Oracle® Fusion Middleware

Developing Standalone Clients for Oracle WebLogic Server
12¢(12.2.1.2.0)

E77986-03

December 2016

This document is a resource for developers who want to create
standalone client applications that interoperate with WebLogic
Server.

ORACLE"

Oracle Fusion Middleware Developing Standalone Clients for Oracle WebLogic Server, 12¢ (12.2.1.2.0)
E77986-03
Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ... vii
Documentation AccesSIbilitycouoiiiiiiiiiiiiie s vii
CONVENIONSvviiereieieieie bbb vii

1 Introduction and Roadmap

1.1 Document Scope and AUIENCE. ... 11
1.2 Guide to This DOCUMENL........coimiiiiiiiiiiiciciei e 1-1
1.3 Related DOCUMENEATIONc.oviiiiiiiiiciiiiccceee et e 1-2
1.4 Samples and TULOTIALSc.cuoiiurieiiiee s 1-2

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials..........c.cccoveueieriuiiinnnnnnes 1-2

1.4.2 Examples in the WebLogic Server Distribution..........cccccoccecciiiiiieiccceecceeenes 1-3
1.5 New and Changed Features for This Release...........c.ccccevrirvnnninnninnninnnnnirnneeeenes 1-3

2 Overview of Standalone Clients

2.1 Distributing Client Jar FIles..........cccccooviiiiiinniiiiiiiiccrrcseseese s 2-1
2.2 WebLogic T3 CHENES.......ccoiiiiiiiiiic s 2-1

2.2.1 WebLogic Thin T3 CLent..........ccooeiiiiiiiiecie e 2-1

2.2.2 WebLogic Full Client (Deprecated)cooevviiiiiiiiniiiiiiiicnne 2-2

2.2.3 WebLogic INstall CHENEc.c.ciuiiiiiiiiciiiccccccce e 2-2
2.3 RMI-TIOP CHENES.....cuvetiietiietiietirtetisteesteeeteesteeeseseesessesessesessesassesessesessessssessssessssessesessesensesassesessns 2-2
2.4 CORBA CIHENES....cuitetiieuirieeeeieetetetetetetetetestesestesessesessesassesessesessessesassesessesensesessesessesessesassessssessesasens 2-3
2.5 JIMIX CIHENES «.uvveeretiietiietieteteste e ete sttt ete e te st e te st ete st sestesestesessesesbenesseneesensesantesansesarsesassesasesesseneesanens 2-3
2.6 JIMS CHENTS..cveuireeuieieieieteietetest ettt sttt sttt st ste sttt e b et ebe st ebe st ebe st e s e st eneste st senesseneebenesbeneeseneesaneene 2-3
2.7 WED SErviCes CIIENES ..cueeveuiiriietiietirteiestee ettt ettt ettt st et b e sttt ettt sttt e et e s be e ebeene 2-4
2.8 WebLogic Tuxedo Connector CHENtS ..o 2-4
2.9 Clients and FEATUTEScouiriiiiiieieeee ettt sttt sttt ettt ettt e st ebeeaeebeebesaeseeean 2-4

3 Developing a WebLogic Thin T3 Client

3.1 Understanding the WebLogic Thin T3 CLient..........ccccceuoiiriiioiiiiiecccc e 3-1
3.1.1 WebLogic Thin T3 FEatUIescccceoiiuiiiiiiiiiciec 3-1
3.1.2 Limitations and Considerations...........cc.cccoveriiiiiiiiiniiiniiii e, 3-2
3.1.3 INteroperabilitycccoiiiiiiiiiiiii e 3-2

3.2
3.3

314 SECUIILY woevtiiecet e 3-2

3.1.5 Connection Considerations.........c.ccccvuiiiiiiiiiiiiiini e 3-3
Developing a Basic WebLogic Thin T3 CHENt ... 3-3
Foreign Server APPliCatioNsS.........cccvuiuiiiiiiiiiiiiiiiicc s 3-4
3.3.1 Deployment Considerations.............cococeueiiiiricieiiiiicieiceeci e 3-4
3.3.2 Interoperating with OCA]ccooomiiiiii 3-5

Developing a WebLogic Full Client (Deprecated)

4.1
4.2
4.3
4.4
4.5

Understanding the WebLogic Full CLent ..o, 4-1
Limitations and Considerations when Using the WebLogic Full Client...........cccccocvinnacnee. 4-2
Developing a WebLogic Full CHENtc.cciiiiiiiiiiiiiicccccccccc s 4-2
Communicating with a Server in Admin Mode...........ccooiiiiiiiiiiiic 4-4
Running the WebLogic Full Client in a Non-Forked VM..........ccccoooiiiiii, 4-4

Developing a Thin Client

5.1

52
53

Overview of the Thin CLIENt...........cociviiiiiiiiieieiet ettt a et et s s reere e beevestesaenne 5-1
LG TR0 T B 15 4 =Y) 1< J USROS 5-2
How to Develop a Thin CHENtc.ccoiiiiiiiiiiiiiccccccccecce e 5-2
Protocol Compatibility ..o 5-5

WebLogic JMS Thin Client

6.1 Overview of the JMS Thin CIENtcccecieieiirieieieeeeeteete sttt ettt sae s ssesaens 6-1
6.2 JMS Thin Client FUNCHONALYcoveviieieii s 6-1
6.3 Limitations of Using the JMS Thin Clentc.cccooiieiiiiiiniiicece s 6-2
6.4 Deploying the JMS Thin CHENt........ccccovuiiriiiriririiiierececeeeeeeee e 6-2

Reliably Sending Messages Using the JMS SAF Client

7.1 Overview of Using Store-and-Forward with JMS Clents..........cccccoevvvrrnnnnnnnnrcrneene 7-1
7.2 Configuring a JMS Client To Use Client-side SAF.........ccccccovvvinniinnnniiiinnincnne 7-2
7.2.1 Generating a J]MS SAF Client Configuration Fileccccoooiiiiiii, 7-2
7.2.2 Encrypting Passwords for Remote JMS SAF Contextsc.cccooeurunirinininicinicininnnnes 7-7
7.2.3 Installing the JMS SAF Client JAR Files on Client Machines..........c.cccccevuvurererererureneene. 7-9
7.24 Modify Your JMS Client Applications To Use the J]MS SAF Client's Initial JNDI
PrOVIAETciiiiiiiiiiiiiicic s 7-10
7.3 JMS SAF Client Management TOOLSccccueuiiiiiiiiiiic i 7-11
7.3.1 The JMS SAF Client Initialization APcccoceviiiiiiniiniiniseresee ettt eeeee e enens 7-11
7.3.2 Client-Side Store Administration Utilitycccccevvvniiiiniiiiinirccccee, 7-11
7.4 JMS Programming Considerations with JMS SAF Clients ..., 7-11
7.4.1 How the JMSReplyTo Field Is Handled In JMS SAF Client Messages........................ 7-11
7.4.2 No Mixing of JMS SAF Client Contexts and Server Contextsccccoueeveiriernunnnce. 7-12
7.4.3 Using Transacted Sessions With JMS SAF CLENtscccccovvvevirirrvvricenvneceeene 7-12
7.5 JMS SAF Client Interoperability Guidelines.............ccccciiiiiiiiiiiiiiiiiiicccccceennes 7-12

7.5.1 Java RUN TIME...ciiiiiiiieiieeeeee ettt ettt st st s bt ebeens 7-12

7.5.2 WebLogic SErver VEISIONScccccouirieiiiiiiicieieiccie et
7.5.3 JMS C AP ..ottt e
7.6 Tuning JMS SAF CHENEScccoiuimimiiiiiiiicccccce e
7.7 Limitations of Using the JMS SAF CHeNt ...
7.8 Behavior Change in JMS SAF Client Message Storagecccovvomeueieiiicieieiiiccieeeciee
7.8.1 The Upgrade Process, Tools, and System Properties..........ccccoocevviireieiiiiniiiiiinnen,

8 Developing a Java SE Client

8.1 Java SE CHENt BASICS...cc.teirtiriiriiieieteietetetetee ettt ettt ettt ettt b b e
8.2 How to Develop a Java SE CHENtccoeuiuiiiiriiiiiircccrrcceeee s

9 Developing a WLS-1IOP Client (Deprecated)

9.1 WLS-IIOP CHENE FEATULIES ...vveevveeeiieeeietee ettt ettt et eae s eteeeaesenseesreeenseessessnneeeneeennes
9.2 How to Develop @ WLS-TIOP CHENLccevuviviiiiiiiiiiiiiiiiiinininicienesssssses

10 Developing a CORBA/IDL Client

10.1 Guidelines for Developing a CORBA /IDL Client ..o
10.1.1 Working with CORBA /IDL CHENtScccoeviiiiiiiiiiiiiiiiiiiiciciciciccicceeinnas
10.2 IDL Client (Corba object) relationships..........cccoeiiiiimiiiiiiiiiicnes
10.2.1 Java to IDL Mapping.......cccccvueiviiiiiiiiiiiniiicicieiiessss st
10.3 WebLogic RMI over IIOP object relationshipsccccceiiiiiiiiiiiiicciicccccccennas
10.3.1 Objects-by-ValUeccccociiiiiiiiiiiiii e
10.4 Procedure for Developing a CORBA /IDL Clientccoooriiiiiiinieiiiiceeeecceeciei

11 Developing Clients for CORBA Objects

11.1 Enhancements to and Limitations of CORBA Object Types.......cccceoeuiriiieiiiiriciiiiccien
11.2 Making Outbound CORBA Calls: Main Steps ...
11.3 Using the WebLogic ORB Hosted in JNDIL........cccccccciiiiiiiiiiiicccececeeeeeeenenes
11.3.1 ORB from JINDI......ccceiiiiieiiiiceienicie ettt
11.3.2 Direct ORB Creation..........cccccciuiuiiiiiiiiiiiiiiiiiiciiiciiic e
11.3.3 USING JINDIoiiiiiiiiiiiiici s
11.4 Supporting Inbound CORBA Calls........ccccoeviiiiiiiiiiiiiiiiii s

12 Developing a WebLogic C++ Client for a Tuxedo ORB

12.1 WebLogic C++ Client Advantages and Limitations..........cccccocoeeceiieccccciccncecccenenes
12.2 How the WebLogic C++ Client WOTKS.........ccooiiiiiiiiiiiiiicccccccceeececeeeeeennas
12.3 Developing WebLogic C++ CLENtS........ccooiiiiiiiiiiiiccccccccceccceennas

13 Using Java EE Client Application Modules

13.1 Extracting a Client Application ...
13.2 Executing a Client Application.........c.oooeirieiiiiiei s

14

15

A

B

Vi

Developing Security-Aware Clients

14.1 Developing Clients That Use JAAS. ... 14-1
14.2 Developing Clients that Use JNDI Authentication...........ccccoeevimriiiiiiiiiiiicce 14-1
14.3 Developing Clients That Use SSL.........cccoiiiiiiiiiiiiccceeceeeeeeee e esenenenes 14-1
14.4 Thin-Client Restrictions for JAAS and SSL........ccccvciririririineninenieeieteeeetee e 14-3
14.5 Security Code EXamples ... 14-4

Using EJBs with RMI-IIOP Clients

15.1 Accessing EJBs with a Java CLent ... 15-1
15.2 Accessing EJBs with a CORBA /IDL Clentcccccoiiiiiiiiiiiiiiiccccccccceicnnes 15-1
15.2.1 Example IDL Generation.........ccccccuviiiiiiiiiiiiiniiniiiiesns s 15-2

Client Application Deployment Descriptor Elements

A.1 Overview of Client Application Deployment Descriptor Elementsc.ccccevvevvrerrenenne. A-1
A.2 application-client.xml Deployment Descriptor Elementscccccocoeuvirvvnnnnnnnnnnnenes A-l
A2.1 applicatioN-CHEN........cooiiiiiiiiii e A-1
A.3 weblogic-appclient.xml Descriptor Elements.............ccooooiiiiiiiiiiiiic, A-3
A3.1 application-CHeNt.........coiiuiieiiii e A-3

Using the WebLogic JarBuilder Tool

B.1 Creating a wlfullclient.jar for JDK 1.7 client applicationsc.cccevveiiviniinniniiiinicnnnn, B-1
B.2 Creating a wlfullclient.jar for JDK 1.6 client applicationsccccceveveeuvirrverevnvrnecrrreenes B-2

Preface

This preface describes the document accessibility features and conventions used in this
guide—.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. conl pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Developing
Standalone Clients for Oracle WebLogic Server.

This chapter includes the following sections:
® Document Scope and Audience

® Guide to This Document

* Related Documentation

* Samples and Tutorials

¢ New and Changed Features for This Release

1.1 Document Scope and Audience

This document is a resource for developers who want to create standalone client
applications that interoperate with WebLogic Server.

This document is relevant to the design and development phases of a software project.
The document also includes solutions to application problems that are discovered
during test and pre-production phases of a project.

It is assumed that the reader is familiar with Java Platform, Enterprise Edition (Java
EE) concepts. This document emphasizes the value-added features provided by
WebLogic Server and key information about how to use WebLogic Server features and
facilities when developing standalone clients.

1.2 Guide to This Document

¢ This chapter, Introduction and Roadmap, introduces the scope and organization of
this guide.

* Overview of Standalone Clients, describes basic client-server functionality.

* Developing a WebLogic Thin T3 Client describes how to create a WebLogic Thin T3
client.

* Developing a WebLogic Full Client (Deprecated), describes how to create a
WebLogic full client.

* Developing a Thin Client , describes how to create a thin client.
¢ WebLogic JMS Thin Client, describes how to a create WebLogic JMS thin client.

¢ Reliably Sending Messages Using the J]MS SAF Client, describes how to create a
Store-and-Forward client.

Introduction and Roadmap 1-1

Related Documentation

Developing a Java SE Client, describes how to create a JSE client.

Developing a WLS-IIOP Client (Deprecated), provides information on how to
create a WebLogic Server-IIOP client.

Developing a CORBA /IDL Client, describes how to create a CORBA /IDL client.

Developing Clients for CORBA Objects, describes how to create a client that
interoperates with CORBA objects.

Developing a WebLogic C++ Client for a Tuxedo ORB, describes how to create a C
++ client for the Tuxedo ORB.

Using Java EE Client Application Modules, describes how to use application
modules.

Developing Security-Aware Clients , describes how to create a security-aware
client.

Using EJBs with RMI-IIOP Clients, describes how to use E]Bs with an RMI-IIOP
client.

Client Application Deployment Descriptor Elements, is a reference for the standard
Java EE client application deployment descriptor, application-client.xml, and
weblogic-appclient.xml.

Using the WebLogic JarBuilder Tool, provides information on creating the
wlfullclient jar using the JarBuilder tool.

1.3 Related Documentation

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see:

Developing RMI Applications for Oracle WebLogic Server is a guide to using Remote
Method Invocation (RMI) and Internet Interop-Orb-Protocol (IIOP) features.

Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

Tuning Performance of Oracle WebLogic Server contains information on monitoring
and improving the performance of WebLogic Server applications.

1.4 Samples and Tutorials

In addition to this document, Oracle Systems provides a variety of code samples and
tutorials for developers. The examples and tutorials illustrate WebLogic Server in
action, and provide practical instructions on how to perform key development tasks.

Oracle recommends that you run some or all examples before developing your own
applications.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The

1-2 Developing Standalone Clients for Oracle WebLogic Server

New and Changed Features for This Release

MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed in the WebLogic Server
installation. You can start MedRec from the ORACLE_HOVE\ user _pr oj ects

\ domai ns\ medr ec directory, where ORACLE_HQOVE is the directory you specified as
the Oracle Home when you installed Oracle WebLogic Server. For more information,
see Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

MedRec includes a service tier consisting primarily of Enterprise Java Beans (E]Bs)
that work together to process requests from Web applications, Web services, and
workflow applications, and future client applications. The application includes
message-driven, stateless session, stateful session, and entity EJBs.

1.4.2 Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in the ORACLE_HOVE

\w server\sanpl es\ server directory. For more information about the WebLogic
Server code examples, see Sample Applications and Code Examples in Understanding
Oracle WebLogic Server.

1.5 New and Changed Features for This Release

This release includes the following new and changed features:

e The WebLogic Full Client implements the JDK StAX parser to perform rim
RTD.xml parsing. See Limitations and Considerations when Using the WebLogic
Full Client.

¢ The standard client, W cl i ent . j ar, and the following clients that depend on it,
are deprecated as of Oracle WebLogic Server 12.2.1.2.0:

— The JMS client, M j nsclient.jar

— The JMS SAF client, W safclient.jar

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.2.0.

Introduction and Roadmap 1-3

New and Changed Features for This Release

1-4 Developing Standalone Clients for Oracle WebLogic Server

2

Overview of Standalone Clients

This chapter describes what a standalone client is, types of clients, client features, and
how clients are distributed. In the context of this document, a standalone client is a
client that has a run-time environment independent of WebLogic Server. (Managed
clients, such as Web Services, rely on a server-side container to provide the run time
necessary to access a server.) Standalone clients that access WebLogic Server
applications range from simple command-line utilities that use standard I/O to highly
interactive GUI applications built using the Java Swing/AWT classes.

This chapter includes the following sections:
e Distributing Client Jar Files

* WebLogic T3 Clients

¢ RMI-IIOP Clients

¢ CORBA Clients

e JMX Clients

e JMS Clients

* Web Services Clients

¢ WebLogic Tuxedo Connector Clients

e (lients and Features

2.1 Distributing Client Jar Files

For information on license requirements when using client JARs and other resources
provided in Oracle WebLogic Server for creating standalone clients, see Stand-Alone
WebLogic Clients.

2.2 WebLogic T3 Clients

The WebLogic T3 clients are Java RMI clients that use Oracle's T3 protocol to
communicate with WebLogic Server. T3 clients outperform other client types, and are
the most recommended type of client.

2.2.1 WebLogic Thin T3 Client

The WebLogic Thin T3 java client provides a light-weight alternative to the WebLogic
Install, Full, and Thin IIOP clients. This client provides the same performance that you
would see with the full client, but leverages a much smaller jar file. The Thin T3 client
supports most of the use cases in which the full client can be used.

Overview of Standalone Clients 2-1

RMI-IIOP Clients

The Thin T3 client can be used in standalone applications, and is also designed for
applications running on foreign (non-WebLogic) servers. One common use case is
integration with WebLogic JMS destinations.

¢ Developing a WebLogic Thin T3 Client

¢ Using WebLogic RMI with T3 Protocol in Developing RMI Applications for Oracle
WebLogic Server

2.2.2 WebLogic Full Client (Deprecated)

The WebLogic Full Client requires the largest JAR file (M ful | cl i ent . j ar) among
the standalone clients, but it has the most features and is the best overall performer.
All three T3 clients have the same performance. Thew ful I cli ent.jar also
provides IIOP support. See:

¢ Developing a WebLogic Full Client (Deprecated)

e Using WebLogic RMI with T3 Protocol in Developing RMI Applications for Oracle
WebLogic Server

Note:

If you run the WebLogic Full Client from a <j ava> task that is invoked in an
Ant script, see Running the WebLogic Full Client in a Non-Forked VM, for
important information regarding the RSA Crypto-]J library, which is included
inthewl ful I client.ar manifest classpath.

2.2.3 WebLogic Install Client

The Install client is available from a full WebLogic Server installation. It uses the

webl ogi c. j ar file located at W._HOME/ ser ver/ | i b and provides client-side
support for all WebLogic Server-specific value-added features. It is the only client that
supports server-side operations, such as:

® Operations necessary for development purposes, such as the ejbc compiler.
* Administrative operations such as deployment.

e WLST and client-side JSR 88 applications that invoke server-side operations.

