
Oracle® Fusion Middleware
Developing RMI Applications for Oracle WebLogic Server

12c (12.2.1.2.0)

E78017-02

December 2016

This document is written for application developers who want
to build e-commerce applications using Remote Method
Invocation (RMI) and Internet Interop-Orb-Protocol (IIOP)
features.

Oracle Fusion Middleware Developing RMI Applications for Oracle WebLogic Server, 12c (12.2.1.2.0)

E78017-02

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... vii

Documentation Accessibility .. vii

Conventions... vii

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1

1.2 Guide to this Document... 1-1

1.3 Related Documentation ... 1-2

1.4 Samples and Tutorials.. 1-2

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials....................................... 1-3

1.4.2 Examples in the WebLogic Server Distribution.. 1-3

1.5 New and Changed Features in This Release ... 1-3

2 Understanding WebLogic RMI

2.1 What is WebLogic RMI? .. 2-1

2.2 Features of WebLogic RMI .. 2-1

3 WebLogic RMI Features

3.1 WebLogic RMI Clients ... 3-1

3.2 WebLogic RMI Security Support.. 3-1

3.3 WebLogic RMI Transaction Support ... 3-1

3.4 Failover and Load Balancing RMI Objects.. 3-2

3.4.1 Clustered RMI Applications .. 3-2

3.4.2 Load Balancing RMI Objects.. 3-2

3.4.3 Parameter-Based Routing for Clustered Objects .. 3-3

3.5 Request Timeouts ... 3-4

3.5.1 Using a Connect Timeout... 3-4

3.5.2 Using a Read Timeout .. 3-4

3.6 Creating Pinned Services ... 3-6

3.7 Dynamic Proxies in RMI ... 3-6

iii

4 Using WebLogic RMI Annotations

4.1 Introduction to WebLogic RMI Annotations.. 4-1

4.2 Annotations for WebLogic RMI.. 4-3

4.2.1 Rmi... 4-3

4.2.2 RmiMethod... 4-4

4.3 Exception Handling.. 4-5

4.3.1 Application Exceptions... 4-5

4.3.2 System Exceptions... 4-5

4.4 Cluster Failover... 4-6

4.5 RMI Callback Objects ... 4-6

4.6 Annotation and WebLogic RMI Descriptor Merging.. 4-6

5 Using the WebLogic RMI Compiler

5.1 Overview of the WebLogic RMI Compiler .. 5-1

5.2 WebLogic RMI Compiler Features... 5-1

5.2.1 Hot Code Generation.. 5-1

5.2.2 Proxy Generation... 5-2

5.2.3 Additional WebLogic RMI Compiler Features ... 5-2

5.3 WebLogic RMI Compiler Options.. 5-2

5.3.1 Non-Replicated Stub Generation .. 5-5

5.3.2 Using Persistent Compiler Options .. 5-5

5.3.3 Java SE Enhancements.. 5-5

6 Using WebLogic RMI with T3 Protocol

6.1 RMI Communication in WebLogic Server ... 6-1

6.2 Determining Connection Availability ... 6-1

6.3 Using a WebLogic T3/T3s Client Proxy.. 6-2

7 How to Implement WebLogic RMI

7.1 Creating Classes That Can Be Invoked Remotely.. 7-1

7.1.1 Step 1. Write a Remote Interface ... 7-1

7.1.2 Step 2. Implement the Remote Interface .. 7-2

7.1.3 Step 3: Create a Client that Invokes Remote Methods... 7-3

7.1.4 Step 4. Compile the Java Classes... 7-5

7.2 Run the RMI Hello Code Sample .. 7-6

7.2.1 Prerequisites... 7-6

7.2.2 Setup the RMI Hello Example ... 7-6

7.2.3 Configure a Startup Class .. 7-7

7.2.4 Restart the examplesServer.. 7-7

7.2.5 Run the Example ... 7-7

iv

8 WebLogic RMI Integration with Load Balancers

8.1 How WebLogic Server Supports Load Balancers .. 8-1

8.2 HTTP Tunneled T3 Load Balancing... 8-1

8.2.1 How to Configure the External Listen Address.. 8-2

8.2.2 Session Failover ... 8-3

8.2.3 Cookie Persistence... 8-3

8.2.4 Pinned Objects ... 8-3

8.2.5 Stateful Session EJBs ... 8-3

8.3 Native T3 Load Balancing ... 8-3

8.4 Failover Support ... 8-3

9 Using RMI over IIOP

9.1 What is RMI over IIOP? ... 9-1

9.2 Overview of WebLogic RMI-IIOP.. 9-1

9.2.1 Support for RMI-IIOP with RMI (Java) Clients .. 9-2

9.2.2 Support for RMI-IIOP with Tuxedo Client.. 9-2

9.2.3 Support for RMI-IIOP with CORBA/IDL Clients .. 9-2

10 Configuring WebLogic Server for RMI-IIOP

10.1 Set the Listening Address .. 10-1

10.2 Setting Network Channel Addresses... 10-1

10.2.1 Considerations for Proxys and Firewalls... 10-1

10.3 Using a IIOPS Thin Client Proxy .. 10-2

10.4 Using RMI-IIOP with SSL and a Java Client... 10-3

10.5 Accessing WebLogic Server Objects from a CORBA Client through Delegation 10-3

10.5.1 Overview of Delegation.. 10-3

10.5.2 Example of Delegation.. 10-4

10.6 Configuring CSIv2 authentication ... 10-5

10.7 Using RMI over IIOP with a Hardware Load Balancer .. 10-6

10.8 Limitations of WebLogic RMI-IIOP ... 10-6

10.8.1 Limitations Using RMI-IIOP on the Client .. 10-6

10.8.2 Limitations Developing Java IDL Clients .. 10-6

10.8.3 Limitations of Passing Objects by Value.. 10-7

10.9 Propagating Client Identity... 10-7

11 Best Practices for Application Design

11.1 Use java.rmi ... 11-1

11.2 Use PortableRemoteObject .. 11-1

11.3 Use WebLogic Work Areas ... 11-1

11.4 How to Handle Changes in Security Context... 11-2

v

A CORBA Support for WebLogic Server

A.1 Specification References.. A-1

A.2 Supported Specification Details .. A-2

A.3 Tools... A-2

Index

vi

Preface

This preface describes the document accessibility features and conventions used in this
guide—

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This chapter describes the contents and organization of this guide—.

This chapter includes the following sections:

• Document Scope and Audience

• Guide to this Document

• Related Documentation

• Samples and Tutorials

• New and Changed Features in This Release

1.1 Document Scope and Audience
This document is written for application developers who want to build e-commerce
applications using Remote Method Invocation (RMI) and Internet Interop-Orb-
Protocol (IIOP) features. It is assumed that readers know Web technologies, object-
oriented programming techniques, and the Java programming language. This
document emphasizes the value-added features provided by WebLogic Server and
key information about how to use WebLogic Server features when developing
applications with RMI.

1.2 Guide to this Document
This document describes the Oracle RMI implementation of the Remote Method
Invocation (RMI) specification. The Oracle implementation is known as WebLogic
RMI.

• This chapter, Introduction and Roadmap, introduces the organization of this guide.

• Understanding WebLogic RMI, is an overview of WebLogic RMI features and its
architecture.

• WebLogic RMI Features, describes the features that you use to program RMI for
WebLogic Server.

• Using WebLogic RMI Annotations, describes how to use WebLogic RMI
annotations to provide remote access to plain java objects.

• Using the WebLogic RMI Compiler, provides information on the WebLogic RMI
compiler.

• Using WebLogic RMI with T3 Protocol, provides information on using RMI and the
T3 protocol.

Introduction and Roadmap 1-1

• How to Implement WebLogic RMI, provides a simple step by step example of how
to implement WebLogic RMI.

• Using RMI over IIOP , defines RMI over IIOP and provides general information
about the WebLogic Server RMI-IIOP implementation.

• Configuring WebLogic Server for RMI-IIOP, describes concepts, issues, and
procedures related to using WebLogic Server to support RMI-IIOP applications.

• Best Practices for Application Design,describes recommended design patterns
when developing RMI and RMI over IIOP applications.

• CORBA Support for WebLogic Server , provides information on CORBA support
for WebLogic Server.

1.3 Related Documentation
For information on topics related to WebLogic RMI, see the following documents:

• Java RemoteMethod Invocation (RMI) at http://docs.oracle.com/
javase/6/docs/technotes/guides/rmi/ is a link to basic tutorials on
Remote Method Invocation.

• Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

• Developing JNDI Applications for Oracle WebLogic Server is a guide using the
WebLogic Java Naming and Directory Interface.

• Developing Standalone Clients for Oracle WebLogic Server is a guide to developing
common stand alone clients that interoperate with WebLogic Server.

• Tuning Performance of Oracle WebLogic Server contains information on monitoring
and improving the performance of WebLogic Server applications.

• http://www.oracle.com/technetwork/java/javase/tech/
corba-135898.html provides an overview of CORBA and Java platform.

• http://docs.oracle.com/javase/6/docs/technotes/guides/idl/
index.html contains information using standard IDL (Object Management
Group Interface Definition Language) and IIOP.

• http://www.omg.org is the Object Management Group home page.

• CORBA Language Mapping Specification at http://www.omg.org/technology/
documents/index.htm

1.4 Samples and Tutorials
In addition to this document, Oracle provides a variety of code samples and tutorials
for developers. The examples and tutorials illustrate WebLogic Server in action, and
provide practical instructions on how to perform key development tasks.

Oracle recommends that you run some or all of the RMI examples before developing
your own applications.

Related Documentation

1-2 Developing RMI Applications for Oracle WebLogic Server

http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/
http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/
http://www.oracle.com/technetwork/java/javase/tech/corba-135898.html
http://www.oracle.com/technetwork/java/javase/tech/corba-135898.html
http://docs.oracle.com/javase/6/docs/technotes/guides/idl/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/idl/index.html
http://www.omg.org%20
http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java Platform, Enterprise Edition (Java EE)
application shipped with WebLogic Server that simulates an independent, centralized
medical record management system. The MedRec application provides a framework
for patients, doctors, and administrators to manage patient data using a variety of
different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed in the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects
\domains\medrec directory, where ORACLE_HOME is the directory you specified as
Oracle Home when you installed Oracle WebLogic Server. For more information, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs)
that work together to process requests from web applications, web services, and
workflow applications, and future client applications. The application includes
message-driven, stateless session, stateful session, and entity EJBs.

1.4.2 Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the ORACLE_HOME
\wlserver\samples\server\examples\src\examples directory, where
ORACLE_HOME represents the directory in which you installed WebLogic Server. For
more information about the WebLogic Server code examples, see Sample Applications
and Code Examples in Understanding Oracle WebLogic Server.

1.5 New and Changed Features in This Release
This section includes new and changed features for recent patch sets of WebLogic
Server:

• New WebLogic RMI annotations that provide remote access to plain java objects.
See Using WebLogic RMI Annotations.

• A new connection attribute, WLContext.CONNECT_TIMEOUT, to define the length
of time a client waits for connections to the server to be bootstrapped or re-
established. WLContext.REQUEST_TIMEOUT is deprecated. See Using a Connect
Timeout.

• A new connection attribute, WLContext.RESPONSE_READ_TIMEOUT, to define
the length of time that a client waits to receive a response from a server.
WLContext.RMI_TIMEOUT is deprecated. See Using a Read Timeout.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.2.0.

New and Changed Features in This Release

Introduction and Roadmap 1-3

New and Changed Features in This Release

1-4 Developing RMI Applications for Oracle WebLogic Server

2
Understanding WebLogic RMI

This chapter describes the features of WebLogic RMI.

This chapter includes the following sections:

• What is WebLogic RMI?

• Features of WebLogic RMI

2.1 What is WebLogic RMI?
Remote Method Invocation (RMI) is the standard for distributed object computing in
Java. RMI enables an application to obtain a reference to an object that exists elsewhere
in the network, and then invoke methods on that object as though it existed locally in
the client's virtual machine. RMI specifies how distributed Java applications should
operate over multiple Java virtual machines.

