ORACLE"

Oracle® Fusion Middleware

Developing Oracle WebLogic Tuxedo Connector Applications for
Oracle WebLogic Server

12c¢(12.2.1.2.0)

E78037-02

December 2016

This document introduces the Oracle WebLogic Tuxedo
Connector application development environment. It describes
how to develop EJBs that allow Oracle WebLogic Server to
interoperate with Oracle Tuxedo objects.

Oracle Fusion Middleware Developing Oracle WebLogic Tuxedo Connector Applications for Oracle
WebLogic Server, 12¢ (12.2.1.2.0)

E78037-02
Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ... vii
Documentation AccesSIbilitycouoiiiiiiiiiiiiie s vii
CONVENIONSvviiereieieieie bbb vii

1 Introduction to Oracle WebLogic Tuxedo Connector Programming

1.1 Guide to this DOCUMENLc.cciiiiiiiiiiiiiiicc e 11
1.2 Developing Oracle WebLogic Tuxedo Connector Applications..........cccccevuvevereririrererenererenenenes 1-2
1.2.1 Developing Oracle WebLogic Tuxedo Connector Clientsc.ccoeeeereiiicerireincnnnen. 1-2
1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers..........ccccooovreieieiicicieinnnnee. 1-2
1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo CORBA
ODJECES .o 1-3
1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives........ccccoovmeieiiiiicieieiiiieeccieee 1-3
1.4 Oracle WebLogic Tuxedo Connector TypedBuffers...........ccoooovriiiiiiiincce 1-4
1.5 New and Changed WTC Features for this Release.............cccooevviiiniiiiiiiiiiiiccnns 1-4

2 Developing Oracle WebLogic Tuxedo Connector Client EJBs

2.1 Joining and Leaving APPLCAtiONS........cccoeueuiiriririiiiiiirireiecrreeeeeeeee e 2-1
2.1.1 Joining an APPLCAtIONcccciiiiiiiiiiic e 2-1
2.1.2 Leaving an APPLCation ... 2-2

2.2 Basic Client OPerationccccueiiiiricieiiicie e 2-2
2.2.1 Get an Oracle Tuxedo ODJect ... 2-2
2.2.2 Perform Message BUffering ... 2-3
2.2.3 Send and Receive MESSAZES........cccciuiimimimiiiiiiiiiiiiicccc e 2-3
2.2.4 Close a Connection to an Oracle Tuxedo Object...........ccoceuriiriniiiiicieieiccicie, 2-6

2.3 Example Client EJB ..o 2-6

3 Developing Oracle WebLogic Tuxedo Connector Service EJBs

3.1 Basic Service EJB Operation ..o 3-1
3.1.1 Access Service INfOrmationccevvevieieieieieieieeeeee ettt et ssesseseereeveeaeevesbessenns 3-1
3.1.2 BUfEr MESSAZEScccuumiimiiiiiiciiiiciciciccece e 3-1
3.1.3 Perform the Requested SEIVICE. ... 3-2

3.2 Example Service EJB.........cooiiiii s 3-3

4 Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA
Interoperability

4.1 How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA

JAVA APL o 4-1
4.1.1 Using CosNaming SEIVICEcccoeueveiiiuiiiiiiiicieieicie et 4-2
4.1.2 Using FaCtOTYFINAETc.cccoiiiiiiiiiiiiiccccccccccc e 4-4

4.2 How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector-....... 4-5
4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic
TUXedO CONNECLOTovieiiiiiiicii s 4-6
4.2.2 How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic
Tuxedo CONNECLOTooviuiiiiiiiii e 4-6
4.3 How to Use FederationURL FOrmatscccocooiviiiiiiiiiii e 4-9
4.3.1 Using corbaloc URL FOImatccccceoiiiiiiiiiiiiiiiccccccceececece e 4-9
4.3.2 Using the corbaname URL Format ..., 4-10
4.4 How to Manage Transactions for Oracle Tuxedo CORBA Applications...........ccccceceueeurunen. 4-11

5 Oracle WebLogic Tuxedo Connector JATMI Transactions

5.1 Global TranSacCtioNSccoiiiiiiiiiiiii s 5-1
5.2 JTA Transaction APL.......c.coo ittt sttt sttt ettt et s b et b e e 5-1
5.2.1 Types of JTA INEEITACES.ccciuimimiiiiiiiccccccccceccc et 5-2
5.2.2 JTA Transaction PrimitiVesccceccvieiiieiiiiieeieeeeceeete ettt seaeeae e anesveesane s 5-2
5.3 Defining a Transactionccccoviiiriiiniiiiiiiiiiiiii s 5-3
5.3.1 Starting @ TranSaCtioNccuoiirieiiiiicie e 5-3
5.3.2 Terminating a TranSactionc.coiiiiiiiiiiiiiii s 5-3
5.4 Oracle WebLogic Tuxedo Connector Transaction Rulescccccovvveuirnnnnnnnnnnrrrene 5-4
5.5 Example Transaction Code.........cccooviriiiiiiiiiininiiiiiciiicere s 5-5

6 Oracle WebLogic Tuxedo Connector JATMI Conversations

6.1 Overview of Oracle WebLogic Tuxedo Connector Conversational Communication............ 6-1
6.2 Oracle WebLogic Tuxedo Connector Conversation Characteristics...........c.cccovvviiiinninnn 6-2
6.3 Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives..........ccccocooreiiininnnen. 6-2
6.4 Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers 6-2
6.4.1 Creating Conversational CHENtScocevvviriririiiiiiiiricccrcrccerr s 6-3
6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational Servers....................... 6-4
6.5 Sending and Receiving MeSSages.........ccocoeueuiiuiieiiiicieieicecie e 6-4
6.5.1 Sending MeSSAZEScccorueiiiiiirieieiicie ittt 6-4
6.5.2 Receiving MESSAZES.ccoovvviieriiietitiiietect ettt 6-5
6.6 Ending a CONVErSatiOncccceueiiiiiiiiiiiiiiiiiciiriceeceee e 6-5
6.6.1 Oracle Tuxedo Application Originates Conversation............ccooeeuvecerereincceininicnnennnn. 6-5
6.6.2 Oracle WebLogic Tuxedo Connector Application Originates Conversation 6-5
6.6.3 Ending Hierarchical Conversations...........ccccceoiiimieiniiiiciciicccecc 6-5
6.7 Executing a Disorderly DISCONNECtc.ccevururiririiiiiriniiiireeeeeerreeee e 6-6

6.8 Understanding Conversational Communication Events ... 6-6

6.9 Oracle WebLogic Tuxedo Connector Conversation Guidelines.............ccccocevevrrvnvrrnnenenes 6-7

7 Using FML with Oracle WebLogic Tuxedo Connector

7.1 OVerview of EML......cccooiiiiiiiiiiiiic s 7-1
7.2 The Oracle WebLogic Tuxedo Connector FEML APL..........cccccoovvniiininniiinnrnieieenes 7-2
7.3 FML Field Table AdminiStration..........cccoeeueieiririciininiceinriccireeeeesree e 7-2
7.3.1 Using the DynRdHdr Property for mkfldclass32 Class.........ccoeeuiiririeiniiriciniiininen, 7-3
7.4 Using TypedFML32 CONStIUCIOrSccovviviiiiiiiiiiii s 7-4
7.4.1 Gaining TypedFML32 Performance Improvementscccoceevververeverererrnesennnenenes 7-4
7.5 tBridge XML/FML32 Translation ... 7-5
7.5 0 FLAT . 7-5
7.5.2 NNO o 7-6
7.5.3 FML32 Considerations..........cccoeviiiiimiiiiiiiniiiiiiiicnccssssssss s 7-6
7.6 Using the XmIFmlCnv Class for XML to and From FML/FML32 Translation....................... 7-7
7.6.1 Limitations of XmMIFMICNV ClaSsccoeueiririimeriiniiieieiinieiectreeeeeesene e 7-7
7.7 MBSTRING USAGEcoovuiuiiiiiiiiiiiiiiie st 7-7
7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain............ccccoeeieieiniiiinininnnnnn. 7-8
7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain..........cccccceuverrevrerrenenne. 7-8
7.7.3 Using FML with Oracle WebLogic Tuxedo Connectorcccccocevuvevverirrrernnerenenenes 7-8

8 Oracle WebLogic Tuxedo Connector JATMI VIEWS

8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW Bufferscccccccovvvvvnnnnnnnne. 8-1
8.2 How to Create a VIEW Description File..........ccccccooiiiiiiiie 8-1
8.2.1 Example VIEW Description File..........cccoiiiiiiiiiii 8-3
8.3 How to Use the viewj COMPILercccocoviiiiiriiiiiiiiiiiiccc s 8-3
8.4 How to Pass Information to and from a VIEW Buffer ..., 8-4
8.5 How to Use VIEW Buffers in JATMI Applications..........cccccovuvivirivirinininininnniniinrrceceeeenes 8-5
8.5.1 How to Get VIEW32 Data In and Out of FML32 Bufferscccccvueeicinnccinniccnne. 8-6
8.6 Using the XmlViewCnv Class for XML to and From View/View(32) Translation................. 8-7
8.6.1 Translating Nested VIEWSc.cccouiiiiiiiiiiiic 8-8

9 How to Create a Custom AppKey Plug-in

9.1 How to Create a Custom PIUG-INcccovvviiiiiiiiiiiiic s 9-1
9.2 Example Custom PIUG-IN......ccccooiiiiiiiiiiiiiiiciieccc s 9-1

10 Application Error Management

10.1 Testing for Application EITOTSccccoiiiiiiiiiiiiiiiccccccceee e 10-1
10.1.1 EXCePtioN ClasSesccvuiviuimimiuiiiiiiiiiiiiciciiciciciciiic e 10-1
10.1.2 Fatal Transaction EITOTScccccciiiiiiiiiiiiiiiicciccc e 10-1

10.2 Oracle WebLogic Tuxedo Connector Time-Out Conditions.........cccceueirieieiiiicieiiiincienns 10-2
10.2.1 Blocking vs. Transaction Time-0ULccccocciuiiiciiieiiiiceeccceeeeeeeee e 10-2
10.2.2 Effect 0N COMIMUIL() 1ovirvirreririesieieieieietetete et se et este st b e s e saessesseseesaeseeseesessensessessens 10-2

Vi

10.2.3 Effect of TPNOTRANcccoevrrrunennee

10.3 Guidelines for Tracking Application Events

Preface

This preface describes the document accessibility features and conventions used in this
guide—.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. conl pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Introduction to Oracle WebLogic Tuxedo
Connector Programming

This chapter provides information about the development environment you will be
using to write code for applications that interoperate between Oracle WebLogic Server
and Oracle Tuxedo.

This chapter includes the following sections:

* Guide to this Document

¢ Developing Oracle WebLogic Tuxedo Connector Applications
® Oracle WebLogic Tuxedo Connector JATMI Primitives

* Oracle WebLogic Tuxedo Connector TypedBuffers

* New and Changed WTC Features for this Release.

Note:

For information on how to develop Oracle WebLogic Server Enterprise
JavaBeans (E]Bs), see Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

1.1 Guide to this Document

This document introduces the Oracle WebLogic Tuxedo Connector application
development environment. It describes how to develop E]Bs that allow Oracle
WebLogic Server to interoperate with Oracle Tuxedo objects.

The document is organized as follows:

¢ Introduction to Oracle WebLogic Tuxedo Connector Programming, provides
information about the development environment you will be using to write code
for applications that interoperate between Oracle WebLogic Server and Oracle
Tuxedo.

* Developing Oracle WebLogic Tuxedo Connector Client E]Bs, provides information
on how to create client E]Bs.

* Developing Oracle WebLogic Tuxedo Connector Service E]Bs, provides
information on how to create service E]Bs.

* Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA
Interoperability, provides information on how to develop CORBA applications for
the Oracle WebLogic Tuxedo Connector.

Introduction to Oracle WebLogic Tuxedo Connector Programming 1-1

Developing Oracle WebLogic Tuxedo Connector Applications

¢ Oracle WebLogic Tuxedo Connector JATMI Transactions, provides information on
global transactions and how to define and manage them in your applications.

® Oracle WebLogic Tuxedo Connector JATMI Conversations, provides information
on conversations and how to define and manage them in your applications.

¢ Using FML with Oracle WebLogic Tuxedo Connector, discusses the Field
Manipulation Language (FML) and describes how the Oracle WebLogic Tuxedo
Connector uses FML.

® Oracle WebLogic Tuxedo Connector JATMI VIEWsS, provides information on View
buffers and how to define and manage them in your applications.

* How to Create a Custom AppKey Plug-in, provides information on how to develop
a Custom AppKey Plug-in.

* Application Error Management, provide mechanisms to manage and interpret
error conditions.

1.2 Developing Oracle WebLogic Tuxedo Connector Applications

Note:

For more information on the Oracle WebLogic Tuxedo Connector JATMI,
view the Javadocs for WebLogic Classes. The Oracle WebLogic Tuxedo
Connector classes are located in the weblogic.wtc.jatmi and weblogic.wtc.gwt
packages.

In addition to the Java code that expresses the logic of your application, you will be
using the Java Application -to-Transaction Monitor Interface (JATMI) to provide the
interface between Oracle WebLogic Server and Oracle Tuxedo.

1.2.1 Developing Oracle WebLogic Tuxedo Connector Clients

Note:

For more information, see Developing Oracle WebLogic Tuxedo Connector
Client EJBs.

A client process takes user input and sends a service request to a server process that
offers the requested service. Oracle WebLogic Tuxedo Connector JATMI client classes
are used to create clients that access services found in Oracle Tuxedo. These client
classes are available to any service that is made available through a the Oracle
WebLogic Tuxedo Connector WTCServer MBean.

1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers

Note:

For more information, see Developing Oracle WebLogic Tuxedo Connector
Service EJBs.

1-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Oracle WebLogic Tuxedo Connector JATMI Primitives

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service
subroutines. Oracle WebLogic Tuxedo Connector uses E]Bs to implement services
which Oracle Tuxedo clients invoke.

1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo CORBA
objects

Note:

For more information, see Using Oracle WebLogic Tuxedo Connector for
RMI/IIOP and CORBA Interoperability.

The Oracle WebLogic Tuxedo Connector provides bi-directional interoperability
between Oracle WebLogic Server and Oracle Tuxedo CORBA objects. The Oracle
WebLogic Tuxedo Connector:

* Enables Oracle Tuxedo CORBA objects to invoke upon E]Bs deployed in Oracle
WebLogic Server using the RMI/IIOP API (Inbound).

¢ Enables objects (such as E]Bs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo using the RMI/IIOP API (Outbound).

* Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo using a CORBA Java API (Outbound).

1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives

The JATMI is a set of primitives used to begin and end transactions, allocate and free
buffers, and provide the communication between clients and servers.

Table 1-1 JATMI Primitives
|

Name Operation

t pacal | Use for asynchronous invocations of an Oracle Tuxedo service during
request/response communication.t pacal | has two forms:

¢ deferred synchronous
* asynchronous

t pacal | Use for synchronous invocation of an Oracle Tuxedo service during
request/response communication.

t pconnect Use to establish a connection to an Oracle Tuxedo conversational
service.
t pdi scon Use to abort a conversational connection and generate a

TPEV_DISCONIMM event when executed by the process controlling
the conversation.

t pdequeue Use for receiving messages from an Oracle Tuxedo /Q during request/
response communication.

t penqueue Use for placing a message on an Oracle Tuxedo /Q during request/
response communication.

Introduction to Oracle WebLogic Tuxedo Connector Programming 1-3

Oracle WebLogic Tuxedo Connector TypedBuffers

Table 1-1 (Cont.) JATMI Primitives
__|

Name Operation

tpgetrply Use for retrieving replies from an Oracle Tuxedo service during
request/response communication.

t precv Use to receive data across an open connection from an Oracle Tuxedo
application during conversational communication.

t psend Use to send data across a open connection to an Oracle Tuxedo
application during conversational communication.

tpterm Use to close a connection to an Oracle Tuxedo object.