2.3 RMI-IIOP Clients

IIOP can be a transport protocol for distributed applications with interfaces written in
Java RMI. When they are an option, Oracle recommends using T3 clients instead of
IIOP clients. For more information, see:

* Developing a Thin Client

¢ WebLogic JMS Thin Client

¢ Reliably Sending Messages Using the JMS SAF Client
¢ Developing a Java SE Client

¢ Developing a WLS-IIOP Client (Deprecated)

2-2 Developing Standalone Clients for Oracle WebLogic Server

CORBA Clients

For more information, see Using RMI over IIOP in Developing RMI Applications for
Oracle WebLogic Server.

2.4 CORBA Clients

If you are not working in a Java-only environment, you can use IIOP to connect your
Java programs with Common Object Request Broker Architecture (CORBA) clients
and execute CORBA objects. IIOP can be a transport protocol for distributed
applications with interfaces written in Interface Definition Language (IDL) or Java
RMI. However, the two models are distinctly different approaches to creating an
interoperable environment between heterogeneous systems. When you program, you
must decide to use either IDL or RMI interfaces; you cannot mix them.WebLogic
Server supports the following CORBA client models:

¢ Developing a CORBA/IDL Client
* Developing Clients for CORBA Objects

* Developing a WebLogic C++ Client for a Tuxedo ORB

2.5 JMX Clients

You can use a JMX client to access WebLogic Server MBeans. See Accessing WebLogic
Server MBeans With JMX in Developing Custom Management Utilities Using [MX for
Oracle WebLogic Server.

2.6 JMS Clients

WebLogic Server provides a number of JMS clients that provide Java EE and
WebLogic JMS functionality.

Tip:

Oracle recommends using an efficient T3 protocol capable Java client -- either
the Install, Full, and Thin T3. The Thin java client uses the slower IIOP
protocol and is only recommended when the Thin T3 client is considered to be
too large for your use case.

¢ WebLogic Thin T3 client, see Developing a WebLogic Thin T3 Client.

e WebLogic Full client, see Developing a WebLogic Full Client (Deprecated).
¢ WebLogic Install client, See WebLogic Install Client.

® JMS thin client, see WebLogic JMS Thin Client.

¢ JMS SAF client, see Reliably Sending Messages Using the JMS SAF Client.

e JMS C client, see WebLogic JMS C API in Developing [MS Applications for Oracle
WebLogic Server

e JMS .NET client, see Developing JMS .NET Client Applications for Oracle WebLogic
Server

e WebLogic AQ JMS client, see Standalone WebLogic AQ JMS Clients in
Administering [MS Resources for Oracle WebLogic Server. The WebLogic AQ JMS
client obtains destination information using WebLogic Server JNDI and provides

Overview of Standalone Clients 2-3

Web Services Clients

direct access to Oracle data base AQ JMS destinations using an embedded driver. It
does not provide access to WebLogic Server JMS destinations.

2.7 Web Services Clients

A standalone Web Services client (wseeclient.jar) uses WebLogic client classes to
invoke a Web Service hosted on WebLogic Server or on other application servers. See
Using a Standalone Client JAR File When Invoking Web Services in Developing JAX-
RPC Web Services for Oracle WebLogic Server.

2.8 WebLogic Tuxedo Connector Clients

WebLogic Tuxedo Connector provides inter-operability between WebLogic Server
applications and Tuxedo services. See:

¢ Developing Oracle WebLogic Tuxedo Connector Client E]Bs in the Developing
Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

e How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo
Connector in the Developing Oracle WebLogic Tuxedo Connector Applications for Oracle
WebLogic Server

¢ How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the
CORBA Java API in the Developing Oracle WebLogic Tuxedo Connector Applications for
Oracle WebLogic Server

2.9 Clients and Features

The following table lists the types of clients supported in a WebLogic Server
environment, and their characteristics, features, and limitations.

Note:

Oracle does not support combining clients to create extended feature sets.
Select a client that best fits your environment and use only the client classes
specified for that client type.

2-4 Developing Standalone Clients for Oracle WebLogic Server

Clients and Features

Table 2-1 WebLogic Server Client Types and Features
- - __|

Client Type Language Protocol Client Class Key Features

Requirements

WL ThinT3 RMI Java T3
Client

w thint3cli
ent.jar

Small Footprint

Oracle WebLogic's T3 /T3S protocol for
Remote Method Invocation (RMI).
Supports WebLogic Server clustering.
Supports JSSE SSL, except with HTTP
tunnelling.

Faster and more scalable than IIOP
clients.

Most WebLogic client JMS features,
including the WebLogic Store-and-
Forward (SAF) Service using the

w saft3client.jar.

Supports most JavaEE features.
Supports Network class loading.

See Developing a WebLogic Thin T3
Client.

Deprecated RMI Java T3

WL Full
Client (T3)

w fullclien
t.jar

Deprecated WebLogic Server 12.1.3.
Supports most WebLogic Server-specific
features

Supports WebLogic Server clustering.
Faster and more scalable than IIOP
clients.

Supports most Java EE features.

See Developing a WebLogic Full Client
(Deprecated).

Deprecated RMI Java nor
WLS-1IOP

(Introduced
in WebLogic
Server 7.0)

w fullclien
t.jar

Supports WebLogic Server-specific
features.

Deprecated WebLogic Server 12.1.3.
Supports WebLogic Server clustering.
Faster and more scalable than IIOP thin
clients.

Not ORB-based.

Does not support WebLogic Server J]MS
(use T3 protocol with same Jar instead).
See Developing a WLS-IIOP Client
(Deprecated).

Deprecated RMI Java nor
Thin Client

wclient.ja
r

Supports WebLogic Server clustering.
Supports many Java EE features,
including security and transactions.
Supports SSL.

Uses CORBA 2.4 ORB.

Consider using one of the faster T3 client
options.

See Developing a Thin Client .

Overview of Standalone Clients 2-5

Clients and Features

Table 2-1 (Cont.) WebLogic Server Client Types and Features
. ___|

Client Type Language Protocol Client Class Key Features
Requirements
CORBA/ID CORBA Language IIOP no WebLogic e Uses CORBA 2.3 ORB.
L s that classes e Does not support WebLogic Server-
OMG IDL specific features.
maps to, ¢ Does not support Java.
such as C e See Developing a CORBA /IDL Client.
++,C, ping
Smalltalk,
COBOL
Java SE RMI Java IIOP no WebLogic * Provides connectivity to WebLogic
classes Server environment.
* Does not support WebLogic Server-
specific features. Does not support many
Java EE features.
e Uses CORBA 2.3 ORB.
* Requires use of
com sun. j ndi . cosnani ng.
CNCt xFact ory.
* See Developing a Java SE Client.
Deprecated RMI Java nor W jneclient e Thin client functionality
JMS Thin Jjar ¢ WebLogic JMS, except for client-side
Client wclient.ja XML selection for multicast sessions and
r JMSHelper class methods.
* Supports SSL.
* See WebLogic JMS Thin Client.
¢ Consider using one of the faster T3 client
options.
JMS SAF RMI Java IIOP e wsaft3cl e Locallystores messages on the client and
Client ient.jar forwards them to server-side JMS
(Introduced and destinations when the client is
in WebLogic w t hi nt 3c connected.
Server 9.2) lient.jar e SupportsSSL.
(preferred) o gee Reliably Sending Messages Using the
or JMS SAF Client.
e wsafclie
nt.jar
(deprecated
),
W jmsclie
nt.jar
(deprecated
),
wclient.
jar
JMS C Client JNI C Any Any WebLogic ® C client applications that can access
(Introduced JMS capable WebLogic JMS applications and
in WebLogic Java client, resources.
Server 9.0) such as _ * Supports SSL.
Wi thint3cli o gee WebLogic JMS C API
ent.jar

2-6 Developing Standalone Clients for Oracle WebLogic Server

Clients and Features

Table 2-1 (Cont.) WebLogic Server Client Types and Features
. ___|

Language Protocol

Client Type

Client Class
Requirements

Key Features

JMS .NET T3 NET T3 WebLogi c. M2 e Microsoft NET client applications,
Client ssagi ng. dl | written in C#, that can access WebLogic
(Introduced dynamic JMS applications and resources.
in WebLogic library * See Developing JMS .NET Client
Server 10.3) Applications for Oracle WebLogic Server.
WebLogic JNDI/ Java IIOP/T3 aqapi.j ar, See Standalone WebLogic AQ JMS Clients in
AQJMS + 06.jar, Administering JMS Resources for Oracle
Client orai 18n.jar WebLogic Server.
(Introduced and the)
in WebLogic wiclient.ja
Server r,
1031) w fU| Iclien
t.jar,
webl ogic.ja
r (Install
client), or
W t hi nt 3cli
ent.jar
JMX RMI Java nor W jnxclient See Accessing WebLogic Server MBeans
Jjar with JMX in Developing Custom Management
Utilities Using JMX for Oracle WebLogic
Server.
Web SOAP Java HTTP/S wseeclient. Seelnvokinga Web Service from a
Services jar Standalone Client in Developing JAX-WS Web
Services for Oracle WebLogic Server.
C++ Client CORBA C++ (@) Tuxedo ¢ Interoperability between WebLogic
libraries Server applications and Tuxedo clients/
services.
* Supports SSL.
¢ Uses CORBA 2.3 ORB.
* See Developing a WebLogic C++ Client
for a Tuxedo ORB.
Tuxedo CORBA C++ Tuxedo- Tuxedo ¢ Interoperability between WebLogic
Server and or RMI General- libraries Server applications and Tuxedo clients/
Native Inter- services.
CORBA Orb- * Supports SSL and transactions.
client Protocol * Uses CORBA 2.3 ORB.
(TGIOP) * See Developing Clients for CORBA

Objects.

Overview of Standalone Clients 2-7

Clients and Features

2-8 Developing Standalone Clients for Oracle WebLogic Server

3

Developing a WebLogic Thin T3 Client

This chapter describes how to develop and use WebLogic Thin T3 clients.

This chapter includes the following sections:
¢ Understanding the WebLogic Thin T3 Client
* Developing a Basic WebLogic Thin T3 Client

e Foreign Server Applications

3.1 Understanding the WebLogic Thin T3 Client

The WebLogic Thin T3 Client jar (M t hi nt 3cl i ent. j ar) is a light-weight, high
performing alternative to thewl ful I client.jar andw client.jar (IIOP)remote
client jars. The Thin T3 client has a minimal footprint while providing access to a rich
set of APIs that are appropriate for client usage. As its name implies, the Thin T3
Client uses the WebLogic T3 protocol, which provides significant performance
improvements over the wiclient.jar, which uses the IIOP protocol.

The Thin T3 Client is the recommended option for most remote client use cases. There
are some limitations in the Thin t3 client as outlined below. For those few use cases,
you may need to use the full client or the IIOP thin client.

The Thin T3 client can be used in standalone applications, and is also designed for
applications running on foreign (non-WebLogic) servers. One common use case is
integration with WebLogic JMS destinations.

3.1.1 WebLogic Thin T3 Features

This release supports the following:

¢ Oracle WebLogic's T3/T3S protocol for Remote Method Invocation (RMI),
including: RMI over HTTP (HTTP tunneling) and RMI over HTTPS (HTTP
Tunneling over SSL). For more information on WebLogic T3 communication, see
Using WebLogic RMI with T3 Protocol in Developing RMI Applications for Oracle
WebLogic Server.

® Access to JMS, JMX, JNDI, and E]B resources available in WebLogic Server.
¢ The WebLogic Store-and-Forward (SAF) Service using the W saft 3client.jar.
* Transaction initiation and termination (rollback or commit) using JTA.

e WebLogic client JMS features, including Unit-of-Order, Unit-of-Work, message
compression, XML messages, JMS automatic client reconnect, and Destination
Auvailability Helper APIs.

Developing a WebLogic Thin T3 Client 3-1

Understanding the WebLogic Thin T3 Client

* C(lient-side clustering allowing a client application to participate in failover and
load balancing of a WebLogic Server instance. See Clustered RMI Applications in
Developing RMI Applications for Oracle WebLogic Server.

* JAAS authentication and JSSE SSL. See Security.

* Network class loading. By default the network class loading for the Thin T3 client
is disabled. Use the following system property to enable network classloading:

- Dwebl ogi c. rm . net wor kcl assl oadi ngenabl ed=true

3.1.2 Limitations and Considerations

This release does not support the following;:

* Mbean-based utilities (such as JMS Helper, JMS Module Helper), and JMS
multicast are not supported. You can use JMX calls as an alternative to "mbean-
based helpers."

¢ JDBC resources, including WebLogic JDBC extensions.

* Running a WebLogic RMI server in the client.

The Thin T3 client uses JDK classes to connect to the host, including when connecting
to dual-stacked machines. If multiple addresses available on the host, the connection
may attempt to go to the wrong address and fail if the host is not properly configured.

3.1.3 Interoperability

3.1.4 Security

This release of the WebLogic Thin T3 client has the following interoperability support:
® Prior WebLogic Server Releases
¢ Foreign Application Servers

3.1.3.1 Prior WebLogic Server Releases

For information on WebLogic Thin T3 client support for communicating with previous
WebLogic releases, see Protocol Compatibility in Understanding Oracle WebLogic Server.

3.1.3.2 Foreign Application Servers

The WebLogic Thin T3 client jar is supported on the following application servers:
¢ GlassFish: version 3.1 and higher

¢ Oracle OC4]J: version 10g and higher

¢ IBM WebSphere Application Server: Version 6.x and 7.x

* Red Hat JBoss Application Server: Version 5.x and 6.x

For general information on client security see:

® The Java Secure Socket Extension (JSSE) in Understanding Security for Oracle
WebLogic Server.

3-2 Developing Standalone Clients for Oracle WebLogic Server

Developing a Basic WebLogic Thin T3 Client

® Java Authentication and Authorization Services (JAAS) in Understanding Security
for Oracle WebLogic Server.

¢ Using SSL Authentication in Java Clients in Developing Applications with the
WebLogic Security Service.

* Using JAAS Authentication in Java Clients in Developing Applications with the
WebLogic Security Service.

3.1.5 Connection Considerations

The WebLogic Thin T3 client uses JDK classes to connect to the host. If your host has
multiple addresses (Dual-Stack) available, your client may connect to the wrong IP
address if the host is not configured properly.

3.2 Developing a Basic WebLogic Thin T3 Client

Use the following steps to create a basic WebLogic Thin T3 client:
1. Obtain a reference to the remote object.

a. Get the initial context of the server that hosts the service using a T3 URL in
the formoft3://ip address: port ort3s://ip address: port.

b. Obtain an instance of the service object by performing a lookup using the
initial context. This instance can then be used just like a local object reference.

2. Call the remote objects methods.

3. Placethew t hi nt 3client.jar inyour client classpath. It is located in the
W._HOME\ server\ | i b directory of your WebLogic Server installation.

Note:

Oracle does not support combining clients to create extended feature sets.
Never add thewl fullclient.jar,Wthint3client.jar,or

W client.jar toaWebLogic Server classpath or a classpath that references
the webl ogi c. j ar file in a full WebLogic install. The behavior is undefined.
WebLogic Server applications already have full access to WebLogic client
functionality.

Sample code to for a basic WebLogic Thin T3 client is provided in Example 3-1.
Example 3-1 Creating and Using a WebLogic Initial Context

Hasht abl e env = new Hasht abl e();
env. put ("j ava. namng. factory.initial",

“webl ogi c. j ndi.W.Initial ContextFactory");
env. put ("j ava. nami ng. provider.url","t3://host:7001");
env. put ("j ava. nam ng. security. principal ", "user");
env. put ("j ava. naming. security.credential s","password");
Context ctx = new Initial Context(env);
try {

bj ect hone(hj ect =

context. | ookup(" Enpl oyeeBean");

//use the Enpl oyeeBean
}
catch (Nam ngException e) {

Developing a WebLogic Thin T3 Client 3-3

Foreign Server Applications

/I a failure occurred

}
finally {
try {ctx.close();}
catch (Exception e) {
/1 a failure occurred

}
}

3.3 Foreign Server Applications

A foreign server hosted application can use the w t hi nt 3cl i ent. jar toactasa
remote client to a WebLogic Server instance. To provide access to remote services such
as JMS, servlets, E]Bs, and start-up classes, deploy any necessary application code
along with the w t hi nt 3cl i ent . j ar to your application server.

The following steps provide a guideline to connect to and access WebLogic Server

resources from a foreign application server using JNDI:

1. Include thew t hi nt 3cl i ent. j ar on the classpath of your client.

2. Inyour client application, create a WebLogic initial context and use the context to
lookup and use a resource. See Example 3-1 for more details.

3. It may be necessary to explicitly set the initial context factory as system property in
the client code to the following value:

env. put ("java. nam ng.factory.initial", "weblogic.jndi.WIniti
al Cont ext Factory");

4. Deploy any necessary application code along with thew t hi nt 3cl i ent . j ar file
to your application server using standard Java EE methods, such as embedding the
W t hi nt 3client.jar file in a servlet or using a shared library. See Deployment
Considerations.

5. Start or deploy the client.

The following sections outline specific items to consider when interoperating with a
foreign servers.

* Deployment Considerations

¢ Interoperating with OC4]J

3.3.1 Deployment Considerations

You can deploy the W t hi nt 3cl i ent . j ar using standard Java EE methods.
However, when determining what deployment method to use, you must account for
client footprint, class loading, performance, and tolerance of the risk for code
incompatibility. For example:

e If youembed thew t hi nt 3cl i ent.j ar in your application, such as a servlet, the
application footprint is increased by the size of the Wl t hi nt 3cl i ent . j ar but the
risk of code incompatibility is limited to the scope of your application.

e If youdeploy thew t hi nt 3cl i ent.j ar to your lib directory, the application
footprint is not affected but the risk of code incompatibility can include the entire
foreign server container.

3-4 Developing Standalone Clients for Oracle WebLogic Server

Foreign Server Applications

3.3.2 Interoperating with 0C4J

Add thew t hi nt 3client.jar file to the classpath of applications running within
OC4] that require WebLogic Server resources. See Installing and Publishing a Shared
Library in OC4J Shared Library in OC4]J in Oracle Containers for J2EE Developer’s Guide.

The following section outlines important considerations when interoperating with the
Oracle OC4] application server as a remote client to WebLogic Server resources.

¢ Transaction propagation—Propagating transaction context objects between servers
is not supported.

¢ Security Context propagation—Propagating security/identity information between
servers is not supported.

For more information on OC4J, see Introduction to Oracle WebLogic Server for OC4]
Users inUpgrade Guide for Java EE.

3.3.2.1 Accessing WebLogic Server Resources

The following section demonstrates how connect to and access WebLogic Server
resources from OC4]J using JNDI:

1. Inyour client application, create a WebLogic initial context and use the context to
lookup and use a resource. See Example 3-1 for more details.

2. Set the OC4] URL context factory property. See Enabling the Server-Side URL
Context Factory or Enabling the Remote Client URL Context Factory in Oracle
Containers for J2EE Services Guide.

3. Include thew t hi nt 3cl i ent . j ar on the classpath of your client.

4. Add the JAR file as an OC4J shared library. See Creating and Managing Shared
Libraries in Oracle Containers for J2EE Deployment Guide.

5. Start or deploy the client.

3.3.2.2 JMS Interoperability with WebLogic Server

When using the Cont ext Scanni ngResour cePr ovi der resource provider to access
WebLogic Server JMS destinations, you must use the r esour ce. nanes property to
explicitly set a comma-separated list of JNDI names for the JMS resources that are
required from the external server. For more information about using the

Cont ext Scanni ngResour cePr ovi der resource provider to access third-party J]MS
destinations, see Using Oracle Enterprise Messaging Service in Oracle Containers for
J2EE Services Guide.

Note:

The syntax of the r esour ce. nanes property does not support space
characters between the comma and the next JNDI name in the list.

