ORACLE"

Oracle® Fusion Middleware

Developing JMS Applications for Oracle WebLogic Server
12¢(12.2.1.2.0)

E77974-03

December 2016

This document is a resource for software developers who want
to develop and configure applications that include WebLogic
Server Java Message Service (JMS).

Oracle Fusion Middleware Developing JMS Applications for Oracle WebLogic Server, 12¢ (12.2.1.2.0)
E77974-03
Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ... xiii
Documentation AccesSIbilitycooiiriiiiiiiiiii e Xiii
CONVENIONS ..ottt Xiii

1 Introduction and Roadmap

1.1 Document Scope and AUIENCE. ... 11
1.2 Guide to this DOCUMENLcooiiiiiiiiiiie e 1-1
1.3 Related DOCUMENEATIONc.oviiiiiiiiiciiiiccceee et e 1-2
1.4 Samples and Tutorials for the JMS Developer ... 1-3

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials..........c.cccoveueieriuiiinnnnnnes 1-3
1.5 New and Changed JMS Features in This Releasec.cccocovvvvrrrnninnncnnrceeeceene 1-3

2 Understanding WebLogic JMS

2.1 Overview of the Java Message Service and WebLogic JMScccccoveiinvninnnnrnirrene 2-1
2.1.1 What Is the Java Message Service? ... 2-1
2.1.2 Implementation of Java Specificationsccocoeiiiiiiiiiiiiii 2-2
2.1.3 WebLogic JMS Architecture........cccouoviiieiiiiic 2-2

2.2 Understanding the Messaging Models...........ccccovviiiniiiiiiiiiiices 2-3
2.2.1 Point-to-Point MeSSaging ... 2-3
2.2.2 Publish/Subscribe Messaging ... 2-4
2.2.3 Message PersiStenCe.......ccoiiiuiuiuiiiiiiiicce s 2-5

2.3 Value-Added Public JMS API EXTENSIONS.......cceeiriririiriiniinienienienieie ettt 2-5
2.3.1 WebLogic Server Value-Added JMS Featurescoouvvivimimnninininininiiniinn, 2-5

2.4 Understanding the JMS API.........ccccoooiiiiiiiiiiicccereeer s 2-7
2.4.1 ConnectioNFactOrccciiiiiiiiiiiiiccc s 2-8
242 JTIMSCONEEXE.c.eeuteuteiieiteiiettete ettt sttt ettt et et et e st et et ebeebeste b e be st eneese e entententeneeneebeesesaensas 2-10
2.4.3 CONNECHON. c..ovivitiviectitctit et 2-10
244 SESSIONN...uuiuiuiuiuiririsiscscscs s 2-11
2.4.5 DeSHNATION c.ovovivivitiicictciccc s 2-14
2.4.6 MessageProducer and MessageCONSUMETccocceuiiniccieininiceie e 2-15
247 MESSAZES ...ovvviviiiniiiiittiit ittt 2-16
2.4.8 ServerSessionPOOIFACIOIYccooiiuiieiiiiiiciecc 2-21

2.4.9 SErVEISESSIONPOOL........uiiiceiieiceieieeee ettt e et e et ear e s st e e e erar e e enaes
A (IS TS A vy e i 1o Lo o KR

2411 CONNECHONCONSUITIOTuvveieereeeeereeeeeeeeereeeeeteeeeeaeeeeereeeesseeeeeeeeesseseesseeeensresenseeeeseseenees

3 Best Practices for Application Design

3.1 MeSSage DESIZIN........couiiiiiiiiiiie s
3.1.1 Serializing Application ObJECEScoiiiiiiiiiiiiii e
3.1.2 Serializing StriNgS........cccooiiuriiiiiiiieic
3.1.3 Server-side Serialization ..o
314 SELECHION ..ottt

3.2 Message COMPIESSION.......cciuiiiiiiiriiiiiiiciciites et s e

3.3 Message Properties and Message Header Fields...........cccccccovviinnniinnnnniin

3.4 Message Ordering...........oicueiiiiicieiccieie et

3.5 TOPICS V8. QUEUES........cooviiiiiiiieee s

3.6 Asynchronous Vs. Synchronous CONSUMETS...........ccceueuiuruririririiiiinineinereeeeeeeieeeeeeeeeeeeeeesees

3.7 Persistent Vs. Non Persistent MeSsagescccoeueeieieieieieieiiiiiciccce

3.8 Deferring Acknowledges and Commits.........c.cccoviiiiiiiiiiiiii e

3.9 Using AUTO_ACK for Non Durable SUbSCIIDers ...

3.10 Alternative Qualities of Service, Multicast and No-Acknowledgeccceceuvuvrvrrererenecne.
3.10.1 Using MULTICAST_NO_ACKNOWLEDGEcccocoviiiiiiniiiecicnn,
3.10.2 Using NO_ACKNOWLEDGE ..o

3.11 Avoid Multi threadingcooiirioiiiici e

3.12 Using the JMSXUSErID Propertycccooeeiiiicieiniiiicieiiiiet e

3.13 Performance and TUNINGcccccoueueuririririiieieireeeeeeeeeeeee et eseees

4 Enhanced Support for Using WebLogic JMS with EJBs and Servlets

4.1 Enabling WebLogicC JIMS WIAPPETS......cccciiiiiiiiiiiciiiicceteecec e
4.1.1 Declaring a JMSContext Object Using @Inject Annotation.............cccoeevevvicrriinicnnnnnn.
4.1.2 Declaring J]MS Objects as Resources In the E]JB or Servlet Deployment Descriptors..
4.1.3 Referencing a Packaged JMS Application Module In Deployment Descriptor Files..
4.1.4 Declaring JMS Destinations and Connection Factories Using Annotations.................
4.1.5 Avoid Transactional XA Interfaces...........cccoovvviviiiiiiiiniiniiiicccc,

4.2 Disabling Wrapping and POOLNG...........ccociiiiiiiiiiic e

4.3 What's Happening Under the JMS Wrapper Covers...........cccooeeininiimeiniiicceecceeeci
4.3.1 Automatically Enlisting Transactionsc.ccccooeeieieioiiiciiiiicieceec,
4.3.2 Container-Managed SeCUIity ..o
4.3.3 Connection TeSHNEccccciviiiiiiiiiiiiic s
4.3.4 Java EE COMPUANCEocoimimiiiiimiiiiiiccc e
4.3.5 Pooled JMS Connection ObjJectsccocruiviiiiiiiiiiiiccce e
4.3.6 Monitoring Pooled ConNectionsccccueiiiiiiiieiiiiicicc i

44 Improving Performance Through POOING...........ccoviiiiiiiii e
4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects.............coeeiiinininciinincnnce.
4.42 Speeding Up Object Creation Through Cachingcccocoveiiiiiiiiiniiciic

4.4.3 Enlisting the Proper Transaction Modecccoouiiiiiiiiiiiii 4-12

4.5 Simplified Access to Foreign JMS Providers ... 4-12
4.6 Examples of JMS Wrapper FUNCLONS ... 4-13
4.6.1 Examples of JMS Wrapper FUNCHONS...........cccooiiiiiiiiiiiiccce, 4-13
4.6.2 Sending a JMS Message in a Java EE Containerc.cocooeeieiiiiniiiiiiiiiniccce 4-17
4.6.3 Dependency INJECION ... 4-18
4.6.4 EJB 3.0 Wrapper Without INJECHON.........ccccciiiiiiiiiiiiiccccccc e 4-19

5 Understanding the Simplified APl Programming Model

5.1 About JMS 2.0 SImplified APL........cccccooiiiiiiiiiiiii s 5-1
5.2 New Interfaces in the Simplified JMS APL........cccccccoviviiiinniiiiiics 5-2
5.2.1 JIMSCOMLEXL.....cuiiieieiiiiiieiieieiie st 5-2
5.2.2 JIMSPIOAUCET ...ttt ettt b bttt et s bt et et at e st e bt ebeebesbesbenbe e 5-2
5.2.3 JIMSCONSUIMIET ...eueiiiinieriintiniententetet ettt ettt eat e st ssesbeebesbe st et e b e st et et et entestesesbeebeebesuesbebenee 5-3
5.3 New Methods to Simplify Messaging in JMS 2.0.........cccccovvvirinnnrnnnrrrrcceeeeeeeeeenes 5-3
5.3.1 Method to Extract the Body Directly from a Messageccccooeueiviereieiniccnninicnnennnn. 5-3
5.3.2 Method to Receive a Message Body Directlycccooooeiiiiiiiiiii, 5-3
5.3.3 Method to Create a SESSION ...t 5-4

6 Developing a Basic JMS Application

6.1 Importing Required Packages...........cccooorueieiiiiiieiiiiiii e 6-1
6.2 Setting Up @ JMS APPLCAtION «.....oviiiiiiiciiereciieeeeeeeeeee e 6-1
6.2.1 Using a Simplified API to Set Up a JMS Application...........ccceeuvuvuvvvevinnnnnninnnneenes 6-2
6.2.2 Using the Classic API to Set Up a JMS Applicationcccocevvvvvininnnnninninenne 6-5
6.2.3 Example: Setting Up a Point-to-Point JMS Application Using the Classic API......... 6-15
6.2.4 Example: Setting Up a Publish-Subscribe J]MS Application Using the Classic API.. 6-18
6.3 SENAING MESSAZEScvvviiiiirieieieieieieeeeeie ettt eaes 6-20
6.3.1 Sending Messages Using the Simplified JMS APL..........cccccccovvivinnnnninnniiiene 6-20
6.3.2 Sending Messages Using the Classic JMS APccccoooniiiiiiiiiiec, 6-21
6.3.3 Sending a Message Asynchronously ..., 6-23
6.3.4 Setting JMSProducer and MessageProducer Attributes..........c.ccoooeeieiiiiriiiiinnnan, 6-23
6.3.5 Example: Sending Messages Within a Point-toPoint Application...........cccccceeueueenene. 6-24
6.3.6 Example: Sending Messages Within a Publish/Subscribe Application...................... 6-25
6.4 Receiving MeSSAZeS........ccceueiiiiieiiiiiciie e 6-25
6.4.1 Receive Messages Asynchronously Using the Simplified API............cccccooovrinininne. 6-26
6.4.2 Receiving Messages Asynchronously using the Classic APL.........ccccccccviiiiiininnnnnnn. 6-26
6.4.3 Asynchronous Message PIpelinecccococovvvriiiiininniiiircccccreeeeeeeeeeees 6-26
6.4.4 Receive Messages Synchronously Using the Simplified APIccccocooovniiinnnnn. 6-27
6.4.5 Receiving Messages Synchronously Using the Classic API...........cccccccovviviiinnnnnn 6-28
6.4.6 Use Prefetch Mode to Create a Synchronous Message Pipelinec.ccccccooovuevrunnee. 6-29
6.4.7 Recovering Received MESSAGESccvvuruvuriririrrieieirrreieieeeeeeeeee e 6-29
6.5 Acknowledging Received MESSAZES.........cccvuvuruiiiiiiriririiiiicicieicieieeee s 6-30
6.6 Releasing Object RESOUICESccccuvuviriiiiiiiiiiiiiiii s 6-30

7 Managing Your Applications

Vi

7.1

7.2

7.3

74

7.5

7.6

7.7

7.8

79

Managing Rolled Back, Recovered, Redelivered, or Expired Messagesccccceeuriruruenne. 7-1
7.1.1 Setting a Redelivery Delay for MeSSages...........ccccoceumuriiieiniininiciiiciececci s 7-1
7.1.2 Setting a Redelivery Limit for MeSSages........ccovuruvururirireririririrrcirerrrececeeeeeeeeeeeeeeees 7-3
7.1.3 Ordered Redelivery of MESSAZEScccvuvuiiriririiiiiiiiiririiiiiciieccsee s 7-4
7.1.4 Handling Expired MeSSages..........ccccoviiiiiiinininiiiniiiiiiiiiinnssssssssssssees 7-5
Setting Message Delivery Times..........cccooiiiiiiiiiece e 7-5
7.2.1 Setting a Delivery Time on Producers.............ooooirieiiiiiiiiiiiiiciecc 7-5
7.2.2 Setting a Delivery Time on MeSSages.........cccovuvururururiririreririrririrecseeeeeeeeseses e 7-6
7.2.3 Overriding a Delivery Time.........cccocovvviiniiinininiiiniiinncrsses s 7-6
Managing CONNECHONScoiiriiieiiciee e 7-9
7.3.1 Defining a Connection Exception LiStenercccccoeioiiiiiiiiiiiiinicicicccecs 7-9
7.3.2 Accessing Connection Metadataccccoevrieriiiiiiiiiiiiii 7-10
7.3.3 Starting, Stopping, and Closing a ConNectionccccceeuveveviviririvrrveneerrneeeeens 7-11
Managing SESSIONScccvviuiiiiiiiiiriiiie s 7-12
7.4.1 Defining a Session Exception Listenercccocoeiioiiiiiiiiiiiiiccece, 7-12
7.4.2 ClOSING @ SESSION «...vcvuiiieiiiiiictcte ittt 7-13
Managing Destinations ..o 7-14
7.5.1 Dynamically Creating Destinations............cccccevuviriiirirriniiininririiicrcecceeeeeeeeees 7-14
7.5.2 Dynamically Deleting Destinations............cccccevuvivirivinininiiinininiiiinnincnnnceeeeaes 7-14
Using Temporary Destinations...........cccceeueieiiiiieiiiiiiiii 7-16
7.6.1 Creating a Temporary QUEUE..........cccueueiiiiriiiiiicicie et 7-17
7.6.2 Creating a Temporary TOPIC.......ccoccuviviiiiiiiiiiiiiic s 7-17
7.6.3 Deleting a Temporary Destinationcccccecvvviirnniniininiiirnceceeceeeeees 7-17
Setting Up Durable SUbSCIIPHONSccceuiiiiiiiiiiiiciiiiiics 7-17
7.7.1 Defining the Persistent StOrecocoouoiiiiiiiiccc 7-18
7.7.2 Setting the Client ID POLCYcoooueviiiiieiiicic 7-19
7.7.3 Defining the CHent ID.........cccooiiiiiiiiiceere s 7-19
7.7.4 Creating a Sharable Subscription POLCYcccocovemiiiiiiiiiicc, 7-20
7.7.5 Creating Subscribers for a Durable Subscriptionccccooooiioiiiiiincc, 7-21
7.7.6 Best Practice: Always Close Failed JMS ClientIDscccoooiiiiiniiiiiiiiice, 7-22
7.7.7 Deleting Durable Subscriptionsccoooirieiiiiiiiiiii 7-23
7.7.8 Modifying Durable SUbSCIIPIONS........cccvuviiiriririiiiirirccicece s 7-23
7.7.9 Managing Durable SUbSCIIPLIONSccccvuviriviiiiiiiiiiiiiciiics 7-23
Setting and Browsing Message Header and Property Fieldsccccccovvvinnnniininnnnn 7-24
7.8.1 Setting Message Header Fields..........ccccoooiiiiiiiiiii e, 7-24
7.8.2 Setting Message Property Fields ..., 7-26
7.8.3 Browsing Header and Property Fields...........cccocoviiiniiiiniiiircccececceeee 7-29
FIltering IMESSAZESc.cvcvivimiiiiiiiiiiiiiici ettt 7-30
7.9.1 Defining Message Selectors Using SQL Statements.............cccccovvvvvvviiinnninnnnnn, 7-31
7.9.2 Defining XML Message Selectors Using XML Selector Methodc.ccccovruirinnen. 7-31
7.9.3 Displaying Message SeleCtOrs..........ovvrrriririrrririeirrreeeeeeeeeeeeeeee e 7-33

7.9.4 Indexing Topic Subscriber Message Selectors to Optimize Performance................... 7-33

7.10 Sending XML MESSaZESccceiiriimiiiiiiiiiiiiiiiiicni s 7-34
7.10.1 WebLogic XML APIS........ccoiiiiiiiiiiicirrc s 7-34
7.10.2 Using a String Representation ... 7-34
7.10.3 Using a DOM Representation............cccoouirieioiiciciciciccicci s 7-35

8 Using JMS Module Helper to Manage Applications

8.1 Configuring JMS System Resources Using JMSModuleHelper............ccccooiriiiininnnnin. 8-1
8.2 Configuring JMS Servers and Store-and-Forward Agents...........cccccocoeuvieivieinicinicinicicicne 8-1
8.3 JMSModuleHelper Sample COdeccovuiumriririiiriiiiiecreeeeeeeeee s 8-2

8.3.1 Creating a JMS System ReSOUICEcocovvveviiiieieiiiiiicce s 8-2

8.3.2 Deleting a JMS System Resource.............oooerueiiiicieiiicccicce 8-3
8.4 Security Considerations for ANonymous USerS.........c.cccocueiruniiuniiieiiciniineiceiecee s 8-4
8.5 Best Practices When Using JMSModuleHelper ..., 8-4

9 Using Multicasting with WebLogic JMS

9.1 Benefits of Using MultiCastingcccovueuriruruririririeiirrireeeeeeeeeeeeee e 9-1
9.2 Limitations of Using MultiCasting..........cccccevuruririririniriniiiiiiinnnicrreeeeeeeeee s 9-1
9.3 Using WebLogic Server UNICastc.cccvvviririiiiiiiiiiiniiiiiiiiinniinsssssssssssees 9-1
9.4 Configuring Multicasting for WebLogic Server.........c.coooriiiiiiiiiiiiiccc e 9-2
9.4.1 Prerequisites for MUlticastingccoveuiiriiieiiiiinicccc s 9-2
9.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber 9-3
9.4.3 Step 2: Set Up the Message Listener ... 9-3
9.4.4 Dynamically Configuring Multicasting Configuration Attributes.........c.cccccooevinnnee. 9-4
9.4.5 Example: Multicast Time-t0-LivVe.......cccocoiiiiiiiiii 9-5

10 Using Distributed Destinations

10.1 What Is a Distributed Destination? ..o 10-1
10.2 Why Use a Distributed Destinationcooeeieiiiiiiiiii 10-1
10.3 Creating a Distributed Destination ... 10-1
10.4 Types of Distributed Destinations.............cccceiiiiiiiiiiiiiiiiieccceeceeieeennas 10-2
10.4.1 Uniform Distributed Destinationscccccceiiiiiiiiiiiiiiiiiiccccccccccnes 10-2
10.4.2 Weighted Distributed Destinationscccoooviriiiiiiiiic e 10-2
10.5 Using Distributed Destinations ..o 10-2
10.5.1 Using Distributed QUEUES..........ccccceiuimiiiiiiiiiiiiicccccccece e 10-3
10.5.2 Using Replicated Distributed TOPICS........ccccceiuiuimimimimiiiiiiiiiiiiiicccciccceeeieeeiennes 10-5
10.5.3 Using Partitioned Distributed TOPics........ccoveueiiiicieieiicicieece 10-7
10.5.4 Accessing Distributed Destination Members.............ccooooiiiiiiiiii 10-7
10.5.5 Distributed Destination Failover ..., 10-8
10.6 Using Message-Driven Beans with Distributed Destinations............cccccocoeciiiiiiiiicnnas 10-8
10.7 Common Use Cases for Distributed Destinations ..., 10-8
10.7.1 Maximizing Production..........ccoocueioiiiiiiiiicc e 10-8
10.7.2 Maximizing Availability ... 10-9

Vii

10.7.3 StUCK MESSAZESoouviiiiciit e 10-10

11 Using the Message Unit-of-Order

12

viii

11.1 What is Message Unit-Of-Order?ccoovriniriniiiniiiiciecc e 11-1
11.2 Understanding Message Processing with Unit-of-Order ... 11-1
11.2.1 Message Processing According to the JMS Specificationccccccceueiicciiccnnas 11-1
11.2.2 Message Processing with Unit-of-Order............ccccoeiiiiiiiiiiiiiiiiiicccccas 11-2
11.2.3 Message Delivery with Unit-0f-Order ..o 11-3
11.3 Message Unit-of-Order Case StUAYccccoueuiiriiiiiniiiiciecc e 11-3
11.3.1 JOE€ Orders @ BOOKcciciriirierieieieieieiete et este ettt ste st b ess e s e s essesaessesessessansassessens 11-4
11.3.2 What Happened to Joe's OTder ..o 11-4
11.3.3 How Message Unit-of-Order Solves the Problemccccoooriiiiiii 11-5
11.4 How to Create a Unit-0f-Order.........cccccoiiiviiiiiniiiiiiiiiiineseans 11-6
11.4.1 Creating a Unit-of-Order Programmaticallycccccoviiiiiiiiiiiniien, 11-6
11.4.2 Creating a Unit-of-Order Administratively ... 11-6
11.4.3 Unit-of-Order Naming Rules...........ccccccoiiiiiiiiiiiiiiiiiccccceeceeenennas 11-7
11.5 Getting the Current Unit-0f-Order.........coouoiiiiiiiiii 11-8
11.6 Message Unit-of-Order Advanced TOPICScccevrviiriniiiniciciceee s 11-8
11.6.1 What Happens When a Message Is Delayed During Processing?ccccccccccuneee. 11-8
11.6.2 What Happens When a Filter Makes a Message Undeliverable...............cccccccccueeee. 11-8
11.6.3 What Happens When Destination Sort Keys Are Usedccocoooeriiiiniennne. 11-9
11.6.4 Using Unit-of-Order with Distributed Destinations.............ccccoooeoiiiiiinin 11-9
11.6.5 Using Unit-of-Order with TOPICS......cccocovuriririiiiiiicicicc e 11-10
11.6.6 Using Unit-of-Order with JMS Message Management............cccccocoeeueurucccccnencnns 11-11
11.6.7 Using Unit-of-Order with WebLogic Store-and-Forward............cccccoiiiiiinnnns 11-11
11.6.8 Using Unit-of-Order with WebLogic Messaging Bridge...........ccccceiiiiiiinnnns 11-12
11.7 Limitations of Message Unit-of-Order............ccooormiiiiiiiiiii 11-12

Using Unit-of-Work Message Groups

12.1 What Are Unit-of-Work Message GIoups?........ccccoeeiurieieiicieieinincie e 12-1
12.2 Understanding Message Processing with Unit-of-Work..........cccccoooviiiiiiini 12-1
12.2.1 Basic UOW TerminolOgyccccceiiiuiuiuimimimcmimiiiiieicieieienenenenerenesesemenesenesesesenenesesenenenenes 12-2
12.2.2 Rules For Processing UOW MeSSages..........cccoceuiuimimiuiuimiiimiiiiiiiiiiiccicieiceeneneieenenenenas 12-2
12.2.3 Message Unit-of-Work Case Study........c.cooerueieiiiiiiiniiiccc 12-3
12.3 How to Create a Unit-of-Work Message Groupcccccocemeiiniinininieiiee s 12-4
12.3.1 How to Write a Producer to Set UOW Message Properties.........c.cccoevrrrririnininnnnes 12-5
12.3.2 How to Write a UOW Consumer/Producer For an Intermediate Destination........ 12-6
12.3.3 Configuring Terminal Destinations............cccccoceiiiiiiiiiiiiiiiiicccceeceeeennes 12-7
12.3.4 How to Write a UOW Consumer for a Terminal Destinationc.ccccccccceiinnnns 12-8
12.4 Message Unit-of-Work Advanced TOPICS.......c.cceurvruiiminiciniiieieice s 12-9
12.4.1 Message Property Handlingcccocociiiiiiiiiiiiiccececeeeeeeceneee s 12-9
12.4.2 UOW and Uniform Distributed Destinations..............cccccceoeciiiiiiiiicccciccenes 12-10
12.4.3 UOW and Store-and-Forward Destinations............cccccceeveueeenineicinneecnineeecneenes 12-10

13

14

15

12.5 Limitations of UOW Message GrOUPS..........cccoeueueuiuniiiniiinininieicisicie s 12-10

Using Transactions with WebLogic JMS
13.1 Overview of TransactionS.........ccovuiviiriiiiniiiiniiii s 13-1
13.2 Using JMS Transacted SESSIONSc.ccoiueuiuimiuiiiiiiiiiiiiicceeeceereeeieeee e sesenenenes 13-2
13.2.1 Step 1: Set Up JMS Application, Creating Transacted Sessionccccccccueucucncneees 13-2
13.2.2 Step 2: Perform Desired Operations............cccccceiiiiiiiiiiiiiiiiiicciiccccceccnnes 13-3
13.2.3 Step 3: Commit or Roll Back the JMS Transacted Session............cccocoeeueiiiirieienennee. 13-3
13.3 Using JTA User Transactionsccceuiiurieiiiiicicieiiccie it 13-4
13.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted Session..........c.c.cccc....... 13-4
13.3.2 Step 2: Look Up the User Transaction in JINDI ..., 13-5
13.3.3 Step 3: Start the JTA User Transactioncccooeeeeiiiiiiniiicecce e 13-5
13.3.4 Step 4: Perform Desired Operationsccccceviicueiniiicicieieiccieeecci s 13-5
13.3.5 Step 5: Commit or Roll Back the JTA User Transaction.........c.cccecvveeeviviiinnninninnnnn 13-5
13.4 JTA User Transactions Using Message Driven Beans ..., 13-6
13.5 Example: JMS and EJB in a JTA User Transactioncccccceieieiiiiiiiiciiiiccieccennes 13-6
13.5.1 Step 1 Set Up the JMS Applicationc.ccoorueueiiiirieiiiicceece s 13-7
13.5.2 Step 2 Look Up the User Transaction...........cccooveeeieiiicicieiiiicccce e 13-7
13.5.3 Step 3 Start the JTA User Transactioncccccccecucuccieceeeeceeeeereeeeeeenenenes 13-7
13.5.4 Step 4 Perform the Desired Operations..............cccccoeeuiiiiiiiiiiiecieceeeeeeenenes 13-7
13.5.5 Step 5 Commit the JTA User Transactioncccoeeeiiceieiniicceiniccce e 13-7
13.6 Using Cross-Domain SeCUIity ..o 13-7
Developing Advanced Pub/Sub Applications
14.1 Overview of Advanced High Availability Concepts.........cccoeoiiimrieiiiiiiiiiiccc 14-1
14.1.1 WebLogic Messaging High Availability Features...........cccocooeiiiiinnii 14-1
14.1.2 Application Design Limitations When Using Replicated Distributed Topics 14-2
14.1.3 Advanced Topic FEatures...........cccooiiiiiiiiiiiiiiiiiiiccccccccceccee e 14-2
14.2 Advanced Messaging Features for High Availability............cccoiiiiiiiiiiiiii 14-3
14.2.1 Shared Subscriptions and Client ID POLCYc.coovrueiiiiiiiciiiiicec 14-3
14.2.2 How Sharing a Non Durable Subscription Works...........ccoovoiiiiiiiiiiiiie 14-4
14.2.3 How Sharing a Durable Subscription Works..........c.ccccceveiiiiiiiiiiiiiccecccnenes 14-5
14.3 Design Strategies When Using TOPICS......cccoviuiiiiiiiiiiiiiiiiiccicnicccieceeceeseieeenennes 14-8
14.3.1 One-Copy-Per-Instance Design Strategycccocoeeueiiiiccieiniiicieeccce e 14-8
14.3.2 One-Copy-Per-Application Design Strategyccoeoeriieiiiiiniciciiccecce 14-8
14.4 Considerations When Using JMS 2.0 Shared Subscriptions.........c.cccoviviiviiiiiiiinninininns 14-9
14.5 Best Practices for Distributed TOPICSccceiimiiiiiiiiiiiiieccccceceeeeee e 14-9
Recovering from a Server Failure
15.1 Automatic JMS Client FAIlOVETccceeuerieriiieieieieietet ettt sttt sa e esaesessessessenas 15-1
15.1.1 Automatic Reconnect Limitations.........ccccccceviviiiiiviiiiiiiiiicccce 15-1
15.1.2 Automatic Failover for JMS Producerscccoceeirerenenienienieneieieeeeeeeeeee e 15-2
15.1.3 Configuring Automatic Failover for JMS CONSUMETSccccevrinirieicieicinicieiciaes 15-6

16

A

B

C

15.1.4 Explicitly Disabling Automatic Failover on JMS Clients..........cccccoooorriiiiiniiennnnnen. 15-10

15.1.5 Best Practices for JMS Clients Using Automatic Failoverccccocoiiiiiincnns 15-11
15.2 Programming Considerations for WebLogic Server 9.0 or Earlier Failures....................... 15-12
15.3 Manually Migrating JMS Data to a NeW SeIVercccocovviiieieinicceccce e 15-12

WebLogic JMS C API

16.1 What Is the WebLogic JMS C API? ... 16-1
16.2 System ReqUITEMENtS.........cooouiiiiiiiieicc s 16-2
16.3 Design PrinCIPles ..ot s 16-2
16.3.1 Java Objects Map to Handles...........cccccociiiiiiiiiiiiiiiiceccceeecceeee e 16-2
16.3.2 Thread UtiliZationcccccccieirieieiinniecireceetece et 16-3
16.3.3 Exception Handling ..o e 16-3
16.3.4 Type CONVEISIONS.....cucviiieiiciiiiictcte ettt 16-3
16.3.5 Memory Allocation and Garbage Collection.............cccoeviviviiiniiiniiiiiiecnens 16-4
16.3.6 Closing CONMNECHONScuuiuimimiiiiiiiiiiiicieiiiciciecieeieiee e senenes 16-5
16.3.7 Helper FUNCHONScccouiiiiiiiiiiiiiiiiice e 16-5
16.4 Security CoNSIAerationsccoooiiiieiiiiiicieice s 16-5
16.5 Implementation GUIdelines...........ccoeuiiiiiiiiiiiic 16-5
16.6 Workarounds for Client Failure Thread Detach Issue.............cccoovviininiiniiiiiiiicinns 16-6

Deprecated WebLogic JMS Features

A1 Defining Server SeSsion POOLS.........ccccocuiiieiiiriiiiiriiirrceeeeeeeeeeeeeeeeeee e A-l
A.1.1 Step 1: Look Up the Server Session Pool Factory in JNDI...........ccccoiiiiiiiinnnnn. A-3
A.12 Step 2: Create a Server Session Pool Using the Server Session Pool Factory A-3
A.1.3 Step 3: Create a Connection CONSUMETccoviiveieieiiecieieineie e A-4
A.14 Example: Setting Up a PTP Client Server Session Pool..........cccccoviiiiinnnnn. A-6
A.15 Example: Setting Up a Publish/Subscribe Client Server Session Pool A-7

FAQs: Integrating Remote JMS Providers

B.1 Understanding JMS and JNDI Terminologyccccoeeueurrrrniiinnrinrrereeeeeeseeeseeeeeeeeeeens B-1
B.2 Understanding Transactionsccccoceeiieiriririniiiniiiniiiciseeseeseesssssesessessees B-2
B.3 How to Integrate with a Remote Provider ... B-4
B.4 Best Practices When Integrating with Remote Providers...........cccooooiiiiiiniiie B-5
B.5 Using Foreign JMS Server Definitionscccoocvvviiiiiiiiiiniiiiiccnens B-6
B.6 Using EJB/Servlet JMS Resource References...........cooeuvuvuvuririviiiiinininiviniiecrccceceeeeeeeeeeeenes B-7
B.7 Using WebLogic Store-and-FOrward............ccccocovivviniiiiiniiinnniiiiiicncncccccns B-8
B.8 Using WebLogic JMS SAF Clentccocoiiiiiieiiccic s B-9
B.9 Using a Messaging Bridge...........cccoeueuiiiiiiiiiiiii e B-9
B.10 Using Messaging Beans..........cccccuviiiiiiiiiiiiiiiiiic s B-10
B.11 Using AQ JMS ..o B-11

How to Look Up a Destination
C.1 USE @ JINDI NAIMNE......oiictiieiieciieeie ettt e et e eesteestaesreessaeeseesseesseesseeassaesssaasseesssensesassessseesssennses C-1

C2

C3

Use a Create Destination IAentifierc..ooviiiiiiiiiceiecieeeeeteeeee ettt C-1

C.2.1 Default WebLogic CDI SYNtaX......cccviiiiuiiiiiiiiiiicirieceessesescesssescesesesesens C-2
C.2.2 Custom WebLogic CDI SYNtax.........cccoiiiiiiiiiiiiiiiiiiccccseeccsssecccsseens C-2
C.2.3 Server Affinity When Looking Up Destinations.............cccoeiiiiiiiiiiiiiiiccnn, C-2
Examples of Syntax Used to Look Up Destinationsccoceueoiimcieiiiiciceicceccie, C-3
C.3.1 Non distributed Destinationsccccoeviiiiiiiiiii e C-3
C.3.2 Uniform Distributed Destinationsccccoveiiviiiriiiiiiniiiieeccnn, C-4
C.3.3 Weighted Distributed Destinationscccccoeeivieereininiininiiceecceece, C-5

D Advanced Programming with Distributed Destinations Using the JMS
Destination Availability Helper API

D.1
D.2

D.3

D4

D.5

TNEFOAUCHION ...ttt ettt ettt et e a et e bt bt besbesaesbenbenaens D-1
Controlling DD Producer Load Balancing..........cccccceueueieieiciiiiiiiceeieeeeieeeeieieneeeenenenes D-2
D.2.1 BaASICJIMS...o ettt ettt ettt e et e et e e be e s b e e be e bt e e baeeaae e ba e aaeeabeesrbeebe e taeereensaean D-2
D.2.2 Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)... D-2
D.2.3 Senders to Replicated Distributed Topics (RDTS)cccoueieiiiniiiiiiciiicciee, D-3
Using the JMS Destination Availability Helper API ..o D-3
D31 OVEIVIEW ..ottt ettt ettt ettt s a s bbbt bbb sttt et e st e bt e bt ebe e b e ebesae st ebenee D-3
D.3.2 GENETAl FIOW ..cuiiiiiiiieiiieirietrteteee ettt sttt ettt ettt st st sttt D-4
D.3.3 Handling the weblogic.jms.extension.DestinationDetailccoeiiiiiiiininnnnn. D-4
D.3.4 Best Practices for Consumer CONTAINETSc.ccccruiririerieriirienienieietetetestee et see e ee D-5
D.3.5 Interoperability GUidelines..........cccooviiiiiiiiiiii D-6
D.3.6 Security Considerations............cccccciuiiiiiiiiiiiiiicccrceee e D-8
D.3.7 Transaction CoNSIAErationsccecerieeieieieieireetesiesieseesiestestesseseeeseeseesessessessessessensenes D-11
Strategies for Uniform Distributed Queue ConsSumers ..o D-11
D.4.1 General Strategies..........ccoiiurieieiiiicieieceee s D-12
D.4.2 Best Practice for Local Server CONSUMETScccveerueirienieienieienieeeniesesseesseeeseneeseneens D-12
Strategies for Subscribers on Uniform Distributed Topics........ccoevvrvnnnninnnnnrirenes D-13
D.5.1 One Copy Per INStancecoueviiiiiiiiiiiiiiicccccc s D-13
D.5.2 One Copy Per Application.........c.cccuiiiiriiiiiiiciee e D-14

Xi

Xii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing JMS Applications for Oracle WebLogic Server. This document is
intended for software developers, business analysts and system architects.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Developing [MS
Applications for Oracle WebLogic Server.

® Document Scope and Audience

* Guide to this Document

* Related Documentation

¢ Samples and Tutorials for the J]MS Developer

¢ New and Changed JMS Features in This Release

1.1 Document Scope and Audience

This document is a resource for software developers who want to develop and
configure applications that include WebLogic Server Java Message Service (JMS). It
also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of WebLogic Server J]MS
for a particular application.

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning JMS topics.

You should be familiar with Java EE and JMS concepts. This document emphasizes the
value-added features provided by WebLogic Server JMS and key information about
how to use WebLogic Server features and facilities to get a JMS application up and
running.

1.2 Guide to this Document

¢ This chapter, Introduction and Roadmap, introduces the organization of this guide.

¢ Understanding WebLogic JMS, provides an overview of the Java Message Service.
It also describes WebLogic JMS components and features.

® Best Practices for Application Design, provides design options for WebLogic Server
JMS, application behaviors to consider during the design process, and
recommended design patterns.

Introduction and Roadmap 1-1

Related Documentation

Enhanced Support for Using WebLogic JMS with EJBs and Servlets, describes "best
practice” methods that make it easier to use WebLogic JMS in conjunction with Java
EE components, like Enterprise Java Beans and Servlets.

Developing a Basic JMS Application, describes how to develop a WebLogic JMS
application.

Understanding the Simplified API Programming Model , describes how to develop
a WebLogic JMS application using JMS 2.0 simplified APlIs.

Managing Your Applications, describes how to programmatically manage your
JMS applications using value-added WebLogic JMS features.

Using JMS Module Helper to Manage Applications, describes how to
programatically create and manage JMS servers, Store-and-Forward Agents, and
JMS system resources.

Using Multicasting with WebLogic JMS, describes how to use Multicasting to
enable the delivery of messages to a select group of hosts that subsequently
forward the messages to subscribers.

Using Distributed Destinations, describes how to use distributed destinations with
WebLogic JMS.

Using the Message Unit-of-Order, describes how to use Message Unit-of-Order to
provide strict message ordering when using WebLogic JMS queues.

Using Unit-of-Work Message Groups, describes how to use Unit-of-Work Message
Groups to provide groups of messages when using WebLogic JMS.

Using Transactions with WebLogic JMS, describes how to use transactions with
WebLogic JMS.

Developing Advanced Pub/Sub Applications, describes the advanced concepts
and functionality of Uniform Distributed Topics (UDTs) necessary to design high
availability applications.

Recovering from a Server Failure, describes how to terminate a JMS application
gracefully if a server fails and how to migrate JMS data after server failure.

WebLogic JMS C API, provides information on how to develop C programs that
interoperate with WebLogic JMS.

Deprecated WebLogic JMS Features, describes features that have been deprecated
for this release of WebLogic Server.

FAQs: Integrating Remote JMS Providers, provides answers to frequently asked
questions about how to integrate WebLogic Server with remote JMS providers.

How to Look Up a Destination, provides a summary of methods you can use to
lookup a destination.

Advanced Programming with Distributed Destinations Using the JMS Destination
Availability Helper API, provides a means for getting notifications when
destinations become available or unavailable.

1.3 Related Documentation

This document contains JMS-specific design and development information.

1-2 Developing JMS Applications for Oracle WebLogic Server

Samples and Tutorials for the JMS Developer

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

* Administering JMS Resources for Oracle WebLogic Server for information about
configuring and managing JMS resources.

o Administering the Store-and-Forward Service for Oracle WebLogic Server for
information about the benefits and usage of the Store-and-Forward service with
WebLogic JMS.

o Administering the WebLogic Persistent Store for information about the benefits and
usage of the system-wide WebLogic Persistent Store.

* Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

1.4 Samples and Tutorials for the JMS Developer

In addition to this document, Oracle provides a variety of code samples and tutorials
for JMS developers. The samples and tutorials illustrate WebLogic Server JMS in
action, and provide practical instructions about how to perform key JMS development
tasks.

Oracle recommends that you run some or all of the JMS examples before developing
your own JMS applications.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOVE\ user _pr oj ects

\ domai ns\ medr ec directory, where ORACLE_HOME is the directory you specified as
the Oracle Home when you installed Oracle WebLogic Server.

