Oracle® Fusion Middleware

WebLogic Web Services Reference for Oracle WebLogic Server
12¢(12.2.1.2.0)

E78034-02

December 2016

Documentation for software developers that provides reference
information for developing WebLogic web services.

ORACLE"

Oracle Fusion Middleware WebLogic Web Services Reference for Oracle WebLogic Server, 12¢ (12.2.1.2.0)
E78034-02
Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ... ix
Documentation AcCesSIbIlityccoviurieiiiiiiei IX
COMVEINEIONS ...ttt ettt et ettt et eh e bt e bt s bt e bt bt s bt e b et e b e st et e b et et ent et e st eseeseebesbeebesbesaens iX

What'S NEW iN ThIS GUITE ...ttt Xi
New and Changed Features for 12¢ (12.2.1.X) ...ccccviiiiiiiiiiiiiiiiiiiciciiciecceeeseseseieesesnnas Xi
New and Changed Features for 12¢ (12.2.1) ...coouiioiiieiiieiiciceice e Xi
New and Changed Features for 12¢ (12.1.3) ..c.ccoeiiiiiiiiiiiiceeeeeeeeeieeee e sesenenes Xi
New and Changed Features for 12¢ (12.1.2)ccccccciiiiiiiiiiiiiieeeeeeeeccieeeeeeeeeseese e Xi

R o1 oo [F Lot 1 o] o RSP P PP PPPPPPRPPPY 1-1

2 Ant Task Reference

2.1 Overview of WebLogic Web Services Ant Tasks..........ccccoevvviiiirnnninirrrccrereeeeeeeenes 2-1
2.2 CHENEGEIN ... s 2-2
2.2.1 Taskdef ClaSSNamE.......c.cccvecvieiiriiiieeiieiecieeteeteete et esteeeeesteeeesseesaesreessesasessesssessesssesseessensenns 2-3
2.2.2 Child EIEIMENES.....cccviitiiiieiieiieieti ettt tete st e sve ettt eesaesseesaesseessesseessesssessesssessesssensenns 2-3
223 AHTIDULES ...vovveeieeieiiciieteeeeeeeee ettt ettt te et e b e st b e b e b e sbesbesbesbesaereeseesaeteereebebenee 2-5
224 EXAIMPLES....omimiiiiiiiiiiiiicctcc e 2-12
2.3 JWSC ittt s e st a e 2-14
2.3.1 Taskdef ClaSSNAIMEc.ccveveerieiieiieiieiete ettt ettt te b e te b e reesseeseesseereeseennesseesnas 2-16
2.3.2 Child EIEIMENES.....cccviiiieiiiieieeieeieeeete ettt ettt ste et te et e be s e te e s e sseessessaesseeseessesssessesseas 2-16
2.3.3 AHTIDULEScvveeieiieieeeeeeee ettt ettt ettt ettt e st b e b b e b e s b e st e st esae st ereetaeseeaeeranrs 2-36
234 EXAIMPLES....omimiiiiiiiiiiiiiiccc e 2-39
24 WSALC ettt ettt et e ae e be e e beetb e beerb e be et e beebeeaeenbeereereeaaereenean 2-43
2.4.1 Taskdef ClasSSName.........cceccvierieiiieieiiieieieeeesteeeesteeee e e se e e sesteessesseessesseesseeseessesssessesseas 2-45
2.4.2 Child EIEIMENTS.....ccciiiiieiiiieiecieieetete ettt et ste et beete st essesse e s esseessesseessessaessessnessessens 2-45
243 AHTIDULES ...eovveeieeieeeteieeeeeee ettt ettt te et et s b e st e b e b e b esbesbessestesbeseesaeseeseeseesenns 2-46
244 EXAINPLE ..o 2-54
2.5 WSALIGEL oo 2-56
2.5.1 Taskdef ClaSSName.........ccecveereeiiirieiiieieteceerteeeesteeeesteese e s sessaessesseessesseessesseessesssessesseas 2-56

2.5.2 Child EIEIMENES. ... evviieeeiiieeeeeeeeeeeee ettt ettt eaa e s eat e e e eaae e e snaeessneeeennaesesnnees 2-56
B TG TN 1w w1 oY DL (<SOSR 2-57
254 EXAIMPLE ..o 2-57

3 JWS Annotation Reference

3.1
3.2
3.3
34
3.5
3.6

Overview of JWS ANNotation Tags ... 3-1
Web Services Metadata Annotations (JSR-181)ccccceveeriiirerinerineninieninenieenee et 3-3
JAX-WS ANNotations (JSR-224)......cc.coeiereieieieteteeee sttt ettt ae bbb saens 3-4
JAXB ANnotations (JSR-222).....cc.coiriiiieieieieteteieei sttt sttt ettt ettt 3-5
Common Annotations (JSR-250)......cccueirierierierierieieieieteresesessessessessessessessessessessessesessessessessessenss 3-6
WebLogic-specific ANNOtAtiONS.........c.ccciuiiiiiiiiiiiiiccc e 3-6
3.6.1 com.oracle.webservices.apijms.JMSTransportClient...........c.cccooveeiiiiiiiiiiiceennes 3-10
3.6.2 com.oracle.webservices.apijms.JMSTransportServicec.ccooveueveieiicieiiiicieiennes 3-11
3.6.3 weblogicjws. ASYNCFAIIULEccccvviiiiiiiiiiii e 3-12
3.6.4 weblogic.jws. ASYNCRESPONSE.......c.couimimimiiiiiiiicicc e 3-14
3.6.5 weblogicjws.BINAINg.......ccccoiiiiiiiiiiii s 3-16
3.6.6 weblogicjws.BufferQueueccoooviiii 3-17
3.6.7 weblogicjws.Callback........ccooeuiiiiiiiiicii 3-18
3.6.8 weblogic.jws.CallbackMethod..........cccooiiiiiiiiiiiiccceee e 3-19
3.6.9 weblogic.jws.CallbackService. ... 3-20
3.6.10 WeblogicjWs.CONtEXt.....cciuiiiiiiiiii s 3-22
3.6.11 weblogicjws.CONVersationccocueioiiuruiieiiiicie et 3-22
3.6.12 weblogic.jws.Conversational...........cccoeiiiiiiiiiiiiiiice 3-24
3.6.13 WeblogicjWs.FILEStOTEc.ouimiiiiiiiicciccc e 3-26
3.6.14 weblogic.jws.MessageBuffer ..o 3-27
3.6.15 weblogicjWs.POLICIESc.couiuimimiiiiiiii s 3-29
3.6.16 WeblogiCjWS.POLCY «..cucviiiiiieiie 3-29
3.6.17 weblogic.jws.ReliabilityBuffer..........ccccocoooimiiiiiiiiii e, 3-31
3.6.18 weblogic.jws.ReliabilityErrorHandler...........cccooiiiiiicccceeee, 3-32
3.6.19 weblogic.jws.ServICECHENL........ccciuimiiiiiiii e 3-34
3.6.20 weblogic.jws.StreamAttachments...........cccoooiiiiiiiiii 3-36
3.6.21 weblogic.jws.Transactional..........cccooiriiiiiiiiii 3-37
3.6.22 WeblogiCjWS. TYPES c.ccouevimiiiiiiiiiiitcc s 3-38
3.6.23 weblogic.jws. WildcardBinding ... 3-39
3.6.24 weblogic.jws.WildcardBindings...........ccocoeiiiiiiiiiiiiiiiiiccccce, 3-40
3.6.25 weblogicjws. WLHHPTIansport.........cooceueiiiiieieiciccieccec i 3-40
3.6.26 weblogicjws. WLHHPSTIansport........ccccuoviiiieiiiccicccecc 3-41
3.6.27 weblogicjws. WLIMSTTanSPOItcoviviviiiiiiiiiiiiiiiiic e 3-43
3.6.28 WeblogicjWs.WSDLc.oiiiiiiiiiiiccccc e 3-44
3.6.29 weblogic.jws.security.CallbackRolesAllowed.............cccoovriieiniiciiinicncce 3-45
3.6.30 we3blogic.jws.security.RolesSALlowed...........ccoouoiiimiiiiiiiiic 3-46
3.6.31 weblogic.jws.security.RolesReferencedc.cccooourinieiiininiciiiiicccece, 3-47
3.6.32 weblogic.jws.security. RUNAS. ...t 3-48

3.6.33 weblogic.jws.security.SecurityRole ... 3-48

3.6.34 weblogic.jws.security.SecurityRoleRef ..., 3-50
3.6.35 weblogic.jws.security.UserDataConstraintcccocoiiiiiiiiininiiiiicene, 3-50
3.6.36 weblogic.jws.security. WssConfigurationccccoeueieiirnininiciecccci 3-51
3.6.37 weblogic.jws.s0ap.SOAPBINAING........cccciiiiiiiiiic 3-53
3.6.38 weblogic.jws.security.SecurityRoles (deprecated)coocoeueviiiriiiiiiiciciii 3-55
3.6.39 weblogic.jws.security.Securityldentity (deprecated)..........cccooviiioiiinininincnininincnnee. 3-56
3.6.40 weblogic.wsee jws.jaXWs.OWSIL.PIOPErty ..., 3-57
3.6.41 weblogic.wsee.jws.jaxws.owsm.SecurityPolicies ..., 3-58
3.6.42 weblogic.wsee jws.jaxws.owsm.SecurityPolicy ..o 3-58
3.6.43 weblogic.wsee jws.jaxws.owsm.SecurityPolicies ..., 3-60
3.6.44 weblogic.wsee jws.jaxws.oWwsm.SecurityPOLiCy ..o, 3-60
3.6.45 weblogic.wsee.wstx.wsat.Transactionalcccooveiiiniiiiiii 3-61

4 Web Service Reliable Messaging Policy Assertion Reference
4.1 Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions.. 4-1

4.2 WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1 4-2

42.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2
ANA Lol 4-2
4.2.2 Element DeSCIiptions.........cccooiiiiiiiiiiiiiiiiccc s 4-2

4.3 WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0

(DEPTECALEA).......vmviiiiiiiicccc e 4-4
4.3.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions 4-4
4.3.2 Element Description........ccoccueiiiiiioiiiicieecc 4-4

5 Web Service MakeConnection Policy Assertion Reference

5.1 Overview of a WS-Policy File That Contains MakeConnection Assertions..........c.c.ccccecnuiee. 5-1
5.2 Example of a WS-Policy File With MakeConnection and WS-Policy 1.5ccccccoveuiiirunnnnen. 5-2
5.3 Element DESCIIPHIONSc.cueueuruririiiiiiiriririeiceereeeiee et 5-2
5.3.1 WSPIPOLCY ..o 5-2
5.3.2 wsmCMCSUPPOTLEd ..o 5-2

6 Oracle Web Services Security Policy Assertion Reference

6.1 Overview of a Policy File That Contains Security Assertions............cccocoeevvieeneieiiicccieieicnne 6-1
6.2 Example of a Policy File With Security Elementsccccoooovrniininiinicee 6-2
6.3 Element DesCIriptioncccoiiiiiiiiiiiiiiiciiiieeccce s 6-3
6.3.1 CanonicalizatioNAIGOTItNINccoviiiiiiiiiiicr s 6-3
0.3.2 ClALIMIS. ..ot s 6-4
6.3.3 Confidentialitycccooiiririiiee e 6-4
6.3.4 ConfirmationMethodc.ccoiiviiiiiiiiiii e 6-5
6.3.5 DIgeStAIZOTIENIMoviiii s 6-6
6.3.6 EncryptionAIgOrithm........ccccoiiiiiiiiiiiiiiiiiir s 6-6
0.3.7 TAENEILY ..o 6-7

6.3.8 INtEZTItY..ccoiiiiiiiiii 6-7
0.3.9 KEYINTO ..o 6-8
6.3.10 KeyWrappingAIGOrithimccooviviiiiiiiiiiiiiiiiiiircc s 6-8
0.3 11 Label ... 6-8
6.312 LenGth ..o 6-8
0.3.13 MESSAZGEAZE ..ottt 6-9
6.3.14 MeSSageParts........ccccoiuiiiiiiiiiiiii s 6-10
0.3.15 POLICY ..o s 6-11
6.3.16 SeCUTTtYTOKEIc.oviiiiiiiiii s 6-11
6.3.17 SecurityTokenReference ..ot 6-12
6.3.18 Signature Algorithm ..., 6-12
6.3.19 SUPPOTLEATOKENS ... 6-13
0.3.20 TAIEt ..eovevieiiiiccc s 6-13
6.3.21 TOKeNLIfETIMEc.cuiiiiiiiiiiicicierci e 6-13
6.3.22 TTANSFOIMN ..ot s 6-14
6.3.23 USEPaSSWOId.ccovvviiiiiiiiiiiciccec s 6-14
6.4 Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or
SIGNOA.....eeiie e 6-14
6.4.1 XPath 1.0 i 6-15
6.4.2 Pre-Defined wsp:Body() FUNCHONccovvvviiiriiiiiiiiiccccceccceeeeeeeees 6-16
6.4.3 WebLogic-Specific Header FUNCHONSccocouviviiiiiiiiiiiiiiiincccc, 6-16
7 WebLogic Web Service Deployment Descriptor Schema Reference
7.1 Overview of weblogic-webservices.Xml...........cccocieuriiiiiiiiniceiee e 7-1
7.2 Example of a weblogic-webservices.xml Deployment Descriptor Fileccccccooeiinn 7-2
7.3 Element DeSCriptiOnsccooiiiieiiiiiieieiicci ettt 7-2
7.3.1 acknowledgement-intervalccccoooviiiiiiiiiiii 7-4
7.3.2 activatioN-CONTIGcccviviiriiiiiiicr s 7-5
7.3.3 QUEh-CONSTIAINT....c.ciiiiciiiic e 7-5
7.3.4 base-retransmission-interval...........cccocvviiiiiiiiii 7-5
7.3.5 DINAING-VEISION......oiiiiiiieiieieiiitcie ettt 7-5
7.3.6 DUHEr-TeIrY-COUNLoeiiiiic s 7-6
7.3.7 buffer-retry-delay ... s 7-6
7.3.8 buffering-Config ..o 7-6
7.3.9 callback-protocol ... 7-6
7.3.10 connection-factory-jndi-Name............ccoorueiimriiiniiieic 7-6
7.3.11 CUStOMUZEd ..ot 7-6
7.3.12 default-logical-StOre-Namecccccovuvviiiiiririniiiniiiricr s 7-7
7.3.13 delivery-TNOde.cccouviviiiiiiiiiiiiiiiii s 7-7
7.3.14 deployment-listener-listcccocouoiiiiiiiiiiii 7-7
7.3.15 deployment-liSteNeTccoooiurieieiiiicieic e 7-7
7.3.16 destiNatioN-Name.........cccovuiviiiiimiiiiiiii e 7-7
7.3.17 destiNation-tyPe....ccouviviiiiiiiiiiiiii s 7-7

Vi

7.3.18
7.3.19
7.3.20
7.3.21
7.3.22
7.3.23
7.3.24
7.3.25
7.3.26
7.3.27
7.3.28
7.3.29
7.3.30
7.3.31
7.3.32
7.3.33
7.3.34
7.3.35
7.3.36
7.3.37
7.3.38
7.3.39
7.3.40
7.3.41
7.3.42
7.3.43
7.3.44
7.3.45
7.3.46
7.3.47
7.3.48
7.3.49
7.3.50
7.3.51
7.3.52
7.3.53
7.3.54
7.3.55
7.3.56
7.3.57
7.3.58
7.3.59
7.3.60

enable-http-wsdl-aCCess.........coviiiiiiii 7-7

ENADIEd ..o 7-8
EXPOSEA ..t 7-8
FASEINEOSEE ...t 7-8
FLOWTYP@ ettt 7-8
http-fluSh-TESPONSE ... 7-8
http-response-DULfErsize.ccciiiiiiiiiiiiicccecccec e 7-8
INACHVItY-tMEOUL ..ot 7-8
jndi-connection-factory-name. ... 7-9
jndi-context-pParameter ..o 7-9
jndi-initial-context-factory ... 7-9
FOUAE-UTL e 7-9
1oGEING-LEVEL......coiiiiiiiiic e 7-10
1OGIN-CONTIG «..oviiee s 7-10
LOOKUP-VATIANT ... 7-10
IMDEAN-TIAINEcvvivitiviritititit ittt r b er st asr st st a s a sttt a et ssasteae 7-10
MAb-Per-destinationcccccueiiiiiiiiiii e 7-10
INESSAZE-TYPC oottt 7-11
messaging-quete-Ndi-Name.. ..o 7-11
messaging-queue-mdb-run-as-principal-name ... 7-11
4T 41U O PSRRI 7-11
non-buffered-destination ... 7-11
NON-DUFETEA-SOUICE........veiiiiiiiitcc s 7-11
OPETATION ...ttt 7-12
PeTSISteNCe-CONTIGo.voiviiieiii e 7-12
POTt-COMPOTNIENT ..o s 7-12
POTt-COMPONENE-TNAINEoovvitiieiiietiietece e 7-12
PIIOTIEY vttt 7-12
reliability-CONfig......ooouiviiii 7-12
LEPLY-tO-NAME.....ooiieii s 7-13
TEOQUESE-QUEUE. ...ttt 7-13
TESPONSE-QUEULEveernireneerescetese ettt ettt se et ae et se b ese e s s e s ese et e ns e b e s ere s e s e s ene e enesns 7-13
retransmission-exponential-backoff ... 7-13
FEETY=COUNE .ottt 7-13
TRETY=-A@lAY ..o 7-14
FUN-AS-PIINCIPAL ..o 7-14
FUDNFAS-TOLE .ttt sttt ene 7-14
SeqUENCE-EXPITAtiON ...ovivititiiieiitecet 7-14
service-endpoint-addresscoceuiiiiieiiiiici 7-15
soapjms-service-endpoint-address ... 7-15
stream-attaChmentsccooeviiiiiiii 7-15
BATGEt-SOIVICEoviiiiiiceec s 7-15
HME-LO0-IVE 1. 7-15

Vii

viii

7.3.61
7.3.62
7.3.63
7.3.64
7.3.65
7.3.66
7.3.67
7.3.68
7.3.69
7.3.70
73.71
7.3.72
7.3.73
7.3.74
7.3.75

tranSpOrt-guarantee.........cooveiiinieiiiii 7-16

tranSactioN-€Nabledccooviviirieieieieeee et et r b e 7-16
EranSaACtION-HIMEOULeeieeieieeiieieeeee ettt st ae et s s aesseesesreens 7-16
validate-TequUeStccviiiiiiiii e 7-16
VOTSIONN . eutteureeteeeteeteesteeteessteesteesseeesseesseessseesssessseessseesseesssassseenssesnsaeseessseenssenssesnseennsennses 7-17
WeblogiC-WeDSEIVICES ...t 7-17
webservice-conteXtpath..........cccoiiiiiiiii e 7-17
Webservice-desCriPtion..... ..o 7-17
webservice-description-Name............ccoiiiiiiiiii e 7-18
WEDSEIVICE-SECUIILY ..cuvviiieitce s 7-18
WEDSEIVICE-SEIVICEULT ...vvevieereeieiieeteeieeetesteetesteeteseesesseessesseesseessessesssessesssesseessesseessensees 7-18
WEDSEIVICEAEYPE ... 7-18
WSAL-COMIG ... 7-18
TWSAL et ettt ettt st be e ra e be b e be e b e ebe et e ereenbeereenaeerean 7-18
WSAI-PUDLSh-file.......ooii 7-19

Preface

This preface describes the document accessibility features and conventions used in this
guide—WebLogic Web Services Reference for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New Iin This Guide

The following topics introduce the new and changed features of WebLogic web
services in Oracle Fusion Middleware 12c (12.2.1), and provides pointers to additional
information.

New and Changed Features for 12¢ (12.2.1.x)

For Oracle Fusion Middleware 12¢ (12.2.1.x), this document does not contain any new
or changed features. For a comprehensive listing of the new WebLogic Server features
introduced in this release, see What's New in Oracle WebLogic Server.

New and Changed Features for 12c (12.2.1)

For Oracle Fusion Middleware 12¢ (12.2.1), this document does not contain any new or
changed features.

New and Changed Features for 12¢ (12.1.3)

For Oracle Fusion Middleware 12¢ (12.1.3), this document does not contain any new or
changed features.

New and Changed Features for 12¢ (12.1.2)

Oracle Fusion Middleware 12c (12.1.2) includes the following new and changed
features for this document.

* Ant task feature support for SOAP over JMS transport, including the following
new child elements:

- <jmstransportclient> child element of cl i ent gen to configure SOAP
over JMS transport on the client, as described in jmstransportclient.

- <jmstransportservi ce> child element of j wsc to configure SOAP over JMS
transport on the service, as described in jmstransportservice.

* Annotation support for SOAP over JMS transport, including the following:

— com oracl e. webservices. api . j ms. JMSTransport Cl i ent annotation,
as described in com.oracle.webservices.api.jms.JMSTransportClient.

— com oracl e. webservices. api . j ns. JMSTransport Ser vi ce annotation,
as described in com.oracle.webservices.api.jms.JMSTransportService.

Xi

Xii

* Annotation support for attaching Oracle Web Services Manager (OWSM) security
policies to WebLogic web service clients, as well as WebLogic web services.
Annotation support includes:

— webl ogi c. wsee. j ws. j axws. owsm Property annotation to override
configuration properties when attaching an OWSM policy, as described in
weblogic.wsee.jws.jaxws.owsm.Property.

— webl ogi c. wsee. j ws. j axws. owsm SecurityPol i ci es annotation to
attach an array of OWSM polices, as described in
weblogic.wsee.jws.jaxws.owsm.SecurityPolicies.

— webl ogi c. wsee. jws. j axws. owsm Securi t yPol i cy annotation to attach
an OWSM policy, as described in
weblogic.wsee.jws.jaxws.owsm.SecurityPolicy.

¢ New deployment descriptor elements to support SOAP over JMS transport, as
described in WebLogic Web Service Deployment Descriptor Schema Reference.

1

Introduction

This chapter list the reference information that is available to software developers who
develop WebLogic web services.

The following table summarizes the topics described in this document.

Table 1-1 WebLogic Web Service Reference Topics
-~ - |

This Reference Topic . ..

Describes . ..

Ant Task Reference

WebLogic web services Ant tasks.

JWS Annotation Reference

JWS annotations that you can use in the JWS file that
implements your web service.

Web Service Reliable
Messaging Policy Assertion
Reference

Policy assertions you can add to a WS-Policy file to
configure the web service reliable messaging feature of a
WebLogic web service.

Web Service MakeConnection
Policy Assertion Reference

Policy assertions you can add to a WS-Policy file to
configure the web service MakeConnection feature of a
WebLogic web service.

Oracle Web Services Security
Policy Assertion Reference

Policy assertions you can add to a WS-Policy file to
configure the message-level (digital signatures and
encryption) security of a WebLogic web service, using a
proprietary Oracle security policy schema.

Note: You may prefer to use files that conform to the OASIS
WS-SecurityPolicy specification, as described in Configuring
Message-Level Security in Securing WebLogic Web Services for
Oracle WebLogic Server.

WebLogic Web Service
Deployment Descriptor
Schema Reference

Elements in the WebLogic-specific web services deployment
descriptor webl ogi c- webservi ces. xm .

For an overview of WebLogic web services, samples, and related documentation, see
Understanding WebLogic Web Services for Oracle WebLogic Server.

Introduction 1-1

1-2 WebLogic Web Services Reference for Oracle WebLogic Server

2

Ant Task Reference

The chapter provides reference information about the WebLogic web services Ant
tasks.

This chapter includes the following sections:

e Overview of WebLogic Web Services Ant Tasks
¢ clientgen

* jwsc

e wsdlc

e wsdlget

2.1 Overview of WebLogic Web Services Ant Tasks

Ant is a Java-based build tool, similar to the make command but much more powerful.
Ant uses XML-based configuration files (called bui | d. xm by default) to execute
tasks written in Java. Oracle provides a number of Ant tasks that help you generate
important web service-related artifacts.

The Apache Web site provides other useful Ant tasks for packaging EAR, WAR, and
EJB JAR files. For more information, see the Apache Ant Manual athttp: //
j akart a. apache. or g/ ant/ manual /.

Note:

The Apache Jakarta Web site publishes online documentation for only the
most current version of Ant, which might be different from the version of Ant
that is bundled with WebLogic Server. To determine the version of Ant that is
bundled with WebLogic Server, run the following command after setting your
WebLogic environment:

pronpt > ant -version
To view the documentation for a specific version of Ant, download the Ant

zip file from ht t p: / / ar chi ve. apache. or g/ di st/ ant/ bi nari es/ and
extract the documentation.

The following table provides an overview of the web service Ant tasks provided by
Oracle.

Ant Task Reference 2-1

http://jakarta.apache.org/ant/manual/
http://jakarta.apache.org/ant/manual/
http://archive.apache.org/dist/ant/binaries/

clientgen

Table 2-1 WebLogic Web Service Ant Tasks

Ant Task Description

clientgen Generates the Ser vi ce stubs and other client-side artifacts used to invoke a web
service.

jwsc Compiles a Java web service (JWS)-annotated file into a web service.

wsdlc Generates a partial web service implementation based on a WSDL file.

wsdlget Downloads to the local directory a WSDL and its imported XML targets, such as
XSD and WSDL files.

For detailed information about how to integrate and use these Ant tasks in your
development environment to program a web service and a client application that
invokes the web service, see:

¢ Using Oracle WebLogic Server Ant Tasks in Understanding WebLogic Web Services
for Oracle WebLogic Server

* Developing JAX-WS Web Services for Oracle WebLogic Server

* Developing JAX-RPC Web Services for Oracle WebLogic Server

2.2 clientgen

The cl i ent gen Ant task generates, from an existing WSDL file, the client component
files that client applications use to invoke both WebLogic and non-WebLogic web
services.

The generated artifacts for JAX-WS web services include:

¢ The Java class for the Ser vi ce interface implementation for the particular web
service you want to invoke.

* JAXB data binding artifacts.

* The Java class for any user-defined XML Schema data types included in the WSDL
file.

The generated artifacts for JAX-RPC web services include:

¢ The Java class for the St ub and Ser vi ce interface implementations for the
particular web service you want to invoke.

® The Java source code for any user-defined XML Schema data types included in the
WSDL file.

¢ The JAX-RPC mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

* A client-side copy of the WSDL file.

Two types of client applications use the generated artifacts of cl i ent gen to invoke
web services:

2-2 WebLogic Web Services Reference for Oracle WebLogic Server

clientgen

e Stand-alone Java clients that do not use the Java Platform, Enterprise Edition (Java
EE) Version 5 client container.

e Java EE clients, such as E]Bs, JSPs, and web services, that use the Java EE client
container.

By default, the cl i ent gen Ant task generates client artifacts for a JAX-RPC web
service. If you are generating client artifacts for a JAX-WS web service, you can set the
t ype attribute to JAXWS. For example: t ype="JAXWE" .

You typically use the dest Di r attribute of cl i ent gen to specify the directory into
which all the artifacts should be generated, and then compile the generate Java files
yourself using the] avac Ant task. However, cl i ent gen also provides a dest Fi | e
attribute if you want the Ant task to compile the Java files for you and package them,
along with the other generated artifacts, into the specified JAR file. You must specify
one of either dest Fi | e or dest Di r, although you cannot specify both.

The following sections provide more information about the cl i ent gen Ant task:
¢ Taskdef Classname

¢ Child Elements

e Attributes

¢ Examples

2.2.1 Taskdef Classname

The following shows the task definition for the cl i ent gen classname which must
appear in your Ant build file.

<taskdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. i ent GenTask" />

2.2.2 Child Elements

The following sections describe the WebLogic-specific child elements for the
cl i ent gen Ant task.

e binding

® jmstransportclient

e xmlcatalog

2.2.2.1 binding

Use the <bi ndi ng> child element to specify one of the following:

e For JAX-WS, one or more customization files that specify one or more of the
following:

- JAX-WS and JAXB custom binding declarations. For more information, see
Customizing XML Schema-to-Java Mapping Using Binding Declarations in
Developing JAX-WS Web Services for Oracle WebLogic Server.

— SOAP handler files. For more information, see Creating and Using SOAP
Message Handlers in Developing JAX-WS Web Services for Oracle WebLogic Server.

Ant Task Reference 2-3

clientgen

* For JAX-RPC, one or more XMLBeans configuration files, which by convention end
in . xsdconfi g. Use this element if your web service uses Apache XMLBeans at
http://xm beans. apache. or g/ data types as parameters or return values.

The <bi ndi ng> element is similar to the standard Ant <Fi | eset > element and has
all the same attributes. See the Apache Ant documentation on the Fileset element at
http://ant. apache. or g/ manual / Types/fil eset. ht m for the full list of
attributes you can specify.

2.2.2.2 jmstransportclient

Note:

The <j mst ransport cl i ent > child element applies to JAX-WS only; this
child element is not valid for JAX-RPC.

The <j mst r ansport cl i ent > element enables and configures SOAP over JMS
transport.

Optionally, you can configure the destination name, destination type, delivery mode,
request and response queues, and other JMS transport properties, using the

<j met ransportcl i ent > element. For a complete list of JMS transport properties
supported, see Configuring JMS Transport Properties in Developing JAX-WS Web
Services for Oracle WebLogic Server.

The following example shows how to enable and configure JMS transport when
generating the web service client using cl i ent gen.

<target name="clientgen">
<clientgen
wsdl =". / War ehouseSer vi ce. wsdl "
destDir="clientclasses"
packageName="cl i ent . war ehouse"
type="JAXWS"' >
<jmstransportclient
tar get Servi ce=" JWSCEndpoi nt Ser vi ce"
desti nati onNane="com oracl e. webservi ces. j ms. SoapJnsRequest Queue"
jndiInitial ContextFactory="webl ogic.jndi.WlInitial ContextFactory"
j ndi Connecti onFact or yName="webl ogi c. j ns. Connect i onFact ory"
jndi URL="t 3://1 ocal host: 7001"
del i ver yMode="NON_PERSI| STENT"
ti meToLi ve="60000"
priority="1"
messageType="TEXT"
repl yToName="com or acl e. webser vi ces. j ns. SoapJnsResponseQueue”
/>
</clientgen>

2.2.2.3 xmicatalog

Note:

The <xni cat al 0og> child element applies to JAX-WS only; this child element
is not valid for JAX-RPC.

2-4 WebLogic Web Services Reference for Oracle WebLogic Server

http://xmlbeans.apache.org/
http://ant.apache.org/manual/Types/fileset.html

clientgen

The <xm cat al og> child element specifies the ID of an embedded XML catalog. The
following shows the element syntax:

<xn catal og refid="id"/>

The ID referenced by <xm cat al 0g> must match the ID of an embedded XML
catalog. You embed an XML catalog in the bui | d. xm file using the following syntax:

<xm catal og id="id">
<entity publicid="public_id" location="uri"/>
</ xm cat al og>

In the above syntax, publ i ¢_i d specifies the public identifier of the original XML
resource (WSDL or XSD) and ur i specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using
cl i ent gen. Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
type="JAXVS"
wsdl =" ${wsdl }"
destDir="${clientclasses.dir}"
packageName="xnl cat al og. j axws. cl i entgen.client"
cat al og="wsdl cat al og. xni ">
<xnl catal og refid="wsinportcatal og"/>
</clientgen>
</target>
<xnl cat al og i d="wsi nportcatal og">
<entity publicid="http://helloservice.org/types/HelloTypes. xsd"
[ocati on="${basedir}/Hel | oTypes. xsd"/ >
</ xnl cat al og>

For more information, see Using XML Catalogs in Developing JAX-WS Web Services for
Oracle WebLogic Server.

2.2.3 Attributes

The following table describe the WebLogic-specific attributes of the cl i ent gen Ant
task, and specifies whether they are valid for JAX-WS or JAX-RPC web services or
both.

Ant Task Reference 2-5

clientgen

Table 2-2 WebLogic-specific Attributes of the clientgen Ant Task
- -]

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

aut oDet ect W apped Specifies whether the cl i ent gen Ant Boolean No JAX-RPC

task should try to determine whether the
parameters and return type of document-
literal web services are of type wrapped or
bare.

When the cl i ent gen Ant task parses a
WSDL file to create the client stubs, it
attempts to determine whether a
document-literal web service uses
wrapped or bare parameters and return
types based on the names of the XML
Schema elements, the name of the
operations and parameters, and so on.
Depending on how the names of these
components match up, the cl i ent gen
Ant task makes a best guess as to whether
the parameters are wrapped or bare. In
some cases, however, you might want the
Ant task to always assume that the
parameters are of type bare; in this case,
set the aut oDet ect W apped attribute to
Fal se.

Valid values for this attribute are Tr ue or
Fal se. The default value is Tr ue.

cat al og Specifies an external XML catalog file. For ~ String No JAX-WS
more information, see Using XML
Catalogs in Developing JAX-WS Web
Services for Oracle WebLogic Server.

copyWsdl Controls whether the WSDL should be Boolean No JAX-WS
copied in the destination directory defined
by destDir.
destDir Directory into which the cl i ent gen Ant String You must Both
task generates the client source code, specify
WSDL, and client deployment descriptor either the
files. destFile
You can set this attribute to any directory ordestDir
you want. However, if you are generating attribute,
the client component files to invoke a web but not
service from an EJB, JSP, or other web both.

service, you typically set this attribute to
the directory of the Java EE component
which holds shared classes, such as META-
I NF for EJBs, EB- | NF/ cl asses for Web
Applications, or APP- | NF/ cl asses for
Enterprise Applications. If you are
invoking the web service from a stand-
alone client, then you can generate the
client component files into the same
source code directory hierarchy as your
client application code.

2-6 WebLogic Web Services Reference for Oracle WebLogic Server

clientgen

Table 2-2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task
. ___|

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

destFile Name of a JAR file or exploded directory ~ String You must Both

into which the cl i ent gen task packages specify

the client source code, compiled classes, either the
WSDL, and client deployment descriptor destFile
files. If you specify this attribute, the ordestDir
cl i ent gen Ant task also compiles all attribute,
Java code into classes. but not

To create or update a JAR file, usea . j ar both.

suffix when specifying the JAR file, such
asnyclientjar.jar.If the attribute
value does not have a . j ar suffix, then
the cl i ent gen task assumes you are
referring to a directory name.

If you specify a JAR file or directory that
does not exist, the cl i ent gen task creates
anew JAR file or directory.

failonerror Specifies whether the cl i ent gen Ant Boolean No Both
task continues executing in the event of an
error.

Valid values for this attribute are Tr ue or
Fal se. The default value is Tr ue, which
means cl i ent gen continues executing
even after it encounters an error.

Ant Task Reference 2-7

clientgen

Table 2-2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task
. ___|

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

gener at eAsyncMet hods Specifies whether the cl i ent gen Ant Boolean No JAX-RPC

task should include methods in the
generated stubs that client applications
can use to invoke a web service operation
asynchronously.

For example, if you specify Tr ue (which is
also the default value), and one of the web
service operations in the WSDL is called
get Quot e, then the ¢l i ent gen Ant task
also generates a method called

get Quot eAsync in the stubs which client
applications invoke instead of the original
get Quot e method. This asynchronous
flavor of the operation also has an
additional parameter, of data type

webl ogi c. wsee. async. AsyncPreCal

| Cont ext, that client applications can use
to set asynchronous properties, contextual
variables, and so on.

Note: If the web service operation is
marked as one-way, the cl i ent gen Ant
task never generates the asynchronous
flavor of the stub, even if you explicitly set
the gener at eAsyncMet hods attribute to
Tr ue.

Valid values for this attribute are Tr ue or
Fal se. The default value is Tr ue, which
means the asynchronous methods are
generated by default.

2-8 WebLogic Web Services Reference for Oracle WebLogic Server

clientgen

Table 2-2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task
. ___|

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

gener at ePol i cyMet hods Specifies whether the cl i ent gen Ant Boolean No JAX-RPC

task should include WS-Policy-loading
methods in the generated stubs. These
methods can be used by client applications
to load a local WS-Policy file.

If you specify Tr ue, four flavors of a
method called get XXXSoapPort () are
added as extensions to the Ser vi ce
interface in the generated client stubs,
where XXX refers to the name of the web
service. Client applications can use these
methods to load and apply local WS-
Policy files, rather than apply any WS-
Policy files deployed with the web service
itself. Client applications can specify
whether the local WS-Policy file applies to
inbound, outbound, or both SOAP
messages and whether to load the local
WS-Policy from an InputStream or a URI.

Valid values for this attribute are Tr ue or
Fal se. The default value is Fal se, which
means the additional methods are not
generated.

See Using a Client-Side Security WS-Policy
File in Securing WebLogic Web Services for
Oracle WebLogic Server for more
information.

get Runt i meCat al og Specifies whether the cl i ent gen Ant Boolean No JAX-WS
task should generate the XML catalog
artifacts in the client runtime environment.
To disable their generation, set this flag to
f al se. This value defaults tot r ue. For
more information, see Disabling XML
Catalogs in the Client Runtime in
Developing JAX-WS Web Services for Oracle
WebLogic Server.

Ant Task Reference 2-9

clientgen

Table 2-2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task
. ___|

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

handl er Chai nFi | e Specifies the name of the XML file that String No JAX-RPC

describes the client-side SOAP message
handlers that execute when a client
application invokes a web service.

Each handler specified in the file executes

twice:

* Directly before the client application
sends the SOAP request to the web
service

¢ Directly after the client application
receives the SOAP response from the
web service

If you do not specify this cl i ent gen

attribute, then no client-side handlers

execute, even if they are in your
CLASSPATH.

See Creating and Using Client-Side SOAP
Message Handlers for details and
examples about creating client-side SOAP
message handlers.

i ncl uded obal Types Specifies that the cl i ent gen Ant task Boolean No JAX-RPC
should generate Java representations of all
XML Schema data types in the WSDL,
rather than just the data types that are
explicitly used in the web service
operations.

Valid values for this attribute are Tr ue or
Fal se. The default value is Fal se, which
means that cl i ent gen generates Java
representations for only the actively-used

XML data types.
j axRPCW appedArraySty When the cl i ent gen Ant task is Boolean No JAX-RPC
le generating the Java equivalent to XML

Schema data types in the WSDL file, and
the task encounters an XML complex type
with a single enclosing sequence with a
single element with the maxQccur s
attribute equal to unbounded, the task
generates, by default, a Java structure
whose name is the lowest named
enclosing complex type or element. To
change this behavior so that the task
generates a literal array instead, set the

j axRPCW appedArrayStyl e to Fal se.

Valid values for this attribute are Tr ue or
Fal se. The default value is Tr ue.

2-10 WebLogic Web Services Reference for Oracle WebLogic Server

clientgen

Table 2-2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task
. ___|

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

packageNanme Package name into which the generated String No Both

client interfaces and stub files are
packaged.

If you do not specify this attribute, the

cl i ent gen Ant task generates Java files
whose package name is based on the
targetNamespace of the WSDL file. For
example, if the targetNamespace is

htt p: / / exanpl e. or g, then the package
name might be or g. exanpl e or
something similar. If you want control
over the package name, then you should
specify this attribute.

If you do specify this attribute, Oracle
recommends you use all lower-case letters
for the package name.

servi ceNane Name of the web service in the WSDL file String This JAX-RPC

for which the corresponding client attribute is
component files should be generated. required
The web service name corresponds to the only if the
<servi ce> element in the WSDL file. WSDI_“ file
The generated mapping file and client-side fr(:g;gl:}l;n
copy of the WSDL file will use this name. one
For example, if you set ser vi ceNane to <servi ce
Cut eSer vi ce, the mapping file will be > element
called '
cuteServi ce_j ava_wsdl _mappi ng. X The Ant
m and the client-side copy of the WSDL task returns
will be called an error if
Cut eServi ce_saved_wsdl . wsdl . you do not
specify this
attribute
and the
WSDL file
contains
more than
one
<service
> element.
sort SchemaTypes In an XSD file, two complex types are Boolean No JAX-RPC

defined, one a named global type and the
other an unnamed local type. By default,
cl i ent gen automatically generates its
own name for the unnamed local type,
and the name generated when compiling
different WSDL files is not always
consistent.

When enabled, the type names in the Java
files generated by cl i ent gen will be the
same.

Ant Task Reference 2-11

clientgen

Table 2-2 (Cont.) WebLogic-specific Attributes of the clientgen Ant Task
. ___|

Attribute Description Data Type Required? JAX-WS,
JAX-RPC,
or Both?

type Specifies the type of web service for which ~ String No Both

you are generating client artifacts: JAX-WS
or JAX-RPC.
Valid values are:
e JAXWS
e JAXRPC
Default value is JAXRPC.
wsdl Full path name or URL of the WSDL that String Yes Both

describes a web service (either WebLogic
or non-WebLogic) for which the client
component files should be generated.

The generated stub factory classes in the
client JAR file use the value of this
attribute in the default constructor.

wsdl Locat i on Specifies the value of the wsdl Locat i on String No JAX-WS
attribute generated on the
@\ebServi ceCient.

2.2.4 Examples

The following examples illustrate how to build a cl i ent gen Ant target.

Example 1 Building a Basic clientgen Ant Target

In the following example, when the sample bui | d_cl i ent target is executed,

cl i ent gen uses the WSDL file specified by the wsdl attribute to generate all the
client-side artifacts needed to invoke the web service specified by the ser vi ceNane
attribute. The cl i ent gen Ant task generates all the artifacts into the / out put /

cl i ent cl asses directory. All generated Java code is in the

nmyapp. nyservi ce. cl i ent package. After cl i ent gen has finished, the j avac
Ant task then compiles the Java code, both cl i ent gen-generated as well as your
own client application that uses the generated artifacts and contains your business
code. By default, cl i ent gen generates client artifacts based on a JAX-RPC web
service.

<taskdef nane="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />

<target name="build_client">

<clientgen
wsdl ="htt p: // exanpl e. com nyapp/ nyservi ce. wsdl "
destDir="/out put/clientclasses"
packageName="myapp. nyservice.client"
servi ceNane=" St ockQuot eServi ce" />

<javac ... />

</target>

2-12 WeblLogic Web Services Reference for Oracle WebLogic Server

clientgen

Example 2 Generating a JAX-WS Web Service Client

In the preceding example, it is assumed that the web service for which you are
generating client artifacts is based on JAX-RPC; the following example shows how to
use the t ype attribute to specify that the web service is based on JAX-WS:

<clientgen
type="JAXW\S'
wsdl ="http://${w s. host nane}: ${w s. port}/ JaxVél npl / JaxWs! mpl Ser vi ce?WSDL"
destDir="/out put/clientclasses"
packageName="exanpl es. webservi ces. j axws. client"
/>

Example 3 Compiling and Packaging the Generated Artifacts

If you want the cl i ent gen Ant task to compile and package the generated artifacts
for you, specify the dest Fi | e attribute rather than dest Di r . In this example, you
do not need to also specify the j avac Ant task after cl i ent gen in the bui | d. xmi
file because the Java code has already been compiled.

<clientgen
type="JAXWE'
wsdl ="htt p: // exanpl e. com nyapp/ nyservi ce. wsdl "
destFile="/output/jarfiles/nyclient.jar"
packageName="nyapp. nyservice.client"
servi ceNane=" St ockQuot eSer vi ce"

/>

Example 4 Executing clientgen on a Static WSDL File

You typically execute the cl i ent gen Ant task on a WSDL file that is deployed on the
Web and accessed using HTTP. Sometimes, however, you might want to execute

cl i ent gen on a static WSDL file that is packaged in an archive file, such as the WAR
or JAR file generated by the j wsc Ant task. In this case you must use the following
syntax for the wsdl attribute:

wsdl ="jar:file:archive_filel WDL_file"

where ar chi ve_f i | e refers to the full or relative (to the current directory) name of
the archive file and WEDL _f i | e refers to the full pathname of the WSDL file, relative
to the root directory of the archive file.

The following example shows how to execute cl i ent gen on a static WSDL file
called Si npl eSer vi ce. wsdl , which is packaged in the VEB- | NF directory of a
WAR file called Si npl el npl . war , which is located in the out put / mny EAR/
exanpl es/ webser vi ces/ si npl e sub-directory of the directory that contains the
bui I d. xni file.