1.4 Oracle WebLogic Tuxedo Connector TypedBuffers

Oracle WebLogic Tuxedo Connector provides an interface called TypedBuffers that
corresponds to Oracle Tuxedo typed buffers. Messages are passed to servers in typed
buffers. The Oracle WebLogic Tuxedo Connector provides the following buffer types:

Table 1-2 TypedBuffers
___|

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates
with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters
(byte array), any of which can be null. Oracle Tuxedo equivalent:
CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries

its own identifier, an occurrence number, and possibly a length
indicator. Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo

equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Oracle Tuxedo
equivalent: VIEW

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

TypedMBString Buffer type used when the data is a wide array of characters to support
multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

1.5 New and Changed WTC Features for this Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.2.0.

1-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

2

Developing Oracle WebLogic Tuxedo
Connector Client EJBs

This chapter describes how to create Oracle WebLogic Tuxedo Connector client EJBs.
These client E]Bs take user input and send service requests to a server process or
outbound object that offers a requested service. Oracle WebLogic Tuxedo Connector

JATMI client classes are used to create clients that access services found in Oracle
Tuxedo.

This chapter includes the following sections:
¢ Joining and Leaving Applications
* Basic Client Operation

¢ Example Client EJB

Note:

For more information on the Oracle WebLogic Tuxedo Connector JATMI,
view the Javadocs for WebLogic Classes. The Oracle WebLogic Tuxedo
Connector classes are located in the weblogic.wtc.jatmi and weblogic.wtc.gwt
packages.

2.1 Joining and Leaving Applications

Oracle Tuxedo and Oracle WebLogic Tuxedo Connector have different approaches to
connect to services.

2.1.1 Joining an Application

The following section compares how Oracle Tuxedo and Oracle WebLogic Tuxedo
Connector join an application:

¢ Oracle Tuxedo uses t pi ni t () tojoin an application.

® Oracle WebLogic Tuxedo Connector uses a WICServer MBean to provide
information required to create a path to the Oracle Tuxedo service. Security and
client authentication is provided by configuring the Remote TDM and Imported
Services MBean components of a WTCServer MBean. This pathway is created
when the Oracle WebLogic Server is started and a WTCServer MBean is present in
the confi g. xnl file and assigned (targeted) to a server.

¢ Oracle WebLogic Tuxedo Connector uses TuxedoConnect i onFact ory to geta
TuxedoConnection object and then uses getTuxedoConnection() to make a
connection to the Oracle Tuxedo object. The following example shows how a

Developing Oracle WebLogic Tuxedo Connector Client EJBs 2-1

Basic Client Operation

Oracle WebLogic Server application joins an Oracle Tuxedo application using
Oracle WebLogic Tuxedo Connector.

Example 2-1 Example Client Code to Join an Oracle Tuxedo Application

try {
ctXx
tcf

new I nitial Context();

(TuxedoConnect i onFact ory)
ct x. | ookup("tuxedo. servi ces. TuxedoConnection");
} catch (Nam ngException ne) {

/1 Could not get the tuxedo object, throw TPENCENT

t hrow new TPExcepti on(TPExcept i on. TPENCENT,
"Coul d not get TuxedoConnectionFactory : " + ne);

}

myTux = tcf. get TuxedoConnection();

2.1.2 Leaving an Application

The following section compares how Oracle Tuxedo and Oracle WebLogic Tuxedo
Connector leave an application:

® Oracle Tuxedo uses t pt er n{) to leave an application.

* Oracle WebLogic Tuxedo Connector uses the JATMI primitive tpterm() to close a
connection to an Oracle Tuxedo object.

* Oracle WebLogic Tuxedo Connector closes the pathway to an Oracle Tuxedo
service when a WTCServer MBean is assigned a new target server or the server is
shutdown.

2.2 Basic Client Operation

A client process uses Java and JATMI primitives to provide the following basic
application tasks:

* Get an Oracle Tuxedo Object
¢ Perform Message Buffering
* Send and Receive Messages

* C(Close a Connection to an Oracle Tuxedo Object

A client may send and receive any number of service requests before leaving the
application.

2.2.1 Get an Oracle Tuxedo Object

Establish a connection to a remote domain by looking up
t uxedo. servi ces. TuxedoConnect i on in the JNDI tree to get
TuxedoConnectionFactory, and use it to get a TuxedoConnect i on object.

2-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Basic Client Operation

2.2.2 Perform Message Buffering

Use the following TypedBuffers when sending and receiving messages between your
application and Oracle Tuxedo:

Table 2-1 TypedBuffers
__|

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates
with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters
(byte array), any of which can be null. Oracle Tuxedo equivalent:
CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries

its own identifier, an occurrence number, and possibly a length
indicator. Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo

equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Oracle Tuxedo
equivalent: View

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: View32.

TypedMBString Buffer type used when the data is a wide array of characters to support
multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

2.2.3 Send and Receive Messages

Oracle WebLogic Tuxedo Connector clients support three types of communications
with Oracle Tuxedo service applications:

* Request/Response Communication
* Conversational Communication

* Enqueuing and Dequeuing Messages

2.2.3.1 Request/Response Communication

Note:

Oracle WebLogic Tuxedo Connector does not provide a JATMI primitive to
support setting the priority of a message request. All messages originating
from a Oracle WebLogic Tuxedo Connector client have a message priority of
50.

Developing Oracle WebLogic Tuxedo Connector Client EJBs 2-3

Basic Client Operation

Use the following JATMI primitives to request and receive response messages
between your Oracle WebLogic Tuxedo Connector client application and Oracle
Tuxedo:

Table 2-2 JATMI Primitives
- -

Name Operation

t pacal | Use for asynchronous invocations of an
Oracle Tuxedo service.This JATMI primitive
has two forms:
¢ deferred synchronous
* asynchronous

t pacal | Use for synchronous invocation of an Oracle
Tuxedo service.

tpgetrply Use for retrieving replies from deferred
synchronous calls to an Oracle Tuxedo
service.

t pcancel Use to cancel an outstanding message reply

for a call descriptor returned by t pacal | .

Note: You can not use t pcancel to cancel a
call descriptor associated with a transaction.

2.2.3.1.1 Using Synchronous Service Calls

Usetpcal | tosend a request to a service and synchronously await for the reply. The
service specified must be advertised by your Oracle Tuxedo application. Logically,
t pcal | () has the same functionality as calling t pacal | () and immediately calling

tpgetreply().

2.2.3.1.2 Using Deferred Synchronous Service Calls

A deferred synchronous t pacal | allows you to send a request to an Oracle Tuxedo
service and not immediately wait for the reply. This allows you to send a request,
perform other work, and then retrieve the reply.

A deferred t pacal | () service call sends a request to an Oracle Tuxedo service and
immediately returns from the call. The service specified must be advertised by your
Oracle Tuxedo application. Upon successful completion of the call, t pacal I ()
returns an object that serves as a descriptor. The calling thread is now available to
perform other tasks. You can use the call descriptor to:

* Get the correct reply for the sent request using t pget r epl y()

* Cancel an outstanding message reply using t pcancel ().

When you are ready to retrieve the reply, use t pget r epl y() to dequeue the reply
using the call descriptor returned by t pacal | () . If the reply is not immediately
available, the calling thread polls for the reply.

Ift pacal | () isin a transaction, you must receive the reply using t pget r epl y()
before the transaction can commit. You can not use t pcancel to cancel a call
descriptor associated with a transaction. For example: If you make three t pacal | ()
requests in a transaction, you must make three t pget r epl y() calls and successfully
dequeue a reply for each of the three requests for the transaction to commit.

2-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Basic Client Operation

2.2.3.1.3 Using Asynchronous Calls

The asynchronous t pacal | allows you to send a request to an Oracle Tuxedo service
and release the thread resource that performed the call to the thread pool. This allows
a very large number of outstanding requests to be serviced with a much smaller
number of threads.

An asynchronous t pacal | () service call sends a request to an Oracle Tuxedo service.
The service specified must be advertised by your Oracle Tuxedo application. Upon
successful completion of the call, asynchronous t pacal | () returns an object that
serves as a descriptor. The calling thread is now available to perform other tasks. You
can use the call descriptor to identify the correct message reply from

Tpacal | AsynchRepl y for a sent message request or cancel an outstanding message
reply using t pcancel ().

Note:

You can not use the call descriptor to invoke t pget repl y() .

When the service reply is ready, the cal | back object is invoked on a different thread.
If the original request succeeded, the Tpacal | AsynchRepl y. sucess method
returns the reply from the service. If the original request failed, the

Tpacal | AsynchRepl y. f ai | ur e method returns a failure code.

You should implement the cal | back object using the following guidelines:

¢ The reply thread is obtained from the threadpool. The thread making the
asynchronous t pacal | () does not wait for the reply message.

® The user context of the reply thread will be restored to that of the original caller of
asynchronous t pacal | ().

e [tis up to the callback object to restore any additional context and resume whatever
processing was interrupted when the original asynchronous t pacal | () was
made.

e [tis up to you to synchronize work within the multi threaded environment. For
example: If an asynchronous t pacal | () request is made and the reply is returned
immediately, it is possible for the call back object to be modified by the reply
thread before the calling thread has finished.

¢ The reply thread will not retain the transaction context of the calling thread.

e Ifasynchronoust pacal | () isin a transaction, you must receive the reply using
Tpacal | AsynchRepl y before the transaction can commit. You can not use
t pcancel to cancel a call descriptor associated with a transaction.

2.2.3.2 Conversational Communication

Note:

For more information on Conversational Communication, see Oracle
WebLogic Tuxedo Connector JATMI Conversations.

Developing Oracle WebLogic Tuxedo Connector Client EJBs 2-5

Example Client EJB

Use the following conversational primitives when creating conversational clients that
communicate with Oracle Tuxedo services:

Table 2-3 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

t pconnect Use to establish a connection to an Oracle Tuxedo conversational service.

t pdi scon Use to abort a connection and generate a TPEV_DISCONIMM event
when executed by the process controlling the conversation.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

t psend Use to send data across an open connection to an Oracle Tuxedo
application.

2.2.3.3 Enqueuing and Dequeuing Messages
Use the following JATMI primitives to enqueue and dequeue messages between your

Oracle WebLogic Tuxedo Connector client application and Oracle Tuxedo:

Table 2-4 JATMI Primitives
|

Name Operation
t pdequeue Use for receiving messages from an Oracle Tuxedo /Q.
t penqueue Use for placing a message on an Oracle Tuxedo /Q.

2.2.4 Close a Connection to an Oracle Tuxedo Object

Use tpterm() to close a connection to an object and prevent future operations on this
object.

2.3 Example Client EJB

The following Java code provides an example of the Toupper Bean. j ava client EJB
which sends a string argument to a server and receives a reply string from the server.

Example 2-2 Example Client Application

public String Toupper(String toConvert)
throws TPException, TPRepl yException
{

Context ctx;
TuxedoConnectionFactory tcf;
TuxedoConnection nyTux;
TypedString nyDat a;

Reply nyRtn;

int status;

[og("toupper called, converting " + toConvert);

try {

2-6 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Example Client EJB

ctx
tcf

new | nitial Context();
(TuxedoConnecti onFactory) ctx. | ookup(
"t uxedo. servi ces. TuxedoConnecti on");

}

catch (Nam ngException ne) {
/1 Could not get the tuxedo object, throw TPENCENT
throw new TPExcepti on(TPExcepti on. TPENCENT, "Coul d not get
TuxedoConnectionFactory : " + ne);

}
myTux = tcf.get TuxedoConnection();
myData = new TypedString(toConvert);

[og("About to call tpcall");

try {
myRtn = nyTux.tpcal | ("TOUPPER', nyData, 0);

catch (TPRepl yException tre) {
log("tpcall threw TPRepl yExcption " + tre);
throw tre;

}
catch (TPException te) {

log("tpcal | threw TPException " + te);
throw te;

}
catch (Exception ee) {

log("tpcall threw exception: " + ee);

t hrow new TPException(TPExcepti on. TPESYSTEM "Exception: " + ee);
log("tpcall successfull!");
myData = (TypedString) nyRtn.getRepl yBuffer();
myTux. tptern{);// Cosing the association with Tuxedo

return (nmyData.toString());

Developing Oracle WebLogic Tuxedo Connector Client EJBs 2-7

Example Client EJB

2-8 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

3

Developing Oracle WebLogic Tuxedo
Connector Service EJBs

This chapter describes how to create Oracle WebLogic Tuxedo Connector service E]Bs.

This chapter includes the following sections:
¢ Basic Service EJB Operation

e Example Service EJB

3.1 Basic Service EJB Operation

A service application uses Java and JATMI primitives to provide the following tasks:
® Access Service Information

¢ Buffer Messages

e Perform the Requested Service

3.1.1 Access Service Information

Use the TPServicelnformation class to access service information sent by the Oracle
Tuxedo client to run the service.

Table 3-1 JATMI TPServicelnformation Primitives

Buffer Type Description

get Servi ceDat a() Use to return the service data sent from the Oracle Tuxedo Client.

get Servi ceFl ags() Use to return the service flags sent from the Oracle Tuxedo Client.

get Servi ceNane() Use to return the service name that was called.

3.1.2 Buffer Messages

Use the following TypedBuffers when sending and receiving messages between your
application and Oracle Tuxedo:

Table 3-2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates

with the null character. Oracle Tuxedo equivalent: STRING.

Developing Oracle WebLogic Tuxedo Connector Service EJBs 3-1

Basic Service EJB Operation

Table 3-2 (Cont.) TypedBuffers
___|

Buffer Type Description

TypedCArray Buffer type used when the data is an undefined array of characters
(byte array), any of which can be null. Oracle Tuxedo equivalent:
CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries

its own identifier, an occurrence number, and possibly a length
indicator. Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Tuxedo equivalent:
VIEW

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

TypedXOctet Buffer type used when the data is an undefined array of characters
(byte array) any of which can be null. X_OCTET is identical in
semantics to CARRAY. Oracle Tuxedo equivalent: X_OCTET.

TypedXCommon Buffer type identical in semantics to View. Oracle Tuxedo equivalent:
VIEW.

TypedXCType Buffer type identical in semantics to View. Oracle Tuxedo equivalent:
VIEW.

TypedMBString Buffer type used when the data is a wide array of characters to support

multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

3.1.3 Perform the Requested Service

Use Java code to express the logic required to provide your service.

3.1.3.1 Return Client Messages for Request/Response Communication
Use the TuxedoReply class set Repl yBuf f er () method to respond to client requests.

3.1.3.2 Use tpsend and tprecv for Conversational Communication

Note:

For more information on Conversational Communication, see Oracle
WebLogic Tuxedo Connector JATMI Conversations.

Use the following JATMI primitives when creating conversational servers that
communicate with Oracle Tuxedo clients:

3-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Example Service EJB

Table 3-3 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event when
executed by the process controlling the conversation.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across a open connection to an Oracle Tuxedo application.

3.2 Example Service EJB

The following provides an example of the Tol ower Bean. j ava service EJB which
receives a string argument, converts the string to all lower case, and returns the
converted string to the client.

Example 3-1 Example Service EJB

public Reply service(TPServicel nformation nydata) throws TPException {
TypedString dat a;
String | owered;
TypedString return_data,

| og("service tol ower called");
data = (TypedString) nydata. get ServiceData();
| owered = data.toString().toLowerCase();

return_data = new TypedString(l owered);

mydat a. set Repl yBuf fer(return_data);
return (nydata);

Developing Oracle WebLogic Tuxedo Connector Service EJBs 3-3

Example Service EJB

3-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

A

Using Oracle WebLogic Tuxedo Connector
for RMI/IIOP and CORBA Interoperability

This chapter describes how to modify applications to use Oracle WebLogic Tuxedo
Connector to support interoperability between Oracle WebLogic Server and Oracle
Tuxedo CORBA objects.

This chapter includes the following sections:

* How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the
CORBA Java API

¢ How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo
Connector

e How to Use FederationURL Formats

* How to Manage Transactions for Oracle Tuxedo CORBA Applications

Note:

You will need to perform some administration tasks to configure the Oracle
WebLogic Tuxedo Connector for CORBA interoperability. For information on
how to administer the Oracle WebLogic Tuxedo Connector for CORBA
interoperability, see Administration of Corba Applications in Administering
WebLogic Tuxedo Connector for Oracle WebLogic Server.

For information on how to develop Oracle Tuxedo CORBA applications, see
CORBA Programming at ht t p: / / docs. or acl e. com cd/ E13203_01/
t uxedo/ t ux100/i nt er m cor baprog. ht m .