The following example shows setting the r esour ce. nanmes property in the or i on-
appl i cation.xm file. Ther esour ce. nanes property is set to

Topi cOne,QueueOne,Topi cTwo. This value represents a list of INDI names for J]MS
destinations that the Cont ext Scanni ngResour cePr ovi der resource provider
looks up from the external WebLogic Server instance.

Developing a WebLogic Thin T3 Client 3-5

http://docs.oracle.com/cd/E14101_01/doc.1013/e13979/classload.htm#JIDEV929
http://docs.oracle.com/cd/E14101_01/doc.1013/e13979/classload.htm#JIDEV929
http://docs.oracle.com/cd/E14101_01/doc.1013/e13975/jndi.htm#JISVC7029
http://docs.oracle.com/cd/E14101_01/doc.1013/e13975/jndi.htm#JISVC7029
http://docs.oracle.com/cd/E14101_01/doc.1013/e13975/jndi.htm#JISVC7030.
http://docs.oracle.com/cd/E14101_01/doc.1013/e13980/ascontrol.htm#JIDEP1113
http://docs.oracle.com/cd/E14101_01/doc.1013/e13980/ascontrol.htm#JIDEP1113
http://docs.oracle.com/cd/E14101_01/doc.1013/e13975/jms.htm

Foreign Server Applications

Example 3-2 Setting the resource.names Property

<resour ce- provi der

cl ass="com everni nd. server. depl oyment . Cont ext Scanni ngResour cePr ovi der"
nane="\WebLogi cRP" >

<property nanme="java.nanming.factory.initial"

val ue="webl ogi c. j ndi . W.I ni ti al Cont ext Factory"/>

<property name="java. namng. provider.url" value="t3://local host:7001/"/>
<property name="java. nam ng.security.principal" val ue="user_name"/>
<property name="java. namng.security.credentials" val ue="user_password"/>

<I-- configure the set of known JMS destinations that are required for this
application -->
<property name="resource. nanes" val ue="Topi cOne, QueueOne, Topi cTwo"/ >

</ resource- provi der >

3-6 Developing Standalone Clients for Oracle WebLogic Server

A

Developing a WebLogic Full Client
(Deprecated)

This chapter describes how to develop and use WebLogic full clients.

Note:

The WebLogic full client, W ful | cl i ent. j ar,is deprecated as of WebLogic
Server 12.1.3 and may be removed in a future release. Oracle recommends
using the WebLogic Thin T3 client or other appropriate client depending on
your environment. For more information on WebLogic client types, see

Table 2-1.

This chapter includes the following sections:

¢ Understanding the WebLogic Full Client

¢ Limitations and Considerations when Using the WebLogic Full Client
¢ Developing a WebLogic Full Client

e Communicating with a Server in Admin Mode

¢ Running the WebLogic Full Client in a Non-Forked VM

4.1 Understanding the WebLogic Full Client

For WebLogic Server 10.0 and later releases, client applications need to use the

W fullclient.jar fileinstead of the webl ogi c. j ar. A WebLogic full client is a
Java RMI client that uses Oracle's proprietary T3 protocol to communicate with
WebLogic Server, thereby leveraging the Java-to-Java model of distributed computing.
For more information on WebLogic T3 communication, see Using WebLogic RMI with
T3 Protocol in Developing RMI Applications for Oracle WebLogic Server.

Note:

Although the WebLogic full client requires the largest JAR file among the
various clients, it has the most features and is faster and more scalable than
IIOP clients. The same JAR that provides the T3 protocol support also
provides IIOP support.

A WebLogic full client:

¢ Requiresthew ful I cli ent.jar in your classpath.

Developing a WebLogic Full Client (Deprecated) 4-1

Limitations and Considerations when Using the WebLogic Full Client

Uses an URL in the form of t 3: / /i p addr ess: port for the initial context.
Is faster and more scalable than IIOP clients.

Supports most WebLogic Server-specific features.

Supports WebLogic Server clustering.

Supports most JavaEE features.

Supports WebLogic JMS, JMS SAF clients, and JMS C clients.

Uses Oracle WebLogic's T3 /T3S protocol for Remote Method Invocation (RMI),
including: RMI over HTTP (HTTP tunneling) and RMI over HTTPS (HTTP
Tunneling over SSL). For more information on WebLogic T3 communication, see
Using WebLogic RMI with T3 Protocol in Developing RMI Applications for Oracle
WebLogic Server.

4.2 Limitations and Considerations when Using the WebLogic Full Client
Consider the following when using the WebLogic Full Client:

Not all functionality available with webl ogi c. j ar is available with the

w fullclient.jar.For example, wifullclientjar does not support Web Services,
which requires the wseecl i ent . j ar. Nor doesw ful I cli ent.jar support
operations necessary for development purposes, such as ejbc, or support
administrative operations, such as deployment, which still require using the

webl ogi c. j ar.

In WebLogic Server 12.1.3 and higher releases, the WebLogic Full Client
implements the JDK StAX parser which does not perform validation during rim
RTD. xm parsing. In prior WebLogic Server releases, the WebLogic Full Client
used the WebLogic StAX parser, which included validation for rim RTD. xmi
parsing.

4.3 Developing a WebLogic Full Client

Creating a basic WebLogic full client consists of the following

1.

3.

Generate the wlfullclient.jar file for client applications using the JarBuilder tool.
See Using the WebLogic JarBuilder Tool.

Obtain a reference to the remote object.
a. Get the initial context of the server that hosts the service using a T3 URL.

b. Obtain an instance of the service object by performing a lookup using the
initial context. This instance can then be used just like a local object reference.

Call the remote objects methods.

Sample code to for a simple WebLogic full client is provided in Example 4-1.

Example 4-1 Simple WebLogic Full hello Client

package exanples.rm. hello;

import java.io.PrintStream
i mport webl ogic. utils. Debug;
i mport javax. naming.*;

4-2 Developing Standalone Clients for Oracle WebLogic Server

Developing a WebLogic Full Client

import java.util.Hashtable;

/**

* This client uses the renote Hel |l oServer nethods.

*

* @uthor Copyright (c) Oracle. All Rights Reserved.
*

/

public class HelloCient {

private final static bool ean debug = true;

/**

* Defines the JNDI context factory.

*|

public final static String JND _FACTORY="webl ogic.jndi.W.I nitial ContextFactory";
int port;

String host;

private static void usage() {

Systemerr.println("Usage: java exanples.rm.hello.HelloCient " +
"<host name> <port nunber>");

Systemexit(-1);

1

public HelloCient() {}

public static void main(String[] argv) throws Exception {
if (argv.length < 2) {
usage();

}

String host = argv[0];

int port =0;

try {
port = Integer.parselnt(argv[1]);
1

catch (Nunber For mat Exception nfe) {
usage();

try {

Initial Context ic = getlnitial Context("t3://" + host + ":" + port);

Hello obj =
(Hello) ic.lookup("HelloServer");

Systemout. println("Successfully connected to HelloServer on " +
host + " at port " +
port +": " + obj.sayHello());

catch (Throwable t) {

t.printStackTrace();
Systemexit(-1);

1

private static Initial Context getlnitial Context(String url)
t hrows Nami ngException

{

Hasht abl e env = new Hashtabl e();

env. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY, JNDI _FACTCRY);

env. put (Cont ext. PROVI DER_URL, wurl);

Developing a WebLogic Full Client (Deprecated) 4-3

Communicating with a Server in Admin Mode

return new I nitial Context(env);

}
}

4.4 Communicating with a Server in Admin Mode

To communicate with a server instance that is in admin mode, you need to configure a
communication channel by setting the following flag on your client:

- Dwebl ogi c. Admi ni strati onProtocol =t3

4.5 Running the WebLogic Full Client in a Non-Forked VM

If the WebLogic Full Client is running in a non-forked VM, for example by means of a
<j ava> task invoked from an Ant script without the f or k=t r ue attribute, the
following error might be generated:

java.lang. SecurityException: The provider self-integrity check failed.
This error is caused by the self-integrity check that is automatically performed when

the RSA Crypto-] library is loaded. (The Crypto-] library, cr ypt oj . j ar, is in the
W fullclient.jar manifest classpath.)

This self-integrity check failure occurs when the client is started in a non-forked VM
and it uses the Crypto-J] AP, either directly or indirectly, as in the following situations:

¢ The client invokes the Crypto-] library directly.

* The client attempts to make a T3S connection, which triggers the underlying client
SSL implementation to invoke the Crypto-] APL

When the self-integrity check fails, further invocations of the Crypto-] API fail. To
prevent this error from occurring, always set the f or k attribute to t r ue when
running the full client in a <j ava> task that is invoked from an Ant script.

For more information about the self-integrity check, see "How a Provider Can Do Self-
Integrity Checking" in How to Implement a Provider in the Java™ Cryptography
Architecture, available at the following URL:

http://docs. oracl e. conij avase/ 6/ docs/t echnot es/ gui des/ security/
crypt o/ HowTol npl APr ovi der . ht ml #i ntegri tycheck

4-4 Developing Standalone Clients for Oracle WebLogic Server

http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/HowToImplAProvider.html#integritycheck
http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/HowToImplAProvider.html#integritycheck

5

Developing a Thin Client

This chapter describes how to develop and use a WebLogic thin client:

This chapter includes the following sections:
e QOverview of the Thin Client
* How to Develop a Thin Client

® Protocol Compatibility

5.1 Overview of the Thin Client

Although a thin client is a Java application, it differs from a standalone Java
application client because it is a Java EE component, hence it offers the advantages of
portability to other Java EE-compliant servers, and can access Java EE services.

Oracle provides the following application client JAR files:

* A standard client JAR (W cl i ent . j ar) that provides Java EE functionality. See
How to Develop a Thin Client.

e A]JMSclientJAR (W j mscl i ent. j ar), which when deployed with the
W client.jar, provides Java EE and WebLogic JMS functionality. See WebLogic
JMS Thin Client.

* A JMSSAF client JAR (W saf cl i ent. j ar), which when deployed with the
W jmsclient.jar andw client.jar enables standalone JMS clients to reliably
send messages to server-side JMS destinations, even when a destination is
temporarily unreachable. Sent messages are stored locally on the client and are
forwarded to the destination when it becomes available. See Reliably Sending
Messages Using the JMS SAF Client.

These application client JAR files reside in the W._ HOVE/ ser ver /| i b subdirectory of
the WebLogic Server installation directory.

The thin client uses the RMI-IIOP protocol stack and leverages features of Java SE. It
also requires the support of the JDK ORB. The basics of making RMI requests are
handled by the JDK, which makes possible a significantly smaller client. Client-side
development is performed using standard Java EE APIs, rather than WebLogic Server
APIs.

The development process for a thin client application is the same as it is for other Java
EE applications. The client can leverage standard Java EE artifacts such as

I nitial Context,UserTransacti on, and EJBs. The WebLogic Server thin client
supports these values in the protocol portion of the URL—IIOP, IIOPS, HTTP, HTTPS,
T3, and T3S—each of which can be selected by using a different URL in

I ni tial Context.Regardless of the URL, IIOP is used. URLs with T3 or T3S use

Developing a Thin Client 5-1

How to Develop a Thin Client

IIOP and IIOPS respectively. HTTP is tunnelled IIOP, HTTPS is IIOP tunnelled over
HTTPS.

Server-side components are deployed in the usual fashion. Client stubs can be
generated at either deployment time or run time. To generate stubs when deploying,
run appc with the -i i op and - basi cC i ent Jar options to produce a client jar
suitable for use with the thin client. Otherwise, WebLogic Server generates stubs on
demand at run time and serves them to the client. Downloading of stubs by the client
requires that a suitable security manager be installed. The thin client provides a
default light-weight security manager. For rigorous security requirements, a different
security manager can be installed with the command line options -

Dj ava. security. manager, - Dj ava. security. pol i cy==policyfil e. Applets
use a different security manager which already allows the downloading of stubs.

When deploying a thin client, the W cl i ent . j ar file must be installed on the client's
file system and a reference to the wl cl i ent . j ar file included on the client's
CLASSPATH.

5.1.1 Limitations

The following limitations apply to the thin client:
e It does not provide the JDBC or JMX functionality of thew ful | cl i ent.j ar file.

¢ The WebLogic Server CMP 2.x extension that allows users to return a
java. sgl . Resul t Set to a client is not supported

e [tis only supported by the JDK ORB.

5.2 How to Develop a Thin Client

To develop a thin client:

1. Define your remote object's public methods in an interface that extends
java.rm . Renote.

This remote interface may not require much code. All you need are the method
signatures for methods you want to implement in remote classes. For example:

public interface Pinger extends java.rm.Renmote {
public void ping() throws java.rni.RenoteException;
public void pingRenote() throws java.rm . RenmoteException;

2. Implement the interface in a class named i nt er f aceNamel npl and bind it into
the JNDI tree to be made available to clients.

This class should implement the remote interface that you wrote, which means
that you implement the method signatures that are contained in the interface. All
the code generation that will take place is dependent on this class file. Typically,
you configure your implementation class as a WebLogic startup class and include
a main method that binds the object into the JNDI tree. Here is an excerpt from the
implementation class developed from the previous Ping example:

public static void main(String args[]) throws Exception {
if (args.length > 0)
renot eDomai n = args[0];
Pi nger obj = new Pinglnpl ();
Context initial Nam ngContext = new Initial Context();
i ni tial Nam ngCont ext . r ebi nd(NAME, obj) ;

5-2 Developing Standalone Clients for Oracle WebLogic Server

How to Develop a Thin Client

Systemout. printIn("Pinglmpl created and bound to "+ NAME);
}

Compile the remote interface and implementation class with a java compiler.
Developing these classes in an RMI-IIOP application is no different from doing so
in normal RMI. For more information on developing RMI objects, see Developing
RMI Applications for Oracle WebLogic Server.

Run the WebLogic RMI or EJB compiler against the implementation class to
generate the necessary IIOP stub. If you plan on downloading stubs, it is not
necessary torunr m c.

$ java weblogic.rmic -iiop nameO | npl ementati onC ass

To generate stubs when deploying, run appc with the -i i op and - cl i ent Jar
options to produce a client JAR suitable for use with the thin client. Otherwise,
WebLogic Server will generate stubs on demand at run time and serve them to the
client.

A stub is the client-side proxy for a remote object that forwards each WebLogic
RMI call to its matching server-side skeleton, which in turn forwards the call to
the actual remote object implementation.

Make sure that the files you have created—the remote interface, the class that
implements it, and the stub—are in the CLASSPATH of WebLogic Server.

Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing a
lookup (see next step) on the object. The object is then cast to the appropriate type.

In obtaining an initial context, you must use

webl ogi c. j ndi . W.I ni ti al Cont ext Fact or y when defining your JNDI
context factory. Use this class when setting the value for the

Cont ext. | NI TI AL_CONTEXT_FACTCORY property that you supply as a
parameter tonew | ni ti al Cont ext ().

Modify the client code to perform the lookup in conjunction with the
javax. rm . Port abl eRenot eObj ect . narr owm() method.

RMI over IIOP RMI clients differ from regular RMI clients in that IIOP is defined
as the protocol when obtaining an initial context. Because of this, lookups and
casts must be performed in conjunction with the

javax.rm . Port abl eRenpt eCbj ect . narr ow() method. For example, an
RMI client creates an initial context, performs a lookup on the EJBean home,
obtains a reference to an EJBean, and calls methods on the EJBean.

You must use the j avax. rm . Port abl eRenpt ehj ect . narr owm() method in
any situation where you would normally cast an object to a specific class type. A
CORBA client may return an object that does not implement your remote
interface; the narrow method is provided by your ORB to convert the object so
that it implements your remote interface. For example, the client code responsible
for looking up the EJBean home and casting the result to the Home object must be
modified to use the j avax. rni . Port abl eRenot eCbj ect. narrow() as
shown below:

Connect the client to the server over IIOP by running the client with a command
such as:

$ java -Djava. security. manager -Djava.security.policy=java.policy
exanples.iiop.ejb.stateless.rmiclient.Cient iiop://localhost:7001

Developing a Thin Client 5-3

How to Develop a Thin Client

Example 5-1 Performing a lookup:

/**

* RM/11OP clients should use this narrow function
*/

private Object narrow(Ohject ref, Cass c) {
return Portabl eRenot eChj ect. narrow(ref, c);

}
/**
* Lookup the EJBs hone in the JNDI tree
*/
private TraderHone | ookupHome()
throws Nani ngException
{
/'l Lookup the beans home using JNDI
Context ctx = getlnitial Context();
try {
oj ect hone = ctx. | ookup(JNDI _NAME) ;
return (TraderHone) narrow(horme, TraderHone. cl ass);
} catch (Nam ngException ne) {
log("The client was unable to | ookup the EJBHome. Please
meke sure ");
log("that you have deployed the ejb with the JNDI nane
"+JNDI _NAME+" on the WebLogic server at "+url);
throw ne;
1
}
/**
* Using a Properties object will work on JDK130
* and higher clients
*/
private Context getlnitial Context() throws Nanmi ngException {
try {
/1 Get an Initial Context
Properties h = new Properties();
h. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c.jndi.W.lInitial ContextFactory");
h. put (Cont ext . PROVIDER_URL, wurl);
return new Initial Context(h);
} catch (NamingException ne) {
| og("Ve were unable to get a connection to the WebLogic
server at "+url);
| og("Pl ease make sure that the server is running.");
throw ne;
1
}

The ur | defines the protocol, hostname, and listen port for the WebLogic Server
instance and is passed in as a command-line argument.

public static void main(String[] args) throws Exception {
[og("\nBegi nning statel essSession.Cient...\n");
String url = "iiop://local host:7001";

5-4 Developing Standalone Clients for Oracle WebLogic Server

Protocol Compatibility

Connect the client to the server over IIOP by running the client with a command such
as:

$ java -Djava. security. manager -Djava.security.policy=java.policy
exanples.iiop.ejb.stateless.rmclient.Cient iiop://local host: 7001

5.3 Protocol Compatibility

For information on interoperability between this WebLogic Server release and
previous WebLogic Server releases, see WebLogic Server Compatibility in
Understanding Oracle WebLogic Server.

Developing a Thin Client 5-5

Protocol Compatibility

5-6 Developing Standalone Clients for Oracle WebLogic Server

6

WebLogic JMS Thin Client

This chapter describes how to develop, use and deploy a WebLogic JMS thin client.

This chapter includes the following sections:

Overview of the JMS Thin Client

JMS Thin Client Functionality
Limitations of Using the JMS Thin Client
Deploying the JMS Thin Client

6.1 Overview of the JMS Thin Client

The JMS thin client (the W j nscl i ent . j ar deployed with thewl cl i ent.jar),
provides Java EE and WebLogic JMS functionality using a much smaller client
footprint than a WebLogic Install or Full client, and a somewhat smaller client
footprint than a Thin T3 client. The smaller footprint is obtained by using:

A client-side library that contains only the set of supporting files required by client-
side programs.

The RMI-IIOP protocol stack available in the JRE. RMI requests are handled by the
JRE, enabling a significantly smaller client.

Standard Java EE APIs, rather than WebLogic Server APlIs.

You may want to consider using one of the faster T3 client options, such as the Thin T3
client. For more information on developing WebLogic Server thin client applications,
see Developing a Thin Client .

6.2 JMS Thin Client Functionality

Although much smaller in size than a WebLogic Full client or WebLogic Install, the
JMS thin client (the w j nsclient.jar andw client. | ar) provide the following
functionality to client applications and applets:

Full WebLogic JMS functionality—both standard JMS and WebLogic extensions—
except for client-side XML selection for multicast sessions and the JMSHelper class
methods

EJB (Enterprise Java Bean) access
JNDI access

RMI access (indirectly used by JMS)
SSL access (using JSSE in the JRE)

WebLogic JMS Thin Client 6-1

Limitations of Using the JMS Thin Client

Transaction capability
Clustering capability
HTTP/HTTPS tunneling

Fully internationalized

6.3 Limitations of Using the JMS Thin Client

The following limitations apply to the JMS thin client:

It does not provide the JDBC or JMX functionality of thew! ful | cl i ent . j ar file.