MedRec includes a service tier that is made up of Enterprise Java Beans (E]Bs) that
work together to process requests from web applications, web services, and workflow
applications, and future client applications. The application includes message-driven,
stateless session, stateful session, and entity E]Bs.

1.5 New and Changed JMS Features in This Release

This release includes the following new and changed features for WebLogic Server
12.x:

e WebLogic Server 12.2.1 supports the use of simplified APIs specified by JMS 2.0.
See Understanding the Simplified API Programming Model .

* Weighted Distributed Destinations are deprecated in WebLogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

¢ Advanced WebLogic JMS publish and subscribe (pub/sub) concepts and
functionality of Uniform Distributed Topics (UDTs) necessary to design high
availability applications. See Developing Advanced Pub/Sub Applications.

Introduction and Roadmap 1-3

New and Changed JMS Features in This Release

¢ The JMSDest i nati onAvai |l abi | ityHel per APIprovides a means for getting
notifications when destinations become available or unavailable. These APIs are for
advanced use cases only. Use this helper only when standard approaches for
solving WebLogic distributed consumer problems have been exhausted. See Using
the JMS Destination Availability Helper APIs with Distributed Queues in
Developing JMS Applications for Oracle WebLogic Server.

* Since WebLogic Server 10.3.6, the JMSModuleHelper does not support anonymous
lookup (using -
Dwebl ogi c. managenent . anonynmousAdni nLookupEnabl ed=t r ue) to comply
with the existing WebLogic security model. See Security Considerations for
Anonymous Users.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.2.0.

1-4 Developing JMS Applications for Oracle WebLogic Server

2

Understanding WebLogic JMS

This chapter describes the different Java Message Service (JMS) concepts and features,
and describes how they work with other application objects and WebLogic Server.

It is assumed that you are familiar with Java programming and JMS 1.1 and JMS 2.0
concepts and features.

e Overview of the Java Message Service and WebLogic J]MS
* Understanding the Messaging Models
e Value-Added Public JMS API Extensions

* Understanding the J]MS API

2.1 Overview of the Java Message Service and WebLogic JMS

WebLogic JMS is an enterprise-class messaging system that is tightly integrated into
the WebLogic Server platform. It fully supports the JMS Specification, described at
http://ww. oracl e. conf technet wor k/j ava/j ns/i ndex. ht nl, and also
provides numerous WebLogic JMS Extensions that go above and beyond the standard
JMS APIs.

2.1.1 What Is the Java Message Service?

An enterprise messaging system enables applications to communicate with one
another through the exchange of messages. A message is a request, report, and/or
event that contains information needed to coordinate communication between
different applications. A message provides a level of abstraction, allowing you to
separate the details nation system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging
systems. Specifically, JMS:

* Enables Java applications sharing a messaging system to exchange messages

¢ Simplifies application development by providing a standard interface for creating,
sending, and receiving messages

Figure 2-1 illustrates WebLogic JMS messaging.

Understanding WebLogic JMS 2-1

http://www.oracle.com/technetwork/java/jms/index.html

Overview of the Java Message Service and WebLogic JMS

Figure 2-1 WebLogic JMS Messaging

WeblLogic /M5

Application A -

Message Producer

Applicatien B

Message Consumer

As shown in the figure, WebLogic JMS accepts messages from producer applications
and delivers them to consumer applications.

2.1.2 Implementation of Java Specifications

WebLogic Server is compliant with the following Java specifications.

* WebLogic Server is compliant with the Java Platform, Enterprise Edition (Java EE)
Version 7.0 specification, described at ht t p: / / docs. or acl e. conl j avaee/ 7/
api /.

e WebLogic Server is fully compliant with the JMS 2.0 and JMS 1.1 specifications, at
http://ww. oracl e. com technetwor k/java/j ns/ i ndex. ht M, and can
be used in production.

2.1.3 WebLogic JMS Architecture
Figure 2-2 illustrates the WebLogic JMS architecture.

Figure 2-2 WeblLogic JMS Architecture
Weblogic Server

H WeblLogic JMS
Eﬁ A
R JMS Server

e tﬁ'ﬂ

Client 1

Y
o
-
B8
.
; B1
B2
JMS Server
WebLogic JMS

The major components of the WebLogic JMS Server architecture include:

2-2 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/
http://docs.oracle.com/javaee/7/api/
http://www.oracle.com/technetwork/java/jms/index.html

Understanding the Messaging Models

¢ JMS servers that can host a defined set of modules and any associated persistent
storage that reside on a WebLogic Server instance.

¢ JMS modules contain configuration resources (such as queues, topics, and
connections factories) and are defined by XML documents that conform to the
http://xm ns. oracl e. com webl ogi ¢/ webl ogi c-j s/ 1. 4/ webl ogi c-
j ms. xsd schema.

¢ Client JMS applications that either produce messages to destinations or consume
messages from destinations.

¢ Java Naming and Directory Interface (JNDI), which provides a resource lookup
facility. JMS resources such as connection factories and destinations are configured
with a JNDI name. The runtime implementations of these resources are then bound
into JNDI using the given names.

* WebLogic persistent storage (file store or JDBC-accessible) for storing persistent
message data.

2.2 Understanding the Messaging Models

JMS supports two messaging models: point-to-point (PTP) and publish/subscribe .
The messaging models are similar, except for the following differences:

¢ The PTP messaging model enables the delivery of a message to exact one recipient.

® The publish/subscribe messaging model enables the delivery of a message to
multiple recipients.

Each model is implemented with classes that extend common base classes. For
example, the PTP class j avax. j ms. Queue (described athtt p: //

docs. oracl e. conl j avaee/ 7/ api / j avax/j ms/ Queue. ht m) and the publish/
subscibe class j avax. j ns. Topi ¢ (described at htt p: // docs. or acl e. coni

j avaeel 7/ api / j avax/j ns/ Topi c. ht m) both extend the class

j avax.j ns. Desti nati on (described at htt p: // docs. or acl e. con

j avaeel 7/ api / javax/j ns/ Destination. htm).

Note:

The terms producer and consumer are used as generic descriptions of
applications that send and receive messages, respectively, in either messaging
model. For each specific messaging model, however, unique terms specific to
that model are used when referring to producers and consumers.

2.2.1 Point-to-Point Messaging

The point-to-point (PTP) messaging model enables one application to send a message
to another. PTP messaging applications send and receive messages using named
queues. A queue sender (producer) sends a message to a specific queue. A queue receiver
(consumer) receives messages from a specific queue.

Figure 2-3 illustrates PTP messaging.

Understanding WebLogic JMS 2-3

http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd
http://docs.oracle.com/javaee/7/api/javax/jms/Queue.html
http://docs.oracle.com/javaee/7/api/javax/jms/Queue.html
http://docs.oracle.com/javaee/7/api/javax/jms/Topic.html
http://docs.oracle.com/javaee/7/api/javax/jms/Topic.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

Understanding the Messaging Models

Figure 2-3 Point-to-Point (PTP) Messaging

| listfening

Application Al ""'EM-DQE JS

Application A2 —}@- - -
hﬂ*

Application Al

Application A2

1
Application A3 Message Queue i M application A3
1
o L N L BT Y L B P .
Message Producers Message Consumers
(Queue Senders) {Queue Receivers)

Multiple queue senders and queue receivers can be associated with a single queue, but
an individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, then WebLogic J]MS
determines which one will receive the next message on a first come, first serve basis. If
no queue receivers are listening on the queue, then messages remain in the queue until
a queue receiver attaches to the queue.

2.2.2 Publish/Subscribe Messaging

The publish/subscribe messaging model enables an application to send a message to
multiple applications. Publish/subscribe messaging applications send and receive
messages by subscribing to a topic. A topic publisher (producer) sends messages to a
specific topic. A topic subscriber (consumer) retrieves messages from a specific topic.

Figure 2-4 illustrates publish/subscribe messaging.

Figure 2-4 Publish/Subscribe Messaging

I.-"I.-E.trf_ﬂgfc JMSE
Application Al

Bpplication A2 [—p @
hﬂ*

| applicacion B2

Applicatien A3 MEESHQE Tapic : Application B3
Message Producers Message Consumers
(Topic Publishers) (Topic Subscribers)

Unlike with the PTP messaging model, the publish/subscribe messaging model allows
multiple topic subscribers to receive the same message. JMS retains the message until
all topic subscribers have received it.

The publish/subscribe messaging model supports durable subscribers, enabling you
to assign a name to a topic subscriber and associate it with a user or application. For
more information about durable subscribers, see Setting Up Durable Subscriptions.

2-4 Developing JMS Applications for Oracle WebLogic Server

Value-Added Public JMS API Extensions

2.2.3 Message Persistence

The "Message Delivery Mode" section of the JMS Specification, described at ht t p: / /
www. or acl e. comf t echnet wor k/ j ava/j ms/ i ndex. ht m , messages can be
specified as persistent or non persistent:

® A persistent message is guaranteed to be delivered once. The message cannot be
lost due to a JMS provider failure, and it must not be delivered twice. It is not
considered sent until it has been safely written to a file or database. WebLogic J]MS
writes persistent messages to a WebLogic persistent store (disk-base file or JDBC-
accessible database) that is optionally targeted by each JMS server during
configuration.

¢ Non persistent messages are not stored. They are guaranteed to be delivered once-
at-most-after, unless there is a JMS provider failure, in which case messages may be
lost, and must not be delivered twice. If a connection is closed or recovered, then all
non persistent messages that have not yet been acknowledged will be redelivered.
Once a non persistent message is acknowledged, it will not be redelivered.

For information about using the system-wide, WebLogic Persistent Store, see
Administering the WebLogic Persistent Store.

2.3 Value-Added Public JMS API Extensions

WebLogic JMS is tightly integrated into the WebLogic Server platform, enabling you
to build highly secure Java EE applications that can be easily monitored and
administered through the WebLogic Server console. In addition to fully supporting
XA transactions, WebLogic JMS also features high availability through its clustering
and service migration features, while also providing seamless interoperability with
other versions of WebLogic Server and third-party messaging providers.

For a detailed listing of these value-added features, see WebLogic Server Value-Added
JMS Features in Administering JMS Resources for Oracle WebLogic Server.

2.3.1 WebLogic Server Value-Added JMS Features

In addition to the standard JMS APIs specified by the JMS Specification, WebLogic
Server provides numerous Webl ogi c. j ms. ext ensi ons APIs, which includes the
classes and methods described in the Table 2-1.For more information about these APIs,
see Java API Reference for Oracle WebLogic Server.

Table 2-1 WebLogic JMS Public APl Extensions
]

Interface/Class Function
Consumerlnfo, Provides consumer and destination information to
DestinationInfo management clients in CompositeData format.

Understanding WebLogic JMS 2-5

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Value-Added Public JMS API Extensions

Table 2-1 (Cont.) WebLogic JMS Public API Extensions
___|

Interface/Class Function
JMSMessageFactoryImpl, Provides a factory and methods to:
WLMessageFactory * Create J]MS messages

* Create JMS bytes messages
* Create J]MS map messages

* Create JMS object messages
¢ Create]MS stream messages
* Create JMS text messages

e Create J]MS XML messages

JMSMessagelnfo Provides browsing and message manipulation using JMX
JMSModuleHelper, Monitors JMS runtime MBeans and manages JMS Module
JMSNamedEntityModifier configuration entities in a JMS module
JMSRuntimeHelper Monitors JMS runtime JMX MBeans

MDBTransaction Associates a message delivered to a MDB (message-driven

bean) with a transaction

WLDestination Determines if a destination is a queue or a topic

WLMessage Sets a delivery time for messages, redelivery limits, and
send timeouts

Java API Reference for Oracle Sets a message delivery times for producers and Unit-of-
WebLogic Order names
ServerWLMessageProducer

WLJMSContext Provides additional fields and methods that are not
supported by j avax. j ms. JM5Cont ext . WL]MSContext
provides the same extension features as WLConnection

and WLSession
WLJMSProducer Provides additional methods that are not supported by
j avax. j ms. JMSPr oducer.
WLQueueSession, Provides additional fields and methods that are not
WLSession, supported by j avax. j ms. QueueSessi on,
WL TopicSession j avax.j ms. Sessi on,andj avax. j ns. Topi cSessi on
XMLMessage Creates XML messages
Schedule Sets a scheduled delivery times for messages
JMSHelper Monitors JMS runtime MBeans.
Deprecated in this release of WebLogic Server. Replaced
by JMSModuleHelper.

2-6 Developing JMS Applications for Oracle WebLogic Server

Understanding the JMS AP

Table 2-1 (Cont.) WebLogic JMS Public APl Extensions
___|

Interface/Class Function
ServerSessionPoolFactory, Provides interfaces for creating server session pools and
ServerSessionPoolListener message listeners

Note: Session pool configuration objects are deprecated.
They are not a required part of the Java EE specification,
do not support JTA user transactions, and are largely
superseded by message-driven beans (MDBs), which are a
required part of Java EE. For more information on
designing MDBs, see Developing Message-Driven Beans for
Oracle WebLogic Server.

This API also supports NO_ACKNOALEDGE and MULTI CAST_NO_ACKNOW.EDGE
acknowledge modes, and extended exceptions, including throwing an exception:

¢ To the session exception listener (if set), when one of its consumers has been closed
by the server as a result of a server failure or administrative intervention.

¢ From a multicast session when the number of messages received by the session, but
not yet delivered to the message listener, exceeds the maximum number of
messages allowed for that session.

e From a multicast consumer when it detects a sequence gap (message received out
of sequence) in the data stream.

2.4 Understanding the JMS API

To create a JMS application, use the j avax. j ms APlathttp://

docs. oracl e. com j avaee/ 7/ api / j avax/ j ns/ package- summary. ht m . The
API enables you to create the class objects necessary to connect to the JMS, and send
and receive messages. JMS class interfaces are created as subclasses to provide queue
specific and topic specific versions of the common parent classes.

The Table 2-2 lists the JMS classes described in more detail in subsequent sections. For
a complete description of all JMS classes, seej avax.j ms,athttp://

docs. oracl e. com j avaee/ 7/ api / j avax/ j ns/ package- summary. ht m , orin
the webl ogi c. j ns. ext ensi ons Javadoc.

Table 2-2 WebLogic JMS Classes
- |

JMS Class Description

ConnectionFactory Encapsulates connection configuration information.
A connection factory is used to create connections.
You look up a connection factory using JNDI.

JMSContext Encapsulates the functionality of two objects,
Connection and Session, in a single object.

Connection Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Session Defines a serial order for the messages produced

and consumed.

Understanding WebLogic JMS 2-7

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html

Understanding the JMS API

Table 2-2 (Cont.) WebLogic JMS Classes
___|

JMS Class Description

Destination Identifies a queue or topic, encapsulating the
address of a specific provider. Queue and topic
destinations manage the messages delivered from
the PTP and publish/subscribe messaging models,

respectively.
MessageProducer and Provides the interface for sending and receiving
MessageConsumer messages. Message producers send messages to a

queue or topic. Message consumers receive
messages from a queue or topic.

Messages Encapsulates information to be sent or received.

ServerSessionPoolFactory!

Encapsulates configuration information for a
server-managed pool of message consumers. The
server session pool factory is used to create server

session pools.

ServerSessionPool? Provides a pool of server sessions that can be used
to process messages concurrently for connection
consumers.

ServerSession® Associates a thread with a JMS session.

4

ConnectionConsumer Specifies a consumer that retrieves server sessions

to process messages concurrently.

1 Supports an optional JMS interface for processing multiple messages concurrently.
2 Supports an optional JMS interface for processing multiple messages concurrently.
3 Supports an optional JMS interface for processing multiple messages concurrently.
4 Supports an optional JMS interface for processing multiple messages concurrently.

For information about configuring JMS resources, see Configuring Basic JMS System
Resources in Administering JMS Resoutrces for Oracle WebLogic Server. The procedure for
setting up a JMS application is presented in Setting Up a JMS Application.

2.4.1 ConnectionFactory

Connect i onFact or y encapsulates connection configuration information, and
enables JMS applications to create a Connect i on (see Connection). A connection
factory supports concurrent use, enabling multiple threads to access the object
simultaneously. You can use the pre configured default connection factories provided
by WebLogic JMS, or you can configure one or more connection factories to create
connections with predefined attributes that suit your application.

2.4.1.1 Using the Default Connection Factories

WebLogic Server supports the default connection factory as defined by the Java EE 7
specification. For more information, see Using the Default JMS Connection Factory
Defined by Java EE 7 in Administering JMS Resources for Oracle WebLogic Server.

WebLogic JMS defines two default connection factories, which you can look up using
the following JNDI names:

e webl ogi c. j ms. Connect i onFact ory

2-8 Developing JMS Applications for Oracle WebLogic Server

Understanding the JMS AP

e webl ogi c. j ms. XAConnecti onFact ory

You only need to create a user-defined a connection factory if the settings of the
default factories are not suitable for your application. The main difference between the
preconfigured settings for the default connection factories is the default value for the
"XA Connection Factory Enabled" attribute which is used to enable JTA transactions,
as shown in the following table.

Table 2-3 XA Transaction Settings for Default Connection Factories
. ___|

Default Connection Factory XA Connection Factory Enabled setting is

L . False
webl ogi c. j ms. Connecti onFactory

L . True
webl ogi c. j ms. XAConnect i onFact ory

An XA factory is required for JMS applications to use JTA user transactions, but is not
required for transacted sessions. For more information about using transactions with
WebLogic JMS, see Using Transactions with WebLogic JMS.

All other default factory configuration attributes are set to the same default values as a
user-defined connection factory.

For more information about the XA Connection Factory Enabled attribute, and to see
the default values for the other connection factory attributes, see JMS Connection
Factory: Configuration: Transactions in the Oracle WebLogic Server Administration
Console Online Help.

Another distinction when using the default connection factories is that you have no
control over targeting the WebLogic Server instances where the connection factory
may be deployed. However, you can disable the default connection factories on a per-
server basis.

For more information about enabling or disabling the default connection factories, see
Servers: Configuration: Services in the Oracle WebLogic Server Administration Console
Online Help.

To deploy a connection factory on specific independent servers, on specific servers
within a cluster, or on an entire cluster, you must configure a new connection factory
and specify the appropriate target, as explained in Connection Factory Configuration
in Administering [MS Resources for Oracle WebLogic Server.

Note:

For backward compatibility, WebLogic JMS still supports two deprecated
default connection factories. The JNDI names for these factories are

j avax. j ms. QueueConnect i onFact ory and

j avax. j ms. Topi cConnecti onFactory.

2.4.1.2 Configuring and Deploying Connection Factories

A system administrator can define and configure one or more connection factories to
create connections with predefined attributes and WebLogic Server will add them to
the JNDI space during startup. The application then retrieves a connection factory

Understanding WebLogic JMS 2-9

Understanding the JMS API

using WebLogic JNDI. Any user-defined connection factories must be uniquely
named.

For information about configuring connection factories, see "Configure connection
factories" in the Oracle WebLogic Server Administration Console Online Help.

A system administrator establishes cluster-wide, transparent access to JMS
destinations from any server in the cluster by targeting to the cluster or by targeting to
one or more server instances in the cluster. This way, each connection factory can be
deployed on multiple WebLogic Server instances. For more information about JMS
clustering, refer to "Configuring Advanced WebLogic JMS Resources" in Administering
JMS Resources for Oracle WebLogic Server.

2.4.1.3 The ConnectionFactory Class

The Connect i onFact ory class does not define methods; however, its subclasses
define methods for the respective messaging models. A connection factory supports
concurrent use, enabling multiple threads to access the object simultaneously.

Note:

For this release, you can use the JMS version 1.1 specification connection
factories or you can choose to use the subclasses.

Table 2-4 describes the Connect i onFact or y subclasses.

Table 2-4 ConnectionFactory Subclasses

Subclass In Messaging Model Is Used to Create
i PTP QueueConnecti on to a JMS PTP
QueueConnecti onFactory provider.
)) Publish /Subscibe Topi cConnecti on to a JMS
Topi cConnect i onFact ory Publish/Subscibe provider.

To learn how to use the Connect i onFact or y class within an application, see
Developing a Basic JMS Application, or the j avax. j ms. Connecti onFact ory
Javadocathtt p: // docs. oracl e. com j avaee/ 7/ api / j avax/j ns/
ConnectionFactory. htm .

2.4.2 JMSContext

JMSCont ext is the main interface introduced in the simplified API for JMS 2.0. For
more information about this interface, see New Interfaces in the Simplified JMS APL

2.4.3 Connection

A Connect i on represents an open communication channel between an application
and the messaging system, and is used to create a Sessi on (see Session) for
producing and consuming messages. A connection creates server-side and client-side
objects that manage the messaging activity between an application and JMS. A
connection may also provide user authentication.

A Connecti on is created by Connect i onFact or y (see ConnectionFactory),
obtained through a JNDI lookup.

2-10 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html

Understanding the JMS AP

2.4.4 Session

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish a single connection for all messaging. In
the WebLogic Server, JMS traffic is multiplexed with other WebLogic services on the
client connection to the server. No additional TCP/IP connections are created for JMS.
Servlets and other server-side objects can also obtain JMS Connections.

By default, a connection is created in stopped mode. For information about how and
when to start a stopped connection, see Starting, Stopping, and Closing a Connection.

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

Note:

For this release, you can use the JMS Version 1.1 specification connection
objects or you can choose to use the subclasses.

Table 2-5 describes the Connect i on subclasses.

Table 2-5 Connection Subclasses

Subclass In Messaging Is Used to Create
Model
) PTP QueueSessi ons, and consists of a connection to a
QueueConnect | on JMS PTP provider created by

QueueConnecti onFact ory.

Pub/sub Topi cSessi ons, and consists of a connection to a
JMS publish/subscribe provider created by
Topi cConnecti onFactory.

Topi cConnecti on

To learn how to use the Connect i on class within an application, see Developing a
Basic JMS Application, or the j avax. j ms. Connect i on Javadocat htt p://
docs. oracl e. com j avaee/ 7/ api / j avax/ j ns/ Connecti on. ht m .

A Sessi on object defines a serial order for the messages produced and consumed,
and can create multiple message producers and message consumers. The same thread
can be used for producing and consuming messages. If you want an application to
have a separate thread for producing and consuming messages, then the application
should create a separate session for each function.

A Session is created by Connect i on (see Connection).

2.4.4.1 WebLogic JMS Session Guidelines

The JMS 1.1 Specification, at ht t p: / / www. or acl e. coni t echnet wor k/

javal/j ms/ i ndex. ht nl , allows for a generic session to have a MessageConsurer
for any type of Destination object. However, WebLogic JMS does not support having
both types of MessageConsumer (QueueConsurer and Topi cSubscri ber) fora
single session. In addition, having multiple consumers for a single session is not a
common practice. The following commonly used scenarios are supported:

¢ Using a single session with both a QueueSender and a Topi cSubscri ber or:
QueueConsuner and Topi cPubl i sher.

Understanding WebLogic JMS 2-11

http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html
http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Understanding the JMS API

¢ Multiple MessagePr oducer s of any type.

Note:

A session and its message producers and consumers can only be accessed by
one thread at a time. Their behavior is undefined if multiple threads access
them simultaneously.

2.4.4.2 Session Subclasses

Table 2-6 describes the Session subclasses.

Table 2-6 Session Subclasses
- - - -]

Subclass In Messaging Model Provides a Context for

PTP Producing and consuming messages for a JMS

QueueSessi on PTP provider. Created by QueueConnection.

Pub/sub Producing and consuming messages for a JMS
publish/subscribe provider. Created by
TopicConnection.

Topi cSessi on

To learn how to use the Session class within an application, see Developing a Basic
JMS Application, or the j avax. j ms. Sessi onathttp://docs. oracl e. cont

j avaeel 7/ api / j avax/j ns/ Sessi on. ht m , and the
weblogic.jms.extensions.WLSession Javadoc.

2.4.4.3 Non-Transacted Sessions

In a non-transacted session, the application creating the session selects one of the five
acknowledge modes defined in Table 2-7

Table 2-7 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

The Sessi on object acknowledges receipt of a message after
receiving application method has returned from processing
it.

AUTO_ACKNOWLEDGE

The Sessi on object relies on the application to call an
acknowledge method on a received message. After the
method is called, the session acknowledges all messages
received since the last acknowledge.

CLI ENT_ACKNOW.EDGE

This mode allows an application to receive, process, and
acknowledge a batch of messages with one call.

Note: In the WebLogic Server Administration Console, if the
Acknowledge Policy attribute on the connection factory is
set to Pr evi ous, but you want to acknowledge all received
messages for a given session, then use the last message to
invoke the acknowledge method.

For more information on the Acknowledge Policy attribute,
see JMS Connection Factory: Configuration: General in the
Oracle WebLogic Server Administration Console Online Help.

2-12 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/Session.html

Understanding the JMS AP

Table 2-7 (Cont.) Acknowledge Modes Used for Non-Transacted Sessions
___|

Acknowledge Mode Description

The Sessi on object acknowledges receipt of a message after
the receiving application method has returned from
processing it; duplicate acknowledges are permitted.

DUPS_OK_ACKNOALEDGE

This mode is most efficient in terms of resource usage.

Note: You should avoid using this mode if your application
cannot handle duplicate messages. Duplicate messages may
be sent if an initial attempt to deliver a message fails.

No acknowledgement is required. Messages sent to a

NO_ACKNOALEDGE NO_ACKNOW.EDGE session are immediately deleted from the
server. Messages received in this mode are not recovered,
and as a result messages may be lost and/or duplicate
message may be delivered if an initial attempt to deliver a
message fails.

This mode is supported for applications that do not require
the quality of service provided by session acknowledge, and
that do not want to incur the associated overhead.

Note: You should avoid using this mode if your application
cannot handle lost or duplicate messages. Duplicate
messages may be sent if an initial attempt to deliver a
message fails.

Multicast mode with no acknowledge required.

Messages sent to a MULTI CAST_NO_ACKNOW._EDCE session
share the same characteristics as NO_ACKNOW.EDGE mode,
described previously.

MULTI CAST_NO_ACKNOW.EDGE

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service
provided by session acknowledge. For more information on
multicasting, see Using Multicasting with WebLogic JMS.

Note: Use only with topics. You should avoid using this
mode if your application cannot handle lost or duplicate
messages. Duplicate messages may be sent if an initial
attempt to deliver a message fails.

2.4.4.4 Transacted Sessions

In a transacted session, only one transaction is active at any time. Any number of
messages sent or received during a transaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an
application commits a transaction, all the messages that the application received
during the transaction are acknowledged by the messaging system and messages it
sent are accepted for delivery. If an application rolls back a transaction, then the
messages that the application received during the transaction are not acknowledged
and messages it sent are discarded.

JMS can participate in distributed transactions with other Java services, such as EJB,
that use the Java Transaction API (JTA). Transacted sessions do not support this
capability because the transaction is restricted to accessing the messages associated
with that session. For more information about using JMS with JTA, see Using JTA User
Transactions.

Understanding WebLogic JMS 2-13

Understanding the JMS API

2.4.5 Destination

A Dest i nat i on object can be either a queue or topic, encapsulating the address
syntax for a specific provider. The JMS specification does not define a standard
address syntax due to the variations in syntax between providers.

Similar to a connection factory, an administrator defines and configures the
destination, and WebLogic Server adds it to the JNDI space during startup.
Applications can also create temporary destinations that exist only for the duration of
the JMS connection in which they are created.

Note:

Administrators can also configure a distributed destination, which is a single
set of destinations (queues or topics) that are accessible as a single, logical
destination to a client. For more information, see Distributed Destinations.

On the client side, Queue and Topi ¢ objects are handles to the object on the server.
Their methods only return their names. To access them for messaging, you create
message producers and consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously. J]MS Queue and Topi ¢ objects extend j avax. j ms. Desti nati on
method described at ht t p: / / docs. oracl e. com j avaee/ 7/ api / j avax/j ns/
Destination. htm .

Note:

For this release, you can use the JMS version 1.1 specification destination
objects or you can choose to use the subclasses.

Table 2-8 describes the Dest i nat i on subclasses.

Table 2-8 Destination Subclasses

Subclass Messaging Manages Messages for

Model

PTP MS point-to-point provider.
Queue IMS p point p

PTP JMS point-to-point provider, and exists for the
Tenpor aryQueue

duration of the JMS connection in which the messages
are created. A temporary queue can be consumed
only by the queue connection that created it

Topi Pub/sub JMS publish/subscribe provider
opi ¢

Pub/sub JMS publish/subscribe provider, and exists for the
duration of the JMS connection in which the messages
are created. A temporary topic can be consumed only
by the topic connection that created it

Tenpor aryTopi ¢

2-14 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

Understanding the JMS AP

Note:

An application has the option of browsing queues by creating a

QueueBr owser object in its queue session. This object produces a snapshot of
the messages in the queue at the time the queue browser is created. The
application can view the messages in the queue, but the messages are not
considered read and are not removed from the queue. For more information
about browsing queues, see Setting and Browsing Message Header and
Property Fields .

To learn how to use the Dest i nat i on class within an application, see Developing a
Basic JMS Application, or the j avax. j ms. Desti nati on Javadocat http://
docs. oracl e. com j avaee/ 7/ api / j avax/j ns/ Destinati on. htm .

2.4.5.1 Distributed Destinations

A distributed destination resource is a single set of destinations (queues or topics) that
are accessible as a single, logical destination to a client (for example, a distributed topic
has its own JNDI name). The members of the set are typically distributed across
multiple servers within a cluster, with each member belonging to a separate JMS
server. Applications that use a distributed destination are more highly available than
applications that use standalone destinations because WebLogic JMS provides load
balancing and failover for the members of a distributed destination in a cluster.

* For more information about using a distributed destination with your applications,
see Using Distributed Destinations.

¢ For instructions about configuring a distributed queue destination, see Configure
uniform distributed queues in the Oracle WebLogic Server Administration Console
Online Help.

¢ For instructions about configuring a distributed topic destination, see Configure
uniform distributed topics in the Oracle WebLogic Server Administration Console
Online Help.

2.4.6 MessageProducer and MessageConsumer

A MessagePr oducer sends messages to a queue or topic. A MessageConsuner
receives messages from a queue or topic. Message producers and consumers operate
independently of one another. Message producers generate and send messages
regardless of whether a message consumer has been created and is waiting for a
message, and vice versa.

A Sessi on (see Session) creates the MessagePr oducer s and MessageConsuner s
that are attached to queues and topics.

The message sender and receiver objects are created as subclasses of the
MessagePr oducer and MessageConsuner classes.

Note:

For this release, you can use the JMS version 1.1 specification message
producer and consumer objects or you can use the subclasses.

Table 2-9 describes the MessagePr oducer and MessageConsumer subclasses.

Understanding WebLogic JMS 2-15

http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

Understanding the JMS API

Table 2-9 MessageProducer and MessageConsumer Subclasses
-~~~ |

Subclass In Messaging Model Performs this Function
PTP Sends messages for a JMS point-to-point
QueueSender provider.
, PTP Receives messages for a JMS point-to-point

QueueRecei ver provider

) . Publish/subscibe Sends messages for a JMS Publish/subscibe
Topi cPubl i sher provider

i i Publish/subscibe Receives messages for a JMS Publish/subscibe
Topi cSubscri ber provider

The PTP model, as shown in the figure Figure 2-3, allows multiple sessions to receive
messages from the same queue. However, a message can only be delivered to one
queue receiver. When there are multiple queue receivers, WebLogic JMS defines the
next queue receiver that will receive a message on a first-come, first-serve basis.

The Publish/subscibe model, as shown in the figure Figure 2-4, allows messages to be
delivered to multiple topic subscribers. Topic subscribers can be durable or non-
durable, as described in Setting Up Durable Subscriptions.

An application can use the same JMS connection to both publish and subscribe to a
topic. Because topic messages can be delivered to all subscribers, an application can
receive messages it has published itself. To prevent clients from receiving messages
that they publish, a JMS application can set a noLocal attribute on the topic
subscriber, as described in Step 5: Create Message Producers and Message Consumers.

To learn how to use the MessagePr oducer and MessageConsurmer classes within
an application, see Setting Up a JMS Application, or the

j avax.j nms. MessagePr oducer (athttp://docs. oracl e. con javaeel/ 7/ api/
j avax/j ms/ MessagePr oducer. htm), and j avax. j ns. MessageConsuner (at
http://docs. oracl e. conl j avaee/ 7/ api / j avax/ j s/

MessageConsurer . ht m) Javadoc.

2.4.7 Messages

A Message encapsulates the information exchanged by applications. This information
includes three components:

® Message Header Fields
* Message Property Fields
* Message Body

2.4.7.1 Message Header Fields

Every JMS message contains a standard set of header fields that is included by default
and available to message consumers. Some fields can be set by the message producers.

For information about setting message header fields, see Setting and Browsing
Message Header and Property Fields, or to the j avax. j ms. Message Javadoc at
http://docs. oracl e.conlj avaee/ 7/ api / j avax/j ms/ Message. htm .

2-16 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Understanding the JMS AP

Table 2-10 describes the fields in the message headers and shows how values are
defined for each field.

Table 2-10 Message Header Fields

Field Description Defined by

Specifies one of the following: a WebLogic JMSMessagel D (field Application
described later in this table), an application-specific string, or a byt e[]

array. The JMSCor r el at i onl Dfield is used to correlate messages and

is set directly on the message by the application before send() .

JMBCorrel ationl D

There are two common applications for this field.

The first application is to link messages by setting up a request/
response scheme, as follows:

1. When an application sends a message, it stores the
JMsMessagel Dvalue assigned to it.

2. When an application receives the message, it copies the
JMsMessagel Dinto the JMSCor r el at i onl Dfield of a response
message that it sends back to the sending application.

The second application is to use the JM5Cor r el at i onl Dfield to carry
any String you choose, enabling a series of messages to be linked with
some application-determined value.

Specifies PERSI STENT or NON_PERSI STENT messaging. This field is send()
set on the producer or as parameter sent by the application before method
send().

When a persistent message is sent, it is stored in the WebLogic
Persistent Store. The send() operation is not considered successful
until delivery of the message can be guaranteed. A persistent message
is guaranteed to be delivered at least once.

JMBDel i ver yMode

WebLogic JMS does not store non-persistent messages in the persistent
store. This mode of operation provides the lowest overhead. They are
guaranteed to be delivered at least once unless there is a system failure,
in which case messages may be lost. If a connection is closed or
recovered, all non persistent messages that have not yet been
acknowledged will be redelivered. After a non persistent message is
acknowledged, it will not be redelivered.

This value is overwritten by a call to thepr oducer . send(), setting

this value directly on the message has no effect. The values set by the
producer can be queried using the message supplied to

producer . send() or when the message is received by a consumer.

Defines the earliest absolute time at which a message can be delivered send()
to a consumer. This field is set by the application before send() and method
depends onti meToDel i ver, which is set on the producer.

JMBDel i veryTi me

This field can be used to sort messages in a destination and to select
messages. For purposes of data type conversion, the
JMBDel i ver yTi e is a long integer.

Understanding WebLogic JMS 2-17

Understanding the JMS API

Table 2-10 (Cont.) Message Header Fields
. __|

Field Description Defined by

Specifies the destination (queue or topic) to which the messageistobe send()
delivered. This field is set when creating producer or as parameter sent method
by the application before send() .

JMBDest i nation

This value is overwritten by a call to pr oducer . send() , setting this
value directly on the message has no effect. The values set by the
producer can be queried using the message supplied to

producer. send() or when the message is received by a consumer.
When a message is received, its destination value must be equivalent to
the value assigned when it was sent.

Specifies the expiration, or time-to-live value, for a message. This field send()
is set by the application before send() . Depends ont i meToLi ve, method
which is set on the producer or as a parameter sent by the application

tosend().

WebLogic JMS calculates the JMSEXpi r at i on value as the sum of the
application's time-to-live and the current GMT. If the application

specifies time-to-live as 0, then the JMSEXpi r at i on value is set to 0,

which means the message never expires.

JMBExpi ration

WebLogic JMS removes expired messages from the system to prevent
their delivery.

Contains a string value that uniquely identifies each message sentbya send()
JMBMessagel D JMS Provider. This field is set internally by send() . method

All IMSMessagel Ds start with an | D: prefix.

This value is overwritten by a call to pr oducer . send(), setting this
value directly on the message has no effect. The values set by the
producer can be queried using the message supplied to

producer . send() or when the message is received by a consumer.
When the message is received, it contains a provider-assigned value.

Specifies the priority level. This field is set on the producer or as send()

JMBPriority parameter sent by the application before send() . method

JMS defines ten priority levels, 0 to 9, 0 being the lowest priority. Levels
0-4 indicate gradations of normal priority, and level 5-9 indicate
gradations of expedited priority.

When the message is received, it contains the value specified by the
method sending the message.

You can sort destinations by priority by configuring a destination key,
as described in Configure destination keys in the Oracle WebLogic Server
Administration Console Online Help.

Specifies a flag set when a message is redelivered because no WebLogic JMS
acknowledge was received. This flag is of interest to a receiving
application.

JMBRedel i ver ed

If set, the flag indicates that J]MS may have delivered the message
previously because one of the following is true:

* The application has already received the message, but did not
acknowledge it.

e The session's r ecover () method was called to restart the session
beginning after the last acknowledged message. For more
information about the r ecover () method, see Recovering
Received Messages.

2-18 Developing JMS Applications for Oracle WebLogic Server

Understanding the JMS AP

Table 2-10 (Cont.) Message Header Fields
. __|

Field Description Defined by

Specifies a queue or topic to which reply messages should be sent. This ~ Application
field is set directly on the message by the application before send() .

This feature can be used with the JIMSCor r el at i onl Dheader field to
coordinate request/response messages.

JMVBRepl yTo

Setting the JMSRepl yTo field does not guarantee a response; it simply
enables the receiving application to respond.

Contains the time at which the message was sent. WebLogic JMS writes WebLogic JMS
the timestamp in the message when it accepts the message for delivery,
not when the application sends the message.

JMBTi mest anp

When the message is received, it contains the timestamp.

The value stored in the field is a Java millis time value.

Specifies the message type identifier (String) set directly on the Application

IMBType message by the application before send() .

The JMS specification allows some flexibility with this field to
accommodate diverse JMS providers. Some messaging systems allow
application-specific message types to be used. For such systems, the
JMBType field could be used to hold a message type ID that provides
access to the stored type definitions.

WebLogic JMS does not restrict the use of this field.

2.4.7.2 Message Property Fields

The property fields of a message contain header fields added by the sending
application. The properties are standard Java name/value pairs. Property names must
conform to the message selector syntax specifications defined in the

j avax.j nms. Message Javadocathtt p://docs. oracl e. com j avaee/ 7/ api /

j avax/ j ms/ Message. ht nml . The following values are valid: boolean, byte, double,
float, int, long, short, and String.

WebLogic Server supports the use of the following JMS (JMSX) defined properties as
defined in the JMS 1.1. Specification, at ht t p: / / www. or acl e. conl t echnet wor k/
javaljms/index. htm:

Table 2-11 JMSX Property
- ___|

Type Description

JMSXUserID System generated property that identifies the user sending the
message. See Using the JMSXUserID Property.