4.1 How to Develop Oracle WebLogic Tuxedo Connector Client Beans
using the CORBA Java API

The Oracle WebLogic Tuxedo Connector enables objects (such as E]Bs or RMI objects)
to invoke upon CORBA objects deployed in Oracle Tuxedo using the CORBA Java API
(Outbound). Oracle WebLogic Tuxedo Connector implements a WTC ORB which uses
Oracle WebLogic Server RMI-IIOP runtime and CORBA support. This enhancement
provides the following features:

¢ Support of out and inout parameters

® Support for a call a CORBA service from Oracle WebLogic Server using
transactions and security.

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/interm/corbaprog.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/interm/corbaprog.html

How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

* Support for an ORB hosted in JNDI rather than an instance of the JDK ORB used in
previous releases.

* A wrapper is provided to allow users with legacy applications to use the new ORB
without modifying their existing applications. Oracle recommends that users
migrate to the new method of looking up the ORB in JNDI instead of doing:

ORB orb = ORB.init(args, Prop);

To use CORBA Java API, you must use the WTC ORB. Use one of the following
methods to obtain an ORB in your Bean:

Properties Prop;

Prop = new Properties();

Prop. put ("org. ong. CORBA. ORBCl ass", "webl ogi c. wt c. corba. ORB") ;
ORB orb = ORB.init(new String[0], Prop);

or

ORB orb = (ORB)(new Initial Context().|ookup("java: conp/ ORB"));
or

ORB orb = ORB.init();

You can use either of the following methods to reference objects deployed in Oracle
Tuxedo:

¢ Using CosNaming Service

* Using FactoryFinder

4.1.1 Using CosNaming Service

Note:

For more information on object references, see How to Use FederationURL
Formats.

1. The Oracle WebLogic Tuxedo Connector uses the CosNaming service to get a
reference to an object in the remote Oracle Tuxedo CORBA domain. This is
accomplished by using a cor bal oc: t gi op or cor banane: t gi op object
reference. The following statements use the CosNaming service to get a reference
to an Oracle Tuxedo CORBA Object:

/1 Get the sinple factory.
org. ong. CORBA. Obj ect sinple_fact_oref =
orb. string_to_object("corbanane: tgiop: si npapp#si npl e_factory");

Where:

* sinmpapp is the domain id of the Oracle Tuxedo domain specified in the Oracle
Tuxedo UBB.

e sinpl e_factory is the name that the object reference was bound to in the Oracle
Tuxedo CORBA CosNaming server.

4-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java AP|

4.1.1.1 Example ToupperCorbaBean.java Code

Note:

For an example on how to develop client beans for outbound Oracle Tuxedo
CORBA objects, see the ORACLE_HOVE\ Wl ser ver\ sanpl es\ server\wtc

\ cor ba\ si npappcns package in your Oracle WebLogic Server examples
distribution. For more information on the WebLogic Server code examples, see
Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

The following Toupper Cor baBean. j ava code provides an example of how
to call the WTC ORB and get an object reference using the COSNaming
Service.

Example 4-1 Example Service Application

public String Toupper(String toConvert)
throws Renot eException

{

[og("toupper called, converting " + toConvert);

try {

}

[l Initialize the ORB.

String args[] = null;

Properties Prop;

Prop = new Properties();

Prop. put (" org. ong. CORBA. ORBCl ass",
"webl ogi c. wt c. corba. ORB");

ORB orb = (ORB) new Initial Context().|ookup("java: conp/ ORB");

/1 Get the sinple factory.
org. ong. CORBA. Obj ect sinple_fact_oref =
orb.string_to_object("corbaname:tgiop: si npapp#si npl e_factory");

[/ Narrow the sinple factory.
Sinpl eFactory sinple_factory ref =
Si npl eFact or yHel per. narrow(si npl e_fact_oref);

/1 Find the sinple object.
Sinple simple = sinple_factory_ref.find_sinple();

/1 Convert the string to upper case.
org. ong. CORBA. StringHol der buf =
new or g. ong. CORBA. St ri ngHol der (t oConvert);
sinpl e.to_upper (buf);
return buf. val ue;

catch (Exception e) {

}

t hrow new Renot eException("Can't call TUXEDO CORBA server: " +e);

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-3

How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

4.1.2 Using FactoryFinder

Note:

For more information on object references, see How to Use FederationURL
Formats.

Oracle WebLogic Tuxedo Connector provides support for FactoryFinder objects using
the find_one_factory_by_id method. This is accomplished by using a

cor bal oc: t gi op or cor banarme: t gi op object reference. Use the following method
to obtain the FactoryFinder object using the ORB:

/] String to Object.
org.ong. CORBA. hj ect fact_finder_oref =
orb.string_to_object("corbal oc:tgiop:sinpapp/ Fact oryFi nder");

/1 Narrow the factory finder.
FactoryFinder fact_finder_ref =
Fact or yFi nder Hel per. narrow(fact _finder_oref);

/1 Use the factory finder to find the sinple factory.
org. ony. CORBA. Obj ect sinple_fact_oref =
fact _finder_ref.find_one_factory_by_id(SinpleFactoryHel per.id());

Where:

* sinpapp is the domain id of the Oracle Tuxedo domain specified in the Oracle
Tuxedo UBB.

e FactoryFi nder is the name that the object reference was bound to in the Oracle
Tuxedo CORBA server.

4.1.2.1 WLEC to Oracle WebLogic Tuxedo Connector Migration

WLEC is no longer available or supported in Oracle WebLogic Server. WLEC users
should migrate their applications to Oracle WebLogic Tuxedo Connector.

4.1.2.2 Example Code

The following code provides an example of how to call the WTC ORB and get an
object reference using FactoryFinder.

Example 4-2 Example FactoryFinder Code

public ConverterResult convert (String changeCase, String nixed)
throws Processi ngErrorException

{
String result;
try {
[l Initialize the ORB.
String args[] = null;

Properties Prop;
Prop = new Properties();

4-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

Prop. put ("org. ong. CORBA. ORBCl ass", "webl ogi c. wt c. corba. ORB") ;
ORB orb = (ORB)new Initial Context().!|ookup("java:conp/ ORB");

org.ong. CORBA. Ohj ect fact_finder_oref =
orb.string_to_object("corbal oc:tgiop:sinpapp/ Fact oryFi nder");

Il Narrow the factory finder.
Fact oryFi nder fact_finder_ref =
Fact or yFi nder Hel per. narrow(fact _finder_oref);

/1 find_one_factory by id
org. ony. CORBA. Obj ect sinple_fact_oref =
fact _finder_ref.find_one_factory_by_id(FactoryFinderHel per.id());

Il Narrow the sinple factory.
Sinpl eFactory sinple_factory ref =
Si mpl eFact or yHel per. narrow(si npl e_fact _oref);

Il Find the sinple object.
Sinple sinple = sinple_factory ref.find_sinple();

i f (changeCase. equal s("UPPER")) {
/'l Invoke the to_upper opeation on M3 Sinple object
org. ong. CORBA. StringHol der buf =
new org. omg. CORBA. St ri ngHol der (ni xed) ;
si npl e. to_upper (buf);
result = buf.val ue;
}
el se
{
result = sinple.to_|lower(mxed);

}

}
catch (org.ong. CORBA. Syst enException e) {e.printStackTrace();

throw new Processi ngErrorException("Converter error: Corba system exception: "
+e);

}

catch (Exception e) {

e.printStackTrace();

throw new Processi ngErrorException("Converter error: " + e);

}

return new ConverterResult(result);

}

4.2 How to Develop RMI/IIOP Applications for the Oracle WebLogic
Tuxedo Connector

Note:

For more information on how to develop RMI/IIOP applications, see
Developing RMI Applications for Oracle WebLogic Server.

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-5

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

RMI over IIOP (Internet Inter-ORB Protocol) extends RMI so that Java programs can
interact with Common Object Request Broker Architecture (CORBA) clients and
execute CORBA objects. The Oracle WebLogic Tuxedo Connector:

* Enables Oracle Tuxedo CORBA objects to invoke upon E]Bs deployed in Oracle
WebLogic Server (Inbound).

* Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo (Outbound).

The following sections provide information on how to modify RMI/IIOP applications
to use the Oracle WebLogic Tuxedo Connector to interoperate with Oracle Tuxedo
CORBA applications:

e How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic
Tuxedo Connector

e How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic
Tuxedo Connector

4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo
Connector

A client must pass the correct name to which the Oracle WebLogic Server's name
service has been bound to the COSNaming Service.

The following code provides an example for obtaining a naming context. "WLS" is the
bind name specified in the cnsbi nd command detailed in Administration of Corba
Applications in Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

Example 4-3 Example Code to Obtain a Naming Context

[/ obtain a nam ng context
TP: :userlog("Narrowing to a naning context");
CosNani ng: : Nami ngCont ext _var context =

CosNani ng: : Nami ngCont ext:: _narrow(0);

CosNani ng: : Nane nane;
nane. | ength(1);
nane[0] .id = CORBA::string_dup("WS");
nane[0] . kind = CORBA: : string_dup("");

4.2.2 How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic
Tuxedo Connector

An EJB must use a FederationURL to obtain the initial context used to access a remote
Oracle Tuxedo CORBA object. Use the following sections to modify outbound RMI/
IIOP applications to use the Oracle WebLogic Tuxedo Connector:

* How to Modify the ejb-jar.xml File to Pass a FederationURL to E]Bs

¢ How to Modify E]Bs to Use FederationURL to Access an Object

4-6 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

4.2.2.1 How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs

The following code provides an example of how to configure an ej b-j ar. xml file to
pass a FederationURL format to the EJB at run-time.

Example 4-4 Example ejb-jar.xml File Passing a FederationURL to an EJB

<?xnml version="1.0"?>

<! DOCTYPE ej b-jar PUBLIC '-//Sun M crosystens, Inc.//DTD Enterprise JavaBeans
1.1//EN "http://java.sun.confj2ee/dtds/ejb-jar_1 1.dtd" >

<ejb-jar>
<smal | -i con>i mages/ green-cube. gi f </ smal | -i con>
<enterprise-beans>
<sessi on>
<snal | -i con>i mages/ or ange- cube. gi f </ snmal | -i con>
<ej b- nane>| | OPSt at el essSessi on</ e] b- name>
<home>exanpl es. iiop. ej b. statel ess. Trader Home</ hone>
<renot e>exanpl es.iiop. e b. statel ess. Trader </ r enot e>
<ej b-cl ass>exanpl es. iiop. ej b. statel ess. Trader Bean</ gj b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>
<env-entry>
<env-entry-name>f or ei gnOr b</ env-ent ry- nane>
<env-entry-type>java.lang. String </env-entry-type>
<env-entry-val ue>corbal oc: t gi op: si npapp</ env-entry-val ue>
</env-entry>
<env-entry>
<env-entry-name>WEBL</ env- ent ry- name>
<env-entry-type>j ava. |l ang. Doubl e </env-entry-type>
<env-entry-val ue>10. 0</ env-entry-val ue>
</env-entry>
<env-entry>
<env- entry-nane>| NTL</ env- ent ry- name>
<env-entry-type>j ava. |l ang. Doubl e </env-entry-type>
<env-entry-val ue>15. 0</ env-entry-val ue>
</env-entry>
<env-entry>
<env-entry-name>tradeli nit</env-entry-nane>
<env-entry-type>java.lang. I nteger </env-entry-type>
<env-entry-val ue>500</ env-ent ry-val ue>
</env-entry>
</ sessi on>
</ enterprise-beans>
<assenbl y- descri pt or>
<cont ai ner-transacti on>
<met hod>
<ej b- name>| | OPSt at el essSessi on</ e} b- name>
<net hod- i nt f >Renot e</ net hod-i nt f >
<net hod- nane>* </ met hod- name>
</ met hod>
<trans-attribute>Not Supported</trans-attribute>
</ contai ner-transacti on>
</ assenbl y- descri pt or >
</ejb-jar>

To pass the FederationURL to the EJB at run-time, add an env- ent r y for the EJB in
the ej b-j ar. xml file for your application. You must assign the following env-
ent ry sub-elements:

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-7

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

* Assign env-entry-name
* Assign env-entry-type
¢ Assign env-entry-value

4.2.2.1.1 Assign env-entry-name

The env- ent r y- nane element is used to specify the name of the variable used to
pass the value in the env- ent r y- val ue element to the EJB. The example code shown
in Example 4-4 specifies the env-ent ry- name as f or ei gnQOr b.

4.2.2.1.2 Assign env-entry-type

The env-entry-type element is used to specify the data type (example String,
Integer, Double) of the env- ent r y- val ue element that is passed to the EJB. The
example code shown in Example 4-4 specifies that the f or ei gnOr b variable passes
St ri ng data to the EJB.

4.2.2.1.3 Assign env-entry-value

The env-entry-val ue element is used to specify the data that is passed to the EJB.
The example code shown in Example 4-4 specifies that the f or ei gnOr b variable
passes the following FederationURL format to the EJB:

cor bal oc: t gi op: si npapp

Where si npapp is the DOVAI NI D of the Oracle Tuxedo remote service specified in the
Oracle Tuxedo UBB.

4.2.2.2 How to Modify EJBs to Use FederationURL to Access an Object

This section provides information on how to use the FederationURL to obtain the
InitialContext used to access a remote Oracle Tuxedo CORBA object.

The following code provides an example of how to use FederationURL to get an
InitialContext.

1. Retrieve the FederationURL format defined in the ej b-j ar. xm file.
Example:

"ic.lookup("java:/conp/env/forei gnOrb")

The example code shown in Example 4-4 specifies that the f or ei gnOr b variable
passes the following FederationURL format to the EJB:

cor bal oc: t gi op: si npapp

2. Concatenate the FederationURL format with "/ NanmeSer vi ce" to form the
FederationURL.

Example:

"ic.lookup("java:/conp/env/foreignOb") + "/NameService"

The resulting FederationURL is:
cor bal oc: t gi op: si npapp/ NameSer vi ce

3. Get the InitialContext.

Example:

4-8 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

How to Use FederationURL Formats

env. put (Cont ext . PROVI DER_URL, (String)
i c.lookup("java:/conp/env/foreignOb") + "/NaneService");
Initial Context cos = new Initial Context(env);

The result is the InitialContext of the Oracle Tuxedo CORBA object.

Example 4-5 Example TraderBean.java Code to get InitialContext

public void createRennte() throws CreateException {
| og("createRemote() called");

try {
Initial Context ic = new Initial Context();

/1 Lookup a EJB-1ike CORBA server in a remote CORBA domain
Hasht abl e env = new Hashtabl e();
env. put (Cont ext. PROVI DER_URL, (String)
i c.lookup("java:/conp/env/foreignOrb")
+ "/ NaneService");

Initial Context cos = new Initial Context(env);
Trader Hone thome =
(Trader Hore) Por t abl eRenot eQhj ect . nar r ow(
cos. | ookup(" Trader Hone_i i op"), Trader Hone. cl ass);
renoteTrader = thone.create();

}

catch (Nam ngException ne) {

throw new Creat eException("Failed to find value "+ne);
}

catch (RenoteException re) {

t hrow new Creat eException("Error creating remote ejb "+re);
}

Use the following steps to use FederationURL to obtain an InitialContext for a remote
Oracle Tuxedo CORBA object:

4.3 How to Use FederationURL Formats

This section provides information on the syntax for the following FederationURL
formats:

¢ The CORBA URL syntax is described in the CORBA specification. For more
information, see the OMG Web Site at ht t p: / / www. ong. or g/ .

e Thecor bal oc: t gi op form is specific to the Oracle tgiop protocol.

4.3.1 Using corbaloc URL Format
This section provides the syntax for corbaloc URL format:

<corbal oc> = "corbal oc: tgi op": [<version>] <domai n>["/"<key_string>]
<version> = <mjor> "." <mnor>"@ | enpty_string
<domai n> = TUXEDO CORBA domai n name

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-9

http://www.omg.org/

How to Use FederationURL Formats

<mgj or > = nunber
<m nor> = nunber
<key_string> = <string> | enpty_string

4.3.1.1 Examples of corbaloc:tgiop
This section provides examples on how to use cor bal oc: t gi op.

orb.string_to_object
orb.string_to_object
orb.string_to_object
orb.string_to_object
orb.string_to_object
orb.string_to_object

("corbal oc: tgi op: si npapp/ NameSer vi ce");

("corbal oc: tgi op: si npapp/ Fact oryFi nder");

("corbal oc: tgi op: si npapp/ I nterfaceRepository");
("corbal oc: t gi op: si npapp/ Tobj _Si npl eEvent sServi ce");
("corbal oc: tgi op: si npapp/ Noti ficationService");
("corbal oc: tgiop: 1. 1@i npapp/ Noti fi cationService);
4.3.1.2 Examples using -ORBInitRef

You can also use the - ORBI ni t Ref optiontoorb.init and
resolve_initial _reference.

