in the obis.properties
file. For example, if configuring DB2 CLI, then you must modify obis.properties to
include the DB2 executable path.

• You need to create a catalog associated with each database so that the client
connects to the database by catalog name. To create a catalog associated with
each database, enter and run the following command:

db2 catalog tcpip node <DB2 database> remote <hostname> server <port number>;
db2 catalog database <DB2 database> as <DB2 database> at node <DB2 database>;
connect to <DB2 database> user db2admin using welcome1

For an example, see Sample obis.properties Entries for Oracle Database and DB2
(32-Bit).

Chapter 16
Settings for Data Source Connections Using Native Gateways

16-2



Sample obis.properties Entries for Oracle Database and DB2 (32-Bit)
This example shows sample entries in obis.properties for Oracle Database and DB2
on various platforms.

The shell script excerpts shown are examples only and are not recommendations for
particular software platforms. See System Requirements and Certification and 
Configuring Data Source Connections Using Native Gateways.

###############################################################
# Linux: Oracle BI 32 bit mode
################################################################
#set +u

# Oracle Parameters
#---------------------------
# Make sure that Oracle DB 32 bit Client is installed
#ORACLE_HOME=/export/home/oracle/12c
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH

# If you have Linux 64 bit Platform, and would like to run Oracle BI 32 bit
# then you must install Oracle DB 64 bit client, and this client comes with 
# 32 bit libraries under $ORACLE_HOME/lib32. The LD_LIBRARY_PATH in this case
# shall be like this:
#LD_LIBRARY_PATH=$ORACLE_HOME/lib32:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH

# DB2 Parameters
DB2INSTANCE=db2user
IBM_DB_LIB=/scratch/db2user/sqllib/lib
IBM_DB_DIR=/scratch/db2user/sqllib
LD_LIBRARY_PATH=/scratch/db2user/sqllib/lib64:/scratch/db2user/sqllib/lib32
PATH=$PATH:/scratch/db2user/sqllib/bin:/scratch/db2user/sqllib/adm:/scratch/
db2user/sqllib/misc
DB2_HOME=/scratch/db2user/sqllib
IBM_DB_INCLUDE=/scratch/db2user/sqllib/include
DB2LIB=/scratch/db2user/sqllib/lib
###############################################################
# Solaris: Oracle BI 64 bit mode
###############################################################
#set +u
 
# Oracle Parameters
#---------------------------
# Make sure to install Oracle DB 64 bit Client
#ORACLE_HOME=/export/home/oracle/12c
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LD_LIBRARY_PATH_64=$ORACLE_HOME/lib:$LD_LIBRARY_PATH_64:/opt/j2se/jre/lib/sparc
#export LD_LIBRARY_PATH_64

Chapter 16
Settings for Data Source Connections Using Native Gateways

16-3



#---------------------------
 
# DB2 Parameters
DB2INSTANCE=db2user
IBM_DB_LIB=/scratch/db2user/sqllib/lib
IBM_DB_DIR=/scratch/db2user/sqllib
LD_LIBRARY_PATH=/scratch/db2user/sqllib/lib64:/scratch/db2user/sqllib/lib32
PATH=$PATH:/scratch/db2user/sqllib/bin:/scratch/db2user/sqllib/adm:/scratch/
db2user/sqllib/misc
DB2_HOME=/scratch/db2user/sqllib
IBM_DB_INCLUDE=/scratch/db2user/sqllib/include
DB2LIB=/scratch/db2user/sqllib/lib
###############################################################
# HPUX Itanium: Oracle BI 64 bit mode
###############################################################
#set +u
 
# Oracle Parameters
#---------------------------
#ORACLE_HOME=/export/home/oracle12c
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#SHLIB_PATH=$ORACLE_HOME/lib:$SHLIB_PATH:/opt/j2se/jre/lib/hp700
#export SHLIB_PATH
#---------------------------
 
# DB2 Parameters
#---------------------------
#DB2INSTANCE=db2user
IBM_DB_LIB=/scratch/db2user/sqllib/lib
IBM_DB_DIR=/scratch/db2user/sqllib
LD_LIBRARY_PATH=/scratch/db2user/sqllib/lib64:/scratch/db2user/sqllib/lib32
PATH=$PATH:/scratch/db2user/sqllib/bin:/scratch/db2user/sqllib/adm:/scratch/
db2user/sqllib/misc
DB2_HOME=/scratch/db2user/sqllib
IBM_DB_INCLUDE=/scratch/db2user/sqllib/include
DB2LIB=/scratch/db2user/sqllib/lib

###############################################################
# AIX: Oracle BI 64 bit mode
###############################################################
#set +u
 
# Oracle Parameters
#---------------------------
#ORACLE_HOME=/export/home/oracle/12c
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LIBPATH=$ORACLE_HOME/lib:$LIBPATH:/opt/j2se/jre/lib/sparc
#export LIBPATH
#---------------------------
 
# DB2 Parameters
DB2INSTANCE=db2user
IBM_DB_LIB=/scratch/db2user/sqllib/lib

Chapter 16
Settings for Data Source Connections Using Native Gateways

16-4



IBM_DB_DIR=/scratch/db2user/sqllib
LD_LIBRARY_PATH=/scratch/db2user/sqllib/lib64:/scratch/db2user/sqllib/lib32
PATH=$PATH:/scratch/db2user/sqllib/bin:/scratch/db2user/sqllib/adm:/scratch/
db2user/sqllib/misc
DB2_HOME=/scratch/db2user/sqllib
IBM_DB_INCLUDE=/scratch/db2user/sqllib/include
DB2LIB=/scratch/db2user/sqllib/lib

Configuring Data Source Connections Using Native Gateways
You can connect to both Oracle Database and DB2 using native gateways, OCI and
DB2 CLI, respectively.

1. Open the obis.properties file located at:

BI_DOMAIN/config/fmwconfig/bienv/obis

2. Include the appropriate environment variable settings for the database client of
your choice. Ensure that you point to the appropriate libraries, depending on
whether you are using a 32-bit or 64-bit database.

DB2INSTANCE=db2user
IBM_DB_LIB=/scratch/db2user/sqllib/lib
IBM_DB_DIR=/scratch/db2user/sqllib
LD_LIBRARY_PATH=/scratch/db2user/sqllib/lib64:/scratch/db2user/sqllib/lib32
PATH=$PATH:/scratch/db2user/sqllib/bin:/scratch/db2user/sqllib/adm:/scratch/
db2user/sqllib/misc
DB2_HOME=/scratch/db2user/sqllib
IBM_DB_INCLUDE=/scratch/db2user/sqllib/include
DB2LIB=/scratch/db2user/sqllib/lib

3. Save and close the file.

4. Restart OBIS1.

About Updating Row Counts in Native Databases
Learn when you can use the Update Rowcount function.

If the following are true:

• You are using the Update Rowcount in the Administration Tool in offline mode.

• You are running a heterogeneous environment such as the Oracle BI Server on
UNIX, while remote administrators run the Administration Tool on Windows
computers.

When using the Update Rowcount functionality in offline mode, the Administration
Tool uses local data source connection definitions on the client computer, not the
server data sources. Configure Oracle Database or DB2 clients on the Windows
computer running the Administration Tool so that the following conditions are true:

• Data sources point to the same database identified in the Oracle BI
obis.properties file on the UNIX server.

• The name of the local data source matches the name of the data source defined in
the Connection Pool object in the physical layer of the Oracle BI repository (.rpd)
file.

Chapter 16
About Updating Row Counts in Native Databases

16-5



If the above conditions are not true, and if the server and client data sources are
pointing at different databases, then erroneous updated row counts or incorrect results
appear.

Troubleshooting OCI Connections
There are several reasons why you might have trouble connecting to an Oracle
Database using OCI.

Check to ensure that the following conditions are true:

• The computer running the Oracle BI Server must use Oracle Call Interface (OCI)
to connect to the database.

• If you choose not to use the entire connect string in the repository connection pool,
you must ensure that a valid tnsnames.ora file is set up in the following location
within the Oracle Business Intelligence environment, so that the Oracle BI Server
can locate the entry:

BI_DOMAIN/config/fmwconfig/bienv/core

• If you choose not to use the entire connect string in the repository connection pool,
ensure that the net service name in the tnsnames.ora file matches the Data Source
Name used in the connection pool.

For example, in the following example of a tnsnames.ora entry, the corresponding
Oracle BI EE repository connection pool Data Source Name is ITQA2.

ITQA2 =
   (DESCRIPTION =
      (ADDRESS_LIST =
         (ADDRESS = (PROTOCOL = TCP)(HOST = ITQALAB2)(PORT = 1521))
   (CONNECT_DATA =
      (SERVICE_NAME = ITQALAB2.corp)
      )
   )

The following procedure shows how to check repository database and connection pool
settings against the Oracle tnsnames.ora settings.

1. Open the repository in the Administration Tool.

2. In the Physical layer, double-click the database you want to check to display the
Database dialog.

3. On the General tab, in the Data source definition: Database field, ensure that
the appropriate Oracle Database version is selected. Then, click OK.

4. Open the Connection Pool dialog for this data source. You might need to expand
the database object in the Physical layer to see the connection pool object.

5. In the Connection Pool dialog, check that the following is true:

• The Call interface field displays the appropriate value for the release of the
Oracle Database you are using.

• The Data source name field displays the Oracle Database net service name
that you defined in the tnsnames.ora entry.

• The User name and password fields contain the correct values.

Change the values if necessary, then click OK.

Chapter 16
Troubleshooting OCI Connections

16-6



6. In the Oracle Business Intelligence environment, open the tnsnames.ora file located
in the following directory:

BI_DOMAIN/config/fmwconfig/bienv/core

7. Check that a valid net service name exists with the following characteristics:

• Matches the connection pool settings for the Data Source Name

• Specifies the targeted Oracle physical database

Using DataDirect Connect ODBC Drivers on Linux and
UNIX

Oracle Business Intelligence provides DataDirect Connect ODBC drivers and driver
managers for Linux and UNIX operating systems for connectivity to Microsoft SQL
Server, Sybase ASE, Informix, Hive, and Impala databases.

The DataDirect drivers are installed in the Oracle Business Intelligence is installation
process. You can find the DataDirect Connect ODBC drivers in the MW_HOME/bi/
modules/oracle.bi.datadirect.odbc/7.1.6/lib directory.

You do not need to set the ODBCINI environment variable to set up the DataDirect
Connect ODBC drivers. This variable is set automatically during installation.

Refer to System Requirements and Certification.

Note:

Amazon Redshift data sources are also supported. You need to use the
Amazon Redshift ODBC driver available from Amazon Web Services.
Configure the Amazon Redshift data source using the steps documented for
other data sources.

Configuring Oracle Business Intelligence to Use DataDirect
When you install Oracle Business Intelligence, the required DataDirect 7.1.6 drivers
are installed and automatically configured.

You can define the default settings in the obis.properties and odbc.ini files.

You need to modify your existing database configurations to use the DataDirect
drivers. For information about modifying your existing database configuration, see the
following procedures:

• Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server
Database

• Configuring the DataDirect Connect ODBC Driver for MySQL Database

• Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database

• Configuring the DataDirect Connect ODBC Driver for Informix Database

• Configuring the DataDirect Connect ODBC Driver for Cloudera Impala Database

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-7



• Configuring the DataDirect Connect ODBC Driver for Apache Hive Database

Additional DataDirect Configuration for Oracle Essbase
Modify the DataDirect configuration to connect to Essbase data sources.

The name of the DataDirect 7.1.6 driver file to use with Essbase is essbase.cfg.

1. Open essbase.cfg for editing from the following location:

BI_DOMAIN/config/fmwconfig/biconfig/essbase

2. In the configuration file, locate the BPM_ORACLE_DriverDescriptor element and
change the value to "DataDirect 7.1.6 Oracle Wire Protocol".

3. Use Fusion Middleware Control to restart Essbase.

Configuring the DataDirect Connect ODBC Driver for Microsoft SQL
Server Database

The name of the DataDirect ODBC driver file to connect to a Microsoft SQL Server
database is ARsqls27.so.

See System Requirements and Certification for supported versions of Microsoft SQL
Server.

1. Open the obis.properties file located in:

BI_DOMAIN/config/fmwconfig/bienv/OBIS

2. Locate the LD_LIBRARY_PATH variable using the following information:

• For Solaris, Linux, and HP-UX, the library path variable is LD_LIBRARY_PATH.

• For AIX, the library path variable is LIBPATH.

For example, set the library path variable for the driver on Linux:

LD_LIBRARY_PATH=$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE,
$MW_HOME/lib

3. If necessary, update the LD_LIBRARY_PATH variable to include the DataDirect driver
path.

To update the variable for the driver on Linux, review the following example:

LD_LIBRARY_PATH=$MW_HOME/bi/modules/oracle.bi.datadirect.odbc/7.1.6/lib,
$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/bi/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE,
$MW_HOME/lib

4. In the obis.properties file, locate the PATH variable and if necessary, include the
DataDirect driver path.

5. Save and close the file.

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-8



6. Open the odbcinst.ini and odbc.ini files located in the following directory:

BI_DOMAIN/config/fmwconfig/bienv/core

7. Create an entry for the database.

Use the ODBC connection name that is identical to the data source name
specified in the connection pool defined in the repository. Set the Driver parameter
to the file name and location of the DataDirect Connect driver for Microsoft SQL
Server. In the following example, the Driver parameter is set to the DataDirect
Connect driver, and the data source name is SQLSERVER_DB.

[SQLSERVER_DB]
Driver=/MW_HOME/bi/modules/oracle.bi.datadirect.odbc/7.1.6/lib/ARsqls27.so
Description=DataDirect 7.1 SQL Server Wire Protocol
Address=slc10noq.us.oracle.com\MSSQLSERVER16
Port=61045
AlternateServers=
AnsiNPW=Yes
ConnectionRetryCount=0
ConnectionRetryDelay=3
Database=Northwindcr
LoadBalancing=0
LogonID=sa
Password=admin1-2
QuotedId=Yes
SnapshotSerializable=0
ReportCodePageConversionErrors=

8. Save and close the odbcinst.ini and odbc.ini file.

Configuring the DataDirect Connect ODBC Driver for MySQL
Database

Use these steps to connect to a MySQL database.

The name of the DataDirect ODBC driver file to connect to a MySQL database is
ARmysql27.so. See System Requirements and Certification.

1. Open the obis.properties file located in:

BI_DOMAIN/config/fmwconfig/bienv/OBIS

2. Locate the LD_LIBRARY_PATH variable. Use the following:

• For Solaris, Linux, and HP-UX, the library path variable is LD_LIBRARY_PATH.

• For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the driver on Linux:

LD_LIBRARY_PATH=$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE,
$MW_HOME/lib

3. If necessary, update the LD_LIBRARY_PATH variable to include the DataDirect driver
path. For example, to update the variable for the driver on Linux:

LD_LIBRARY_PATH=$MW_HOME/bi/modules/oracle.bi.datadirect.odbc/7.1.6/lib,
$MW_HOME/bi/bifoundation/server/bin,

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-9



$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE
$ORACLE_HOME/lib:$MW_HOME/lib

4. In obis.properties, locate the PATH variable and if necessary, include the
DataDirect driver path.

5. Save and close the file.

6. Open the odbc.ini file. You can find this file at:

BI_DOMAIN/config/fmwconfig/bienv/core

7. Create an entry for the database:

Use the same ODBC connection name to the data source name specified in the
connection pool defined in the repository.

Set the Driver parameter to the file name and location of the DataDirect Connect
driver for MySQL Database. For the NetworkAddress use the IP address or fully
qualified host name and the port number.

In the following example, the Driver parameter is set to the DataDirect Connect
driver, and the data source name is MySQL_DB.

[MYSQL_DB]
Driver=/scratch/aime1/work/mw3108/bi/modules/oracle.bi.datadirect.odbc/7.1.6
Description=DataDirect 7.1.6 MySQL Wire Protocol
ApplicationUsingThreads=1
ConnectionRetryCount=0
ConnectionRetryDelay=3
Database=default
DefaultLongDataBuffLen=1024
EnableDescribeParam=0
HostName=localhost
InteractiveClient=0
LoadBalancing=0
LogonID=my_id
Password=my_password
PortNumber=1526
ReportCodepageConversionErrors=0
TreatBinaryAsChar=0

8. Save and close the odbc.ini file.

Configuring the DataDirect Connect ODBC Driver for Sybase ASE
Database

The name of the DataDirect ODBC driver file to connect to a Sybase ASE database is
ARase27.so.

See System Requirements and Certification for supported versions of Sybase ASE.

1. Open the obis.properties file located in:

BI_DOMAIN/config/fmwconfig/bienv/OBIS

2. Locate the LD_LIBRARY_PATH variable use the following information:

• For Solaris, Linux, and HP-UX, the library path variable is LD_LIBRARY_PATH.

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-10



• For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the driver on Linux:

LD_LIBRARY_PATH=$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin, 
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE$:$MW_HOME/lib

3. If necessary, update the LD_LIBRARY_PATH variable to include the DataDirect driver
path.

To update the variable for the driver on Linux, review the following example:

LD_LIBRARY_PATH=$MW_HOME/bi/modules/oracle.bi.datadirect.odbc/7.1.6/lib,
$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,$ORACLE_INSTANCE$:$MW/lib

4. Locate the PATH variable and if necessary, include the DataDirect driver path.

5. Save and close the file.

6. Open the odbc.ini file located in:

BI_DOMAIN/config/fmwconfig/bienv/core

7. Create an entry for the database.

Use the same ODBC connection name to the data source name specified in the
connection pool defined in the repository.

Set the Driver parameter to the file name and location of the DataDirect Connect
driver for Sybase ASE Database. For the NetworkAddress provide the IP address or
fully qualified host name and the port number.

The following example shows the Driver parameter set to the DataDirect connect
driver, and SybaseASE_DB as the data source name.

[SybaseASE_DB]
Driver=/scratch/aime1/work/mw3108/bi/modules/oracle.bi.datadirect.odbc/7.1.6
Description=DataDirect 7.1 Sybase Wire Protocol
AlternateServers=
ApplicationName=
ApplicationUsingThreads=1
ArraySize=50
AuthenticationMethod=0
Charset=
ConnectionRetryCount=0
ConnectionRetryDelay=3
CursorCacheSize=1
Database=Paint
DefaultLongDataBuffLen=1024
EnableDescribeParam=0
EnableQuotedIdentifiers=0
EncryptionMethod=0
GSSClient=native
HostNameInCertificate=
InitializationString=
Language=
LoadBalancing=0
LogonID=my_id
NetworkAddress=111.111.111.111,5005

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-11



OptimizePrepare=1
PacketSize=0
Password=
RaiseErrorPositionBehavior=0
ReportCodePageConversionErrors=0
SelectMethod=0
ServicePrincipalName=
TruncateTimeTypeFractions=0
TrustStore=
TrustStorePassword=
ValidateServerCertificate=1
WorkStationID=

8. Save and close the odbc.ini file.

Configuring the DataDirect Connect ODBC Driver for Informix
Database

Use these steps to configure the DataDirect ODBC driver file to connect to an Informix
database. The file to use is ARifcl27.so.

See System Requirements and Certification for supported versions of Informix.

1. Open the obis.properties file located in:

BI_DOMAIN/config/fmwconfig/bienv/OBIS

2. Locate the LD_LIBRARY_PATH variable, using the following information:

• For Solaris, Linux, and HP-UX, the library path variable is LD_LIBRARY_PATH.

• For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the driver on Linux:

LD_LIBRARY_PATH=$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE$:$MW_HOME/lib

3. If necessary, update the LD_LIBRARY_PATH variable to include the DataDirect driver
path.

To update the variable for the driver on Linux, review the following example:

LD_LIBRARY_PATH=$MW_HOME/bi/modules/oracle.bi.datadirect.odbc/7.1.6/lib
$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$MW_INSTANCE$:$MW_HOME/lib

4. In obis.properties, locate the PATH variable and if necessary, include the DataDirect
driver path.

5. Save and close the file.

6. Open the odbc.ini file located in:

BI_DOMAIN/config/fmwconfig/bienv/core

7. Create an entry for the database.

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-12



You must use the identical ODBC connection name to the data source name
specified in the connection pool defined in the repository.

Set the Driver parameter to the file name and location of the DataDirect Connect
driver for Informix. You must specify the HostName parameter, you can use the fully
qualified host name or the IP address, and the PortNumber parameter.

In the following example, the Driver parameter is set to the DataDirect Connect
driver, and the data source name is Informix_DB.

[Informix_DB]
Driver=/scratch/aime1/work/mw3108/bi/modules/oracle.bi.datadirect.odbc/7.1.6
Description=DataDirect Informix Wire Protocol
AlternateServers=
ApplicationUsingThreads=1
CancelDetectInterval=0
ConnectionRetryCount=0
ConnectionRetryDelay=3
Database=
HostName=111.111.111.111
LoadBalancing=0
LogonID=informix
Password=mypassword
PortNumber=1526
ReportCodePageConversionErrors=0
ServerName=
TrimBlankFromIndexName=1

8. Save and close the odbc.ini file.

Configuring the DataDirect Connect ODBC Driver for Cloudera Impala
Database

The DataDirect ODBC driver file name, to connect to a Cloudera Impala database is
ARimpala27.so.

See System Requirements and Certification for the supported versions of Cloudera
Impala and Configuring Impala 1.3.x to Include a LIMIT Clause.

1. Open the obis.properties file located at:

BI_DOMAIN/config/fmwconfig/bienv/OBIS

2. Locate the LD_LIBRARY_PATH variable.

The library path variable is:

• For Solaris, Linux, and HP-UX : LD_LIBRARY_PATH.

• For AIX: LIBPATH

For example, to set the library path variable for the driver on Linux, use:

LD_LIBRARY_PATH=$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE,
$MW_HOME/lib

3. If necessary, update the LD_LIBRARY_PATH variable to include the DataDirect driver
path.

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-13



For example, to update the variable for the driver on Linux:

LD_LIBRARY_PATH=$MW_HOME/bi/modules/oracle.bi.datadirect.odbc/7.1.6/lib,
$MW_HOME/bi/bifoundation/server/bin,
$MW_HOME/bi/bifoundation/web/bin,
$MW_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$MW_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE,
$MW_HOME/lib

4. In obis.properties, locate the PATH variable and, if necessary, include the
DataDirect driver path.

5. Save and close the file.

6. Open the odbc.ini file located at:

BI_DOMAIN/config/fmwconfig/bienv/core

7. Create an entry for the database and specify the HostName parameter.

You can use the fully qualified host name or the IP address as the HostName
parameter, and the PortNumber parameter.

• The ODBC connection name is identical to the data source name specified in
the connection pool defined in the repository.

• The Driver parameter is set to the file path of the DataDirect Connect driver
for Cloudera Impala.

• The HostName parameter uses the fully qualified host name, or the IP address
as the HostName parameter and the PortNumber parameter.

The following example shows the Driver parameter set to the DataDirect Connect
driver, and the Impala_DB data source name.

[Impala_DB]
Driver=/scratch/aime1/work/mw3108/bi/modules/oracle.bi.datadirect.odbc/7.1.6/
ARimpala27.so
Description=Oracle 7.1 Cloudera Impala Wire Protocol
ArraySize=16384
Database=default
DefaultLongDataBuffLen=1024
DefaultOrderByLimit=-1
EnableDescribeParam=0
HostName=localhost
LoginTimeout=30
MaxVarcharSize=2000
PortNumber=21050
RemoveColumnQualifiers=0
StringDescribeType=12
TransactionMode=0
UseCurrentSchema=0
WireProtocolVersion=2

8. Save and close the odbc.ini file.

If you are using Impala 1.3.x, you must configure include a LIMIT clause section. If
you are using Impala 1.4 (CDH 5.1) or later, then you can skip the additional
steps.

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-14



Configuring Impala 1.3.x to Include a LIMIT Clause
Impala 1.3.x requires that queries with an ORDER BY clause contain a LIMIT clause.

There are three methods to specify this clause in the configuration. Oracle
recommends using the Modify the Impala daemon's default query options method. For
the second and third methods, see Modifying the Impala DefaultOrderByLimit
Alternate Methods.

Specifying a default order by limit using any of the following methods returns a
maximum of 2,000,000 rows for queries with an ORDER by clause.

If you specify the LIMIT clause using the Modify the Impala daemon's default query
options method, and your queries include an ORDER BY clause, then Impala returns a
maximum of 2,000,000 rows. If this limit is exceeded, then Impala throws an
exception.

For queries over 2,000,000 rows, specify a higher default_order_by_limit value.

You can also specify the Default Order By Limit by using the client instead of the
Impala server.

Use this method if you don’t have rights to modify the Impala daemon using the
previous methods. If you use this method, then Impala silently truncates your value to
2,000,000 rows.

1. Go to the Cloudera Manager's home page and click the Impala service.

2. In the Impala service page, click Configuration, and the select View and Edit.

3. In the Configuration page, select Impala Daemon Default Group.

4. Locate Impala Daemon Query Options Advanced, also known as the
default_query_options, and add the following entries:

default_order_by_limit=2000000
abort_on_default_limit_exceeded=true

5. Click Save Changes.

6. In the Cloudera Manager's home page, restart the Impala service.

Modifying the Impala DefaultOrderByLimit Alternate Methods
Use the first DefaultOrderByLimit option if your Impala environment is not managed by
Cloudera Manager. Use the second DefaultOrderByLimit option if you do not have
rights to modify the Impala daemon.

Modify the Impala Daemon's Default Query Options Without Cloudera Manager

If your environment is managed by Cloudera Manager and you have the required
permissions, use DefaultOrderByLimit, the recommended method for updating the
Impala daemon. See Configuring Implaa 1.3x to Include a Limit Clause.

If your Impala environment is not managed by Cloudera Manager, use the Impala
product documentation to help you modify the LIMIT clause. See “Configuring Impala
Startup Options Through the Command Line” in the CDH 5 Installation Guide.

Chapter 16
Using DataDirect Connect ODBC Drivers on Linux and UNIX

16-15



If you specify the LIMIT clause using this method and your queries include an ORDER
BY clause, then Impala returns a maximum of 2,000,000 rows. If this limit is exceeded,
then Impala throws an exception.

• After completing the steps in the Configuring Impala Startup Options Through the
Command Line task, add the following entry in IMPALA_SERVER_ARGS:

-default_query_options 
'default_order_by_limit=2000000;abort_on_default_limit_exceeded=true'

Modify the DefaultOrderByLimit Parameter in the odbc.ini Impala DSN Entry

Use this method if you do not have rights to modify the Impala daemon using the
previous methods. If you use this method, then Impala silently truncates your value to
2,000,000 rows.

If you need your query to return more than 2,000,000 rows, then specify a higher
DefaultOrderByLimit parameter value.

You can specify the Default Order By Limit using the client instead of the Impala
server.

1. Open the odbc.ini file from the BI_DOMAIN/config/fmwconfig/bienv/core directory.

2. Locate the Impala_DB database entry, and then locate the DefaultOrderByLimit
parameter.

3. Update the value to 2000000, for example, DefaultOrderByLimit=2000000.

4. Save and close the odbc.ini file.

Configuring the DataDirect Connect ODBC Driver for
Apache Hive Database

The name of the DataDirect ODBC driver file to connect to a Apache Hive is
libARhive28.so.

See System Requirements and Certification and Limitations on the Use of Apache
Hive with Oracle Business Intelligence.

See Quick Start: Progress DataDirect for ODBC for Apache Hive Wire Protocol Driver
for UNIX/Linux located in the mwhome\bi\common\ODBC\Merant\8.0.2\help
directory.

1. Open the obis.properties file located in:

BI_DOMAIN/config/fmwconfig/bienv/obis

2. Locate the LD_LIBRARY_PATH variable, use the following information:

• For Solaris, Linux, and HP-UX, the library path variable is LD_LIBRARY_PATH.

• For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the driver on Linux:

LD_LIBRARY_PATH=$MW_HOME/bi/bifoundation/server/bin,
$ORACLE_HOME/bi/bifoundation/web/bin,
$ORACLE_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$ORACLE_HOME/bi/bifoundation/odbc/lib,

Chapter 16
Configuring the DataDirect Connect ODBC Driver for Apache Hive Database

16-16



$ORACLE_INSTANCE,
$ORACLE_HOME/lib

3. If necessary, update the LD_LIBRARY_PATH variable to include the DataDirect driver
path.

To update the variable for the driver on Linux, review the following example:

LD_LIBRARY_PATH=$bi/modules/oracle.bi.datadirect.odbc/8.0.2/lib,
$ORACLE_HOME/bi/bifoundation/server/bin,
$ORACLE_HOME/bi/bifoundation/web/bin,
$ORACLE_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$ORACLE_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE,
$ORACLE_HOME/lib

4. In obis.properties, locate the PATH variable and if necessary, include the
DataDirect driver path.

5. To point to the DataDirect driver, create the HADOOP_DLL variable either above or
below the LD_LIBRARY_PATH variable.

For example:

HADOOP_DLL=MW_HOME/bi/modules/oracle.bi.datadirect.odbc/
8.0.2/lib/ARhive28.so

6. Save and close the file.

7. Open the odbc.ini file located in:

BI_DOMAIN/config/fmwconfig/bienv/core

8. Create an entry for the database, ensuring that the ODBC connection name is
identical to the data source name specified in the connection pool defined in the
repository.

Ensure that you set the Driver parameter to the file name and location of the
DataDirect Connect driver for Hive. You must specify the HostName parameter. You
can use the fully qualified host name, or the IP address, and the PortNumber
parameter.

In the following example, the Driver parameter is set to the DataDirect Connect
driver, and the data source name is Hive.

[Hive] 
Driver=MW_HOME/bi/modules/oracle.bi.datadirect.odbc/8.0.2/lib
Description=Oracle 8.0 Apache Hive Wire Protocol
ArraySize=16384
Database=default
DefaultLongDataBuffLen=1024
EnableDescribeParam=0
HostName=localhost
LoginTimeout=30
MaxVarcharSize=2000
PortNumber=10000
RemoveColumnQualifiers=0
StringDescribeType=12
TransactionMode=0
UseCurrentSchema=0

9. Save and close the odbc.ini file.

10. Restart OBIS1.

Chapter 16
Configuring the DataDirect Connect ODBC Driver for Apache Hive Database

16-17



Configuring Database Connections Using Native ODBC
Drivers

Oracle BI EE bundles UNIX ODBC drivers for some data sources, but not all.

For these data sources, including Teradata and Oracle TimesTen In-Memory
Database, you must install your own ODBC driver, then update the obis.properties
and odbc.ini files to configure the data source.

If you are using Teradata, see Avoiding Spool Space Errors for Queries Against
Teradata Data Sources.

See Creating or Changing Connection Pools.

1. Open the obis.properties file, located in:

BI_DOMAIN/config/fmwconfig/bienv/obis

2. Locate the LD_LIBRARY_PATH variable, use the following information:

• For Solaris, Linux, and HP-UX, the library path variable is LD_LIBRARY_PATH.

• For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the driver on Linux:

LD_LIBRARY_PATH=$ORACLE_HOME/opt/teradata/client/15.10/odbc_64/lib,
$ORACLE_HOME/bi/bifoundation/web/bin,
$ORACLE_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$ORACLE_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE,
$ORACLE_HOME/lib 

3. If necessary, update the LD_LIBRARY_PATH variable to include the driver path.

To update the variable for the driver on Linux, review the following example:

LD_LIBRARY_PATH=$ORACLE_HOME/opt/teradata/client/15.10/odbc_64/lib,
$ORACLE_HOME/bi/bifoundation/server/bin,
$ORACLE_HOME/bi/bifoundation/web/bin,
$ORACLE_HOME/clients/epm/Essbase/EssbaseRTC/bin,
$ORACLE_HOME/bi/bifoundation/odbc/lib,
$ORACLE_INSTANCE,
$ORACLE_HOME/lib

4. In obis.properties, locate the PATH variable and if necessary, include the
DataDirect driver path.

5. Save and close the file.

6. Open the odbc.ini file. You can find this file at:

BI_DOMAIN/config/fmwconfig/bienv/core

7. Create an entry for the database, ensuring that the ODBC connection name is
identical to the data source name specified in the connection pool defined in the
repository.

Ensure that you set the Driver parameter to the file name and location of the native
ODBC driver for the database, with the library suffix that is appropriate for the
operating system, for example, .so for Solaris and AIX, or .sl for HP-UX.

Chapter 16
Configuring Database Connections Using Native ODBC Drivers

16-18



The following example provides details for a Teradata data source on Linux, with a
data source name of Tera_Northwind.

[Tera_Northwind]
Driver=/opt/teradata/client/15.10/odbc_64/lib/tdata.so
Description=NCR 3600 running Teradata V2R6.2
DBCName=10.345.67.899
astUser=
Username=northwind
Password=northwind
Database=northwind
DefaultDatabase=northwind
NoScan=no

If you have selected the option Require fully qualified table names in the
General tab of the Connection Pool dialog for this data source in the
Administration Tool, the DefaultDatabase parameter does not require a value.

8. In the odbc.ini file, add an entry to the section ODBC Data Sources with the details
appropriate for the data source.

The following example provides details for a Teradata data source with a data
source name of Tera_Northwind.

Tera_Northwind=tdata.so

9. Restart OBIS1.

10. Using the Administration Tool, open the repository and add the new DSN you
created as the Connection Pool Data source name for the appropriate physical
databases.

Defining Dimension Tables as Not Normalized in Oracle RPAS ODBC
Data Sources on AIX UNIX

After configuring the database connection for the Oracle RPAS ODBC data source,
use the rdaadmin tool to define dimension tables as not normalized at run time.

1. Locate the rdaadmin client tool in the following location:

/bin/rdaadmin

2. Run the rdaadmin client tool by typing the following command:

rdaadmin

3. Enter appropriate text when prompted, as follows:

• DATABASE: [Oracle_RPAS_database_name]

The database name must match the name given for the Data Source Name in
the previous task (for example, RPAS Sample).

• ADDRESS: [ip_address]

• PORT: [port_number]

An example port number value is 1707.

• CONNECT_STRING: [NORMALIZE_DIM_TABLES=NO]

This value treats dimension tables as not normalized at run time.

• TYPE: []

Chapter 16
Configuring Database Connections Using Native ODBC Drivers

16-19



• SCHEMA_PATH: []

• REMARKS: []

4. Declare the RPAS environment variable OPENRDA in the Oracle BI Server session
on UNIX.

For example, declare the variable using the 64 bit rdaadmin client tool as follows:

OPENRDA_INI=/rpasclient64/config/raix/openrda.ini export OPENRDA_INI

Setting Up Oracle TimesTen In-Memory Database on Linux
and UNIX

You must perform some prerequisite tasks before setting up Oracle TimesTen In-
Memory Database data sources.

To set up Oracle TimesTen In-Memory Database data sources, first follow the
instructions in Configuring TimesTen Data Sources to set up the TimesTen data
source. Ensure that you go to the section Configuring Database Connections Using
Native ODBC Drivers to obtain the correct steps for Linux and UNIX systems.

Next, review the best practices described in Improving Use of System Memory
Resources with TimesTen Data Sources and implement them as needed.

Finally, if the user that starts OBIS1 does not have the path to the TimesTen DLL
($TIMESTEN_HOME/lib) in their operating system LD_LIBRARY_PATH variable, or
SHLIB_PATH and LIBPATH on HP-UX and AIX, respectively, you must add the TimesTen
DLL path as a variable in the obis.properties file.

1. Open obis.properties for editing. You can find obis.properties at:

BI_DOMAIN/config/fmwconfig/bienv/obis

2. Add the required TimesTen variable TIMESTEN_DLL, and also update the
LD_LIBRARY_PATH variable (or equivalent), as shown below:

TIMESTEN_DLL=$TIMESTEN_HOME/lib/libttclient.so
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TIMESTEN_HOME/lib

3. Save and close the file.

4. Repeat these steps on each computer that runs the Oracle BI Server process. If
you are running multiple Oracle BI Server instances on the same computer, then
ensure that you update the ias-component tag appropriately for each instance in
obis.properties, for example, ias-component id="coreapplication_obis1", and ias-
component id="coreapplication_obis2".

5. Restart OBIS1.

Configuring Oracle RPAS ODBC Data Sources on AIX UNIX
You can access Oracle RPAS ODBC data sources when the Oracle BI Server is
running on an AIX UNIX platform.

To configure this database connection, first update the odbc.ini file to configure the
Oracle RPAS ODBC data source, then use the rdaadmin tool to define dimension
tables as not normalized at run time.

Chapter 16
Setting Up Oracle TimesTen In-Memory Database on Linux and UNIX

16-20



See Setting Up Oracle RPAS Data Sources.

1. Log on as a separate telnet session.

2. Open the odbc.ini file. You can find this file at:

BI_DOMAIN/config/fmwconfig/bienv/core

3. In the RPAS data source section, edit the values. For example:

[RPAS Sample]
Data Source Name=RPAS Sample
Driver=[client RPASClient/lib/raix/oaodbc.so
DriverUnicodeType=1
Description=OpenRDA DSN

The Data Source Name you provide must match the value entered for DATABASE in 
Defining Dimension Tables as Not Normalized in Oracle RPAS ODBC on AIX
UNIX. You must add the line DriverUnicodeType=1 as shown in the preceding
example.

Configuring Essbase Data Sources on Linux and UNIX
The Oracle BI Server uses the Essbase client libraries to connect to Essbase data
sources.

The Essbase client libraries are installed by default with Oracle Business Intelligence.
No additional configuration is required to enable Essbase data source access for full
installations of Oracle BI EE .

You must perform the additional configuration steps listed below for HP-UX Itanium
systems.

1. In the NQSConfig.ini file, define ESSLANG and LANG.

For example:

ESSLANG=English_UnitedStates.UTF-8@Binary
export ESSLANG
LANG=en_US.utf8
export LANG

2. Comment out LOCALE, SORT_ORDER_LOCALE, and SORT_TYPE in the NQSConfig.ini file.
For example:

[ GENERAL ]
// Localization/Internationalization parameters.
// LOCALE="English-usa";
// SORT_ORDER_LOCALE="English-usa";
// SORT_TYPE="binary";

Configuring DB2 Connect on IBM z/OS and s/390 Platforms
IBM DB2 Connect does not support the option of automatically disconnecting when an
application using it receives an interrupt request.

When the native database uses DB2 Connect workstation, then you must change the
setting of the parameter INTERRUPT_ENABLED. You must change the parameter on any
Oracle Business Intelligence computer if the database or any data source resides on
IBM DB2 on a mainframe running z/OS or s/390 platforms.

Chapter 16
Configuring Essbase Data Sources on Linux and UNIX

16-21



Note:

If IBM DB2 is used, DB2 Connect must be installed on the Oracle BI Server
computer. The version of DB2 Connect must match the most recent DB2
instance that was configured as a data source.

1. Configure a database alias to use as the native CLI Data Source Name, for
example, create a new database entry using DB2 Configuration Assistant.

2. Using the database alias you created and the name of the actual target DB2
database, set the INTERRUPT_ENABLED parameter using the following syntax:

uncatalog dcs db local_dcsname catalog dcs db local_dcsname as target_dbname 
parms \",,INTERRUPT_ENABLED\"

where:

• local_dcsname represents the local name of the host or database, the database
alias name.

• target_dbname represents the name of database on the host or database
system.

Note:

Ensure that you use backslashes to pass the quotation marks as
part of the string.

The following example uses an OS390 DB2 instance:

uncatalog dcs db DB2_390
catalog dcs db DB2_390 as Q10B parms \",,INTERRUPT_ENABLED,,,,,\"
catalog database DB2_390 as DB2_390 at node NDE1EF20 authentication dcs

Chapter 16
Configuring DB2 Connect on IBM z/OS and s/390 Platforms

16-22



17
Managing Oracle BI Repository Files

This chapter describes tasks related to managing your Oracle BI repository files,
including comparing and merging repositories, equalizing objects, querying and
managing metadata, and changing the repository password.
This chapter contains the following topics:

• Comparing Repositories

• Equalizing Objects

• Merging Repositories

• Querying and Managing Repository Metadata

• Changing the Oracle BI Repository Password

• OBIS Metadata Compatibility

Comparing Repositories
Learn how to compare all repository objects in two different repositories.

If you are using an Oracle BI Applications repository and have customized its content,
you can use this feature to compare your customized repository to a new version of
the repository received with Oracle BI Applications.

See Merging Repositories.

This section contains the following topics:

• Comparing Repositories Using the Compare Dialog

• Comparing Repositories Using comparerpd

• Turning Off Compare Mode

Comparing Repositories Using the Compare Dialog
Use this task to compare repositories in the Oracle BI Administration Tool.

The repository that you open is referred to as the current repository. See Using Online
and Offline Repository Modes for instructions on opening a repository.

1. In the Administration Tool, open a repository in offline mode.

2. From the File menu, select Compare.

3. In the Select Original Repository dialog, select the repository you want to compare
to the open repository. Select Repository from the submenu to select a binary
repository file in RPD format, or select XML to select a set of MDS XML
documents.

4. In the Open Offline dialog, enter the repository password and click OK.

17-1



5. Use the Compare repositories dialog to review the differences between
repositories.

Comparing Repositories Using comparerpd
You can compare repositories and create patch files using the comparerpd utility.

Use comparerpd on Linux and UNIX systems when the Administration Tool is not
available.

When you run the comparerpd utility, the system equalizes the repository objects. The
equalizing process outputs the my_current_rpd_equalized.rpd file, an informational file
containing the output of the equalization done between the compared repositories.
Equalizing ensures that objects with the same qualified names have the same unique
identifiers (UIDs). Objects with the same name but different UIDs are automatically
updated to use the same UID or equalized. Including when equalization is not needed,
the my_current_rpd_equalized.rpd file is generated. The my_current_rpd_equalized.rpd
file is saved to the original repository's location.

The location of the comparerpd utility is:

BI_DOMAIN/bitools/bin

Syntax

The comparerpd utility takes the following parameters:

comparerpd [-P modified_rpd_password] -C modified_rpd_pathname 
[-W original_rpd_password] -G original_rpd_pathname {-O output_csv_file_name | 
-D output_patch_file_name | -M output_mds_xml_directory_name} -A -E -8

Where:

-P modified_rpd_password is the repository password for the modified repository, also
called the customer or customized repository.

-C modified_rpd_pathname is the name and location of the modified repository.

-W original_rpd_password is the repository password for the original repository.

-G original_rpd_pathname is the name and location of the original repository.

-O output_csv_file_name is the name and location of a csv file where you want to store
the repository object comparison output.

-D output_patch_file_name is the name and location of an XML patch file where you
want to store the differences between the two repositories.

-M output_mds_xml_directory_name is the top-level directory where you want to store diff
information in MDS XML format. A list of removed XML files is stored in the directory
tree under the top-level directory at:

oracle\bi\server\base\DeletedFiles.txt

You can specify an output CSV file using -O, an XML patch file using -D, or an MDS
XML directory tree using -M. You cannot specify more than one output type at the
same time.

If the patch contains passwords, such as connection pool passwords, the patch file is
encrypted using the repository password from the current repository. The current

Chapter 17
Comparing Repositories

17-2



repository password effectively becomes the patch file password. You might need to
supply this patch file password when applying the patch, if it is different from the
repository password for the original repository.

-A is an optional argument that ensures the XML patch file does not contain encrypted
passwords for the connection pools. This parameter is used in conjunction with the -D
parameter.

-E is an optional argument that causes UIDs to be used to compare expression text.
Using this parameter ensures objects that have the same name but different UIDs are
given the same UID. This action makes sure that objects are compared as modified
instead of being reported as created and deleted. If -E is not specified, strings are
used.

-8 specifies UTF-8 encoding.

Note:

The arguments for the modified_rpd_password and original_rpd_password
are optional. If you do not provide password arguments, you are prompted to
enter any required passwords when you run the command. To minimize the
risk of security breaches, Oracle recommends that you do not provide
password arguments either on the command line or in scripts. The password
arguments are supported for backward compatibility only. For scripting
purposes, you can pass the password through standard input.

For example:

comparerpd -C customer.rpd -G original.rpd -O diff.csv
Give password for customer repository: my_cust_password
Give password for original repository: my_orig_password

This example generates a comparison diff file in CSV format called diff.csv from the
customer.rpd and original.rpd repositories.

comparerpd -C customer.rpd -G original.rpd -D my_patch.xml
Give password for customer repository: my_cust_password
Give password for original repository: my_orig_password

This example generates an XML patch file called my_patch.xml from the customer.rpd
and original.rpd repositories.

Turning Off Compare Mode
You can remove marks applied to objects while using the Compare Repositories and
Merge Repositories options.

The Turn off Compare Mode option is only available after you have clicked Mark
during the Compare action. If no repository object is marked, this option is not
available.

• In the Administration Tool, select File, then select Turn off Compare Mode.

Chapter 17
Comparing Repositories

17-3



Equalizing Objects
If you have objects in two repositories that have the same name but different Upgrade
IDs, you may want to treat them as the same object.

Use the equalizerpds utility to give the objects in the repositories the same Upgrade
ID. You can equalize objects as part of the merge process.

You can also use the Equalize Objects dialog, available from the Compare repositories
dialog, to preview the repository after you run the equalizerpds utility.

This section contains the following topics:

• About Equalizing Objects

• Using the Equalize Objects Dialog

• Using the equalizerpds Utility

About Equalizing Objects
You might need to equalize objects because the Oracle BI Administration Tool tracks
the history of each repository object using the Upgrade ID of the object.

The Upgrade ID is a unique identifier for each object.

Sometimes, the Upgrade ID can change because of user actions or during merge.
When this occurs, and a subsequent comparison is done, the Oracle BI Administration
Tool treats the new Upgrade ID as a new object, and the missing original Upgrade ID
as a deleted object.

For example, assume you have two identical repositories. In one repository, delete a
presentation column, then re-create it again. When you compare the two repositories
using the Compare repositories dialog, there are two entries for the presentation
column: one that shows the old object as deleted, and one that shows the new object
as created. Without using the Compare repositories dialog, it is hard to tell that this
action occurred, because the Administration Tool typically shows only the object name
and properties, not the underlying Upgrade ID.

The Upgrade IDs are not unique, in rare cases the repositories that you want to merge
might contain the same Upgrade ID. Running the equalizerpds utility on the
repositories corrects the duplicate Upgrade ID issue and prevents an error while
performing the merge.

Run the equalizerpds utility on your repositories before merging them to equalize your
changes. Equalizing any opposing changes such as a column that has been
duplicated and then renamed, cleans up the underlying Upgrade IDs, and prevents
unintended renaming during the merge.

When you equalize objects, you can lose track of object renames because legitimate
object renames become different objects. Intentional renames you did in the repository
might change to different Upgrade IDs, so subsequent merges erroneously treat the
renamed object as a new object. To avoid the renaming and new object situation,
enter the before and after names of intentionally renamed objects in a rename map file
that you then pass to the utility. The equalizerpds utility uses the information in the file
to ensure that the original IDs are used in the renamed current objects.

Chapter 17
Equalizing Objects

17-4



You can view the Upgrade ID for repository objects using the Query Repository dialog.
See Viewing the Upgrade ID for Repository Objects.

Viewing the Upgrade ID for Repository Objects
You can view the Upgrade ID for repository objects using the Query Repository dialog.
When you use this task, a new column showing the Upgrade IDs displays in the
Results list.

The Upgrade ID is not available as a column option unless you have selected Show
Upgrade ID in Query Repository in the General tab of the Options dialog. See 
Setting Administration Tool Options.

1. In the Oracle BI Administration Tool, open a repository in offline mode.

2. Select Tools, then select Query Repository.

3. In Query Repository, click Columns.

4. In Select columns, select Upgrade ID from the list or use Find to help locate the
Upgrade ID.

5. Click Query.

Using the Equalize Objects Dialog
The Equalize Objects dialog provides a preview of what your repository looks like if
you run the equalizerpds utility on it.

The Equalize Objects dialog provides a convenient way to compare changes related to
objects that have the same name, but it does not persist any of the changes.

Note:

Using the Equalize Objects dialog can be a very slow process for larger
repositories.

1. In the Administration Tool, open your repository in offline mode.

2. From the File menu, select Compare.

3. In the Select Original Repository dialog, click Repository from the submenu to
select a binary repository file in RPD format, or select XML to select a set of MDS
XML documents.

4. In the Open Offline dialog, enter the repository password and click OK.

5. In the Compare repositories dialog, click Equalize.

6. The Equalize Objects dialog shows a list of changes to consider objects with
different Upgrade IDs to the same object. You can use the following options to
model how the changes might get equalized:

• Click Automatic to automatically equalize changes related to objects that
have the same name. The changes appear in the Equated table.

If no changes can be automatically equalized, nothing appears in the table,
and the OK button remains disabled.

Chapter 17
Equalizing Objects

17-5



• Select an object in the Deleted list, then select the equivalent object in the
Created list and click Add or Add Plus to equate the objects. Add Plus adds
the object along with its child objects to the Equated table, while Add simply
adds the selected object. For example, if you select a Subject Area and click
Add Plus, the underlying Presentation Tables and Presentation Columns are
added as well.