This document contains information about using WebLogic RMI, but it is not a
beginner's tutorial on remote objects or writing distributed applications. If you are just
beginning to learn about RMI, visit http://docs.oracle.com/javase/6/docs/
technotes/guides/rmi/ and review the RMI Tutorial.

2.2 Features of WebLogic RMI
The following table highlights important features of WebLogic implementation of
RMI:

Table 2-1 WebLogic RMI Features

Feature WebLogic RMI

Overall performance Enhanced by WebLogic RMI integration
into the WebLogic Server framework,
which provides underlying support for
communications, scalability,
management of threads and sockets,
efficient garbage collection, and server-
related support.

Standards compliant Compliance with the Java Platform
Standard Edition 6.0 API Specification

Annotations Provides annotation support that can be
embedded inside remote java objects.

Failover and Load balancing WebLogic Server support for failover and
load balancing of RMI objects.

Understanding WebLogic RMI 2-1

http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/
http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/

Table 2-1 (Cont.) WebLogic RMI Features

Feature WebLogic RMI

Request Timeouts You can specify a timeout period for a
remote call to complete.

WebLogic RMI compiler Stubs and skeletons dynamically
generated by WebLogic RMI at run time,
which obviates need to explicitly run
weblogic.rmic, except for clusterable
or Internet Inter-ORB Protocol (IIOP)
clients.

Dynamic Proxies A class used by the clients of a remote
object. In the case of RMI, skeleton and a
stub classes are used. The stub class is the
instance that is invoked upon in the
client's Java Virtual Machine (JVM). The
skeleton class, which exists in the remote
JVM, unmarshals the invoked method
and arguments on the remote JVM,
invokes the method on the instance of the
remote object, and then marshals the
results for return to the client.

Security Support No Security Manager required.
WebLogic Server implements
authentication, authorization, and Java
EE security services.

Transaction Support WebLogic Server supports transactions in
the Java Platform, Enterprise Edition
(Java EE) programming model.

Internet Protocol version 6 (IPv6) Support Support for 128 bit addressing space.

Features of WebLogic RMI

2-2 Developing RMI Applications for Oracle WebLogic Server

3
WebLogic RMI Features

This chapter describes the WebLogic RMI features and guidelines required to program
RMI for use with WebLogic Server.

This chapter includes the following sections:

• WebLogic RMI Clients

• WebLogic RMI Security Support

• WebLogic RMI Transaction Support

• Failover and Load Balancing RMI Objects

• Request Timeouts

• Creating Pinned Services

• Dynamic Proxies in RMI

3.1 WebLogic RMI Clients
WebLogic RMI is divided between a client and server framework. The client run time
does not have server sockets and therefore does not listen for connections. It obtains its
connections through the server. Only the server knows about the client socket.
Therefore if you plan to host a remote object on the client, you must connect the client
to WebLogic Server. WebLogic Server processes requests for and passes information to
the client. In other words, client-side RMI objects can only be reached through a single
WebLogic Server, even in a cluster. If a client-side RMI object is bound into the JNDI
naming service, it only be reachable as long as the server that carried out the bind is
reachable.

3.2 WebLogic RMI Security Support
WebLogic Server implements authentication, authorization, and Java EE security
services. For more information see Developing Applications with the WebLogic Security
Service.

3.3 WebLogic RMI Transaction Support
Oracle WebLogic Server supports transactions in the Java Platform, Enterprise Edition
(Java EE) programming model. For detailed information on using transactions in
WebLogic RMI applications, see the following:

• Transactions in WebLogic Server RMI Applications in Developing JTA Applications
for Oracle WebLogic Server provides an overview on how transactions are
implemented in WebLogic RMI applications.

WebLogic RMI Features 3-1

• Transactions in RMI Applications in Developing JTA Applications for Oracle WebLogic
Server provides general guidelines when implementing transactions in RMI
applications for .

3.4 Failover and Load Balancing RMI Objects
The following sections contain information on WebLogic Server support for failover
and load balancing of RMI objects:

• Clustered RMI Applications

• Load Balancing RMI Objects

• Parameter-Based Routing for Clustered Objects

• WebLogic RMI Integration with Load Balancers

3.4.1 Clustered RMI Applications
For clustered RMI applications, failover is accomplished using the object's replica-
aware stub. When a client makes a call through a replica-aware stub to a service that
fails, the stub detects the failure and retries the call on another replica.

To make Java EE services available to a client, WebLogic binds an RMI stub for a
particular service into its JNDI tree under a particular name. The RMI stub is updated
with the location of other instances of the RMI object as the instances are deployed to
other servers in the cluster. If a server within the cluster fails, the RMI stubs in the
other server's JNDI tree are updated to reflect the server failure.

You specify the generation of replica-aware stubs for a specific RMI object using the -
clusterable option of the WebLogic RMI compiler, as explained in Table 5-1. For
example:

 $ java weblogic.rmic -clusterable classes

For more information, see Replication and Failover for EJBs and RMIs in Administering
Clusters for Oracle WebLogic Server.

3.4.2 Load Balancing RMI Objects
The load balancing algorithm for an RMI object is maintained in the replica-aware stub
obtained for a clustered object. You specify the load balancing algorithm for a specific
RMI object using the -loadAlgorithm <algorithm> option of the WebLogic RMI
compiler. A load balancing algorithm that you configure for an object overrides the
default load balancing algorithm for the cluster. The WebLogic Server RMI compiler
supports the following load balancing algorithms:

• Round Robin Load Balancing

• Weight-Based Load Balancing

• Random Load Balancing

• Server Affinity Load Balancing Algorithms

For example, to set load balancing on an RMI object to round robin, use the following
rmic options:

 $ java weblogic.rmic -clusterable -loadAlgorithm round-robin classes

Failover and Load Balancing RMI Objects

3-2 Developing RMI Applications for Oracle WebLogic Server

To set load balancing on an RMI object to weight-based server affinity, use rmic
options:

 $ java weblogic.rmic -clusterable -loadAlgorithm weight-based -stickToFirstServer
classes

For more information, see Load Balancing for EJBs and RMI Objects in Administering
Clusters for Oracle WebLogic Server.

3.4.3 Parameter-Based Routing for Clustered Objects
Parameter-based routing allows you to control load balancing behavior at a lower
level. Any clustered object can be assigned a CallRouter using the
weblogic.rmi.cluster.CallRouter interface. This is a class that is called before
each invocation with the parameters of the call. The CallRouter is free to examine the
parameters and return the name server to which the call should be routed.

 weblogic.rmi.cluster.CallRouter.

 Class java.lang.Object
 Interface weblogic.rmi.cluster.CallRouter
 (extends java.io.Serializable)

A class implementing this interface must be provided to the RMI compiler (rmic) to
enable parameter-based routing. Run rmic on the service implementation using these
options (to be entered on one line):

 $ java weblogic.rmic -clusterable -callRouter <callRouterClass>
<remoteObjectClass>

The call router is called by the clusterable stub each time a remote method is invoked.
The router is responsible for returning the name of the server to which the call should
be routed.

Each server in the cluster is uniquely identified by its name as defined with the
Console. These are the names that the method router must use for identifying servers.

Consider the ExampleImpl class which implements a remote interface Example,
with one method foo:

 public class ExampleImpl implements Example {
 public void foo(String arg) { return arg; }
 }

This CallRouter implementation ExampleRouter ensures that all foo calls with
'arg' < " n " go to server1 (or server3 if server1 is unreachable) and that all calls with
'arg' >= "n " go to server2 (or server3 if server2 is unreachable).

public class ExampleRouter implements CallRouter {
 private static final String[] aToM = { "server1", "server3" };
 private static final String[] nToZ = { "server2", "server3" };

 public String[] getServerList(Method m, Object[] params) {
 if (m.GetName().equals("foo")) {
 if (((String)params[0]).charAt(0) < 'n') {
 return aToM;
 } else {
 return nToZ;
 }
 } else {
 return null;

Failover and Load Balancing RMI Objects

WebLogic RMI Features 3-3

 }
 }
}

This rmic call associates the ExampleRouter with ExampleImpl to enable
parameter-based routing:

 $ rmic -clusterable -callRouter ExampleRouter ExampleImpl

3.4.3.1 Custom Call Routing and Collocation Optimization

If a replica is available on the same server instance as the object calling it, the call is not
load-balanced as it is more efficient to use the local replica. For more information, see
Optimization for Collocated Objects in Administering Clusters for Oracle WebLogic
Server.

3.5 Request Timeouts
You can specify timeout period for the remote call to complete or the client receives a
weblogic.rmi.extensions.RequestTimeoutException.

WebLogic Server provides the following connect and read timeouts:

• Using a Connect Timeout

• Using a Read Timeout

3.5.1 Using a Connect Timeout
Use a connect timeout to define the length of time a client waits for connections to the
server to be bootstrapped or re-established. The following table describes how to set
this timeout.

Table 3-1 Setting a Connect Timeout

Description Scope

System property: -Dweblogic.ConnectTimeout=milliseconds Server

Set KernelMBean.ConnectTimeout property Server

Set NetworkAccessPointMBean.connectTimeout property. For non-
default channels only and overrides a server scoped setting. Only connections
established using this channel definition are subject to this timeout.

Channel

Set WLContext.CONNECT_TIMEOUT to establish the connection to a server.
(Within the scope of the context, used for both bootstrapping a connection as
well re-establishing a lost connection.)

Thread

3.5.2 Using a Read Timeout
Use a read timeout to define the length of time that a client waits to receive a response
from a server. The following table describes various ways to set this timeout value.

Request Timeouts

3-4 Developing RMI Applications for Oracle WebLogic Server

Table 3-2 Setting a Read Timeout

Description Scope

Set WLContext.RESPONSE_READ_TIMEOUT in the JNDI (InitialContext)
environment used to lookup the remote stub.

Interface (stub)

Specify the method level annotation (@RmiMethod(timeout=<value>))
in the remote object implementation class.

Method

Set a timeout attribute in method definition in an rtd.xml file for non-
annotated classes. See Example rtd.xml file with a Timeout.

Method

Specify the method level annotation
@TransactionTimeoutSeconds(<timeout>) in the EJB bean
implementation class.

Method

Specify a remote-client-timeout in EJB descriptor (weblogic-ejb-
jar.xml). See Example weblogic-ejb-jar.xml file with a Timeout.

Method

Consider the following when implementing a read timeout:

• In the WebLogic Server EJB bean implementation, a transaction timeout
(@TransactionTimeoutSeconds) takes precedence over remote-client-
timeout if it has a greater value.

• The precedence of multiple read timeouts is determined using the following rules:

– A timeout specified in rtd.xml on the client overrides any other read timeout.

– A timeout specified using an RmiMethod annotation overrides a
WLContext.RESPONSE_READ_TIMEOUT.

3.5.2.1 Example rtd.xml file with a Timeout

The following code provides an example of an rtd.xml file that includes an timeout:

<rmi Name="foo">
 <method
 name="methodname"
 timeout="timeoutinmilliseconds">
 </method>
</rmi>

To generate an rtd.xml file on the client, set -
Dweblogic.RefreshClientRuntimeDescriptor=true on both the client and
the server. When the flag is true, a check is made to see if the rtd.xml file is
available on the classpath. If available, the file is read and the values specified are
used.

3.5.2.2 Example weblogic-ejb-jar.xml file with a Timeout

The following code provides an example of how to specify a remote-client-
timeout in the weblogic-ejb-jar.xml file:

<weblogic-enterprise-bean>
 <ejb-name>AccountBean</ejb-name>
 . . .
 <remote-client-timeout>5</remote-client-timeout>
</weblogic-enterprise-bean>

Request Timeouts

WebLogic RMI Features 3-5

3.6 Creating Pinned Services
You can also use weblogic.rmic to generate stubs that are not replicated in the
cluster. These stubs are known as "pinned " services, because after they are registered
they are available only from the host with which they are registered and will not
provide transparent failover or load balancing. Pinned services are available cluster-
wide, because they are bound into the replicated cluster-wide JNDI tree. However, if
the individual server that hosts the pinned services fails, the client cannot failover to
another server.