<clientgen
type="JAXWE'
wsdl ="jar:file:output/nyEAR exanpl es/ webser vi ces/ si npl e/ Si npl el npl . war ! / VEB-
| NF/ Si mpl eSer vi ce. wsdl "
destDir="/out put/clientclasses"
packageName="rnyapp. nyservice.client"
/>

Example 5 Setting Java Properties
You can use the standard Ant <syspr oper t y> nested element to set Java properties,
such as the username and password of a valid WebLogic Server user (if you have

Ant Task Reference 2-13

jwsc

enabled access control on the web service) or the name of a client-side trust store that
contains trusted certificates, as shown in the following example:

<clientgen
type="JAXWE'
wsdl ="http: // exanpl e. conl nyapp/ nySecur edSer vi ce. wsdl "
destDir="/out put/clientclasses"
packageName="rnyapp. nysecur edservi ce. client"
servi ceNane="Secur eSt ockQuot eSer vi ce"
<sysproperty key="javax.net.ssl.trustStore"
val ue="/keyst or es/ DemoTrust . j ks"/>
<sysproperty key="webl ogi c. wsee. client.ssl.stricthostchecking"
val ue="fal se"/>
<sysproperty key="javax.xm .rpc.security.auth.usernane"
val ue="juliet"/>
<sysproperty key="javax.xm .rpc.security.auth. password"
val ue="secret"/>
</clientgen>

2.3 jwsc

The j wsc Ant task takes as input one or more Java Web Service (JWS) files that
contains both standard and WebLogic-specific JWS annotations and generates all the
artifacts you need to create a WebLogic web service.

The generated artifacts for JAX-WS web services include:

e JSR-109 web service class fileathtt p: / / www. j cp. org/ en/jsr/detail ?
i d=109, such as the service endpoint interface (called
JWE_C assNanePort Type. j ava, where JW5_Cl assNarme refers to the JWS
class).

¢ JAXB data binding artifact class file.
* All required deployment descriptors, including:
— Servlet-based web service deployment descriptor file: web. xmni .

— Ear deployment descriptor files: appl i cat i on. xm and webl ogi c-
application.xm.

Note:
For JAX-WS web services:
[1 The WSDL file is generated when the service endpoint is deployed.

1 No E]JB deployment descriptors are required for EJB 3.0-based web
services.

The generated artifacts for JAX-RPC web services include:

e JSR-109 web service class fileathtt p: / / www. j cp. org/ en/jsr/detail ?
i d=175, such as the service endpoint interface (called
JW5_Cl assNanePort Type. j ava, where JW5_Cl assNane refers to the JWS
class).

e All required deployment descriptors, which can include:

2-14 WeblLogic Web Services Reference for Oracle WebLogic Server

http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175

jwsc

- Standard and WebLogic-specific web services deployment descriptors:
webservi ces. xm ,webl ogi c- webservi ces. xm , and webl ogi c-
webservi ces-policy. xm.

- JAX-RPC mapping files.
- Java class-implemented web services: web. xm and webl ogi c. xm .
— EJB-implemented web services: ej b-j ar. xm and webl ogi c-ej b-jar. xm .

— Ear deployment descriptor files: appl i cat i on. xm and webl ogi c-
application.xm.

® The XML Schema representation of any Java user-defined types used as parameters
or return values to the web service operations.

¢ The WSDL file that publicly describes the web service.

After generating all the artifacts, the j wsc Ant task compiles the Java and JWS files,
packages the compiled classes and generated artifacts into a deployable Web
application WAR file, and finally creates an exploded Enterprise Application directory
that contains the JAR file. You then deploy this Enterprise Application to WebLogic
Server.

By default, the j wsc Ant task generates a web service that conforms to the JAX-RPC
specification. You can control the type of web services that is generated using the

t ype attribute of the <j ws> child element. For example, to generate a JAX-WS web
service, sett ype="JAXWS" attribute of the <j ws> child element.

Note:

Although not typical, you can code your JWS file to explicitly implement

j avax. ej b. Sessi onBean. See Should You Implement a Stateless Session
EJB? in Developing JAX-WS Web Services for Oracle WebLogic Server for details.
Because this case is not typical, it is assumed in this section that j wsc
packages your web service in a Web application WAR file, and EJB-specific
information is generated only when necessary.

You specify the JWS file or files you want the j wsc Ant task to compile using the

<j ws> element, as described in jws. If the <j ws> element is an immediate child of the
j wsc Ant task, then | wsc generates a separate WAR file for each JWS file. If you want
all the JWS files, along with their supporting artifacts, to be packaged in a single WAR
file, then group all the <j ws> elements under a single <nmodul e> element. A single
WAR file reduces WebLogic server resources and allows the web services to share
common objects, such as user-defined data types. Using this method you can also
specify the same context path for the web services; if they are each packaged in their
own WAR file then each service must also have a unique context path.

When you use the <nbdul e> element, you can use the <j wsf i | eset > child element
to search for a list of JWS files in one or more directories, rather than list each one
individually using <j ws>.

Typically, | wsc generates a new Enterprise Application exploded directory at the
location specified by the dest Di r attribute. However, if you specify an existing
Enterprise Application as the destination directory, | wsc updates any existing
application. xm file with the new web services information.

Ant Task Reference 2-15

jwsc

Similarly, j wsc typically generates new Web application deployment descriptors
(web. xm and webl ogi c. xm) that describe the generated Web application. If,
however, you have an existing Web application to which you want to add web
services, you can use the <descr i pt or > child element of the <nmodul e> element to
specify existing web. xm and webl ogi c. xm files; in this case, j ws¢ copies these
files to the dest Di r directory and adds new information to them. Use the standard
Ant <fi | eset > element to copy the other existing Web application files to the
destDir directory.

Note:

The existing web. xm and webl ogi ¢. xm files pointed to by the
<descri pt or > element must be XML Schema-based, not DTD-based which
will cause the j wsc Ant task to fail with a validation error.

If one or more of the JWS files to be compiled itself includes an invoke of a different
web service, then you can use the <cl i ent gen> element of j wsc to generate and
compile the required client component files, such as the St ub and Ser vi ce interface
implementations for the particular web service you want to invoke. These files are
packaged in the generated WAR file so as to make them available to the invoking web
service.

The following sections discuss additional important information about j wsc:
® Taskdef Classname
e Attributes

e Examples

2.3.1 Taskdef Classname

The following shows the task definition for the] wsc classname which must appear in
your Ant build file.

<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />

2.3.2 Child Elements

The following shows the child element hierarchy of the j wsc Ant task.

<jwsc> {1}
<jws> {0 or nore}
<WLHttpTransport> {0 or 1}
<WLHttpsTransport> {0 or 1}
<jmstransportservice> {0 or 1} -- JAX-WS web services only
<WLJMSTransport> {0 or 1} -- JAX-RPC web services only
<clientgen> {0 or nore}
<descriptor> {0 or nore}
<module> {0 or nore}
<jws> {0 or nore}
<WLHttpTransport> {0 or 1}
<WLHttpsTransport> {0 or 1}
<jmstransportservice> {0 or 1} -- JAX-WS web services only
<WLJMSTransport> {0 or 1} -- JAX-RPC web services only
<clientgen> {0 or nore}

2-16 WebLogic Web Services Reference for Oracle WebLogic Server

jwsc

<descriptor> {0 or nore}
<jwsfileset> {0 or nore}
<binding> {0 or nore}

The j wsc Ant task has a variety of attributes and three child elements:

¢ <j ws> element—Used as either a child element of <j ws¢> or <nbdul e>. Defines
the transport (HTTP, HTTPs, or JMS) using on of the following child elements:

- <W.Ht t pTransport >. See WLHttpTransport.

<WL.Ht t psTransport >. See WLHttpsTransport.
- <jnmstransportservi ce> (JAX-WS only). See jmstransportservice.

- <WLJIMSTranspor t > (JAX-RPC only). See jmstransportservice.

For more information, see jws.

e <modul e> element—Groups one or more JWS files (also specified with the <j ws>
element) into a single module (WAR file); if you do not specify <nbdul e>, then
each JWS file is packaged into its own module, or WAR file. For more information,
see module.

* <binding> element—Specifies custom binding information. For more information,
see binding.

The <cl i ent gen> and <descri pt or > elements are children only of the elements
that generate modules: either the actual <nmbdul e> element itself, or <j ws> when
used as a child of j wsc, rather than a child of <nodul e>.

The <j wsfi | eset > element can be used only as a child of <nodul e>.

The following sections describe each child element in the j ws¢ Ant task in more
detail.

2.3.2.1 binding

Use the <bi ndi ng> child element to specify one of the following:

* For JAX-WS, one or more customization files that specify JAX-WS and JAXB
custom binding declarations. For more information, see Customizing XML Schema-
to-Java Mapping Using Binding Declarations in Developing JAX-WS Web Services for
Oracle WebLogic Server.

e For JAX-RPC, one or more XMLBeans configuration files, which by convention end
in . xsdconfi g. Use this element if your web service uses Apache XMLBeans
http://xm beans. apache. or g/ data types as parameters or return values.

The <bi ndi ng> element is similar to the standard Ant <Fi | eset > element and has
all the same attributes. See the Apache Ant documentation on the Fileset element at
http://ant. apache. or g/ manual / Types/fil eset. ht m for the full list of
attributes you can specify.

Note:

The <bi ndi ng> child element is not valid if you specify the conpl i edWédl
attribute of the <j ws> element.

Ant Task Reference 2-17

http://xmlbeans.apache.org/
http://ant.apache.org/manual/Types/fileset.html

jwsc

2.3.2.2 clientgen

Use the <cl i ent gen> element if the JWS file itself invokes another web service and
you want the j wsc Ant task to automatically generate and compile the required client-
side artifacts and package them in the Web application WAR file together with the
web service. The client-side artifacts include:

* The Java classes or the St ub and Ser vi ce interface implementations for the
particular web service you want to invoke.

¢ The Java classes for any user-defined XML Schema data types included in the
WSDL file.

¢ For JAX-RPC, the mapping deployment descriptor file which contains information
about the mapping between the Java user-defined data types and their
corresponding XML Schema types in the WSDL file.

To view this element within the j wsc element hierarchy, see Attributes. See Examples
for examples of using the element.

You can specify the standard Ant <syspr oper t y> child element to specify properties
required by the web service from which you are generating client-side artifacts. For
example, if the web service is secured, you can use the

javax. xm . rpc. security. auth. user name| passwor d properties to set the
authenticated username and password. See the Ant documentation at ht t p: //

ant . apache. or g/ manual / for the j ava Ant task for additional information about
<sysproperty>.

You can use the <cl i ent gen> child element for generating both JAX-WS and JAX-
RPC web services.

The following table describes the attributes of the <cl i ent gen> element.

2-18 WebLogic Web Services Reference for Oracle WebLogic Server

http://ant.apache.org/manual/
http://ant.apache.org/manual/

jwsc

Table 2-3 Attributes of the <clientgen> Element
- __|

Attribute

Description Required?

JAX-RPC,
JAX-WS, or
Both?

aut oDet ect W apped

Specifies whether the j wsc Ant task should ~ No
try to determine whether the parameters and
return type of document-literal web services

are of type wrapped or bare.

When the j wsc Ant task parses a WSDL file
to create the stubs, it attempts to determine
whether a document-literal web service uses
wrapped or bare parameters and return
types based on the names of the XML
Schema elements, the name of the operations
and parameters, and so on. Depending on
how the names of these components match
up, the j wsc Ant task makes a best guess as
to whether the parameters are wrapped or
bare. In some cases, however, you might
want the Ant task to always assume that the
parameters are of type bare; in this case, set
the aut oDet ect W apped attribute to

Fal se.

Valid values for this attribute are Tr ue or
Fal se. The default value is Tr ue.

JAX-RPC

cat al og

Specifies an external XML catalog file. No

For more information, see Using XML
Catalogs in Developing JAX-WS Web Services
for Oracle WebLogic Server.

JAX-WS

handl er Chai nFi |l e

Specifies the name of the XML file that No
describes the client-side SOAP message

handlers that execute when the JWS file

invokes a web service.

Each handler specified in the file executes
twice:

e directly before the JWS sends the SOAP
request to the invoked web service.
e directly after the JWS receives the SOAP
response from the invoked web service.
If you do not specify this attribute, then no
client-side handlers execute when the web
service is invoked from the JWS file, even if
they are in your CLASSPATH.
See Creating and Using Client-Side SOAP
Message Handlers in for details and
examples about creating client-side SOAP
message handlers.

JAX-RPC

Ant Task Reference 2-19

jwsc

Table 2-3 (Cont.) Attributes of the <clientgen> Element
. ___|

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

gener at eAsyncMet hods Specifies whether the j wsc Ant task should No JAX-RPC

include methods in the generated stubs that
the JWS file can use to invoke a web service
operation asynchronously.

For example, if you specify Tr ue (which is
also the default value), and one of the web
service operations in the WSDL is called
get Quot e, then the j wsc Ant task also
generates a method called get Quot eAsync
in the stubs which the JWS file can use
instead of the original get Quot e method.
This asynchronous flavor of the operation
also has an additional parameter, of data
type

webl ogi c. wsee. async. AsyncPreCal | C
ont ext, that the JWS file can use to set
asynchronous properties, contextual
variables, and so on.

Note: If the operation of the web service
being invoked in the JWS file is marked as
one-way, the j wsc Ant task never generates
the asynchronous flavor of the stub, even if
you explicitly set the

gener at eAsyncMet hods attribute to Tr ue.

Valid values for this attribute are Tr ue or
Fal se. The default value is Tr ue, which
means the asynchronous methods are
generated by default.

2-20 WebLogic Web Services Reference for Oracle WebLogic Server

jwsc

Table 2-3 (Cont.) Attributes of the <clientgen> Element
. __|

Attribute

Description Required?

JAX-RPC,
JAX-WS, or
Both?

gener at ePol i cyMet hods

Specifies whether the j wsc Ant task should No
include WS-Policy-loading methods in the
generated stubs. You can use these methods

in your JWS file, when invoking the web

service, to load a local WS-Policy file.

If you specify Tr ue, four flavors of a method
called get XXXSoapPort () are added as
extensions to the Ser vi ce interface in the
generated client stubs, where XXX refers to
the name of the web service. You can
program the JWS file to use these methods to
load and apply local WS-Policy files, rather
than apply any WS-Policy file deployed with
the web service itself. You can specify in the
JWS file whether the local WS-Policy file
applies to inbound, outbound, or both SOAP
messages and whether to load the local WS-
Policy file from an InputStream or a URL

Valid values for this attribute are Tr ue or
Fal se. The default value is Fal se, which
means the additional methods are not
generated.

See Using a Client-Side Security WS-Policy
File in Securing WebLogic Web Services for
Oracle WebLogic Server for more information.

JAX-RPC

i ncl uded obal Types

Specifies that the j wsc Ant task should No
generate Java representations of all XML

Schema data types in the WSDL, rather than

just the data types that are explicitly used in

the web service operations.

Valid values for this attribute are Tr ue or
Fal se. The default value is Fal se, which
means that j WSC generates Java
representations for only the actively-used
XML data types.

JAX-RPC

j axRPCW appedArrayStyl e

When the j wsc Ant task is generating the No
Java equivalent to XML Schema data types in
the WSDL file, and the task encounters an
XML complex type with a single enclosing
sequence with a single element with the
maxQccur s attribute equal to unbounded,
the task generates, by default, a Java
structure whose name is the lowest named
enclosing complex type or element. To
change this behavior so that the task
generates a literal array instead, set the

j axRPCW appedArrayStyl e to Fal se.

Valid values for this attribute are Tr ue or
Fal se. The default value is Tr ue

JAX-RPC

Ant Task Reference 2-21

jwsc

Table 2-3 (Cont.) Attributes of the <clientgen> Element
. ___|

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

packageNanme Package name into which the generated Yes Both

client interfaces and stub files are packaged.

Oracle recommends you use all lower-case
letters for the package name.

servi ceNane Name of the web service in the WSDL file for This JAX-RPC
which the corresponding client-side artifacts attribute is
should be generated. required only
The web service name corresponds to the if the WS]_DL
<servi ce> element in the WSDL file. file corl:ams
The generated JAX-RPC mapping file and g;c;re than
client-side copy of the WSDL file will use <servi ce>
this name. For example, if you set clement
servi ceName to Cut eSer vi ce, the JAX- ’
The Ant task

RPC mapping file will be called
cuteServi ce_j ava_wsdl _mappi ng. xm returr}s an
and the client-side copy of the WSDL will be ~ €ITOr if you
called Cut eSer vi ce_saved_wsdl . wsdl . donot
specify this
attribute and
the WSDL
file contains
more than
one
<servi ce>
element.

wsdl Full path name or URL of the WSDL that Yes Both
describes a web service (either WebLogic or
non-WebLogic) for which the client artifacts
should be generated.

The generated stub factory classes use the

value of this attribute in the default
constructor.

2.3.2.3 descriptor

Use the <descr i pt or > element to specify that, rather than create new Web
application deployment descriptors when generating the WAR that will contain the
implementation of the web service, the j wsc task should instead copy existing files
and update them with the new information. This is useful when you have an existing
Web application to which you want to add one or more web services. You typically
use this element together with the standard <Fi | eSet > Ant task to copy other
existing Web application artifacts, such as HTML files and Java classes, to the j wsc-
generated Web application.

You can use this element with only the following two deployment descriptor files:
e web. xn

e webl ogi c. xm

Use a separate <descr i pt or > element for each deployment descriptor file.

2-22 WeblLogic Web Services Reference for Oracle WebLogic Server

jwsc

The <descr i pt or > element is a child of either <modul e> or <j ws>, when the latter
is a direct child of the main j wsc Ant task.

Note:

The existing web. xm and webl ogi c. xm files pointed to by the
<descri pt or > element must be XML Schema-based, not DTD-based which
will cause the j wsc Ant task to fail with a validation error.

You can use the <descr i pt or > child element only for generating JAX-RPC web
services. To view this element within the j wsc element hierarchy, see Attributes. See
Examples for examples of using the element.

The following table describes the attributes of the <descr i pt or > element.

Table 2-4 Attributes of the <descriptor> Element

Attribute

Description Required?

file

Full pathname (either absolute or relative to the directory that contains the Yes
bui I d. xnl file) of the existing deployment descriptor file. The deployment
descriptor must be XML Schema-based, not DTD-based.

The j wsc Ant task does not update this file directly, but rather, copies it to the
newly-generated Web application.

2.3.2.4 jmstransportservice

Note:

You can use the <j mst r ansport ser vi ce> child element for configuring
SOAP over JMS transport for JAX-WS web services only. For information
about configuring SOAP over JMS transport for JAX-RPC web services, see
WLJMSTransport.

You cannot use SOAP over JMS transport in conjunction with Web Services
reliable messaging or streaming SOAP attachments, as described in Developing
JAX-WS Web Services for Oracle WebLogic Server.

Use the <j nst r ansport ser vi ce> element to enable and configure SOAP over JMS
transport for JAX-WS web services and clients.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

¢ Reliability
® Scalability
* Quality of service

For more information about using SOAP over JMS transport, see Using SOAP Over
JMS Transport as the Connection Protocol in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Ant Task Reference 2-23

jwsc

The <j nmst ransport servi ce> element is a child in the <j ws> element of the j wsc
Ant task. You can specify zero or one <j nst r ansport ser vi ce> element for a given
JWS file.

Optionally, you can configure the destination name, destination type, delivery mode,
request and response queues, and other JMS transport properties, using the

<j mst r ansport servi ce> element. For a complete list of J]MS transport properties
supported, see Configuring JMS Transport Properties in Developing JAX-WS Web
Services for Oracle WebLogic Server.

The following example shows how to enable and configure JMS transport when
generating the web service using j wsc.

<?xm version="1.0"?>
<proj ect name="jaxws.jns.jwsc" default="all">
<inmport file="../build-jnms.xm"/>
<path id="client.class.path">
<pat hel ement path="${clientclasses.dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<target nanme="jwsc">
<jwsc srcdir="." sourcepath="client" destdir="${output.dir}" debug="on"
keepGener at ed="yes" >
<jws file="JWSCEndpoint.java" type="JAXWS" expl ode="true">
<j mstransportservice
tar get Servi ce=" JWSCEndpoi nt Ser vi ce"
desti nati onName="com oracl e. webser vi ces. api . j ns. Request Queue"
j ndi I nitial ContextFactory="webl ogic.jndi.WlInitial ContextFactory"
j ndi Connect i onFact or yNanme="webl ogi c. j ns. XAConnect i onFact ory"
jndi URL="t 3://1 ocal host: 7001"
del i ver yMbde="PERS| STENT"
ti meToLi ve="60000"
priority="1"
messageType="TEXT"
activationConfig = "transAttribute=Supports"
/>
</jws>
</jwsc>
</target>
</ proj ect>

2.3.2.5 jws

The <j ws> element specifies the name of a JWS file that implements your web service
and for which the Ant task should generate Java code and supporting artifacts and
then package into a deployable WAR file inside of an Enterprise Application.

You can specify the <j ws> element in the following two different levels of the j wsc
element hierarchy:

* Animmediate child element of the j wsc Ant task. In this case, j Wsc generates a
separate WAR file for each JWS file. You typically use this method if you are
specifying just one JWS file to the j wsc Ant task.

e A child element of the <nbdul e> element, which in turn is a child of j wsc. In this
case,] WsC generates a single WAR file that includes all the generated code and
artifacts for all the JWS files grouped within the <nodul e> element. This method is
useful if you want all JWS files to share supporting files, such as common Java data

types.

You are required to specify either a <j ws> or <npdul e> child element of j wsc.

2-24 WeblLogic Web Services Reference for Oracle WebLogic Server

jwsc

To view this element within the j wsc element hierarchy, see Attributes. See Examples
for examples of using the element.

You can use the standard Ant <Fi | eSet > child element with the <j ws> element of
jwsc.
You can use the <j ws> child element when generating both JAX-WS and JAX-RPC

web services.

The following table describes the attributes of the <j ws> element. The description
specifies whether the attribute applies in the case that <j ws> is a child of j wsc, isa
child of <nmodul e> or in both cases.

Table 2-5 Attributes of the <jws> Element of the jwsc Ant Task
- |

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?
conpi | edvdl Full pathname of the JAR file generated by the wsdl ¢ Ant Only Both

task based on an existing WSDL file. The JAR file contains required for
the JWS interface file that implements a web service based the "starting
on this WSDL, as well as data binding artifacts for from WSDL"
converting parameter and return value data between its use case
Java and XML representations; the XML Schema section of

the WSDL defines the XML representation of the data.

You use this attribute only in the "starting from WSDL"
use case, in which you first use the wsdlc Ant task to
generate the JAR file, along with the JWS file that
implements the generated JWS interface. After you update
the JWS implementation class with business logic, you run
the j wsc Ant task to generate a deployable web service,
using the f i | e attribute to specify this updated JWS
implementation file.

You do not use the conpi | edWsdl| attribute for the
"starting from Java" use case in which you write your JWS
file from scratch and the WSDL file that describes the web
service is generated by the WebLogic web services
runtime.

Applies to <j ws> when used as a child of both j wsc and
<modul e>.

Ant Task Reference 2-25

jwsc

Table 2-5 (Cont.) Attributes of the <jws> Element of the jwsc Ant Task
. ___|

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

cont ext Pat h Context path (or context root) of the web service. No Both

For example, assume the deployed WSDL of a WebLogic
web service is as follows:

http://host name: 7001/ fi nanci al / Get Quot e?WSDL

The context path for this web service is f i nanci al .

The value of this attribute overrides any other context
path set for the JWS file. This includes the transport-
related JWS annotations, as well as the transport-related
child elements of <j ws>.

The default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the
JWS file is Hel | oWor | dI npl . j ava, then the default
value of its contextPath is Hel | oWor | dl npl .

Applies only when <j ws> is a direct child of j wsc.
For more information about defining the context path, see:
¢ Defining the Context Path of a WebLogic Web Service

in Developing JAX-WS Web Services for Oracle WebLogic
Server

* Defining the Context Path of a WebLogic Web Service
in Developing JAX-RPC Web Services for Oracle WebLogic
Server.

expl ode Specifies whether the generated WAR file that contains No Both
the deployable web service is in exploded directory
format or not.

Valid values for this attribute are t r ue or f al se. Default
value is f al se, which means that j wsc generates an
actual WAR archive file, and not an exploded directory.

Applies only when <j ws> is a direct child of j wsc.

file The name of the JWS file that you want to compile. The Yes Both
j wsc Ant task looks for the file in the sr cdi r directory.

Applies to <j ws> when used as a child of both j wsc and
<modul e>.

gener at eV d| Specifies whether the generated WAR file includes the Yes JAX-WS
WSDL file in the WEB-INF directory. Valid values for this
attribute are t r ue or f al se. Default value is f al se,
which means that j wsc does not include the WSDL file in
the generated WAR file.

Applies to <j ws> when used as a child of both j wsc¢ and
<nmodul e>.

2-26 WebLogic Web Services Reference for Oracle WebLogic Server

jwsc

Table 2-5 (Cont.) Attributes of the <jws> Element of the jwsc Ant Task

Attribute Description

Required? JAX-RPC,
JAX-WS, or
Both?

i ncl udeSchenas The full pathname of the XML Schema file that describes
an XMLBeans parameter or return value of the web
service.

To specify more than one XML Schema file, use either a
comma or semi-colon as a delimiter:

i ncl udeSchemas="po. xsd, cust oner. xsd"

This attribute is only supported in the case where the JWS
file explicitly uses an XM_Beans data type as a parameter
or return value of a web service operation. If you are not
using the XMLBeans data type, the j wsc Ant task returns
an error if you specify this attribute.

Additionally, you can use this attribute only for web
services whose SOAP binding is document-literal-bare.
Because the default SOAP binding of a WebLogic web
service is document-literal-wrapped, the corresponding
JWS file must include the following JWS annotation:

@OAPBI ndi ng(
st yl e=SOAPBI ndi ng. Styl e. DOCUMENT,
use=SOAPBi ndi ng. Use. LI TERAL,
par amet er St yl e=SOAPBI ndi ng. Par anet er St yl e. BARE)

Applies to <j ws> when used as a child of both j wsc and
<modul e>.

Note: As of WebLogic Server 9.1, using XMLBeans 1.X
data types (in other words, extensions of

com bea. xm . Xm Qbj ect) as parameters or return
types of a WebLogic web service is deprecated. New
applications should use XMLBeans 2.x data types.

Required if ~ JAX-RPC
you are

using an

XM_Beans

data type as

a parameter

or return

value

nane The name of the generated WAR file (or exploded
directory, if the expl ode attribute is set to t r ue) that
contains the deployable web service. If an actual JAR
archive file is generated, the name of the file will have
a.war extension.

The default value of this attribute is the name of the JWS
file, specified by the f i | e attribute.

Applies only when <j ws> is a direct child of j wsc.

No Both

type Specifies the type of web service to generate: JAX-WS or
JAX-RPC.
Valid values are:
o JAXWS
e JAXRPC
Default value is JAXRPC.

No Both

Ant Task Reference 2-27

jwsc

Table 2-5 (Cont.) Attributes of the <jws> Element of the jwsc Ant Task
. ___|

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?
wsdl Onl'y Specifies that only a WSDL file should be generated for No Both
this JWS file.

Note: Although the other artifacts, such as the deployment
descriptors and service endpoint interface, are not
generated, data binding artifacts are generated because the
WSDL must include the XML Schema that describes the
data types of the parameters and return values of the web
service operations.

The WSDL is generated into the dest Di r directory. The
name of the file is JW5_Cl assNaneSer vi ce. wsdl ,
where JW5_Cl assNare refers to the name of the JWS
class. JW5_Cl assNaneSer vi ce is also the name of web
service in the generated WSDL file.

If you set this attribute to t r ue but also set the expl ode
attribute to f al se (which is also the default value), then

j wsc ignores the expl ode attribute and always generates
the output in exploded format.

Valid values for this attribute are t r ue or f al se. The
default value is f al se, which means that all artifacts are
generated by default, not just the WSDL file.

Applies only when <j ws> is a child of j wsc.

2.3.2.6 jwsfileset

Use the <j wsf i | eset > child element of <nmbdul e> to specify one or more directories
in which the j wsc Ant task searches for JWS files to compile. The list of JWS files that
j wsc finds is then treated as if each file had been individually specified with the

<j ws> child element of <nodul e>.

Use the standard nested elements of the <Fi | eSet > Ant task to narrow the search.
For example, use the <i ncl ude> element to specify the pattern matching that

<j wsfi | eset > should follow when determining the JWS files it should include in the
list. See the Ant documentation at htt p: // ant . apache. or g/ manual / for details
about <Fi | eSet > and its nested elements.

You can use the <j wsf i | eset > child element for generating both JAX-WS and JAX-
RPC web services.

To view this element within the j wsc element hierarchy, see Attributes. See Examples
for examples of using the element.

The following table describes the attributes of the <j wsfi | eset > element.

Table 2-6 Attributes of the <jwsfileset> Element
- - ___|

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

scrdir Specifies the directories (separated by semi-colons) that the j wsc Yes Both

Ant task should search for JWS files to compile.

2-28 WebLogic Web Services Reference for Oracle WebLogic Server

http://ant.apache.org/manual/

jwsc

Table 2-6 (Cont.) Attributes of the <jwsfileset> Element
. __|

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?
type Specifies the type of web service to generate for each found JWS No Both

file: JAX-WS or JAX-RPC.
Valid values are:

e JAXWS

e JAXRPC

Default value is JAXRPC.

2.3.2.7 module

The <modul e> element groups one or more <j Ws> elements together so that their
generated code and artifacts are packaged in a single Web application (WAR) file. The
<nmodul e> element is a child of the main j wsc Ant task.

You can group only web services implemented with the same backend component
(Java class or stateless session EJB) under a single <nbdul e> element; you cannot mix
and match. By default, j wsc always implements your web service as a plain Java
class; the only exception is if you have implemented a stateless session EJB in your
JWE file. This means, for example, that if one of the JWS files specified by the <j ws>
child element of <npdul e> implements j avax. ej b. Sessi onBean, then all its
sibling <j ws> files must also implement j avax. ej b. Sessi onBean. If this is not
possible, then you cannot group all the JWS files under a single <nodul e>.

The web services within a module must have the same cont ext Pat h, but must have
unique ser vi ceURI s. You can set the common cont ext Pat h by specifying it as an
attribute to the <nbdul e> element, or ensuring that the @_XXXTr anspor t
annotations (for JAX-RPC only) and/or <WLXXXTr anspor t > elements for each web
service have the same value for the cont ext Pat h attribute. The j wsc Ant task
validates these values and returns an error if they are not unique. For more
information about defining the context path, see:

¢ Defining the Context Path of a WebLogic Web Service in Developing JAX-WS Web
Services for Oracle WebLogic Server

* Defining the Context Path of a WebLogic Web Service in Developing JAX-RPC Web
Services for Oracle WebLogic Server.

You must specify at least one <j ws> child element of <npdul e>.

You can use the <npdul e> child element when generating both JAX-WS and JAX-
RPC web services.

To view this element within the j wsc element hierarchy, see Attributes. See Examples
for examples of using the element.

The following table describes the attributes of the <nbdul e> element.

Ant Task Reference 2-29

jwsc

Table 2-7 Attributes of the <module> Element of the jwsc Ant Task
- - |

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?
cont ext Pat h Context path (or context root) of all the web services Only Both
contained in this module. required to
For example, assume the deployed WSDL of a WebLogic ensure that
web service is as follows: the context
paths of
htt p: // host name: 7001/ fi nanci al / Get Quot e?WSDL multiple web
services in a
The context path for this web service is f i nanci al . single WAR

The value of this attribute overrides any other context path ~ are the same.

set for any of the JWS files contained in this module. This

includes the transport-related JWS annotations, as well as

the transport-related child elements of <j ws>.

The default value of this attribute is the name of the JWS

file, without its extension. For example, if the name of the

JWS file is Hel | oWor | dI npl . j ava, then the default value

of its contextPath is Hel | oWor | dl npl .

For more information about defining the context path, see:

¢ Defining the Context Path of a WebLogic Web Service in
Developing JAX-WS Web Services for Oracle WebLogic
Server

* Defining the Context Path of a WebLogic Web Service in
Developing JAX-RPC Web Services for Oracle WebLogic
Server.

ej bvéIl nVar Specifies whether to package EJB-based web services in a No JAX-WS
WAR file instead of a JAR file. Valid values for this
attribute are t r ue or f al se. Default value is f al se, which
means that EJB-based web services are packaged in a JAR
file.

expl ode Specifies whether the generated WAR file that contains the ~ No Both
deployable web service(s) is in exploded directory format
or not. Valid values for this attribute are t r ue or f al se.
Default value is f al se, which means that j wsc generates
an actual WAR archive file, and not an exploded directory.

gener at eWsdl Specifies whether the generated WAR file includes the No JAX-WS
WSDL file. Valid values for this attribute are t r ue or
f al se. Default value is f al se, which means that j wsc
generates an actual WAR archive file, and not an exploded
directory.

name The name of the generated WAR file (or exploded No Both
directory, if the expl ode attribute is set to t r ue) that
contains the deployable web service(s). If an actual WAR
archive file is generated, the name of the file will have
a.war extension.

The default value of this attribute is j ws.

2-30 WebLogic Web Services Reference for Oracle WebLogic Server

jwsc

Table 2-7 (Cont.) Attributes of the <module> Element of the jwsc Ant Task
. __|

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?
wsl dOnl'y Specifies that only a WSDL file should be generated for each No Both
JWS file specified by the <j ws> child element of
<modul e>.

Note: Although the other artifacts, such as the deployment
descriptors and service endpoint interface, are not
generated, data binding artifacts are generated because the
WSDL must include the XML Schema that describes the
data types of the parameters and return values of the web
service operations.

The WSDL is generated into the dest Di r directory. The
name of the file is JW5_Cl assNanmeSer vi ce. wsdl , where
JW5_Cl assNane refers to the name of the JWS class.
JW5_Cl assNaneSer vi ce is also the name of web service
in the generated WSDL file.

If you set this attribute to t r ue but also set the expl ode

attribute to f al se (which is also the default value), then

jwsc ignores the expl ode attribute and always generates
the output in exploded format.

Valid values for this attribute are t r ue or f al se. The
default value is f al se, which means that all artifacts are
generated by default, not just the WSDL file.

2.3.2.8 WLHttpTransport

Use the W.Ht t pTr ansport child element of the <j ws> element to specify the context
path and service URI sections of the URL used to invoke the web service over the
HTTP transport, as well as the name of the port in the generated WSDL.

You can specify one or zero <WLHt t pTr anspor t > elements for a given JWS file.

You can use the <W Ht t pTr anspor t > child element when generating both JAX-WS
and JAX-RPC web services.

To view this element within the j wsc element hierarchy, see Attributes. See Examples
for examples of using the element.

The following table describes the attributes of <WLHt t pTr anspor t >.

Ant Task Reference 2-31

jwsc

Table 2-8 Attributes of the <WLHttpTransport> Child Element of the <jws> Element
- - - - |

Attribute Description Required? JAX-RPC,
JAX-WS, or
Both?

cont ext Pat h Context path (or context root) of the web service. No Both

For example, assume the deployed WSDL of a WebLogic
web service is as follows:

http://host name: 7001/ fi nanci al / Get Quot e?WSDL

The contextPath for this web service is f i nanci al .

The default value of this attribute is the name of the JWS file,

without its extension. For example, if the name of the JWS

file is Hel | oWor | dI npl . j ava, then the default value of its

contextPath is Hel | oWér | dI npl .

For more information about defining the context path, see:

¢ Defining the Context Path of a WebLogic Web Service in
Developing JAX-WS Web Services for Oracle WebLogic
Server

* Defining the Context Path of a WebLogic Web Service in
Developing JAX-RPC Web Services for Oracle WebLogic
Server.

servi ceUri Web service URI portion of the URL. No Both

For example, assume the deployed WSDL of a WebLogic
web service is as follows:

http://hostname: 7001/ fi nanci al / Get Quot e?WSDL

The servi ceUri for this web service is Get Quot e.

For JAX-WS, the default value of this attribute is the

ser vi ceNane element of the @\ébSer vi ce annotation if
specified. Otherwise, the name of the JWS file, without its
extension, followed by Ser vi ce. For example, if the

ser vi ceNane element of the @\eébSer vi ce annotation is
not specified and the name of the JWS file is

Hel | oWor | dl npl . j ava, then the default value of its
serviceUri isHel | owor | dl npl Servi ce.

For JAX-RPC, the default value of this attribute is the name
of the JWS file, without its extension. For example, if the
name of the JWS file is Hel | oWor | dI npl . j ava, then the
default value of its ser vi ceUri is Hel | oWor | dl npl .

por t Nane The name of the port in the generated WSDL. This attribute ~ No Both
maps to the nane attribute of the <por t > element in the
WSDL.

The default value of this attribute is based on the

@ avax. j ws. WebSer vi ce annotation of the JWS file. In
particular, the default por t Nane is the value of the nane
attribute of @\ébSer vi ce annotation, plus the actual text
SoapPor t . For example, if @¥bSer vi ce. nane is set to
My Ser vi ce, then the default portName is

My Ser vi ceSoapPort .

2-32 WebLogic Web Services Reference for Oracle WebLogic Server

jwsc

2.3.2.9 WLHttpsTransport

Note:

The <WLHt t psTr anspor t > element is deprecated as of version 9.2 of

WebLogic Server. You should use the <W_Ht t pTr anspor t > element instead

because it now supports both the HTTP and HTTPS protocols. If you want
client applications to access the web service using only the HTTPS protocol,

then you must specify the

@webl ogi c. jws. security. User Dat aConstrai nt JWS annotation in

your JWS file.

Use the W.Ht t psTransport element to specify the context path and service URI

sections of the URL used to invoke the web service over the secure HTTPS transport,

as well as the name of the port in the generated WSDL.

The <WLHt t psTr anspor t > element is a child of the <j ws> element. You can specify

one or zero <W.Ht t psTr anspor t > elements for a given JWS file. You can use the
<W Ht t psTransport > child element only for generating JAX-RPC web services.

See Attributes top view where this element fits in the j wsc element hierarchy.

The following table describes the attributes of <WLHt t psTr ansport >.

Table 2-9 Attributes of the <WLHttpsTransport> Child Element of the <jws> Element

Attribute

Description Required?

context Path

Context path (or context root) of the web service. No

For example, assume the deployed WSDL of a WebLogic web service is as
follows:

https://host name: 7001/ fi nanci al / Get Quot e?WSDL

The contextPath for this web service is f i nanci al .

The default value of this attribute is the name of the JWS file, without its

extension. For example, if the name of the JWS file is

Hel | oWor | dl npl . j ava, then the default value of its contextPath is

Hel | oWor | dl npl .

For more information about defining the context path, see:

* Defining the Context Path of a WebLogic Web Service in Developing JAX-
WS Web Services for Oracle WebLogic Server

¢ Defining the Context Path of a WebLogic Web Service in Developing JAX-
RPC Web Services for Oracle WebLogic Server.

Ant Task Reference 2-33

jwsc

Table 2-9 (Cont.) Attributes of the <WLHttpsTransport> Child Element of the <jws> Element
. ___|

Attribute Description Required?
servi ceUri Web service URI portion of the URL. No

For example, assume the deployed WSDL of a WebLogic web service is as

follows:

https://host name: 7001/ f i nanci al / Get Quot e?WSDL

The servi celUri for this web service is Get Quot e.

For JAX-WS, the default value of this attribute is the ser vi ceNane element
of the @\&bSer vi ce annotation if specified. Otherwise, the name of the JWS
file, without its extension, followed by Ser vi ce. For example, if the

ser vi ceNane element of the @\¥bSer vi ce annotation is not specified and
the name of the JWS file is Hel | oWor | dI npl . j ava, then the default value
of its servi ceUri is Hel | owor | dI npl Servi ce.

For JAX-RPC, the default value of this attribute is the name of the JWS file,
without its extension. For example, if the name of the JWS file is

Hel | oWor | dl npl . j ava, then the default value of its servi ceUri is

Hel | oWor | dl npl .

[port Name The name of the port in the generated WSDL. This attribute maps to the name No
attribute of the <por t > element in the WSDL.

The default value of this attribute is based on the

@ avax. j ws. WebSer vi ce annotation of the JWS file. In particular, the
default portName is the value of the nane attribute of @\ébSer vi ce
annotation, plus the actual text SoapPor t . For example, if

@\ebSer vi ce. nane is set to MySer vi ce, then the default portName is
My Ser vi ceSoapPort .

2.3.2.10 WLJMSTransport

Note:

You can use the <WLJns Tr anspor t > child element for configuring SOAP
over JMS transport for JAX-RPC web services only. For information about
configuring JMS transport for JAX-WS web services, see jmstransportservice.

Use the W.IMSTr anspor t element to specify the context path and service URI
sections of the URL used to invoke the web service over the JMS transport, as well as
the name of the port in the generated WSDL. You also specify the name of the J]MS
queue and connection factory that you have already configured for JMS transport.

The <W.Jns Tr anspor t > element is a child of the <j ws> element. You can specify
one or zero <MLJnsTr anspor t > elements for a given JWS file.

To view this element within the j wsc element hierarchy, see Attributes. See Examples
for examples of using the element.

The following table describes the attributes of <W.JsTr anspor t >.

2-34 WeblLogic Web Services Reference for Oracle WebLogic Server

jwsc

Table 2-10 Attributes of the <WLJMSTransport> Child Element of the <jws> Element
- - - |

Attribute

Description Required?

cont ext Path

Context path (or context root) of the web service. No

For example, assume the deployed WSDL of a WebLogic web service is
as follows:

http://hostname: 7001/ fi nanci al / Get Quot e?WSDL

The contextPath for this web service is f i hanci al .

The default value of this attribute is the name of the JWS file, without its

extension. For example, if the name of the JWS file is

Hel | oWor | dI npl . j ava, then the default value of its contextPath is

Hel | oWor | dl npl .

For more information about defining the context path, see:

¢ Defining the Context Path of a WebLogic Web Service in Developing
JAX-WS Web Services for Oracle WebLogic Server

¢ Defining the Context Path of a WebLogic Web Service in Developing
JAX-RPC Web Services for Oracle WebLogic Server.

serviceUri

Web service URI portion of the URL. No

For example, assume the deployed WSDL of a WebLogic web service is
as follows:

http://hostname: 7001/ fi nanci al / Get Quot e?WSDL

The servi ceUri for this web service is Get Quot e.

For JAX-WS, the default value of this attribute is the ser vi ceNanme
element of the @\bSer vi ce annotation if specified. Otherwise, the
name of the JWS file, without its extension, followed by Ser vi ce. For
example, if the ser vi ceNamne element of the @\ébSer vi ce annotation
is not specified and the name of the JWS file is Hel | oWor | dl npl . j ava,
then the default value of its ser vi ceUri is Hel | oWor | dI npl Ser vi ce.
For JAX-RPC, the default value of this attribute is the name of the JWS
file, without its extension. For example, if the name of the JWS file is

Hel I owor | dI npl . j ava, then the default value of its ser vi ceUri is
Hel | oWor | dI mpl .

por t Name

The name of the port in the generated WSDL. This attribute maps to the ~ No
nane attribute of the <por t > element in the WSDL.

The default value of this attribute is based on the

@ avax. j ws. \ebSer vi ce annotation of the JWS file. In particular, the
default portName is the value of the nane attribute of @\&bSer vi ce
annotation, plus the actual text SoapPor t . For example, if

@\ebSer vi ce. nane is set to MySer vi ce, then the default portName is
My Ser vi ceSoapPort .

queue

The JNDI name of the JMS queue that you have configured for the JMS No
transport. See Using JMS Transport as the Connection Protocol in

Developing JAX-RPC Web Services for Oracle WebLogic Server for details

about using JMS transport.

The default value of this attribute, if you do not specify it, is
webl ogi c. wsee. Def aul t Queue. You must still create this JMS queue
in the WebLogic Server instance to which you deploy your web service.

Ant Task Reference 2-35

jwsc

Table 2-10 (Cont.) Attributes of the <WLJIMSTransport> Child Element of the <jws> Element
. ___|

Attribute

Description Required?

connecti onFact o
ry

The JNDI name of the JMS connection factory that you have configured ~ No
for the JMS transport.

The default value of this attribute is the default JMS connection factory
for your WebLogic Server instance.

2.3.3 Attributes

The following sections describe the attributes of the j wsc Ant task.

¢ WebLogic-Specific jwsc Attributes

e Standard Ant Attributes and Child Elements That Apply to jwsc

2.3.3.1 WebLogic-Specific jwsc Attributes

The following table summarizes the WebLogic-specific j wsc attributes.

Table 2-11 Attributes of the jwsc Ant Task
__|]

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

appl i cati onXm Specifies the full name and path of the appl i cat i on. xm No Both

deployment descriptor of the Enterprise Application. If you
specify an existing file, the j wsc Ant task updates it to include
the web services information. However, j wsc does not
automatically copy the updated appl i cati on. xni file to the
dest Di r; you must manually copy this file to the dest DI R

If the file does not exist, j wsc creates it. The j wsc Ant task
also creates or updates the corresponding webl ogi c-

appl i cation. xm file in the same directory.