After you make a manual selection, the Automatic button is disabled.

• Select a row in the Equated table and select Remove or Remove All to
remove objects from the Equated table. Remove All removes the object along
with its child objects, while Remove simply removes the selected object

The Automatic button is enabled after all manual selections are removed.

7. When you are finished modeling the changes, click OK. The changes appear in
the Compare Repositories dialog, but the changes do not persist after you close
the dialog.

Using the equalizerpds Utility

You can use the equalizerpds utility to equalize the Upgrade ID of objects in two
separate repositories. If objects have the same Upgrade ID, they are considered to be
the same object. The utility compares Upgrade IDs from the first repository (the
original repository) with Upgrade IDs from the second repository (the modified
repository). Then, the utility equalizes the Upgrade IDs of objects with the same name,
using the Upgrade ID from the original repository.

The equalizerpds utility is available on both Windows and UNIX systems. You can only
use equalizerpds with binary repositories in RPD format.

The location of the equalizerpds utility is:

BI_DOMAIN/bitools/bin

Chapter 17
Equalizing Objects

17-6



Syntax

The equalizerpds utility takes the following parameters:

equalizerpds [-B original_repository_password] -C original_repository_name
{-E modified_repository_password]|-G} -F modified_repository_name [-I 
input_UDML_script_name][-J rename_map_file]
[-O output_repository_name] [-R output_apply_result_file] [-U output_id_map_file][-Y 
equalStringSet]

Where:

G specifies to use the original repository password for the modified repository
password.

rename_map_file is a text file containing a list of objects that were renamed and that
you want to equalize. The format is a tab-separated file with the following columns:

TypeName     Name1     Name2

For example, to include a logical column in the map file that was renamed from Name1
to Name2, provide the following:

ATTRIBUTE "BusinessModel"."Table"."Name1"     "BusinessModel"."Table"."Name2"

Do not cut and paste this example as the foundation for your own file, because the tab
separators might not get copied properly. Create a new file with proper tabs.

See About Values for TypeName.

equalStringSet is a set of characters that you want to treat as equal.

The original_repository_password and modified_repository_password arguments are
optional. If you do not provide these password arguments, you are prompted to enter
the passwords when you run the command (password1 and password2). To minimize
the risk of security breaches, Oracle recommends that you do not provide password
arguments on the command line or in scripts. The password arguments are supported
for backward compatibility only. For scripting purposes, you can pass the password
through standard input.

For example:

equalizedrpds -C original.rpd -F modified.rpd -O modified_equalized.rpd
password1: my_original_rpd_password
password2: my_modified_rpd_password

In this example, original.rpd is compared with modified.rpd, the Upgrade IDs are
equalized using the Upgrade IDs from original.rpd, and the final result is written to
modified_equalized.rpd.

Note:

Provide the full path names to your repository files, both the input files and
the output file, if they are located in a different directory.

Chapter 17
Equalizing Objects

17-7



About Values for TypeName
Learn about the available object types and their corresponding values for TypeName.

The table shows the available object types and their corresponding values for
TypeName.

Object Type Value for TypeName

Database DATABASE

Connection Pool CONNECTION POOL

Physical Catalog CATALOG

Physical Schema SCHEMA

Physical Display Folder PHYSICAL DISPLAY FOLDER

Physical Table TABLE

Physical Key TABLE KEY

Physical Foreign Key FOREIGN KEY

Physical Column COLUMN

Physical Complex Join JOIN

Physical Hierarchy HIERARCHY

Physical Level PHYSICAL LEVEL

Cube Column COLUMN

Cube Table CUBE TABLE

LDAP Server LDAP SERVER

Custom Authenticator CUSTOM AUTHENTICATOR

Variable VARIABLE

Application Role SECURITY ROLE

User USER

User Database Signon USER DATABASE SIGNON

Project PROJECT

Business Model SUBJECT AREA

Logical Dimension DIMENSION

Logical Level LEVEL

Logical Display Folder LOGICAL DISPLAY FOLDER

Logical Table LOGICAL TABLE

Logical Source Folder LOGICAL SOURCE FOLDER

Logical Table Source LOGICAL TABLE SOURCE

Logical Column ATTRIBUTE

Logical Join ROLE RELATIONSHIP

Logical Key LOGICAL KEY

Logical Foreign Key LOGICAL FOREIGN KEY

Presentation Catalog CATALOG FOLDER

Chapter 17
Equalizing Objects

17-8



Object Type Value for TypeName

Presentation Table ENTITY FOLDER

Presentation Column FOLDER ATTRIBUTE

Presentation Hierarchy PRESENTATION HIERARCHY

Presentation Level PRESENTATION LEVEL

Catalog Link CATALOG LINK

Target Level CUSTOMER TYPE

List Catalog LIST CATALOG

Qualified Item QUALIFIED ITEM

Qualifying Key QUALIFYING KEY

Sampling Table SAMPLING TABLE

Segmentation Catalog SEGMENTATION CATALOG

Merging Repositories
You can use the Merge Repository Wizard in the Administration Tool to merge Oracle
BI repositories.

You can merge repositories in binary (RPD) format, or MDS XML format. There are
three types of merges:

• Full merges are typically used during development processes, when there are two
different repositories that need to be merged. The Administration Tool provides a
three-way merge feature that lets you merge two repositories that have both been
derived from a third, original repository. Full merges can also be used to import
objects from one repository into another.

• Patch merges are used when you are applying the differential between two
versions of the same repository. For example, you might want to use a patch
merge to apply changes from the development version of a repository to your
production repository, or to upgrade your Oracle BI Applications repository.

By default, the patchrpd utility's merge functionality uses patch mode. If you want
to set up the Merge Repository Wizard to match the patchrpd utility's default merge
functionality, then you must set up the Merge Repository Wizard to run in patch
mode.

• Multiuser development merges are used when you are publishing changes to
projects using a multiuser development environment, see About the Multiuser
Development Merge Process .

See Merge Rules to learn how repository objects are merged.

This section contains the following topics:

• Performing Full Repository Merges

• Performing Patch Merges

Performing Full Repository Merges
You can use the Oracle BI Administration Tool to merge different repositories.

Chapter 17
Merging Repositories

17-9



This section describes how to use the full (standard) repository merge feature in the
Administration Tool.

This section contains the following topics:

• About Full Repository Merges

• Performing Full Repository Merges With a Common Parent

• Performing Full Repository Merges Without a Common Parent

About Full Repository Merges
The merge process typically involves three versions of an Oracle BI Repository: the
original repository, modified repository, and current repository.

The original repository is the original repository (the parent repository), while the
modified and current repository are the two repositories to merge. The current
repository is the one open in the Administration Tool.

During the merge process, the Administration Tool compares the original repository
with the modified repository and the original repository with the current repository.
Conflicts occur when there are unresolved changes resulting from the two
comparisons. For example, a conflict occurs if you rename object A to B in the
modified repository, but you rename object A to C in the current repository.

The Merge Repository feature lets you decide on an object-by-object basis which
changes you want to keep in the final merged repository. If there are no conflicts,
merging is automatic.

There are two types of full merge:

• Common Parent. This merge, also called a three-way merge, is useful when you
have a common parent repository and two derived repositories. There is a parent
(original) repository, and two derived repositories. After the merge, a fourth
merged repository is created.

The example shown in the figure below assumes you are merging binary (RPD)
repositories, but you can also perform this type of merge with MDS XML
repositories.

Chapter 17
Merging Repositories

17-10



• No Common Parent

A merge when the objects do not have a common parent is also called a two-way
merge. Use a two-way merge when to import objects from one repository to
another repository. To perform a merge of objects with no common parent use a
three-way merge in the Administration Tool with a blank repository as the original
repository.

The example shown in the image below, you are merging binary (RPD)
repositories. You can also perform this type of merge with MDS XML repositories.

Chapter 17
Merging Repositories

17-11



Performing Full Repository Merges With a Common Parent
Learn how to use the Oracle BI Administration Tool to perform a full repository merge
with a common parent.

Use this approach when you have an original parent repository and would like to
merge the changes made to objects in two modified repository versions, current and
modified. Objects that do not exist in the current repository are created as new
objects.

See Equalizing Objects and Merge Strategies Reference.

1. In the Administration Tool, open the current repository in offline mode.

2. From the Administration Tool menu, select File, then select Merge.

3. In the Select Input Files screen, for Merge Type, select Full Repository Merge.

4. Select the original parent repository by clicking Select next to Original Master
Repository. Select Repository from the submenu to select a binary repository file
in RPD format, or select XML to select a set of MDS XML documents.

For binary repositories, browse to select the original repository, and then click
Open. For MDS XML format repositories, use the Browse For Folder dialog to
select the root folder location of the MDS XML documents, and then click OK.

5. Provide the password for the original repository in the appropriate Repository
Password field.

Chapter 17
Merging Repositories

17-12



6. Select the modified repository by clicking Select next to the Modified Repository
field. Select Repository from the submenu to select a binary repository file in RPD
format, or select XML to select a set of MDS XML documents.

For binary repositories, browse to select the modified repository, and then click
Open. For MDS XML format repositories, use the Browse For Folder dialog to
select the root folder location of the MDS XML documents, and then click OK.

7. Provide the password for the modified repository in the appropriate Repository
Password field.

8. Optionally, you can change the default name and location of the saved (merged)
repository by clicking Select next to the Save Merged Repository as field. Select
Repository from the submenu to save the merged repository as a binary
repository file in RPD format, or select XML to save the merged repository as a set
of MDS XML documents.

For binary repositories, provide a new name and location, and then click Save. For
MDS XML format repositories, use the Browse For Folder dialog to select the root
folder location of the MDS XML documents, and then click OK.

9. It is a good practice to equalize your changes to clean up underlying object IDs
before merging. If you have not yet equalized your changes, select Equalize
during merge to equalize objects as part of the merge process. Selecting this
option may affect merge performance.

10. Click Next. If there are any conflicts, the Define Merge Strategy screen of the
Merge Repository Wizard appears. If there are no conflicts, the Merge Repository
Wizard closes.

11. The Define Merge Strategy screen displays a decision table that shows conflicts
for this merge.

To make decisions about whether to include or exclude objects from the merged
repository, choose Current or Modified from the Decision list. Choose Current to
keep the change for the selected object in the current repository, or choose
Modified to keep the change for the selected object in the modified repository.

When you select an object in the decision table, the read-only text box below the
decision table describes what changes were made to that object in the current
repository. In addition, the tree panels at the bottom of the dialog show the
affected objects for the selected row. Alternatively, you can select an object in one
of the tree views to automatically highlight the corresponding row in the decision
table.

The Modified option in the Decision list displays a suffix that indicates whether
the object is added to or deleted from the merged repository. Modified (A)
indicates that the object is added, and Modified (D) indicates that the object is
deleted.

The type of conflict is displayed in the Description column of the Conflicts table.
The decision choices you can make depend on the type of conflict shown in this
column. The following list shows example results for different types of conflicts:

• Added to Current: Choosing Current keeps the new object in the merged
repository. Choosing Modified (D) deletes the new object from the merged
repository.

• Deleted from Current: Choosing Current keeps the repository as it is without
adding the object to the merged repository. Choosing Modified (A) adds the
object back into the merged repository.

Chapter 17
Merging Repositories

17-13



• Changed in both (different): The object was not added or deleted, but at
least one of its properties was modified. Click the plus sign (+) to the left of the
row to view the property that was changed, as well as its value in the original,
current, and modified versions of the repository. Property values are only
shown for small-length strings. Longer-length strings like descriptions,
features, and init strings are not shown.

Click the option for the value you want to retain in the merged version of the
repository. For some properties, such as aliases, you can choose the Merge
Choices option to merge the properties rather than choose one over the other.
This option is only available if the properties can be merged.

Note:

You typically do not need to make merge decisions regarding objects
that have been added to or deleted from the Modified repository.
However, you can view change statistics for this merge to see a
summary of changes, including objects that have been added to or
deleted from Modified.

After you make a merge decision, the row for that decision in the table changes
from red to black. When all rows have a value in the Decision field, the Finish
button is enabled.

12. In addition to making merge decisions, you can perform other operations in the
Define Merge Strategies screen.

13. Click Finish.

Merge Strategies Reference
Use the table to help with merge decisions when merging repositories with a common
parent.

The table lists and describes the elements in the Define Merge Strategies screen.

Chapter 17
Merging Repositories

17-14



Element Description

Conflicts table The Conflicts table includes the following columns:

• Type: The type of object for which there is a conflict, for
example, Presentation Column.

• Name: The name of the object for which there is a conflict.
• Description: The reason for the conflict, such as Added to

Current. See the previous step for a description of different
conflict types.

• Decision: Select the decision according to what change
you want to keep in the merged repository, such as Current,
Modified (A), Modified (D), or By Property. See the previous
step for a description of the results of different decisions.

For objects with properties that are modified in each repository,
a sub-table (grid) is displayed with details of the changed
properties. The grid includes the following columns:

• Property: The name of the property that has been modified
in each repository.

• Original: The value of the property in the original repository.
• Modified: The value of the property in the modified

repository. Select this option to keep this value.
• Current: The value of the property in the current repository.

Select this option to keep this value.
• Merge Choices: For some properties, like aliases, you can

choose this option to merge the property values rather than
choose one or the other.

Show qualified names When selected, shows fully qualified names for objects in the
decision table, for example, "Paint"..."Month Year Ago fact".
When the Show qualified names option is selected, some of
the object names can be too long to fit into the cells of the
decision table. Use the mouse to hover over the truncated name
to see the full name of the object or property. Alternatively, you
can manually resize columns, or double click the column
separator to expand the column to the width of the object name.

Set Default Decisions When clicked, allows you to choose how the Administration Tool
resolves conflicts. Use this option when you do not want to set
each conflict's decision manually.

Select All if you want the Administration Tool to resolve all
unresolved and resolved conflicts, that is conflicts for which you
have already specified decisions. If you choose this option, then
the Administration Tool checks the conflict decisions that you
have already specified and changes them if necessary.

Select Only undecided if you want the Administration Tool to
resolve only the unresolved conflicts. That is, to assign decisions
to all conflicts for which you have not specified decisions. When
you select this option, the Administration Tool preserves the
conflict decisions that you have already specified.

Check consistency of the
merged RPD

When selected, runs a consistency check before saving the
merged file.

Hide object views Select this option to hide the tree panels in the dialog. The tree
panels show the affected objects for the row selected in the
conflicts decision table.

Hiding the tree panels can improve the performance of the
Define Merge Strategies screen.

Chapter 17
Merging Repositories

17-15



Element Description

Save Decisions to File Saves a file containing interim changes in the Repository
subdirectory so that you can stop work on the merge and
continue it later. After saving the changes (decisions), close the
Merge repositories dialog by clicking Cancel.
If there are a large number of decisions, you can save time by
saving the merge decisions to a CSV file, opening the file in
Excel or a text editor, and then modifying the merge decisions
manually. Then, you can load the updated merge decisions file
in the Define Merge Strategies screen, or include the decision
file as an argument in patchrpd.

Load Decision File Loads the saved decisions file from the Repository subdirectory
so that you can continue processing a repository merge.

This option is especially useful for resolving conflicts after
running an automated patch merge using patchrpd. See Using
patchrpd to Apply a Patch.

Find by Name or Type Searches by an object Name and Type such as Initialization
Block.

Find Again Searches again for the most recent Find value.

View Change Statistics Shows statistics for this merge, such as the number of objects
deleted from the Modified repository, the number of objects that
were changed in both repositories, and so on.

Details Shows the text in the read-only text box below the decision table
in a separate window.

View Original/Modified/
Current repository

Shows properties for the affected object in the selected
repository.

Performing Full Repository Merges Without a Common Parent
Learn how to use the Oracle BI Administration Tool to perform a full repository merge
without a common parent.

Use this method when you want to import objects from one repository, the modified
repository, into another, the current repository.

Note:

In the repository you choose to define as current, make sure that the
Presentation layer references any Physical layer or Business Model and
Mapping layer objects that you want to keep. Objects like business models,
databases, and connection pools in the current repository that are not
referenced by any Presentation layer objects are discarded during the
merge. If necessary, you might want to add a placeholder subject area that
references the objects before you perform the merge to ensure the desired
objects are kept.

See Merge Rules to learn which objects are retained or discarded during the
merge process.

Chapter 17
Merging Repositories

17-16



1. In the Administration Tool, select File, then select New Repository to serve as the
original repository in the merge.

2. In the Create New Repository Wizard, provide a name for the repository, for
example, blank.rpd.

3. In Import Metadata, choose No.

4. Enter and confirm the repository password you want to use for this repository.

5. Click Finish.

6. Close the blank repository.

7. Open the current repository containing the objects you want to import, in offline
mode.

8. From the Administration Tool menu, choose File, then select Merge.

9. In Select Input Files, for Merge Type, select Full Repository Merge.

10. Click Select next to Original Master Repository, then click Repository.

11. Navigate to your blank repository file and click Open and leave the password field
blank.

12. Next to the Modified Repository field, click Select to choose the destination
repository.

a. Select Repository from the submenu to select a binary repository file in RPD
format, or select XML to select a set of MDS XML documents.

b. For binary repositories, browse to select the modified repository, and then click
Open.

c. For MDS XML format repositories, use the Browse For Folder dialog to select
the root folder location of the MDS XML documents, and then click OK.

13. Provide a password for the modified repository in the appropriate Password field.

14. Click Next.

If there are any conflicts, the Merge Repository Wizard’s Define Merge Strategy
displays a message.

15. In Define Merge Strategy, choose Current or Modified from the Decision list.

When you select an object in the decision table, the read-only text box below the
decision table describes what changes were made to that object in the current
repository. Refer to the table for information about additional options in Define
Merge Strategy such as saving merge decisions to a comma-separated values
(.csv) file.

After you make a merge decision, the row for that decision in the table changes
from red to black.

16. Click Finish.

Performing Patch Merges
You can use the patch merge to generate an XML patch file that contains only the
changes made to a repository.

This patch can be then applied to the old (original) version of the repository to create
the new version.

Chapter 17
Merging Repositories

17-17



This merge method is very useful for development-to-production scenarios, and can
also be used for Oracle BI Applications customers to upgrade their repository.

This section explains how to generate a patch that contains the differences between
two repositories, and then apply the patch to a repository file.

This section contains the following topics:

• About Patch Merges

• Generating a Repository Patch

• Applying a Repository Patch

About Patch Merges
In a patch merge, you create a patch that contains the differences between the current
repository and the original repository.

You apply the patch file to the modified repository. Differences between the current
and original repository must exist in matching existing projects in both repositories.

In a development-to-production scenario, you have an original parent repository, a
current repository that contains the latest development changes, and a modified
repository that is the deployed copy of the original repository.

To generate a patch, you open the current repository and select the original repository,
then create the patch.

To apply the patch, you open the modified repository and select the original repository,
then apply the patch.

In an Oracle BI Applications repository upgrade scenario, the current repository is the
latest version of the repository shipped by Oracle, and the original repository is the
original repository shipped by Oracle. The modified repository is the one that contains
the changes you made to the original repository.

Generating a Repository Patch
Use the Oracle BI Administration Tool to generate a patch that contains the
differences between two repositories.

See Equalizing Objects.

1. In the Administration Tool, open the current Oracle BI EE repository in offline
mode. In other words, open the updated repository that contains the changes you
want to put in the patch.

Note:

If changes are made using projects, you must add metadata changes to
an existing project. Changes made to a new project are lost during the
patch merge process.

2. Select File, then select Compare.

Chapter 17
Merging Repositories

17-18



3. Select the original Oracle BI EE repository. Select Repository from the submenu
to select a binary repository file in RPD format, or select XML to select a set of
MDS XML documents.

4. In the Open Offline dialog, enter the repository password and click OK.

5. It is a good practice to equalize your changes to clean up underlying object IDs
before generating a patch.

6. In the Compare repositories dialog, review the changes between the repositories.
Then, click Create Patch.

7. In the Create Patch dialog, enter a name for the patch file, for example,
my_patch.xml, and click Save.

If the patch contains passwords, such as connection pool passwords, the patch file is
encrypted using the repository password from the current repository. The current
repository password effectively becomes the patch file password. You might need to
supply this patch file password when applying the patch, if it is different from the
repository password for the original repository.

You can also generate a patch at the command line using the comparerpd utility. See 
Comparing Repositories Using comparerpd.

Applying a Repository Patch
Use the Oracle BI Administration Tool to apply a patch that contains the differences
between two repositories.

Note:

You can apply patches from a larger multiuser repository to a smaller subset
extract repository. In this case, only the changes in the subset are applied
from the patch.

1. In the Administration Tool, open the Oracle BI repository in offline mode to apply
the patch.

2. Select File, then select Merge. The Merge Repository Wizard appears.

3. For Merge Type, select Patch Repository Merge. When you select this option,
the Partial Subset Merge field displays. By default, this field is selected and the
patch is applied as a partial subset merge. Clear this option if you want the patch
applied to the whole repository.

4. Select the original parent repository by clicking Select next to Original Master
Repository. Select Repository from the submenu to select a binary repository file
in RPD format, or select XML to select a set of MDS XML documents.

For binary repositories, browse to select the original repository, and then click
Open. For MDS XML format repositories, use the Browse For Folder dialog to
select the root folder location of the MDS XML documents, and then click OK.

Chapter 17
Merging Repositories

17-19



Note:

The original repository cannot be the same as the modified (currently
open) repository.

5. Enter the repository password for the original repository.

6. Click Select next to Patch File. Browse to select the patch file you want to apply,
then click Open. The patch file must be in XML format.

7. In most cases, you can leave the Patch Password field blank. You only need to
supply the patch file password when the patch file contains passwords for objects,
such as connection pool passwords, and when the patch file password is different
from the original repository password. The patch file password is the same as the
password for the current repository.

8. Optionally, you can change the default name and location of the saved (patched)
repository by clicking Select next to the Save Merged Repository as field. Select
Repository from the submenu to save the merged repository as a binary
repository file in RPD format, or select XML to save the merged repository as a set
of MDS XML documents.

For binary repositories, provide a new name and location, and then click Save. For
MDS XML format repositories, use the Browse For Folder dialog to select the root
folder location of the MDS XML documents, and then click OK.

9. Click Finish.

Using patchrpd to Apply a Patch
You can apply a patch using the patchrpd utility.

Use patchrpd when you want to patch repositories on Linux and UNIX systems where
the Administration Tool is not available. The patchrpd utility is available on both
Windows and UNIX systems. You can only run patchrpd with binary repositories in
RPD format.

Unlike the Administration Tool patch feature, patchrpd provides an option to apply
default decisions for conflicts automatically. patchrpd also provides the capability to
save all conflicts to a decision file so that you can examine the results and determine
whether additional manual changes are needed. See Using Patchrpd to Automate the
Patch Process.

Patchrpd also provides the ability to select the set of merge rules to apply. By default,
the merge rules for patches are used, but you can optionally select to use the full
(upgrade) merge rules or the multiuser development merge rules.

The location of the patchrpd utility is:

BI_DOMAIN/bitools/bin

Syntax

The patchrpd utility takes the following parameters:

patchrpd [-P modified_rpd_password] -C modified_rpd_pathname 
[-Q original_rpd_password] -G original_rpd_pathname [-S patch_file_password] 
-I patch_file_pathname [-S patch_file_2_password -I patch_file_2_pathname ...]

Chapter 17
Merging Repositories

17-20



[-D input_decision_file_pathname] -O output_rpd_pathname 
[-V output_decision_file_pathname] [-E] [-M mode] [-R] [-A] [-U] [-N] [-8]

Where:

-P modified_rpd_password is the repository password for the modified repository, also
called the customer or customized repository.

-C modified_rpd_pathname is the name and location of the modified repository.

-Q original_rpd_password is the repository password for the original repository.

-G original_rpd_pathname is the name and location of the original repository.

-S patch_file_password is the password for the patch file. The patch file password is
the same as the password for the current repository. You only need to supply the
patch file password when the patch file contains passwords for objects, such as
connection pool passwords, and when the patch file password is different from the
original repository password.

-I patch_file_pathname is the name and location of the XML patch file you want to
apply. You can apply multiple patches by including multiple -I arguments with paired -
S arguments, as needed.

-D input_decision_file_pathname is the name and location of a decision file in CSV
format that you want to use to affect the behavior of this patch merge. This argument
is optional.

-O output_rpd_pathname is the name and location of the RPD output file you want to
generate.

-V output_decision_file_pathname is an optional argument that lets you generate a
CSV format decision file. The decision file shows all the conflicts from the merge. In
other words, the decision file lists the decisions that would have been displayed in the
Define Merge Strategy screen of the Merge Wizard in the Administration Tool. The
decision file provides a record of all items that could be influenced by user input. This
argument must be used in conjunction with the -U argument.

-E is an optional argument that enables you to skip the equalize step.

-M mode is an optional argument that enables you to change the mode of the merge. By
default, patchrpd runs in patch mode, in which as many changes as possible are
applied silently. To change this default, then for mode specify mud to use merge rules
for multiuser development merges, or upgrade to use merge rules for full merges. See 
Merge Rules.

By default, the Administration Tool's merge functionality uses full merge. If you want to
run the patchrpd utility to match the Administration Tool's default merge functionality,
then you must specify "upgrade" in the -M mode argument.

-R is an optional argument that skips consistency checking for logical columns. This
option can speed up the patch process when the patch file does not contain logical to
physical column mappings.

-A is an optional argument that can be used in multiuser development environments to
skip subset patching and instead apply the patch using input repository files.

-U is an optional argument that applies default decisions for conflicts automatically so
that patchrpd can finish successfully. If you do not include this parameter, patchrpd
displays a warning and exits if a conflict is detected.

Chapter 17
Merging Repositories

17-21



-N is an optional argument that is used to ignore all non-fatal errors. Examples of non-
fatal errors are unresolved objects, duplicated objects, and broken or incorrect
expressions.

-8 specifies UTF-8 encoding.

Note:

The arguments for all passwords, including the modified_rpd_password,
original_rpd_password, and patch_file_password, are optional. If you do not
provide password arguments, you are prompted to enter any required
passwords when you run the command. To minimize the risk of security
breaches, Oracle recommends that you do not provide password arguments
either on the command line or in scripts. The password arguments are
supported for backward compatibility only. For scripting purposes, you can
send the password through standard input.

For example:

patchrpd -C customer.rpd -G original.rpd -I patch.xml -O patched.rpd 
-V decision.csv -U
Give password for customer repository: my_modified_rpd_password
Give password for original repository: my_original_rpd_password

This example applies a patch called patch.xml to the customer.rpd repository, and then
generates an output repository called patched.rpd and an output decision file called
decision.csv.

Note:

Provide the full path names to all files, including the repository files and the
XML patch file, if they are located in a different directory.

Querying and Managing Repository Metadata
You can use repository queries to help manage repository metadata and configure the
repository to handle large complex queries.

This section contains the following topics:

• Querying the Repository

• Querying Related Objects

• Configuring the Repository for Large Complex Queries

Chapter 17
Querying and Managing Repository Metadata

17-22



Querying Related Objects
Query Related Objects enables querying objects related to one or more objects that
you select from the Physical, Business Model and Mapping, or Presentation layer.

You can only use this feature with objects selected from the same layer. You cannot,
for example, query objects related to both a Physical layer object and a Business
Model and Mapping layer object. See Repository Query Options.

1. In the Administration Tool, open your repository.

2. Select one or more objects of the same type from a single layer, for example, a set
of logical columns from the Business Model and Mapping layer.

3. Right-click the objects and select Query Related Objects.

4. Select an object type to narrow your search to a particular type of object, or select
All Types to query all objects related to your source objects.

After you select an object type, the Query Related Objects dialog is displayed,
showing the objects related to your source objects in the Name list.

Repository Query Options
Review this topic to see options available in the Query Repository dialog.

Option Description

Mark Select one or more objects in the Name list and click Mark to
mark the selected objects. To unmark the objects, select them
and click Mark again. Marking objects makes them easier to
visually identify as you develop metadata.

Set Icon Select one or more objects in the Name list and click Set Icon to
select a different icon for the objects. You can set special icons
for objects to help visually identify them as having common
characteristics. For example, you might want to pick a special
icon to identify columns used only by a specific user group.

To change the icons back to the original icons, select the objects
and click Set Icon again. Then, select Remove associated
icon and click OK.

Show Qualified Name Use this option to display the fully qualified name of the objects
found by the query.

For example, if you query for logical columns, the default value
in the Name list is the column name. However, if you select
Show Qualified Names, the value in the Name list changes to
businessmodel.logicaltable.column.

Show Parent Select an object in the Name list and click Show Parent to view
the parent hierarchy of an object. If the object does not have a
parent, a message appears. You cannot use Show Parent with
users or application roles.

In the Parent Hierarchy dialog, you can edit or delete objects. If
you delete an object from this dialog, any child objects of the
selected object are also deleted.

Chapter 17
Querying and Managing Repository Metadata

17-23



Option Description

GoTo Select one or more objects in the Name list and click GoTo to go
to the objects in the Administration Tool view of the repository.
The selected objects appear highlighted in the Physical,
Business Model and Mapping, or Presentation layer.

The Query Related Objects dialog closes when you choose this
option.

Querying the Repository
You can query for objects in the repository to examine and update the internal
structure of the repository.

Query a repository and view reports that show such items as all tables mapped to a
logical source, all references to a particular physical column, content filters for logical
sources, initialization blocks, and security and user permissions. Run a report before
making any physical changes in a database that might affect the repository. You can
save the report to a file in comma-separated value (CSV) or tab-delimited format.

You can construct a filter to restrict the results to display specific values, save a query,
run a previously saved query, or create new repository objects. See Constructing a
Filter for Query Results.

1. In the Administration Tool, open your repository.

2. Select Tools, then select Query Repository.

3. In the Query Repository dialog, complete the query information using the table as
a guide.

4. Click Query.

Constructing a Filter for Query Results
Use the Query Repository Filter dialog to create criteria the select the data that you
want returned in the results.

If you are constructing a complex filter, you might want to click OK after adding each
constraint to verify that the filter construction is valid for each constraint.

You can construct multiple filters. When you do, the Operator field becomes active.
When the Operator field is active, you can set AND and OR conditions.

See Query Filter Examples.

In the Options dialog on the General tab, select Show Upgrade ID in Query
Repository to enable filtering by Upgrade ID.

1. In the Administration Tool, select Tools, then select Query Repository.

2. In the Query Repository dialog, select an item in the Results list or select an item
from the Type list, and then click Filter.

3. In the Query Repository Filter dialog, click the Item field. The Item list contains the
items by which you can filter.

4. In the Item list, select the filter that you want to apply to the Results or Type object
you selected in the previous step.

Chapter 17
Querying and Managing Repository Metadata

17-24



5. Type information in the Value column, as appropriate.

6. Click OK to return to the Query Repository dialog.

Query Filter Examples
Review the examples to learn how to use filters in your queries.

Viewing All Databases Referenced In a Business Model

The following example shows how to create a filter that lets you view all databases
referenced in a particular business model.

1. In the Query Repository dialog, select Database from the Type list, and then click
Filter.

2. In the Query Repository Filter dialog, click the Item field, and then select Related
to.

3. Click the ellipsis button to the right of the Value field, and in the list, choose Select
object.

4. In the Select dialog, select the business model by which you want to filter, and
then click Select. Your selection appears in the Value field.

5. Click OK to return to the Query Repository dialog. The filter appears in the box to
the left of the Filter button.

6. Click Query. The Results list shows the databases referenced by the business
model you selected.

Viewing All Presentation Columns Mapped to a Logical Column

The following example shows how to create a filter that lets you view all presentation
columns mapped to a particular logical column.

1. In the Query Repository dialog, select Presentation Column from the Type list,
and then click Filter.

2. In the Query Repository Filter dialog, click the Item field, and then select Column.

3. Click the ellipsis button to the right of the Value field, and in the list, choose Select
object.

4. In the Select dialog, select the column by which you want to filter, and then click
Select. Your selection appears in the Value field.

5. Click OK to return to the Query Repository dialog. The filter appears in the box to
the left of the Filter button.

6. Click Query. The Results list shows the presentation columns mapped to the
logical column you selected.

Nested Queries

The following example shows nested queries, where the filter itself is another query.

1. In the Query Repository dialog, select Logical Column from the Type list, and
then click Filter.

2. In the Query Repository Filter dialog, click the Item field, and then select Related
to.

Chapter 17
Querying and Managing Repository Metadata

17-25



3. Click the ellipsis button to the right of the Value field, and in the list, choose Set
Condition for Physical Column.

4. In the new Query Repository Filter dialog, click the Item field, and then select
Source column.

5. Click the ellipsis button to the right of the Value field, and in the list, choose Select
Object.

6. In the Browse dialog, select a source physical column (for example, Column A)
and click Select.

7. Click OK in the Query Repository Filter dialog for the subquery condition. This
subquery queries all aliases for the source column you selected.

8. In the Query Repository Filter dialog for the main query, click the Item field in the
next row and then select Related to.

9. Click the ellipsis button to the right of the Value field, and in the list, choose Select
Object.

10. In the Browse dialog, select the same source physical column (for example,
Column A) and click Select.

11. Select OR from the Operator list.

12. Click OK to return to the Query Repository dialog. The filter appears in the box to
the left of the Filter button.

13. Click Query. The Results list shows a list of logical columns related to either
Column A, or aliases of Column A.

Configuring the Repository for Large Complex Queries
Change the OBIS_DISABLE_QUERY_GOVERN_MEMORY parameter value in the obis.properties
file to support long and large complex queries that exceed the memory limits imposed
by the Oracle BI Server.

The value of OBIS_DISABLE_QUERY_GOVERN_MEMORY itself doesn’t prevent recursive queries
from disrupting the availability of the Oracle BI Server. The memory limits are imposed
for all queries by default to prevent service disruption. However, the limits might also
prevent large, complex queries from running if the query would exceed the built-in
limits. Disabling the memory limits of the query governor by setting the
OBIS_DISABLE_QUERY_GOVERN_MEMORY value to 1 might allow large, complex queries to run.
However, the Oracle BI Server is no longer protected from recursive queries that might
disrupt its availability.

Consider changing the OBIS_DISABLE_QUERY_GOVERN_MEMORY value to bypass the memory
limits if you see the following error message:

State: HY000. Code: 43119. [nQSError: 43119] Query Failed: (HY000)
State: HY000. Code: 59151. [nQSError: 59151] The user query with request
id:request_ID and logical hash:hash_number exceeded the maximum query governing
memory limit. (HY000)

1. Open the obis.properties file for editing from the following location:

obiee_home/user_projects/domains/bi/config/fmwconfig/bienv/
OBIS/obis.properties

2. Append the following to the file:

Chapter 17
Querying and Managing Repository Metadata

17-26



OBIS_DISABLE_QUERY_GOVERN_MEMORY=1

3. Restart the Oracle BI Server, and retry the query.

Changing the Oracle BI Repository Password
Each Oracle BI repository has a password that is used to encrypt its contents.

You create the repository password when you create a new Oracle BI repository file,
or when you upgrade a repository from a previous release of Oracle Business
Intelligence.

You can change the repository password using the Administration Tool in offline mode,
or using the obieerpdpwdchg utility. You cannot change the repository password when
the repository is open in the Administration Tool in online mode.

The obieerpdpwdchg utility is especially useful when you want to change the repository
password on Linux and UNIX systems where the Administration Tool is not available.

Note:

If you are using the SampleAppLite.rpd or SampleApp.rpd sample repository,
you must change the default password the first time you open it in the
Administration Tool, for security reasons. See About the SampleApp.rpd
Demonstration Repository for the sample repository.

This section contains the following topics:

• Changing the Oracle BI Repository Password Using the Administration Tool

• Changing the Oracle BI Repository Password Using the obieerpdpwdchg Utility

Changing the Oracle BI Repository Password Using the Administration
Tool

Learn how to change your password in the Administration Tool and publish a modified
repository.

Use the Upload Repository Command to change the repository password and to
publish the modified repository.

1. Open the repository in the Administration Tool in offline mode.

2. Select File, then select Change Password.

3. Enter the current (old) password.

4. Enter the new password and confirm it. The repository password must be longer
than five characters and cannot be empty.

5. Click OK.

6. Save and close the repository.

Chapter 17
Changing the Oracle BI Repository Password

17-27



Changing the Oracle BI Repository Password Using the
obieerpdpwdchg Utility

Learn how to change the repository password.

Use these steps to change the repository password using the obieerpdpwdchg utility,
and then publish the modified repository using the Upload Repository Command.

You must define the repository password with more than five characters. Passwords
are masked on the command line unless you include the -C option in the command to
disable masking.

1. Navigate to the obieerpdpwdchg utility, which is located here:

BI_DOMAIN/bitools/bin

2. Type the following arguments for obieerpdpwdchg:

• -I name_and_path_of_existing_repository

• -O name_and_path_of_new_repository

Then, enter the current (old) password and the new password when prompted, for
example:

obieerpdpwdchg  -I my_repos.rpd -O my_changed_repos.rpd
Please enter the repository password:

Please enter a new repository password:

OBIS Metadata Compatibility
You can use a current OBIS (Oracle Business Intelligence Server) metadata file with
past versions of Oracle Business Intelligence.

As a result, you can open a repository (RPD), XUDML (Oracle BI Server XML API), or
BAR (BI archive) file from an Oracle BI EE version such as 12.2.1.3, and modify the
file with the 12.2.1.1 Administration Tool, biserverxmlexec, or other tools and utilities.

You can also use older OBIS metadata files with the current version of Oracle BI EE.

Chapter 17
OBIS Metadata Compatibility

17-28



18
Using Expression Builder and Other
Utilities

This chapter describes Expression Builder and provides instructions for creating
constraints, aggregations, and other definitions within the Oracle BI repository. It also
describes the various utilities and wizards contained in the Oracle BI Administration
Tool.
This chapter contains the following topics:

• Using Expression Builder

• Using Administration Tool Utilities

• Using the Calculation Wizard

Using Expression Builder
You can use the Expression Builder dialogs in the Oracle BI Administration Tool to
create constraints, aggregations, and other definitions within a repository.

Expression Builder provides automatic color highlighting and other formatting
enhancements to make expressions easier to build and to read.

The expressions you create with Expression Builder are similar to expressions created
with SQL. Except where noted, you can use all expressions constructed with
Expression Builder in SQL queries against the Oracle BI Server.

This section contains the following topics:

• About the Expression Builder Dialogs

• About the Expression Builder Toolbar

• About the Categories in the Category Pane

• Setting Up an Expression

About the Expression Builder Dialogs
The Expression Builder contains a number of dialogs.

When creating expressions in Expression Builder, you select a category from the
Category pane and values are displayed in the lower panes depending on the value
selected in the Category pane. When you type a value into a Find field, it filters out the
non-matching strings and displays matching strings only. After typing search criteria in
a Find field, you can move up and down the list using the scroll bar, and use the tab
key to move between the Find fields. To return to the full list of results, delete the
string from the Find field.

18-1



Note:

You can only enter text in the Find field that matches the text of one of the
available strings. For example, if the available string options begin with A11,
A12, and A13, the text you enter in the Find field must begin with A.

When you first open Expression Builder, the items are not sorted. When selected, the
Sort Panes option sorts all items in the panes. As soon as you select this option, the
panes are automatically redrawn without changing the contents of the panes or your
filtering criteria.

About the Expression Builder Toolbar
Describes operators on the Expression Builder toolbar.

The toolbar is located at the bottom of Expression Builder.

The table describes each button and its function in an expression.

Operator Description

+ Plus sign for addition.

- Minus sign for subtraction.

* Multiply sign for multiplication.

/ Divide by sign for division.

|| Character string concatenation.

( Open parenthesis.

) Close parenthesis.

> Greater than sign, indicating values higher than the comparison.

< Less than sign, indicating values lower than the comparison.

= Equal sign, indicating the same value.

<= Less than or equal to sign, indicating values the same or lower
than the comparison.

>= Greater than or equal to sign, indicating values the same or
higher than the comparison.

<> Not equal to, indicating values higher or lower, but different.

AND AND connective, indicating intersection with one or more
conditions to form a compound condition.

OR OR connective, indicating the union with one or more conditions
to form a compound condition.

NOT NOT connective, indicating a condition is not met.

, Comma, used to separate elements in a list.

About the Categories in the Category Pane
The categories that appear in the Category pane vary, depending on the dialog from
which you accessed Expression Builder.

Chapter 18
Using Expression Builder

18-2



Category Name Description

Aggregate Content Contains the available aggregate functions. Aggregate sources
must use one of the functions listed here to specify the level of
their content.

Time Dimensions Contains the time dimensions configured in the business model.
If no time dimensions exist in a business model, or if time
dimensions are not pertinent to a particular Expression Builder,
the Time Dimensions category is not displayed.

When you select the Time Dimensions category, each
configured time dimension appears in the middle pane, and each
level for the selected dimension appears in the lower pane.

Logical Tables Contains the logical tables configured in the business model. If
logical tables are not pertinent to a particular Expression Builder,
the Logical Tables category is not displayed.

When you select the Logical Tables category, each logical table
in the business model appears in the middle pane, and each
column for the selected logical table appears in the lower pane.

Value Based Dimensions Contains the dimensions with parent-child hierarchies configured
in the business model. If no dimensions with parent-child
hierarchies exist in a business model, or if dimensions with
parent-child hierarchies are not pertinent to a particular
Expression Builder, the Value Based Dimensions category is not
displayed.

When you select the Value Based Dimensions category, the
configured dimensions with parent-child hierarchies appear in
the middle pane. No lower pane exists for this category.

Logical Levels Contains the related logical levels. If level-based dimensions are
not pertinent to a particular Expression Builder, the Logical
Levels category is not displayed.

When you select the Logical Levels category, you can then
select the appropriate logical dimension (level-based) in the
middle pane, and the level itself in the lower pane.

Physical Tables Contains the related physical tables. If physical tables are not
pertinent to a particular Expression Builder, the Physical Tables
category is not displayed.

Operators Contains the available SQL logical operators.

Expressions Contains the available expressions.

Functions Contains the available functions. The functions that appear
depend on the object you selected.

Constants Contains the available constants.

Types Contains the available data types.

Repository Variables Contains the available repository variables. If no repository
variables are defined, this category does not appear.

Session Variables Contains the available system session and non-system session
variables. If no session variables are defined, this category does
not appear.

Setting Up an Expression
You can view the Expression Builder dialog for a derived logical column.

Chapter 18
Using Expression Builder

18-3



To set up an expression, select Functions from the Category pane, select a function
type from Functions pane, then select a function from the lower pane.

Double-click the function you want to use to paste it in the edit pane. Then, in the edit
pane, click once between the parentheses of the function to select that area as the
insertion point for adding the argument of the function.

To paste a logical column at the insertion point, select Logical Tables from the
Category pane, select the table you want to use in the Logical Tables pane, and then
double-click the logical column in the lower pane to paste the logical column at the
insertion point as the argument of the function in the edit pane. The image shows
where the expression appears in the edit pane.

Chapter 18
Using Expression Builder

18-4



Navigating Within Expression Builder
Use these steps to navigate within Expression Builder.

1. In the Category pane, select the appropriate category for the expression you want
to build.

The available expression types for the selected category appear in the middle
pane.

2. Select the appropriate item for the expression you want to build.

The available building blocks for the selected item appear in the lower pane.

3. Double-click a building block to display it in the edit pane.

4. To insert an operator into the expression, click an operator on the Expression
Builder toolbar.

Building an Expression
Use these steps to build an expression in Expression Builder.

1. Navigate to the individual building blocks you want in the expression.

The Syntax bar at the bottom of the Expression Builder dialog shows the syntax
for the expression.

For example: BETWEEN <<Upper Bound>> AND <<Lower Bound>>

2. Add the building blocks to the edit pane.

3. Edit the building blocks to reflect the expression you want.

4. Use the Expression Builder toolbar to insert operators into the expression.

Chapter 18
Using Expression Builder

18-5



5. Repeat the preceding steps until the expression is complete, and then click OK.

The Administration Tool displays a message for any syntax errors in the
expression. When the expression is syntactically correct, the Administration Tool
adds the expression to the dialog from which you accessed Expression Builder.

If the parameter PREVENT_DIVIDE_BY_ZERO is set to YES in NQSConfig.INI, the Oracle BI
Server prevents errors in divide-by-zero situations, even for Answers column
calculations. The Oracle BI Server creates a divide-by-zero prevention expression
using nullif() or a similar function when it writes the physical SQL. Because of this,
you do not have to use CASE statements to avoid divide-by-zero errors, as long as
PREVENT_DIVIDE_BY_ZERO is set to YES (the default value).

About the INDEXCOL Conversion Function
The INDEXCOL function enables you to build a derived logical column.

Selecting INDEXCOL automatically generates the following function template:

IndexCol( <<integer literal>>, <<expr1>> [, <<expr2>>, ?-] )

Note:

You can also use a session variable, an arithmetic expression, or a CASE WHEN
statement, when an evaluation is possible without reference to back-end
data, as the argument integer literal.

See INDEXCOL in the Logical SQL Reference Guide for Oracle Business Intelligence
Enterprise Edition .

Using Administration Tool Utilities
The Oracle BI Administration Tool provides several utilities and wizards that perform
functions like renaming objects, persisting aggregates, and externalizing strings.

This section contains the following topics:

• Using the Replace Column or Table Wizard

• Using the Oracle BI Event Tables Utility

• Using the Externalize Strings Utility

• Using the Rename Wizard

• Using the Update Physical Layer Wizard

• Generating Documentation of Repository Mappings

• Generating a Metadata Dictionary

• Providing Access to Metadata Dictionary Information

• Removing Unused Physical Objects

• Persisting Aggregates

• Using the Convert Presentation Folders Utility

Chapter 18
Using Administration Tool Utilities

18-6



• Generating a List of Logical Column Types

• Comparing Logical Column Types

• Fixing Upgrade IDs

• Setting Permissions In Bulk

Using the Replace Column or Table Wizard
The Replace Column or Table Wizard automates the process of replacing physical
columns or tables in logical table sources.

For example, if you have purchased Oracle BI Applications, you can update your
logical table sources to map to a different database type. You can also use this utility
to change logical table source mappings from a development table to a production
table.

You can use the Replace Column or Table Wizard to replace a single column in the
same table, or to replace an entire table. If you replace a table, you must map all the
columns in the table.

If you select an invalid logical table source, or in other words, one that cannot be used
for replacement, a message appears explaining why that source cannot be used, and
the check box for that source is disabled.

Invalid logical table sources do not appear in the list when Hide unusable logical
table sources in Replace wizard has been selected in the General tab of the Options
dialog. The Info button is displayed when a logical table source maps to a column that
does not appear in the list. Click Info to see details for the reason the physical objects
were not replaced in the logical table source or sources.

The Select Sources screen only appears if there are multiple logical table sources that
map to the physical table you selected.

1. In the Oracle BI Administration Tool, select Tools, then select Utilities.

2. Select Replace Column or Table in Logical Table Sources and click Execute.

3. In the Select Object screen, select Replace whole table.

4. Select the physical table to replace.

5. Select the physical table to use as a replacement for the original table, and then,
click Next.

6. Select the logical table sources to change the physical table mapping.

7. (Optional) Select Show Qualified Names to see the full context for each source.

8. Click Next after you have selected logical table sources.

9. In Replace Wizard - Select Columns, specify the individual column mappings
between the selected physical tables.

If column names in the two selected tables match, default column mappings
appear in the bottom pane.

10. When you have finished mapping columns between the selected physical tables,
click Next.

11. (Optional) In online mode, click Next to check out the necessary objects.

12. Click Finish.

Chapter 18
Using Administration Tool Utilities

18-7



Using the Oracle Business Intelligence Event Tables Utility
The Event Tables utility lets you identify a table as an Oracle Business Intelligence
event polling table.

An event polling table is a way to notify the Oracle BI Server that one or more physical
tables have been updated.

Each row that is added to an event table describes a single update event. The cache
system reads rows from, or polls, the event table, extracts the physical table
information from the rows, and purges cache entries that reference those physical
tables.

See Cache Event Processing with an Event Polling Table in System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition.

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Oracle BI EE Event Tables and click Execute.

Using the Externalize Strings Utility
You can use the Externalize Strings utility to localize the names of Presentation layer
subject areas, tables, hierarchies, columns and their descriptions.

You can save these text strings to an external file with ANSI, Unicode, and UTF-8
encoding options. You can also choose to save strings to a set of XML files with
Unicode encryption.

Before you can use the Externalize Strings utility, you must externalize strings in the
Presentation layer, consider the following:

• You can right-click any Presentation layer object, such as a subject area,
presentation table, or presentation column, and choose Externalize Display
Names , select Generate Custom Names or Externalize Descriptions and
select Generate Custom Descriptions to externalize strings. When you select
Generate Custom Names and then run the Externalize Strings utility, the
translation key also appears in the Externalize Strings dialog.