JMSXDeliveryCount System generated property that specifies the number of
message delivery attempts where first attempt is 1

JMSXGroupID Identity of the message group

JMSXGroupSeq Sequence number of a message within a group

Although message property fields may be used for application-specific purposes, JMS
provides them primarily for use in message selectors. You determine how the JMS
properties are used in your environment. You can include them in some messages and

Understanding WebLogic JMS 2-19

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Understanding the JMS API

omit them from others depending upon your processing criteria. For more
information, see:

¢ Setting and Browsing Message Header and Property Fields
¢ Filtering Messages

* JMS 1.1. Specification, described at ht t p: / / www. or acl e. conl t echnet wor k/
javal j ms/ i ndex. ht m

2.4.7.3 Message Body

A message body contains the content being delivered from the producer to the
consumer.

Table 2-12 describes the types of messages defined by JMS. All message types extend
javax.j nms. Message,athttp://docs. oracl e. com javaeel/ 7/ api /

j avax/ j ms/ Message. ht nl , which consists of message headers and properties, but
no message body.

Table 2-12 JMS Message Types
- - __|

Type Description

Stream of uninterpreted bytes, which must be understood
by the sender and receiver. The access methods for this
message type are stream-oriented readers and writers based
onj ava. i 0. Dat al nput St r eamand

java.io. Dat aQut put Stream Seehttp://

docs. oracl e. conl j avaee/ 7/ api / j avax/ j ns/

Byt esMessage. ht mi .

j avax.j ns. Byt esMessage

Set of name/value pairs in which the names are strings and
the values are Java primitive types. Pairs can be read
sequentially or randomly, by specifying a name.

j avax. j ns. MapMessage

Single serializable Java object. See ht t p: //
docs. oracl e. con j avaee/ 7/ api / j avax/ j s/
bj ect Message. htnl .

javax. j ms. Obj ect Message

Similar to a BytesMessage, except that only Java primitive
types are written to or read from the stream. See ht t p: / /
docs. oracl e. conl j avaee/ 7/ api / j avax/ j s/
Streamvessage. htni .

javax.j ns. StreanlMessage

Single String. The TextMessage can also contain XML
content. See ht t p: / / docs. or acl e. cont
j avaeel/ 7/ api / j avax/j ns/ Text Message. ht i .

j avax. j ns. Text Message

XML content. Use of the XMLMessage type facilitates
message filtering, which is more complex when performed
e on XML content shipped in a TextMessage.

weblogic.jms.extensions XMLMessag

For more information, see the j avax. j ns. Message Javadocathttp://

docs. oracl e. com j avaee/ 7/ api / j avax/j ns/ Message. ht nl . For more
information about the access methods and, if applicable, the conversion charts
associated with a particular message type, see the Javadoc for that message type.

2-20 Developing JMS Applications for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Understanding the JMS AP

2.4.8 ServerSessionPoolFactory

Note:

Session pool and connection consumer configuration objects are deprecated.
They are not a required part of the Java EE specification, do not support JTA
user transactions, and are largely superseded by message driven beans
(MDBs), which are simpler, easier to manage, and more capable. For more
information about designing MDBs, see Message-Driven EJBs in Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

A server session pool is a WebLogic-specific JMS feature that enables you to process
messages concurrently. A server session pool factory is used to create a server-side
Ser ver Sessi onPool .

WebLogic JMS defines one Ser ver Sessi onPool Fact or y object, by default:

webl ogi c. j ms. ext ensi ons. Server Sessi onPool Fact ory: <nane>, the
<name> specifies the name of the JMS server to which the session pool is created. The
WebLogic Server adds the default server session pool factory to the JNDI space during
startup and the application subsequently retrieves the server session pool factory
using WebLogic JNDL

To learn how to use the server session pool factory within an application, see Defining
Server Session Pools, or the weblogic.jms.extnesions.ServerSessionPoolFactory
Javadoc.

2.4.9 ServerSessionPool

A Server Sessi onPool application server object provides a pool of server sessions
that connection consumers can retrieve in order to process messages concurrently.

A Ser ver Sessi onPool is created by the Ser ver Sessi onPool Fact ory object (see
ServerSessionPoolFactory) obtained through a JNDI lookup.

To learn how to use the server session pool within an application, see Defining Server
Session Poolsor the j avax. j ms. Ser ver Sessi onPool application Javadoc at
http://docs.oracle.conijavaeel/ 7/ api/javax/j s/

Ser ver Sessi onPool . ht m .

2.4.10 ServerSession

A Ser ver Sessi on application server object enables you to associate a thread with a
JMS session by providing a context for creating, sending, and receiving messages.

A Server Sessi on application is created by a Ser ver Sessi onPool object,
described in ServerSessionPool.

To learn how to use the server session within an application, see Defining Server
Session Pools or the j avax. j ms. Ser ver Sessi on Javadocathtt p://
docs. oracl e. com j avaee/ 7/ api / j avax/j ns/ Ser ver Sessi on. ht m .

2.4.11 ConnectionConsumer

A Connecti onConsumer object uses a server session to process received messages. If
message traffic is heavy, then the connection consumer can load each server session

Understanding WebLogic JMS 2-21

http://docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSession.html

Understanding the JMS API

with multiple messages to minimize thread context switching. A
Connect i onConsuner is created by a Connection object, described in Connection.

To learn how to use the connection consumers within an application, see Defining
Server Session Pools, or the j avax. j ms. Connect i onConsumer Javadoc at
http://docs. oracl e.conij avaee/ 7/ api / j avax/ j s/

Connect i onConsuner. htni .

Note:

Connection consumer listeners run on the same JVM as the server.

2-22 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html

3

Best Practices for Application Design

This chapter describes design options for WebLogic Server JMS, application behaviors
to consider during the design process, and recommended design patterns.

* Message Design

* Message Compression

* Message Properties and Message Header Fields
® Message Ordering

* Topics Vs. Queues

¢ Asynchronous Vs. Synchronous Consumers

* Persistent Vs. Non Persistent Messages

¢ Deferring Acknowledges and Commits

¢ Using AUTO_ACK for Non Durable Subscribers
® Alternative Qualities of Service, Multicast and No-Acknowledge
e Avoid Multi threading

¢ Using the]IMSXUserlD Property

e Performance and Tuning

3.1 Message Design

This section provides information about how to design messages to improve
messaging performance:

3.1.1 Serializing Application Objects

The CPU cost of serializing Java objects can be significant. This expense, in turn,
affects JMS Object messages. You can offset some of this cost by having application
objects implement thej ava. i 0. Ext er nal i zabl e, but there still will be significant
overhead in marshalling the class descriptor. To avoid the cost of having to write the
class descriptors of additional objects embedded in an Object message, have these
objects implement Ext er nal i zabl e, and call r eadExt er nal and w i t eExt er nal
on them directly. For example, call obj . wri t eExt er nal (st ream) rather than the
stream writeQbj ect (obj). Using Byt es and St r eammessages is generally a
preferred practice.

Best Practices for Application Design 3-1

Message Compression

3.1.2 Serializing Strings

Serializing Java strings is more expensive than serializing other Java primitive types.
Strings are also memory intensive; they consume two bytes of memory per Character,
and cannot compactly represent binary data (integers, for example). In addition, the
introduction of string-based messages often implies an expensive parse step in the
application in order to process the String into something the application can make
direct use of. Bytes, Stream, Map and Object messages are therefore sometimes
preferable to Text and XML messages. Similarly, it is preferable to avoid the use of
strings in message properties, especially if they are large.

3.1.3 Server-side Serialization

WebLogic JMS servers do not incur the cost of serializing non persistent messages.
Serialization of non persistent message types is incurred by the remote client.
Persistent messages are serialized by the server.

3.1.4 Selection

Using a selector is expensive. This consideration is important when you are deciding
where in the message to store application data that is accessed through JMS selectors.

3.2 Message Compression

Compressing large messages in a JMS application can improve performance. This
reduces the amount of time required to transfer messages across the network, reduces
the amount of memory used by the JMS server, and, if the messages are persistent,
reduces the size of persistent writes. Text and XML messages can often be compressed
significantly. Of course, compression is achieved at the expense of an increase in the
CPU usage of the client.

Keep in mind that the benefits of compression become questionable for smaller
messages. If a message is less than a few KB in size, then compression can actually
increase its size. The JDK provides built-in compression libraries. For details, see the
java. util.zip package.

For information about using JMS connection factories to specify the automatic
compression of messages that exceed a specified threshold size, see Compressing
Messages in the Tuning Performance of Oracle WebLogic Server.

3.3 Message Properties and Message Header Fields

Instead of user-defined message properties, consider using standard JMS message
header fields or the message body for message data. Message properties incur an extra
cost in serialization, and are more expensive to access than standard JMS message
header fields.

Avoid embedding large amounts of data in the properties field or the header fields;
only message bodies are paged out when paging is enabled. Consequently, if user
defined message properties are defined in an application, avoid the use of large string
properties.

For more information, see Message Header Fields and Message Property Fields .

3-2 Developing JMS Applications for Oracle WebLogic Server

Message Ordering

3.4 Message Ordering

You should use the Message Unit-of-Order feature rather than Ordered Redelivery to
guarantee ordered message processing. The advantages of Message Unit-of-Order
over Ordered Redelivery are:

¢ Ease of configuration.

— Does not require a custom connection factory for asynchronous receivers, such
as setting the Messagi nghvaxi mumto 1 when using message-driven beans
(MDBs).

— Simple configuration when using distributed destinations.
® Preserves message order during processing delays.

® Preserves message order during transaction rollback or session recovery.

Oracle recommends applications that use Ordered Redelivery upgrade to Message
Unit-of-Order. For more information, see Using the Message Unit-of-Order.

3.5 Topics Vs. Queues

When you are start to design your application, it is not always immediately obvious
whether it would be better to use a Topic or Queue. In general, you should use a Topic
only if one of the following conditions applies:

¢ The same message must be replicated to multiple consumers.
* A message should be dropped if there are no active consumers that will select it.

¢ There are many subscribers, each with a unique selector.

Note that a topic with a single durable subscriber is semantically similar to a queue.
The differences are as follows:

¢ If you change a topic selector for a durable subscriber, then all previous messages
in the subscription are deleted, while if you change a queue selector for consumer,
then no messages in the queue are deleted.

¢ A queue may have multiple consumers, and will distribute its messages in a round-
robin fashion, whereas a topic subscriber is limited to one consumer.

For more information about configuring JMS queues and topics, see Queue and Topic
Destination Resources in Administering JMS Resources for Oracle WebLogic Server.

3.6 Asynchronous Vs. Synchronous Consumers

In general, asynchronous (onMessage) consumers perform and scale better than
synchronous consumers:

* Asynchronous consumers create less network traffic. Messages are pushed

unidirectionally, and are pipelined to the message listener. Pipelining supports the
aggregation of multiple messages into a single network call.

Best Practices for Application Design 3-3

Persistent Vs. Non Persistent Messages

Note:

In WebLogic Server, your synchronous consumers can also use the same
efficient behavior as asynchronous consumers by enabling the Prefetch Mode
for Synchronous Consumers option on JMS connection factories, as described
in Use Prefetch Mode to Create a Synchronous Message Pipeline.

* Asynchronous consumers use fewer threads. An asynchronous consumer does not
use a thread while it is inactive. A synchronous consumer consumes a thread for
the duration of its receive call. As a result, a thread can remain idle for long
periods, especially if the call specifies a blocking timeout.

¢ For application code that runs on a server, it is almost always best to use
asynchronous consumers, typically through MDBs. The use of asynchronous
consumers prevents the application code from doing a blocking operation on the
server. A blocking operation, in turn, idles a server-side thread; it can even cause
deadlocks. Deadlocks occur when blocking operations consume all threads. When
no threads remain to handle the operations required to unblock the blocking
operation itself, that operation never stops blocking.

For more information, see Receiving Messages Asynchronously using the Classic API
and Receiving Messages Synchronously Using the Classic API.

3.7 Persistent Vs. Non Persistent Messages

When designing an application, make sure you specify that messages will be sent in
non persistent mode unless a persistent QOS is required. Oracle recommends non
persistent mode because unless synchronous writes are disabled, a persistent QOS can
cause a significant degradation in performance.

Note:

Avoid persisting sending persistent messages unintentionally. Occasionally an
application sends persistent messages even though the designer intended the
messages to be sent in non persistent mode.

If your messages are truly non persistent, none should end up in a regular JMS store.
To make sure that none of your messages are persistent, check whether the JMS store
size grows when unconsumed messages are accumulating on the JMS server. Here is
how message persistence is determined, in order of precedence:

® Producer's connection's connection factory configuration:
— PERSISTENT (default)
— NON_PERSISTENT
¢ JMS Producer API override on QueueSender and TopicPublisher:
- setDeliveryMode(DeliveryMode PERSISTENT)
- setDeliveryMode(DeliveryMode. NON_PERSISTENT)
- setDeliveryMode(DeliveryMode. DEFAULT_DELIVERY_MODE) (default)

3-4 Developing JMS Applications for Oracle WebLogic Server

Deferring Acknowledges and Commits

® JMS Producer API per message override on QueueSender and TopicPublisher:
— For queues, optional deliveryMode parameter on send()
— For topics, optional deliveryMode parameter on publish()
* Override on destination configuration:
— DPersistent
- Non Persistent
— No Delivery (default, implies no override)

¢ Opverride on JMS server configuration:

— If store is configured then that implies using the default persistent store that is
available on each targeted WebLogic Server instance

— If a Store is configured then that implies no override.
¢ Non durable subscribers only:

— If there are no subscribers, or there are only non durable subscribers for a topic,
the messages will be downgraded to non persistent. (Because non durable
subscribers exist only for the life of the JMS server, there is no reason for the
message to persist.)

¢ Temporary destinations:

— Because temporary destinations exist only for the lifetime of their host JMS
server, there is no reason for messages to persist. WebLogic JMS automatically
forces all messages in a temporary destination to non-persistent.

Durable subscribers require a persistent store to be configured on their JMS server,
even if they receive only non persistent messages. A durable subscription persists to
ensure that it continues through a server restart, as required by the JMS specification.

3.8 Deferring Acknowledges and Commits

Because sending is generally faster than receiving , consider reducing the overhead
associated with receiving by deferring acknowledgment of messages until several
messages have been received and can be acknowledged collectively. If you are using
transactions, then substitute the word conm t for acknow edge.

Deferment of acknowledgements is not likely to improve performance for non durable
subscriptions, because of the internal optimizations already in place.

It may not be possible to implement deferred acknowledgements for asynchronous
listeners. If an asynchronous listener acknowledges only every 10 messages, but for
some reason receives only 5, then the last few messages may not be acknowledged.
One possible solution is to have the asynchronous consumer post synchronous, non
blocking receives from within its onMessage() callback to receive subsequent
messages. Another possible solution is to have the listener start a timer that, when
triggered, sends a message to the listener's destination in order to wake it up and
complete the outstanding work that has not yet been acknowledged—assuming that
the wake-up message can be directed at the correct listener.

Best Practices for Application Design 3-5

Using AUTO_ACK for Non Durable Subscribers

3.9 Using AUTO_ACK for Non Durable Subscribers

Non durable, non transactional topic subscribers are optimized to store local copies of
the message on the client side, thus reducing network overhead when
acknowledgements are being issued. This optimization yields a 10-20 percent
performance improvement, where the improvement is more evident under higher
subscriber loads.

One side effect of this optimization, particularly for high numbers of concurrent topic
subscribers, is the overhead of client-side garbage collection, which can degrade
performance for message subscriptions. To prevent such degradation, Oracle
recommends allocating a larger heap size on the subscriber client. For example, in a
test of 100 concurrent subscribers running in 10 JVMs, it was found that giving clients
an initial and maximum heap size of 64MB for each JVM was sulfficient.

3.10 Alternative Qualities of Service, Multicast and No-Acknowledge

WebLogic JMS provides alternative qualities of service (QOS) extensions that can help
performance. This section contains the following topics:

¢ Using MULTICAST_NO_ACKNOWLEDGE
¢ Using NO_ACKNOWLEDGE

3.10.1 Using MULTICAST_NO_ACKNOWLEDGE

Non durable topic subscribers can subscribe to messages using the

MULTI CAST_NO_ACKNOW.EDGE. If a topic has such subscribers, then the JMS server
will broadcast messages to them using multicast mode. Multicast improves
performance considerably and provides linear scalability, as the network only needs to
handle one message, regardless of the number of subscribers, rather than one message
per subscriber. Multicast messages may be lost if the network is congested or if the
client falls behind in processing them. Calls to r ecover () or acknow edge() have
no effect on multicast messages.

Note:

On the client side, each multicasting session requires a dedicated thread to
retrieve messages off the multicast socket. Therefore, you should increase the
JMS client-side thread pool size to adjust for this.

This QOS extension has the same level of guarantee as some JMS implementations
default QOS from vendors other than Oracle WebLogic Server for non durable topic
subscriptions. The JMS 1.1 specification specifically allows non durable topic messages
to be dropped (deleted) if the subscriber is not ready for them. WebLogic JMS has a
higher QOS for non durable topic subscriptions by default than the J]MS 1.1
specification requires.

3.10.2 Using NO_ACKNOWLEDGE

A no-acknowledge delivery mode implies that the server gives messages to
consumers, but does not expect an acknowledgement to be called. Instead, the server
pre-acknowledges the message. In this acknowledge mode, calls to recover will not
work, because the message was acknowledged. This mode saves the overhead of an

3-6 Developing JMS Applications for Oracle WebLogic Server

Avoid Multi threading

additional network call to the acknowledge, at the expense of possibly losing a
message when a server failure, a network failure, or a client failure occurs.

Note:

If an asynchronous client calls thecl ose() in this scenario, then all messages
in the asynchronous pipeline are lost.

Asynchronous consumers that use a NO_ACKNOWLEDGE QOS may want to reduce
their message pipeline size in order to lower the number of lost messages in the event
of a failure.

3.11 Avoid Multi threading

The JMS Specification at ht t p: / / www. or acl e. com t echnet wor k/ j ava/ j ns/

i ndex. ht nl, states that multi threading a session, producer, consumer, or message
method results in undefined behavior except when calling the cl ose() . For this
release, if WebLogic JMS determines that you created a multi threaded producer, then
the server instance throws an exception JMSExcept i on. If your application is thread
limited, then try increasing the number of producers and sessions.

3.12 Using the JMSXUserID Property

For WebLogic Server 9.0 and later, you can configure a JMS connection factory and
destination to automatically propagate the message sender's authenticated username.
The username is placed in a j avax. j ms. Message property named JM5XUser | D.

Consider the following points when using the JM5XUser | D property in your
application.

e While the JMS specification makes some mention of the JM5XUser | D property, the
behavior is lightly defined and will likely be different for different JMS vendors.

* The JMSXUser | Dproperty is based on the credential of the thread an application
uses to create the JMS producer. It does not derive from the credential that is on a
thread during the JMS send call itself.

e JMS will ignore or override any attempt by an application to directly set
JMBXUser | D (for example, j avax.j nms. Message. set XXXPr operty() will not
work).

¢]MS messages are not signed or encrypted (similar to any RMI/E]JB call). Therefore,
fully secure transfers of the JM5XUser | Drequire sending the message through
secure protocols (for example, t 3s or ht t ps).

* WebLogic Store-and-Forward agents do not propagate the JM5XUser | D (they null
it out).

¢ WebLogic Messaging bridges will propagate JM5XUser | D property of the source
destination's message if the messaging bridges are both are forwarding to a 9.0 or
later JMS server and are configured to Preserve Message Properties. Otherwise,
the forwarded message will either contain no username or the username used by
the bridge sender. The latter behavior is determined by the configuration of the
bridge sender's connection factory and destination.

Best Practices for Application Design 3-7

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Performance and Tuning

* The WebLogic JMS W.MessagePr oducer . f orwar d() extension can forward a
received message's JM5XUser | D.

Note:

The JMSXUser | D property interoperability behavior for WebLogic JMS clients
prior to 9.0 is undetermined.

For instructions about setting the JM5XUser | D property on a connection factory or a

destination, see the following topics in the WebLogic Server Administration Console
online help:

¢ Configure connection factory security parameters

¢ Configure advanced queue parameters

¢ Configure advanced topic parameters

¢ Uniform distributed queues - configure advanced parameters

* Uniform distributed topics - configure advanced parameters

3.13 Performance and Tuning

For information about how to get the most out of your applications, implement the
performance tuning features available with WebLogic JMS at Tuning WebLogic JMSin
Tuning Performance of Oracle WebLogic Server.

3-8 Developing JMS Applications for Oracle WebLogic Server

A

Enhanced Support for Using WebLogic JMS

with EJBs and Servlets

This chapter describes WebLogic Server enhancements, such as JMS wrappers, that
extend the Java EE standard to make it easier to access EJB and servlet containers with
WebLogic JMS or third-party JMS providers. Implementing JMS wrapper support is
the best practice method of how to send a WebLogic JMS message from inside an E]JB
or servlet.

Enabling WebLogic JMS Wrappers

Disabling Wrapping and Pooling

What's Happening Under the J]MS Wrapper Covers
Improving Performance Through Pooling
Simplified Access to Foreign J]MS Providers

Examples of JMS Wrapper Functions

4.1 Enabling WebLogic JMS Wrappers

WebLogic Server uses J]MS wrappers that make it easier to use WebLogic JMS inside a
Java EE component, such as an EJB or a servlet, while also providing a number of
enhanced usability and performance features:

Automatic pooling of JMS connection and session objects (and some pooling of
message producer objects as well)

Automatic transaction enlistment for WebLogic JMS implementations and for
third-party JMS providers that support two-phase commit transactions (XA
protocol)

Testing of the JMS connection, as well as reestablishment after a failure

Security credentials that are managed by the EJB or servlet container

The following sections provide information on how to use WebLogic JMS wrappers:

Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors
Referencing a Packaged JMS Application Module In Deployment Descriptor Files
Declaring JMS Destinations and Connection Factories Using Annotations

Avoid Transactional XA Interfaces

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-1

Enabling WebLogic JMS Wrappers

4.1.1 Declaring a JMSContext Object Using @Inject Annotation

WebLogic Server 12.2.1 release supports the JMS 2.0 simplified API, which enables
you to inject a JM5Cont ext object into the application using the @ nj ect annotation

as follows:

@nj ect

@MsConnect i onFact or y(" nmyJMSCF")

@MsPasswor dCredential (user Nane="admi n", passwor d="nypasswor d") privat e

JMBCont ext cont ext;

The @ nj ect annotation determines when the container should create the
JMBCont ext object.

Note:

¢ Injection should be enabled for the class. Depending on the class being
used and the archive in which it is packaged, it may be necessary to specify
a beans. xnl file. For more information, see Using Contexts and
Dependency Injection for the Java EE Platform in Developing Applications for
Oracle WebLogic Server.

e If the injected JM5Cont ext is null and if your application fails, then
review the server log. If the connection factory could not be found, you can
see that error in the server log. If there is no error in the server log then the
application failure is probably due to a missing beans. xmi file.

4.1.1.1 Specifying a Lookup Name in JMSContext Injection

When injecting a JMSCont ext object, you can use the @ MSConnect i onFact ory
annotation to specify the product-specific global JNDI look up name of a connection
factory to be used by the container.

Note:

When you provide a product-specific global JNDI name for the connection
factory annotation, you cannot override it using a resource reference in the
deployment descriptor of the container.

Alternatively, you can specify a fully qualified resource reference name of the form
j ava: conp/ env/ r es-r ef - nane as follows:

@nj ect
@MsConnect i onFact ory("j ava: conp/ env/ res-ref-nang")
private JMSContext context;

In this case, the resource reference name must be defined using a <r esour ce-r ef >
element in the deployment descriptor that maps it to an appropriate product-specific
global JNDI name. See Declaring a Wrapped JMS Factory using Deployment
Descriptors.

If no lookup name is provided for the @ MsSConnect i onFact or y annotation, then
the Java EE platform default JMS connection factory (j ava: conp/
Def aul t IMSConnect i onFact or y) will be used.

4-2 Developing JMS Applications for Oracle WebLogic Server

Enabling WebLogic JMS Wrappers

4.1.1.2 Determining the Authentication Type for JMSContext Injection

The JMSContext injection cannot use the resource reference to determine whether the
connection factory should use container authentication or application authentication.
Instead, you can use the @ MsPasswor dCr edent i al annotation to specify the type
of authentication required.

If you specify the @ MsPasswor dCr edent i al annotation then the connection factory
will use password authentication, and the specified user and password. If the
@NMsPasswor dCr edent i al annotation is not defined then the connection factory
will use container authentication.

4.1.2 Declaring JMS Objects as Resources In the EJB or Serviet Deployment

Descriptors

The following sections provide information on declaring JMS objects as resources:
® Declaring a Wrapped JMS Factory using Deployment Descriptors

¢ Declaring JMS Destinations using Deployment Descriptors

For more information about packaging EJBs, see Implementing Enterprise JavaBeansin
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server. For more
information about programming servlets, see Creating and Configuring Servlets in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

4.1.2.1 Declaring a Wrapped JMS Factory using Deployment Descriptors

Note:

New applications will likely use EJB 3.0 annotations instead of deployment
descriptors. Annotations are described in Declaring JMS Destinations and
Connection Factories Using Annotations.

You can declare a JMS connection factory as part of an EJB or servlet by defining a
resour ce-ref elementin theej b-jar. xm orweb. xm file, respectively. This
process creates a "wrapped" JMS connection factory that can benefit from the more
advanced session pooling, automatic transaction enlistment, connection monitoring,
and container-managed security features described in Improving Performance
Through Pooling.

Here is an example of such a connection factory element:

<resource-ref>
<res-ref - nanme>j ms/ QCF</ r es-r ef - name>
<res-type>j avax. j ms. QueueConnecti onFact ory</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
<res-shari ng- scope>Shar eabl e</res-shari ng- scope>
</resource-ref>

This element declares that a JMS QueueConnect i onFact or y object be bound into
JNDI, at the location:

j ava: conp/ env/ j ns/ QCF

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-3

Enabling WebLogic JMS Wrappers

This JNDI name is only valid inside the context of the EJB or servlet where the
resour ce-r ef is declared, which is what the j ava: conp/ env JNDI context
signifies.

In addition to this element, there must be a matching r esour ce- descri pti on
element in the ej b-j ar. xm (for EJBs) or webl ogi c. xm (for servlets) file that tells
the Java EE container which JMS connection factory to put in that location. Here is an
example:

<resour ce-description>

<res-ref-name>j ns/ QCF</r es-r ef - nane>

<j ndi - name>webl ogi c. j ms. Connecti onFact ory</j ndi - nane>
</resource-description>

The connection factory specified here must already exist in the global JNDI tree. (This
example uses one of the default JMS connection factories that is automatically created
when the built-in WebLogic JMS server is used). To use another WebLogic JMS
connection factory from the same cluster, include that connection factory's JNDI name
inside the j ndi - nane element. To use a connection factory from another vendor, or
from another WebLogic Server cluster, create a Foreign JMS Server.

If the JNDI name specified in the r esour ce- descri pti on element is incorrect, then
the application is still deployed. However, you will receive an error when you try to
use the connection factory.

4.1.2.2 Declaring JMS Destinations using Deployment Descriptors

You can define a JMS destination resource in a web module, EJB module, application
client module, or in an application deployment descriptor using the j ms-
destinationorresource-env-ref descriptor elements.

Note:

New applications will likely use EJB 3.2 annotations instead of deployment
descriptors. Annotations are described in Declaring JMS Destinations and
Connection Factories Using Annotations.

The transaction enlistment, pooling, connection monitoring features take place in the
connection factory, not in the destinations. However, this feature is useful for
consistency, and to make an application less dependent on a particular configuration
of WebLogic Server, since destinations can easily be modified by simply changing the
corresponding j M- desti nati on or resour ce- env-ref description, without
having to recompile the source code

4.1.2.2.1 Declaring JMS Destinations Using the jms-destination Element

You can define a JMS destination resource using the j ns- dest i nat i on element in
theej b-j ar. xm orweb. xm deployment descriptors. It creates the destination and
binds it to the appropriate naming context based on the namespace specified.

The following example defines a queue destination myQueuel that is bound to JNDI
at the location j ava: app/ MyJMSDest i nati on:

<j ms- desti nati on>
<description>JM5 Destination definition</description>
<nane>j ava: app/ MyJMSDest i nat i on</ name>
<i nterface-nane>j avax. j ns. Queue</ i nterf ace- name>
<dest i nati on- nanme>nyQueuel</ desti nati on- name>

4-4 Developing JMS Applications for Oracle WebLogic Server

Enabling WebLogic JMS Wrappers

<property>
<nane>Pr opert y1</ nane>
<val ue>10</ val ue>

</ property>

<property>
<nane>Pr opert y2</ nane>
<val ue>20</ val ue>

</ property>

</jms-destination>

For more information about the j ms- dest i nat i on element and its attributes, see the
schema athttp://xm ns.jcp.org/ xm /ns/javaeel/javaee 7. xsd.

4.1.2.2.2 Declaring JMS Destinations Using the resource-env-ref Element

You can also bind a JMS queue or topic destination into the j ava: conp/ env JNDI
tree by declaring it as a r esour ce- env-r ef elementin the ej b-j ar. xml or
web. xm deployment descriptors.

For resour ce-env-ref description, the queue or topic destination specified in the
descriptor must already exist in the global JNDI tree. Again, if the destination does not
exist, then the application is deployed, but an exception is thrown when you try to use
the destination.

Here is an example of such a queue destination element:

<resource-env-ref>
<resour ce- env-ref - name>j ms/ TESTQUEUE</ r esour ce- env- r ef - nane>
<resour ce-env-ref-type>j avax. j ms. Queue</resour ce-env-ref-type>
</resource-env-ref>

This element declares that a JMS Queue destination object will be bound into JNDI, at
the location:

j ava: conp/ env/ j ms/ TESTQUEUE

As with a referenced connection factory, this JNDI name is only valid inside the
context of the EJB or servlet where the r esour ce- r ef is declared.

You must also define a matching r esour ce- env- descri pti on element in the

webl ogi c-ej b-j ar. xm orwebl ogi c. xnl file. This provides a layer of indirection
that enables you to easily modify referenced destinations just by changing the
corresponding r esour ce- env-r ef deployment descriptors.

<resour ce-env-description>
<resour ce- env-ref - name>j ms/ TESTQUEUE</ r esour ce- env- r ef - nane>
<j ndi - name>j nst est . desti nati ons. TESTQUEUE</ j ndi - nane>
</resource-env-description>

4.1.3 Referencing a Packaged JMS Application Module In Deployment Descriptor Files

When you package a JMS module with an enterprise application, you must reference
the JMS resources within the module in all applicable descriptor files of the Java EE
application components, including:

¢ The WebLogic enterprise descriptor file, webl ogi c- appl i cati on. xm

e Any WebLogic deployment descriptor file, such as webl ogi c-ej b-j ar. xm or
webl ogi ¢. xm

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-5

http://xmlns.jcp.org/xml/ns/javaee/javaee_7.xsd

Enabling WebLogic JMS Wrappers

* Any Java EE descriptor file, such as E]B (ej b-j ar. xm) or WebApp (web. xm)
files

4.1.3.1 Referencing Application Modules in a weblogic-application.xml Descriptor

When including JMS modules in an enterprise application, you must list each JMS
module as a module element of type JMS in the webl ogi c- appl i cati on. xmi
descriptor file packaged with the application, and a path that is relative to the root of
the Java EE application. Here is an example of a reference to a JMS module name
Workflows:

<nmodul e>
<name>Wor kf | ows</ name>
<type>JMB</type>
<pat h>j s/ Wor kf | ows- j ns. xn </ pat h>
</ modul e>

4.1.3.2 Referencing JMS Resources in a WebLogic Application

Within any webl ogi c- f oo descriptor file, such as EJB (webl ogi c-ej b-j ar. xm)
or WebApp (webl ogi c. xm), the name of the J]MS module is followed by a number
(#) separator character, which is followed by the name of the resource inside the
module. For example, a JMS module named Workflows that contains a queue named
OrderQueue, would have a name of Workflows#OrderQueue.

<resour ce- env-description>
<resour ce- env-ref - name>j s/ Or der Queue</ r esour ce- env-r ef - nane>
<resour ce- | i nk>Wor kf | ows#Or der Queue</ resour ce- | i nk>
</resource-env-description>

Note that the <r esour ce- | i nk> element is unique to WebLogic Server, and is how
the resources that are defined in a JMS module are referenced (linked) from the other
Java EE Application components.

4.1.3.3 Referencing JMS Resources in a Java EE Application

The name element of a JMS connection factory resource specified in the JMS module
must match the r es- r ef - nane element defined in the referring EJB or WebApp
application descriptor file. The r es- r ef - name element maps the resource name
(used by j ava: conp/ env) to a module referenced by an EJB.

For queue or topic destination resources specified in the JMS module, the name
element must match the r esour ce- env-r ef field defined in the referring module
descriptor file.

That name is how the link is made between the resource referenced in the EJB or web
application module and the resource defined in the JMS module. For example:

<resource-ref>
<res-ref-name>j ms/ Or der QueueFact or y</res-ref - nane>
<res-type>j avax. j ms. Connecti onFact ory</res-type>
</resource-ref>
<resour ce-env-ref>
<resour ce- env-ref - name>j s/ Or der Queue</ r esour ce- env-r ef - nane>
<resour ce-env-ref-type>j avax. j ms. Queue</ resour ce- env-ref-type>
</resource-env-ref>

4.1.4 Declaring JMS Destinations and Connection Factories Using Annotations

WebLogic Server 10.0 and later releases support the EJB 3.0 programming model
which uses annotations to configure metadata, eliminating the need for deployment

4-6 Developing JMS Applications for Oracle WebLogic Server

Enabling WebLogic JMS Wrappers

descriptors. You can declare JMS objects using the @Resources annotation as described
in Standard JDK Annotations Used By EJB 3.0 in Developing Enterprise JavaBeans for
Oracle WebLogic Server.

4.1.4.1 Injecting Resource Dependency into a Class

If you apply the @Resource to a class, then the resource is made available in the
comp/env context. The following is an example of how to inject a WebLogic JMS
destination and connection factory resource in a Java EE application, including EJBs,
MDBs, and servlets.

Example 4-1 is a Wrapped JMS Pooling Annotation example:
Example 4-1 Wrapped JMS Pooling Annotation Example

[l The "name=" or "type=" are not always required,
[l "mappedNane=" is usually sufficient.
@Resour ce(name="Repl yQueue",

type=j avax. j ms. Queue. cl ass,

mappedNanme=" s/ Repl yQueue") Destination rq;

@Resour ce(nanme="Repl yConnecti onFactory",
type=j avax. j ns. Connecti onFact ory. cl ass,
mappedNane = "j ns/ ConnectionFactory") ConnectionFactory cf;

4.1.4.2 Non-Injected EJB 3.0 Resource Reference Annotations

Injected resource dependencies are resolved when the host EJB or servlet is
instantiated. You may not want injected resource because:

¢ The injection may prevent applications from deploying successfully if the container
attempts to resolve references during deployment.

* You might want to defer reference resolution until the application is first invoked.

You can setup a non-injected resource reference by placing the @Resour ces
annotation above the class definition. An application can resolve such references at
runtime by looking up the reference in the bean context. As a best practice, the bean or
servlet should also cache the result in order to avoid the overhead of repeated lookups
as shown in Example 4-2:

For a full example, see EJB 3.0 Wrapper Without Injection.

Example 4-2 Non-Injected Resource Example

@resources ({
@Resour ce(name="t ar get CFRef ",
mappedNane="Tar get CFJNDI Nare",
type=j avax. j ns. Connect i onFact ory. cl ass),

@resour ce(name="t ar get Dest Ref ",

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-7

Disabling Wrapping and Pooling

mappedNanme="Tar get Dest JNDI Nang",
type=j avax. j ns. Desti nati on. cl ass)

)

@t at el ess(mappedNane="St at el essBean")
public class MyStatel essBean inplenments MyStatel ess {

@Resour ce
private SessionContext sctx; // inject the bean context

private ConnectionFactory targetCF;
private Destination targetDest;

public void conpl et eWorkOrder() {

/1 Lookup the JMS resources and cache for re-use. Note that a
Il "java:/conp/env" prefix isn't needed for EJB3.0 bean contexts.

if (targetCF == null) targetCF =
(j avax. j ms. Connecti onFact ory) sct x. | ookup("target CFRef");

if (targetDest == null) targetDest =
(javax.jnms. Destination)sctx.|ookup("targetDestRef");

4.1.5 Avoid Transactional XA Interfaces

With resource wrapping, do not use the j avax. j ms XA transactional XA interfaces.
The container uses them internally if the JMS code is used inside a transaction context.
This allows your EJB application code to run E]Bs in an environment where
transactions are present or in a non-transactional environment, just by changing the
deployment descriptors.

4.2 Disabling Wrapping and Pooling

It is sometimes desirable to leverage resource references but disable resource reference
wrapping and pooling. To do this, use the deployment descriptor approach, but
change ther es-type toj ava. | ang. Qbj ect . cl ass in ther esour ce-r ef stanza
for the connection factory. There is currently no known way to disable wrapping and
pooling using annotations.

4.3 What's Happening Under the JMS Wrapper Covers

This section explains what is actually taking place under the covers when WebLogic
Server creates a set of wrappers around the JMS objects. For example, the code
fragment in Sending a JMS Message in a Java EE Container, shows an instance of a
WebLogic-specific wrapper class being returned, rather than the actual JMS
connection factory because the connection factory was looked up from the

j ava: conp/ env JNDI tree. This wrapper object intercepts certain calls to the JMS
provider and inserts the correct Java EE behavior, as described in the following
sections.

¢ Automatically Enlisting Transactions

¢ Container-Managed Security

4-8 Developing JMS Applications for Oracle WebLogic Server

What's Happening Under the JMS Wrapper Covers

¢ Connection Testing

Java EE Compliance

Pooled JMS Connection Objects

Monitoring Pooled Connections

4.3.1 Automatically Enlisting Transactions

Automatically Enlisting Transaction works for either WebLogic JMS implementations
or for third-party JMS providers that support two-phase commit transactions (XA
protocol). If a wrapped JMS connection sends or receives a message inside a
transaction context, then the JMS session being used to send or receive the message is
automatically enlisted in the transaction through the XA capabilities of the JMS
provider. This is the case whether the transaction was started implicitly because the
JMS code was invoked inside an EJB with container-managed transactions enabled, or
whether the transaction was started manually using the User Tr ansact i on interface
in a servlet or an EJB that supports bean-managed transactions.

However, if an EJB or servlet attempts to send or receive a message inside a
transaction context and the JMS provider does not support XA, the send() or
recei ve() call throws the following exception:

[J2EE: 160055] Unable to use a wrapped JMS session in the transaction because two-
phase conmit is not available.