If you do not specify this attribute, j Wsc creates or updates the
file dest Di r/ META- | NF/ appl i cati on. xm , where

dest Di r is the j wsc attribute.

destdir

The full pathname of the directory that will contain the Yes Both
compiled JWS files, XML Schemas, WSDL, and generated

deployment descriptor files, all packaged into a JAR or WAR

file.

The j wsc Ant task creates an exploded Enterprise Application
at the specified directory, or updates one if you point to an
existing application directory. The j wsc task generates the
JAR or WAR file that implements the web service in this
directory, as well as other needed files, such as the
application. xm file in the META- | NF directory; the j wsc
Ant task updates an existing appl i cati on. xm file if it finds
one, or creates a new one if not. Use the appl i cat i onXM
attribute to specify a different appl i cati on. xm from the
default.

2-36 WebLogic Web Services Reference for Oracle WebLogic Server

jwsc

Table 2-11 (Cont.) Attributes of the jwsc Ant Task
. ___|

Description Required? JAX-RPC,

Attribute

JAX-WS,
or Both?

dest Encodi ng

Specifies the character encoding of the output files, such as the No
deployment descriptors and XML files. Examples of character
encodings are SHIFT-JIS and UTF-8.

The default value of this attribute is UTF-8.

Both

dot Net Styl e

Specifies that the jwsc Ant task should generate a .NET-style No
web service.

In particular, this means that, in the WSDL of the web service,
the value of the name attribute of the <part> element that
corresponds to the return parameter is par amet er s rather
than r et ur nPar anet er s. This applies only to document-
literal-wrapped web services.

The valid values for this attribute are t r ue and f al se. The
default value is t r ue, which means .NET-style web service are
generated by default.

JAX-RPC

enabl eAsyncSer vi
ce

Specifies whether the web service is using one or more of the No
asynchronous features of WebLogic web service: web service
reliable messaging, asynchronous request-response, buffering,

or conversations.

In the case of web service reliable messaging, you must ensure
that this attribute is enabled for both the reliable web service
and the web service that is invoking the operations reliably. In
the case of the other features (conversations, asynchronous
request-response, and buffering), the attribute must be enabled
only on the client web service.

When this attribute is set to t r ue (default value), WebLogic
Server automatically deploys internal modules that handle the
asynchronous web service features. Therefore, if you are not
using any of these features in your web service, consider
setting this attribute to f al se so that WebLogic Server does
not waste resources by deploying unneeded internal modules.

Valid values for this attribute are t r ue and f al se. The
default valueist r ue.

Note: This attribute is deprecated as of Version 9.2 of
WebLogic Server.

Deprecate
d
attribute
so not
applicable

keepGener at ed

Specifies whether the Java source files and artifacts generated =~ No
by this Ant task should be regenerated if they already exist.

If you specify no, new Java source files and artifacts are always
generated and any existing artifacts are overwritten.

If you specify yes, the Ant task regenerates only those artifacts
that have changed, based on the timestamp of any existing
artifacts.

Valid values for this attribute are yes or no. The default value
is no.

Both

Ant Task Reference 2-37

jwsc

Table 2-11 (Cont.) Attributes of the jwsc Ant Task
. ___|

Attribute Description Required? JAX-RPC,
JAX-WS,
or Both?

sour cepat h The full pathname of top-level directory that contains the Java No Both

files referenced by the JWS file, such as JavaBeans used as
parameters or user-defined exceptions. The Java files are in
sub-directories of the sourcepath directory that correspond to
their package names. The sour cepat h pathname can be
either absolute or relative to the directory which contains the
Ant bui | d. xn file.

For example, if sour cepat h is/ sr ¢ and the JWS file
references a JavaBean called My Type. j ava which is in the
webser vi ces. fi nanci al package, then this implies that
the MyType. j ava Java file is stored in the / sr ¢/

webser vi ces/ financi al directory.

The default value of this attribute is the value of the sr cdi r
attribute. This means that, by default, the JWS file and the
objects it references are in the same package. If this is not the
case, then you should specify the sour cepat h accordingly.

srcdir The full pathname of top-level directory that contains the JWS ~ Yes Both
file you want to compile (specified with the f i | e attribute of
the <j ws> child element). The JWS file is in sub-directories of
the sr cdi r directory that corresponds to its package name.
The sr cdi r pathname can be either absolute or relative to the
directory which contains the Ant bui | d. xm file.

For example, if sr cdi r is/ sr ¢ and the JWS file called
MySer vi ce. j ava is in the webser vi ces. fi nanci al
package, then this implies that the MySer vi ce. j ava JWS file
is stored in the / sr ¢/ webser vi ces/ fi nanci al directory.

srcEncodi ng Specifies the character encoding of the input files, such as the ~ No Both
JWS file or configuration XML files. Examples of character
encodings are SHIFT-JIS and UTF-8.

The default value of this attribute is the character encoding set
for the JVM.

2.3.3.2 Standard Ant Attributes and Child Elements That Apply to jwsc

In addition to the WebLogic-defined j wsc attributes, you can also define the
following standard j avac attributes; see the Ant documentation at ht t p: //
ant . apache. or g/ manual / for additional information about each attribute:

e bootcl asspath

e boot C asspat hRef
e classpath

e cl asspat hRef

e conpiler

e debug

e debuglLevel

2-38 WebLogic Web Services Reference for Oracle WebLogic Server

http://ant.apache.org/manual/
http://ant.apache.org/manual/

jwsc

e depend

e deprecation

e destdir

e encodi ng

e extdirs

e failonerror

e fork

e includeantruntine
e includejavaruntimnme
e |istfiles

e menorylnitial Size
e menor yMaxi munti ze
e nowarn

e optimze

e proceed

e source

e sourcepath

e sourcepat hRef

e tenpdir

e verbose

You can also use the following standard Ant child elements with the j wsc Ant task:
e <Sour cePat h>

e <(asspat h>

e <Extdirs>

You can use the following standard Ant elements with the <j ws> and <nodul e>
child elements of the j wsc Ant task:

e <Fji| eSet>

e <ZipFileSet>

2.3.4 Examples

The following examples illustrate how to build a j wsc Ant target. See Developing JAX-
WS Web Services for Oracle WebLogic Server or Developing JAX-RPC Web Services for
Oracle WebLogic Server for samples of complete bui | d. xrm files that contain many
other targets that are useful when iteratively developing a WebLogic web service, such
ascl ean,depl oy, client,and run.

Ant Task Reference 2-39

jwsc

Example 1 Building a Basic jwsc Ant Target

The following sample shows a very simple usage of j wsc. In this example, the JWS
file called Test Ser vi cel npl . j ava is located in the sr c/ exanpl es/

webser vi ces/ j wsc sub-directory of the directory that contains the bui | d. xm file.
The j wsc Ant task generates the web service artifacts in the out put / Test Ear sub-
directory. In addition to the web service JAR file, the j wsc Ant task also generates the
application. xm file that describes the Enterprise Application in the out put/
Test Ear / META- | NF directory.

<target name="buil d-service">
<jwsc
srcdir="src"
destdir="out put/Test Ear">
<jws file="exanpl es/webservices/jwsc/ Test Servicel npl.java" />
</jwsc>
</target>

Example 2 Generating a JAX-WS Web Service

By default, the j wsc Ant task generates a web service that conforms to the JAX-RPC
specification. You can control the type of web services that is generated using the

t ype attribute of the <j ws> child element as shown in the following example. In this
example, a JAX-WS web service is generated.

<target nane="buil d-service8">
<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws file="exanpl es/webservices/jaxws/ Jax\Wl npl . java"
type="JAXWS"
/>
</jwsc>
</target>

Example 3 Specifying Multiple JWS Files

This example shows how to specify multiple JWS files, resulting in separate web
services packaged in their own Web application WAR files, although all are still
deployed as part of the same Enterprise Application.

This example also shows how to enable debugging and verbose output; how to
specify that j wsc not regenerate any existing temporary files in the output directory;
and how to use cl asspat hr ef attribute to add to the standard CLASSPATH by
referencing a path called add. cl ass. pat h that has been specified elsewhere in the
bui I d. xm file using the standard Ant <pat h> target.

<path id="add. cl ass. path">
<pat hel ement pat h="${nycl asses-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>

<target nane="buil d-service2">
<jwsc
srcdir="src"
destdir="out put/ Test Ear"
ver bose="on"
debug="on"

2-40 WebLogic Web Services Reference for Oracle WebLogic Server

jwsc

keepGener at ed="yes"
cl asspat href ="add. cl ass. path" >
<jws file="exanpl es/ webservices/jwsc/ Test Servicel npl.java"

type="JAXWG"/ >
<jws file="exanpl es/webhservices/jwsc/ Anot her Test Servi cel npl . j ava"
type="JAXWG"/ >
<jws file="exanpl es/webhservices/jwsc/ SecondTest Servi cel npl . java"
type="JAXWG"/ >
</jwsc>
</target>

Example 4 Packaging Multiple Web Services Into a Single WAR File

If you want to package multiple web services into a single WAR file, group the <j ws>
elements under a <nodul e> element, as shown in the following example. In this case,
the three web services are packaged in a WAR file called myJAR. war , located at the
top level of the Enterprise Application exploded directory. The cont ext Pat h
attribute of <mobdul e> specifies that the context path of all three web services is t est ;
this value overrides any context path specified in a transport annotation of the JWS
files.

<target name="buil d-service3">
<jwsc
srcdir="src"
destdir="output/ TestEar" >
<modul e contextPath="test" name="nyJar" >
<jws file="exanpl es/webservices/jwsc/ Test Servicel npl.java"

type="JAXWS"/ >
<jws file="exanpl es/webservices/jwsc/ Anot her Test Servi cel npl . j ava"
type="JAXWS"/ >
<jws file="exanpl es/webservices/jwsc/ SecondTest Servi cel npl . java"
type="JAXWS"/ >
</ modul e>
</jwsc>
</target>

Example 5 Configuring Multiple Transports

The following example shows how to specify that the JAX-RPC web service can be
invoked using all transports (HTTP/HTTPS/JMS).

This example also shows how to use the <cl i ent gen> element to generate and
include the client-side artifacts (such as the St ub and Ser vi ce implementations) of
the web service described by ht t p: / / exanpl es. or g/ conpl ex/

Conpl exSer vi ce?WSDL. This indicates that the Test Ser vi cel npl . j ava JWS file,
in addition to implementing a web service, must also acts as a client to the

Conpl exSer vi ce web service and must include Java code to invoke operations of
Conpl exSer vi ce.

<target name="buil d-service4">
<jwsc
srcdir="src"
destdir="out put/ Test Ear">
<jws file="exanpl es/webservices/jwsc/ Test Servicel npl.java">
<W.Htt pTransport
cont ext Pat h="Test Servi ce" servicelUri="Test Service"
port Name="Test Servi cePort HTTP"/ >
<W.JnsTransport

Ant Task Reference 2-41

jwsc

cont ext Pat h="Test Servi ce" servi ceUri="JMSTest Servi ce"
port Name="Test Ser vi cePort JVB"
queue="JMSTr ansport Queue"/ >
<clientgen
wsdl ="htt p: // exanmpl es. or g/ conpl ex/ Conpl exSer vi ce?WsDL"
servi ceNane="Conpl exServi ce"
packageName="exanpl es. webservi ces. sinple_client"/>
</jws>
</jwsc>
</target>

Example 6 Grouping Multiple <jws> Elements into a <module> Element
The following example is very similar to the preceding one, except that it groups the
<j ws> elements under a <nodul e> element.

In this example, the individual transport elements no longer define their own

cont ext Pat h attributes; rather, the parent <nmodul e> element defines it instead.
This improves maintenance and understanding of what j wsc actually does. Also note
that the <cl i ent gen> element is a child of <nodul e>, and not <j ws> as in the
previous example.

<target name="buil d-service5">
<jwsc
srcdir="src"
destdir="out put/ Test Ear">
<nodul e cont ext Pat h="Test Servi ce" >
<jws file="exanpl es/webservices/jwsc/ Test Servicel npl.java">
<W.H tpTransport
servi celri ="Test Servi ce"
por t Nane="Test Servi cePort 1"/ >
</jws>
<jws file="exanpl es/webhservices/jwsc/ Anot her Test Servi cel npl . java" />
<jws file="exanpl es/webservices/jwsc/ SecondTest Servi cel npl . java" />
<clientgen
wsdl ="htt p: // exanpl es. or g/ conpl ex/ Conpl exSer vi ce?WsDL"
servi ceNanme=" Conpl exServi ce"
packageName="exanpl es. webservi ces. sinple_client" />
</ modul e>
</jwsc>
</target>

Example 7 Specifying a File Set
The following example show how to use the <j wsfi | eset > element.

In this example, j wsc searches for *. j ava files in the directory sr c/ exanpl es/
webser vi ces/ j wsc, relative to the directory that contains bui | d. xm , determines
which Java files contain JWS annotations, and then processes each file as if it had been
specified with a <j ws> child element of <nbdul e>. The <i ncl ude> element is a
standard Ant element at htt p: // ant . apache. or g/ manual /, described in the
documentation for the standard <Fi | esSet > task.

<target nane="buil d-service6">
<jwsc
srcdir="src"
destdir="output/TestEar" >
<nodul e contextPath="test" name="nyJar" >
<jwsfileset srcdir="src/exanpl es/ webservices/jwsc" >
<include name="**/* java" />

2-42 WeblLogic Web Services Reference for Oracle WebLogic Server

http://ant.apache.org/manual/

wsdlc

</jwsfileset>
</ modul e>
</jwsc>
</target>

Example 8 Updating Existing Web Application Deployment Descriptors
The following example shows how to specify that the j wsc Ant task not create new
Web application deployment descriptors, but rather, add to existing ones.

In this preceding example, the expl ode="t r ue" attribute of <nmodul e> specifies
that the generated Web application should be in exploded directory format, rather
than the default WAR archive file. The <descr i pt or > child elements specify j wsc
should copy the existing web. xm and webl ogi c. xm files, located in the webapp/
WVEB- | NF subdirectory of the directory that contains the bui | d. xm file, to the new
Web application exploded directory, and that new web service information from the
specified JWS file should be added to the files, rather than j wsc creating new ones.
The example also shows how to use the standard Antathttp://

ant . apache. or g/ manual / <Fi | eSet > task to copy additional files to the
generated WAR file; if any of the copied files are Java files, the j wsc Ant task
compiles the files and puts the compiled classes into the ¢l asses directory of the
Web application.

<target name="buil d-service7">
<jwsc
srcdir="src"
destdir="output/ TestEar" >
<nodul e contextPath="test" name="nyJar" expl ode="true" >
<jws file="exanpl es/webhservices/jwsc/ Anot her Test Servi cel npl . java" />
<Fil eSet dir="webapp" >
<include name="**/* java" />
</ FileSet>
<descriptor file="webapp/ VEB- | NF/ web. xm " />
<descriptor file="webapp/ VEB- | NF/ webl ogi ¢c. xm " />
</ modul e>
</jwsc>
</target>

You can specify the type attribute for the <j ws> or <j wsf i | eset > elements.

2.4 wsdlc

The wsdl c Ant task generates, from an existing WSDL file, a set of artifacts that
together provide a partial Java implementation of the web service described by the
WSDL file. By specifying the t ype attribute, you can generate a partial
implementation based on either JAX-WS or JAX-RPC.

By default, it is assumed that the WSDL file includes a single <ser vi ce> element
from which the wsdl ¢ Ant task generates artifacts. You can, however, use the
srcSer vi ceName attribute to specify a specific web service, in the case that there is
more than one <ser vi ce> element in the WSDL file, or use the sr cPor t Nane
attribute to specify a specific port of a web service in the case that there is more than
one <por t > child element for a given web service.

The wsdl ¢ Ant task generates the following artifacts:

¢ A JWSinterface file—or service endpoint interface—that implements the web
service described by the WSDL file. The interface includes full method signatures
that implement the web service operations, and JWS annotations (such as

Ant Task Reference 2-43

http://ant.apache.org/manual/
http://ant.apache.org/manual/

wsdlc

@\ebSer vi ce and @OAPBI ndi ng) that implement other aspects of the web
service. You should not modify this file.

¢ Data binding artifacts used by WebLogic Server to convert between the XML and
Java representations of the web service parameters and return values. The XML
Schema of the data types is specified in the WSDL, and the Java representation is
generated by the wsdl ¢ Ant task. You should not modify this file.

* A JWS file that contains a partial (stubbed-out) implementation of the generated
JWS interface. You need to modify this file to include your business code.

¢ Optional Javadocs for the generated JWS interface.

After running the wsdl ¢ Ant task, (which typically you only do once) you update the
generated JWS implementation file, for example, to add Java code to the methods so
that they function as defined by your business requirements. The generated JWS
implementation file does not initially contain any business logic because the wsdl ¢
Ant task does not know how you want your web service to function, although it does
know the shape of the web service, based on the WSDL file.

When you code the JWS implementation file, you can also add additional JWS
annotations, although you must abide by the following rules:

¢ The only standard JSR-181 JWS annotations you can include in the JWS
implementation file are @\ébSer vi ce and @Hand! er Chai n,
@O0APMessageHandl er , and @OAPMessageHand| er s. If you specify any other
JWS-181 JWS annotations, the j wsc Ant task will return an error when you try to
compile the JWS file into a web service.

* You cannot attach policies to the web service within the JWS implementation file
using the webl ogi c. j ws. Pol i cy or webl ogi c. j ws. Pol i ci es annotations.

You can attach policies to the deployed web service using the WebLogic Server
Administration Console if there is not a policy already defined in the WSDL.

¢ Additionally, you can specify only the ser vi ceNane and endpoi nt | nt er f ace
attributes of the @\ebSer vi ce annotation. Use the ser vi ceNane attribute to
specify a different <ser vi ce> WSDL element from the one that the wsdl ¢ Ant
task used, in the rare case that the WSDL file contains more than one <ser vi ce>
element. Use the endpoi nt | nt er f ace attribute to specify the JWS interface
generated by the wsdl ¢ Ant task.

e For JAX-RPC web services, you can specify WebLogic-specific JWS annotations, as
required. You cannot use any WebLogic-specific JWS annotations in a JAX-WS web
service.

e For JAX-WS, you can specify JAX-WS (JSR 224 atht t p: / / j ax-ws. j ava. net),
JAXB (JSR222 athttp://jcp.org/en/jsr/detail ?i d=222), or Common (JSR
250 athttp://jcp.org/en/jsr/detail ?i d=250) annotations, as required.

After you have coded the JWS file with your business logic, run the j wsc¢ Ant task to
generate a complete Java implementation of the web service. Use the conpi | edWdl
attribute of j wsc to specify the JAR file generated by the wsdl ¢ Ant task which
contains the JWS interface file and data binding artifacts. By specifying this attribute,
the j wsc Ant task does not generate a new WSDL file but instead uses the one in the
JAR file. Consequently, when you deploy the web service and view its WSDL, the
deployed WSDL will look just like the one from which you initially started.

2-44 WeblLogic Web Services Reference for Oracle WebLogic Server

http://jax-ws.java.net
http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=250

wsdlc

Note:

The only potential difference between the original and deployed WSDL is the
value of the | ocat i on attribute of the <addr ess> element of the port(s) of
the web service. The deployed WSDL will specify the actual hostname and
URI of the deployed web service, which is most likely different from that of
the original WSDL. This difference is to be expected when deploying a real
web service based on a static WSDL.

Depending on the type of partial implementation you generate (JAX-WS or JAX-RPC),
the Java package name of the generated complex data types differs, as described in the
following guidelines:

e For JAX-WS, if you specify the packageNane attribute, then all artifacts (Java
complex data types, JWS interface, and the JWS interface implementation) are
generated into this package. If you want to change the package name of the
generated Java complex data types in this case, use the <bi ndi ng> child element
of the wsdl ¢ Ant task to specify a custom binding declarations file. For
information about creating a custom binding declarations file, see Using JAXB Data
Binding in Developing JAX-WS Web Services for Oracle WebLogic Server.

¢ For JAX-RPC, if you specify the packageNare attribute of the wsdl ¢ Ant task,
only the generated JWS interface and implementation are in this package. The
package name of the generated Java complex data types, however, always
corresponds to the XSD Schema type namespace, whether you specify the
packageNane attribute or not.

See Creating a web service from a WSDL File in Developing JAX-WS Web Services for
Oracle WebLogic Server for a complete example of using the wsdl ¢ Ant task in
conjunction with j wsc.

The following sections discuss additional important information about wsdl c:
® Taskdef Classname

¢ Child Elements

e Attributes

¢ Example

2.4.1 Taskdef Classname

<taskdef nanme="wsdl c"
cl assname="webl ogi c. wsee. tool s. antt asks. Védl cTask"/ >

2.4.2 Child Elements
The wsdl ¢ Ant task has the following WebLogic-specific child elements:

¢ binding
* xmlcatalog

For a list of elements associated with the standard Ant j avac task that you can also
set for the wsdl ¢ Ant task, see Standard Ant javac Attributes That Apply To wsdlc.

Ant Task Reference 2-45

wsdlc

2.4.2.1 binding

Use the <bi ndi ng> child element to specify one of the following:

¢ For JAX-WS, one or more customization files that specify JAX-WS and JAXB
custom binding declarations. For more information, see Customizing XML Schema-
to-Java Mapping Using Binding Declarations in Developing JAX-WS Web Services for
Oracle WebLogic Server.

e For JAX-RPC, one or more XMLBeans configuration files, which by convention end
in . xsdconfi g. Use this element if your web service uses Apache XMLBeans at
http://xm beans. apache. or g/ data types as parameters or return values.

The <bi ndi ng> element is similar to the standard Ant <Fi | eset > element and has
all the same attributes. See the Apache Ant documentation on the Fileset element at
http://ant.apache. org/ manual / Types/ fil eset. ht m for the full list of
attributes you can specify.

2.4.2.2 xmicatalog

The <xni cat al 0og> child element specifies the ID of an embedded XML catalog. The
following shows the element syntax:

<xm catal og refid="id"/>

The ID referenced by <xmi cat al 0g> must match the ID of an embedded XML
catalog. You embed an XML catalog in the bui I d. xm file using the following syntax:

<xm catal og id="id">
<entity publicid="public_id" location="uri"/>
</ xn cat al og>

In the above syntax, publ i ¢_i d specifies the public identifier of the original XML
resource (WSDL or XSD) and ur i specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using
wsdl c. Relevant code lines are shown in bold.

<target name="wsdl c¢">
<wsdl ¢
src\Wdl ="wsdl _fil es/ Tenperat ureService. wsdl "
dest JwsDi r="out put/ conpi | edVédl "
dest | npl Di r="out put/inpl"
packageName="exanpl es. webser vi ces. wsdl ¢"
<xm catal og refid="wsinportcatal og"/>
</ wsdl c>
</target>
<xn cat al og i d="wsi nportcatal og">
<entity publicid="http://helloservice.org/types/HelloTypes. xsd"
| ocati on="${basedir}/Hel |l oTypes. xsd"/ >
</ xm cat al og>

For more information, see Using XML Catalogs in Developing JAX-WS Web Services for
Oracle WebLogic Server.

2.4.3 Attributes

The table in the following sections describes the attributes of the wsdl ¢ Ant task.

* WebLogic-Specific wsdlc Attributes

2-46 WeblLogic Web Services Reference for Oracle WebLogic Server

http://xmlbeans.apache.org/
http://ant.apache.org/manual/Types/fileset.html

wsdlc

¢ Standard Antjavac Attributes That Apply To wsdlc

2.4.3.1 WebLogic-Specific wsdlc Attributes

The following table describes the WebLogic-specific wsdlc attributes.

Table 2-12 WebLogic-specific Attributes of the wsdlc Ant Task
. __|

Required? JAX-RPC,

Attribute

Description Data Type

JAX-WS,
or Both?

aut oDet ect W apped Specifies whether the wsdl ¢ Ant task ~ Boolean

should try to determine whether the
parameters and return type of
document-literal web services are of
type wrapped or bare.

When the wsdl ¢ Ant task parses a
WSDL file to create the partial JWS file
that implements the web service, it
attempts to determine whether a
document-literal web service uses
wrapped or bare parameters and
return types based on the names of the
XML Schema elements, the name of
the operations and parameters, and so
on. Depending on how the names of
these components match up, the

wsdl ¢ Ant task makes a best guess as
to whether the parameters are
wrapped or bare. In some cases,
however, you might want the Ant task
to always assume that the parameters
are of type bare; in this case, set the
aut oDet ect W apped attribute to

Fal se.

Valid values for this attribute are Tr ue
or Fal se. The default value is Tr ue.

No

JAX-RPC

cat al og

Specifies an external XML catalog file. = String
For more information, see Using XML

Catalogs in Developing JAX-WS Web

Services for Oracle WebLogic Server.

No

Both

destInmpl Dir

Directory into which the stubbed-out ~ String
JWS implementation file is generated.

The generated JWS file implements the
generated JWS interface file (contained
within the JAR file). You update this
JWS implementation file, adding Java
code to the methods so that they
behave as you want, then later specify
this updated JWS file to the j wsc Ant
task to generate a deployable web
service.

No

Both

Ant Task Reference 2-47

wsdlc

Table 2-12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task
. ___|

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

dest JavadocDhi r Directory into which Javadoc that String No Both

describes the JWS interface is
generated.

Because you should never unjar or
update the generated JAR file that
contains the JWS interface file that
implements the specified web service,
you can get detailed information about
the interface file from this generated
Javadoc. You can then use this
documentation, together with the
generated stubbed-out JWS
implementation file, to add business
logic to the partially generated web
service.

dest JwsDi r Directory into which the JAR file that String Yes Both
contains the JWS interface and data
binding artifacts should be generated.

The name of the generated JAR file is
WSDLFi | e_wsdl . j ar, where

WBDLFi | e refers to the root name of
the WSDL file. For example, if the
name of the WSDL file you specify to
the fi | e attribute is

MySer vi ce. wsdl , then the generated
JAR file is MySer vi ce_wsdl . j ar.

expl ode Specifies whether the generated JAR Boolean No Both
file that contains the generated JWS
interface file and data binding artifacts
is in exploded directory format or not.

Valid values for this attribute are t r ue
or f al se. Default value is f al se,
which means that wsdl ¢ generates an
actual JAR archive file, and not an
exploded directory.

2-48 WeblLogic Web Services Reference for Oracle WebLogic Server

wsdlc

Table 2-12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task
. ___|

Required? JAX-RPC,

Attribute

Description

Data Type

JAX-WS,
or Both?

j axRPCW appedArrayS When the wsdl ¢ Ant task is

tyle

generating the Java equivalent to XML
Schema data types in the WSDL file,
and the task encounters an XML
complex type with a single enclosing
sequence with a single element with
the maxQccur s attribute equal to
unbounded, the task generates, by
default, a Java structure whose name is
the lowest named enclosing complex
type or element. To change this
behavior so that the task generates a
literal array instead, set the

j axRPCW appedArrayStyl e to

Fal se.

Valid values for this attribute are Tr ue
or Fal se. The default value is Tr ue.

Boolean

No

JAX-RPC

packageNane

Package into which the generated JWS
interface and implementation files
should be generated.

If you do not specify this attribute, the
wsdl ¢ Ant task generates a package
name based on the

t ar get Nanespace of the WSDL.

String

No

Both

sort SchemaTypes

In an XSD file, two complex types are
defined, one a named global type and
the other an unnamed local type. By
default, cl i ent gen automatically
generates its own name for the
unnamed local type, and the name
generated when compiling different
WSDL files is not always consistent.

When enabled, the type names in the
Java files generated by cl i ent gen
will be the same.

Boolean

No

JAX-RPC

Ant Task Reference 2-49

wsdlc

Table 2-12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task
. ___|

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

sr cBi ndi ngName Name of the WSDL binding from String Only if the JAX-RPC

which the JWS interface file should be WSDL file
generated. contains more
The wsdl ¢ Ant task runs against the tha_n one

first <ser vi ce> element it finds in the <bi ndi ng>

WSDL file. Therefore, you only need to element

specify the sr cBi ndi ngNane
attribute if there is more than one

<bi ndi ng> element associated with
this first <ser vi ce> element.

If the namespace of the binding is the
same as the namespace of the service,
then you just need to specify the name
of the binding for the value of this
attribute. For example:

srcBi ndi ngName="MBi ndi ng"

However, if the namespace of the
binding is different from the namespace
of the service, then you must also
specify the namespace URI, using the
following format:

srcBi ndi ngNanme="{ URI } Bi ndi ngNang"

For example, if the namespace URI of
the MyBi ndi ng binding is

www. exanpl es. or g, then you
specify the attribute value as follows:

srcBi ndi ngName="{ www. exanpl es. or g
} MyBi ndi ng"

Note: This attribute is deprecated as of
Version 9.2 of WebLogic Server. Use
srcPort Nanme or srcServi ceNane
instead.

2-50 WebLogic Web Services Reference for Oracle WebLogic Server

wsdlc

Table 2-12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task
. ___|

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

srcPor t Nane Name of the WSDL port from which String No Both

the JWS interface file should be
generated.

Set the value of this attribute to the
value of the nane attribute of the

<por t > element that corresponds to
the web service port for which you
want to generate a JWS interface file.
The <por t > element is a child element
of the <ser vi ce> element in the
WSDL file.

If you do not specify this attribute,
wsdl ¢ generates a JWS interface file
from the service specified by
srcServi ceNarme.

Note: For JAX-RPC, if you specify this
attribute, you cannot also specify
srcServi ceNanme.

Ant Task Reference 2-51

wsdlc

Table 2-12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task
. ___|

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

srcServi ceNanme Name of the web service from which String No Both

the JWS interface file should be
generated.

Set the value of this attribute to the
value of the nane attribute of the
<ser vi ce> element that corresponds
to the web service for which you want
to generate a JWS interface file.

The wsdl ¢ Ant task generates a single
JWS endpoint interface and data
binding JAR file for a given web
service. This means that if the

<servi ce> element contains more
than one <port > element, the
following must be true:

* The bindings for each port must be
the same or equivalent to each
other.

® The transport for each port must be
different. The wsdl ¢ Ant task
determines the transport for a port
from the address listed in its
<addr ess> child element. Because
WebLogic web services support
only three transports (JMS, HTTP,
and HTTPS), this means that there
can be at most three <por t > child
elements for the <ser vi ce>
element specified by this attribute.
The generated JWS implementation
file will then include the
corresponding @\LXXXTr anspor t
annotations (for JAX-RPC web
services).

If you do not specify either this or the

sr cPort Nane attribute, the WSDL

file must include only one <ser vi ce>
element. The wsdl ¢ Ant task
generates the JWS interface file and
data binding JAR file from this single
web service.

Note: For JAX-RPC, if you specify this

attribute, you cannot also specify

srcPort Nane.

2-52 WebLogic Web Services Reference for Oracle WebLogic Server

wsdlc

Table 2-12 (Cont.) WebLogic-specific Attributes of the wsdlc Ant Task
. ___|

Attribute Description Data Type Required? JAX-RPC,
JAX-WS,
or Both?

srcVédl Name of the WSDL from which to String Yes Both

generate the JAR file that contains the
JWS interface and data binding
artifacts.

The name must include its pathname,
either absolute or relative to the
directory which contains the Ant

bui l d. xm file.

type Specifies the type of web service for String No Both
which you are generating a partial
implementation: JAX-WS or JAX-RPC.
Valid values are:
o JAXWS
e JAXRPC
Default value is JAXRPC.

typeFam |y Specifies the type of data binding String No JAX-RPC
classes to generate.

Valid values are:

* TYLAR—Refers to the standard
WebLogic web services data
binding classes, described in Using
JAXB Data Binding in Developing
JAX-WS Web Services for Oracle
WebLogic Server.

¢ XM.BEANS

e XM.BEANS_APACHE

Default value is TYLAR

Note: JAXB data binding classes are

always generated for a JAX-WS web
service.

w w81Cal | backGen Specifies whether to generate a Boolean No JAX-RPC
WebLogic Workshop 8.1 style callback.

Valid values for this attribute are Tr ue
or Fal se. The default value is Fal se.

2.4.3.2 Standard Ant javac Attributes That Apply To wsdlc

In addition to the WebLogic-specific wsdl ¢ attributes, you can also define the
following standard j avac attributes; see the Ant documentation at ht t p: //
ant . apache. or g/ manual / for additional information about each attribute:

e bootclasspath
e boot O asspat hRef
e classpath

e cl asspat hRef

Ant Task Reference 2-53

http://ant.apache.org/manual/
http://ant.apache.org/manual/

wsdlc

e conpiler

e debug

e debuglLevel

e depend

e deprecation

e destdir

e encodi ng

e extdirs

e failonerror

e fork

e includeantruntime
e includejavaruntine
e |istfiles

e nmenorylnitial Size
e menor yMaxi munsi ze
e nowarn

e optimze

e proceed

e source

e sourcepath

e sour cepat hRef

e tenpdir

e verbose

You can also use the following standard Ant child elements with the wsdl ¢ Ant task:

<Fi | eSet >
e <Sour cePat h>
e <Cl asspat h>

o <Extdirs>

2.4.4 Example

The following excerpt from an Ant bui I d. xm file shows how to use the wsdl ¢ and
j wsc Ant tasks together to build a WebLogic web service. The build file includes two
different targets: gener at e- f r om wsdl that runs the wsdl ¢ Ant task against an

2-54 WeblLogic Web Services Reference for Oracle WebLogic Server

wsdlc

existing WSDL file, and bui | d- ser vi ce that runs the] wsc Ant task to build a
deployable web service from the artifacts generated by the wsdl ¢ Ant task:

<t askdef name="wsdl c"
cl assname="webl ogi c. wsee. t ool s. antt asks. édl cTask"/ >
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<target nane="generate-fromwsdl ">
<wsdl ¢
src\Wdl ="wsdl _fil es/ Tenperat ureService. wsdl "
dest JwsDi r="out put/ conpi | edVédl "
dest | npl Dir="output/inpl"
packageName="exanpl es. webser vi ces. wsdl ¢"
type="JAXWS" />

</target>
<target nanme="buil d-service">
<jwsc
srcdir="src"
dest di r="out put/wsdl cEar" >
<ws file=

"exanpl es/ webser vi ces/ wsdl ¢/ Tenper at ur eSer vi ce_Tenper at ur ePort Typel npl . j ava"
conpi | edWdl =" out put / conpi | edWdl / Tenper at ureServi ce_wsdl . jar"
type="JAXWS"/ >

</jwsc>
</target>

In the example, the wsdl ¢ Ant task takes as input the Tenper at ur eSer vi ce. wsdl
file and generates the JAR file that contains the JWS interface and data binding
artifacts into the directory out put / conpi | edWsdl . The name of the JAR file is
Terper at ur eSer vi ce_wsdl . j ar. The Ant task also generates a JWS file that
contains a stubbed-out implementation of the JWS interface into the out put /i npl /
exanpl es/ webser vi ces/ wsdl ¢ directory (a combination of the value of the
dest | npl Di r attribute and the directory hierarchy corresponding to the specified
packageNarne).

For JAX-WS, the name of the stubbed-out JWS implementation file is based on the
name of the <ser vi ce> element and its inner <por t > element in the WSDL file. For
example, if the service name is Tenper at ur eSer vi ce and the port name is

Tenper at ur ePor t Type, then the generated JWS implementation file is called
Tenper at ureServi ce_Tenper at ur ePort Typel npl . j ava.

For JAX-RPC, the name of the stubbed-out JWS implementation file is based on the
name of the <port Type> element that corresponds to the first <ser vi ce> element.
For example, if the por t Type name is Tenper at ur ePor t Type, then the generated
JWS implementation file is called Tenper at ur ePor t Typel npl . j ava.

After running wsdl ¢, you code the stubbed-out JWS implementation file, adding your
business logic. Typically, you move this JWS file from the wsdl c-output directory to a
more permanent directory that contains your application source code; in the example,
the fully coded Tenper at ur eSer vi ce_Tenper at ur ePor t Typel npl . j ava JWS
file has been moved to the directory sr c/ exanpl es/ webser vi ces/ wsdl c/ . You
then run the j wsc Ant task, specifying this JWS file as usual. The only additional
attribute you must specify is conpi | edWéd| to point to the JAR file generated by the
wsdl ¢ Ant task, as shown in the preceding example. This indicates that you do not
want the j wsc Ant task to generate a new WSDL file, because you want to use the
original one that has been compiled into the JAR file.

Ant Task Reference 2-55

wsdiget

2.5 wsdlget

The wsdl get Ant task downloads to the local directory a WSDL and its imported
XML resources.

You may wish to use the download files when defining and referencing an XML
catalog to redirect remote XML resources in your application to a local version of the
resources.

For more information, see Using XML Catalogs in Developing JAX-WS Web Services for
Oracle WebLogic Server.

The following sections discuss additional important information about wsdl get :
¢ Taskdef Classname

¢ Child Elements

¢ Attributes

e Example

2.5.1 Taskdef Classname

<t askdef name="wsdl get"
cl assname="webl ogi c. wsee. t ool s. ant t asks. Wdl CGet Task"/ >

2.5.2 Child Elements

The wsdl get Ant task has one WebLogic-specific child element: <xni cat al 0g>. The
<xm cat al 0g> child element specifies the ID of an embedded XML catalog. The
following shows the element syntax:

<xm catal og refid="id"/>

The ID referenced by <xm cat al 0og> must match the ID of an embedded XML
catalog. You embed an XML catalog in the bui | d. xm file using the following syntax:

<xm catal og id="id">
<entity publicid="public_id" location="uri"/>
</ xm cat al og>

In the above syntax, publ i c_i d specifies the public identifier of the original XML
resource (WSDL or XSD) and ur i specifies the replacement XML resource.

The following example shows how to embed an XML catalog and reference it using
wsdl get . Relevant code lines are shown in bold.

<target name="wsdl get">
<wsdl get
wsdl =" ${wsdl }"
destDir="${wsdl . dir}"
cat al og="wsdl cat al og. xm "/ >
<xn catal og refid="wsinportcatal og"/>
</ wsdl get >
</target>
<xnl cat al og i d="wsi nportcatal og">
<entity publicid="http://helloservice.org/types/HelloTypes. xsd"
| ocati on="${basedir}/Hel | oTypes. xsd"/ >
</ xn cat al og>

2-56 WebLogic Web Services Reference for Oracle WebLogic Server

wsdiget

2.5.3 Attributes

The following table describes the attributes of the wsdl get Ant task.

Table 2-13 WebLogic-specific Attributes of the wsdlget Ant Task

Attribute

Description

Data Type

For more information, see Using XML Catalogs in Developing JAX-WS Web Services for
Oracle WebLogic Server.

Required? JAX-RPC,

JAX-WS,
or Both?

cat al og

Specifies an external XML catalog file. For
more information, see Using XML Catalogs
in Developing JAX-WS Web Services for Oracle
WebLogic Server.

String

No

Both

destDir

Directory into which the XML resources are
copied.

The generated JWS file implements the
generated JWS interface file (contained
within the JAR file). You update this JWS
implementation file, adding Java code to the
methods so that they behave as you want,
then later specify this updated JWS file to
the j wsc Ant task to generate a deployable
web service.

String

Yes

Both

wsdl

Name of the WSDL to copy to the local
directory.

String

Both

2.5.4 Example

The following excerpt from an Ant bui I d. xri file shows how to use the wsdl get
Ant task to download a WSDL and its imported XML resources. The XML resources
will be saved to the wsdl folder in the directory from which the Ant task is run.

<target name="wsdl get"

<wsdl get
wsdl ="http://host/service?wsdl "
destDir="./wsdl /"

/>

</target>

Ant Task Reference 2-57

wsdiget

2-58 WebLogic Web Services Reference for Oracle WebLogic Server

3

JWS Annotation Reference

The chapter provides reference documentation about the WebLogic-specific JWS
annotations.

This chapter includes the following topics:

* Overview of JWS Annotation Tags

e Web Services Metadata Annotations (JSR-181)
e JAX-WS Annotations (JSR-224)

e JAXB Annotations (JSR-222)

e Common Annotations (JSR-250)

* WebLogic-specific Annotations

3.1 Overview of JWS Annotation Tags

The WebLogic Web Services programming model uses the JDK 5.0 metadata
annotations feature (specified by JSR-175 at ht t p: / / www. j cp. org/ en/j sr/

det ai | ?i d=175). In this programming model, you create an annotated Java file and
then use Ant tasks to compile the file into the Java source code and generate all the
associated artifacts.

The Java Web Service (JWS) annotated file is the core of your Web Service. It contains
the Java code that determines how your Web Service behaves. A JWS file is an

ordinary Java class file that uses annotations to specify the shape and characteristics of
the Web Service.

The JWS annotations that are supported vary based on whether you are creating a
JAX-WS or JAX-RPC Web Service. The following table compares the Web Service
annotation support for JAX-WS and JAX-RPC.

Table 3-1 Web Service Annotation Support

Annotations JAX-WS JAX-RPC
Web Services Metadata Annotations (JSR-181) Y

JAX-WS Annotations (JSR-224) Y N

JAXB Annotations (JSR-222) Y N
Common Annotations (JSR-250) Y N
WebLogic-specific Annotations Y Y

JWS Annotation Reference 3-1

http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175

Overview of JWS Annotation Tags

You can target a JWS annotation at either the class-, method- or parameter-level in a
JWE file. Some annotations can be targeted at more than one level, such as
@ecuri t yRol es that can be targeted at both the class and method level.

The following example shows a simple JWS file that uses standard JSR-181, shown in
bold:

package exanpl es. webservi ces. conpl ex;
/1 1mport the standard JWS annotation interfaces
i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WebParam
i mport javax.jws.\MbResul t;
i mport javax.jws.\WebService;
i mport javax.jws. soap. SOAPBI ndi ng;
/1 1rnport the BasicStruct JavaBean
i mport exanpl es. webservi ces. conpl ex. Basi cStruct;
/1 Standard JWS annotation that specifies that the portType nane of the Vb
/'l Service is "Conpl exPortType", its public service nane is "Conpl exService",
/'l and the targetNanespace used in the generated WSDL is "http://exanple.org"
@\ebSer vi ce(servi ceNane="Conpl exServi ce", name="Conpl exPort Type",
target Nanespace="http://exanple.org")
/1 Standard JWS annotation that specifies this is a docunent-1literal-w apped
Il Wb Service
@OAPBI ndi ng(st yl e=SOAPBI ndi ng. St yl e. DOCUMENT,
use=SCOAPBI ndi ng. Use. LI TERAL,
par anet er St yl e=SOAPBi ndi ng. Par anet er St yl e. WRAPPED)
/**
* This JWs file forns the basis of a Weblogic Wb Service. The Wb Services
* has two public operations:
*
- echolnt (int)
- echoConpl exType(Basi cStruct)

*
*
*
* The Wb Service is defined as a "docunent-literal” service, which means
* that the SOAP nessages have a single part referencing an XM Schema el enent
* that defines the entire body.

*
*|
public class Conplexlnpl {

/1 Standard JWS annotation that specifies that the method should be exposed

/1 as a public operation. Because the annotation does not include the

Il menber-val ue "operationNane", the public nane of the operation is the

Il same as the method name: echolnt.

11

/1 The WebResult annotation specifies that the name of the result of the

Il operation in the generated WSDL is "IntegerQutput", rather than the

/1 default name "return". The WebParam annotation specifies that the input

Il parameter name in the WDL file is "Integerlnput" rather than the Java

/1 name of the paraneter, "input".

@ebMet hod()

@\ébResul t (name="1nt eger Qut put ",

target Namespace="htt p: // exanpl e. or g/ conpl ex")
public int echolnt(
@\ebPar an{ name="1 nt eger | nput ",
tar get Nanespace="htt p: // exanpl e. or g/ conpl ex")
int input)
{
Systemout.printIn("echolnt "" + input +"" to you too!");
return input;

/1 Standard JWS annotation to expose nethod "echoStruct” as a public operation

3-2 WebLogic Web Services Reference for Oracle WebLogic Server

Web Services Metadata Annotations (JSR-181)

/1 called "echoConpl exType"
/1 The WebResult annotation specifies that the name of the result of the
Il operation in the generated WSDL is "EchoStruct ReturnMessage",
Il rather than the default nane "return".
@\ebMet hod(oper at i onName="echoConpl exType")
@¢bResul t (name="EchoSt ruct Ret ur nMessage",
target Nanespace="htt p: // exanpl e. or g/ conpl ex")
public BasicStruct echoStruct(BasicStruct struct)

{
System out. print|n("echoConmpl exType cal |l ed");
return struct;

}
}

The following sections describe the JWS annotations that are supported.