Given the following - ORBI ni t Ref definitions:

- ORBI ni t Ref Fact oryFi nder =cor bal oc: t gi op: si np/ Fact or yFi nder

- ORBI ni t Ref InterfaceRepository=corbal oc:tgiop:sinp/lnterfaceRepository

- ORBI ni t Ref Tobj _Si npl eEvent Ser vi ce=cor bal oc: t gi op: si np/ Tobj _Si npl eEvent sServi ce
-ORBI nit Ref NotificationService=corbal oc:tgiop:sinp/NotificationService

then:

orb.resolve_initial _references("NameService");
orb.resolve_initial _references("FactoryFinder");
orb.resolve_initial _references("InterfaceRepository");
orb.resolve_initial _references("Tobj _Si npl eEvent Service");
orb.resolve_initial _references("NotificationService");

4.3.1.3 Examples Using -ORBDefaultInitRef

You can use the - ORBDef aul t I ni t Ref and resol ve_initial _reference.
Given the following - ORBDef aul t I ni t Ref definition:

- ORBDef aul t I ni t Ref corbal oc: t gi op: si npapp

then:

orb.resolve_initial _references("NameService");

4.3.2 Using the corbaname URL Format

You can also use the cor banane format instead of the cor bal oc format.

4.3.2.1 Examples Using -ORBInitRef
Given the following -ORBI ni t Ref definition:
- ORBI ni t Ref NaneSer vi ce=cor bal oc: t gi op: si npapp/ NaneSer vi ce

then:

orb.string_to_object
orb.string_to_object
orb.string_to_object
orb.string_to_object

"corbaname: rir:#sinple_factory");

"corbaname: t gi op: si npapp#si npl e_factory");
"corbaname: t gi op: 1. 1@i npapp#si npl e_factory");
"corbaname: t gi op: si npapp#si npl e/ si mpl e_factory");

— o~ o~ —

4-10 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

How to Manage Transactions for Oracle Tuxedo CORBA Applications

4.4 How to Manage Transactions for Oracle Tuxedo CORBA Applications

Note:

For more information on managing transactions in Oracle Tuxedo CORBA
applications, see Overview of Transactions in Tuxedo CORBA Applications in
Using CORBA Transactions atht t p: / / docs. or acl e. com cd/ E13203_01/
t uxedo/ t ux100/trans/ gstrx. htm .

The Oracle WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to
manage transactions with Oracle Tuxedo Corba Applications. For more detailed
information, see:

* Developing [TA Applications for Oracle WebLogic Server

¢ Transaction Design and Management Options in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-11

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/trans/gstrx.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/trans/gstrx.html

How to Manage Transactions for Oracle Tuxedo CORBA Applications

4-12 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

5

Oracle WebLogic Tuxedo Connector JATMI
Transactions

This chapter describes how to define and manage Oracle WebLogic Tuxedo Connector
global transactions using the Java Transaction API (JTA).

This chapter includes the following sections:

* Global Transactions

e JTA Transaction API

¢ Defining a Transaction

* Oracle WebLogic Tuxedo Connector Transaction Rules

¢ Example Transaction Code

5.1 Global Transactions

A global transaction is a transaction that allows work involving more than one
resource manager and spanning more than one physical site to be treated as one
logical unit. A global transaction is always treated as a specific sequence of operations
that is characterized by the following four properties:

¢ Atomicity: All portions either succeed or have no effect.

¢ Consistency: Operations are performed that correctly transform the resources from
one consistent state to another.

¢ Isolation: Intermediate results are not accessible to other transactions, although
other processes in the same transaction may access the data.

e Durability: All effects of a completed sequence cannot be altered by any kind of
failure.

5.2 JTA Transaction API

Note:

For more detailed information, see the JTA APl athttp://
www. or acl e. com t echnet wor k/ j aval j avaee/jta/index. htm .

The Oracle WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to
manage transactions.

Oracle WebLogic Tuxedo Connector JATMI Transactions 5-1

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

JTA Transaction API

5.2.1 Types of JTA Interfaces

JTA offers three types of transaction interfaces:
¢ Transaction
* TransactionManager

e UserTransaction

5.2.1.1 Transaction

The Tr ansacti on interface allows operations to be performed against a transaction
in the target Transaction object. A transaction object is created to correspond to each
global transaction created. Use the Tr ansact i on interface to enlist resources,
synchronize registration, and perform transaction completion and status query
operations.

5.2.1.2 TransactionManager

The Tr ansact i onManager interface allows the application server to communicate to
the Transaction Manager for transaction boundaries demarcation on behalf of the
application. Use the Tr ansact i onManager interface to communicate to the
transaction manager on behalf of container-managed EJB components.

5.2.1.3 UserTransaction

The User Tr ansact i on interface is a subset of the Tr ansact i onManager interface.
Use the User Tr ansact i on interface when it is necessary to restrict access to
Transaction object.

5.2.2 JTA Transaction Primitives

The following table maps the functionality of Oracle Tuxedo transaction primitives to
equivalent JTA transaction primitives.

Table 5-1 Mapping Oracle Tuxedo Transaction Primitives to JTA Equivalents

Oracle Tuxedo Oracle Tuxedo Functionality JTA Equivalent
t pabort Use to end a transaction.
or roll back
t pcommi t Use to complete a transaction.)
conmi t
t pget |l ev Use to determine if a service

routine is in transaction mode. get Stat us

t pbegi n Use to begin a transaction.))
set Transacti onTi meout

begin

5-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Defining a Transaction

5.3 Defining a Transaction

Transactions can be defined in either client or server processes. A transaction has three
parts: a starting point, the program statements that are in transaction mode, and a
termination point.

To explicitly define a transaction, call the begi n() method. The same process that
makes the call, the initiator, must also be the one that terminates it by invoking a
commit (), set Rol | backOnl y(),orrol | back() . Any service subroutines that are
called between the transaction delimiter become part of the current transaction.

5.3.1 Starting a Transaction

Note:

Setting set Tr ansact i onTi neout () to unrealistically large values delays
system detection and reporting of errors. Use time-out values to ensure
response to service requests occur within a reasonable time and to terminate
transactions that have encountered problem, such as a network failure. For
productions environments, adjust the time-out value to accommodate
expected delays due to system load and database contention.

A transaction is started by a call to begi n() . To specify a time-out value, precede the
begi n() statement with a set Transacti onTi nmeout (i nt seconds) statement.

To propagate the transaction to Oracle Tuxedo, you must do the following:
¢ Look up a TuxedoConnectionFactory object in the JNDL

* Get a TuxedoConnection object using getTuxedoConnection().

5.3.1.1 Using TPNOTRAN

Service routines that are called within the transaction delimiter are part of the current
transaction. However, if tpcall() or tpacall() have the flags parameter set to
TPNOTRAN, the operations performed by the called service do not become part of
that transaction. As a result, services performed by the called process are not affected
by the outcome of the current transaction.

5.3.2 Terminating a Transaction

A transaction is terminated by a call to commi t (), r ol | back(), or

set Rol | backOnl y(). When conmi t () returns successfully, all changes to the
resource as a result of the current transaction become permanent. In order for a
commi t () to succeed, the following two conditions must be met:

¢ The calling process must be the same one that initiated the transaction with a
begi n()

® The calling process must have no transaction replies outstanding

If either condition is not true, the call fails and an exception is thrown.

set Rol | backOnl y() and rol | back() are used to indicate an abnormal condition
and to roll back any call descriptors to their original state.

Oracle WebLogic Tuxedo Connector JATMI Transactions 5-3

Oracle WebLogic Tuxedo Connector Transaction Rules

Use set Rol | backOnl y() if further processing or cleanup is needed before
rolling back the transaction.

Use rol | back() if no further processing or cleanup is required before rolling
back the transaction.

5.4 Oracle WebLogic Tuxedo Connector Transaction Rules

You must follow certain rules while in transaction mode to insure successful
completion of a transaction. The basic rules of etiquette that must be observed while in
a transaction mode follow:

You must propagate the transaction to Oracle Tuxedo using a TuxedoConnection
object after you initiate a transaction with a begi n() .

tpterm() closes a connection to an object and prevents future operations on this
object.

Processes that are participants in the same transaction must require replies for their
requests.

Requests requiring no reply can be made only if the flags parameter of tpacall() is
set to TPNOREPLY.

A service must retrieve all asynchronous transaction replies before calling
commit().

The initiator must retrieve all asynchronous transaction replies before calling
begi n() .

The asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is, replies expected for requests made
with a tpacall() suppressing the transaction but not the reply.

If a transaction has not timed out but is marked abort-only, further communication
should be performed with the TPNOTRAN flag set so that the work done as a
result of the communication has lasting effect after the transaction is rolled back.

If a transaction has timed out:

— the descriptor for the timed out call becomes stale and any further reference to it
will return TPEBADDESC.

— further calls to tpgetrply() or tprecv() for any outstanding descriptors will
return the global state of transaction time-out by setting t per r ono to
TPETIME.

— asynchronous calls can be make with the flags parameter of tpacall() set to
TPNOREPLY | TPNOBLOCK | TPNOTRAN.

Once a transaction has been marked abort-only for reasons other than time-out, a
call to tpgetrply() will return whatever represents the local state of the call, that is,
it can either return success or an error code that represents the local condition.

Once a descriptor is used with tpgetrply() to retrieve a reply, it becomes invalid
and any further reference to it will return TPEBADDESC.

Once a descriptor is used with tpsend() or tprecv() to report an error condition, it
becomes invalid and any further reference to it will return TPEV_DISCONIMM.

5-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Example Transaction Code

* Once a transaction is aborted, all outstanding transaction call descriptions (made
without the TPNOTRAN flag) become stale, and any further reference to them will
return TPEBADDESC.

¢ Oracle WebLogic Tuxedo Connector does not guarantee that all calls for a
particular transaction Id are routed to a particular server instance when load
balancing. Load balancing is performed on a per call basis.

5.5 Example Transaction Code

The following provides a code example for a transaction:
Example 5-1 Example Transaction Code

public class TransactionSanpl eBean i npl ements SessionBean {

public int transaction_sample () {

int ret =0;

try {
j avax. naming. Context nyContext = new Initial Context();
Transacti onManager tm = (javax.transaction. Transacti onManager)
myCont ext . | ookup("j avax. transaction. Transacti onManager");

/1 Begin Transaction
tmbegin ();

TuxedoConnecti onFact ory tuxConFactory = (TuxedoConnectionFact ory)
ctxt. | ookup("tuxedo. services. TuxedoConnection");

/1 You could do a |ocal JDBC/ XA-database operation here
/1 which will be part of this transaction.

/1 NOTE 1: Get the Tuxedo Connection only after
/1 you begin the transaction if you want the
/1 Tuxedo call to be part of the transaction!

/1 NOTE 2: If you get the Tuxedo Connection before
/1 the transaction was started, all calls made from
/1 that Tuxedo Connection are out of scope of the
/1 transaction.

TuxedoConnection nyTux = tuxConFact ory. get TuxedoConnection();

/1 Do a tpcall. This tpcall is part of the transaction.
TypedString depositData = new TypedString("sonmecharacters, 5000.00");

Reply depositReply = nmyTux.tpcal | ("DEPCSI T", depositData, 0);

/1 You could also do tpcalls which are not part of

/1 transaction (For exanple, Logging all attenpted

/| operations etc.) by setting the TPNOTRAN Fl ag!
TypedString | ogData =
new TypedSt ring(" DEPOSI T: somechar act er s, 5000. 00") ;

Reply | ogReply = myTux.tpcall ("LOGTRAN', | ogData,
Appl i cationToMnitorlnterface. TPNOTRAN);

Oracle WebLogic Tuxedo Connector JATMI Transactions 5-5

Example Transaction Code

/1 Done with the Tuxedo Connection. Do tpterm
myTux. tpterm();

/! Commit Transaction...
tmcomit ();

/1 NOTE: The TuxedoConnection object which has been
/1 used in this transaction, can be used after the
/1 transaction only if TPNOTRAN flag is set.

}
catch (Nam ngException ne) {
Systemout.printIn ("ERROR Nanming Exception |ooking up JNDI: " + ne);
ret =-1;
}
catch (Rol | backException re) {
Systemout. println("ERROR TRANSACTI ON ROLLED BACK: " + re);
ret = 0;
}
catch (TPException te) {
Systemout. printIn("ERROR tpcall failed: TpException: " + te);
ret = -1,
}
catch (Exception e) {
log ("ERROR Exception: " + e);
ret =-1;
}
return ret;
}

5-6 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

6

Oracle WebLogic Tuxedo Connector JATMI
Conversations

This chapter describes how to define and manage Oracle Tuxedo conversations in
your applications. Tuxedo conversations are a supported method for message
exchange between Oracle WebLogic Server and Oracle Tuxedo applications.

This chapter includes the following sections:

* Overview of Oracle WebLogic Tuxedo Connector Conversational Communication
¢ Oracle WebLogic Tuxedo Connector Conversation Characteristics

¢ Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives

¢ Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers
* Sending and Receiving Messages

¢ Ending a Conversation

* Executing a Disorderly Disconnect

¢ Understanding Conversational Communication Events

* Oracle WebLogic Tuxedo Connector Conversation Guidelines

Note:

For more information on conversational communications for Oracle Tuxedo,
see Writing Conversational Clients and Servers in Programming a Tuxedo ATMI
Application in C at ht t p: / / docs. or acl e. coml cd/ E13203_01/ t uxedo/

t ux100/ pgc/ pgconv. htn .

6.1 Overview of Oracle WebLogic Tuxedo Connector Conversational
Communication

Oracle WebLogic Tuxedo Connector supports Oracle Tuxedo conversations as a
method to exchange messages between Oracle WebLogic Server and Oracle Tuxedo
applications. In this form of communication, a virtual connection is maintained
between the client and the server and each side maintains information about the state
of the conversation. The process that opens a connection and starts a conversation is
the originator of the conversation. The process with control of the connection is the
initiator; the process without control is called the subordinate. The connection remains
active until an event occurs to terminate it.

Oracle WebLogic Tuxedo Connector JATMI Conversations 6-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgconv.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgconv.html

Oracle WebLogic Tuxedo Connector Conversation Characteristics

During conversational communication, a half-duplex connection is established
between the initiator and the subordinate. Control of the connection is passed between
the initiator and the subordinate. The process that has control can send messages (the
initiator); the process that does not have control can only receive messages (the
subordinate).

6.2 Oracle WebLogic Tuxedo Connector Conversation Characteristics

Oracle WebLogic Tuxedo Connector JATMI conversations have the following
characteristics:

¢ Data is passed using TypedBuffers. The type and sub-type of the data must match
one of the types and sub-types recognized by the service.

* The logical connection between the conversational client and the conversational
server remains active until it is terminated.

¢ Any number of messages can be transmitted across a connection between a
conversational client and the conversational server.

® A Oracle WebLogic Tuxedo Connector conversational client initiates a request for
service using tpconnect rather than a tpcall or tpacall.

¢ Oracle WebLogic Tuxedo Connector conversational clients and servers use the
JATMI primitives tpsend to send data and tprecv to receive data.

* A conversational client only sends service requests to a conversational server.

¢ Conversational servers are prohibited from making calls to t pf or war d.

6.3 Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives

Use the following Oracle WebLogic Tuxedo Connector primitives when creating
conversational clients and servers that communicate between Oracle WebLogic Server
and Oracle Tuxedo:

Table 6-1 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across a open connection to an Oracle Tuxedo
application.

6.4 Creating Oracle WebLogic Tuxedo Connector Conversational Clients
and Servers

The following sections provide information on how to create conversational clients
and servers.

6-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers

6.4.1 Creating Conversational Clients

Follow the steps outlined in Developing Oracle WebLogic Tuxedo Connector Client
EJBs to create Oracle WebLogic Tuxedo Connector conversational clients. The
following section provide information on how to use tpconnect to open a connection
and start a conversation.

6.4.1.1 Establishing a Connection to an Oracle Tuxedo Conversational Service

A Oracle WebLogic Tuxedo Connector conversational client must establish a
connection to the Oracle Tuxedo conversational service. Use the JATMI primitive
tpconnect to open a connection and start a conversation. A successful call returns an
object that can be used to send and receive data for a conversation.