It does not support client-side Store and Forward (client SAF). See Reliably Sending
Messages Using the J]MS SAF Client.

The WebLogic Server CMP 2.x extension that allows users to return a
java. sqgl . Resul t Set to a client is not supported

It is only supported by the JDK ORB.

It has lower performance than T3 protocol capable clients (Install, Thin T3, or Full),
especially with non-persistent messaging.

Does not support automatic client reconnect for releases prior to WebLogic Server
9.2.

6.4 Deploying the JMS Thin Client

The wljmsclient.jar and wiclient.jar are located in the W._ HOVE\ server\li b
subdirectory of the WebLogic Server installation directory, where W._ HOME is the top-
level WebLogic Server installation directory (for example, ¢: \ Or acl e\ M ddl ewar e
\Oracl e_Home\wl server\server\lib).

Deployment of the JMS thin client depends on the following requirements:

The JMS thin client requires the standard thin client, which contains the base client
support for clustering, security, and transactions. Therefore, the wljmsclient.jar and
the wiclient.jar must be installed somewhere on the client's file system. However,
wljmsclient.jar has a reference to wiclient.jar so it is only necessary to put one or the
other Jar in the client's CLASSPATH.

RMI-IIOP is required for client-server communication.
— URLs using t 3 or t 3s will transparently use i i op ori i ops
— URLs using ht t p or ht t ps will transparently use i i op tunneling.

To facilitate the use of IIOP, always specify a valid IP address or DNS name for the
Listen Address attribute to listen for connections.

6-2 Developing Standalone Clients for Oracle WebLogic Server

Deploying the JMS Thin Client

Note:

The Listen Address default value of null allows it to "listen on all configured
network interfaces". However, this feature only works with the T3 protocol. If
you need to configure multiple listen addresses for use with the IIOP protocol,
then use the Network Channel feature, as described in Configuring Network
Resources in Administering Server Environments for Oracle WebLogic Server.

¢ Each client must have the JRE 1.4.x or higher installed.

* Applications must adhere to Java EE programming guidelines, in particular the use
of Por t abl eRenot eChj ect . narr ow() rather than using casts.

For more information on developing thin client applications for WebLogic Server, see
Developing a Thin Client .

WebLogic JMS Thin Client 6-3

Deploying the JMS Thin Client

6-4 Developing Standalone Clients for Oracle WebLogic Server

v

Reliably Sending Messages Using the JMS
SAF Client

This chapter describes how to configure and use the JMS SAF client to reliably send
JMS messages from standalone JMS clients to server-side JMS destinations.

This chapter includes the following sections:

* Overview of Using Store-and-Forward with JMS Clients
¢ Configuring a JMS Client To Use Client-side SAF

* JMS SAF Client Management Tools

® JMS Programming Considerations with JMS SAF Clients
¢ JMS SAF Client Interoperability Guidelines

¢ Tuning JMS SAF Clients

¢ Limitations of Using the JMS SAF Client

* Behavior Change in J]MS SAF Client Message Storage

7.1 Overview of Using Store-and-Forward with JMS Clients

The JMS SAF client extends the JMS store-and-forward service to standalone JMS
clients. JMS clients can reliably send messages to server-side JMS destinations even
when the client cannot reach a destination (for example, due to a temporary network
connection failure). While disconnected from the server, messages sent by a JMS SAF
client are stored locally on the client file system and are forwarded to server-side J]MS
destinations when the client reconnects.

The JMS SAF client consists of two main parts:

* The JMS SAF client implementation, which writes messages directly to a client-side
persistent store on the local file system

* A SAF forwarder, which takes the messages written to the store and sends them to
a WebLogic Server instance

An optional SAFCl i ent initialization API is also available that allows JMS SAF clients
to turn the SAF forwarder mechanism on and off whenever necessary, described

webl ogi c. j ms. ext ensi ons. For more information, see The JMS SAF Client
Initialization API.

Reliably Sending Messages Using the JMS SAF Client 7-1

Configuring a JMS Client To Use Client-side SAF

Note:

For information about using server-side WebLogic JMS SAF for reliably
sending JMS messages to potentially unavailable destinations, see Configuring
SAF for JMS Messages in Administering the Store-and-Forward Service for Oracle
WebLogic Server.

7.2 Configuring a JMS Client To Use Client-side SAF

No configuration is required on the server-side, but running client-side SAF does
require some configuration on each client. These sections describe how to configure a
JMS client to use client-side SAF.

* Generating a JMS SAF Client Configuration File
¢ Encrypting Passwords for Remote JMS SAF Contexts
¢ Installing the JMS SAF Client JAR Files on Client Machines

e Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI
Provider

7.2.1 Generating a JMS SAF Client Configuration File

Each client machine requires a JMS SAF client configuration file that specifies
information about the server-side connection factories and destinations needed by the
JMS SAF client environment to operate. You generate the JMS SAF client configuration
file from a specified J]MS module's configuration file by using the

Cl i ent SAFGener at e utility bundled with your WebLogic installation.

The O i ent SAFGener at e utility creates entries for all connection factories,
standalone destinations, and distributed destinations found in the source JMS
configuration file, as described in Steps to Generate a JMS SAF Client Configuration
File from a J]MS Module. The generated file defines the connection factories and
imported destinations that the JMS SAF client will interact with directly through the
initial JNDI context described in Modify Your JMS Client Applications To Use the JMS
SAF Client's Initial JNDI Provider. However, the generated file will not contain entries
for any foreign JMS destinations or SAF destinations in server-side J]MS modules.
Furthermore, only JMS destinations with their SAF Export Policy set to Al | are added
to the file (the default setting for destinations).

7.2.1.1 How the JMS SAF Client Configuration File Works

The JMS SAF client XML file conforms to the WebLogic Server webl ogi c-j nms. xsd
schema for J]MS modules and contains the root element webl ogi c-cl i ent - j ns. The
webl ogi c-j ms. xsd schema contains several top-level elements that correspond to
server-side WebLogic JMS SAF features, as described in Valid SAF Elements for J]MS
SAF Client Configurations.

The top-level elements in the file describe the connection factory and imported
destination elements that the JMS SAF client will interact with directly. The SAF
sending agent, remote SAF context, and SAF error handling elements describe the
function of the SAF forwarder. The persistent store element is used by both the JMS
SAF client API and the SAF forwarder.

7-2 Developing Standalone Clients for Oracle WebLogic Server

Configuring a JMS Client To Use Client-side SAF

7.2.1.2 Steps to Generate a JMS SAF Client Configuration File from a JMS Module

Use the d i ent SAFGener at e utility to generate a JMS SAF client configuration file
from a JMS module configuration file in a WebLogic domain. You can also generate a
configuration file from an existing JMS SAF client configuration file, as described in
ClientSAFGenerate Utility Syntax.

Note:

Running the O i ent SAFGener at e utility on a client machine to generate a
configuration file from an existing JMS SAF client configuration file requires
using the wlfullclient.jar in the CLASSPATH instead of the thin J]MS and JMS
SAF clients. See Installing the JMS SAF Client JAR Files on Client Machines.

These steps demonstrate how to use the ClientSAFGenerate utility to generate a JMS
SAF client configuration file from the exanpl es-j nms. xm module file bundled in
WebLogic Server installations.

1.

Navigate to the directory in the WebLogic domain containing the JMS module file
that you want to use as the basis for the JMS SAF client configuration file:

c:\Oracle\M ddl ewar e\ w server _12. 1\ sanpl es\ domai ns\w _server\config\j ms

From a Java command-line, run the ClientSAFGenerate utility:

> java webl ogi c. j ms. ext ensi ons. O i ent SAFGenerate -url http://10.61.6.138: 7001 -
usernane webl ogi ¢ -nodul eFil e exanpl es-jnms.xm -outputFile d:\tenp\dient SAF-
j s, xmi

Table 7-1 explains the valid Cl i ent SAFGener at e arguments.

A configuration file named SAFClient-jms.xml is created in the current directory.
Here is a representative example of its contents:

<webl ogi c-client-jms xm ns="http://ww. bea. cont ns/webl ogi ¢/ 100"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<connection-factory name="exanpl eTrader">
<j ndi - name>j ns. connecti on. trader Fact ory</j ndi - name>
<transacti on- par ans>
<xa- connection-fact ory- enabl ed>f al se
</ xa- connect i on-fact ory- enabl ed>
</transacti on- par ams>
</ connection-factory>
<saf -inported-destinations name="exanpl es">
<saf - queue nane="exanpl eQueue">
<renot e-j ndi - name>webl ogi c. exanpl es. j ms. exanpl eQueue
</ remot e-j ndi - name>
<l ocal - j ndi - nanme>webl ogi c. exanpl es. j ms. exanpl eQueue
</l ocal -j ndi - name>
</ saf - queue>
<saf -topi ¢ nane="quot es">
<r enot e-j ndi - name>quot es</ r enot e- j ndi - nane>
<l ocal -j ndi - nanme>quot es</| ocal - j ndi - nane>
</ saf-topic>
</ saf -i nport ed- destinations>
<saf -renot e- cont ext nane="Renot eCont ext 0" >
<saf -1 ogi n- cont ext >
<l ogi nURL>t 3:/ /| ocal host : 7001</ | ogi nURL>

Reliably Sending Messages Using the JMS SAF Client 7-3

Configuring a JMS Client To Use Client-side SAF

<user name>webl ogi c</ user nane>
</ saf -1 0gi n-cont ext >
</ saf -remot e- cont ext >
</ webl ogi c-client-jns>

Tip:

To include additional remote SAF connection factories and destinations from
other JMS modules deployed in a cluster or domain, re-run the

d i ent SAFGener at e utility against these JMS module files and specify the
same JMS SAF configuration file name in the - out put Fi | e parameter. See
ClientSAFGenerate Utility Syntax.

4. The generated configuration file does not contain any encrypted passwords for
the SAF remote contexts used to connect to remote servers. To create encrypted
passwords for the remote SAF contexts and add them to the configuration file,
follow the directions in Encrypting Passwords for Remote JMS SAF Contexts.

5. Copy the generated configuration can file to the client machine(s) where you will
run your JMS SAF client applications. See Installing the JMS SAF Client JAR Files
on Client Machines.

Note:

Qi ent SAF. xm is the default name expected in the current working
directory of the JMS client, but you can also explicitly specify a file name by
passing an argument in the JMS client, as described in Modify Your JMS
Client Applications To Use the J]MS SAF Client's Initial JNDI Provider.

7.2.1.3 ClientSAFGenerate Utility Syntax

The webl ogi c. j ms. ext ensi ons. A i ent SAFCGener at e utility generates a JMS
SAF client configuration file, using either a JMS module file or an existing JMS SAF
client configuration file.

java [webl ogic.jns. extensions. CientSAFGenerate |
[-url server-url]

[-username nane-of -user]

[-existingCientFile file-path]

[-moduleFile file-path ['@ plan-path]]*

[-outputFile file-path]

Table 7-1 ClientSAFGenerate Arguments
- |

Argument Definition

url The URL of the WebLogic Server instance where the JMS SAF client
instance should connect.

user nane The name of a valid user that this JMS SAF client instance should
use when forwarding messages.

7-4 Developing Standalone Clients for Oracle WebLogic Server

Configuring a JMS Client To Use Client-side SAF

Table 7-1 (Cont.) ClientSAFGenerate Arguments
___|

Argument Definition
existingdientFil Thename of an existing JMS SAF client configuration file. If this
e parameter is specified, then the existing file will be read and new

entries will be added. If any conflicts are detected between items
being added and items already in the JMS SAF client configuration
file, a warning will be given and the new item will not be added. If
a JMS SAF client configuration file is specified but the file cannot be
found, then an error is printed and the utility exits.

nodul eFi | e The name of a JMS module configuration file and optional plan file.

outputFile stdout .

i ent SAF. xn is the default name expected in the current
working directory of the JMS client, but you can also explicitly
specify a file name by passing an argument in the JMS client.

7.2.1.4 Valid SAF Elements for JMS SAF Client Configurations

The webl ogi c-cl i ent -j s root element of the weblogic-jms.xsd schema contains
several top-level elements that correspond to server-side WebLogic JMS SAF features.
Table 7-2 identifies the management MBean to which each top-level element in the
schema corresponds.

Table 7-2 weblogic-client-saf Elements

weblogic-client-jms Element WebLogic Server Management Bean

connection-factory JMsConnect i onFact or yBean
saf - agent SAFAgent MBean
saf -i nport ed- SAFI npor t edDest i nati onsBean
destinations
saf - r enpt e- cont ext SAFRenpt eCont ext Bean
saf -error-handling SAFEr r or Handl i ngBean
persistent-store For more information, seeDefault Store Options for JMS
SAF Clients.
Note:

You can only specify one per si st ent - st or e and saf - agent elementina
JMS SAF client configuration file.

All of the properties in these management MBeans work the same in the J]MS SAF
client implementation as they do in server-side SAF JMS configurations, except for
those described in the following tables.

Table 7-3 describes the differences between the standard SAFAgent MBean fields and
the fields in the JMS SAF client configuration file.

Reliably Sending Messages Using the JMS SAF Client 7-5

Configuring a JMS Client To Use Client-side SAF

Table 7-3 Modified SAFAgentMBean Fields
- |

Server-side SAF Fields

Difference in JMS SAF Client Configuration File

PersistentStore Not available. There is only one persistent store defined.
ServiceType Not available. This can only be a sending agent.
BytesThresholdHigh Threshold properties are not available.
BytesThresholdLow Threshold properties are not available.

MessagesThresholdHigh

Threshold properties are not available.

MessagesThresholdLow

Threshold properties are not available.

ConversationldleTimeMaximu
m

Not available. This field is only valid for receiving
messages.

Acknowledgelnterval

Not available. Only valid for receiving messages.

IncomingPaused AtStartup

Not available. No way to un-pause; same effect achieved by
not setting the JMS SAF client property.

ForwardingPaused AtStartup

Not available. No way to un-pause; same effect achieved by
not setting the JMS SAF client property.

ReceivingPaused AtStartup

Not available. No way to un-pause; same effect achieved by
not setting the JMS SAF client property.

Note:

You can only specify one saf - agent element in a JMS SAF client

configuration file.

Table 7-4 describes the differences between the standard
JMsSConnect i onFact or yBean fields and the fields in the JMS SAF client

configuration file.

Table 7-4 Modified JIMSConnectionFactoryBean Fields
- - -]

Server-side SAF Fields

Difference in JMS SAF Client Configuration File

SubDepl oynent Nane

Ignored. These connection factories are not targeted.

Cl i ent Par ansBean:
Mul ti cast OverrunPol i cy

Ignored. This client cannot do multicast receives.

Transact i onPar ansBean:

Ignored. JMS SAF client cannot do XA transactions.

XAConnect i onFact or yEnabl ed

FI owCont r ol Par ansBean

All fields are ignored. JMS SAF client cannot receive
messages.

LoadBal anci ngPar ansBean

All fields are ignored. JMS SAF client cannot load
balance since it is not connected to a server.

7-6 Developing Standalone Clients for Oracle WebLogic Server

Configuring a JMS Client To Use Client-side SAF

Table 7-5 describes the differences between the standard
SAFI npor t edDest i nat i onsBean fields and the fields in the JMS SAF client
configuration file.

Table 7-5 Modified SAFImportedDestinationsBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

SubDeploymentName Ignored. These are targeted to the single SAF agent
defined in this file.

UnitOfOrderRouting Ignored. Message unit-of-order is not supported.

7.2.1.5 Default Store Options for JMS SAF Clients

Each JMS SAF client has a default store that requires no configuration, and which can
be shared by multiple JMS SAF clients. The default store is a file-based store that
maintains its data in a group of files directly under the JMS SAF client configuration
directory.

Using the per si st ent - st or e element, you can specify another location for the
default store and also change its default write policy by specifying the following
elements in the J]MS SAF client configuration file:

Table 7-6 persistent-store Elements

Element Name What it does
directory-path Specifies the path to the directory on the file system where the file
store is kept.
synchronous-write- Defines how hard a file store will try to flush records to the disk.
policy Values are: Direct-Write (default), Cache-Flush, and Disabled.
Note:

You can only specify one per si st ent - st or e element in a JMS SAF client
configuration file.

Here's an example of a customized JMS SAF client default store in a JMS SAF client
configuration file:

<persi stent-store>
<directory-path>config/jns/storesdonk/directory-pat h>
<synchronous-write-policy>Di sabl ed</ synchronous-write-policy>
</ persi stent-store>

For more information on using the Synchronous Write Policy for a file store, see Using
the WebLogic Persistent Store in Administering the WebLogic Persistent Store.

7.2.2 Encrypting Passwords for Remote JMS SAF Contexts

The generated SAF configuration file does not contain any encrypted passwords for its
generated SAF remote contexts, regardless of whether any were configured in the
source JMS module file. If security credentials are configured for the remote cluster or
server contexts defined in the JMS SAF client configuration file, then encrypted
passwords are required to connect to the remote servers or cluster.

Reliably Sending Messages Using the JMS SAF Client 7-7

Configuring a JMS Client To Use Client-side SAF

To create encrypted passwords for your remote SAF contexts, you must use the
ClientSAFEncrypt utility bundled with your WebLogic installation, which encrypts
cleartext strings for use with the JMS SAF client feature.

Note:

The existing webl ogi c. securi ty. Encrypt command-line utility cannot be
used because it expects access to the domain security files, which are not
available on the client.

7.2.2.1 Steps to Generate Encrypted Passwords

The following steps demonstrate how to use the ClientSAFEncrypt to generate
encrypted passwords:

1.

From a Java command-line, run the Cl i ent SAFEncr ypt utility:

> java - Dwebl ogi c. managenent . al | owPasswor dEcho=t r ue
webl ogi c. j ms. ext ensi ons. C i ent SAFEncrypt [key-password] [renote-password |*

If the key-password or the r enot e- passwor d fields are not specified, then you
will be prompted for the key- passwor d and the r enpt e- passwor d
interactively.

Here's an example of obtaining an encrypted password:

Password Key ("quit" to end):

Password ("quit" to end):

<passwor d-

encrypt ed>{ Al gorit hn} PBEW t hMD5AndDES{ Sal t } 91 sTPAuZdc Q={ Dat a} d6SSPp3GwMPAf EXn8i zyZA
0l RCVI i zT8H</ passwor d- encr ypt ed>

Password ("quit" to end):

Continue generating as many remote passwords as necessary for the remote
contexts defined in the JMS SAF client configuration file.

Copy the encrypted remote password before the closing </ saf - | ogi n-
cont ext > stanza in the JMS SAF client configuration file. For example:

<saf -renot e- cont ext nane="Renot eCont ext 0" >

<saf -l ogi n- cont ext >

<l ogi nURL>ht t p: //10. 61. 6. 138: 7001</ | ogi nURL>

<user nane>webl ogi c</ user name>

<passwor d-

encrypt ed>{ Al gorithn} PBEW t hMD5AndDES({ Sal t } dVENf r gXh8U={ Dat a} u8xZ968dEl Hckso/
ZYm2LQ6x VNBPpBGQ</ passwor d- encr ypt ed>

</ saf -1 0ogi n- cont ext >

</ saf - renot e- cont ext >

Use the O i ent SAFEncr ypt utility for all passwords (with the same key-
passwor d) required by the remote contexts defined in the JMS SAF client
configuration file. When a client starts using the JMS SAF client, it must supply the
same key- passwor d that was provided to the Cl i ent SAFEncr ypt utility.