3.2 Web Services Metadata Annotations (JSR-181)

The following table summarizes the standard JSR-181 annotations that you can use in
your JWS file to specify the shape and behavior of your Web Service. Each of these
annotations are available with the j avax. j ws atht t p: / / downl oad. or acl e. com
j avaeel/ 6/ api / j avax/j ws/ package- summary. ht ml orj avax. j ws. soap
package at htt p: // downl oad. or acl e. conl j avaee/ 6/ api / j avax/j ws/ soap/
package- sunmary. ht m and are described in more detail in the Web Services
Metadata for the Java Platform (JSR-181) specification at ht t p: //

WWW. j cp. org/en/jsr/detail ?i d=181.

Table 3-2 Standard JSR-181 JWS Annotations
- - - -]

This annotation . . . Specifies . ..

j avax.j ws. WbService At the class level that the JWS file implements a Web Service. For more
information, see Specifying that the JWS File Implements a Web Service
(@\ebSer vi ce Annotation) in Developing JAX-WS Web Services for Oracle
WebLogic Server or in Developing JAX-RPC Web Services for Oracle WebLogic
Server.

j avax.j ws. WebMet hod That a method of the JWS file should be exposed as a public operation of the
Web Service. For more information, see Specifying That a JWS Method Be
Exposed as a Public Operation (@¥bMet hod and @neWay Annotations) in
Developing JAX-WS Web Services for Oracle WebLogic Server or Developing JAX-
RPC Web Services for Oracle WebLogic Server.

j avax. j ws. OneWy That an operation not return a value to the calling application. For more
information, see Specifying That a JWS Method Be Exposed as a Public
Operation (@¥bMet hod and @neWay Annotations) in Developing JAX-WS
Web Services for Oracle WebLogic Server or Developing JAX-RPC Web Services for
Oracle WebLogic Server.

j avax.jws. \ebPar am The mapping between operation input parameters of the Web Service and
elements of the generated WSDL file, as well as specify the behavior of the
parameter. For more information, see Customizing the Mapping Between
Operation Parameters and WSDL Elements (@WebParam Annotation) in
Developing JAX-WS Web Services for Oracle WebLogic Server or Developing JAX-
RPC Web Services for Oracle WebLogic Server.

JWS Annotation Reference 3-3

http://download.oracle.com/javaee/6/api/javax/jws/package-summary.html
http://download.oracle.com/javaee/6/api/javax/jws/package-summary.html
http://download.oracle.com/javaee/6/api/javax/jws/soap/package-summary.html
http://download.oracle.com/javaee/6/api/javax/jws/soap/package-summary.html
http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181

JAX-WS Annotations (JSR-224)

Table 3-2 (Cont.) Standard JSR-181 JWS Annotations
. __|

This annotation . . . Specifies . ..

javax.jws. WebResul t The mapping between the Web Service operation return value and the
corresponding element of the generated WSDL file. For more information, see
Customizing the Mapping Between the Operation Return Value and a WSDL
Element (@\bResul t Annotation) in Developing JAX-WS Web Services for
Oracle WebLogic Server or Developing JAX-RPC Web Services for Oracle WebLogic
Server.

j avax. j ws. Handl er Chai n An external handler chain. For more information, see Creating and Using
SOAP Message Handlers in Developing [AX-WS Web Services for Oracle
WebLogic Server or Developing JAX-RPC Web Services for Oracle WebLogic Server.

j avax. j ws. SOAPBI ndi ng At the class level the SOAP bindings of the Web Service (such as, docunent -
encoded or docurent - | i t er al - wr apped). For more information, see
Specifying the Mapping of the Web Service to the SOAP Message Protocol
(@0OAPBI ndi ng Annotation) in Developing JAX-WS Web Services for Oracle
WebLogic Server or Developing JAX-RPC Web Services for Oracle WebLogic Server.

3.3 JAX-WS Annotations (JSR-224)

Note:

The JAX-WS JWS annotations are relevant to JAX-WS Web Services only. This
section does not apply to JAX-RPC Web Services.

The following table summarizes the JAX-WS (JSR-224) annotations that you can use in
your JWS file to specify the shape and behavior of your Web Service. Each of these
annotations are available with the javax.xml.ws package at htt p: //

downl oad. or acl e. cont j avaee/ 6/ api / j avax/ xm / ws/ package-

sunmmary. ht m and are described in more detail in JAX-WS 2.1 Annotations at
http://jax-ws.java. net/ nonav/ 2. 1. 4/ docs/annotations. htm.

Table 3-3 JAX-WS (JSR-244) Annotations

This annotation . . . Specifies . ..

javax. xml . ws. Action Whether to allow an explicit association of a WS-Addressing Act i on
message addressing property with i nput , out put, and f aul t
messages of the mapped WSDL operation.

j avax. xm . ws. Bi ndi ngType The binding to use for a Web Service implementation class. For more
information, see Specifying the Binding Type to Use for an Endpoint
(@BindingType Annotation) in Developing [AX-WS Web Services for
Oracle WebLogic Server.

javax. xm . ws. Faul t Acti on Whether to allow an explicit association of a WS-Addressing Act i on
message addressing property with the fault messages of the WSDL
operation mapped from the exception class. The @aul t Acti on
annotation is used inside an @\ct i on annotation.

j avax. xm . ws. Request W apper The request wrapper bean to be used at runtime for the methods in the
endpoint interface.

3-4 WebLogic Web Services Reference for Oracle WebLogic Server

http://download.oracle.com/javaee/6/api/javax/xml/ws/package-summary.html
http://download.oracle.com/javaee/6/api/javax/xml/ws/package-summary.html
http://download.oracle.com/javaee/6/api/javax/xml/ws/package-summary.html
http://jax-ws.java.net/nonav/2.1.4/docs/annotations.html

JAXB Annotations (JSR-222)

Table 3-3 (Cont.) JAX-WS (JSR-244) Annotations
. ___|

This annotation . . . Specifies . ..

j avax. xm . ws. ResponseW apper The response wrapper bean to be used at runtime for the methods in
the endpoint interface.

j avax. xnl . ws. Servi ceMbde Whether a provider implementation works with the entire protocol
message or with the payload only.

javax. xm . ws. WebEndpoi nt The get Por t Nane() methods of a generated service interface.

javax. xm . ws. WebFaul t Service-specific exception classes to customize to the local and
namespace name of the fault element and the name of the fault bean.

javax. xnml . ws. WebServi ced i ent A generated service interface.

javax. xnl . ws. WebSer vi ceProvid A provider implementation class.
er

javax. xnl . ws. WebSer vi ceRef A reference to a Web Service. For more information, see Defining a Web
Service Reference Using the @WebServiceRef Annotation in Developing
JAX-WS Web Services for Oracle WebLogic Server.

3.4 JAXB Annotations (JSR-222)

Note:

The JAXB JWS annotations are relevant to JAX-WS Web Services only. This
section does not apply to JAX-RPC Web Services.

The JAXB (JSR-222) athtt p: //j cp. org/ en/j sr/ detai | ?i d=222 specification
defines the JAXB annotations that you can use in your JWS file to specify the shape
and behavior of your Web Service. The JAXB annotations are summarized in the
following table. Each of these annotations are available with the

javax. xm . bi nd. annot at i on package at ht t p: / / downl oad. or acl e. com

j avaeel/ 6/ api / j avax/ xm / bi nd/ annot at i on/ package- sunmary. ht M and
are described in more detail in Customizing Java-to-XML Schema Mapping Using
JAXB Annotations in Developing JAX-WS Web Services for Oracle WebLogic Server or the
JAXB (JSR-222 athttp://jcp. org/en/jsr/detail ?i d=222) specification.

Table 3-4 JAXB Mapping Annotations (JSR-222)

This annotation . . . Specifies . . .

j avax. xnl . bi nd. annot ati on. Xml Accessor Whether fields or properties are serialized by default. For

Type more information, see Specifying Default Serialization of
Fields and Properties (@XmlAccessorType) in Developing
JAX-WS Web Services for Oracle WebLogic Server.

j avax. xni . bi nd. annot at i on. X El enent That a property contained in a class be mapped to a local
element in the XML schema complex type to which the
containing class is mapped. For more information, see
Mapping Properties to Local Elements (@XmlElement) in
Developing JAX-WS Web Services for Oracle WebLogic Server.

JWS Annotation Reference 3-5

http://jcp.org/en/jsr/detail?id=222
http://download.oracle.com/javaee/6/api/javax/xml/bind/annotation/package-summary.html
http://download.oracle.com/javaee/6/api/javax/xml/bind/annotation/package-summary.html
http://jcp.org/en/jsr/detail?id=222)

Common Annotations (JSR-250)

Table 3-4 (Cont.) JAXB Mapping Annotations (JSR-222)

This annotation . . . Specifies . ..

javax. xni . bi nd. annot at i on. Xm Root El em That a top-level class be mapped to a global element in the

ent XML schema that is used by the WSDL of the Web Service.
For more information, see Mapping a Top-level Class to a
Global Element (@XmlRootElement) in Developing JAX-WS
Web Services for Oracle WebLogic Server.

javax. xni . bi nd. annot at i on. Xm SeeAl so The other classes to bind when binding the current class.
For more information, see Binding a Set of Classes
(@XmlSeeAlso) in Developing JAX-WS Web Services for Oracle
WebLogic Server.

j avax. xm . bi nd. annot ati on. Xm Type That a class or enum type be mapped to an XML Schema
type. For more information, see Mapping a Value Class to a
Schema Type (@XmlType) in Developing JAX-WS Web
Services for Oracle WebLogic Server.

3.5 Common Annotations (JSR-250)

The following table summarizes the JAX-WS (JSR-250) annotations that you can use in
your JWS file to specify the shape and behavior of your Web Service.

Each of these annotations are available with the j avax. annot at i on package at
htt p: // downl oad. or acl e. com j avaee/ 6/ api / j avax/ annot at i on/
package- summary. ht m and are described in more detail in the Common
Annotations for the Java Platform (JSR-250) specification at ht t p: //
jcp.org/en/jsr/detail ?i d=250.

Table 3-5 Common Annotations (JSR-250)

__|]
This annotation . . . Specifies . ..

j avax. annot ati on. Resour ce A resource that is needed by the application. This annotation may be
applied to an application component class or to fields or methods of the
component class.

j avax. annot at i on. Post Constru A method that needs to be executed after dependency injection is done
ct to perform initialization.

j avax. annot at i on. PreDest r oy A callback notification om a method to signal that the instance is in the
process of being removed by the container.

3.6 WebLogic-specific Annotations

WebLogic Web Services define a set of JWS annotations that you can use to specify
behavior and features in addition to the standard JSR-181 JWS annotations. The
following table summarizes the WebLogic-specific annotations and whether they are
supported for JAX-WS or JAX-RPC. (The majority of annotations are supported for
JAX-RPC only.) Each annotation is described in more detail in the sections that follow.

3-6 WebLogic Web Services Reference for Oracle WebLogic Server

http://download.oracle.com/javaee/6/api/javax/annotation/package-summary.html
http://download.oracle.com/javaee/6/api/javax/annotation/package-summary.html
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250

WebLogic-specific Annotations

Table 3-6 WebLogic-specific Annotations

This annotation . . .

Specifies . .

JAX-WS,
JAX-RPC,
or Both?

com.oracle.webservices.apijms.JMST That the web service client supports SOAP over JMS

ransportClient

transport connection protocol.

JAX-WS

com.oracle.webservices.api,jms. JMST

ransportService

That the web service supports SOAP over JMS transport
connection protocol.

JAX-WS

weblogic.jws.AsyncFailure

The method that handles a potential failure when the main
JWS file invokes an operation of another Web Service
asynchronously.

JAX-RPC

weblogic.jws.AsyncResponse

The method that handles the response when the main JWS
file invokes an operation of another Web Service
asynchronously.

JAX-RPC

weblogic.jws.Binding

Whether the Web Service uses version 1.1 or 1.2 of the
Simple Object Access Protocol (SOAP) implementation
when accepting or sending SOAP messages.

JAX-RPC

weblogic.jws.BufferQueue

The JNDI name of the JMS queue to which WebLogic Server
stores:

¢ Buffered Web Service operation invocation.
* Reliable Web Service operation invocation.

JAX-RPC

weblogic.jws.Callback

That the annotated variable is a callback, which means that
you can use the variable to send callback events back to the
client Web Service that invoked an operation of the target
Web Service.

JAX-RPC

weblogic.jws.CallbackMethod

The method in the client Web Service that handles the
messages it receives from the callback Web Service.

JAX-RPC

weblogic.jws.CallbackService

That the JWS file is actually a Java interface that describes a
callback Web Service.

JAX-RPC

weblogic.jws.Context

That the annotated field provides access to the runtime
context of the Web Service.

JAX-RPC

weblogic.jws.Conversation

That a method annotated with the @Conver sati on
annotation can be invoked as part of a conversation
between two WebLogic Web Services or a stand-alone Java
client and a conversational Web Service.

JAX-RPC

weblogic.jws.Conversational

That a JWS file implements a conversational Web Service.

JAX-RPC

weblogic.jws.FileStore

That the Web Service does not use the default WebLogic
Server default filestore to store internal state information,
such as conversational state, but rather uses one specified
by the programmer.

JAX-RPC

weblogic.jws.MessageBuffer

Which public methods of a JWS are buffered. If specified at
the class-level, then all public methods are buffered; if you
want only a subset of the methods to be buffered, specify
the annotation at the appropriate method-level.

JAX-RPC

JWS Annotation Reference 3-7

WebLogic-specific Annotations

Table 3-6 (Cont.) WebLogic-specific Annotations
. ___|

This annotation . . . Specifies . . JAX-WS,
JAX-RPC,
or Both?

weblogic.jws.Policies An array of @webl ogi c. j ws. Pol i cy annotations. Both

weblogic.jws.Policy That a WS-Policy file, which contains information about Both

digital signatures, encryption, or Web Service reliable
messaging, should be applied to the request or response
SOAP messages.

weblogic.jws.ReliabilityBuffer Reliable messaging properties for an operation of a reliable ~ JAX-RPC
Web Service, such as the number of times WebLogic Server
should attempt to deliver the message from the JMS queue
to the Web Service implementation, and the amount of time
that the server should wait in between retries.

weblogic.jws.ReliabilityErrorHandler = The method that handles the error that results when a client JAX-RPC
Web Service invokes a reliable Web Service, but the client
does not receive an acknowledgement that the reliable Web
Service actually received the message.

weblogic.jws.ServiceClient That the annotated variable in the JWS file is a stub used to ~ JAX-RPC
invoke another WebLogic Web Service when using the
following features:
* Web Service reliable messaging
¢ Asynchronous request-response
¢ Conversations

weblogic.jws.StreamAttachments That the WebLogic Web Services runtime use streaming JAX-RPC
APIs when reading the parameters of all methods of the
Web Service.

weblogic.jws.Transactional Whether the annotated operation, or all the operations of JAX-RPC

the JWS file when the annotation is specified at the class-
level, runs or run inside of a transaction.

weblogic.jws.Types A comma-separated list of fully qualified Java class names JAX-RPC
of the alternative data types for a return type or parameter.

weblogic.jws.WildcardBinding The XML Schema data type to which a wildcard class, such ~ JAX-RPC
asj avax. xm . soap. SOAPEI enent or
or g. apache. xnml beans. Xm Obj ect, binds.

weblogic.jws.WildcardBindings An array of @webl ogi c. jws. W dcar dBi ndi ng JAX-RPC
annotations.
weblogic.jws.WLHttpTransport The context path and service URI sections of the URL used ~ JAX-RPC

to invoke the Web Service over the HTTP transport, as well
as the name of the port in the generated WSDL.

weblogic.jws.WLHttpsTransport The context path and service URI sections of the URL used ~ JAX-RPC
to invoke the Web Service over the HTTPS transport, as
well as the name of the port in the generated WSDL.

3-8 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

Table 3-6 (Cont.) WebLogic-specific Annotations
. ___|

This annotation . . . Specifies . . JAX-WS,
JAX-RPC,
or Both?

weblogic.jws.WL]msTransport The context path and service URI sections of the URL used ~ JAX-RPC

to invoke the Web Service over the JMS transport, as well as
the name of the port in the generated WSDL.

weblogic.jws.WSDL Whether to expose the WSDL of a deployed WebLogic Web JAX-RPC
Service.

weblogic.jws.security.CallbackRoles ~ An array of @ecur i t yRol e JWS annotations that list the =~ JAX-RPC

Allowed roles that are allowed to invoke the callback methods of the
Web Service.

we3blogic.jws.security.RolesAllowed = Whether to enable basic authentication for a Web Service. JAX-RPC

weblogic.jws.security.RolesReference The list of role names that reference actual roles that are JAX-RPC

d allowed to invoke the Web Service.

weblogic.jws.security. RunAs The role and user identity which actually runs the Web JAX-RPC
Service in WebLogic Server.

weblogic.jws.security.SecurityRole The name of a role that is allowed to invoke the Web JAX-RPC
Service.

weblogic.jws.security.SecurityRoleRe A role name reference that links to an already-specified role JAX-RPC
f that is allowed to invoke the Web Service.

weblogic.jws.security.UserDataConst ~Whether the client is required to use the HTTPS transport JAX-RPC

raint when invoking the Web Service.

weblogic.jws.security. WssConfigurat The name of the Web Service security configuration you Both

ion want the Web Service to use.

weblogic.jws.soap.SOAPBinding The mapping of a Web Service operation onto the SOAP JAX-RPC
message protocol.

weblogic.jws.security.SecurityRoles The roles that are allowed to access the operations of the JAX-RPC

(deprecated) Web Service.

weblogic.jws.security.Securityldentit The identity assumed by the Web Service when it is JAX-RPC

y (deprecated) invoked.

weblogic.wsee jws.jaxws.owsm.Prop A policy configuration property override. JAX-WS

erty Use this annotation with the

webl ogi c. wsee. j ws. j axws. owsm SecurityPolicy
annotation to override a configuration property when
attaching a policy to a web service client.

weblogic.wsee. jws.jaxws.owsm.Secur ~An array of JAX-WS
ityPolicies @webl ogi c. wsee. j ws. j axws. owsm SecurityPol i ci
es annotations.

weblogic.wsee jws.jaxws.owsm.Secur That an Oracle Web Services Manager (OWSM) security JAX-WS
ityPolicy policy be attached to the web service or client.

JWS Annotation Reference 3-9

WebLogic-specific Annotations

Table 3-6 (Cont.) WebLogic-specific Annotations
. ___|

This annotation . . . Specifies . . JAX-WS,
JAX-RPC,
or Both?

weblogic.wsee jws jaxws.owsm.Secur An array of @webl ogi c. j ws. SecurityPolicy JAX-WS

ityPolicies annotations.

weblogic.wsee jws jaxws.owsm.Secur That an Oracle Web Services Manager (Oracle WSM) WS- JAX-WS
ityPolicy Policy file, which contains information about digital

signatures or encryption, should be applied to the request

or response SOAP messages.

weblogic.wsee.wstx.wsat.Transaction Whether the annotated class or method runs inside of a web JAX-WS
al service atomic transaction.

3.6.1 com.oracle.webservices.api.jms.JMSTransportClient
Target: Class
Enables and configures SOAP over JMS transport for JAX-WS web service clients.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

* Reliability
® Scalability

® Quality of service

For more information about using SOAP over JMS transport, see Using SOAP Over
JMS Transport as the Connection Protocol in Developing JAX-WS Web Services for Oracle
WebLogic Server.

Attributes

Optionally, you can configure the following JMS transport properties using the
@MSTr anspor t C i ent annotation. For a description of the properties, see
Configuring JMS Transport Properties in Developing JAX-WS Web Services for Oracle
WebLogic Server.

e destinati onNane

destinationType

enabl ed

j msHeader Property

e jnsMessageProperty

j ndi Connect i onFact or yNane

j ndi Cont ext Par aneters

jndi I nitial ContextFactory

j ndi URL

3-10 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

* nmessageType

e priority

e repl yToNane

e targetService

e timeTolLive

Note:

You cannot use SOAP over JMS transport in conjunction with web services
reliable messaging or streaming SOAP attachments, as described in Developing
JAX-WS Web Services for Oracle WebLogic Server.

Example

The following sample snippet shows how to use the @MSTr ansport C i ent
annotation in a client file to enable SOAP over JMS transport.

import javax.xm .ws.\WebServiceQient;
i mport com oracl e. webservi ces. api . j ms. JMSTransportd i ent;

@ebServi ced ient(name = "WarehouseService", targetNamespace = "http://oracle.conf sanples/",
wsdl Locat i on="\Mr ehouseServi ce. wsdl ")
@MsTransportdient (
desti nati onNanme="nyQueue",
repl yToName="nyRepl yToQueue",
jndi URL="t 3://1 ocal host: 7001",
jndiI'nitial ContextFactory="webl ogic.jndi.WInitial ContextFactory" ,
j ndi Connect i onFact or yName="webl ogi c. j ns. Connecti onFactory" ,
del i ver yMode="PERSI STENT", timeToLive="1000", priority="1",
messageType="TEXT"
)

public class \WarehouseService extends Service { ... }

3.6.2 com.oracle.webservices.api.jms.JMSTransportService

Target: Class
Enables and configures SOAP over JMS transport for JAX-WS web services.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

* Reliability
® Scalability

® Quality of service

For more information about using SOAP over JMS transport, see Using SOAP Over
JMS Transport as the Connection Protocol in Developing JAX-WS Web Services for Oracle
WebLogic Server.

JWS Annotation Reference 3-11

WebLogic-specific Annotations

Note:

SOAP over JMS transport is not compatible with the following web service

features: reliable messaging and HTTP transport-specific security.

Attributes

Optionally, you can configure JMS transport properties using the
@MNSTr anspor t Ser vi ce annotation. For a description of the properties, see

Configuring JMS Transport Properties in Developing JAX-WS Web Services for Oracle

WebLogic Server.
Example

The following sample snippet shows how to use the @ M5STr ansport Ser vi ce
annotation in a JWS file to enable SOAP over JMS transport. The

@\ct i vati onConf i gProperty is used to set service-side MDB configuration
properties.

inport javax.jws.\WbService;
i nport com oracl e. webservi ces. api . j ms. JMSTransport Ser vi ce;
inmport com sun. xn . ws. bi ndi ng. SOAPBI ndi ngl npl ;
inport javax.ejb.ActivationConfigProperty;
@ebServi ce(name="Not i f yServi cePort Type", serviceName="NotifyService",
target Nanespace="http://exanpl es.org/")
@MSTr ansport Servi ce(desti nati onName="nyQueue",
activationConfig = {
@\ctivationConfigProperty(
propertyName = "destinationType",
propertyVal ue = "javax.jns. Topic"),
@\ctivationConfigProperty(
propertyNane = "subscriptionDurability",
propertyVal ue = "Durable"),
@\ctivationConfigProperty(propertyName = "topi cMessagesDistributionhbde”,
propertyVal ue = "QOne- Copy- Per-Application")})
@i ndi ngType(SOAPBI ndi ngl npl . SOAP11_JMS_BI NDI NG
public class NotifyServicelnpl {..}

3.6.3 weblogic.jws.AsyncFailure
Target: Method

Specifies the method that handles a potential failure when the main JWS file invokes

an operation of another Web Service asynchronously.

When you invoke, from within a JWS file, a Web Service operation asynchronously,
the response (or exception, in the case of a failure) does not return immediately after
the operation invocation, but rather, at some later point in time. Because the operation
invocation did not wait for a response, a separate method in the JWS file must handle

the response when it does finally return; similarly, another method must handle a

potential failure. Use the @AsyncFai | ur e annotation to specify the method in the
JWS file that will handle the potential failure of an asynchronous operation invocation.

The @\syncFai | ur e annotation takes two parameters: the name of the stub for the
Web Service you are invoking and the name of the operation that you are invoking

asynchronously. The stub is the one that has been annotation with the
@er vi ced i ent annotation.

The method that handles the asynchronous failure must follow these guidelines:

3-12 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

e Returnvoi d.

¢ Benamed onMet hodNanmeAsyncFai | ur e, where Met hodNane is the name of the
method you are invoking asynchronously (with initial letter always capitalized.)

In the main JWS file, the call to the asynchronous method will look something like:

port.get Quot eAsync (apc, synbol);

where get Quot e is the non-asynchronous name of the method, apc is the
asynchronous pre-call context, and synbol is the usual parameter to the
get Quot e operation.

* Have two parameters: the asynchronous post-call context (contained in the
webl ogi c. wsee. async. AsyncPost Cal | Cont ext object) and the Thr owabl e
exception, potentially thrown by the asynchronous operation call.

Within the method itself you can get more information about the method failure from
the context, and query the specific type of exception and act accordingly.

Typically, you always use the @\syncFai | ur e annotation to explicitly specify the
method that handles asynchronous operation failures. The only time you would not
use this annotation is if you want a single method to handle failures for two or more
stubs that invoke different Web Services. In this case, although the stubs connect to
different Web Services, each Web Service must have a similarly named method,
because the Web Services runtime relies on the name of the method

(onMet hodNarnreAsyncFai | ur e) to determine how to handle the asynchronous
failure, rather than the annotation. However, if you always want a one-to-one
correspondence between a stub and the method that handles an asynchronous failure
from one of the operations, then Oracle recommends that you explicitly use
@\syncFai |l ure.

See Invoking a Web Service Using Asynchronous Request-Response in Developing
JAX-RPC Web Services for Oracle WebLogic Server for detailed information and examples
of using this annotation.

Attributes
The following table lists the attributes of the @\syncFai | ur e annotation.

Table 3-7 Attributes of the weblogic.jws.AsyncFailure Annotation
___|]

Name

Description Data Type Required?

tar get

The name of the stub of the Web Service for which you String Yes
want to invoke an operation asynchronously.

The stub is the one that has been annotated with the

@er vi ceC i ent field-level annotation.

operation

The name of the operation that you want to invoke String Yes
asynchronously.

This is the actual name of the operation, as it appears in the
WSDL file. When you invoke this operation in the main
code of the JWS file, you add Async to its name.

For example, if set oper at i on="get Quot e", then in the
JWS file you invoke it asynchronously as follows:

port. get Quot eAsync (apc, synbol);

JWS Annotation Reference 3-13

WebLogic-specific Annotations

Example

The following sample snippet shows how to use the @\syncFai | ur e annotation in a
JWE file that invokes the operation of another Web Service asynchronously; only the
relevant Java code is included:

package exanpl es.webservices. async_req_res;

public class StockQuotedientlnpl {
@erviced ient (wsdl Location="http://l ocal host: 7001/ async/ St ockQuot e?WsDL",
servi ceNanme="St ockQuot eServi ce", portNane="St ockQuot e")
private StockQuotePortType port;
@\ebMet hodpubl i ¢ void getQuote (String synbol) {
AsyncPreCal | Context apc = AsyncCal | Cont ext Fact ory. get AsyncPreCal | Context ();
apc. set Property("synbol ", synbol);
try {
port. get Quot eAsync(apc, symbol);
Systemout.printin("in getQuote nethod of StockQuotedient WS');
}
catch (RemoteException e) {
e.printStackTrace();
}
1

@\syncFail ure(target="port", operation="getQuote")
public void onGet Quot eAsyncFai | ure(AsyncPost Cal | Cont ext apc, Throwable €) {

Systemout. printin("-----------cconoonn)
e.printStackTrace();
Systemout. printin("--------------oooo- ")

}
}

The example shows a stub called por t, used to invoke the Web Service located at
http:/ /1 ocal host: 7001/ async/ St ockQuot e. The get Quot e operation is
invoked asynchronously, and any exception from this invocation is handled by the
onGet Quot eAsyncFai | ur e method, as specified by the @AsyncFai | ure
annotation.

3.6.4 weblogic.jws.AsyncResponse
Target: Method

Specifies the method that handles the response when the main JWS file invokes an
operation of another Web Service asynchronously.

When you invoke, from within a JWS file, a Web Service operation asynchronously,
the response does not return immediately after the operation invocation, but rather, at
some later point in time. Because the operation invocation did not wait for a response,
a separate method in the JWS file must handle the response when it does finally
return. Use the @\syncResponse annotation to specify the method in the JWS file
that will handle the response of an asynchronous operation invocation.

The @\syncResponse annotation takes two parameters: the name of the stub for the
Web Service you are invoking and the name of the operation that you are invoking
asynchronously. The stub is the one that has been annotation with the

@er vi ced i ent annotation.

The method that handles the asynchronous response must follow these guidelines:

e Returnvoi d.

3-14 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

¢ Be named onMet hodNaneAsyncResponse, where Met hodNan® is the name of
the method you are invoking asynchronously (with initial letter always
capitalized.)

In the main JWS file, the call to the asynchronous method will look something like:

port.get Quot eAsync (apc, synbol);

where get Quot e is the non-asynchronous name of the method, apc is the
asynchronous pre-call context, and synmbol is the usual parameter to the
get Quot e operation.

* Have two parameters: the asynchronous post-call context (contained in the
webl ogi c. wsee. async. AsyncPost Cal | Cont ext object) and the usual return
value of the operation.

Within the asynchronous-response method itself you add the code to handle the
response. You can also get more information about the method invocation from the
context.

Typically, you always use the @AsyncResponse annotation to explicitly specify the
method that handles asynchronous operation responses. The only time you would not
use this annotation is if you want a single method to handle the response for two or
more stubs that invoke different Web Services. In this case, although the stubs connect
to different Web Services, each Web Service must have a similarly named method,
because the Web Services runtime relies on the name of the method

(onMet hodNaneAsyncResponse) to determine how to handle the asynchronous
response, rather than the annotation. However, if you always want a one-to-one
correspondence between a stub and the method that handles an asynchronous
response from one of the operations, then Oracle recommends that you explicitly use
@\ syncResponse.

See Invoking a Web Service Using Asynchronous Request-Response in Developing
JAX-RPC Web Services for Oracle WebLogic Server for detailed information and examples
of using this annotation.

Attributes

Table 3-8 Attributes of the weblogic.jws.AsyncResponse JWS Annotation Tag
. __|

Name

Description Data Type Required?

t ar get

The name of the stub of the Web Service for which you String Yes
want to invoke an operation asynchronously.

The stub is the one that has been annotated with the
@Bervi ced i ent field-level annotation.

operation

The name of the operation that you want to invoke String Yes
asynchronously.

This is the actual name of the operation, as it appears in the
WSDL file. When you invoke this operation in the main
code of the JWS file, you add Async to its name.

For example, if set oper at i on="get Quot e", then in the
JWS file you invoke it asynchronously as follows:

port. get Quot eAsync (apc, symbol);

JWS Annotation Reference 3-15

WebLogic-specific Annotations

Example

The following sample snippet shows how to use the @\syncResponse annotation in
a JWS file that invokes the operation of another Web Service asynchronously; only the
relevant Java code is included:

package exanpl es.webservices. async_req_res;

public class StockQuotedientlnpl {
@erviced ient (wsdl Location="http://l ocal host: 7001/ async/ St ockQuot e?WsDL",
servi ceNanme="St ockQuot eServi ce", portNane="St ockQuot e")
private StockQuotePortType port;
@\ebMet hodpubl i ¢ void getQuote (String synbol) {
AsyncPreCal | Context apc = AsyncCal | Cont ext Fact ory. get AsyncPreCal | Context ();
apc. set Property("synbol ", synbol);
try {
port. get Quot eAsync(apc, symbol);
Systemout.printin("in getQuote nethod of StockQuotedient WS');
}
catch (RemoteException e) {
e.printStackTrace();
}
1

@\syncResponse(target="port", operation="get Quote")
public void onGet Quot eAsyncResponse(AsyncPost Cal | Cont ext apc, int quote) {

Systemout.printIn("-------------------)
Systemout.printIn("Got quote " + quote);
Systemout.printIn("------------------- "),

}
}

The example shows a stub called por t, used to invoke the Web Service located at
http:/ /1 ocal host: 7001/ async/ St ockQuot e. The get Quot e operation is
invoked asynchronously, and the response from this invocation is handled by the

onGet Quot eAsyncResponse method, as specified by the @GA\syncResponse
annotation.

3.6.5 weblogic.jws.Binding

Target: Class

Specifies whether the Web Service uses version 1.1 or 1.2 of the Simple Object Access
Protocol (SOAP) implementation when accepting or sending SOAP messages. By
default, WebLogic Web Services use SOAP 1.1.

Attributes

Table 3-9 Attributes of the weblogic.jws.Binding JWS Annotation Tag

Name Description Data Type Required?

val ue Specifies the version of SOAP used in the request enum No
and response SOAP messages when the Web
Service is invoked.
Valid values for this attribute are:
e Type. SOAP11
e Type. SOAP12
The default value is Type. SOAP11.

3-16 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

Example

The following example shows how to specify SOAP 1.2; only the relevant code is
shown:

package exanpl es.webservi ces. soapl?;

i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WbService;
i mport webl ogi c. j ws. Bi ndi ng;
@\ébSer vi ce(name="SOAP12Por t Type",
servi ceName="SOAP12Ser vi ce",
target Nanespace="http://exanple.org")
@i ndi ng(Bi ndi ng. Type. SOAP12)
public class SCAP12Inpl {
@ebMet hod()
public String sayHello(String nessage) {

)
}
3.6.6 weblogic.jws.BufferQueue

The following sections describe the annotation in detail.

3.6.6.1 Description
Target: Class
Specifies the JNDI name of the JMS queue to which WebLogic Server stores:

¢ Buffered Web Service operation invocation.

* Reliable Web Service operation invocation.

When used with buffered Web Services, you use this annotation in conjunction with
@kessageBuf f er , which specifies the methods of a JWS that are buffered. When
used with reliable Web Services, you use this annotation in conjunction with

@vol i cy, which specifies the reliable messaging WS-Policy file associated with the
Web Service.

If you have enabled buffering or reliable messaging for a Web Service, but do not
specify the @uf f er eQueue annotation, WebLogic Server uses the default Web
Services JMS queue (Wwebl ogi c. wsee. Def aul t Queue) to store buffered or reliable
operation invocations. This JMS queue is also the default queue for the JMS transport
features. It is assumed that you have already created this JMS queue if you intend on
using it for any of these features.

See Creating Buffered Web Services and Using Web Services Reliable Messaging in
Developing JAX-RPC Web Services for Oracle WebLogic Server for detailed information
and examples of creating buffered or reliable Web Services.

3.6.6.2 Attributes

Table 3-10 Attributes of the weblogic.jws.BufferQueue JWS Annotation Tag

Name Description Data Type Required?

name The JNDI name of the JMS queue to which the String Yes
buffered or reliable operation invocation is queued.

JWS Annotation Reference 3-17

WebLogic-specific Annotations

3.6.6.3 Example

The following example shows a code snippet from a JWS file in which the public
operation is buffered and the JMS queue to which WebLogic Server queues the
operation invocation is called ny. buf f er e. queue; only the relevant Java code is
shown:

package exanpl es.wehservi ces. buffered;

@ebSer vi ce(name="Buf f er edPor t Type",

servi ceName="Buf f eredServi ce",

target Nanespace="http://exanpl e. org")
@uf f er Queue(nane="ny. buf f er. queue")
public class Bufferedl mpl {

@\ebMet hod()
@kssageBuffer(retryCount=10, retryDel ay="10 seconds")

@nevay()
public void sayHel | oNoReturn(String message) {
Systemout. println("sayHel | oNoReturn: " + nmessage);

}
}

3.6.7 weblogic.jws.Callback

The following sections describe the annotation in detail.

3.6.7.1 Description
Target: Field

Specifies that the annotated variable is a callback, which means that you can use the
variable to send callback events back to the client Web Service that invoked an
operation of the target Web Service.

You specify the @al | back annotation in the target Web Service so that it can call
back to the client Web Service. The data type of the annotated variable is the callback
interface.

The callback feature works between two WebLogic Web Services. When you program
the feature, however, you create the following three Java files:

® Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the j wsc Ant task automatically
generates an implementation of the interface. The implementation simply passes a
message from the target Web Service back to the client Web Service. The generated
Web Service is deployed to the same WebLogic Server that hosts the client Web
Service.

* JWS file that implements the target Web Service: The target Web Service includes
one or more standard operations that invoke a method defined in the callback
interface; this method in turn sends a message back to the client Web Service that
originally invoked the operation of the target Web Service.

* JWS file that implements the client Web Service: The client Web Service invokes
an operation of the target Web Service. This Web Service includes one or more
methods that specify what the client should do when it receives a callback message
back from the target Web Service via a callback method.

3-18 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

See Using Callbacks to Notify Clients of Events in Developing JAX-RPC Web Services for
Oracle WebLogic Server for additional overview and procedural information about
programming callbacks.

The @al | back annotation does not have any attributes.

3.6.7.2 Example

The following example shows a very simple target Web Service in which a variable
called cal | back is annotated with the @al | back annotation. The data type of the
variable is Cal | backl nt er f ace; this means a callback Web Service must exist with
this name. After the variable is injected with the callback information, you can invoke
the callback methods defined in Cal | backl nt er f ace; in the example, the callback
method is cal | backOper ati on().

The text in bold shows the relevant code:

package exanpl es.webservi ces. cal | back;
i mport webl ogic.jws. WHt t pTransport;
i mport webl ogi c. j ws. Cal | back;
import javax.jws.\WebhService;
import javax.jws.\WebMet hod,;
@ébSer vi ce(name="Cal | backPort Type",
servi ceNane="Tar get Servi ce",
target Nanespace="http://exanpl es.org/")
@\LHt t pTransport (cont ext Pat h="cal | back",
servi ceUri ="Tar get Servi ce",
por t Name="Tar get Ser vi cePort")
public class Target Servicel npl {

@al | back

Cal | backl nterface cal | back;

@\ebMet hod

public void targetCperation (String nessage) {
cal I back. cal | backCperation (nmessage);

}
}

3.6.8 weblogic.jws.CallbackMethod

The following sections describe the annotation in detail.

3.6.8.1 Description
Target: Method

Specifies the method in the client Web Service that handles the messages it receives
from the callback Web Service. Use the attributes to link the callback message handler
methods in the client Web Service with the callback method in the callback interface.

The callback feature works between two WebLogic Web Services. When you program
the feature, however, you create the following three Java files:

® Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the j wsc Ant task automatically
generates an implementation of the interface. The implementation simply passes a
message from the target Web Service back to the client Web Service. The generated
Web Service is deployed to the same WebLogic Server that hosts the client Web
Service.

e JWS file that implements the target Web Service: The target Web Service includes
one or more standard operations that invoke a method defined in the callback

JWS Annotation Reference 3-19

WebLogic-specific Annotations

interface; this method in turn sends a message back to the client Web Service that
originally invoked the operation of the target Web Service.

* JWS file that implements the client Web Service: The client Web Service invokes
an operation of the target Web Service. This Web Service includes one or more
methods that specify what the client should do when it receives a callback message
back from the target Web Service via a callback method.

See Using Callbacks to Notify Clients of Events in Developing JAX-RPC Web Services for
Oracle WebLogic Server for additional overview and procedural information about
programming callbacks.

3.6.8.2 Attributes

Table 3-11 Attributes of the weblogic.jws.CallbackMethod JWS Annotation Tag

Name Description Data Type Required?

operation Specifies the name of the callback method in the String Yes
callback interface for which this method will handle
callback messages.

tar get Specifies the name of the stub for which you want String Yes
to receive callbacks.

The stub is the one that has been annotated with the
@er vi ceC i ent field-level annotation.

3.6.8.3 Example

The following example shows a method of a client Web Service annotated with the
@cal | backMet hod annotation. The attributes show that a variable called port must
have previously been injected with stub information and that the annotated method
will handle messages received from a callback operation called

cal | backOperation().

@al | backMet hod(target="port", operation="callbackOperation")
@al | backRol esAl | owed(@ecurityRol e(rol e="engi neer", mapToPrincipal s="shackel ["))
public void cal | backHandl er (String nmsg) {

Systemout.println (nmsg);

}

3.6.9 weblogic.jws.CallbackService

The following sections describe the annotation in detail.

3.6.9.1 Description
Target: Class

Specifies that the JWS file is actually a Java interface that describes a callback Web
Service. This annotation is analogous to the @ avax. j ws. WebSer vi ce, but specific
to callbacks and with a reduced set of attributes.

The callback feature works between two WebLogic Web Services. When you program
the feature, however, you create the following three Java files:

e Callback interface: Java interface file that defines the callback methods. You do not
explicitly implement this file yourself; rather, the j wsc Ant task automatically
generates an implementation of the interface. The implementation simply passes a

3-20 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

message from the target Web Service back to the client Web Service. The generated
Web Service is deployed to the same WebLogic Server that hosts the client Web
Service.

e JWS file that implements the target Web Service: The target Web Service includes
one or more standard operations that invoke a method defined in the callback
interface; this method in turn sends a message back to the client Web Service that
originally invoked the operation of the target Web Service.

* JWS file that implements the client Web Service: The client Web Service invokes
an operation of the target Web Service. This Web Service includes one or more
methods that specify what the client should do when it receives a callback message
back from the target Web Service via a callback method.

Use the @Cal | backl nt er f ace annotation to specify that the Java file is a callback
interface file.

When you program the callback interface, you specify one or more callback methods;
as with standard non-callback Web Services, you annotate these methods with the

@ avax. j ws. \\ebMet hod annotation to specify that they are Web Service operations.
However, contrary to non-callback methods, you never write the actual
implementation code for these callback methods; rather, when you compile the client
Web Service with the j wsc Ant task, the task automatically creates an implementation
of the interface and packages it into a Web Service. This generated implementation
specifies that the callback methods all do the same thing: send a message from the
target Web Service that invokes the callback method back to the client Web Service.

See Using Callbacks to Notify Clients of Events in Developing JAX-RPC Web Services for
Oracle WebLogic Server for additional overview and procedural information about
programming callbacks.

3.6.9.2 Attributes

Table 3-12 Attributes of the weblogic.jws.CallbackService JWS Annotation Tag

Name Description Data Type Required?

name Name of the callback Web Service. Maps to the String No
<wsdl : port Type> element in the WSDL file.

Default value is the unqualified name of the Java

class in the JWS file.
servi ceNam Service name of the callback Web Service. Maps to String No
e the <wsdl : servi ce> element in the WSDL file.

Default value is the unqualified name of the Java
class in the JWS file, appended with the string
Servi ce.

3.6.9.3 Example

The following example shows a very simple callback interface. The resulting callback
Web Service has one callback method, cal | backOper ati on() .

package exanpl es.webservi ces. cal | back;
i mport webl ogi c. jws. Cal | backSer vi ce;
import javax.jws.(Oneway;

i mport javax.jws.\\ebMet hod;

@al | backService

public interface Callbacklnterface {

JWS Annotation Reference 3-21

WebLogic-specific Annotations

@\ebMet hod

@neway

public void call backOperation (String nsg);
}

3.6.10 weblogic.jws.Context

The following sections describe the annotation in detail.

3.6.10.1 Description
Target: Field

Specifies that the annotated field provides access to the runtime context of the Web
Service.

When a client application invokes a WebLogic Web Service that was implemented
with a JWS file, WebLogic Server automatically creates a context that the Web Service
can use to access, and sometimes change, runtime information about the service. Much
of this information is related to conversations, such as whether the current
conversation is finished, the current values of the conversational properties, changing
conversational properties at runtime, and so on. Some of the information accessible via
the context is more generic, such as the protocol that was used to invoke the Web
Service (HTTP/S or JMS), the SOAP headers that were in the SOAP message request,
and so on. The data type of the annotation field must be

webl ogi c. wsee. j ws. JwsCont ext , which is a WebLogic Web Service API that
includes methods to query the context.

For additional information about using this annotation, see Accessing Runtime
Information about a Web Service in Developing JAX-WS Web Services for Oracle
WebLogic Server.

This annotation does not have any attributes.

3.6.10.2 Example

The following snippet of a JWS file shows how to use the @ont ext annotation; only
parts of the file are shown, with relevant code in bold:

i mport webl ogi c. j ws. Cont ext ;
i mport webl ogi c. wsee. j ws. JwsCont ext ;

public class JwsContextlnpl {
@ont ext

private JwsContext ctx;
@\ebMet hod()
public String getProtocol () {

3.6.11 weblogic.jws.Conversation

3.6.11.1 Description
Target: Method

Specifies that a method annotated with the @onver sat i on annotation can be
invoked as part of a conversation between two WebLogic Web Services or a stand-
alone Java client and a conversational Web Service.