The following table describes t pconnect parameters:

Table 6-2 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

svc Character pointer to a conversational service name. If you do not
specify a svc, the call will fail and TPException is set to
TPEV_DISCONIMM.

dat a Pointer to the data buffer. When establishing a connection, you can
send data simultaneously by setting the dat a parameter to point to a
buffer. The t ype and subt ype of the buffer must be recognized by the
service being called. You can set the value of dat a to NULL to specify
that no data is to be sent.

flags Use flags or combinations of flags as required by your application
needs. Valid flag values are:

TPSENDONLY: specifies that the control is being retained by the
originator. The called service is subordinate and can only receive data.
Do not use in combination with TPRECVONLY.

TPRECVONLY: specifies that control is being passed to the called
service.The originator becomes subordinate and can only receive data.
Do not use in combination with TPSENDONLY.

TPNOTRAN: specifies that when svc is invoked and the originator is
transaction mode, SV is not part of the originator's transaction. A call
remains subject to transaction timeouts. If svc fails, the originator's
transaction is unaffected.

TPNOBLOCK: specifies that a request is not sent if a blocking condition
exists. If TPNOBLOCK is not specified, the originator blocks until the
condition subsides, a transaction timeout occurs, or a blocking timeout
occurs.

TPNOTIME: specifies that the originator will block indefinitely and is
immune to blocking timeouts. If the originator is in transaction mode,
the call is subject to transaction timeouts.

6.4.1.2 Example TuxedoConversationBean.java Code
The following provides a code example to use tpconnect to start a conversation:

Example 6-1 Example Conversation Code

Oracle WebLogic Tuxedo Connector JATMI Conversations 6-3

Sending and Receiving Messages

Context ctx;

Conversation myConv;
TuxedoConnection myTux;
TuxedoConnect i onFactory tcf;

ctx = new Initial Context();

tcf = (TuxedoConnectionFactory) ctx.lookup ("tuxedo.services. TuxedoConnection");
myTux = tcf.get TuxedoConnection();

flags =ApplicationToMonitorlnterface. TPSENDONLY;

myConv = myTux. t pconnect (" CONNECT_SVC', nul | , f| ags) ;

6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational Servers

Follow the steps outlined in Developing Oracle WebLogic Tuxedo Connector Service
EJBs, to create Oracle WebLogic Tuxedo Connector conversational servers.

6.5 Sending and Receiving Messages

Once a conversational connection is established between a Oracle WebLogic Server
application and an Oracle Tuxedo application, the communication between the
initiator (sends message) and subordinate (receives message) is accomplished using
send and receive calls. The following sections describe how Oracle WebLogic Tuxedo
Connector applications use the JATMI primitives tpsend and tprecv:

* Sending Messages

* Receiving Messages

6.5.1 Sending Messages
Use the JATMI primitive tpsend to send a message to an Oracle Tuxedo application.

The following table describes t psend parameters:

Table 6-3 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters
- -~~~ - |

Parameter Description
data Pointer to the buffer containing the data sent with this conversation.
flags The flag can be one of the following:

TPRECVONLY: specifies that after the initiator's data is sent, the
initiator gives up control of the connection. The initiator becomes
subordinate and can only receive data.

TPNOBLOCK: specifies that the request is not sent if a blocking
condition exists. If TPNOBL OCK is not specified, the originator blocks
until the condition subsides, a transaction timeout occurs, or a blocking
timeout occurs.

TPNOTIME: specifies that an initiator is willing to block indefinitely

and is immune from blocking timeouts. The call is subject to
transaction timeouts.

6-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Ending a Conversation

6.5.2 Receiving Messages

Use the JATMI primitive tprecv to receive messages from an Oracle Tuxedo
application.

The following table describes t pr ecv parameters:

Table 6-4 Oracle WebLogic Tuxedo Connector JATMI tprec Parameters
|

Parameter Description

fl ags The flag can be one of the following:

TPNOBLOCK: specifies that t pr ecv does not wait for a reply to arrive.
If a reply is available, t pr ecv gets the reply and returns. If this flag is
not specified and a reply is not available, t pr ecv waits for one of the
following to occur: a reply, a transaction timeout, or a blocking
timeout.

TPNOTIME: specifies that t pr ecv waits indefinitely for a reply. With
this flag, t pr ecv is immuned from blocking timeouts but is still subject
to transaction timeouts.

A flag value of 0 specifies that the initiator blocks until the condition
subsides or a timeout occurs.

6.6 Ending a Conversation

A conversation between Oracle WebLogic Server and Oracle Tuxedo ends when the
server process successfully completes its tasks. The following sections describe how a
conversation ends:

¢ Oracle Tuxedo Application Originates Conversation
® Oracle WebLogic Tuxedo Connector Application Originates Conversation

¢ Ending Hierarchical Conversations

6.6.1 Oracle Tuxedo Application Originates Conversation

An Oracle WebLogic Server conversational server ends a conversation by a successful
call tor et ur n. A TPEV_SVCSUCC event is sent to the Oracle Tuxedo client that
originated connection to indicate that the service finished successfully. The connection
is then disconnected in an orderly manner.

6.6.2 Oracle WebLogic Tuxedo Connector Application Originates Conversation

An Oracle Tuxedo conversational server ends a conversation by a successful call to
t preturn. ATPEV_SVCSUCC event is sent to the Oracle WebLogic Tuxedo
Connector client that originated connection to indicate that the service finished
successfully. The connection is then disconnected in an orderly manner.

6.6.3 Ending Hierarchical Conversations

The order in which an conversation ends is important to gracefully end hierarchal
conversations.

Assume there are two active connections: A-B and B-C. If B is a Oracle WebLogic
Tuxedo Connector application in control of both connections, a call to r et ur n has the

Oracle WebLogic Tuxedo Connector JATMI Conversations 6-5

Executing a Disorderly Disconnect

following effect: the call fails and a TPEV_SVCERR event is posted on all open
connections, and the connections are closed in a disorderly manner.

In order to terminate both connections in an orderly manner, the application must
execute the following sequence:

1. B calls tpsend with TPRECVONLY to transfer control of the B-C connection to the
Oracle Tuxedo application C.

2. Ccallsdeparture withrval setto TPSUCCESS, TPFAI L, or TPEXI T.

3. Becallsret urnand posts an event (TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

Conversational services can make request/response calls. Therefore, in the preceding
example, the calls from B to C may be executed using tpacall() or tpcall() instead of
tpconnect. Conversational services are not permitted to make calls to t pf or war d.

6.7 Executing a Disorderly Disconnect

Oracle WebLogic Server conversational clients or servers execute a disorderly
disconnect is through a call to tpdiscon. This is the equivalent of "pulling the plug" on
a connection.

A call tot pdi scon:

¢ Immediately tears down the connection and generates a TPEV_DISCONIMM at the
other end of the connection. Any data that has not yet reached its destination may
be lost. If the conversation is part of a transaction, the transaction must be rolled
back.

e Can only be called by the initiator of the conversation.

6.8 Understanding Conversational Communication Events

Oracle WebLogic Tuxedo Connector JATMI uses five events to manage conversational
communication. The following table lists the events, the functions for which they are
returned, and a detailed description of each.

Table 6-5 Oracle WebLogic Tuxedo Connector Conversational Communication

Events
. ___|]
Event Received by Description
TPEV_SENDONLY Tuxedot precv Control of the connection has passed; this
Oracle Tuxedo process can now call t psend
TPEV_SENDONLY JATMIt precv Control of the connection has passed; this
JATMI process can now call t psend
TPEV_DISCONIM Tuxedo t precv, The connection has been torn down and no
M tpsend, tpreturn further communication is possible. The

JATMI t pdi scon posts this event in the
originator of the connection. The originator
sends it to all open connections when

t pr et urn is called. Connections are closed
in a disorderly manner and if a transaction
exists, it is aborted.

6-6 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Oracle WebLogic Tuxedo Connector Conversation Guidelines

Table 6-5 (Cont.) Oracle WebLogic Tuxedo Connector Conversational

Communication Events
- -

Event

Received by

Description

TPEV_DISCONIM
M

JATMI t pr ecv,
tpsend, return

The connection has been torn down and no
further communication is possible. The
Oracle Tuxedo t pdi scon posts this event in
the originator of the connection. The
originator sends it to all open connections
when r et ur n is called. Connections are
closed in a disorderly manner and if a
transaction exists, it is aborted.

TPEV_SVCERR

Tuxedo t psend or
JATMI t psend

Received by the originator of the connection
indicating that the subordinate program
issued a t pr et ur n (Oracle Tuxedo) or

ret ur n JATMI) and ended without control
of the connection.

TPEV_SVCERR

Tuxedo t pr ecv or
JATMIt precv

Received by the originator of the connection
indicating that the subordinate program
issued a successful t pr et ur n (Oracle
Tuxedo) or a successful r et ur n (JATMI)
without control of the connection, but an
error occurred before the call completed.

TPEV_SVCSUCC

Tuxedo t precv

Received by the originator of the connection,
indicating that the subordinate service
finished successfully; that is, r et ur n was
successfully called.

TPEV_SVCSUCC

JATMI t pr ecv

Received by the originator of the connection,
indicating that the subordinate service
finished successfully; that is, t pr et ur n was
called with TPSUCCESS.

TPEV_SVCFAIL

Tuxedo t psend or
JATMI t psend

Received by the originator of the connection
indicating that the subordinate program
issued a t pr et ur n (Oracle Tuxedo) or

ret ur n JATMI) and ended without control
of the connection. The service completed with
status of TPFAIL or TPEXIT and the data is
set to null.

TPEV_SVCFAIL

Tuxedo t precv or
JATMIt precv

Received by the originator of the connection
indicating that the subordinate program
finished unsuccessfully. The service
completed with status of TPFAIL or TPEXIT.

6.9 Oracle WebLogic Tuxedo Connector Conversation Guidelines

Use the following guidelines while in conversation mode to insure successful
completion of a conversation:

¢ Use the JATMI conversational primitives as defined in the Oracle WebLogic
Tuxedo Connector Conversation interface and ApplicationToMonitorInterface

interface.

Oracle WebLogic Tuxedo Connector JATMI Conversations 6-7

Oracle WebLogic Tuxedo Connector Conversation Guidelines

- Always use a flag.
— Only use flags defined in the Oracle WebLogic Tuxedo Connector JATML

¢ Oracle WebLogic Tuxedo Connector does not have a parameter that can be used to
limit the number of simultaneous conversations to prevent overloading the Oracle
WebLogic Server network.

¢ If Oracle Tuxedo exceeds the maximum number of possible conversations (defined
by the MAXCONV parameter), TPEV_DISCONIMM is the expected Oracle WebLogic
Tuxedo Connector exception value.

¢ A tprecv to an unauthorized Oracle Tuxedo service results in a
TPEV_DISCONIMM exception value.

¢ If a Oracle WebLogic Tuxedo Connector client is connected to an Oracle Tuxedo
conversational service which does t pf or war d to another conversational service,
TPEV_DISCONIMM is the expected Oracle WebLogic Tuxedo Connector exception
value.

¢ Conversations may be initiated within a transaction. Start the conversation as part
of the program statements in transaction mode. For more information on
transactions, see Oracle WebLogic Tuxedo Connector JATMI Transactions.

¢ If an Oracle WebLogic Tuxedo Connector remote domain experiences a
TPENOENT, the remote domain will send back a disconnect event message and be
caught on the Oracle WebLogic Tuxedo Connector application tprecv as a
TPEV_DISCONIMM exception.

6-8 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

v

Using FML with Oracle WebLogic Tuxedo
Connector

This chapter describes how Oracle WebLogic Tuxedo Connector uses the Field
Manipulation Language (FML).

This chapter includes the following sections:

e Overview of FML

¢ The Oracle WebLogic Tuxedo Connector FML API

e FML Field Table Administration

¢ tBridge XML/FML32 Translation

* Using the XmIFmICnv Class for XML to and From FML/FML32 Translation

e MBSTRING Usage

7.1 Overview of FML

Note:

For more information about using FML, see Programming a Tuxedo ATMI
Application Using FML at htt p: / / docs. oracl e. coml cd/ E13203_01/
t uxedo/ t ux100/fm /fm O1. htm .

FML is a set of java language functions for defining and manipulating storage
structures called fielded buffers. Each fielded buffer contains attribute-value pairs in
fields. For each field:

¢ The attribute is the field's identifier.
® The associated value represents the field's data content.
® An occurrence number.

There are two types of FML:

¢ FML16 based on 16-bit values for field lengths and identifiers. It is limited to 8191
unique fields, individual field lengths of 64K bytes, and a total fielded buffer size of
64K bytes.

e FML32 based on 32-bit values for the field lengths and identifiers. It allows for
about 30 million fields, and field and buffer lengths of about 2 billion bytes.

Using FML with Oracle WebLogic Tuxedo Connector 7-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/fml/fml01.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/fml/fml01.html

The Oracle WebLogic Tuxedo Connector FML API

7.2 The Oracle WebLogic Tuxedo Connector FML API

Note:

The Oracle WebLogic Tuxedo Connector implements a subset of FML
functionality. For more information regarding FML32, refer to FML32
Considerations.

The FML application program interface (API) is documented in the
webl ogi c. wt c. j at mi package included in the Javadocs for WebLogic Server
Classes.

7.3 FML Field Table Administration

Field tables are generated in a manner similar to Oracle Tuxedo field tables. The field
tables are text files that provide the field name definitions, field types, and
identification numbers that are common between the two systems. To interoperate
with an Oracle Tuxedo system using FML, the following steps are required:

1. Copy the field tables from the Oracle Tuxedo system to Oracle WebLogic Tuxedo
Connector environment.

For example: Your Oracle Tuxedo distribution contains a bank application example
called bankapp. It contains a file called bankf | ds that has the following structure:

#Copyright (c) 1990 Unix System Laboratories, Inc.

#AI'l rights reserved

#ident "@#) apps/bankapp/ bankflds $Revision: 1.3 $"
Fields for database bankdb

nane nunber type flags comrents
ACCOUNT_I D 110 I ong -
ACCT_TYPE 112 char

ADDRESS 109 string

2. Converted the field table definition into Java source files. Use the nkf | dcl ass
utility supplied in the webl ogi c. wt c. j at mi package. This class is a utility
function that reads a FML32 Field Table and produces a Java file which implements
the FldTbl interface. There are two instances of this utility:

e nkfl dcl ass
e nkfldcl ass32

Use the correct instance of the command to convert the bankf | ds field table into
FML32 java source. The following example uses mkfldclass.

java webl ogic.wtc.jatm.nkfldclass bankflds

The resulting file is called bankf | ds. j ava and has the following structure:

inport java.io.*;
inport java.lang.*;
inport java.util.?*;

7-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

FML Field Table Administration

3.

6.

inport weblogic.wc.jatni.*;

public final class bankflds
i npl ement's webl ogic.wtc.jatni.FldThl

{
[** nunmber: 110 type: long */

public final static int ACCOUNT_ID = 33554542;
[** nunmber: 112 type: char */

public final static int ACCT_TYPE = 67108976;
[** nunmber: 109 type: string */

public final static int ADDRESS = 167772269;
[** nunmber: 117 type: float */

Compile the resulting bankf | ds. j ava file using the following command:

javac bankflds.java

The result is a bankf | ds. cl ass file. When loaded, the Oracle WebLogic Tuxedo
Connector uses the class file to add, retrieve and delete field entries from an FML32
field.

Add the field table class file to your application CLASSPATH.
Update your WI'CSer ver MBean.

¢ Update the WI'CResour ces MBean to reflect the fully qualified location of the
field table class file.

¢ Use the keywords required to describe the FML buffer type: fml16 or fml32.

* You can enter multiple field table classes in a comma separated list.
For example:

<wt c-resour ces>
<nane>BankappResour ces</ name>
<fld-tbl 16-cl ass>ny. bankf | ds</fld-tbl 16-cl ass>
<fld-tbl 16-cl ass>your. bankf | ds</fl d-t bl 16-cl ass>
<fld-thl 16-cl ass>nore. bankf | ds</fl d-tbl 16-cl ass>
</ wt c-resour ces>

Restart your Oracle WebLogic Server to load the field table class definitions.