You specify the generation of non-replicated stubs for a specific RMI object by not
using the -clusterable option of the WebLogic RMI compiler, as explained in
Table 5-1. For example:

 $ java weblogic.rmic classes

3.7 Dynamic Proxies in RMI
A dynamic proxy or proxy is a class used by the clients of a remote object. This class
implements a list of interfaces specified at runtime when the class is created. In the
case of RMI, dynamically generated bytecode and proxy classes are used. The proxy
class is the instance that is invoked upon in the client's Java Virtual Machine (JVM).
The proxy class marshals the invoked method name and its arguments; forwards these
to the remote JVM. After the remote invocation is completed and returns, the proxy
class unmarshals the results on the client. The generated bytecode — which exists in
the remote JVM — unmarshals the invoked method and arguments on the remote
JVM, invokes the method on the instance of the remote object, and then marshals the
results for return to the client.

Creating Pinned Services

3-6 Developing RMI Applications for Oracle WebLogic Server

4
Using WebLogic RMI Annotations

This chapter describes the WebLogic RMI annotations that provide remote access to
plain java objects.

WebLogic RMI provides a rich descriptor framework to associate various security,
transactions, clustering, and timeout attributes to a remote class and its methods.
These attributes can be specified as annotations in plain java implementation classes
with non-remote interfaces when the remote object implementation is bound to a
WebLogic JNDI tree. See weblogic.rmi.annotation in Java API Reference for Oracle
WebLogic Server.

This chapter includes the following sections:

• Introduction to WebLogic RMI Annotations

• Annotations for WebLogic RMI

• Exception Handling

• Cluster Failover

• RMI Callback Objects

• Annotation and WebLogic RMI Descriptor Merging

4.1 Introduction to WebLogic RMI Annotations
WebLogic RMI provides annotation support that can be embedded inside a remote
java object and simplifies development by allowing you to avoid running
weblogic.rmic tool on the compiled class.

To make a plain java object remotely accessible, do the following:

1. Create an interface that you want to access on the client. This interface must extend
java.rmi.Remote. See Example 4-1.

2. Create an implementation class that implements the interface in Step 1.

3. Add the desired annotation @Rmi or @RmiMethod to the implementation class
added in Step 2. The annotations need to be provided on the implementation class
and methods, not on the interfaces.

4. Compile and bundle the classes in an application.

5. Deploy the application.

6. Bind the annotated plain java object in the WebLogic JNDI tree.

7. A client looks up the plain java object as remote object from the WebLogic JNDI
tree and narrows it to the plain interfaces annotated as remote interfaces. The

Using WebLogic RMI Annotations 4-1

corresponding stub is either generated on the client, downloaded, or pre-generated
using the WebLogic RMI compiler and made available on the client.

Note:

Do not use the WebLogic RMIC option to generate stubs and skeletons based
on the Sun RMI compiler.

Example 4-1 Example RMI Annotation

package myrmi.example;

import java.rmi.RemoteException;
import java.util.concurrent.Future;
import java.util.concurrent.FutureTask;

import weblogic.rmi.annotation.Rmi;
import weblogic.rmi.annotation.RmiMethod;

@Rmi(remoteInterfaces={MyRemoteInterface.class})
public class RmiMethodAnnotations implements MyRemoteInterface{
 public RmiMethodAnnotations() {
 }

 public int getIndex() throws RemoteException {
 return 0;
 }

 @RmiMethod(asynchronousResult=true)
 public Future<String> ejbAsynchronousSayHello(String name) {
 return new FutureTask(new MyRunnable(), new Object());
 }

 class MyRunnable implements Runnable {

 public void run() {
 }
 }
}

Example 4-2 Example RMI without Annotations

package myrmi.example;

import java.rmi.Remote;
import java.rmi.RemoteException;

import java.util.concurrent.Future;

public interface MyRemoteInterface extends Remote {

 int getIndex() throws RemoteException;

 public Future<String> ejbAsynchronousSayHello(String name);

 public String sayBye();

}

Introduction to WebLogic RMI Annotations

4-2 Developing RMI Applications for Oracle WebLogic Server

This allows the WebLogic RMI layer to treat the RmiMethodAnnotations object as
remote object when it is bound to the WLS JNDI tree.

Example 4-2 provides an example of code that implements the same methods without
using annotations.

4.2 Annotations for WebLogic RMI
The following topics provide reference information about WebLogic RMI annotations:

• Rmi

• RmiMethod

4.2.1 Rmi
The following sections describe the annotation in more detail.

4.2.1.1 Description

Provides class-level annotation support for remote objects that specify the remote
implementation class.

See weblogic.rmi.annotation.Rmi.

4.2.1.2 Attributes

The following table summarizes the attributes.

Table 4-1 Attributes of the Rmi Annotation

Name Description Data Type Default
Value

callRouterCla
ssname

The CallRouter class that is called before
each invocation with the parameters of the call
and it returns the name server to which the
call should be routed. Parameter-based
routing allows to provide a more fine-grained
load balancing behavior.

String ""

clusterable Indicates if the remote object is clusterable. boolean false

defaultRMIMet
hodParams

Default RMI Method annotation. Can be over-
ridden with a method annotation.

RmiMetho
d

@weblog
ic.rmi.
annotat
ion.Rmi
Method

Annotations for WebLogic RMI

Using WebLogic RMI Annotations 4-3

Table 4-1 (Cont.) Attributes of the Rmi Annotation

Name Description Data Type Default
Value

loadAlgorithm Load Algorithm for clustered remote object.
Legal Values are:

• RANDOM

• ROUND_ROBIN

• WEIGHT_BASED

• SERVER_AFFINITY

• ROUND_ROBIN_AFFINITY

• RANDOM_AFFINITY

• WEIGHT_BASED_AFFINITY

• DEFAULT

Default is ROUND_ROBIN.

LoadAlgo
rithmTyp
e

weblogi
c.rmi.a
nnotati
on.Load
Algorit
hmType.
DEFAULT

stickToFirstS
erver

Enables sticky load balancing. The server
chosen for servicing the first request is used
for all subsequent requests. Only used for a
clusterable remote object.

boolean false

remoteInterfa
ces

A comma-separated list of Interface class
names to be treated as remote interface

Class ""

4.2.2 RmiMethod
The following sections describe the annotation in more detail.

4.2.2.1 Description

Provides method-level annotation support for remote objects that specify the remote
implementation class.

See weblogic.rmi.annotation.RmiMethod.

4.2.2.2 Attributes

The following table summarizes the attributes.

Table 4-2 Attributes of the RmiMethod Annotation

Name Description Data Type Default
Value

asynchronousR
esult

If true, marks a method for asynchronous
processing. Typically when a method is
invoked, the result is returned upon the
completion of the method execution. When
asynchronousResult=true, the return
type of the method can be either void or a
Future object. If the type is a Future object,
it can be polled to see when the result is
available. If the type is a void, the method is
treated as an asynchronous one-way call.

boolean false

dispatchPolic
y

Specifies the Work Manager used to schedule
remote object requests.

String ""

Annotations for WebLogic RMI

4-4 Developing RMI Applications for Oracle WebLogic Server

Table 4-2 (Cont.) Attributes of the RmiMethod Annotation

Name Description Data Type Default
Value

idempotent Specifies an Idempotent method. boolean false

oneway Specifies a one-way call. boolean false

timeout Specifies a timeout for a remote call. int 0

transactional Specifies a transactional method. If not,
suspend a transaction before making the RMI
call and resume the transaction after the call
completes.

boolean false

4.3 Exception Handling
The following sections provide information on WebLogic RMI annotation exception
handling:

• Application Exceptions

• System Exceptions

4.3.1 Application Exceptions
Clients receive all checked application exceptions.

4.3.2 System Exceptions
Client receive all the errors and runtime exceptions encountered during remote
method invocation.

Remote exceptions are handled as follows:

• Checked exceptions are thrown directly to a client.

• Unchecked exceptions are wrapped in a RuntimeException and then thrown to
the client.

• Generated EJB 3.0 objects annotate the remoteExceptionWrapper to be
EJBException for all EJB methods. Clients then receive all remote exceptions
wrapped in EJBException.

You can specify the remoteExceptionWrapper annotation for an entire
implementation class or for a particular method which wraps all remote exceptions in
the specified runtime exception before throwing it back to the client. If the
remoteExceptionWrapper annotation is not specified then the remote exceptions
are wrapped as shown in Table 4-3.

Table 4-3 Exception Wrapping in WebLogic Clients

Client Exception Wrapping

WL Full Client RemoteRuntimeException1 wraps RemoteException

WL Thin T3 Client RemoteRuntimeException2 wraps RemoteException

Exception Handling

Using WebLogic RMI Annotations 4-5

Table 4-3 (Cont.) Exception Wrapping in WebLogic Clients

Client Exception Wrapping

WLS-IIOP Client3 RemoteRuntimeException wraps
java.rmi.ServerException wraps RemoteException

or

RemoteRuntimeException wraps RemoteException

Thin Client java.lang.RuntimeException wraps ServerException
wraps RemoteException

or

RuntimeException wraps RemoteException

Java SE Client java.lang.RuntimeException wraps ServerException
wraps RemoteException

or

RuntimeException wraps RemoteException

1 weblogic.rmi.extensions.RemoteRuntimeException is a sub-class of
RuntimeException

2 weblogic.rmi.extensions.RemoteRuntimeException is a sub-class of
RuntimeException

3 The existing T3 protocol layer doesn't always wraps the RemoteException as
java.rmi.ServerException but the IIOP protocol always does it on the Server.

4.4 Cluster Failover
Clustered stubs automatically handle the failover of a remote call to another node in
the cluster based on the type of exception received. Wrapping remote exceptions, such
as RuntimeException, in the stub does not change the failover behavior for a
remote object.

4.5 RMI Callback Objects
Passing a callback object with an annotated remote object requires the callback remote
object to extend java.rmi.Remote interface.

Note:

Some client types can not support callback objects because they do not have
access to WebLogic classes. For example, the Java SE client.

4.6 Annotation and WebLogic RMI Descriptor Merging
Annotations specified in the implementation class cannot be over-ridden on the server.
You must ensure that the right set of descriptor values are used by merging the
application descriptors and deployment plans.

Cluster Failover

4-6 Developing RMI Applications for Oracle WebLogic Server

5
Using the WebLogic RMI Compiler

This chapter describes how to use the features and options of the WebLogic RMI
compiler.

This chapter includes the following sections:

• Overview of the WebLogic RMI Compiler

• WebLogic RMI Compiler Features

• WebLogic RMI Compiler Options

• Java SE Enhancements

5.1 Overview of the WebLogic RMI Compiler
The WebLogic RMI compiler (weblogic.rmic) is a command-line utility for
generating and compiling remote objects. Use weblogic.rmic to generate dynamic
proxies on the client-side for custom remote object interfaces in your application and
provide hot code generation for server-side objects.

You only need to explicitly run weblogic.rmic for clusterable or IIOP clients.
WebLogic RMI over IIOP extends the RMI programming model by providing the
ability for clients to access RMI remote objects using the Internet Inter-ORB Protocol
(IIOP). See Using RMI over IIOP .

5.2 WebLogic RMI Compiler Features
The following sections provide information on WebLogic RMI Compiler features for
this release:

• Hot Code Generation

• Proxy Generation

• Additional WebLogic RMI Compiler Features

5.2.1 Hot Code Generation
When you run rmic, you use WebLogic Server's hot code generation feature to
automatically generate bytecode in memory for server classes. This bytecode is
generated on the fly as needed for the remote object. no longer generates the skeleton
class for the object when weblogic.rmic is run.