3-22 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

The conversational Web Service typically specifies three methods, each annotated with
the @onver sat i on annotation that correspond to the start, continue, and finish
phases of a conversation. Use the @onver sat i onal annotation to specify, at the
class level, that a Web Service is conversational and to configure properties of the
conversation, such as the maximum idle time.

If the conversation is between two Web Services, the client service uses the

@ver vi ced i ent annotation to specify the wsdl, service name, and port of the
invoked conversational service. In both the service and stand-alone client cases, the
client then invokes the start, continue, and finish methods in the appropriate order to
conduct a conversation.The only additional requirement to make a Web Service
conversational is that it implement j ava. i 0. Seri al i zabl e.

See Creating Conversational Web Services in Developing JAX-RPC Web Services for
Oracle WebLogic Server for detailed information and examples of using this annotation.

3.6.11.2 Attributes

Table 3-13 Attributes of the weblogic.jws.Conversation JWS Annotation Tag

Name Description Data Type Required?

val ue Specifies the phase of a conversation that the enum No
annotated method implements.

Possible values are:
e Phase. START

Specifies that the method starts a new
conversation. A call to this method creates a
new conversation ID and context, and resets its
idle and age timer.

e Phase. CONTI NUE

Specifies that the method is part of a
conversation in progress. A call to this method
resets the idle timer. This method must always
be called after the start method and before the
finish method.

e Phase. FI NI SH

Specifies that the method explicitly finishes a
conversation in progress.

Default value is Phase. CONTI NUE

3.6.11.3 Example

The following sample snippet shows a JWS file that contains three methods, st art,
m ddl e, and f i ni sh) that are annotated with the @onver sat i on annotation to
specify the start, continue, and finish phases, respectively, of a conversation.

public class Conversational Servicel npl inplenents Serializable {
@\ebMet hod
@onversation (Conversation. Phase. START)
public String start() {
/1 Java code for starting a conversation goes here

}
@\ebMet hod
@onversation (Conversation. Phase. CONTI NUE)
public String mddl e(String nessage) {
/1 Java code for continuing a conversation goes here

JWS Annotation Reference 3-23

WebLogic-specific Annotations

}
@ebMet hod

@onversation (Conversation. Phase. FI NI SH)
public String finish(String message) {
/1 Java code for finishing a conversation goes here

}
}

3.6.12 weblogic.jws.Conversational

The following sections describe the annotation in detail.

3.6.12.1 Description
Target: Class
Specifies that a JWS file implements a conversational Web Service.

You are not required to use this annotation to specify that a Web Service is
conversational; by simply annotating a single method with the @onver sat i on
annotation, all the methods of the JWS file are automatically tagged as conversational.
Use the class-level @onver sat i onal annotation only if you want to change some of
the conversational behavior or if you want to clearly show at the class level that the
JWS if conversational.

If you do use the @onver sat i onal annotation in your JWS file, you can specify it
without any attributes if their default values suit your needs. However, if you want to
change values such as the maximum amount of time that a conversation can remain
idle, the maximum age of a conversation, and so on, specify the appropriate attribute.

See Creating Conversational Web Services in Developing JAX-RPC Web Services for
Oracle WebLogic Server for detailed information and examples of using this annotation.

3-24 WeblLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

3.6.12.2 Attributes

Table 3-14 Attributes of the weblogic.jws.Conversational JWS Annotation Tag

Name Description Data Type Required?

max| dl eTi ne Specifies the amount of time that a String No
conversation can remain idle before it is
finished by WebLogic Server. Activity is
defined by a client Web Service executing one
of the phases of the conversation.

Valid values are a number and one of the
following terms:

e seconds
e mnutes
e hours

e days

e years

For example, to specify a maximum idle time
of ten minutes, specify the annotation as
follows:

@onversati onal (max! dl eTi me="10 ni nutes")

If you specify a zero-length value (such as 0
seconds, or 0 m nut es and so on), then the
conversation never times out due to inactivity.

Default valueis 0 seconds.

maxAge The amount of time that a conversation can String No
remain active before it is finished by WebLogic
Server.

Valid values are a number and one of the
following terms:

e seconds
e ninutes
e hours

e days

e years

For example, to specify a maximum age of
three days, specify the annotation as follows:

@onversati onal (maxAge="3 days")

Default valueis 1 day.

JWS Annotation Reference 3-25

WebLogic-specific Annotations

Table 3-14 (Cont.) Attributes of the weblogic.jws.Conversational JWS Annotation

Tag
|
Name Description Data Type Required?
runAsStartUse Specifies whether the continue and finish boolean No
r phases of an existing conversation are run as

the user who started the conversation.

Typically, the same user executes the start,
continue, and finish methods of a conversation,
so that changing the value of this attribute has
no effect. However, if you set the

si ngl ePrinci pal attribute to f al se, which
allows users different from the user who
initiated the conversation to execute the
continue and finish phases of an existing
conversation, then the r unAsSt art User
attribute specifies which user the methods are
actually "run as": the user who initiated the
conversation or the different user who executes
subsequent phases of the conversation.

Valid values are t r ue and f al se. Default
valueis f al se.

singlePrincip Specifies whether users other than the one who boolean No
al started a conversation are allowed to execute

the continue and finish phases of the

conversation.

Typically, the same user executes all phases of
a conversation. However, if you set this
attribute to f al se, then other users can obtain
the conversation ID of an existing conversation
and use it to execute later phases of the
conversation.

Valid values are t r ue and f al se. Default
valueis f al se.

3.6.12.3 Example

The following sample snippet shows how to specify that a JWS file implements a
conversational Web Service. The maximum amount of time the conversation can be
idle is ten minutes, and the maximum age of the conversation, regardless of activity, is
one day. The continue and finish phases of the conversation can be executed by a user
other than the one that started the conversation; if this happens, then the
corresponding methods are run as the new user, not the original user.

package exanpl es.webservi ces. conversation;

@onver sational (maxl dl eTi me="10 ni nutes",
maxAge="1 day",
runAsSt art User =f al se,
singl ePrincipal =fal se)
public class Conversational Servicel npl inplenments Serializable {

3.6.13 weblogic.jws.FileStore

The following sections describe the annotation in detail.

3-26 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

3.6.13.1 Description
Target: Class

Specifies that the Web Service does not use the default WebLogic Server default
filestore to store internal state information, such as conversational state, but rather
uses one specified by the programmer. If you do not specify this JWS annotation in
your JWS file, the Web Service uses the default filestore configured for WebLogic
Server.

You can also use this JWS annotation for reliable Web Services to store internal state.

If you deploy the Web Service in a cluster, be sure you specify the logical name of the
filestore so that the same name of the filestore can be used on all servers in the cluster.

Note:

This annotation applies only to filestores, not to JDBC stores.

3.6.13.2 Attributes

Table 3-15 Attributes of the weblogic.jws.FileStore JWS Annotation Tag
|

Name Description Data Type Required?

st or eNane Specifies the name of the filestore. String Yes

3.6.14 weblogic.jws.MessageBuffer

The following sections describe the annotation in detail.

3.6.14.1 Description
Target: Class, Method

Specifies which public methods of a JWS are buffered. If specified at the class-level,
then all public methods are buffered; if you want only a subset of the methods to be
buffered, specify the annotation at the appropriate method-level.

When a client Web Service invokes a buffered operation of a different WebLogic Web
Service, WebLogic Server (hosting the invoked Web Service) puts the invoke message
on a JMS queue and the actual invoke is dealt with later on when the WebLogic Server
delivers the message from the top of the JMS queue to the Web Service
implementation. The client does not need to wait for a response, but rather, continues
on with its execution. For this reason, buffered operations (without any additional
asynchronous features) can only return voi d and must be marked with the @neway
annotation. If you want to buffer an operation that returns a value, you must use
asynchronous request-response from the invoking client Web Service. See Invoking a
Web Service Using Asynchronous Request-Response in Developing JAX-RPC Web
Services for Oracle WebLogic Server for more information.

Buffering works only between two Web Services in which one invokes the buffered
operations of the other.

Use the optional attributes of @/essageBuf f er to specify the number of times the
JMS queue attempts to invoke the buffered Web Service operation until it is invoked
successfully, and the amount of time between attempts.

JWS Annotation Reference 3-27

WebLogic-specific Annotations

Use the optional class-level @Buf f er Queue annotation to specify the JMS queue to
which the invoke messages are queued. If you do not specify this annotation, the
messages are queued to the default Web Service queue,

webl ogi c. wsee. Def aul t Queue.

See Creating Buffered Web Services in Developing JAX-RPC Web Services for Oracle
WebLogic Server for detailed information and examples for using this annotation.

3.6.14.2 Attributes

Table 3-16 Attributes of the weblogic.jws.MessageBuffer JWS Annotation Tag

Name Description Data Type Required?

retryCount Specifies the number of times that the JMS queue int No
on the invoked WebLogic Server instance attempts
to deliver the invoking message to the Web Service
implementation until the operation is successfully
invoked.

Default value is 3.

retryDel ay Specifies the amount of time that elapses between String No
message delivery retry attempts. The retry attempts
are between the invoke message on the JMS queue
and delivery of the message to the Web Service
implementation.
Valid values are a number and one of the following
terms:
e seconds
e ninutes
e hours
e days
e years
For example, to specify a retry delay of two days,
specify:

@kssageBuffer(retryDel ay="2 days")

Default valueis 5 seconds.

3.6.14.3 Example

The following example shows a code snippet from a JWS file in which the public
operation sayHel | oNoRet ur n is buffered and the JMS queue to which WebLogic
Server queues the operation invocation is called ny. buf f er e. queue. The WebLogic
Server instance that hosts the invoked Web Service tries a maximum of 10 times to
deliver the invoke message from the JMS queue to the Web Service implementation,
waiting 10 seconds between each retry. Only the relevant Java code is shown in the
following snippet:

package exanpl es.webservi ces. buffered;

@ébSer vi ce(name="Buf f er edPort Type",

servi ceName="Buf f eredServi ce",

target Nanespace="http://exanple.org")
@uf f er Queue(nane="ny. buf f er. queue")
public class Buffered npl {

~ @ebMet hod()

3-28 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

@kssageBuffer(retryCount=10, retryDel ay="10 seconds")

@nevay()

public void sayHel | oNoReturn(String message) {
Systemout. println("sayHel | oNoReturn: " + nmessage);

1

}

3.6.15 weblogic.jws.Policies

The following sections describe the annotation in detail.

3.6.15.1 Description
Target: Class, Method
Specifies an array of @webl ogi c. j ws. Pol i cy annotations.

Use this annotation if you want to attach more than one WS-Policy files to a class or
method of a JWS file. If you want to attach just one WS-Policy file, you can use the
@webl ogi c. j ws. Pol i cy on its own.

See Using Web Services Reliable Messaging in and Configuring Message-Level
Security in Securing WebLogic Web Services for Oracle WebLogic Server for detailed
information and examples of using this annotation.

This JWS annotation does not have any attributes.

3.6.15.2 Example

@olicies({
@olicy(uri="policy:firstPolicy.xm"),
@olicy(uri="policy:secondPolicy.xm")

b

3.6.16 weblogic.jws.Policy

The following sections describe the annotation in detail.

3.6.16.1 Description
Target: Class, Method

Specifies that a WS-Policy file, which contains information about digital signatures,
encryption, or Web Service reliable messaging, should be applied to the request or
response SOAP messages.

This annotation can be used on its own to apply a single WS-Policy file to a class or
method. If you want to apply more than one WS-Policy file to a class or method, use
the @webl ogi c. j ws. Pol i ci es annotation to group them together.

If this annotation is specified at the class level, the indicated WS-Policy file or files are
applied to every public operation of the Web Service. If the annotation is specified at
the method level, then only the corresponding operation will have the WS-Policy file
applied.

By default, WS-Policy files are applied to both the request (inbound) and response
(outbound) SOAP messages. You can change this default behavior with the
di recti on attribute.

Also by default, the specified WS-Policy file is attached to the generated and published
WSDL file of the Web Service so that consumers can view all the WS-Policy

JWS Annotation Reference 3-29

WebLogic-specific Annotations

requirements of the Web Service. Use the at t achToVéd! attribute to change this
default behavior.

See Using Web Services Reliable Messaging in Developing JAX-RPC Web Services for
Oracle WebLogic Server and Configuring Message-Level Security in Securing WebLogic
Web Services for Oracle WebLogic Server for detailed information and examples of using

this annotation.

3.6.16.2 Attributes

Table 3-17 Attributes of the weblogic.jws.Policy JWS Annotation Tag

Name

Description Data Type Required?

uri

Specifies the location from which to retrieve the String Yes
WS-Policy file.

Use the ht t p: prefix to specify the URL of a WS-

Policy file on the Web.

Use the pol i cy: prefix to specify that the WS-
Policy file is packaged in the Web Service archive
file or in a shareable Java EE library of WebLogic
Server, as shown in the following example:

@olicy(uri="policy: MPolicyFile. xm")

If you are going to publish the WS-Policy file in the
Web Service archive, the WS-Policy XML file must
be located in either the META- | NF/ pol i ci es or
WVEB- | NF/ pol i ci es directory of the EJB JAR file
(for EJB implemented Web Services) or WAR file
(for Java class implemented Web Services),
respectively.

For information on publishing the WS-Policy file in
a library, see Creating Shared Java EE Libraries
and Optional Packages in Developing Applications
for Oracle WebLogic Server.

direction

Specifies when to apply the policy: on the inbound enum No
request SOAP message, the outbound response
SOAP message, or both (default).

Valid values for this attribute are:

e Policy.Direction.both

e Policy.Direction.inbound

e Policy.Direction. outbound

The default value is Pol i cy. Di recti on. bot h.

attachToWsd
|

Specifies whether the WS-Policy file should be boolean No
attached to the WSDL that describes the Web

Service.

Valid values are t r ue and f al se. Default value is

fal se.

3.6.16.3 Example

@olicy(uri="policy:nyPolicy.xm",
attachToWsdl =tr ue,
direction=Policy.Direction. out bound)

3-30 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

3.6.17 weblogic.jws.ReliabilityBuffer

The following sections describe the annotation in detail.

3.6.17.1 Description
Target: Method

Specifies reliable messaging properties for an operation of a reliable Web Service, such
as the number of times WebLogic Server should attempt to deliver the message from
the JMS queue to the Web Service implementation, and the amount of time that the
server should wait in between retries.

Note:

It is assumed when you specify this annotation in a JWS file that you have
already enabled reliable messaging for the Web Service by also including a
@pol i cy annotation that specifies a WS-Policy file that has Web Service
reliable messaging policy assertions.

If you specify the @el i abi | i t yBuf f er annotation, but do not enable
reliable messaging with an associated WS-Policy file, then WebLogic Server
ignores this annotation.

See Using Web Services Reliable Messaging in for detailed information about enabling
Web Services reliable messaging for your Web Service.

3.6.17.2 Attributes

Table 3-18 Attributes of the weblogic.jws.ReliabilityBuffer JWS Annotation Tag
-]

Name Description Data Type Required?
retryCoun Specifies the number of times that the JMS queue on int No
t the destination WebLogic Server instance attempts to

deliver the message from a client that invokes the
reliable operation to the Web Service
implementation.

Default value is 3.

JWS Annotation Reference 3-31

WebLogic-specific Annotations

Table 3-18 (Cont.) Attributes of the weblogic.jws.ReliabilityBuffer JWS Annotation

Tag
I
Name Description Data Type Required?
retrybDel a Specifies the amount of time that elapses between String No
y message delivery retry attempts. The retry attempts
are between the client's request message on the J]MS
queue and delivery of the message to the Web
Service implementation.
Valid values are a number and one of the following
terms:
¢ seconds
e nminutes
¢ hours
e days
e vyears
For example, to specify a retry delay of two days,
specify:
@rel i abilityBuffer(retryDel ay="2 days")
Default valueis 5 seconds.
3.6.17.3 Example

The following sample snippet shows how to use the @rel i abi | i t yBuffer
annotation at the method-level to change the default retry count and delay of a reliable
operation; only relevant Java code is shown:

package exanpl es.webservices.reliable;
import javax.jws.\WbMet hod;

inport javax.jws.\WbService;

inport javax.jws.Oneway;

i mport webl ogic.jws. ReliabilityBuffer;
i mport webl ogi c. jws. Policy;
@eébServi ce(nane="Rel i abl eHel | oWr | dPort Type",
servi ceNane="Rel i abl eHel | oWor | dServi ce")

@olicy(uri="Reliabl eHell oWor!|dPolicy.xm",
direction=Policy.Direction.inbound,
attachToWdl =t r ue)

public class ReliableHelloWrldl npl {

@\ebMet hod()
@neway()
@rel i abilityBuffer(retryCount=10, retryDel ay="10 seconds")
public void helloWrld(String input) {
Systemout.printin(" Hello World " + input);
1
}

3.6.18 weblogic.jws.ReliabilityErrorHandler

The following sections describe the annotation in detail.

3-32 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

3.6.18.1 Description
Target: Method

Specifies the method that handles the error that results when a client Web Service
invokes a reliable Web Service, but the client does not receive an acknowledgement
that the reliable Web Service actually received the message.

This annotation is relevant only when you implement the Web Service reliable
messaging feature; you specify the annotation in the client-side Web Service that
invokes a reliable Web Service.

The method you annotate with the @rel i abi | i t yEr r or Handl er annotation takes a
single parameter of data type

webl ogi c. wsee.reliability.ReliabilityErrorContext.You can use this
context to get more information about the cause of the error, such as the operation that
caused it, the target Web Service, the fault, and so on. The method must return voi d.

The single attribute of the @Rel i abi | i t yErr or Handl er annotation specifies the
variable into which you have previously injected the stub information of the reliable
Web Service that the client Web Service is invoking; you inject this information in a
variable using the @webl ogi c. j ws. Servi ced i ent annotation.

3.6.18.2 Attributes
Table 3-19 Attributes of the weblogic.jws.ReliabilityErrorHandler JWS Annotation
Tag
]
Name Description Data Type Required?
targe Specifies the target stub name for which this method String Yes
t handles reliability failures.
3.6.18.3 Example

The following code snippet from a client Web Service that invokes a reliable Web
Service shows how to use the @Rel i abi | i t yEr r or Handl er annotation; not all code
is shown, and the code relevant to this annotation is shown in bold:

package exanpl es.webservices.reliable;

i mport webl ogic.jws. ServiceCient;

i mport webl ogi c.jws. ReliabilityErrorHandler;

i mport exanpl es. webservi ces. reliabl e. Rel i abl eHel | oWr| dPort Type;
i mport webl ogi c. wsee.reliability.ReliabilityErrorContext;

i mport webl ogi c. wsee.reliability.ReliableDeliveryException;
@ébServi ce(name="Rel i abl eCl i ent Port Type",

public class Reliabledientlnpl
{
@ervi ced i ent (
wsdl Location="http://local host: 7001/ Rel i abl eHel | oWor | d/ Rel i abl eHel | oVWr | d?WSDL",
servi ceName="Rel i abl eHel | oWor | dSer vi ce",
port Name="Rel i abl eHel | oWor | dServi cePort")
private Reliabl eHel | oWrl dPort Type port;
@\ebMet hod
public void callHelloWrld(String input, String serviceUrl)
t hrows Renot eException {

JWS Annotation Reference 3-33

WebLogic-specific Annotations

@rel i abil'ityErrorHandl er(target="port")
public void onReliabl eMessageDel i veryError(ReliabilityErrorContext ctx) {
Rel i abl eDel i veryException fault = ctx.getFault();
String nessage = null;
if (fault '=null) {
message = ctx.getFault().get Message();

}

String operation = ctx.getOperationNane();

Systemout.printIn("Reliable operation " + operation + " may have not invoked.
The error nmessage is " + message);

}
}

In the example, the por t variable has been injected with the stub that corresponds to
the Rel i abl eHel | oWbr | dSer vi ce Web Service, and it is assumed that at some
point in the client Web Service an operation of this stub is invoked. Because the
onRel i abl eMessageDel i ver yEr r or method is annotated with the

@=el i abi lityErrorHandl er annotation and is linked with the port stub, the
method is invoked if there is a failure in an invoke of the reliable Web Service. The
reliable error handling method uses the Rel i abi | i t yEr r or Cont ext object to get
more details about the cause of the failure.

3.6.19 weblogic.jws.ServiceClient

The following sections describe the annotation in detail.

3.6.19.1 Description
Target: Field

Specifies that the annotated variable in the JWS file is a stub used to invoke another
WebLogic Web Service when using the following features:

* Web Service reliable messaging
* Asynchronous request-response

e Conversations

You use the reliable messaging and asynchronous request-response features only
between two Web Services; this means, for example, that you can invoke a reliable
Web Service operation only from within another Web Service, not from a stand-alone
client. In the case of reliable messaging, the feature works between any two application
servers that implement the WS-ReliableMessaging specification at ht t p: //

docs. oasi s- open. or g/ ws-rx/ wsrm 200702/ wsrm+ 1. 1- spec- 0s- 01. pdf . In
the case of asynchronous request-response, the feature works only between two
WebLogic Server instances.

You use the @er vi ced i ent annotation in the client Web Service to specify which
variable is a port type for the Web Service described by the @er vi ceCl i ent
attributes. The Enterprise Application that contains the client Web Service must also
include the stubs of the Web Service you are invoking; you generate the stubs with the
cl i ent gen Ant task.

See Developing JAX-RPC Web Services for Oracle WebLogic Server for additional
information and examples of using the @er vi ceCl i ent annotation.

3-34 WebLogic Web Services Reference for Oracle WebLogic Server

http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf

WebLogic-specific Annotations

3.6.19.2 Attributes

Table 3-20 Attributes of the weblogic.jws.ServiceClient JWS Annotation Tag

Name Description Data Type Required?

servi ceNane Specifies the name of the Web Service that you String Yes
are invoking. Corresponds to the name
attribute of the <ser vi ce> element in the
WSDL of the invoked Web Service.

If you used a JWS file to implement the
invoked Web Service, this attribute
corresponds to the ser vi ceNane attribute of
the @\¢bSer vi ce JWS annotation in the
invoked Web Service.

port Nanme Specifies the name of the port of the Web String No
Service you are invoking. Corresponds to the
namne attribute of the <por t > child element of
the <ser vi ce> element.

If you used a JWS file to implement the
invoked Web Service, this attribute
corresponds to the por t Name attribute of the
@\LHt t pTransport JWS annotation in the
invoked Web Service.

If you do not specify this attribute, it is
assumed that the <ser vi ce> element in the
WSDL contains only one <por t > child
element, which @er vi ceC i ent uses. If
there is more than one port, the client Web
Service returns a runtime exception.

wsdl Locat i on Specifies the WSDL file that describes the Web String No
Service you are invoking.
If you do not specify this attribute, the client
Web Service uses the WSDL file from which
the cl i ent gen Ant task created the Ser vi ce
implementation of the Web Service to be

invoked.
endpoi nt Addre Specifies the endpoint address of the Web String No
Ss Service you are invoking.

If you do not specify this attribute, the client
Web Service uses the endpoint address
specified in the WSDL file.

3.6.19.3 Example

The following JWS file excerpt shows how to use the @er vi ceCl i ent annotation in
a client Web Service to annotate a field (por t) with the stubs of the Web Service being
invoked (called Rel i abl eHel | oWor | dSer vi ce whose WSDL is at the URL
http://1 ocal host: 7001/ Rel i abl eHel | oWor | d/ Rel i abl eHel | oWor | d?
WEDL); only relevant parts of the example are shown:

package exanpl es.webservices.reliable;
inport javax.jws.\WbService;

i mport webl ogic.jws. Servicedient;

JWS Annotation Reference 3-35

WebLogic-specific Annotations

i mport exanpl es. webservi ces. reliabl e. Rel i abl eHel | oWr | dPor t Type;
@\ebService(. ..
public class ReliableQdientlnpl
{
@ervicedient(
wsdl Location="http://local host: 7001/ Rel i abl eHel | oWor | d/ Rel i abl eHel | oWor | d?WSDL"
servi ceName="Rel i abl eHel | oWr | dServi ce",
port Nane="Rel i abl eHel | o\Wor | dServi cePort")
private Reliabl eHel | oWrl dPort Type port;
@\ebMet hod
public void cal | Hel | oWorl d(String input, String servicelrl)
throws RenoteException {
port. hel [oWorl d(input);
Systemout. printIn(" Invoked the ReliableHelloWrld. helloWrld operation
reliably.");

}
}
3.6.20 weblogic.jws.StreamAttachments

The following sections describe the annotation in detail.

3.6.20.1 Description
Target: Class

Specifies that the WebLogic Web Services runtime use streaming APIs when reading
the parameters of all methods of the Web Service. This increases the performance of
Web Service operation invocation, in particular when the parameters are large, such as
images.

You cannot use this annotation if you are also using the following features in the same
Web Service:

¢ Conversations
® Reliable Messaging
¢ JMS Transport

* A proxy server between the client application and the Web Service it invokes

The @5t r eamAt t achrent s annotation does not have any attributes.

3.6.20.2 Example

The following simple JWS file shows how to specify the @5t r eamAt t achnent s
annotation; the single method, echoAt t achment () , simply takes a Dat aHandl er
parameter and echoes it back to the client application that invoked the Web Service
operation. The WebLogic Web Services runtime uses streaming when reading the
DataHandler content.

package exanpl es.webservices. stream attach;

import javax.jws.\WebMet hod,;

import javax.jws.\WebhServi ce;

i mport webl ogic.jws. WHt t pTransport;

i mport webl ogi c.jws. StreamAttachnents;

i mport javax.activation. Dat aHandl er;

i mport java.rm . RenoteException;

@ebServi ce(name="Streamit t achPort Type",
servi ceNanme="St r eamAt t achSer vi ce",
tar get Nanespace="http://exanpl e. org")

3-36 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

@\LHt t pTransport (cont ext Pat h="stream attach",
servi ceUri ="StreamAttachService",
port Nanme="Streamit t achSer vi cePort")
@t reamAt t achnent s

/**

* Exanpl e of stream attachnents
*/
public class StreamAttachl npl {
@\ebMet hod()
publ i c Dat aHandl er echoAttachnent (Dat aHandl er dh) throws RenoteException {
return dh;
1

}

3.6.21 weblogic.jws.Transactional

The following sections describe the annotation in detail.

3.6.21.1 Description
Target: Class, Method

Specifies whether the annotated operation, or all the operations of the JWS file when
the annotation is specified at the class-level, runs or run inside of a transaction. By
default, the operations do ot run inside of a transaction.

3.6.21.2 Attributes

Table 3-21 Attributes of the weblogic.jws.Transactional JWS Annotation Tag
- -~ __________|

Name Description Data Type Required?

val ue Specifies whether the operation (when used at the boolean No
method level) or all the operations of the Web Service
(when specified at the class level) run inside of a

transaction.

Valid values aret r ue and f al se. Default value is

fal se.
timeou Specifies a timeout value, in seconds, for the current int No
t transaction.

The default value for this attribute is 30 seconds.

3.6.21.3 Example

The following example shows how to use the @ ansact i onal annotation to specify
that an operation of a Web Service executes as part of a transaction:

package exanpl es.webservices.transactional;
import javax.jws.\WbMet hod;
i mport javax.jws.\WebService;
i mport webl ogic.jws. WHt tpTransport;
i mport webl ogi c. jws. Transactional ;
@\ébServi ce(name="Transact i onPoj oPort Type",
servi ceNanme="Tr ansact i onPoj oSer vi ce",
target Nanespace="http://exanple.org")
@\LHt t pTransport (cont ext Pat h="t ransacti onsPoj 0",
servi ceUri ="Transacti onPoj oServi ce",
port Nane="Tr ansact i onPoj oPort")

/**

JWS Annotation Reference 3-37

WebLogic-specific Annotations

* This JWs file fornms the basis of sinple WeblLogic
* Web Service with a single operation: sayHello. The operation executes
* as part of a transaction.
*|
public class TransactionPojol npl {
@\ebMet hod()
@ransactional (val ue=true)
public String sayHello(String nessage) {
Systemout. println("sayHello:" + nessage);
return "Here is the nessage: '" + message + "'"

}
}

3.6.22 weblogic.jws.Types

The following sections describe the annotation in detail.

3.6.22.1 Description
Target: Method, Parameter

Specifies a comma-separated list of fully qualified Java class names of the alternative
data types for a return type or parameter. The alternative data types must extend the
data type specified in the method signature; if this is not the case, the j wsc Ant task
returns a validation error when you compile the JWS file into a Web Service.

For example, assume you have created the Addr ess base data type, and then created
USAAddr ess and CAAddr ess that extend this base type. If the method signature
specifies that it takes an Addr ess parameter, you can annotate the parameter with the
@ypes annotation to specify that the public operation also takes USAAddr ess and
CAAddr ess as a parameter, in addition to the base Addr ess data type.

You can also use this annotation to restrict the data types that can be contained in
parameters or return values of collection data types, such as
java.util.Collectionorjava.util.List.By restricting the allowed contained
data types, the generated WSDL is specific and unambiguous, and the Web Services
runtime can do a better job of qualifying the parameters when a client application
invokes a Web Service operation.

If you specify this annotation at the method-level, then it applies only to the return
value. If you want the annotation to apply to parameters, you must specify it at the
parameter-level for each relevant parameter.

3.6.22.2 Attributes

Table 3-22 Attributes of the weblogic.jws.Types JWS Annotation Tag

Name Description Data Type Required?

val ue Comma-separated list of fully qualified class names String[] Yes
for either the alternative data types that can also be
used instead of the original data type, or the
allowed data types contained in the collection-type
parameter or return value.

3.6.22.3 Example

The following example shows a simple JWS file that uses the @ypes annotation, with
relevant Java code shown in bold:

3-38 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

package exanpl es.wehservi ces. types;
i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WbService;
i mport webl ogic.jws. WHt t pTransport;
i nport webl ogi c. jws. Types;
i mport exanpl es. webservi ces. types. Basi cStruct;
@ébServi ce(servi ceName="TypesServi ce",
name="TypesPort Type",
target Nanespace="http://exanple.org")
@\LHt t pTransport (cont ext Pat h="t ypes",
servi ceUri ="TypesServi ce",
por t Name="TypesSer vi cePort")
public class Typeslnpl {
@\ebMet hod()
@ypes({"exanpl es. webservi ces. types. Ext endedStruct"})
public BasicStruct echoStruct(
@ypes({"exanpl es. webservi ces. types. ExtendedStruct"}) BasicStruct struct)

System out. println("echoStruct called");
return struct;

}
}

In the example, the signature of the echoSt r uct () method shows that it takes a
Basi cStruct value as both a parameter and a return value. However, because both
the method and the st r uct parameter are annotated with the @Yypes annotation, a
client application invoking the echoSt r uct operation can also pass it a parameter of
data type Ext endedSt r uct ; in this case the operation also returns an

Ext endedSt r uct value. It is assumed that Ext endedSt r uct extends

Basi cStruct.

3.6.23 weblogic.jws.WildcardBinding

The following sections describe the annotation in detail.

3.6.23.1 Description
Target: Class

Specifies the XML Schema data type to which a wildcard class, such as

j avax. xm . soap. SOAPE!l enmrent or or g. apache. xm beans. Xm Obj ect, binds.
By default, these Java data types bind to the <xsd: any> XML Schema data type. By
using this class-level annotation, you can specify that the wildcard classes bind to
<xsd: anyType> instead.

3.6.23.2 Attributes

Table 3-23 Attributes of the weblogic.jws.WildcardBinding JWS Annotation Tag
- -~ |

Name Description Data Type Required?
cl assNam Specifies the fully qualified name of the wildcard String Yes
e class for which this binding applies. Typical values

are j avax. xm . soap. SOAPEl enent and
or g. apache. xm beans. Xm (bj ect .

JWS Annotation Reference 3-39

WebLogic-specific Annotations

Table 3-23 (Cont.) Attributes of the weblogic.jws.WildcardBinding JWS Annotation

Tag
. ___|]
Name Description Data Type Required?
bi ndi ng Specifies the XML Schema data type to which the enum Yes
wildcard class should bind.
You can specify one of the following values:
e WldcardParticle. ANY
e Wl dcardParticle. ANYTYPE
3.6.23.3 Example

The following example shows how to use the @V | dcar dBi ndi ng annotation to
specify that the Apache XMLBeans data type XMLODbject should bind to the
<xsd: any> XML Schema data type for this Web Service:

@V | dcar dBi ndi ngs({
@V | dcar dBi ndi ng(cl assNane="or g. apache. xn beans. Xm Cbj ect ",
bi ndi ng=W | dcardParticl e. ANY),
@V | dcar dBi ndi ng(cl assNanme="or g. apache. xnl beans. Xm Gbj ect[]",
bi ndi ng=W | dcardParticle. ANY)})
public class Sinplelnpl {

3.6.24 weblogic.jws.WildcardBindings

The following sections describe the annotation in detail.

3.6.24.1 Description
Target: Class

Specifies an array of @webl ogi c. j ws. W | dcar dBi ndi ng annotations.
This JWS annotation does not have any attributes.

See weblogic.jws.WildcardBinding for an example.

3.6.25 weblogic.jws.WLHttpTransport

The following sections describe the annotation in detail.

3.6.25.1 Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web
Service over the HTTP transport, as well as the name of the port in the generated
WSDL.

You can specify this annotation only once (maximum) in a JWS file.

3-40 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

3.6.25.2 Attributes

Table 3-24 Attributes of the weblogic.jws.WLHttpTransport JWS Annotation Tag
. ___|

Name Description Data Type Required?
cont ext Pat Context path of the Web Service. You use this value String No
h in the URL that invokes the Web Service.

For example, assume you set the context path for a
Web Service to f i nanci al ; a possible URL for the
WSDL of the deployed WebLogic Web Service is as
follows:

http://host name: 7001/ fi nanci al / Get Quot e?WSDL

The default value of this attribute is the name of the
JWS file, without its extension. For example, if the
name of the JWS file is Hel | oWor | dI npl . j ava,
then the default value of its contextPath is

Hel | oWor | dl npl .

servicelUri Web Service URI portion of the URL. You use this String No
value in the URL that invokes the Web Service.

For example, assume you set this attribute to

Get Quot e; a possible URL for the deployed WSDL
of the service is as follows:

http://hostnane: 7001/ fi nanci al / Get Quot e?WSDL

The default value of this attribute is the name of the
JWS file, without its extension. For example, if the
name of the JWS file is Hel | oWor | dl npl . j ava,
then the default value of its serviceUri is

Hel | oWor | dI npl .

por t Nane The name of the port in the generated WSDL. This ~ String No
attribute maps to the namne attribute of the <port >
element in the WSDL.

The default value of this attribute is based on the

@ avax. j ws. WebSer vi ce annotation of the JWS
file. In particular, the default por t Nane is the value
of the nane attribute of @\&bSer vi ce annotation,
plus the actual text SoapPor t . For example, if
@\ébSer vi ce. nane is set to MySer vi ce, then the
default portName is MySer vi ceSoapPort .

3.6.25.3 Example

@\LHt t pTransport (cont ext Pat h="conpl ex",
servi ceUri =" Conpl exServi ce",
por t Name=" Conpl exServi cePort")

3.6.26 weblogic.jws.WLHttpsTransport

The following sections describe the annotation in detail.

3.6.26.1 Description
Target: Class

JWS Annotation Reference 3-41

WebLogic-specific Annotations

Note:

The @webl ogi c. j ws. W.Ht t psTransport annotation is deprecated as of
version 9.2 of WebLogic Server. You should use the

@webl ogi c. j ws. W.Ht t pTr ansport annotation instead because it now
supports both the HTTP and HTTPS protocols. If you want client applications
to access the Web Service using only the HTTPS protocol, then you must
specify the @webl ogi c. j ws. security. User Dat aConstrai nt JWS
annotation in your JWS file.

Specifies the context path and service URI sections of the URL used to invoke the Web
Service over the HTTPS transport, as well as the name of the port in the generated
WSDL.

You can specify this annotation only once (maximum) in a JWS file.

3.6.26.2 Attributes

Table 3-25 Attributes of the weblogic.jws.WLHttpsTransport JWS Annotation Tag
- - - - -~~~ -~~~ |

Name Description Data Type Required?
cont ext Pat Context path of the Web Service. You use this value String No
h in the URL that invokes the Web Service.

For example, assume you set the context path for a

Web Service to f i nanci al ; a possible URL for the
WSDL of the deployed WebLogic Web Service is as
follows:

https://hostnane: 7001/ fi nanci al / Get Quot e?\WSDL

The default value of this attribute is the name of the
JWS file, without its extension. For example, if the
name of the JWS file is Hel | oWor | dI npl . j ava,
then the default value of its contextPath is

Hel | oVor | dI npl .

servicelUri Web Service URI portion of the URL. You use this String No
value in the URL that invokes the Web Service.

For example, assume you set this attribute to

Get Quot e; a possible URL for the deployed WSDL
of the service is as follows:

https://hostnane: 7001/ fi nanci al / Get Quot e?WSDL

The default value of this attribute is the name of the
JWS file, without its extension. For example, if the
name of the JWS file is Hel | oWor | dl npl . j ava,
then the default value of its serviceUri is

Hel | oVor | dI npl .

3-42 WeblLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

Table 3-25 (Cont.) Attributes of the weblogic.jws.WLHttpsTransport JWS

Annotation Tag
- __|

Name Description Data Type Required?
port Nane The name of the port in the generated WSDL. This String No
attribute maps to the namne attribute of the <por t >
element in the WSDL.

The default value of this attribute is based on the

@ avax. j ws. WebSer vi ce annotation of the JWS
file. In particular, the default por t Nane is the value
of the nane attribute of @\&bSer vi ce annotation,
plus the actual text SoapPor t . For example, if
@\ebSer vi ce. nane is set to MySer vi ce, then the
default portName is MySer vi ceSoapPort .

3.6.26.3 Example

@_Ht t psTransport (port Nane="hel | oSecurePort",
cont ext Pat h="secure",
servi ceUri =" Si npl eSecur eBean")

3.6.27 weblogic.jws.WLJmsTransport

The following sections describe the annotation in detail.

3.6.27.1 Description
Target: Class

Specifies the context path and service URI sections of the URL used to invoke the Web
Service over the JMS transport, as well as the name of the port in the generated WSDL.
You also use this annotation to specify the JMS queue to which WebLogic Server
queues the SOAP request messages from invokes of the operations.

You can specify this annotation only once (maximum) in a JWS file.

3.6.27.2 Attributes

Table 3-26 Attributes of the weblogic.jws.WLImsTransport JWS Annotation Tag
|

Name Description Data Type Required?

cont ext Pat h Context path (or context root) of the Web String No
Service. You use this value in the URL that
invokes the Web Service.

serviceUri Web Service URI portion of the URL used String No
by client applications to invoke the Web
Service.

JWS Annotation Reference 3-43

WebLogic-specific Annotations

Table 3-26 (Cont.) Attributes of the weblogic.jws.WLImsTransport JWS Annotation

Tag
'

Name Description Data Type Required?

queue The JNDI name of the JMS queue that you String No
have configured for the JMS transport. See
Using JMS Transport as the Connection
Protocol in Developing JAX-RPC Web Services
for Oracle WebLogic Server for details about
using JMS transport.

The default value of this attribute, if you do
not specify it, is

webl ogi c. wsee. Def aul t Queue. You
must still create this J]MS queue in the
WebLogic Server instance to which you
deploy your Web Service.

por t Nane The name of the port in the generated String No
WSDL. This attribute maps to the nanme
attribute of the <por t > element in the
WSDL.

If you do not specify this attribute, the j wsc
generates a default name based on the name
of the class that implements the Web
Service.

connecti onFacto The JNDI name of the JMS connection String Yes
ry factory that you have configured for the JMS

transport. See Using JMS Transport as the

Connection Protocol in Developing JAX-RPC

Web Services for Oracle WebLogic Server for

details about using JMS transport.

3.6.27.3 Example

The following example shows how to specify that the JWS file implements a Web
Service that is invoked using the JMS transport. The JMS queue to which WebLogic
Server queues SOAP message requests from invokes of the service operations is
JMSTr anspor t Queue; it is assumed that this JMS queue has already been configured
for WebLogic Server.

W.JInsTransport (cont ext Pat h="transports",
servicelri ="JMSTransport",
queue="JMsTr ansport Queue",
por t Nane="JMSTr ansport Ser vi cePort")

3.6.28 weblogic.jws.WSDL

The following sections describe the annotation in detail.

3.6.28.1 Description

Target: Class

Specifies whether to expose the WSDL of a deployed WebLogic Web Service.
By default, the WSDL is exposed at the following URL:
http://[host]:[port]/[contextPath]/[serviceUri]?WsDL

3-44 WeblLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

where:
® host refers to the computer on which WebLogic Server is running.

* port refers to the port number on which WebLogic Server is listening (default value
is 7001).

e cont ext Pat h and servi celUri refer to the value of the cont ext Pat h and
servi ceUri attributes, respectively, of the @\LHt t pTr anspor t JWS annotation
of the JWS file that implements your Web Service.

For example, assume you used the following @_Ht t pTr anspor t annotation:

@\LHt t pTransport (port Nane="hel | oPort",
cont ext Pat h="hel | 0",
serviceU i ="Sinplelnpl")

The URL to get view the WSDL of the Web Service, assuming the service is running on
a host called ari el at the default port number, is:

http://ariel:7001/ hell o/ Si npl el npl 2WSDL

3.6.28.2 Attributes

Table 3-27 Attributes of the weblogic.jws.WSDL JWS Annotation Tag
|

Name Description Data Type Required?

expose Specifies whether to expose the WSDL of a deployed boolean No
d Web Service.

Valid values aret r ue and f al se. Default value is
t r ue, which means that by default the WSDL is
exposed.

3.6.28.3 Example

The following use of the @ADL annotation shows how to specify that the WSDL of a
deployed Web Service not be exposed; only relevant Java code is shown:

package exanpl es.webservi ces;
i mport webl ogi c. jws. WSDL;
@\ébSer vi ce(name="Wsdl Annot at i onPort Type",
servi ceName="Wdl Annot at i onServi ce",
target Nanespace="http://exanple.org")
@\BDL(exposed=f al se)
public class Wdl Annot ationl mpl {

3.6.29 weblogic.jws.security.CallbackRolesAllowed

The following sections describe the annotation in detail.

3.6.29.1 Description
Target: Method, Field

Specifies an array of @ecur i t yRol e JWS annotations that list the roles that are
allowed to invoke the callback methods of the Web Service. A user that is mapped to
an unspecified role, or is not mapped to any role at all, would not be allowed to
invoke the callback methods.

JWS Annotation Reference 3-45

WebLogic-specific Annotations

If you use this annotation at the field level, then the specified roles are allowed to
invoke all callback operations of the Web Service. If you use this annotation at the
method-level, then the specified roles are allowed to invoke only that callback method.
If specified at both levels, the method value overrides the field value if there is a
conflict.

3.6.29.2 Attributes

Table 3-28 Attributes of the weblogic.jws.security.CallbackRolesAllowed JWS Annotation Tag

Name Description Data Type Required?

val ue Array of @ve3blogicjws.security.RolesAllowed that list the roles allowed String[] Yes
to invoke the callback methods.

3.6.29.3 Example

The following example shows how to use the @al | backRol esAl | owed annotation
at the method level to specify that the role engi neer is allowed to invoke the callback
method:

@al | backMet hod(target="port", operation="cal | backOperation")
@al | backRol esAl | owed(@ecurityRol e(rol e="engi neer", mapToPrinci pal s="shackel ["))
public void cal | backHandl er (String nmsg) {
Systemout.printin (nsg);
}

3.6.30 we3blogic.jws.security.RolesAllowed

The following sections describe the annotation in detail.

3.6.30.1 Description
Target: Class, Method

Specifies whether to enable basic authentication for a Web Service. In particular, it
specifies an array of @ecur i t yRol e JWS annotations that describe the list of roles
that are allowed to invoke the Web Service. A user that is mapped to an unspecified
role, or is not mapped to any role at all, would not be allowed to invoke the Web
Service.

If you use this annotation at the class-level, then the specified roles are allowed to
invoke all operations of the Web Service. To specify roles for just a specific set of
operations, specify the annotation at the operation-level.

3.6.30.2 Attributes
Table 3-29 Attributes of the weblogic.jws.security.RolesAllowed JWS Annotation
Tag
]
Name Description Data Type Required?
val u Array of @ve3blogic.jws.security.RolesAllowed that list the = String][] Yes
e roles allowed to invoke the Web Service methods.
3.6.30.3 Example

package exanpl es.webservices. security_roles;

3-46 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

i mport webl ogi c. jws. security. Rol esAl | owed;
i mport webl ogi c.jws.security. SecurityRole;
@\ébSer vi ce(name="Securi t yRol esPort Type",
servi ceNanme="Securi t yRol esServi ce",
target Nanespace="http://exanpl e. org")
@ol esAl lowed ({
@ecurityRole (rol e="manager",
mapToPrinci pal s={ "juliet","amanda" }),
@ecurityRole (role="vp")

1)
public class SecurityRol eslnpl {

In the example, only the roles manager and vp are allowed to invoke the Web Service.
Within the context of the Web Service, the users j ul i et and amanda are assigned the
role manager . The role vp, however, does not include a mapToPr i nci pal s attribute,
which implies that users have been mapped to this role externally. It is assumed that
you have already added the two users (j ul i et and amanda) to the WebLogic Server
security realm.