• Choosing one of these right-click externalization options automatically selects the
Custom display name or Custom description options in the Properties dialog
for the selected object and all of its child objects.

For example, if you right-click a subject area and choose one of the externalization
options, the externalization flag is set on all presentation tables, columns,
hierarchies, and levels within that subject area.

• Running the Externalize Strings utility only externalizes those strings that have
been selected for externalization in the Presentation layer.

See Localizing Metadata Names in the Repository in System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition.

1. To run the externalizestrings utility, do one of the following:

• From the Oracle BI Administration Tool, select Tools, select Utilities, select
Externalize Strings and then click Execute.

Chapter 18
Using Administration Tool Utilities

18-8



• Use the externalizestrings command-line utility located in BI_DOMAIN/bitools/
bin, and see the required syntax displayed within the externalizestrings utility.

Using the Rename Wizard
You can use the Rename Wizard to rename tables and columns in the Presentation
layer and Business Model and Mapping layer.

The Rename Wizard provides a way to transform physical names to user-friendly
names.
Renaming objects in the Business Model and Mapping layer rather than the
Presentation layer is a best practice for maintainability. Using friendly names for logical
objects rather than presentation objects ensures reuse in multiple subject areas and
ensures that the names persist even when you need to delete and re-create subject
areas to incorporate changes to your business model.

• You must enable the Edit presentation names Administration Tool option before
you can select objects from the Presentation layer.

• You can only select individual presentation columns with the Use Logical Column
Name property not selected is set to false.

• If you select Presentation Column, then only presentation columns without the Use
Logical Column Name property are renamed.

The renaming rules are applied in the order in which they appear in the list. Select a
rule that you have added and click Up or Down to change the order in which to apply
the rules.

For example, to rename the logical columns GlobalGROUP, GlobalSales, and
GlobalCustomerName to Group, Sales, and Customer Name. You can apply the
following rules in the given order:

Insert space before each first uppercase letter, unless on the first position
or there is a space already
All text lowercase
First letter of each word capital
Change each occurrence of "Global " to "" (not case sensitive)

1. In the Administration Tool, select Tools, then select Utilities. Then, select
Rename Wizard and click Execute.

2. In Select Objects, from the Presentation or Business Model and Mapping layer
that contains the objects, select an object and click Add.

3. Click Add Hierarchy to add all objects associated with the selected object, and
then click Next

4. In Select Types, choose the object types you want to rename such as Subject
Area, Logical Table, or Logical Column, and then click Next.

5. In Select Rules screen, choose the renaming rules and click Add.

6. Select Change specified text to rename particular words or phrases, and click
Next.

7. In online mode, click Next to check out the necessary objects.

8. Click Finish to rename the objects.

Chapter 18
Using Administration Tool Utilities

18-9



Using the Update Physical Layer Wizard
You can use the Update Physical Layer Wizard to update database objects in the
Physical layer of a repository, based on their current definitions in the back-end
database.

The Update Physical Layer wizard is only available for repositories open in online
mode.

When the wizard processes the update, the Presentation Services connects to each
back-end database. The objects in the Physical layer are compared with those in the
back-end database. Explanatory text alerts you to differences between objects as
defined in the database in the Physical layer and as defined the back-end database,
such as data type-length mismatches and objects that are no longer found in the back-
end database. For example, if an object exists in the database in the Physical layer of
the repository but not in the back-end database, the following text is displayed:

Object does not exist in the database and will be deleted.

The wizard does not add columns or tables to the repository that exist in the back-end
database, but not in the repository. Additionally, the wizard does not update column
key assignments. It checks that there is a column in the repository that matches the
column in the database, and then, if the values do not match, the wizard updates the
type and length of the column in the repository.

The connection pool settings for each database need to match the connection pool
settings used when the objects were last imported into the Physical layer from the
back-end database. See Creating or Changing Connection Pools.

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Update Physical Layer and click Execute.

The databases in the Physical layer of the repository are listed in the left pane of
the wizard.

3. In Select Database, select the databases to update in the left pane, and then click
Add.

Click Remove to remove a database from the selection list.

4. Click Next.

5. In Select Connection Pool, select the connection pool for each database to
update, and then click Next.

You might need to set or confirm values for variables before continuing.

6. In Update, review the information about each update and select the updates to
perform.

7. In online mode, you must check out objects before you can make changes to
them.

8. Click Next to check out the necessary objects.

9. Click Finish.

The wizard updates the objects in the Physical layer, and then closes
automatically. Objects that do not exist in the database are deleted.

10. From the File menu, select Save to save the updated objects in the Physical layer.

Chapter 18
Using Administration Tool Utilities

18-10



Generating Documentation of Repository Mappings
The Repository Documentation utility documents the mapping from the presentation
columns to the corresponding logical and physical columns.

The documentation includes conditional expressions associated with the columns. You
can save the documentation in comma separated (CSV), XML, or tab delimited (TXT)
format.

You can use the Repository Documentation utility to extract Oracle Business
Intelligence metadata to a flat file and load the file into Excel and RDBMS. You can
query the resulting file to answer questions such as "If I delete physical column X,
what logical columns are affected?" or "How many places in the business model refer
to the physical table W_SRVREQ_F?" You can establish dependency relationships
among elements in the repository.

Excel only allows data sets of 1,000,000 rows. You might exceed the row limitation in
a large repository. Run the Repository Documentation utility on a subset of the
repository by extracting relevant business models into a new project. See Setting Up
and Using the Multiuser Development Environment.

The Repository Documentation utility creates a comma-separated values file or a tab-
separated values file that shows the connections between the Presentation and
Physical layers in the current repository. You can import the file into a repository as a
Physical layer. The file does not include information about repository variables and
marketing objects.

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Repository Documentation and click Execute.

3. In the Save As dialog, choose the directory where you want to save the file.

4. Type a name for the file.

5. Choose a type of file and an Encoding value, and then click Save. Current
encoding options are ANSI, Unicode, and UTF-8.

Generating a Metadata Dictionary
You can generate a metadata dictionary to help Oracle Business Intelligence users
obtain more information about metrics or attributes for repository objects.

Users might need to resolve issues caused by confusing metadata object names, or to
obtain more details when an attribute is derived in a complicated way. By generating a
metadata dictionary, users can gain an understanding of the repository and its objects.

A metadata dictionary is a static set of XML documents. Each XML document
describes a metadata object, such as a column, including its properties and
relationships with other metadata objects. Your users can view the XML documents in
the Oracle BI Presentation Services user interface, or in a browser.

Use the Administration Tool to generate a metadata dictionary for your repository.
Because the dictionary is not updated as repository changes are made, you must
generate the dictionary periodically to update the content.

You must host the metadata dictionary files on a Web server such as Oracle HTTP
Server or Apache HTTP Server. When you generate the dictionary, you can set the

Chapter 18
Using Administration Tool Utilities

18-11



output to the final location on the Web server, or to a temporary location. If you
generate the dictionary in a temporary location, you must then copy the files to the
location on the Web server.

Some large repositories can contain tens of thousands of objects. Generating a
dictionary for a large repository can take a significant period of time.

You cannot store the dictionary in a directory with multi-byte characters. If you receive
a system error about creating the necessary directories for the dictionary, then you
must choose another directory.

When choosing a destination for your dictionary:

• Select a local or network location. When the dictionary is generated, a
subdirectory with the same name as the repository is created in that location. The
dictionary directories and files are created in that subdirectory.

For example, if you select J:\BI_DataDictionary and your repository name is
demo1.rpd, the dictionary files, including the style sheets are located in J:
\BI_DataDictionary\demo1.

• If you want to use an IIS virtual directory, you can create or select a virtual
directory in IIS before you generate the dictionary. When you generate the
dictionary, choose the physical directory associated with the IIS virtual directory.

The location where users can view the metadata dictionary files is dependent on the
host name and port number of your Web server, along with the directory location
where you store the files.

See Providing Access to Metadata Dictionary Information.

1. In the Administration Tool, open your repository in offline mode. You cannot
generate a metadata dictionary in online mode.

2. Select Tools, then select Utilities.

3. Select Generate Metadata Dictionary and click Execute.

4. In the Choose Directory dialog, click Browse to locate and select the location
where you want to store the dictionary.

5. Click OK.

6. Copy the files over to your Web server and ensure they are accessible.

7. Edit the instanceconfig.xml configuration file to enable the metadata dictionary in
the Oracle BI Presentation Services user interface, as well as grant the
appropriate privilege to your users, groups, or application roles.

After you generate a metadata dictionary, style sheets and index files are created for
that dictionary. The related style sheets (XSL files) are created and stored in a
directory named xsl within the repository directory.

A name index and tree index are created and stored in the [drive]:\[path]\
[repository name] root directory. The index files are associated with each other so that
you can quickly switch views.

To learn about viewing metadata dictionary information from the Oracle BI
Presentation Services user interface, see User's Guide for Oracle Business
Intelligence Enterprise Edition.

Chapter 18
Using Administration Tool Utilities

18-12



Providing Access to Metadata Dictionary Information
When creating analyses, content designers might need more information about subject
areas, folders, columns, or levels such as relationships to other metadata objects to
guide them.

You can provide content designers with this information by allowing them access to
the metadata dictionary for the repository.

The metadata dictionary describes the metrics that are contained within the repository
and the attributes of repository objects. The metadata dictionary output is a static set
of XML documents.

See Managing Presentation Services Privileges Using Application Roles in Security
Guide for Oracle Business Intelligence Enterprise Edition.

Ensure that the metadata dictionary has been generated and the files have been
stored in an appropriate location. See Generating a Metadata Dictionary.

1. Set the DictionaryURLPrefix element within the ServerInstance element in the
instanceconfig.xml file to one of the following values. The value that you specify
depends on the web servers in use.

• The prefix for the name of the directory in which you have stored the XML
files. The directory must have been specified as a shared directory for the web
server, and the web server must be the same one that is used by Oracle BI
EE.

For example, suppose that you stored the XML files for the metadata
dictionary in a directory called demo1 under the metadictionary directory.
Suppose that the metadictionary directory is specified as a shared directory for
the web server, which is also used by Oracle BI EE. Then you specify the
following value for the DictionaryURLPrefix element:

<DictionaryURLPrefix>demo1</DictionaryURLPrefix>

See the documentation for the web server for information about sharing
directories.

• The URL that points to the directory in which you have stored the XML files.
Use a value such as this when the files for the metadata dictionary are stored
in the directory structure for a web server that is not being used by Oracle BI
EE. For example:

<DictionaryURLPrefix>http://10.10.10.10/metadictionary/demo1</

DictionaryURLPrefix>

The following shows an example setting in the instanceconfig.xml file:

<WebConfig>
  <ServerInstance>
    <SubjectAreaMetadata>
      <DictionaryURLPrefix>demo1</DictionaryURLPrefix>
    </SubjectAreaMetadata>
  </ServerInstance>
</WebConfig>

2. Grant the Access to Metadata Dictionary privilege to the appropriate content
designers.

Chapter 18
Using Administration Tool Utilities

18-13



See Viewing Metadata Information from the Subject Areas Pane in User's Guide for
Oracle Business Intelligence Enterprise Edition.

Removing Unused Physical Objects
Use the procedure to remove objects that you no longer need in your repository.

Large repositories use more memory on the server and are harder to maintain.
Additionally, development activities take longer on a large repository. You can remove
databases, initialization blocks, physical catalogs, and variables.

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Remove Unused Physical Objects and click Execute.

3. In the Remove Unused Physical Objects dialog, from the Type list, select the type
of object.

4. In the list of objects, verify that only the objects that you want to remove are
selected.

Below the list of objects, the number of selected objects and the total number of
objects appears.

5. To remove the selected objects, click Yes.

Persisting Aggregates
You can use the Aggregate Persistence Wizard to create the SQL file used to create
aggregate tables and map them into the metadata.

See Using the Aggregate Persistence Wizard to Generate the Aggregate
Specification.

Using the Convert Presentation Folders Utility
You can designate child presentation tables using the Child Presentation Tables tab in
the Presentation Table dialog to give the appearance of nested folders in Answers and
BI Composer.

You could add one level of nesting in Answers by adding a hyphen at the beginning of
a presentation table name, or by adding an arrow (->) at the beginning of a
presentation table description. If you used these methods, Oracle recommends that
you run the Convert Presentation Folders utility to convert your metadata to the new
structure.

Note:

Creating nesting by adding hyphens at the beginning of presentation table
names or adding arrows at the beginning of presentation table descriptions is
deprecated for this release and in a future release.

1. Open your repository in the Administration Tool in offline mode.

Chapter 18
Using Administration Tool Utilities

18-14



Note:

Do not run the Convert Presentation Folders utility in online mode.

2. Select Tools, then select Utilities.

3. Select Convert Presentation Folders and click Execute.

The hyphens and arrows disappear from presentation table names and
descriptions, and the affected tables are listed as child tables for the appropriate
parent object.

Generating a List of Logical Column Types
You can use the Generate Logical Column Type Document utility to generate a
complete list of logical columns and their corresponding types.

The output is stored in XML format. You can select ANSI, Unicode, or UTF-8 encoding
options.

This utility is often used with the Compare Logical Column Types utility. See 
Comparing Logical Column Types.

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Generate Logical Column Type Document and click Execute.

3. In the Save As dialog, choose the directory where you want to save the file.

4. Type a name for the file. The file must have an XML extension.

5. Choose an Encoding value, and then click Save.

Using the biservergentypexml Utility to Generate a List of Logical Column
Types

You can generate a list of logical columns and their corresponding types using the
biservergentypexml utility.

The biservergentypexml utility is similar to the Generate Logical Column Type
Document utility in the Administration Tool. This utility is available on both Windows
and UNIX systems. You can only use biservergentypexml with binary repositories in
RPD format.

The location of the biservergentypexml utility is:

BI_DOMAIN/bitools/bin

Syntax

The biservergentypexml utility takes the following parameters:

biservergentypexml -R repository_name [-P repository_password] 
-O output_XML_file_name {-8 | -U | -A}

Where:

Chapter 18
Using Administration Tool Utilities

18-15



repository_name is the name and path of the repository from which you want to
generate a list of logical column types.

repository_password is the password for the repository from which you want to
generate a list of logical column types.

The repository_password argument is optional. If you do not provide the password
argument, you are prompted to enter the password when you run the command. To
minimize the risk of security breaches, Oracle recommends that you do not provide
password arguments either on the command line or in scripts. For scripting purposes,
you can pass the password through standard input.

output_XML_file_name is the name and path of the XML file where you want to store
the output generated by the utility.

- 8 specifies UTF-8 encoding for the output file.

- U specifies Unicode encoding for the output file.

- A specifies ANSI encoding for the output file.

Example

The following example creates a UTF-8 encoded output XML file called
log_col_types.xml that includes logical column type information from my_repos.rpd.

biservergentypexml -R my_repos.rpd -O log_col_types.xml -8
Give password: my_rpd_password

Note:

Provide the full path names to your repository file and XML output file if they
are located in a different directory.

Sample Output for a Logical Column Types Document
You can review sample output for the logical column types document.

The logical column types document was generated with the Generate Logical Column
Type Document utility in the Administration Tool or with the biservergentypexml utility,
appears as follows:

<?xml version="1.0" encoding="UTF-8" ?>
 <REPOSITORY>
  <BUSINESS_MODEL NAME="SampleApp Lite">
   <LOGICAL_TABLE NAME="D1 Products">
    <COLUMN NAME="Product Number">
     <TYPE>INT</TYPE>
     <NULLABLE>No</NULLABLE>
    </COLUMN>
    <COLUMN NAME="Product">
     <TYPE>VARCHAR</TYPE>
     <LENGTH>25</LENGTH>
     <NULLABLE>No</NULLABLE>
    </COLUMN>
    <COLUMN NAME="Product Type">
     <TYPE>VARCHAR</TYPE>

Chapter 18
Using Administration Tool Utilities

18-16



     <LENGTH>25</LENGTH>
     <NULLABLE>No</NULLABLE>
    </COLUMN>
    <COLUMN NAME="Product Type Key">
     <TYPE>INT</TYPE>
     <NULLABLE>No</NULLABLE>
    </COLUMN>
...
   </LOGICAL_TABLE>
   <LOGICAL_TABLE NAME="D0 Time">
    <COLUMN NAME="Calendar Date">
     <TYPE>DATE</TYPE>
     <NULLABLE>No</NULLABLE>
    </COLUMN>
    <COLUMN NAME="Per Name Week">
     <TYPE>VARCHAR</TYPE>
     <LENGTH>12</LENGTH>
     <NULLABLE>No</NULLABLE>
    </COLUMN>
...
   </LOGICAL_TABLE>
  </BUSINESS_MODEL>
 </REPOSITORY>

Comparing Logical Column Types
In Oracle BI EE logical column types can change over the course of MUD
development, resulting in unexpected logical column types.

When this occurs, you can generate a list of logical columns and their types using the
Generate Logical Column Type Document utility in the Administration Tool or
biservergentypexml, and then use the Compare Logical Column Types utility for
subsequent MUD versions to ensure that the logical column types match as expected.
For example, you could generate a logical column type list for repository version 20,
and then use the Compare Logical Column Types utility to compare the list against
repository version 30.

To use this utility, you must have already generated a list of logical column types with
which you want to compare the current repository. The Compare Logical Column
Types utility only compares logical columns that exist in both the repository and the
XML file; newly created logical columns and deleted columns are ignored.

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Compare Logical Column Types and click Execute.

3. In the Select XML File dialog, select the generated list of logical column types with
which you want to compare the column types in the current repository.

4. Click Open .

Fixing Upgrade IDs
In cases where you are comparing or merging repositories, the upgrade IDs
sometimes do not function correctly.

You can use the Fix Upgrade IDs utility to correct issues with upgrade IDs.

Oracle BI uses upgrade IDs to compare or merge repositories. They identify when two
object in two repositories are supposed to be the same object. However, in some

Chapter 18
Using Administration Tool Utilities

18-17



cases, the upgrade IDs do not work correctly. For example, when two or more objects
have the same upgrade ID, when objects are missing upgrade IDs, and when hidden
internal object have upgrade IDs set.

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Fix Upgrade IDs and click Execute.

If you ran the utility on a repository open in read-only mode, then the utility reports
how many invalid upgrade IDs are in the repository. To fix the upgrade IDs, you
must open the repository in non-ready-only mode and rerun the utility.

If you ran the utility on a repository that is not read-only, then the utility fixes the
invalid upgrade IDs and displays a message stating how many upgrade IDs it
fixed.

Setting Permissions In Bulk
You can use the Set Permissions in Bulk utility when you want to assign the same
object, data filters, and query limits permissions to several users or roles at the same
time.

1. In the Oracle BI Administration Tool, select Tools, then select Utilities.

2. Select Set Permissions in Bulk and click Execute.

3. In the Set Permissions in Bulk dialog, specify the items to set permissions for
Object Permissions, Data Filters, and Query Limits.

4. Select the users and roles for which you want to bulk assign permissions and click
Add to move them to the selected table.

5. Click OK.

6. In the dialog, select the tab corresponding to the item to bulk assign permissions,
for example, Data Filters, and specify the permissions to assign to the users and
roles you chose.

7. After you have specified the permissions, click OK.

Using the Calculation Wizard
You can use the Calculation Wizard to create new calculation columns that compare
two existing columns, and also to create metrics in bulk.

It has a built-in mechanism to handle divide-by-zero and null cases, as well as other
difficult situations. The Calculation Wizard provides an automated way to calculate the
sales by quarter, the percentage of revenue, minimum and maximum values, and so
on.

In the Calculation Wizard, the New Calculation page select from the following options:

• Change (CurrentX - ComparisonX)

Subtract the value of the comparison column from the source column.

For example, for the Change calculation, you can choose whether to return NULL or
some other value when the comparison column is NULL.

• Percent Change (100.0 * (CurrentX - ComparisonX) / ComparisonX)

Chapter 18
Using the Calculation Wizard

18-18



Subtract the value of the comparison column from the source column and express
as a percentage.

• Index (1.0 * CurrentX / ComparisonX)

Divide the source column by the comparison column.

• Percent (100.0 * (CurrentX / ComparisonX))

Divide the source column by the comparison column and express as a
percentage.

1. In the Business Model and Mapping layer, right-click any logical fact or dimension
column of data type numeric measure column, and then select Calculation
Wizard.

2. Click Next

3. In the Select Columns, choose the columns that you want to compare with the
source column.

4. ClickRemove to take items out of the selected list.

5. Click Next.

6. In the New Calculations screen, choose the calculations to perform for specific
columns.

7. Click Next when you have finished creating calculations.

8. In online mode, check out the objects to change.

9. Click Next to check out the necessary objects.

The Finish screen displays a summary of the calculations that are created.

10. Click Back or select a particular step from the navigation panel to make changes.

11. Click Finish. The new calculation columns are created.

Associating S_NQ_ACCT Record with the BI Query Log
Your Oracle BI Administrator can associate the records in the Oracle BI Usage
Tracking table with the Oracle BI Server query log to help you troubleshoot Logical
SQL query issues or to find queries related to a specific subject matter area.

The Oracle BI Server calculates a hash code from the text of the Logical SQL query
and the text of the physical SQL queries. The physical SQL hash code, of any SQL
queries executed from the Oracle BI Server, is recorded in the ACTION column in
V$SQL. Your administrator can join the ACTION column with the PHYSICAL_HASH_ID
column in the S_NQ_DB_ACCT table.

When usage tracking is enabled every Logical SQL request submitted to the Oracle BI
Server is recorded in the S_NQ_ACCT table. See Setting Up Direct Insertion to Collect
Information for Usage Tracking in the System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition.

Set the ENABLE_HASH_CODE_IN_SQL_COMMENTS parameter to YES in the NQSConfig.ini file to
create an unique Hash_ID with each Logical SQL comment associated with a Logical
SQL query.

You should use DISABLE_HASH_CODE after resolving the query issue.

Chapter 18
Associating S_NQ_ACCT Record with the BI Query Log

18-19



You can associate the physical SQL hash code that is recorded in the Oracle BI
Server query.log with the same hash code value that is stored in the ACTION column of
the V$SQL performance view in the Oracle Database.

Your Oracle BI Server administrator can associate the physical SQL queries in the
V$SQL view by doing the following:

• Getting the Oracle BI EE physical query hash code from the ACTION column of
the V$SQL view.

• Querying the Oracle BI EE physical query usage tracking table, S_NQ_DB_ACCT,
filtering on the PHYSICAL_HASH_ID column using the hash code value obtained from
the ACTION column of the V$SQL view.

• Querying the Oracle BI EE logical query usage tracking table, S_NQ_ACCT, joining
the S_NQ_ACCT.ID column with the LOGICAL_QUERY_ID column from the S_NQ_DB_ACCT
table.

You can obtain various properties of the corresponding BI logical request from the
columns in the S_NQ_ACCT table including the SUBJECT_AREA_NAME column.

The relevant columns for associating the logical request record from S_NQ_ACCT table
with the BI query log and the BI catalog are:

• QUERY_TEXT represents the text of the logical SQL query, truncated to 4000 bytes.
For the complete text of the SQL query, use the QUERY_BLOB columns or in the BI
query log file.

For example:

select product.productid, product.qtysold, supplier.companyname, 
supplier.qtysold, (1.0 * product.qtysold) / supplier.qtysold from SnowflakeSales

• HASH_ID represents the hash code of the Logical SQL query. You can use this
identifier to search the query log for all occurrences of the same query.

For example:

a3a04491 as the HASH_ID value

• ID represents a unique identifier for the logical request. You can join the ID column
with the LOGICAL_QUERY_ID column in the S_NQ_DB_ACCT table to get the physical SQL
query details.

Chapter 18
Associating S_NQ_ACCT Record with the BI Query Log

18-20



19
Using Variables in the Oracle BI Repository

This chapter describes how to use repository using variables invariables in the Oracle
BI repository to streamline administrative tasks and dynamically modify metadata
content to adjust to a changing data environment. There are two classes of variables:
repository variables and session variables.

• A repository variable has a single value at any point in time. There are two types of
repository variables: static and dynamic.

• Session variables are created and assigned a value when each user logs on.
There are two types of session variables: system and nonsystem.

Initialization blocks are used to initialize dynamic repository variables, system session
variables, and nonsystem session variables.

You can use the Variable Manager in the Administration Tool to define variables. The
Variable Manager dialog has two panes. The left pane displays a tree that shows
variables and initialization blocks, and the right pane displays details of the item you
select in the left pane. Repository variables and system and nonsystem session
variables are represented by a question mark icon. The icon for an initialization block
is a cube labeled with a question mark and a clock.

Note:

Values in repository and session variables are not secure, because object
permissions do not apply to variables. Anybody who knows or can guess the
name of the variable can use it in an expression in Answers or in a Logical
SQL query. Because of this, do not put sensitive data like passwords in
session or repository variables.

This chapter contains the following topics:

• Working with Repository Variables

• Working with Session Variables

• Working with Multi-Source Session Variables

• List Repository Variables Command

• Update Repository Variables Command

Working with Repository Variables
Learn about repository variables and how to create repository variables in these
topics.

This section provides information about working with repository variables, and contains
the following topics:

19-1



• About Repository Variables

• Creating Repository Variables

About Repository Variables
A repository variable has a single value at any point in time.

Use repository variables instead of literals or constants in the Administration Tool
Expression Builder. The Oracle BI Server substitutes the value of the repository
variable with the variable in the metadata.

This section contains the following topics:

• About Static Repository Variables

• About Dynamic Repository Variables

About Static Repository Variables
The value of a static repository variable is initialized in the Variable dialog.

The value of the static repository variable persists and does not change until an
administrator decides to change it. For example, suppose you want to create an
expression to group times of day into different day segments. If Prime Time were one
of those segments and corresponded to the hours between 5:00 PM and 10:00 PM,
you could create a CASE statement like the following:

CASE WHEN "Hour" >= 17 AND "Hour" < 23 THEN 'Prime Time' WHEN... ELSE...END

Hour is a logical column, mapped to a timestamp physical column using the date-and-
time Hour(<<timeExpr>>) function.

Rather than entering the numbers 17 and 23 into this expression as constants, you
could use a static repository variable named prime_begin, initialize the variable to a
value of 17, and then create another variable named prime_end and initialize it to a
value of 23.

Static repository variables must have default initializers that are either numeric or
character values. You can use the Expression Builder to insert a constant as the
default initializer, such as Date, Time, and TimeStamp. You cannot use any other
value or expression as the default initializer for a static repository variable.

In previous releases, the Administration Tool did not limit the values of default
initializers for static repository variables. Because of this, if your repository has been
upgraded from a previous release, you may see warnings in the Consistency Checker
similar to the following:

The variable, 'Current Month' does not have a constant default initializer.

If you see warnings similar to this, update the relevant static repository variables so
that the default initializers have constant values.

About Dynamic Repository Variables
You initialize dynamic repository variables in the same way as static variables, but the
values are refreshed by data returned from queries.

Chapter 19
Working with Repository Variables

19-2



When defining a dynamic repository variable, you create an initialization block or use a
preexisting one that contains a SQL query. You also set up a schedule that the Oracle
BI Server uses to execute the query and periodically refresh the value of the variable.
When the value of a dynamic repository variable changes, all cache entries associated
with a business model that reference the value of that variable are purged
automatically.

Each query can refresh several variables, one variable for each column in the query.
In Oracle BI Server, create a schedule to execute the queries.

Dynamic repository variables are useful for defining the content of logical table
sources. If, for example, you have two sources for information about orders, one
source contains recent orders and the other source contains historical data, you need
update the repository to use the recent orders and move the historical order data to a
different view.

You describe the content of the sources in the Logical Table Source. Without using
dynamic repository variables, you would describe the content of the source containing
recent data with an expression such as:

Orders.OrderDates."Order Date" >= TIMESTAMP '2001-06-02 00:00:00'

This content statement becomes invalid as new data is added to the recent source and
older data is moved to the historical source. To accurately reflect the new content of
the recent source, you would have to modify the fragmentation content description
manually. You can set up dynamic repository values to do automatically modify the
content.

Another suggested use for dynamic repository values is in WHERE clause filters of logical
table sources.

A common use of these variables is to set filters for use in Oracle BI Server. For
example, to filter a column on the value of the dynamic repository variable
CurrentMonth, set the filter to the variable CurrentMonth.

Creating Repository Variables
Use these steps to create repository variables.

Use unique names for all variables. The names of system session variables are
reserved. You cannot use system session variable names for other types of variables.

If you are creating a dynamic repository variable to override a hierarchy column's
selection steps, then you must choose an initialization block with its initialization string
written in JSON syntax. See Initialization Strings Used in Variables to Override
Selection Steps. To create a new initialization block, click New, see Creating
Initialization Blocks

Static repository variables must have default value defined in the Default initializer
field. Static repository variables are constants that do not change values. If you
initialize a variable using a character string, enclose the string in single quotes ( ' ).

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager, From Action, select New , then select Repository , and
select Variable.

3. In the Repository Variable dialog, in Name, type a name for the variable.

4. From Type, select one of the following:

Chapter 19
Working with Repository Variables

19-3



• Static

• Dynamic

5. If you selected Dynamic, from the Initialization Block list select an existing
initialization block to refresh the value on a continuing basis.

6. In Default initializer, type the value for the repository variable, or click the
Expression Builder button to define an expression to use as the variable value.

7. Click OK.

Using Repository Variables in Expression Builder
After creating variables, the variables are available for use in Expression Builder.

Variables should be used as arguments of the function VALUEOF(). This happens
automatically when you double-click the variables to paste them into the expression.

You cannot use variables to represent columns or other repository objects.

For example, the following CASE statement is identical to the one explained in the
preceding example, except that variables have been substituted for the constants:

CASE WHEN "Hour" >= VALUEOF("prime_begin")AND "Hour" < VALUEOF("prime_end") THEN 
'Prime Time' WHEN ... ELSE...END

• In Expression Builder, click the Repository Variables folder in the left pane to
display all repository variables (both static and dynamic) in the middle pane by
name.

• To use a repository variable in an expression, select it and double-click.
Expression Builder pastes it into the expression at the active cursor insertion point.

Working with Session Variables
Learn about session variables and how to create them.

This section provides information about working with session variables, and contains
the following topics:

• About Session Variables

• Creating Session Variables

About Session Variables
Session variables obtain their values from initialization blocks.

Unlike dynamic repository variables, however, the initialization of session variables is
not scheduled. When a user begins a session, the Oracle BI Server creates new
instances of session variables and initializes them.

Unlike a repository variable, there are as many instances of a session variable as
there are active sessions on the Oracle BI Server. Each instance of a session variable
could be initialized to a different value.

Session variables are primarily used when authenticating users against external
sources such as database tables or LDAP servers. If a user is authenticated
successfully, session variables can be used to set filters and permissions for that

Chapter 19
Working with Session Variables

19-4



session. When using session variables to set up security, see Managing Session
Variables in Security Guide for Oracle Business Intelligence Enterprise Edition.

This section contains the following topics:

• About System Session Variables

• About Nonsystem Session Variable

About System Session Variables
System session variables are used by the Oracle BI Server and Oracle BI
Presentation Services use for specific purposes.

System session variables have reserved names that cannot be used for other kinds of
variables such as static or dynamic repository variables and non-system session
variables.

When you use these variables for Oracle BI Presentation Services, preface their
names with NQ_SESSION. For example, to filter a column on the value of the variable
LOGLEVEL, set the filter to the variable NQ_SESSION.LOGLEVEL.

The table describes the available system session variables.

Variable Description

USER Holds the value the user enters. The USER value always matches the
PROXY variable that is the act as value. When the user logs in to act
as some other user, the value of the USER session variable matches
the USERID the user is acting as.

USERGUID Contains the global unique identifier (GUID) of the user, populated
from the LDAP or other profile for the user.

GROUP Contains the groups that the user belongs. Group exists only for
compatibility with previous releases. Legacy groups are mapped to
application roles automatically.

When a user belongs to multiple groups, include the group names in
the same column, separated by semicolons, for example,
GroupA;GroupB;GroupC. If you must use a semicolon as part of a
group name, precede the semicolon with a backslash character (\).

ROLES Contains the application roles that the user belongs.

When a user belongs to multiple roles, include the role names in the
same column, separated by semicolons, for example,
RoleA;RoleB;RoleC. If a semicolon must be included as part of a role
name, precede the semicolon with a backslash character (\).

ROLEGUIDS Contains the global unique identifiers (GUIDs) for the application
roles to which the user belongs. GUIDs for application roles are the
same as the application role names.

PERMISSIONS Contains the permissions held by the user such as
oracle.bi.server.manageRepositories.

PROXY Holds the name of the proxy user is authorized to act for another
user.

See Security Guide for Oracle Business Intelligence Enterprise
Edition for more information about the PROXY system session
variable.

Chapter 19
Working with Session Variables

19-5



Variable Description

DISPLAYNAME Used for Oracle BI Server. It contains the name that is displayed to
the user in the greeting in the Oracle BI Presentation Services user
interface. It is also saved as the author field for catalog objects.
DISPLAYNAME variable populated from the LDAP or other user profile.

LOGLEVEL The LOGLEVEL value is a number between 0 and 5. LOGLEVEL
specifies the logging level that the Oracle BI Server uses for user
queries.

LOGLEVEL overrides a variable defined in the Users object in the
Administration Tool. If the administrator user, defined upon install,
has a Logging level defined as 4 and the session variable LOGLEVEL
defined in the repository has a value of 0 (zero), the value of 0
applies.

DESCRIPTION Contains a description of the user as populated from the LDAP or
other user profile.

USERLOCALE Contains the locale of the user as populated from the LDAP or other
user profile.

DISABLE_CACHE_HIT Used to enable or disable Oracle BI Server result cache hits. This
variable has a possible value of 0 or 1.

DISABLE_CACHE_SE
ED

Used to enable or disable Oracle BI Server result cache seeding.
This variable has a possible value of 0 or 1.

DISABLE_SUBREQUE
ST_CACHE

Used to enable or disable Oracle BI Server subrequest cache hits
and seeding. This variable has a possible value of 0 or 1.

SELECT_PHYSICAL Identifies the query as a SELECT_PHYSICAL query.

DISABLE_PLAN_CACH
E_HIT

Used to enable or disable Oracle BI Server plan cache hits. This
variable has a possible value of 0 or 1.

DISABLE_PLAN_CACH
E_SEED

Used to enable or disable Oracle BI Server plan cache seeding. This
variable has a possible value of 0 or 1.

TIMEZONE Contains the time zone of the user as populated from the LDAP or
other user profile.

WEBLANGUAGE Used for Oracle BI Presentation Services. Holds the Oracle BI
Presentation Services user interface display language. Users can
select a language on the sign-in page for Oracle BI EE, or they can
change the language setting on the Preferences tab of the My
Account dialog after signing in.

AUTHINITBLOCKONLY Determines if the initialization blocks required for authentication are
executed. This variable has a value of Yes. The value is case-
insensitive.

PORTALPATH Used for Oracle BI Server. It identifies the default dashboard the
user sees when logging in, the user can override this preference
after signing onto Oracle BI EE.

REQUESTKEY Used for Oracle BI Presentation Services. Any users with the same
nonblank request key share the same Oracle BI Presentation
Services cache entries. This tells Oracle BI Presentation Services
that these users have identical content filters and security in the
Oracle BI Presentation Services. Sharing Oracle BI Presentation
Services cache entries is a way to minimize unnecessary
communication with the Oracle BI Presentation Services.

Chapter 19
Working with Session Variables

19-6



Variable Description

SKIN Determines certain elements of the look and feel of the Oracle BI
Presentation Services user interface. The user can alter some
elements of the user interface by picking a style when logged on to
Oracle BI Presentation Services. The SKIN variable points to an
Oracle BI Presentation Services folder that contains the non-
alterable elements, for example, figures such as GIF files. Such
directories begin with sk_. For example, if a folder were called
sk_companyx, the SKIN variable would be set to companyx.

About Nonsystem Session Variables
A common use for nonsystem session variables is setting user filters.

For example, you could define a nonsystem variable called SalesRegion that is
initialized to the name of the user’s sales region.

You can set a security filter for all members of a group that allow the group to view
only the data pertinent to their region.

When you use these variables for Oracle BI Server, preface their names with
NQ_SESSION. For example, to filter a column on the value of the variable SalesRegion, set
the filter to the variable NQ_SESSION.SalesRegion.

Creating Session Variables
Use these steps to create session variables.

Create unique names for all variables. The names of system session variables are
reserved. You cannot use system session variable names for other types of variables.

The Enable any user to set the value option lets non-administrators set the variable
for sampling.

The NQSSetSessionValues() stored procedure is not supported for use through the Issue
SQL page in Oracle BI Presentation Services Administration. You must select the
Enable any user to set the value option to set a value for the variable.

When Security Sensitive is selected, the Oracle BI Server, the looks at the parent
database object of each column or table that is referenced in the logical request
projection list. If the database object has the Virtual Private Database option
selected, the Oracle BI Server matches a list of security-sensitive variables to each
prospective cache hit. Cache hits would only occur on cache entries that included and
matched all security-sensitive variables.

If you are creating a session variable to override a hierarchy column's selection steps,
then you must choose an initialization block with its initialization string written in JSON
syntax. See Initialization Strings Used in Variables to Override Selection Steps and 
Creating Initialization Blocks.

See Setting Up an Expression.

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, from the Action menu, select New, select
Session , and then select Variable.

Chapter 19
Working with Session Variables

19-7



3. In the Session Variable dialog, in Name, type a variable name.

4. (Optional) Select Enable any user to set the value to set the session variable
after the initialization block has populated the value, at user login, by calling the
ODBC stored procedure NQSSetSessionValue().

5. (Optional) Select Security Sensitive to identify the variable as sensitive to
security when using a row-level database security strategy, such as a Virtual
Private Database (VPD).

6. From the Initialization Block list, select an initialization block that to use to
refresh the value on a continuing basis or click New to create a new initialization
block.

7. In Default Initializer, type the value, or click the Expression Builder button to
use Expression Builder.

8. Click OK.

Working with Initialization Blocks
Initialization blocks are used to initialize dynamic repository variables, system session
variables, and nonsystem session variables.

For example, the NQ_SYSTEM initialization block is used to refresh system session
variables.

This section contains the following topics:

• About Using Initialization Blocks with Variables

• Creating Initialization Blocks

• Variable Order in Initialization Blocks

• Associating Variables with Initialization Blocks

• Establishing Execution Precedence

• When Execution of Session Variable Initialization Blocks Cannot Be Deferred

• Enabling and Disabling Initialization Blocks

About Using Initialization Blocks with Variables
An initialization block contains the SQL statement that is executed to initialize or
refresh the variables associated with that block.

The SQL statement must reference physical tables that can be accessed using the
connection pool specified in the Connection Pool field in the Initialization Block
dialog.

If you want the query for an initialization block to have database-specific SQL, you can
select a database type for that query. If a SQL initialization string for that database
type was defined when the initialization block is instantiated, the string is used,
otherwise, a default initialization SQL string is used.

Chapter 19
Working with Initialization Blocks

19-8



Note:

By default, when you open the Initialization Block dialog for editing in online
mode, the initialization block object is automatically checked out. While the
initialization block is checked out, the Oracle BI Server can continue to
refresh the value of dynamic variables updated by this initialization block,
depending on the refresh interval rate. When you check in the initialization
block, the values of the dynamic variables are reset to the values shown in
the Default initializer. If you do not want to reset the valurd, use the Undo
Check Out option.

This section contains the following topics:

• Initializing Dynamic Repository Variables

• Initializing Session Variables

• About Row-Wise Initialization

Initializing Dynamic Repository Variables
he values of dynamic repository variables are set by queries defined in the Default
initialization string field of the Initialization Block dialog.

You can set up a schedule that the Oracle BI Server follows to execute the query and
periodically refresh the value of the variable. If you stop and restart the Oracle BI
Server, the server automatically executes the SQL statements in repository variable
initialization blocks, reinitializing the repository variables.

The Oracle BI Server logs all SQL queries issued to retrieve repository variable
information in obis1_query.log located in the DOMAIN_Home/servers/obis1/logs when the
logging level for the administrator account, set upon installation, is set to 2 or higher.
You should set the logging level to 2 for the administrator to provide the most useful
level of information.

The queries and errors are logged to nqquery.log when using an Oracle BI EE 11g
version.

Initializing Session Variables
As with dynamic repository variables, session variables obtain their values from
initialization blocks. Unlike dynamic repository variables, session variables are not
updated at scheduled time intervals.

Instead, the Oracle BI Server creates new instances of those variables whenever a
user begins a new session. The values remain unchanged for the duration of the
session.

Execution of session variable initialization blocks during session logon can be deferred
until their associated session variables are actually accessed within the session, see 
Creating Initialization Blocks.

The Oracle BI Server logs all SQL queries issued to retrieve session variable
information if the logging level is set to 2 or higher in the Identity Manager User object,
or the LOGLEVEL system session variable is set to 2 or higher in the Variable Manager.

Chapter 19
Working with Initialization Blocks

19-9



In Oracle BI EE 12c, the queries and errors are logged in the obis1_query.log located
in the DOMAIN_Home/servers/obis1/log.

See Managing the Query Log in System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition.

About Row-Wise Initialization
You can use the row-wise initialization option to create session variables dynamically
and set their values when a session begins.

The names and values of the session variables reside in an external database that you
access through a connection pool. The variables receive their values from the
initialization string that you type in the Initialization Block dialog.

For example, suppose you want to create session variables using values contained in
a table named RW_SESSION_VARS. The table contains three columns:

• USERID, containing values that represent the unique identifiers of the users

• NAME, containing values that represent session variable names

• VALUE, containing values that represent session variable values

The table shows the example.

USERID NAME VALUE

JOHN LEVEL 4

JOHN STATUS FULL-TIME

JANE LEVEL 8

JANE STATUS FULL-TIME

JANE GRADE AAA

To use row-wise initialization, create an initialization block and select the Row-wise
initialization option, see Creating Initialization Blocks. For this example, provide the
following SQL statement for the initialization string:

SELECT NAME, VALUE
FROM RW_SESSION_VARS
WHERE USERID='VALUEOF(NQ_SESSION.USERID)'

NQ_SESSION.USERID has already been initialized using another initialization block.

The following session variables would be created:

• When John connects to the Oracle BI Server, his session contains two session
variables from row-wise initialization: LEVEL, containing the value 4, and STATUS,
containing the value FULL_TIME.

• When Jane connects to the Oracle BI Server, her session contains three session
variables from row-wise initialization: LEVEL, containing the value 8; STATUS,
containing the value FULL-TIME; and GRADE, containing the value AAA.

Chapter 19
Working with Initialization Blocks

19-10



Initializing a Variable with a List of Values
You can use the row-wise initialization option to initialize a variable with a list of
values. You can then use the SQL IN operator to test for values in a specified list.

For example, you type the following SQL statement for the initialization string:

SELECT 'LIST_OF_USERS', USERID
FROM RW_SESSION_VARS
WHERE NAME='STATUS' AND VALUE='FULL-TIME'

This SQL statement populates the variable LIST_OF_USERS with a list, separated by
colons, of the values JOHN and JANE, for example, JOHN:JANE. You can then use this
variable in a filter, as shown in the following WHERE clause:

WHERE TABLE.USER_NAME = valueof(NQ_SESSION.LIST_OF_USERS)

The variable LIST_OF_USERS contains a list of values, that is, one or more values. This
logical WHERE clause expands into a physical IN clause, as shown in the following
statement:

WHERE TABLE.USER_NAME IN ('JOHN', 'JANE')

Note:

The above information and example pertain to Logical SQL. If you are using
Physical SQL to initialize a variable with a list of values, then you must use
the VALUELISTOF function. For example, to get the customers assigned to the
user names in the variable LIST_OF_USERS, use the following statement:

Select 'LIST_OF_CUSTOMERS', Customer_Name from RW_CUSTOMERS where 
RW.CUSTOMERS.USER_NAME in (VALUELISTOF(NQ_SESSION.LIST_OF_USERS))

To filter by specific values in the list, use ValueNameof similar to the following example.
The first value is 0, not 1.

Select 'LIST_OF_CUSTOMERS', Customer_Name from RW_CUSTOMERS where 
RW.CUSTOMERS.USER_NAME in '(ValueNameOf(0,NQ_SESSION.LIST_OF_USERS))

Creating Initialization Blocks
Learn about initialization blocks in these topics.

See About Using Initialization Blocks with Variables.

To create initialization blocks, perform the steps in the following sections:

• Assigning a Name and Schedule to Initialization Blocks

• Selecting and Testing the Data Source and Connection Pool

Chapter 19
Working with Initialization Blocks

19-11



Creating Session Variable Initialization Blocks
Use these steps to create a session variable initialization block.

When using Database as the data source type, you can use a default initialization
string, a database specific SQL statement, or the Oracle BI Server, and a valid
connection pool. You can test the connection before saving the changes.

When using LDAP Server as the data source type, select an existing LDAP Server or
define a new server with the hostname, port number, password, and other LDAP
specific configuration information.

When using a Custom Authenticator as the data source type, select an existing
custom authenticator, or select a new authenticator and supply the required
configuration properties.

1. In the Oracle BI Administration Tool, click the Manage menu, and select
Variables.

2. In the Variable Manager, from the Action menu, select Session, and then select
Initialization Block.

3. In the Session Variable Initialization Block, type a name for the initialization block.

4. (Optional) Specify when the initialization block executes, select Disabled.

5. Click Edit Data Source, select a Data Source Type and complete the remaining
fields specific to the selected data source type.

6. Click Edit the Target Variable, and edit or define the variable to use with the
initialization block.

7. Click Edit the Execution Precedence, and Add or Remove initialization blocks
that execute before this initialization block.

8. (Optional) Click Test to verify that your initialization block performs as expected.

9. Click OK.

(Optional) Enter the result of the procedure here.

Assigning a Name and Schedule to Initialization Blocks
For repository variables, you can specify the day, date, and time for the start date, as
well as a refresh interval.

The session initialization block options are:

• Disabled. If you select this option, the initialization block is disabled.

You can also right-click an existing initialization block in the Variable Manager and
choose Disable or Enable. This option enables you to change this property
without opening the initialization block dialog.

• Allow deferred execution. If you select this option, execution of the initialization
block is deferred until an associated session variable is accessed for the first time
during the session.

This option prevents execution of all session variable initialization blocks during
the session logon stage, giving a shorter logon time. Session variables that are not
needed during the session do not have their initialization blocks executed. This

Chapter 19
Working with Initialization Blocks

19-12



saves the resources which would have been used to execute these unnecessary
initialization blocks.

The deferred execution of an initialization block also triggers the execution of all
unexecuted predecessor initialization blocks. All associated variables of the
initialization block and its unexecuted predecessors are updated with the values
returned from the deferred execution.

Note:

The Allow deferred execution option is unavailable in some circumstances, see 
When Execution of Session Variable Initialization Blocks Cannot Be Deferred.

• Required for authentication. If you select this option, this initialization block must
succeed for users to log in. Users are denied access to Oracle Business
Intelligence if the initialization block fails to execute. Failure to execute can occur if
the wrong credentials have been defined in the initialization block, or if there is an
error in the default initialization string.

The initialization block success requirement is waived for internal processes, like
Delivers that use impersonation, if a single user session variable has been
associated with the initialization block. In this case, the trusted internal process
can connect regardless of whether the initialization block succeeds or fails.

1. In the Administration Tool, select Manage, then select Variables to assign a name
and schedule to initialization blocks.

2. In the Variable Manager, expand Session or Respository, and then select
Initialization Block.

3. In the [Repository|Session] Variable Initialization Block dialog, type a name for the
block. The NQ_SYSTEM initialization block name is reserved.

4. (Repository initialization blocks only) In the Schedule area, select a start date and
time and the refresh interval.

5. (Session init blocks only) Select an option.

The next step is to select the data source and connection pool.

Selecting and Testing the Data Source and Connection Pool
If you select Database as the data source type for an initialization block, the values
returned by the database for the columns in your SQL statement are assigned to
variables that you associate with the initialization block.

For session variable initialization blocks, you can also select LDAP Server or Custom
Authenticator.
It is recommended that you create a dedicated connection pool for initialization blocks
where you select Database as the data source type. In addition, if an initialization
block fails for a particular connection pool during Oracle BI Server start-up, no more
initialization blocks using that connection pool are processed. Instead, the connection
pool is blacklisted and subsequent initialization blocks for that connection pool are
skipped.

See:

Chapter 19
Working with Initialization Blocks

19-13



• About Connection Pools for Initialization Blocks

• Managing Session Variables

• Initialization Strings Used in Variables to Override Selection Steps

• Examples of Initialization Strings

• Examples of Initialization Strings

• Testing Initialization Blocks

• If you select Database as the data source type, and do not select the Use OBI EE
Server option, the SQL statement used to refresh the variable must reference
physical tables accessed through the connection pool specified in the Connection
Pool field. You do not have to include the tables in the Physical layer of the
metadata. At run time, if an initialization string for the database type has been
defined, the initialization string is used. If the initialization string for the database
type was not defined, the default initialization SQL for the database type is used.
You can overwrite the default string.