Hot code generation produces the bytecode for a server-side class that processes
requests from the dynamic proxy on the client. The dynamically created bytecode de-
serializes client requests and executes them against the implementation classes,

Using the WebLogic RMI Compiler 5-1

serializing results and sending them back to the proxy on the client. The
implementation for the class is bound to a name in the JNDI tree in WebLogic Server.

5.2.2 Proxy Generation
The default behavior of the WebLogic RMI compiler is to produce proxies for the
remote interface and for the remote classes to share the proxies. A proxy is a class used
by the clients of a remote object. In the case of RMI, dynamically generated bytecode
and proxy classes are used.

For example, example.hello.HelloImpl and counter.example.CiaoImpl are
represented by a single proxy class and bytecode—the proxy that matches the remote
interface implemented by the remote object, in this case, example.hello.Hello.

When a remote object implements more than one interface, the proxy names and
packages are determined by encoding the set of interfaces. You can override this
default behavior with the WebLogic RMI compiler option -nomanglednames, which
causes the compiler to produce proxies specific to the remote class. When a class-
specific proxy is found, it takes precedence over the interface-specific proxy.

In addition, with WebLogic RMI proxy classes, the proxies are not final. References to
collocated remote objects are references to the objects themselves, not to the proxies.

The dynamic proxy class is the serializable class that is passed to the client. A client
acquires the proxy for the class by looking up the class in the WebLogic JNDI. The
client calls methods on the proxy just as if it were a local class and the proxy serializes
the requests and sends them to WebLogic Server.

5.2.3 Additional WebLogic RMI Compiler Features
Other features of the WebLogic RMI compiler include the following:

• Signatures of remote methods do not need to throw RemoteException.

• Remote exceptions can be mapped to RuntimeException.

• Remote classes can also implement non-remote interfaces.

5.3 WebLogic RMI Compiler Options
The WebLogic RMI compiler accepts any option supported by the Java compiler; for
example, you could add -d \classes examples.hello.HelloImpl to the
compiler option at the command line. All other options supported by the Java
compiler can be used and are passed directly to the Java compiler.

The following table lists java weblogic.rmic options. Enter these options after
java weblogic.rmic and before the name of the remote class.

 $java weblogic.rmic [options] <classes>...

Table 5-1 WebLogic RMI Compiler Options

Option Description

-help Prints a description of the options.

-version Prints version information.

-d <dir> Specifies the target (top level) directory for compilation.

WebLogic RMI Compiler Options

5-2 Developing RMI Applications for Oracle WebLogic Server

Table 5-1 (Cont.) WebLogic RMI Compiler Options

Option Description

-dispatchPolicy <queueName> Specifies a configured execute queue that the service
should use to obtain execute threads in WebLogic Server.

-oneway Specifies all calls are one-way calls.

-idl Generates IDLs for remote interfaces.

-idlOverwrite Overwrites existing IDL files.

-idlVerbose Displays verbose information for IDL information.

-idlDirectory <idlDirectory> Specifies the directory where IDL files will be created
(Default is the current directory).

-idlFactories Generates factory methods for valuetypes.

-idlNoValueTypes Prevents the generation of valuetypes and the methods/
attributes that contain them.

-idlNoAbstractInterfaces Prevents the generation of abstract interfaces and the
methods/attributes that contain them.

-idlStrict Generates IDL according to OMG standard.

-idlVisibroker Generate IDL compatible with Visibroker 4.5 C++.

-idlOrbix Generate IDL compatible with Orbix 2000 2.0 C++.

-iiopTie Generate CORBA skeletons using Sun's version of rmic.

-iiopSun Generate CORBA stubs using Sun's version of rmic.

-nontransactional Suspends the transaction before making the RMI call and
resumes after the call completes.

-compiler <javac> Specifies the Java compiler. If not specified, the -
compilerclass option will be used.

-compilerclass
<com.sun.tools.javac.Main>

Compiler class to invoke.

-clusterable This cluster-specific options marks the service as
clusterable (can be hosted by multiple servers in a
WebLogic Server cluster). Each hosting object, or replica,
is bound into the naming service under a common name.
When the service stub is retrieved from the naming
service, it contains a replica-aware reference that
maintains the list of replicas and performs load-balancing
and fail-over between them.

-loadAlgorithm <algorithm> Only for use in conjunction with -clusterable. Specifies a
service-specific algorithm to use for load-balancing and
fail-over (Default is weblogic.cluster.loadAlgorithm).
Must be one of the following: round-robin, random, or
weight-based.

WebLogic RMI Compiler Options

Using the WebLogic RMI Compiler 5-3

Table 5-1 (Cont.) WebLogic RMI Compiler Options

Option Description

-callRouter <callRouterClass> This cluster-specific option used in conjunction with -
clusterable specifies the class to be used for routing
method calls. This class must implement
weblogic.rmi.cluster.CallRouter. If specified, an instance
of the class is called before each method call and can
designate a server to route to based on the method
parameters. This option either returns a server name or
null. Null means that you use the current load algorithm.

-stickToFirstServer This cluster-specific option used in conjunction with -
clusterable enables "sticky " load balancing. The server
chosen for servicing the first request is used for all
subsequent requests.

-methodsAreIdempotent This cluster-specific option used in conjunction with -
clusterable indicates that the methods on this class are
idempotent. This allows the stub to attempt recovery from
any communication failure, even if it can not ensure that
failure occurred before the remote method was invoked.
By default (if this option is not used), the stub only retries
on failures that are guaranteed to have occurred before the
remote method was invoked.

-iiop Generates IIOP stubs from servers.

-iiopDirectory Specifies the directory where IIOP proxy classes are
written.

-timeout Used in conjunction with remote-client-timeout .

-commentary Emits commentary.

-nomanglednames Causes the compiler to produce proxies specific to the
remote class.

-g Compile debugging information into the class.

-O Compile with optimization.

-nowarn Compile without warnings.

-verbose Compile with verbose output.

-verboseJavac Enable Java compiler verbose output.

-nowrite Prevent the generation of .class files.

-deprecation Provides warnings for deprecated calls.

-classpath <path> Specifies the classpath to use.

-J<option> Use to pass flags through to the Java runtime.

-keepgenerated Allows you to keep the source of generated stub and
skeleton class files when you run the WebLogic RMI
compiler.

WebLogic RMI Compiler Options

5-4 Developing RMI Applications for Oracle WebLogic Server

Table 5-1 (Cont.) WebLogic RMI Compiler Options

Option Description

-disableHotCodeGen Causes the compiler to create stubs at skeleton classes
when compiled.

5.3.1 Non-Replicated Stub Generation
You can also use weblogic.rmic to generate stubs that are not replicated in the
cluster. These stubs are known as "pinned " services, because after they are registered
they are available only from the host with which they are registered and will not
provide transparent failover or load balancing. Pinned services are available cluster-
wide, because they are bound into the replicated cluster-wide JNDI tree. However, if
the individual server that hosts the pinned services fails, the client cannot failover to
another server.

5.3.2 Using Persistent Compiler Options
During deployment, appc and ejbc run each EJB container class through the RMI
compiler to create RMI descriptors necessary to dynamically generate stubs and
skeletons. Use the weblogic-ejb-jar.xml file to persist iiop-security-
descriptor elements. For more information, see weblogic-ejb-jar.xml Elements in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

5.3.3 Java SE Enhancements
You can find additional information on Java SE enhancements for Java RMI at http://
docs.oracle.com/javase/6/docs/technotes/guides/rmi/.

WebLogic RMI Compiler Options

Using the WebLogic RMI Compiler 5-5

http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/
http://docs.oracle.com/javase/6/docs/technotes/guides/rmi/

WebLogic RMI Compiler Options

5-6 Developing RMI Applications for Oracle WebLogic Server

6
Using WebLogic RMI with T3 Protocol

This chapter provides information on using WebLogic RMI with T3 protocol.

This chapter includes the following sections:

• RMI Communication in WebLogic Server

• Determining Connection Availability

• Using a WebLogic T3/T3s Client Proxy

6.1 RMI Communication in WebLogic Server
RMI communications in WebLogic Server use the T3 protocol to transport data
between WebLogic Server and other Java programs, including clients and other
WebLogic Server instances. A server instance keeps track of each Java Virtual Machine
(JVM) with which it connects, and creates a single T3 connection to carry all traffic for
a JVM. See Configure T3 protocol in Oracle WebLogic Server Administration Console
Online Help.

For example, if a Java client accesses an enterprise bean and a JDBC connection pool
on WebLogic Server, a single network connection is established between the WebLogic
Server JVM and the client JVM. The EJB and JDBC services can be written as if they
had sole use of a dedicated network connection because the T3 protocol invisibly
multiplexes packets on the single connection.

6.2 Determining Connection Availability
Any two Java programs with a valid T3 connection—such as two server instances, or a
server instance and a Java client—use periodic point-to-point "heartbeats " to
announce and determine continued availability. Each end point periodically issues a
heartbeat to the peer, and similarly, determines that the peer is still available based on
continued receipt of heartbeats from the peer.

• The frequency with which a server instance issues heartbeats is determined by the
heartbeat interval, which by default is 60 seconds.

• The number of missed heartbeats from a peer that a server instance waits before
deciding the peer is unavailable is determined by the heartbeat period, which by
default, is 4. Hence, each server instance waits up to 240 seconds, or 4 minutes,
with no messages—either heartbeats or other communication—from a peer before
deciding that the peer is unreachable.

• Changing timeout defaults is not recommended.

Using WebLogic RMI with T3 Protocol 6-1

6.3 Using a WebLogic T3/T3s Client Proxy
The WebLogic T3/T3s Client Proxy provides the ability to route outbound client
requests to a proxy WebLogic T3 server. In this situation, each client routes all
outbound requests to the proxy server. The proxy server then directs the request to the
WebLogic Server instance that services the request. On both of client and server side,
the configuration affects all applications using a T3 connection as client. For example,
if an application creates T3 connection to access a WebLogic T3 server, such as calling
methods on remote objects using WebLogic RMI, the proxy configuration is applied to
the connection logic.

To enable a client proxy, set the following properties:

T3:

-Dhttp.proxyHost=<proxy hostname>
-Dhttp.proxyPort=<proxy port>
-Dhttp.nonProxyHosts=<hostnames>

T3s:

-Dhttps.proxyHost=<proxy hostname>
-Dhttps.proxyPort=<proxy port>
-Dhttps.nonProxyHosts=<hostnames>

where:

• proxy hostname is the network address of the user's proxy server.

• proxy port is the port number. If not explicitly set, the value of the port number
is set to 80.

• hostnames is a "|" separated list of one or more host names that WebLogic Server
excludes from a proxy configuration. You can use the wildcard character "*" for
matching. For example: -Dhttp.nonProxyHosts="*.oracle.com|
localhost".

Using a WebLogic T3/T3s Client Proxy

6-2 Developing RMI Applications for Oracle WebLogic Server

7
How to Implement WebLogic RMI

This chapter describes the java.rmi.Remote interface which is the basic building
block for all remote objects even though it contains no methods. You extend this
"tagging" interface—that is, it functions as a tag to identify remote classes—to create
your own remote interface, with method stubs that create a structure for your remote
object. Then you implement your own remote interface with a remote class. This
implementation is bound to a name in the registry, where a client or server can look
up the object and use it remotely.

If you have written RMI classes, you can drop them in WebLogic RMI by changing the
import statement on a remote interface and the classes that extend it. To add remote
invocation to your client applications, look up the object by name in the registry.
WebLogic RMI exceptions are identical to and extend java.rmi exceptions so that
existing interfaces and implementations do not have to change exception handling.

This chapter includes the following sections:

• Creating Classes That Can Be Invoked Remotely

• Run the RMI Hello Code Sample

7.1 Creating Classes That Can Be Invoked Remotely
You can write your own WebLogic RMI classes in just a few steps.

• Step 1. Write a Remote Interface

• Step 2. Implement the Remote Interface

• Step 3: Create a Client that Invokes Remote Methods

• Step 4. Compile the Java Classes

7.1.1 Step 1. Write a Remote Interface
Every class that can be remotely invoked implements a remote interface. Write the
remote interface in adherence with the following guidelines.