3.6.31 weblogic.jws.security.RolesReferenced

3.6.31.1 Description
Target: Class

Specifies the list of role names that reference actual roles that are allowed to invoke the
Web Service. In particular, it specifies an array of @ecuri t yRol eRef JWS
annotations, each of which describe a link between a referenced role name and an
actual role defined by a @ecur i t yRol e annotation.

This JWS annotation does not have any attributes.

3.6.31.2 Example

package exanpl es.webservices. security_roles;

i mport webl ogi c.jws. security. Rol esAl | owed;
i mport webl ogi c.jws.security. SecurityRole;
i mport webl ogi c. jws. security. Rol esRef erenced,;
i mport webl ogi c.jws. security. SecurityRol eRef;
@\ébSer vi ce(name="Securi t yRol esPort Type",
servi ceNane="Securi t yRol esServi ce",
target Nanespace="http://exanpl e. org")
@ol esAl lowed ({
@ecurityRole (rol e="manager",
mapToPrincipal s={ "juliet", "amanda" }),
@ecurityRole (role="vp")
1)
@Rol esReferenced (
@ecurityRol eRef (role="ngr", |ink="nanager")
)

public class SecurityRoleslnpl {

In the example, the role ngr is linked to the role manager , which is allowed to invoke
the Web Service. This means that any user who is assigned to the role of ngr is also
allowed to invoke the Web Service.

JWS Annotation Reference 3-47

WebLogic-specific Annotations

3.6.32 weblogic.jws.security.RunAs

The following sections describe the annotation in detail.

3.6.32.1 Description
Target: Class

Specifies the role and user identity which actually runs the Web Service in WebLogic
Server.

For example, assume that the @RunAs annotation specifies the r ol eArole and user A
principal. This means that even if the Web Service is invoked by user B (mapped to
r ol eB), the relevant operation is actually executed internal as user A.

3.6.32.2 Attributes

Table 3-30 Attributes of the weblogic.jws.security.RunAs JWS Annotation

Name Description Data Type Required?
role Specifies the role which the Web Service should String Yes
be run as.
mapToPrincip Specifies the principal user that maps to the role. String Yes
al It is assumed that you have already configured

the specified principal (user) as a valid
WebLogic Server user, typically using the
WebLogic Server Administration Console. See
Create users in the Oracle WebLogic Server
Administration Console Online Help for details.

3.6.32.3 Example

package exanpl es.webservices. security_roles;
i mport webl ogi c.jws. security. RunAs;

@\ebSer vi ce(name="Secur it yRunAsPort Type",
servi ceName="Securi t yRunAsServi ce",
target Nanespace="http://exanpl e. org")
@unAs (rol e="manager", mapToPrincipal ="juliet")
public class SecurityRunAslnpl {

The example shows how to specify that the Web Service is always run as user j ul i et,
mapped to the role manager , regardless of who actually invoked the Web Service.

3.6.33 weblogic.jws.security.SecurityRole

The following sections describe the annotation in detail.

3.6.33.1 Description
Target: Class, Method

Specifies the name of a role that is allowed to invoke the Web Service. This annotation
is always specified in the JWS file as a member of a @Rol esAl | owed array.

3-48 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

When a client application invokes the secured Web Service, it specifies a user and
password as part of its basic authentication. It is assumed that an administrator has
already configured the user as a valid WebLogic Server user using the WebLogic
Server Administration Console; for details see Create Users in the Oracle WebLogic
Server Administration Console Online Help.

The user that is going to invoke the Web Service must also be mapped to the relevant
role. You can perform this task in one of the following two ways:

¢ Use the WebLogic Server Administration Console to map the user to the role. In
this case, you do not specify the mapToPr i nci pal s attribute of the
@ecuri t yRol e annotation. For details, see Add Users to Roles in the Oracle
WebLogic Server Administration Console Online Help.

® Map the user to a role only within the context of the Web Service by using the
mapToPri nci pal s attribute to specify one or more users.

To specify that multiple roles are allowed to invoke the Web Service, include multiple
@secur i t yRol e annotations within the @Rol esAl | owed annotation.

3.6.33.2 Attributes

Table 3-31 Attributes of the weblogic.jws.security.SecurityRole JWS Annotation
|

Name Description Data Type Required?
role The name of the role that is allowed to invoke String Yes
the Web Service.
mapToPrinci pa Anarray of user names that map to the role. String|] No
I's

If you do not specify this attribute, it is
assumed that you have externally defined the
mapping between users and the role, typically
using the WebLogic Server Administration
Console.

3.6.33.3 Example

package exanpl es.webservices. security_roles;

i mport webl ogi c. jws. security. Rol esAl | owed;
i mport webl ogi c.jws. security. SecurityRole;
@\ébSer vi ce(name="SecurityRol esPort Type",
servi ceNanme="Securi t yRol esServi ce",
target Nanespace="http://exanple.org")
@ol esAl lowed ({
@ecurityRole (rol e="manager",
mapToPrinci pal s={ "juliet","amanda" }),
@ecurityRole (role="vp")
1)
public class SecurityRol eslnpl {

In the example, only the roles manager and vp are allowed to invoke the Web Service.
Within the context of the Web Service, the users j ul i et and amanda are assigned the
role manager . The role vp, however, does not include a mapToPr i nci pal s attribute,
which implies that users have been mapped to this role externally. It is assumed that
you have already added the two users (j ul i et and amanda) to the WebLogic Server
security realm.

JWS Annotation Reference 3-49

WebLogic-specific Annotations

3.6.34 weblogic.jws.security.SecurityRoleRef

The following sections describe the annotation in detail.

3.6.34.1 Description
Target: Class

Specifies a role name reference that links to an already-specified role that is allowed to
invoke the Web Service.

Users that are mapped to the role reference can invoke the Web Service as long as the
referenced role is specified in the @0l esAl | owed annotation of the Web Service.

3.6.34.2 Attributes

Table 3-32 Attributes of the weblogic.jws.security.SecurityRoleRef JWS Annotation
- - -~ |

Name Description Data Type Required?
| Name of the role reference. String Yes
role
i nk Name of the already-specified role that is allowed to invoke String Yes
in

the Web Service. The value of this attribute corresponds to
the value of the r ol e attribute of a @ecurit yRol e
annot at i on specified in the same JWS file.

3.6.34.3 Example

package exanpl es.webservices. security_roles;

i mport webl ogi c. jws. security. Rol esAl | owed;
i mport webl ogi c.jws.security. SecurityRole;
i mport webl ogi c. jws. security. Rol esRef erenced,;
i mport webl ogi c. jws. security. SecurityRol eRef;
@\ebSer vi ce(name="Securi t yRol esPort Type",
servi ceName="Securi t yRol esServi ce",
target Nanespace="http://exanpl e. org")
@ol esAl l owed ({
@ecurityRol e (rol e="manager",
mapToPrincipal s={ "juliet","amanda" }),
@ecurityRole (role="vp")
1)
@Rol esReferenced (
@ecurityRol eRef (role="ngr", |ink="manager")
)

public class SecurityRoleslnpl {

In the example, the role ngr is linked to the role manager , which is allowed to invoke
the Web Service. This means that any user who is assigned to the role of ngr is also
allowed to invoke the Web Service.

3.6.35 weblogic.jws.security.UserDataConstraint

The following sections describe the annotation in detail.

3-50 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

3.6.35.1 Description
Target: Class

Specifies whether the client is required to use the HTTPS transport when invoking the
Web Service.

WebLogic Server establishes a Secure Sockets Layer (SSL) connection between the
client and Web Service if the t r ansport attribute of this annotation is set to either
Transport. | NTEGRAL or Tr ansport . CONFI DENTI AL in the JWS file that
implements the Web Service.

If you specify this annotation in your JWS file, you must also specify the
weblogicjws.WLHttpTransport annotation (or the <W.Ht t pTr anspor t > element of
the j wsc Ant task) to ensure that an HTTPS binding is generated in the WSDL file by
the j wsc Ant task.

3.6.35.2 Attributes

Table 3-33 Attributes of the weblogic.jws.security.UserDataConstraint JWS

Annotation
|

Name Description Data Type Required?

transpor Specifies whether the client is required to use the enum No
t HTTPS transport when invoking the Web Service.

Valid values are:

e Transport. NONE—Specifies that the Web
Service does not require any transport guarantees.

e Transport. | NTEGRAL—Specifies that the Web
Service requires that the data be sent between the
client and Web Service in such a way that it
cannot be changed in transit.

e Transport. CONFI DENTI AL—Specifies that the
Web Service requires that data be transmitted so
as to prevent other entities from observing the
contents of the transmission.

Default value is Tr anspor t . NONE.

3.6.35.3 Example

package exanpl es.webservices. security_https;
i mport webl ogic. jws. security. UserDat aConstraint;

@\ébServi ce(nanme="SecurityHtpsPort Type",
servi ceNanme="SecurityHt t psServi ce",
target Nanespace="http://exanpl e. org")
@Jser Dat aConst rai nt (
transport =User Dat aConst rai nt. Transport. CONFI DENTI AL)
public class SecurityHtpslnpl {

3.6.36 weblogic.jws.security.WssConfiguration

The following sections describe the annotation in detail.

3.6.36.1 Description
Target: Class

JWS Annotation Reference 3-51

WebLogic-specific Annotations

Specifies the name of the Web Service security configuration you want the Web
Service to use. If you do not specify this annotation in your JWS file, the Web Service is
associated with the default security configuration (called def aul t _wss) if it exists in
your domain.

The @\6sConfi gur ati on annotation only makes sense if your Web Service is
configured for message-level security (encryption and digital signatures). The security
configuration, associated to the Web Service using this annotation, specifies
information such as whether to use an X.509 certificate for identity, whether to use
password digests, the keystore to be used for encryption and digital signatures, and so
on.

WebLogic Web Services are not required to be associated with a security
configuration; if the default behavior of the Web Services security runtime is adequate
then no additional configuration is needed. If, however, a Web Service requires
different behavior from the default (such as using an X.509 certificate for identity,
rather than the default username/password token), then the Web Service must be
associated with a security configuration.

Before you can successfully invoke a Web Service that specifies a security
configuration, you must use the WebLogic Server Administration Console to create it.
For details, see Create a Web Services security configuration in the Oracle WebLogic
Server Administration Console Online Help. For general information about message-level
security, see Configuring Message-Level Security in Securing WebLogic Web Services for
Oracle WebLogic Server.

Note:

All WebLogic Web Services packaged in a single Web Application must be
associated with the same security configuration when using the

@\ sConf i gur at i on annotation. This means, for example, that if a

@\ sConf i gur at i on annotation exists in all the JWS files that implement
the Web Services contained in a given Web Application, then the val ue
attribute of each @\6sConf i gur at i on must be the same.

To specify that more than one Web Service be contained in a single Web
Application when using the j wsc Ant task to compile the JWS files into Web
Services, group the corresponding <j ws> elements under a single <nodul e>
element.

3.6.36.2 Attributes

Table 3-34 Attributes of the weblogic.jws.security.WssConfiguration JWS Annotation Tag

Name

Description Data Type Required?

val ue

Specifies the name of the Web Service security configuration that is String Yes
associated with this Web Service. The default configuration is called

defaul t _wss.

You must create the security configuration (even the default one) using

the WebLogic Server Administration Console before you can
successfully invoke the Web Service.

3-52 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

3.6.36.3 Example

The following example shows how to specify that a Web Service is associated with the

nmy_security_configurati on security configuration; only the relevant Java code
is shown:

package exanpl es.webservices.wss_configuration;
inport javax.jws.\WbService;

i nport webl ogi c.jws. security.WsConfiguration;
@ebService(. ..

@sConfiguration(val ue="ny_security_configuration")
public class WsConfigurationlml {

3.6.37 weblogic.jws.soap.SOAPBinding

The following sections describe the annotation in detail.

3.6.37.1 Description
Target: Method
Specifies the mapping of a Web Service operation onto the SOAP message protocol.

This annotation is analogous to @ avax. j ws. soap. SOAPBi ndi ng except that it
applies to a method rather than the class. With this annotation you can specify, for
example, that one Web Service operation uses RPC-encoded SOAP bindings and
another operation in the same Web Service uses document-literal-wrapped SOAP
bindings.

Note:

Because @webl ogi c. j ws. soap. SOAPBI ndi ng and
@ avax. j ws. soap. SOAPBI ndi ng have the same class name, be careful
which annotation you are referring to when using it in your JWS file.

3.6.37.2 Attributes

Table 3-35 Attributes of the weblogic.jws.soap.SOAPBinding JWS Annotation

Name Description Data Type Required?

style Specifies the message style of the request and enum No
response SOAP messages of the invoked
annotated operation.

Valid values are:
e SQOAPBI ndi ng. Styl e. RPC
e SOAPBI ndi ng. St yl e. DOCUMENT.

Default value is
SQOAPBI ndi ng. St yl e. DOCUMENT.

JWS Annotation Reference 3-53

WebLogic-specific Annotations

Table 3-35 (Cont.) Attributes of the weblogic.jws.soap.SOAPBinding JWS

Annotation
|

Name Description Data Type Required?

use Specifies the formatting style of the requestand enum No
response SOAP messages of the invoked
annotated operation.
Valid values are:
e SOAPBI ndi ng. Use. LI TERAL
e SOAPBI ndi ng. Use. ENCODED
Default value is SOAPBi ndi ng. Use. LI TERAL.

parameter Sty Determines whether method parameters enum No
le represent the entire message body, or whether

the parameters are elements wrapped inside a

top-level element named after the operation.

Valid values are:

e SOAPBI ndi ng. Par anet er St yl e. BARE
e SOAPBI ndi ng. Par anet er St yl e. WRAPPE
D

Default value is
SOAPBI ndi ng. Par anet er St yl e. WRAPPED

Note: This attribute applies only to Web
Services of style document-literal. Or in other
words, you can specify this attribute only if you
have also set the st yl e attribute to

SQOAPBI ndi ng. St yl e. DOCUMENT and the use
attribute to SOAPBI ndi ng. Use. LI TERAL.

3.6.37.3 Example

The following simple JWS file shows how to specify that, by default, the operations of
the Web Service use document-literal-wrapped SOAP bindings; you specify this by
using the @ avax. j ws. soap. SOAPBi ndi ng annotation at the class-level. The
example then shows how to specify different SOAP bindings for individual methods
by using the @webl ogi c. j ws. soap. SOAPBi ndi ng annotation at the method-level.
In particular, the sayHel | oDocLi t Bar e() method uses document-literal-bare SOAP
bindings, and the sayHel | oRPCEncoded() method uses RPC-encoded SOAP
bindings.

package exanpl es. webservi ces. soap_bi ndi ng_net hod,;
import javax.jws.\WebMet hod,;
import javax.jws.\WehService;
i mport javax.jws.soap. SOAPBi ndi ng;
i mport webl ogic.jws. WHt t pTransport;
@ébSer vi ce(name=" SoapBi ndi ngMet hodPor t Type",
servi ceNanme=" SoapBi ndi ngMet hodSer vi ce",
tar get Nanespace="http://exanpl e. org")
@QAPBI ndi ng(styl e=SOAPBi ndi ng. St yl e. DOCUMENT,
use=SOAPBi ndi ng. Use. LI TERAL,
par amet er St yl e=SOAPBi ndi ng. Par anet er St yl e. WRAPPED)
@\LHt t pTransport (cont ext Pat h="soap_bi ndi ng_met hod",
servi ceUri =" SoapBi ndi ngMet hodSer vi ce",
por t Name=" SoapBi ndi nghet hodSer vi cePort")

/**

* Sinple JWS exanpl e that shows how to specify soap bindings for a method.

3-54 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

*/
public class SoapBi ndi nghet hodl npl {
@ebMet hod()
@webl ogi c. j ws. soap. SOAPBI ndi ng(
styl e=SOAPBI ndi ng. Styl e. DOCUMENT,
use=SOAPBi ndi ng. Use. LI TERAL,
par anet er St yl e=SOAPBi ndi ng. Par anet er St yl e. BARE)
public String sayHel | oDocLitBare(String message) {
System out. println("sayHel | oDocLitBare" + nmessage);
return "Here is the nessage: '" + nessage + "'"

}
@ebMet hod()
@webl ogi c. j ws. soap. SOAPBI ndi ng(
styl e=SOAPBI ndi ng. Styl e. RPC,
use=SOAPBi ndi ng. Use. ENCCDED)
public String sayHel | oRPCEncoded (String nessage) {
System out. println("sayHel | oRPCEncoded" + nessage);
return "Here is the nessage: '" + nessage + "'"
}
}

3.6.38 weblogic.jws.security.SecurityRoles (deprecated)

The following sections describe the annotation in detail.

3.6.38.1 Description
Target: Class, Method

Note:

The @webl ogi c. security.jws. SecurityRol es JWS annotation is
deprecated beginning in WebLogic Server 9.0.

Specifies the roles that are allowed to access the operations of the Web Service.

If you specify this annotation at the class level, then the specified roles apply to all
public operations of the Web Service. You can also specify a list of roles at the method
level if you want to associate different roles to different operations of the same Web
Service.

Note:

The @ecuri t yRol es annotation is supported only within the context of an
EJB-implemented Web Service. For this reason, you can specify this
annotation only inside of a JWS file that explicitly implements

j avax. ej b. Sessi onBean. See Securing Enterprise JavaBeans (EJBs) in
Developing Applications with the WebLogic Security Service for conceptual
information about what it means to secure access to an EJB. See Should You
Implement a Stateless Session EJB? in Developing JAX-WS Web Services for
Oracle WebLogic Server for information about explicitly implementing an EJB in
a JWS file.

JWS Annotation Reference 3-55

WebLogic-specific Annotations

3.6.38.2 Attributes

Table 3-36 Attributes of the weblogic.jws.security.SecurityRoles JWS Annotation
___|

Name Description Data Type Required?
rol esAl | owed Specifies the list of roles that are allowed to Arrayof No
access the Web Service. String

This annotation is the equivalent of the

<met hod- per i ssi on> element in the ej b-
jar.xm deployment descriptor of the
stateless session E]JB that implements the Web
Service.

rol esRef erence Specifies a list of roles referenced by the Web Array of No
d Service. String

The Web Service may access other resources
using the credentials of the listed roles.

This annotation is the equivalent of the
<security-rol e-ref>elementin the ej b-
jar.xm deployment descriptor of the
stateless session E]JB that implements the Web
Service.

3.6.38.3 Example

The following example shows how to specify, at the class-level, that the Web Service
can be invoked only by the Admi n role; only relevant parts of the example are shown:

package exanpl es.webservices. security_roles;
inport javax.ejb. Sessi onBean;

i mport javax.ejb. SessionContext;

i mport webl ogi c. ej bgen. Sessi on;

import javax.jws.\WebServi ce;

i mport webl ogi c.jws. security. SecurityRol es;

@essi on(ej bName="Securi t yRol esEJB")

@ébService(. ..

/1 Specifies the roles who can invoke the entire Wb Service
@ecurityRol es(rol esAl | owed="Admin")

public class SecurityRoleslnpl inplenents SessionBean {

3.6.39 weblogic.jws.security.Securityldentity (deprecated)

The following sections describe the annotation in detail.

3.6.39.1 Description
Target: Class

Note:

The @webl ogi c. security.jws. Securityldentity JWS annotation is
deprecated beginning in WebLogic Server 9.1.

Specifies the identity assumed by the Web Service when it is invoked.

3-56 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

Unless otherwise specified, a Web Service assumes the identity of the authenticated
invoker. This annotation allows the developer to override this behavior so that the
Web Service instead executes as a particular role. The role must map to a user or
group in the WebLogic Server security realm.

Note:

The @ecuri tyl denti ty annotation only makes sense within the context of
an EJB-implemented Web Service. For this reason, you can specify this
annotation only inside of a JWS file that explicitly implements

j avax. ej b. Sessi onBean. See Securing Enterprise JavaBeans (E]Bs) in
Developing Applications with the WebLogic Security Service for conceptual
information about what it means to secure access to an EJB. See Should You
Implement a Stateless Session EJB? in Developing JAX-WS Web Services for
Oracle WebLogic Server for information about explicitly implementing an EJB in
a JWS file.

3.6.39.2 Attributes

Table 3-37 Attributes of the weblogic.jws.security.Securityldentity JWS Annotation
- -~ -~ - - |

Name Description Data Type Required?
val u Specifies the role which the Web Service assumes when it String Yes
e is invoked. The role must map to a user or group in the

WebLogic Server security realm.

3.6.39.3 Example

The following example shows how to specify that the Web Service, when invoked,
runs as the Admi n role:

package exanpl es. webservices. security_roles;
inport javax.ejb. Sessi onBean;

inport javax.ejh. SessionCont ext;

i nport webl ogi c. ej bgen. Sessi on;

inport javax.jws.\WbhService;

inport webl ogic.jws.security.Securityldentity;

@essi on(ej bNanme="Securi t yRol esEJB")

@eébService(. ..

/1 Specifies that the Wb Service runs as the Admin role
@ecurityldentity(val ue="Admn")

public class SecurityRoleslnpl inplenents SessionBean {

3.6.40 weblogic.wsee.jws.jaxws.owsm.Property

The following sections describe the annotation in detail.

3.6.40.1 Description
Target: Class

Specifies a policy configuration property override.

JWS Annotation Reference 3-57

WebLogic-specific Annotations

Use this annotation with the
webl ogi c. wsee. jws. j axws. owsm Securi t yPol i cy annotation to override a
configuration property when attaching a policy to a web service client.

Note:

This annotation can be used for web service clients only. It is not supported
for web service (server-side) policy attachment.

See Attaching Policies to Java EE Web Services and Clients Using Annotations in
Securing Web Services and Managing Policies with Oracle Web Services Manager for
detailed information and examples of using this annotation.

This JWS annotation does not have any attributes.

3.6.40.2 Example

@ecurityPolicy(uri="policy:oracl e/wss10_nessage_protection_client_policy",
properties = {
@roperty(name="keystore.recipient.alias", value="nykey")

1

3.6.41 weblogic.wsee.jws.jaxws.owsm.SecurityPolicies

The following sections describe the annotation in detail.

3.6.41.1 Description
Target: Class

Specifies an array of @webl ogi c. wsee. j ws. j axws. owsm SecurityPolici es
annotations.

Use this annotation if you want to attach more than one OWSM security policy to the
class of a JWS file. If you want to attach just one OWSM security policy, you can use
the @webl ogi c. wsee. j ws. j axws. owsm Secur i t yPol i cy annotation.

See Attaching Policies to Java EE Web Services and Clients Using Annotations in
Securing Web Services and Managing Policies with Oracle Web Services Manager for
detailed information and examples of using this annotation.

This JWS annotation does not have any attributes.

3.6.41.2 Example

@ecurityPolicies({
@ecurityPolicy(uri="oracle/wss_sam 20_t oken_over_sl| | _service_policy"),
@ecurityPolicy(uri="oracl e/ bi ndi ng_aut horization_permtall _policy")

1)
3.6.42 weblogic.wsee.jws.jaxws.owsm.SecurityPolicy

The following sections describe the annotation in detail.

3.6.42.1 Description
Target: Class
Attaches an OWSM security policy file to the web service or client.

3-58 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

This annotation can be used on its own to apply a single OWSM security policy to a
class. If you want to attach more than one OWSM security policy to a class, use the

@webl ogi c. wsee. j ws. j axws. owsm Secur i t yPol i ci es annotation to group
them together.

See Attaching Policies to Java EE Web Services and Clients Using Annotations in
Securing Web Services and Managing Policies with Oracle Web Services Manager for
detailed information and examples of using this annotation.

3.6.42.2 Attributes

Table 3-38 Attributes of the weblogic.wsee.jws.jaxws.owsm.SecurityPolicy JWS

Annotation Tag
- ___|

Name Description Data Type Required?

uri Specifies the name of the OWSM security policy. String Yes

Use the pol i cy: prefix to specify that the OWSM
policy is packaged in the OWSM policy repository,
as shown in the following example:

@ecurityPolicy(uri="policy:oraclel
wss_sam 20_t oken_over_ssl _service_policy")

For more information about the OWSM repository,
see Managing the OWSM Repository in Securing
Web Services and Managing Policies with Oracle Web
Services Manager.

properties Note: This attribute can be specified for web String No
service clients only. This attribute is not supported
for web service (server-side) policy attachment.

Specifies policy configuration override
information. You specify one or more
configuration property values using the

webl ogi c. wsee. j ws. j axws. owsm Property
annotation, as described in

weblogic.wsee jws.jaxws.owsm.Property.

enabl ed Specifies whether the OWSM policy file is enabled. boolean No
Valid values aret r ue and f al se. Default value is
true.
3.6.42.3 Examples

The following example shows how to attach the
wss_sanl 20 _t oken_over _ssl _servi ce_pol i cy to a web service.

@ecurityPolicy(uri="policy:oracle/wss_san 20_t oken_over_ssl| _service_policy",
enabl ed=t r ue)

The following example shows how to attach the
wss10 _nessage protection_client _policy toaweb service client and
override the keystore.recipient.alias configuration property.

@ecurityPolicy(uri="policy:oracl e/wss1l0_nessage_protection_client_policy",
properties = {
@roperty(name="keystore.recipient.alias", value="nykey")

I3

enabl ed=t r ue)

JWS Annotation Reference 3-59

WebLogic-specific Annotations

3.6.43 weblogic.wsee.jws.jaxws.owsm.SecurityPolicies

The following sections describe the annotation in detail.

3.6.43.1 Description
Target: Class, Method

Specifies an array of @webl ogi c. wsee. j ws. j axws. owsm SecurityPolicy
annotations.

Use this annotation if you want to attach more than one Oracle Web Services Manager
(Oracle WSM) WS-Policy files to a class or method of a JWS file. If you want to attach
just one Oracle WSM WS-Policy file, you can use the

@webl ogi c. wsee. j ws. j axws. owsm Securi t yPol i cy on its own.

See Using Oracle Web Service Security Policies in Securing WebLogic Web Services for
Oracle WebLogic Server for detailed information and examples of using this annotation.

This JWS annotation does not have any attributes.

3.6.43.2 Example

@ecurityPolicies({
@ecurityPolicy(uri="policy:firstPolicy.xm"),
@ecurityPolicy(uri="policy:secondPolicy.xm")

b

3.6.44 weblogic.wsee.jws.jaxws.owsm.SecurityPolicy

The following sections describe the annotation in detail.

3.6.44.1 Description
Target: Class, Method

Specifies that an Oracle Web Services Manager (Oracle WSM) WS-Policy file, which
contains information about digital signatures or encryption, should be applied to the
request or response SOAP messages.

This annotation can be used on its own to apply a single Oracle WSM WS-Policy file to
a class or method. If you want to apply more than one Oracle WSM WS-Policy file to a
class or method, use the

@webl ogi c. wsee. j ws. j axws. owrs. Secur i t yPol i ci es annotation to group
them together.

This annotation can be applied at the class level only, indicating that the Oracle WSM
WS-Policy file or files are applied to every public operation of the Web Service.

The Oracle WSM WS-Security policies are not advertised in the WSDL of a WebLogic
Server JAX-WS Web service. (Typically, the policy file associated with a Web service is
attached to its WSDL, which the Web services client runtime reads to determine
whether and how to digitally sign and encrypt the SOAP message request from an
operation invoke from the client application.)

See Using Oracle Web Service Security Policies in Securing WebLogic Web Services for
Oracle WebLogic Server for detailed information and examples of using this annotation.

3-60 WebLogic Web Services Reference for Oracle WebLogic Server

WebLogic-specific Annotations

Note:

As is true for all JWS annotations, the @ecur i t yPol i cy annotation cannot
be overridden at runtime, which means that the Oracle WSM WS-Policy file
you specify at buildtime using the annotation will always be associated with
the Web Service. This means, for example, that although you can view the
associated Oracle WSM WS-Policy file at runtime using the Administration
Console, you cannot delete (unassociate) it. You can, however, associate
additional Oracle WSM WS-Policy files using the console; see Configuring
Oracle WSM Security Policies in Administration Console in the Securing
WebLogic Web Services for Oracle WebLogic Server for detailed instructions.

3.6.44.2 Attribute

Table 3-39 Attribute of the weblogic.jws.SecurityPolicy JWS Annotation Tag

Name Description Data Type Required?
) Specifies the location from which to retrieve the String Yes
urt Oracle WSM WS-Policy file.

Use the ht t p: prefix to specify the URL of an
Oracle WSM WS-Policy file on the Web.

Use the pol i cy: prefix to specify that the Oracle
WSM WS-Policy file is packaged in the Web
Service archive file or in a shareable Java EE library
of WebLogic Server, as shown in the following
example:

@ecurityPolicy(uri=

"policy:oracl e/

wss10_username_t oken_wi t h_nessage_protection_
server_policy")

3.6.44.3 Example

@ecurityPolicy(uri=

"policy:oracl e/wss10_usernane_t oken_wi t h_nmessage_prot ection_server_policy")
3.6.45 weblogic.wsee.wstx.wsat.Transactional

The following sections describe the annotation in detail.

3.6.45.1 Description
Target: Class, Method

Specifies whether the annotated class or method runs inside of a web service atomic
transaction.

If you specify the @r ansact i onal annotation at the web service class level, the
settings apply to all two-way synchronous methods defined by the service endpoint
interface. You can override the flow type value at the method level; however, the
version must be consistent across the entire transaction.

WebLogic web services enable interoperability with other external transaction
processing systems, such as WebSphere, JBoss, Microsoft .NET, and so on, through the
support of the following specifications:

JWS Annotation Reference 3-61

WebLogic-specific Annotations

e WS-AtomicTransaction Version (WS-AT) 1.0, 1.1, and 1.2: ht t p: / / docs. oasi s-
open. or g/ ws-t x/ wst x-wsat - 1. 2- spec- cs- 01/ wst x- wsat - 1. 2- spec-
cs-01. htm

e WS-Coordination Version 1.0, 1.1, and 1.2: ht t p: / / docs. oasi s- open. or g/ ws-
t X/ wst x-wscoor - 1. 2- spec-cs- 01/ wst x-wscoor-1. 2-spec-cs-01. ht i

3.6.45.2 Attributes

Table 3-40 Attribute of the weblogic.wsee.wstx.wsat.Transactional Annotation
|

Name Description Data Type Required?

ver si on

Version of the web services atomic transaction

String No

coordination context that is used for web services
and clients. For clients, it specifies the version used
for outbound messages only. The value specified
must be consistent across the entire transaction.

Valid values include WSAT10, WSAT11, WEAT12,
and DEFAULT. The DEFAULT value for web
services is all three versions (driven by the
inbound request); the DEFAULT value for web
service clients is WSAT10.

For example:

@ransactional (version=
Transact i onal . Ver si on. WSAT10])

val ue

Whether the web service atomic transaction

String No

coordination context is passed with the transaction
flow. For valid values, see Table 3-41.

The following table summarizes the valid values for flow type and their meaning on
the web service and client. The table also summarizes the valid value combinations
when configuring web service atomic transactions for an EJB-style web service that
uses the @Tr ansacti onAttri but e annotation.

Table 3-41 Flow Types Values

Value Web Service Client Web Service Valid EJB @r ansacti onAttri bute
Values

NEVER Do not export Do not import NEVER, NOT _ SUPPORTED, REQUI RED,
transaction transaction REQUI RES_NEW SUPPORTS
coordination context. coordination context.

SUPPORTS (Default) Export transaction Import transaction REQUI RED, SUPPORTS
coordination context coordination context
if transaction is if available in the
available. message.

MANDATORY Export transaction Import transaction MANDATCORY, REQUI RED, SUPPORTS

coordination context.

An exception is
thrown if there is no
active transaction.

coordination context.

An exception is
thrown if there is no
active transaction.

3-62 WebLogic Web Services Reference for Oracle WebLogic Server

http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

WebLogic-specific Annotations

3.6.45.3 Example

@ransactional (val ue = Transacti onal . Transacti onFl owType. SUPPCRTS,
ver si on="Transacti onal . Ver si no. WeAT12

JWS Annotation Reference 3-63

WebLogic-specific Annotations

3-64 WebLogic Web Services Reference for Oracle WebLogic Server

A

Web Service Reliable Messaging Policy
Assertion Reference

This chapter provides reference information about web service reliable messaging
policy assertions in a WS-Policy file.

This chapter includes the following sections:

¢ Overview of a WS-Policy File That Contains Web Service Reliable Messaging
Assertions

¢ WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and
11

e WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0
(Deprecated)

4.1 Overview of a WS-Policy File That Contains Web Service Reliable
Messaging Assertions

You use WS-Policy files to configure reliable messaging capabilities of a WebLogic
web service running on a destination endpoint. Use the @0l i cy JWS annotations in
the JWS file that implements the web service to specify the name of the WS-Policy file
that is associated with a web service. A WS-Policy file is an XML file that conforms to
the WS-Policy specification at ht t p: / / www. W3. or g/ TR/ ws- pol i cy/ .

The root element of a WS-Policy file is always <wsp: Pol i cy>. To configure web
service reliable messaging, you first add a <wsr np: RVAsser t i on> child element; its
main purpose is to group all the reliable messaging policy assertions together. Then,
you add child elements to <wsr np: RMAsser t i on> to define the web service reliable
messaging. All these assertions conform to the WS-Policy Assertions specification.

WebLogic Server includes default WS-Policy files that contain typical reliable
messaging assertions that you can use if you do not want to create your own WS-
Policy file. The default WS-Policy files are defined in:

¢ JAX-WS: Pre-Packaged WS-Policy Files for Web Services Reliable Messaging and
MakeConnection in Developing JAX-WS Web Services for Oracle WebLogic Server

® JAX-RPC: Pre-Packaged WS-Policy Files for Reliable Messaging in Developing JAX-
RPC Web Services for Oracle WebLogic Server

For task-oriented information about creating a reliable WebLogic web service, see:

* JAX-WS: Using Web Services Reliable Messaging in Developing JAX-WS Web
Services for Oracle WebLogic Server

Web Service Reliable Messaging Policy Assertion Reference 4-1

http://www.w3.org/TR/ws-policy/

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1

* JAX-RPC: Using Web Services Reliable Messaging in Developing JAX-RPC Web
Services for Oracle WebLogic Server

4.2 WS-Policy File With Web Service Reliable Messaging Assertions—
Version 1.2 and 1.1

The following sections describe how to create a WS-Policy file with web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion Version 1.2 and 1.1 atht t p: / / docs. oasi s- open. or g/ ws-r x/ wsr np/
200702.

¢ Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2
and 1.1

¢ Element Descriptions

4.2.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2
and 1.1

The following example shows a simple WS-Policy file used to configure reliable
messaging for a WebLogic web service.

<?xm version="1.0"?>
<wsp: Policy xm ns:wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsr np: RMAssertion
xm ns:wsrnp="http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: SequenceSTR/ >
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsr np: RMAssertion>
</ wsp: Policy>

4.2.2 Element Descriptions

The element hierarchy of web service reliable messaging policy assertions in a WS-
Policy file is shown below. Each element is described in more detail in the following
sections.

Note:

You must enter the assertions in the ordered listed below.

wsp:Policy
wsrmp:RMAssertion
wsrmp:SequenceSTR
wsrmp:SequenceTransportSecurity
wsrmp:DeliveryAssurance
wsp:Policy

4.2.2.1 wsp:Policy

Groups nested policy assertions.

4-2 WebLogic Web Services Reference for Oracle WebLogic Server

http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1

4.2.2.2 wsrmp:DeliveryAssurance

Specifies the delivery assurance (or quality of service) of the web service. You can set
one of the delivery assurances defined in the following table. If not set, the delivery
assurance defaults to Exact | yOnce.

Table 4-1 Delivery Assurances for Reliable Messaging

Delivery Assurance Description

wsr np: At Most Once Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

wsr np: At Least Once Every message is delivered at least once. It is possible that some
messages are delivered more than once.

wsr np: Exact | yOnce Every message is delivered exactly once, without
duplication.This value is enabled by default.

wsrnp: | nOr der Messages are delivered in the order that they were sent. This
delivery assurance can be combined with one of the preceding
three assurances. This value is enabled by default.

The delivery assurance must be enclosed by wsp: Pol i cy element. For example:

<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>

4.2.2.3 wsrmp:RMAssertion

Main web service reliable messaging assertion that groups all the other assertions
under a single element. The presence of this assertion in a WS-Policy file indicates that
the corresponding web service must be invoked reliably.

The following table summarizes the attributes of the wsr np: RMAsser ti on element.

Table 4-2 Attributes of <wsrmp:RMAssertion>

Attribute Description Required?
) Specifies whether the web service requires the operations tobe ~ No
opti onal invoked reliably. Valid values for this attribute are t r ue and
fal se. Default value is f al se.
4.2.2.4 wsrmp:SequenceSTR

Specifies that in order to secure messages in a reliable sequence, the runtime will use
thewsse: Securit yTokenRef er ence that is referenced in the Cr eat eSequence
message. You can only specify one security assertion; that is, you can specify

wsr np: SequenceSTRor wsr np: SequenceTr ansport Securi ty, but not both.

4.2.2.5 wsrmp:SequenceTransportSecurity

Specifies that in order to secure messages in a reliable sequence, the runtime will use
the SSL transport session that is used to send the Cr eat eSequence message. This
assertion must be used in conjunction with the sp: Tr anspor t Bi ndi ng assertion

Web Service Reliable Messaging Policy Assertion Reference 4-3

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

that requires the use of some transport-level security mechanism (for example,
sp: Ht t psToken). You can only specify one security assertion; that is, you can specify
wsr np: SequenceSTRor wsr np: SequenceTr ansport Securi ty, but not both.

4.3 WS-Policy File With Web Service Reliable Messaging Assertions—
Version 1.0 (Deprecated)

The following sections describe how to create a WS-Policy file with web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion 1.0 at htt p: // schenmas. xm soap. or g/ ws/ 2005/ 02/ r m pol i cy/ .

¢ Example of a WS-Policy File With Web Service Reliable Messaging Assertions

¢ Element Description

4.3.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions

The following example shows a simple WS-Policy file used to configure reliable
messaging for a WebLogic web service:

<?xm version="1.0"?>
<wsp: Pol i cy
xm ns:wsrnE"http://schemas. xm soap. or g/ ws/ 2005/ 02/ r ml pol i cy"
xm ns:wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: beapol i cy="http:// wwmv. bea. comf wsrn pol i cy"
>
<wsrm RVAssertion >
<wsrm | nactivityTi meout
MI1iseconds="600000" />
<wsrm BaseRet ransni ssi onl nt er val
MI1iseconds="3000" />
<wsr m Exponent i al Backof f />
<wsr m Acknow edgenent | nt er val
MI1iseconds="200" />
<beapol i cy: Expi res Expires="P1D' optional ="true"/>
</wsrm RVAsserti on>
</ wsp: Pol i cy>

4.3.2 Element Description

The element hierarchy of web service reliable messaging policy assertions in a WS-
Policy file is shown below. Each element is described in more detail in the following
sections.

Note:

You must enter the assertions in the ordered listed below.

wsp:Policy

wsrm:RMAssertion
wsrm:Inactivity Timeout
wsrm:BaseRetransmissionInterval
wsrm:ExponentialBackoff
wsrm:AcknowledgementInterval
beapolicy:Expires
beapolicy:Q0OS

4-4 WebLogic Web Services Reference for Oracle WebLogic Server

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4.3.2.1 beapolicy:Expires

Specifies an amount of time after which the reliable web service expires and does not
accept any new sequences. Client applications invoking this instance of the reliable
web service will receive an error if they try to invoke an operation after the expiration
duration.

The default value of this element, if not specified in the WS-Policy file, is for the web
service to never expires.

Table 4-3 Attributes of <beapolicy:Expires>

Attribute Description Required?

Expi res The amount of time after which the reliable web service expires. Yes
The format of this attribute conforms to the XML Schema
duration at ht t p: / / www. W3. or g/ TR/ 2001/ REC-
xm schema- 2- 20010502/ #dur at i on data type. For
example, to specify that the reliable web service expires after 3
hours, specify Expi r es="P3H".

4.3.2.2 beapolicy:Q0S

Specifies the delivery assurance (or Quality Of Service) of the web service:

Table 4-4 Attributes of <beapolicy:QOS>

Attribute Description Required?

Qs Specifies the delivery assurance. You can specify exactly one of ~ Yes
the following values:

e At Most Once—Messages are delivered at most once,
without duplication. It is possible that some messages may
not be delivered at all.

e At Least Once—Every message is delivered at least once. It
is possible that some messages be delivered more than once.

¢ Exact| yOnce—Every message is delivered exactly once,
without duplication.

You can also add the | nOr der string to specify that the

messages be delivered in order.

If you specify one of the XXXOnce values, but do not specify

I nOr der, then the messages are not guaranteed to be in order.

This is different from the default value if the entire QOS

element is not specified (exactly once in order).

This attribute defaults to Exact | yOnce | nOrder.

Example: <beapol i cy: QOS QOS=" At Mbst Once
InOrder” />

4.3.2.3 wsrm:Acknowledgementinterval

Specifies the maximum interval, in milliseconds, in which the destination endpoint
must transmit a stand alone acknowledgement.

A destination endpoint can send an acknowledgement on the return message
immediately after it has received a message from a source endpoint, or it can send one
separately in a stand alone acknowledgement. In the case that a return message is not
available to send an acknowledgement, a destination endpoint may wait for up to the

Web Service Reliable Messaging Policy Assertion Reference 4-5

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

acknowledgement interval before sending a stand alone acknowledgement. If there
are no unacknowledged messages, the destination endpoint may choose not to send
an acknowledgement.

This assertion does not alter the formulation of messages or acknowledgements as
transmitted. Its purpose is to communicate the timing of acknowledgements so that
the source endpoint may tune appropriately.

This element is optional. If you do not specify this element, the default value is set by
the store and forward (SAF) agent configured for the destination endpoint.

Table 4-5 Attributes of <wsrm:Acknowledgementinterval>
- |

Attribute Description Required?
M1 1lisecond Specifies the maximum interval, in milliseconds, in which the Yes
s destination endpoint must transmit a stand alone

acknowledgement.

4.3.2.4 wsrm:BaseRetransmissioninterval

Specifies the interval, in milliseconds, that the source endpoint waits after transmitting
a message and before it retransmits the message.

If the source endpoint does not receive an acknowledgement for a given message
within the interval specified by this element, the source endpoint retransmits the
message. The source endpoint can modify this retransmission interval at any point
during the lifetime of the sequence of messages. This assertion does not alter the
formulation of messages as transmitted, only the timing of their transmission.

This element can be used in conjunctions with the <wsr m Exponent i al Backof f >
element to specify that the retransmission interval will be adjusted using the algorithm
specified by the <wsr m Exponent i al Backof f > element.

This element is optional. If you do not specify this element, the default value is set by
the store and forward (SAF) agent configured for the source endpoint. If using the
WebLogic Server Administration Console to configure the SAF agent, this value is
labeled Retry Delay Base.

Table 4-6 Attributes of <wsrm:BaseRetransmissioninterval>
- - - - - - -

Attribute Description Required?
M1 lisecond Number of milliseconds the source endpoint waits to Yes
S retransmit message.

4.3.2.5 wsrm:ExponentialBackoff

Specifies that the retransmission interval will be adjusted using the exponential
backoff algorithm.

This element is used in conjunction with the

<wsr m BaseRet r ansmi ssi onl nt er val > element. If a destination endpoint does
not acknowledge a sequence of messages for the amount of time specified by

<wsr m BaseRet r ansmi ssi onl nt er val >, the exponential backoff algorithm will
be used for timing of successive retransmissions by the source endpoint, should the
message continue to go unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals
should increase exponentially, based on the base retransmission interval. For example,

4-6 WebLogic Web Services Reference for Oracle WebLogic Server

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

if the base retransmission interval is 2 seconds, and the exponential backoff element is
set in the WS-Policy file, successive retransmission intervals if messages continue to be
unacknowledged are 2, 4, 8, 16, 32, and so on.

This element is optional. If not set, the same retransmission interval is used in
successive retries, rather than the interval increasing exponentially.

This element has no attributes.