7.3.1 Using the DynRdHdr Property for mkfldclass32 Class

Oracle WebLogic Tuxedo Connector provides a property that provides an alternate
method to compile FML tables. You may need to use the DynRdHdr utility if:

You are using very large FML tables and the . j ava method created by the
mkfldclass32 class exceeds the internal Java Virtual Machine limit on the total
complexity of a single class or interface.

You are using very large FML tables and are unable to load the class created when
compiling the . j ava method.

Use the following steps to use the DynRdHdr property when compiling your FML
tables:

Using FML with Oracle WebLogic Tuxedo Connector 7-3

Using TypedFML32 Constructors

1. Convert the field table definition into Java source files.

java -DDynRdHdr=Path_to_Your FM__Tabl e webl ogic. wtc.jatm . nkfldcl ass32 userTabl e

The arguments for this command are defined as follows:

Attribute Description

- DDynRdHdr Oracle WebLogic Tuxedo Connector property used
to compile an FML table.

Path_to_Your _FM__Tabl e Path name of your FML table. This may be either a

fully qualified path or a relative path that can be
found as a resource file using the server's
CLASSPATH.

webl ogic.wic.jatni.nkfldclass32 This class is a utility function that reads an FML32
Field Table and produces a Java file which
implements the FIdTbl interface.

user Tabl e Name of the . j ava method created by the
mkfldclass32 class.

2. Compile the user Tabl e file using the following command:

javac userTable.java
3. Add the user Tabl e. cl ass file to your application CLASSPATH.

4. Update the WI'CResour ces MBean to reflect the fully qualified location of the
user Tabl e. cl ass file.

5. Target your WTC server. The user Tabl e. cl ass is loaded when the WTCServer
service starts.

Once you have created the user Tabl e. cl ass file, you can modify the FML table
and deploy the changes without having to manually create an updated

user Tabl e. cl ass. When the WTC server is started, Oracle WebLogic Tuxedo
Connector will load the updated FML table using the location specified in the
Resources tab of your WTC server configuration. If the Pat h_t o_Your _FM__Tabl e
attribute changes, you will need to use the preceding procedure to update your

user Tabl e. j ava and user Tabl e. cl ass files.

7.4 Using TypedFML32 Constructors

Two new constructors for TypedFML32 are available to improve performance. The
following topic provides explanation as to when to use these constructors.

The constructors are defined in the Javadocs for WebLogic Server Classes.

7.4.1 Gaining TypedFML32 Performance Improvements

To gain TypedFML32 performance improvements, you can choose to give size hints to
TypedFML32 constructors. There are two parameters that are available to those
constructor:

7-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

tBridge XML/FML32 Translation

® A parameter that hints for maximum number of fields. This includes all the
occurrences.

* A parameter for the total number of field IDs used in the buffer.

For instance, a field table used by the buffer contains 20 field IDs, and each field can
occur 20 times. In this case, the first parameter should be 400 for the maximum
number of fields. The second parameter should be 20 for the total number of field IDs.

TypeFM.32 nybuf fer = new TypeFM.32(400, 20);

Note:

This usually works well with any size of buffer; however, it does not work
well with extremely small buffers.

If you have an extremely small buffer, use those constructor without hints. An
example of an extremely small buffer is a buffer with less than 16 total occurrences. If
the buffer is extremely large, for example contains more than 250000 total field
occurrences, then the application should consider splitting it into several buffers
smaller than 250000 total field occurrences.

7.5 tBridge XML/FML32 Translation

7.5.1 FLAT

Note:

The data type specified must be FLAT or NO. If any other data type is
specified, the redirection fails.

The Tr ansl at eFM. element of the WTCtBridgeRedirect MBean is used to indicate if
FML32 translation is performed on the message payload. There are two types of
FML32 translation: FLAT and NO.

The message payload is translated using the Oracle WebLogic Tuxedo Connector
internal FML32 /XML translator. Fields are converted field-by-field values without
knowledge of the message structure (hierarchy) and repeated grouping.

In order to convert an FML32 buffer to XML, the tBridge pulls each instance of each
field in the FML32 buffer, converts it to a string, and places it within a tag consisting of
the field name. All of these fields are placed within a tag consisting of the service
name. For example, an FML32 buffer consisting of the following fields:

NAME JCE

ADDRESS CENTRAL CI' TY
PRODUCTNAME ~ BQOLT

PRI CE 1.95
PRODUCTNAME ~ SCREW

PRI CE 2.50

The resulting XML buffer would be:

<FM.32>
<NAME>J CE</ NAME>
<ADDRESS>CENTRAL Cl TY</ ADDRESS>

Using FML with Oracle WebLogic Tuxedo Connector 7-5

tBridge XML/FML32 Translation

7.5.2NO

<PRCDUCTNAVE>BOLT</ PRODUCTNAME>
<PRCDUCTNANME>SCREW/ PRODUCTNAME>
<PRI CE>1. 95</ PRI CE>

<PRI CE>2. 50</ PRI CE>

</ FM.32>

No translation is used.

For JMS to Oracle Tuxedo, the tBridge maps a JMS TextMessage into an Oracle Tuxedo

TypedBuffer (TypedString) and vice versa depending on the direction of the
redirection. J]MS BytesMessage are mapped into Oracle Tuxedo TypedBuffer
(TypedCarray) and vice versa.

For Oracle Tuxedo to JMS, passing an FML/FML32 buffer behaves as if

t ransl| at eFM is set to FLAT. Therefore, in this case, setting t r ans| at eFM. to NO
has no effect and if the Oracle Tuxedo buffer is of type FML/FML32, the translation
takes place automatically.

7.5.3 FML32 Considerations

Remember to consider the following information when working with FML32:

¢ For XML input, the root element is required but ignored.

For XML output, the root element is always <FML32>.

The field table names must be loaded as described in FML Field Table
Administration.

The tBridge translator is capable of only "flat" or linear grouping. This means that
information describing FML32 ordering is not maintained, therefore buffers that

contain a series of repeating data could be presented in an unexpected fashion. For

example, consider a FML32 buffer that contains a list of parts and their associated

price. The expectation would be PART A, PRICE A, PART B, PRICE B, etc. however

since there is no structural group information contained within the tBridge, the
resulting XML could be PART A, PART B, etc., PRICE A, PRICE B, etc.

When translating XML into FML32, the translator ignores STRI NGvalues. For
example, <STRI NG></ STRI NG> is skipped in the resulting FML32 buffer. All
other types cause WTC to log an error resulting in translation failure.

Embedded FML is not supported in this release.

Embedded VIEW fields within FML32 buffers are supported in this release.

TypedCArray is supported for FML/FML32 to XML conversion. Select from the
following list of supported field types:

SHORT
LONG
CHAR
FLOAT
DOUBLE

7-6 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Using the XmIFmICnv Class for XML to and From FML/FML32 Translation

— STRING

— CARRAY

— INT (FML32)

~ DECIMAL (FML32)

* If you need to pass binary data, encode to a field type of your choice and decode
the XML on the receiving side.

¢ If you need to use CARRAY fields in an XML input buffer, you must first encode
the content using base64. You must decode the base64 data after it is received and
before it is processed by an application.

7.6 Using the XmIFmICnv Class for XML to and From FML/FML32
Translation

An alternative option to using the tBridge to automatically translate XML buffers to
and from FML/FML32 is to use the Xm Fni Cnv class which supports ordering,
grouping and beautifying functionality. The following code listing is an example that
uses the Xm Fnl Cnv class for conversion to and from XML buffer formats.

i mport webl ogic.wtc.jatn.TypedFM.32;
i mport webl ogic.wtc.jatn.Fl dThl;
i mport webl ogi c. wtc. gwt . Xm Fnl Cnv;

public class xm 2fni
{

public static void main(String[] args) {

String xm Doc = "<XM.><MyString>hel | o</ MyStri ng></ XM>";
TypedFM.32 fmi Buffer = new TypedFM.32(new MyFi el dTabl e());
Xm Fml Cnv ¢ = new Xml Fml Cnv();

fm Buffer = c. XM_.t oFML32(xm Doc, fm Buffer. getFiel dTables());
String result = c. FM.32t oXM_(fm Buffer);

Systemout. printin(result);

}
}

See Class XmIFmlCnv.

7.6.1 Limitations of XmIFmICnv Class

The FLD_MBSTRI NGfield in FML32 is not supported by the
Xm Frr Cnv. FML32t 0XM. method in this release.

7.7 MBSTRING Usage

A TypedMBSt ri ng object can be used almost identically as a TypedSt r i ng object in
a WTC application code. The only difference is that TypedMBSt ri ng has a codeset
encoding name associated to the string data.

This section includes the following topics.
¢ Sending MBSTRING Data to an Oracle Tuxedo Domain

* Receiving MBSTRING Data from an Oracle Tuxedo Domain

Using FML with Oracle WebLogic Tuxedo Connector 7-7

MBSTRING Usage

e Using FML with Oracle WebLogic Tuxedo Connector

7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain

When an Oracle Tuxedo message that contains an MBSTRING data is sent to another
Oracle Tuxedo domain, TypedMBSt r i ng uses the conversion function of

java. |l ang. Stri ng class to convert between Unicode and an external encoding. The
TypedMBSt r i ng has a codeset encoding name associated to the string data.

When a TypedMBSt r i ng object is created by a WTC application code, the encoding
name is set to null. The null value of the encoding name means that the default
encoding name is used for Unicode string to byte array conversion while sending the
MBSTRING data to a remote domain. By default, the Java's default encoding name for
byte array string is used for the default encoding name.You can specify encoding or
accept the default encoding. The following order defines the order of precedence for
TypedMBSt ri ng.

1. Specify the encoding name by set MBEncodi ng() method.

2. Specify the encoding name through the set Def aul t MBEncodi ng() method of
webl ogi c. wt c. j at m . MBEncodi ng class.

3. Specify the encoding name through the Renot eMBEncodi ng attribute of the
WI'CResour cesMBean.

4. MBENCODI NGPROPERTY system property value.

5. Accept the Java default encoding name.

7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain

When an Oracle Tuxedo message that contains an MBSTRING data is received from a
remote domain, the following actions take place.

1. WTC determines the encoding of the MBSTRING data by the codeset t cmin the
received message.

2. WTC creates a TypedMBSt r i ng object.

A TypedMBSt ri ng object can be used almost identically as a TyepdSt ri ng
object in WTC application code. However, the TypedMBString has a codeset
encoding name associated to the string data.

3. WTC passes the TypedMBSt r i ng object to the WTC application code. The
application code knows the encoding of the received MBSTRING data by the
instance method get MBEncodi ng() .

7.7.3 Using FML with Oracle WebLogic Tuxedo Connector

FLD_MBSTRING is a field type added to TypedFM.32. In this case, a

TypedMBSt r i ng object is passed to the TypedFM.32 method as the associated object
type of FLD_MBSTRING. You can specify the encoding name used for the MBSTRING
conversion for a FLD_MBSTRING field.

The following order defines the order of precedence for TypedFML32.

1. Specify the encoding name by set MBEncodi ng() method of the TypedMBString
object for the field.

7-8 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

MBSTRING Usage

. Specify the encoding name by set MBEncodi ng() method of the TypedFML32
object.

. Specify the encoding name through the set Def aul t MBEncodi ng() method of
webl ogi c. wt c. j at m . MBEncodi ng class.

. Specify the encoding name through the Renot eMBEncodi ng attribute of the
WI'CResour cesMBean.

. MBENCODI NGPROPERTY system property value.

. Accept the Java default encoding name.

Note:

The following methods must be updated when using FLD_MBSTRING:
Fl dtype(), Fchg(),Fadd(), Fget (),and Fdel ().

The on-demand encoding methods and auto-conversion methods needed in
Oracle Tuxedo, such as Fbpack32() and Fnbunpack32() are not needed
by Oracle WebLogic Tuxedo Connector.

Using FML with Oracle WebLogic Tuxedo Connector 7-9

MBSTRING Usage

7-10 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

8

Oracle WebLogic Tuxedo Connector JATMI

VIEWS

This chapter describes how to use Oracle WebLogic Tuxedo Connector VIEW buffers.

This chapter includes the following sections:

Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers
How to Create a VIEW Description File

How to Use the viewj Compiler

How to Pass Information to and from a VIEW Buffer

How to Use VIEW Buffers in JATMI Applications

Using the XmlViewCnv Class for XML to and From View /View(32) Translation

8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers

Note:

For more information on Oracle Tuxedo VIEW buffers, see Using a VIEW
Typed Buffer in Programming a Tuxedo ATMI Application Using C athtt p://
docs. oracl e. com cd/ E13203_01/t uxedo/ t ux100/ pgc/ pgbuf . ht m .

Oracle WebLogic Tuxedo Connector allows you to create a Java VIEW bulffer type
analogous to an Oracle Tuxedo VIEW buffer type derived from an independent C
structure. This allows Oracle WebLogic Server applications and Oracle Tuxedo
applications to pass information using a common structure. Oracle WebLogic Tuxedo
Connector VIEW buffers do not support FML VIEWs or FML VIEWs/Java
conversions.

8.2 How to Create a VIEW Description File

Note:

f bnanme and nul | fields are not relevant for independent Java and C
structures and are ignored by the Java and C VIEW compiler. You must
include a value (for example, a dash) as a placeholder in these fields.

Oracle WebLogic Tuxedo Connector JATMI VIEWs 8-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html

How to Create a VIEW Desctiption File

Your Oracle WebLogic Server application and your Oracle Tuxedo application must
share the same information structure as defined by the VIEW description. The
following format is used for each structure in the VIEW description file:

$/* VIEWstructure */

VI EW vi ewnane

type cnane fbname count flag size null

where

e The file name is the same as the VIEW name.

* You can have only one VIEW description per file.

* The VIEW description file is the same file used for both the Oracle WebLogic
Tuxedo Connector vi ewj compiler and the Oracle Tuxedo vi ewc compiler.

* vi ewnarre is the name of the information structure.
* You can include a comment line by prefixing it with the # or $ character.

* The following table describes the fields that must be specified in the VIEW
description file for each structure.

Table 8-1 VIEW Description File Fields

Field Description

type Data type of the field. Can be set to short, | ong, f | oat, doubl e,
char,string,carray, ordec_t (packed decimal).

cnane Name of the field as it appears in the information structure.

f bname Ignored.

count Number of times field occurs.

flag Specifies any of the following optional flag settings:

¢ N—zero-way mapping

e (C—generate additional field for associated count member
(ACM)

¢ L—hold number of bytes transferred for STRING and CARRAY

si ze For STRI NGand CARRAY buffer types, specifies the maximum
length of the value. This field is ignored for all other buffer types.

8-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

How to Use the viewj Compiler

Table 8-1 (Cont.) VIEW Description File Fields

Field Description

nul | User-specified NULL value, or minus sign (-) to indicate the default

value for a field. NULL values are used in VI EWtyped buffers to
indicate empty C structure members.

The default NULL value for all numeric types is 0 (0.0 for dec_t).
For character types, the default NULL value is “\ 0". For STRI NG
and CARRAY types, the default NULL valueis " ".

Constants used, by convention, as escape characters can also be
used to specify a NULL value. The VIEW compiler recognizes the
following escape constants: \ddd (where d is an octal digit), \0, \n,
\t, \v, \r, \f, \\, \',and \".

You may enclose STRING, CARRAY, and char NULL values in
double or single quotes. The VIEW compiler does not accept
unescaped quotes within a user-specified NULL value.

You can also specify the keyword NONE in the NULL field of a
VIEW member description, which means that there is no NULL
value for the member. The maximum size of default values for
string and character array members is 2660 characters.

8.2.1 Example VIEW Description File

The following provides an example VIEW description which uses VIEW buffers to
send information to and receive information from an Oracle Tuxedo application. The
file name for this VIEW is i nf oenc.

Example 8-1 Example VIEW Description

VI EWi nf oenc

#type chame fbname count flag size null

fl oat amount AMOUNT 2 - 0.0

short status STATUS 2 0

int term TERM 2 0

char mychar ~ MYCHAR 2 - -

string name NAVE 1 16

carray carrayl CARRAYL 1 - 10

dec_t deci mal DECI MAL 1 - 9 - #size ignored by view/view 32
END

8.3 How to Use the viewj Compiler

To compile a VI EWtyped buffer, run the vi ewj command, specifying the package
name and the name of the VIEW description file as arguments. The output file is
written to the current directory.