• A remote interface must extend the interface java.rmi.Remote, which contains no
method signatures. Include method signatures that will be implemented in every
remote class that implements the interface.

• The remote interface must be public. Otherwise a client gets an error when
attempting to load a remote object that implements it.

• It is not necessary for each method in the interface to declare
java.rmi.RemoteException in its throws block. The exceptions that your
application throws can be specific to your application, and can extend

How to Implement WebLogic RMI 7-1

RuntimeException. WebLogic RMI subclasses java.rmi.RemoteException,
so if you already have existing RMI classes, you will not have to change your
exception handling.

• Your Remote interface may not contain much code. All you need are the method
signatures for methods you want to implement in remote classes.

Here is an example of a remote interface with the method signature sayHello().

WebLogic RMI supports more flexible runtime code generation; WebLogic RMI
supports dynamic proxies and dynamically created bytecode that are type-correct
but are otherwise independent of the class that implements the interface. If a class
implements a single remote interface, the proxy and bytecode that is generated by
the compiler will have the same name as the remote interface. If a class implements
more than one remote interface, the name of the proxy and bytecode that result
from the compilation depend on the name mangling used by the compiler.

Example 7-1 Hello.java Remote Interface

package examples.rmi.hello;

import java.rmi.RemoteException;
/**
 * This interface is the remote interface.
 *
 * Copyright (c) 1999,2012, Oracle and/or its affiliates. All Rights Reserved.
 */
public interface Hello extends java.rmi.Remote {
 String sayHello() throws RemoteException;
}

7.1.2 Step 2. Implement the Remote Interface
Write the class be invoked remotely. The class should implement the remote interface
that you wrote in Step 1, which means that you implement the method signatures that
are contained in the interface. All the code generation that takes place in WebLogic
RMI is dependent on this class file.

• Your class can implement more than one remote interface. Your class can also
define methods that are not in the remote interface, but you cannot invoke those
methods remotely.

• Example 7-2 implements a class that creates a HelloImpl and binds it to the
unique name, HelloServer, in the registry. The method sayHello() provides a
greeting.

• The main() method creates an instance of the remote object and registers it in the
WebLogic JNDI tree, by binding it to a name (a URL that points to the
implementation of the object). A client that needs to obtain a proxy to use the object
remotely will be able to look up the object by name.

WebLogic RMI does not require that you set a Security Manager in order to integrate
security into your application. Security is handled by WebLogic Server support for
SSL and ACLs.

Example 7-2 HelloImpl.java Remote Interface Implementation

package examples.rmi.hello;

import javax.naming.*;
import java.rmi.RemoteException;

Creating Classes That Can Be Invoked Remotely

7-2 Developing RMI Applications for Oracle WebLogic Server

/**
 * Copyright (c) 1999,2012, Oracle and/or its affiliates. All Rights Reserved.
 */
public class HelloImpl implements Hello{
 private String name;

 /**
 * Constructs a HelloImpl with the specified string.
 *
 * @param s String message
 */
 public HelloImpl(String s) throws RemoteException {
 super();
 name = s;
 }

 /**
 * Returns a string.
 *
 * @return String message
 * @exception java.rmi.RemoteException
 */
 public String sayHello() throws java.rmi.RemoteException {
 return "Hello World!";
 }

 /**
 * Allows the WebLogic Server to instantiate this implementation
 * and bind it in the registry.
 */
 public static void main(String args[]) throws Exception {

 try {
 HelloImpl obj = new HelloImpl("HelloServer");
 Context ctx = new InitialContext();
 ctx.bind("HelloServer", obj);
 System.out.println("HelloImpl created and bound in the registry " +
 "to the name HelloServer");

 }
 catch (Exception e) {
 System.err.println("HelloImpl.main: an exception occurred:");
 System.err.println(e.getMessage());
 throw e;
 }
 }
}

7.1.3 Step 3: Create a Client that Invokes Remote Methods
In general, once you create an initial context, it takes just a single line of code to get a
reference to the remote object. Do this with the Naming.lookup() method. The
following sections provide additional information on creating clients:

• Setting Client Timeouts

• Example HelloClient.java Client

Creating Classes That Can Be Invoked Remotely

How to Implement WebLogic RMI 7-3

7.1.3.1 Setting Client Timeouts

You can set client side timeouts while configuring your initial context:

• To set the amount of time a request waits for a connection response, use the
weblogic.jndi.connectTimeout.

• To set the amount of time a request waits for a response from the remote server
after a connection has been established, use the
weblogic.jndi.responseReadTimeout.

• See Request Timeouts.

For example:

. . .
// Get an InitialContext
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory");
env.put(Context.PROVIDER_URL, url);
env.put("weblogic.jndi.connectTimeout", new Long(15000));
env.put("weblogic.jndi.responseReadTimeout", new Long(15000));
return new InitialContext(env);
. . .

7.1.3.2 Example HelloClient.java Client

Here is a short WebLogic client application that uses an object created in Example 7-2.

Example 7-3 Example HelloClient.java Client

package examples.rmi.hello;

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
 * This client uses the remote HelloServer methods.
 *
 * @author Copyright (c) 1999,2012, Oracle and/or its affiliates. All Rights
Reserved.
 */
public class HelloClient
{
 // Defines the JNDI context factory.
 public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory";
 int port;
 String host;

 private static void usage() {
 System.err.println("Usage: java examples.rmi.hello.HelloClient " +
 "<hostname> <port number>");
 }

 public HelloClient() {}

 public static void main(String[] argv) throws Exception {
 if (argv.length < 2) {
 usage();

Creating Classes That Can Be Invoked Remotely

7-4 Developing RMI Applications for Oracle WebLogic Server

 return;
 }
 String host = argv[0];
 int port = 0;
 try {
 port = Integer.parseInt(argv[1]);
 }
 catch (NumberFormatException nfe) {
 usage();
 throw nfe;
 }

 try {
 InitialContext ic = getInitialContext("t3://" + host + ":" + port);
 Hello obj = (Hello) ic.lookup("HelloServer");
 System.out.println("Successfully connected to HelloServer on " +
 host + " at port " +
 port + ": " + obj.sayHello());
 }
 catch (Exception ex) {
 System.err.println("An exception occurred: "+ex.getMessage());
 throw ex;
 }
 }

 private static InitialContext getInitialContext(String url)
 throws NamingException
 {
 Hashtable<String,String> env = new Hashtable<String,String>();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);
 return new InitialContext(env);
 }

}

7.1.4 Step 4. Compile the Java Classes
Use javac or some other Java compiler to compile the .java files to produce .class
files for the remote interface and the class that implements it.

Example 7-4 provides an Ant script that can be used in the WebLogic Server examples
environment to compile the .java files and install the .class files into the
serverclasses and clientclasses directories configured for the WebLogic
Server examplesServer.

Example 7-4 Example build.xml file to Compile Java Classes

<?xml version="1.0" encoding="ISO-8859-1"?>
<project name="rmi.hello" default="all" basedir=".">
 <property environment="env"/>
 <property file="../../../examples.properties"/>
 <property name="build.compiler" value="${compiler}"/>
 <!-- set global properties for this build -->
 <property name="source" value="${basedir}"/>
 <target name="all" depends="build"/>
 <target name="build" depends="compile.server, compile.client"/>
 <!-- Compile server classes into the serverclasses directory -->
 <target name="compile.server">
 <javac srcdir="${source}"

Creating Classes That Can Be Invoked Remotely

How to Implement WebLogic RMI 7-5

 destdir="${server.classes.dir}"
 includes="Hello.java, HelloImpl.java"
 classpath="${ex.classpath};${server.classes.dir}"
 deprecation="${deprecation}" debug="${debug}" debugLevel="${debugLevel}"
 />
 </target>
 <!-- Compile client classes into the clientclasses directory -->
 <target name="compile.client">
 <javac srcdir="${source}"
 destdir="${client.classes.dir}"
 includes="HelloClient.java"
 classpath="${ex.classpath};${server.classes.dir}"
 deprecation="${deprecation}" debug="${debug}" debugLevel="${debugLevel}"
 />
 </target>
</project>

7.2 Run the RMI Hello Code Sample
Use the following instructions to run the WebLogic RMI Hello example:

• Prerequisites

• Setup the RMI Hello Example

• Configure a Startup Class

• Restart the examplesServer

• Run the Example

7.2.1 Prerequisites
Install WebLogic server, including the examples. It is assumed that you know how to
start the examplesServer and how to set an environment in a shell to run examples.

7.2.2 Setup the RMI Hello Example
Use the following steps to setup the Hello example:

1. Open a shell and set the samples environment.

2. Change to the ORACLE_HOME\wlserver\samples\server\examples\src
\examples directory, where ORACLE_HOME refers to the directory in which you
installed WebLogic Server. For more information on the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

3. Create an rmi directory with a subdirectory named hello.

4. Copy and save the contents of Example 7-1 as a file named Hello.java in the
hello directory.

5. Copy and save the contents of Example 7-2 as a file named HelloImpl.java in
the hello directory.

6. Copy and save the contents of Example 7-3 as a file named HelloClient.java in
the hello directory.

Run the RMI Hello Code Sample

7-6 Developing RMI Applications for Oracle WebLogic Server

7. Copy and save the contents of Example 7-4 as a file named build.xml in the
hello directory.

8. Execute the following command from the shell where you copied the example files:

ant build

7.2.3 Configure a Startup Class
Start an instance of the exampleServer. Create a startup class with the following
information:

• Name: MyHello

• Class Name: examples.rmi.hello.HelloImpl

• Targets: examplesServer

See Configure startup classes in Oracle WebLogic Server Administration Console Online
Help.

Note:

In this example, the build script makes sure that the startup class is in a
location on the server's classpath.

7.2.4 Restart the examplesServer
Restart the examplesServer. As the server boots, you should see the following in the
server log:

HelloImpl created and bound in the registry to the name
HelloServer

Once the server is running, you can verify that HelloServer is registered by viewing
the JNDI tree. See View objects in the JNDI tree in Oracle WebLogic Server
Administration Console Online Help.

7.2.5 Run the Example
Execute the following command from the shell where you copied the example files:

java examples.rmi.hello.HelloClient localhost 7001

The results are:

Successfully connected to HelloServer on localhost at port 7001:
Hello World!

Run the RMI Hello Code Sample

How to Implement WebLogic RMI 7-7

Run the RMI Hello Code Sample

7-8 Developing RMI Applications for Oracle WebLogic Server

8
WebLogic RMI Integration with Load

Balancers

This chapter describes WebLogic RMI support for load balancers, including hardware
load balancers and web servers with a web server plug-in.

This chapter includes the following sections:

• How WebLogic Server Supports Load Balancers

• HTTP Tunneled T3 Load Balancing

• Native T3 Load Balancing

• Failover Support

8.1 How WebLogic Server Supports Load Balancers
WebLogic Server clients that use RMI can interoperate with a load balancer using the
following mechanisms:

• When tunneling T3 over HTTP/HTTPS, WebLogic Server supports routing
through a hardware load balancer or a web server with a web server plug-in
provided that request forwarding mechanism to the WebLogic Cluster is
configured to use sticky session routing. See HTTP Tunneled T3 Load Balancing.

• When using T3 directly, WebLogic Server supports using a hardware load balancer
to bootstrap the initial T3 connections to the cluster by specifying a
PROVIDER_URL that points to the load balancer when creating the JNDI
InitialContext. See Native T3 Load Balancing.

Note:

All other uses of a hardware load balancer with WebLogic RMI are
unsupported—regardless of whether or not they work.