4.3.2.6 wsrm:InactivityTimeout

Specifies (in milliseconds) a period of inactivity for a sequence of messages. A
sequence of messages is defined as a set of messages, identified by a unique sequence
number, for which a particular delivery assurance applies; typically a sequence
originates from a single source endpoint. If, during the duration specified by this
element, a destination endpoint has received no messages from the source endpoint,
the destination endpoint may consider the sequence to have been terminated due to
inactivity. The same applies to the source endpoint.

This element is optional. If it is not set in the WS-Policy file, then sequences never
time-out due to inactivity.

Table 4-7 Attributes of <wsrm:InactivityTimeout>

Attribute Description Required?
M1 lisecond Thenumber of milliseconds that defines a period of inactivity. ~ Yes
S

4.3.2.7 wsrm:RMAssertion

Main web service reliable messaging assertion that groups all the other assertions
under a single element.

The presence of this assertion in a WS-Policy file indicates that the corresponding web
service must be invoked reliably.

Table 4-8 Attributes of <wsrm:RMAssertion>
- - - - -]

Attribute Description Required?
opti onal Specifies whether the web service requires the operations to be No
invoked reliably.

Valid values for this attribute are t r ue and f al se. Default
valueisf al se.

Web Service Reliable Messaging Policy Assertion Reference 4-7

WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)

4-8 WebLogic Web Services Reference for Oracle WebLogic Server

5

Web Service MakeConnection Policy
Assertion Reference

The chapter provides reference information about web service MakeConnection policy
assertions in a WS-Policy file.

This chapter includes the following sections:
* Overview of a WS-Policy File That Contains MakeConnection Assertions
¢ Example of a WS-Policy File With MakeConnection and WS-Policy 1.5

¢ Element Descriptions

Note:

This section applies only to JAX-WS web services, and not to JAX-RPC web
services.

5.1 Overview of a WS-Policy File That Contains MakeConnection

Assertions

You use WS-Policy files to enable and configure MakeConnection on a web service.
Use the @0l i cy JWS annotations in the JWS file that implements the web service to
specify the name of the WS-Policy file that is associated with a web service. A WS-
Policy file is an XML file that conforms to the WS-Policy specification at ht t p: / /
www. W3. or g/ TR/ ws- pol i cy/.

The root element of a WS-Policy file is always <wsp: Pol i cy>. To configure web
service MakeConnection, you simply add a <wsnt: MCSuppor t ed> child element.
The policy assertions conform to the WS-Policy Assertions specification.

WebLogic Server includes default WS-Policy files that contain typical
MakeConnection assertions that you can use if you do not want to create your own
WS-Policy file. The default WS-Policy files are defined in Pre-Packaged WS-Policy
Files for Web Services Reliable Messaging and MakeConnection in Developing JAX-WS
Web Services for Oracle WebLogic Server.

For task-oriented information about enabling and configuring MakeConnection, see
Using Asynchronous Web Service Clients Through a Firewall (MakeConnection) in
Developing JAX-WS Web Services for Oracle WebLogic Server.

The following sections describe how to create a WS-Policy file with web service
MakeConnection assertions that are based on WS-MakeConnection specification at
http://docs. oasi s-open. org/ ws-rx/ wsnc/ 200702.

Web Service MakeConnection Policy Assertion Reference 5-1

http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/
http://docs.oasis-open.org/ws-rx/wsmc/200702

Example of a WS-Policy File With MakeConnection and WS-Policy 1.5

5.2 Example of a WS-Policy File With MakeConnection and WS-Policy 1.5

The following example shows a simple WS-Policy file used to configure
MakeConnection for a WebLogic web service. It specifies support for WS-Policy 1.5.

<?xnml version="1.0"?>

<wspl5: Policy xmns:wspl5="http://ww. w3.org/ns/ws-policy"
xm ns:wsnt="http://docs. oasi s- open. or g/ ws-r x/ wsnt/ 200702" >
<wsnt: MCSupported wspl5: Optional ="true" />

</wspl5: Pol i cy>

5.3 Element Descriptions

The element hierarchy of web service MakeConnection policy assertions in a WS-
Policy file is shown below. Each element is described in more detail in the following
sections.

wsp:Policy
wsmc:MCSupported
5.3.1 wsp:Policy

Groups nested policy assertions.

5.3.2 wsmc:MCSupported

The presence of this assertion in a WS-Policy file indicates that the corresponding web
service uses MakeConnection as the transport model.

The following table summarizes the attributes of the wsnt: MCSuppor t element.

Table 5-1 Attributes of <wsmc:MCSupport>

Attribute Description Required?

opt i onal Specifies whether MakeConnection must be used by the web No
service client. Valid values for this attribute are t r ue and
fal se. Default value is t r ue. If set to f al se, both ReplyTo
and FaultTo headers must contain MakeConnection
anonymous URIs.

5-2 WebLogic Web Services Reference for Oracle WebLogic Server

6

Oracle Web Services Security Policy
Assertion Reference

This chapter provides reference information about the security assertions you can
configure in a WebLogic web services security policy file using the proprietary
schema.

Previous releases of WebLogic Server, released before the formulation of the OASIS
WS-SecurityPolicy specification, used security policy files written under the WS-Policy
specification, using a proprietary schema for web services security policy. This release
of WebLogic Server supports security policy files that conform to the OASIS WS-
SecurityPolicy 1.2 specification at ht t p: / / www. oasi s- open. or g/ conmi tt ees/
downl oad. php/ 21401/ ws- securitypol i cy-1. 2-spec-cd-01. pdf . It still
supports the proprietary web services security policy files first included in WebLogic
Server 9, but this legacy policy format is deprecated and should not be used for new
applications.

This chapter includes the following sections:

¢ Overview of a Policy File That Contains Security Assertions
¢ Example of a Policy File With Security Elements

¢ Element Description

* Using MessageParts To Specify Parts of the SOAP Messages that Must Be
Encrypted or Signed

Note:

This section applies only to JAX-RPC web services using policies written under
the Oracle web services security policy schema, and not to JAX-WS web
services or to policies written under the OASIS WS-SecurityPolicy 1.2
specification.

6.1 Overview of a Policy File That Contains Security Assertions

You can use policy files to configure the message-level security of a WebLogic web
service. Use the @0l i cy and @0l i ci es JWS annotations in the JWS file that
implements the web service to specify the name of the security policy file that is
associated with a WebLogic web service.

A security policy file is an XML file that conforms to the WS-Policy specification at
http://ww+ 106. i bm conif devel operwor ks/ |i brary/ specification/ws-
pol f ram . The root element of a WS-Policy file is always <wsp: Pol i cy>. To
configure message-level security, you add policy assertions that specify the type of

Oracle Web Services Security Policy Assertion Reference 6-1

http://www.oasis-open.org/committees/download.php/21401/ws-securitypolicy-1.2-spec-cd-01.pdf
http://www.oasis-open.org/committees/download.php/21401/ws-securitypolicy-1.2-spec-cd-01.pdf
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/
http://www-106.ibm.com/developerworks/library/specification/ws-polfram/

Example of a Policy File With Security Elements

tokens supported for authentication and how the SOAP messages should be encrypted
and digitally signed.

Note:

These security policy assertions are based on the assertions described in the
December 18, 2002 version of the Web Services Security Policy Language (WS-
SecurityPolicy) specification. This means that although the exact syntax and
usage of the assertions in WebLogic Server are different, they are similar in
meaning to those described in the specification. The assertions are not based
on the latest update of the specification (13 July 2005.)

Policy files using the Oracle web services security policy schema have the following
namespace

<wsp: Pol i cy
xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns:wssp="http:// ww. bea. coml wl s90/ security/ policy"
>

This release of WebLogic Server also includes a large number of packaged policy files
that conform to the OASIS WS-SecurityPolicy 1.2 specification. WS-SecurityPolicy 1.2
policy files and Oracle proprietary web services security policy schema files are not
mutually compatible; you cannot use both types of policy file in the same web services
security configuration. For information about using WS-SecurityPolicy 1.2 security
policy files, see Using WS-SecurityPolicy 1.2 Policy Files in Securing WebLogic Web
Services for Oracle WebLogic Server.

See Configuring Message-Level Security in Securing WebLogic Web Services for Oracle
WebLogic Server for task-oriented information about creating a message-level secured
WebLogic web service.

6.2 Example of a Policy File With Security Elements

<?xm version="1.0"?>
<wsp: Pol i cy
xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns:wssp="http:// ww. bea. coml wl s90/ security/ policy"
xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecuri ty-
utility-1.0.xsd"
xmns:w s="http://ww. bea. com w s90/ security/policy/ wsee#part"
>
<wssp: | dentity>
<wssp: Support edTokens>
<wssp: SecurityToken TokenType="http://docs. oasi s-open. org/ wss/ 2004/ 01/
0asi s-2004- 01- sam -t oken- profil e- 1. 0#SAM.Asserti onl D'>
<wssp: d ai s>
<wssp: Confi rmati onMet hod>sender - vouches</wssp: Conf i r mati onMet hod>
</wssp: C ai ms>
</wssp: SecurityToken>
</ wssp: Suppor t edTokens>
</wssp: | dentity>
<wssp: Confidentiality>
<wssp: KeyW appi ngAl gorithm
URI ="http://ww. w3. or g/ 2001/ 04/ xm enc#rsa-1_5"/>
<wssp: Tar get >
<wssp: Encrypti onAl gorithm

6-2 WebLogic Web Services Reference for Oracle WebLogic Server

Element Description

URI ="ht t p: / / wwwn. w3. or g/ 2001/ 04/ xm enc#t ri pl edes-chc"/>
<wssp: MessagePart s
Di al ect="http://ww. bea. comi W s90/ security/ policy/wsee#part">
w s: Securit yHeader (Assertion)
</ wssp: MessagePart s>
</ wssp: Tar get >
<wssp: Tar get >
<wssp: EncryptionAl gorithm
URI ="ht t p: / / wwwn. w3. or g/ 2001/ 04/ xm enc#t ri pl edes-chc"/>
<wssp: MessagePart s
Di al ect="http://schemas. xn soap. or g/ 2002/ 12/ wsse#part ">
wsp: Body() </ wssp: MessagePart s>
</ wssp: Tar get >
<wssp: Keylnfo />
</wssp: Confidentiality>
</wsp: Pol i cy>

6.3 Element Description

The element hierarchy of web service reliable messaging policy assertions in a WS-
Policy file is shown below. Each element is described in more detail in the following
sections.

Policy {1}
Identity {1}
SupportedTokens {0 or 1}
SecurityToken {1 or nore}
Claims {0 or 1}

UsePassword {0 or 1}
ConfirmationMethod {0 or 1}
TokenLifeTime {0 or 1}
Length {0 or 1}

Label {0 or 1}

Integrity {1}

SignatureAlgorithm {1}

CanonicalizationAlgorithm {1}

SupportedTokens {0 or 1}
SecurityToken {1 or nore}

Target {1 or nore)
DigestAlgorithm {1}

Transform (0 or nore)
MessageParts {1}
Confidentiality {1}

KeyWrappingAlgorithm { 1}

Target {1 or nore}
EncryptionAlgorithm { 1}
Transform {0 or rmore)
MessageParts {1}

KeyInfo {1}

SecurityToken {0 or nore)
SecurityTokenReference {0 or nor e}
MessageAge {1}

6.3.1 CanonicalizationAlgorithm

Specifies the algorithm used to canonicalize the SOAP message elements that are
digitally signed.

Oracle Web Services Security Policy Assertion Reference 6-3

Element Description

Note:

The WebLogic web services security runtime does not support specifying an
InclusiveNamespaces PrefixList that contains a list of namespace prefixes or a
token indicating the presence of the default namespace to the canonicalization
algorithm.

Table 6-1 Attributes of <CanonicalizationAlgorithm>

Attribute Description Required?
URI The algorithm used to canonicalize the SOAP message being Yes
signed.

You can specify only the following canonicalization algorithm:

http://ww. w3. org/ 2001/ 10/ xm - exc- cl 4n#

6.3.2 Claims
Specifies additional metadata information that is associated with a particular type of
security token. Depending on the type of security token, you can or must specify the
following child elements:
¢ For username tokens, you can define a <UsePasswor d> child element to specify
whether you want the SOAP messages to use password digests. For more
information, see UsePassword.
e For SAML tokens, you must define a <Conf i r mat i onMet hod> child element to
specify the type of SAML confirmation (sender - vouches or hol der - of - key) .
For more information, see ConfirmationMethod.
By default, a security token for a secure conversation has a lifetime of 12 hours. To
change this default value, define a <TokenLi f eTi me> child element to specify a new
lifetime, in milliseconds, of the security token. For more information, see
TokenLifeTime.
This element does not have any attributes.
6.3.3 Confidentiality

Specifies that part or all of the SOAP message must be encrypted, as well as the
algorithms and keys that are used to encrypt the SOAP message.

For example, a web service may require that the entire body of the SOAP message
must be encrypted using triple-DES.

Table 6-2 Attributes of <Confidentiality>
-]

Attribute Description Required?
SupportTrustl The valid values for this attribute are t r ue and f al se. The No
0 default value is f al se.

6-4 WebLogic Web Services Reference for Oracle WebLogic Server

Element Description

6.3.4 ConfirmationMethod

Specifies the type of confirmation method that is used when using SAML tokens for
identity. You must specify one of the following two values for this element: sender -
vouches or hol der - of - key. For example:

<wssp: d ai ns>
<wssp: Confi rmati onMet hod>sender - vouches</wssp: Conf i r mat i onMet hod>
</wssp: C ai ms>

This element does not have any attributes.

The <Conf i r mat i onMet hod> element is required only if you are using SAML
tokens.

The exact location of the <Conf i r mat i onMet hod> assertion in the security policy file
depends on the type configuration method you are configuring. In particular:

sender-vouches:

Specify the <Conf i r mat i onMet hod> assertion within an <I dent i t y> assertion, as
shown in the following example:

<?xm version="1.0"?>
<wsp: Pol i cy
xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns:wssp="http:// ww. bea. comf wl s90/ security/ policy"
xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecuri ty-
utility-1.0.xsd"
xm ns: W s="http://ww. bea. coml wl s90/ security/policy/ wsee#part"
>
<wssp: I dentity>
<wssp: Support edTokens>
<wssp: Securi tyToken
TokenType="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 2004- 01- sani - t oken-
profile-1. 0#SAM.Assertionl D'>
<wssp: O ai ns>
<wssp: Confi rmati onMet hod>sender - vouches</wssp: Conf i r mati onMet hod>
</ wssp: C ai ms>
</ wssp: SecurityToken>
</ wssp: Support edTokens>
</wssp: | dentity>
</wsp: Pol i cy>

holder-of-key:

Specify the <Conf i r mat i onMet hod> assertion within an <I nt egr i t y> assertion.
The reason you put the SAML token in the <I nt egr i t y> assertion for this
confirmation method is that the web service runtime must prove the integrity of the
message, which is not required by sender - vouches.

For example:

<?xm version="1.0"?>
<wsp: Pol i cy

xml ns:wsp="http://schenmas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"

xm ns: wssp="http:// ww. bea. conf w s90/ security/ policy"

xm ns:wsu="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecuri ty-
utility-1.0.xsd"

xm ns:w s="http://ww:. bea. coml wl s90/ security/policy/ wsee#part">

<wssp: I ntegrity>

<wssp: Si gnat ureAl gorithm

Oracle Web Services Security Policy Assertion Reference 6-5

Element Description

URI ="http://ww. w3. or g/ 2000/ 09/ xm dsi g#r sa- shal"/>
<wssp: Canoni cal i zati onAl gorithm
URI ="http://ww. w3. or g/ 2001/ 10/ xm - exc- cl4n#"/ >
<wssp: Tar get >
<wssp: Di gest Al gorithm
URI ="htt p: // wwv. w3. or g/ 2000/ 09/ xm dsi g#shal" />
<wssp: MessageParts
Di al ect="http://schemas. xm soap. or g/ 2002/ 12/ wsse#part ">
wsp: Body()
</ wssp: MessagePart s>
</ wssp: Tar get >
<wssp: Support edTokens>
<wssp: Securi tyToken
I ncl udel nMessage="t rue"
TokenType="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 2004- 01- sani - t oken-
profile-1. 0#SAM.Assertionl D'>
<wssp: O ai ns>
<wssp: Confirmati onMet hod>hol der - of - key</ wssp: Confi r mat i onMet hod>
</ wssp: C ai s>
</ wssp: SecurityToken>
</ wssp: Suppor t edTokens>
</wssp: Integrity>
</wsp: Pol i cy>

For more information about the two SAML confirmation methods (sender - vouches
or hol der - of - key), see SAML Token Profile Support in WebLogic Web Services in
Understanding Security for Oracle WebLogic Server.

6.3.5 DigestAlgorithm

Specifies the digest algorithm that is used when digitally signing the specified parts of
a SOAP message. Use the <MessagePar t s> sibling element to specify the parts of the
SOAP message you want to digitally sign. For more information, see MessageParts.

Table 6-3 Attributes of <DigestAlgorithm>

Attribute Description Required?

URI The digest algorithm that is used when digitally signing the Yes
specified parts of a SOAP message.

You can specify only the following digest algorithm:
http:// ww. w3. or g/ 2000/ 09/ xm dsi g#shal

6.3.6 EncryptionAlgorithm

Specifies the encryption algorithm that is used when encrypting the specified parts of
a SOAP message. Use the <MessagePar t s> sibling element to specify the parts of the
SOAP message you want to digitally sign. For more information, see MessageParts.

6-6 WebLogic Web Services Reference for Oracle WebLogic Server

Element Description

6.3.7 Identity

6.3.8 Integrity

Table 6-4 Attributes of <EncryptionAlgorithm>
- |

Attribute

Description Required?

URI

The encryption algorithm used to encrypt specified parts of the ~ Yes
SOAP message.

Valid values are:

http:// ww. w3. or g/ 2001/ 04/ xm enc#tri pl edes- cbc
http:// ww. w3. or g/ 2001/ 04/ xm enc#kw-tri pl edes
http:// ww. w3. or g/ 2001/ 04/ xm enc#aes128- chc

When interoperating between web services built with
WebLogic Workshop 8.1, you must specify htt p: //
www. W3. or g/ 2001/ 04/ xm enc#aes128- chc as the
encryption algorithm.

Specifies the type of security tokens (username, X.509, or SAML) that are supported
for authentication.

This element has no attributes.

Specifies that part or all of the SOAP message must be digitally signed, as well as the
algorithms and keys that are used to sign the SOAP message.

For example, a web service may require that the entire body of the SOAP message
must be digitally signed and only algorithms using SHA1 and an RSA key are

accepted.

Table 6-5 Attributes of <Integrity>

Attribute

Description Required?

SignToken

Specifies whether the security token, specified using the =~ No
<Secur it yToken> child element of <I ntegri ty>,

should also be digitally signed, in addition to the

specified parts of the SOAP message.

The valid values for this attribute are t r ue and f al se.
The default valueist r ue.

SupportTrust10

The valid values for this attribute aret r ue and f al se. No
The default value is f al se.

Oracle Web Services Security Policy Assertion Reference 6-7

Element Description

Table 6-5 (Cont.) Attributes of <Integrity>

Attribute Description Required?

X509AuthConditiona Whenever an Identity assertion includes X.509 tokensin ~ No
1 the supported token list, your policy must also have an
Integrity assertion. The server will not accept X.509
tokens as proof of authentication unless the token is also
used in a digital signature.

If the Identity assertion accepts other token types, you
may use the X509AuthConditional attribute of the
Integrity assertion to specify that the digital signature is
required only when the actual authentication token is an
X.509 token. Remember that abstract Identity assertions
are pre-processed at deploy time and converted into
concrete assertions by inserting a list of all token types
supported by your runtime environment.

6.3.9 Keylnfo

Used to specify the security tokens that are used for encryption.

This element has no attributes.

6.3.10 KeyWrappingAlgorithm

Specifies the algorithm used to encrypt the message encryption key.

Table 6-6 Attributes of <KeyWrappingAlgorithm>

Attribute Description Required?
URI The algorithm used to encrypt the SOAP message encryption Yes
key.

Valid values are:

e http://ww. w3. org/ 2001/ 04/ xm enc#rsa-1_5
(to specify the RSA-v1.5 algorithm)

e http://ww. w3. org/ 2001/ 04/ xm enc#r sa- oaep-
ngf 1p
(to specify the RSA-OAEP algorithm)

6.3.11 Label

Specifies a label for the security context token. Used when configuring WS-
SecureConversation security contexts.

This element has no attributes.

6.3.12 Length

Specifies the length of the key when using security context tokens and derived key
tokens. This assertion only applies to WS-SecureConversation security contexts.

The default value is 32.

This element has no attributes.

6-8 WebLogic Web Services Reference for Oracle WebLogic Server

Element Description

6.3.13 MessageAge

Specifies the acceptable time period before SOAP messages are declared stale and
discarded.

When you include this security assertion in your security policy file, the web services
runtime adds a <Ti nest anp> header to the request or response SOAP message,
depending on the direction (inbound, outbound, or both) to which the security policy
file is associated. The <Ti mest anp> header indicates to the recipient of the SOAP
message when the message expires.

For example, assume that your security policy file includes the following
<MessageAge> assertion:

<wsp: Pol i cy

xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"

xm ns:wssp="http:// ww. bea. coml wl s90/ security/ policy"

xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecuri ty-
utility-1.0.xsd"

>

<wssp: MessageAge Age="300" />
</ wsp: Pol i cy>

The resul ting generated SOAP nessage will have a <Ti mestanp> header similar to the
foll owi ng excerpt:
<wsu: Ti mest anp
wsu: | d=" Dy2PFsX3ZQac qNKEANp XbNVhvhn2 BmB30A2WDe 2EQ0J pi aa T YNWT™
xm ns:wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-
utility-1.0.xsd">
<wsu: Cr eat ed>2005- 11- 09T17: 46: 55Z</ wsu: Cr eat ed>
<wsu: Expi res>2005- 11- 09T17: 51: 55Z</ wsu: Expi r es>
</ wsu: Ti mest anp>

In the example, the recipient of the SOAP message discards the message if received
after 2005- 11- 09T17: 51: 55Z, or five minutes after the message was created.

The web services runtime, when generating the SOAP message, sets the <Cr eat ed>
header to the time when the SOAP message was created and the <Expi r es> header
to the creation time plus the value of the Age attribute of the <MessageAge>
assertion.

The following table describes the attributes of the <MessageAge> assertion.

Table 6-7 Attributes of <MessageAge>
-]

Attribute Description Required?

Age Specifies the actual maximum age time-out for a SOAP No
message, in seconds.

The following table lists the properties that describe the timestamp behavior of the
WebLogic web services security runtime, along with their default values.

Oracle Web Services Security Policy Assertion Reference 6-9

Element Description

Table 6-8 Timestamp Behavior Properties

Property Description Default Value
Clock Specifies whether the web service assumes synchronized true
Synchronized clocks.
Clock If clocks are synchronized, describes the accuracy of the 60000
Precision synchronization. milliseconds
Note: This property is deprecated as of release 9.2 of
WebLogic web services. Use the Clock Skew property
instead. If both properties are set, then Clock Skew takes
precedence.
Clock Skew Specifies the allowable difference, in milliseconds, between 60000
the sender and receiver of the message. milliseconds
Lax Precision ~ Allows you to relax the enforcement of the clock precision false
property.
Note: This property is deprecated as of release 9.2 of
WebLogic web services. Use the Clock Skew property
instead.
Max Specifies the freshness policy for received messages. -1
Processing
Delay
Validity Represents the length of time the sender wants the 60 seconds
Period outbound message to be valid.

You typically never need to change the values of the preceding timestamp properties.
However, if you do need to, you must use the WebLogic Server Administration
Console to create the def aul t _wss web service Security Configuration, if it does not
already exist, and then update its timestamp configuration by clicking on the
Timestamp tab. See Create a web service security configuration for task information
and Domains: Web Services Security: Timestamp in the Oracle WebLogic Server
Administration Console Online Help for additional reference information about these
timestamp properties.

6.3.14 MessageParts

Specifies the parts of the SOAP message that should be signed or encrypted,
depending on the grand-parent of the element. You can use either an XPath 1.0
expression or a set of pre-defined functions within this assertion to specify the parts of
the SOAP message.

The MessagePar t s assertion is always a child of a Tar get assertion. The Tar get
assertion can be a child of either an | nt egri t y assertion (to specify how the SOAP
message is digitally signed) or a Confi denti al i t y assertion (to specify how the
SOAP messages are encrypted.)

See Using MessageParts To Specify Parts of the SOAP Messages that Must Be
Encrypted or Signed for detailed information about using this assertion, along with a
variety of examples.

6-10 WebLogic Web Services Reference for Oracle WebLogic Server

Element Description

Table 6-9 Attributes of <MessageParts>
-]

Attribute Description Required?

Dialect Identifies the dialect used to identity the parts of the SOAP Yes
message that should be signed or encrypted. If this attribute is
not specified, then XPath 1.0 is assumed.

The value of this attribute must be one of the following:

e http://ww. w3. org/ TR/ 1999/ REC- xpat h- 19991116:
Specifies that an XPath 1.0 expression should be used
against the SOAP message to specify the part to be signed
or encrypted.

e http://schemas. xm soap. or g/ 2002/ 12/ wsse#part:
Convenience dialect used to specify that the entire SOAP
body should be signed or encrypted.

e http://ww. bea. comlw s90/ security/policy/
wsee#par t : Convenience dialect to specify that the
WebLogic-specific headers should be signed or encrypted.
You can also use this dialect to use QNames to specify the
parts of the security header that should be signed or
encrypted.

See Using MessageParts To Specify Parts of the SOAP Messages

that Must Be Encrypted or Signed for examples of using these

dialects.

6.3.15 Policy

Groups nested policy assertions.

6.3.16 SecurityToken

Specifies the security token that is supported for authentication, encryption or digital
signatures, depending on the parent element.

For example, if this element is defined in the <I dent i t y> parent element, then is
specifies that a client application, when invoking the web service, must attach a
security token to the SOAP request. For example, a web service might require that the
client application present a SAML authorization token issued by a trusted
authorization authority for the web service to be able to access sensitive data. If this
element is part of <Conf i denti al i t y>, then it specifies the token used for
encryption.

The specific type of the security token is determined by the value of its TokenType
attribute, as well as its parent element.

By default, a security token for a secure conversation has a lifetime of 12 hours. To
change this default value, add a <Cl ai 8> child element that itself has a
<TokenLi f eTi me> child element, as described in Claims.

Oracle Web Services Security Policy Assertion Reference 6-11

Element Description

Table 6-10 Attributes of <SecurityToken>
-]

Attribute Description Required?
DerivedFromTokenTyp Specifies what security token it is derived from. For No
e example, a value of "http://

schemas.xmlsoap.org/ws/2005/02/sc/sct" specifies
that it is derived from an old version of Secure
Conversation Token.

IncludeInMessage Specifies whether to include the token in the SOAP No
message.

Valid values aret rue or f al se.

The default value of this attribute is f al se when used
in the <Confi denti al i t y>assertionandtrue
when used in the <I nt egri t y> assertion.

The value of this attribute is always t r ue when used in
the <l dent i t y> assertion, even if you explicitly set it
tofal se.

TokenType Specifies the type of security token. Valid values are: Yes

e http://docs. oasi s-open. or g/ wss/
2004/ 01/ oasi s- 200401- wss- x509- t oken-
profile-1. 0#X509v3 (To specify a binary X.509
token)

e http://docs. oasi s-open. org/ wss/
2004/ 01/ oasi s- 200401- wss- user name-
t oken-profil e- 1. 0#User nanmeToken (To
specify a username token)

e http://docs. oasi s-open. or g/ wss/
2004/ 01/ oasi s- 2004- 01- saml -t oken-
profile-1. 0#SAM.Asserti onl D(To specify a
SAML token)

6.3.17 SecurityTokenReference
For internal use only.

You should never include this security assertion in your custom security policy file; it
is described in this section for informational purposes only. The WebLogic web
services runtime automatically inserts this security assertion in the security policy file
that is published in the dynamic WSDL of the deployed web service. The security
assertion specifies WebLogic Server's public key; the client application that invokes the
web service then uses it to encrypt the parts of the SOAP message specified by the
security policy file. The web services runtime then uses the server's private key to
decrypt the message.

6.3.18 SignatureAlgorithm
Specifies the cryptographic algorithm used to compute the digital signature.

6-12 WebLogic Web Services Reference for Oracle WebLogic Server

Element Description

Table 6-11 Attributes of <SignatureAlgorithm>

Attribute Description Required?
URI Specifies the cryptographic algorithm used to compute the Yes
signature.

Note: Be sure that you specify an algorithm that is compatible
with the certificates you are using in your enterprise.

Valid values are:

http:// ww. w3. or g/ 2000/ 09/ xm dsi g#r sa- shal
http:// ww. w3. or g/ 2000/ 09/ xm dsi g#dsa- shal

6.3.19 SupportedTokens

Specifies the list of supported security tokens that can be used for authentication,
encryption, or digital signatures, depending on the parent element.

This element has no attributes.

6.3.20 Target

Encapsulates information about which targets of a SOAP message are to be encrypted
or signed, depending on the parent element.

The child elements also depend on the parent element; for example, when used in

<l ntegrity>, you can specify the <Di gest Al gori t hne, <Tr ansf or n>, and
<MessagePar t s> child elements. When used in <Confi denti al i t y>, you can
specify the <Encr ypti onAl gori t hme, <Tr ansf or m>, and <MessagePar t s> child
elements.

You can have one or more targets.

Table 6-12 Attributes of <Target>

Attribute Description Required?

encryptContentOnl Specifies whether to encrypt an entire element, or justits =~ No
y content.

This attribute can be specified only when <Tar get >is a
child element of <Confi denti al i ty>.

Default value of this attribute is t r ue, which means that
only the content is encrypted.

6.3.21 TokenLifeTime

Specifies the lifetime, in seconds, of the security context token or derived key token.
This element is used only when configuring WS-SecurityConversation security
contexts.

The default lifetime of a security token is 12 hours (43,200 seconds).

This element has no attributes.

Oracle Web Services Security Policy Assertion Reference 6-13

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

6.3.22 Transform

Specifies the URI of a transformation algorithm that is applied to the parts of the
SOAP message that are signed or encrypted, depending on the parent element.

You can specify zero or more transforms, which are executed in the order they appear
in the <Tar get > parent element.

Table 6-13 Attributes of <Transform>

Attribute Description Required?
URI Specifies the URI of the transformation algorithm. Yes
Valid URIs are:

e http://ww. w3. org/ 2000/ 09/ xm dsi g#base64
(Base64 decoding transforms)

e http://ww. w3. org/ TR 1999/ REC- xpat h- 19991116
(XPath filtering)

For detailed information about these transform algorithms, see

XML-Signature Syntax and Processing at ht t p: //

www, W3. or g/ TR/ xml dsi g- cor e/ #sec- Tr ansf or nAl g.

6.3.23 UsePassword

Specifies that whether the plaintext or the digest of the password appear in the SOAP
messages. This element is used only with username tokens.

Table 6-14 Attributes of <UsePassword>
-

Attribute Description Required?

Type Specifies the type of password. Valid values are: Yes

e http://docs. oasi s-open. or g/ wss/ 2004/ 01/
oasi s- 200401- wss- user nane-t oken-
profile-1. 0#Passwor dText : Specifies that cleartext
passwords should be used in the SOAP messages.
e http://docs. oasi s-open. or g/ wss/ 2004/ 01/
oasi s- 200401- wss- user nane-t oken-
profile-1. 0#Passwor dDi gest : Specifies that password
digests should be used in the SOAP messages.
Note: For backward compatibility reasons, the two preceding
URISs can also be specified with an initial "www." For example:

e http://ww. docs. oasi s-open. or g/ wss/ 2004/ 01/
oasi s- 200401- wss- user namne-t oken-
profile-1. 0#Passwor dText

e http://ww. docs. oasi s- open. or g/ wss/ 2004/ 01/
oasi s- 200401- wss- user nane-t oken-
profile-1. 0#Passwor dDi gest

6.4 Using MessageParts To Specify Parts of the SOAP Messages that
Must Be Encrypted or Signed

When you use either the | nt egri ty or Confi denti al i ty assertion in your security
policy file, you are required to also use the Tar get child assertion to specify the
targets of the SOAP message to digitally sign or encrypt. The Tar get assertion in turn

6-14 WebLogic Web Services Reference for Oracle WebLogic Server

http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg
http://www.w3.org/TR/xmldsig-core/#sec-TransformAlg

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

requires that you use the MessagePar t s child assertion to specify the actual parts of
the SOAP message that should be digitally signed or encrypted. This section describes
various ways to use the MessagePar t s assertion.

See Example of a Policy File With Security Elements for an example of a complete
security policy file that uses the MessagePar t s assertion within a

Confidenti al i ty assertion. The example shows how to specify that the entire body,
as well as the Asser ti on security header, of the SOAP messages should be
encrypted.

You use the Di al ect attribute of MessagePar t s to specify the dialect used to
identify the SOAP message parts. The WebLogic web services security runtime
supports the following three dialects:

e XPath 1.0
e Pre-Defined wsp:Body() Function

¢ WebLogic-Specific Header Functions

Be sure that you specify a message part that actually exists in the SOAP messages that
result from a client invoke of a message-secured web service. If the web services
security runtime encounters an inbound SOAP message that does not include a part
that the security policy file indicates should be signed or encrypted, then the web
services security runtime returns an error and the invoke fails. The only exception is if
you use the WebLogic-specific WM s: Syst emHeader () function to specify that any
WebLogic-specific SOAP header in a SOAP message should be signed or encrypted; if
the web services security runtime does not find any of these headers in the SOAP
message, the runtime simply continues with the invoke and does not return an error.

6.4.1 XPath 1.0

This dialect enables you to use an XPath 1.0 expression to specify the part of the SOAP
message that should be signed or encrypted. The value of the Di al ect attribute to
enable this dialectis ht t p: / / www. wW3. or g/ TR/ 1999/ REC- xpat h- 19991116.

You typically want to specify that the parts of a SOAP message that should be
encrypted or digitally signed are child elements of either the soap: Body or

soap: Header elements. For this reason, Oracle provides the following two functions
that take as parameters an XPath expression:

e wsp: Get Body(xpat h_expr essi on) —Specifies that the root element from
which the XPath expression starts searching is soap: Body.

e wsp: Get Header (xpat h_expr essi on) —Specifies that the root element from
which the XPath expression starts searching is soap: Header .

You can also use a plain XPath expression as the content of the MessagePart s
assertion, without one of the preceding functions. In this case, the root element from
which the XPath expression starts searching is soap: Envel ope.

The following example specifies that the AddI nt part, with namespace prefix n1 and
located in the SOAP message body, should be signed or encrypted, depending on
whether the parent Tar get parentisachild of I ntegrity orConfidentiality
assertion:

<wssp: MessagePart s
Di al ect="http://ww. w3. or g/ TR/ 1999/ REC- xpat h- 19991116"
xm ns:nl="http://ww. bea. con f 00" >

Oracle Web Services Security Policy Assertion Reference 6-15

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

wsp: Get Body(./ nl: Addl nt)
</ wssp: MessagePart s>

The preceding example shows that you should define the namespace of a part
specified in the XPath expression (nl in the example) as an attribute to the
MessagePar t s assertion, if you have not already defined the namespace elsewhere in
the security policy file.

The following example is similar, except that the part that will be signed or encrypted
iswsu: Ti mest anp, which is a child element of wsee: Securi ty and is located in the
SOAP message header:

<wssp: MessageParts
Di al ect="http://ww. w3. or g/ TR/ 1999/ REC- xpat h- 19991116" >
wsp: Get Header (. /wsse: Security/ wsu: Ti mest anp)
</ wssp: MessagePart s>

In the preceding example, it is assumed that the wsee: and wse: namespaces have
been defined elsewhere in the security policy file.

Note:

It is beyond the scope of this document to describe how to create XPath
expressions. For detailed information, see the XML Path Language (XPath),
Version 1.0, at ht t p: / / www. W3. or g/ TR/ xpat h specification.

6.4.2 Pre-Defined wsp:Body() Function

The XPath dialect described in XPath 1.0 is flexible enough for you to pinpoint any
part of the SOAP message that should be encrypted or signed. However, sometimes
you might just want to specify that the entire SOAP message body be signed or
encrypted. In this case using an XPath expression is unduly complicated, so Oracle
recommends you use the dialect that pre-defines the wsp: Body() function for just
this purpose, as shown in the following example:

<wssp: MessageParts
Di al ect="http://schemas. xm soap. or g/ 2002/ 12/ wsse#part ">
wsp: Body()
</ wssp: MessagePart s>

6.4.3 WebLogic-Specific Header Functions

Oracle provides its own dialect that pre-defines a set of functions to easily specify that
some or all of the WebLogic security or system headers should be signed or encrypted.
Although you can achieve the same goal using the XPath dialect, it is much simpler to
use this WebLogic dialect. You enable this dialect by setting the Di al ect attribute to
http://ww. bea. comw s90/ security/policy/ wsee#part.

The w s: Syst enHeader s() function specifies that all of the WebLogic-specific
headers should be signed or encrypted. These headers are used internally by the
WebLogic web services runtime for various features, such as reliable messaging and
addressing. The headers are:

e wsrm SequenceAcknow edgemnent
e wsrm AckRequest ed

e wWsrm Sequence

6-16 WebLogic Web Services Reference for Oracle WebLogic Server

http://www.w3.org/TR/xpath

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

e wsa: Action

e wsa: FaultTo

e wsa: From

e wsa: Messagel D

e wsa: Rel atesTo

e wsa: Repl yTo

e wsa: To

e wsax: Set Cooki e

The following example shows how to use the W s: Syst emHeader () function:

<wssp: MessagePart s
Di al ect="http://ww. bea. coml wl s90/ security/policy/ wsee#part">
w s: Syst enHeader s()
</ wssp: MessagePart s>

Use the w s: Securi t yHeader (header) function to specify a particular part in the
security header that should be signed or encrypted, as shown in the following
example:

<wssp: MessagePart s
Di al ect="http://ww. bea. com W s90/ security/ policy/wsee#part">
wl s: Securit yHeader (wsa: From)
</ wssp: MessagePart s>

In the example, only the wsa: Fr omsecurity header is signed or encrypted. You can
specify any of the preceding list of headers to the W s: Securi t yHeader () function.

Oracle Web Services Security Policy Assertion Reference 6-17

Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed

6-18 WebLogic Web Services Reference for Oracle WebLogic Server

v

WebLogic Web Service Deployment
Descriptor Schema Reference

This chapter provides information about the WebLogic web services deployment
descriptor file, webl ogi c- webser vi ces. xni .

This chapter includes the following sections:
* Overview of weblogic-webservices.xml
¢ Example of a weblogic-webservices.xml Deployment Descriptor File

¢ Element Descriptions

7.1 Overview of weblogic-webservices.xml

The standard Java EE deployment descriptor for web services is called

webser vi ces. xm . This file specifies the set of web services that are to be deployed
to WebLogic Server and the dependencies they have on container resources and other
services. See the web services XML Schema athtt p: //j ava. sun. conf xm / ns/

j 2eel j 2ee_web_servi ces_1_1. xsd for a full description of this file.

The WebLogic equivalent to the standard Java EE webser vi ces. xnl deployment
descriptor file is called webl ogi c- webser vi ces. xml . This file contains WebLogic-
specific information about a WebLogic web service, such as the URL used to invoke
the deployed web service, configuration settings such as timeout values, and so on.

For the XML Schema file that describes the webl ogi c- webser vi ces. xm
deployment descriptor, see ht t p: / / xml ns. or acl e. com webl ogi ¢/ webl ogi c-
webservi ces/ 1. 1/ webl ogi c- webser vi ces. xsd.

Both deployment descriptor files are located in the same location on the Java EE
archive that contains the web service. In particular:

¢ For Java class-implemented web services, the web service is packaged as a Web
application WAR file and the deployment descriptors are located in the WEB-INF
directory.

¢ For stateless session E]B-implemented web services, the web service is packaged as
an EJB JAR file and the deployment descriptors are located in the META-INF
directory.

The structure of the webl ogi ¢c- webser vi ces. xnl file is similar to the structure of
the Java EE webser vi ces. xm file in how it lists and identifies the web services that
are contained within the archive. For example, for each web service in the archive,
both files have a <webser vi ce- descri pti on> child element of the appropriate
root element (<webser vi ces> for the Java EE webser vi ces. xm file and

<webl ogi c- webser vi ces> for the webl ogi c- webservi ces. xm file)

WebLogic Web Service Deployment Descriptor Schema Reference 7-1

http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd
http://java.sun.com/xml/ns/j2ee/j2ee_web_services_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd

Example of a weblogic-webservices.xml Deployment Descriptor File

This section is published for informational purposes only. Typically, configuration
updates are made using the WebLogic Server Administration Console or using JWS
annotations and you will not need to edit either of the deployment descriptor files
directly.

Note:

The data type definitions of two elements in the webl ogi c-

webser vi ces. xn file (login-config and transport-guarantee) are imported
from the Java EE Schema for the web. xm file. See the Servlet Deployment
Descriptor Schema at htt p: //j ava. sun. coml xm / ns/j 2ee/ web-
app_2_4. xsd for details about these elements and data types.

7.2 Example of a weblogic-webservices.xml Deployment Descriptor File

The following example shows a simple webl ogi c- webser vi ces. xm deployment
descriptor:

<?xm version="1.0" encoding=' UTF-8' ?>
<webl ogi c- webser vi ces
xm ns="http://xm ns. oracl e. conf webl ogi c/ webl ogi c- webservi ces">
<webservi ce- descri ption>
<webservi ce- descri ption-name>M Ser vi ce</ webser vi ce- descri ption- name>
<port - conponent >
<port - conponent - name>MSer vi ceSer vi cePor t </ port - conponent - name>
<servi ce- endpoi nt - addr ess>
<webser vi ce- cont ext pat h>/ MySer vi ce</ webser vi ce- cont ext pat h>
<webservi ce-serviceuri >/ MyServi ce</ webservi ce- servi ceuri >
</ servi ce- endpoi nt - addr ess>
<wsat - confi g>
<ver si on>WBAT10</ ver si on>
<f| owType>SUPPORTS</ f | owType>
</wsat - confi g>
<reliability-config>
<inactivity-timeout>PODT600S</inactivity-timeout>
<base-retransmni ssi on-interval >PODT3S</ base-r et ransmi ssi on-i nt erval >
<retransm ssi on- exponenti al - backof f >t rue
</retransni ssi on-exponenti al - backof f >
<acknow edgement - i nt er val >PODT3S</ acknow edgenent -i nt erval >
<sequence- expi rat i on>P1D</ sequence- expi rat i on>
<buf fer-retry-count>3</buffer-retry-count>
<buffer-retry-del ay>PODT5S</ buf f er-retry-del ay>
</reliability-config>
</ port - conponent >
</ webservi ce-description>
</ webl ogi c- webser vi ces>

7.3 Element Descriptions

The element hierarchy of the webl ogi c- webser vi ces. xm deployment descriptor
file is shown below. The number of occurrences allowed is listed in braces following
the element name. Each element is described in detail in the following sections.