Therefore, if you are using a JMS provider that doesn't support XA to send or receive a
message inside a transaction, then either declare the EJB with a transaction mode of
Not Suppor t ed or suspend the transaction using one of the JTA APlIs.

4.3.2 Container-Managed Security

WebLogic JMS uses the security credentials that are present on the thread when the
EJB or servlet container is invoked. For foreign JMS providers, however, when you
declare a JMS connection factory through a r esour ce-r ef element in the ej b-
jar.xm orweb. xm file, there is an optional sub element called r es- aut h. This
element may have one of two settings:

Container — When you set the r es- aut h element to Cont ai ner, security to the JMS
provider is managed by the Java EE container. In this case, if the JMS connection
factory was mapped into the JNDI tree using a Foreign JMS Connection Factory
configuration MBean, then the user name and password from that MBean is used.
Otherwise, WebLogic Server connects to the provider with no user name or password
specified and throws an error if the cr eat eConnecti on() method is used to pass a
user name and password to the connection factory.

Application — When you set the r es- aut h element to Appl i cati on, any user
name or password on the MBean is ignored. Instead, the application code must specify
a user name and password to the cr eat eConnecti on(String user Nane,

String password) method of the JMS connection factory, or use the version of
creat eConnect i on() with no parameters if the user name or password are not
required.

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-9

What's Happening Under the JMS Wrapper Covers

Note:

When you inject a JMSCont ext object into the application and if the JNDI
name of the connection factory is specified by @MSConnect i onFact ory,
then container authentication is used. If you specify the username and
password in the @ MSPasswor dCr edent i al annotation to specify the user/
password, application authentication is used. See Declaring a JMSContext
Object Using @Inject Annotation.

4.3.3 Connection Testing

The JMS wrapper classes monitor each connection that is established to the JMS
provider. They do this in two ways:

* Registering a JMS Excepti onLi st ener object on the connection.

* Testing the connection every 2 minutes by sending a message to a temporary queue
or topic and then receiving it again.

4.3.4 Java EE Compliance

The Java EE specification states that you should not be allowed to make certain JMS
API calls inside a Java EE application. The JMS wrappers enforce these restrictions by
throwing the following exceptions when they are violated:

® On the connection object, the methods cr eat eConnect i onConsuner (),
cr eat eDur abl eConnect i onConsumer (),setCientlD(),
set Excepti onLi st ener (), and st op() should not be called.

¢ On the session object, the methods get MessageLi st ener () and
set MessagelLi st ener () should not be called.

® On the consumer object (a QueueRecei ver or Topi cSubscri ber object), the
methods get MessagelLi st ener () and set MessagelLi st ener () should not be
called.

Furthermore, the cr eat eSessi on() method, and the associated

cr eat eQueueSessi on() and cr eat eTopi cSessi on() methods, are handled
differently. The cr eat eSessi on() method takes two parameters: an
"acknowledgement" mode and a "transacted" flag. When used inside an EJB, these two
parameters are ignored. If a transaction is present, then the JMS session is enlisted in
the transaction as described in Automatically Enlisting Transactions; otherwise, it is
not. By default, the acknowledgement mode is set to "auto acknowledge". This
behavior is expected by the Java EE specification.

Note:

This may make it more difficult to receive messages from inside an EJB, but
the recommended way to receive messages from inside an EJB is to use a
MDB, as described in Developing Message-Driven Beans for Oracle WebLogic
Server.

Inside a servlet, however, the parameters to cr eat eQueueSessi on() and
creat eTopi cSessi on() are handled normally, and users can make use of all the
various message acknowledgement modes.

4-10 Developing JMS Applications for Oracle WebLogic Server

Improving Performance Through Pooling

4.3.5 Pooled JMS Connection Objects

The JMS wrappers pool various session objects in order to make code like the example
provided in Sending a JMS Message in a Java EE Container more efficient. A pooled
JMS connection is a session pool used by EJBs and servlets that use a r esour ce-r ef
element in their deployment descriptor to define their JMS connection factories, as
discussed in Declaring a Wrapped JMS Factory using Deployment Descriptors.

4.3.6 Monitoring Pooled Connections

You can use the WebLogic Server Administration Console to monitor pooled
connections. For more information, see JMS Servers: Monitoring: Active Pooled
Connections in the Oracle WebLogic Server Administration Console Online Help.

4.4 Improving Performance Through Pooling

The automatic pooling of connections and other objects by the JMS wrappers means
that it is efficient to write code as shown in Sending a JMS Message in a Java EE
Container. Although in this example the Connection Factory, Connection, and Session
objects are created every time a message is sent, in reality these three classes work
together so that when they are used as shown, they do little more than retrieve a
Session object from the pool.

* Speeding Up JNDI Lookups by Pooling Session Objects
* Speeding Up Object Creation Through Caching

¢ Enlisting the Proper Transaction Mode

4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects

The JNDI lookups of the Connection Factory and Destination objects can be expensive
in terms of performance. This is particularly true if the Destination object points to a
Foreign JMS Destination MBean, and therefore, is a lookup on a non local JNDI
provider. Because the Connection Factory and Destination objects are thread-safe, they
can be looked up after they are inside an EJB or servlet at creation time, which saves
the time required to perform the lookup each time.

Inside a servlet, these lookups can be performed inside the i ni t () method. The
Connection Factory and Destination objects can then be assigned to an instance
variable and reused whenever a message is sent.

Inside an EJB, these lookups can be performed inside the ej bCr eat e() method and
assigned to an instance variable. For a session bean, each instance of the bean will then
have its own copy. Because stateless session beans are pooled, this method is also very
efficient (and is consistent with the Java EE specifications), because the number of a
times that lookups occur is drastically reduced by pooling the JMS connection objects.
(Caching these objects in a static member of the EJB class may work, but it is
discouraged by the Java EE specification.)

However, if these objects are cached inside the ej bCr eat e() ori ni t () method,
then the E]B or servlet must have some way to recreate them if was a failure. This is
necessary because some JMS providers, like WebLogic JMS, may invalidate a
Destination object after a server failure. So, if the EJB runs on Server A, and JMS runs
on Server B, then the EJB on Server A must perform the JNDI lookup of the objects from
Server B again after that server has recovered. The example, PoolTestBean.java
includes a sample E]B that performs this caching and re-lookup process correctly.

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-11

Simplified Access to Foreign JMS Providers

4.4.2 Speeding Up Object Creation Through Caching

After Connection Factory object and Destination object pooling is established, it may
be tempting to cache other objects, such as the Connection, Session, and Producer
objects, inside the ej bCr eat e() method. This will work, but it is not always the most
efficient solution. Essentially, by doing this you are removing a Session object from the
cache and permanently assigning it to a particular EJB, whereas by using the JMS
wrappers as designed, that Session object can be shared by other EJBs and servlets as
well. Furthermore, the wrappers attempt to reestablish a JMS connection and create
new session objects if there is a communication failure with the JMS provider, but this
will not work if you cache the Session object on your own.

4.4.3 Enlisting the Proper Transaction Mode

When aJMS send() orrecei ve() operation is performed inside a transaction, the
EJB or servlet automatically enlists the JMS provider in the transaction. A transaction
can be started automatically inside an EJB or servlet that has container-managed
transactions, or it can be started explicitly using the User Tr ansact i on interface. In
either case, the container automatically enlists the JMS provider. However, if the
underlying JMS connection factory used by the EJB or servlet does not support XA,
then the container throws an exception.

Performing the transaction enlistment has overhead. Furthermore, if an XA connection
factory is used, but the send() orr ecei ve() method is invoked outside a
transaction, then the container must still create a JTA transaction to wrap the send()
or r ecei ve() method in order to ensure that the operation properly takes place no
matter which JMS provider is used. Although this is only a one-phase commit, it can
still slow down the server.

Therefore, when writing an EJB or servlet that uses a JMS resource in a non-
transactional manner, it is best to use a JMS connection factory that is not configured
to support XA.

4.5 Simplified Access to Foreign JMS Providers

This section briefly describes the WebLogic Server Administration Console support for
foreign JMS providers, as documented in Accessing Foreign JMS Providers in the
Administering JMS Resources for Oracle WebLogic Server. This feature makes it possible
to easily map foreign JMS providers — including remote instances of WebLogic Server
in another cluster or domain — so that they appear in the local JNDI tree as a local
JMS object.

Another set of foreign JMS provider features makes it possible to create a "symbolic
link" between a JMS connection factory or destination object in an third-party JNDI
provider to an object inside the local WebLogic Server. This feature can also be used to
reference remote instances of WebLogic Server in another cluster or domain in the
local WebLogic JNDI tree.

There are three System Module MBeans for this task:

¢ Foreign server : Contains information about the remote JNDI provider, including
its initial context factory, URL, and additional parameters. It is the parent of the
Foreign Connection Factory and Foreign Destination MBeans. It can be targeted to
an independent WebLogic Server or to a cluster. For more information see,
ForeignServerBean in the MBean Reference for Oracle WebLogic Server.

4-12 Developing JMS Applications for Oracle WebLogic Server

Examples of JMS Wrapper Functions

¢ Foreign connection factory : Represents a foreign connection factory. It contains the
name of the connection factory in the remote JNDI provider, the name to map it to
in the server's JNDI tree, and an optional user name and password. The user name
and password are only used when a Foreign Connection Factory is used inside a
resour ce-r ef er ence in an EJB or a servlet, with the "Container" mode of
authentication. It creates non-replicated JNDI objects on each WebLogic Server
instance to which the parent Foreign Connection Factory MBean is targeted. (To
create the JNDI object on every node in a cluster, target the parent MBean to the
cluster.). For more information see, ForeignConnectionFactoryBean in the MBean
Reference for Oracle WebLogic Server.

¢ Foreign destination : Represents a foreign destination. It contains the name to look
up on the foreign JNDI provider, and the name to map it to on the local server.

4.6 Examples of JMS Wrapper Functions

e Examples of J]MS Wrapper Functions
¢ Sending a JMS Message in a Java EE Container
* Dependency Injection

¢ EJB 3.0 Wrapper Without Injection

4.6.1 Examples of JMS Wrapper Functions

The following files make up a simple stateless EJB session bean that uses the WebLogic
JMS wrapper functions to send a transactional message (sendXATr ansact i onal)
when an EJB is called. Although this example uses a session bean, the same XML
descriptors and bean class (with very few changes) can be used for a message-driven
bean.

* ejbjar.xml

¢ weblogic-ejb-jar.xml
¢ PoolTest.java

® PoolTestHome java

* PoolTestBean.java

4.6.1.1 ejb-jar.xml

This section describes the EJB components. For the "JMS wrapper" code examples
provided in this section, note that this section declares the r esour ce-r ef and
resour ce- env-ref elements for the wrapped JMS connection factory
(QueueConnect i onFact or y) and referenced JMS destination (TESTQUEUE).

<ejb-jar xmns="http://java.sun.com xm/ns/j2ee" xmns:xsi="http://wm.w3.org/2001/
XM.Schena-i nst ance"

xsi:schemalocation="http://java.sun.com xm /ns/j2ee http://java.sun.com xn/ns/|2eel
ejb-jar_2_1.xsd">

<?xm version="1.0"?>

<ej b-jar>
<enterprise-beans>

<sessi on>
<ej b- name>Pool Test Bean</ ej b- nane>

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-13

Examples of JMS Wrapper Functions

<home>webl ogi c. j ms. pool . t est. Pool Test Home</ home>

<renot e>webl ogi c. j ns. pool . t est. Pool Test </ r enot e>

<ej b- cl ass>webl ogi c. j ns. pool . t est. Pool Test Bean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transaction-type>

<resource-ref>

<res-ref-name>j ms/ QCF</r es-r ef - name>

<res-type>j avax. j ms. QueueConnecti onFact ory</res-type>
<res- aut h>Cont ai ner </ res- aut h>

<res-shari ng- scope>Shar eabl e</ r es- shari ng- scope>
</resource-ref>

<resour ce-env-ref>

<resour ce- env-ref - name>j ms/ TESTQUEUE</ r esour ce- env- r ef - nane>
<resour ce-env-ref-type>j avax. j ms. Queue</ resour ce-env-ref-type>
</resource-env-ref>

</ sessi on>

</ enterprise-beans>

<assenbl y-descri pt or >
<cont ai ner-transacti on>
<met hod>
<ej b- name>Pool Test Bean</ ej b- nane>
<net hod- name>* </ met hod- name>
</ met hod>
<trans-attribute>Required</trans-attribute>
</ contai ner-transaction>
</ assenbl y-descri pt or >
</ejb-jar>

4.6.1.2 weblogic-ejb-jar.xml

This section declares matching r esour ce- descri pt i on queue connection factory
and queue destination elements that tell the Java EE container which JMS connection
factory and destination to put in that location.

<! DOC<webl ogi c- ej b-jar xm ns="http://ww. bea. conl ns/ webl ogi ¢/ 920" xm ns: xsi="http://
www. W3. or g/ 2001/ XMLSchena- i nst ance"

xsi: schemaLocation="http://ww. bea. com ns/webl ogi ¢/ 920 http://ww. bea. con ns/

webl ogi ¢/ 920/ webl ogi c- ej b-j ar. xsd" >

<webl ogi c-ej b-jar>
<webl ogi c-ent er pri se- bean>
<ej b- name>Pool Test Bean</ ej b- nane>
<st at el ess- sessi on-descri pt or >
<pool >
<max- beans-i n-free- pool >8</ max- beans-i n-free- pool >
<initial-beans-in-free-pool >2</initial-beans-in-free-pool >
</ pool >
</ st at el ess-sessi on-descri ptor>

<resour ce-descri ption>

<res-ref - name>j ns/ QCF</ r es-r ef - nane>

<j ndi - name>webl ogi c. j ms. XAConnect i onFact or y</j ndi - name>
</resource-description>

<resour ce-env-description>
<res-env-ref-name>j ms/ TESTQUEUE</ r es- env-r ef - nane>

<j ndi - name>TESTQUEUE</ j ndi - name>
</resource-env-description>

4-14 Developing JMS Applications for Oracle WebLogic Server

Examples of JMS Wrapper Functions

<j ndi - name>Pool Test </ ndi - name>
</ webl ogi c- ent erpri se- bean>
</ webl ogi c-ej b-j ar>

4.6.1.3 PoolTest.java

This section defines the "remote" interface for the Pool Test bean. It declares one
method, called sendXATr ansacti onal .

package webl ogi c. j ns. pool . test;

inmport java.rm.*;
import javax.ejhb.*;
public interface Pool Test extends EJBObj ect
{
public String sendXATransactional (String text)
t hrows Renot eException;

}

4.6.1.4 PoolTestHome.java

This section defines the "home" interface for the Pool Test bean. It is required by the
EJB specification.

package webl ogi c. j ns. pool . test;

inport java.rm.*;
i mport javax.ejb.*;

public interface Pool Test Hone
ext ends EJBHone
{
Pool Test create()
throws CreateException, RenoteException;

}
4.6.1.5 PoolTestBean.java

This section defines the actual EJB code. It sends a message whenever the
sendXATr ansact i onal method is called.

package webl ogi c. j ns. pool . test;

inmport java.lang.reflect.*;
inmport java.rm.*;

inport javax.ejb.*;

import javax.jms.*;

i mport javax.naming.*;
import javax.transaction.*;

public class Pool Test Bean
ext ends Pool Test BeanBase
i mpl ements Sessi onBean

{
private SessionContext context;
private QueueConnectionFactory qcf;
private Queue destination;

public void ejbActivate()

{
}

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-15

Examples of JMS Wrapper Functions

public void ej bRenove()

{
}

public void ejbPassivate()

{
}

public void set Sessi onCont ext (Sessi onCont ext ct x)

{

context = ctx;

}

private void | ookupJNDI Qoj ects()
throws Nani ngException

{
Initial Context ic = new Initial Context();
try {
qcf =
(QueueConnecti onFactory)ic. | ookup
("java: conp/ env/j ms/ QCF");
destination =
(Queue)ic. | ookup("java: conp/ env/j nms/ TESTQUEUE") ;
} finally {
ic.close();
}
}

public void ejbCreate()
throws CreateException
{

try {
| ookupJNDI bj ects();

} catch (NamingException ne) {
throw new Creat eException(ne.toString());
}
}

public String sendXATransactional (String text)
throws RenoteException

{
String id = "Not sent yet";
try {
if ((qcf == null) || (destination == null)) {
| ookupJNDI Obj ect s();
}
QueueConnection connection = qcf. createQueueConnection();
try {
QueueSessi on sessi on = connection. creat eQueueSessi on
(false, 0);
Text Message message = sessi on. creat eText Message
(text);
QueueSender sender = session. createSender (destination);
sender . send(message) ;
id = message. get JIMSMessagel () ;
} finally {
connection. cl ose();
}

} catch (Exception e) {
/] Invalidate the JNDI objects if there is a failure.
/'l this is necessary because the destination object

4-16 Developing JMS Applications for Oracle WebLogic Server

Examples of JMS Wrapper Functions

/1 can becone invalid if the destination server has
/1 been shut down.

qcf = null;

destination = null;

t hrow new Renot eException("Failure in EJB: " + e);

}

return id;
}
}

4.6.2 Sending a JMS Message in a Java EE Container

After you declare the JMS connection factory and destination resources, you can use
them to send andreceive JMS messages inside an EJB or servlet. The following sections
provide examples of how to send a message:

4.6.2.1 Using comp/env

The code in Example 4-3 sends a message if you map to the j ava: conp/ env JNDI
tree:

Example 4-3 Sending a Message Using comp/env

Initial Context ic = new Initial Context();
QueueConnect i onFactory qgcf =

(QueueConnectionFactory)ic. | ookup("java: conp/ env/jnms/ QCF");
Queue dest Queue =

(Queue)ic. | ookup("java: conp/ env/j ms/ TESTQUEUE") ;
ic.close();
QueueConnection connection = qcf.creat eQueueConnection();

try {

QueueSessi on sessi on = connection. creat eQueueSession(0, false);
QueueSender sender = session. createSender (dest Queue);

Text Message nmsg = session. creat eText Message("This is a test");
sender . send(msg) ;

} finally {
connection. cl ose();

}

This is standard code that complies with the Java EE specification and should run on
any EJB or servlet product that properly supports Java EE , the difference is that it runs
more efficiently on WebLogic Server, because under the covers various objects are
pooled, as described in Pooled JMS Connection Objects.

Note that this code example usesatry. .. fi nal | y block to guarantee that the

cl ose() method on the J]MS Connection object is executed even if one of the
statements inside the block throws an exception. If no connection pooling were being
done, then this block would be necessary in order to ensure that the connection is
closed, and to prevent server resources from being wasted. But because WebLogic
Server pools some of the objects that are created by this code example , it is even more
important that cl ose() be called; otherwise, the EJB or servlet container will not
know when to return the object to the pool.

Also, none of the transactional XA extensions to the JMS API are used in this code
example . Instead, the container uses them internally if the JMS code is used inside a
transaction context. But whether or not XA is used internally, the user-written code is

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-17

Examples of JMS Wrapper Functions

the same, and does not use any JMS XA classes. This is what is specified by Java EE.
Writing EJB code in this way enables you to run EJBs in an environment where
transactions are present or in a non-transactional environment, just by changing the
deployment descriptors.

Note:

When using a wrapped JMS connection factory, which is obtained by using the
resour ce-r ef feature and looked up by using the j ava: conp/ env/j s
JNDI tree context, the EJB must not use the j avax. j n8 XA transactional XA
interfaces.

4.6.3 Dependency Injection

The code in Example 4-4 sends a message if you have used dependency injection to a
variable.

Example 4-4 Sending a Message using Dependency Injection

package test;

/| Exanple injected annotation.

i mport javax.annotation. Resour ce;
inport javax.ejh.*;

i mport javax.jns.*;

@t at el ess(mappedNane="St at el essBean")

public class MyStatel essBean inplements MyStatel ess {
@resour ce(mappedName="rmyDest JNDI Nane")
private Destination dest;

@resour ce(mappedName="webl ogi c. j ns. XAConnect i onFact ory")
private ConnectionFactory connectionFactory;

public void conpl et eWorkOrder() {
Connection con = null;
Session session = null;
MessageProducer sender = null;
try {
Systemout. println("conpl et eWorkCOrder called!");
con = connectionFactory. createConnection();
session = con. createSession(true, Session. AUTO ACKNOWEDCGE) ;
sender = session. createProducer(null);
Message nmessage = session. createText Message("work order conplete!");
sender. send(dest, nessage);
} catch(Exception e) {
throw new EJBException("Exception sending message: " + e, e);
} finally {

try {
if (con !=null) con.close();

} catch(Exception e) {
e.printStackTrace();
1
}
1
}

4-18 Developing JMS Applications for Oracle WebLogic Server

Examples of JMS Wrapper Functions

4.6.4 EJB 3.0 Wrapper Without Injection

Example 4-5 demonstrates EJB 3.0 annotations for an MDB that references resources
that are not injected. The references are resolved at runtime when the MDB is invoked
instead of when the MDB instances are instantiated.

Example 4-5 Non injected MDB Example

package test;

i mport javax.annotation. Resour ces;
i mport javax.annotation. Resour ce;
i mport javax.naming.*;

import javax.ejb.*;

import javax.jms.*;

import javax.ejb.ActivationConfigProperty;

@kssageDri ven(
nanme = "M/NMDB",
mappedNanme = " JNDI NameOf MDBSour ceDest ",
activationConfig = {
/1 the JMS interface type for the MDB destination, either javax.jns.Topic or jav
ax.j ms. Queue
@\ctivationConfigProperty(
propertyName = "destinationType",
propertyVal ue = "javax.jns. Queue"),
/1 optionally specify a connection factory
/1 there's no need to specify a connection factory if the source
/1 destination is a WbLogic JMS destination
@\ctivationConfigProperty(
propertyName = "connecti onFactoryJndi Name",
propertyVal ue = "JNDI NameOf MDBSour ceCF") ,
)

/1 resources that are not injected

@resources ({
@resour ce(name="t ar get CFRef ",
mappedNanme=""Tar get CFJNDI Nare",
type=j avax. j ns. Connect i onFact ory. cl ass),

@resour ce(name="t ar get Dest Ref ",

mappedNanme=""Tar get Dest JNDI Nange",
type=j avax. j ns. Desti nati on. cl ass)

)
public class MyMDB i npl enents Messageli stener {
Il inject a reference to the MDB context

@esour ce
private MessageDrivenContext ndctx;

Il cache targetCF and targetDest for re-use (performance)

private ConnectionFactory targetCF;
private Destination targetDest;

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-19

Examples of JMS Wrapper Functions

@ransactionAttribute(TransactionAttributeType. REQUI RED)
public void onMessage(Message nessage) {

Connection jnsConnection = null;

try {
Systemout. printin("M/ MB got nessage: " + nessage);

if (targetCF == null)
target CF = (javax.jms. Connecti onFact ory) nct x. | ookup("t arget CFRef");

if (targetDest == null)
target Dest = (javax.jns.Destination)ndctx.|ookup("targetDestRef");

jmsConnection = targetCF. creat eConnection();
Session s = jmsConnection. creat eSessi on(fal se, Sessi on. AUTO ACKNOALEDGE) ;
MessageProducer np = s.createProducer(null);

if (message. get IMSRepl yTo() !'= null)

np. send(message. get JMSRepl yTo(), s.createText Message("My Reply"));
el se

mp. send(t ar get Dest, nessage);

} catch (JMSException e) {
t hrow new EJBException(e);

} finally {

/1 Return JMS resources to the resource reference pool for later re-use.
/1 Cosing a connection automatically also closes its sessions, etc.

try { if (jmsConnection != null) jnmsConnection.close(); }
catch (JMSException ignored) {};

4-20 Developing JMS Applications for Oracle WebLogic Server

5

Understanding the Simplified API
Programming Model

This chapter describes the key features of the J]MS simplified API defined by the Java
Message Service (JMS) 2.0 specification. It also describes how it is implemented for
creating JMS applications for WebLogic Server.

* About JMS 2.0 Simplified API
¢ New Interfaces in the Simplified JMS API

¢ New Methods to Simplify Messaging in JMS 2.0

5.1 About JMS 2.0 Simplified API

The JMS 2.0 simplified API provides the same basic functionality as the JMS 1.1 API
(classic API), but the new interfaces and several API changes make it easier to use.

The following interfaces provided by the simplified API were implemented in Oracle
WebLogic Server 12.2.1 release:

e Connecti onFact ory : An administered object used by a client to create a
Connect i on. This interface is also used by the classic APL

e JMSCont ext : An active connection to a JMS provider and a single-threaded
context used to send or receive messages.

¢ JMBProducer : An object created by a JM5Cont ext to send messages to a queue
or topic.

e JMSConsurrer : An object created by a JM5Cont ext to receive messages sent to
a.queue or topic

Figure 5-1 shows how these objects fit together in a JMS client application.

Understanding the Simplified API Programming Model 5-1

New Interfaces in the Simplified JMS API

Figure 5-1 Simplified APl Programming Model

Connection
Factory

creates

JMSProducer «t—ureates~| JMSContext — creates —h| JMEConsumer
T T T

sends to creates receives from
Destination Destination

Message

For more information about the JMS 2.0 interfaces, see the j avax. j ms package
documentation atht t p: // docs. oracl e. coni j avaee/ 7/ api / j avax/ j ns/
package- sunmary. htnl .

5.2 New Interfaces in the Simplified JMS API

This section describes the following classes introduced in the JMS 2.0 specification:

e JMSContext
e JMSProducer

e JMSConsumer

5.2.1 JMSContext

The main interface in the simplified APIis JMSCont ext . It combines the functions of
the Connect i on and Sessi on objects of the JMS 1.1 API. Creating a single

JMBCont ext object eliminates the need to create a connection, session, and a text
message separately.

For more information about the JMSCont ext interface, see htt p: //
docs. oracl e. com j avaee/ 7/ api / j avax/ j ms/ JMsCont ext . ht mi .

The W.JMSCont ext interface in the webl ogi c. j ms. ext ensi ons package defines
the fields and methods that are not supported by j avax. j ms. JM5Cont ext . It
provides the same extension features as W.Connect i on and W.Sessi on. See the
Javadoc for W.JIMSCont ext in Java API Reference for Oracle WebLogic Server.

5.2.2 JMSProducer

To send messages in the simplified API, use a JMSPr oducer object. You can create a
JMSPr oducer object by calling the cr eat ePr oducer method on a JM5Cont ext
object.

5-2 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html

New Methods to Simplify Messaging in JMS 2.0

Note:

You do not need to save the JMSPr oducer object in a variable. It is
recommended that you create this object when sending a message. For more
information, see Sending Messages Using the Simplified J]MS APL

For more information about the JMSPr oducer interface, see htt p: //
docs. oracl e. com j avaee/ 7/ api / j avax/j ns/ JMSPr oducer. ht m .

The W.IMSPr oducer interface defines methods and attributes specific to WebLogic
JMS. You can use these features by casting the JMSPr oducer instance to the

WLSIMSPr oducer interface defined in the webl ogi c. j ms. ext ensi ons package.
See the Javadoc for W.IMSPr oducer in Java API Reference for Oracle WebLogic Server.

5.2.3 JMSConsumer

The JMBConsuner object receives messages from a queue or topic. You can create a
JNMBConsuner object by passing a Queue or Topi ¢ object to one of the

cr eat eConsumer methods on a JMSCont ext or by passing a Topi ¢ object to one of
the cr eat eShar edConsuner or cr eat eDur abl eConsuner methods on a
JMBCont ext object.

For more information about the JMSConsuner interface, see htt p: //
docs. oracl e. com j avaee/ 7/ api / j avax/j ns/ JMSConsuner. htni .

5.3 New Methods to Simplify Messaging in JMS 2.0

In addition to the methods for sending and receiving messages on JMSContext objects,
JMS 2.0 introduces a few more methods to simplify the code.

The following sections describe these methods:
e Method to Extract the Body Directly from a Message
¢ Method to Receive a Message Body Directly

e Method to Create a Session

5.3.1 Method to Extract the Body Directly from a Message

The get Body method provides an easy way to obtain the body from a message. This
method applies to both the classic and simplified APL

voi d onMessage(Message nmessage){ // delivers a BytesMessage
byte[] bytes = message. get Body(byte[].cl ass);

For more information, see the Javadoc at

http://docs. oracl e.conl j avaee/ 7/ api / j avax/ j ms/ Message. ht m

5.3.2 Method to Receive a Message Body Directly

The r ecei veBody method can be used to receive any type of message except for
St r eamVessage and Message, as long as the class of the expected body is known in
advance.

Understanding the Simplified API Programming Model 5-3

http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

New Methods to Simplify Messaging in JMS 2.0

JMBConsunmer consuner = ...
String body = consuner.recei veBody(String.class, 1000);

For more information, see the Javadoc at:

https://docs. oracl e. coml javaee/ 7/ api / j avax/j ns/ IMSConsuner . ht m

5.3.3 Method to Create a Session

A new cr eat eSessi on method, that accepts a single parameter or no parameter,
was added to the j avax. j ms. Connect i on. See Create a Session Using the
createSession Method.

5-4 Developing JMS Applications for Oracle WebLogic Server

https://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html

6

Developing a Basic JMS Application

This chapter describes how to set up a basic WebLogic JMS application using the J]MS

2.0and JMS 1.1 APIs.

¢ Importing Required Packages

¢ Setting Up a JMS Application

* Sending Messages

® Receiving Messages

* Acknowledging Received Messages

¢ Releasing Object Resources

6.1 Importing Required Packages

Table 6-1 lists the packages that are commonly used by WebLogic JMS applications.

Table 6-1 WebLogic JMS Packages

Package Description
. . JMS API. This package is always used by WebLogic
javax. e JMS applications. See ht t p: / / docs. or acl e. con!
j avaeel/ 7/ api / j avax/j ns/ package-
sunmary. ht .
. . JNDI packages required for server and destination
javax. ham ng lookups. See ht t p: / / docs. or acl e. con!
weblogic.jndi

j avase/ 7/ docs/ api / j avax/ nam ng/ package-
sumary. htni .

javax. transaction. User Transacti on

JTA API required for JTA user transaction support. See
http://ww. oracl e. com' t echnet wor k/j ava/
javaee/jtalindex.htm.

weblogic.jms.extensions

WebLogic-specific JMS public API that provides
additional classes and methods, as described in Value-
Added Public JMS API Extensions.

6.2 Setting Up a JMS Application

Before you can send and receive messages, you must set up a JMS application. The
following sections describe the procedure to set up a basic WebLogic JMS application:

¢ Using a Simplified API to Set Up a J]MS Application

Developing a Basic JMS Application 6-1

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/naming/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/naming/package-summary.html
http://docs.oracle.com/javase/7/docs/api/javax/naming/package-summary.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

Setting Up a JMS Application

¢ Using the Classic API to Set Up a J]MS Application

You must ensure that the system administrator responsible for configuring WebLogic
Server has configured the required JMS resources, including the connection factories,
JMS servers, and destinations.

¢ For information about JMS resource definitions, see Configuring Basic JMS System
Resources in Administering JMS Resources for Oracle WebLogic Server.

¢ For information about configuring other JMS resources, see Configure Messaging
in the Oracle WebLogic Server Administration Console Online Help.

e For more information about the JMS classes and methods described in these
sections, see Understanding the JMS API, or the j avax. j ms,athttp://
docs. oracl e. com j avaee/ 7/ api / j avax/ j ms/ package- sunmary. ht m , or
the weblogic.jms.extensions Javadoc in Java API Reference for Oracle WebLogic Server.

¢ For information about setting up transacted applications and JTA user transactions,
see Using Transactions with WebLogic JMS.

6.2.1 Using a Simplified API to Set Up a JMS Application

Oracle WebLogic Server 12.2.1 supports the JMS 2.0 simplified API for sending and
receiving messages. For more information about the simplified API, see
Understanding the Simplified API Programming Model .

Figure 6-1 shows the steps required to set up a JMS application using the JMS 2.0
Simplified APL

6-2 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/jms/package-summary.html

Setting Up a JMS Application

Figure 6-1 Setting Up a JMS Application Using the Simplified API

Look up JMS Connection Factory in
JNDI

Look up a Queue or Topic destination

Create a JMSContext object using the
Connection Factory

To send messages To receive messages
v v
Create JMSProducer object Create JMSConsumer object
using the JMSContext using the JMSContext

Optionally create the Message
object

Receive the
message
Asynchronously?,

Register Asynchronous
Message Listener

k4

Send message

h 4

Receive message Listen for messages

6.2.1.1 Look Up a Connection Factory in JNDI

Before you can look up a connection factory, it must be defined as part of the
configuration information.

The administrator can configure new connection factories during configuration;
however, these factories must be uniquely named or the server will not boot. You can
also use the default connection factories defined by the Java EE specification and
WebLogic Server. For information, see Connection Factory Configuration in
Administering JMS Resources for Oracle WebLogic Server.

After the connection factory is defined, you can look it up by establishing a JNDI
context (nami ngCont ext) using the | ni ti al Cont ext () constructor, athttp://
docs. oracl e. com j avase/ 7/ docs/ api / j avax/ nami ng/

I nitial Context.htm #l nitial Context().Forany application other than a
servlet application, you must provide a Hasht abl e defining the environment when
calling the | ni ti al Cont ext constructor.

Developing a Basic JMS Application 6-3

http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()

Setting Up a JMS Application

After the JNDI context is defined, to look up a connection factory in JNDI, execute the
following command:

Connecti onFactory connectionFactory =
(Connecti onFactory) nani ngCont ext .| ookup(CF_nane);

The CF_narre argument specifies the connection factory name defined during the
configuration.

For more information about the Connect i onFact or y class, see ConnectionFactory,
or the j avax. j ms. Connect i onFact ory Javadoc, athtt p: // docs. or acl e. conf
j avaeel 7/ api / j avax/j ns/ Connecti onFactory. htm .

6.2.1.2 Look Up a Queue or Topic

Before you can look up a queue or a topic, it must be configured by the WebLogic JMS
system administrator, as described in Configure topics and Configure queues in the
Oracle WebLogic Server Administration Console Online Help. For more information, see
Destination or the Javadocs at ht t p: / / docs. or acl e. com j avaee/ 7/ api /

j avax/j ms/ Queue. ht Ml and http://docs. oracl e. coni j avaee/ 7/ api /

j avax/j s/ Topic. htnl .

After the destination is configured, you can look up a queue or topic destination using
one of the following procedures:

You can look up a queue or topic destination by establishing a JNDI context

(nam ngCont ext), which has already been accomplished in Look Up a Connection
Factory in JNDI, and executing one of the following commands, for Point-to-Point or
Publish/Subscribe messaging, respectively:

Queue queue = (Queue) nami ngContext. | ookup(Queue_nane);
Topi ¢ topic = (Topic) nam ngContext. | ookup(Topic_name);

The Queue_narre and Topi c_narmne arguments specify the JNDI names of the queue
and topic destinations defined during the configuration.

6.2.1.3 Create a JMSContext Object

A JMBCont ext object replaces the Connect i on and Sessi on objects in the classic
API For more information, see New Interfaces in the Simplified JMS API.

The JMSContext object can be created by calling one of the several cr eat eCont ext
methods on a Connect i onFact ory object. For example:

JMSCont ext context = connectionFactory. creat eCont ext (sessi onhbde);

In this case, a connection and a session with the specified mode are created for use by
the new JM5Cont ext object cont ext . For more information, see

connect i onFact ory interface definitionin ht t p: / / docs. or acl e. com

j avaeel 7/ api / j avax/j ns/ Connecti onFactory. htm .

Alternatively, you can inject JM5Cont ext in the Java EE web and EJB containers
using the @ nj ect annotation as described in Declaring a JMSContext Object Using
@Inject Annotation. This is the recommended way for creating JMSCont ext in Java
EE applications. For example:

@nj ect @MsConnecti onFactory("nyJMSCF") JMSCont ext context;

For more information about using the JMSCont ext interface, see htt p: //
docs. oracl e. com j avaee/ 7/ api / j avax/ j ns/ JMsCont ext . ht i .

6-4 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/Queue.html
http://docs.oracle.com/javaee/7/api/javax/jms/Queue.html
http://docs.oracle.com/javaee/7/api/javax/jms/Topic.html
http://docs.oracle.com/javaee/7/api/javax/jms/Topic.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSContext.html

Setting Up a JMS Application

6.2.1.4 Create JMSProducer and JMSConsumer Objects

Use the JMSProducer and JMSConsumer objects to send and receive messages
respectively.

You can create a JMSPr oducer object by calling the cr eat ePr oducer method on a
JMBCont ext object as follows:

JMSProducer producer = context. createProducer();

Note:

You do not need to save the JMSPr oducer object in a variable. Instead, create
the object while calling the send method as follows:

cont ext . creat eProducer (). send(queue, nmessage);

For more information, see ht t p: / / docs. or acl e. coni j avaee/ 7/ api /
j avax/j ms/ JVMSPr oducer. htm .

You can create a JM5Consumner object by passing a queue or topic object to one of the
cr eat eConsunmer methods on a JMSCont ext object as follows:

JMSCont ext context = connectionFactory. createContext();
JMSConsumer consumer = context. creat eConsumer (queue) ;

For more information, see ht t p: / / docs. or acl e. coni j avaee/ 7/ api /
javax/j ms/ JMSConsuner. htm .

6.2.1.5 Sending and Receiving Messages using the Simplified API

The following sections describe how to send and receive messages using the
Simplified APL

¢ Sending Messages Using the Simplified J]MS API
* Sending a Message Asynchronously
¢ Receive Messages Asynchronously Using the Simplified API

¢ Receive Messages Synchronously Using the Simplified API

6.2.2 Using the Classic API to Set Up a JMS Application

The following figure shows the steps required to set up a JMS application using JMS
1.1 classic APIL

Developing a Basic JMS Application 6-5

http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html

Setting Up a JMS Application

Figure 6-2 Setting Up a JMS Application using Classic API

Step 1. Look up JMS
Connection Factory
in JNDI

!

Step 2. Create a Connection
Using the
Connection Factory

E

Step 3. Create a Session
Using the
Connection

)

Step 4. Look up Destinations
(Queues and Topics)
in JNDI

v

Step 5. Create Message Preducers
and Message Consumers
Using Session and Destinations

Step Ea. Create the
Message Object

Step 6b. Optionally Register
Asynchronous Message Listener

L

¥

Step 7. Start the Connection

6-6 Developing JMS Applications for Oracle WebLogic Server

Setting Up a JMS Application

Note:

Oracle WebLogic Server 12.2.1 supports JMS 2.0 simplified API for sending
and receiving messages. See Understanding the Simplified API Programming
Model .

6.2.2.1 Step 1: Look Up a Connection Factory in JNDI

Before you can look up a connection factory, it must be defined as part of the
configuration information.

The administrator can configure new connection factories during configuration;
however, these factories must be uniquely named or the server will not boot. You can
also use the default connection factories defined by the Java EE specification and
WebLogic Server. For information, see "Connection Factory Configuration” in
Administering JMS Resources for Oracle WebLogic Server.

after the connection factory is defined, you can look it up by establishing a JNDI
context (cont ext) using the I ni ti al Cont ext () method, athttp://

docs. oracl e. com j avase/ 7/ docs/ api / j avax/ nami ng/

Initial Context.htm #lnitial Context().Forany application other than a
servlet application, you must pass an environment used to create the initial context.