Type quit to exit the O i ent SAFEncr ypt utility.

7-8 Developing Standalone Clients for Oracle WebLogic Server

Configuring a JMS Client To Use Client-side SAF

7.2.2.2 ClientSAFEncrypt Utility Syntax

The webl ogi c. j ms. ext ensi ons. O i ent SAFEncr ypt utility encrypts cleartext
strings for use with JMS SAF clients in order to access remote SAF contexts.

java [-Dwebl ogi c. managenent. al | owPasswor dEcho=t rue]
webl ogi c. j ms. ext ensi ons. O i ent SAFEncrypt [key-password]
webl ogi c. j ms. ext ensi ons. O i ent SAFEncrypt [renote-password]

Table 7-7 ClientSAFEncrypt Arguments
__|

Argument Definition

webl ogi c. management . al | o Optional. Allows echoing characters entered on the

wPasswor dEcho commandwebl ogi c. j ns. ext ensi ons. d i ent SAFEn
Cr ypt expects that no-echo is available; if no-echo is not
available, set this property to t r ue.

key- passwor d The key to use when encrypting all remote passwords
needed for the remote contexts defined in the JMS SAF
client configuration file.

If omitted from the command line, you will be prompted
to enter a key- passwor d.

r enot e- passwor d Cleartext string to be encrypted. Multiple passwords for
each remote context can be generated in one session.

If omitted from the command line, you are prompted to
enter a r enot e- passwor d.

7.2.3 Installing the JMS SAF Client JAR Files on Client Machines
WebLogic Server provides three J]MS SAF client options:

* webl ogi c. j ar, see WebLogic Install Client
e W fullclient.jar,see WebLogic Full Client (Deprecated)

e A thin client that uses thew safclient.jar,w jmsclient.jar,
wWclient.jar

The required JAR files are located in the W._HOVE\ ser ver\ | i b subdirectory of the
WebLogic Server installation directory, where W._ HOVE is the top-level installation
directory for the entire WebLogic product installation (for example, c: \ Or acl e

\' M ddl ewar e\ Or acl e_Hone\ w server\server\lib).

Oracle recommends the using either the higher-performing WebLogic Full or Install
client unless a small jar size is of high importance. To use thew! ful | cl i ent.j ar,
install it to a directory on the client machine's file system and added to its
CLASSPATH. Using thewl ful | cl i ent.j ar file also allows you to run the

d i ent SAFGener at e utility on a client machine to generate a configuration file from
an existing JMS SAF client configuration file, as described in Steps to Generate a JMS
SAF Client Configuration File from a JMS Module. When smaller JAR sizes are
required for thin clients, the JMS SAF client requires installing the following JAR files
to a directory on the client machine's file system and added to its CLASSPATH:

e wsafclient.jar

e wjnsclient.jar

Reliably Sending Messages Using the JMS SAF Client 7-9

Configuring a JMS Client To Use Client-side SAF

e wWclient.jar

Thew j mscl i ent . j ar has a reference to thew cl i ent . j ar so it is only necessary
to put one or the other JAR in the client machine's CLASSPATH.

For more information on deploying thin clients, see Overview of the Thin Client.

Note:

The WebLogic Thin T3 client does not support JMS SAF clients using the

w safclient.jar andw j nmscl i ent.jar JAR files. For information on
how to create JMS SAF clients using the WebLogic Thin T3 client, see
Understanding the WebLogic Thin T3 Client.

7.2.4 Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI

Provider

The JMS SAF client requires a special initial JNDI provider to look up the server-side
JMS connection factories and destinations specified in the JMS SAF client
configuration file that was generated during Steps to Generate a JMS SAF Client
Configuration File from a JMS Module.

7.2.4.1 Required JNDI Context Factory for JMS SAF Clients

Modify your JMS client applications to use the JMS SAF client JNDI context factory in
place of the standard server initial context. The name used for the JMS SAF client JNDI
property j ava. nam ng. factory.initial is

webl ogi c.jms. safclient.jndi.Initial ContextFactorylnpl.

An example JNDI initial context factory could look like this in a JMS SAF client
application:

public final static String
JNDI _FACTORY="webl ogi c. jms. safclient.jndi.Initial ContextFactorylnpl";

With the standard JNDI lookup, the JMS SAF client is started automatically and looks
up the server-side JMS connection factories and destinations specified in the
configuration file. For the configuration file, ClientSAF.xml is the default name
expected in the current working directory of the JMS client, but you can also explicitly
specify a configuration file name by passing an argument in the JMS client.

Items returned from the initial context created with the JMS SAF client do not work in
JMS calls from third-party JMS providers. Also, there can be no mixing of JMS SAF
client initial contexts with server initial contexts, as described in No Mixing of J]MS
SAF Client Contexts and Server Contexts.

You can also update your JMS client applications to use the

webl ogi c. j ms. ext ensi ons. Cl i ent SAF extension class, which allows the JMS
client to control when the JMS SAF client system is in use. See The JMS SAF Client
Initialization API.

7.2.4.2 Optional JNDI Properties for JMS SAF Clients
There are also two optional J]MS SAF client JNDI properties:

¢ Cont ext. PROVI DER_URL — This must be an URL that points to your JMS SAF
client configuration file. If one is not specified, it defaults to a file named
ClientSAF .xml in the current working directory of the JVM.

7-10 Developing Standalone Clients for Oracle WebLogic Server

JMS SAF Client Management Tools

e Cont ext. SECURI TY_CREDENTI ALS - If you are using security, specify a key
password used to encrypt the remote context passwords in the configuration file.

The local JNDI provider only supports the | ookup(Stri ng) and cl ose() APIs. All
other APIs throw an exception stating that the functionality is not supported.

7.3 JMS SAF Client Management Tools

The following management features are available for use with the J]MS SAF client
implementation:

e The JMS SAF Client Initialization API

¢ C(lient-Side Store Administration Utility

7.3.1 The JMS SAF Client Initialization API

The webl ogi c. j ms. ext ensi ons. O i ent SAF extension class allows the JMS client
to control when the JMS SAF client system is in use. JMS clients do not need to use this
extension mechanism, but can do so in order to get finer control of the JMS SAF client
system. For example, the cl ose() method can be used to stop a JMS client from
forwarding messages.

7.3.2 Client-Side Store Administration Utility

The JMS SAF client provides a utility to administer the default file store used by JMS
SAF clients. Similar to the server-side WebLogic Store utility, it enables you to
troubleshoot a JMS SAF client store or extract its data. Run the utility from a Java
command line or from the WebLogic Scripting Tool (WLST). The store utility operates
only on a store that is not currently opened by a running JMS SAF client.

The most common uses-cases for store administration are for compacting a file store to
reduce its size and for dumping the contents of a file store to an XML file for
troubleshooting purposes. For more information, see Administering a Persistent Store
in Administering the WebLogic Persistent Store.

7.4 JMS Programming Considerations with JMS SAF Clients

The following JMS programming considerations apply when you use the J]MS SAF
client:

¢ How the JMSReplyTo Field Is Handled In JMS SAF Client Messages
¢ No Mixing of JMS SAF Client Contexts and Server Contexts

* Using Transacted Sessions With J]MS SAF Clients

7.4.1 How the JMSReplyTo Field Is Handled In JMS SAF Client Messages

Generally, JMS applications can use the JMSRepl yTo header field to advertise its
temporary destination name to other applications. However, as with server-side JMS
SAF imported destinations, the use of temporary destinations with a JMSRepl yTo
field is not supported for JMS SAF clients.

For more information on using JMS temporary destinations, see Using Temporary
Destinations in Developing JMS Applications for Oracle WebLogic Server.

Reliably Sending Messages Using the JMS SAF Client 7-11

JMS SAF Client Interoperability Guidelines

7.4.2 No Mixing of JMS SAF Client Contexts and Server Contexts

When items returned from the JMS SAF client naming context are used in conjunction
with items returned from a server initial context, the JMS API fails with a reasonable
exception message. Likewise, when items returned from a server initial context is used
in conjunction with items returned from the JMS SAF client naming context, the JMS
API fails with a reasonable exception message.

7.4.3 Using Transacted Sessions With JMS SAF Clients

Transacted sessions are supported with JMS SAF clients, but Client SAF operations do
not participate in any global (XA) transactions. If there is an XA transaction, the
message send operation is done outside the XA transaction and no exception is
thrown.

7.5 JMS SAF Client Interoperability Guidelines

The interoperability guidelines apply when using the JMS SAF client to forward
messages to server-side WebLogic JMS destinations:

e Java Run Time

* WebLogic Server Versions

e JMSC API

7.5.1 Java Run Time

Each client machine must have Java SE 1.4 run time or higher installed.

7.5.2 WebLogic Server Versions
The WebLogic J]MS SAF client system only works with WebLogic Server 9.2 and later.

On the client-side, the WebLogic JMS SAF client code must be running with WebLogic
Server JAR files that are release 9.2 or later. For more information on installing
WebLogic Server JAR files, see Installing the JMS SAF Client JAR Files on Client
Machines.

7.5.3 JMS C API

Client-side SAF is usable from C environments using the JMS C API. This
implementation of the JMS C API uses JNI in order to access a Java Virtual Machine
(JVM). However, the JMS C API cannot use the

webl ogi c. j ms. ext ensi ons. Cl i ent SAF interface because it is a non-standard
JMS APL

To use SAF with the JMS C AP, set the SAF context on the j ndi Fact or y. By default,
if you pass NULL as the j ndi Fact ory you would get the normal WebLogic Server
context. For example:

int JnmsContext Create(JmsString *uri, JnsString *jndi Factory, JnsString *usernane,
JneString *password, JnsContext **context, JMS64l flags)

For more information, see WebLogic C API in Developing JMS Applications for Oracle
WebLogic Server.

7-12 Developing Standalone Clients for Oracle WebLogic Server

Tuning JMS SAF Clients

7.6 Tuning JMS SAF Clients

JMS SAF clients can take advantage of the tuning parameters available with the
server-side SAF service. For more information, see Tuning WebLogic JMS Store-and-
Forward in the Tuning Performance of Oracle WebLogic Server.

7.7 Limitations of Using the JMS SAF Client

In addition to the field-level limitations discussed in Valid SAF Elements for JMS SAF
Client Configurations, the following limitations apply to the JMS SAF client:

* The JMS Message Unit-of-Order and Unit-of-Work JMS Message Group features
are not supported.

® A destination consumer of an imported SAF destination is not supported. An
exception is thrown if you attempt to create such a consumer in JMS SAF client
environment.

® A destination browser of an imported SAF destination is not supported. An
exception is thrown if you attempt to create such a browser in JMS SAF client
environment.

¢ Transacted sessions are supported, but not user (XA) transactions. Client SAF
operations do not participate in any global transactions. See Using Transacted
Sessions With JMS SAF Clients.

¢ JMS SAF clients are not supported in Java Applets.

* You can only specify one per si st ent - st or e and saf - agent el ement ina
JMS SAF client configuration file.

¢ The WebLogic Server CMP 2.x extension that allows users to return a
java. sgl . Resul t Set to a client is not supported.

7.8 Behavior Change in JMS SAF Client Message Storage

In the Weblogic JMS SAF client, messages are kept in local storage before being
forwarded to the remote destinations. Each remote destination corresponds to a local
storage unit, which is called a kernel queue. In releases prior to Oracle WebLogic
Server 10.3.3.0, a JMS SAF client instance used a different kernel queue each time it is
closed and reopened. This behavior allowed multiple kernel queues to correspond to a
destination. Note:

e [f the destination was a single remote destination, under some circumstances a JMS
SAF client may not have forwarded messages or may have forwarded them out of
order.

e If the destination was a distributed destination, under some circumstances some
messages could be permanently lost or duplicate messages could be sent.

In this release, the same kernel queue is used for a remote destination regardless of
how many times the JMS SAF client is opened and closed. For application
environments in which a JMS Client SAF instance is opened only once, there is no
change in behavior.

Reliably Sending Messages Using the JMS SAF Client 7-13

Behavior Change in JMS SAF Client Message Storage

7.8.1 The Upgrade Process, Tools, and System Properties

The following sections provide information on process, tools, and system properties
used to upgrade JMS SAF Clients to use one kernel queue for each destination,
regardless of how many times the client opens and closes the kernel queue.

e If your application environment only opens a JMS SAF client once, no action is
required.

¢ New JMS SAF clients require no changes.

¢ If your application environment opens and close a JMS SAF client more than once,
existing messages can be located in multiple kernel queues in the client. Oracle
provides an user-tunable process to migrate messages from multiple kernel queues
to a single kernel queue when a JMS SAF client starts for the first time after being
upgraded. Although the migration ensures messages are not lost, there is a small
possibility that message duplication can occur. Any message that is migrated
retains it's normal SAF QoS. You can opt out of migrating existing messages by
either removing the local store or specifying
webl ogi c. j ms. safclient. M grat eExi sti ngMessages=f al se. See J]MS
SAF Client Migration Properties. If the message migration fails for any reason, the
JMS SAF client does not start.

7.8.1.1 JMS SAF Client Discovery Tool

The JMS SAF client discovery tool is a Java program packaged in the WebLogic Server
JMS client library that can be used to survey existing local SAF messages before
upgrading. This tool:

1. Reviews the client configuration, including checking each remote destination and
the corresponding kernel queues.

2. Prints the number of messages in each kernel queue.

3. Prints select header information from the first message in each kernel queue; for
example, message ID, correlation ID, SAF sequence name, SAF sequence number
and Unit-of-Order.

You can use the results of the survey to tune upgrade system properties. See J]MS SAF
Client Migration Properties for more information.

Usage: j ava webl ogi c. j ms. ext ensi ons. Cl i ent SAFDi scover options

In the preceding syntax, opt i ons represents one or more of the values described in

the following table:
Option Description
-hel p Print usage information.
- cl i ent SAFRoot Di r Optional. Defaults to current directory.
C! i ent -saf-root - Specifies the root directory of the target SAF client to
directory

discover. Any relative paths in the SAF client configuration
file are relative to this directory.

7-14 Developing Standalone Clients for Oracle WebLogic Server

Behavior Change in JMS SAF Client Message Storage

Option Description

-configurationFile Optional. Defaults to Cl i ent SAF. xm .

config-file Specifies the location of the configuration file used by the

targeted JMS SAF client. This option is required if the

cl i ent SAFRoot Di r option is specified. If the

cl i ent SAFRoot Di r option or this option is specified, the
C i ent SAF. xn file under the current working directory
is used. If the specified configuration file does not exist, an
exception is thrown.

-cutof fFormat pattern Optional. Defaults to yyyy- MM dd' T' HH: nm ss. SSSZ.

Specifies the date and time pattern for the optional cutoff
time used. See http://docs.oracle.com/javase/8/docs/api/
java/text/DateFormat.html for more information.

-cutof f Tinme cutoff-tine Optional. Defaults to null set.

Prints data on messages that are discarded during upgrade
ifwebl ogi c.jns.safclient. M grationCutof f Ti ne
is set. No messages are discarded. The cutoff time format
depends on the value of the - cut of f For mat property. An
exception is thrown if the specified cutoff time does not
match the cut of f For mat pattern. If a cutoff time is not
specified, no messages are discarded and no messages are
printed.

-di scoveryFile Optional. Defaults to SAF_DI SCOVERY.

discovery-file Specifies the file that contains the output generated by the

JMS SAF client discovery tool. The output is placed relative
to the root directory unless an absolute path is specified. If
the specified file already exists, it is deleted and a new file is
created.

7.8.1.1.1 Example
If you created a JMS SAF CLient using;:

C i ent SAFFactory. get C i ent SAF(new File("c:\
\foo"), new FilelnputStrean("c:\\dientSAF-jnms. xm"));

You can survey the existing messages using the Cl i ent SAFDi scover tool before
upgrading the JMS SAF client. For example:

java weblogic.jns.client.dientSAFD scover -clientSAFRootDir c:
\foo -configurationFile c:\Cient SAF-jnms. xm

The discovery information will be written to the default location at c: \ f 0o
\ SAF_DI SCOVERY.

7.8.1.2 JMS SAF Client Migration Properties

Because message migration can be a complex issue even when automated, Oracle
provides the following system properties to manage the process:

e weblogic.jns.safclient. M grat eExi sti ngMessages—Ifsettofal se,
this property prevents the migration of messages from multiple queues to a single
queue. The defaultist r ue.

Reliably Sending Messages Using the JMS SAF Client 7-15

http://docs.oracle.com/javase/8/docs/api/java/text/DateFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/DateFormat.html

Behavior Change in JMS SAF Client Message Storage

e webl ogic.jns.safclient.M grationCutof f Ti mre—Use this property to
specify a time after which messages are migrated to a single kernel queue. Any
remaining messages are discarded. If this property is not specified, all existing
messages are upgraded. Use this property in conjunction with the
webl ogi c. j ms. saf cli ent. M grati onCut of f Ti meFor mat property to
specify the time format.

For example, if the cutoff time format is the default, a valid cutoff time is
2009- 12- 16T10: 34: 17. 887- 0800. If the specified time does not match the
format pattern, then an exception is thrown and the JMS SAF client stops all
message processing.

e webl ogic.jms.safclient.M grationCut of f Ti meFor mat —Specifies the
format of the webl ogi c. j ns. safcl i ent. M grati onCut of f Ti ne.

The defaultis yyyy- MM dd* T HH: nm ss. SSSZ. See the description of the
java.text.SimpleDateFormat class for more information.

7-16 Developing Standalone Clients for Oracle WebLogic Server

http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

8

Developing a Java SE Client

This chapter provides information on how to develop and use a Java SE client. A Java
SE client is oriented towards the Java EE programming model; it combines the
capabilities of RMI with the IIOP protocol without requiring WebLogic Server classes.

This chapter includes the following sections:

Java SE Client Basics

How to Develop a Java SE Client

8.1 Java SE Client Basics

A Java SE client runs an RMI-IIOP-enabled ORB hosted by a Java EE or Java SE
container, in most cases a 1.3 or higher JDK. A Java SE client has the following
characteristics:

It provides a light-weight connectivity client that uses the IIOP protocol, an
industry standard.

It is a Java SE-compliant model, rather than a Java EE-compliant model—it does
not support many of the features provided for enterprise-strength applications. It
does not support security, transactions, or JMS.

Distributed interoperability for E]JBs, based on the EJB 3.0 specification, is
supported by WebLogic Server through the EJB 2.1 remote client view from clients.

8.2 How to Develop a Java SE Client

To develop an application using RMI-IIOP with an RMI client:

1.

Define your remote object's public methods in an interface that extends
java.rm . Renote.

This remote interface may not require much code. All you need are the method
signatures for methods you want to implement in remote classes. For example:

public interface Pinger extends java.rm.Remote {

public void ping() throws java.rni.RenoteException;

public void pingRemote() throws java.rm . RemoteException;

public void pingCallback(Pinger toPing) throws java.rni.RenoteException;

}

Implement the interface in a class named interfaceNameImpl and bind it into the
JNDI tree to be made available to clients.

This class should implement the remote interface that you wrote, which means
that you implement the method signatures that are contained in the interface. All
the code generation that will take place is dependent on this class file. Typically,

Developing a Java SE Client 8-1

How to Develop a Java SE Client

you configure your implementation class as a WebLogic startup class and include
a main method that binds the object into the JNDI tree. For example:

public static void main(String args[]) throws Exception {

if (args.length > 0)

renot eDomai n = args[0];

Pi nger obj = new Pinglnpl();

Context initial NamingContext = new Initial Context();

i ni tial Nam ngCont ext . rebi nd(NAME, obj) ;

Systemout. printIn("Pinglmpl created and bound to "+ NAMVE);
}

3. Compile the remote interface and implementation class with a Java compiler.
Developing these classes in an RMI-IIOP application is no different than doing so
in normal RMI. For more information on developing RMI objects, see Developing
RMI Applications for Oracle WebLogic Server.