When you create SQL and submit it directly to the database, for example, when
using database-specific SQL in initialization blocks, the SQL statement bypasses
the Oracle BI Server. The order of the columns in the SQL statement and the
order of the variables associated with the initialization block determine which
columns are assigned to each variable.

You should test this SQL using the Test button in the [Repository|Session]
Variable Initialization Block Data Source dialog. If the SQL statement contains an
error, the database returns an error message.

• If you select Database as the data source type, and select the Use OBI EE
Server option

The SQL statement you use to refresh the variable might be written for a specific
database. However, it will still work with other data sources because the SQL
statement is processed by the Oracle BI Server. The Oracle BI Server can also
provide functions such as PI that might not be available in the data source, and the
SQL statement will work with other data sources supported by the Oracle BI
Server, for example, ADF, SQL Server, Oracle, and XML files. When you select
the Use OBI EE Server option, there is no need for a connection pool, because
the SQL statement is sent to the Oracle BI Server and not directly to the
underlying database.

You can only test this SQL statement using the Test button in the [Repository|
Session] Variable Initialization Block Data Source dialog when in online mode. If
the SQL statement contains an error, the database returns an error message. .

1. In the Oracle BI Administration Tool, select Manage, then select Variables.

2. In Variable Manager, select the initialization block to edit.

3. Click Edit Data Source next to the Connection Pool field.

4. From the Data Source Type list, select one of the following types.

• Database: For repository and session variables.

• LDAP Server: For session variables.

• Custom Authenticator: For session variables.

5. If you selected Database for your data source type, perform one of the following
steps:

Chapter 19
Working with Initialization Blocks

19-14



• Select Default initialization string or Use database specific SQL, and then
perform the following steps:

a. Click Browse next to the Connection Pool field to select the connection
pool associated with the database where the target information is located.
If you do not select a connection pool before typing the initialization string,
you receive a message prompting you to select the connection pool.

b. In the Select Connection Pool dialog, select the connection pool and click
Select. You must select a connection pool before typing an initialization
string.

By default, the first connection pool under the database object in the
Physical layer is not available for selection. This behavior ensures that you
cannot use the same connection pool for initialization blocks that you use
for queries.

You can change this behavior so that the first connection pool is available
for selection by selecting Allow first Connection Pool for Init Blocks in
the Options dialog, although this is not recommended.

c. If you selected Use database specific SQL, then in the Database pane,
expand and select the database. Then, enter its associated string.

Otherwise, in the Default initialization string box, type the SQL
initialization string needed to populate the variables.

If you are editing an initialization block to be used by a variable to override
a hierarchy column's selection steps, then in the Default initialization
string box, type the JSON initialization string.

d. (Optional) Click Test to test the data source connectivity for the SQL
statement.

e. Click OK to return to the Initialization Block dialog.

• Select Use OBI EE Server, and then perform the following steps:

a. In the box, enter the SQL initialization string needed to populate the
variables.

The string you enter here is processed by the Oracle BI Server, and
therefore as long as it is supported by the Oracle BI Server, the string
works with different data sources.

For example, an initialization block might use the function pi(), which is
specific to SQL Server. However, if you select Use OBI EE Server, the
query is rewritten by the Oracle BI Server for the appropriate database. If
you change the SQL Server back-end database to Oracle, the query
works.

b. Click OK to return to the Initialization Block dialog.

6. If you selected LDAP Server for your data source type, perform the following
steps:

a. Click Browse to select an existing LDAP Server, or click New to open the
General tab of the LDAP Server dialog and create an LDAP Server.

b. Click OK to return to the Initialization Block dialog.

The LDAP server name and the associated domain identifier appear in the
Name and Domain identifier columns.

Chapter 19
Working with Initialization Blocks

19-15



7. If you selected Custom Authenticator for your data source type, perform the
following steps:

a. Click Browse to select an existing custom authenticator, or click New to
create one.

b. Click OK to return to the Initialization Block dialog.

8. Click OK.

Initialization Strings Used in Variables to Override Selection Steps
For analyses that contain hierarchical columns, selection steps can be overridden with
session variables or repository variables.

Session and repository variables intended for this purpose must contain valid JSON
syntax, rather than SQL syntax, in their initialization strings.

Using JSON, you must define type, column, and members with the following syntax.

{
  "type": "Hierarchy",
  "column": {
    "subject_area":"your_subject_area",
    "hier_id":"your_hier_id",
    "dim_id":"your_dim_id",
    "table_name":"your_table_name"
  },
  "members": [
    {
      "level_id":"your_level_id",
      "values": [
        your_value,
        your_value
      ]
    },
    {
      "level_id":"your_level_id",
      "values": [
        your_value
      ]
    }
  ]
}

Where:

"type" indicates hierarchy type.

"column" indicates the hierarchy column's information such as subject area and table
name.

"dim_id" is the logical dimension name.

"members" indicates which hierarchy level and which member ID.

"level_id" is the presentation level name.

Example of Standard Hierarchy Syntax

{
  "type": "Hierarchy",

Chapter 19
Working with Initialization Blocks

19-16



  "column": {
    "subject_area": "A - Sample Sales",
    "hier_id": "H2 Offices",
    "dim_id": "H3 Offices",
    "table_name": "Offices"
  },
  "members": [
    {
      "level_id": "Company",
      "values": [
        10001,
        10002
      ]
    },
    {
      "level_id": "Organization",
      "values": [
        1005
      ]
    }
  ]
}

Example of Parent-Child Hierarchy Syntax

{
  "type":"Hierarchy",
  "column":{
    "subject_area":"A - Sample Sales",
    "hier_id":"Sales Rep Hierarchy",
    "dim_id":"H5 Sales Rep",
    "table_name":"Sales Person"
  },
  "members":[
    {
      "level_id":"Grand Total",
      "values":[
        27,
        24,
        18,
        16
      ]
    }
  ]
}

Examples of Initialization Strings
These examples show you how to initialize strings.

A SQL Statement When Site Uses Delivers

SELECT username, groupname, dbname, schemaname FROM users
WHERE username=':USER' 
NQS_PASSWORD_CLAUSE(and pwd=':PASSWORD')NQS_PASSWORD_CLAUSE

This SQL contains two constraints in the WHERE clause:

':USER' , use the colon and single quotes, is the ID the user types when logging in.

Chapter 19
Working with Initialization Blocks

19-17



':PASSWORD' , use the colon and single quotes, is the password the user enters. This is
another system variable whose presence is always assumed when the USER system
session variable is used. You do not need to set up the PASSWORD variable, and you can
use this variable in a database connection pool to allow pass through login using the
user ID and password of the user. You can also use this variable in a SQL statement.

When using external table authentication with Delivers, the portion of the SQL
statement that makes up the :PASSWORD constraint must be embedded between
NQS_PASSWORD_CLAUSE clauses.

The query returns data only if the user ID and password match values found in the
specified table. You should test the SQL statement outside of the Oracle BI Server,
substituting valid values for the USER and PASSWORD variables and removing the
NQS_PASSWORD_CLAUSE clause.

A SQL Statement When Site Does Not Use Delivers

SELECT username, groupname, dbname, schemaname FROM users
WHERE username=':USER' 
AND pwd=':PASSWORD'

This SQL statement contains two constraints in the WHERE clause:

':USER' (note the colon and the single quotes) is the ID the user types when logging in.

':PASSWORD' , use the colon and single quotes, is the password the user enters. This is
another system variable whose presence is always assumed when the USER system
session variable is used. You do not need to set up the PASSWORD variable, and you can
use this variable in a database connection pool to allow pass through login using the
user ID and password of the user. You can also use this variable in a SQL statement.

The query returns data only if the user ID and password match values found in the
specified table. You should test the SQL statement outside of the Oracle BI Server,
substituting valid values for the USER and PASSWORD variables.

A SQL Statement Joining Tables From Multiple Data Sources - When Using the
'OBI EE Server' Setting

select WUSER.name, wuser_detail.email 
from "db-11g/orcl"."NAME"."WUSER', 
"sqlexpress"."master"."dbo"."wuser_detail" 
where username=:USER:

The above query example in the initialization block uses a join query with multiple
tables from different data sources, for example, SQL Server, Oracle and XML Files.
The query works because when you select the Use OBI EE Server option, the query
is rewritten by the Oracle BI Server for the specified data sources.

Testing Initialization Blocks
You should test the SQL statement using the Test button or a SQL tool such as the
Oracle BI EE Client utility.

If you use a SQL tool, be sure to use the same DSN or one set up identically to the
DSN in the specified connection pool.

In online mode, Initialization Block tests do not work with connection pools set to
use :USER and :PASSWORD as the user name and password. In offline mode, the Set
values for variables dialog is displayed so that you can populate :USER and :PASSWORD.

Chapter 19
Working with Initialization Blocks

19-18



1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, double-click the initialization block.

3. In the [Repository|Session] Variable Initialization Block dialog, click Edit Data
Source.

4. In the [Repository|Session] Variable Initialization Block Data Source dialog, click
Test.

Note:

The Test button is disabled when the Use OBI EE Server option is
selected in offline mode.

5. In the Set value for the variables dialog, verify the information is correct, and then
click OK.

6. In the View Data from Table dialog, type the number of rows and the starting row
for your query, and then click Query.

The Results dialog lists the variables and their values.

The next step is to associate variables with the initialization block.

Variable Order in Initialization Blocks
The column order in the SQL statement and variable order associated with the
initialization block determines the column value that is assigned to each variable.

When you associate variables with an initialization block, the value returned in the first
column is assigned to the first variable in the list.

When you open a repository in online mode, the value shown in the Default
initialization string field of the Initialization Block dialog is the current value of that
variable as known to the Oracle BI Server. The number of associated variables could
differ from the number of columns that are retrieved. If there are fewer variables than
columns, extra column values are ignored. If there are more variables than columns,
the additional variables are not refreshed. The variables retain their original values.
You can execute any legal SQL using an initialization block, including SQL that writes
to the database or alters database structures, when user ID associated with the
connection pool has permissions to perform these actions.

If you stop and restart the Oracle BI Server, the server automatically executes the SQL
statement in the repository variable initialization blocks, re-initializing the repository
variables.

For session variable initialization blocks, you can select Row-wise initialization. The
Use caching option is automatically selected when you select the Row-wise
initialization option. Selecting the Use caching option directs the Oracle BI Server to
store the results of the query in a main memory cache. See About Row-Wise
Initialization.

The Oracle BI Server uses the cached results for subsequent sessions. This can
reduce session startup time. However, the cached results might not contain the most
current session variable values. If every new session needs the most current set of
session variables and their corresponding values, you should clear this option.

Chapter 19
Working with Initialization Blocks

19-19



See About Using Initialization Blocks with Variables.

Associating Variables with Initialization Blocks
Use this procedure to associate repository or session variables with initialization
blocks.

For the Custom Authenticator data source type (session variables only), the variable
USER is required.

If you select Row-wise initialization, the Use caching option becomes available. See 
About Row-Wise Initialization

See:

• About Using Initialization Blocks with Variables

• Creating Repository Variables

• Creating Session Variables

1. In the Administration Tool, select Manage, then select Variables to associate
variables with initialization block.

2. In the Variable Manager dialog, double-click the initialization block to edit the
repository initialization blocks or session initialization blocks.

3. Click Edit Data Target.

4. In the Repository|Session Variable Initialization Block Variable Target dialog, do
one of the following:

• Click New, and in the Variable dialog, create a new variable to associate with
the initialization block.

• Click Link, in the Browse dialog, select the variable to associate the variable
with the initialization block, and then and click OK.

• For session variable initialization blocks only, select Row-wise initialization.

5. To remove a variable from association with this block, select the variable and click
Remove.

6. Click OK.

The next step is to establish execution precedence.

Establishing Execution Precedence
When a repository has multiple initialization blocks, you can set the order (establish
the precedence) in which the blocks will be initialized.

First, you open the block that you want to be executed last and then add the
initialization blocks that you want to be executed before the block you have open. For
example, suppose a repository has two initialization blocks, A and B. You open
initialization block B, and then specify that block A will execute before block B. This
causes block A to execute according to block B's schedule, in addition to its own.

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, double-click the last initialization block that you
want to be initialized.

Chapter 19
Working with Initialization Blocks

19-20



3. In the [Repository|Session] Variable Initialization Block dialog, click Edit
Execution Precedence.

4. In the [Repository|Session] Variable Initialization Block Execution Precedence
dialog, click Add.

Add is only available if there are initialization blocks that have not yet been
selected.

5. In the Browse dialog, select the blocks that should be initialized before the block
that you have open, and then click OK.

6. To remove a block, in the [Repository|Session] Variable Initialization Block
Execution Precedence dialog, select the block you want to remove and click
Remove.

7. Click OK.

8. If you want the initialization block to be required, in the [Repository|Session]
Variable Initialization Block dialog, select the Required for authentication option.

9. Click OK.

Note:

When you select the Use OBI EE Server option for an initialization block:

• Execution precedence does not apply, because during user login, an
initialization block with the Use OBI EE Server option selected is
executed after initialization blocks with the Use OBI EE Server option
not selected.

• The Required for authentication option is dimmed, because this type
of initialization block is executed after authentication.

When Execution of Session Variable Initialization Blocks Cannot Be
Deferred

Execution of session variable initialization blocks cannot be deferred in some
circumstances.

When the execution of session variable initialization blocks cannot be deferred, a
message is displayed that explains why.

See Assigning a Name and Schedule to Initialization Blocks.

The following list summarizes the scenarios in which execution of session variable
initialization blocks cannot be deferred:

• The Row-wise initialization option is selected in the Session Variable
Initialization Block Variable Target dialog and the variables have not been
declared explicitly with default values.

Example message: "The execution of init block 'A_blk' cannot be
deferred as it is using row-wise initialization."

• The Required for authentication option is selected in the Session Variable
Initialization Block dialog.

Chapter 19
Working with Initialization Blocks

19-21



Example message: "The execution of init block 'A_blk' cannot
be deferred as it is required for authentication."

• The Data Source Type is not Database.

Example message: "The execution of init block 'A_blk' cannot be
deferred as it does not have a connection pool."

• The initialization block is used by session variables named PROXY or USER.

Example message: "The execution of init block 'A_blk' cannot
be deferred as it is used by session variable 'PROXY'."

• The initialization block is used by session variables where the Security Sensitive
option is selected in the Session Variable dialog.

Example message: "The execution of init block 'A_blk' cannot
be deferred as it is used by session variable 'A' which is
security sensitive."

• The initialization block is a predecessor to another initialization block which does
not have the Allow deferred execution option selected.

Example message:"One of the successors for init block 'A_blk'
does not have "Allow deferred execution" flag set. Init block
'B_blk' does not have "Allowed deferred execution" flag set.

Enabling and Disabling Initialization Blocks
You can use the Variable Manager in the Oracle BI Administration Tool to enable and
disable initialization blocks.

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager, select Initialization Blocks under Repository or
Session.

3. In the right pane, right-click the initialization block you want to enable or disable.

4. Choose Enable or Disable from the right-click menu.

5. Close the Variable Manager and save the repository.

Working with Multi-Source Session Variables
Oracle Business Intelligence supports session variables that are populated from
multiple data sources.

You can use these multi-source session variables in logical queries or in repository
data filters, and contain the union of values from the different data sources.

There is no restriction on the number of values that the multi-source session variable
can hold. To create a multi-source session variable, you first create row-wise
initialization blocks for each source.

You explicitly define session variables for each source. Use the following format for the
session variable names:

• <ms_variable_name>____<source>

You must use exactly four underscore characters as the separator.

Chapter 19
Working with Multi-Source Session Variables

19-22



This automatically creates a single multi-source session variable, named:

• <ms_variable_name>

The component session variable names, <ms_variable_name>____<source>, appear
separately in the Variable Manager in the Oracle BI Administration Tool, but the
Expression Builder displays only the single multi-source session variable name,
<ms_variable_name>.

Note:

While the main focus of this section is on the definition and usage of multi-
source session variables, you may also select the VALUEOF the component
session variables in logical queries and data filters.

If any of the row-wise initialization blocks returns null results, this is logged in the
Oracle BI Server log, nqserver.log. You can add values to the multi-source session
variable from other component initialization blocks that succeed in returning values.
The multi-source session variable fails only if all of the component initialization blocks
return null values.

You can set execution precedence and deferred execution with multi-source session
variables, similar to regular session variables.

Example to Illustrate the Creation and Usage of Multi-Source Session
Variables

Use these examples to learn how to create a multi-source session variable.

The following example illustrates how to create and use a multi-source session
variable:

1. In the Variable Manager in the Administration Tool, select Action, select New,
select Session, and then select Initialization Block.

2. Create a row-wise initialization block called mvcountry_sebl_init with the following
SQL for Default initialization string:

select distinct 'MVCOUNTRY____SEBL', country from siebel_table

3. Create a second row-wise initialization block called mvcountry_orcl_init with the
following SQL for Default initialization string:

select distinct 'MVCOUNTRY____ORCL', country from oracle_table

4. Still in the Variable Manager, select Action > New > Session > Variable.

5. Create a session variable called MVCOUNTRY____SEBL, making sure to include
four underscores between the variable name and the source name. For
Initialization Block, select mvcountry_sebl_init.

6. Create a second session variable called MVCOUNTRY____ORCL, making sure to
include four underscores between the variable name and the source name. For
Initialization Block, select mvcountry_orcl_init.

Chapter 19
Working with Multi-Source Session Variables

19-23



While the component session variables appear in the Variable Manager, the
MVCOUNTRY multi-source session variable that has been created appears in
Expression Builder.

Using the Multi-Source Session Variable in a Logical Query

You can now use the MVCOUNTRY multi-source session variable in a logical query.

For example:

select lastName, firstName, country from employee 
where country=VALUEOF(NQ_SESSION.MVCOUNTRY)

Using the Multi-Source Session Variable in a Data Filter

Perform the following steps to use the MVCOUNTRY multi-source session variable in
a data filter:

1. In the Administration Tool, select Manage, then select Identity.

2. In the Identity Manager dialog, in the tree pane, select BI Repository.

3. In the right pane, select the Application Roles tab, then double-click the application
role for which you want to set data filters.

4. In the Application Role dialog, click Permissions.

5. In the User/Application Role Permissions dialog, click the Data Filters tab.

6. In the Data Filters tab, create the data filter expression:

• Country=VALUEOF(NQ_SESSION.MVCOUNTRY)

The Expression Builder, as shown in the image that follows, displays only the
MVCOUNTRY multi-source session variable, and not the regular session variables
that were used during the creation of the multi-source session variable.

Chapter 19
Working with Multi-Source Session Variables

19-24



List Repository Variables Command
Use the list connection pool command listrpdvariable to create a list of repository
variables in JSON format for a specific service instance.

Use the listrpdvariable and the updaterpdvariables utility when you need to update
more than one variable.

You execute the utility through a launcher script, datamodel.sh on UNIX, and
datamodel.cmd on Windows.

If the domain is installed in default folder then the location of the launcher script looks
like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/datamodel.sh or
datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

See What You Need to Know Before Using the Command.

Syntax

The listrpdvariables command takes the following parameters:

listrpdvariables -SI <service_instance> -U <cred_username> [-P <cred_password>] [-

S <hostname>] [-N <port_number>] [-V <comma or new line separated FILE containing

selected variables names>] [-O <outputFile.json>] [-SSL] [-H]

Where

SI specifies the name of the service instance.

U specifies a valid user's name to be used for Oracle BI EE authentication.

Chapter 19
List Repository Variables Command

19-25



P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, then you are prompted for the password when the
command is run. Oracle recommends that you include a password in the command
only if you are using automated scripting to run the command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

V is an optional argument that specifies the repository variable names that you want to
list. You must separate the variable names with commas. If you do not pass the V
argument or pass the V argument without listing any variable names, then by default all
repository variables are returned.

O specifies the output file name with the .json suffix.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

datamodel.sh listrpdvariables -SI ssi -U weblogic -P password -slc01.example.com -

N 7777 -V selectedvar.csv -O listrpdvar.json

Sample JSON List Repository Variable Output

{    "Title":"List Rpd Variables",
    "Rpd-Variables":[
        {
            "uid":"80000000-3335-155c-991a-0af2537d0000",
            "variable":"RPD_ST_VARIABLE",
            "value":"'rpdStatic Variable'"
        },
        {
            "uid":"c0000000-33c0-155c-991a-0af2537d0000",
            "variable":"DYNAMIC_REPO_VAR",
            "value":"'dynamic repo var'"
        }
    ]
}

Sample JSON Output

Note:

If there is no match, meaning none of the variable names included in the V
argument matched the repository variables in the repository, then the JSON
output is an empty array list.

{
    "Title":"List Rpd Variables",

Chapter 19
List Repository Variables Command

19-26



    "Rpd-Variables":[
    ]
}

Update Repository Variables Command
Use the updaterpdvariables command to upload a JSON input file or a modified JSON
file containing variable information to a specific server instance.

Use this and the listrpdvariable utility when you need to update more than one
variable.

You can create and upload a JSON input file that contains new repository variables,
names and values.

You can also upload an updated JSON file containing modified repository variables,
names or values. Use the listrpdvariable command to create a JSON file containing
a list of repository variables for a specific service instance. Modify the variable
information in this file and then upload it to the service instance using the
updaterpdvariables command.

Note:

You must not modify the uid values for variables in the file. See Overview of
User and Application Role Commands.

You execute the utility through a launcher script, datamodel.sh on UNIX and
datamodel.cmd on Windows. If the domain is installed in default folder then the location
of the launcher script looks like the following:

Oracle_Home/user_projects/domains/Domain_Name/bitools/bin/datamodel.sh or
datamodel.cmd on Windows

If the client install doesn't have domain names, the launcher script location is as
follows:

Oracle_Home\bi\bitools\bin\datamodel.cmd

See What You Need to Know Before Using the Command.

Syntax

updaterpdvariables -C <rpdVariablesList.json> -SI <service_instance> -U

<cred_username> [-P <cred_password>] [-S <hostname>] [-N <port_number>] [-SSL] [-

H]

Where

C specifies the name of the JSON file that you want to upload. Note this file must not
contain modified uid values for variables. See the Creating a JSON Input File section
and the JSON Input Repository Variable File example that follows below.

SI specifies the name of the service instance.

U specifies a valid user's name to be used for Oracle BI EE authentication.

Chapter 19
Update Repository Variables Command

19-27



P specifies the password corresponding to the user's name that you specified for U. If
you do not supply the password, then you are prompted for the password when the
command is run. Oracle recommends that you include a password in the command
only if you are using automated scripting to run the command.

S specifies the Oracle BI EE host name. Only include this option when you are running
the command from a client installation.

N specifies the Oracle BI EE port number. Only include this option when you are
running the command from a client installation.

SSL specifies to use SSL to connect to the Oracle WebLogic Server to run the
command. Only include this option when you are running the command from a client
installation.

H displays the usage information and exits the command. Use -H or run .sh without any
parameters to display the help content.

Example

datamodel.sh updaterpdvariables -SI ssi -U weblogic -P password -S

slc01.example.com -N 7777 -C listrpdvar.json

Creating a JSON Input File

Use the JSON file that was generated when you ran the listrpdvariable command as
a model for a JSON input file. Using the outputted JSON file as a model ensures that
the new file's syntax is valid. See List Repository Variables Command.

When writing the input file, note the following information:

uid – This element can be any text.

variable – This element is the new variable's name.

value – This element is the new variable's value. Use singular quotes inside of double
quotes. For example "'VALUE'".

JSON Input Repository Variable File Example

{
    "Title":"List Rpd Variables",
    "Rpd-Variables":[
      { 
        "uid":"80000000-3335-155c-991a-0af2537d0000", 
        "variable":"RPD_ST_VARIABLE", 
        "value":"'rpdStatic Variable My value'"
      },
      { 
        "uid":"c0000000-33c0-155c-991a-0af2537d0000",
        "variable":"DYNAMIC_REPO_VAR_NEW_NAME", 
        "value":"'dynamic repo var'" 
      },
      { 
        "uid":"New1",
        "variable":"NEW_VAR_NAME", 
        "value":"'new value for new variable'" 
      }
    ]
}

Chapter 19
Update Repository Variables Command

19-28



A
Managing the Repository Lifecycle in a
Multiuser Development Environment

This appendix provides best practice information for managing the lifecycle of the
Oracle BI repository when you are using a multiuser development environment.
Building your Oracle BI EE repository using the multiuser development environment
enables you to do the following:

• Build large, interrelated semantic models

• Independently build multiple, independent semantic models to run in the same
Oracle BI Server and Presentation Services server

• Develop several branches on different schedules, in parallel, while fixing urgent
bugs or enhancement requests on the production version

• Incrementally design and test at the individual and team levels

• Enable individual developers to design and test manageable subsets without
impacting each other, yet share their changes with other developers in a
controlled, incremental fashion

• Migrate changes to test and production systems in bulk, or incrementally

This appendix covers the development lifecycle of the Oracle BI EE repository. It does
not cover the development lifecycle of the Oracle BI Presentation Catalog used by
Presentation Services. This appendix also does not cover how to use the multiuser
development environment for Independent Software Vendor (ISV) organizations
building portable Oracle Business Intelligence applications for sale as products.

See MUD Case Study: Eden Corporation for detailed examples of how the multiuser
development environment is used in a typical business scenario.

This appendix contains the following topics:

• Planning Your Multiuser Development Deployment

• Multiuser Development Architecture

• Understanding the Multiuser Development Environment

• MUD Tips and Best Practices

• Troubleshooting Multiuser Development

Planning Your Multiuser Development Deployment
Review the tasks you need to perform as part of the planning phase before beginning
multiuser development.

This section contains the following topics:

• About Business Organization and Governance Process Best Practices

• About Technical Team Roles and Responsibilities

A-1



About Business Organization and Governance Process Best Practices
You need to provide a strong, effective governance process to make decisions about
shared resources and to resolve conflicts among the many stake-holders.

As in any business process, you must have a strong business sponsor, and the
steering committee staffed with strong business people who can negotiate effectively
and make good decisions that do not change over time. Having an effective
governance process is the single most important factor in achieving successful
multiuser development with Oracle Business Intelligence.

Before you begin your multiuser development project, you must first lay out the
business value, priorities, road map, and requirements, as well as lower level details of
the design, as described in the table below.

Task Description

Strategic requirements • Determine which business processes to measure
• Determine which data sources and subject areas to access

Business requirements for
repository objects

• Select and define metrics, dimensions, and hierarchies
• Identify objects that will be shared between development

teams
• Resolve conflicts between teams
• Define Presentation layer subject areas

Security requirements • Define Application Roles and corresponding privileges for
your user base

• Define which repository developers can access which
metadata and data

Development • Determine the styles of multiuser development to use
• Define areas to break down into MUD projects
• Determine the owners for metadata objects

Project management • Set initiatives - purpose, goals, requirements, scope,
schedule, budget

• Define phases - scope, schedule
• Allocate resources - hardware, software, databases,

developers
• Decide on a strategy for development branching
• Prioritize and schedule production updates from different

development teams

Operations • Negotiate service level agreements
• Coordinate schedules for updates and downtime

About Technical Team Roles and Responsibilities
These topics describe the hands-on roles involved in repository development and its
lifecycle.

Depending on the size of your company and team, one person might perform several
roles.

Repository development roles include:

• MUD administrator, one for each development team, plus backup

Appendix A
Planning Your Multiuser Development Deployment

A-2



– Assigns repository password

– Sets up and maintains MUD projects

– Manages the master repository shared directories

– Manages branches and branch merges

– Manages repository migrations

– Manages test and production connection pools

– Manages independent semantic models, has metadata read/write privileges
for all models

• Repository developer, many per development team

– Knows the repository password

– Owns, operates, and maintains a personal development sandbox that includes
all necessary Oracle Business Intelligence components

– Manages user and application role provisioning on their sandbox stack

– Creates functional and data authorization content in the repository

– Performs unit testing

– Performs check-outs, merges, and publishing, as required

• Production Operations staff

– Knows the repository password, for managing connection pools and applying
patches

– Applies updated repositories, and applies XML patch updates to the running
BI Server's repository

– Can log in to production computers and read/write the Oracle Business
Intelligence directories or run programs

– Manages the production file system, including the repository directory, logs,
and configuration files

– Manages the production servers including the Administration Server, Managed
Servers with Java components, and Oracle Business Intelligence system
components like Oracle BI Server and Oracle BI Presentation Services

– Manages production security, including provisioning users, groups, and
application roles

– Manages and migrates application roles in production

– Manages production connection pools, in the case where the MUD
administrator does not have security privileges for production connection
information

People in other roles outside the repository development team are also involved.
These include people administering the test environment and running the tests, and
also the Oracle BI Presentation Catalog developers.

Multiuser Development Architecture
By reviewing these topics, you can get an understanding of the multiuser development
environment architecture.

Appendix A
Multiuser Development Architecture

A-3



This section contains the following topics:

• About Multiuser Development Concepts

• About Multiuser Development Styles

• Multiuser Development Sandbox Architecture

• Multiuser Development and Lifecycle Management Architecture

About Multiuser Development Concepts
Learn the fundamental concepts related to developing and deploying systems for
multiuser development.

Oracle BI Repository

The Oracle BI Repository is the fundamental artifact under development. It defines all
the metadata used by the Oracle BI Server for interpreting user requests, applying
role-based security, generating queries to data sources, and post-processing the
results. Repositories used in multiuser development environments must be in binary
(RPD) format, not MDS XML format.

Application Roles and the Policy Store

A secondary artifact under development is the set of application roles. User object
permissions, data access filters, and query limits (governors) are defined against these
application roles in the repository logic. Oracle BI Presentation Services also uses
application roles for assigning its privileges and permissions.

You can use the default policy store embedded in Oracle WebLogic Server, or you can
use a separate external policy store. If you are using the embedded policy store, you
define application roles in Fusion Middleware Control, which persists them in the
Policy Store in Oracle WebLogic Server. You can then use the Administration Tool in
online mode to add application roles from your policy store to your repository at design
time. At run time, the Oracle BI Server uses the application roles provisioned to each
user to apply the correct security privileges to user requests.

Sandboxes, Projects, and Branches

An instance of the repository is usually edited by only one repository developer at a
time. Multiple developers work in parallel on subset instances of the repository, called
projects. The developers work in separate sandbox environments, and merge their
changes into a master repository instance frequently to distribute changes and pick up
changes made by others in the team. This approach enables the creation of very large
enterprise applications. It also enables independent semantic models to be developed
by separate teams and merged into the master repository for production hosting in a
single Oracle BI Server cluster. Finally, it enables branching and merging so that
teams can work on major projects in parallel, and can even make emergency fixes to
the main code line in production without disrupting ongoing development projects.

You use the Simple install type when installing a development sandbox.

Single, Shared Repository

Presentation Services connects to just one repository that has been uploaded to the
Oracle BI Server. The metadata for all semantic models must reside in this single

Appendix A
Multiuser Development Architecture

A-4



repository, even if the semantic models share no objects, see About Multiuser
Development Styles.

Repository Password

The repository file is protected by the repository password. The Oracle BI Server
needs this password to open and load the repository at startup. It stores the repository
password in the secure Credential Store. You must also enter this password when you
open the repository in the Administration Tool or other utilities and line commands.
User logon credentials are stored in the identity store, not the credential store.

Oracle BI Presentation Catalog

The Oracle BI Presentation Catalog is an important BI application artifact that contains
the metadata that defines reports, dashboards, KPIs, scorecards, and other reporting
layer objects. See User's Guide for Oracle Business Intelligence Enterprise Edition.

Migration

The completed repository is migrated to test and production systems using Fusion
Middleware Control. Downtime is not necessary because you can refresh clustered
production Oracle BI Servers with a rolling restart.

Deployment Parameters During Migration

Some repository parameters must change when migrating a repository between
development, test, and production systems, such as connection pool settings. These
parameters must change because they are based on the deployment, not the
application logic. You can automate these updates using the Oracle BI Server XML
API (biserverxmlexec -B). During multiuser development, developers merging in
content are automatically prevented from overwriting the master repository test
connection pool and database parameters with their local unit test parameters.

Application Role (Policy Store) Migration

There are several options for migrating application roles between development, test,
and production systems. For simplicity, this document assumes you will re-key a small
number of application role names by hand. For full information about migrating
application roles, and other migration considerations, see “Moving Oracle Business
Intelligence to a Target Environment” in Administering Oracle Fusion Middleware.

Users and the Identity Store

As a best practice, users are not represented by metadata objects in the repository at
design time. Also, the repository does not manage or store their credentials. Instead,
users must always be provisioned to application roles in the run-time environment to
receive privileges. Their credentials, as well as their mapping to application roles
through groups, are managed in an external Identity Store, see Security Guide for
Oracle Business Intelligence Enterprise Edition.

About Multiuser Development Styles
You can learn about multiuser development styles and view potential workflows or
architectures.

Appendix A
Multiuser Development Architecture

A-5



Choose your style of development based on the size of your team, the number of
teams and parallel initiatives, and your requirements for security and availability. The
table shows the multiuser development styles.

Style Description

Serial Development You can use this method if you have a small number of
developers and low concurrency. Development users share a
repository file through e-mail, a shared directory, or on a
shared development system, and only one of them makes
changes at a time. They must coordinate with each other on
the development schedule.

Serial Development with Patch
Files

As a variation on serial development, you can share a base
binary repository, and ship changes only between users using
patch files.

Shared Online Development The best practice is for only one developer at a time to
develop metadata in online mode against a single Oracle BI
Server and its repository. However, multiple online users are
an option for development situations where communication
among the team members is frequent, a higher risk of
conflicts is acceptable, and minimum administrative overhead
is a goal.

MUD The Multiuser Development feature enables over one
hundred development users to work in parallel on a shared,
enterprise repository. Each user can develop and unit test in
a separate sandbox environment, using only manageable-
sized subsets of the metadata. When a unit of work is
complete, they can automatically merge and publish it into the
branch, where other users can pick up those changes and
integrate them with their own metadata. When a project
phase is ready for promotion, the MUD administrator migrates
it to the test environment, and eventually, production. The
MUD administrator manages branches and sub-branches to
enable parallel development of independent initiatives or
fixes, and merges them into the main branch to incrementally
migrate them to test and production environments. The MUD
administrator also manages fine-grained projects which are
the manageable-sized repository subsets individual
developers check out to their local sandbox environments.
See Understanding the Multiuser Development Environment.

MUD with Multiple,
Independent Semantic Models

You might need two or more independent semantic models,
rather than a single, integrated, enterprise-wide model. The
multiple model requirement is common resulting from security
requirements, or when unrelated divisions of a business
share a common Oracle Business Intelligence infrastructure.
The MUD administrator creates a branch for each model,
which enables parallel development and integrated testing for
each team's semantic model. When an independent semantic
model's branch is ready for promotion to production, the MUD
administrator simply merges the branch into main. The MUD
administrator can set security on the branches so that each
developer can only see the semantic model to which they are
assigned, and so that only the MUD administrator and
selected production operations staff can access the
integrated main model.

Appendix A
Multiuser Development Architecture

A-6



Style Description

MUD with Delegated
Administration

When the independent semantic models are developed by
different organizations on different schedules, a centralized
MUD administrator might not provide the desired level of local
control. In this case, you can provide a dedicated MUD
administrator for each independent semantic model's branch.
The branch administrator operates in the same way as an
ordinary MUD administrator.

In this scenario, the MUD super-administrator defines a
branch for each organization, checks out the subset
repository, and provides it to the branch administrator. When
the model is ready for promotion to production, the branch
administrator passes the repository back to the super-
administrator, who merges it into the main branch for
promotion, and then migrates the combined repository to
production.

The images shows the serial development style of multiuser development.

The image shows the shared online development style of multiuser development.

Appendix A
Multiuser Development Architecture

A-7



The figure shows true multiuser development with branching.

The image shows the architecture for a repository with multiple, independent semantic
models.

Appendix A
Multiuser Development Architecture

A-8



The table shows which multiuser development styles meet various requirements for
security and availability.

Requirement Serial Shared
Online

MUD
with
Single
Semanti
c Model

MUD with
Multiple
Semantic Models

MUD with Delegated Administration

No administrator Yes No No No No

Up to five
concurrent
developers

No Yes Yes Yes Yes

More than five
concurrent
developers

No No Yes Yes Yes

Work on
manageable
subsets of a large
repository, such
as Oracle BI
Applications

No No Yes Yes Yes

Built-in checkout,
merge, and
rollback

No No Yes Yes Yes

Host independent
semantic models
in single
repository

Yes Yes No Yes Yes

Appendix A
Multiuser Development Architecture

A-9



Requirement Serial Shared
Online

MUD
with
Single
Semanti
c Model

MUD with
Multiple
Semantic Models

MUD with Delegated Administration

Incremental
migration of units
of work to
production

No No Yes Yes Yes

Developers of
independent
semantic models
cannot see each
others' metadata

No No No Yes Yes.

Requires secure MUD Directory. An overall
MUD administrator must still have access to
all metadata from all teams.

Each independent
semantic model
has its own MUD
administrator

No No No No Yes

Multiuser Development Sandbox Architecture
When using MUD, each developer works on their own, fully dedicated sandbox Oracle
Business Intelligence system.

You should set up your sandbox to contain all the components you need for
development and unit testing.

You need to decide whether to use a UNIX or Windows server for Oracle Business
Intelligence. You can use these guidelines:

• If you choose the Windows-only option, make sure your system has enough
memory. You need additional resources if you choose to host your database on
the same hardware. See System Requirements and Certification for information
about minimum hardware requirements.

• If you choose the UNIX option, you need a Windows system to run the Oracle BI
Administration Tool. Use the Oracle Business Intelligence Simple install type on
the UNIX system, and use the Client install type on the Windows system to install
the Administration Tool.

In online mode, the Oracle BI Server loads the repository from its local repository
directory on the UNIX system in:

ORACLE_INSTANCE/bifoundation/OracleBIServerComponent/
coreapplication_obisn/repository

The Administration Tool on Windows also points to a local /repository directory by
default, but you can use any directory for offline development.

You need to install a development database. You can set up the database as
dedicated database, personal database, or share the database among multiple
repository developers. Consider the following about the development database:

• Platform: You can choose to host your development database on your sandbox
computer if you provide enough memory, or you can host it on a centralized,
shared server. Both scenarios are shown in the image that follows.

Appendix A
Multiuser Development Architecture

A-10



• RCU: The database must contain the schemas required by Oracle Business
Intelligence. You load these schemas using the Repository Creation Utility (RCU).
These schemas enable support for Oracle BI Scheduler and annotations for
Oracle Scorecard and Strategy Management, provide sample tables for Usage
Tracking, and enable many other features. The Oracle WebLogic Server Managed
Servers for Oracle Business Intelligence, and all the services that depend on it,
require access to a running database with the required RCU schemas in order to
operate.

• Data Source Schemas: You also need data source schemas for the metadata
under development. You can optionally include some data source schemas in your
RCU database, or they can be in other databases. In addition, consider the
following:

– Test Data: You should load the data source schemas with test data. If users
are testing read-only metadata, You can share the schemas among multiple
development sandboxes. You can put the schemas on the development
sandbox computer when the computer has enough memory.

– Multiple Sources: Your environment can support multiple data sources
needed by your initiative such as other relational sources, Essbase, Hyperion
Financial Management, Microsoft Analysis Services, SAP B/W, and others.
You can share the data sources or put the data sources on dedicated, local or
remote servers.

– Connectivity: You must set up connectivity from your Administration Tool and
Oracle Business Intelligence stack to each data source. This configuration can
include installing the required drivers or clients, setting up ODBC DSNs,
setting up native connectivity, and other steps. See Importing Metadata and
Working with Data Sources and Setting Up Data Sources on Linux and UNIX .

For Oracle Database connectivity, Oracle Business Intelligence requires an
instance of TNSnames.ora in BI_DOMAIN/config/fmwconfig/bienv/core.

The image shows the architecture of the multiuser development sandbox.

Appendix A
Multiuser Development Architecture

A-11



Note:

Most developers prefer to disable caching in the development sandbox. This
makes it easier to validate and debug physical queries using the log. When
the cache is enabled, the physical SQL might not appear in the log, because
the request might get fulfilled by the cache. In this release, you must disable
caching using Fusion Middleware Control. See Using Fusion Middleware
Control to Enable and Disable Query Caching in System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition.

Multiuser Development and Lifecycle Management Architecture
The overall MUD architecture contains developer sandbox systems, test, and
production systems.

There are several additional major components:

• The Windows MUD administration system is maintained by the MUD
administrator:

– It provides one shared network MUD directory for the main branch, and
additional shared network MUD directories for each side branch. The Windows
permissions on each shared directory only allow access to the developers for
that branch. Each shared directory stores the master repository for that
branch, as well as various control and history files for MUD functions.

– It has a client installation of Oracle Business Intelligence. The Administration
Tool and Oracle BI Server utilities are used for creating and managing MUD

Appendix A
Multiuser Development Architecture

A-12



projects, performing merges, creating patches, and other MUD administrator
tasks. Other Oracle Business Intelligence processes such as the policy store
and credential store are typically not used on this platform.

– You can use a 32 bit or 64 bit system because no Oracle Business Intelligence
Java components, system components, or other infrastructure are used on this
computer.

• One or more test systems

These systems are UNIX- or Windows-based, and are used for running integrated
tests of merged content. They run the full Oracle Business Intelligence stack.
These systems are frequently clustered.

• Oracle BI Presentation Catalog system

You could have a system with a full Oracle Business Intelligence stack for
developing Oracle BI Presentation Catalog content.

• Clustered production system

You use a clustered production system on one of the supported Oracle Business
Intelligence platforms.

• External identity store.

Oracle assumes that you are using an external identity store such as the Oracle
Internet Directory.

The image shows a sample deployment architecture for the repository lifecycle using
the multiuser development environment.

Appendix A
Multiuser Development Architecture

A-13



Understanding the Multiuser Development Environment
MUD is a set of features that enables teams of developers to work in parallel on
projects of any size, despite the complex interrelationships and dependencies in the
repository model.

With MUD, you can:

• Divide the repository file into subsets

– Enables users to work with manageable subsets when the repository is very
large

– Enables independent testing for each subset by each developer or team

– Makes it easier to manage merges later after checking out a branch subset

– Enables you to separate independent semantic models into secure branches
for development

• Incrementally develop, test, and migrate

• Merge subsets and branches, handling conflicts between user changes

• Apply Oracle updates to a packaged BI Application you have modified

Appendix A
Understanding the Multiuser Development Environment

A-14



• Merge separately developed applications into a single repository

• Access history logging and audit information

• Roll back to historical repository states

The multiuser development feature also provides the following other useful
capabilities:

• Coordinates merging into the master, including tracking original repository files

• Provides locking for reliable updates

• Logs changes

• Automatically backs up repositories before each potentially destructive operation

This section contains the following topics:

• About Multiuser Development Environment Task Flow

• About Multiuser Development Projects

• How to Create Branches

• Which Merge Utility Should I Use?

About Multiuser Development Environment Task Flow
Learn the basics for working with multiple users in a development environment.

The basic flow of working with multiple users is as follows:

• A developer defines the starting Physical layer, as well as, the basic facts and
subject areas. This provides some basic objects to anchor the MUD projects.

• The MUD administrator defines projects and puts the repository (RPD) into the
main branch MUD directory.

Note:

The MUD directory where the master repository is stored cannot be the
same as the Oracle BI Server local repository directory.

• A developer can check out one or more projects, do development work, and then
merge the changes into the master by publishing to the MUD directory.

• Other developers check out and do development on the same or other projects.
Use projects to create subsets of the development work and not as a tool for
enforcing security. Because the publishing step uses a three-way merge, users
can check out, develop, and publish their changes in any order. Even property
changes to a single object from multiple users are merged. If conflicts do occur
between users, the three-way merge feature provides a way for the developer to
choose which objects to keep. Communication between users is a key to avoiding
and resolving conflicts, and you should have your governance process assign
ownership of major objects in order to avoid such conflicts.

• When a development phase is complete, the MUD administrator can migrate the
content to a test system. There might be several iterations back through check out,
bug fix, publish, and retest. When the repository passes the testing phase, the
MUD administrator can migrate it to the production environment.

Appendix A
Understanding the Multiuser Development Environment

A-15



• The MUD administrator can create and manage multiple development branches as
large MUD projects. A branch can be secured to ensure that only one
development team can work on it. A branch can even be treated recursively as a
main, with its own, delegated MUD administrator.

About Multiuser Development Projects
The multiuser development feature is built around a metadata object called a project.
The project is the unit of check-out from the master repository, and the subsequent
merge and publish.

When a master repository becomes very large, use a project is a manageable subset
that a developer can check out to work on. Projects are self-consistent, so that you
can run the consistency checker against the project and then test the project on the
Oracle BI Server with a client such as Oracle BI Answers at run time. When you are
satisfied with the results, you can merge the project into the master repository so that
the project becomes part of the larger application. History is logged and repository
backups are automatically created at key points.

The MUD features in the Administration Tool streamline the flow for fine-grained
developer projects. Superset projects streamline the management and merging of
branches.

The project subset contains a set of metadata objects. You define a project to include
a minimum set of objects explicitly, but many others are included implicitly. Having
objects implicitly added to projects simplifies your project management task.

The following objects are explicitly specified by the MUD administrator as members of
a project:

• Logical fact tables

• Presentation layer subject areas

• Application roles

• Users

The best practice is to assign users to application roles in repository (RPD) logic.

• Initialization blocks

• Variables

All other objects are implicitly included in a project and are found by the Administration
Tool during the check-out process. For example:

• Descendents of the explicitly defined objects. For example, when a logical fact
table is included explicitly, all its logical columns are included in the project
implicitly.

• Logical dimension tables that join to the selected logical fact tables, and the join
objects themselves.

• Logical table sources for the included logical fact and dimension tables.

• Physical tables that map to the logical tables included in the project, and the joins
between them.

• Marketing target levels and list catalogs.

Objects that are in the list of explicitly defined objects are sometimes included
implicitly. For example, if a logical column contains an expression that includes a

Appendix A
Understanding the Multiuser Development Environment

A-16



variable, the variable is implicitly included in the project, even if the MUD administrator
does not explicitly add it.

It is normal for projects to overlap. An object that appears in one project can also
appear in another project. For example, some customers prefer to create an overall
project for each independent semantic model, as well as smaller projects within each
independent model for checking out individual units of development work. You can
also check out multiple projects simultaneously to work on a larger set of metadata.

See Setting Up Projects.

How to Create Branches
Learn how to create main branches, side branches, and delegated administration
branches.

This section contains the following topics:

• How to Create a Main Branch

• How to Create a Side Branch

• How to Create a Delegated Administration Branch

How to Create a Main Branch
The master repository is usually source-controlled in the main branch, out of which all
branches and all development projects check out.

The main branch can stage the repository in production. To migrate content to
production, you merge it into the main branch, and then migrate the main repository to
the production system.

To fix a production bug, a developer should check out the source from the main
branch. The developer then fixes the bug, and then merges it back into the main
branch for migration to test and production. The parallel development in side branches
is not affected.

To create the main branch as the MUD administrator, you must first create a shared
directory and copy the master repository file to the shared directory. You can use
Windows or UNIX for the directory and make the UNIX share accessible by Windows
users.

Set the security on the share to only allow access by the appropriate developers.
Depending on your requirements, you might only allow developers to access the side
branch master repositories, not the main branch master repository.

If this is a new project, a developer needs to populate the repository with initial content
to split into branch projects.

How to Create a Side Branch
The best practice for branching is to start with a superset MUD project, and then use
the MUD check-out, merge, and publish features. Individual users or sub-branches
can use the finer-grained projects and check out of the branch master.

Appendix A
Understanding the Multiuser Development Environment

A-17



Using MUD for this functionality provides automatic back-ups at the check-out points,
tracks original repositories to ensure correct merges, uses more optimistic merge
assumptions that require less user intervention, and provides history and roll-backs.

Follow these guidelines to create the project:

• If little or no metadata has been designed in the repository, the best practice is to
add content that can anchor the project. Adding content makes it easier to ensure
the project extracts the physical content you need to support the logical fact tables.
You should create one or more logical fact tables with some representative
columns. Map the columns to the physical tables and joins needed to support the
fact tables. Finally, create the project and define the objects that belong to it.

• If content already exists, create the project and define the objects needed in that
branch. The branch can overlap with other projects, if necessary.

• It is also possible to create an empty project for check-out. However, the
developer who checks it out must ensure that all the physical objects that need to
be implicitly added to the project are mapped to the logical fact table before
changes are published. Similarly, the developer must ensure dimensions are
joined before changes are published to ensure their inclusion, and must explicitly
add any subject areas, variables, initialization blocks, application roles, and users.
This method is more prone to errors than seeding the project before defining it.

• You must secure connection pools for environments such as your production
environment. Verify that the connection pool settings in the master repository are
acceptable for the developers to access. Developers can change the settings to
match their local test databases. When changes are published, connection pool
and database settings are not merged, to prevent overwriting the settings in the
master repository.