After the context is defined, to look up a connection factory in JNDI, execute one of the
following commands, for PTP or Publish/Subscribe messaging, respectively:

QueueConnect i onFact ory queueConnectionFactory =
(QueueConnecti onFactory) context.|ookup(CF_nane);

Topi cConnect i onFactory topi cConnectionFactory =
(Topi cConnecti onFactory) context. | ookup(CF_nane);

The CF_nane argument specifies the connection factory name defined during
configuration.

For more information about the Connect i onFact or y class, see ConnectionFactory,
or the j avax. j ms. Connect i onFact ory Javadoc, at htt p: // docs. or acl e. conf
j avaeel 7/ api / j avax/ j ms/ Connecti onFactory. htm .

6.2.2.2 Step 2: Create a Connection Using the Connection Factory

You can create a connection for accessing the messaging system by using the
Connect i onFact or y methods described in the following sections.

For more information about the Connect i on class, see Connection, or the
j avax. j ms. Connecti on Javadoc, athttp://docs. oracl e. com
j avaeel 7/ api / j avax/j ns/ Connection. htn .

6.2.2.2.1 Create a Queue Connection

The QueueConnect i onFact or y provides the following two methods for creating a
queue connection:

public QueueConnection createQueueConnection(
) throws JMSException

public QueueConnection createQueueConnecti on(
String userNane,

String password

) throws JMSException

Developing a Basic JMS Application 6-7

http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html

Setting Up a JMS Application

The first method creates a QueueConnect i on; the second method creates a
QueueConnect i on using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in Step 7: Start the Connection.

For more information about the QueueConnect i onFact or y class methods, see the

j avax. j ms. QueueConnect i onFact ory Javadoc, at htt p: // docs. or acl e. con!
j avaeel 7/ api / j avax/j ms/ QueueConnect i onFact ory. ht m . For more
information about the QueueConnect i on class, see the

j avax. j ms. QueueConnect i on Javadoc, athtt p: // docs. or acl e. cont

j avaeel 7/ api / j avax/j ms/ QueueConnecti on. htm .

6.2.2.2.2 Create a Topic Connection

The Topi cConnect i onFact ory provides the following two methods to create a
topic connection:

public Topi cConnection createTopi cConnecti on(
) throws JMSException

public Topi cConnection createTopi cConnecti on(
String userNane,

String password

) throws JMSException

The first method creates a Topi cConnect i on; the second method creates a

Topi cConnect i on using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in Step 7: Start the Connection.

For more information about the Topi cConnect i onFact ory class methods, see the
javax. j ms. Topi cConnecti onFact ory Javadoc., athttp://

docs. oracl e. com j avaee/ 7/ api / j avax/j ns/

Topi cConnecti onFact ory. ht nl . For more information about the

Topi cConnect i on class, see the j avax. j ms. Topi cConnect i on Javadoc, at
http://docs. oracl e. conl j avaee/ 7/ api / j avax/ j s/

Topi cConnection. htm .

6.2.2.3 Step 3: Create a Session Using the Connection

You can create one or more sessions for accessing a queue or topic using the
Connect i on methods described in the following sections.

Note:

A session and its message producers and consumers can only be accessed by
one thread at a time. Their behavior is undefined if multiple threads access
them simultaneously.

WebLogic JMS does not support having both types of MessageConsumer
(QueueConsumer and TopicSubscriber) for a single Session. However, it does
support a single session with both a QueueSender and a TopicSubscriber (and
vice-versa: QueueConsumer and TopicPublisher), or with multiple
MessageProducers of any type.

For more information about the Sessi on class, see Session or the
j avax. j nms. Sessi on Javadoc, athtt p: // docs. oracl e. cont j avaee/ 7/ api /
j avax/j nms/ Session. htm .

6-8 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnectionFactory.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/Session.html

Setting Up a JMS Application

6.2.2.3.1 Create a Session Using the createSession Method

Use the cr eat eSessi on method in j avax. j ms. Connect i on to create a session.
This method accepts a single parameter, sessi onMbde, or no parameter as follows:

Session createSession(int sessionMbde) throws JMSException
or

Session createSession() throws JMSException

6.2.2.3.2 Create a Queue Session

The QueueConnect i on class defines the following method for creating a queue
session:

public QueueSession createQueueSessi on(
bool ean transact ed,
int acknow edgeMbde

) throws JMSException

You must specify a boolean argument indicating whether the session will be
transacted (t r ue) or non-transacted (f al se), and an integer that indicates the
acknowledge mode for non-transacted sessions. The acknow edgeMbde attribute is
ignored for transacted sessions. In this case, messages are acknowledged when the
transaction is committed using the conmi t () method.

For more information about the QueueConnect i on class methods, see the

j avax. j ms. QueueConnect i on Javadoc, athtt p: // docs. or acl e. cont

j avaeel/ 7/ api / j avax/j ms/ QueueConnect i on. ht m . For more information
about the QueueSessi on class, see the j avax. j ns. QueueSessi on Javadoc, at
http://docs.oracle.conijavaeel/ 7/ api/javax/jms/ QueueSessi on. htni .

6.2.2.3.3 Create a Topic Session

The Topi cConnect i on class defines the following method for creating a topic
session:

public Topi cSession createTopi cSessi on(
bool ean transact ed,
int acknow edgeMbde

) throws JMSException

You must specify a boolean argument indicating whether the session will be
transacted (t r ue) or non-transacted (f al se), and an integer that indicates the
acknowledge mode for non-transacted sessions. The acknow edgeModde attribute is
ignored for transacted sessions. In this case, messages are acknowledged when the
transaction is committed using the conmi t () method.

For more information about the Topi cConnect i on class methods, see the

j avax. j ns. Topi cConnect i on Javadoc, athtt p: // docs. or acl e. cont

j avaeel 7/ api / j avax/ j ns/ Topi cConnect i on. ht m . For more information
about the Topi cSessi on class, see the j avax. j ns. Topi cSessi on Javadoc, at
http://docs. oracl e. conlj avaee/ 7/ api / j avax/ j ns/ Topi cSessi on. ht i .

6.2.2.4 Step 4: Look Up a Destination (Queue or Topic)

Before you can look up a destination, the destination must be configured by the
WebLogic JMS system administrator, as described in Configure topics and Configure
queues in the Oracle WebLogic Server Administration Console Online Help. For more

Developing a Basic JMS Application 6-9

http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html

Setting Up a JMS Application

information about the Dest i nat i on class, see Destination or the
javax.jnms. DestinationJavadoc,athttp://docs. oracl e. conl
j avaeel 7/ api / javax/jnms/ Destination. htm.

After the destination is configured, you can look up a destination using a JNDI name
or a reference:

6.2.2.4.1 Using a JNDI Name

You can look up a destination by establishing a JNDI context (cont ext), which has
already been accomplished in Look Up a Connection Factory in JNDI, and executing
one of the following commands, for PTP or Publish/Subscibe messaging, respectively:

Queue queue = (Queue) context.| ookup(Dest_nane);
Topic topic = (Topic) context.|ookup(Dest_nane);

The Dest _nane argument specifies the JNDI name of the destination defined during
configuration.

6.2.2.4.2 Use a Reference

If you do not use a JNDI namespace, you can use the following QueueSessi on or
Topi cSessi on method to reference a queue or topic, respectively:

Note:

The cr eat eQueue() and cr eat eTopi ¢() methods do not create
destinations dynamically; they create only references to destinations that
already exist. For information about creating destinations dynamically, see
Using JMS Module Helper to Manage Applications.

public Queue createQueue(
String queueNane
) throws JMSException

public Topic createTopic(
String topi cNane
) throws JMSException

For the syntax of JNDI name, createQueue(), and createTopic(), see How to Look Up a
Destination.

6.2.2.5 Step 5: Create Message Producers and Message Consumers

You can create message producers and message consumers by passing the destination
reference to the Sessi on methods described in the following sections.

Note:

Each consumer receives its own local copy of a message. After a message is
received, you can modify the header field values; however, the message
properties and message body are read only. (Attempting to modify the
message properties or body at this point will generate a

MessageNot Wi t eabl eExcept i on.) You can modify the message body by
executing the corresponding message type's cl ear body() method to clear
the existing contents and enable the write permission.

6-10 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html
http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

Setting Up a JMS Application

For more information about the MessagePr oducer and MessageConsuner classes,
see MessageProducer and MessageConsumer, or the

j avax.j nms. MessagePr oducer,athttp://docs. oracl e. com j avaee/ 7/ api /
j avax/j ms/ MessagePr oducer. htm ,andj avax. j ms. MessageConsuner
Javadocs, athtt p: // docs. oracl e. com j avaee/ 7/ api / j avax/j ns/
MessageConsuner. htni .

6.2.2.5.1 Create QueueSenders and QueueReceivers

The QueueSessi on object defines the following methods for creating queue senders
and receivers:

public QueueSender createSender (
Queue queue
) throws JMSException

public QueueReceiver createReceiver(
Queue queue
) throws JMSException

public QueueReceiver createReceiver(
Queue queue,

String nmessageSel ector

) throws JMSException

You must specify the queue object for the queue sender or receiver being created. You
may also specify a message selector for filtering messages. Message selectors are
described in more detail in Filtering Messages.

If you pass the value of null to the cr eat eSender () method, you create an
anonymous producer. In this case, you must specify the queue name when sending
messages, as described in Sending Messages.

After the queue sender or receiver is created, you can access the queue name
associated with the queue sender or receiver using the following QueueSender or
QueueRecei ver method:

public Queue get Queue(
) throws JMSException

For more information about the QueueSessi on class methods, see the

j avax.j ms. QueueSessi on Javadoc, athtt p: // docs. oracl e. conf

j avaeel/ 7/ api / j avax/ j ms/ QueueSessi on. ht m . For more information about
the QueueSender and QueueRecei ver classes, see the j avax. j ms. QueueSender,
athttp://docs. oracl e. conij avaee/ 7/ api / j avax/ j ns/

QueueSender . htnl,andj avax. j ms. QueueRecei ver Javadocs,athttp://
docs. oracl e. com j avaee/ 7/ api / j avax/j ns/ QueueRecei ver. htm .

6.2.2.5.2 Create TopicPublishers and TopicSubscribers

The Topi cSessi on object defines the following methods for creating topic publishers
and topic subscribers:

public Topi cPublisher createPublisher(
Topic topic
) throws JMSException

public Topi cSubscriber createSubscri ber(

Topic topic
) throws JMSException

Developing a Basic JMS Application 6-11

http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueReceiver.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueReceiver.html

Setting Up a JMS Application

public Topi cSubscriber createSubscriber(
Topi ¢ topic,

String messageSel ector,

bool ean nolLocal

) throws JMSException

Note:

The methods described in this section create non-durable subscribers. Non-
durable topic subscribers only receive messages sent while they are active. For
information about the methods used to create durable subscriptions enabling
messages to be retained until all messages are delivered to a durable
subscriber, see Creating Subscribers for a Durable Subscription. In this case,
durable subscribers only receive messages that are published after the
subscriber has subscribed.

You must specify the topic object for the publisher or subscriber being created. You
can specify a message selector for filtering messages and a noLocal flag (described
later in this section). Message selectors are described in more detail in Filtering
Messages.

If you pass a value of null to the cr eat ePubl i sher () method, then you create an
anonymous producer. In this case, you must specify the topic name when sending
messages, as described in Sending Messages.

An application can have JMS connections that it uses to both publish and subscribe to
the same topic. Because topic messages are delivered to all subscribers, the application
can receive messages it has published itself. To prevent this behavior, a J]MS
application can set a noLocal flagtotrue.

After the topic publisher or subscriber is created, you can access the topic name
associated with the topic publisher or subscriber using the following
Topi cPubl i sher or Topi cSubscri ber method:

Topi ¢ get Topi c(
) throws JMSException

In addition, you can access the noLocal variable setting associated with the topic
subscriber using the following Topi cSubscri ber method:

bool ean get NoLocal (
) throws JMSException

For more information about the Topi cSessi on class methods, see the

j avax. j ms. Topi cSessi on Javadoc, atht t p: // docs. or acl e. conf

j avaeel 7/ api / j avax/ j ns/ Topi cSessi on. ht m . For more information about
the Topi cPubl i sher and Topi cSubscri ber classes, see the

j avax. j nms. Topi cPubl i sher,athttp://docs. oracl e. conl j avaee/ 7/ api /
j avax/j ms/ Topi cPubl i sher. ht nl, and thej avax. j ms. Topi cSubscri ber
Javadocs, at ht t p: / / docs. oracl e. com j avaee/ 7/ api / j avax/ j ms/

Topi cSubscri ber. htn .

6-12 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSession.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSubscriber.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicSubscriber.html

Setting Up a JMS Application

6.2.2.6 Step 6a: Create the Message Object (Message Producers)

Note:

This step applies to message producers only.

Sessi on Methods

To create the message object, use one of the following Sessi on or W.Sessi on class
methods:

Note:

These methods are inherited by both the QueueSessi on and Topi cSessi on

subclasses.

public BytesMessage createBytesMessage(
) throws JMSException

public MapMessage creat eMapMessage(
) throws JMSException

public Message createMessage(
) throws JMSException

public ObjectMessage createChj ect Message(
) throws JMSException

public ObjectMessage createChj ect Message(
Serializabl e object
) throws JMSException

public StreamVessage createStreanvessage(
) throws JMSException

public TextMessage createText Message(
) throws JMSException

public TextMessage createText Message(
String text
) throws JMSException

W.Sessi on Method

public XM.Message creat eXM.Message(
String text
) throws JMSException

For more information about the Sessi on and W.Sessi on class methods, see the
j avax.j nms. Session,athttp://docs. oracl e. com javaee/ 7/ api /

j avax/j ms/ Sessi on. ht M ,and webl ogi c. | ns. ext ensi ons. W.Sessi on
Javadocs, respectively. For more information about the Message class and its
methods, see Messages, or the j avax. j ns. Message Javadoc, athttp://

docs. oracl e. com j avaee/ 7/ api / j avax/ | ns/ Message. htni .

Developing a Basic JMS Application 6-13

http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Setting Up a JMS Application

6.2.2.7 Step 6b: Optionally Register an Asynchronous Message Listener

Note:

This step applies to message consumers only.

To receive messages asynchronously, you must register an asynchronous message
listener by performing the following steps:

1. Implement the j avax. j ms. Messageli st ener interface, athttp://
docs. oracl e. com j avaee/ 7/ api / j avax/j ns/ MessagelLi st ener. htni,
which includes an onMessage() method.

Note:

For an example of the onMessage() method interface, see Example: Setting
Up a Point-to-Point JMS Application Using the Classic APL

If you want to issue the cl ose() method within an onMessage() method
call, the system administrator must select the Allow Close In OnMessage
option when configuring the connection factory. For more information on
configuring connection factory options, see "Configuring Basic JMS System
Resources" in Administering JMS Resources for Oracle WebLogic Server.

2. Set the message listener using the following MessageConsuner method, passing
the listener information as an argument:

public void setMessageli stener(
MessagelLi stener |istener
) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as
described in Defining a Connection Exception Listener.

You can unset a message listener by calling the MessagelLi st ener () method with
the value of null.

After a message listener is defined, you can access it by calling the following
MessageConsurmrer method:

public Messageli stener get Messageli stener(
) throws JMSException

Note:

WebLogic JMS guarantees that multiple onMessage() calls for the same
session will not be executed simultaneously.

If a message consumer is closed by an administrator or as the result of a server failure,
then a Consuner C osedExcept i on is delivered to the session exception listener, if
one was defined. In this way, a new message consumer can be created, if necessary.
For information about defining a session exception listener, see Defining a Connection
Exception Listener.

6-14 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/MessageListener.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageListener.html

Setting Up a JMS Application

The MessageConsurrer class methods are inherited by the QueueRecei ver and
Topi cSubscri ber classes. For additional information about the MessageConsuner
class methods, see MessageProducer and MessageConsumer or the

j avax. j ms. MessageConsuner Javadoc, athtt p:// docs. oracl e. cont

j avaeel 7/ api / j avax/j ms/ MessageConsumer. htm .

6.2.2.8 Step 7: Start the Connection
You start the connection using the Connect i on class st art () method.

For additional information about starting, stopping, and closing a connection, see
Starting, Stopping, and Closing a Connection or the j avax. j ms. Connecti on
Javadoc, athtt p: // docs. oracl e. conl j avaee/ 7/ api / j avax/ j ns/
Connection. htni .

6.2.3 Example: Setting Up a Point-to-Point JMS Application Using the Classic API

The following example is excerpted from the exanpl es. j ms. queue. QueueSend
example, provided with WebLogic Server in the EXAMPLES_HOVE\ Wl ser ver

\ sanpl es\ server\ exanpl es\ src\ exanpl es\j ns\ cl assi capi \ queue
directory where EXAMPLES_HOME represents the directory in which the WebLogic
Server code examples are configured. The i ni t () method shows you how to set up
and start a QueueSessi on for a JMS application. The following shows the i ni t ()
method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and
queue static variables.

public final static String JND _FACTORY=
“webl ogi c.jndi . W.Initial ContextFactory";
public final static String JMS_FACTORY=
“webl ogi c. exanpl es. j ms. QueueConnect i onFactory";
public final static String
QUEUE="webl ogi c. exanpl es. j ns. exanpl eQueue";

private QueueConnectionFactory qconFactory;
private QueueConnection gcon;

private QueueSession gsession;

private QueueSender gsender;

private Queue queue;

private TextMessage nsg;

Set up the JNDI initial context, as follows:

Initial Context ic = getlnitial Context(args[0]);

private static Initial Context getlnitial Context(
String url
) throws Nami ngException

Hasht abl e env = new Hasht abl e();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, JNDI _FACTCRY);
env. put (Cont ext . PROVIDER_URL, url);

return new Initial Context(env);

}

Developing a Basic JMS Application 6-15

http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html
http://docs.oracle.com/javaee/7/api/javax/jms/Connection.html

Setting Up a JMS Application

Note:

When setting up the JNDI initial context for an EJB or servlet, use the
following method:

Context ctx = new Initial Context();

Create all the necessary objects for sending messages to a JMS queue. The ct X object is
the JNDI initial context passed in by the mai n() method.

public void init(

Context ctx,

String queueNane

) throws Nami ngException, JMSException

{

Step 1
Look up a connection factory in JNDL

gconFactory = (QueueConnectionFactory) ctx.|ookup(JVMS_FACTCRY);

Step 2
Create a connection using the connection factory.

gcon = gconFactory. creat eQueueConnection();

Step 3

Create a session using the connection. The following code defines the session as non-
transacted and specifies that messages will be acknowledged automatically. For more
information about transacted sessions and acknowledge modes, see Session.

gsessi on = gcon. cr eat eQueueSessi on(fal se,
Sessi on. AUTO_ACKNOALEDCGE) ;

Step 4
Look up a destination (queue) in JNDI.
queue = (Queue) ctx. | ookup(queueNane);

Step 5

Create a reference to a message producer (queue sender) using the session and
destination (queue).

gsender = qgsession. creat eSender (queue);
Step 6
Create the message object.

msg = gsession. creat eText Message();
Step 7
Start the connection.

gcon.start();

}

6-16 Developing JMS Applications for Oracle WebLogic Server

Setting Up a JMS Application

The i ni t () method for the exanpl es. j ms. queue. QueueRecei ve example is
similar to the QueueSend i ni t () method shown previously, with the one exception.
Steps 5 and 6 would be replaced by the following code, respectively:

grecei ver = gsession. creat eRecei ver (queue);
grecei ver. set MessageLi st ener (thi s);

In the first line, instead of calling the cr eat eSender () method to create a reference
to the queue sender, the application calls the cr eat eRecei ver () method to create
the queue receiver.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the queue session, it is passed to the
exanpl es. j nms. QueueRecei ve. onMessage() method. The following code
example shows the onMessage() interface from the QueueRecei ve example:

public void onMessage(Message nsg)
{
try {
String nmsgText;
if (msg instanceof TextMessage) {
megText = ((TextMessage)nsg). get Text();
} else { // If it is not a TextMessage...
msgText = msg.toString();
1

Systemout. println("Mssage Received: "+ nsgText);

if (msgText.equal slgnoreCase("quit")) {
synchroni zed(this) {

quit = true;
this.notifyAll(); // Notify main thread to quit
}

} catch (JMBException jnse) {
j mse. printStackTrace();

}
}

The onMessage() method processes messages received through the queue receiver.
The method verifies that the message is a Text Message and, if it is, prints the text of
the message. If the onMessage() method receives a different message type, then it
uses the message'st 0St ri ng() method to display the message contents.

Note:

It is good practice to verify that the received message is the type expected by
the handler method.

For more information about the JMS classes used in this example, see Understanding
the JMS API or the j avax. j ms Javadoc, at http://www.oracle.com/technetwork/
java/jms/index.html.

Developing a Basic JMS Application 6-17

Setting Up a JMS Application

6.2.4 Example: Setting Up a Publish-Subscribe JMS Application Using the Classic API

The following example is an excerpt from the exanpl es. j ns. t opi ¢. Topi cSend
example, provided with WebLogic Server in the EXAMPLES_HOVE\ Wl ser ver

\ sanpl es\ server\ exanpl es\ src\ exanpl es\j ns\ cl assi capi \t opi c
directory, where EXAMPLES_HOME represents the directory in which the WebLogic
Server code examples are configured. The i ni t () method shows you how to set up
and start a topic session for a JMS application. The following shows the i ni t ()
method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and
topic static variables.

public final static String JND _FACTORY=

“webl ogi c.j ndi . W.Ini tial ContextFactory";
public final static String JMS_FACTORY=

"“webl ogi c. exanpl es. j ms. Topi cConnect i onFactory";
public final static String

TOPI C="webl ogi c. exanpl es. j ns. exanpl eTopi ¢";

protected Topi cConnecti onFactory tconFactory;
protected Topi cConnection tcon;

protected Topi cSession tsession;

protected Topi cPublisher tpublisher;
protected Topic topic;

protected Text Message nsg;

Set up the JNDI initial context, as follows:

Initial Context ic = getlnitial Context(args[0]);

private static Initial Context getlnitial Context(
String url

) throws Nam ngException

{
Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, JNDI _FACTCRY);
env. put (Cont ext . PROVI DER_URL, url);
return new Initial Context(env);

Note:

When setting up the JNDI initial context for a servlet, use the following
method:

Context ctx = new Initial Context();

Create all the necessary objects for sending messages to a JMS queue. The ct X object is
the JNDI initial context passed in by the mai n() method.

public void init(

Cont ext ctx,

String topi cNane

) throws Nami ngException, JMSException
{

6-18 Developing JMS Applications for Oracle WebLogic Server

Setting Up a JMS Application

Step 1
Look up a connection factory using JNDIL

tconFactory =
(Topi cConnectionFactory) ctx. | ookup(JMS_FACTORY);

Step 2
Create a connection using the connection factory.

tcon = tconFactory. createTopi cConnection();

Step 3

Create a session using the connection. The following defines the session as non-
transacted and specifies that messages will be acknowledged automatically. For more
information about setting session transaction and acknowledge modes, see Session.

tsession = tcon. createTopi cSession(fal se,
Sessi on. AUTO_ACKNOW.EDCE) ;

Step 4
Look up the destination (topic) using JNDL
topic = (Topic) ctx.lookup(topicNane);

Step 5

Create a reference to a message producer (topic publisher) using the session and
destination (topic).

t publ i sher = tsession. createPublisher(topic);

Step 6
Create the message object.

msg = tsession. createText Message();

Step 7
Start the connection.

tcon.start();

}

The i ni t () method for the exanpl es. j ms. t opi c. Topi cRecei ve example is
similar to the Topi cSend i ni t () method shown previously with one exception.
Steps 5 and 6 would be replaced by the following code, respectively:

tsubscriber = tsession.createSubscriber(topic);
tsubscri ber. set Messageli stener(this);

In the first line, instead of calling the cr eat ePubl i sher () method to create a
reference to the topic publisher, the application calls the cr eat eSubscri ber ()
method to create the topic subscriber.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the topic session, it is passed to the
exanpl es. j ms. Topi cSubscri be. onMessage() method. The onMessage()
interface for the Topi cRecei ve example is the same as the QueueRecei ve

Developing a Basic JMS Application 6-19

Sending Messages

onMessage() interface, as described in Example: Setting Up a Point-to-Point JMS
Application Using the Classic API.

For more information about the JMS classes used in this example, see Understanding
the JMS API or the j avax. j ms Javadoc, at ht t p: / / www. or acl e. com
technetwork/javal/jnms/index. htm.

6.3 Sending Messages

After you set up the JMS application as described in Setting Up a JMS Application,
you can send messages. To send a message, you can use either the simplified API or
the classic APL

6.3.1 Sending Messages Using the Simplified JMS API

In the simplified API, messages are sent by creating a JMSPr oducer object on behalf
of JIMSCont ext . For more information, see Create JMSProducer and JMSConsumer
Objects.

To send a message to a specified destination, you can use the following JMSPr oducer
method which is analogous to the send method of MessagePr oducer in the classic
APIL:

JMSProducer send(Destination destination, Message message)

For example,

cont ext . creat eProducer (). send(destination,"Hello0");

This code creates a Text Message object and sets its body to "Hello", and then sends it
to the specified dest i nati on.

You can also use the following JMSPr oducer methods, which create a message
automatically for of the appropriate message type and set the payload to the specified
parameter:

JMSProducer send(Destination destination,byte[] body)

JMSProducer send(Destination destination, Map<String, Coject> body)

JMSProducer send(Destination destination, Serializable body)

JMSProducer send(Destination destination, String body)

For more information about the JMSPr oducer interface and send methods, see the
Javadoc at:

http://docs. oracle.conijavaeel/ 7/ api/javax/jms/ JIMSPr oducer. ht m

WebLogic JMS provides proprietary attributes that you can use while sending
messages. You can specify the delivery mode (Del i ver yMode. PERSI STENT or

Del i ver yMode. NON_PERSI STENT), priority (0- 9), delivery delay, and time-to-live
(in milliseconds) by casting the JMSPr oducer instance to

webl ogi c. j ms. ext ensi ons. W.JIMSPr oducer . See the Javadoc for

W.SIMSPr oducer in Java API Reference for Oracle WebLogic Server.

For example,

cont ext . creat eProducer (). setDel i veryMbde(Del i ver yMbde. NON_PERSI STENT) . send(destinati o
n, nessage) ;

6-20 Developing JMS Applications for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSProducer.html

Sending Messages

If not specified, the delivery mode, priority, and time-to-live attributes are set to one of
the following;:

¢ Connection factory or destination override configuration attributes defined for the
producer, as described Configure default delivery parameters in the Oracle
WebLogic Server Administration Console Online Help.

* Values specified using the JMSProducer object's set methods, as described in
Setting JMSProducer and MessageProducer Attributes.

6.3.2 Sending Messages Using the Classic JMS API

Once you have set up the JMS application as described in Using the Classic API to Set
Up a JMS Application, you can send messages. To send a message, you must, in order,
perform the steps described in the following sections:

1. Create a Message Object
2. Define a Message

3. Send the Message to a Destination Using MessageProducer

For more information about the JMS classes for sending messages and the message
types, see the j avax. j ms. Message Javadoc, at htt p: / / docs. or acl e. conl

j avaee/ 7/ api / j avax/ j ms/ Message. ht nl . For information about receiving
messages, see Receiving Messages.

6.3.2.1 Create a Message Object

This step has already been completed as part of the client setup procedure, as
described in Step 6a: Create the Message Object (Message Producers).

6.3.2.2 Define a Message

This step may have been completed when you set up an application, as described in
Step 6a: Create the Message Object (Message Producers). Whether or not this step has
already been completed depends on the method that was called to create the message
object. For example, for TextMessage and ObjectMessage types, when you create a
message object, you have the option of defining the message when you create the
message object.

If a value was specified and you do not want to change it, you can go to step 3.

If a value was specified or if you want to change an existing value, you can define a
value using the appropriate set method. For example, the method for defining the
text of a Text Message is as follows:

public void setText(
String string
) throws JMSException

Note:

Messages can be defined as null.

Subsequently, you can clear the message body using the following method:

public void clearBody(
) throws JMSException

Developing a Basic JMS Application 6-21

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Sending Messages

For more information about methods used to define messages, see the
j avax. j ms. Sessi on Javadoc, athtt p: // docs. oracl e. cont j avaee/ 7/ api /
j avax/j nms/ Session. htm .

6.3.2.3 Send the Message to a Destination Using MessageProducer

The Dest i nati on and MessagePr oducer objects were created when you set up the
application, as described in Using the Classic API to Set Up a JMS Application.

Note:

If multiple topic subscribers are defined for the same topic, each subscriber
will receive its own local copy of a message. After the message is received, you
can modify the header field values; however, the message properties and
message body are read only. You can modify the message body by executing
the corresponding message type's cl ear body() method to clear the existing
contents and enable the write permission.

For more information about the MessagePr oducer class, see MessageProducer and
MessageConsumer or the j avax. j ms. MessagePr oducer Javadoc, athttp://
docs. oracl e. com j avaee/ 7/ api / j avax/ j ms/ MessagePr oducer. ht m .

You must specify a message. You can also specify the queue name (for anonymous
message producers), delivery mode (Del i ver yMode. PERSI STENT or

Del i ver yMode. NON_PERSI STENT), priority (0- 9), delivery delay, and time-to-live
(in milliseconds). If not specified, the delivery mode, priority, and time-to-live
attributes are set to one of the following:

¢ Connection factory or destination override configuration attributes defined for the
producer, as described in Configure default delivery parameters in the Oracle
WebLogic Server Administration Console Online Help.

* Values specified using the message producer's set methods, as described in Setting
JMSProducer and MessageProducer Attributes.

If you define the delivery mode as PERSI STENT, you should configure a backing store
for the destination, as described in Configure persistent stores in the Oracle WebLogic
Server Administration Console Online Help.

Note:

If no backing store is configured, then the delivery mode is changed to
NON_PERSI STENT and messages are not written to the persistent store.

For more information about using the QueueSender and Topi cPubl i sher methods
for sending messages, see the WebLogic Server documentation at:

https://docs. oracl e. com m ddl ewar e/ 1213/ W s/ INSPGE
i mpl enent . ht MtJNVBPG228

For additional information about the QueueSender class methods, see the
j avax. j ms. QueueSender Javadoc, athttp://docs. oracl e. con!
j avaeel 7/ api / j avax/j ns/ QueueSender. ht i .

6-22 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/Session.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
https://docs.oracle.com/middleware/1213/wls/JMSPG/implement.htm#JMSPG228
https://docs.oracle.com/middleware/1213/wls/JMSPG/implement.htm#JMSPG228
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html

Sending Messages

For more information about the Topi cPubl i sher class methods, see the
j avax. j ms. Topi cPubl i sher Javadoc,athttp://docs. oracl e. con!
j avaeel 7/ api / j avax/j nms/ Topi cPubl i sher. htm .

6.3.3 Sending a Message Asynchronously

In asynchronous mode, the JMS client sends a message and returns control to the
application without waiting for an acknowledgement from the JMS server.

To send messages asynchronously, your application should define a

Conpl et i onLi st ener object. When an acknowledgement is received from the JMS
server to indicate that the message was received, the JMS provider notifies the
application by invoking the callback method onConpl et i on on the

Conpl et i onLi st ener object defined by the application. For more information about
the Conpl et i onLi st ener interface, see htt p: / / docs. or acl e. conf

j avaeel 7/ api / j avax/ j ms/ Conpl eti onLi stener. htni .

After defining the j avax.j ms. Conpl eti onLi st ener object, send messages
asynchronously using the JMSPr oducer or MessagePr oducer objects as described.

e If you are using JMSPr oducer objects to send messages, call the method
set Async(Conpl eti onLi st ener |istener) with a non-null
Conpl et i onLi st ener on the JMSPr oducer object before calling the send
method as listed in the following example:

/1 send a message asynchronously

try (JMSContext context = connectionFactory.createContext()) {

MyConpl eti onLi st ener myConpl etionLi stener = new MyConpl eti onLi stener();
[/call normal send nethod

context. creat eProducer (). set Async(myConpl eti onLi st ener). send(queue, "Hello
wor | d");

}...

For more information, see Sending Messages Using the Simplified JMS APL

¢ If you are using a MessagePr oducer to send messages, use the following method
to send messages asynchronously:

messageProducer . send(message, conpl eti onLi st ener) ;

For more information, see Sending Messages Using the Classic JMS API.

6.3.4 Setting JMSProducer and MessageProducer Attributes

As described in the previous section, when sending a message, you can optionally
specify the delivery mode, priority, delivery delay, and time-to-live values. If not
specified, these attributes are set to the connection factory configuration attributes, as
described in Configure connection factories in the Oracle WebLogic Server
Administration Console Online Help.

Alternatively, you can set the delivery mode, priority, time-to-deliver, time-to-live,
and redelivery delay (timeout), and redelivery limit values dynamically using the
message producer's set methods. Table 6-2 lists the message producer set and get
methods for each dynamically configurable attribute.

Developing a Basic JMS Application 6-23

http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/CompletionListener.html
http://docs.oracle.com/javaee/7/api/javax/jms/CompletionListener.html

Sending Messages

Note:

The delivery mode, priority, time-to-live, time-to-deliver, redelivery delay
(timeout), and redelivery limit attribute settings can be overridden by the
destination using the Delivery Mode Override, Priority Override, Time To
Live Override, Time To Deliver Override, Redelivery Delay Override, and
Redelivery Limit configuration attributes, as described in Configure message
delivery overrides and Configure topic message delivery overrides in the
Oracle WebLogic Server Administration Console Online Help.

Table 6-2 Message Producer Set and Get Methods

Attribute Set Method Get Method
Delivery Mode _ _ _ o .
public void setDeliveryMde(public int getDeliveryMde(
int deliveryMde) throws JMSException

) throws JMSException

Priority

public void setPriority(public int getPriority(
int defaultPriority) throws JMBException
) throws JMSException

Time-to-Live

public void setTimeToLi ve(public long get Ti meToLi ve(
long tineTolive) throws JMSException
) throws JMSException

Redelivery

limit

public void setRedeliveryLinmit(public int getredeliveryLimt(
int redeliveryLimt) throws JMSException
) throws JMSException

Send timeout

public void setsendTi meout (public long getsendTi meout (
| ong sendTi neout) throws JMSException
) throws JMSException

Note:

JMS defines optional MessagePr oducer methods for disabling the message
ID and timestamp information. However, these methods are ignored by
WebLogic JMS.

For more information about the MessagePr oducer class methods, see the

j avax. j ms. MessagePr oducer Javadoc,athtt p:// docs. oracl e. cont
j avaeel 7/ api / j avax/j ns/ MessagePr oducer. ht m , or the

webl ogi c. j ms. ext ensi ons. W.MessagePr oducer Javadoc.

6.3.5 Example: Sending Messages Within a Point-toPoint Application

The following example is excerpted from the exanpl es. j ms. queue. QueueSend
example, provided with WebLogic Server in the EXAMPLES_HOME\ Wl _ser ver

6-24 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageProducer.html

Receiving Messages

\ exanpl es\ src\ exanpl es\j ms\ queue directory, where EXAMPLES_HOME
represents the directory in which the WebLogic Server code examples are configured.
The example shows the code required to create a Text Message, set the text of the
message, and send the message to a queue.

meg = gsession. creat eText Message();

public void send(
String message

) throws JMSException
{

neg. set Text (message) ;
gsender . send(nsg) ;

}

For more information about the QueueSender class and methods, see the
j avax. j ms. QueueSender Javadoc,athttp://docs. oracl e. con!
j avaeel 7/ api / j avax/j nms/ QueueSender. htm .

6.3.6 Example: Sending Messages Within a Publish/Subscribe Application

The following example is excerpted from the exanpl es. j s. t opi c. Topi cSend
example, provided with WebLogic Server in the EXAMPLES_HOVE\ W _ser ver

\ exanpl es\ src\ exanpl es\ j ms\ t opi ¢ directory, where EXAMPLES_HOVE
represents the directory in which the WebLogic Server code examples are configured.
It shows the code required to create a Text Message, set the text of the message, and
send the message to a topic.

meg = tsession. createText Message();

public void send(
String message

) throws JMSException
{

meg. set Text (message) ;
t publ i sher. publ i sh(msg);
}

For more information about the Topi cPubl i sher class and methods, see the
j avax.j ms. Topi cPubl i sher Javadoc, at htt p: // docs. oracl e. com
j avaeel 7/ api / j avax/ j ms/ Topi cPubl i sher. htni .

6.4 Receiving Messages

After you set up the JMS application as described in Setting Up a J]MS Application,
you can receive messages.

To receive a message, you must create the receiver object and specify whether you
want to receive messages asynchronously or synchronously.

This section describes how to receive messages using the JM5Consuner and
MessageConsumner methods.

The order in which messages are received can be controlled by the following:

Developing a Basic JMS Application 6-25

http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueSender.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicPublisher.html

Receiving Messages

® Message delivery attributes (delivery mode and sorting criteria) defined during
configuration or as part of the send() method, as described in Sending Messages.

¢ Destination sort order set using destination keys, as described in Configure
destination keys in the Oracle WebLogic Server Administration Console Online Help.

After the message received, you can modify the header field values; however, the
message properties and message body are read-only. You can modify the message
body by executing the corresponding message type's ¢l ear body() method to clear
the existing contents and enable write permission.

For more information about the JMS classes for receiving messages and the message
types, see the j avax. j ms. Message Javadoc, at htt p: / / docs. or acl e. conl

j avaee/ 7/ api / j avax/ j ms/ Message. ht nl . For information about sending
messages, see Sending Messages.

6.4.1 Receive Messages Asynchronously Using the Simplified API

To receive messages, you must first create a JMSConsumner object using one of the
several cr eat eConsuner or cr eat eDur abl eConsuner methods on JM5Cont ext
object.

Create a JM5Consuner object and use the method set Messageli st ener to specify
the object that implements the MessagelLi st ener interface. Message delivery is
started automatically.

JMSConsumer consumer = context. creat eConsumer (queue) ;
consuner . set MessageLi st ener (messageli st ener);

6.4.2 Receiving Messages Asynchronously using the Classic API

Receiving Messages Asynchronously using the Classic API is described within the
context of setting up the application. For more information, see Step 6b: Optionally
Register an Asynchronous Message Listener.

Note:

You can control the maximum number of messages that may exist for an
asynchronous consumer and that have not yet been passed to the message
listener by setting the Messages Maximum attribute when configuring the
connection factory.

6.4.3 Asynchronous Message Pipeline

If messages are produced faster than asynchronous message listeners (consumers) can
consume them, a JMS server will push multiple unconsumed messages in a batch to
another session with available asynchronous message listeners. These in-flight
messages are sometimes referred to as the message pipeline, or in some JMS vendors as
the message backlog. The pipeline or backlog size is the number of messages that are
accumulated on an asynchronous consumer, but that are not been passed to a message
listener.