4. Run the WebLogic RMI or EJB compiler against the implementation class to
generate the necessary IIOP stub. Note that it is no longer necessary to use the -
i i op option to generate the IIOP stubs:

$ java webl ogic.rnic nameCf | npl ement ati onC ass

A stub is the client-side proxy for a remote object that forwards each WebLogic
RMI call to its matching server-side skeleton, which in turn forwards the call to
the actual remote object implementation. Note that the IIOP stubs created by the
WebLogic RMI compiler are intended to be used with the JDK 1.3.1_01 or higher
ORB. If you are using another ORB, consult the ORB vendor's documentation to
determine whether these stubs are appropriate.

5. Make sure that the files you have now created -- the remote interface, the class
that implements it, and the stub -- are in the CLASSPATH of WebLogic Server.

6. Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing a
lookup (see next step) on the object. The object is then cast to the appropriate type.

In obtaining an initial context, you must use

com sun. j ndi . cosnami ng. CNCt xFact or y when defining your JNDI context
factory. Use com sun. j ndi . cosnami ng. CNCt xFact or y when setting the
value for the "Cont ext . | NI TI AL_CONTEXT_FACTCRY" property that you
supply as a parameter to new | ni ti al Cont ext ().

Note:

The Sun JNDI client supports the capability to read remote object references
from the namespace, but not generic Java serialized objects. This means that
you can read items such as EJBHome out of the namespace but not
DataSource objects. There is also no support for client-initiated transactions
(the JTA API) in this configuration, and no support for security. In the
stateless session bean RMI Client example, the client obtains an initial context
as shown in the example “Obtaining an InitialContext” at the end of this
section.

7. Modify the client code to perform the lookup in conjunction with the
j avax. rm . Port abl eRenpot ehj ect . narr owm() method.

8-2 Developing Standalone Clients for Oracle WebLogic Server

How to Develop a Java SE Client

RMI-IIOP clients differ from regular RMI clients in that IIOP is defined as the
protocol when the client is obtaining an initial context. Because of this, lookups
and casts must be performed in conjunction with the

javax. rm . Port abl eRenot eObj ect . narr owm() method.

For example, an RMI client creates an initial context, performs a lookup on the
EJBean home, obtains a reference to an EJBean, and calls methods on the E]Bean.

You must use the j avax. rm . Port abl eRenpt ebj ect . narr owm() method in
any situation where you would normally cast an object to a specific class type. A
CORBA client may return an object that does not implement your remote
interface; the narrow method is provided by your orb to convert the object so that
it implements your remote interface. For example, the client code responsible for
looking up the EJBean home and casting the result to the Home object must be
modified to use the j avax. rni . Port abl eRenot eCbj ect. narrow() as
shown in the example “Performing a lookup” at the end of this section.

Connect the client to the server over IIOP by running the client with a command
such as:

$ java -Djava. security. manager -Djava.security.policy=java.policy
exanples.iiop.ejb.stateless.rmiclient.Cient iiop://localhost:7001

Set the security manager on the client:

java -Djava.security. manager -Djava.security.policy==java.policy nyclient

To narrow an RMI interface on a client, the server needs to serve the appropriate
stub for that interface. The loading of this class is predicated on the use of the JDK
network classloader and this is not enabled by default. To enable it you set a
security manager in the client with an appropriate java policy file. For more
information on Java SE security, see ht t p: / / www. or acl e. conl
technetwork/j avalj avase/ tech/i ndex-j sp-136007. ht m at the Oracle
Technology Network. The following is an example of aj ava. pol i cy file:

grant {
/1 Al'low everything for now
perm ssion java.security. Al Perni ssion;

}

Example 8-1 Obtaining an InitialContext

* Using a Properties object as follows will work on JDK13
* and higher clients.

*|

private Context getlnitial Context() throws Nam ngException {
try {

Il Get an Initial Context

Properties h = new Properties();

h. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,

"com sun. j ndi . cosnani ng. CNCt xFactory");

h. put (Cont ext . PROVIDER _URL, url);

return new Initial Context(h);

catch (Nam ngException ne) {

log("We were unable to get a connection to the WebLogi ¢ server at "+url);
| og(" Pl ease make sure that the server is running.");

throw ne;

Developing a Java SE Client 8-3

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

How to Develop a Java SE Client

/**
* This is another option, using the Java2 version to get an * Initial Context.
* This version relies on the existence of a jndi.properties file in
* the application's classpath. See
* Programm ng JNDI for Oracle WeblLogic Server for nore information
private static Context getlnitial Context()
throws Nani ngException
{
return new Initial Context();

}
Example 8-2 Performing a lookup

/**

* RM/I1OP clients should use this narrow function
*/

private Object narrow(Ohject ref, Cass c) {
return Portabl eRenot eChj ect. narrow(ref, c);

}
/**
* Lookup the EJBs hone in the JNDI tree
*/
private Trader Hone | ookupHone()
throws Nanmi ngException
{
Il Lookup the beans home using JNDI
Context ctx = getlnitial Context();
try {
oj ect hone = ctx. | ookup(JNDI _NAME) ;
return (TraderHone) narrow(home, TraderHone. cl ass);
} catch (Nami ngException ne) {
log("The client was unable to | ookup the EJBHone. Please
meke sure ");
log("that you have deployed the ejb with the JNDI nane
"+JNDI _NAME+" on the WebLogic server at "+url);
throw ne;
1
}
/**
* Using a Properties object will work on JDK130
* and higher clients
*/
private Context getlnitial Context() throws Nanmi ngException {
try {
/1 Get an Initial Context
Properties h = new Properties();
h. put (Cont ext . | NI TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . cosnam ng. CNCt xFactory");
h. put (Cont ext . PROVIDER_URL, url);
return new I nitial Context(h);
} catch (NamingException ne) {
I og("Ve were unable to get a connection to the WebLogic
server at "+url);
| og("Pl ease make sure that the server is running.");
throw ne;

8-4 Developing Standalone Clients for Oracle WebLogic Server

How to Develop a Java SE Client

The url defines the protocol, hostname, and listen port for the WebLogic Server and is
passed in as a command-line argument.

public static void main(String[] args) throws Exception {
[og("\nBegi nning statel essSession.Cient...\n");
String url = "iiop://local host:7001";

Developing a Java SE Client 8-5

How to Develop a Java SE Client

8-6 Developing Standalone Clients for Oracle WebLogic Server

9

Developing a WLS-IIOP Client (Deprecated)

This chapter describes how to develop and use a WebLogic Server-1IOP client. A WLS-
IIOP client is a non-ORB based JS2E client that provides WebLogic Server-specific

features.

Note:

The WebLogic Server-1IOP client is deprecated as of WebLogic Server 12.1.3
because of its dependency on thew ful | cl i ent.j ar and may be removed
in a future release. For more information on other WebLogic client types, see

Table 2-1.

This chapter includes the following sections:

e WLS-IIOP Client Features

e How to Develop a WLS-IIOP Client

9.1 WLS-IIOP Client Features

The WLS-IIOP client supports WebLogic Server specific features, including

* C(Clustering
e SSL

® Scalability

Note:

The WebLogic Server-IIOP client does not support the Java Authentication
and Authorization Service (JAAS). Use JNDI Authentication, see Developing
Clients that Use JNDI Authentication.

For more information, see Clients and Features.

9.2 How to Develop a WLS-IIOP Client

The procedure for developing a WLS-IIOP Client is the same as the procedure
described in Developing a Java SE Client with the following additions:

e Include the fullw ful I client.jar (located in W._HOVE/ server/ | i b)in the
client's CLASSPATH.

Developing a WLS-IIOP Client (Deprecated) 9-1

How to Develop a WLS-IIOP Client

e Usewebl ogi c. j ndi.W.I nitial Cont ext Fact ory when defining your JNDI
context factory. Use this class when setting the value for the
"Cont ext . | NI TI AL_CONTEXT_FACTORY" property that you supply as a
parameter tonew | ni ti al Cont ext ().

¢ You do not need to use the - D webl ogi c. system i i op. enabl ed i ent =t rue
command line option to enable client access when starting the client. By default, if
youusew ful l client.jar,enabl eClient issetto true.

9-2 Developing Standalone Clients for Oracle WebLogic Server

10

Developing a CORBA/IDL Client

This chapter describes how to develop clients for heterogeneous distributed
applications. RMI over IIOP with CORBA/IDL clients involves an Object Request
Broker (ORB) and a compiler that creates an interoperating language called IDL. C, C+
+, and COBOL are examples of languages that ORBs may compile into IDL. A CORBA
programmer can use the interfaces of the CORBA Interface Definition Language (IDL)
to enable CORBA objects to be defined, implemented, and accessed from the Java
programming language.

This chapter includes the following sections:
¢ Guidelines for Developing a CORBA /IDL Client

¢ Procedure for Developing a CORBA /IDL Client

10.1 Guidelines for Developing a CORBA/IDL Client

Using RMI-IIOP with a CORBA /IDL client enables interoperability between non-Java
clients and Java objects. If you have existing CORBA applications, you should
program according to the RMI-IIOP with CORBA/IDL client model. Basically, you
will be generating IDL interfaces from Java. Your client code will communicate with
WebLogic Server through these IDL interfaces. This is basic CORBA programming.

The following sections provide some guidelines for developing RMI-IIOP applications
with CORBA/IDL clients.

For further reference see the following Object Management Group (OMG)
specifications:

¢ Java Language to IDL Mapping Specification at ht t p: / / www. ong. or g/ cgi -
bi n/ doc?f ornal / 01- 06- 07

e CORBA/IIOP 2.4.2 Specification at ht t p: / / www. ong. or g/ cgi - bi n/ doc?
formal /01-02- 33

10.1.1 Working with CORBA/IDL Clients

In CORBA, interfaces to remote objects are described in a platform-neutral interface
definition language (IDL). To map the IDL to a specific language, you compile the IDL
with an IDL compiler. The IDL compiler generates a number of classes such as stubs
and skeletons that the client and server use to obtain references to remote objects,
forward requests, and marshall incoming calls. Even with IDL clients it is strongly
recommended that you begin programming with the Java remote interface and
implementation class, then generate the IDL to allow interoperability with WebLogic
and CORBA clients, as illustrated in the following sections. Writing code in IDL that
can be then reverse-mapped to create Java code is a difficult and bug-filled enterprise,
and Oracle does not recommend it.

Developing a CORBA/IDL Client 10-1

http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://www.omg.org/cgi-bin/doc?formal/01-02-33

IDL Client (Corba object) relationships

10.2 IDL Client (Corba object) relationships

IDL

Client | Server
¢ I ¢
Stuh < — - IDL compiler- — - Tie
- |
ORB or ORB

10.2.1 Java to IDL Mapping

In WebLogic RMI, interfaces to remote objects are described in a Java remote interface
that extends j ava. r mi . Renot e. The Java-to-IDL mapping specification defines how
an IDL is derived from a Java remote interface. In the WebLogic RMI over IIOP
implementation, you run the implementation class through the WebLogic RMI
compiler or WebLogic EJB compiler with the - i dl option. This process creates an IDL
equivalent of the remote interface. You then compile the IDL with an IDL compiler to
generate the classes required by the CORBA client.

The client obtains a reference to the remote object and forwards method calls through
the stub. WebLogic Server implements a CosNami ng service that parses incoming
IIOP requests and dispatches them directly into the RMI run-time environment.

10.3 WebLogic RMI over IIOP object relationships

Client
¢ WebLogic
Server
IDL RNMI
Stub - % compiler <#— pI % - compiler * — — - RMI
: object
RMI
ORB - g rUDtime
naor

10.3.1 Objects-by-Value

The Objects-by-Value specification allows complex data types to be passed between
the two programming languages involved. In order for an IDL client to support
Objects-by-Value, you develop the client in conjunction with an Object Request Broker

10-2 Developing Standalone Clients for Oracle WebLogic Server

Procedure for Developing a CORBA/IDL Client

(ORB) that supports Objects-by-Value. To date, relatively few ORBs support Objects-
by-Value correctly.

When developing an RMI over IIOP application that uses IDL, consider whether your
IDL clients will support Objects-by-Value, and design your RMI interface accordingly.
If your client ORB does not support Objects-by-Value, you must limit your RMI
interface to pass only other interfaces or CORBA primitive data types. The following
table lists ORBs that Oracle has tested with respect to Objects-by-Value support:

Table 10-1 ORBs Tested with Respect to Objects-by-Value Support

Vendor Versions Objects-by-Value
Oracle Tuxedo 8.x C++ Client ORB Supported

Borland VisiBroker 3.3, 3.4 Not supported
Borland VisiBroker 4.x, 5.x Supported

Iona Orbix 2000 Supported (Oracle has

encountered problems with
this implementation)

For more information on Objects-by-Value, see Limitations of Passing Objects by
Value in Developing RMI Applications for Oracle WebLogic Server.

10.4 Procedure for Developing a CORBA/IDL Client

To develop an RMI over IIOP application with CORBA /IDL:
1. Follow steps 1 through 3 in Developing a Java SE Client.

2. Generate an IDL file by running the WebLogic RMI compiler or WebLogic EJB
compiler with the - i dl option.

The required stub classes will be generated when you compile the IDL file. For
general information on the these compilers, refer to Understanding WebLogic
RMI and Developing RMI Applications for Oracle WebLogic Server. Also reference the
Java IDL specification at Java Language Mapping to OMG IDL Specification at
http://ww. ong. or g/t echnol ogy/ docunent s/ i ndex. ht m

The following compiler options are specific to RMI over IIOP:

Table 10-2 RMI-IIOP Compiler Options

Option Function

-idl Creates an IDL for the remote interface of the
implementation class being compiled

-idl Directory Target directory where the IDL will be generated

-idl Factories Generate factory methods for value types. This is useful if
your client ORB does not support the factory value type.

-i dl NoVal ueTypes Suppresses generation of IDL for value types.

-idl Overwite Causes the compiler to overwrite an existing idl file of the
same name

Developing a CORBA/IDL Client 10-3

http://www.omg.org/technology/documents/index.htm

Procedure for Developing a CORBA/IDL Client

Table 10-2 (Cont.) RMI-IIOP Compiler Options
C__|

Option Function

-idlStrict Creates an IDL that adheres strictly to the Objects-By-
Value specification. (not available with appc)

-idl Ver bose Display verbose information for IDL generation

-idl Vi si broker Generate IDL somewhat compatible with Visibroker 4.1 C
++

The options are applied as shown in this example of running the RMI compiler:

> java weblogic.rmic -idl -idlDirectory /IDL rni_iiop.Hellolnpl

The compiler generates the IDL file within sub-directories of the idIDirectoy
according to the package of the implementation class. For example, the preceding
command generates a Hel | 0. i dl fileinthe /1 DL/ rm _i i op directory. If the

i dl Di rect ory option is not used, the IDL file is generated relative to the
location of the generated stub and skeleton classes.

3. Compile the IDL file to create the stub classes required by your IDL client to
communicate with the remote class. Your ORB vendor will provide an IDL
compiler.

4. TheIDL file generated by the WebLogic compilers contains the directives:
#i ncl ude orb.idl.This IDL file should be provided by your ORB vendor. An
orb.idl fileis shipped in the /Il i b directory of the WebLogic distribution. This
file is only intended for use with the ORB included in the JDK.

5. Develop the IDL client.

IDL clients are pure CORBA clients and do not require any WebLogic classes.
Depending on your ORB vendor, additional classes may be generated to help
resolve, narrow, and obtain a reference to the remote class. In the following
example of a client developed against a VisiBroker 4.1 ORB, the client initializes a
naming context, obtains a reference to the remote object, and calls a method on the
remote object.

Code segment from C++ client of the RMI-IIOP example

/] string to object
CORBA: : Cbj ect _ptr o;
cout << "Cetting name service reference" << endl;
if (argc >= 2 && strnenp (argv[1l], "IOR', 3) == 0)

0 = orb->string_to_object(argv[1]);
el se

0 = orb->resolve_initial _references("NaneService");
/1 obtain a namng context
cout << "Narrowing to a naming context" << endl;
CosNani ng: : Nam ngCont ext _var context = CosNani ng:: Nami ngContext:: _narrowo);
CosNani ng: : Name nane;
nanme. | engt h(1);
name[0] .id = CORBA::string_dup("Pinger_iiop");
name[0] . ki nd = CORBA: : string_dup("");
Il resolve and narrow to RM obj ect
cout << "Resolving the namng context" << endl;
CORBA: : Obj ect _var object = context->resol ve(nane);
cout << "Narrowing to the Ping Server" << endl;
crexanples::iiop::rm::server::ws::Pinger_var ping =

10-4 Developing Standalone Clients for Oracle WebLogic Server

Procedure for Developing a CORBA/IDL Client

c.exanples::iiop::rm::server::ws::Pinger:: _narrow object);
[l ping it
cout << "Ping (local) ..." << endl;
?i ng->pi ng() ;

Notice that before obtaining a naming context, initial references were resolved
using the standard Object URL (see the CORBA /IIOP 2.4.2 Specification, section
13.6.7). Lookups are resolved on the server by a wrapper around JNDI that
implements the COS Naming Service API.

The Naming Service allows WebLogic Server applications to advertise object
references using logical names. The CORBA Name Service provides:

¢ Animplementation of the Object Management Group (OMG) Interoperable
Name Service (INS) specification.

* Application programming interfaces (APIs) for mapping object references into
an hierarchical naming structure (JNDI in this case).

¢ Commands for displaying bindings and for binding and unbinding naming
context objects and application objects into the namespace.

IDL client applications can locate an object by asking the CORBA Name Service to
look up the name in the JNDI tree of WebLogic Server. In the example above, you
run the client by entering:

Client.exe -ORBInitRef NameService=iioploc://local host: 7001/ NaneServi ce

Developing a CORBA/IDL Client 10-5

Procedure for Developing a CORBA/IDL Client

10-6 Developing Standalone Clients for Oracle WebLogic Server

11

Developing Clients for CORBA Objects

This chapter describes how to use the CORBA API to develop clients using CORBA
objects.

This chapter includes the following sections:

Enhancements to and Limitations of CORBA Object Types
Making Outbound CORBA Calls: Main Steps
Using the WebLogic ORB Hosted in JNDI

Supporting Inbound CORBA Calls

11.1 Enhancements to and Limitations of CORBA Object Types

The RMI-IIOP run time is extended to support all CORBA object types (as opposed to
RMI valuetypes) and CORBA stubs. Enhancements include:

Support for out and in-out parameters

Support for a call to a CORBA service from WebLogic Server using transactions
and security

Support for a WebLogic ORB hosted in JNDI rather than an instance of the JDK
ORB used in previous releases

CORBA Object Type support has the following limitations:

It should not be used to make calls from one WebLogic Server instance to another
WebLogic Server instance.

Clustering is not supported. If a clustered object reference is detected, WebLogic
Server uses internal RMI-IIOP support to make the call. Out and in-out parameters
will not be supported.

CORBA services created by ORB. connect () result in a second object hosted
inside the server. It is important that you use ORB. di sconnect () to remove the
object when it is no longer needed.

11.2 Making Outbound CORBA Calls: Main Steps

Follow these steps to implement a typical development model for customers wanting
to use the CORBA API for outbound calls.

1.

2.

Generate CORBA stubs from IDL using idlj, the JDKs IDL compiler.

Compile the stubs using javac.