Use the Oracle BI Server XML API to automate connection pool changes required
during migrations to production and other environments. See “Moving from Test to
Production Environments” in XML Schema Reference for Oracle Business
Intelligence Enterprise Edition.

Every branch should have its own MUD directory. Set the permissions so that only the
developers working on that branch have access to it.

• You can use branch permissions combined with project subsets to prevent
developers from seeing metadata that belongs to other teams. Design the projects
carefully so that they only extract metadata related to one team. This goal is
easiest to achieve if the teams use different business models, subject areas,
physical models, variables, initialization blocks, and application roles.

• It is also a best practice to use a consistent system of naming and numbering your
branches.

Perform integrated testing on the branch:

When all changes of planned content are published for the phase, the branch project
is ready to undergo integrated testing. Migrate the branch master repository file to the
test environment. When a bug is found, the assigned developer checks out the
appropriate projects, fixes the bug, and tests the metadata. After the changes are
published, migrate the branch repository to the test environment again. Developers
can test the branch project without impacting, or being impacted by, development work
in other branches.

1. In the main master repository, create a project that extracts all content required for
the branch.

Appendix A
Understanding the Multiuser Development Environment

A-18



2. Create a shared MUD directory for the branch.

3. From File, select Multiuser , and then select Checkout to a local repository
directory, or another directory.

4. Copy the repository to the branch MUD directory, where it serves as the master
repository.

5. Define fine-grained MUD projects for developers to check out from the branch.
Inform the developers that the branch is ready for development.

6. Based on your project plan, your developers perform a final merge and publish of
their changes when they have completed development and unit tests.

7. Test the branch.

8. Remove the branch master repository from the branch shared directory so that
users cannot change it and copy it back into your local repository directory, and
merge it into the main using the Administration Tool. The main repository is now
ready for migration to integrated test and production.

9. The MUD administrator checks out the branch again and places the branch
repository in the shared MUD directory for the next phase of development. During
the check-out, any changes from other branches, or bug fixes from the main
branch, are picked up by the branch repository.

How to Create a Delegated Administration Branch
You can use a branch to delegate local control of a metadata subset to the
organization that is developing and maintaining it. To do this, you assign a branch
MUD administrator to the branch, who performs the same roles as the main MUD
administrator.

This approach works best with an independent semantic model, so that you can
ensure that there is no metadata overlapping with other groups.

The delegated branch MUD administrator performs the same tasks as the main branch
administrator, including defining projects for further branches and creating fine-grained
projects for developers.

1. Set permissions on the main MUD directory so that only the main MUD
administrator, and the main MUD administrator backup, have access.

2. Create a branch MUD project, branch MUD directory, and checked-out branch
master repository as described in the previous section.

3. Set security on the branch MUD directory so that the main MUD administrator and
the delegated branch MUD administrator have access.

4. The branch administrator defines projects for further branches, as well as fine-
grained projects for developers. If required, the branch administrator deploys
additional branches off the delegated branch for development initiatives, with
permissions set to allow developers to check out of these repositories.

5. Developers fix production bugs by checking out of the delegated branch MUD
directories, because individual developers are not allowed access to the main
branch.

6. When developers publish all their changes, the branch administrator checks their
branches into the delegated branch for integrated testing.

Appendix A
Understanding the Multiuser Development Environment

A-19



7. To promote a delegated branch to production after integrated testing is complete,
the main MUD administrator performs the following two steps:

a. Removes the branch master repository from the delegated branch repository
shared directory and checks it back into the main branch using the
Administration Tool.

b. Migrates the main branch master repository to production.

8. Typically, the main MUD administrator checks out the branch again and places the
branch repository in the delegated branch shared MUD directory for the next
phase of development. The branch administrator then checks out next-level
branches and places their repositories into the branch shared MUD directories, so
that developers can check out their fine-grained projects and begin their work.

Which Merge Utility Should I Use?
There are several different merge tools that are optimized for various situations and
environments.

When deciding which merge approach and utility to use, you should consider whether
you need to perform the task on Windows or UNIX systems. You should also consider
your other requirements, such as whether you need to merge changes you made to a
semantic model, or whether you need to combine two semantic models from different
development efforts.

Important:

When using Oracle BI EE tools such as nqcmd, biserverxmlcli, and
comparerpd, you must edit the input to match the format expected by SQL, for
example, do not include a single quote in your XML content.

The table shows which merge approaches and tools meet various requirements.

Requirement Merge Approach Tools Used Platform

• Merge a checked-out MUD project
back into master repository

• Merge a checked-out MUD branch
project back into the main branch
master repository

Three-way merge MUD merge Windows

• Combine non-MUD branches and
changes back into the main branch

Three-way merge In the Merge Repository
Wizard use Full Merge.

Windows

• Apply an Oracle update XML patch
to customized, deployed BI
Application

• Apply an update XML patch you
created from development to a
deployed repository

Three-way merge In the Merge Repository
Wizard with Patch Merge
selected use the Patchrpd
utility.

• Windows
• All

• Combine disjoint logical content
with potential ID conflicts

Two-way merge In the Merge Repository
Wizard select blank original.

Windows

Appendix A
Understanding the Multiuser Development Environment

A-20



Requirement Merge Approach Tools Used Platform

• Combine disjoint content
guaranteed in advance by the
developer to have no conflicts (all
platforms)

Insert-Update-Delete biserverxmlexec -B

biserverxmlcli (online)

Copy/Paste XML

All

• Combine disjoint content
guaranteed in advance by the
developer to have no conflicts
(Windows only)

Insert-Update-Delete • Copy/Paste Administration
Tool tool objects

• Administration Tool Import
from Repository
(deprecated)

Windows

See Merging Repositories.

MUD Tips and Best Practices
Learn tips and best practices for working in a multiuser development environment.

This section contains the following topics:

• Best Practices for Branching

• Best Practices for Setting Up Projects

• Best Practices for Three-Way Merges

• Best Practices for MUD Merges

• Best Practices for Two-Way Merges

• Best Practices for Production Migration

• Best Practices for Application Roles and Users

Best Practices for Branching
Use these guidelines for creating side branches.

• The MUD directory where the master repository is stored cannot be the same as
the Oracle BI Server local repository directory.

• A branch should be a checked-out MUD project. This automates and streamlines
many of the tasks of merging the branch back into the main branch, such as using
the correct original repository.

• Always put the checked-out branch master repository into its own MUD directory.
Then, let developers check out their fine-grained projects from the branch master
repository. When branch development, publishing, and testing are complete,
remove the master from the branch repository directory and publish it back to the
main branch master repository using the Administration Tool. Then, check it out
again and place the new version in the branch MUD directory for development of
the next phase.

• Use Windows permissions on the branch MUD directory to control which
developers have access to it.

• Set multiuser development options by creating an .opt file in the branch MUD
directory. As a best practice, define specific administrators, and set Mandatory

Appendix A
MUD Tips and Best Practices

A-21



Consistency Check and Equalize During Merge to Yes, see Setting Multiuser
Development Options.

• Plan your branches based on the increments of functionality you want to deliver to
production. Each branch should contain an increment you want to migrate as a
unit.

• If you accidentally merge branches in the wrong order, you can roll them back
using the MUD history, see Viewing and Deleting History for Multiuser
Development.

Best Practices for Setting Up Projects
Use these guidelines for setting up projects.

• Break your repository building into fine-grained projects that are as small as
possible while still useful to improve performance and ease of management.

• Break your logical fact tables down into smaller partitions to enable smaller,
separate projects.

• For each side branch, overlay a larger project to extract the branch's contents.
This enables the project to manage the checkout and merge of the branch,
including tracking of the original repository. Individual developers can check out
their development projects from the checked-out branch project. Be sure that all
development projects are published back to the side branch before merging it back
into the main branch.

• When you add new content to a repository, be sure it is part of your project before
you check it in. If you create and publish objects that are not part of a project, they
will not be in your extract the next time you check the project out. You or the MUD
Administrator must then edit the entire repository, or at least several other projects
that do happen to include your new content, and then add the objects to the
project at that time.

• Sometimes, you might need to extract several projects at the same time to get all
the content you need.

Note:

Presentation layer objects, including subject areas, presentation tables, and
presentation hierarchies, are now objects that you explicitly include in the
project. Unlike in previous releases, the security settings of the
Administration Tool user have no impact on which subject areas,
presentation tables, or presentation columns are included in a project when
checking it out. Instead, the set of Presentation layer objects determines the
scope of the project.

See Setting Up Projects.

Best Practices for Three-Way Merges
Use these guidelines when performing three-way merges.

Appendix A
MUD Tips and Best Practices

A-22



• Ensure that you have the original repository from which both the modified and
current repositories were built.

• Typically, you should open the development repository as current, then use the
main repository as modified, and the starting point of the branch as original.

• Unit test before merging.

• As a best practice, select Equalize during merge and Check consistency of the
merged RPD in the Merge Repository Wizard. See Equalizing Objects.

Best Practices for MUD Merges
Use these guidelines when performing MUD merges.

• Unit test before merging.

• Unit test after merging, but before publishing. Keep in mind that you are holding
the lock on the master repository, so keep it brief.

• Verify that your full name is correct in the Multiuser tab. Doing so assists in
logging and in checking who holds the locks.

• When publishing changes, be sure to write useful comments in the Lock
Information screen. You or other administrators can use the comments later to
help identify historical repositories when you need to perform rollbacks or other
tasks.

• When the MUD administrator is editing the master repository (RPD), it must be
inaccessible to checkout users. To accomplish this, you can temporarily remove it
from the shared directory and place it in another directory, or you can rename it
before editing. Make sure to restore it when the edits are complete.

You can open the repository in offline mode to avoid locking users out by the
Windows file system. You should only use this method when you can finish all
work in one session.

• Merge frequently. The list of conflicts and decisions needed in a small merge is
easy to understand. When the merge is too large, the number of changes make it
much harder to understand, and it is much harder to avoid human errors. If you
need to roll back, the number of changes discarded is also much bigger.
Performance is also better for small merges.

• If performance of merges is a problem, consider breaking the project down into
several, finer-grained projects. Merge frequently, so the number of changes in
each merge is smaller and faster.

• Because local connection pool changes are overridden by the connection pool
settings in the master repository each time changes are published, the local test
settings must be reapplied at each checkout if they are different from the master. It
is best to automate application of your local connection pool settings using the
Oracle BI Server XML API. See “Moving from Test to Production Environments” in
XML Schema Reference for Oracle Business Intelligence Enterprise Edition.

• The most successful large teams have formal process requirements and
expectations for the communications and tasks between the repository developers
and the MUD administrator. For example, they might have a form for a request for
the MUD administrator to create a project. Many teams also have service level
agreements and lead times, such as 24 hours to create a project.

Appendix A
MUD Tips and Best Practices

A-23



• Set the option to force a consistency check during MUD merges. A clean
consistency check ensures that the Oracle BI Server can load the model correctly,
similar to the way a compiler checks to see if code can be generated correctly.
Even if the merge seems to succeed, an inconsistent repository may have trouble
with starting the Oracle BI Server, online repository editing check-ins, and
subsequent merges. See Setting Multiuser Development Options.

• Set the option to force an equalize before merge. This reduces the number of
duplicate objects, since it is common for developers to import the same physical
tables, for example. See Setting Multiuser Development Options.

See Equalizing Objects for the importance of equalizing objects.

• Do not delete or change content needed by others, unless you are the owner and
have coordinated with the other developers. If you delete a column you do not
need in your project that action usually causes it to be deleted from the master
when you merge, even if other users depend on it.

Note:

Presentation object aliases receive special treatment in merges. Their
purpose is to hold historical names of objects, so that when names change,
old reports do not break. If you changed any names during development,
new aliases were added. During merge, you have the option whether to keep
any new aliases you have created, or not. You also have the option to keep
any or all past aliases, because the historical reports might still exist.

See About the Multiuser Development Merge Process.

Best Practices for Two-Way Merges
Use two-way merge when you need to combine two repositories that were developed
separately into a single repository.

This situation usually occurs when you need to host two semantic models in a single
repository.

Follow these guidelines when performing two-way merges:

• Make sure that the top-level objects in each repository have different names, so
there are no unintentional renames or object merges. Check the following objects:

– Business models

– Subject areas

– Physical databases

– Variables

– Initialization block

– Application roles

– Users

– Marketing objects

Appendix A
MUD Tips and Best Practices

A-24



• Equalize before merging. Doing so honors the fully qualified names over which
you have control, and assigns upgrade IDs to ensure there will be no conflicts
between the two repositories. See Equalizing Objects.

• In the Administration Tool, perform a full merge with a blank repository as the
original file.

To create a blank repository, open a new repository, and save it without importing
a source or creating any objects. Although this repository contains default security
objects, these do not impact your merges.

Note:

Do not use features like Import from Repository or copy/paste in the
Administration Tool to move metadata incrementally. These approaches do
not correctly merge changes.

Using these features might produce the results you expect most of the time,
but this is just good luck. The rest of the time, values of the upgrade IDs in
the metadata objects will clash, effectively causing overwrites of random
objects. However, you might not notice the problem until much later when
you do regression testing. Because upgrade IDs are assigned sequentially,
and are only unique within one repository, clashes are very likely.

You should also use caution when using the biserverxmlcli and
biserverxmlexec -B utilities. Be sure to fully understand the information about
managing IDs described in XML Schema Reference for Oracle Business
Intelligence Enterprise Edition.

See Performing Full Repository Merges Without a Common Parent.

Best Practices for Production Migration
Use these guidelines when moving from test to production.

• When updating metadata on the production cluster, perform a rolling restart to
restart one Oracle BI Server at a time, so that users do not experience down time
while changes are being loaded. You can use the BI Systems Management API to
programmatically start and stop Oracle BI Servers, or you can restart each Oracle
BI Server manually in Fusion Middleware Control.

• It is not recommended to alter metadata in online mode in production using the
Oracle BI Administration Tool.

• You should not update metadata in online mode in production using the
biserverxmlcli utility.

Best Practices for Application Roles and Users
Use these guidelines when working with application roles and users.

• Do not build data access security around user objects in the repository. Instead,
define repository permissions, filters and governors based on application roles.

Appendix A
MUD Tips and Best Practices

A-25



• The set of application roles should be defined by the governance committee. The
business team knows what the business roles are, who is allowed to see which
data, and which roles are the same from one application to the next. Therefore,
the governance committee is in a position to define and name the application roles
and decide which roles can be shared across applications.

• When you create a new Application Role, be sure to add it to a project so that you
can check it out again after you merge. Also, if you create a placeholder
application role in the Administration Tool in offline mode, make sure to add it to
the policy store later.

• You can find whether the application roles used by a repository are provisioned in
the system by opening your repository in the Administration Tool in online mode
and running the consistency checker. It is recommended that you perform this
check each time you migrate the repository and application roles to a new system.

• If you only need to migrate a small number of application roles between
environments, you can enter them manually in Fusion Middleware Control on the
target system if you are using the embedded policy store in Oracle WebLogic
Server.

Troubleshooting Multiuser Development
These are some common problems and how to resolve them in this section.

Orphan Lock Held on Master RPD

If a user sets a lock by issuing the command to publish changes to the network, it is
not cleared until publishing is complete. If the user forgets and leaves for a two-week
vacation, the MUD administrator can release the lock.

The lock is stored in a hidden system file in the master directory. If you cannot see the
lock file, in Windows Explorer, select Tools, then select Folder Options. In the View
menu, ensure that the option Show hidden files and folders is selected.

The lock file has the same name of the master RPD with a .lck extension. Delete the
lock file to release the lock on the repository.

The image shows a repository lock file.

Object Deleted By Other User

If another MUD developer deletes an object that you need, you can choose one of the
following options:

Appendix A
Troubleshooting Multiuser Development

A-26



• Roll back to an earlier version, and reapply all the changes since then. The easiest
way to roll back is generally to replay history in the history log. To rollback
changes, choose File, select Multiuser, and then select History. Select an entry,
use Actions, and select View.

See Viewing and Deleting History for Multiuser Development.

• Re-create the deleted objects, and equalize so that future merges treat it as the
same object.

Project Missing Needed Physical Tables and Joins After Checkout

Physical objects do not explicitly belong to a project. Instead, the physical objects
mapped to the logical fact tables in your project are extracted at the time of check out.

To get needed physical objects into your local extract, check out an additional project
that does have mappings to the physical objects you need. If there is no such project,
then the entire repository must be edited to create mappings to a logical fact table in
your project. The MUD administrator can take the repository off line to make that
change. Then, your next check out should include the physical objects.

Objects Added in the Last Session Missing from Checked Out Repository

If recently added objects are missing from your checked out repository, you might
have forgotten to add the objects to your project before you merged and published.
Only objects in your project, or inferred from your project like dimensions and physical
objects, are included in your extracted repository.

To resolve this issue, ask the MUD administrator to add the objects to your project in
the master repository, and then check out again.

Object Renamed by Appending #1

This situation occurs when two objects are merged with the same fully qualified name,
but with different internal upgrade IDs. The merge logic in this situation determines
that the objects are semantically different objects, and changes the name of the object
to preserve uniqueness.

To resolve this issue, run the equalizerpds utility, which reassigns upgrade IDs so that
objects with the same fully qualified names in the two repositories have the same
upgrade IDs. Then, try the merge again. The two objects should be merged instead of
causing a rename.

See Equalizing Objects.

Rolling Back to Previous Versions

The multiuser development environment stores backup copies of RPDs at appropriate
checkpoints. Each time a potentially destructive operation is performed, a new backup
is stored in the master directory. It has the name of the RPD, and the extension is a
three-digit incrementing integer. Individual developers can also make copies of their
RPD files at any time during development.

In the developer's sandbox, the original version of a checked-out project is stored with
the name originalrpd_name.rpd. This version is automatically used if the developer
discards changes.

You can also view and roll back to an older version by following these steps:

1. Open the Oracle BI Server, but not a repository.

Appendix A
Troubleshooting Multiuser Development

A-27



2. From the File menu, select Multiuser, and then select History.

3. Select the version of interest, choose Actions, select View, and then select
Repository.

4. Select File, then select Copy As to save that version to a new name.

5. Use the older version to replace the latest version, or replace the master
repository with the older version.

Manually Updating the Master MUD Repository

During the course of Oracle BI repository development in a Multiuser Development
(MUD) environment, it might be necessary to make manual changes to the master
repository. Because of the highly controlled nature of the MUD process, you need to
be careful when performing any manual steps because there is accounting information
stored in the MUD history log (.mhl) file. To manually work on the master repository,
you must work on the repository in a separate directory from your MUD directory.
Then, you must replace both the master RPD and the latest versioned repository in the
MUD directory.

For example, follow these steps to manually update a repository named master.rpd:

1. Copy the master repository (master.rpd) out of the MUD directory into a local
directory.

2. Use the Oracle BI Server to make the changes necessary to the local copy of the
master repository, master.rpd.

3. When manual edits are complete, copy master.rpd to the MUD directory as
master.rpd. For example:

copy c:\local\master.rpd c:\mud\master.rpd

4. In the MUD directory, identify the latest repository with a version number, for
example, master.7011.

5. Copy master.rpd to the MUD directory and overwrite the latest versioned
repository. For example:

copy c:\local\master.rpd c:\mud\master.7011

Replacing the Latest Version

This example explains how to copy an older version to replace the latest version.
Assume you are at version 1000 and want to roll back to version 900. In this situation,
you have three files: repository.900, repository.1000, and repository.rpd, the current
version. To perform the roll back, make a copy of repository.900 and rename it to
repository.1001. This lets you keep repository.1000 in your version history. Then, copy
repository.900 to repository.rpd.

Appendix A
Troubleshooting Multiuser Development

A-28



B
MUD Case Study: Eden Corporation

Review a fictional case study that shows how the Business Intelligence multiuser
development environment might be used for a particular business case.
This appendix contains the following topics:

• About the Eden Corporation Fictional Case Study

• Phase I - Initiating Multiuser Development (MUD)

• Phase II - Branching, Fixing, and Patching

• Phase III - Independent Semantic Model Development

About the Eden Corporation Fictional Case Study
Depicts a fictional corporation to describe Oracle Business Intelligence initiative
examples.

Eden Corporation, a fictional company, recently purchased Oracle Business
Intelligence. They have two divisions that are licensed and plan to use the product.

Because of this, the company has two separate initiatives:

• Initiative S

The Sales Division wants to use Oracle Business Intelligence for the dashboard
and analysis of revenue versus plan. They want to deploy an initial phase to
production quickly to meet an immediate need. Then, they want to roll out more
functionality in Phases II and III. Initiative S is large enough for two developers.

• Initiative H

The Human Resources Division (HR) needs to create a dashboard and analysis of
HR data. Initiative H is a smaller initiative with only one developer. They plan to
deliver their application to production between Initiative S Phases II and III.

The Sales developers and the HR developers are not allowed to see each others' data
or metadata. The metadata administrator is the only person who has security
privileges for all the metadata.

As in all organizations, there is a steady stream of urgent requests and occasional
bugs from production. The developers need to deliver fixes for these within days, even
though the longer-term initiatives S and H are in development at the same time.

About the Technical Team Roles and Responsibilities

Eden Corporation has staffed the team as follows:

• Adam Straight - MUD Administrator

• Sally Andre - Developer for Sales Division, Revenue project

• Scott Baker - Developer for Sales Division, Quota project

• Helen Rowe - Developer for HR Division

B-1



About the Eden Corporation Development Phases

Eden Corporation plans to deploy RPDs to production based on the following timeline:

• January - Sales Phase I (projects Revenue and Quota)

• February - Sales Phase II (add project Target, extend projects Revenue and
Quota)

• March - HR (one project used)

• April - Sales Phase III (extend all three projects)

About the Eden Corporation Topology

Eden Corporation plans to use the following systems for their multiuser development
environment:

• MUD Administrator - NT computer with a share

• Sally Andre - NT computer for Administration Tool client, and Linux computer to
run the Oracle Business Intelligence stack

• Scott Baker - high-powered NT computer

• Helen Rowe - either of the above

• Test - Linux computer

• Production - Clustered Linux computers

About the Repository Architecture

Because of Eden Corporation's business structure and initiatives, they need to have
two independent semantic models in their repository: one for Sales and one for HR.
Each of these models can have multiple projects.

Planning the Repository Structure

Eden Corporation knows that it is important to plan the structure of their repository file
to support the multiuser development needs of their organization. They assigned
owners to major objects, so the developers know who to go to when conflicts arise,
and which objects they should not modify on their own.

Tip:

When hosting multiple independent semantic models, itemize the names of
top-level objects to prevent duplicate names.

The tables show the high-level repository objects in main.rpd for both Initiative S and
Initiative H, mapped to projects and owners. Adam is the overall owner of both
Initiative S and Initiative H.

Object Type Object Owner ProjRevenue ProjQuota ProjTarget

physical database Sample App Data Sally Yes Yes Yes

business model Sales Sally n/a n/a n/a

Appendix B
About the Eden Corporation Fictional Case Study

B-2



Object Type Object Owner ProjRevenue ProjQuota ProjTarget

logical fact table 1 F10 Billed Rev Sally Yes Yes No

logical fact table 2 F30 Facts Targets Scott No No Yes

logical fact table 3 F50 Facts Quotas Scott No Yes No

logical dimension (various) Sally Yes Yes Yes

subject area (1) Sales Quota Scott No Yes No

subject area (2) Sales Revenue Sally Yes No No

subject area (3) Sales Target Scott No No Yes

variable S_Last_Load Sally Yes Yes Yes

initialization block S_Last_Load Sally Yes Yes Yes

application role (1) Sales Management Sally Yes Yes Yes

application role (2) Sales Rep Sally Yes Yes Yes

Object Type Object Owner ProjHR

physical database Human Resources Data Helen Yes

business model HR Helen n/a

logical fact table (1) Payroll Facts Helen Yes

logical fact table (2) Medical Ins Facts Helen Yes

logical dimension (various) Helen Yes

subject area (1) HR Payroll Helen Yes

subject area (2) HR Medical Helen Yes

variable H_Last_Load Helen Yes

initialization block H_Last_Load Helen Yes

application role (1) HR Management Helen Yes

application role (2) HR Rep Helen Yes

Phase I - Initiating Multiuser Development (MUD)
In the first phase of the fictional company example, both Sally Andre and Scott Baker
develop in parallel.

Sally creates the starter content that Adam Straight divides into projects. He creates
the MUD directory so that Sally and Scott can check out and perform their
development. After unit testing, they merge and publish their changes, and then Adam
migrates the repository to the test environment. After a bug fix cycle, Adam promotes
the repository to production.

The following sections describe Phase I development:

• Starting Initiative S

• Setting Up MUD Projects

• First Developer Checks Out

• Second Developer Checks Out

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-3



• First Developer Publishes Changes to the Master MUD Repository

• Second Developer Publishes Changes to the Master MUD Repository

• MUD Administrator Test Migration Activities

• Phase I Testing

• Phase I Migration to Production

• Phase I Summary

Starting Initiative S
In the fictional MUD project, Sally Andre starts off Initiative S from an empty RPD.

Because it is easier to divide the repository into MUD projects if you define some
logical stars and subject areas first, she begins by developing the physical model
needed for Phase I. She includes connection pool details for her own local test data
sources.

Tip:

The physical model should include the physical tables, the best practice of
aliasing all the physical tables to give them meaningful names, and joins.

The image shows the physical model for Initiative S.

Sally drags the Physical layer to the Business Model and Mapping layer to create
some starter content. She removes unneeded tables, and ensures that the star joins
are correct. She also ensures that all the physical tables that will be needed during
development have mappings from the starter logical tables, so that they will be

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-4



included in the projects when they are checked out. For Sally, these steps create two
logical fact tables, F10 Revenue and F50 Quotas, that can act as the basis for the
projects.

Sally also needs to have some subject areas to map to the projects in the business
model. She could drag the entire business model, but a convenient way to accomplish
this is to instead right-click the business model and select Create Subject Areas for
Logical Stars and Snowflakes. This feature creates a subject area from each logical
fact table.

Sally does not need to be concerned about the contents of the subject areas yet. All
that matters is that each subject area maps to the logical fact table for the same
project. However, she does name the subject areas based on the plan agreed to in the
governance meeting: Sales Quota and Sales Revenue.

Sally now has enough content for the MUD administrator to create the first two
projects based on the Revenue and Quota fact tables. To review, Sally has made sure
that she meets the following criteria at a minimum:

1. At least one logical fact table according to the governance plan, to anchor the
projects. The columns of the logical fact tables need not be complete or even
properly named, but they do need to be complete enough to map all the physical
content.

2. Enough logical dimensions so that the repository will pass the consistency check.

3. Physical content that maps to one or more logical fact tables, so they will be
included in projects.

4. The subject areas needed according to the governance plan.

Setting Up MUD Projects
In the fictional company example, the MUD administrator for Eden Corporation, Adam
Straight, now handles the next few steps to create the projects and get them ready for
checkout.

Adam Straight creates the MUD directory,RPD_main, where the master RPD is stored.
This master RPD contains the superset of content for the developers. The users check
their projects out of the master, and merge their project back into the master when
they want to share their changes. Sally copies her started RPD to the master folder so
that Adam can create the first two projects, ProjRevenue and ProjQuota.

Adam opens the master RPD in the System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition and selects Projects. Then, in the Project Manager, he
selects New Project. Adam names the project ProjRevenue and proceeds to pick the
logical fact tables at the center of the project. The top object in the list expands to
show the logical fact tables, but he has a choice of seeing them grouped by the
Business Model to which they belong, or by Subject Area.

The image shows the different ways Adam can view the logical fact tables.

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-5



Adam decides to group facts by Business Model for convenience, although he could
have used the Subject Area grouping to select the same fact table. He adds the fact
table, plus the default application roles and subject areas specified for this project.
Because there are no custom-defined application roles, users, variables, or
initialization blocks yet, he cannot yet add them to the project. Adam repeats this
process for ProjQuota, the second project.

Tip:

Some of the explicit objects are the same in both projects, because both
projects share application roles. Similarly, many of the implicit project objects
are shared, particularly dimension tables in both the logical and physical
models. Projects are a convenience for creating small subsets that are easy
to work with. Project are not for security. It is critical in your governance
process that the owner of each top-level object is assigned and documented
for the whole team, because this enables developers to avoid conflicts.

Adam included the logical fact table F10 Bill Rev in the project, even though it is
owned by Sally Andre, not by Scott Baker, the owner of this project. He did this
because Scott needs to create a measure that derives from measures in both fact
tables, Sales percent of quota. Again, the point is to provide the user with the subset of
content they need to implement their requirements, not just the objects they own.

Adam saves the master RPD to the shared drive, RPD_Main, as sales.rpd. It is now
ready for users to check out projects and begin working in parallel.

First Developer Checks Out
An administrator configures their Administration Tool clients for the master repository,
check out their projects, and begin working.

The developer, Sally starts by setting up her Administration Tool client to use the
master repository. She selects Tools, select Options, and then selects the Multiuser
tab. She sets up the pointer to the master repository directory in the Multiuser tab. She

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-6



also enters her full name, used in logs and locks. She checks out her project and
begins work.

In the Master Repository directory, two new files have been created the sales.000 and
sales.mhl files. The image shows the new files.

The sales.000 file is an automatic backup created for sales.rpd file that was created
when Sally checked out the repository. The backup file is used if a roll back is needed
resulting from a problem. The sales.mhl file tracks her checkout status and
parameters, including project, computer, and user.

Three files have been created in Sally's local repository directory:

• The originalProjRevenue.rpd file is the project subset repository at the time of
checkout. The originalProjRevenue.rpd used later as the original in the three-way
merge process, and also when Sally discards her changes.

• The ProjRevenue.rpd file contains only the self-consistent subset project,
ProjRevenue. The ProjRevenue.rpd file that is open for editing.

• The ProjRevenue.rpd.Log file is the log file for the editing session in the
Administration Tool. You can view ProjRevenue.rpd.Log files contents in the
Administration Tool using File, select Multiuser , and then select History.

The image shows the three files in the local repository directory.

Sally begins to work on the model for her application in offline mode. She does not
need to change her connection pool settings because she used her own test data
source connection pool details when she created the starter content.

Sally starts by opening her fact table and deleting the unused keys based on the
modeling best practice. Then, she adds SUM aggregation rules to three measures,
Discnt_Value, Revenue, and Units. She also changes the name of Discnt_Value to
Discount Amount, Units to Units Sold, and Revenue to Sales Revenue.

Sally also needs to add a new column to the D10 Product table, an upper-case version
of the Prod_Dsc column called PRODUCT DESCRIPTION. The column uses the
following expression: Upper("Sales"."D10 Product (Dynamic Table)"."Prod_Dsc"). Sally
adds dimension hierarchies, creates a variable called Constant One, and initializes it
to the value 1. She uses the variable to create a new measure, Constant One. Finally,
she saves her work.

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-7



Sally starts her sandbox Oracle Business Intelligence stack so that she can add
application roles, and then test her repository using Answers. She follows these steps
to start her components in the right order and to configure her system environment:

1. Start the database containing the RCU schema, using its standard controls. This
database is the local sandbox developer database.

2. Start the sandbox Oracle WebLogic Server Administration Server. For example,
on Windows, from Start, select Programs, select Oracle WebLogic. In Oracle
WebLogic, select User Projects, select bifoundation_domain, and then select
Start Admin Server for WebLogic Server Domain and enter the user and
password created during installation when prompted.

Note:

If you used an Enterprise or Software-Only install type, you must also
start the Oracle WebLogic Server Managed Server using the Oracle
WebLogic Server Administration Console. Typically, you use the Simple
install type when installing development sandboxes.

3. Log in to the local sandbox Fusion Middleware Control and upload the repository
file, making sure to enter the correct repository password. You upload the local
subset repository, in Sally's case, the MUD checked-out repository,
ProjRevenue.rpd, not the master repository.

4. Also in Fusion Middleware Control, turn off Oracle BI Server caching, so that
interpreting the query log is simpler.

5. Still in Fusion Middleware Control, start the system components from the Business
Intelligence Overview page.

See the System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition provides more information about steps 2 - 5.

Because Sally's Oracle BI Server is on a Linux system, she must set up ODBC
connectivity on her Windows computer so that her Administration Tool client can
access the Oracle BI Server there.

Sally manually adds an Oracle BI Server ODBC DSN pointing to the Oracle BI Server
on the Linux computer. See “Integrating Other Clients with Oracle Business
Intelligence” in Integrator's Guide for Oracle Business Intelligence Enterprise Edition
for information about how to create an ODBC DSN for the Oracle BI Server.

Sally is using the Oracle WebLogic Server embedded policy store and needs to add
two application roles, Sales Management and Sales Rep. To add the roles, she opens
a Web browser on her Windows computer and logs in to Fusion Middleware Control,
pointing to her Oracle Business Intelligence stack on Linux. She uses Fusion
Middleware Control to create the new roles, maps it to the appropriate users, groups,
or other roles, and grants the appropriate permissions to the role.

Tip:

See Creating Application Roles in Security Guide for Oracle Business
Intelligence Enterprise Edition .

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-8



Sally needs to add the new application roles to her repository, and then use them for
object permissions and data access filters. Sally uses the following steps:

1. Sally opens the Administration Tool and selects File > Open > Online. She picks
the local Windows ODBC DSN that connects to her local Oracle Business
Intelligence stack, enters her repository password, and also enters the default user
name and password for administering her stack that she created upon install.

2. Next, Sally selects Manage, and then selects Identity to open the Identity
Manager. She clicks BI Repository in the navigation tree and then clicks the
Application Roles tab. She sees the five default application roles, as well as the
new ones she just created.

3. Sally double-clicks the Sales Rep application role, and then clicks Permissions.
On the Data Filters tab, she adds a data filter with an expression that only allows
users who belong to this role to see sales that they themselves have made. On the
Object Permissions tab, she sets Read, Read/Write, or No Access permissions
that allow Sales Rep users to see revenue, but not quota or cost information. On
the Query Limits tab, she keeps the defaults for Max Rows and Max Time, and
does not set any time restrictions. She clicks OK to return to the Identity Manager.

4. Next, Sally double-clicks the Sales Management application role and sets up Data
Filters, Object Permissions, and Query Limits appropriate for this role, based on
the decisions of the governance committee.

5. Finally, Sally exits the Identity Manager.

6. Sally commits the changes she made in online mode by using the Check In
Changes menu option. This action propagates the online mode changes to her
local subset, ProjRevenue.rpd, but does not commit them to the master MUD
repository. Sally publishes her changes to the master repository in a later step.

For the new variable and application roles to be in Sally's project the next time she
checks it out, she must add them to the project before she checks in her changes. To
do this, she performs the same steps that Adam did when he created the projects: She
selects Manage, and then selects Projects. Sally selects her project, selects the new
objects, and clicks Add.

Second Developer Checks Out
In the fictional company example, Sally Andre is working on the ProjRevenue project
and Scott Baker is getting started on ProjQuota.

Scott sets up his Administration Tool options for MUD, checks out his project, and
starts working.

Scott prefers to work in online mode. Doing this tightens the development/unit test
loop, because he is modifying the repository while it is running in the Oracle BI Server.
Every time he clicks Check In Changes in the Administration Tool, his changes are
applied to the running server. He can then immediately move to Oracle BI Answers
and test the changes there. When he adds, deletes, renames, or reorganizes
Presentation layer objects, he must reload metadata in the Answers criteria tab to
refresh the tree visible there.

Scott starts his local Oracle Business Intelligence stack, and uploads his checked-out
subset repository. He restarts the Oracle BI Server, opens the Administration Tool,
and opens his repository in online mode.

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-9



Scott must change the connection pool settings to point to his local test database,
because the master repository contains Sally's settings. In the merge process, these
connection pool changes are overridden by the connection pools already in the master
repository. The next time Scott checks out, he needs to apply his local test connection
pool changes again.

Tip:

Use the Oracle BI Server XML API to automate connection pool changes
required during migrations to production and other environments. See
“Moving from Test to Production Environments” in XML Schema Reference
for Oracle Business Intelligence Enterprise Edition.

Scott's next task is to clean up his logical fact table by removing keys. He also gives a
measure a SUM aggregation rule and a business-friendly name, Quota Amount.

Scott does not change anything in the F10 logical table because it is owned by Sally.
After she merges and publishes her changes to the master RPD, he does the same.
Scott checks out again, picking up Sally’s changes.

Scott adds a new measure called Sales percent of quota to the F50 table. The
measure derives from both fact tables with the following expression:

"Sales"."F10 Billed Rev."."Revenue" / "Sales"."F50 Facts Quotas"."Quota Amount"

Even if Sally changes the name of Revenue in her project, the merge identifies it as
the same object and uses the new name in Scott's expression. The merge logic can
identify the name change because the upgrade ID of the object is the same as the
original.

Scott forgets what he learned in the Governance Committee meeting, that all the
dimensions are owned by Sally. He has a requirement for an all-capitals version of the
D10 Product.Prod_Dsc column called PRODUCT DESCRIPTION. He creates a
column identical to the one Sally created. This mistake will be detected and resolved
through the merge process during the publishing step in a few moments.

Scott does not need to upload his repository and restart his system because he is
working in online mode. Instead, he unit tests his work immediately after committing
his changes using Check In Changes. Meanwhile, Sally has finished testing her
changes.

First Developer Publishes Changes to the Master MUD Repository
Sally has finished creating and unit testing her first batch of changes, so she saves her
work and prepares to merge it into the master repository.

She chooses File , selects Multiuser , and then select Publish to Network. If she
forgot to add any new objects to a project, a detailed warning is displayed so that she
can add the objects to her project and try the merge again. Otherwise, the objects are
not extracted the next time she checks out the project.

Next, the Administration Tool locks the master repository so that Sally can merge her
changes without any chance of corruption from other users' merges.

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-10



Tip:

For logging purposes, it is a best practice to use the comment field to provide
a description of the changes you are publishing. Publishing frequently, or
performing a subset refresh, also makes it easier to keep track of changes,
and easier to audit the history later. A best practice in Administration Tool
modeling is to work incrementally to simplify testing and reduce the
complexity of each task.

Sally's changes cause no conflicts, so they do not appear in the Define Merge Strategy
step that is displayed next. However, aliases for presentation objects are a special
case where you can choose to keep either the modified (your local version) or current
(the master), or merge the two. The aliases were automatically created when Sally
changed the column names, so that reports written to the old names would not break
when she put the new names into production. Because Eden Corporation has no
reports yet, Sally keeps the aliases empty by selecting Current. She does this for
"Sales Revenue," "Units Sold," and "Discount Amount."

Note:

Sometimes, there can be a series of aliases if names change more than
once. Because there might be a set of reports using the older names, you
can select Merge Choices in the Define Merge Strategy screen to keep any
aliases already in Current as well as the new ones in Modified.

When the merge step is complete, the master sales.rpd is overwritten with the
changes from Sally. A merge log is also stored.

Second Developer Publishes Changes to the Master MUD Repository
In the fictional company example, Scott has completed his development work for this
phase, he selects Refresh Subset to perform a subset refresh to merge his changes
with the latest version of the master repository.

The Define Merge Strategy screen asks whether to keep the alias created on the
presentation column Quota Amount. Like Sally, Scott chooses to keep the current
repository value, which does not use the alias.

After the subset refresh, Scott unit tests again briefly. Upon inspection, he also notices
his mistake of creating the same PRODUCT DESCRIPTION column that Sally did.
Because Scott's column was created separately, its internal upgrade ID is different
than the one in Sally's. Therefore, even though the name is the same, the merge logic
knows it is a different column, and renames it rather than overwriting it by appending
#1 (PRODUCT DESCRIPTION#1).

Scott deletes the extra column, connects his logic to Sally's PRODUCT
DESCRIPTION column, tests again briefly, and publishes his changes to the network
master repository.

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-11



If Scott had deleted or modified a different user's object, the error might have been
more difficult to resolve. It might have required re-creating and equalizing the object, or
rolling back to a backup version of the repository and re-creating his own changes.

MUD Administrator Test Migration Activities
To prepare the repository for the test environment, the MUD administrator, Adam
Straight, must now perform several tasks directly on the master repository.

The MUD administrator, Adam, opens the sales.rpd repository in offline mode. As
soon as he does this, other users are locked out, and get Windows permissions errors
if they try to check out projects. If Adam needs to open and close the file several times,
he needs to remove the RPD from the shared directory while modifying it so that other
users cannot check out repository objects between his changes.

Adam changes the connection pool settings to match the test environment. When
Administration Tool users check out projects, connection pool parameters are not
included in the checkout. The master repository in the MUD directory contains the test
connection pools, but each individual developer might need different settings for
connecting to their own test databases. At merge and publish, the connection pools in
the master repository are not overwritten by developer changes, so that they can
continue to point at the shared test databases.

Adam must ensure that the new application roles are migrated to the test system.
Because there are only two application roles, he decides to reenter them in Fusion
Middleware Control on the test system. Adam also provisions some test users or
groups to the new application roles so the security filters, permissions, and query limits
can be tested.

Adam uploads the repository to the test system and restarts the Oracle BI Server.
Using his local Administration Tool, he connects to the test Oracle BI Server in online
mode and runs the consistency checker. If any application roles referenced by this
repository are missing or incorrect, the consistency checker lists the errors.

Phase I Testing
Learn about testing in a multiuser development environment by reviewing fictional
company example.

The test team can now test the repository. During testing, the test team discovers a
bug: "Sales"."F50 Facts Quotas"."Sales percent of quota" was erroneously created
with the expression quota/sales instead of sales/quota. The test team writes a bug
report, and Scott Baker is assigned to fix the bug.

Scott opens the Administration Tool, checks out ProjQuota, makes the change,
changes the connection pool to point to his local test database, and tests on his own
sandbox. Then he publishes the changes to the shared MUD directory. He informs
Adam that the bug is fixed and that the repository is ready for him to send to test
again.

Adam notes that the connection pools are still pointed at the correct test system,
because the MUD feature isolates the master repository from connection pool changes
in checked out projects. Adam uploads the repository, and restarts the Oracle BI
Server.

The test team tests to completion, and the repository is cleared for production.

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-12



Phase I Migration to Production
After the repository has passed the testing phase, you must update the repository’s
database connection parameters before uploading the repository to production.

You must also migrate and provision the application roles.

Based on the plan provided by the governance team, the production operations team
knows the new application roles needed. They create them as Adam did for the test
environment. They also provision users or groups to those application roles, based on
the security specification from the governance team.

Before migrating to production, Adam has to change the connection pool parameters
to the values needed for the production database. In Eden Corporation, Adam has the
privilege to see the production connection pools, but the repository developers do not.
Therefore, Adam cannot change from the test to production connection pools and
leave the repository in the master directory, because the developers have Windows
permissions to read and write to it. Instead, he creates an XML patch of the connection
pools needed for Production. Then, he copies sales.rpd to a secure directory and
applies the patch, and then tests to be sure it really does connect to the production
data sources. He then uploads the repository to the production system, and starts the
production cluster of servers.

Tip:

Use the Oracle BI Server XML API to automate connection pool changes
required during migrations to production and other environments. See
“Moving from Test to Production Environment” in XML Schema Reference for
Oracle Business Intelligence Enterprise Edition .

Because the master repository still points to the test databases, the Administration
Tool users can still be allowed to see it. Meanwhile, new versions of the production
repository can be built at any time by applying the connection pool changes in the XML
patch file.

Production validations are now performed. Similar to the migration to the test system,
an important validation is to run the consistency checker in online mode to ensure that
the application roles are all correct. When this validation is complete, Phase I is in
production.

Appendix B
Phase I - Initiating Multiuser Development (MUD)

B-13



Phase I Summary
The image shows the parallel activities for Phase I for the fictional company example.

Phase II - Branching, Fixing, and Patching
In Phase II of the fictional company example, development continues on a new Phase
II branch, while a Main branch will track the production application.

To manage this work, Adam adds a branch project, and set up a second master
repository shared directly, one for Main, and one for the new Phase II branch.

Sally adds more content to ProjRevenue. While she works on that, Scott adds brand
new content. After Scott merges and publishes, Adam creates the new project,
ProjTarget, and move Scott's new content into it. Meanwhile, they must handle any
bugs that occur in production, which is still on the main sales.rpd branch.

The following sections describe Phase II development:

• Setting Up the Second Branch

• Developers Check Out Projects

• Patch Fix for the Main Branch

• Finishing and Merging Phase II Branch

Appendix B
Phase II - Branching, Fixing, and Patching

B-14



• Phase II Summary

Setting Up the Second Branch
In the fictional company case study, Adam begins by creating another MUD directory
to hold the master for the new branch. He sets the Windows share security so that
Sally and Scott can read or write to it.

Next, Adam places the main repository into the main MUD directory. He adds a new
project for the branch, which encompasses all the existing functionality. Then, he
closes the repository, and checks out the branch project in his local Administration
Tool repository folder. He copies it to the branch MUD directory, where it now serves
as the master for the branch.

Developers Check Out Projects
Sally and Scott check out their projects again, and begin developing Sales Initiative
Phase II in parallel with each other, and in parallel with Phase I being in production.

Because Scott is adding new content for a new project, he needs to check out one or
more other projects to provide the shared objects that he needs to map or join in the
new content. He chooses to check out ProjQuota.

Patch Fix for the Main Branch
A fictional company, Eden, is used to show how to create a new measure.

While Sally and Scott are developing Phase II, an urgent CEO request is escalated to
them. The CEO wants the key sales managers to see a new measure called Sales
Quota Variance on their dashboards within two days.

Scott closes his work on the new project on the Phase II branch. The new project
remains checked out. He checks out the project to contain the new measure,
ProjQuote, from the main branch master repository, sales.rpd. Scott creates the new
measure and corresponding presentation column, tests the measure locally, and
publishes the changes back to the main branch.

Scott reopens the checked-out Phase II repository from his local drive and continues
development.

Adam sends the updated sales.rpd to the test environment, where the test team
validates the fix.

Adam prepares to send the fixed repository to Production. He sends a patch of the
repository change to the testers.

To create the patch, Adam compares the modified repository to the one that is
currently running in production. The repository running in production is the same as
the main repository before the new changes were merged in and is one of the backup
repositories in the MUD directory. The current repository running in production is the
backup called sales.006, the same one Adam identified as the original for the
upcoming branch merge. He copies this to sales.006.rpd so the Administration Tool
can see and open the file. He cannot simply rename it, because it may be needed for
another merge later.

The image shows the files in the MUD directory, including sales.rpd and sales.006.

Appendix B
Phase II - Branching, Fixing, and Patching

B-15



Adam opens the repository containing the update, sales.rpd. He selects Compare,
and chooses the sales.006.rpd as the old version to compare. Compare repositories
shows the differences between versions that Adam can include in the patch.

The image shows the Compare repositories dialog.

Appendix B
Phase II - Branching, Fixing, and Patching

B-16



Adam clicks Create Patch and saves the result as Patch_variance.xml. The patch
contains just the objects needed to apply the two new columns, and their associated
interconnections.

Tip:

Complex patches might delete objects or overwrite objects to merge in new
property values.

Adam's patch appears as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Repository xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <DECLARE>
  <LogicalTable name="F50 Facts Quotas" parentName="&quot;Sales&quot;"
  parentId="2000:68667" parentUid="2160843965" id="2035:69454" uid="2160843966"
  x="718" y="288">
    <Description/>
    <Columns>
      <RefLogicalColumn id="2006:69460" uid="2160844041"
      qualifiedName="&quot;Sales&quot;.&quot;F50 Facts Quotas&quot;.&quot;Quota
      Amount&quot;"/>
      <RefLogicalColumn id="2006:69786" uid="2160845070" qualifiedName=
      "&quot;Sales&quot;.&quot;F50 Facts Quotas&quot;.&quot;
      Sales percent of quota&quot;"/>
      <RefLogicalColumn id="2006:70033" uid="2160845342" qualifiedName=
      "&quot;Sales&quot;.&quot;F50 Facts Quotas&quot;.&quot;
      Sales Quota Variance&quot;"/>
    </Columns>
    <TableSources>
      <RefLogicalTableSource id="2037:69456" uid="2160844747"
      qualifiedName="&quot;Sales&quot;.&quot;F50 Facts Quotas&quot;.&quot;
      F50 Facts Quotas&quot;"/>
    </TableSources>
  </LogicalTable>
  <LogicalColumn name="Sales Quota Variance" parentName=
  "&quot;Sales&quot;.&quot;F50 Facts Quotas&quot;" parentId="2035:69454"
  parentUid="2160843966" id="2006:70033" uid="2160845342" isDerived="true"
  isWriteable="false">
    <Description><![CDATA[quota - sales]]></Description>
    <Expr><![CDATA["Sales"."F50 Facts Quotas"."Quota Amount" - "Sales".
    "F10 Billed Rev."."Sales Revenue" ]]></Expr>
  </LogicalColumn>
  <PresentationTable name="F50 Facts Quotas" parentName=
  "&quot;Sales Quota&quot;.&quot;&quot;"
  parentId="4004:69706" parentUid="2160844968" id="4008:69707" 
  uid="2160844969" hasDispName="false" hasDispDescription="false">
    <Description/>
    <Columns>
      <RefPresentationColumn id="4010:69711" uid="2160844973" qualifiedName=
      "&quot;Sales Quota&quot;..&quot;F50 Facts Quotas&quot;.&quot;
      Quota Amount&quot;"/>
      <RefPresentationColumn id="4010:70032" uid="2160845338" qualifiedName=
      "&quot;Sales Quota&quot;..&quot;F50 Facts Quotas&quot;.&quot;
      Sales percent of quota&quot;"/>
      <RefPresentationColumn id="4010:70036" uid="2160845345" qualifiedName=
      "&quot;Sales Quota&quot;..&quot;F50 Facts Quotas&quot;.&quot;
      Sales Quota Variance&quot;"/>

Appendix B
Phase II - Branching, Fixing, and Patching

B-17



    </Columns>
  </PresentationTable>
  <PresentationColumn name="Sales Quota Variance" parentName="
  &quot;Sales Quota&quot;..&quot;F50 Facts Quotas&quot;" parentId=
  "4008:69707" parentUid="2160844969" id="4010:70036" uid="2160845345"
  hasDispName="false" hasDispDescription="false" overrideLogicalName="false">
    <Description><![CDATA[quota - sales]]></Description>
    <RefLogicalColumn id="2006:70033" uid="2160845342" qualifiedName=
    "&quot;Sales&quot;.&quot;F50 Facts Quotas&quot;.
    &quot;Sales Quota Variance&quot;"/>
  </PresentationColumn>
  </DECLARE>
</Repository>

Tip:

You do not need to make any connection pool changes before applying this
patch. The correct connection pool settings are already in the repository
running in production. The patch does not affect this logic, so the connection
pools remains correct without an intervention.