6.4.3.1 Configuring a Message Pipeline

You can control a client's maximum pipeline size by configuring the Messages
Maximum per Session attribute on the client's connection factory, which is defined as
the "maximum number of messages that can exist for an asynchronous consumer and

6-26 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Receiving Messages

that have not yet been passed to the message listener". The default setting is 10. For
more information about configuring a JMS connection factory, see Configure
connection factories in the Oracle WebLogic Server Administration Console Online Help.

6.4.3.2 Behavior of Pipelined Messages

After a message pipeline is configured, it will exhibit the following behavior:

® Statistics — JMS monitoring statistics reports backlogged messages in a message
pipeline as pending (for queues and durable subscribers) until they are either
committed or acknowledged.

¢ Performance — Increasing the Messages Maximum pipeline size may improve
performance for high-throughput applications. Note that a larger pipeline will
increase client memory usage as the pending pipelined messages accumulate on
the client JVM before the asynchronous consumer's listener is called.

* Sorting — Messages in an asynchronous consumer's pipeline are not sorted
according to the consumer destination's configured sort order; instead, they remain
in the order in which they are pushed from the JMS server. For example, if a
destination is configured to sort by priority, high priority messages will not jump
ahead of low priority messages that have already been pushed into an
asynchronous consumer's pipeline.

Note:

The Messages Maximum per Session pipeline size setting on the connection
factory is not related to the Messages Maximum quota settings on JMS servers
and destinations.

Messages in a pipeline are sometimes aggregated into a single message on the
network transport. If the messages are sufficiently large, the aggregate size of
the data written may exceed the maximum value for the transport, which may
cause undesirable behavior. For example, the t 3 protocol sets a default
maximum message size of 10,000,000 bytes, and is configurable on the server
with the MaxT3MessageSi ze attribute. This means that if ten 2 megabyte
messages are in the pipeline t 3 limit may be exceeded.

6.4.4 Receive Messages Synchronously Using the Simplified API

The r ecei ve methods on a JMSConsuner object are used for synchronous delivery
of messages.

public String recei veMessage(
ConnectionFact ory connectionFactory, Queue queue){
String body=nul|;
try (JMsContext context = connectionFactory.createContext();){
JMSConsuner consuner = session. creat eConsuner (queue);
body = consuner.recei veBody(String.class);
} catch (JMSRunti meException ex) {
/1 handl e exception

}

return body;

Developing a Basic JMS Application 6-27

Receiving Messages

For additional information about the JMSConsuner class methods, see the
j avax. j ms. JMSConsuner Javadoc,athttp:// docs. oracl e. con!
j avaeel 7/ api / j avax/j nms/ IMSConsuner . ht m .

6.4.5 Receiving Messages Synchronously Using the Classic API
To receive messages synchronously, use the following MessageConsumer methods:

public Message receive(
) throws JMSException

public Message receive(
[ong tineout
) throws JMSException

public Message recei veNoVMi t (
) throws JMSException

In each case, the application receives the next message produced. If you call the

recei ve() method with no arguments, then the call blocks indefinitely until a
message is produced or the application is closed. Alternatively, you can pass a timeout
value to specify how long to wait for a message. If you call the r ecei ve() method
with a value of 0, then the call blocks indefinitely. The r ecei veNoWai t () method
receives the next message if one is available, or returns null; in this case, the call does
not block.

The MessageConsumner class methods are inherited by the QueueRecei ver and
Topi cSubscri ber classes. For additional information about the MessageConsuner
class methods, see the j avax. j ns. MessageConsuner Javadoc, athttp://

docs. oracl e. com j avaee/ 7/ api / j avax/j ns/ MessageConsuner. htni .

6.4.5.1 Example: Receiving Messages Synchronously Within a PTP Application

The following example is excerpted from the

exanpl es. j ns. queue. QueueRecei ve example, provided with WebLogic Server
in the EXAMPLES_HOVE\ W _ser ver\ exanpl es\ sr c\ exanpl es\ j ns\ queue
directory, where EXAMPLES_HOVE represents the directory in which the WebLogic
Server code examples are configured. Rather than set a message listener, you would
callgrecei ver. recei ve() for each message. For example:

grecei ver = gsessi on. creat eRecei ver (queue);
grecei ver.receive();

The first line creates the queue receiver on the queue. The second line executes a
recei ve() method. Ther ecei ve() method blocks and waits for a message.

6.4.5.2 Example: Receiving Messages Synchronously Within a Pub/Sub Application

The following example is excerpted from the

exanpl es. j ms. t opi c. Topi cRecei ve example, provided with WebLogic Server
in the EXAMPLES HOVE\ W _ser ver \ exanpl es\ src\ exanpl es\j ns\t opi c
directory, where EXAMPLES_HOVE represents the directory in which the WebLogic
Server code examples are configured. Rather than set a message listener, you would
call t subscri ber. recei ve() for each message.

For example:

tsubscriber = tsession.createSubscriber(topic);
Message nmsg = tsubscriber.receive();
msg. acknow edge() ;

6-28 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/JMSConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/MessageConsumer.html

Receiving Messages

The first line creates the topic subscriber on the topic. The second line executes a
recei ve() method. Ther ecei ve() method blocks and waits for a message.

6.4.6 Use Prefetch Mode to Create a Synchronous Message Pipeline

In releases prior to WebLogic Server 9.1, synchronous consumers required making a
two-way network calls for each message, which was an inefficient model because the
synchronous consumer could not retrieve multiple messages, and could also increase
network traffic resources, since synchronous consumers would continually poll the
server for available messages. In WebLogic 9.1 or later, your synchronous consumers
can also use the same efficient behavior as asynchronous consumers by enabling the
Prefetch Mode for Synchronous Consumers option on JMS connection factories, either
using the WebLogic Server Administration Console or the JM5Cl i ent Par ansBean
MBean.

Similar to the asynchronous message pipeline, when the Prefetch Mode is enabled on
a JMS client's connection factory, the connection factory's targeted JMS servers will
proactively push batches of unconsumed messages to synchronous message
consumers, using the connection factory's Messages Maximum per Session parameter
to define the maximum number of messages per batch. This may improve
performance because messages are ready and waiting for synchronous consumers
when the consumers are ready to process more messages, and it may also reduce
network traffic by reducing synchronous calls from consumers that must otherwise
continually poll for messages.

Synchronous message prefetching does not support user (XA) transactions for
synchronous message receives or multiple synchronous consumers per session
(regardless of queue or topic). In most such cases, WebLogic J]MS will silently and
safely ignore the Prefetch Mode for Synchronous Consumer flag; however, otherwise
WebLogic will fail the application's synchronous receive calls.

For more information on the behavior of pipelined messages, see Asynchronous
Message Pipeline. For more information on configuring a JMS connection factory, see
"Configure connection factories" in the Oracle WebLogic Server Administration Console
Online Help.

6.4.7 Recovering Received Messages

Note:

This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLI ENT_ACKNOW.EDGE. Synchronously received
AUTO_ACKNOWLEDGE messages may not be recovered; they have already been
acknowledged.

An application can request that JMS redeliver messages (unacknowledge them) using
the following method:

public void recover(
) throws JMSException

The r ecover () method performs the following steps:

® Stops message delivery for the session

Developing a Basic JMS Application 6-29

Acknowledging Received Messages

Tags all messages that have not been acknowledged (but may have been delivered)
as redelivered

Resumes sending messages starting from the first unacknowledged message for
that session

Note:

Messages in queues are not necessarily re delivered in the same order that
they were originally delivered, nor to the same queue consumers. For
information to guarantee the correct ordering of re delivered messages, see
Ordered Redelivery of Messages.

6.5 Acknowledging Received Messages

Note:

This section applies only to non-transacted sessions for which the
acknowledge mode is set to CLI ENT_ACKNOA_EDCE.

To acknowledge a received message, use the following Message method:

public void acknow edge(
) throws JMSException

The acknow edge() method depends on how the connection factory's Acknowledge
Policy attribute is configured, as follows:

The default policy of "All" specifies that calling the acknowledge on a message
acknowledges all unacknowledged messages received on the session.

The "Previous" policy specifies that calling the acknowledge on a message
acknowledges only unacknowledged messages up to, and including, the given
message. Messages that are not acknowledged may be redelivered to the client.

This method is effective only when issued by a non-transacted session for which the
acknowledge mode is set to CLI ENT_ACKNOW.EDGE. Otherwise, the method is
ignored.

6.6 Releasing Object Resources

When you finish using the connection, session, message producer or consumer,
connection consumer, or queue browser created on behalf of a JMS application, you
should explicitly close them to release the resources.

Enter the cl ose() method to close JMS objects, as follows:

public void close(
) throws JMSException

When closing an object:

The call blocks until the method call completes or until any outstanding
asynchronous receiver onMessage() calls complete.

6-30 Developing JMS Applications for Oracle WebLogic Server

Releasing Object Resources

* All associated sub objects are also closed. For example, when closing a session, all
associated message producers and consumers are also closed. When closing a
connection, all associated sessions are also closed.

For more information about the effects of the cl ose() method for each object, see the
appropriate j avax. j ms Javadoc, at ht t p: / / www. or acl e. cont t echnet wor k/
javal j ms/ i ndex. ht m . In addition, for more information about the connection or
Session cl ose() method, see Starting, Stopping, and Closing a Connection or Closing
a Session, respectively.

The following example is an excerpt from the exanpl es. j ns. queue. QueueSend
example, provided with WebLogic Server in the EXAMPLES_HOME\ Wl _ser ver

\ exanpl es\ src\ exanpl es\ j ms\ queue directory. EXAMPLES_HOVE represents the
directory in which the WebLogic Server code examples are configured. This example
shows the code required to close the message consumer, session, and connection
objects.

public void close(
) throws JMSException

{

greceiver. close();
gsession. cl ose();
qcon. cl ose();

}

In the QueueSend example, the cl ose() method is called at the end of mai n() to
close objects and free resources.

Developing a Basic JMS Application 6-31

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Releasing Object Resources

6-32 Developing JMS Applications for Oracle WebLogic Server

v

Managing Your Applications

This chapter describes how to programatically manage your JMS applications using
value-added WebLogic JMS features.

* Managing Rolled Back, Recovered, Redelivered, or Expired Messages
* Setting Message Delivery Times

* Managing Connections

* Managing Sessions

* Managing Destinations

¢ Using Temporary Destinations

e Setting Up Durable Subscriptions

® Setting and Browsing Message Header and Property Fields

¢ Filtering Messages

* Sending XML Messages

7.1 Managing Rolled Back, Recovered, Redelivered, or Expired Messages

The following sections describe how to manage rolled back or recovered messages:

¢ Setting a Redelivery Delay for Messages

Setting a Redelivery Limit for Messages

Ordered Redelivery of Messages

Handling Expired Messages

7.1.1 Setting a Redelivery Delay for Messages

You can delay the redelivery of messages when a temporary, external condition
prevents an application from properly handling a message. This enables an
application to temporarily inhibit the receipt of "poison" messages that it cannot
currently handle. When a message is rolled back or recovered, the redelivery delay is
the amount of time a message is put aside before an attempt is made to redeliver the
message.

If JMS immediately redelivers the message, then the error condition may not be
resolved and the application may still not be able to handle the message. However, if
an application is configured for a redelivery delay, then when it rolls back or recovers

Managing Your Applications 7-1

Managing Rolled Back, Recovered, Redelivered, or Expired Messages

a message, the message is set aside until the redelivery delay has passed, at which
point the messages are made available for redelivery.

All messages consumed and subsequently rolled back or recovered by a session
receive the redelivery delay for that session at the time of rollback or recovery.
Messages consumed by multiple sessions as part of a single user transaction will
receive different redelivery delays as a function of the session that consumed the
individual messages. Messages that are left unacknowledged or uncommitted by a
client, either intentionally or as a result of a failure, are not assigned a redelivery
delay.

7.1.1.1 Setting a Redelivery Delay

A session inherits the redelivery delay from its connection factory when the session is
created. The Redel i ver yDel ay attribute of a connection factory is configured using
the WebLogic Server Administration Console.

For more information, see Configure connection factories in the Oracle WebLogic Server
Administration Console Online Help.

The application that creates the session can then override the connection factory
setting using WebLogic-specific extensions to the j avax. j ns. Sessi on interface.
The session attribute is dynamic and can be changed at any time. Changing the session
redelivery delay affects all messages consumed and rolled back (or recovered) by that
session after the change except when the message is in a session using non-durable
topics.

Note:

When a session is using non-durable topics, the set Redel i ver yDel ay
method does not apply. This may result in unexpected behavior if you are
using a non-durable topic consumer to drive a workflow.

The method for setting the redelivery delay on a session is provided through the
webl ogi c. j ms. ext ensi ons. W.Sessi on interface, which is an extension to the
j avax. j me. Sessi on interface. To define a redelivery delay for a session, use the
following methods:

public void setRedeliveryDel ay(
I ong redeliveryDel ay
) throws JMSException;

public long getRedeliveryDel ay(
) throws JMSException;

For more information on the W.Sessi on class, refer to the
webl ogi c. j ms. ext ensi ons. W.Sessi on Javadoc.

7.1.1.2 Overriding the Redelivery Delay on a Destination

Regardless of what redelivery delay is set on the session, the destination where a
message is being rolled back or recovered can override the setting. The redelivery
delay override applied to the redelivery of a message is the one in effect at the time a
message is rolled back or recovered.

The Redel i ver yDel ayQverri de attribute of a destination is configured using the
WebLogic Server Administration Console. For more information, see:

7-2 Developing JMS Applications for Oracle WebLogic Server

Managing Rolled Back, Recovered, Redelivered, or Expired Messages

¢ Configure queue message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help

¢ Configure topic message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help

7.1.2 Setting a Redelivery Limit for Messages

You can specify a limit on the number of times that WebLogic JMS will attempt to
redeliver a message to an application. After WebLogic JMS fails to redeliver a message
to a destination for a specific number of times, the message can be redirected to an
error destination that is associated with the message destination. If the redelivery limit
is configured, but no error destination is configured, then persistent or non-persistent
messages are deleted when they reach their redelivery limit.

Alternatively, you can set the redelivery limit value dynamically using the message
producer's set method, as described in Setting JMSProducer and MessageProducer
Attributes.

7.1.2.1 Configuring a Message Redelivery Limit on a Destination

When a destination's attempts to redeliver a message to a consumer reaches a
specified redelivery limit, then the destination deems the message undeliverable. The
Redel i ver yLi mi t attribute is set on a destination and is configurable using the
WebLogic Server Administration Console. This setting overrides the redelivery limit
set on the message producer. For more information, see:

¢ Configure queue message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help.

¢ Configure topic message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help.

7.1.2.2 Configuring an Error Destination for Undelivered Messages

If an error destination is configured on the JMS server for undelivered messages, then
when a message has been deemed undeliverable, the message will be redirected to a
specified error destination. The error destination can be either a queue or a topic, and
it must be configured on the same JMS server as the destination for which it is defined.
If no error destination is configured, then undeliverable messages are simply deleted.

The Er r or Dest i nat i on attribute is configured for standalone destinations and
uniform distributed destination using the WebLogic Server Administration Console.
For more information, see:

¢ Configure queue message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help.

¢ Configure topic message delivery failure options in the Oracle WebLogic Server
Administration Console Online Help.

¢ Uniform distributed queues - configure delivery failure parameters in the Oracle
WebLogic Server Administration Console Online Help.

¢ Uniform distributed topics - configure delivery failure parameters in the Oracle
WebLogic Server Administration Console Online Help.

Managing Your Applications 7-3

Managing Rolled Back, Recovered, Redelivered, or Expired Messages

7.1.3 Ordered Redelivery of Messages

Note:

Oracle recommends that applications use the Ordered Redelivery upgrade to
Message Unit-of-Order. See Using the Message Unit-of-Order.

All messages initially delivered to a consumer from a given producer are guaranteed
to arrive at the consumer in the order in which they were produced. WebLogic J]MS
goes above and beyond this requirement by providing the "Ordered Redelivery of
Messages" feature, which guarantees the correct ordering of redelivered messages as
well.

In order to provide this guarantee, WebLogic J]MS must impose certain constraints.
They are:

¢ Single consumers — ordered redelivery is only guaranteed when there is a single
consumer. If there are multiple consumers, then there are no guarantees about the
order in which any individual consumer will receive messages.

Note:

With respect to MDBs (message-driven beans), the number of consumers is a
function of the number of MDB instances deployed for a given MDB. The
initial and maximum values for the number of instances must be set to 1.
Otherwise no ordering guarantees can be made with respect to redelivered
messages.

e Sort order : If a given destination is sorted, has JMS destination keys defined, and
another message is produced such that the message would be placed at the top of
the ordering, then no guarantee can be made between the redelivery of an existing
message and the delivery of the incoming message.

¢ Message selection : If a consumer is using a selector, then ordering on redelivery is
only guaranteed between the message being redelivered and other messages that
match the criteria for that selector. There are no guarantees of order with respect to
messages that do not match the selector.

¢ Redelivery delay : If a message has a redelivery delay period and is recovered or
rolled back, then it is unavailable for the delay period. During that period, other
messages can be delivered before the delayed message, even though these
messages were sent after the delayed message.

* Messages pending recovery : Ordered redelivery does not apply to redelivered
messages that end up in a pending recovery state due to a server failure or a
system reboot.

7.1.3.1 Required Message Pipeline Setting for the Messaging Bridge and MDBs

For asynchronous consumers or JMS applications using the WebLogic Messaging
Bridge or MDBs, the size of the message pipeline must be set to 1. The pipeline size is
set using the Messages Maximum attribute on the JMS connection factory used by the
receiving application. Any value higher than 1 means there may be additional in-flight
messages that will appear ahead of a redelivered message. MDB applications must

7-4 Developing JMS Applications for Oracle WebLogic Server

Setting Message Delivery Times

define an application-specific JMS connection factory and set the Messages Maximum
attribute value to 1 on that connection factory, and then reference the connection
factory in the EJB descriptor for their MDB application.

For more information about programming E]Bs, see Message-Driven E]Bs in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

7.1.3.2 Performance Limitations

JMS applications that implement the Ordered Redelivery feature will incur
performance degradation for asynchronous consumers using JTA transactions
(specifically, MDBs and the WebLogic Messaging Bridge). This is caused by a
mandatory reduction in the number of in-flight messages to exactly 1, so messages are
not aggregated when they are sent to the client.

7.1.4 Handling Expired Messages

WebLogic JMS has an active message Expiration Policy feature that allows you to
control how the system searches for expired messages and how it handles them when
they are encountered. This feature ensures that expired messages are cleaned up
immediately, either by simply discarding expired messages, discarding expired
messages and logging their removal, or redirecting expired messages to an error
destination configured on the local JMS server.

7.2 Setting Message Delivery Times

You can schedule message deliveries to an application for specific times in the future.
Message deliveries can be deferred for short periods of time (such as seconds or
minutes) or for long stretches of time (for example, hours later for batch processing).
Until that delivery time, the message is essentially invisible until it is delivered,
enabling you to schedule work at a particular time in the future.

Messages are not sent on a recurring basis; they are sent only once. In order to send
messages on a recurring basis, a received scheduled message must be sent back to its
original destination. Typically, the receive, the send, and any associated work should
be under the same transaction to ensure exactly-once semantics.

7.2.1 Setting a Delivery Time on Producers

Support for setting and getting a time-to-deliver on an individual producer is
provided through the webl ogi c. j ns. ext ensi ons. W.MessagePr oducer
interface, which is an extension to the j avax. j ns. MessagePr oducer interface. To
define a time-to-deliver on an individual producer, use the following methods:

public void setTi meToDel i ver(
long tineToDeliver
) throws JMSExcepti on;

public long getTi meToDel i ver(
) throws JMSExcepti on;

For more information about the W.MessagePr oducer class, see the
webl ogi c. j ms. ext ensi ons. W.MessagePr oducer Javadoc.

Managing Your Applications 7-5

Setting Message Delivery Times

7.2.2 Setting a Delivery Time on Messages

Del i ver yTi e is a J]MS message header field that defines the earliest absolute time at
which the message can be delivered. That is, the message is held by the messaging
system and is not given to any consumers until that time.

As a JMS header field, Del i ver yTi me can be used to sort messages in a destination
or to select messages. For the purposes of data type conversion, the delivery time is
stored as a long integer.

Note:

Setting a delivery time value on a message has no effect on this field, because
JMS will always override the value with the producer's value when the
message is sent or published. The message delivery time methods described
here are similar to other JMS message fields that are set through the producer,
including the delivery mode, priority, time-to-deliver, time-to-live, redelivery
delay, and redelivery limit fields. Specifically, the setting of these fields is
reserved for JMS providers, including WebLogic JMS.

The support for setting and getting the delivery time on a message is provided
through the webl ogi c. j ns. ext ensi ons. W.Message interface, which is an
extension to the j avax. j ms. Message interface. To define a delivery time on a
message, use the following methods:

public void setJMDeliveryTi ne(
I ong deliveryTine
) throws JMSException;

public long getJMBDeliveryTine(
) throws JMSException;

For more information about the W.Message class, see
webl ogi c. j ms. ext ensi ons. W.Message Javadoc.

7.2.3 Overriding a Delivery Time

When a producer is created it inherits its Ti meToDel i ver attribute, expressed in
milliseconds, from the connection factory used to create the connection that the
producer is a part of. Regardless of the time-to-deliver set on the producer, the
destination to which a message is being sent or published can override the setting. An
administrator can set the Ti meToDel i ver Over ri de attribute on a destination in
either a relative or scheduled string format.

7.2.3.1 Interaction with the Time-to-Live Value

If the specified time-to-live value (JMSEXpi r at i on) is less than or equal to the
specified time-to-deliver value, then the message delivery succeeds. However, the
message is then silently expired.

7.2.3.2 Setting a Relative Time-to-Deliver Override

The relative Ti meToDel i ver Over ri de attribute is a string specified as an integer,
and is configurable using the WebLogic Server Administration Console.

7-6 Developing JMS Applications for Oracle WebLogic Server

Setting Message Delivery Times

7.2.3.3 Setting a Scheduled Time-to-Deliver Override

The scheduled Ti meToDel i ver Over ri de attribute can also be specified using the
webl ogi c. j ms. ext ensi ons. Schedul e class, which provides methods that take a
schedule and return the next scheduled time for delivering messages.

Table 7-1 Message Delivery Schedule

Example Description

00030*%**+ Exact next nearest half-hour

Anytime in the first minute of the half hours between 4
* % 0,30 4-5 * * *
! A.M. and 5 A.M. hours

Between 9 AM. and 5 P.M. (9:00.00 A.M. to 4:59.59
9_16 PM)

The second Tuesday of the month
* k k% 8_ 14 * 2

Between 1 P.M. and 5 P.M. on Sunday
*kx 13-16 % * 0

The last day of the month

*****31*

The next time April 15th occurs on a Sunday
sk x5 41

1 A.M. on weekdays; 2 A.M. on weekends
0001**26,0002**1,7

A cron-like string is used to define the schedule. The format is defined by the
following BNF syntax:

schedule := millisecond second ninute hour dayOfMonth nonth
dayOf eek

The BNF syntax for specifying the second field is as follows:

second :=* | secondList

secondLi st := secondltem [, secondList]

secondltem : = secondVal ue | secondRange
SecondRange : = secondVal ue - secondVal ue

Similar BNF statements for milliseconds, minute, hour, day of month, month, and day
of week can be derived from the second syntax. The values for each field are defined
as non-negative integers in the following ranges:

0-999
0-999

m | 1iSecondVal ue :
m | 1iSecondVal ue :
secondVal ue 0-59
m nut eVal ue 0-59
hour Val ue .= 0-23
dayOf Mont hval ue @ = 1-31

Managing Your Applications 7-7

Setting Message Delivery Times

2

mont hVal ue 1= 1-
=1-7

1
dayOf VeekVal ue 1

Note:

These values equate to the same ranges that thej ava. uti | . Cal endar class
uses, except for ront hVal ue. The j ava. uti| . Cal endar range for
nmont hVal ue is 0-11, rather than 1-12.

Using this syntax, each field can be represented as a range of values indicating all
times between the two times. For example, 2- 6 in the day Of Week field indicates
Monday through Friday, inclusive. Each field can also be specified as a comma-
separated list. For instance, a minute field of 0, 15, 30, 45 means every quarter hour
on the quarter hour. Last, each field can be defined as both a set of individual values
and ranges of values. For example, an hour field of 9- 17, 0 indicates between the
hours of 9 A.M. and 5 P.M., and on the hour of midnight.

Additional semantics are as follows:

e If multiple schedules are supplied (using a semi-colon (;) as the separator), then the
next scheduled time for the set is determined using the schedule that returns the
soonest value. One use for this is for specifying schedules that change based on the
day of the week (see the example below).

¢ Avalue of 1 (one) for day Of Week equates to Sunday.

* A value of * means every time for that field. For instance, a * in the Month field
means every month. A * in the Hour field means every hour.

¢ Avalueofl orl ast (notcase sensitive) indicates the greatest possible value for a
field.

e If a day of the month is specified that exceeds the normal maximum for a month,
then the normal maximum for that month will be specified. For example, if it is
February during a leap year and 31 was specified, then the scheduler will schedule
as if 29 was specified instead. This means that setting the month field to 31 always
indicates the last day of the month.

¢ If milliseconds are specified, then they are rounded down to the nearest 50th of a
second. The values are 0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded to 0-39
and 50-999 gets rounded to 39-999.

Note:

When a calendar is not supplied as a method parameter to one of the static
methods in this class, the calendar used is a

java. util .G egorianCal endar with a defaultj ava. util . Ti neZone
and a defaultj ava. util. Local e.

7.2.3.4 JMS Schedule Interface

The webl ogi c. j ns. ext ensi ons. schedul e class has methods that will return the
next scheduled time that matches the recurring time expression. This expression uses
the same syntax as Ti meToDel i ver Over ri de. The time returned in milliseconds can
be relative or absolute.

7-8 Developing JMS Applications for Oracle WebLogic Server

Managing Connections

For more information about the W.Sessi on class, see
webl ogi c. j ms. ext ensi ons. Schedul e Javadoc.

You can define the next scheduled time after the given time using the following
method:

public static Cal endar nextSchedul edTi me(
String schedul e,
Cal endar cal endar

) throws ParseException {

You can define the next scheduled time after the current time using the following
method:

public static Cal endar nextSchedul edTi me(
String schedul e,
) throws ParseException {

You can define the next scheduled time after the given time in absolute milliseconds
using the following method:

public static |ong nextSchedul edTi melnMI1is(
String schedul e,
long tinelnMIlis

) throws ParseException

You can define the next scheduled time after the given time in relative milliseconds
using the following method:

public static |ong next Schedul edTi melnM | lisRel ative(
String schedul e,
long tinelnMIlis

) throws ParseException {

You can define the next scheduled time after the current time in relative milliseconds
using the following method:

public static |ong next Schedul edTi melnM | 1isRel ative(
String schedul e
) throws ParseException {

7.3 Managing Connections
The following sections describe how to manage connections:
¢ Defining a Connection Exception Listener
® Accessing Connection Metadata

e Starting, Stopping, and Closing a Connection

7.3.1 Defining a Connection Exception Listener

An exception listener asynchronously notifies an application whenever a problem
occurs with a connection. This mechanism is particularly useful for a connection
waiting to consume messages that might not be notified otherwise.

Managing Your Applications 7-9

Managing Connections

Note:

The purpose of an exception listener is not to monitor all exceptions thrown
by a connection, but to deliver those exceptions that would not be otherwise
delivered.

You can define an exception listener for a connection using the following
Connect i on method:

public void setExceptionListener(
ExceptionLi stener |istener
) throws JMSException

You must specify an Except i onlLi st ener object for the connection.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a connection using the following Except i onLi st ener
method:

public void onException(
JMBException exception

)

The JMS provider specifies the exception that describes the problem when calling the
method.

You can access the exception listener for a connection using the following Connection
method:

public ExceptionListener getExceptionListener(
) throws JMSException
7.3.2 Accessing Connection Metadata

You can access the metadata associated with a specific connection using the following
Connect i on method:

public ConnectionMetaData get Met aDat a(
) throws JMSException

This method returns a Connect i onMet aDat a object that enables you to access J]MS
metadata. The following table lists the various type of JMS metadata and the get
methods that you can use to access them.

Table 7-2 JMS Metadata

JMS Metadata Get Method

Version . . .
public String get JMSVersion(

) throws JMSException

Major version S . .
public int getJMSMaj or Versi on(

) throws JMSException

7-10 Developing JMS Applications for Oracle WebLogic Server

Managing Connections

Table 7-2 (Cont.) JMS Metadata
___|

JMS Metadata Get Method

Minor version o .
public int getJMSM nor Version(

) throws JMSException

Provider name . . .
public String get JMSProvi der Name(

) throws JMSException

Provider version))))
public String getProviderVersion(

) throws JMSException

Provider major version o . .)
public int getProviderMjorVersion(

) throws JMSException

Provider minor version o . .
public int getProviderM norVersion(

) throws JMSException

JMSX property names))
public Enuneration get JMSXPropertyNames(

) throws JMSException

For more information about the Connect i onMet aDat a class, see the
j avax. j ms. Connect i onMet aDat a Javadoc athtt p: // docs. or acl e. conf
j avaeel/ 7/ api / j avax/j ns/ Connecti onMet aDat a. ht m .

7.3.3 Starting, Stopping, and Closing a Connection

To control the flow of messages, you can start and stop a connection temporarily using
thestart () and st op() methods, respectively, as follows.

The start () and st op() method details are as follows:

public void start(
) throws JMSException

public void stop(
) throws JMSException

A newly created connection is stopped—no messages are received until the connection
is started. Typically, other JMS objects are set up to handle messages before the
connection is started, as described in Setting Up a JMS Application. Messages may be
produced on a stopped connection, but cannot be delivered to a stopped connection.

Once started, you can stop a connection using the st op() method. This method
performs the following steps:

* Pauses the delivery of all messages. No applications waiting to receive messages
will return until the connection is restarted or the time-to-live value associated with
the message is reached.

Managing Your Applications 7-11

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionMetaData.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionMetaData.html

Managing Sessions

e Waits until all message listeners that are currently processing messages have
completed.

Typically, a JMS Provider allocates a significant amount of resources when it creates a
connection. When a connection is no longer being used, you should close it to free up
resources. A connection can be closed using the following method:

public void close(
) throws JMSException

This method performs the following steps to execute an orderly shutdown:

* Terminates the receipt of all pending messages. Applications may return a message
or null if a message was not available at the time of the close.

e Waits until all message listeners that are currently processing messages have
completed.

* Rolls back in-process transactions on its transacted sessions (unless such
transactions are part of an external JTA user transaction). For more information
about JTA user transactions, see Using JTA User Transactions.

* Does not force an acknowledge of client-acknowledged sessions. By not forcing an
acknowledge, no messages are lost for queues and durable subscriptions that
require reliable processing.

When you close a connection, all associated objects are also closed. You can continue
to use the message objects created or received via the connection, except the received
message's acknow edge() method. Closing a closed connection has no effect.

Note:

Attempting to acknowledge a received message from a closed connection's
session throws an | | | egal St at eExcepti on.

7.4 Managing Sessions

The following sections describe how to manage sessions, including:
¢ Defining a Session Exception Listener

¢ C(losing a Session

7.4.1 Defining a Session Exception Listener

An exception listener asynchronously notifies a client in the event a problem occurs
with a session. This is particularly useful for a session waiting to consume messages
that might not be notified otherwise.

Note:

The purpose of an exception listener is not to monitor all exceptions thrown
by a session, only to deliver those exceptions that would otherwise be
undelivered.

7-12 Developing JMS Applications for Oracle WebLogic Server

Managing Sessions

You can define an exception listener for a session using the following W.Sessi on
method:

public void setExceptionListener(
ExceptionLi stener |istener
) throws JMSException

You must specify an Except i onLi st ener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a session using the following Except i onLi st ener
method:

public void onException(
JMBException exception

)

The JMS Provider specifies the exception encountered that describes the problem
when calling the method.

You can access the exception listener for a session using the following W.Sessi on
method:

public ExceptionListener getExceptionListener(
) throws JMSException

Note:

Because there can only be one thread per session, an exception listener and
message listener (used for asynchronous message delivery) cannot execute
simultaneously. Consequently, if a message listener is executing at the time a
problem occurs, execution of the exception listener is blocked until the
message listener completes its execution. For more information about message
listeners, see Receiving Messages Asynchronously using the Classic API.

7.4.2 Closing a Session

As with connections, a JMS provider allocates a significant amount of resources when
it creates a session. When a session is no longer being used, it is recommended that it
be closed to free up resources. A session can be closed using the following Sessi on
method:

public void close(
) throws JMSException

Note:

The cl ose() method is the only Session method that can be invoked from a
thread that is separate from the session thread.

This method does the following to execute an orderly shutdown:

¢ Terminates the receipt of all pending messages. Applications can return a message
or null if a message was not available at the time connection was closed.

e Waits until all message listeners that are currently processing messages have
completed.

Managing Your Applications 7-13

Managing Destinations

¢ Rolls back in-process transactions (unless these transactions are part of external
JTA user transaction). For more information about JTA user transactions, see Using
JTA User Transactions.

* Does not force an acknowledgement of client acknowledged sessions, ensuring that
no messages are lost for queues and durable subscriptions that require reliable
processing.

When you close a session, all associated producers and consumers are also closed.

Note:

If you want to issue the cl ose() method within an onMessage() method
call, then the system administrator must select the Allow Close In OnMessage
check box when configuring the connection factory.

7.5 Managing Destinations
The following sections describe how to create and delete destinations:
® Dynamically Creating Destinations

* Dynamically Deleting Destinations

7.5.1 Dynamically Creating Destinations

See the following topics for information about creating destinations dynamically:

¢ Using JMS Module Helper to Manage Applications briefs you about how to use the
webl ogi c. j ms. ext ensi ons. JMSModul eHel per . For more information about
Using JMS Module Helper, see Using JMS Module Helper to Manage Applications

* Using Temporary Destinations briefs you about how applications are enabled to
create destinations as per requirement. For more information about Using
Temporary Destinations, seeUsing Temporary Destinations

The associated procedures for creating dynamic destinations are described in the
following sections.

7.5.2 Dynamically Deleting Destinations

You can dynamically delete JMS destinations (queue or topic) using any of the
following methods:

e JMSModuleHelper class (see Using J]MS Module Helper to Manage Applications)
¢ Administration console

¢ User-defined JMX application

The JMS server removes the deleted destination in real time, therefore, it is not
necessary to redeploy the JMS server for the deletion to take effect.

7.5.2.1 Required Conditions for Deleting Destinations

In order to successfully delete a destination, the following conditions must be met:

7-14 Developing JMS Applications for Oracle WebLogic Server

Managing Destinations

The destination must not be a member of a distributed destination. For more
information, see Using Distributed Destinations.

The destination must not be the error destination for some other destination. For
more information, see Configuring an Error Destination for Undelivered Messages.

If either of these conditions cannot be met, then the deletion will not be allowed.

7.5.2.2 What Happens when a Destination Is Deleted

When a destination is deleted, the following behaviors and semantics apply:

Physical deletion of existing messages : All durable subscribers for the deleted
destination are permanently deleted. All messages, persistent and non-persistent,
stored in the deleted destination are permanently removed from the messaging
system.

No longer able to create producers, consumers, and browsers : After a destination
is deleted, applications will no longer be able to create producers, consumers, or
browsers for the deleted destination. Any attempt to do so will result in the
application receiving an | nval i dDest i nat i onExcept i on — as if the
destination does not exist.

Closing of consumers : All existing consumers for the deleted destination are
closed. The closing of a consumer generates a Consuner Cl osedExcept i on,
which is delivered to the Except i onLi st ener, if any, of the parent session, and
which will read "Destination was deleted".

When a consumer is closed, if it has an outstanding r ecei ve() operation, then
that operation is cancelled and the caller receives a nul | value indicating that no
message is available. Attempts by an application to do anything but cl ose() a
closed consumer will resultinan | | | egal St at eExcepti on.

Closing of browsers: All browsers for the deleted destination are closed. Attempts
by an application to do anything but cl ose() a closed browser will result in an
Il egal St at eExcepti on. Closing of a browser implicitly closes all
enumerations associated with the browser.

Closing of enumerations : All enumerations for the deleted destination are closed.
The behavior after an enumeration is closed depends on the last call before the
enumeration was closed. If a call to hasMbor eEl emrent s() returns a value of true,
and no subsequent call to next El ement () has been made, then the enumeration
guarantees that the next element can be enumerated. This produces the specifics.
When the last call before the close was to hasMor eEl ement s() , and the value
returned was true, then the following behaviors apply:

— The first call to the next El ement () will return a message.

— Subsequent calls to the next El ement () will throw a
NoSuchEl emrent Except i on.

— Calls to thehasMor eEl enent s() made before the first call to the
next El enent () will return true.

— Calls to the hasMor eEl enent s() made after the first call to the
next El enent () will return false.

Managing Your Applications 7-15

Using Temporary Destinations

If a given enumeration was never called, or the last call before the close was to
next El enent (), or the last call before the close was to the hasMor eEl ement s()
and the value returned was false, then the following behaviors apply:

— Calls to thehasMor eEl enent s() will return false.
— Calls to the next El enment () will throw a NoSuchEl errent Except i on.

¢ Blocking send operations cancelled — all blocking send operations posted against
the deleted destination are cancelled. Send operations waiting for quota will
receive a Resour ceAl | ocat i onExcepti on.

* Uncommitted transactions unaffected : The deletion of a destination does not affect
existing uncommitted transactions. Any uncommitted work associated with a
deleted destination is allowed to complete as part of the transaction. However,
because the destination is deleted, the net result of all operations (rollback, commit,
and so on) is the deletion of the associated messages.

7.5.2.3 Message Timestamps for Troubleshooting Deleted Destinations

If a destination with persistent messages is deleted and then immediately re-created
while the JMS server is not running, then the JMS server will compare the version
number of the destination (using the Cr eat i onTi e field in the configuration

confi g. xm file) to the version number of the destination in the persistent messages.
In this case, the left over persistent messages for the older destination will have an
older version number than the version number in the confi g. xmi file for the re-
created destination, and when the JMS server is rebooted, the left over persistent
messages are discarded.

However, if a persistent message somehow has a version number that is newer than
the version number in the conf i g. xm for the re-created destination, then either the
system clock was rolled back when the destination was deleted and re-created (while
the JMS server was not running), or a different conf i g. xm is being used. In this
situation, the JMS server will fail to boot. To save the persistent message, you can set
the version number (the Cr eat i onTi ne field) in the conf i g. xm to match the
version number in the persistent message. Otherwise, you can change the version
number in the confi g. xnm so that it is newer than the version number in the
persistent message; this way, the JMS server can delete the message when it is
rebooted.

7.5.2.4 Deleted Destination Statistics

Statistics for the deleted destination and the hosting JMS server are updated as the
messages are physically deleted. However, the deletion of some messages can be
delayed pending the outcome of another operation. This includes messages sent and
received in a transaction, as well as unacknowledged non-transactional messages
received by a client.