Developing Clients for CORBA Objects 11-1

Using the WebLogic ORB Hosted in JNDI

3. Build E]B(s) including the generated stubs in the jar.

4. Use the WebLogic ORB hosted in JNDI to reference the external service.

11.3 Using the WebLogic ORB Hosted in JNDI

This section provides examples of several mechanisms to access the WebLogic ORB.
Each mechanism achieves the same effect and their constituent components can be
mixed to some degree. The object returned by nar r ow() will be a CORBA stub
representing the external ORB service and can be invoked as a normal CORBA
reference. In the following code examples it is assumed that the CORBA interface is
called MySvc and the service is hosted at "where" in a foreign ORB's CosNaming
service located at ext host : ext port:

11.3.1 ORB from JNDI

The following code listing provides information on how to access the WebLogic ORB
from JNDI.

Example 11-1 Accessing the WebLogic ORB from JNDI

ORB orb = (ORB)new I nitial Context().lookup("java: conp/ ORB");

Nam ngContext nc =

Nam ngCont ext Hel per. narrow(orb. string_to_object("corbal oc:iiop: exthost:extport/
NaneService"));

M/Svc svc = MySvcHel per. narrow(nc.resol ve(new NameConponent[] { new
NameCormponent ("where", "")}));

11.3.2 Direct ORB creation

The following code listing provides information on how to create a WebLogic ORB.

Example 11-2 Direct ORB Creation

ORB orb = ORB.init();
MSvc svec =
MySvcHel per. narrow(orb. string_to_object("corbanane:iiop: exthost: extport#where"));

11.3.3 Using JNDI

The following code listing provides information on how to access the WebLogic ORB
using JNDI.

Example 11-3 Accessing the WebLogic ORB Using JNDI

M/Svc svc = MySvcHel per. narrow(new

11-2 Developing Standalone Clients for Oracle WebLogic Server

Supporting Inbound CORBA Calls

Initial Context().!|ookup("corbanane:iiop:exthost:extport#where"));

The WebLogic ORB supports most client ORB functions, including DII (Dynamic
Invocation Interface). To use this support, you must not instantiate a foreign ORB
inside the server. This will not yield any of the integration benefits of using the
WebLogic ORB.

11.4 Supporting Inbound CORBA Calls

WebLogic Server also provides basic support for inbound CORBA calls as an
alternative to hosting an ORB inside the server. To do this, you use ORB. connect ()
to publish a CORBA server inside WebLogic Server by writing an RMI-object that
implements a CORBA interface. Given the MySVC examples above:

Example 11-4 Supporting Inbound CORBA Calls

class MySvclnpl inplenments M/SvcOperations, Renote
public void do_something renote() {}

public static main() {

MySvc svc = new MySvcTie(this);

Initial Context ic = new Initial Context();
((ORB)ic.lookup("java: conp/ ORB")). connect (svc);
i c. bi nd("where", svc);

}

}

When registered as a startup class, the CORBA service will be available inside the
WebLogic Server CosNaming service at the location "where".

Developing Clients for CORBA Objects 11-3

Supporting Inbound CORBA Calls

11-4 Developing Standalone Clients for Oracle WebLogic Server

12

Developing a WebLogic C++ Client for a
Tuxedo ORB

This chapter describes how a WebLogic C++ client uses the Tuxedo 8.1 or higher C++
Client ORB to generate IIOP requests for E]Bs running on WebLogic Server. This client
supports object-by-value and the CORBA Interoperable Naming Service (INS).

This chapter includes the following sections:
* WebLogic C++ Client Advantages and Limitations
¢ How the WebLogic C++ Client Works

¢ Developing WebLogic C++ Clients

12.1 WebLogic C++ Client Advantages and Limitations
A WebLogic C++ client offers these advantages:
¢ Simplifies your development process by avoiding third-party products

* Provides a client-side solution that allows you to develop or modify existing C++
clients

® The Tuxedo C++ Client ORB is packaged with Tuxedo 8.1 and higher.
The WebLogic C++ client has the following limitations:
* Provides security through the WebLogic Server Security service.

¢ Provides only server-side transaction demarcation.

12.2 How the WebLogic C++ Client Works

The WebLogic C++ client processes requests as follows:
¢ The WebLogic C++ client code requests a WebLogic Server service.
— The Tuxedo ORB generates an IIOP request.

— The ORB object is initially instantiated and supports Object-by-Value data
types.

The client uses the CORBA Interoperable Name Service (INS) to look up the E]B object
bound to the JNDI naming service. For more information on how to use the
Interoperable Naming Service to get object references to initial objects such as
NameService, see Interoperable Naming Service Bootstrapping Mechanism in CORBA
Programming Reference for Oracle Tuxedo 8.0 at ht t p: // docs. or acl e. conf cd/
E13203_ 01/t uxedo/ t ux80/i nterm cor baprog. ht n¥cl i ent.

Developing a WebLogic C++ Client for a Tuxedo ORB 12-1

http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client

Developing WebLogic C++ Clients

Example 12-1 WebLogic C++ Client to WebLogic Server Interoperability

ORB WebLogic
EE . Server
i exat
oar

Code Java EE
NS CO5 | JNDI Container
AT - A1

Object Look up
C + Runtime JVM

12.3 Developing WebLogic C++ Clients

Use the following steps to develop a C++ client:

1.

Use the ejbc compiler with the - i dl option to compile the EJB with which your C+
+ client will interoperate. This action generates an IDL script for the EJB.

Use the C++ IDL compiler to compile the IDL script and generate the CORBA client
stubs, server skeletons, and header files. For information on the use of the C++ IDL
Compiler, see OMG IDL Syntax and the C++ IDL Compiler in CORBA Programming
Reference for Oracle Tuxedo 8.0 at ht t p: / / docs. or acl e. com cd/ E13203_01/

t uxedo/ t ux80/i nt er nf cor bapr og. ht m#cl i ent

Discard the server skeletons; the E]JB represents the server side implementation.

Create a C++ client that implements an E]JB as a CORBA object. For general
information on how to create CORBA client applications, see Creating CORBA
Client Applications for Oracle Tuxedo 8.0 at ht t p: / / docs. or acl e. com cd/
E13203_01/t uxedo/ t ux80/i nt er nl cor bapr og. ht m#cl i ent

Use the Tuxedo bui | dobj cl i ent command to build the client.

12-2 Developing Standalone Clients for Oracle WebLogic Server

http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client
http://docs.oracle.com/cd/E13203_01/tuxedo/tux80/interm/corbaprog.htm#client

13

Using Java EE Client Application Modules

This chapter describes how Java EE specifies a standard for including client
application code (a client module) in an EAR file. This allows the client side of an
application to be packaged along with the other modules that make up the application.

The client module is declared in the META-INF/application.xml file of the EAR using
a <j ava> tag. See Enterprise Application Deployment Descriptor Elements in
Developing Applications for Oracle WebLogic Server.

Note:

The <j ava> tag is often confused to be a declaration of Java code that can be
used by the server-side modules. This is not its purpose, it is used to declare
client-side code that runs outside of the server-side container.

A client module is basically a JAR file containing a special deployment descriptor
named META-INF/application-client.xml. This client JAR file also contains a Main-
Class entry in its META-INF/MANIFEST.MF file to specify the entry point for the
program. For more information on the application-client.xml file, see Client
Application Deployment Descriptor Elements.

This chapter includes the following sections:
* Extracting a Client Application

e Executing a Client Application

Note: When you use the Java Web Start to connect to JMS queues and topics
deployed in WebLogic Server, you may get

java.security. AccessControl Excepti on. To avoid security failures,
you must set the system property -

Dwebl ogi c. j 2ee. client.isWebStart totrue in the client side.

13.1 Extracting a Client Application

WebLogic Server includes two utilities that facilitate the use of client modules. They
are:

e webl ogi c. d i ent Depl oyer —Extracts the client module from the EAR and
prepares it for execution.

e webl ogi c. j 2eecl i ent. Mai n—Executes the client code.

You use the webl ogi c. O i ent Depl oyer utility to extract the client-side JAR file
from a Java EE EAR file, creating a deployable JAR file. Execute the

Using Java EE Client Application Modules 13-1

Executing a Client Application

webl ogi c. A i ent Depl oyer class on the Java command line using the following
syntax:

java webl ogi c. ClientDepl oyer ear-file clientl [client2 client3 ...]

The ear - f i | e argument is a Java archive file with an . ear extension or an expanded
directory that contains one or more client application JAR files.

The client arguments specify the clients you want to extract. For each client you name,
the webl ogi c. A i ent Depl oyer utility searches for a JAR file within the EAR file
that has the specified name containing the .jar extension.

For example, consider the following command:

java webl ogi c. Client Depl oyer app.ear nyclient

This command extracts myclient.jar from app.ear. As it extracts, the
webl ogi c. A i ent Depl oyer utility performs two other operations.

¢ It ensures that the JAR file includes a META-INF/application-client.xml file. If it
does not, an exception is thrown.

® [treads from a file named myclient.runtime.xml and creates a weblogic-
application-client.xml file in the extracted JAR file. This is used by the
webl ogi c. j 2eecl i ent. Mai n utility to initialize the client application's
component environment (j ava: conmp/ env). For information on the format of the
runtime.xml file, see Client Application Deployment Descriptor Elements.

Note:

You create the <client>.runtime.xml descriptor for the client program to
define bindings for entries in the module's META-INF/application-client.xml
deployment descriptor.

13.2 Executing a Client Application

Once the client-side JAR file is extracted from the EAR file, use the
webl ogi c. j 2eecl i ent. Mai n utility to bootstrap the client-side application and
point it to a WebLogic Server instance using the following command:

java webl ogic.j2eeclient.Main clientjar URL [application args]

For example:

java webl ogic.j2eeclient.Main myclient.jar t3://1ocal host: 7001

The webl ogi c. j 2eecl i ent . Mai n utility creates a component environment that is
accessible from j ava: conp/ env in the client code.

If a resource mentioned by the application-client.xml descriptor is one of the following
types, the webl ogi c. j 2eecl i ent . Mai n class attempts to bind it from the global
JNDI tree on the server toj ava: conp/ env using the information specified earlier in
the myclient.runtime.xml file.

e ¢jb-ref
e javax.j ms. QueueConnecti onFactory

e javax.] ns. Topi cConnecti onFactory

13-2 Developing Standalone Clients for Oracle WebLogic Server

Executing a Client Application

e javax.nail. Session

e javax. sgl . Dat aSource
The user transaction is bound into j ava: conp/ User Tr ansact i on.

The <r es- aut h> tag in the application.xml deployment descriptor is currently
ignored and should be entered as appl i cat i on. Oracle does not currently support
form-based authentication.

The rest of the client environment is bound from the weblogic-application-client.xml
file created by the webl ogi c. O i ent Depl oyer utility.

The webl ogi c. j 2eecl i ent. Mai n class emits error messages for missing or
incomplete bindings.

Once the environment is initialized, the webl ogi c. j 2eecl i ent. Mai n utility
searches the JAR manifest of the client JAR for a Mai n- O ass entry. The main method
on this class is invoked to start the client program. Any arguments passed to the

webl ogi c. j 2eecl i ent. Mai n utility after the URL argument is passed on to the
client application.

The client JVM must be able to locate the Java classes you create for your application
and any Java classes your application depends upon, including WebLogic Server
classes. You stage a client application by copying all of the required files on the client
into a directory and bundling the directory in a JAR file. The top level of the client
application directory can have a batch file or script to start the application. Create a
cl asses/ subdirectory to hold Java classes and JAR files, and add them to the client
d ass- Pat h in the startup script.

You may also want to package a Java Runtime Environment (JRE) with a Java client
application.

Note:

The use of the Class-Path manifest entries in client module JARs is not
portable, as it has not yet been addressed by the Java EE standard.

Using Java EE Client Application Modules 13-3

Executing a Client Application

13-4 Developing Standalone Clients for Oracle WebLogic Server

14

Developing Security-Aware Clients

This chapter describes how you can develop WebLogic clients that use the Java
Authentication and Authorization Service (JAAS) and Secure Sockets Layer (SSL) to
create security-aware clients.

This chapter includes the following sections:

* Developing Clients That Use JAAS

¢ Developing Clients that Use JNDI Authentication
* Developing Clients That Use SSL

¢ Thin-Client Restrictions for JAAS and SSL

e Security Code Examples

14.1 Developing Clients That Use JAAS

JAAS enforces access controls based on user identity and is the preferred method of
authentication for most WebLogic Server clients. A typical use case is providing
authentication to read or write to a file. For more information about how to implement
JAAS authentication, see Using JAAS Authentication in Java Clients in Developing
Applications with the WebLogic Security Service.

Note:

The WLS-IIOP client does not support JAAS. See Developing Clients that Use
JNDI Authentication.

14.2 Developing Clients that Use JNDI Authentication

Users requiring client certificate authentication (also referred to as two-way SSL
authentication) should use JNDI authentication, as described in Using JNDI
Authentication in Developing Applications with the WebLogic Security Service.

14.3 Developing Clients That Use SSL

WebLogic Server provides Secure Sockets Layer (SSL) support for encrypting data
transmitted between WebLogic Server clients and servers, Java clients, Web browsers,
and other servers.

All SSL clients need to specify trust. Trust is a set of CA certificates that specify which
trusted certificate authorities are trusted by the client. In order to establish an SSL
connection, RMI clients need to trust the certificate authorities that issued the server's

Developing Security-Aware Clients 14-1

Developing Clients That Use SSL

digital certificates. The location of the server's trusted CA certificate is specified when
starting the RMI client.

Note:

WebLogic Server's integration with Java Secure Socket Extension (JSSE) does
not use the defaultj avax. net. ssl . SSLCont ext instance or any of the
following JVM system properties that define keystore settings:

e javax.net.ssl.keyStore

e javax. net.ssl. keySt orePassword

e javax. net.ssl.keyStoreType

e javax.net.ssl.trustStore

e javax.net.ssl.trustStorePassword

e javax.net.ssl.trustStoreType

By default, all trusted certificate authorities available from the JDK (.. . \jre\lib
\'security\cacerts) are trusted by RMI clients. However, if the server's trusted CA
certificate is stored in one of the following trust keystores, you need to specify certain
command line arguments in order to use the keystore:

e Denp Trust—The trusted CA certificates in the demonstration Trust keystore
(DenoTr ust . j ks) are located in the W._HOVE\ ser ver\ | i b directory. In
addition, the trusted CAs in the JDK cacerts keystore are trusted. To use the Demo
Trust, specify the following command-line argument:

- Dwebl ogi c. security. Trust KeySt or e=DenoTr ust

Optionally, use the following command-line argument to specify a password for
the JDK cacerts trust keystore:

- Dwebl ogi c. security. JavaSt andar dTr ust Key St or ePassPhr ase=passwor d

where passwor d is the password for the Java Standard Trust keystore. This
password is defined when the keystore is created.

e Custom Trust —A trust keystore you create. To use Custom Trust, specify the
following command-line arguments.

Specify the fully qualified path to the trust keystore:

- Dwebl ogi c. security. Cust onilr ust KeySt or eFi | eNane=fi | enane

Specify the type of the keystore:

- Dwebl ogi c. security. Cust onilr ust KeySt or eType=j ks

Optionally, specify the password defined when creating the keystore:
- Dwebl ogi c. security. Cust onilr ust KeySt or ePassPhr ase=passwor d

® Oracle's keytool utility can also be used to generate a private key, a self-signed
digital certificate for WebLogic Server, and a Certificate Signing Request (CSR). For
more information about Oracle's keytool utility, see the keytool-Key and Certificate

14-2 Developing Standalone Clients for Oracle WebLogic Server

Thin-Client Restrictions for JAAS and SSL

Management Tool description at ht t p: / / docs. or acl e. conl j avase/ 7/ docs/
t echnot es/ t ool s/ wi ndows/ keyt ool . ht m .

For a tutorial on using keytool to create a client certificate, see section "Creating a
Client Certificate for Mutual Authentication" in The Java EE Tutorial, at ht t ps: //
docs. oracl e.com javaee/ 7/tutorial /security-

advanced002. ht n#GLI EN.

Note:

When using the keytool utility, the default key pair generation algorithm is
DSA. WebLogic Server does not support the use of the Digital Signature
Algorithm (DSA). Specify another key pair generation and signature
algorithm when using WebLogic Server.

You can find more information about how to implement SSL in Configuring SSL and
Configuring Keystores in Administering Security for Oracle WebLogic Server.

Note:

Although JSSE supports Server Name Indication (SNI) in its SSL
implementation, WebLogic Server does not support SNL

14.4 Thin-Client Restrictions for JAAS and SSL

WebLogic thin-client applications only support JAAS authentication through the
following methods:

e webl ogi c. security. auth. | ogin. User nanePasswor dLogi nModul e. | ogi
n

e webl ogi c.security. Security.runAs

WebLogic thin-clients only support two-way SSL by requiring the SSLCont ext to be
provided by the SECURITY_CREDENTIALS property. For example, see the client
code below:

Example 14-1 Client Code with sslcontext

Systemout.printIn("Getting initial context");

Hasht abl e props = new Hashtabl e();

props. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, "webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory");
props. put (Cont ext. PROVIDER _URL, "corbal oc:iiops:" + host + ":" + port +"/

NameSer vi ce");

props. put (Cont ext . SECURI TY_PRI NCI PAL, "webl ogi ¢");
props. put (Cont ext. SECURI TY_CREDENTI ALS, "password");

//Set the ssl properties through system property

//set the path to the keystore file (one key inside the store)

System set Property("javax. net.ssl.keyStore", YOUR KEY_STORE_FI LE PATH);

//set the keystore pass phrase

System set Property("javax. net.ssl . keyStorePassword", YOUR_KEY_STORE_PASS_PHRASE) ;

Developing Security-Aware Clients 14-3

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
https://docs.oracle.com/javaee/7/tutorial/security-advanced002.htm#GLIEN
https://docs.oracle.com/javaee/7/tutorial/security-advanced002.htm#GLIEN
https://docs.oracle.com/javaee/7/tutorial/security-advanced002.htm#GLIEN

Security Code Examples

//Set the trust store
//set the path to the trust store file

System set Property("javax. net.ssl.trustStore", YOUR- TRUST_STORE_FI LE_PATH);
//set the trust store pass phrase

System set Property("javax. net.ssl.trust StorePassword", YOUR_ TRUST_STORE_PASS_PHRASE) ;

Context ctx = new Initial Context(props);

14.5 Security Code Examples

Security samples are optionally provided with the WebLogic Server product. The
samples are located in the ORACLE_HOVE\ Wl ser ver\ sanpl es\ server\ exanpl es
\'src\ exanpl es\ securi ty directory. A description of each sample and instructions
on how to build, configure, and run a sample, are provided in the package-
sunmary. ht m file. You can modify these code examples and reuse them. For more
information, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

14-4 Developing Standalone Clients for Oracle WebLogic Server

15

Using EJBs with RMI-IIOP Clients

This chapter describes how you can implement Enterprise JavaBeans that use RMI-
IIOP to provide EJB interoperability in heterogeneous server environments.

This chapter includes the following sections:
® Accessing E]Bs with a Java Client

® Accessing EJBs with a CORBA/IDL Client

15.1 Accessing EJBs with a Java Client

A Java RMI client can use an ORB and IIOP to access Enterprise beans residing on a
WebLogic Server instance. See Understanding Enterprise JavaBeans in Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

15.2 Accessing EJBs with a CORBA/IDL Client

A non-Java platform CORBA/IDL client can access any Enterprise bean object on
WebLogic Server. The sources of the mapping information are the EJB classes as
defined in the Java source files. WebLogic Server provides the weblogic.appc utility
for generating required IDL files. These files represent the CORBA view into the state
and behavior of the target E]B. Use the webl ogi c. appc utility to:

¢ Place the EJB classes, interfaces, and deployment descriptor files into a JAR file.
* Generate WebLogic Server container classes for the EJBs.

¢ Run each E]B container class through the RMI compiler to create stubs and
skeletons.

* Generate a directory tree of CORBA IDL files describing the CORBA interface to
these classes.