<weblogic-webservices> {1}
<webservice-description> {1 or nore}
<webservice-description-name> {1 or more}
<webservice-type> {0 or 1}

7-2 WebLogic Web Services Reference for Oracle WebLogic Server

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

Element Descriptions

<wsdl-publish-file {0 or 1}
<port-component> {0 or nor e}
<port-component-name> {1}
<service-endpoint-address> {0 or 1}
<webservice-contextpath> {1}
<webservice-serviceuri> {1}
<auth-constraint> {0 or 1}
<login-config> {0 or 1}
<transport-guarantee> {0 or 1}
<deployment-listener-list> {0 or 1}
<deployment-listener> {1 or nore}
<wsdl> {0 or 1}
<exposed> {1}
<transaction-timeout> {0 or 1}
<callback-protocol> {1}
<stream-attachments> {0 or 1}
<validate-request> {0 or 1}
<http-flush-response> {0 or 1}
<http-response-buffersize> {0 or 1}
<reliability-config> {0 or 1}
<customized> {0 or 1}
<inactivity-timeout> {0 or 1}
<base-retransmission-interval> {0 or 1}
<retransmission-exponential-backoff> {0 or 1}
<non-buffered-source> {0 or 1}
<acknowledgement-interval> {0 or 1}
<sequence-expiration> {0 or 1}
<buffer-retry-count> {0 or 1}
<buffer-retry-delay> {0 or 1}
<non-buffered-destination> {0 or 1}
<messaging-queue-jndi-name> {0 or 1}
<messaging-queue-mdb-run-as-principal-name> {0 or 1}
<persistence-config> {0 or 1}
<customized> {0 or 1}
<default-logical-store-name> {0 or 1}
<buffering-config> {0 or 1}
<customized> {0 or 1}
<request-queue> {0 or 1}
<name> {0 or 1}
<enabled> {0 or 1}
<connection-factory-jindi-name> {0 or 1}
<transaction-enabled> {0 or 1}
<response-queue> {0 or 1}
<name> {0 or 1}
<enabled> {0 or 1}
<connection-factory-jndi-name> {0 or 1}
<transaction-enabled> {0 or 1}
<retry-count> {0 or 1}
<retry-delay> {0 or 1}
<wsat-config> {0 or 1}
<version> {0 or 1}
<flowType> {0 or 1}
<operation> {0 or nore}
<name> {0 or 1}
<wsat-config> {0 or 1}
<version> {0 or 1}
<flowType> {0 or 1}

WebLogic Web Service Deployment Descriptor Schema Reference 7-3

Element Descriptions

<soapjms-service-endpoint-address> {0 or 1}
<lookup-variant> {0 or 1}
<destination-name> {0 or 1}
<destination-type> {0 or 1}
<jndi-connection-factory-name> {0 or 1}
<jndi-initial-context-factory> {0 or 1}
<jndi-url> {0 or 1}
<jndi-context-parameter> {0 or 1}
<time-to-live> {0 or 1}
<priority> {0 or 1}
<delivery-mode> {0 or 1}
<reply-to-name> {0 or 1}
<target-service> {0 or 1}
<binding-version> {0 or 1}
<message-type> {0 or 1}
<enable-http-wsdl-access> {0 or 1}
<run-as-principal> {0 or 1}
<run-as-role> {0 or 1}
<mdb-per-destination> {0 or 1}
<activation-config> {0 or 1}

<fastinfoset> {0 or 1}
<logging-level> {0 or 1}
<webservice-security> {0 or 1}

<mbean-name> {1}

7.3.1 acknowledgement-interval

The <acknow edgenent - i nt er val > child element of the <rel i abi | i ty-
conf i g> element specifies the maximum interval during which the destination
endpoint must transmit a stand-alone acknowledgement.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMhDTnHNMB

Table 7-1 describes the duration format fields. This value defaults to PODT3S (3
seconds).

Table 7-1 Duration Format Description
. ___|

Field Description

ny Number of years (n).

nM Number of months (n).
nD Number of days (n).

T Date and time separator.
nH Number of hours (n).
nM Number of minutes (n).
nS Number of seconds (n).

For more information, see Configuring the Acknowledgement Interval in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7-4 WebLogic Web Services Reference for Oracle WebLogic Server

Element Descriptions

7.3.2 activation-config

The <act i vati on- confi g> child element of the <soapj ns- ser vi ce- endpoi nt -
addr ess> element specifies activation configuration properties passed to the J]MS
provider. Each property is specified using name-value pairs, separated by semicolons
(;). For example: namel=val uel; . .. ; nanmeN=val ueN

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server. For a list of valid activation properties, see
Configuring JMS Transport Properties in Developing JAX-WS Web Services for Oracle
WebLogic Server.

7.3.3 auth-constraint

The <aut h- const r ai nt > element defines the user roles that are permitted access to
this resource collection.

The XML Schema data type of the <j 2ee: aut h- const r ai nt > element is

<j 2ee: aut h- const r ai nt Type>, and is defined in the Java EE Schema that
describes the standard web. xm deployment descriptor. For the full reference
information, see htt p: //j ava. sun. conml xm / ns/j 2ee/ web- app_2_4. xsd.

7.3.4 base-retransmission-interval

The <base-r et ransm ssi on-i nt er val > child element of the <rel i abi | i ty-
conf i g> element specifies the interval of time that must pass before a message is
retransmitted to the RM destination. This element can be used in conjunction with the
<retransni ssi on- exponenti al - backof f > element to specify the algorithm that
is used to adjust the retransmission interval.

If a destination endpoint does not acknowledge a sequence of messages for the time
interval specified by <base-r et r ansmni ssi on-i nt er val >, the exponential backoff
algorithm is used for timing successive retransmissions by the source endpoint,
should the message continue to go unacknowledged.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMDTnHIMS
Table 7-1 describes the duration format fields. This value defaults to PODT3S (3
seconds).

For more information, see Configuring the Base Retransmission Interval in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.5 binding-version

The <bi ndi ng- ver si on> child element of the <soapj ms- ser vi ce- endpoi nt -
addr ess> element defines the version of the SOAP JMS binding. This value must be
set to 1. O for this release, which equates to

org.jvnet.ws.jns. JVBBI ndi ngVer si on. SOAP_JM5_1_0. This value maps to
the SOAPIMS_bi ndi ngVer si on JMS message property.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

WebLogic Web Service Deployment Descriptor Schema Reference 7-5

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

Element Descriptions

7.3.6 buffer-retry-count

The <buf f er - r et ry- count > child element of the <rel i abi | i t y- confi g>
element specifies the number of times that the JMS queue on the destination WebLogic
Server instance attempts to deliver the message from a client that invokes the reliable
operation to the web service implementation. This value defaults to 3.

For more information, see Using Web Services Reliable Messaging in Developing JAX-
WS Web Services for Oracle WebLogic Server.

7.3.7 buffer-retry-delay

The <buf f er - r et ry- del ay> child element of the <rel i abi | i t y- confi g>
element specifies the amount of time that elapses between message delivery retry
attempts. The retry attempts are between the client's request message on the JMS
queue and delivery of the message to the web service implementation.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMhDTnHNMVS

Table 7-1 describes the duration format fields.This value defaults to PODT5S (5
seconds).

For more information, see Using Web Services Reliable Messaging in Developing JAX-
WS Web Services for Oracle WebLogic Server.

7.3.8 buffering-config

The <buf f eri ng- conf i g> element groups together the buffering configuration
elements. The child elements of the <buf f er i ng- conf i g> element specify runtime
configuration values such as retry counts and delays.

For more information, see Configuring Message Buffering for Web Services in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.9 callback-protocol

The <cal | back- pr ot ocol > child element of the <port - conponent > element
specifies the protocol used for callbacks to notify clients of an event. Valid values
include: htt p, htt ps, orj ns.

7.3.10 connection-factory-jndi-name

The <connecti on-f act ory-j ndi - name> child element of the <r equest - queue>
and <r esponse- queue> elements specifies the JNDI name of the connection factory
to use for request and response message buffering, respectively.

For more information, see Configuring Message Buffering for Web Services in
Developing JAX-WS Web Services for Oracle WebLogic Server.
7.3.11 customized

The <cust oni zed> child element of the <r el i abi | i t y-confi g>,
<per si st ence- confi g>, and <buf f eri ng- conf i g>is a Boolean flag that
specifies whether the configuration has been customized.

7-6 WebLogic Web Services Reference for Oracle WebLogic Server

Element Descriptions

7.3.12 default-logical-store-name

The <def aul t - | ogi cal - st or e- nane> child element of the <per si st ence-
conf i g> element defines the name of the default logical store.

For more information, see Managing Web Service Persistence in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.13 delivery-mode

The <del i ver y- node> child element of the <soapj ns- ser vi ce- endpoi nt -
addr ess> element specifies the delivery mode indicating whether the request
message is persistent. Valid values are

org.jvnet.ws.jns. DeliveryMde. PERSI STENT and

org.jvnet.ws.jns. DeliveryMde. NON_PERSI STENT. This value defaults to
PERSI STENT.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.14 deployment-listener-list

For internal use only.

7.3.15 deployment-listener

For internal use only.

7.3.16 destination-name

The <dest i nat i on- name> child element of the <soapj ns- ser vi ce- endpoi nt -
addr ess> element defines the name of the destination queue or topic. This value
defaults to com or acl e. webser vi ces. j ns. Request Queue.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.17 destination-type

The <dest i nat i on-t ype> child element of the <soapj ns- ser vi ce- endpoi nt -
addr ess> element defines the destination type. Valid values are
org.jvnet.ws.jms. JMSDestinati onType. QUEUE or
org.jvnet.ws.jns.JMSDestinati onType. TOPI C. This value defaults to QUEUE.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.18 enable-http-wsdl-access

The <enabl e- htt p- wsdl - access> child element of the <soapj ns- servi ce-
endpoi nt - addr ess> element is a Boolean value that specifies whether to publish
the WSDL through HTTP.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

WebLogic Web Service Deployment Descriptor Schema Reference 7-7

Element Descriptions

7.3.19 enabled

The <enabl ed> child element of the <r equest - queue> and <r esponse- queue>
elements specifies whether request and response message buffering is enabled,
respectively.

For more information, see Configuring Message Buffering for Web Services in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.20 exposed

The <exposed> child element of the <wsd| > element is a boolean attribute indicating
whether the WSDL should be exposed to the public when the web service is deployed.

7.3.21 fastinfoset

The <f ast i nf oset > child element of the <port - conponent > element is a Boolean
flag that specifies whether Fast Infoset is supported for the web service port
component.

For more information, see Using Fast Infoset in Developing JAX-WS Web Services for
Oracle WebLogic Server.

7.3.22 flowType

The <f | owt ype> child element of the <wsat - conf i g> element specifies Whether
the web service atomic transaction coordination context is passed with the transaction
flow. Valid values include: NEVER, SUPPORTS, and MANDATORY. The value defaults to
SUPPORTS.

For complete details on the valid values and their meanings, and valid value
combinations when configuring web service atomic transactions for an EJB-style web
service that uses the @Tr ansacti onAt tri but e annotation, see the Flow Type
Values table in Enabling Web Services Atomic Transactions on Web Services in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.23 http-flush-response

The <ht t p- f | ush- r esponse> child element of the <port - conponent > element
specifies whether or not you want to flush the reliable response. This value defaults to
true.

7.3.24 http-response-buffersize

The <ht t p- r esponse- buf f er si ze> child element of the <port - conponent >
element specifies the size of the reliable response buffer that is used to cache the
request on the server. This value defaults to 0.

7.3.25 inactivity-timeout

The <i nacti vi t y-ti meout > child element of the <rel i abi | i t y-confi g>
element specifies an inactivity interval. If, during the specified interval, an endpoint
(RM source or RM destination) has not received application or control messages, the
endpoint may consider the RM sequence to have been terminated due to inactivity.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

7-8 WebLogic Web Services Reference for Oracle WebLogic Server

Element Descriptions

PnYnMhDTnHNMhS

Table 7-1 describes the duration format fields. This value defaults to PODT600S (600
seconds).

For more information, see Configuring Inactivity Timeout in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.26 jndi-connection-factory-name

The <j ndi - connecti on- f act or y- name> child element of the <soapj ns-
servi ce- endpoi nt - addr ess> element defines the JNDI name of the connection
factory that is used to establish a JMS connection. This value defaults to

com or acl e. webservi ces. j ms. Connecti onFact ory.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.27 jndi-context-parameter

The <j ndi - cont ext - par anet er > child element of the <soapj ns- ser vi ce-
endpoi nt - addr ess> element defines additional JNDI environment properties. Each
property is specified using name-value pairs, separated by semicolons (;). For
example: namel=val uel; ... ; nameN=val ueN.

JNDI properties. Each property is specified using name-value pairs, separated by
semicolons (;). For example: namel=val uel; . . .; nameN=val ueN

This property can be specified more than once. Each occurrence of the

j ndi Cont ext Par amet er property specifies a JNDI property name-value pair to be
added to the j ava. uti | . Hasht abl e sent to the | ni ti al Cont ext constructor for
the JNDI provider.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.28 jndi-initial-context-factory

7.3.29 jndi-url

The <j ndi -i ni tial -connecti on-fact or y> child element of the <soapj ns-
servi ce- endpoi nt - addr ess> element defines the name of the initial context
factory class used for JNDI lookup. This value defaults to

webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory.

This value maps to the j ava. nam ng. factory.ini ti al property.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

The <j ndi - ur | > child element of the <soapj nms- servi ce- endpoi nt - addr ess>
element defines the JNDI provider URL. This value maps to the

j ava. nam ng. provi der. url property. This value defaults tot 3: / /| ocal host :
7001.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

WebLogic Web Service Deployment Descriptor Schema Reference 7-9

Element Descriptions

7.3.30 logging-level

The <I oggi ng- | evel > child element of the <port-component> element sets the
logging level for the port component. Valid values include: SEVERE, WARNI NG, | NFOQ,
CONFI G FI NE, FI NER, FI NEST, ALL, and OFF.

7.3.31 login-config

The <j 2ee: | ogi n- confi g> element specifies the authentication method that should
be used, the realm name that should be used for this application, and the attributes
that are needed by the form login mechanism.

The XML Schema data type of the <j 2ee: | ogi n- conf i g> element is

<j 2ee: | ogi n- confi gType>, and is defined in the Java EE Schema that describes
the standard web. xm deployment descriptor. For the full reference information, see
http://java. sun.conf xm / ns/j2ee/ web-app_2_4. xsd.

7.3.32 lookup-variant

The <l ookup- var i ant > child element of the <soapj ns- ser vi ce- endpoi nt -
addr ess> element defines the method used for looking up the specified destination
name. This value must be set to j ndi to support SOAP over JMS transport.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.33 mbean-name

The <mbean- name> child element of the <webser vi ce- securi t y> element
specifies the name of the web service security configuration (specifically an
instantiation of the Webser vi ceSecuri t yMBean) that is associated with the web
services described in the deployment descriptor file. The default configuration is
called def aul t _wss.

The associated security configuration specifies information such as whether to use an
X.509 certificate for identity, whether to use password digests, the keystore to be used
for encryption and digital signatures, and so on.

You must create the security configuration (even the default one) using the WebLogic
Server Administration Console before you can successfully invoke the web service.

Note:

The web service security configuration described by this element applies to all
web services contained in the webl ogi ¢c- webser vi ces. xnl file. The j wsc
Ant task always packages a web service in its own JAR or WAR file, so this
limitation is not an issue if you always use the j wsc Ant task to generate a
web service. However, if you update the webl ogi c- webser vi ces. xni
deployment descriptor manually and add additional web service descriptions,
you cannot associate different security configurations to different services.

7.3.34 mdb-per-destination

The <ndb- per - dest i nat i on> child element of the <soapj ns- servi ce-
endpoi nt - addr ess> element is a Boolean value that specifies whether to create one

7-10 WebLogic Web Services Reference for Oracle WebLogic Server

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

Element Descriptions

listening message-driven bean (MDB) for each requested destination. This value
defaultstot r ue.

If set to f al se, one listening MDB is created for each web service port, and that MDB
cannot be shared by other ports.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.35 message-type

The <nessage- t ype> child element of the <soapj ns- ser vi ce- endpoi nt -

addr ess> element specifies message type to use with the request message. A value of
BYTES indicates the j avax. j ms. Byt esMessage object is used. A value of TEXT
indicates j avax. j ms. Text Message object is used. This value defaults to BYTES.

The web service uses the same message type when sending the response. If the request
is received as a BYTES, the reply will be sent as a BYTES.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.36 messaging-queue-jndi-name

The <nessagi ng- queue- j ndi - nanme> child element of the <rel i ability-
conf i g> element specifies the JNDI name of the destination queue or topic.

For more information, see Using Web Services Reliable Messaging in Developing JAX-
WS Web Services for Oracle WebLogic Server.

7.3.37 messaging-queue-mdb-run-as-principal-name

7.3.38 name

The <nessagi ng- queue- ndb- run- as- pri nci pal - name> child element of the

<reliability-config>element specifies the principal used to run the listening
MDB.

For more information, see Using Web Services Reliable Messaging in Developing JAX-
WS Web Services for Oracle WebLogic Server.

The <namne> child element of the <oper at i on> element defines the name of the web
service operation.

7.3.39 non-buffered-destination

The <non- buf f er ed- dest i nat i on> child element of the <rel i abi | i ty-

conf i g> element is a Boolean value that specifies whether to disable message
buffering on a particular destination server to control whether buffering is used when
receiving messages.

For more information, see Configuring a Non-buffered Destination for a Web Service
in Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.40 non-buffered-source

The <non- buf f er ed- sour ce> child element of the <r el i abi | i t y-confi g>
element is a Boolean value that specifies whether to disable message buffering on a
particular source server to control whether buffering is used when delivering

WebLogic Web Service Deployment Descriptor Schema Reference 7-11

Element Descriptions

messages. This value should always be set to f al se; message buffering should always
be enabled on the source server.

For more information, see Configuring a Non-buffered Destination for a Web Service
in Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.41 operation

The <oper at i on> element defines characteristics of a web service operation. The
child elements of the <oper at i on> element defines the name and configuration
options of the web service operation.

7.3.42 persistence-config

The <per si st ence- conf i g> element groups together the persistence configuration
elements. The child elements of the <per si st ence- conf i g> element specify the
default logical store.

For more information, see Managing Web Service Persistence in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7.3.43 port-component

The <port - conmponent > element is a container of other elements used to describe a
web service port. The child elements of the <por t - conmponent > element specify
WebLogic-specific characteristics of the web service port, such as the context path and
service URI used to invoke the web service after it has been deployed to WebLogic
Server.

7.3.44 port-component-name

7.3.45 priority

The <port - conmponent - nane> child element of the <port - conponent > element
specifies the internal name of the WSDL port. The value of this element must be
unique for all <por t - conrponent - name> elements within a single webl ogi c-
webservi ces. xm file.

The <pri ori t y> child element of the <soapj ns- ser vi ce- endpoi nt - addr ess>
element defines the JMS priority associated with the request and response message.
Specify this value as a positive Integer from 0, the lowest priority, to 9, the highest
priority. This value defaults to 0).

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.46 reliability-config

The <reliability-config>element groups together the reliable messaging
configuration elements. The child elements of the <r el i abi | i t y- conf i g> element
specify runtime configuration values such as retransmission and timeout intervals for
reliable messaging.

For more information, see Using Web Services Reliable Messaging in Developing JAX-
WS Web Services for Oracle WebLogic Server.

7-12 WebLogic Web Services Reference for Oracle WebLogic Server

Element Descriptions

7.3.47 reply-to-name

The <r epl y-t 0- nanme> child element of the <soapj ns- ser vi ce- endpoi nt -
addr ess> element defines the JNDI name of the JMS destination to which the
response message is sent.

For a two-way operation, a temporary response queue is generated by default. Using
the default temporary response queue minimizes the configuration that is required.
However, in the event of a server failure, the response message may be lost. This
property enables the client to use a previously defined, "permanent” queue or topic
rather than use the default temporary queue or topic, for receiving replies.

The value maps to the JMSRepl yTo JMS header in the request message.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.48 request-queue

The <r equest - queue> child element of the <buf f eri ng- conf i g> element.
defines the JNDI name of the connection factory to use for request message buffering.
This value defaults to the default JMS connection factory defined by the server.

For more information, see Configuring the Request Queue in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.49 response-queue

The <r esponse- queue> child element of the <buf f eri ng- conf i g> element.
defines the JNDI name of the connection factory to use for response message
buffering. This value defaults to the default JMS connection factory defined by the
server.

For more information, see Configuring the Response Queue in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.50 retransmission-exponential-backoff

The <r et r ansmi ssi on- exponent i al - backof f > child element of the
<reliability-config>elementisaboolean attribute that specifies whether the
message retransmission interval will be adjusted using the exponential backoff
algorithm. This element is used in conjunction with the <base-r et r ansmi ssi on-
i nt erval > element.

If a destination endpoint does not acknowledge a sequence of messages for the time
interval specified by <base-r et ransmni ssi on-i nt er val >, the exponential backoff
algorithm is used for timing successive retransmissions by the source endpoint,
should the message continue to go unacknowledged.

This value defaults to f al se—the same retransmission interval is used in successive
retries, rather than the interval increasing exponentially.

For more information, see Configuring the Retransmission Exponential Backoff in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.51 retry-count

The <r et r y- count > child element of the <buf f eri ng- conf i g> element. defines
the number of times that the JMS queue on the invoked WebLogic Server instance

WebLogic Web Service Deployment Descriptor Schema Reference 7-13

Element Descriptions

attempts to deliver the message to the web service implementation until the operation
is successfully invoked. This value defaults to 3.

For more information, see Configuring Message Retry Count and Delay in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.52 retry-delay

The <r et r y- del ay> child element of the <buf f eri ng- conf i g> element. defines
the number of times that the JMS queue on the invoked WebLogic Server instance
attempts to deliver the message to the web service implementation until the operation
is successfully invoked. This value defaults to 3.

Amount of time between retries of a buffered request and response. Note, this value is
only applicable when RetryCount is greater than 0.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMhDTnHNMS

Table 7-1 describes the duration format fields. This value defaults to PODT30S (30
seconds).

For more information, see Configuring Message Retry Count and Delay in Developing
JAX-WS Web Services for Oracle WebLogic Server.

7.3.53 run-as-principal

The <r un- as- pri nci pal > child element of the <soapj ns- servi ce- endpoi nt -
addr ess> element defines the principal used to run the listening MDB.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.54 run-as-role

The <r un- as- r ol e> child element of the <soapj ns- ser vi ce- endpoi nt -
addr ess> element defines the role used to run the listening MDB.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.55 sequence-expiration

The <sequence- expi r at i on> child element of the <rel i abi | i ty-confi g>
element specifies the expiration time for a sequence regardless of activity.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnVMhDTnHNMS

Table 7-1 describes the duration format fields. This value defaults to P1D (1 day).

For more information, see Configuring the Sequence Expiration in Developing JAX-WS
Web Services for Oracle WebLogic Server.

7-14 WeblLogic Web Services Reference for Oracle WebLogic Server

Element Descriptions

7.3.56 service-endpoint-address

The <ser vi ce- endpoi nt - addr ess> element groups the WebLogic-specific context
path and service URI values that together make up the web service endpoint address,
or the URL that invokes the web service after it has been deployed to WebLogic
Server.

These values are specified with the <webser vi ce- cont ext pat h> and
<webservi ce- servi ceuri > child elements.

7.3.57 soapjms-service-endpoint-address

The <soapj ms- ser vi ce- endpoi nt - addr ess> element groups the configuration
properties for SOAP over JMS transport.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.58 stream-attachments

The <st r eam at t achnent s> child element of the <port - conponent > element is a
boolean value that specifies whether the WebLogic web services runtime uses
streaming APIs when reading the parameters of all methods of the web service. This
increases the performance of web service operation invocation, in particular when the
parameters are large, such as images.

You cannot use this annotation if you are also using the following features in the same
web service:

¢ Conversations
¢ Reliable Messaging
* JMS Transport

* A proxy server between the client application and the web service it invokes

7.3.59 target-service

The <t ar get - ser vi ce> child element of the <soapj ns- servi ce- endpoi nt -
addr ess> element defines the port component name of the web service. This value is
used by the service implementation to dispatch the service request. If not specified, the
service name from the WSDL or @ avax. j ns. WebSer vi ce annotation is used.

This value maps to the SOAPIMS_t ar get Ser vi ce JMS message property.

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.60 time-to-live

The <t i me-t o-| i ve> child element of the <soapj ns- ser vi ce- endpoi nt -

addr ess> element defines the lifetime, in milliseconds, of the request message. A
value of 0 indicates an infinite lifetime. If not specified, the J]MS-defined default value
(180000) is used.

On the service side, t i meToLi ve also specifies the expiration time for each MDB
transaction.

WebLogic Web Service Deployment Descriptor Schema Reference 7-15

Element Descriptions

For more information, see Using SOAP Over JMS Transport in Developing JAX-WS Web
Services for Oracle WebLogic Server.

7.3.61 transport-guarantee

The j 2ee: transport - guar ant ee element specifies the type of communication
between the client application invoking the web service and WebLogic server.

Valid values include:

* | NTEGRAL—Application requires that the data sent between the client and server
be sent in such a way that it cannot be changed in transit.

¢ CONFI DENTI AL—Application requires that the data be transmitted in a way that
prevents other entities from observing the contents of the transmission.

* NONE—Application does not require transport guarantees.

The XML Schema data type of the j 2ee: t ranspor t - guar ant ee element is
j 2ee: transport - guar ant eeType, and is defined in the Java EE Schema that
describes the standard web. xm deployment descriptor. For the full reference
information, see htt p: //j ava. sun. conmi xm / ns/j 2ee/ web-app_2_4. xsd.

7.3.62 transaction-enabled

The <t r ansact i on- enabl ed> child element of the <r equest - queue> and

<r esponse- queue> elements is a Boolean value that specifies whether transactions
should be used when storing and retrieving messages from the request and response
buffering queues, respectively. This flag defaults to false.

For more information, see Configuring Message Buffering for Web Services in
Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.63 transaction-timeout

The <t ransact i on-ti neout > child element of the <port - conmponent > element
specifies a timeout value for the current transaction, if the web service operation(s) are
running as part of a transaction.

This value must be a positive value and conform to the XML schema duration lexical
format, as follows:

PnYnMhDTnHNWhS

Table 7-1 describes the duration format fields. This value defaults to 30 seconds.

7.3.64 validate-request

The <val i dat e- r equest > child element of the <port - conponent > element is a
boolean value that specifies whether the request should be validated.

The value specified must be a positive value and conform to the XML schema duration
lexical format, as follows:

PnYnMhDTnHNMhS

Table 7-1 describes the duration format fields. This value defaults to PODT3S (3
seconds).

7-16 WebLogic Web Services Reference for Oracle WebLogic Server

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd

Element Descriptions

7.3.65 version

The <ver si on> child element of the <wsat - conf i g> element specifies the version
of the web service atomic transaction coordination context that is used for web
services and clients. For clients, it specifies the version used for outbound messages
only. The value specified must be consistent across the entire transaction.

Valid values include WBAT10, WSAT11, WEAT12, and DEFAULT. The DEFAULT value
for web services is all three versions (driven by the inbound request); the DEFAULT
value for web service clients is WSAT10.

For more information about web service atomic transactions, see Using Web Service
Atomic Transactions in Developing JAX-WS Web Services for Oracle WebLogic Server.

7.3.66 weblogic-webservices

The <webl ogi c- webser vi ces> element is the root element of the WebLogic-
specific web services deployment descriptor (webl ogi c- webser vi ces. xmi).

The element specifies the set of web services contained in the Java EE component
archive in which the deployment descriptor is also contained. The archive is either an
EJB JAR file (for stateless session EJB-implemented web services) or a WAR file (for
Java class-implemented web services)

7.3.67 webservice-contextpath

The <webser vi ce- cont ext pat h> element specifies the context path portion of the
URL used to invoke the web service. The URL to invoke a web service deployed to
WebLogic Server is:

http://host: port/contextPath/serviceURl

where

host is the host computer on which WebLogic Server is running.

¢ port is the port address to which WebLogic Server is listening.

contextPath is the value of this element

servicelIRI is the value of the webservice-serviceuri element.

When using the j wsc¢ Ant task to generate a web service from a JWS file, the value of
the <webser vi ce- cont ext pat h> element is taken from the cont ext Pat h
attribute of the WebLogic-specific @\LHt t pTr anspor t annotation or the

<WLHt t pTr ansport > child element of j wsc.

7.3.68 webservice-description

The <webser vi ce- descri pti on> element is a container of other elements used to
describe a web service. The <webser vi ce- descri pti on> element defines a set of

port components (specified using one or more <por t - conponent > child elements)

that are associated with the WSDL ports defined in the WSDL document.

There may be multiple <webser vi ce- descri pti on> elements defined within a
single webl ogi c- webser vi ces. xm file, each corresponding to a particular
stateless session EJB or Java class contained within the archive, depending on the
implementation of your web service. In other words, an EJB JAR contains the EJBs that
implement a web service, a WAR file contains the Java classes.

WebLogic Web Service Deployment Descriptor Schema Reference 7-17

Element Descriptions

7.3.69 webservice-description-name

The <webser vi ce- descri pti on- nane> element specifies the internal name of the
web service. The value of this element must be unique for all <webser vi ce-
descri pti on- name> elements within a single webl ogi c- webser vi ces. xmi file.

7.3.70 webservice-security

Element used to group together all the security-related elements of the webl ogi c-
webser vi ces. xm deployment descriptor.

7.3.71 webservice-serviceuri

The <webser vi ce- ser vi ceur i > element specifies the web service URI portion of
the URL used to invoke the web service. The URL to invoke a web service deployed to
WebLogic Server is:

http://host: port/contextPath/serviceURl

where

® host is the host computer on which WebLogic Server is running.
¢ port is the port address to which WebLogic Server is listening.

* contextPath is the value of the webservice-contextpath element

e servicellRI is the value of this element.

When using the j wsc Ant task to generate a web service from a JWS file, the value of
the <webser vi ce- servi ceuri > element is taken from the ser vi ceURl attribute of
the WebLogic-specific @\LHt t pTr anspor t annotation (JAX-RPC only) or the

<WLHt t pTr ansport > child element of j wsc.

7.3.72 webservice-type

The <webser vi ce- t ype> element specifies whether the web service is based on the
JAX-WS or JAX-RPC standard. Valid values include: JAXW5 and JAXRPC. This value
defaults to JAXRPC.

7.3.73 wsat-config

7.3.74 wsdl

The <wsat - conf i g> element enables and configures web service atomic transaction
configuration at the class or synchronous method level. The child elements of the
<wsat - conf i g> element specify the WS-AtomicTransaction version supported and
whether or not the web service atomic transaction coordination context is passed with
the transaction flow.

For more information about web service atomic transactions, see Using Web Service
Atomic Transactions in Developing JAX-WS Web Services for Oracle WebLogic Server.

The <wsd| > element groups together all the WSDL-related elements of the
webl ogi c- webservi ces. xm deployment descriptor.

7-18 WebLogic Web Services Reference for Oracle WebLogic Server

Element Descriptions

7.3.75 wsdl-publish-file

The <wsdl - publ i sh-fi | e> element specifies a directory (on the system that hosts

the web service) to which WebLogic Server should publish a hard-copy of the WSDL
file of a deployed web service; this is in addition to the standard WSDL file accessible
via HTTP.

For example, assume that your web service is implemented with an EJB, and its WSDL
file is located in the following directory of the EJB JAR file, relative to the root of the
JAR:

VETA- | NF/ wsdl / a/ b/ Fool . wsdl

Further assume that the webl ogi c- webser vi ces. xm file includes the following
element for a given web service:

<wsdl - publ i sh-fil e>d: /bar</wsdl - publ i sh-file>

This means that when WebLogic Server deploys the web service, the server publishes

the WSDL file at the standard HTTP location, but also puts a copy of the WSDL file in
the following directory of the computer on which the service is running:

d: / bar/al b/ Foo. wsdl

Note:

Only specify this element if client applications that invoke the web service
need to access the WSDL via the local file system or FIP; typically, client
applications access the WSDL using HTTP, as described in Browsing to the
WSDL of the web service in Developing JAX-RPC Web Services for Oracle
WebLogic Server.

The value of this element should be an absolute directory pathname. This directory
must exist on every machine which hosts a WebLogic Server instance or cluster to
which you deploy the web service.

WebLogic Web Service Deployment Descriptor Schema Reference 7-19

Element Descriptions

7-20 WebLogic Web Services Reference for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.x)
	New and Changed Features for 12c (12.2.1)
	New and Changed Features for 12c (12.1.3)
	New and Changed Features for 12c (12.1.2)

	1 Introduction
	2 Ant Task Reference
	2.1 Overview of WebLogic Web Services Ant Tasks
	2.2 clientgen
	2.2.1 Taskdef Classname
	2.2.2 Child Elements
	2.2.2.1 binding
	2.2.2.2 jmstransportclient
	2.2.2.3 xmlcatalog

	2.2.3 Attributes
	2.2.4 Examples

	2.3 jwsc
	2.3.1 Taskdef Classname
	2.3.2 Child Elements
	2.3.2.1 binding
	2.3.2.2 clientgen
	2.3.2.3 descriptor
	2.3.2.4 jmstransportservice
	2.3.2.5 jws
	2.3.2.6 jwsfileset
	2.3.2.7 module
	2.3.2.8 WLHttpTransport
	2.3.2.9 WLHttpsTransport
	2.3.2.10 WLJMSTransport

	2.3.3 Attributes
	2.3.3.1 WebLogic-Specific jwsc Attributes
	2.3.3.2 Standard Ant Attributes and Child Elements That Apply to jwsc

	2.3.4 Examples

	2.4 wsdlc
	2.4.1 Taskdef Classname
	2.4.2 Child Elements
	2.4.2.1 binding
	2.4.2.2 xmlcatalog

	2.4.3 Attributes
	2.4.3.1 WebLogic-Specific wsdlc Attributes
	2.4.3.2 Standard Ant javac Attributes That Apply To wsdlc

	2.4.4 Example

	2.5 wsdlget
	2.5.1 Taskdef Classname
	2.5.2 Child Elements
	2.5.3 Attributes
	2.5.4 Example

	3 JWS Annotation Reference
	3.1 Overview of JWS Annotation Tags
	3.2 Web Services Metadata Annotations (JSR-181)
	3.3 JAX-WS Annotations (JSR-224)
	3.4 JAXB Annotations (JSR-222)
	3.5 Common Annotations (JSR-250)
	3.6 WebLogic-specific Annotations
	3.6.1 com.oracle.webservices.api.jms.JMSTransportClient
	3.6.2 com.oracle.webservices.api.jms.JMSTransportService
	3.6.3 weblogic.jws.AsyncFailure
	3.6.4 weblogic.jws.AsyncResponse
	3.6.5 weblogic.jws.Binding
	3.6.6 weblogic.jws.BufferQueue
	3.6.6.1 Description
	3.6.6.2 Attributes
	3.6.6.3 Example

	3.6.7 weblogic.jws.Callback
	3.6.7.1 Description
	3.6.7.2 Example

	3.6.8 weblogic.jws.CallbackMethod
	3.6.8.1 Description
	3.6.8.2 Attributes
	3.6.8.3 Example

	3.6.9 weblogic.jws.CallbackService
	3.6.9.1 Description
	3.6.9.2 Attributes
	3.6.9.3 Example

	3.6.10 weblogic.jws.Context
	3.6.10.1 Description
	3.6.10.2 Example

	3.6.11 weblogic.jws.Conversation
	3.6.11.1 Description
	3.6.11.2 Attributes
	3.6.11.3 Example

	3.6.12 weblogic.jws.Conversational
	3.6.12.1 Description
	3.6.12.2 Attributes
	3.6.12.3 Example

	3.6.13 weblogic.jws.FileStore
	3.6.13.1 Description
	3.6.13.2 Attributes

	3.6.14 weblogic.jws.MessageBuffer
	3.6.14.1 Description
	3.6.14.2 Attributes
	3.6.14.3 Example

	3.6.15 weblogic.jws.Policies
	3.6.15.1 Description
	3.6.15.2 Example

	3.6.16 weblogic.jws.Policy
	3.6.16.1 Description
	3.6.16.2 Attributes
	3.6.16.3 Example

	3.6.17 weblogic.jws.ReliabilityBuffer
	3.6.17.1 Description
	3.6.17.2 Attributes
	3.6.17.3 Example

	3.6.18 weblogic.jws.ReliabilityErrorHandler
	3.6.18.1 Description
	3.6.18.2 Attributes
	3.6.18.3 Example

	3.6.19 weblogic.jws.ServiceClient
	3.6.19.1 Description
	3.6.19.2 Attributes
	3.6.19.3 Example

	3.6.20 weblogic.jws.StreamAttachments
	3.6.20.1 Description
	3.6.20.2 Example

	3.6.21 weblogic.jws.Transactional
	3.6.21.1 Description
	3.6.21.2 Attributes
	3.6.21.3 Example

	3.6.22 weblogic.jws.Types
	3.6.22.1 Description
	3.6.22.2 Attributes
	3.6.22.3 Example

	3.6.23 weblogic.jws.WildcardBinding
	3.6.23.1 Description
	3.6.23.2 Attributes
	3.6.23.3 Example

	3.6.24 weblogic.jws.WildcardBindings
	3.6.24.1 Description

	3.6.25 weblogic.jws.WLHttpTransport
	3.6.25.1 Description
	3.6.25.2 Attributes
	3.6.25.3 Example

	3.6.26 weblogic.jws.WLHttpsTransport
	3.6.26.1 Description
	3.6.26.2 Attributes
	3.6.26.3 Example

	3.6.27 weblogic.jws.WLJmsTransport
	3.6.27.1 Description
	3.6.27.2 Attributes
	3.6.27.3 Example

	3.6.28 weblogic.jws.WSDL
	3.6.28.1 Description
	3.6.28.2 Attributes
	3.6.28.3 Example

	3.6.29 weblogic.jws.security.CallbackRolesAllowed
	3.6.29.1 Description
	3.6.29.2 Attributes
	3.6.29.3 Example

	3.6.30 we3blogic.jws.security.RolesAllowed
	3.6.30.1 Description
	3.6.30.2 Attributes
	3.6.30.3 Example

	3.6.31 weblogic.jws.security.RolesReferenced
	3.6.31.1 Description
	3.6.31.2 Example

	3.6.32 weblogic.jws.security.RunAs
	3.6.32.1 Description
	3.6.32.2 Attributes
	3.6.32.3 Example

	3.6.33 weblogic.jws.security.SecurityRole
	3.6.33.1 Description
	3.6.33.2 Attributes
	3.6.33.3 Example

	3.6.34 weblogic.jws.security.SecurityRoleRef
	3.6.34.1 Description
	3.6.34.2 Attributes
	3.6.34.3 Example

	3.6.35 weblogic.jws.security.UserDataConstraint
	3.6.35.1 Description
	3.6.35.2 Attributes
	3.6.35.3 Example

	3.6.36 weblogic.jws.security.WssConfiguration
	3.6.36.1 Description
	3.6.36.2 Attributes
	3.6.36.3 Example

	3.6.37 weblogic.jws.soap.SOAPBinding
	3.6.37.1 Description
	3.6.37.2 Attributes
	3.6.37.3 Example

	3.6.38 weblogic.jws.security.SecurityRoles (deprecated)
	3.6.38.1 Description
	3.6.38.2 Attributes
	3.6.38.3 Example

	3.6.39 weblogic.jws.security.SecurityIdentity (deprecated)
	3.6.39.1 Description
	3.6.39.2 Attributes
	3.6.39.3 Example

	3.6.40 weblogic.wsee.jws.jaxws.owsm.Property
	3.6.40.1 Description
	3.6.40.2 Example

	3.6.41 weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
	3.6.41.1 Description
	3.6.41.2 Example

	3.6.42 weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
	3.6.42.1 Description
	3.6.42.2 Attributes
	3.6.42.3 Examples

	3.6.43 weblogic.wsee.jws.jaxws.owsm.SecurityPolicies
	3.6.43.1 Description
	3.6.43.2 Example

	3.6.44 weblogic.wsee.jws.jaxws.owsm.SecurityPolicy
	3.6.44.1 Description
	3.6.44.2 Attribute
	3.6.44.3 Example

	3.6.45 weblogic.wsee.wstx.wsat.Transactional
	3.6.45.1 Description
	3.6.45.2 Attributes
	3.6.45.3 Example

	4 Web Service Reliable Messaging Policy Assertion Reference
	4.1 Overview of a WS-Policy File That Contains Web Service Reliable Messaging Assertions
	4.2 WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.2 and 1.1
	4.2.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions 1.2 and 1.1
	4.2.2 Element Descriptions
	4.2.2.1 wsp:Policy
	4.2.2.2 wsrmp:DeliveryAssurance
	4.2.2.3 wsrmp:RMAssertion
	4.2.2.4 wsrmp:SequenceSTR
	4.2.2.5 wsrmp:SequenceTransportSecurity

	4.3 WS-Policy File With Web Service Reliable Messaging Assertions—Version 1.0 (Deprecated)
	4.3.1 Example of a WS-Policy File With Web Service Reliable Messaging Assertions
	4.3.2 Element Description
	4.3.2.1 beapolicy:Expires
	4.3.2.2 beapolicy:QOS
	4.3.2.3 wsrm:AcknowledgementInterval
	4.3.2.4 wsrm:BaseRetransmissionInterval
	4.3.2.5 wsrm:ExponentialBackoff
	4.3.2.6 wsrm:InactivityTimeout
	4.3.2.7 wsrm:RMAssertion

	5 Web Service MakeConnection Policy Assertion Reference
	5.1 Overview of a WS-Policy File That Contains MakeConnection Assertions
	5.2 Example of a WS-Policy File With MakeConnection and WS-Policy 1.5
	5.3 Element Descriptions
	5.3.1 wsp:Policy
	5.3.2 wsmc:MCSupported

	6 Oracle Web Services Security Policy Assertion Reference
	6.1 Overview of a Policy File That Contains Security Assertions
	6.2 Example of a Policy File With Security Elements
	6.3 Element Description
	6.3.1 CanonicalizationAlgorithm
	6.3.2 Claims
	6.3.3 Confidentiality
	6.3.4 ConfirmationMethod
	6.3.5 DigestAlgorithm
	6.3.6 EncryptionAlgorithm
	6.3.7 Identity
	6.3.8 Integrity
	6.3.9 KeyInfo
	6.3.10 KeyWrappingAlgorithm
	6.3.11 Label
	6.3.12 Length
	6.3.13 MessageAge
	6.3.14 MessageParts
	6.3.15 Policy
	6.3.16 SecurityToken
	6.3.17 SecurityTokenReference
	6.3.18 SignatureAlgorithm
	6.3.19 SupportedTokens
	6.3.20 Target
	6.3.21 TokenLifeTime
	6.3.22 Transform
	6.3.23 UsePassword

	6.4 Using MessageParts To Specify Parts of the SOAP Messages that Must Be Encrypted or Signed
	6.4.1 XPath 1.0
	6.4.2 Pre-Defined wsp:Body() Function
	6.4.3 WebLogic-Specific Header Functions

	7 WebLogic Web Service Deployment Descriptor Schema Reference
	7.1 Overview of weblogic-webservices.xml
	7.2 Example of a weblogic-webservices.xml Deployment Descriptor File
	7.3 Element Descriptions
	7.3.1 acknowledgement-interval
	7.3.2 activation-config
	7.3.3 auth-constraint
	7.3.4 base-retransmission-interval
	7.3.5 binding-version
	7.3.6 buffer-retry-count
	7.3.7 buffer-retry-delay
	7.3.8 buffering-config
	7.3.9 callback-protocol
	7.3.10 connection-factory-jndi-name
	7.3.11 customized
	7.3.12 default-logical-store-name
	7.3.13 delivery-mode
	7.3.14 deployment-listener-list
	7.3.15 deployment-listener
	7.3.16 destination-name
	7.3.17 destination-type
	7.3.18 enable-http-wsdl-access
	7.3.19 enabled
	7.3.20 exposed
	7.3.21 fastinfoset
	7.3.22 flowType
	7.3.23 http-flush-response
	7.3.24 http-response-buffersize
	7.3.25 inactivity-timeout
	7.3.26 jndi-connection-factory-name
	7.3.27 jndi-context-parameter
	7.3.28 jndi-initial-context-factory
	7.3.29 jndi-url
	7.3.30 logging-level
	7.3.31 login-config
	7.3.32 lookup-variant
	7.3.33 mbean-name
	7.3.34 mdb-per-destination
	7.3.35 message-type
	7.3.36 messaging-queue-jndi-name
	7.3.37 messaging-queue-mdb-run-as-principal-name
	7.3.38 name
	7.3.39 non-buffered-destination
	7.3.40 non-buffered-source
	7.3.41 operation
	7.3.42 persistence-config
	7.3.43 port-component
	7.3.44 port-component-name
	7.3.45 priority
	7.3.46 reliability-config
	7.3.47 reply-to-name
	7.3.48 request-queue
	7.3.49 response-queue
	7.3.50 retransmission-exponential-backoff
	7.3.51 retry-count
	7.3.52 retry-delay
	7.3.53 run-as-principal
	7.3.54 run-as-role
	7.3.55 sequence-expiration
	7.3.56 service-endpoint-address
	7.3.57 soapjms-service-endpoint-address
	7.3.58 stream-attachments
	7.3.59 target-service
	7.3.60 time-to-live
	7.3.61 transport-guarantee
	7.3.62 transaction-enabled
	7.3.63 transaction-timeout
	7.3.64 validate-request
	7.3.65 version
	7.3.66 weblogic-webservices
	7.3.67 webservice-contextpath
	7.3.68 webservice-description
	7.3.69 webservice-description-name
	7.3.70 webservice-security
	7.3.71 webservice-serviceuri
	7.3.72 webservice-type
	7.3.73 wsat-config
	7.3.74 wsdl
	7.3.75 wsdl-publish-file