7.6 Using Temporary Destinations

Temporary destinations enable an application to create a destination, as required,
without the system administration overhead associated with configuring and creating
a server-defined destination.

JMS applications can use the JMSRepl yTo header field to return a response to a
request. The sender application may optionally set the JMSRepl yTo header field of its
messages to its temporary destination name to advertise the temporary destination
that it is using to other applications.

7-16 Developing JMS Applications for Oracle WebLogic Server

Setting Up Durable Subsctriptions

Temporary destinations exist only for the duration of the current connection, unless
they are removed using the del et e() method, described in Deleting a Temporary
Destination.

Because messages are never available if the server is restarted, all PERSI STENT
messages are silently made NON_PERSI STENT. As a result, temporary destinations are
not suitable for business logic that must survive a restart.

Note:

Temporary destinations are enabled by default through the JMS server's
Hosting Tenporary Tenpl at e attribute. However, if you want to create
temporary destinations with specific settings, you must modify the default
Tenporary Tenpl at e values using the JMS server's Tenpor ary

Tenpl at e and Modul e Cont ai ni ng Tenporary Tenpl at e attributes, as
explained in Configure general JMS server properties in the Oracle WebLogic
Server Administration Console Online Help.

The following sections describe how to create a temporary queue (Point-to-Point) or
temporary topic (Publish/Subscibe).

7.6.1 Creating a Temporary Queue

You can create a temporary queue using the following QueueSessi on method:

public TemporaryQueue createTenporaryQueue(
) throws JMSException

For example, to create a reference to a Tenpor ar yQueue that will exist only for the
duration of the current connection, use the following method call:

QueueSender = Sessi on. creat eTenpor aryQueue();

7.6.2 Creating a Temporary Topic

You can create a temporary topic using the following Topi cSessi on method:

public TemporaryTopic createTenporaryTopi c(
) throws JMSException

For example, to create a reference to a temporary topic that will exist only for the
duration of the current connection, use the following method call:

Topi cPubl i sher = Sessi on. creat eTenpor aryTopi c();

7.6.3 Deleting a Temporary Destination

When you finish using a temporary destination, you can delete it (to release associated
resources) using the following Tenpor ar yQueue or Tenpor ar yTopi ¢ method:

public void del eteg(
) throws JMSException

7.7 Setting Up Durable Subscriptions

WebLogic JMS supports durable and non durable subscriptions.

Managing Your Applications 7-17

Setting Up Durable Subscriptions

For durable subscriptions, WebLogic JMS stores a message in a persistent file or
database until the message is delivered to the subscribers or has expired, even if those
subscribers are not active at the time that the message is delivered. A subscriber is
considered active if the Java object that represents it exists. Durable subscriptions are
supported for Publish/Subscribe messaging only.

Note:

Durable subscriptions cannot be created for distributed topics. However, you
can still create a durable subscription on distributed topic member and the
other topic members will forward the messages to the member that has the
durable subscription. For more information on using distributed topics, see
Using Distributed Destinations.

For non durable subscriptions, WebLogic JMS delivers messages only to applications
with an active session. Messages sent to a topic while an application is not listening
are never delivered to that application. In other words, non durable subscriptions last
only as long as their subscriber objects. By default, subscribers are non durable.

The following sections describe:

* Defining the Persistent Store

¢ Setting the Client ID Policy

® Defining the Client ID

¢ Creating a Sharable Subscription Policy

* Creating Subscribers for a Durable Subscription
¢ Best Practice: Always Close Failed JMS ClientIDs
¢ Deleting Durable Subscriptions

* Modifying Durable Subscriptions

* Managing Durable Subscriptions

7.7.1 Defining the Persistent Store

You must configure a persistent file or database store and assign it to your JMS server
so WebLogic JMS can store a message until it is delivered to the subscribers or has
expired.

¢ Create a JMS file store or JMS JDBC backing store using the Stores node.

* Target the configured store to your JMS server by selecting it from the Store field's
drop-down list on the General tab of the configuration page under JMS Server.

Note:

No two JMS servers can use the same backing store.

7-18 Developing JMS Applications for Oracle WebLogic Server

Setting Up Durable Subscriptions

7.7.2 Setting the Client ID Policy

The Client ID Policy specifies whether more than one JMS connection can use the same
client ID in a cluster. Valid values for this policy are:

e RESTRI CTED: The default. Only one connection that uses this policy can exist in a
cluster at any given time for a particular client ID (If a connection already exists
with a given Client ID, attempts to create new connections using this policy with
the same client ID fail with an exception).

¢ UNRESTRI CTED: Connections created using this policy can specify any Client ID,
even when other restricted or unrestricted connections already use the same client
ID. When a durable subscription is created using an Unrestricted client ID, it can
only be cleaned up using
webl ogi c. j ms. ext ensi ons. W.JMSCont ext . unsubscri be(Topi ¢ topic,
String nane) or using
webl ogi c. j ms. ext ensi ons. W.Sessi on. unsubscri be(Topi ¢ topic,
String nane).See Managing Durable Subscriptions.

Oracle recommends setting the client ID policy to Unr est ri ct ed for new
applications (unless your application architecture requires exclusive client IDs),
especially if sharing a subscription (durable or non-durable). Subscriptions created
with different client ID policies are always treated as independent subscriptions. See
dientldPolicy in the MBean Reference for Oracle WebLogic Server.

Tosetthedient | D Policy attribute on the connection factory using the
WebLogic Console, see Configure multiple connections using the same client Id in the
Oracle WebLogic Server Administration Console Online Help. The connection factory
setting can be overridden programatically using the set C i ent | Dmethod of the
W.Connect i on interface in Java API Reference for Oracle WebLogic Server.

For more information about advanced concepts and functionality of Uniform
Distributed Topics (UDTs) necessary to design high availability applications, see
Shared Subscriptions and Client ID Policy.

7.7.3 Defining the Client ID

To support durable subscriptions, a client identifier (client ID) must be defined for the
connection.

Note:

The JMS client ID is not necessarily equivalent to the WebLogic Server
username, that is, a name used to authenticate a user in the WebLogic security
realm. You can set the JMS client ID to the WebLogic Server username, if it is
appropriate for your JMS application.

The client ID can be supplied in two ways:

¢ The first method is to configure the connection factory with the client ID. For
WebLogic JMS, this means adding a separate connection factory definition during
configuration for each client ID. Applications then look up their own topic
connection factories in JNDI and use them to create connections that contain their
own client IDs. See in Oracle WebLogic Server Administration Console Online Help.

Managing Your Applications 7-19

Setting Up Durable Subscriptions

¢ Alternatively, the preferred method is for an application that can set its client ID in
the connection after the connection is created by calling the following connection
method:

public void setdient!lD(
String clientID
) throws JMSException

If you use this alternative approach, then you can use the default connection
factory (if it is acceptable for your application) and avoid the need to modify the
configuration information. However, applications with durable subscriptions must
ensure that they call theset Cl i ent | D() method immediately after creating their
topic connection.

If a client ID is already defined for the connection, then an
Il egal St at eExcepti on is thrown. If the specified client ID is already defined
for another connection, then an | nval i dC i ent | DExcept i on is thrown.

Note:

When specifying the client ID using the set O i ent | D() method, there is a
risk that a duplicate client ID may be specified without throwing an exception.
For example, if the client IDs for two separate connections are set
simultaneously to the same value, then a race condition may occur and the
same value may be assigned to both connections. You can avoid this risk of
duplication by specifying the client ID during configuration.

To display a client ID and test whether or not a client ID has been defined already,
use the following connection method:

public String getCientlD(
) throws JMSException

Note:

Support for durable subscriptions is a feature unique to the Publish/Subscibe
messaging model, so client IDs are used only with topic connections; queue
connections also contain client IDs, but JMS does not use them.

Durable subscriptions should not be created for a temporary topic, because a
temporary topic is designed to exist only for the duration of the current
connection.

7.7.4 Creating a Sharable Subscription Policy

The Subscription Sharing policy specifies whether subscribers can share subscriptions
with other subscribers on the same connections on this connection. Valid values for
this policy are:

e Excl usi ve: The default. All subscribers created using this connection factory
cannot share subscriptions with any other subscribers. Use this policy to retain the
functionality of WebLogic Server 10.3.4.0 and earlier.

e Shar abl e: Subscribers created using this connection factory can share their
subscriptions with other subscribers, regardless of whether those subscribers are
created using the same connection factory or a different connection factory.

7-20 Developing JMS Applications for Oracle WebLogic Server

Setting Up Durable Subsctriptions

Consumers can share non durable subscriptions only if they have the same client
ID and client ID policy; consumers can share a durable subscription only if they
have the same client ID, client ID policy, and subscription name.

WebLogic JMS applications can override the Subscription Sharing policy specified on
the connection factory configuration by casting a j avax. j ms. JM5Cont ext instance
towebl ogi c. j ms. ext ensi ons. W.JMsCont ext oraj avax.j ns. Connecti on
instance to webl ogi c. j ms. ext ensi ons. W.Connect i on and calling

set Subscri pti onSharingPol i cy(String subscriptionSharingPolicy).

Most applications with a Sharable Subscription Sharing policy will also use an
Unrestricted client ID policy in order to ensure that multiple connections with the
same client ID can exist.

Two durable subscriptions with the same client ID and subscription name are treated
as two different independent subscriptions if they have a different Client ID Policy.
Similarly, two Sharable non durable subscriptions with the same client ID are treated
as two different independent subscriptions if they have a different client ID policy.

For more information on how to use the Subscription Sharing policy, see:

* Configure a connection factory subscription sharing policy in Oracle WebLogic
Server Administration Console Online Help.

e Shared Subscriptions and Client ID Policy

7.7.5 Creating Subscribers for a Durable Subscription

This section describes how to create subscribers for a durable subscription and
contains the following topics:

e Using JMS 2.0 API
e Using J]MS 2.0 API

7.7.5.1 Using JMS 2.0 API

To create subscribers for an unshared durable subscription use one of the following
methods:

public MessageConsuner createDurabl eConsuner (
Topi ¢ topic,

String nane

) throws JMSException

or

public MessageConsuner createDurabl eConsuner (
Topi ¢ topic,

String nane,

String selector,

bool ean nolLocal

) throws JMSException

7.7.5.2 Using JMS 1.1 API

You can create subscribers for a durable subscription using the following
Topi cSessi on methods:

public Topi cSubscriber createDurabl eSubscri ber(
Topi ¢ topic,

Managing Your Applications 7-21

Setting Up Durable Subscriptions

String name
) throws JMSException

or

public Topi cSubscriber createDurabl eSubscri ber(
Topi ¢ topic,

String nane,

String messageSel ector,

bool ean nolLocal

) throws JMSException

You must specify the name of the topic for which you are creating a subscriber and the
name of the durable subscription.

Note:

Valid durable subscription names cannot include the following characters:
comma , equals, colon , asterisk , percent, or question mark.

You may also specify a message selector for filtering messages and a noLocal flag
(described later in this section). Message selectors are described in more detail in
Filtering Messages. If you do not specify a sel ect or or messageSel ect or then by
default all messages are searched.

An application can use a JMS connection to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, an application can
receive messages it has published itself. To prevent this, a JMS application can set a
noLocal flag totrue. The default for the noLocal valueisf al se. Durable
subscriptions are stored within the file or database.

7.7.6 Best Practice: Always Close Failed JMS ClientIDs

As a best practice, JMS clients should always call the cl ose() method instead of
allowing the application to rely on the JVM's garbage collection to clean failed J]MS
connections. This is particularly important for durable subscription ClientIDs because
the JMS Automatic Reconnect feature keeps a reference to failed JMS connections.
Therefore, always use connect i on. cl ose() method to clean up your connections.
Also, consider using a f i nal | y block to ensure that your connection resources are
cleaned up. Otherwise, WebLogic Server allocates system resources to keep the
connection available.

The following code example demonstrates using thecl ose() method and
thef i nal | y block in a JMS client to clean up failed connection resources:

JMBConnection con = null;

try {
con = cf.createConnection();
con.setClient!D("Fred");
/1 Do some I/0O stuff;

}
finally {

if (con!=null) con.close();
}

For more information about the JMS Automatic Reconnect feature, see Automatic J]MS
Client Failover.

7-22 Developing JMS Applications for Oracle WebLogic Server

Setting Up Durable Subsctiptions

7.7.7 Deleting Durable Subscriptions
To delete a durable subscription, you use the following Topi cSessi on method:

public void unsubscri be(
String nane
) throws JMSException

You must specify the name of the durable subscription to be deleted.

You cannot delete a durable subscription if any of the following are true:
e A Topi cSubscri ber is still active on the session.

* A message received by the durable subscription is part of a transaction or has not
yet been acknowledged in the session.

Note:

You can also delete durable subscriptions from the WebLogic Server
Administration Console. For information about managing durable
subscriptions, see Managing Durable Subscriptions.

7.7.8 Modifying Durable Subscriptions
To modify a durable subscription, perform the following steps:
1. Delete the durable subscription, as described in Deleting Durable Subscriptions.

If it is not explicitly performed, the deletion will be executed implicitly when the
durable subscription is recreated in the next step.

2. Use the methods described in Creating Subscribers for a Durable Subscription to
re-create a durable subscription of the same name, but specifying a different topic
name, message selector, or noLocal value.

The durable subscription is re-created based on the new values.

Note:

When re-creating a durable subscription, be careful to avoid creating a
durable subscription with a duplicate name. For example, if you attempt to
delete a durable subscription from a JMS server that is unavailable, the delete
call fails. If you subsequently create a durable subscription with the same
name on a different JMS server, you may experience unexpected results when
the first JMS server becomes available. Because the original durable
subscription has not been deleted, when the first JMS server again becomes
available, there will be two durable subscriptions with duplicate names.

7.7.9 Managing Durable Subscriptions

You can monitor and manage durable topic subscribers using either the WebLogic
Server Administration Console or through public runtime APIs. This functionality also
enables you to view and browse all messages, and to manipulate most messages on
durable subscribers. This includes message browsing (for sorting), message

Managing Your Applications 7-23

Setting and Browsing Message Header and Property Fields

manipulation (such as move and delete), and message import and export. For more
information, see and Managing JMS Messages in Administering [MS Resources for Oracle
WebLogic Server.

7.8 Setting and Browsing Message Header and Property Fields

WebLogic JMS provides a set of standard header fields that you can define to identify
and route messages. In addition, property fields enable you to include application-
specific header fields within a message, extending the standard set. You can use the
message header and property fields to convey information between communicating
processes.

The primary reason for including data in a property field rather than in the message
body is to support message filtering through message selectors. Except for XML
message extensions, data in the message body cannot be accessed through message
selectors. For example, suppose you use a property field to assign high priority to a
message. You can then design a message consumer that contains a message selector
that accesses this property field and selects only messages of expedited priority. For
more information about selectors, see Filtering Messages.

7.8.1 Setting Message Header Fields

JMS messages contain a standard set of header fields that are always transmitted with
the message. They are available to message consumers that receive messages, and
some fields can be set by the message producers that send messages. After a message
is received, its header field values can be modified.

When modifying (overriding) header field values, you must ake into consideration
instances when message fields are overwritten by the JMS subsystem. For instance,
setting the priority on a producer affects the priority of the message, but a value
supplied to the send() method overrides the setting on the producer. Similarly,
values set on a destination override values set by the producer or values supplied to
the send() method. The only way to verify the value of header fields is to query the
message after a send() method.

For a description of the standard messages header fields, see Message Header Fields.

Table 7-3 lists the message class set and get methods for each of the supported data
types.

Note:

In some cases, the send() method overrides the header field value set using
the set () method, as indicated in the following table.

Table 7-3 JMS Header Field Methods

Header Field Set Method Get Method
JMBCorrel ationl D public void setJMsCorrel ationl D public String get JMSCorrel ationl I
String correlationlD) throws JMSException

) throws JMSException
public byte[]
get JIMSCor rel at i onl DAsByt es(
) throws JMSException

7-24 Developing JMS Applications for Oracle WebLogic Server

Setting and Browsing Message Header and Property Fields

Table 7-3 (Cont.) JMS Header Field Methods
. ___|

Header Field

Set Method

Get Method

JMBDest i nati on!

public void setJMSDesti nati on(
Destination destination
) throws JMSException

public Destination getJMDestination(
) throws JMSException

JMBDel i ver yMbdel

public void setJMSDel i veryMde(
int deliveryMde
) throws JMSException

public int getJMSDeliveryMde(
) throws JMSException

JMBDel i veryTi mel

public void setJMSDeliveryTi me(
I ong deliveryTinme
) throws JMSException

public long getJMSDeliveryTi me(
) throws JMSException

JMSDel i ver yMbdel

public void setJVSDel i ver yMde(
int deliveryMde
) throws JMSException

public int getJMDeliveryMde(
) throws JMSException

JMBMessagel D1

public void setJVBMessagel D(
String id
) throws JMSException

public String get JMSMessagel D(
) throws JMSException

Note: In addition to the set method, the
webl ogi c. j ms. ext ensi ons. JMSRunt
i meHel per class provides the following

methods to convert between pre-
WebLogic JMS 6.0 and 6.1
JVSMessagel D formats:

public void ol dJMSMessagel DToNew(

String id,
long tinmeStanp
) throws JMSException

public void newJMSMessagel DTod d(

String id,
long tinmeStanp
) throws JMSException

JMBPriorityl

public void setJMSPriority(
int priority
) throws JMSException

public int getJMSPriority(
) throws JMSException

JMBRedel i ver edl

public void setJVBRedel i vered(
bool ean redel i vered
) throws JMSException

public bool ean get JMSRedel i ver ed(
) throws JMSException

Managing Your Applications 7-25

Setting and Browsing Message Header and Property Fields

Table 7-3 (Cont.) JMS Header Field Methods
. ___|

Header Field Set Method Get Method
JMBRedel iveryLimitl public void set JVMSRedeliveryLimt(public int getJMSRedeliveryLimt(
int redelivered) throws JMSException

) throws JMSException

JMBRepl yTo public void setJMSRepl yTo(public Destination getJMRepl yTo(
Destination replyTo) throws JMSException
) throws JMSException

JMBTI neSt anpl public void set JMSTi meSt anp(public |ong get JMSTi meSt anp(
I ong timestanp) throws JMSException
) throws JMSException

JMBType public void set JMSType(public String get JMSType(
String type) throws JMSException
) throws JMSException

1 The corresponding Set () method has no impact on the message header field when the send()
method is executed. If set, this header field value will be overridden during the Send() operation.

The exanpl es. j ms. sender . Sender Ser vl et example, provided with WebLogic
Server in the EXAMPLES_HOVE\ Wl _ser ver\ exanpl es\ src\ exanpl es\j ns

\ sender directory, where EXAMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured, shows how to set header fields in
messages that you send and how to display message header fields after they are sent.

For example, the following code, which appears after the send() method, displays
the message ID that was assigned to the message by WebLogic JMS:

Systemout. println("Sent message " +
meg. get IMSMessagel D() + " to " +
meg. get JIMSDestination());

7.8.2 Setting Message Property Fields

To set a property field, call the appropriate set method and specify the property name
and value. To read a property field, call the appropriate get met hod and specify the
property name.

The sending application can set properties in the message, and the receiving
application can subsequently view them. The receiving application cannot change the
properties without first clearing them using the following cl ear Properti es()
method:

public void clearProperties(
) throws JMSException

This method does not clear the message header fields or body.

7-26 Developing JMS Applications for Oracle WebLogic Server

Setting and Browsing Message Header and Property Fields

Note:

The JMSX property name prefix is reserved for JMS. The connection metadata
contains a list of JM5X properties, which can be accessed as an enumerated list
using the get JMSXPr oper t yNames() method. For more information, see
Accessing Connection Metadata.

The JMS_ property name prefix is reserved for provider-specific properties; it
is not intended for use with standard JMS messaging.

The property field can be set to any of the following types: bool ean, byte,

doubl e,

float, int, long, short, or string.The following table lists the

Message cl ass set andget mnethods for each of the supported data types.

Table 7-4 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method
boolean .) .
public void setBool eanProperty(publ i c bool ean get Bool eanProperty(
String nane, String nane
bool ean val ue) throws JMBException
) throws JMBException
byte)))
public void setByteProperty(public byte getByteProperty(
String nane, String nane
byte val ue) throws JMSException
) throws JMSException
double)])
public void setDoubl eProperty(publ i c doubl e get Doubl eProperty(
String nane, String nane
doubl e val ue) throws JMSException
) throws JMSException
float)])
public void setFloatProperty(public float getFloatProperty(
String nanme, String name
float val ue) throws JMSException
) throws JMSException
int .) o
public void setlntProperty(public int getlntProperty(
String nane, String nane
int value) throws JMBException
) throws JMBException
long

public void setLongProperty(
String nane,
ong val ue) throws JMSException

public |ong getLongProperty(
String nane
) throws JMSException

Managing Your Applications 7-27

Setting and Browsing Message Header and Property Fields

Table 7-4 (Cont.) Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method

short . . :
public void set ShortProperty(public short get ShortProperty(
String nane, String nane
short val ue) throws JMBException

) throws JMBException

Strin;
& public void setStringProperty(public String getStringProperty(
String nane, String nane
String val ue) throws JMSException

) throws JMSException

In addition to the set and get net hods described in the previous table, you can
use the set Cbj ect Property() and get Obj ect Property() methods to use the
objectified primitive values of the property type. When the objectified value is used,
the property type can be determined at execution time rather than during the
compilation. The valid object types are bool ean, byte, double, float, int,
[ong, short, and string.

You can access all property field names using the following Message method:

public Enuneration getPropertyNanes(
) throws JMSException

This method returns all property field names as an enumeration. You can then retrieve
the value of each property field by passing the property field name to the appropriate
get net hod, as described in the Table 7-4, based on the property field data type.

Table 7-5 contains a conversion chart for message properties. It enables you to identify
the type that can be read based on the type that has been written. For each property
type listed in the left-most column in which a message has been written, a YES in one
of the remaining columns indicates that the message can be read as the type listed at
the top of that column.

Table 7-5 Message Property Conversion Chart
-]

Property boolean byte double float int long short String
Written As. . .

boolean YES No No No No No No YES
byte No YES No No YES YES YES YES
double No No YES No No No No YES
float No No YES YES No No No YES
int No No No No YES YES No YES
long No No No No No YES No YES
Object YES YES YES YES YES YES YES YES
short No No No No YES YES YES YES

7-28 Developing JMS Applications for Oracle WebLogic Server

Setting and Browsing Message Header and Property Fields

Table 7-5 (Cont.) Message Property Conversion Chart
___|

Property boolean byte double float int long short String
Written As. ..
String YES YES YES YES YES YES YES YES

You can test whether or not a property value was set using the following Message
method:

public bool ean propertyExists(
String nane
) throws JMSException

You specify a property name and the method returns a Boolean value indicating
whether or not the property exists.

For example, the following code sets two St r i ng properties and an i nt property:

meg. set StringProperty("User", user);
meg. set StringProperty("Category", category);
meg. set I ntProperty("Rating", rating);

For more information about message property fields, see Message Property Fields , or

the j avax. j ms. Message Javadocat htt p: // docs. oracl e. com
j avaeel 7/ api / j avax/j nms/ Message. htm .

7.8.3 Browsing Header and Property Fields

Note:

Only queue message header and property fields can be browsed. You cannot
browse topic message header and property fields.

You can browse the header and property fields of messages on a queue using the
following QueueSessi on methods:

public QueueBrowser createBrowser(
Queue queue
) throws JMSException

public QueueBrowser createBrowser(
Queue queue,

String nessageSel ector

) throws JMSException

You must specify the queue that you want to browse. You can also specify a message
selector to filter messages that you are browsing. Message selectors are described in
more detail in Filtering Messages.

After you define a queue, you can access the queue name and message selector
associated with a queue browser using the following QueueBr owser methods:

public Queue get Queue(
) throws JMSException

Managing Your Applications 7-29

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Filtering Messages

public String get MessageSel ector(
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the
following QueueBr owser method:

public Enumeration get Enumeration(
) throws JMSException

The exanpl es. j ms. queue. QueueBr owser example, provided with WebLogic
Server in the EXAMPLES _HOVE\ W _ser ver\ exanpl es\ src\ exanpl es\j ns

\ queue directory, where EXAMPLES_HOME represents the directory in which the
WebLogic Server code examples are configured, shows how to access the header fields
of received messages.

For example, the following code is an excerpt from the QueueBr owser example and
creates the QueueBr owser object:

gbrowser = gsession. creat eBrowser (queue);

The following is an excerpt from the di spl ayQueue() method defined in the
QueueBr owser example. In this example, the QueueBr owser object is used to obtain
an enumeration that is subsequently used to scan the queue's messages.

public void displayQueug(

) throws JMBException
{

Enuneration e = gbrowser. get Enumerati on();
Message m = nul | ;

if (! e. hasMreE ements()) {
Systemout. printIn("There are no nessages on this queue.");
} else {

Systemout. println("Qeued JMS Messages: ");
while (e.hasMreEl ements()) {
m = (Message) e.nextEl enent();
Systemout. println("Message ID" + mgetJMSMessagel D() +
" delivered " + new Date(m get JMSTi nestanp())
" to " + mgetJMDestination());
}
1

When a queue browser is no longer being used, you should close it to free up
resources. For more information, see Releasing Object Resources.

For more information about the QueueBr owser class, see the
j avax. j ms. QueueBr owser Javadocat http://docs. oracl e. com
j avaeel 7/ api / j avax/j nms/ QueueBrowser. htm .

7.9 Filtering Messages

In many cases, an application does not need to be notified of every message that is
delivered to it. Message selectors can be used to filter unwanted messages, and
subsequently improve performance by minimizing their effect on network traffic.

Message selectors operate as follows:

¢ The sending application sets message header or property fields to describe or
classify a message in a standardized way.

7-30 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/QueueBrowser.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueBrowser.html

Filtering Messages

¢ The receiving applications specify a simple query string to filter the messages that
they want to receive.

Because message selectors cannot reference the contents (body) of a message, some
information may be duplicated in the message property fields (except in the case of
XML messages).

You specify a selector when creating a queue receiver or topic subscriber, as an
argument to the QueueSessi on. cr eat eRecei ver () or

Topi cSessi on. creat eSubscri ber () methods, respectively. For information
about creating queue receivers and topic subscribers, see Step 5: Create Message
Producers and Message Consumers.

WebLogic JMS assigns a state or current processing condition to messages during
processing. You can use these states as selectors. For information on valid message
states, see weblogic.jms.extensions.JMSMessagelnfo in Java API Reference for Oracle
WebLogic Server.

The following sections describe how to define a message selector using SQL
statements and XML selector methods, and how to update message selectors. For
more information about setting header and property fields, see Setting and Browsing
Message Header and Property Fields and Setting Message Property Fields,
respectively.

7.9.1 Defining Message Selectors Using SQL Statements

A message selector is a Boolean expression. It consists of a String with a syntax similar
to the wher e clause of an SQL sel ect statement.

The following excerpts provide examples of selector expressions.

sal ary > 64000 and dept in ('eng','qa")

(product Iike 'WebLogic% or product like '9@3")
and version > 3.0

hireyear between 1990 and 1992
or fireyear is not null

fireyear - hireyear > 4
The following example shows how to set a selector when creating a queue receiver
that filters out messages with a priority lower than 6.

String selector = "JMSPriority >= 6";
gsessi on. creat eRecei ver (queue, selector);

The following example shows how to set the same selector when creating a topic
subscriber.

String selector = "JMSPriority >= 6";
gsessi on. creat eSubscri ber (topic, selector);

For more information about the message selector syntax, see the

j avax.j nms. Message Javadocathtt p: // docs. oracl e. com j avaee/ 7/ api /
javax/j nms/ Message. htm .

7.9.2 Defining XML Message Selectors Using XML Selector Method

For XML message types, in addition to using the SQL selector expressions described in
the previous section to define message selectors, you can use the following method:

Managing Your Applications 7-31

http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html

Filtering Messages

String JM5_BEA_SELECT(String type, String expression)

The JM5_BEA_SELECT is a built-in function in WebLogic JMS SQL syntax. You
specify the syntax type, which must be set to xpat h (XML path language) and an
XPath expression. The XML path language is defined in the XML Path Language
(XPath) document, which is available at the XML Path Language web site at: ht t p: / /
www. W3. or g/ TR/ xpat h.

Note:

Pay careful attention to your XML message syntax, since malformed XML
messages (for example, a missing end tag) will not match any XML selector.

The method returns a null value under the following circumstances:
* The message does not parse.
¢ The message parses, but the element is not present.

e If a message parses and the element is present, but the message contains no value
(for example, <or der ></ or der >).

For example, consider the following XML code example:

<or der >

<item
< d>007</i d>
<nane>Hand- hel d Power Drill</nanme>
<descri ption>Conpact, assorted col ors. </description>
<price>$34.99</ pri ce>

</item

<item
<j d>123</i d>
<name>M tre Saw/name>
<description>Three bl ades sizes. </description>
<price>$69. 99</ pri ce>

</item

<item
<j d>66</i d>
<name>Socket Wench Set</name>
<description>Set of 10.</description>
<price>$19.99</ pri ce>

<litem

</ order >

The following example shows how to retrieve the name of the second item in the
previous example. This method call returns the string, M t re Saw.

String sel = "JMS_BEA SELECT(' xpath', '/order/iten{2]/nane/text()') = 'Mtre

Saw ";

Pay careful attention to the use of double and single quotation mark and spaces. Note

the use of single quotation mark around xpat h, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous
example. This method call returns the string, 66.

String sel = "JMS_BEA SELECT(' xpath', '/order/iten{3]/id/text()') = '66"";

7-32 Developing JMS Applications for Oracle WebLogic Server

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Filtering Messages

7.9.3 Displaying Message Selectors
You can use the following MessageConsuner method to display a message selector:

public String get MessageSel ector(
) throws JMSException

This method returns either the currently defined message selector or null if a message
selector is not defined.

7.9.4 Indexing Topic Subscriber Message Selectors to Optimize Performance

For a certain class of applications, WebLogic JMS can significantly optimize topic
subscriber message selectors by indexing them. These applications typically have a
large number of subscribers, each with a unique identifier (like a user name), and they
need to be able to quickly send a message to a single subscriber or to a list of
subscribers. A typical example is an instant messaging application where each
subscriber corresponds to a different user, and each message contains a list of one or
more target users.

To activate optimized subscriber message selectors, subscribers must use the following
syntax for their selectors:

"identifier I'S NOT NULL"

i denti fi er is an arbitrary string that is not a predefined JMS message property (e.g.,
neither JM5Cor r el at i onl Dnor JMSType). Multiple subscribers can share the same
identifier.

WebLogic JMS uses this message selector syntax as a hint to build internal subscriber
indexes. Message selectors that do not follow the syntax, or that include additional OR
and AND clauses, are still honored, but do not activate the optimization.

After subscribers register using this message selector syntax, a message published to
the topic can target specific subscribers by including one or more identifiers in the
message's user properties, as shown in the following example:

/1 Set up a named subscriber, where "wilm" is the name of
/1 the subscriber and subscriberSession is a JMS Topi cSessi on.
/1 Note that the selector syntax used activates the optimzation.

Topi cSubscri ber topi cSubscriber =
subscri ber Sessi on. creat eSubscri ber (
(Topi c) cont ext. | ookup(" | Mropic"),
"Wlm IS NOT NULL",
/* nolLocal = */ true);

/1 Send a message to subscribers "Fred" and "WIm",

/'l where publisherSession is a JMS Topi cSession. Subscribers
/1 with nessage sel ector expressions "WIlm IS NOT NULL"

[/ or "Fred I'S NOT NULL" will receive this nessage.

Topi cPubl i sher topi cPublisher =
publ i sher Sessi on. creat ePubl i sher (
(Topi c) context. | ookup(" | Mropi ¢c");

Text Message msg =

publ i sher Sessi on. cr eat eText Message("H there!");
msg. set Bool eanProperty("Fred", true);
msg. set Bool eanProperty("WIm", true);

Managing Your Applications 7-33

Sending XML Messages

topi cPubl i sher. publish(nsg);

Note:

The optimized message selector and message syntax is based on the standard
JMS API; therefore, applications that use this syntax will also work on
versions of WebLogic JMS that do not have optimized message selectors, and
on non-WebLogic JMS products. However, these versions will not perform as
well as versions that include this enhancement.

The message selector optimization will have no effect on applications that use
the MULTI CAST_NO_ACKNOW.EDGE acknowledge mode. These applications
have no need for the enhancement anyway, because the message selection
occurs on the client side rather than on the server side.

7.10 Sending XML Messages

Note:

This release does not support streaming. Only text and DOM representations
of XML documents are supported.

The WebLogic Server JMS API provides native support for the Document Object
Model (DOM) to send XML messages.

The following sections provide information on WebLogic JMS API extensions that
provide enhanced support for XML messages.

¢ WebLogic XML APIs
¢ Using a String Representation

¢ Using a DOM Representation

7.10.1 WebLogic XML APIs

You can use the following WebLogic XML APIs for transformation of XML between
St ri ng and DOMrepresentations:

e XM._Message: Use to send messages with XML content.

e W.Session. creat eXM_LMessage : Use to create an XML message.

It is possible for the payload of XM_Message to be set using one XML representation
and retrieved using a different representation. For example, it is valid for the
XMLMessage body to be set using a St r i ng representation and be retrieved using a
DOM representation.

7.10.2 Using a String Representation
Use the following steps to publish an XML message using a st ri ng type:

1. Serialize the XML toa StringWiter.

7-34 Developing JMS Applications for Oracle WebLogic Server

Sending XML Messages

2. CallthetoStringontheStringWiter and pass it into the message. set Text .

3. Publish the message.

7.10.3 Using a DOM Representation

Sending XML messages using a DOM representation provides a significant
performance improvement over sending messages as a St r i ng. Use the following
steps to publish an XML message using a Dom representation:

1. If necessary, generate a DOM document from your XML source.
2. Pass the DOM document into theXM_Message. set Docunent .

3. Publish the message.

Managing Your Applications 7-35

Sending XML Messages

7-36 Developing JMS Applications for Oracle WebLogic Server

8

Using JMS Module Helper to Manage
Applications

This chapter describes how to use the
webl ogi c. j ms. ext ensi ons. JMSModul eHel per to programmatically create and
manage JMS servers, Store-and-Forward Agents, and JMS system resources.

¢ Configuring JMS System Resources Using JMSModuleHelper

Configuring JMS Servers and Store-and-Forward Agents

JMSModuleHelper Sample Code

Security Considerations for Anonymous Users

Best Practices When Using JMSModuleHelper

8.1 Configuring JMS System Resources Using JMSModuleHelper

The JMSModul eHel per provides the following API signatures to manage a system
module and JMS resources, such as queues and topics:

* Create a resource
¢ Create and modify resource
* Delete a resource
¢ Find and modify a resource

¢ Find using a template

You can manage a system module, including the JMS resources it contains by
providing the domain MBean or by providing the initial context to the administration
server in the API signature. For more information about JMS system resources, see
Configuring Basic JMS System Resources in the Oracle WebLogic Server Administration
Console Online Help.

8.2 Configuring JMS Servers and Store-and-Forward Agents

The JMBMbdul eHel per provides the following method APIs to manage JMS servers
and Store-and-Forward agents:

* Create JMS servers and Store-and-Forward Agents
¢ Delete JMS servers and Store-and-Forward Agents

* Deploy JMS servers and Store-and-Forward Agents

Using JMS Module Helper to Manage Applications 8-1

JMSModuleHelper Sample Code

* Undeploy JMS servers and Store-and-Forward Agents

You can manage JMS servers and Store-and-Forward agents by providing the domain
MBean or by providing the initial context to the administration server in the API
signature. For more information, see:

* Configuring Basic JMS System Resources in the Oracle WebLogic Server
Administration Console Online Help.

¢ Understanding the Store-and-Forward Service in the Oracle WebLogic Server
Administration Console Online Help.

8.3 JMSModuleHelper Sample Code

This section provides sample code to create and delete a JMS system resource module
and it contains the following topics:

¢ Creating a JMS System Resource

® Deleting a JMS System Resource

8.3.1 Creating a JMS System Resource
The module contains a connection factory and a topic.
Example 8-1 shows how to create JMS system resources.

Example 8-1 Create JMS System Resources

private static void createJMSUsi ngJMSModul eHel per (Cont ext ct x) {
System out. println(
"\n\n.... Configure JM5 Resource for C APl Topic Exanple\n\n");

try {

MBeanHone mbeanHome =
(MBeanHone) ctx. | ookup(MBeanHorme. ADM N_JNDI _NAME) ;
Dormai nMBean domai nMBean = nbeanHone. get Acti veDonai n();
String domai nMBeanNane = donmi nMBean. get Name() ;
Server MBean[] servers = domai nMBean. get Servers();

String jmsServerNane = "exanpl esJMSServer";

/1
/] create a JMSSystenResource "Capi Topic-jns"
/1
String resourceName = "Capi Topi c-j ms";
JMBModul eHel per . creat eJMBSyst enResour ce(
ctx,
resour ceNane,
servers[0] . get Name());
JMBSyst enResour ceMBean j msSR =
JMBModul eHel per . findJMSSyst enResour ce(
ctx,
resour ceNane) ;
JMBBean j nsBean = j nsSR get JMSResource();
Systemout. printIn("Created JVMSSystenResource " + resourceNane);

8-2 Developing JMS Applications for Oracle WebLogic Server

JMSModuleHelper Sample Code

/11
/] create a JMsSConnectionFactory "CConFac"
/11
String factoryName = "CConFac";
String jndi Nane = "CConFac";
JMSModul eHel per . creat eConnect i onFact or y(
ctx,
resour ceNane,
fact oryNane,
j ndi Nare,
servers[0] . get Name());
JMSConnect i onFact oryBean factory =
j msBean. | ookupConnect i onFact ory(fact oryNane);
Systemout.printIn("Created Factory " + factory.getNane());

11
/] create a topic "CTopic"
/1
String topi cNane = "CTopic";
String topicjndi Name = "CTopic";
JMBModul eHel per . creat eTopi ¢(
ctx,
resour ceNane,
j msSer ver Nang,
t opi cNane,
topi ¢j ndi Nare) ;
Topi cBean topic = jnsBean. | ookupTopi c(t opi cNane);
Systemout.printIn("Created Topic " + topic.getNane());
} catch (Exception e) {
Systemout. println("Exanple configuration failed :" + e.getMssage());
e.printStackTrace();
}

8.3.2 Deleting a JMS System Resource
The following code removes JMS system resources.
Example 8-2 shows how to delete the JMS system resources.