Adam must have this patch migrated and applied to the production system. There are
several ways to accomplish this:

• Patch main repository offline and upload

Adam can apply the patch to a copy of the production repository locally on his
Windows computer by using the Administration Tool to perform a patch merge.
Then, he can upload the repository to the production system, like Sally did earlier
in her sandbox. Because the production system is clustered, he must restart all the
Oracle BI Servers after uploading the repository. Adam can restart manually
through Fusion Middleware Control, one server at a time. If he performs a rolling
restart in this way, end users do not see any unavailability. Alternatively, Adam or
one of the operations staff can write a script using the BI Systems Management
API to automate a rolling restart.

• Patch production repository in place using patchrpd utility

The operations staff can log onto a production system directly, and apply the XML
patch using the patchrpd utility. If any conflict occurs, the utility will cancel the
update and exit without making changes. If the update is successful, the
operations staff can then perform a rolling restart, as described in the previous
paragraph.

• Patch running system using biserverxmlcli utility

This method is not recommended for production systems.

If you have privileges to log on to a production Oracle BI Server using the
Administration Tool in online mode, you can use Copy As to copy it to your local drive.

Finishing and Merging Phase II Branch
Sally and Scott complete their changes in the new branch and publish them.

Adam adds Scott's new content to a new project, projTarget. He performs the same
steps as before to send the branch repository to the testing team.

Appendix B
Phase II - Branching, Fixing, and Patching

B-18



When testing is complete, merge the branch back into the main branch using MUD
merge. The result is a merge of the production patch with the newly developed content
to place into production later.

The sales.rpd contains all the changes, and the branch is no longer needed. Sales.rpd
is sent to integrated test, to ensure the merged content does not cause any bugs in the
existing content. When integrated testing is complete, Adam creates another patch
containing the changes, and has the operations staff apply it to the running production
system. Sales Initiative Phase II is now in production.

Phase II Summary
Shows an image of the development phases in the fictional company example.

The image shows the parallel activities for Phase II.

Phase III - Independent Semantic Model Development
In the next phase of the fictional company example, Sally and Scott begin
development of Phase III of the Sales initiative.

Meanwhile, Helen Rowe builds the first phase of the HR initiative and brings this new
independent semantic model into production.

The following sections describe Phase III development:

Appendix B
Phase III - Independent Semantic Model Development

B-19



• Security Considerations for Multiple Independent Semantic Models

• HR Semantic Model Developer Builds Content

• Phase III Summary

Security Considerations for Multiple Independent Semantic Models
In the fictional company example, Helen's application has highly sensitive personal
information, such as salaries and medical information.

Meanwhile, the Sales application has legally sensitive financial information. Due to
corporate security compliance, these two teams are not allowed to see each other's
data or metadata. They also have little content they could share, other than generic
dimensions like time dimensions. Finally, they have different business drivers,
budgets, and schedules.

For these reasons, the Eden Corporation governance committee decided to use
independent semantic models in the repository, one repository for Sales, and the other
for HR. This approach requires the two teams to ensure that there are not any shared
objects. No conflicts can exists between the two repositories. The easiest way to
ensure this is to make sure that the names for all top-level objects do not conflict. You
must also use different variables and application roles.

Tip:

Some governance committees ensure that top-level objects do not conflict by
requiring developers to put a prefix specific to each semantic model before
the name of each top-level object, such as S_ for Sales and H_ for HR. This
practice makes it easy to see which objects belong to which organizations.
Other committees prefer to keep a master list of top-level objects, and
require new applications to submit top-level object names for review to
ensure there are no conflicts. In addition, two-way merges can catch any
mistakes before overwrites can damage content or cause unexpected object
name changes.

Another security requirement is the need to apply security to the separate MUD
directories so that only the correct developers have access to each repository. Sally
and Scott can only see and check out from the Sales MUD directory, and Helen can
only see and check out from the HR MUD directory. The Main directory continues to
exist, since it must hold the merged master that is actually in production, but now only
Adam has privileges to see or modify that directory.

At Eden Corporation, a final security requirement is to disable the ability for
independent semantic model developers to access the running repository in online
mode after the merge. There is only a single repository password, so a developer who
has the password and access to the repository can see and modify all its contents in
offline mode. However, in online mode, the developer also needs a data access user
name and password to log on to the Oracle BI Server. To enforce this security
requirement, Adam must ensure that the developers have no privileges to log on to the
production or test system in this way. The production operations staff can change the
repository password to one that only they know, you must perform the change on a
Windows computer because repository passwords are changed using the
Administration Tool.

Appendix B
Phase III - Independent Semantic Model Development

B-20



HR Semantic Model Developer Builds Content
Because Helen is working alone on her secure, independent semantic model, she
does not need to check out a project. She needs to start building her content from a
new, blank repository on her local computer.

Helen follows the usual steps of building and unit testing content incrementally. When
she is done with unit testing, Helen has a complete, free-standing repository. She
sends the repository to Adam. He manually updates the master repository or performs
a two-way merge in a separate location. Adam uses one of the following merge
methods:

• Manually updates the repository by:

– Adam equalizes the two repositories to reassign IDs honoring the different
names given to the top-level objects. This practice ensures that there are no
conflicts during the merge.

– Adam copies the master repository out of the MUD directory and into a local
directory, performs the required manual updates to add the contents of
Helen's repository into the master repository, and then copies the master
repository back into the master directory.

• Performs a two-way merge in a separate location

– Adam equalizes the two repositories to reassign IDs honoring the different
names given to the top-level objects. This practice ensures that there will be
no conflicts during the merge.

– Adam copies the master repository out of the MUD directory and into a local
directory, performs a two-way merge by using the Merge Repository Wizard,
and then copies the master repository back into the master directory.

After the merge, Adam creates a new project for managing the content going forward,
hr_payroll. He adds Helen's content to the project. Adam then checks it out of main
and posts it to the HR Branch MUD directory. Using a project checkout makes
managing IDs and merges easier later.

Adam adjusts connection pool parameters, and migrates the repository to the test
computer. When a bug is found, Helen checks out the hr_payroll project, fixes it, unit
tests it, and publishes it. Helen checks her functional project out of the checked-out
branch project. Adam migrates it to the test system for further testing. When testing is
complete, he merges the completed HR branch repository back into the main branch,
and sends the integrated repository to integration testing on the test system.

When the integrated repository completes testing, it is ready for migration to
production. Again, the options are complete repository migration, or applying a patch
to the production environment using patchrpd. Both methods require a rolling restart.

After this step, the production repository contains content for both Initiative S and
Initiative H.

Appendix B
Phase III - Independent Semantic Model Development

B-21



Phase III Summary
The image shows the parallel activities for Phase III for the fictional company example.

Appendix B
Phase III - Independent Semantic Model Development

B-22



C
Merge Rules

You can learn about the merge rules and behavior of the Oracle BI repository merge
process.
When you use the Merge Repository Wizard in the Administration Tool, the patchrpd
utility, or publish changes to the network in a multiuser development environment,
sophisticated rules determine how objects are merged. Some decisions about merging
objects are made automatically by the system, while other decisions appear as
prompts in the Define Merge Strategy screen.

This appendix contains the following topics:

• About the Merge Process

• Merge Rules and Behavior for Full Merges

• Merge Rules and Behavior for Multiuser Development Merges

• Merge Rules and Behavior for Patch Merges

About the Merge Process
Oracle BI repository has three types of merges.

• Full merges, sometimes called upgrade merges, are used during development
processes, when there are two different repositories that need to be merged. The
Administration Tool provides a three-way merge feature that lets you merge two
repositories that have both been derived from a third, original repository. Full
merges can also be used to import objects from one repository into another, see 
Performing Full Repository Merges.

• Patch merges are used when you are applying the differential between two
versions of the same repository. For example, you might want to use a patch
merge to apply changes from the development version of a repository to your
production repository, or to upgrade your Oracle BI Applications repository, see 
Performing Patch Merges.

• Multiuser development merges are used when you are publishing changes to
projects using a multiuser development environment, see About the Multiuser
Development Merge Process.

The merge process involves three versions of an Oracle Business Intelligence
repository: the original repository, modified repository, and current repository. The
original repository is the original unmodified file, the parent repository, while the
modified and current repository are the two changed files you want to merge. The
current repository is the one currently open in the Administration Tool.

The original, modified, and current repository may mean different things, depending on
your situation. For example:

• In a development-to-production scenario, you have an original parent file, a current
file that contains the latest development changes, and a modified file that is the
deployed copy of the original file.

C-1



• In an Oracle BI Applications repository upgrade scenario, the current file is the
latest version of the repository shipped by Oracle, and the original file is the
original repository shipped by Oracle. The modified file is the file that contains the
changes you made to the original file.

You can use patch merge with both of these situations. In a patch merge, you open
the current file and select the original file, then generate the patch. To apply the patch,
you open the modified file and select the original file, then apply the patch.

Merge Rules and Behavior for Full Merges
Learn about the rules that apply to full merges.

For full merges, the following rules are applied:

• Oracle assumes that you want to keep the changes in the modified repository, for
example, if an object is added to or deleted from the modified repository, the
object is added or deleted without prompting.

• If an object is added to or deleted from the current repository, the Merge
Repository Wizard asks if you want to keep the changes.

The Merge Repository Wizard tries to ensure that you have the minimum set of
objects necessary to service your queries. During a merge, it is possible that
objects were introduced by the current repository that are not needed in the
merged repository. To address unwanted objects issue, the Merge Repository
Wizard asks whether new Presentation layer objects in the current repository are
needed in the final merged result. If you choose to keep the new presentation
objects, the dependent logical and physical objects are also added. If you choose
not to keep the new presentation objects, then the dependent logical and physical
objects are not kept. The Merge Repository Wizard discards these objects to
ensure that the merged repository does not get populated with unused objects.

• If an object is added to or deleted from both repositories, the object is added or
deleted without prompting. If the same object was added with slight differences in
its properties, the Merge Repository Wizard asks which version of the properties
you want to keep.

• If an object has been modified only in the current repository, or only in the modified
repository, the change is kept. If the same object is modified in both the current
and modified repository, and the changes are different, then there is a merge
conflict. When conflicts occur, the Merge Repository Wizard asks you to choose
which change you want to keep.

• Making a decision about one object can influence a whole set of decisions,
depending on the object relationships involved. For example, if you choose to
keep a presentation column that was added to the current repository, then the
merge process keeps the associated presentation table and subject area, along
with the logical column, physical column, and other associated objects upon which
the presentation column was based. If you choose not to keep a subject area that
was added to the current repository, you are not prompted to choose whether to
keep its associated objects. Adding a join might require the addition of its base
tables, while changing an expression might add physical columns.

• Object relationships are interconnected through their properties such as strings
and numbers, and an internal value of a property that represent other repository
objects. A change to one object might cause a corresponding change to an
interrelated object. For example, assume you change the data source of Init Block

Appendix C
Merge Rules and Behavior for Full Merges

C-2



B from a connection pool to Custom Authenticator A. In addition to the data source
property change to the initialization block object, a corresponding property change
occurs in the custom authenticator object because the value of the initialization
block property for Custom Authenticator A is now Init Block B. The merge process
requires synchronized decisions for these properties. If you select Current as the
decision for the data source property of Init Block B, then the decision for the
initialization block property of Custom Authenticator A is also Current.

Special Merge Algorithms for Logical Table Sources and Other
Objects

There are special rules for certain types of objects and situations that are in addition to
the general rules governing how objects are merged and which situations require
prompting.

This section contains the following topics:

• Merging Objects that Use the Vector Merge Algorithm

• Merging Logical Table Sources

• Merging Security Filters

• Inferring the Use Logical Column Property for Presentation Columns

• Merging Aliases

Merging Objects that Use the Vector Merge Algorithm
Some objects such as levels, application roles, and object permissions, use a vector
merge algorithm that determines the parent/child relationships between objects.

Objects that use the vector merge algorithm include:

• Levels in a dimension, levels associated with a logical column, and child levels

• Dimensions and tables in a logical display folder

• Aggregation content in a logical table source

• Security objects like user and application role membership and permissions

• Initialization block LDAP server settings and execution precedence

The Oracle BI Server determines the initial state of object relationships in each
repository during the merge process. For example, the following list shows the
different possibilities for object permissions and how they relate to users and
application roles:

• M - Missing. The application role, user, or object is not present in the repository.

• D - Default. Permissions are inherited from the parent application role.

• Y - Yes. The permission is explicitly granted to the user or application role.

• N - No. The permission is explicitly denied to the user or application role.

The Merge Repository Wizard determines the appropriate relationship for the merged
repository depending on the state of the object permission relationships in each
repository. For example:

Appendix C
Merge Rules and Behavior for Full Merges

C-3



• For an original repository with a result of Y, a modified repository with a result of N,
and a current repository with a result of M, the Merge Repository Wizard
determines a result of N for the merged repository.

• For an original repository with a result of N, a modified repository with a result of Y,
and a current repository with a result of M, the Merge Repository Wizard
determines a result of Y for the merged repository.

Vector Merge Example: Merging Application Roles

The following list shows the different possibilities for user and application role
relationships:

• M - Missing. The application role or user is not present in the repository.

• Y - Yes. The application role or user is a member of the application role.

• N - No. The application role or user is not a member of the application role.

The table shows the merged result for different combinations of object relationships in
the merging repositories.

Original Repository Modified Repository Current Repository Result

M M M N

This situation can
happen if neither
the application role
nor the user are
present in the
original repository,
but the user is
present in the
modified repository
and the application
role is present in
the current
repository. In this
case, no
membership can
be assumed.

M M Y Y

M M N N

M Y M Y

M

M in original for this
case implies that
either the user or
application role is not
present. The missing
object added in both
cannot be considered
the same object

Y Y Y

M Y N Y

M N M N

M N Y Y

M N N N

Appendix C
Merge Rules and Behavior for Full Merges

C-4



Original Repository Modified Repository Current Repository Result

Y M M Y

Y M Y Y

Y M N N

Y Y M Y

Y Y Y Y

Y Y N N

Y N M N

Y N Y N

Y N N N

N M M N

N M Y Y

N M N N

N Y M Y

N Y Y Y

N Y N Y

N N M N

N N Y Y

N N N N

Merging Logical Table Sources
Special rules govern how to merge column mappings in logical table source objects.
Each column mapping is merged individually.

For each column, if the mapping has changed in either the modified or current
repository, the change is kept. If the mapping has changed in both repositories, the
Oracle BI Server attempts to merge the mappings automatically.

The deletion of a column is not considered to be a change in its mapping. If a column
is not present in the modified repository, then the mapping in the current repository is
used instead.

If there are differences in aggregation content, then the aggregation content specified
by level has priority. In other words, if the aggregation content in one repository is by
level and the aggregation content in another repository is by column, then the
aggregation content by level is retained.

Merging Security Filters
If a filter for an application role has changed in only one repository, then the change is
kept. If the filter has changed in both repositories, the Oracle BI Server attempts to
merge the filters automatically.

If an object is required for merging a particular filter such as a presentation column and
is not present, then that filter is considered invalid and does not appear in the merged
repository. This rule does not apply to variables. If a variable is required for merging a

Appendix C
Merge Rules and Behavior for Full Merges

C-5



particular filter, the Oracle BI Server ensures that the variable is retained in the
merged repository.

Inferring the Use Logical Column Property for Presentation Columns
Presentation columns have both a Name property and a Use Logical Column Name
property.

In some cases, these properties can come into conflict. For example, the table shows
a scenario where this situation could occur.

Repository Presentation
Column Name

Logical Column
Name

Use Logical
Column Name

Original Sales GroupSales No

Current Sales Sales Yes

Modified GroupSales GroupSales Yes

If the regular merge rules for the objects in the table are applied, the merged
repository contains a presentation column called GroupSales and a logical column
called Sales, with the Use Logical Column Name property set to Yes. This result is
incorrect because the name of the presentation column is different from the name of
the logical column.

To avoid this situation, the Oracle BI Server infers the value of the Use Logical Column
Name property. Using the inference logic, the merged repository has a presentation
column called GroupSales, a logical column called Sales, and the Use Logical Column
Name property set to No.

Merging Aliases
During the full merge process, users are not prompted to make decisions about
aliases.

Aliases from the current and modified repositories are merged automatically.

In multiuser development merges, however, users are prompted to choose whether to
keep aliases from the current repository, keep aliases from the modified repository, or
merge choices to keep aliases from both repositories.

• If object names change because of the merge process, then the previous names
are added as aliases.

• Any aliases that are not associated with presentation objects are deleted.

Merge Rules and Behavior for Multiuser Development
Merges

The rules for multiuser development merges are very similar to the full merge rules,
with important differences.

• Changes to security settings are not retained when you perform a MUD merge to
prevent developers from overwriting passwords and other important objects in the
master repository.

Appendix C
Merge Rules and Behavior for Multiuser Development Merges

C-6



• The database and connection pool properties in the master repository take
precedence over the same properties on the developer's computer. This
precedence are applied without a prompt during a multiuser development merge.

• Inserts (created objects) are applied automatically. Because a subset of the
master repository is being used as the original repository, most objects in the
master repository appear to be new. This would result in many unnecessary
prompts that the developer would have to manually approve. Therefore, new
objects are created without a prompt during a multiuser development merge.

• Conflicts that are not inserts but are resolved because of the automatic inserts are
applied without a prompt during a multiuser development merge.

To change security settings or database features in a multiuser development
environment, you must edit the master repository directly. To do this, remove the
master repository from the multiuser development directory, edit it in offline mode, then
move it back.

Merge Rules and Behavior for Patch Merges
The rules for patch merges are also similar to the full merge rules, except that the
behavior for deleting objects is different.

For example, if an object is deleted in the current repository, the default behavior for
patch merges is to always ask the user whether the object should be discarded or
retained. This is different from full merges, which often accept deletions from the
current repository without prompting.

Using Patchrpd to Automate the Patch Process
You can use the -U and -V options in the patchrpd command-line utility to automate the
patching process.

The -U option enables the patching process to complete by accepting default decisions
for conflicts, while the -V option enables you to specify an output file for recording all
merge conflicts so that you can examine them and possibly take action later.

Follow these guidelines to use patchrpd to automate the patch process:

• Apply patching automatically using default rules. Include the -U option in
patchrpd to always apply the default decisions for conflicts. For example, if both
repositories (current and modified) change the name of an object, the default
decision is to keep the name in the modified repository, to avoid overwriting user
customizations. If you do not include this parameter, patchrpd displays a warning
and exits if a conflict is detected.

• Record conflicts in an output decision file. Include the -V option to cause
patchrpd to generate a decision file that shows all the conflicts from the merge.
The decision file lists the decisions that would have been displayed in the Define
Merge Strategy screen of the Merge Wizard if the merge had been performed in
the Administration Tool. The decision file provides a record of all items that can be
influenced by user input.

• Modify the decision file to change the result. After you run patchrpd, there are
two ways to make changes to the resulting repository:

– You can use the Load Decision File button in the Define Merge Strategy
screen of the Merge Wizard to load the merge decisions, and then change the

Appendix C
Merge Rules and Behavior for Patch Merges

C-7



decisions if needed. You can then complete the merge in the Administration
Tool. Alternatively, you can save the modified decision file using the Save
Decisions to File button, and then re-run patchrpd with the decision file as an
input using the -D option to reapply the patch with the new decisions.

– You can edit the decision file by hand, and then re-run patchrpd with the
decision file as an input using the -D option to reapply the patch with the new
decisions.

Follow these guidelines to set up patchrpd to match the Administration Tool's merge
functionality:

• Administration Tool's full merge - Use the -A option, apply changes on the
whole repository, and -M option, use upgrade mode.

• Administration Tool's patch merge with the "use subset patching" option
selected - Do not include the -M option. Excluding the -M option means that the
default merge mode is set to patch.

• Administration Tool's patch merge with the "use subset patching" option not
selected - Use the -A option and do not include the -M option. Excluding the -M
option means that the default merge mode is set to patch.

See Using patchrpd to Apply a Patch.

Appendix C
Merge Rules and Behavior for Patch Merges

C-8



D
Deleting Unwanted Objects from the
Repository

You can learn how to use the command-line pruning utility, prunerpd, to delete
unwanted objects in the Oracle BI repository.
You can only use prunerpd with binary repositories in RPD format.

This appendix contains the following topics:

• About the Object Pruning Utility

• Using the Object Pruning Utility

• Deletion Rules for the Object Pruning Utility

About the Object Pruning Utility
If you have a large number of extraneous or unwanted objects in your repository, you
can delete the unwanted objects using the prunerpd command-line utility.

You can use prunerpd on both Windows and UNIX systems.

You can delete unwanted repository objects such as databases, tables, columns,
initialization blocks, and variables. The pruning utility does not remove objects from the
Oracle BI Presentation Catalog.

Deleting objects from the repository has a cascading effect. For example, if a physical
column is deleted, then any mapped logical columns are deleted, as well as any
associated presentation columns, see Deletion Rules for the Object Pruning Utility.

Using the Object Pruning Utility
You must create the input file that contains the list of repository objects to delete, and
then, run the object pruning utility at the command line, passing the input file as an
argument.

This section contains the following topics:

• Creating the Input File

• Running the prunerpd Utility

Creating the Input File
The prune utility accepts the list of repository objects you want to delete as a text file.

The utility can accept multiple input files at a time. The syntax rules for the input file
are shown in the table.

D-1



Note:

Object names in the input file must match the fully qualified name that is
used in the repository. Wildcards such as "*" and "?" are not supported in the
object name.

Object Type Example Action

Database D "Paint" Deletes the database named "Paint."

Table • T "W_AGREE_D"
• T

"DB"."Catalog"."Schema"."Table"

• Deletes the table or alias named
"W_AGREE_D" from the
Physical layer.

• Deletes the table or alias named
"Table" from the schema named
"Schema," contained in the
catalog named "Catalog," located
in the database named "DB,"
from the Physical layer.

Column C "W_AGREE_MD"."AGREE_CD" Deletes the column named
"AGREE_CD" located in a table or
alias named "W_AGREE_D" from the
Physical layer.

Initialization
block

I "External Metadata Strings" Deletes the initialization block named
"External Metadata Strings."

Variable V CURR_USER Deletes the variable named
"CURR_USER."

For example, a text file that contains instructions to delete a database named Stock
Quotes and a physical column named S_NQ_ACCT"."USER_NAME would include
the following entry:

D "Stock Quotes" C "S_NQ_ACCT"."USER_NAME"

Use white space as a delimiter in the input file, a single space, tab, or multiple spaces.

Running the prunerpd Utility
Learn how to use the prunerpd utility.

The location of the prunerpd utility is:

BI_DOMAIN/bitools/bin

Syntax

The prunerpd utility accepts the following parameters:

prunerpd -s source_rpd [-p rpd_password] -f input_file -o output_rpd -l 
output_log_file -e error_log_file [-8]

Where:

source_rpd is the name and location of the target repository file.

rpd_password is the repository password for the source repository.

Appendix D
Using the Object Pruning Utility

D-2



The password argument is optional. If you do not provide a password argument, you
are prompted to enter a password when you run the command. To minimize the risk of
security breaches, Oracle recommends that you do not provide a password argument
either on the command line or in scripts. The password argument is supported for
backward compatibility only, and are removed in a future release. For scripting
purposes, you can send the password through standard input.

input_file is the input file name, in text format, that contains the list of repository
objects to remove. Separate multiple file names by spaces. Enclose spaces within a
filename with double quotes (" ").

output_rpd is the name and location of the output repository file, also known as the
pruned repository.

output_log_file is the name and location of the output log file. All actions performed on
the repository are written to this file, including descriptions. The output log file is in
XML format. Other messages such as progress indicators are sent to the standard
output stream.

error_log_file is the name and location of the error log file. The pruning utility writes
exceptions and errors to this log. The error log file is in XML format. Other errors are
sent to the standard output error stream.

-8 specifies UTF-8 encoding.

Use -H or run .sh without any parameters to display the help content.

Example

prunerpd -s C:/OBI/Server/Repository/BIApps.rpd 
-f "C:/Remove Oracle EBS Objects.txt"
-o "C:/OBI/Server/Repository/BIApps Pruned.rpd"
-l "C:/temp/BIApps Prunning.log" -e "C:/temp/ BIApps Prunning.err"
Give password: my_repos_password

Deletion Rules for the Object Pruning Utility
Deleting repository objects has a cascading effect.

This section describes the deletion rules.

Physical Layer Rules

• If a physical column or a table is deleted, then all of the affected keys, foreign
keys, and complex joins are deleted as well. The internal obsolete attribute
definition (attr defn) that links a logical column to a physical column is also
removed.

• Empty schemas, catalogs, and databases are removed.

• If a table is deleted, then all its columns are deleted.

Logical Table Rules

• If a regular column, not an aggregate or derived column, is not mapped in any
logical source, then it is deleted. The keys, including the level key and the logical
key, are also removed.

• If the source column for a derived column or its referenced variable is deleted
(corrupted), then the column is removed.

Appendix D
Deletion Rules for the Object Pruning Utility

D-3



• If an aggregate rule or override aggregate rule for an aggregate column is
corrupted, due to deleting a logical column, then the column is removed.

• If a logical table is removed, because its underlying physical table was deleted,
then the keys, foreign keys, logical joins, sources, and source folder are removed.

• If a logical table source does not have any valid mapping, then it is deleted.

• If a logical table source is retained, but its aggregate content or filters are
corrupted, then the corresponding expressions are set to null. The join
specification is also removed.

• If a logical table, dimension, or business model is empty, does not contain a
meaningful child object, then it is deleted.

Presentation Layer Rules

• If a logical column is removed, because its underlying physical column was
deleted, then any corresponding presentation columns are removed.

• If a presentation table or subject area does not contain children, then it is
removed.

Security Rules

• If a security filter for a user or application role becomes corrupt due to deletion,
then the filter is removed. If all filters are removed for a user or application role,
then the internal privilege object is deleted.

• Even if all filters for an application role are deleted, the application role is still
maintained.

• To remove an application role from the repository, you must explicitly delete it. See
Security Guide for Oracle Business Intelligence Enterprise Edition for information
about deleting application roles.

Variable Rules

• Initialization blocks are deleted if the underlying connection pool is deleted.

• Repository and session variables are deleted if the associated initialization blocks
are deleted.

• If a session variable is deleted and its parent initialization block does not contain
variables, then the initialization block is removed.

• If an initialization block is deleted, then its variables are removed.

Marketing Rules

• Qualified list items are deleted if the associated cache catalog, GUID column, or
qualified column is deleted.

• Target levels are deleted if the associated catalog (Segmentation Catalog name)
is deleted.

• List catalogs are deleted if the associated catalog, table, or column is deleted.

• Conforming dimensions are deleted if the associated catalog, table, or column is
deleted.

Appendix D
Deletion Rules for the Object Pruning Utility

D-4



E
Data Types Supported by Oracle BI
Enterprise Edition

The topics list and describe the data types supported by Oracle BI EE, and contains
information about the data type limitations, other Oracle BI Server limitations, and
floating point limitations.

You can learn how to use the Oracle BI Server nqcmd utility to run the
NQSGetSQLDataTypes procedure to obtain information about the data types.

When you import metadata from a data source into the repository's physical layer,
each column is assigned a data type. The data type is associated with a specific
storage format, constraints, and a valid range of values.

This appendix contains the following topics:

• Data Type Categories Supported by Oracle BI EE

• Using the NQSGetSQLDataTypes Procedure to Access Data Type Information

• Oracle BI EE Data Type Limitations

• Other Oracle BI Server Limitations

• Oracle Database to Oracle BI EE Data Type Mapping

Data Type Categories Supported by Oracle BI EE
Learn about the data types by category, for example, numeric data and date data, that
Oracle BI EE supports.

See Using the NQSGetSQLDataTypes Procedure to Access Data Type Information
and Oracle BI EE Data Type Limitations.

Textual Data
Oracle BI EE supports three character data types.

The textual data types are:

• CHAR

• LONGVARCHAR

• VARCHAR

Numeric Data
Learn about the Oracle BI EE supported numeric data types.

Oracle BI EE supports the following numeric data types:

• BIGINT

E-1



• DECIMAL

• DOUBLE

• FLOAT

• INTEGER

• NUMERIC

• REAL

• SMALLINT

• TINYINT

Date and Time Data
Oracle BI EE supports these data and time data types.

• DATE

• TIME

• TIMESTAMP

Binary Data
Oracle BI EE supports numerous binary data types.

The supported binary data types are:

• BIT

• BINARY

• LONGVARBINARY

• VARBINARY

Using the NQSGetSQLDataTypes Procedure to Access
Data Type Information

To access a list of data types supported by Oracle BI EE, use the Oracle BI Server
nqcmd utility to run the NQSGetSQLDataTypes procedure.

For example: call NQSGetSQLDataTypes(0);

When you run this procedure, the results contain a list of supported data types and
information specific to each data type such as case sensitivity and the ability to search.

See Using nqcmd to Test and Refine the Repository.

Oracle BI EE Data Type Limitations
The table provides a description of the supported data types and their limitations.

An administrator or repository builder can use this information to evaluate whether a
particular data type is suitable for a given column or set of values, and to determine
whether the data type is capable of representing all the required values.

Appendix E
Using the NQSGetSQLDataTypes Procedure to Access Data Type Information

E-2



For example, the INTEGER column in the Oracle database supports a very large range
of values, up to 38 decimal digits, but the INTEGER data type in Oracle BI EE is a 32-bit
binary integer type that is capable of holding up to nine digits without encountering
data overflow (truncation) issues. If the column holds values in the range of
[-2,147,483,648, 2,147,483,647], then you should use the Oracle BI EE INTEGER data
type. However, if the column stores values larger than this range, then you should use
another data type such as NUMERIC or VARCHAR.

Choose the smallest, in bytes, data type that is capable of representing the column's
expected range of values. Choosing a data type in this way reduces the amount of
memory and disk space consumed by the Oracle BI Server for cache files, temp files,
and so on.

Data Type Limitations

BIG INT JDBC and the Oracle BI Administration Tool do not support this
type; therefore, Oracle BI EE does not fully support the BIG INT
type. The BIG INT type is intended to be same as the C int64
data type.

BINARY Oracle BI EE does not fully support the BINARY type. Oracle BI
EE supports only the fetching of columns whose data type is
BINARY. The BI Server does not support the BINARY type in
bind parameters or insert statements.

BIT Oracle BI EE does not fully support the BIT type. Instead, you
should use either the INT or CHAR type to represent Boolean
data.

CHAR The CHAR type's values are always padded with ending spaces
that can equal up to the length specified by the data type. The
CHAR type supports Unicode values. On the Windows platform,
the storage is two bytes per character. On all Unix 64-bit
platforms, the storage is four bytes per character.

DATE The DATE type represents only year, month, and day
components. DATE type does not represent hours, minutes, or
seconds like the Oracle DATE data type.

DECIMAL The DECIMAL type is the same as the NUMERIC type.

DOUBLE The DOUBLE type is the same as the IEEE 754 64-bit double-
precision binary floating-point data type. The internal storage is
eight bytes. The significand occupies 53 bits (including the sign
bit). Therefore, the precision is limited to approximately 16
decimal digits. The exponent occupies 11 bits. The range of the
exponent is approximately ±307 as a base 10 decimal value.

See Floating Point Limitations.

INTEGER The INTEGER type is a signed binary integer data type
occupying four bytes. The maximum value that can be
represented is 2,147,483,647, and the minimum value is
-2,147,483,648.

FLOAT The FLOAT type is the same as the IEEE 754 32-bit single-
precision binary floating-point data type. The internal storage is
four bytes. The significand occupies 24 bits (including the sign
bit). Therefore, the precision is limited to approximately 7
decimal digits. The exponent occupies eight bits. The range of
the exponent is approximately ±38 as a base 10 decimal value.

See Floating Point Limitations.

LONGVARBINARY The LONGVARBINARY type supports up to 32,678 bytes.

Appendix E
Oracle BI EE Data Type Limitations

E-3



Data Type Limitations

LONGVARCHAR The LONGVARCHAR type supports up to 32,678 bytes. Both
the LONGVARCHAR type and the VARCHAR type support
Unicode values.

NUMERIC The NUMERIC type is a true decimal data type occupying 22
bytes. The internal representation and limitations are the same
as the Oracle NUMBER data type.

The NUMERIC type supports positive numbers in the range of 1
x 10^-130 to 9.999...9 x 10^125 with up to 38 significant digits.
The precision and scale are not stored in the repository. The
scale is assumed to be 10.

REAL The REAL type has the same description and limitations as the
FLOAT type.

SMALLINT The SMALLINT type is represented as the INTEGER type
internally in the BI Server and has the same limitations as the
INTEGER data type.

TIME The TIME type represents only hour, minute, and second
components.

TIMESTAMP The TIMESTAMP type represents year, month, day, hour,
minute, and second components. For some data sources on
some platforms, it can also support fractions of a second.

TINYINT The TINYINT type is represented as an INTEGER internally in BI
Server. The TINYINT type and INTEGER type have the same
limitations.

VARBINARY The VARBINARY type is interchangeable with the
LONGVARBINARY type. The VARBINARY type and the
LONGVARBINARY type have the same limitations.

VARCHAR The VARCHAR type is interchangeable with the
LONGVARCHAR type. The VARCHAR type and
LONGCARCHAR type have the same limitations.

The Oracle BI Administration Tool allows users to enter a
maximum character length of 2,147,483,647. However, the
actual maximum length supported is 32,678.

Floating Point Limitations
You cannot represent some numbers exactly with binary floating point data types such
as FLOAT and DOUBLE.

When converting decimal numbers to and from binary floating point representations,
often there are rounding errors because of the representational limitations of binary
floating point formats. For example, a decimal number such as 1.365 might be
represented as 1.364999999999999 when converted to the DOUBLE type. When this
number is rounded to 3 digits after the decimal point, the result is 1.365. However, if
the number is rounded to 2 decimal digits, then the result is 1.36 and not 1.37.

Oracle BI Server supports the NUMERIC type for RDBMS and TimesTen data
sources. To avoid the limitations of the FLOAT and DOUBLE types, Oracle suggests
that you update the FLOAT and DOUBLE data types to the NUMERIC type. There is
no workaround to fix the inherent limitations with binary floating point data types, other
than switching to the NUMERIC data type.

Appendix E
Oracle BI EE Data Type Limitations

E-4



Other Oracle BI Server Limitations
Learn about other data type limitations such as table name and column name length.

In addition to the data type limitations, Oracle BI Server has the following limitations:

• The default maximum length of all fields in Oracle BI Server is 32,678 bytes. This
default limit can be changed by setting the environment variable
OBIS_MAX_FIELD_SIZE.

• The default maximum length of all SQL identifiers, for example, table names and
column names, is 128 characters.

See Oracle BI EE Data Type Limitations.

Oracle Database to Oracle BI EE Data Type Mapping
When you import metadata from an Oracle database, the Administration Tool uses the
mapping in the table to determine each imported column's corresponding Oracle BI
Server data type.

The Oracle 12c data types mapping to the Oracle BI EE data types could differs
depending on the your specific database.

Oracle Database Data
Type

Oracle BI EE Data Type

CHAR CHAR

NCHAR CHAR

VARCHAR2 VARCHAR

NVARCHAR2 VARCHAR

NUMBER NUMERIC if ENABLE_NUMERIC_DATA_TYPE = YES;
otherwise, DOUBLE

NUMBER (precision, scale) INT if scale = 0 and 1 <= precision <= 9; otherwise, same as
NUMBER

BINARY_FLOAT FLOAT

BINARY_DOUBLE DOUBLE

DATE DATETIME

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME
ZONE

TIMESTAMP

TIMESTAMP WITH LOCAL
TIME ZONE

TIMESTAMP

BLOB LONGVARBINARY

CLOB LONGVARCHAR

NCLOB LONGVARCHAR

BFILE Not supported

LONG LONGVARCHAR

LONG RAW Not supported

Appendix E
Other Oracle BI Server Limitations

E-5



Oracle Database Data
Type

Oracle BI EE Data Type

ROWID CHAR

XML Type LONGVARBINARY

UriType Not supported

Appendix E
Oracle Database to Oracle BI EE Data Type Mapping

E-6



F
Exchanging Metadata with Databases to
Enhance Query Performance

This appendix explains how to use Oracle Database or IBM DB2 to enhance the data
warehouse performance and functionality of queries that run on the Oracle BI Server.
This appendix contains the following topics:

• About Exchanging Metadata with Databases

• Generating the Import File

• Using Materialized Views in the Oracle Database with Oracle Business
Intelligence

• Using IBM DB2 Cube Views with Oracle Business Intelligence

About Exchanging Metadata with Databases
By exchanging Oracle Business Intelligence metadata from the Oracle BI Server with
your Oracle Database or IBM DB2 database, you enable the database to accelerate
the performance of data warehouse queries.

Use the Oracle BI Server sametaexport utility to exchange the metadata. When you run
sametaexport to generate cube views for DB2, the utility is called the DB2 Cube Views
Generator. When you run this utility to generate metadata for Oracle Database, the
utility is called the Oracle Database Metadata Generator.

The Oracle BI Server export utility works with the following tools:

• In the Oracle Database, the SQL Access Advisor creates materialized views and
index recommendations for optimizing performance.

• In the IBM DB2 database, IBM DB2 Cube Views creates materialized query tables
(MQTs).

The sametaexport utility generates the information necessary for the SQL Access
Advisor or IBM DB2 Cube Views tool to pre-aggregate the relational data and improve
query performance.

Generating the Import File
The Oracle Database Metadata Generator and the DB2 Cube Views Generator create
the files needed to import metadata from the Oracle BI Server into the SQL Access
Advisor or an IBM DB2 database.

This section contains the following topics that are common to the two generators:

• Running the Generator

• About the Metadata Input File

• About the Output Files

F-1



• Troubleshooting Errors from the Generator

• Metadata Conversion Rules and Error Messages

Running the Generator
The Oracle Database Metadata Generator and the DB2 Cube Views Generator are
invoked from the command line or embedded in a batch file.

The command-line executable is named sametaexport.

The sametaexport utility is available on both Windows and UNIX systems. However,
you can only use sametaexport with binary repositories in RPD format.

The location of the sametaexport utility is:

ORACLE_HOME/bi/bifoundation/server/bin

sametaexport -r "PathAndRepositoryFileName" [-p repository_password]
-f "InputFileNameAndPath" [options]

The table contains descriptions of the parameters in the command-line executable file.

Parameter Definition Additional Information

-r Repository file
name and full
path

Quotation marks are required for the file name and path only if
the file path is in long format or has spaces. Use the full path if
the file is not in the current directory.

-p Repository
password

The password for the given repository.

The password argument is optional. If you do not provide a
password argument, you are prompted to enter a password
when you run the command. To minimize the risk of security
breaches, Oracle recommends that you do not provide a
password argument either on the command line or in scripts.
For scripting purposes, you can pass the password through
standard input.

-f Input file name
and full path

Quotation marks are required for the file name and path only if
the file path is in long format or has spaces. Use the full path if
the file is not in the current directory. You specify input files so
that you do not have to type all the required information at the
command line, and so that you can type international
characters. See About the Metadata Input File.

You can include some additional parameters in the input file or at the command line to
change various defaults for the Oracle Database Metadata Generator and the DB2
Cube Views Generator. Parameters specified in the input file take precedence over
parameters specified at the command line. You must include these parameters only if
you want to change the default values.

The tables describe these optional parameters.

Parameter
Definition

Additional Information Input File Usage
Example

Command Line Usage
Example

Use schema
name from RPD

When set to YES, the table schema
names are used as they are used in
the repository. The default value is
YES.

USE_SCHEMA_NAME_F
ROM_RPD = NO

-schemafrom rpd NO

Appendix F
Generating the Import File

F-2



Parameter
Definition

Additional Information Input File Usage
Example

Command Line Usage
Example

Default schema
name

The default schema name is used as
the table schema name if the value of
-schemafromrpd is set to NO, or if the
repository schema name cannot be
determined. The default value is
SIEBEL.

DEFAULT_SCHEMA_NA
ME = ORACLE

-defaultschema ORACLE

Oracle schema
name

The metadata from Oracle Database
Metadata Generator is created under
this schema. The default value is
SIEBEL.

ORA_DIM_SCHEMA_NA
ME = ORACLE

-orclschema ORACLE

Logging enabled Indicates whether to keep a log of the
metadata export process. Valid values
are ON, OFF, and DEBUG. The default
value is ON.

LOGGING = DEBUG -logging DEBUG

Log file name The path to the log file. If you provide
an invalid path, an error occurs.

If you do not provide this parameter,
the default log file path is used. The
default path is:

ORACLE_INSTANCE\diagnostics\logs\
OracleBIServerComponent\
coreapplication_obisn\
OraDimExp.log

LOG_FILE_NAME = C:
\bea_default\instances
\instance1\diagnostics\
logs\generator
\logfile.log

-logfile C:
\bea_default\instances
\instance1\diagnostics
\logs\generator
\logfile.log

Parameter
Definition

Additional Information Input File Usage Example Command Line Usage
Example

Distinct count
supported

When set to YES, allows measure
containing the DISTINCT_COUNT
aggregation to be exported. The
recommended setting and default
value is NO.

DISTINCT_COUNT_SUPPOR
TED = YES

-distinct YES

Statistical
functions
supported

When set to YES, allows measures
containing the aggregation STDDEV
to be exported. The recommended
setting and default value is NO.

STATISTICAL_FUNCTIONS_
SUPPORTED = YES

-stat YES

Use schema
name

When set to YES, the Cube Views
metadata attributes have columns
from tables under a schema name,
which are then specified in the
parameters. When set to NO, the
schema names for these tables are
empty. The default value is YES.

USE_SCHEMA_NAME = NO -useschema NO

Use schema
name from RPD

When set to YES, the table
schema names are used as they
are used in the repository. The
default value is YES.

USE_SCHEMA_NAME_FROM
_RPD = NO

-schemafromrpd NO

Appendix F
Generating the Import File

F-3



Parameter
Definition

Additional Information Input File Usage Example Command Line Usage
Example

Default schema
name

The default schema name is used
as the table schema name if the
value of -schemafromrpd is set to
NO, or if the repository schema
name cannot be determined. The
default value is SIEBEL.

DEFAULT_SCHEMA_NAME =
ORACLE

-defaultschema ORACLE

Cube views
schema name

The name of the schema under
which the Cube Views metadata is
created. The default value is
SIEBEL.

CUBE_VIEWS_SCHEMA_NA
ME = ORACLE

-cubeschema ORACLE

Log file name The path to the log file. If you
provide an invalid path, an error
occurs.

If you do not provide this
parameter, the default log file path
is used. The default path is:

ORACLE_INSTANCE\diagnostics
\logs\
OracleBIServerComponent\
coreapplication_obisn\
CubeViews.log

LOG_FILE_NAME = C:
\bea_default\instances
\instance1\diagnostics\logs
\generator\logfile.log

-logfile C:\bea_default
\instances
\instance1\diagnostics
\logs\generator\logfile.log

Log failures When set to YES, the log file lists
the metadata that was invalidated
under a certain rule. The default
value is YES.

LOG_FAILURES = NO -logfail NO

Log success When set to YES, the log file lists
the metadata that has been
checked under each rule and has
passed the check. The default
value is NO.

LOG_SUCCESS = YES -logsuccess YES

About the Metadata Input File
The table describes the parameters in the metadata input file.

The input file is a text file that contains the parameters that are described in the
following table.

Input File Name Description

BUSINESS_MODEL The name of the business model in the logical layer of the Oracle BI
repository that contains the metadata to export. If the business
model is not found in the repository, then an error message is
displayed.

You can only specify one business model name in the input file. To
generate metadata for multiple business models, create another
input file and run the Oracle Database Metadata Generator or DB2
Cube Views Generator again.

Appendix F
Generating the Import File

F-4



Input File Name Description

PHYSICAL_DATABASE The name of the database in the physical layer of the Oracle BI
repository that contains the metadata to export. When the business
model derives from multiple databases, then it eliminates metadata
from all databases other than the one specified here. When the
physical database is not found in the repository, an error message is
displayed.

RUN_AS_USER The user name of the database user whose visibility must be
duplicated for the metadata export. This parameter cannot be
empty. This user must exist as a user reference in the repository.

OUTPUT_FOLDER Specifies the full path and file name of the folder where the SQL file
placed. If the folder does not exist when you run the Oracle
Database Metadata Generator, then the folder is created in the
process. See About the Output Files.

The following text shows a sample metadata input file:

BUSINESS_MODEL = "1 - Sample App"
PHYSICAL_DATABASE = "1 - Sample App Data"
RUN_AS_USER = "Administrator"
OUTPUT_FOLDER = "C:\OracleBI"

About the Output Files
Each Generator creates different types of output files.

The following list describes the output files:

• The Oracle Database Metadata Generator creates a SQL file that is encoded in
UTF-8 and stored in the specified output folder. The file name is based on the
name of the business model you specified in the input file, such as
my_business_model.sql.

• The DB2 Cube Views Generator creates the following files in the specified output
folder:

– XML file (encoded in UTF8). One XML file is created for the specified business
model. The file contains the objects that were converted to cubes. Objects in
the repository are mapped to similar objects in the IBM Cube Views metadata.
See Conversion Rules for IBM DB2 Databases for a list of objects that are not
converted.

The name of the XML file matches the business model name, without spaces,
followed by the XML extension, for example, SalesResults.xml.

– A SQL file that contains the alias generation DLL. The SQL file is created for
the specified business model only if aliases exist in the physical layer
databases that are referenced in the business model. The alias file contains
SQL commands that create the aliases in the DB2 database. The name of the
SQL file matches the business model name, without spaces, followed by the
SQL extension, for example, SalesResults-alias.sql.

Troubleshooting Errors from the Generator
Error messages indicate that the Generator was unable to complete some or all of its
tasks.

Appendix F
Generating the Import File

F-5



After starting the Generator, you might observe the following error messages:

• Unable to write to Log file: log_file_name.

The log file specified in the input file or at the command line might contain the
wrong path, the user might not have write permissions to that folder, or the disk
could be out-of-space.

• Run_as_user, user_name, is invalid.

The user name is incorrect.

• Repository, repository_name.rpd, is invalid or corrupt.

The repository name might be incorrect, it might not exist in the given path, or the
user might not have permission to read it.

• Physical Database, database_name, is invalid.

The physical database name does not match a valid physical database object in
the repository.

• Business Model, model_name, is invalid.

The business model name does not match a valid business model object in the
repository.

• Authentication information provided is invalid.

The repository password provided at the command line is incorrect.

• Path: "path_name" is invalid.

The path or file name is incorrect, or the current user does not have read access.

Metadata Conversion Rules and Error Messages
When the Generator creates the output files, it also maps the metadata objects in the
Oracle BI repository to similar objects in the metadata of the Oracle Database or the
IBM DB2 database.

This section explains the rules used to identify Oracle Business Intelligence metadata
that cannot be translated (converted) into either SQL or XML format. These rules are
necessary because Oracle Database and IBM Cube Views do not support some of the
metadata constructs that are allowed by Oracle Business Intelligence.