8.2 HTTP Tunneled T3 Load Balancing
When tunneling T3 over HTTP (or HTTPS), the WebLogic Server runtime creates an
HttpSession for each RMI session and passes the session ID back and forth between
the client and the server using the normal HTTP mechanisms. This allows the web
server plug-in or hardware load balancer to route all RMI requests from a particular
client back to the same server in the cluster for the duration of that session.

WebLogic RMI Integration with Load Balancers 8-1

Note:

External load balancers distribute initial context requests that come from Java
clients over T3 and the default channel. However, do not route client requests,
following the initial context request, through the load balancers. When using
the T3 protocol with external load balancer, you must ensure that only the
initial context request is routed through the load balancer and that subsequent
requests are routed and controlled using WebLogic Server load balancing.

8.2.1 How to Configure the External Listen Address
WebLogic Server provides an External Listen Address to provide an IP address
to use in RMI stubs to allow clients to connect to the server through a Network
Address Translating (NAT) Firewall. As long as the NAT firewall maps a unique
external IP address to the unique internal IP address of the server, each stub delivered
to the client uniquely identifies the cluster member holding the object that the stub is a
proxy for. The External Listen Address is set differently for default and custom
network channels:

• For the default channel, use the ExternalDNSName attribute on the ServerMBean.
See ExternalDNSName in Oracle WebLogic Server Administration Console Online Help.

• For a custom channel, use the PublicAddress and PublicPort on the
NetworkAccessMBean. See NetworkAccessPointMBean in Oracle WebLogic Server
Administration Console Online Help.

8.2.1.1 Example Custom Channel Configuration for a Load Balancer

Configure a T3 network channel on all WebLogic Server instances in the cluster. The
network channel accepts tunneled traffic from the load balancer. To ensure all client
requests are routed through the load balancer, set External Listen Address to
the end point where loadbalancer, or the web server, accepts traffic from the client.
Enable HTTP protocol and set tunneling-enabled=true. Configure the load
balancer or web server to route http traffic to WebLogic Server. If using Oracle HTTP
Server (OHS) as a webserver, this can be achieved by changing the httpd.conf
configuration file. For example:

The WebLogic Server config.xml:

<network-access-point>
 <name>tunnelChannel</name>
 <protocol>t3</protocol>
 <listen-address>foo.bar.Company.com</listen-address>
 <listen-port>11001</listen-port>
 <http-enabled-for-this-protocol>true</http-enabled-for-this-protocol>
 <tunneling-enabled>true</tunneling-enabled>
 <outbound-enabled>false</outbound-enabled>
 <enabled>true</enabled>
 <two-way-ssl-enabled>false</two-way-ssl-enabled>
 <client-certificate-enforced>false</client-certificate-enforced>
</network-access-point><network-access-point>
. . .

OHS/Webtier's httpd.conf file

<LocationMatch ^/bea_wls_internal/>
SetHandler weblogic-handler
WeblogicCluster foo.oracle.com:11001

HTTP Tunneled T3 Load Balancing

8-2 Developing RMI Applications for Oracle WebLogic Server

</LocationMatch>
. . .

8.2.2 Session Failover
Session failover is transparent to the client. When a server shuts down the client RJVM
receives a PeerGone exception. This causes the HTTPClientJVMConnection to be
closed. When the next request comes from the same client, the request is failed over to
the next member in the cluster for both stateless and stateful beans. If an exception
occurs during request processing, that request is not failed over and the exception is
propagated to the client.

8.2.3 Cookie Persistence
The tunneling client caches the cookie it receives after initial request and sends it back
in every subsequent request.

8.2.4 Pinned Objects
In a cluster, even if an object is pinned and the replicate_bindings!= false, the
stub is replicated to all the members of the cluster. Tunneling does not affect the
normal pinned object behavior.

8.2.5 Stateful Session EJBs
If External Listen Address is not set, the stub that the client gets back has the
list of available hosts to route to and the behavior is similar to sending direct t3
requests.

If External Listen Address is set then failover does not work because the
primary and secondary hosts get set to the externalDNSName and load balancer
hangs trying to route to itself.

8.3 Native T3 Load Balancing
If the cluster member fails, the client invocation on a non-cluster-aware stub also fails
since the firewall does not attempt to redirect the request to another cluster member.
For a cluster-aware stub invocation, the request should be transparently routed
around the failure and the invocation delivered to a different cluster member using the
External Listen Address contained in the cluster-aware stub. See How to
Configure the External Listen Address.

Use the hardware load balancer to load balance the initial T3 connection request when
creating the JNDI InitialContext by specifying a PROVIDER_URL that points to
the load balancer provided that the External Listen Address is not set to point
to the hardware load balancer. This configuration works because the hardware load
balancer is only involved in routing the initial TCP connection request to one of the
managed servers. Once the connection is established, all RMI stubs contain the server's
ListenAddress (or External Listen Address in the case of a NAT firewall)
that uniquely identifies the server for which the stub is acting as a proxy.

8.4 Failover Support
WebLogic RMI does not support failover when used with a hardware loadbalancer.

For information on how WebLogic Server RMI handles failover, see Failover and Load
Balancing RMI Objects.

Native T3 Load Balancing

WebLogic RMI Integration with Load Balancers 8-3

Failover Support

8-4 Developing RMI Applications for Oracle WebLogic Server

9
Using RMI over IIOP

This chapter provides a high-level view of RMI over IIOP (RMI-IIOP) and RMI-IIOP
interoperability between this release and prior WebLogic Server releases.

This chapter includes the following sections:

• What is RMI over IIOP?

• Overview of WebLogic RMI-IIOP

9.1 What is RMI over IIOP?
RMI over IIOP extends RMI to work across the IIOP protocol. This has two benefits
that you can leverage. In a Java to Java paradigm, this allows you to program against
the standardized Internet Interop-Orb-Protocol (IIOP). If you are not working in a
Java-only environment, it allows your Java programs to interact with Common Object
Request Broker Architecture (CORBA) clients and execute CORBA objects. CORBA
clients can be written in a variety of languages (including C++) and use the Interface-
Definition-Language (IDL) to interact with a remote object.

9.2 Overview of WebLogic RMI-IIOP
WebLogic Server provides its own ORB implementation which is instantiated by
default when programs call ORB.init(), or when "java:comp/ORB" is looked up
in JNDI. See CORBA Support for WebLogic Server for information how WebLogic
Server complies with specifications for CORBA support in Java SE.

The WebLogic Server implementation of RMI-IIOP allows you to:

• Connect Java RMI clients to WebLogic Server using the standardized IIOP protocol

• Connect CORBA/IDL clients, including those written in C++, to WebLogic Server

• Interoperate between WebLogic Server and Tuxedo clients

• Connect a variety of clients to EJBs hosted on WebLogic Server

How you develop your RMI-IIOP applications depends on what services and clients
you are trying to integrate. See Developing Standalone Clients for Oracle WebLogic Server
for more information on how to create applications for various clients types that use
RMI and RMI-IIOP.

The following diagram shows RMI Object Relationships for objects that use IIOP.

Using RMI over IIOP 9-1

Figure 9-1 RMI Object Relationships

9.2.1 Support for RMI-IIOP with RMI (Java) Clients
You can use RMI-IIOP with Java/RMI clients, taking advantage of the standard IIOP
protocol. WebLogic Server provides multiple options for using RMI-IIOP in a Java-to-
Java environment, including the new Java EE Application Client (thin client), which is
based on the new small footprint client jar. To use the new thin client, you need to
have the wlclient.jar (located in WL_HOME/server/lib) on the client side's
CLASSPATH. For more information on RMI-IIOP client options, see Developing
Standalone Clients for Oracle WebLogic Server.

9.2.2 Support for RMI-IIOP with Tuxedo Client
WebLogic Server contains an implementation of the WebLogic Tuxedo Connector, an
underlying technology that enables you to interoperate with Tuxedo servers. Using
WebLogic Tuxedo Connector, you can leverage Tuxedo as an ORB, or integrate legacy
Tuxedo systems with applications you have developed on WebLogic Server. For more
information, see the Developing Oracle WebLogic Tuxedo Connector Applications for Oracle
WebLogic Server.

9.2.3 Support for RMI-IIOP with CORBA/IDL Clients
The developer community requires the ability to access Java EE services from
CORBA/IDL clients. However, Java and CORBA are based on very different object
models. Because of this, sharing data between objects created in the two programming
paradigms was, until recently, limited to Remote and CORBA primitive data types.
Neither CORBA structures nor Java objects could be readily passed between disparate
objects. To address this limitation, the Object Management Group (OMG) created the
Objects-by-Value Specification at http://www.omg.org/technology/documents/
index.htm. This specification defines the enabling technology for exporting the Java
object model into the CORBA/IDL programming model--allowing for the interchange
of complex data types between the two models. WebLogic Server can support Objects-
by-Value with any CORBA ORB that correctly implements the specification.

Overview of WebLogic RMI-IIOP

9-2 Developing RMI Applications for Oracle WebLogic Server

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm

10
Configuring WebLogic Server for RMI-IIOP

This chapter describes the concepts and procedures necessary to configure WebLogic
Server to interoperate using RMI over IIOP (RMI-IIOP).

This chapter includes the following sections:

• Set the Listening Address

• Setting Network Channel Addresses

• Using a IIOPS Thin Client Proxy

• Using RMI-IIOP with SSL and a Java Client

• Accessing WebLogic Server Objects from a CORBA Client through Delegation

• Configuring CSIv2 authentication

• Using RMI over IIOP with a Hardware Load Balancer

• Limitations of WebLogic RMI-IIOP

• Propagating Client Identity

10.1 Set the Listening Address
To facilitate the use of IIOP, always specify a valid IP address or DNS name for the
Listen Address attribute in the configuration file (config.xml) to listen for
connections.

The Listen Address default value of null allows it to "listen on all configured network
interfaces". However, this feature only works with the T3 protocol. If you need to
configure multiple listen addresses for use with the IIOP protocol, then use the
Network Channel feature, as described in Configuring Network Resources in
Administering Server Environments for Oracle WebLogic Server.

10.2 Setting Network Channel Addresses
The following sections provide information to consider when implementing IIOP
network channel addresses for thin clients.

10.2.1 Considerations for Proxys and Firewalls
Many typical environments use firewalls, proxys, or other devices that hide the
application server's true IP address. Because IIOP relies on a per-object addressing
scheme where every object contains a host and port, anything that masks the true IP
address of the server will prevent the external client from maintaining a connection.
To prevent this situation, set the PublicAddress on the server IIOP network channel
to the virtual IP that the client sees.

Configuring WebLogic Server for RMI-IIOP 10-1

10.2.1.1 Considerations for Clients with Multiple Connections

IIOP clients publish addressing information that is used by the application server to
establish a connection. In some situations, such as running a VPN where clients have
more than one connection, the server cannot see the IP address published by the client.
In this situation, you have two options:

• Use a bi-directional form of IIOP. Use the following WebLogic flag:

-Dweblogic.corba.client.bidir=true

In this instance, the server does not need the IP address published by the client
because the server uses the inbound connection for outbound requests.

• Use the following JDK property to set the address the server uses for outbound
connections:

-Dcom.sun.CORBA.ORBServerHost=client_ipaddress

where client_ipaddress is an address published by the client.

10.3 Using a IIOPS Thin Client Proxy
The IIOPs Thin Client Proxy provides a WebLogic thin client the ability to proxy
outbound requests to a server. In this situation, each user routes all outbound requests
through their proxy. The user's proxy then directs the request to the WebLogic Server.
You should use this method when it is not practical to implement a Network Channel.
To enable a proxy, set the following properties:

-Diiops.proxyHost=<host>
-Diiops.proxyPort=<port>

where:

• hostname is the network address of the user's proxy server.

• port is the port number. If not explicitly set, the value of the port number is set to
80.

• hostname and port support symbolic names, such as:

-Diiops.proxyHost=https.proxyHost
-Diiops.proxyPort=https.proxyPort

You should consider the following security implications:

• This feature does not change the behavior of WebLogic Server. However, using this
feature does expose IP addresses though the client's firewall. As both ends of the
connection are trusted and the linking information is encrypted, this is an
acceptable security level for many environments.