To use the vi ewj compiler, enter the following command:

java weblogic.wtc.jatm.view [options] [package] viewfile

To use the vi ewj 32 compiler, enter the following command:

java weblogic.wtc.jatm.view 32 [options] [package] viewfile

The arguments for this command are defined as follows:

Oracle WebLogic Tuxedo Connector JATMI VIEWs 8-3

How to Pass Information to and from a VIEW Buffer

Argument Description

options e -associated_fields:

Use to set Associ at edFi el dHandl i ng to true. This allows set and
get accessor methods to use the values of the associated length and
count fields if they are specified in the VIEW description file. If not
specified, the default value for Associ at edFi el dHandl i ng is false.

e -bean_nanes:

Use to create set and get accessor names that follow JavaBeans
naming conventions. The first character of the field name is changed to
upper case before the set or get prefix is added. The signature of
indexed set accessors for array fields changes from the default
signature of voi d set Afi el d(T val ue, int index) tovoid
set Afield(int index, T value).

e -conpat_nanes:

Use to create set and get accessor names that are formed by taking the
field name from the VIEW description file and adding a set or get
prefix. Provides compatibility with releases prior to WebLogic Server
8.1 SP2. Default value is - conpat _nanes if - bean_nanes or -
conpat _nanes is not specified.

e -nodify_strings:
Use to generate different Java code for encoding strings sent to Oracle
Tuxedo and decoding strings received from Oracle Tuxedo. Encoding
code adds a null character to the end of each string. Decoding code
truncates each string at the first null character received.

e -Xcommon:
Use to generate output class as extending TypedXCommon instead of
TypedView.

e -xtype:
Use to generate output class as extending TypedXCType instead of
TypedView.

Note: - conpat _names and - bean_narmes are mutually exclusive options.

package The package name to be included in the . j ava source file.

Example: examples.wtc.atmi.simpview

Name of the VIEW description file.
Example: | nf oenc

viewile

For example:

* A VIEW bulffer is compiled as follows:

java weblogic.wic.jatm.view -conpat_nanmes exanples.wc.atni.sinpview infoenc

e A VIEW32 buffer is compiled as follows:

java webl ogic.wtc.jatm.view 32 -conpat_nanes -nmodi fy_strings
exanpl es. wtc. atmi . si npvi ew i nf oenc

8.4 How to Pass Information to and from a VIEW Buffer

The output of the vi ewj and vi ewj 32 command is a .] ava source file that contains
set and get accessor methods for each field in the VIEW description file. Use these
set and get accessor methods in your Java applications to pass information to and
from a VIEW buffer.

8-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

How to Use VIEW Buffers in JATMI Applications

The Associ at edFi el dHandl i ng flag is used to specify if the set and get methods
use the values of the associated length and count fields if they are specified in the
VIEW description file.

set methods set the count for an array field and set the length for a string or carray
field.

Array get methods return an array that is at most the size of the associated count
field.

String and carray get methods return data that is at most the length of the
associated length field.

Use one of the following to set or get the state of the Associ at edFi el dHandl i ng
flag:

Use the -associ at ed_f i el ds option for the vi ewj and vi ewj 32 compiler to set
the Associ at edFi el dHandl i ng flag to true.

Invoke the voi d set Associ at edFi el dHandl i ng(bool ean st at e) method
in your Java application to set the state of the Associ at edFi el dHandl i ng flag.

— If false, the set and get methods ignore the length and count fields.

— If true, the set and get methods use the values of the associated length and
count fields if they are specified in the VIEW description file.

— The default state is false.

Invoke the bool ean get Associ at edFi el dHandl i ng() method in your Java
application to return the current state of Associ at edFi el dHandl i ng.

8.5 How to Use VIEW Buffers in JATMI Applications

Use the following steps when incorporating VIEW buffers in your JATMI applications:

1.

Create a VIEW description file for your application as described in How to Create a
VIEW Description File.

Compile the VIEW description file as described in How to Use the viewj Compiler.

Use the set and get accessor methods to pass information to and receive
information from a VIEW buffer as described in How to Pass Information to and
from a VIEW Buffer.

See the exanpl es/ wt ¢/ at m / si npvi ew Vi ewd i ent . j ava file in your Oracle
WebLogic Server distribution for an example of how a client uses accessors to pass
information to and from a VIEW bulffer.

Please note that for this release, WTC samples are available on the BEA dev2dev
website in the Code Library.

Import the output of the VIEW compiler into your source code.

If necessary, compile the VIEW description file for your Oracle Tuxedo application
and include the output in your C source file as described in Using a VIEW Typed
Buffer in Programming a Tuxedo ATMI Application Using C athttp://

docs. oracl e. com cd/ E13203_01/t uxedo/ t ux100/ pgc/ pgbuf . ht m .

Oracle WebLogic Tuxedo Connector JATMI VIEWs 8-5

http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html
http://docs.oracle.com/cd/E13203_01/tuxedo/tux100/pgc/pgbuf.html

How to Use VIEW Buffers in JATMI Applications

6. Configure a WTCServer MBean with a Resources Mbean that specifies the VIEW
buffer type (VIEW or VIEW32) and the fully qualified class name of the compiled
Java VIEW description file. The class of the compiled Java VIEW description file
should be in your CLASSPATH.

7. Build and launch your Oracle Tuxedo application.

8. Build and launch your Oracle WebLogic Server Application.

8.5.1 How to Get VIEW32 Data In and Out of FML32 Buffers

A helper class is available to add and get VIEW32 data in and out of an FML32 buffer.
The class name iswt c. j at mi . FVi ewFl d. This class assists programmers in
developing JATMI-based applications that use VIEW32 field type for FML32 buffers.

No change to configuration is required. You still configure the VIEW32 class path
using the Vi ewTbl 32Cl asses attribute in the WI'CResour ces section of the WLS
configuration file.

The following access methods are available in this helper class.
e FViewrl d(String vnane, TypedVi ew32 vdata);

e Fviewrld(FviewFld to_b_clone);

e void setViewNane(String vnane)

e String getVi ewNane();

e void setViewDat a(TypedVi en32 vdat a)

e void TypedVi ew32 get Vi ewDat a() ;

Example 8-2 How to Add and Retrieve an Embedded TypedView32 buffer in a
TypedFML32 Buffer

String toConvert = new String("hello world");
TypedFM.32 MyData = new TypedFM.32(new MyFi el dTabl e());
Long d1 = new Long(1234);

Float d2 = new Float (12.32);

MWVi ew data = new nyView);

FviewFl d vfld;

dat a. set amount ((f1 oat) 100. 96) ;

data. setstatus((short)3);

vild = new Fviewrl d("nyView', data);

try {
nyDat a. Fchg(MyFi el dTabl e. FLDO, 0, toConvert);

(
nyDat a. Fchg(MyFi el dTabl e. FLD1, 0, 1234);
nyDat a. Fchg(MyFi el dTabl e. FLD2, 0, d2);
nyDat a. Fchg(MyFi el dTabl e. nyview, 0, vfld);
} catch (Ferror fe) {
log("An error occurred putting data into the FM.32 buffer. The error is " + fe);

}

try {
myRtn = nyTux.tpcal | ("FMVIEW, nyData, 0);
} catch(TPRepl yException tre) {

}
TypedFM.32 nyDat aBack = (TypedFM.32) nyRt n. get Repl yBuf fer();
I nteger nmyNewLong;

8-6 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Using the XmiViewCnv Class for XML to and From View/View(32) Translation

Fl oat nyNewFl oat ;
myVi ew Vi ew;
String myNewString;

try {
myNewSt ring = (String)nmyDat aBack. Fget (MyFi el dTabl e. FLDO, 0);

myNewLong = (I nteger)nyDat aBack. Fget (MyFi el dTabl e. FLD1, 0);
myNewFl oat = (Fl oat) nyDat aBack. Fget (MyFi el dTabl e. FLD2, 0);
vfld = (Fvi ewFl d) nyDat aBack. Fget (M/Fi el dTabl e. nyview, 0);
view = (nmyView) vfld. getViewbata();

} catch (Ferror fe) {

}

The following code listing is an example FML Description(MyFieldTable) related to
the example in Example 8-2.

*base 20000
#nane nunber type flags comments

FLDO 10 string -

FLD1 20 | ong

FLD2 30 fl oat -

myview 50 viewd2 - defined in View description file

8.6 Using the XmIViewCnv Class for XML to and From View/View(32)

Translation

Use the Xm Vi ewCnv class to perform XML to View /View(32) or View/View(32) to
XML translation. The following code listing is an example that uses the X Vi enwCnv
class for conversion to and from XML buffer formats.

i mport exanpl es.wtc.atni.sinpviewinfoenc; // View class inport
webl ogi c. wtc. gwt . Xnd Vi ewCnv;
i mport webl ogic.wtc.jatni. TypedBuffer;

public class xm 2view
{
public static void main(String[] args) {
String xm Doc =
" <VI EWB2><i nf oenc><anpunt >1000. 0</ amount ><i nf oenc></ VI EWB2>";

i nfoenc convertMe = new i nfoenc();
convertMe = (infoenc) Xm ViewCnv. XM.ToVi ew(
xn Doc,
convertMe. get d ass(),
convert Me. get Subt ype());

convertMe = (infoenc) echo. Echo(convertMe);
result = Xm Vi ewCnv. Vi ewToXM.(
(TypedBuffer) convert M,
convertMe. get d ass(),
true);

Systemout. printin(result);

Oracle WebLogic Tuxedo Connector JATMI VIEWs 8-7

Using the XmiViewCnv Class for XML to and From View/View(32) Translation

8.6.1 Translating Nested Views

Nested views are views which contains one or more members of type st r uct , which
are themselves a view. This section provides an example of converting a nested view
to XML.

The following is a nested view file:

VIEWfile
VIEW MYVI EW
#type Cname Fbname Count Flag Si ze nul |

| ong longl - 1 - - 0
string stringl - 1 - 20 "\0°
END

VIEW MYVI EV2
#type Cname Fbname Count Flag Si ze nul |

| ong longl - 1 - - 0

bool booll - 1 - - 0

si gnedchar scharl - 1 - - 0
struct MYVIEW nyviewl 2 - - NONE

END

The translated XML string is:

<VI EVB82>
<MvVI EV2>
<bool 1>t r ue</ bool 1>
<l ong1>100</ | ong1>
<nyvi ewl><Vl EVB2><MyVI EW>
<stringl>aall</stringl>
<l ong1>100</ | ong1>
</ MYVI EWL></ VI EWB2></ nyvi ewl>
<nyvi ewl><Vl EVB2><MyVI EW>
<stringl>bb22</stringl>
<l ong1>100</ | ong1>
</ MYVI EWL></ VI EWB2></ nyvi ewl>
<schar 1>100</ schar 1>
</ MYVI EVe>
</ VI EV82>

8-8 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

9

How to Create a Custom AppKey Plug-in

This chapter describes how to create custom AppKey generator plug-ins.

This chapter includes the following sections:

e How to Create a Custom Plug-In

¢ Example Custom Plug-in

9.1 How to Create a Custom Plug-In

Note:

You cannot customize Oracle Tuxedo AAA tokens.

1. Create your custom Java plug-in using the AppKey and UserRec interfaces. You
can provide any required initialization parameters or a property file using the
par amparameter of the i ni t method.

2. Compile your plug-in. Example:

javac exanpl eAppKey. j ava

3. Update your CLASSPATH to include the path to your compiled plug-in. Example:

export CLASSPATH=$CLASSPATH: / hone/ mywor k

4. Start your server.

5. Configure your WTC server to use the Custom Plug-in. For more information, see
the Custom Plug-in in Administering WebLogic Tuxedo Connector for Oracle WebLogic
Server.

9.2 Example Custom Plug-in

The exanpl eAppKey. j ava file is an example of a custom plug-in. It utilizes a
t pusrfil e file as the database to store the AppKey.

Example 9-1 exampleAppKey.Java Custom Plug-In

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

java.io.*;

java.lang.*;

java.util.*;
java.security.Principal;

webl ogi c. wtc. j at ni . AppKey;

webl ogi c. wtc.jatn . UserRec;

webl ogi c. wtc. jatni. Defaul t User Rec;
webl ogi c. wtc. jatni. TPException;

How to Create a Custom AppKey Plug-in 9-1

Example Custom Plug-in

i mport webl ogi c. security.acl.internal.AuthenticatedSubject;
i mport webl ogi c. security. W.SPrinci pal s;

/**

*

*/

—
*

R

—

@ut hor Copyright (c) 2002 by BEA Systens, Inc. All Rights Reserved.

@xcl ude

Sanpl e AppKey plug-in using TPUSRFILE as the database for APPKEY.
It is installed through "Custon option.

The syntax for option custom plug paraneter input contains the full
pathnane to the <tpusrfile>

@ut hor BEA Systens, Inc.

public class exanpl eAppKey inpl enents AppKey {

private String anon_user
private String tpusrfile

null;
null;

private File nyfile;
private HashMap user Map;
private |ong | _time;
private int df | t Appkey;
private bool ean al | owAnon;

private final static int USRI DX
private final static int PWIDX
private final static int U D DX
private final static int G D DX
private final static int CLTIDX

T T TR TR
oMM O

private final static byte[] tpsysadmstring = {

(byte)'t', (byte)'p', (byte)'s', (byte)'y', (byte)'s",
(byte)'a', (byte)'d, (byte)'nm };

private final static byte[] tpsysop_string = {

(byte)'t', (byte)'p', (byte)'s', (byte)'y', (byte)'s', (byte)'o',
(byte)'p' };

public void init(String param bool ean anonAl | owed, int dfltAppKey)

throws TPException {

if (param==null) {
Systemout.printIn("Error: tpusrAppKey.init@aram==null");
throw new TPExcepti on(TPExcept i on. TPESYSTEM
“I'nvalid input paraneter");

}

/1 get the tpusrfile name
par sePar am(paran) ;

myfile = new File(tpusrfile);
if (nyfile.exists() !=true) {
Systemout.printIn("Error: exanpl eAppKey.init@ile \"" + param
+ "\" does not exist");
t hrow new TPExcepti on(TPExcept i on. TPESYSTEM
"Failed to find TPUSR file");

}
if (nyfile.isFile() !'=true) {

Systemout. printin("Error: exanpl eAppKey.init@he specified nane \""

param+ "\" is not a file");
throw new TPExcepti on(TPExcept i on. TPESYSTEM
“I'nvalid TPUSR file");

9-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

+

Example Custom Plug-in

if (nyfile.canRead() '= true) {
Systemout.printIn("Error: exanpl eAppKey.init@ile \"" + param +
"\" is not readable");
throw new TPExcepti on(TPExcept i on. TPESYSTEM
"Bad TPUSR file pernission");
}

user Map = new HashMap();

Il create the cache
if (createCache(tpusrfile) == -1) {
Systemout.printIn("Error: exanpl eAppkey.init@ail to create user cache");
throw new TPExcepti on(TPExcept i on. TPESYSTEM
"fail to create user cache");

}

| _tine = myfile. lastMdified();

anon_user = webl ogic. security. WSPrinci pal s. get AnonynousUser nane();
al owAnon = anonAl | owed;

df I t Appkey = df |t AppKey;

System out. print!|n("exanpl eAppKey installed ");

return;

}

public void uninit() throws TPException {
if (userMap !'= null) {
user Map. cl ear ();
}

return;

}

public UserRec get TuxedoUser Recor d(Aut henti cat edSubj ect subj) {
oj ect[] obj = subj.getPrincipals().toArray();
if (obj == null || obj.length == 0) {
/1l a subject without principals is an anonynous user
if (allowAnon) {
return new Defaul t User Rec(anon_user, dfltAppkey);

1
Systemout. printIn("Error: exanpl eAppKey.
get TuxedoUser Record@eturn " +
"anonynous user not allowed");
return null;

}

/1 looping through all Principal nanes if necessary to get first user
/1 name defined in tpuser file

Princi pal user;

String user nane;

i nt key;
UserRec rec;
for (int i 0; i <obj.length; i++) {

user = (Principal)obj[i];
usernane = user.get Name();
i f (usernane. equal s(anon_user)) {
return new Defaul t User Rec(anon_user, dfltAppkey);
1

if ((rec = (UserRec)userMap. get (usernane)) !'= null) {

How to Create a Custom AppKey Plug-in 9-3

Example Custom Plug-in

return rec;
1
}
System out. println("WARN. exanpl eAppKey. get TuxedoUser Record@eturn " +
“null UserRec");
return nul l;