Dimensional metadata in the SQL or XML file will be generated at the logical fact table
source level. If a logical fact table source has an invalid logical dimension table source,
then the logical dimension table source will be invalidated. If the logical fact table
source is invalid, then all the logical dimension table sources that are mapped to it will
also be invalidated. Invalid Oracle Business Intelligence repository metadata elements
will not be converted to cubes in the SQL or XML file.

When a rule is violated, the Generator writes the error messages and the metadata
that violated the rule to the log file.

Conversion Rules for Oracle Databases
Learn the rules for converting Oracle BI metadata into objects.

The following list provides the rules for converting Oracle Business Intelligence
metadata into objects in the Oracle Database:

Appendix F
Generating the Import File

F-6



• Attributes that contain expressions in the logical table cannot be exported.

• Tables joined using complex joins are not considered.

• Tables that are opaque views are not considered.

• Columns used as part of a key in one level cannot be used as part of another level
key.

Oracle Database prohibits the use of columns as keys in multiple levels. This
prohibition requires the Oracle Database Metadata Generator to eliminate one of
the two joins, usually the join that is encountered first. Therefore, the other joins
are lost, which prevents them from being exported.

Conversion Rules for IBM DB2 Databases
Learn the rules used to validate the Oracle BI repository metadata elements, and other
information.

The following table lists the rules used to validate Oracle BI Repository metadata
elements, error messages that are written to the log file if the rule is violated, and an
explanation of what caused the rule violation. The error messages help you determine
why a particular Oracle Business Intelligence metadata object was not exported to the
XML file.

Rule Message Explanation

ComplexJoinFactsRule [Fact Logical Table Source]
Complex Physical Joins not
supported

%qn has a complex Join %qn
between Physical Tables %qn
and %qn

If the physical fact tables are
connected through complex
joins, then the join is not
supported. A complex join is
defined as any join between
two tables that do not have
a foreign key relationship.

ComplexJoinDimsRule [Dimension Logical Table
Source]Complex Physical
Joins not supported

%qn has a complex Join %qn
between Physical Tables %qn
and %qn

If the dimension physical
tables are connected
through a complex join, then
that join is not supported.

ComplexJoinFactDimRule [Fact Logical Table Source ->
Dimension Logical Table
Source] Complex Physical
Joins not supported.

%qn has a complex Join %qn
between Physical Tables %qn
and %qn.

If a dimension physical table
and a fact physical table are
connected through a
complex join, then that join
is not supported and the
dimension table source is
invalidated.

OpaqueViewFactRule [Fact Logical table Source]
Physical SQL Select
Statements not supported.

%qn uses the SQL Select
Statement %qn.

When the physical fact table
is generated by a SQL
select statement, the logical
fact table source that
contains the table is
invalidated. All logical
dimension table sources
connected to this logical fact
table source are also
invalidated. This construct
allows subquery processing.

Appendix F
Generating the Import File

F-7



Rule Message Explanation

OpaqueViewDimRule [Dimension Logical table
Source] Physical SQL Select
Statements not supported.

%qn uses the SQL Select
Statement %qn.

When a physical dimension
table is generated by a SQL
select statement, the logical
dimension table source
containing that table is
invalidated.

OuterJoinFactRule [Fact Logical Table Source]
Physical Outer Joins not
supported.

%qn has an outer join %qn
between physical tables %qn
and %qn.

If the logical fact table
source has an outer join
mapping, then that logical
fact table source is
invalidated and all logical
dimension table sources
mapped to this source will
also be invalidated.

OuterJoinDimRule [Dimension Logical Table
Source] Physical Outer Joins
not supported.

%qn has an outer join %qn
between physical tables %qn
and %qn.

If the logical dimension table
source has an outer join
mapping, then that logical
dimension table source is
invalidated.

WhereClauseFactRule [Fact Logical Table Source]
WHERE clauses are not
supported.

%qn has a where condition
%s.

If the fact table source uses
a WHERE clause to filter the
data that is loaded, then this
table source is invalidated.

WhereClauseDimRule [Dimension Logical Table
Source] WHERE clauses are
not supported.

%qn has a where condition
%s.

If the dimension table
source uses a WHERE clause
to filter the data that is
loaded, then this table
source is invalidated.

TwoJoinFactDimRule [Fact Logical Table Source ->
Dimension Logical Table
Source] Multiple Joins
between sources not
supported.

%qn and %qn have at least
the following joins : %qn,
%qn.

If a physical fact table is
mapped to two dimension
tables from the same
dimension source (if the fact
table is not exclusively
mapped to the most detailed
table in the table source),
then the dimension table
source is invalidated.

HiddenManyManyRule [Fact Logical Table Source ->
Dimension Logical Table
Source] Join between
(physical or logical?) fact and
dimension is not on the most
detailed table.

%qn between %qn and %qn
is not on the most detailed
table %qn {Join name,
facttable, dimtable).

This is related to the
TwoJoinFactDimRule. If the
fact table is joined to a
dimension table that is not
the most detailed table in
the table source, then the
dimension table source is
invalidated.

Appendix F
Generating the Import File

F-8



Rule Message Explanation

ComplexMeasureRule [Column] Complex
Aggregation Rules not
supported.

%qn uses an aggregation rule
of %s which is not supported.

The supported aggregations
are typically SUM, COUNT, AVG,
MIN, MAX, STDDEV,
COUNTDISTINCT, and COUNT.

CountDistMeasureRule [Column] COUNT-DISTINCT
Aggregation Rule not
supported.

%qn uses an aggregation rule
of %s which is not supported.

COUNTDISTINCT aggregation
is not supported for this
particular column.

InvalidColumnLevelRule [Level] Some columns that
are part of the Primary Level
Key are invalid.

%qn has %qn as part of its
primary key, when %qn has
already been marked invalid.

The level key for this level
has one or more columns
that are invalid.

VariableBasedColumnRule [Logical Table Source ->
Column] Column uses a
Variable in the Expression

Column %qn uses a variable
in its mapping.

The logical column uses
repository and session
variables in the expression.

OneFactToManyDimRule [Fact Logical Table Source ->
Dimension Logical Table
Source] There must be a
unique join path between the
most detailed tables in the
(logical or physical?) fact and
the dimension.

No join paths found between
%qn and %qn (both physical
table names).

Found at least the following
join paths: (%qn->%qn....),
(%qn->%qn....)

Same as in
TwoJoinFactDimRule or
HiddenManyManyRule.

ManyMDTinFactRule [Fact Logical Table Source]
Fact Logical Table Source
must have a unique most
detailed table.

%qn has at least the following
most detailed tables : %qn,
%qn.

A fact that has more than
one table that is the most
detailed table.

NoMeasureFactRule [Fact Logical Table Source]
Fact Logical Table Source
does not have any Measures.

%qn does not have any
deployable measures.

A fact table does not have
any measures because all
the measures have been
invalidated.

NoInActiveFactRule [Fact Logical Table Source]
Fact Logical Table Source is
not marked Active.

A fact source is not active.

Appendix F
Generating the Import File

F-9



Rule Message Explanation

NoInActiveDimRule [Dimension Logical Table
Source] Dimension Logical
Table Source is not marked
Active.

A dimension source is not
active.

NoAttributeInFactRule [Fact Logical Table Source ->
Column] Attribute found in
Fact.

%qn in a fact source %qn
does not have an aggregation
rule.

No attributes in the fact
source.

NoMeasureInDimRule [Dimension Logical Table
Source -> Column] Measure
found in Dimension.

%qn in a dimension source
%qn has an aggregation rule.

No measures in the
dimension source.

VisibleColumnsAttrRule [Column] -> The run_as_user
does not have visibility to this
Logical Column.

%qn is not accessible to the
run_as_user %qn due to
visibility rules.

A column does not have
visibility for this user.

VisibleColumnsMeasRule [Column] -> The run_as_user
does not have visibility to this
Logical Column.

%qn is not accessible to the
run_as_user %qn due to
visibility rules.

A column does not have
visibility for this user.

MultiplePrimaryKeysDimRule [Dimension Logical Table
Source] A Join uses an
alternate key in the
Dimension Logical Table
Source.

%qn between %qn and %qn
in %qn uses the alternate key
%qn.

A dimension physical table
can contain only one
primary key. It is joined to
another dimension physical
table using a different
unique key and that join is
invalid.

IBM Cube Views does not
accept any unique keys to
be used for foreign joins and
always requires the primary
key.

MultiplePrimaryKeysFactRule [Dimension Logical Table
Source] A Join uses an
alternate key in the
Dimension Logical Table
Source.

%qn between %qn and %qn
in %qn uses the alternate key
%qn.

A fact physical table can
contain only one primary
key. It is joined to another
fact physical table using a
different unique key and that
join is invalid.

IBM Cube Views does not
accept any unique keys to
be used for foreign joins and
always requires the primary
key.

Appendix F
Generating the Import File

F-10



Rule Message Explanation

MultiplePrimaryKeysFactDimRul
e

[Fact Logical Table Source ->
Dim Logical Table Source] A
Join uses an alternate key
between the Logical Table
sources.

%qn between %qn and %qn
for sources %qn and %qn
uses the alternate key %qn.

A fact physical table can
contain only one primary
key. It is joined to a
dimension physical table
using a different unique key
and is invalid.

IBM Cube Views does not
accept any unique keys to
be used for foreign joins and
always requires the primary
key.

NotDB2ExpressionAttrRule [Dimension Logical Table
Source -> Column] The
Column contains an
Expression not supported.

%qn has expression %s
which is not supported.

The attribute contains an
expression not supported by
IBM Cube Views.

This includes metadata
expressions that use
DateTime functions, for
example, CURRENT_DATE.

NotDB2ExpressionMeasRule [Fact Logical Table Source ->
Column] The Column
contains an Expression that is
not supported.

%qn has expression %s that
is not supported.

A measure contains an
expression not supported by
IBM Cube Views.

This includes metadata
expressions that use
DateTime functions, for
example,. CURRENT_DATE.

NoAttributeDimRule [Dimension Logical Table
Source] Dimension Logical
Table Source does not have
any attributes visible to the
run_as_user.

%qn cannot be queried by
user %qn since none of its
attributes are visible.

A dimension does not have
any attributes.

Using Materialized Views in the Oracle Database with
Oracle Business Intelligence

Learn how to export metadata from Oracle Business Intelligence into the SQL Access
Advisor and create materialized views using the Oracle Database Metadata
Generator.

This section contains the following topics:

• About Using the SQL Access Advisor with Materialized Views

• Deploying Metadata for Oracle Database

About Using the SQL Access Advisor with Materialized Views
You can use the SQL Access Advisor with Materialized Views to enhance the data
warehouse performance and the functionality of a database.

Appendix F
Using Materialized Views in the Oracle Database with Oracle Business Intelligence

F-11



It enables the SQL Access Advisor to store metadata about the logical relationships of
the data that resides in the database. Additionally, it accelerates data warehouse
queries by using more efficient Oracle materialized views. These materialized views
preaggregate the relational data and improve query performance. Once the metadata
is stored in the SQL Access Advisor, the database administrator can optimize the
database objects and improve query performance.

When processing queries, Oracle Database routes queries to tables that hold
materialized views when possible. Because these tables of materialized views are
smaller than the underlying base tables and the data has been pre aggregated, the
queries that are rerouted to them might run faster.

Oracle Database Metadata Generator works as a metadata bridge to convert the
Oracle Business Intelligence proprietary metadata into a SQL file that contains
PL/SQL commands to generate dimensions in the SQL Access Advisor. After
converting metadata into a SQL file, you use a tool such as SQL*Plus to import the
translated metadata into the SQL Access Advisor and store it in metadata catalog
tables. After importing the metadata, you create materialized views, which are used by
to optimize incoming application queries.

Deploying Metadata for Oracle Database
Become familiar with the Oracle Database and its tools before attempting to deploy
metadata in the Oracle Database.

See "SQL Access Advisor" in Oracle Database Performance Tuning Guide.

Ensure that you complete the steps in Running the Generator before deploying
metadata. To deploy cube metadata, perform the tasks described in the following
sections:

• Executing the SQL File for Oracle Database

• Defining Constraints for the Existence of Joins

• Creating the Query Workload

• Creating Materialized Views

Executing the SQL File for Oracle Database
Before executing the SQL file for importing into the SQL Access Advisor, ensure that
you are familiar with Oracle Database import tools. See the Oracle Database
documentation set for information.

Use a tool such as SQL*Plus to execute the SQL file that the Oracle Database
Metadata Generator generated. You might see error messages if the dimensions
already exist or if the database schema differs from that in the RPD file. When the
script executes successfully, you can see the dimensions that were created by using
the database web console or the Oracle Enterprise Manager Database Control. In the
Oracle Enterprise Manager Database Control, expand the following nodes: Network,
Databases, database-name, Warehouse, Summary Management, Dimensions,
System.

After you execute the SQL file, be aware of the following:

• No incremental metadata changes are allowed. Schema changes require that you
manually delete cube model metadata in the Oracle Database and convert the

Appendix F
Using Materialized Views in the Oracle Database with Oracle Business Intelligence

F-12



Oracle Business Intelligence metadata again. For example, if you must make a
change to a dimension in a cube in the Oracle BI repository, you must delete the
cube model in the Oracle Database, regenerate the SQL file from the Oracle BI
repository, and import it into the SQL Access Advisor.

• You cannot delete metadata using the Oracle Database Metadata Generator.
Instead, you must manually delete the cube model using the Oracle Enterprise
Manager Database Control.

Defining Constraints for the Existence of Joins
You must ensure that Oracle Database knows about the joins between the dimension
tables and the fact tables.

See your Oracle Database documentation.

To do so, you create constraints in SQL*Plus or the Oracle Enterprise Manager
Database Control. In the Oracle Enterprise Manager Database Control, you select the
table on which you must create a constraint, then select the Constraint tab.

You create a different type of constraint for each kind of table, as follows:

• For dimension tables, create a UNIQUE key constraint.

• For fact tables, create a FOREIGN key constraint and specify the referenced schema
and referenced table. In the Constraint Definition area, include the foreign key
columns in the fact table and the corresponding unique keys in the dimension
table. An attempt to create a foreign key on a fact table can fail if the foreign key
column data does not match the unique key column data on the dimension table.

Creating the Query Workload
A query workload is a sample set of physical queries to optimize.

See the Oracle Database documentation set for detailed information about creating
the query workload.

Before you create the workload, you generate a Trace file with information on the
slowest-running queries.

You can generate the Trace file of the slowest-running queries using a tool that is
appropriate to your database version, as described in the following list:

• Usage Tracking: Use this capability in Oracle Business Intelligence to log queries
and how long they take to run. Long-running Oracle Business Intelligence queries
can then be executed as a script and used with the Trace feature in the Oracle
Database to capture the Oracle Database SQL code for these queries.

• Oracle Database Trace: Use this tool to identify the slowest physical query. You
can enable the Trace feature either within Oracle Enterprise Manager Database
Control or by entering SQL commands with the DBMS_MONITOR package. Once you
enable the Trace feature, you use a script to create a Trace file to capture the SQL
code for queries in a query workload table.

• Oracle Enterprise Manager: Use this tool to track slow-running queries.

Appendix F
Using Materialized Views in the Oracle Database with Oracle Business Intelligence

F-13



Note:

The capabilities that are described in the following sections are available
in Oracle Database, rather than as part of Oracle Business Intelligence.

1. Use the following guidelines when reviewing the Trace file:

• When you have traced many statements at once, such as in batch processes,
quickly discard any statements that have acceptable query execution times.
Focus on those statements that take the longest times to execute.

• Check the Query column for block visits for read consistency, including all
query and subquery processing. Inefficient statements are often associated
with a large number of block visits. The Current column indicates visits not
related to read consistency, including segment headers and blocks that will be
updated.

• Check the Disk column for the number of blocks that were read from disk.
Because disk reads are slower than memory reads, the value will likely be
significantly lower than the sum of the Query and Current columns. If it is not,
check for issues with the buffer cache.

• Locking problems and inefficient PL/SQL loops can lead to high CPU time
values even when the number of block visits is low.

• Watch for multiple parse calls for a single statement, because this indicates a
library cache issue.

2. After identifying the problem statements in the file, check the execution plan to
learn why each problem statement occurred.

To load queries into the workload:

• After you use the Trace utility to learn the names of the slowest physical queries,
insert them into the USER_WORKLOAD table.

The table describes the columns of the USER_WORKLOAD table.

• Use INSERT statements to populate the QUERY column with the SQL statements for
the slowest physical queries and the OWNER column with the appropriate owner
names.

Column Data Type Required Description

QUERY Any LONG or
VARCHAR type (all
character types)

YES SQL statement for the query.

OWNER VARCHAR2 (30) YES User who last executed the query.

APPLICATION VARCHAR2 (30) NO Application name for the query.

FREQUENCY NUMBER NO Number of times that the query
was executed.

LASTUSE DATE NO Last date on which the query was
executed.

PRIORITY NUMBER NO User-supplied ranking of the
query.

Appendix F
Using Materialized Views in the Oracle Database with Oracle Business Intelligence

F-14



Column Data Type Required Description

RESPONSETIM
E

NUMBER NO Execution time of the query in
seconds.

RESULTSIZE NUMBER NO Total number of bytes that the
query selected.

SQL_ADDR NUMBER NO Cache address of the query.

SQL_HASH NUMBER NO Cache hash value of the query.

Creating Materialized Views
After you populate the query workload table, use the appropriate tool for the Oracle
Database version to create materialized views.

The SQL Access Advisor generates recommendations on improving the performance
of the specified fact tables. The SQL Access Advisor displays the SQL code it uses to
create the appropriate materialized views. Before enabling SQL Access Advisor to
create the materialized views, review the following:

• The creation of a materialized view can fail if the SQL code includes a CAST
statement.

• The CREATE MATERIALIZED VIEW statement must not specify the same query that you
provided as a workload table. If the statement does specify the same query, then
the materialized views cannot reflect the true performance gain. However, if the
query is executed frequently, then creating a materialized view might still be
worthwhile.

• Add a forward slash (/) to the end of the CREATE MATERIALIZED VIEW statement after
the SQL statement. If the forward slash is not included, the SQL*Plus worksheet
does not recognize it as a valid statement.

Note:

The SQL Access Advisor can also help determine appropriate indexing
schemes.

Using IBM DB2 Cube Views with Oracle Business
Intelligence

Learn how to export metadata from Oracle Business Intelligence into IBM DB2 using
the DB2 Cube Views Generator.

This section contains the following topics:

• About Using IBM DB2 Cube Views with Oracle BI

• Deploying Cube Metadata

Appendix F
Using IBM DB2 Cube Views with Oracle Business Intelligence

F-15



About Using IBM DB2 Cube Views
Learn how this enhances the data warehouse performance and functionality of a
database.

The term IBM DB2 Cube Views is a registered trademark of IBM. See System
Requirements and Certification.

It enables the DB2 database to store metadata about the logical relationships of the
data residing in the database. Additionally, it accelerates data warehouse queries by
using more efficient DB2 materialized query tables (MQTs). These MQTs
preaggregate the relational data and improve query performance.

When processing queries, the DB2 Query Rewrite functionality routes queries to the
MQTs when possible. Because these tables are smaller than the underlying base
tables and the data has been pre aggregated, the queries that are rerouted to them
might run faster.

DB2 Cube Views Generator works as a metadata bridge to convert the Oracle BI
proprietary metadata into an IBM Cube Views XML file. After converting metadata into
an XML file, you use IBM Cube Views to import the translated metadata into the DB2
database and store it in IBM Cube Views metadata catalog tables. After importing the
metadata, you use the IBM Optimization Advisor to generate scripts to create
materialized query tables (MQT) and their indexes. The deployed MQTs are used by
the DB2 Query Reroute Engine to optimize incoming application queries.

DB2 provides an API, implemented as a stored procedure that passes XML
documents as arguments to create, modify, delete, or read the metadata objects.

Deploying Cube Metadata
The alias-SQL file generated by the DB2 Cube Views Generator should be executed
before importing the XML file.

The XML file generated by the DB2 Cube Views Generator contains the cube
metadata in XML format. After importing the XML file into your DB2 database, you
must create materialized query tables.

Note:

It is strongly recommended that you become familiar with IBM Cube Views
and its tools before attempting to import the XML file. See the IBM
documentation.

Ensure that you complete the steps in Running the Generator before deploying
metadata. To deploy cube metadata, perform the tasks described in the following
sections:

• Executing the Alias-SQL File for IBM Cube Views

• Importing the XML File

• Guidelines for Creating Materialized Query Tables (MQTs)

Appendix F
Using IBM DB2 Cube Views with Oracle Business Intelligence

F-16



Executing the Alias-SQL File for IBM Cube Views
You must execute the alias-SQL file before you import the XML file into your DB2
database.

See the IBM documentation.

The alias-SQL file that is generated by the DB2 Cube Views Generator must be
executed by a SQL client on the database where the data warehouse is located. When
executed, it creates aliases (synonyms) for tables in the database.

Importing the XML File
After you execute the alias-SQL file, you can import the XML file into the database.

Note:

You should understand IBM Cube Views and tools before attempting to
import the XML file.

You can import this file using the following IBM tools:

• IBM OLAP Center (recommended), see Guidelines for Importing the XML File
Using the IBM OLAP Center and the IBM documentation.

• IBM command-line client utility (db2mdapiclient.exe). IBM ships this utility with
DB2.

• IBM DB2 Stored Procedure. IBM Cube Views provides a SQL-based and XML-
based application programming interface (API) that you can use to run a single
stored procedure to create, modify, and retrieve metadata objects.

Guidelines for Importing the XML File Using the IBM OLAP Center
Using the IBM OLAP Center, you can import cube metadata into DB2. The IBM OLAP
Center provides wizards to help you import the file.

See the IBM documentation.

To import the XML file, use the following guidelines:

• Using the IBM OLAP Center tool, connect to the DB2 database.

• In the Import Wizard, choose the XML file that you want to import.

• If metadata exists that refers to database constructs that are not in the database,
then an error message is displayed.

• When the wizard asks for an import option, choose to replace existing objects.

• When you are returned to the IBM OLAP Center, a diagram of the cube model is
shown.

Guidelines for Changing Cube Metadata After Importing the XML File
Learn about possible actions to take after importing an XML file.

Appendix F
Using IBM DB2 Cube Views with Oracle Business Intelligence

F-17



You might need to perform the following actions:

• Because Oracle OLAP does not store foreign keys as metadata, the foreign keys
do not exist in the converted metadata in the DB2 database. You must use the
IBM Referential Integrity Utility for IBM Cube Views to generate foreign key
informational constraints. You can obtain this utility on the IBM Web site.

• You might encounter other issues such as nullable foreign key join columns. You
can use the following methods to solve this problem:

– If data in these columns are not nullable, then you should convert these
columns to not-null columns.

– If data in these columns are nullable, or you do not want to convert the column
data type even if the column data is not null, then you should modify the cube
model using the following guidelines:

* In a fact-to-dimension join, you must manually eliminate the dimension
object from the converted cube model and create a degenerated
dimension object consisting of the foreign key of this join.

* In a dimension-to-dimension join, you must manually eliminate the
dimension object that represents the primary-key side of the join from the
converted cube model and create a degenerated dimension object
consisting of the foreign key of this join.

* In a fact-to-fact join, you must manually eliminate the fact object that
represents the primary-key side of the join from the converted cube model
and create a degenerated dimension object consisting of the foreign key
of this join.

• Incremental metadata changes are not allowed by the Cube Generator. Schema
changes require that you manually delete cube model metadata in the DB2
database and convert the Oracle Business Intelligence metadata again. For
example, if you must change a dimension in a cube in the Oracle Business
Intelligence metadata repository, then delete the cube model in the DB2 database,
regenerate the XML file from the Oracle Business Intelligence repository, and
import it into the DB2 database.

• You cannot delete metadata using the DB2 Cube Views Generator. Manually
delete the cube model using the IBM OLAP Center.

• You must run the IBM Statistics tool and IBM Optimization Advisor periodically.

Guidelines for Creating Materialized Query Tables (MQTs)
After you import the cube metadata into the database, you must run the IBM
Optimization Advisor to generate SQL scripts and then execute those scripts to create
the MQTs.

See the IBM documentation.

You must provide certain parameters to the IBM Optimization Advisor to get optimal
results from the implementation. The IBM Optimization Advisor wizard analyzes your
metadata and recommends how to build summary tables that store and index
aggregated data for SQL queries. Running the IBM Optimization Advisor can help you
keep the MQTs current. Additionally, you must refresh your database after each ETL.

To create MQTs, use the following guidelines:

Appendix F
Using IBM DB2 Cube Views with Oracle Business Intelligence

F-18



• In the IBM OLAP Center, choose the cube model that you want to optimize and
open the IBM Optimization Advisor wizard.

• Follow the instructions in the wizard, using the following table as a guide.

When asked
for:

Choose:

Summary Tables Choose Deferred (or Immediate) and provide a tablespace for the
tables

Limitations Choose an appropriate value for the optimization parameters. You
should turn on the Data-sampling option.

SQL Scripts Creation of the scripts needed to run to create the Summary tables.
Choose the filename and locations

• When the IBM Optimization Advisor closes, you must execute the SQL scripts to
create the MQTs.

Appendix F
Using IBM DB2 Cube Views with Oracle Business Intelligence

F-19



G
XML Schema Files for ADF Mapping
Customizations

You can review the app_segment_rule.xsd and mapping_rules.xsd XML schema files.
XML files based on these XML validation schemas define mapping rules that control
the physical to logical mapping behavior for ADF data source objects.
This appendix contains the following sections:

• app_segment_rule.xsd XML Schema File

• app_segment_rules_*.xml Example

• mapping_rules.xsd XML Schema File

• mapping_rules_*.xml Example

app_segment_rule.xsd XML Schema File
The app_segment_rule.xsd XML schema file contains mapping rules that define the
physical table to logical table mapping.

The following is an annotated version of the app_segment_rule.xsd XML schema file.

<?xml version="1.0" encoding="utf-8" ?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="alias_t">
  <xs:attribute name="aliasTableName" type="xs:string" use="required" /> 
 </xs:complexType>
 <xs:complexType name="aliasTableList_t">
  <xs:sequence>
   <xs:element name="AliasTable" type="alias_t" minOccurs="1" maxOccurs=
   "unbounded" /> 
  </xs:sequence>
 </xs:complexType>
 <xs:complexType name="subjectArea_t">
  <xs:attribute name="subjectAreaName" type="xs:string" use="required" />
  <xs:attribute name="table" type="xs:string" use="optional" /> 
 </xs:complexType>
 <xs:complexType name="subjectAreaList_t">
  <xs:sequence>
   <xs:element name="OTBISubjectArea" type="subjectArea_t" minOccurs="1"
   maxOccurs="unbounded" /> 
  </xs:sequence>
 </xs:complexType>
 <xs:complexType name="columnmapping_t">

<!-- voColumnName specifies the ADF view object column name -->

  <xs:attribute name="voColumnName" type="xs:string" use="required" />

<!-- logicalDimColumnName specifies the logical column name -->

  <xs:attribute name="logicalDimColumnName" type="xs:string" use="required" />

G-1



 </xs:complexType>
 <xs:complexType name="columnMappingsList_t">
  <xs:sequence>

<!-- ColumnMapping specifies the set of column mappings -->

   <xs:element name="ColumnMapping" type="columnmapping_t" minOccurs="1"
   maxOccurs="unbounded" /> 
  </xs:sequence>
 </xs:complexType>
 <xs:complexType name="tableName_t">
  <xs:attribute name="name" type="xs:string" /> 
 </xs:complexType>
 <xs:complexType name="relatedLogicalTablesList_t">
  <xs:sequence>
   <xs:element name="LogicalTable" type="tableName_t" minOccurs="1"
   maxOccurs="unbounded" /> 
  </xs:sequence>
 </xs:complexType>

<!-- Base VO to which DFF alias needs to be joined. -->

 <xs:complexType name="joinWith_t">
  <xs:attribute name="voName" type="xs:string" use="required"/>
 </xs:complexType>

<!-- Logical Dimension to which DFF alias needs to be mapped. -->

 <xs:complexType name="mapTo_t">
  <xs:attribute name="logTabName" type="xs:string" use="required"/>
 </xs:complexType>

<!-- Specifies DFF alias name. -->

 <xs:complexType name="createAlias_t">
  <xs:sequence>
   <xs:element name="JoinWith" type="joinWith_t" minOccurs="1"
   maxOccurs="unbounded"/>
   <xs:element name="MapTo" type="mapTo_t" minOccurs="1" maxOccurs="unbounded"/>
  </xs:sequence>

<!-- Specifies DFF alias name. -->

  <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:complexType>

<!-- Specifies set of LTSes. -->

 <xs:complexType name="ltsObject_t">
  <xs:attribute name="ltsName" type="xs:string"/>
 </xs:complexType>
  <xs:complexType name="ltsObjects_t">
  <xs:sequence>
   <xs:element name="Lts" type="ltsObject_t" minOccurs="0" maxOccurs="unbounded"/>
  </xs:sequence>
 </xs:complexType>
 <xs:complexType name="labelToDimMap_t">
  <xs:sequence>

<!-- For mapping the _ and _c suffixed value and value set columns in the code,
combine flattened fact view objectS corresponding to the segment mapped to the

Appendix G
app_segment_rule.xsd XML Schema File

G-2



logical table -->

   <xs:element name="FlattenedFlexVOColumnMappings" type="columnMappingsList_t"
   minOccurs="0" maxOccurs="1" />

<!-- TableSpecificColumnMappingOverrides is for future use -->

   <xs:element name="TableSpecificColumnMappingOverrides"
   type="columnMappingsList_t" minOccurs="0" maxOccurs="1" />

<!-- TableSpecificOTBISubjectAreas specifies the Oracle Transactional Business
Intelligence subjects areas. The unqualified segment Logical Tables Dim - GL
Segment 1 - 10 are dragged to these subject areas. For other use cases, specify
your own repository subject areas. -->

   <xs:element name="TableSpecificOTBISubjectAreas" type="subjectAreaList_t"
   minOccurs="0" maxOccurs="1" />

<!-- DFFBaseVOAliases specifies the alias view objects of the base view object
mapped to the same logical table. For each of these view objects, the
Administration Tool creates an alias of the DFF view object and joins it to the
base view object alias. -->

   <xs:element name="DFFBaseVOAliases" type="aliasTableList_t" minOccurs="0"
   maxOccurs="1" />
  </xs:sequence>

<!-- RelatedLogicalTables specifies the list of logical tables to which the DFF
view object must be mapped in addition to the logical table mentioned in the 
logicalDimTableName attribute. --> 
 
   <xs:element name="RelatedLogicalTables" type="relatedLogicalTablesList_t"
   minOccurs="0" maxOccurs="1" /> 

<!-- Use this tag to create an alias of the VO, join it with several other
VOs, and map to a specified set of logical tables-->
   <xs:element name="CreateAlias" type="createAlias_t" 
   minOccurs="0" maxOccurs="unbounded"/>
  </xs:sequence>

<!-- segmentLabelName is for future use -->

  <xs:attribute name="segmentLabelName" type="xs:string" use="optional" />

<!-- logicalDimTableName specifies the logical table to which the ADF view object
is mapped. ADF database properties contain the mapping between the ADF view object 
("BIObject_'ADF VO Name'") and logical table mentioned here. -->

  <xs:attribute name="logicalDimTableName" type="xs:string" use="required" />

<!-- In role playing dimensions, the logical table specified in the
roleMasterLogicalTableName attribute is used as the master logical table. Whenever
the master logical table is mapped to a view object, the alias of this view object
is created and joined to the table referenced in the flattenedFlexVORoleAlias
attribute. The alias table name is "{ADF_VO_Name}_{Role_Playing_Logical_Table_
Name}". Logical columns are mapped to the columns of this alias table. -->

  <xs:attribute name="roleMasterLogicalTableName" type="xs:string"
  use="optional" />

<!-- flattenedFlexVORoleAlias specifies the flattened view object alias that needs

Appendix G
app_segment_rule.xsd XML Schema File

G-3



to be joined with the role playing view object alias table. -->

  <xs:attribute name="flattenedFlexVORoleAlias" type="xs:string" use="optional" /> 
 </xs:complexType>

<!-- The root element for the mapping rule document -->

 <xs:complexType name="mappingRules_t">
  <xs:sequence>

<!-- List of LTSes to be Disabled -->
   <xs:element name="LTSToBeDisabled" type="ltsObjects_t" minOccurs="0" 
maxOccurs="1"/> 

<!-- GlobalColumnMappings is for future use -->

   <xs:element name="GlobalColumnMappings" type="columnMappingsList_t"
   minOccurs="0" maxOccurs="1" />

<!-- GlobalOTBISubjectAreas specifies the Oracle Transactional Business
Intelligence subject areas. The unqualified segment Logical Tables Dim - GL
Segment 1 - 10 are dragged to these subject areas. The rules specified here apply
to all logical tables. For other use cases, specify your own subject areas. -->

   <xs:element name="GlobalOTBISubjectAreas" type="subjectAreaList_t"
   minOccurs="0" maxOccurs="1" />

<!-- LabelToDimensionMappings specifies the rules for a logical table -->

   <xs:element name="LabelToDimensionMappings" type="labelToDimMap_t"
   minOccurs="0" maxOccurs="unbounded" />
  </xs:sequence>

<!-- appName is the ADF Module Name from where the ADF view objects are imported. It 
is also used as a key for reading the properties from the ADF database. It is
sometimes known as the Category or Module Name. -->

  <xs:attribute name="appName" type="xs:string" use="required" />

<!-- businessModelName specifies the business model in the Business Model and
Mapping layer. The ADF view objects are mapped to the logical tables in this
business model. The default business model is "Core." -->

  <xs:attribute name="businessModelName" type="xs:string" default="Core"
   use="optional" />

<!-- flattenedFlexLogicalTable specifies the logical table to which the flattened
fact view object for the KFF needs to map -->

  <xs:attribute name="flattenedFlexLogicalTable" type="xs:string"
  use="optional" /> 

<!-- Determines whether VOs under this AM needs to be submitted for 
ETL extension -->

  <xs:attribute name="isETLSupported" type="xs:boolean" use="optional"/>

<!-- Specifies the unqualified Dimension Prefix for the AM -->

  <xs:attribute name="unqualifiedDimensionPrefix" type="xs:string"
  use="optional"/> 

Appendix G
app_segment_rule.xsd XML Schema File

G-4



 </xs:complexType>

<!-- This is the actual element declaration for the entire Document. -->
 
 <xs:element name="document">
  <xs:complexType>
   <xs:sequence>

<!--  MappingRules specifies the set of rules. -->

    <xs:element name="MappingRules" type="mappingRules_t" minOccurs="0"
    maxOccurs="unbounded" /> 
   </xs:sequence>
  </xs:complexType>
 </xs:element>
</xs:schema>

app_segment_rules_*.xml Example
You can review an example of an app_segment_rules_*.xml file, based on the
validation rules contained in app_segment_rules.xsd.

The app_segment_rules_*.xml file has been shortened for this example.

<?xml version="1.0" encoding="UTF-8" ?>
<document>
<!--  Begin Finance -->
<MappingRules appName="FscmTopModelAM.AccountBIAM" businessModelName="Core"
flattenedFlexLogicalTable="Dim - GL Account">
 <GlobalOTBISubjectAreas>
  <OTBISubjectArea subjectAreaName="General Ledger - Journals Real Time" /> 
  <OTBISubjectArea subjectAreaName="General Ledger - Transactional Balances Real Time" /> 
  <OTBISubjectArea subjectAreaName="Payables Invoices - Prepayment Invoice Distributions Real
  Time" />
  <OTBISubjectArea subjectAreaName="Payables Invoices - Transactions Real Time" /> 
  <OTBISubjectArea subjectAreaName="Payables Invoices - Trial Balance Real Time" />
...
 </GlobalOTBISubjectAreas>
 <LabelToDimensionMappings logicalDimTableName="Dim - Balancing Segment">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Balancing Segment Code" /> 
   <ColumnMapping voColumnName="_c" logicalDimColumnName="Balancing Segment Value Set
   Code" /> 
  </FlattenedFlexVOColumnMappings>
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="General Ledger - Journals Real Time" table="- Balancing
   Segment" /> 
   <OTBISubjectArea subjectAreaName="General Ledger - Transactional Balances Real Time"
   table="Balancing Segment" /> 
   <OTBISubjectArea subjectAreaName="Payables Invoices - Prepayment Invoice Distributions
   Real Time" table="- Balancing Segment" /> 
   <OTBISubjectArea subjectAreaName="Payables Invoices - Transactions Real Time" table=
   "- Balancing Segment" /> 
   <OTBISubjectArea subjectAreaName="Payables Invoices - Trial Balance Real Time"
   table="Balancing Segment" /> 
...
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Dim - Cost Center">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Cost Center Segment Code" /> 
   <ColumnMapping voColumnName="_c" logicalDimColumnName="Cost Center Segment Value Set Code"
   /> 
  </FlattenedFlexVOColumnMappings>

Appendix G
app_segment_rules_*.xml Example

G-5



  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="General Ledger - Journals Real Time" table="- Cost
   Center Segment" /> 
   <OTBISubjectArea subjectAreaName="General Ledger - Transactional Balances Real Time"
   table="Cost Center Segment" />
   <OTBISubjectArea subjectAreaName="Payables Invoices - Prepayment Invoice Distributions
   Real Time" table="- Cost Center" />
   <OTBISubjectArea subjectAreaName="Payables Invoices - Transactions Real Time" table="-
   Cost Center" /> 
   <OTBISubjectArea subjectAreaName="Payables Invoices - Trial Balance Real Time" table="Cost
 Center" />
...
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Dim - Natural Account Segment">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Natural Account Segment Code" /> 
   <ColumnMapping voColumnName="_c" logicalDimColumnName="Natural Account Segment Value Set
   Code" /> 
  </FlattenedFlexVOColumnMappings>
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="General Ledger - Journals Real Time" table="- Natural
   Account Segment" /> 
   <OTBISubjectArea subjectAreaName="General Ledger - Transactional Balances Real Time"
   table="Natural Account Segment" /> 
   <OTBISubjectArea subjectAreaName="Payables Invoices - Prepayment Invoice Distributions
   Real Time" table="- Natural Account" />
   <OTBISubjectArea subjectAreaName="Payables Invoices - Transactions Real Time" table=
   "- Natural Account" /> 
   <OTBISubjectArea subjectAreaName="Payables Invoices - Trial Balance Real Time"
   table="Natural Account" /> 
...
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Dim - GL Segment1">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Account Segment1 Code" /> 
   <ColumnMapping voColumnName="_c" logicalDimColumnName="Account Segment1 Value Set Code" /> 
  </FlattenedFlexVOColumnMappings>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Dim - GL Segment2">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Account Segment2 Code" /> 
   <ColumnMapping voColumnName="_c" logicalDimColumnName="Account Segment2 Value Set Code" /> 
  </FlattenedFlexVOColumnMappings>
 </LabelToDimensionMappings>
...
 <LabelToDimensionMappings logicalDimTableName="Dim - AP Account Balancing Segment"
 roleMasterLogicalTableName="Dim - Balancing Segment" flattenedFlexVORoleAlias="Dim_FLEX_BI_
 Account_VI_APAccount">
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Payables Invoices - Prepayment Invoice Distributions
   Real Time" table="- Distribution Balancing Segment Value" /> 
   <OTBISubjectArea subjectAreaName="Payables Invoices - Transactions Real Time" table="-
   Distribution Balancing Segment Value" /> 
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Dim - AP Account Cost Center"
 roleMasterLogicalTableName="Dim - Cost Center" flattenedFlexVORoleAlias="Dim_FLEX_BI_
 Account_VI_APAccount">
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Payables Invoices - Prepayment Invoice Distributions
   Real Time" table="- Distribution Cost Center Segment Value" /> 
   <OTBISubjectArea subjectAreaName="Payables Invoices - Transactions Real Time" table="-
   Distribution Cost Center Segment Value" /> 
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
...
</MappingRules>

Appendix G
app_segment_rules_*.xml Example

G-6



<MappingRules appName="FscmTopModelAM.LocationBIAM" businessModelName="Core"
flattenedFlexLogicalTable="Dim - Asset Location">
 <LabelToDimensionMappings logicalDimTableName="Segment1">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Segment1" /> 
  </FlattenedFlexVOColumnMappings>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Segment2">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Segment2" /> 
  </FlattenedFlexVOColumnMappings>
 </LabelToDimensionMappings>
...
</MappingRules>
<MappingRules appName="FscmTopModelAM.CategoryBIAM" businessModelName="Core" 
flattenedFlexLogicalTable="Dim - Asset Category">
 <LabelToDimensionMappings logicalDimTableName="Segment1">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Segment1" /> 
  </FlattenedFlexVOColumnMappings>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Segment2">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Segment2" /> 
  </FlattenedFlexVOColumnMappings>
 </LabelToDimensionMappings>
...
 <LabelToDimensionMappings logicalDimTableName="Major Category">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Major Category" /> 
  </FlattenedFlexVOColumnMappings>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Minor Category">
  <FlattenedFlexVOColumnMappings>
   <ColumnMapping voColumnName="_" logicalDimColumnName="Minor Category" /> 
  </FlattenedFlexVOColumnMappings>
 </LabelToDimensionMappings>
</MappingRules>
...
<MappingRules appName="FscmTopModelAM.ExternalTransactionBIAM" businessModelName="Core"
flattenedFlexLogicalTable="">
<!-- Use the below tag if you want any one of the following use cases for the "base logical
table" your DFF is mapped to in ATG --> 
<!-- (a) need to expose the base logical table DFF attributes to specific presentation
subject area and table --> 
<!-- (b) you have additional VO aliases mapped to the base logical table in addition to the
base VO itself -->
<!-- (c) you have additional "related logical tables" that you want automapped when the base
logical table is mapped in ATG -->
 <LabelToDimensionMappings logicalDimTableName="Dim - CE External Cash Transaction Details">
<!-- Use the below tag to indicate the presentation subject area and table where the DFF
attributes need to be exposed -->
<!-- Repeat the OTBISubjectArea tag to expose them in multiple subject areas or tables -->
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Cash Management - External Cash Transactions Real Time"
   table="External Cash Transaction Detail" /> 
  </TableSpecificOTBISubjectAreas>
<!-- Use the below tag to give the VO alias names, if any, that are mapped to the base
logical table in addition to the base VO -->
<!-- Repeat the AliasTable tag if you have multiple VO aliases -->
  <DFFBaseVOAliases>
   <AliasTable aliasTableName="Fact_ExternalTransactionsPVO_JournalEntryLine" /> 
  </DFFBaseVOAliases>
 </LabelToDimensionMappings>
</MappingRules>
...
<MappingRules appName="FscmTopModelAM.CalendarTypeDFFBIAM" businessModelName="Core"
flattenedFlexLogicalTable="">
...

Appendix G
app_segment_rules_*.xml Example

G-7



 <LabelToDimensionMappings logicalDimTableName="Dim - Date Fixed Assets Calendar">
...
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Fixed Assets - Asset Transactions Real Time"
   table="Transaction Effective Date" />
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
<!-- Use the below tag if you have any "role-playing logical tables" for the base logical
table. -->
 <LabelToDimensionMappings logicalDimTableName="Dim - Date Placed in Service Fixed Asset
 Calendar" roleMasterLogicalTableName="Dim - Date Fixed Assets Calendar"
 flattenedFlexVORoleAlias="Dim_CalendarDayPVO_DatePlacedInService">
<!-- Use the below tag to indicate the presentation subject area and table where the DFF
attributes from the role-playig logical table need to be exposed -->
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Fixed Assets - Asset Financial Information Real Time"
   table="Date Placed in Service" /> 
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
 <LabelToDimensionMappings logicalDimTableName="Dim - Transaction Date Fixed Asset Calendar"
 roleMasterLogicalTableName="Dim - Date Fixed Assets Calendar" flattenedFlexVORoleAlias="Dim_
 CalendarDayPVO_TransactionDate">
<!-- Use the below tag to indicate the presentation subject area and table where the DFF
attributes from the role-playig logical table need to be exposed -->
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Fixed Assets - Asset Assignments Real Time"
   table="Transaction Date" /> 
   <OTBISubjectArea subjectAreaName="Fixed Assets - Asset Financial Information Real Time"
   table="Transaction Date" /> 
   <OTBISubjectArea subjectAreaName="Fixed Assets - Asset Retirements and Reinstatements Real
   Time" table="Transaction Date" /> 
   <OTBISubjectArea subjectAreaName="Fixed Assets - Asset Transactions Real Time"
   table="Transaction Date" /> 
   <OTBISubjectArea subjectAreaName="Fixed Assets - Asset Transfer Real Time"
   table="Transaction Date" /> 
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
...
</MappingRules>
...
<!-- Rule file for AP_TERMS_B -->
<MappingRules appName="FscmTopModelAM.PaymentTermHeaderDffBIAM" businessModelName="Core"
flattenedFlexLogicalTable="">
 <LabelToDimensionMappings logicalDimTableName="Dim - AP Terms">
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Payables Invoices - Transactions Real Time" table=
   "- Header Information" /> 
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
</MappingRules>
<!-- Rule file for AP_PAYMENT_SCHEDULES -->
<MappingRules appName="FscmTopModelAM.InstallmentsDffBIAM" businessModelName="Core"
flattenedFlexLogicalTable="">
 <LabelToDimensionMappings logicalDimTableName="Dim - AP Payment Schedule Details">
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Payables Invoices - Installments Real Time"
   table="Invoices Installment Details" /> 
  </TableSpecificOTBISubjectAreas>
  <DFFBaseVOAliases>
   <AliasTable aliasTableName="Fact_InvoicePaymentSchedulePVO_Disbursement" /> 
  </DFFBaseVOAliases>
 </LabelToDimensionMappings>
</MappingRules>
...
<!-- Rule file for DFF AP_HOLDS -->
<MappingRules appName="FscmTopModelAM.HoldsDffBIAM" businessModelName="Core"
flattenedFlexLogicalTable="">
 <LabelToDimensionMappings logicalDimTableName="Dim - AP Hold Details">
  <TableSpecificOTBISubjectAreas>

Appendix G
app_segment_rules_*.xml Example

G-8



   <OTBISubjectArea subjectAreaName="Payables Invoices - Holds Real Time" table="Invoices
   Hold Details" /> 
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
</MappingRules>
<!-- End Finance -->

<!-- Rule file for JobAM EFF -->
</MappingRules>
<MappingRules appName="HcmTopModelAnalyticsGlobalAM.JobAM.PER_JOBS_LEG_EFF" 
businessModelName="Core" flattenedFlexLogicalTable="">
 <LabelToDimensionMappings logicalDimTableName="Dim - Job">
  <TableSpecificOTBISubjectAreas>
   <OTBISubjectArea subjectAreaName="Workforce Management - Worker Assignment Real Time" 
table="Job" />
  </TableSpecificOTBISubjectAreas>
 </LabelToDimensionMappings>
</MappingRules>
...
</document>

mapping_rules.xsd XML Schema File
The XML schema file mapping_rules.xsd contains mapping rules that define the
physical column to logical column mapping.

This section provides an annotated version of the mapping_rules.xsd XML schema file.