• Some production environments do not allow enabling the CONNECT attribute on
the proxy server. These environments should use HTTPS tunneling. For more
information, see Setting Up WebLogic Server for HTTP Tunneling in Administering
Server Environments for Oracle WebLogic Server.

Using a IIOPS Thin Client Proxy

10-2 Developing RMI Applications for Oracle WebLogic Server

10.4 Using RMI-IIOP with SSL and a Java Client
The Java clients that support SSL are the thin client and the WLS-IIOP client. To use
SSL with these clients, simply specify an ssl URL.

10.5 Accessing WebLogic Server Objects from a CORBA Client through
Delegation

WebLogic Server provides services that allow CORBA clients to access RMI remote
objects. As an alternative method, you can also host a CORBA ORB (Object Request
Broker) in WebLogic Server and delegate incoming and outgoing messages to allow
CORBA clients to indirectly invoke any object that can be bound in the server.

10.5.1 Overview of Delegation
Here are the main steps to create the objects that work together to delegate CORBA
calls to an object hosted by WebLogic Server.

1. Create a startup class that creates and initializes an ORB so that the ORB is co-
located with the JVM that is running WebLogic Server.

2. Create an IDL (Interface Definition Language) that will create an object to accept
incoming messages from the ORB.

3. Compile the IDL. This will generate a number of classes, one of which will be the
Tie class. Tie classes are used on the server side to process incoming calls, and
dispatch the calls to the proper implementation class. The implementation class is
responsible for connecting to the server, looking up the appropriate object, and
invoking methods on the object on behalf of the CORBA client.

The following figure is a diagram of a CORBA client invoking an EJB by delegating
the call to an implementation class that connects to the server and operates upon the
EJB. Using a similar architecture, the reverse situation will also work. You can have a
startup class that brings up an ORB and obtains a reference to the CORBA
implementation object of interest. This class can make itself available to other
WebLogic objects throughout the JNDI tree and delegate the appropriate calls to the
CORBA object.

Using RMI-IIOP with SSL and a Java Client

Configuring WebLogic Server for RMI-IIOP 10-3

Figure 10-1 CORBA Client Invoking an EJB with a Delegated Call

10.5.2 Example of Delegation
The following code example creates an implementation class that connects to the
server, looks up the Foo object in the JNDI tree, and calls the bar method. This object
is also a startup class that is responsible for initializing the CORBA environment by:

• Creating the ORB

• Creating the Tie object

• Associating the implementation class with the Tie object

• Registering the Tie object with the ORB

• Binding the Tie object within the ORB's naming service

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import java.rmi.*;
import javax.naming.*;
import weblogic.jndi.Environment;

public class FooImpl implements Foo
{
 public FooImpl() throws RemoteException {

Accessing WebLogic Server Objects from a CORBA Client through Delegation

10-4 Developing RMI Applications for Oracle WebLogic Server

 super();
 }
 public void bar() throws RemoteException, NamingException {
 // look up and call the instance to delegate the call to...
 weblogic.jndi.Environment env = new Environment();
 Context ctx = env.getInitialContext();
 Foo delegate = (Foo)ctx.lookup("Foo");
 delegate.bar();
 System.out.println("delegate Foo.bar called!");
 }
 public static void main(String args[]) {
 try {
 FooImpl foo = new FooImpl();

 // Create and initialize the ORB
 ORB orb = ORB.init(args, null);

 // Create and register the tie with the ORB
 _FooImpl_Tie fooTie = new _FooImpl_Tie();
 fooTie.setTarget(foo);
 orb.connect(fooTie);

 // Get the naming context
 org.omg.CORBA.Object o = \
 orb.resolve_initial_references("NameService");
 NamingContext ncRef = NamingContextHelper.narrow(o);

 // Bind the object reference in naming

 NameComponent nc = new NameComponent("Foo", "");
 NameComponent path[] = {nc};
 ncRef.rebind(path, fooTie);

 System.out.println("FooImpl created and bound in the ORB registry.");
 }
 catch (Exception e) {
 System.out.println("FooImpl.main: an exception occurred:");
 e.printStackTrace();
 }
 }
}

10.6 Configuring CSIv2 authentication
The Common Secure Interoperability Specification, Version 2 (CSIv2) is an Open
Management Group (OMG) specification that addresses the requirements of Common
Object Request Broker Architecture (CORBA) security for interoperable
authentication, delegation, and privileges. See Common Secure Interoperability
Version 2 (CSIv2) in Understanding Security for Oracle WebLogic Server.

Use the following steps to use CSIv2 to authenticate an inbound call from a remote
domain:

1. Update the Identity Asserter. See Configuring Identity Assertion Providers in
Administering Security for Oracle WebLogic Server.

2. Update the User Name Mapper. See Configuring a User Name Mapper in
Administering Security for Oracle WebLogic Server.

Configuring CSIv2 authentication

Configuring WebLogic Server for RMI-IIOP 10-5

3. Add all users required by the application in the remote domain to the WebLogic
AuthenticationProvider. See Create User in Oracle WebLogic Server Administration
Console Online Help.

10.7 Using RMI over IIOP with a Hardware Load Balancer

Note:

This feature works correctly only when the bootstrap is through a hardware
load-balancer.

An optional enhancement for WebLogic Server Oracle ORB and higher, supports
hardware load balancing by forcing reconnection when bootstrapping. This allows
hardware load-balancers to balance connection attempts

In most situations, once a connection has been established, the next NameService
lookup is performed using the original connection. However, since this feature forces
re-negotiation of the end point to the hardware load balancer, all in-flight requests on
any existing connection are lost.

Use the -Dweblogic.system.iiop.reconnectOnBootstrap system property to
set the connection behavior of the Oracle ORB. Valid values are:

• true—Forces re-negotiation of the end point.

• false—Default value.

Environments requiring a hardware load balancer should set this property to true.

10.8 Limitations of WebLogic RMI-IIOP
The following sections outline various issues relating to WebLogic RMI-IIOP.

10.8.1 Limitations Using RMI-IIOP on the Client
Use WebLogic Server with JDK 1.3.1_01 or higher. Earlier versions are not RMI-IIOP
compliant. Note the following about these earlier JDKs:

• Send GIOP 1.0 messages and GIOP 1.1 profiles in IORs.

• Do not support the necessary pieces for EJB 2.0 interoperation (GIOP 1.2, codeset
negotiation, UTF-16).

• Have bugs in its treatment of mangled method names.

• Do not correctly unmarshal unchecked exceptions.

• Have subtle bugs relating to the encoding of valuetypes.

Many of these items are impossible to support both ways. Where there was a choice,
WebLogic supports the spec-compliant option.

10.8.2 Limitations Developing Java IDL Clients
Oracle strongly recommends developing Java clients with the RMI client model if you
are going to use RMI-IIOP. Developing a Java IDL client can cause naming conflicts
and classpath problems, and you are required to keep the server-side and client-side

Using RMI over IIOP with a Hardware Load Balancer

10-6 Developing RMI Applications for Oracle WebLogic Server

classes separate. Because the RMI object and the IDL client have different type
systems, the class that defines the interface for the server-side will be very different
from the class that defines the interface on the client-side.

10.8.3 Limitations of Passing Objects by Value
To pass objects by value, you need to use value types, (see http://www.omg.org/
cgi-bin/doc?formal/01-02-33, You implement value types on each platform on
which they are defined or referenced. This section describes the difficulties of passing
complex value types, referencing the particular case of a C++ client accessing an Entity
bean on WebLogic Server.

One problem encountered by Java programmers is the use of derived datatypes that
are not usually visible. For example, when accessing an EJB finder the Java
programmer will see a Collection or Enumeration, but does not pay attention to the
underlying implementation because the JDK run-time will classload it over the
network. However, the C++, CORBA programmer must know the type that comes
across the wire so that he can register a value type factory for it and the ORB can
unmarshal it.

Simply running ejbc on the defined EJB interfaces will not generate these definitions
because they do not appear in the interface. For this reason ejbc will also accept Java
classes that are not remote interfaces—specifically for the purpose of generating IDL
for these interfaces. Review the /iiop/ejb/entity/cppclient example to see
how to register a value type factory.

Java types that are serializable but that define writeObject() are mapped to custom
value types in IDL. You must write C++ code to unmarshal the value type manually.

Note:

When using Tuxedo, you can specify the -i qualifier to direct the IDL
compiler to create implementation files named FileName_i.h and
FileName_i.cpp. For example, this syntax creates the TradeResult_i.h
and TradeResult_i.cpp implementation files:

idl -IidlSources -i idlSources\examples\iiop\ejb\iiop\TradeResult.idl

The resulting source files provide implementations for application-defined operations
on a value type. Implementation files are included in a CORBA client application.

10.9 Propagating Client Identity
Until recently insufficient standards existed for propagating client identity from a
CORBA client. If you have problems with client identity from foreign ORBs, you may
need to implement one of the following methods:

• The identity of any client connecting over IIOP to WebLogic Server will default to
<anonymous>. You can set the user and password in the config.xml file to
establish a single identity for all clients connecting over IIOP to a particular
instance of WebLogic Server, as shown in the example below:

<Server
Name="myserver"
NativeIOEnabled="true"
DefaultIIOPUser="Bob"

Propagating Client Identity

Configuring WebLogic Server for RMI-IIOP 10-7

http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://www.omg.org/cgi-bin/doc?formal/01-02-33

DefaultIIOPPassword="Gumby1234"
ListenPort="7001">

• You can also set the IIOPEnabled attribute in the config.xml. The default value
is "true"; set this to "false" only if you want to disable IIOP support. No
additional server configuration is required to use RMI over IIOP beyond ensuring
that all remote objects are bound to the JNDI tree to be made available to clients.
RMI objects are typically bound to the JNDI tree by a startup class. EJB homes are
bound to the JNDI tree at the time of deployment. WebLogic Server implements a
CosNaming Service by delegating all lookup calls to the JNDI tree.

• This release supports RMI-IIOP corbaname and corbaloc JNDI references. See
http://www.omg.org/cgi-bin/doc?formal/01-02-33. One feature of these
references is that you can make an EJB or other object hosted on one WebLogic
Server available over IIOP to other Application Servers. So, for instance, you could
add the following to your ejb-jar.xml:

<ejb-reference-description>
<ejb-ref-name>WLS</ejb-ref-name>
<jndi-name>corbaname:iiop:1.2@localhost:7001#ejb/javaee/interop/foo</jndi-name>
</ejb-reference-description>

The reference-description stanza maps a resource reference defined in ejb-jar.xml
to the JNDI name of an actual resource available in WebLogic Server. The ejb-ref-
name specifies a resource reference name. This is the reference that the EJB provider
places within the ejb-jar.xml deployment file. The jndi-name specifies the JNDI
name of an actual resource factory available in WebLogic Server.

Note:

The iiop:1.2 contained in the <jndi-name> section. This release contains
an implementation of GIOP (General-Inter-Orb-Protocol) 1.2. The GIOP
specifies formats for messages that are exchanged between inter-operating
ORBs. This allows interoperability with many other ORBs and application
servers. The GIOP version can be controlled by the version number in a
corbaname or corbaloc reference.

These methods are not required when using WLInitialContextFactory in RMI
clients or can be avoided by using the WebLogic C++ client.

Propagating Client Identity

10-8 Developing RMI Applications for Oracle WebLogic Server

http://www.omg.org/cgi-bin/doc?formal/01-02-33

11
Best Practices for Application Design

This chapter describes recommended design patterns when programming with RMI
and RMI over IIOP.