The webl ogi c. appc utility supports a number of command qualifiers. See
Developing a CORBA/IDL Client.

Resulting files are processed using the compiler, reading source files from the

i dl Sour ces directory and generating CORBA C++ stub and skeleton files. These
generated files are sufficient for all CORBA data types with the exception of value
types (see Limitations of WebLogic RMI-IIOP in Developing RMI Applications for Oracle
WebLogic Server.) Generated IDL files are placed in the i dl Sour ces directory. The
Java-to-IDL process is full of pitfalls. Refer to the Java Language Mapping to OMG IDL
specification at ht t p: / / waw. ong. or g/ t echnol ogy/ docunent s/ i ndex. ht m

For more information, see Enterprise JavaBeans Components and CORBA Clients: A
Developer Guide, at ht t p: / / docs. or acl e. cont j avase/ 7/ docs/ t echnot es/
guides/rm -iiop/interop.htm.

Using EJBs with RMI-IIOP Clients 15-1

http://www.omg.org/technology/documents/index.htm
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi-iiop/interop.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi-iiop/interop.html

Accessing EJBs with a CORBA/IDL Client

15.2.1 Example IDL Generation

The following is an example of how to generate the IDL from a bean you have already
created:

1. Generate the IDL files

> java webl ogi c. appc -conpiler javac -keepgenerated -idl -idlDirectory
i dl Sources build\std_ejb_iiop.jar %APPLI CATI ONS% ej b_iiop.jar

2. Compile the EJB interfaces and client application (the example here uses a
CLIENT_CLASSES and APPLICATIONS target variable):

> javac -d %CLI ENT_CLASSES% Trader.java Trader Hone.java TradeResult.java
Client.java

3. Run the IDL compiler against the IDL files built in Step 1:
>04 DL2CPP% i dI Sour ces\ exanpl es\rni _i i op\ ej b\ Trader. i dl

>04 DL2CPP% i dI Sour ces\ j avax\ ej b\ RemoveExcepti on. i dl

4. Compile your C++ client.

15-2 Developing Standalone Clients for Oracle WebLogic Server

A

Client Application Deployment Descriptor
Elements

This appendix describes deployment descriptors for Java EE client applications
supported by .

This appendix includes the following sections:
¢ Overview of Client Application Deployment Descriptor Elements
¢ application-client.xml Deployment Descriptor Elements

* weblogic-appclient.xml Descriptor Elements

A.1 Overview of Client Application Deployment Descriptor Elements

When it comes to Java EE applications, often users are only concerned with the server-
side modules (Web applications, E]Bs, and connectors). You configure these server-
side modules using the application.xml deployment descriptor, discussed in
Enterprise Application Deployment Descriptor Elements in Developing Applications for
Oracle WebLogic Server.

However, it is also possible to include a client module (a JAR file) in an EAR file. This
JAR file is only used on the client side; you configure this client module using the
application-client.xml deployment descriptor. This scheme makes it possible to
package both client and server side modules together. The server looks only at the
parts it is interested in (based on the application.xml file) and the client looks only at
the parts it is interested in (based on the application-client.xml file).

For client-side modules, two deployment descriptors are required: a Java EE standard
deployment descriptor, application-client.xml, and a WebLogic-specific run time
deployment descriptor with a name derived from the client application JAR file.

A.2 application-client.xml Deployment Descriptor Elements

The application-client.xml file is the deployment descriptor for Java EE client
applications. It must begin with the following DOCTYPE declaration:

<I DOCTYPE application-client PUBLIC "-//Sun M crosystens,
Inc.//DTD Java EE Application Cient 1.2//EN'
"http://java.sun.conlj2ee/ dtds/application-client_1 2.dtd">

The following sections describe each of the elements that can appear in the file.

A.2.1 application-client

application-client is the root element of the application client deployment
descriptor. The application client deployment descriptor describes the EJB modules
and other resources used by the client application.

Client Application Deployment Descriptor Elements A-1

application-client.xml Deployment Descriptor Elements

The following table describes the elements you can define within an appl i cat i on-
cl i ent element.

Table A-1 application-client Elements

Element Description

<i con> Optional. Locations of small and large images that represent the
application in a GUI tool. This element is not currently used by
WebLogic Server.

<di spl ay- name> Application display name, a short name that is intended to be
displayed by GUI tools.

<descri ption> Optional. Description of the client application.

<env-entry> Contains the declaration of a client application's environment
entries.

Elements you can define within a env- ent r y element are:

e descri pti on—Optional. Contains a description of the
particular environment entry.

e env-entry- nane—Contains the name of a client application's
environment entry.

e env-entry-type—Contains the fully qualified Java type of the
environment entry. The possible values are:
java. |l ang. Bool ean,j ava. |l ang. Stri ng,
java.l ang. I nt eger,java. | ang. Doubl e,
java.l ang. Byte,java. | ang. Short,java. | ang. Long, and
java.l ang. Fl oat .

e env-entry-val ue—Optional. Contains the value of a client
application's environment entry. The value must be a String that
is valid for the constructor of the specified env-ent ry-type.

<ej b-ref> Used for the declaration of a reference to an EJB referenced in the
client application.

Elements you can define within an ej b-r ef element are:

e descripti on—Optional. Provides a description of the
referenced EJB.

e ¢ej b-ref - name—Contains the name of the referenced EJB.
Typically the name is prefixed by ej b/, such as ej b/ Deposi t .

e ¢j b-ref-type—Contains the expected type of the referenced
EJB, either Sessi onor Entity.

e home—Contains the fully-qualified name of the referenced EJB's
home interface.

¢ renpt e—Contains the fully-qualified name of the referenced
EJB's remote interface.

* ej b-1i nk—Specifies that an E]B reference is linked to an
Enterprise Java Bean in the Java EE application package. The
value of theej b- | i nk element must be the name of the ej b-
name of an EJB in the same Java EE application.

A-2 Developing Standalone Clients for Oracle WebLogic Server

weblogic-appclient.xml Descriptor Elements

Table A-1 (Cont.) application-client Elements

Element Description

<resource-ref> Contains a declaration of the client application's reference to an
external resource.

Elements you can define within a r esour ce-r ef element are:

e descri pti on—Optional. Contains a description of the
referenced external resource.

e res-ref - name—Specifies the name of the resource factory
reference name. The resource factory reference name is the name
of the client application's environment entry whose value
contains the JNDI name of the data source.

* res-type—Specifies the type of the data source. The type is
specified by the Java interface or class expected to be
implemented by the data source.

* res-aut h—Specifies whether the EJB code signs on
programmatically to the resource manager, or whether the
container will sign on to the resource manager on behalf of the
EJB. In the latter case, the container uses information that is
supplied by the deployer. The res-auth element can have one of
two values: Appl i cati on or Cont ai ner.

A.3 weblogic-appclient.xml Descriptor Elements

This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory as the client application JAR file.

The file name for the deployment descriptor is the base name of the JAR file, with the
extension . runti me. xm . For example, if the client application is packaged in a file
named c:/applications/ClientMain jar, the run-time deployment descriptor is in the
file named c:/applications/ClientMain.runtime.xml.

A.3.1 application-client

The appl i cati on-cl i ent element is the root element of a WebLogic-specific run-
time client deployment descriptor. The following table describes the elements you can
define within an appl i cati on-cli ent element.

Table A-2 application-client Elements

Element Description
<env-entry> Specifies values for environment entries declared in the
deployment descriptor.

Elements you can define within a env- ent ry element are:

* env-entry-nane—Name of an application client's
environment entry. Example: <env-entry-
nane>Enpl oyeeAppDB</ env- ent ry- nanme>

* env-entry-val ue—Value of an application client's
environment entry. The value must be a valid String for
the constructor of the specified type, which takes a single
String parameter.

Client Application Deployment Descriptor Elements A-3

weblogic-appclient.xml Descriptor Elements

Table A-2 (Cont.) application-client Elements
__|

Element Description

<ej b-ref> Specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

Elements you can define within an ej b-r ef element are:

* ¢j b-ref - nane—Name of an EJB reference. The EJB
reference is an entry in the application client's
environment. Oracle recommends that name is prefixed
withej b/ . Example: <ej b-r ef - nane>ej b/ Payrol | </
ej b-ref - name>.

e j ndi - nane—JNDI name for the EJB.

<resource-ref> Declares an application client's reference to an external
resource. It contains the resource factory reference name, an
indication of the resource factory type expected by the
application client's code, and the type of authentication (bean
or container).
Example:
<resource-ref>
<res-ref-nane>Enpl oyeeAppDB</res-ref - name>
<j ndi - nane>ent er pri se/ dat abases/ HR1984</j ndi -
name>
</resource-ref>

Elements you can define within a r esour ce-r ef element

are:

e res-ref-name—Name of the resource factory reference
name. The resource factory reference name is the name of
the application client's environment entry whose value
contains the JNDI name of the data source.

¢ j ndi - name—JNDI name for the resource.

<resource-description> Maps the JNDIname of a server resource to an EJB resource
reference in WebLogic Server.

Elements you can define within a r esour ce- descri pti on
element are:

¢ res-ref - name—Specifies the name of a resource
reference.
® j ndi - name—Specifies a JNDI name for the resource.

<resour ce- env- Maps ar esour ce- env-r ef , declared in the ej b-j ar. xmi
descri ption> deployment descriptor, to the JNDI name of the server
resource it represents.

Elements you can define within a r esour ce- env-
descri pti on element are:

* res-env-ref - name—Specifies the name of a resource
environment reference.

¢ j ndi - name—Specifies a JNDI name for the resource
environment reference.

<ej b-reference- Elements you can define within an ej b- r ef er ence-
description> descri pti on element are:

* ej b-ref - name—Specifies the name of an EJB reference
used in your Web application.
* j ndi - name—Specifies a JNDI name for the reference.

A-4 Developing Standalone Clients for Oracle WebLogic Server

weblogic-appclient.xml Descriptor Elements

Table A-2 (Cont.) application-client Elements

Element

Description

<servi ce-reference-
descri pti on>

Elements you can define within an ej b-r ef er ence-
descri pti on element are:

servi ce-ref-nane
wsdl -url

cal | - property—Thecal | - property element has
the following sub-elements:

- nane
- val ue

port-inf o—The port -i nf o element has the following
sub-elements:

— port-nane
— stub-property
— call-property

Client Application Deployment Descriptor Elements A-5

weblogic-appclient.xml Descriptor Elements

A-6 Developing Standalone Clients for Oracle WebLogic Server

B

Using the WebLogic JarBuilder Tool

This appendix describes how to create thew ful | cl i ent . j ar using the WebLogic
JarBuilder tool.

Note:

The WebLogic full client, W ful | cl i ent. j ar,is deprecated as of WebLogic
Server 12.1.3 and may be removed in a future release. Oracle recommends
using the WebLogic Thin T3 client or other appropriate client depending on
your environment. For more information on WebLogic client types, see

Table 2-1.

This appendix includes the following sections:
* Creating a wlfullclient.jar for JDK 1.7 client applications

e Creating a wlfullclient.jar for JDK 1.6 client applications

Note:

If you run the WebLogic Full Client from a <j ava> task that is invoked in an
Ant script, see Running the WebLogic Full Client in a Non-Forked VM, for
important information regarding the RSA Crypto-] library, which is included
inthewl ful I client.jar manifest classpath.

B.1 Creating a wlifuliclient.jar for JDK 1.7 client applications

Use the following steps to create a wlfullclient jar file for a JDK 1.7 client application:

1. Change directories to the ser ver/ | i b directory.
cd W._HOVE/ server/lib

2. Use the following command to create wlfullclientjar in the ser ver /| i b directory:
java -jar wjarbuilder.jar

3. You can now copy and bundle thew ful | cl i ent.j ar along withcryptoj.j ar
with client applications. Thew ful | cl i ent.jar and crypt oj . j ar mustbe
kept in the same directory as thew ful | ci ent. j ar references cryptoj.jar in
its manifest Class-Path.

4. Addthew fullclient.jar to the client application's classpath.

Using the WebLogic JarBuilder Tool B-1

Creating a wifullclient.jar for JDK 1.6 client applications

Note:

JDK 1.7 introduces new manifest file attributes in Update 25 (JDK 7u25). Only
the main jar of the Applet or Web Start deployment requires the new
permissions attribute. Do not modify the cr ypt oj . j ar which is a licensed
signed jar. See http:/ /www.oracle.com/technetwork/java/javase/7u25-
relnotes-1955741.html#jar-att.

B.2 Creating a wlifuliclient.jar for JDK 1.6 client applications

Use the following steps to create a wlfullclient jar file for a JDK 1.6 client application:

1. Change directories to the server/ | i b directory.
cd W._HOVE/ server/lib

2. Use the following command to create wlfullclient.jar in the server/ | i b directory:
java -jar wjarbuilder.jar

3. You can now copy and bundle thew ful | cl i ent.jar along withcryptoj.jar
with client applications. Thew ful I client.jar and cryptoj.jar mustbe
kept in the same directory as thew ful | ci ent. j ar referencescryptoj.jar in
its manifest Class-Path.

4. Addthew fullclient.jar tothe client application's classpath.

B-2 Developing Standalone Clients for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/javase/7u25-relnotes-1955741.html#jar-att
http://www.oracle.com/technetwork/java/javase/7u25-relnotes-1955741.html#jar-att

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.4.2 Examples in the WebLogic Server Distribution

	1.5 New and Changed Features for This Release

	2 Overview of Standalone Clients
	2.1 Distributing Client Jar Files
	2.2 WebLogic T3 Clients
	2.2.1 WebLogic Thin T3 Client
	2.2.2 WebLogic Full Client (Deprecated)
	2.2.3 WebLogic Install Client

	2.3 RMI-IIOP Clients
	2.4 CORBA Clients
	2.5 JMX Clients
	2.6 JMS Clients
	2.7 Web Services Clients
	2.8 WebLogic Tuxedo Connector Clients
	2.9 Clients and Features

	3 Developing a WebLogic Thin T3 Client
	3.1 Understanding the WebLogic Thin T3 Client
	3.1.1 WebLogic Thin T3 Features
	3.1.2 Limitations and Considerations
	3.1.3 Interoperability
	3.1.3.1 Prior WebLogic Server Releases
	3.1.3.2 Foreign Application Servers

	3.1.4 Security
	3.1.5 Connection Considerations

	3.2 Developing a Basic WebLogic Thin T3 Client
	3.3 Foreign Server Applications
	3.3.1 Deployment Considerations
	3.3.2 Interoperating with OC4J
	3.3.2.1 Accessing WebLogic Server Resources
	3.3.2.2 JMS Interoperability with WebLogic Server

	4 Developing a WebLogic Full Client (Deprecated)
	4.1 Understanding the WebLogic Full Client
	4.2 Limitations and Considerations when Using the WebLogic Full Client
	4.3 Developing a WebLogic Full Client
	4.4 Communicating with a Server in Admin Mode
	4.5 Running the WebLogic Full Client in a Non-Forked VM

	5 Developing a Thin Client
	5.1 Overview of the Thin Client
	5.1.1 Limitations

	5.2 How to Develop a Thin Client
	5.3 Protocol Compatibility

	6 WebLogic JMS Thin Client
	6.1 Overview of the JMS Thin Client
	6.2 JMS Thin Client Functionality
	6.3 Limitations of Using the JMS Thin Client
	6.4 Deploying the JMS Thin Client

	7 Reliably Sending Messages Using the JMS SAF Client
	7.1 Overview of Using Store-and-Forward with JMS Clients
	7.2 Configuring a JMS Client To Use Client-side SAF
	7.2.1 Generating a JMS SAF Client Configuration File
	7.2.1.1 How the JMS SAF Client Configuration File Works
	7.2.1.2 Steps to Generate a JMS SAF Client Configuration File from a JMS Module
	7.2.1.3 ClientSAFGenerate Utility Syntax
	7.2.1.4 Valid SAF Elements for JMS SAF Client Configurations
	7.2.1.5 Default Store Options for JMS SAF Clients

	7.2.2 Encrypting Passwords for Remote JMS SAF Contexts
	7.2.2.1 Steps to Generate Encrypted Passwords
	7.2.2.2 ClientSAFEncrypt Utility Syntax

	7.2.3 Installing the JMS SAF Client JAR Files on Client Machines
	7.2.4 Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI Provider
	7.2.4.1 Required JNDI Context Factory for JMS SAF Clients
	7.2.4.2 Optional JNDI Properties for JMS SAF Clients

	7.3 JMS SAF Client Management Tools
	7.3.1 The JMS SAF Client Initialization API
	7.3.2 Client-Side Store Administration Utility

	7.4 JMS Programming Considerations with JMS SAF Clients
	7.4.1 How the JMSReplyTo Field Is Handled In JMS SAF Client Messages
	7.4.2 No Mixing of JMS SAF Client Contexts and Server Contexts
	7.4.3 Using Transacted Sessions With JMS SAF Clients

	7.5 JMS SAF Client Interoperability Guidelines
	7.5.1 Java Run Time
	7.5.2 WebLogic Server Versions
	7.5.3 JMS C API

	7.6 Tuning JMS SAF Clients
	7.7 Limitations of Using the JMS SAF Client
	7.8 Behavior Change in JMS SAF Client Message Storage
	7.8.1 The Upgrade Process, Tools, and System Properties
	7.8.1.1 JMS SAF Client Discovery Tool
	7.8.1.1.1 Example

	7.8.1.2 JMS SAF Client Migration Properties

	8 Developing a Java SE Client
	8.1 Java SE Client Basics
	8.2 How to Develop a Java SE Client

	9 Developing a WLS-IIOP Client (Deprecated)
	9.1 WLS-IIOP Client Features
	9.2 How to Develop a WLS-IIOP Client

	10 Developing a CORBA/IDL Client
	10.1 Guidelines for Developing a CORBA/IDL Client
	10.1.1 Working with CORBA/IDL Clients

	10.2 IDL Client (Corba object) relationships
	10.2.1 Java to IDL Mapping

	10.3 WebLogic RMI over IIOP object relationships
	10.3.1 Objects-by-Value

	10.4 Procedure for Developing a CORBA/IDL Client

	11 Developing Clients for CORBA Objects
	11.1 Enhancements to and Limitations of CORBA Object Types
	11.2 Making Outbound CORBA Calls: Main Steps
	11.3 Using the WebLogic ORB Hosted in JNDI
	11.3.1 ORB from JNDI
	11.3.2 Direct ORB creation
	11.3.3 Using JNDI

	11.4 Supporting Inbound CORBA Calls

	12 Developing a WebLogic C++ Client for a Tuxedo ORB
	12.1 WebLogic C++ Client Advantages and Limitations
	12.2 How the WebLogic C++ Client Works
	12.3 Developing WebLogic C++ Clients

	13 Using Java EE Client Application Modules
	13.1 Extracting a Client Application
	13.2 Executing a Client Application

	14 Developing Security-Aware Clients
	14.1 Developing Clients That Use JAAS
	14.2 Developing Clients that Use JNDI Authentication
	14.3 Developing Clients That Use SSL
	14.4 Thin-Client Restrictions for JAAS and SSL
	14.5 Security Code Examples

	15 Using EJBs with RMI-IIOP Clients
	15.1 Accessing EJBs with a Java Client
	15.2 Accessing EJBs with a CORBA/IDL Client
	15.2.1 Example IDL Generation

	A Client Application Deployment Descriptor Elements
	A.1 Overview of Client Application Deployment Descriptor Elements
	A.2 application-client.xml Deployment Descriptor Elements
	A.2.1 application-client

	A.3 weblogic-appclient.xml Descriptor Elements
	A.3.1 application-client

	B Using the WebLogic JarBuilder Tool
	B.1 Creating a wlfullclient.jar for JDK 1.7 client applications
	B.2 Creating a wlfullclient.jar for JDK 1.6 client applications