<?xml version="1.0" encoding="utf-8" ?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- This XML validation schema defines data extensibility rules that determine
how objects imported at the Physical layer are mapped to the Business
Model and Mapping layer. -->

 <xs:simpleType name="yes_no_t">
  <xs:restriction base="xs:string">
   <xs:enumeration value="yes" /> 
   <xs:enumeration value="no" /> 
  </xs:restriction>
 </xs:simpleType>

<!-- Description of one mapping -->

 <xs:complexType name="mapping_t">

<!-- The source attribute specifies the physical ADF view object column -->

  <xs:attribute name="source" type="xs:string" use="required" />

<!-- The target attribute specifies the target logical column suffix or complete
name -->

  <xs:attribute name="target" type="xs:string" use="required" />

<!-- The addprefix attribute specifies whether or not the prefix specified in the
"rule" must be prefixed with the target to get the logical table column name
before performing the mapping -->

  <xs:attribute name="addprefix" type="yes_no_t" default="no" use="optional" /> 
 </xs:complexType>
 <xs:complexType name="rule_t">

Appendix G
mapping_rules.xsd XML Schema File

G-9



  <xs:sequence>

<!-- List of mappings that define the rule -->

   <xs:element name="mapping" type="mapping_t" minOccurs="1" maxOccurs="unbounded"
   /> 
  </xs:sequence>

<!-- The name attribute specifies the rule name. This name is used by the instance
to specify which rule to apply. -->

  <xs:attribute name="name" type="xs:string" use="required" /> 
 </xs:complexType>
 <xs:complexType name="rules_t">
  <xs:sequence>

<!-- Each rule defines the source (physical) to target (logical) mapping. It
is used by the Import Metadata Wizard during the Physical to Logical Mapping
phase. Each mapping in a rule can specify whether the default prefix for an
instance should be added. -->

   <xs:element name="rule" type="rule_t" minOccurs="1" maxOccurs="unbounded" />
  </xs:sequence>
 </xs:complexType>
 <xs:complexType name="apply_t">

<!-- The rule attribute specifies which rule to apply for the logical table
mentioned in the instance. -->

  <xs:attribute name="rule" type="xs:string" use="required" />

<!-- The prefix attribute specifies the string that might or might not be
prepended when performing the mapping between the ADF view object column and the
logical table column. -->

  <xs:attribute name="prefix" type="xs:string" default="" use="optional" /> 
 </xs:complexType>
 <xs:complexType name="instance_t">
  <xs:sequence>

<!-- apply specifies what rule to apply to the logical table -->

   <xs:element name="apply" type="apply_t" minOccurs="1" maxOccurs="unbounded" /> 
  </xs:sequence>

<!-- The logicaltable attribute specifies the logical table to which the rule is
applied -->

  <xs:attribute name="logicaltable" type="xs:string" use="required" /> 
 </xs:complexType>
 <xs:complexType name="instances_t">
  <xs:sequence>

<!-- Each instance is associated with a single logical table. It applies any
number of rules, with an optional prefix. The rules are applied in order. Note
that the prefix includes a space at the end. It merely concatenates with the
target logical column to determine the right logical column to map to. -->

   <xs:element name="instance" type="instance_t" minOccurs="1" 
maxOccurs="unbounded" /> 
  </xs:sequence>

Appendix G
mapping_rules.xsd XML Schema File

G-10



<!-- appName is the ADF Module Name from which ADF view objects are imported -->

   <xs:attribute name="appName" type="xs:string" />
 </xs:complexType>

<!-- The document element is the element declaration for the entire document -->

 <xs:element name="document">
  <xs:complexType>
   <xs:sequence>

<!-- The rules element specifies the set of rules -->

    <xs:element name="rules" type="rules_t" minOccurs="1" maxOccurs="1" />

<!-- The instances element specifies the set of instances related to a single ADF
module. -->

    <xs:element name="instances" type="instances_t" minOccurs="1" maxOccurs="1" />
   </xs:sequence>
  </xs:complexType>
 </xs:element>
</xs:schema>

mapping_rules_*.xml Example
Review the example of a mapping_rules_*.xml file based on the validation rules
contained in mapping_rules.xsd.

The actual file has been shortened.

<?xml version="1.0" encoding="UTF-8" ?>
<document>
<rules>

<!-- Each Rule defines the source (physical) to target (logical) mapping. It is
used by the Import Metadata Wizard during the Physical to Logical Mapping phase.
Each mapping in a rule can specify whether it should add the default prefix for an
instance. -->

 <rule name="GL Segment Tree Rule">
  <mapping source="TreeCode" target="Tree Code" addprefix="no" /> 
  <mapping source="TreeVersionId" target="Tree Version ID" addprefix="no" /> 
  <mapping source="VersionName" target="Tree Version Name" addprefix="no" /> 
  <mapping source="Dep0Pk2Value" target="Segment Value Set Code" addprefix="yes" />
  <mapping source="Dep0Value" target="Segment Code" addprefix="yes" />
  <mapping source="Dep0Description" target="Segment Description" addprefix="yes" />
  <mapping source="Dep1Value" target="Level 1 Code" addprefix="yes" />
  <mapping source="Dep1Description" target="Level 1 Description" addprefix="yes" />
  <mapping source="Dep2Value" target="Level 2 Code" addprefix="yes" />
  <mapping source="Dep2Description" target="Level 2 Description" addprefix="yes" />
  <mapping source="Dep3Value" target="Level 3 Code" addprefix="yes" />
  <mapping source="Dep3Description" target="Level 3 Description" addprefix="yes" />
...
  <mapping source="Distance" target="Fixed Hierarchy Level" addprefix="no" />
  <mapping source="VersionEffectiveStartDate" target="Effective From" addprefix="no" />
  <mapping source="VersionEffectiveEndDate" target="Effective To" addprefix="no" />
 </rule>
 <rule name="GL Segment Non-Tree Rule">
  <mapping source="Value" target="Segment Code" addprefix="yes" />
  <mapping source="ValueSetCode" target="Segment Value Set Code" addprefix="yes" />
  <mapping source="Description" target="Segment Description" addprefix="yes" />
 </rule>

Appendix G
mapping_rules_*.xml Example

G-11



 <rule name="Qualified Segment Tree Rule">
  <mapping source="TreeCode" target="Tree Code" addprefix="no" />
  <mapping source="TreeVersionId" target="Tree Version ID" addprefix="no" />
  <mapping source="VersionName" target="Tree Version Name" addprefix="no" />
  <mapping source="Dep0Pk2Value" target="Value Set Code" addprefix="yes" />
  <mapping source="Dep0Value" target="Code" addprefix="yes" />
  <mapping source="Dep0Description" target="Description" addprefix="yes" />
  <mapping source="Dep1Value" target="Level 1 Code" addprefix="yes" />
  <mapping source="Dep1Description" target="Level 1 Description" addprefix="yes" />
  <mapping source="Dep2Value" target="Level 2 Code" addprefix="yes" />
  <mapping source="Dep2Description" target="Level 2 Description" addprefix="yes" />
  <mapping source="Dep3Value" target="Level 3 Code" addprefix="yes" />
  <mapping source="Dep3Description" target="Level 3 Description" addprefix="yes" />
...
  <mapping source="Distance" target="Fixed Hierarchy Level" addprefix="no" /> 
  <mapping source="VersionEffectiveStartDate" target="Effective From" addprefix="no" /> 
  <mapping source="VersionEffectiveEndDate" target="Effective To" addprefix="no" /> 
  <mapping source="Dep0FlexValueAttribute6" target="Group Account Number" addprefix="no" /> 
 </rule>
 <rule name="Qualified Segment Non-Tree Rule">
  <mapping source="Value" target="Code" addprefix="yes" /> 
  <mapping source="ValueSetCode" target="Value Set Code" addprefix="yes" /> 
  <mapping source="Description" target="Description" addprefix="yes" /> 
  <mapping source="FlexValueAttribute6" target="Group Account Number" addprefix="no" /> 
 </rule>
 <rule name="Role Playing KFF Tree Rule 1">
  <mapping source="TreeCode" target="Tree Code" addprefix="no" /> 
  <mapping source="TreeVersionId" target="Tree Version ID" addprefix="no" /> 
  <mapping source="Dep0Description" target="Description" addprefix="yes" /> 
  <mapping source="Dep0Pk2Value" target="Value Set Code" addprefix="yes" /> 
  <mapping source="Dep0Value" target="Code" addprefix="yes" /> 
  <mapping source="Value" target="Code" addprefix="yes" /> 
  <mapping source="ValueSetCode" target="Value Set Code" addprefix="yes" /> 
  <mapping source="Description" target="Description" addprefix="yes" /> 
 </rule>
 <rule name="Role Playing KFF Tree Rule 2">
  <mapping source="TreeCode" target="Tree Code" addprefix="no" /> 
  <mapping source="TreeVersionId" target="Tree Version ID" addprefix="no" /> 
  <mapping source="Dep0Description" target="Desscription" addprefix="yes" /> 
  <mapping source="Dep0Pk2Value" target="Value Set Code" addprefix="yes" /> 
  <mapping source="Dep0Value" target="Code" addprefix="yes" /> 
  <mapping source="Value" target="Code" addprefix="yes" /> 
  <mapping source="ValueSetCode" target="Value Set Code" addprefix="yes" /> 
  <mapping source="Description" target="Desscription" addprefix="yes" /> 
 </rule>
...
</rules>
<instances appName="FscmTopModelAM.AccountBIAM">

<!-- Each instance is associated with the a single logical table. It applies any number of
rules, with an optional prefix. The rules are applied in order. Note that the prefix includes
a space at the end. It merely concatenates with the target logical column to determine the
right logical column to map to. -->

 <instance logicaltable="Dim - Balancing Segment">
  <apply rule="Qualified Segment Tree Rule" prefix="Balancing Segment" /> 
  <apply rule="Qualified Segment Non-Tree Rule" prefix="Balancing Segment" /> 
 </instance>
 <instance logicaltable="Dim - Cost Center">
  <apply rule="Qualified Segment Tree Rule" prefix="Cost Center" /> 
  <apply rule="Qualified Segment Non-Tree Rule" prefix="Cost Center" /> 
 </instance>
 <instance logicaltable="Dim - Natural Account Segment">
  <apply rule="Qualified Segment Tree Rule" prefix="Account" /> 
  <apply rule="Qualified Segment Non-Tree Rule" prefix="Account" /> 
 </instance>
 <instance logicaltable="Dim - GL Segment1">
  <apply rule="GL Segment Tree Rule" /> 
  <apply rule="GL Segment Non-Tree Rule" /> 

Appendix G
mapping_rules_*.xml Example

G-12



 </instance>
 <instance logicaltable="Dim - GL Segment2">
  <apply rule="GL Segment Tree Rule" /> 
  <apply rule="GL Segment Non-Tree Rule" /> 
 </instance>
 <instance logicaltable="Dim - GL Segment3">
  <apply rule="GL Segment Tree Rule" /> 
  <apply rule="GL Segment Non-Tree Rule" /> 
 </instance>
...
 <instance logicaltable="Dim - AP Account Balancing Segment">
  <apply rule="Role Playing KFF Tree Rule 1" prefix="Balancing Segment" /> 
 </instance>
 <instance logicaltable="Dim - AP Asset Account Balancing Segment">
  <apply rule="Role Playing KFF Tree Rule 1" prefix="Balancing Segment" />
 </instance>
 <instance logicaltable="Dim - AP Pay Account Balancing Segment">
  <apply rule="Role Playing KFF Tree Rule 1" prefix="Balancing Segment" />
 </instance>
 <instance logicaltable="Dim - Asset From Balancing Segment">
  <apply rule="Role Playing KFF Tree Rule 3" prefix="Asset From Balancing Segment" />
 </instance>
 <instance logicaltable="Dim - Asset To Balancing Segment">
  <apply rule="Role Playing KFF Tree Rule 3" prefix="Asset To Balancing Segment" />
 </instance>
 <instance logicaltable="Dim - Asset Balancing Segment">
  <apply rule="Role Playing KFF Tree Rule 3" prefix="Asset Balancing Segment" />
 </instance>
 <instance logicaltable="Dim - Distribution Balancing Segment">
  <apply rule="Role Playing KFF Tree Rule 3" prefix="Distribution Balancing Segment" />
 </instance>
 <instance logicaltable="Dim - SLA Balancing Segment">
  <apply rule="Role Playing KFF Tree Rule 3" prefix="Balancing Segment" />
 </instance>
 <instance logicaltable="Dim - CE Asset Balancing Segment Value">
  <apply rule="Role Playing KFF Tree Rule 1" prefix="Balancing Segment" />
 </instance>
 <instance logicaltable="Dim - CE Offset Balancing Segment Value">
  <apply rule="Role Playing KFF Tree Rule 1" prefix="Balancing Segment" />
 </instance>
...
</instances>
</document>

Appendix G
mapping_rules_*.xml Example

G-13



H
Administration Tool Keyboard Shortcuts

Learn about the keyboard shortcut information for the Oracle BI Server, including
menu items and their corresponding keyboard shortcuts, keyboard shortcuts for
navigating dialogs, and Physical Diagram and Business Model Diagram keyboard
shortcuts.
This appendix contains the following topics:

• Menu Keyboard Shortcuts

• Dialog Keyboard Shortcuts

• Physical Diagram and Business Model Diagram Keyboard Shortcuts

Menu Keyboard Shortcuts
Learn the keyboard shortcuts available when using the Oracle BI Administration Tool
menu options.

File Menu Shortcuts

• The shortcut for New is Ctrl + N.

• The shortcut for Open, and then Offline is Ctrl + F.

• The shortcut for Open, and then Online is Ctrl + L.

• The shortcut for Save is Ctrl + S.

• The shortcut for Check Global Consistency is Ctrl + K.

Edit Menu Shortcuts

• The shortcut for Cut is Ctrl + X.

• The shortcut for Copy is Ctrl + C.

• The shortcut for Paste is Ctrl + V.

• The shortcut for Delete is Delete.

View Menu Shortcut

• The shortcut for Refresh is F5.

Tools Menu Shortcuts

• The shortcut for Show Consistency Checker is Ctrl + E.

• The shortcut for Query Repository is Ctrl + Q.

General Menu Shortcuts

The following table lists the general keyboard shortcuts available in the Administration
Tool menus. You can use the Window menu options to change the focus from the
menus to the navigation panes.

H-1



Action Keyboard Shortcut

Quit the application Alt+ F4

Move cursor to the menu
option

Alt + Underlined letter

Open application's control
menu

Alt+ Spacebar

View the shortcut menu for
the selected item

Shift + F10

Move through the menu bar Left arrow key

Right arrow key

Open a menu option Down arrow key

Move through a menu list Up arrow

Down arrow

Close the current menu Esc

Select or deselect items in a
check box or list

Spacebar

Make noncontinguous
selections

Ctrl + Up arrow + Spacebar

Dialog Keyboard Shortcuts
The table lists the keyboard shortcuts available in Oracle BI Administration Tool
dialogs.

Action Keyboard Shortcut

Move forward through
options

Tab

Move backward through
options

Shift + Tab

Select or deselect an item in
a list

Shift + Up arrow

Shift + Down arrow

Close the current dialog Esc

Go to the top of a list Home

Go to the bottom of a list End

Refresh F5

For dialogs with up arrow
buttons: Move selected item
up in the list

Alt + Up arrow

Note:

Select a list item before using this
shortcut.

Appendix H
Dialog Keyboard Shortcuts

H-2



Action Keyboard Shortcut

For dialogs with down arrow
buttons: Move selected item
down in the list

Alt + Down arrow

Note:

Select a list item before using this
shortcut.

For dialogs with plus (add)
buttons: Insert item from list

Alt + Insert

For dialogs with x (delete)
buttons: Delete item from list

Alt + Delete

For dialogs with pencil (edit)
buttons: Edit item from list

Alt + Enter

Browse dialog: Move focus
between trees located in left
pane

F5, F6, Shift + Tab, Tab

When a table row has a
child row (grid): Expand the
child row from the cell
displaying the plus icon

This situation occurs in the
Define Merge Strategy page
of the Merge Repository
Wizard.

Spacebar

Note:

Move the focus to the cell
displaying the plus icon before
using this shortcut.

When a table row has a
check box: Select or
deselect the check box

This situation occurs in the
Define Merge Strategy page
of the Merge Repository
Wizard.

Spacebar

Note:

Move the focus to the cell
displaying the check box before
using this shortcut.

Appendix H
Dialog Keyboard Shortcuts

H-3



Physical Diagram and Business Model Diagram Keyboard
Shortcuts

The table lists the keyboard shortcuts available in the Physical and Business Model
Diagrams.

Note:

The Physical and Business Model Diagram toolbar options are also available
from the Diagram menu.

Action Keyboard Shortcut

Pan around the diagram
when no diagram objects
are selected

Arrow keys

Select a diagram object: use
the arrow keys to move an
object under the pointer,
then press the spacebar to
select the object

Spacebar + Arrow keys

Open the property dialog for
a selected diagram object

Enter

Cancel current operation Esc

Resume default mode
(Select) after using Pan or
Marquee Zoom

Esc

Deselect an object Use one of the following methods:

Esc

Press the spacebar when the mouse cursor is not over an object

Zoom in +

Zoom out -

Select the pan tool P

You can use the arrow keys to pan around the diagram.

Revert to auto-layout S

Create a new join J

This shortcut selects the New Join option.

Create a new table N

This shortcut selects the New Table option. After using this
shortcut, you can use the arrow keys and spacebar to pan
around the diagram and open the Logical Table dialog for the
new table.

Select the Marquee Zoom
tool

Z

This shortcut selects the Marquee Zoom tool.

Appendix H
Physical Diagram and Business Model Diagram Keyboard Shortcuts

H-4



Action Keyboard Shortcut

Zoom to fit all objects in the
current view

F

Show all tables in Expanded
View, with columns visible

1

Show all tables in Collapsed
View, with columns hidden
and only the table name
displayed

2

Appendix H
Physical Diagram and Business Model Diagram Keyboard Shortcuts

H-5


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documentation and Other Resources
	Conventions

	New Features for Oracle BI Metadata Repository Builders
	New Features for Oracle BI EE 12c (12.2.1.1.0)
	New Features for Oracle BI EE 12c Release (12.2.1.0)

	1 Introduction to Building Your Metadata Repository
	About Oracle BI Server Architecture
	About Layers in the Oracle BI Repository
	Analyzing Your Business Model Requirements
	Identifying the Content of the Business Model
	Identifying Logical Fact Tables
	Identifying Logical Dimension Tables
	Identifying Dimensions
	About Dimensions with Multiple Hierarchies

	Identifying Lookup Tables

	Identifying the Data Source Content for the Physical Layer
	About Types of Physical Schemas in Relational Data Sources
	About Cubes in Multidimensional Data Sources
	Identifying the Data Source Table Structure

	Guidelines for Designing a Repository
	Design Strategies for Structuring the Repository
	Design Tips for the Physical Layer
	Design Tips for the Business Model and Mapping Layer
	Modeling Outer Joins

	Design Tips for the Presentation Layer

	Topics of Interest in Other Guides
	System Requirements and Certification

	2 Before You Begin
	Opening the Administration Tool
	Setting Administration Tool Options
	Oracle BI Administration Tool General Options
	Oracle BI Administration Tool Repository Options

	Editing, Deleting, and Reordering Objects in the Repository
	About Naming Requirements for Repository Objects
	Changing Icons for Repository Objects
	Sorting Objects in the Administration Tool
	About the Oracle BI Server Command-Line Utilities
	About Options in NQSConfig.INI
	About the SampleApp.rpd Demonstration Repository
	Download Repository Command
	What You Need to Know Before Using the Command

	Using Online and Offline Repository Modes
	Editing Repositories in Offline Mode
	Opening Repositories in Offline Mode
	Publish Offline Changes

	Editing Repositories in Online Mode
	Opening Repositories in Online Mode
	Publishing Online Changes
	Guidelines for Using Online Mode

	Checking Out Objects
	Checking In Changes
	About Read-Only Mode
	Opening a MDX XML Repository

	Checking the Consistency of a Repository or a Business Model
	About the Consistency Check Manager
	Running the Consistency Check Manager
	Using the validaterpd Utility to Check Repository Consistency
	Common Consistency Check Messages


	3 Setting Up and Using the Multiuser Development Environment
	About the Multiuser Development Environment
	About the Multiuser Development Process

	Setting Up Projects
	About Projects
	Creating Projects
	About Converting Older Projects During Repository Upgrade

	Setting Up the Multiuser Development Directory
	Identifying the Multiuser Development Directory
	Copying the Master Repository to the Multiuser Development Directory
	Setting Up a Pointer to the Multiuser Development Directory

	Making Changes in a Multiuser Development Environment
	About Changing and Testing Metadata
	Making Changes to a Repository Using Projects
	About Repository Project Checkout
	Checking Out Projects
	Using the extractprojects Utility
	Refreshing the Local Project Extract

	Making Changes to an Entire Repository
	About Multiuser Development Options

	Publishing Changes to Multiuser Development Repositories
	About the Multiuser Development Merge Process
	How Are Multiuser Merges Different from Standard Repository Merges?

	Publishing to the Network
	Enforcing Consistent Repositories When Publishing Changes

	Branching in Multiuser Development
	About Branching
	Using the Multi-Team, Multi-Release Model in Oracle Business Intelligence
	Synchronizing RPD Branches

	Viewing and Deleting History for Multiuser Development
	Viewing Multiuser Development History
	Deleting Multiuser Development History

	Setting Multiuser Development Options

	4 Using a Source Control Management System for Repository Development
	About Using a Source Control Management System with the Administration Tool
	About MDS XML

	Setting Up Your System for Repository Development Under Source Control Management
	Creating an SCM Configuration File
	Creating an MDS XML Repository and Checking In Files to the SCM System
	Saving an Existing Repository File in MDS XML Format
	Creating a New Repository in MDS XML Format
	Linking to Source Control Files to Convert Your Repository (Small Repositories Only)


	Using Source Control Management in Day to Day Repository Development
	Updating, Saving, and Checking In Changes for Repositories Under Source Control
	Handling Errors
	Testing Repositories Under Source Control
	Viewing the Source Control Log

	Using Source Control Management with MUD
	Putting the MUD Master Repository and MUD Log File Under Source Control
	Checking In New Versions of the MUD Master and MUD Log File to Source Control
	Manually Checking In the Updated MUD Master Repository and Log File
	Using a Script to Check In the Updated MUD Master Repository and Log File



	5 Importing Metadata and Working with Data Sources
	About Importing Metadata and Working with Data Sources
	Creating an Oracle BI Repository
	Performing Data Source Preconfiguration Tasks
	Setting Up ODBC Data Source Names (DSNs)
	Setting Up Oracle Database Data Sources
	Oracle 12c Database In-Memory Data Sources
	Oracle 12c on Exadata Data Sources
	Advanced Oracle Database Features Supported by Oracle BI Server
	Oracle Database Fast Application Notification and Fast Connection Failover
	Additional Oracle Database Configuration for Client Installations
	Configuring Oracle BI Server When Using a Firewall
	DataDirect Drivers and Oracle Database
	Oracle Database Connection Errors in Windows 7 64-bit Environments

	About Setting Up Oracle OLAP Data Sources
	Java Data Sources
	Loading Java Data Sources

	About Setting Up Oracle TimesTen In-Memory Database Data Sources
	Configuring TimesTen Data Sources
	Improving Use of System Memory Resources with TimesTen Data Sources
	Configuring OBIS to Access the TimesTen DLL on Windows

	About Setting Up Essbase Data Sources
	About Setting up Cloudera Impala Data Sources
	Obtaining Windows ODBC Driver for Cloudera
	Importing Cloudera Impala Metadata Using the Windows ODBC Driver

	About Setting Up Apache Hive Data Sources
	Obtaining Windows ODBC Driver for Client Installation
	Limitations on the Use of Apache Hive with Oracle Business Intelligence
	Hive Limitation on Dates
	Hive Does Not Support Count (Distinct M) Together with Group By M
	Hive Does Not Support Differing Case Types
	Exception Thrown for Locate Function with an Out-of-Bounds Start Position Value
	Hive May Crash on Queries Using Substring
	Hive Does Not Support Create Table
	Hive May Fail on Long Queries With Multiple AND and OR Clauses
	Queries with Subquery Expressions May Fail
	Hive Does Not Support Distinct M and M in Same Select List


	About Setting Up Hyperion Financial Management Data Sources
	Performing Additional Hyperion Configuration for Client Installations

	Setting Up SAP/BW Data Sources
	Setting Up Oracle RPAS Data Sources
	Setting Up Teradata Data Sources
	Avoiding Spool Space Errors for Queries Against Teradata Data Sources

	Enabling NUMERIC Data Type Support for Oracle Database and TimesTen
	Configuring Essbase to Use a Shared Logon
	Configuring SSO for Essbase, Hyperion Financial Management, or Hyperion Planning Data Sources

	Importing Metadata from Relational Data Sources
	Importing Metadata from Multidimensional Data Sources
	Multidimensional Data Source Connection Options
	About Importing Metadata from Oracle RPAS Data Sources

	About Importing Metadata from XML Data Sources
	About Using XML as a Data Source
	Importing Metadata from XML Data Sources Using the XML Gateway
	Examples of XML Documents Generated by the Oracle BI Server XML Gateway
	About Using HTML Tables as a Data Source

	Importing Metadata from XML Data Sources Using XML ODBC
	Example of an XML ODBC Data Source

	Examples of XML Documents

	About Using a Standby Database with Oracle Business Intelligence
	Configuring a Standby Database with Oracle Business Intelligence
	Creating the Database Object for the Standby Database Configuration
	Creating Connection Pools for the Standby Database Configuration
	Updating Write-Back Scripts in a Standby Database Configuration
	Setting Up Usage Tracking in a Standby Database Configuration
	Setting Up Event Polling in a Standby Database Configuration
	Setting Up Oracle BI Scheduler in a Standby Database Configuration


	6 Working with ADF Data Sources
	What Are ADF Business Components?
	About Operational Reporting with ADF Business Components

	About Importing ADF Business Components Into Oracle Business Intelligence
	About Specifying a SQL Bypass Database
	Setting Up ADF Data Sources
	Creating a WebLogic Domain for ADF Business Components Used with Oracle Business Intelligence
	Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server
	Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper
	Setting Up a JDBC Data Source in the WebLogic Server
	Setting the Logging Level for the Deployed Application in Oracle WebLogic Server

	Importing Metadata from ADF Data Sources
	Performing an Initial Import from ADF Data Sources
	Using Incremental Import to Propagate Flex Object Changes
	Automatically Mapping Flex Object Changes to the Logical Model
	Customizing the Mapping Behavior
	Manually Mapping Flex Object Changes to the Logical Model

	Automatically Mapping Flex Object Changes Using the biserverextender Utility

	Configuring SSL in Oracle WebLogic Server
	Configuring One-Way SSL in Oracle WebLogic Server
	Configuring Two-Way SSL in Oracle WebLogic Server

	Enabling the Ability to Pass Custom Parameters to the ADF Application
	Propagating Labels and Tooltips from ADF Data Sources
	What are Labels and Tooltips?
	About the Session Variable Naming Scheme for UI Hints
	About Determining the Physical Column for a Presentation Column
	About Initializing Session Variables Automatically for Propagating UI Hints
	Using UI Hints From an Oracle ADF Data Source When Creating Analyses
	Using XML Code in Initialization Blocks to Query UI Hints
	ADFQuery Element Reference



	7 Setting Up Database Objects and Connection Pools
	Setting Up Database Objects
	About Database Types in the Physical Layer
	Creating a Database Object Manually in the Physical Layer
	Database General Properties Reference

	When to Allow Direct Database Requests by Default
	SQL Features Supported by a Data Source
	Viewing Database Properties
	Reviewing Supported Database Features

	About Connection Pools
	About Connection Pools for Initialization Blocks

	Creating or Changing Connection Pools
	Setting Connection Pool Properties in the General Tab
	Common Connection Pool Properties in the General Tab
	Multidimensional Connection Pool Properties in the General Tab

	Setting Connection Pool Properties in the Connection Scripts Tab
	Setting Connection Pool Properties in the XML Tab
	Setting Connection Pool Properties in the Write Back Tab
	Connection Pool Properties in the Miscellaneous Tab
	Specifying Application Properties for JDBC (Direct Driver) or JDBC (JNDI) Data Sources

	EXECUTE PHYSICAL DATABASE

	Setting Up Persist Connection Pools
	Removing the Persist Connection Pool Property
	About Setting the Buffer Size and Transaction Boundary

	List Connection Pool Command
	Update Connection Pool Command
	Using the BIServerT2PProvisioner.jar Utility to Change Connection Pool Passwords

	8 Working with Physical Tables, Cubes, and Joins
	About Working with the Physical Layer
	Working with the Physical Diagram
	Creating Physical Layer Folders
	Creating Physical Layer Catalogs and Schemas
	Creating Catalogs
	Creating Schemas

	Using a Variable to Specify the Name of a Catalog or Schema
	Setting Up Display Folders in the Physical Layer

	Working with Physical Tables
	About Tables in the Physical Layer
	About Physical Alias Tables
	Creating and Managing Physical Tables and Physical Cube Tables
	Creating Physical Tables
	Physical Table Properties

	Creating Alias Tables
	Setting Physical Table Properties for XML Data Sources

	Creating and Managing Columns and Keys for Relational and Cube Tables
	Creating and Editing a Column in a Physical Table
	Specifying a Primary Key for a Physical Table
	Deleting Physical Columns for All Data Sources
	Viewing Physical Column Properties

	Viewing Data in Physical Tables or Columns

	Working with Multidimensional Sources in the Physical Layer
	About Physical Cube Tables
	About Measures in Multidimensional Data Sources
	About Externally Aggregated Measures

	About Working with Physical Dimensions and Physical Hierarchies
	Working with Physical Dimension Objects
	Working with Physical Hierarchy Objects
	Adding or Removing Cube Columns in a Hierarchy


	Working with Cube Variables for SAP/BW Data Sources
	Viewing Members in Physical Cube Tables

	Working with Essbase Data Sources
	About Using Essbase Data Sources
	About Incremental Import

	Working with Essbase Alias Tables
	Determining the Value to Use for Display
	Explicitly Defining Columns for Each Alias

	Modeling User-Defined Attributes
	Associating Member Attributes to Dimensions and Levels
	Modeling Alternate Hierarchies
	Modeling Measure Hierarchies
	Improving Performance by Using Unqualified Member Names

	Working with Hyperion Financial Management and Hyperion Planning Data Sources
	Importing Metadata From Hyperion Financial Management Data Sources
	Importing Metadata From Hyperion Planning Data Sources
	About Query Support for Hyperion Financial Management and Hyperion Planning Data Sources

	Working with Oracle OLAP Data Sources
	About Importing Metadata from Oracle OLAP Data Sources
	Working with Oracle OLAP Analytic Workspace (AW) Objects
	Working with Oracle OLAP Dimensions, Hierarchies, and Levels
	Working with Oracle OLAP Cubes and Columns

	Working with Physical Foreign Keys and Joins
	About Physical Joins
	About Primary Key and Foreign Key Relationships
	About Complex Joins
	About Multi‐Database Joins
	About Fragmented Data

	Defining Physical Joins with the Physical Diagram
	Defining Physical Joins with the Joins Manager

	Deploying Opaque Views
	About Deploying Opaque Views
	Deploying Opaque View Objects
	Using the Create View SELECT Statement

	Undeploying a Deployed View
	When to Delete Opaque Views or Deployed Views
	When to Redeploy Opaque Views

	Using Hints in SQL Statements
	How to Use Oracle Hints
	About the Index Hint
	About the Leading Hint

	About Performance Considerations for Hints
	Creating Hints

	Displaying and Updating Row Counts for Physical Tables and Columns
	Displaying Row Counts in the Physical Layer


	9 Working with Logical Tables, Joins, and Columns
	About Working with the Business Model and Mapping Layer
	Creating the Business Model and Mapping Layer
	Creating Business Models
	Automatically Creating Business Model Objects
	Automatically Creating Business Model Objects for Multidimensional Data Sources
	Duplicating a Business Model and Subject Area

	About Working with the Business Model Diagram
	Creating and Managing Logical Tables
	Creating Logical Tables
	Enabling Data Driven Fragment Selection in Logical Table Sources

	Specifying a Primary Key in a Logical Table
	Reviewing Foreign Keys for a Logical Table

	Defining Logical Joins
	Defining Logical Joins with the Business Model Diagram
	Defining Logical Joins with the Joins Manager
	Creating Logical Joins with the Joins Manager
	Creating Logical Foreign Key Joins with the Joins Manager

	Specifying a Driving Table
	Factors That Determine Join Trimming
	Identifying Physical Tables That Map to Logical Objects

	Creating and Managing Logical Columns
	Creating Logical Columns
	Basing the Sort for a Logical Column on a Different Column
	Enabling Double Column Support by Assigning a Descriptor ID Column
	Creating Derived Columns
	Configuring Logical Columns for Multicurrency Support

	Setting Default Levels of Aggregation for Measure Columns
	Setting Up Dimension-Specific Aggregate Rules for Logical Columns
	Specifying Dimension-Specific Aggregation Rules for Multiple Logical Columns
	Defining Aggregation Rules for Multidimensional Data Sources

	Associating an Attribute with a Logical Level in Dimension Tables
	Moving or Copying Logical Columns

	Enabling Write Back On Columns
	Setting Up Display Folders in the Business Model and Mapping Layer
	Modeling Bridge Tables
	Creating Joins in the Physical Layer for Bridge and Associated Dimension Tables
	Modeling the Associated Dimension Tables in a Single Dimension
	Modeling the Associated Dimension Tables in Separate Dimensions

	Modeling Binary Large Object (BLOB) Data and Character Large Object (CLOB) Data

	10 Working with Logical Dimensions
	About Working with Logical Dimensions
	Creating and Managing Dimensions with Level-Based Hierarchies
	About Level-Based Hierarchies
	About Using Dimension Hierarchy Levels in Level-Based Hierarchies

	Manually Creating Dimensions, Levels, and Keys with Level-Based Hierarchies
	Creating Dimensions in Level-Based Hierarchies
	Creating Logical Levels in a Dimension
	Associating a Logical Column and Its Table with a Dimension Level
	Level-Based Measure Calculations
	Grand Total Dimensional Hierarchy

	Identifying the Primary Key for a Dimension Level
	Selecting and Sorting Chronological Keys in a Time Dimension
	Adding a Dimension Level to the Preferred Drill Path
	Adding Sequence Numbers to a Time Dimension's Logical Level

	Rules for Automatically Created Dimensions with Level-Based Hierarchies
	Automatically Creating Dimensions with Level-Based Hierarchies
	Populating Logical Level Counts Automatically

	Creating and Managing Dimensions with Parent-Child Hierarchies
	About Parent-Child Hierarchies
	About Levels and Distances in Parent-Child Hierarchies
	About Parent-Child Relationship Tables

	Creating Dimensions with Parent-Child Hierarchies
	Defining Parent-Child Relationship Tables
	Modeling Aggregates for Parent-Child Hierarchies
	Storing Facts for Parent-Child Hierarchies
	Aggregating Parent-Child Hierarchies

	Adding the Parent-Child Relationship Table to the Model
	Maintaining Parent-Child Hierarchies Based on Relational Tables

	Modeling Time Series Data
	About Time Series Functions
	About the AGO Function
	About the TODATE Function
	About the PERIODROLLING Function

	Creating Logical Time Dimensions
	Selecting the Time Option in the Logical Dimension Dialog
	Setting Chronological Keys for Each Level

	Creating AGO, TODATE, and PERIODROLLING Measures


	11 Managing Logical Table Sources (Mappings)
	About Logical Table Sources
	How Fact Logical Table Sources Are Selected to Answer a Query
	How Dimension Logical Table Sources Are Selected to Answer a Query
	Changing the Default Selection Criteria for Dimension Logical Table Sources

	Consistency Among Data in Multiple Sources

	Creating Logical Table Sources
	Setting Priority Group Numbers for Logical Table Sources
	Defining Physical to Logical Table Source Mappings and Creating Calculated Items
	Unmapping a Logical Column from Its Source

	Defining Content of Logical Table Sources
	Verifying Joins from Dimension Tables to Fact Tables
	Joins from Dimension Tables to Fact Tables
	Logical Table Source Options Reference

	About WHERE Clause Filters

	About Working with Parent-Child Settings in the Logical Table Source
	Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data
	Setting Up Fragmentation Content for Aggregate Navigation
	Specifying Fragmentation Content for Single Column, Value-Based Predicates
	Specifying Fragmentation Content for Single Column, Range-Based Predicates
	Specifying Multicolumn Content Descriptions
	Specifying Parallel Content Descriptions
	Examples of Parallel Content Descriptions

	Specifying Unbalanced Parallel Content Descriptions

	Specifying Fragmentation Content for Aggregate Table Fragments
	Specifying the Aggregate Table Content
	Defining a Physical Layer Table with a Select Statement to Complete the Domain
	Specifying the SQL Virtual Table Content
	Creating Physical Joins for the Virtual Table



	12 Creating and Maintaining the Presentation Layer
	About the Presentation Layer
	Creating and Customizing the Presentation Layer
	About Creating Subject Areas
	Automatically Creating Subject Areas Based on Logical Stars and Snowflakes

	About Removing Columns
	Renaming Presentation Columns to User-Friendly Names
	Exporting Logical Keys in the Subject Area
	Setting an Implicit Fact Column in the Subject Area
	Maintaining the Presentation Layer

	Working with Subject Areas
	Working with Presentation Tables and Columns
	Creating and Managing Presentation Tables
	Reordering Presentation Layer Tables
	About Presentation Columns
	Changing the Presentation Column Name
	Reordering Presentation Columns

	Nesting Folders in Answers and BI Composer

	Working with Presentation Hierarchies and Levels
	Creating and Managing Presentation Hierarchies
	Modeling Dimensions with Multiple Hierarchies in the Presentation Layer
	Editing Presentation Hierarchy Objects

	Creating and Managing Presentation Levels

	Setting Permissions for Presentation Layer Objects
	Generating a Permission Report for Presentation Layer Objects
	Sorting Columns in the Permissions Dialog

	Creating Aliases (Synonyms) for Presentation Layer Objects
	Controlling Presentation Object Visibility

	13 Creating and Persisting Aggregates for Oracle BI Server Queries
	About Aggregate Persistence in Oracle Business Intelligence
	Aggregate Persistence Improvements
	About Aggregate Persistence Errors
	Identifying Query Candidates for Aggregation
	Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation
	About Oracle BI Summary Advisor
	Gathering Summary Advisor Statistics
	Generating and Using Summary Advisor Recommendations
	About Measure Subset Recommendations

	Setting Up the Statistics Database
	Columns in the S_NQ_SUMMARY_ADVISOR Table

	Turning On Usage Tracking
	Turning On Summary Advisor Logging
	Generating an Aggregate Specification Script
	Summary Advisor Stop Criteria Run Constraints

	Using the nqaggradvisor Utility to Run the Oracle BI Summary Advisor

	Using the Aggregate Persistence Wizard to Generate the Aggregate Specification
	Using Model Check Manager to Check for Modeling Problems
	About Model Check Manager
	Running Model Check Manager
	Resolving Model Errors
	Checking Models Using the validaterpd Utility

	Writing the Create Aggregates Specification Manually
	What Constraints Are Imposed During the Create Process?
	Writing the Create Aggregates Specification
	Delete Statement for Aggregate Specification
	Create Statement for Aggregate Specification
	Multiple Aggregates in Aggregate Specification
	Where Clause for Aggregate Specification

	Adding Surrogate Keys to Dimension Aggregate Tables
	About the Create/Prepare Aggregates Syntax
	About Surrogate Key Output from Create/Prepare Aggregates


	Running the Aggregate Specification Script
	Life Cycle Use Cases for Aggregate Persistence
	Using Double Buffering to Refresh Highly Available Aggregates
	Creating Aggregates on TimesTen Sources
	Enabling PL/SQL for TimesTen
	Enabling Performance Enhancement Features for TimesTen


	14 Applying Data Access Security to Repository Objects
	About Data Access Security
	Where to Find Information About Security Tasks

	Row-Level Security
	Setting Up Row-Level Security
	Data Filters
	Setting Up Data Filters in the Repository
	Specifying a Functional Group for an Application Role

	Setting Up Row-Level Security in the Database

	Object Permissions
	Setting Up Object Permissions
	About Permission Inheritance for Users and Application Roles


	Overview of User and Application Role Commands
	Rename Application Role Command
	Delete Application Role Command
	Rename Users Command
	Delete Users Command
	Setting Query Limits
	Accessing the Query Limits Functionality in the Administration Tool
	Limiting Queries By the Number of Rows Received
	Limiting Queries By Maximum Run Time and Restricting to Particular Time Periods
	Allowing or Disallowing Direct Database Requests
	Allowing or Disallowing the Populate Privilege

	About Applying Data Access Security in Offline Mode
	Setting Up Placeholder Application Roles for Offline Repository Development


	15 Completing Oracle BI Repository Setup
	Configuring the Repository for Oracle Scorecard and Strategy Management
	Configuring the Repository for Comments and Status Overrides

	Saving the Repository and Checking Consistency
	Using nqcmd to Test and Refine the Repository
	nqcmd Command Line Arguments

	Upload Repository Command
	Making the Repository Available for Queries
	Creating Data Source Connections to the Oracle BI Server for Client Applications
	Publishing to the User Community

	16 Setting Up Data Sources on Linux and UNIX
	About Setting Up Data Sources on Linux and UNIX
	Settings for Data Source Connections Using Native Gateways
	Sample obis.properties Entries for Oracle Database and DB2 (32-Bit)
	Configuring Data Source Connections Using Native Gateways

	About Updating Row Counts in Native Databases
	Troubleshooting OCI Connections
	Using DataDirect Connect ODBC Drivers on Linux and UNIX
	Configuring Oracle Business Intelligence to Use DataDirect
	Additional DataDirect Configuration for Oracle Essbase

	Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server Database
	Configuring the DataDirect Connect ODBC Driver for MySQL Database
	Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database
	Configuring the DataDirect Connect ODBC Driver for Informix Database
	Configuring the DataDirect Connect ODBC Driver for Cloudera Impala Database
	Configuring Impala 1.3.x to Include a LIMIT Clause
	Modifying the Impala DefaultOrderByLimit Alternate Methods


	Configuring the DataDirect Connect ODBC Driver for Apache Hive Database
	Configuring Database Connections Using Native ODBC Drivers
	Defining Dimension Tables as Not Normalized in Oracle RPAS ODBC Data Sources on AIX UNIX

	Setting Up Oracle TimesTen In-Memory Database on Linux and UNIX
	Configuring Oracle RPAS ODBC Data Sources on AIX UNIX
	Configuring Essbase Data Sources on Linux and UNIX
	Configuring DB2 Connect on IBM z/OS and s/390 Platforms

	17 Managing Oracle BI Repository Files
	Comparing Repositories
	Comparing Repositories Using the Compare Dialog
	Comparing Repositories Using comparerpd
	Turning Off Compare Mode

	Equalizing Objects
	About Equalizing Objects
	Viewing the Upgrade ID for Repository Objects

	Using the Equalize Objects Dialog
	Using the equalizerpds Utility
	About Values for TypeName


	Merging Repositories
	Performing Full Repository Merges
	About Full Repository Merges
	Performing Full Repository Merges With a Common Parent
	Merge Strategies Reference

	Performing Full Repository Merges Without a Common Parent

	Performing Patch Merges
	About Patch Merges
	Generating a Repository Patch
	Applying a Repository Patch
	Using patchrpd to Apply a Patch



	Querying and Managing Repository Metadata
	Querying Related Objects
	Repository Query Options

	Querying the Repository
	Constructing a Filter for Query Results
	Query Filter Examples

	Configuring the Repository for Large Complex Queries

	Changing the Oracle BI Repository Password
	Changing the Oracle BI Repository Password Using the Administration Tool
	Changing the Oracle BI Repository Password Using the obieerpdpwdchg Utility

	OBIS Metadata Compatibility

	18 Using Expression Builder and Other Utilities
	Using Expression Builder
	About the Expression Builder Dialogs
	About the Expression Builder Toolbar
	About the Categories in the Category Pane
	Setting Up an Expression
	Navigating Within Expression Builder
	Building an Expression
	About the INDEXCOL Conversion Function


	Using Administration Tool Utilities
	Using the Replace Column or Table Wizard
	Using the Oracle Business Intelligence Event Tables Utility
	Using the Externalize Strings Utility
	Using the Rename Wizard
	Using the Update Physical Layer Wizard
	Generating Documentation of Repository Mappings
	Generating a Metadata Dictionary
	Providing Access to Metadata Dictionary Information
	Removing Unused Physical Objects
	Persisting Aggregates
	Using the Convert Presentation Folders Utility
	Generating a List of Logical Column Types
	Using the biservergentypexml Utility to Generate a List of Logical Column Types
	Sample Output for a Logical Column Types Document

	Comparing Logical Column Types
	Fixing Upgrade IDs
	Setting Permissions In Bulk

	Using the Calculation Wizard
	Associating S_NQ_ACCT Record with the BI Query Log

	19 Using Variables in the Oracle BI Repository
	Working with Repository Variables
	About Repository Variables
	About Static Repository Variables
	About Dynamic Repository Variables

	Creating Repository Variables
	Using Repository Variables in Expression Builder


	Working with Session Variables
	About Session Variables
	About System Session Variables
	About Nonsystem Session Variables

	Creating Session Variables

	Working with Initialization Blocks
	About Using Initialization Blocks with Variables
	Initializing Dynamic Repository Variables
	Initializing Session Variables
	About Row-Wise Initialization
	Initializing a Variable with a List of Values


	Creating Initialization Blocks
	Creating Session Variable Initialization Blocks
	Assigning a Name and Schedule to Initialization Blocks
	Selecting and Testing the Data Source and Connection Pool
	Initialization Strings Used in Variables to Override Selection Steps
	Examples of Initialization Strings
	Testing Initialization Blocks


	Variable Order in Initialization Blocks
	Associating Variables with Initialization Blocks

	Establishing Execution Precedence
	When Execution of Session Variable Initialization Blocks Cannot Be Deferred
	Enabling and Disabling Initialization Blocks

	Working with Multi-Source Session Variables
	Example to Illustrate the Creation and Usage of Multi-Source Session Variables

	List Repository Variables Command
	Update Repository Variables Command

	A Managing the Repository Lifecycle in a Multiuser Development Environment
	Planning Your Multiuser Development Deployment
	About Business Organization and Governance Process Best Practices
	About Technical Team Roles and Responsibilities

	Multiuser Development Architecture
	About Multiuser Development Concepts
	About Multiuser Development Styles
	Multiuser Development Sandbox Architecture
	Multiuser Development and Lifecycle Management Architecture

	Understanding the Multiuser Development Environment
	About Multiuser Development Environment Task Flow
	About Multiuser Development Projects
	How to Create Branches
	How to Create a Main Branch
	How to Create a Side Branch
	How to Create a Delegated Administration Branch

	Which Merge Utility Should I Use?

	MUD Tips and Best Practices
	Best Practices for Branching
	Best Practices for Setting Up Projects
	Best Practices for Three-Way Merges
	Best Practices for MUD Merges
	Best Practices for Two-Way Merges
	Best Practices for Production Migration
	Best Practices for Application Roles and Users

	Troubleshooting Multiuser Development

	B MUD Case Study: Eden Corporation
	About the Eden Corporation Fictional Case Study
	Phase I - Initiating Multiuser Development (MUD)
	Starting Initiative S
	Setting Up MUD Projects
	First Developer Checks Out
	Second Developer Checks Out
	First Developer Publishes Changes to the Master MUD Repository
	Second Developer Publishes Changes to the Master MUD Repository
	MUD Administrator Test Migration Activities
	Phase I Testing
	Phase I Migration to Production
	Phase I Summary

	Phase II - Branching, Fixing, and Patching
	Setting Up the Second Branch
	Developers Check Out Projects
	Patch Fix for the Main Branch
	Finishing and Merging Phase II Branch
	Phase II Summary

	Phase III - Independent Semantic Model Development
	Security Considerations for Multiple Independent Semantic Models
	HR Semantic Model Developer Builds Content
	Phase III Summary


	C Merge Rules
	About the Merge Process
	Merge Rules and Behavior for Full Merges
	Special Merge Algorithms for Logical Table Sources and Other Objects
	Merging Objects that Use the Vector Merge Algorithm
	Merging Logical Table Sources
	Merging Security Filters
	Inferring the Use Logical Column Property for Presentation Columns
	Merging Aliases


	Merge Rules and Behavior for Multiuser Development Merges
	Merge Rules and Behavior for Patch Merges
	Using Patchrpd to Automate the Patch Process


	D Deleting Unwanted Objects from the Repository
	About the Object Pruning Utility
	Using the Object Pruning Utility
	Creating the Input File
	Running the prunerpd Utility

	Deletion Rules for the Object Pruning Utility

	E Data Types Supported by Oracle BI Enterprise Edition
	Data Type Categories Supported by Oracle BI EE
	Textual Data
	Numeric Data
	Date and Time Data
	Binary Data

	Using the NQSGetSQLDataTypes Procedure to Access Data Type Information
	Oracle BI EE Data Type Limitations
	Floating Point Limitations

	Other Oracle BI Server Limitations
	Oracle Database to Oracle BI EE Data Type Mapping

	F Exchanging Metadata with Databases to Enhance Query Performance
	About Exchanging Metadata with Databases
	Generating the Import File
	Running the Generator
	About the Metadata Input File
	About the Output Files
	Troubleshooting Errors from the Generator
	Metadata Conversion Rules and Error Messages
	Conversion Rules for Oracle Databases
	Conversion Rules for IBM DB2 Databases


	Using Materialized Views in the Oracle Database with Oracle Business Intelligence
	About Using the SQL Access Advisor with Materialized Views
	Deploying Metadata for Oracle Database
	Executing the SQL File for Oracle Database
	Defining Constraints for the Existence of Joins
	Creating the Query Workload
	Creating Materialized Views


	Using IBM DB2 Cube Views with Oracle Business Intelligence
	About Using IBM DB2 Cube Views
	Deploying Cube Metadata
	Executing the Alias-SQL File for IBM Cube Views
	Importing the XML File
	Guidelines for Importing the XML File Using the IBM OLAP Center
	Guidelines for Changing Cube Metadata After Importing the XML File

	Guidelines for Creating Materialized Query Tables (MQTs)



	G XML Schema Files for ADF Mapping Customizations
	app_segment_rule.xsd XML Schema File
	app_segment_rules_*.xml Example
	mapping_rules.xsd XML Schema File
	mapping_rules_*.xml Example

	H Administration Tool Keyboard Shortcuts
	Menu Keyboard Shortcuts
	Dialog Keyboard Shortcuts
	Physical Diagram and Business Model Diagram Keyboard Shortcuts