This chapter includes the following sections:

• Use java.rmi

• Use PortableRemoteObject

• Use WebLogic Work Areas

• How to Handle Changes in Security Context

11.1 Use java.rmi
Oracle recommends RMI users use java.rmi, see http://docs.oracle.com/
javase/6/docs/api/java/rmi/package-summary.html. Although the
WebLogic API contains the weblogic.rmi API, it is deprecated and is only provided as
a compatibility API. Other WebLogic APIs provided for compatibility are:

• weblogic.rmi.registry

• weblogic.rmi.server

• weblogic.rmi.extensions

11.2 Use PortableRemoteObject
To maintain code portability, always use PortableRemoteObject when casting the
home interfaces. For example:

Propshome home = (PropsHome)
PortableRemoteObject.narrow(
ctx.lookup("Props"),
PropsHome.class);

11.3 Use WebLogic Work Areas
A best practice is to use Work Areas:

• Work Contexts allow Java EE developers to define properties as application context
which implicitly flow across remote requests and allow downstream components
to work in the context of the invoking client. Work Contexts allow developers to
pass properties without including them in a remote call. A Work Context is
propagated with each remote call-allowing the called component to add or modify
properties defined in the Work Context; similarly, the calling component can access
the Work Context to obtain new or updated properties.

Best Practices for Application Design 11-1

http://docs.oracle.com/javase/6/docs/api/java/rmi/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/rmi/package-summary.html
http://docs.oracle.com/javase/6/docs/api/javax/rmi/PortableRemoteObject.html

• Work Contexts ease the processing of implementing and maintaining functionality
that requires that information to be passed to remote components, such as
diagnostics monitoring, application transactions, and application load-balancing.
Work Contexts are also a useful mechanism for providing information to third-
party components.

• Work Contexts can propagate user-defined properties across all request scopes
supported by WebLogic Server-a Work Context is available to all of the objects that
can exist within the request scope, including RMI calls. For more information, see
Developing Applications for Oracle WebLogic Server.

11.4 How to Handle Changes in Security Context
WLS RMI does not carry forward the security context in the stub. The thread that
establishes the stub has the right subject in its thread context. If the stub is later used in
a different thread or the stub is used after the current thread context has changed as a
result of some operations, subsequent calls using the stub may fail with
SecurityException. Operations that can change the context of a thread include
establishing a new initial context and running WLST programmatically. Thread
context changes often surface as cross-domain security issues when using JMS, JTA,
and MDBs in multi-domain configurations.

If an RMI stub is going to be used in a different thread, the application can use a
JSR-237 work manager to schedule the new thread in the thread context that the stub
is created so that the thread context is propagated to the new thread. For cases where
this is not possible, or cases where the context of the original thread changes
somehow, the application should reestablish the context under which the stub should
be invoked with JAAS. The following public APIs can be used to reestablish the
security context:

• weblogic.security.Security.getCurrentSubject()—obtain the current
object on the thread.

• weblogic.security.Security.runAs()—resume the subject.

How to Handle Changes in Security Context

11-2 Developing RMI Applications for Oracle WebLogic Server

A
CORBA Support for WebLogic Server

This appendix provides the official specifications for CORBA support for this release
of WebLogic Server.

This appendix includes the following sections:

• Specification References

• Supported Specification Details

• Tools

A.1 Specification References
In general, this release of WebLogic Server adheres to the OMG specifications required
by Java EE. For this release, the WebLogic ORB is compliant with following
specification references:

• CORBA 2.6: formal/01-12-01 at http://www.omg.org/cgi-bin/doc?formal/
01-12-01

• CORBA 2.3.1: formal/99-10-07 at http://www.omg.org/cgi-bin/doc?formal/
99-10-07

• IDL to Java language mapping: ptc/03-09-04 at http://www.omg.org/cgi-bin/
doc?ptc/03-09-04

• Revised IDL to Java language mapping 1.3: formal/00-11-03 at http://
www.omg.org/cgi-bin/doc?formal/00-11-03

• Java to IDL language mapping: ptc/00-01-06 at http://www.omg.org/cgi-bin/
doc?ptc/00-01-06

• Interoperable Naming Service: ptc/00-08-07 at http://www.omg.org/cgi-bin/
doc?ptc/00-08-07

• Transaction Service 1.2.1: formal/2001-11-03 at http://www.omg.org/cgi-bin/
doc?formal/2001-11-03

Note:

If the above links do not take you to the referenced specification, the OMG
may have changed the URL. You can search http://www.omg.org for the
correct specification.

CORBA Support for WebLogic Server A-1

http://www.omg.org/cgi-bin/doc?formal/01-12-01
http://www.omg.org/cgi-bin/doc?formal/01-12-01
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?ptc/03-09-04
http://www.omg.org/cgi-bin/doc?ptc/03-09-04
http://www.omg.org/cgi-bin/doc?formal/00-11-03
http://www.omg.org/cgi-bin/doc?formal/00-11-03
http://www.omg.org/cgi-bin/doc?ptc/00-01-06
http://www.omg.org/cgi-bin/doc?ptc/00-01-06
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?formal/2001-11-03
http://www.omg.org/cgi-bin/doc?formal/2001-11-03
http://www.omg.org

A.2 Supported Specification Details
Not all of the above specifications are implemented in the WebLogic ORB in this
release. The following section provides a precise list of the supported specifications by
chapter or section:

• CORBA 2.6, chapters 1-3, 6-7, 13 and 15.

• Revised IDL to Java language mapping, section 1.21.8.2, the orb.properties file.

• CORBA 2.6, chapter 4 and 5, excepting details relevant to excluded features from
other chapters, such as PortableInterceptors.

• CORBA 2.6, sections 10.6.1 and 10.6.2 are supported for repository IDs.

• CORBA 2.6, section 10.7 for TypeCode APIs.

• CORBA 2.6, chapter 11, Portable Object Adapter (POA) excepting details relevant
to excluded features from other chapters, such as PortableInterceptors.

• CORBA 2.6, chapter 26, conformance level 0 plus stateful.

• The Interoperable Naming Service.

• Section 1.21.8 of the Revised IDL to Java Language Mapping Specification (ptc/
00-11-03) has been changed from the version in the IDL to Java Language Mapping
Specification (ptc/00-01-08).

• Transaction Service 1.2.1, as defined by the EJB 2.1 specification.

A.3 Tools
For this release, the WebLogic ORB is compliant with the following tools:

• The IDL to Java compiler (idlj) is the one that comes bundled with Java SE and is
compliant with following specification references:

– CORBA 2.3.1, chapter 3 (IDL definition).

– CORBA 2.3.1, chapters 5 and 6 (semantics of Value types).

– CORBA 2.3.1, section 10.6.5 (pragmas).

– The IDL to Java mapping specification.

– The Revised IDL to Java language mapping specification section 1.12.1 (local
interfaces).

• The Java to IDL compiler (the IIOP backend for rmic) complies with:

– CORBA 2.6, chapters 5 and 6 (value types).

– The Java to IDL language mapping. Note that this implicitly references section
1.21 of the IDL to Java language mapping.

– IDL generated by the -idl flag complies with CORBA 2.6 chapter 3.

Supported Specification Details

A-2 Developing RMI Applications for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.4.2 Examples in the WebLogic Server Distribution

	1.5 New and Changed Features in This Release

	2 Understanding WebLogic RMI
	2.1 What is WebLogic RMI?
	2.2 Features of WebLogic RMI

	3 WebLogic RMI Features
	3.1 WebLogic RMI Clients
	3.2 WebLogic RMI Security Support
	3.3 WebLogic RMI Transaction Support
	3.4 Failover and Load Balancing RMI Objects
	3.4.1 Clustered RMI Applications
	3.4.2 Load Balancing RMI Objects
	3.4.3 Parameter-Based Routing for Clustered Objects
	3.4.3.1 Custom Call Routing and Collocation Optimization

	3.5 Request Timeouts
	3.5.1 Using a Connect Timeout
	3.5.2 Using a Read Timeout
	3.5.2.1 Example rtd.xml file with a Timeout
	3.5.2.2 Example weblogic-ejb-jar.xml file with a Timeout

	3.6 Creating Pinned Services
	3.7 Dynamic Proxies in RMI

	4 Using WebLogic RMI Annotations
	4.1 Introduction to WebLogic RMI Annotations
	4.2 Annotations for WebLogic RMI
	4.2.1 Rmi
	4.2.1.1 Description
	4.2.1.2 Attributes

	4.2.2 RmiMethod
	4.2.2.1 Description
	4.2.2.2 Attributes

	4.3 Exception Handling
	4.3.1 Application Exceptions
	4.3.2 System Exceptions

	4.4 Cluster Failover
	4.5 RMI Callback Objects
	4.6 Annotation and WebLogic RMI Descriptor Merging

	5 Using the WebLogic RMI Compiler
	5.1 Overview of the WebLogic RMI Compiler
	5.2 WebLogic RMI Compiler Features
	5.2.1 Hot Code Generation
	5.2.2 Proxy Generation
	5.2.3 Additional WebLogic RMI Compiler Features

	5.3 WebLogic RMI Compiler Options
	5.3.1 Non-Replicated Stub Generation
	5.3.2 Using Persistent Compiler Options
	5.3.3 Java SE Enhancements

	6 Using WebLogic RMI with T3 Protocol
	6.1 RMI Communication in WebLogic Server
	6.2 Determining Connection Availability
	6.3 Using a WebLogic T3/T3s Client Proxy

	7 How to Implement WebLogic RMI
	7.1 Creating Classes That Can Be Invoked Remotely
	7.1.1 Step 1. Write a Remote Interface
	7.1.2 Step 2. Implement the Remote Interface
	7.1.3 Step 3: Create a Client that Invokes Remote Methods
	7.1.3.1 Setting Client Timeouts
	7.1.3.2 Example HelloClient.java Client

	7.1.4 Step 4. Compile the Java Classes

	7.2 Run the RMI Hello Code Sample
	7.2.1 Prerequisites
	7.2.2 Setup the RMI Hello Example
	7.2.3 Configure a Startup Class
	7.2.4 Restart the examplesServer
	7.2.5 Run the Example

	8 WebLogic RMI Integration with Load Balancers
	8.1 How WebLogic Server Supports Load Balancers
	8.2 HTTP Tunneled T3 Load Balancing
	8.2.1 How to Configure the External Listen Address
	8.2.1.1 Example Custom Channel Configuration for a Load Balancer

	8.2.2 Session Failover
	8.2.3 Cookie Persistence
	8.2.4 Pinned Objects
	8.2.5 Stateful Session EJBs

	8.3 Native T3 Load Balancing
	8.4 Failover Support

	9 Using RMI over IIOP
	9.1 What is RMI over IIOP?
	9.2 Overview of WebLogic RMI-IIOP
	9.2.1 Support for RMI-IIOP with RMI (Java) Clients
	9.2.2 Support for RMI-IIOP with Tuxedo Client
	9.2.3 Support for RMI-IIOP with CORBA/IDL Clients

	10 Configuring WebLogic Server for RMI-IIOP
	10.1 Set the Listening Address
	10.2 Setting Network Channel Addresses
	10.2.1 Considerations for Proxys and Firewalls
	10.2.1.1 Considerations for Clients with Multiple Connections

	10.3 Using a IIOPS Thin Client Proxy
	10.4 Using RMI-IIOP with SSL and a Java Client
	10.5 Accessing WebLogic Server Objects from a CORBA Client through Delegation
	10.5.1 Overview of Delegation
	10.5.2 Example of Delegation

	10.6 Configuring CSIv2 authentication
	10.7 Using RMI over IIOP with a Hardware Load Balancer
	10.8 Limitations of WebLogic RMI-IIOP
	10.8.1 Limitations Using RMI-IIOP on the Client
	10.8.2 Limitations Developing Java IDL Clients
	10.8.3 Limitations of Passing Objects by Value

	10.9 Propagating Client Identity

	11 Best Practices for Application Design
	11.1 Use java.rmi
	11.2 Use PortableRemoteObject
	11.3 Use WebLogic Work Areas
	11.4 How to Handle Changes in Security Context

	A CORBA Support for WebLogic Server
	A.1 Specification References
	A.2 Supported Specification Details
	A.3 Tools