}

private int createCache(String fnane) {
Fil el nputStreamfin;
byte[] l'ine;

try {
fin = new Fil el nput Strean(fnane);

while ((line = readOneLine(fin)) !'=null) {
Def aul t User Rec newUser = parseOneLine(line);
if (newlser !'=null) {
user Map. put (newlUser . get Renot eUser Name(), newUser);
}
}

fin.close();

catch (FileNot FoundException fnfe) {
Systemout. printIn("Error: exanpl eAppKey. createCache@eason: " + fnfe);
return -1;

catch (SecurityException se) {
Systemout. printIn("Error: exanpl eAppKey. creat eCache@eason: " + se);
return -1;

catch (1 OException ioe) {
Systemout. printIn("Error: exanpl eAppKey. creat eCache@eason: " + ioe);
return -1;

}

catch (Exception e) {
Systemout. printIn("Error: exanpl eAppKey. createCache@eason: " + e);

return -1;
}
return 0,
1
private byte[] readOneLine(FilelnputStreamfh) {
int len = 80;
byte[] line = new byte[len];
int inp =-1;
int idx =0;
try {
while ((inp = fh.read()) !'=-1) {
if (id« ==0&& (inp =="'\n" || inp=="\0)) {
continue;
}
if (inp=="\n") {
break;

}

if (idx == (len - 1)) {
byte[] tnp = new byte[len + 80];
System arraycopy(line, 0, tnp, 0, len);
line = tnp;
len += 80;

9-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Example Custom Plug-in

}
line[idx] = (byte)inp;
i dx++;

}

}
catch (Exception e) {

Systemout. printIn("Error: exanpl eAppKey.readOneli ne@eason: " + e);
return null;

}

if (inp==-128&%idx ==0) {
return null;

}

byte[] tnmp = new byte[idx];
System arraycopy(line, 0, tnp, 0, idx);

return tnp;

1

private Defaul t User Rec parseOneline(byte[] line) {
String name;
int key =0;
Def aul t User Rec usr;
i nt firstCharacter;
int i
int si dx;
int fldlen;
int fn;
byt e[] buid = null;
byt e[] bgid = null;
byt e[] clt =null;
byt e[] unane = null;

firstCharacter = (int)line[0];
if (firstCharacter == "# || firstCharacter =="'
firstCharacter == "'!" || firstCharacter =="
firstCharacter == "\r') {
return null;

//
=

}
fldlen = 0;

si dx 0;
for (i =0, fn=0; i <line.length & fn <= CLTIDX i++) {
if (line[i] == (byte)':") {
switch (fn) {
case USRI DX:
uname = new byte[fldlen];
System arraycopy(line, sidx, unane, 0, fldlen);
br eak;
case U DI DX
buid = new byte[fldlen];
System arraycopy(line, sidx, buid, 0, fldlen);
br eak;
case G DI DX
bgid = new byte[fldlen];
System arraycopy(line, sidx, bgid, 0, fldlen);
br eak;
case CLTIDX

if (line[sidx == (byte)' T' &
line[sidx+l] == (byte)' P &&
line[sidx+2] == (byte)'C &&

How to Create a Custom AppKey Plug-in 9-5

Example Custom Plug-in

line[sidx+3] == (byte)'L'" &&
line[sidx+4] == (byte)'T &&
line[sidx+5] == (byte)'N &&
line[sidx+6] == (byte)'M &&
line[sidx+7] == (byte)',") {
sidx +=8;
fldlen -= 8;

}
if (fldlen > 0) {
clt = new byte[fldlen];
System arraycopy(line, sidx, clt, 0, fldlen);
1
br eak;
defaul t:
br eak;
} I/ end of switch
f n++;
fldlen = 0;
si dx i+ 1
} /1 end of if
el se {
fldl ent++;
1
}

[l try to tolerate inconplete line
if (fn <= CLTIDX && fldlen > 0) {
switch (fn) {
case USRI DX
unane = new byte[fldlen];
System arraycopy(line, sidx, uname, 0, fldlen);
br eak;
case U DI DX
buid = new byte[fldlen];
System arraycopy(line, sidx, buid, 0, fldlen);
br eak;
case G DIDX
bgid = new byte[fldlen];
System arraycopy(line, sidx, bgid, 0, fldlen);

br eak;
case CLTIDX:
if (line[sidx == (byte)' T' &
line[sidx+l] == (byte)' P &&
line[sidx+2] == (byte)'C &&
line[sidx+3] == (byte)'L'" &&
line[sidx+4] == (byte)'T" &&
line[sidx+5] == (byte)'N &&
line[sidx+6] == (byte)'M &&
line[sidx+7] == (byte)',") {
sidx +=8;
fldlen -=8;

clt = new byte[fldlen];
System arraycopy(line, sidx, clt, 0, fldlen);
br eak;

}

if (uname == null || buid == null || bgid == null) {
return null;

}

9-6 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Example Custom Plug-in

nane = new String(uname);
if (clt '=null) {
if (Arrays.equal s(tpsysadmstring, clt) == true) {
key = TPSYSADM KEY;
1

else if (Arrays.equal s(tpsysop_string, clt) == true) {
key = TPSYSOP_KEY;

1

}

if (key == 0) {
I nteger u_val;
Integer g_val;
int uid = 0;
int gid=0;
try {

u_val = new I nteger(new String(buid));
g_val = new Integer(new String(bgid));
uid = u_val.intValue();

gid = g_val.intValue();

uid & U DMASK;

gid & G DVASK;

key = uid | (gid << GDSH FT);

catch (Nunber For mat Exception nfe) {
Systemout.printIn("Error: exanpl eAppKey. readOneli ne@eason: " + nfe);
return nul l;

}
}

return new Defaul t User Rec(nane, key);

}

private void parseParan(String paran {
String str;

[l trimthe input
tpusrfile = paramtrin();

return;

How to Create a Custom AppKey Plug-in 9-7

Example Custom Plug-in

9-8 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

10

Application Error Management

This chapter describes mechanisms used to manage and interpret error conditions in
your applications that occur when using Oracle WebLogic Tuxedo Connector.

This chapter includes the following sections:
e Testing for Application Errors
* Oracle WebLogic Tuxedo Connector Time-Out Conditions

¢ Guidelines for Tracking Application Events

10.1 Testing for Application Errors

Note:

To view an example that demonstrates how to test for error conditions, see
Example Transaction Code.

Your application logic should test for error conditions after the calls that have return
values and take suitable steps based on those conditions. In the event that a function
returned a value, you may invoke a functions that tests for specific values and
performs the appropriate application logic for each condition.

10.1.1 Exception Classes
The Oracle WebLogic Tuxedo Connector throws the following exception classes:
¢ Ferror: Exception thrown for errors occurring while manipulating FML.
* TPException: Exception thrown that represents a TPException failure.

¢ TPReplyException: Exception thrown that represents a TPException failure when
user data is associated with the exception thrown.

10.1.2 Fatal Transaction Errors

In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call
conmi t () . Transactions fail for the following reasons:

¢ The initiator or participant of the transaction caused it to be marked for rollback.

e The transaction timed out.

Application Error Management 10-1

Oracle WebLogic Tuxedo Connector Time-Out Conditions

e Aconmit () was called by a participant rather than by the originator of a
transaction.

10.2 Oracle WebLogic Tuxedo Connector Time-Out Conditions

There are two types of time-out which can occur when using the Oracle WebLogic
Tuxedo Connector:

¢ Blocking time-out.

e Transaction time-out.

10.2.1 Blocking vs. Transaction Time-out

Blocking time-out is exceeding the amount of time a call can wait for a blocking
condition to clear up. Transaction time-out occurs when a transaction takes longer
than the amount of timed defined for it in set Tr ansact i onTi meout () . By default,
if a process is not in transaction mode, blocking time-outs are performed. When the
f1 ags parameter of a a communication call is set to TPNOTI ME, it applies to blocking
time-outs only. If a process is in transaction mode, blocking time-out and the

TPNOTI ME flag are not relevant. The process is sensitive to transaction time-out only
as it has been defined for it when the transaction was started. The implications of the
two different types of time-out follow:

e If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call
descriptor is still valid and may be used on a re-issue call. Further communication
in general is unaffected.

® In the case of transaction time-out, the call descriptor to an asynchronous
transaction reply (done without the TPNOTRAN flag) becomes stale and may no
longer be referenced. The only further communication allowed is the one case
described earlier of no reply, no blocking, and no transaction.

10.2.2 Effect on commit()

The state of a transaction if time-out occurs after the call tocommi t () is
undetermined. If the transaction timed out and the system knows that it was aborted,
set Rol | backOnl y() orrol | back() returns with an error.

If the state of the transaction is in doubt, you must query the resource to determine if
any of the changes that were part of that transaction have been applied to it in order to
discover whether the transaction committed or aborted.

10.2.3 Effect of TPNOTRAN

Note:

A transaction can time-out while waiting for a reply that is due from a service
that is not part of that transaction.

When a process is in transaction and makes a communications call with flags set to
TPNOTRAN, it prohibits the called service from becoming a participant of that
transaction. The success or failure of the service does not influence the outcome of that
transaction.

10-2 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

Guidelines for Tracking Application Events

10.3 Guidelines for Tracking Application Events

You can track the execution of your applications by using Syst em out . pri nt| n()
to write messages to the Oracle WebLogic Server trace log. Create a | 0g() method
that takes a variable of type St ri ng and use the variable name as the argument to
the call, or include the message as a literal within quotation marks as the argument to
the call. In the following example, a series of messages are used to track the progress
ofatpcall ().

Example 10-1 Example Event Logging

| og("About to call tpcall");

try {

myRtn = nyTux. tpcal | ("TOUPPER', nyData, 0);
}

catch (TPRepl yException tre) {

log("tpcall threw TPRepl yExcption " + tre);
throw tre;

}

catch (TPException te) {

log("tpcall threw TPException " + te);
throw te;

}

catch (Exception ee) {

log("tpcall threw exception: " + ee);

t hrow new TPException(TPExcepti on. TPESYSTEM "Exception: " + ee);
}

log("tpcall successfull!");

private static void
log(String s)
{Systemout.println(s);}

Application Error Management 10-3

Guidelines for Tracking Application Events

10-4 Developing Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction to Oracle WebLogic Tuxedo Connector Programming
	1.1 Guide to this Document
	1.2 Developing Oracle WebLogic Tuxedo Connector Applications
	1.2.1 Developing Oracle WebLogic Tuxedo Connector Clients
	1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers
	1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo CORBA objects

	1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives
	1.4 Oracle WebLogic Tuxedo Connector TypedBuffers
	1.5 New and Changed WTC Features for this Release

	2 Developing Oracle WebLogic Tuxedo Connector Client EJBs
	2.1 Joining and Leaving Applications
	2.1.1 Joining an Application
	2.1.2 Leaving an Application

	2.2 Basic Client Operation
	2.2.1 Get an Oracle Tuxedo Object
	2.2.2 Perform Message Buffering
	2.2.3 Send and Receive Messages
	2.2.3.1 Request/Response Communication
	2.2.3.1.1 Using Synchronous Service Calls
	2.2.3.1.2 Using Deferred Synchronous Service Calls
	2.2.3.1.3 Using Asynchronous Calls

	2.2.3.2 Conversational Communication
	2.2.3.3 Enqueuing and Dequeuing Messages

	2.2.4 Close a Connection to an Oracle Tuxedo Object

	2.3 Example Client EJB

	3 Developing Oracle WebLogic Tuxedo Connector Service EJBs
	3.1 Basic Service EJB Operation
	3.1.1 Access Service Information
	3.1.2 Buffer Messages
	3.1.3 Perform the Requested Service
	3.1.3.1 Return Client Messages for Request/Response Communication
	3.1.3.2 Use tpsend and tprecv for Conversational Communication

	3.2 Example Service EJB

	4 Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability
	4.1 How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API
	4.1.1 Using CosNaming Service
	4.1.1.1 Example ToupperCorbaBean.java Code

	4.1.2 Using FactoryFinder
	4.1.2.1 WLEC to Oracle WebLogic Tuxedo Connector Migration
	4.1.2.2 Example Code

	4.2 How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector
	4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo Connector
	4.2.2 How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo Connector
	4.2.2.1 How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
	4.2.2.1.1 Assign env-entry-name
	4.2.2.1.2 Assign env-entry-type
	4.2.2.1.3 Assign env-entry-value

	4.2.2.2 How to Modify EJBs to Use FederationURL to Access an Object

	4.3 How to Use FederationURL Formats
	4.3.1 Using corbaloc URL Format
	4.3.1.1 Examples of corbaloc:tgiop
	4.3.1.2 Examples using -ORBInitRef
	4.3.1.3 Examples Using -ORBDefaultInitRef

	4.3.2 Using the corbaname URL Format
	4.3.2.1 Examples Using -ORBInitRef

	4.4 How to Manage Transactions for Oracle Tuxedo CORBA Applications

	5 Oracle WebLogic Tuxedo Connector JATMI Transactions
	5.1 Global Transactions
	5.2 JTA Transaction API
	5.2.1 Types of JTA Interfaces
	5.2.1.1 Transaction
	5.2.1.2 TransactionManager
	5.2.1.3 UserTransaction

	5.2.2 JTA Transaction Primitives

	5.3 Defining a Transaction
	5.3.1 Starting a Transaction
	5.3.1.1 Using TPNOTRAN

	5.3.2 Terminating a Transaction

	5.4 Oracle WebLogic Tuxedo Connector Transaction Rules
	5.5 Example Transaction Code

	6 Oracle WebLogic Tuxedo Connector JATMI Conversations
	6.1 Overview of Oracle WebLogic Tuxedo Connector Conversational Communication
	6.2 Oracle WebLogic Tuxedo Connector Conversation Characteristics
	6.3 Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives
	6.4 Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers
	6.4.1 Creating Conversational Clients
	6.4.1.1 Establishing a Connection to an Oracle Tuxedo Conversational Service
	6.4.1.2 Example TuxedoConversationBean.java Code

	6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational Servers

	6.5 Sending and Receiving Messages
	6.5.1 Sending Messages
	6.5.2 Receiving Messages

	6.6 Ending a Conversation
	6.6.1 Oracle Tuxedo Application Originates Conversation
	6.6.2 Oracle WebLogic Tuxedo Connector Application Originates Conversation
	6.6.3 Ending Hierarchical Conversations

	6.7 Executing a Disorderly Disconnect
	6.8 Understanding Conversational Communication Events
	6.9 Oracle WebLogic Tuxedo Connector Conversation Guidelines

	7 Using FML with Oracle WebLogic Tuxedo Connector
	7.1 Overview of FML
	7.2 The Oracle WebLogic Tuxedo Connector FML API
	7.3 FML Field Table Administration
	7.3.1 Using the DynRdHdr Property for mkfldclass32 Class

	7.4 Using TypedFML32 Constructors
	7.4.1 Gaining TypedFML32 Performance Improvements

	7.5 tBridge XML/FML32 Translation
	7.5.1 FLAT
	7.5.2 NO
	7.5.3 FML32 Considerations

	7.6 Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation
	7.6.1 Limitations of XmlFmlCnv Class

	7.7 MBSTRING Usage
	7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain
	7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain
	7.7.3 Using FML with Oracle WebLogic Tuxedo Connector

	8 Oracle WebLogic Tuxedo Connector JATMI VIEWs
	8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers
	8.2 How to Create a VIEW Description File
	8.2.1 Example VIEW Description File

	8.3 How to Use the viewj Compiler
	8.4 How to Pass Information to and from a VIEW Buffer
	8.5 How to Use VIEW Buffers in JATMI Applications
	8.5.1 How to Get VIEW32 Data In and Out of FML32 Buffers

	8.6 Using the XmlViewCnv Class for XML to and From View/View(32) Translation
	8.6.1 Translating Nested Views

	9 How to Create a Custom AppKey Plug-in
	9.1 How to Create a Custom Plug-In
	9.2 Example Custom Plug-in

	10 Application Error Management
	10.1 Testing for Application Errors
	10.1.1 Exception Classes
	10.1.2 Fatal Transaction Errors

	10.2 Oracle WebLogic Tuxedo Connector Time-Out Conditions
	10.2.1 Blocking vs. Transaction Time-out
	10.2.2 Effect on commit()
	10.2.3 Effect of TPNOTRAN

	10.3 Guidelines for Tracking Application Events