Example 8-2 Delete JMS System Resources

private static void del et eJMSUsi ngJMSModul eHel per (Context ctx) {

Systemout.printIn("\n\n.... Renove JMS System Resource for C APl Topic
Exanple\n\n");

try {

MBeanHone nbeanHone =
(MBeanHone) ct x. | ookup(MBeanHome. ADM N_JNDI _NAME) ;
Domai nMBean domai nMBean = nbeanHone. get Acti veDomai n();
String domai nMBeanNane = donai nMBean. get Name() ;
Server MBean[] servers = domai nMBean. get Servers();

Using JMS Module Helper to Manage Applications 8-3

Security Considerations for Anonymous Users

String jmsServerNane = "exanpl esJMSServer";

/11
/] del ete JMSSyst enResource " Capi Topic-j ns"
/11
String resourceName = "Capi Topi c-j ms";
JMBModul eHel per . del et eJMBSyst enResour ce(
ctx,
resour ceNane
)
} catch (Exception e) {
Systemout. println("Exanple configuration failed :" + e.getMssage());
e.printStackTrace();

}

8.4 Security Considerations for Anonymous Users

Since WebLogic Server 10.3.6, the]JMSModuleHelper does not support anonymous
lookup (using -

Dwebl ogi c. managenent . anonynousAdm nLookupEnabl ed=t r ue) to comply
with the existing WebLogic security model.

If your application environment depends on using a anonymous users, you can create
a security Role for Anonymous and the apply a policy to the

webl ogi c. managemnent . mheanser ver s JNDI resource that allow access by users
in that role. See Security for WebLogic Server MBeans in Developing Custom
Management Utilities Using [MX for Oracle WebLogic Server.

8.5 Best Practices When Using JMSModuleHelper

This section provides best practices information when using the JMSMbdul eHel per
to configure JMS servers and resources:

¢ Trap for null MBean objects (such as servers, JMS servers, modules) before trying
to manipulate the MBean object.

® A create or delete method call can fail without throwing an exception. In addition,
a thrown exception does not necessarily indicate that the method call failed.

* The time required to create the destination on the JMS server and propagate the
information to the JNDI namespace can be significant. The propagation delay
increases if the environment contains multiple servers. It is recommended that you
test for the existence of the queue or topic, respectively, using the session
creat eQueue() orcreat eTopi c() method, rather than perform a JNDI lookup.
By doing so, you can avoid some of the propagation-specific delay.

For example, the following method, f i ndQueue() , attempts to access a
dynamically created queue, and if unsuccessful, sleeps for a specified interval
before retrying. A maximum retry count is established to prevent an infinite loop.

private static Queue findQueue (
QueueSessi on queueSessi on,
String jmsServer Nang,
String queueNane,

8-4 Developing JMS Applications for Oracle WebLogic Server

Best Practices When Using JMSModuleHelper

int retryCount,
long retrylnterval
) throws JMSException

{
String w sQueueName = jnsServerNanme + "/" + queueNane;
String conmand = "QueueSessi on. creat eQueue(" +
w sQueueNane + ")";
long startTimeM|lis = SystemcurrentTimeMI1is();
for (int i=retryCount; i>=0; i--) {
try {
Systemout.printIn("Trying " + command);
Queue queue = queueSessi on. creat eQueue(w sQueueNane) ;
Systemout. println(command + "succeeded after " +
(retryCount - i +1) +" triesin" +
(SystemcurrentTimeMIlis() - startTimeMIlis) +
"mllis.");
return queue;
} catch (JMSException je) {
if (retryCount == 0) throwje;
}
try {
Systemout. println(command + "> failed, pausing " +
retrylnterval + " mllis.");
Thread. sl eep(retrylnterval);
} catch (InterruptedException ignore) {}
1
throw new JMSException("out of retries");
}

You can then call the f i ndQueue() method after the JMSMbdul eHel per class
method call to retrieve the dynamically created queue after it becomes available. For
example:

JMSMbdul eHel per. cr eat ePer manent QueueAsync(ctx, domain, jnmsServer Nang,
queueNane, | ndi Nane);

Queue queue = findQueue(qgsess, jnsServerName, queueNane,
retry_count, retry_interval);

Using JMS Module Helper to Manage Applications 8-5

Best Practices When Using JMSModuleHelper

8-6 Developing JMS Applications for Oracle WebLogic Server

9

Using Multicasting with WebLogic JMS

This chapter describes how WebLogic JMS Multicasting enables the delivery of
messages to a select group of hosts that subsequently forward the messages to
subscribers in a cluster.

¢ Benefits of Using Multicasting
* Limitations of Using Multicasting

¢ Configuring Multicasting for WebLogic Server

9.1 Benefits of Using Multicasting

The benefits of multicasting include:
® Near real-time delivery of messages to a host group

e High scalability due to the reduction in the amount of resources required by the
JMS server to deliver messages to topic subscribers in a cluster

9.2 Limitations of Using Multicasting

The limitations of multicasting include:

e Multicast messages are not guaranteed to be delivered to all members of the host
group. For messages requiring reliable delivery and recovery, you should not use
multicasting.

¢ For interoperability with different versions of WebLogic Server, clients cannot have
an earlier release of WebLogic Server installed than the host has. They must all
have at least the same version or later.

For an example of when multicasting might be useful, consider a stock ticker. When
accessing stock quotes, timely delivery is more important than reliability. When
accessing the stock information in real-time, if all or a portion of the contents is not
delivered, the client can request the information to be resent. Clients would not want
to have the information recovered, in this case, as by the time it is redelivered, it
would be out-of-date.

9.3 Using WebLogic Server Unicast

WebLogic Server provides an alternative to using multicast to handle cluster
messaging and communications. Unicast configuration is much easier because it does
not require the cross network configuration that multicast requires. Additionally, it
reduces potential network errors that can occur from multicast address conflicts.

Using Multicasting with WebLogic JMS 9-1

Configuring Multicasting for WebLogic Server

JMS topics configured for multicasting can access WebLogic clusters configured for
unicast because a JMS topic publishes messages on its own multicast address that is
independent of the cluster address. However, the following considerations apply:

¢ The router hardware configurations that allow unicast clusters may not allow JMS
multicast subscribers to work.

® JMS multicast subscribers need to be in a network hardware configuration that
allows multicast accessibility.

For more details, see Communications In a Cluster in Administering Clusters for Oracle
WebLogic Server.

9.4 Configuring Multicasting for WebLogic Server

Figure 9-1 shows the steps required to set up multicasting.

Figure 9-1 Setting Up Multicasting

Step 1: Set Up JMS Application, Creating
Multicast Session and Topic Subscriber

Step 2: Set Up Message Listener Lo
Receive Massages Asynchronously

Note:

Multicasting is only supported for the Publish/Subscribe messaging model,
and only for non durable subscribers.

Monitoring statistics are not provided for multicast sessions or consumers.

9.4.1 Prerequisites for Multicasting

Before setting up multicasting, the connection factory and destination must be
configured to support multicasting, as follows:

* For each connection factory, the system administrator configures the maximum
number of outstanding messages that can exist on a multicast session and whether
the most recent or oldest messages are discarded in the event the maximum is
reached. If the message maximum is reached, a Dat aOver r unExcept i on is
thrown, and messages are automatically discarded. These attributes are also
dynamically configurable, as described in Dynamically Configuring Multicasting
Configuration Attributes.

¢ For each destination, the Multicast Address (IP), Port, and TTL (Time-To-Live)
attributes are specified. To better understand the TTL attribute setting, see
Example: Multicast Time-to-Live.

9-2 Developing JMS Applications for Oracle WebLogic Server

Configuring Multicasting for WebLogic Server

Note:

It is strongly recommended that you seek the advice of your network
administrator when configuring the multicast IP address, port, and time-to-
live attributes to ensure that the appropriate values are set.

For more information, see Configure topic multicast parameters in the Oracle WebLogic
Server Administration Console Online Help.

9.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber

Set up the JMS application as described in Setting Up a JMS Application. However,
when creating sessions, as described in Step 3: Create a Session Using the Connection,
specify that the session would like to receive multicast messages by setting the
acknow edgeMbde value to MULTI CAST_NO_ACKNOW.EDGE.

Note:

Multicasting is only supported for the Publish/Subscibe messaging model for
non-durable subscribers. An attempt to create a durable subscriber on a
multicast session will cause a JMSExcept i on to be thrown.

For example, the following method shows how to create a multicast session for the
Publish/Subscibe messaging model.

JMSMbdul eHel per . cr eat ePer manent QueueAsync(ctx, domain, jnmsServer Nang,
queueNane, | ndi Nane);

Queue queue = findQueue(qgsess, jnsServerName, queueNane,
retry_count, retry_interval);

Note:

On the client side, each multicasting session requires one dedicated thread to
retrieve messages off the socket. Therefore, you should increase the JMS client-
side thread pool size to adjust for this.

In addition, create a topic subscriber, as described in Create TopicPublishers and
TopicSubscribers.

For example, the following code illustrates how to create a topic subscriber:

tsubscriber = tsession.createSubscriber(myTopic);

Note:

The cr eat eSubscri ber () method fails if the specified destination is not
configured to support multicasting.

9.4.3 Step 2: Set Up the Message Listener

Multicast topic subscribers can only receive messages asynchronously. If you attempt
to receive synchronous messages on a multicast session, then a JMSExcept i on is
thrown.

Using Multicasting with WebLogic JMS 9-3

Configuring Multicasting for WebLogic Server

Set up the message listener for the topic subscriber, as described in Receiving
Messages Asynchronously using the Classic API.

For example, the following code shows how to establish a message listener:

tsubscri ber. set Messageli stener (this);

When receiving messages, WebLogic JMS tracks the order in which messages are sent
by the destinations. If a multicast subscriber's message listener receives the messages
out of sequence, resulting in one or more messages being skipped, then a
SequenceCGapExcept i on will be delivered to the Except i onLi st ener for the
session(s) present. If a skipped message is subsequently delivered, then it will be
discarded. For example, in the Figure 9-2, the subscriber is receiving messages from
two destinations simultaneously.

Figure 9-2 Multicasting Sequence Gap
Destination 1 Destination 2

[l |@E C D
S 7

\ /
b /!
N W

Subscriber

Upon receiving the "4" message from Destination 1, a SequenceGapExcept i on is
thrown to notify the application that a message was received out of sequence. If
subsequently received, the "3" message will be discarded.

Note:

The larger the messages being exchanged, the greater the risk of encountering
a SequenceGapExcepti on.

9.4.4 Dynamically Configuring Multicasting Configuration Attributes

During configuration, for each connection factory the system administrator configures
the following information to support multicasting:

* Message maximum specifying the maximum number of outstanding messages that
can exist on a multicast session.

¢ Overrun policy specifying whether recent or older messages are discarded in the
event the message maximum is reached.

If the message maximum is reached, a Dat aOver r unExcept i on is thrown and
messages are automatically discarded based on the overrun policy. Alternatively, you
can set the messages maximum and overrun policy using the Sessi on set methods.

Table 9-1 lists the Sessi on setand get met hods for each dynamically configurable
attribute.

9-4 Developing JMS Applications for Oracle WebLogic Server

Configuring Multicasting for WebLogic Server

Table 9-1 Message Producer Set and Get Methods
- |

Attribute Set Method Get Method

Message

Maximum public void setMessagesMaxi mun{ public int getMessagesMaxi mun(

int messagesMaxi mum) throws JMSException
) throws JMSException

Overrun Policy) . : . .
public void setQverrunPolicy (public int getCOverrunPolicy(

int overrunPolicy) throws JMSException
) throws JMSException

Note:

The values set using the set methods take precedence over the configured
values.

For more information about these Sessi on class methods, see the

webl ogi c. j ms. ext ensi ons. W.Sessi on Javadoc. For more information about
these multicast configuration attributes, see Configure topic multicast parameters in
the Oracle WebLogic Server Administration Console Online Help.

9.4.5 Example: Multicast Time-to-Live

Note:

The following example is a very simplified illustration of how the Multicast
TTL (time-to-live) destination configuration attribute affects the delivery of
messages across routers. It is strongly advised that you seek the assistance of
your network administrator when configuring the multicast TTL attribute to
ensure that the appropriate value is set.

The Multicast TTL is independent of the message time-to-live.

Figure 9-1 shows how the Multicast TTL destination configuration attribute affects the
delivery of messages across routers.

For more information, see Configure topic multicast parameters in the Oracle WebLogic
Server Administration Console Online Help.

Using Multicasting with WebLogic JMS 9-5

Configuring Multicasting for WebLogic Server

Figure 9-3 Multicast TTL Example

TTL Count
Subnet A | |
Multicast Router o
Pubslisher - 5 4 - 5
o .\.\L‘- o .\.\L‘-

Subnet B | | |
- - B L

SR, e, SRS

Multicast Subseriber ~ o -
Subnet C | | l
M M 2
o ..i:'.:,'&.'..'ul.-"
Multicast Subscriber

In the figure, the network consists of three subnets: Subnet A containing the multicast
publisher, and Subnets B and C each contain one multicast subscriber.

If the Multicast TTL attribute is set to 0 (indicating that the messages cannot traverse
any routers and are delivered on the current subnet only), when the multicast
publisher on Subnet A publishes a message, the message will not be delivered to any
of the multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one
router), when the multicast publisher on Subnet A publishes a message, the multicast
subscriber on Subnet B will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can
traverse two routers), when the multicast publisher on Subnet A publishes a message,
the multicast subscribers on Subnets B and C will receive the message.

9-6 Developing JMS Applications for Oracle WebLogic Server

10

Using Distributed Destinations

This chapter describes the concepts and functionality of distributed destinations
necessary to design high availability (HA) applications.

e What Is a Distributed Destination?

¢ Why Use a Distributed Destination

* Creating a Distributed Destination

¢ Types of Distributed Destinations

e Using Distributed Destinations

* Using Message-Driven Beans with Distributed Destinations

e Common Use Cases for Distributed Destinations

10.1 What Is a Distributed Destination?

A distributed destination is a set of destinations (queues or topics) that are accessible
as a single, logical destination to a client. A distributed destination has the following
characteristics:

e [t is referenced by its own JNDI name.

* Members of the set are usually distributed across multiple servers within a cluster,
with each destination member belonging to a separate JMS server.

10.2 Why Use a Distributed Destination

Applications that use distributed destinations are more highly available than
applications that use simple destinations because WebLogic JMS provides load
balancing and failover for member destinations of a distributed destination within a
cluster. Once properly configured, your producers and consumers are able to send and
receive messages through the distributed destination. WebLogic JMS then balances the
messaging load across all available members of the distributed destination. When one
member becomes unavailable due a server failure, traffic is then redirected toward
other available destination members in the set. For more information about how
destination members are load balanced, see "Configuring Distributed Destination
Resources" in Administering JMS Resources for Oracle WebLogic Server.

10.3 Creating a Distributed Destination

Distributed destinations are created by the system administrator using the WebLogic
Server Administration Console. For more information, see Configuring Distributed
Destination Resources in Administering JMS Resources for Oracle WebLogic Server.

Using Distributed Destinations 10-1

Types of Distributed Destinations

10.4 Types of Distributed Destinations

WebLogic Server supports two types of distributed destinations:
¢ Uniform Distributed Destinations

* Weighted Distributed Destinations

10.4.1 Uniform Distributed Destinations

In a uniform distributed destination (UDD), each of the member destinations has a
consistent configuration of all distributed destination parameters, particularly in
regards to weighting, security, persistence, paging, and quotas.

Oracle recommends using UDDs because you no longer need to create or designate
destination members, but instead rely on WebLogic Server to uniformly create the
necessary members on the JMS servers to which a UDD is targeted. This feature of
UDDs provides dynamic updating of a UDD when a new member is added or a
member is removed.

For example, if a UDD is targeted to a cluster, there is a UDD member on every JMS
server in the cluster. If a new JMS server is added, then a new UDD member is
dynamically added to the UDD. Likewise, if a JMS server is removed, then the
corresponding UDD member is removed from the UDD. This allows UDDs to provide
higher availability by eliminating bottlenecks caused by configuration errors. For more
information, see Configuring Distributed Destination Resources in Administering JMS
Resources for Oracle WebLogic Server.

10.4.2 Weighted Distributed Destinations

Note:

Weighted distributed destinations are deprecated in Weblogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

In a weighted distributed destination, the member destinations do not have a
consistent configuration of all distributed destination parameters, particularly in
regards to weighting, security, persistence, paging, and quotas.

Oracle recommends converting weighted distributed destinations to UDDs because of
the administrative inflexibility when creating members that are intended to carry extra
message load or have extra capacity (more weight). Lack of a consistent member

configuration can lead to unforeseen administrative and application problems because
the weighted distributed destination can not be deployed consistently across a cluster.

For more information, see Configuring Distributed Destination Resources in
Administering JMS Resources for Oracle WebLogic Server.

10.5 Using Distributed Destinations

A distributed destination is a set of physical JMS destination members (queues or
topics) that is accessed through a single JNDI name. As such, a distributed destination
can be looked up using JNDI. Distributed destination implements the

javax.j nms. Desti nati on interface, athtt p: // docs. or acl e. conf

10-2 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

Using Distributed Destinations

j avaeel 7/ api / javax/j nms/ Desti nati on. ht m , and can be used to create
producers, consumers, and browsers.

For information about obtaining a reference to a distributed destination, see How to
Look Up a Destination.

¢ Using Distributed Queues
e Using Replicated Distributed Topics

¢ Using Partitioned Distributed Topics

10.5.1 Using Distributed Queues

A distributed queue is a set of physical JMS queue members. As such, a distributed
queue can be used to create a QueueSender , QueueRecei ver ,and a

QueueBr owser . The fact that a distributed queue represents multiple physical queues
is mostly transparent to your application.

The queue members can be located anywhere, but must all be served by JMS servers in
a single server cluster. When a message is sent to a distributed queue, it is sent to one
of the physical queues in the set of members for the distributed queue. Once the
message arrives at the queue member, it is available for receipt by consumers of that
queue member only. '

This section provides information on using distributed queues:
* Queue Forwarding

¢ QueueSenders

¢ QueueReceivers

¢ QueueBrowsers

10.5.1.1 Queue Forwarding

Queue members can forward messages to other queue members by configuring the
Forwar d Del ay attribute in the WebLogic Server Administration Console, which is
disabled by default. This attribute defines the amount of time, in seconds, that a
distributed queue member with messages, but which has no consumers, will wait
before forwarding its messages to other queue members that do have consumers. By
default, WebLogic Server resets the delivery count when forwarding between
distributed queue members. See Reset Del i very Count On Forwar d.

10.5.1.2 QueueSenders

After creating a queue sender, if the queue supplied at creation time was a distributed
queue, then each time a message is produced using the sender a decision is made as to
which queue member will receive the message. Each message is sent to a single
physical queue member.

The message is not replicated. As such, the message is only available from the queue

member where it was sent. If that physical queue becomes unavailable before a given
message is received, then the message is unavailable until that queue member comes

back online.

It is not enough to send a message to a distributed queue and expect the message to be
received by a queue receiver of that distributed queue. Because the message is sent to

Using Distributed Destinations 10-3

http://docs.oracle.com/javaee/7/api/javax/jms/Destination.html

Using Distributed Destinations

only one physical queue member, there must be a queue receiver receiving or listening
on that queue member.

Note:

For information about the load-balancing heuristics for distributed queues
with zero consumers, see Configuring Distributed Destination Resources in
Administering JMS Resources for Oracle WebLogic Server.

10.5.1.3 QueueReceivers

When creating a queue receiver, if the supplied queue is a distributed queue, then a
single physical queue member is chosen for the receiver at creation time. The created
QueueRecei ver is pinned to that queue member until the queue receiver loses its
access to the queue member. At that point, the consumer will receive a

JVBEXxcept i on, as follows:

¢ If the queue receiver is synchronous, then the exception is returned to the user
directly.

o If the queue receiver is asynchronous, then the exception is delivered inside of a
Consuner G osedExcept i on that is delivered to the Except i onLi st ener
defined for the consumer session, if any.

Upon receiving such an exception, an application can close its queue receiver and
recreate it. If any other queue members are available within the distributed queue,
then the creation will succeed and the new queue receiver will be pinned to one of
those queue members. If no other queue member is available, then the application
would not be able to recreate the queue receiver and will have to try again later.

Note:

For information about the load-balancing heuristics for distributed queues
with zero consumers, see Configuring Distributed Destination Resources in
Administering JMS Resources for Oracle WebLogic Server.

10.5.1.4 QueueBrowsers

When creating a queue browser, if the supplied queue is a distributed queue, then a
single physical queue member is chosen for the browser at creation time. The created
queue browser is pinned to that queue member until the receiver loses its access to the
queue member. At that point, any calls to the queue browser will receive a
JMSExcept i on. Any calls to the enumeration will return a

NoSuchEl emrent Excepti on.

Note:

The queue browser can only browse the queue member that it is pinned to.
Even though a distributed queue was specified at creation time, the queue
browser cannot see or browse messages for the other queue members in the
distributed destination.

10-4 Developing JMS Applications for Oracle WebLogic Server

Using Distributed Destinations

10.5.2 Using Replicated Distributed Topics

A distributed topic is a set of physical JMS topic members. A distributed topic can be
used to create a Topi cPubl i sher and Topi cSubscri ber. The fact that a
distributed topic represents multiple physical topics is mostly transparent to the
application.

Note:

Durable subscribers (Dur abl eTopi cSubscri ber) cannot be created for
distributed topics. However, you can still create a durable subscription on a
distributed topic member and the other topic members will forward the
messages to the topic member that has the durable subscription.

The topic members can be located anywhere but must all be served either by a single
WebLogic Server or any number of servers in a cluster. When a message is sent to a
distributed topic, it is sent to all of the topic members in the distributed topic set. This
enables all subscribers to the distributed topic to receive messages published for the
distributed topic.

A message published directly to a topic member of a distributed destination (that is,
the publisher did not specify the distributed destination) is also forwarded to all the
members of that distributed topic. This includes subscribers that originally subscribed
to the distributed topic and happened to be assigned to that particular topic member.
In other words, publishing a message to a specific distributed topic member
automatically forwards it to all the other distributed topic members, just as publishing
a message to a distributed topic automatically forwards it to all of its distributed topic
members. For more information about looking up specific distributed destination
members, see Accessing Distributed Destination Members.

This section provides information on using distributed topics:
¢ TopicPublishers
¢ TopicSubscribers

* Deploying Message-Driven Beans on a Distributed Topic

10.5.2.1 TopicPublishers

When creating a topic publisher, if the supplied destination is a distributed
destination, then any messages sent to that distributed destination are sent to all
available topic members for that distributed topic (DT), as follows:

¢ When some of the members of a uniform distributed topic are offline, non-
persistent messages published to the distributed topic are saved for those members
and made available when the members come back online.

In releases prior to 9.0, if you did not configure a persistent store for a JMS server
or if there was a persistent store defined and storedEnabled=false was set on the
distributed topic member, non persistent messages were dropped and not made
available when the distributed topic member came back online. If your application
depends on dropping these messages, you can approximate similar behavior by
setting the t i me-t o-1i ve for a server to a very low value. This will allow the
messages to be disregarded before an offline distributed topic member would come
back online. New applications developed on WebLogic Server releases 10.3.4.0 and

Using Distributed Destinations 10-5

Using Distributed Destinations

higher can use partitioned distributed topics with message-driven beans (MDBs) as
message consumers to provide a similar capability. See "Developing Advanced
Pub/Sub Applications" in Programming JMS for Oracle WebLogic Server.

¢ If one or more of the distributed topic members is not reachable, and the message
being sent is persistent, then the message is stored and forwarded to the other topic
members when they become reachable. However, the message can only be
persistently stored if the topic member has a JMS store configured.

Note:

Every effort is made to first forward the message to distributed members that
utilize a persistent store. However, if none of the distributed members utilize a
store, then the message is still sent to one of the members according to the
selected load-balancing algorithm, as described in Configuring Distributed
Destination Resources in Administering JMS Resources for Oracle WebLogic
Server.

e [f all of the distributed topic members are unreachable (regardless of whether the
message is persistent or non persistent), then the publisher receives a
JMBExcept i on when it tries to send a message.

10.5.2.2 TopicSubscribers

When creating a topic subscriber, if the supplied topic is a distributed topic, then the
topic subscriber receives messages published to that distributed topic. If one or more
of the topic members for the distributed topic are not reachable by a topic subscriber,
then depending on whether the messages are persistent or non persistent the
following occurs:

* Any persistent messages published to one or more unreachable distributed topic
members are eventually received by topic subscribers of those topic members after
they become reachable. However, the messages can only be persistently stored if
the topic member has a JMS store configured.

* Any non persistent messages published to those unreachable distributed topic
members will not be received by that topic subscriber.

Note:

If a JMS store is configured for a JMS server that is hosting a distributed topic
member, then all the Distributed Topic System Subscribers associated with
that member destination are treated as durable subscriptions, even when a
topic member does not have a JMS store explicitly configured. The saving of
all the messages sent to these distributed topic subscribers in memory can
result in unexpected memory and disk consumption. Therefore, a
recommended best design practice when deploying distributed destination is
to consistently configure all member destinations: either with a JMS store for
durable messages or without a JMS store for non durable messages. For
example, if you want all of your distributed topic subscribers to be no -
durable, but some member destinations implicitly have a JMS store configured
because their associated JMS server uses a JMS store, then you need to
explicitly set the St or eEnabl ed attribute to False for each member
destination to override the JMS server setting.

10-6 Developing JMS Applications for Oracle WebLogic Server

Using Distributed Destinations

Ultimately, a topic subscriber is pinned to a physical topic member. If that topic
member becomes unavailable, then the topic subscriber will receive a JMSEXcept i on,
as follows:

¢ If the topic subscriber is synchronous, then the exception is returned to the user
directly.

e If the topic subscriber is asynchronous, then the exception is delivered inside of a
Consuner G osedExcept i on that is delivered to the Except i onLi st ener
defined for the consumer session, if any.

After receiving this type of an exception, an application can close its topic subscriber
and recreate it. If any other topic member is available within the distributed topic, then
the creation should be successful and the new topic subscriber will be pinned to one of
those topic members. If no other topic member is available, then the application will
not be able to recreate the topic subscriber and will have to try again later.

10.5.2.3 Deploying Message-Driven Beans on a Distributed Topic

For information about how to deploy MDBs on topics, see Configuring and Deploying
MDBs Using Distributed Topics in Developing Message-Driven Beans for Oracle WebLogic
Server.

10.5.3 Using Partitioned Distributed Topics

Starting in WebLogic Server 10.3.4.0, partitioned distributed topics, combined with the
ability to share subscriptions and allow multiple connections to use the same Client
ID, provide the following application design patterns that provide parallel processing
and HA capabilities similar to distributed queues:

* One-copy-per-instance: Each instance of an application gets one copy of each
message that is published to the Topic.

* One-copy-per-application: Each application as a whole (that is all instances of the
application together) receives one copy of each message that is published to the
distributed topic . That is each instance only receives a subset of the messages that
are sent to the distributed topic .

Note:

Oracle recommends designing applications that utilize WebLogic Server
MDBs. See Configuring and Deploying MDBs Using Distributed Topics in
Developing Message-Driven Beans for Oracle WebLogic Server for detailed
information on how to design and implement applications that use message-
driven beans to provide improved HA and scalability.

For more information about using Partitioned Distributed Topics, see Developing
Advanced Pub/Sub Applications.

10.5.4 Accessing Distributed Destination Members

For information on how to access distributed destinations and their members, see
How to Look Up a Destination.

Using Distributed Destinations 10-7

Using Message-Driven Beans with Distributed Destinations

10.5.5 Distributed Destination Failover

Note:

If the distributed queue member on which a queue producer is created fails,
yet the WebLogic Server instance where the producer's JMS connection resides
is still running, then the producer remains active and WebLogic JMS will fail it
over to another distributed queue member, irrespective of whether the Load
Balancing option is enabled. For example, a WebLogic cluster contains
WLSServerl, WLSServer2, and WLSServer3 and you are connected to
WLServer2. If server WLSServer 2 fails, WebLogic JMS fail the producer over
to one of the remaining cluster members. For more information, see
Configuring Distributed Destination Resources in Administering [MS Resources
for Oracle WebLogic Server.

A simple way to failover a client connected to a failed distributed destination is to
write reconnect logic in the client code to connect to the distributed destination after
catching onExcept i on.

10.6 Using Message-Driven Beans with Distributed Destinations

A message-driven bean (MDB) acts as a JMS message listener, which is similar to an
event listener except that it receives messages instead of events. For more information
about MDBs, see:

e "MDBs and Messaging Models" in Developing Message-Driven Beans for Oracle
WebLogic Server

¢ "Deploying MDBs" in Developing Message-Driven Beans for Oracle WebLogic Server

10.7 Common Use Cases for Distributed Destinations

The following sections provide common use case scenarios when using distributed
destinations:

* Maximizing Production
¢ Maximizing Availability

® Stuck Messages

10.7.1 Maximizing Production

To maximize message production, Oracle recommends that each member of a
distributed destination be associated with a producer and a consumer. Figure 10-1
shows how to efficiently provide maximum message production and high availability
using a UDD without using load balancing:

10-8 Developing JMS Applications for Oracle WebLogic Server

Common Use Cases for Distributed Destinations

Figure 10-1 Paired Producers and Consumers

Producer 1 =~ // _. “Producer 2

Conmumer 1 Conmumer 2

In this situation, UDD1 is a uniform distributed destination composed of two physical
members: D1 and D2. Each physical destination has a producer/consumer pair and
the effective path for a message follows the solid line from the producer through the
destination member to the consumer. If you are using ordering, you should have a
producer for each expected Unit-of-Order. See Using Unit-of-Order with Distributed
Destinations.

10.7.2 Maximizing Availability

This section provides information on how to maximize message availability.

10.7.2.1 Using Queues

Ideally, its best to pair a producer with a consumer but it is not always practical. The
rate that messages are consumed is the limiting factor that determines the message
throughput of your application. You can increase the availability of consumers by
using load balancing between member destinations. In this situation, consumers are
not paired with a producer as the UDD load balances an incoming message to the next
available consumer using the assigned load balancing algorithm.

Note:

Some combinations of Unit-of-Order features can result in the starvation of
competing Unit-of-Order message streams, including the under utilization of
resources when the number of consumers exceed the number of in-flight
messages with different Unit-of-Order names. You will need to test your
applications under maximum loads to optimize your system's performance
and eliminate conditions that under utilize resources.

10.7.2.2 Using Topics

When using a distributed topic, every member destination will forward its messages
to every other member of the distributed topic.

Using Distributed Destinations 10-9

Common Use Cases for Distributed Destinations

Figure 10-2 Using Distributed Topics
Producer 1 _\ Producer 2
oDl J
I)
[

Conmumer 1 Consumer 2

In Figure 10-2, UDD1 is a uniform distributed destination composed of two physical
members: D1 and D2. Each physical destination has a producer/consumer pair. Each
consumer receives messages sent by Producer 1 and Producer 2.

10.7.3 Stuck Messages

InFigure 10-3, a producer is sending messages to one member of a UDD but there is no
consumer available to get the message. This typically happens as a producer sends a
message to one of the destinations (D1) and a consumer is listening for messages on
another destination (D2).

Figure 10-3 Stuck Messages

Producer 1 / \\

P
T
N N

¢

Conzumer 2

UDDL1 is a uniform distributed destination composed of two physical members: D1
and D2. D1 has a producer and D2 has a consumer. Avoid this configuration by using
producer/consumer pairs or by configuring forwarding on the destination.

10-10 Developing JMS Applications for Oracle WebLogic Server

11

Using the Message Unit-of-Order

This chapter describes how to use Message Unit-of-Order to provide strict message
ordering when using WebLogic JMS.

¢ What is Message Unit-Of-Order?

Understanding Message Processing with Unit-of-Order
¢ Message Unit-of-Order Case Study

* How to Create a Unit-of-Order

¢ Getting the Current Unit-of-Order

® Message Unit-of-Order Advanced Topics

¢ Limitations of Message Unit-of-Order

11.1 What is Message Unit-Of-Order?

Message Unit-of-Order is a WebLogic Server feature that enables a stand-alone
message producer, or a group of producers acting as one, to group messages into a
single unit with respect to the processing order. This single unit is called a Unit-of-
Order and requires that all messages from that unit be processed sequentially in the
order they were created.

11.2 Understanding Message Processing with Unit-of-Order

The following sections compare message processing as described by the JMS
specification with message processing enhanced by using WebLogic Server's Message
Unit-of-Order feature.

* Message Processing According to the JMS Specification
® Message Processing with Unit-of-Order

* Message Delivery with Unit-of-Order

11.2.1 Message Processing According to the JMS Specification

While the Java Message Service Specification, at ht t p: / / www. or acl e. cont

t echnet wor k/ j ava/ j ms/ i ndex. ht m , provides an ordered message delivery, it
does so in a very strict sense. It defines order between a single instance of a producer
and a single instance of a consumer, but does not take into account the following
common situations:

* Many consumers on one queue. See Using Distributed Destinations.

Using the Message Unit-of-Order 11-1

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Understanding Message Processing with Unit-of-Order

Multiple producers within a single application acting as a single producer. See
Using Distributed Destinations.

Message recoveries or transaction rollbacks where other messages from the same
producer can be delivered to another consumer for processing. See What Happens
When a Message Is Delayed During Processing?.

Use of filters and destination sort keys. See Message Unit-of-Order Advanced
Topics.

11.2.2 Message Processing with Unit-of-Order

The WebLogic Server Unit-of-Order feature enables a message producer or group of
message producers acting as one, to group messages into a single unit that is
processed sequentially in the order the messages were created. The message
processing of a single message is complete when a message is acknowledged,
committed, recovered, or rolled back. Until message processing for a message is
complete, the remaining unprocessed messages for that Unit-of-Order are blocked.

This section provides information about rules for JMS acknowledgement modes,
described at htt p: / / www. or acl e. coni t echnet wor k/ j ava/j s/ i ndex. htm ,
when using Message Unit-of-Order:

No messages from a Unit-of-Order are processed in parallel when the
acknowledgement mode is CLI ENT_ACKNOALEDCE, AUTO_ACKNOWLEDCE, or
DUPS_OK_ACKNOW.EDCGE.

When the consumer is closed, the current message processing is completed,
regardless of the session's acknowledge mode.

CLI ENT_ACKNOW.EDGE - The application calling Message. acknow edge and
Sessi on. recover indicate which messages are completely processed in the Unit-
of-Order.

AUTO_ACKNOWALEDGE - The session automatically acknowledges a client's receipt
of a message when it has either successfully returned from a call tor ecei ve or
when the Messageli st ener that was called returns successfully.

— Asynchronous mode: Successful completion or exception of the
onMessage(nmsg) indicates when a message is completely processed.

— Synchronous mode: For a given consumer, such as consumer A,
consumner A. r ecei ve is completed when one of the following occurs:
consumer A. recei ve, consuner A. set Messageli st ener, or
consuner A. cl ose.

DUPS_OK_ACKNOW.EDGE — The session automatically acknowledges a client's
receipt of a message when it has either successfully returned from a call to
r ecei ve or when the MessageLi st ener that was called returns successfully.

- Asynchronous mode: Successful completion or exception of onMessage(nsg)
indicates when a message is completely processed.

— Synchronous mode: For a given consumer, such as consumer A,
consurrer A. r ecei ve() is completed when one of the following occurs:
consumner A. recei ve(),consumner A set Messageli stener (), or
consuner A. cl ose().

11-2 Developing JMS Applications for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/jms/index.html

Message Unit-of-Order Case Study

NO_ACKNOW.EDGE — The session provides no order processing guarantees.
Messages can be processed in parallel with different available consumers.

11.2.3 Message Delivery with Unit-of-Order

Message Unit-of-Order provides that messages are delivered in accordance with the
following rules:

Member messages of a Unit-of-Order are delivered to queue consumers
sequentially in the order they were created. The message order within a Unit-of-
Order will not be affected by sort criteria, priority, or filters. However, messages
that are uncommitted, have a Redel i very Del ay, or have an unexpired

Ti met oDel i ver timer will delay messages that arrive after them.

Unit-of-Order messages are processed one at a time. The processing completion of
one message allows the next message in the Unit-of-Order to be delivered.

Unit-of-Order messages sent to a distributed queue reside on only one physical
member of the distributed queue. For more information, see Using Unit-of-Order
with Distributed Destinations.

All uncommitted or unacknowledged messages from the same Unit-of-Order must
be in the same transaction, or if non-transactional, the same JMSSessi on. When
one message in the Unit-of-Order is uncommitted or unacknowledged, the other
messages are deliverable only to the same transaction or JM5Sessi on. This keeps
all unacknowledged messages from the same Unit-of-Order in one recoverable
operation and allows order to be maintained despite rollbacks or recoveries.

A queue that has several messages from the same Unit-of-Order must complete
processing all of them before they can be delivered to any queue consumer or the
next message can be delivered to the queue.

For Example,

— when Messages M; through M;, are delivered as part of a transaction and the
transaction is rolled back (processing is complete). Then messages M; through
M,, are delivered to any available consumer:

— when Messages M; through M,, are delivered outside of a transaction and the
messages are recovered (processing is complete). Then messages M; through
M, are delivered to any available consumer.

— when Messages M; through M, are delivered outside of a transaction and the
messages are acknowledged (processing is complete). Then the undelivered
message M, is delivered to any available consumer.

11.3 Message Unit-of-Order Case Study

This section provides a simple case study for Message Unit-of-Order based on
ordering a book from an online bookstore.

Joe Orders a Book
What Happened to Joe's Order

How Message Unit-of-Order Solves the Problem

Using the Message Unit-of-Order 11-3

Message Unit-of-Order Case Study

11.3.1 Joe Orders a Book

XYZ Online Bookstore implements a simple processing design that uses JMS to
process customer orders. The JMS processing system is composed of:

* A message producer sending to a queue (Queuel).

* Multiple message driven beans (MDBs), such as MdbX and MdbY, that process
messages from Queuel.

* A database (myDB) that contains order and order status information.

Joe logs in his XYZ Online Bookstore account and searches his favorite book topics. He
chooses a book, proceeds to the checkout, and completes the sales transaction. Then
Joe realizes he has previously purchased this same item, so he cancels the order. One
week later, the book is delivered to Joe.

11.3.2 What Happened to Joe's Order

In Joe's ordering scenario, his cancel order message was processed before his purchase
order message. The result was that Joe received a book he did not wish to purchase.
The following steps demonstrate how Joe's order was processed.

The Figure 11-1 and the corresponding actions demonstrate how Joe's order was
processed.

Figure 11-1 Workflow for Joe's Order

MedbX
- VRN
- i3 j
7N
client Cueuel L'Fl:‘."D:EI
(1.3) (2.4 - P (7,8,9)

| MY -7 S

(G

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queuel.
3. Joe cancels the order.

4. The cancel order (message B) is placed on Queuel.

5. MdbX takes message A from Queuel.

6. MdbY takes message B from Queuel.

7. MdbY writes the cancel message to the database. Because there is no
corresponding order message, there is no order message to remove from the
database.

11-4 Developing JMS Applications for Oracle WebLogic Server

Message Unit-of-Order Case Study

8. MdbX writes the order message to the database.

9. An application responsible for shipping books reads the database, sees the order
message, and initiates shipment to Joe's home.

Although the Java Message Service Specification, at ht t p: / / www. or acl e. conml
technetwor k/java/j nms/i ndex. ht nl , provides an ordered message delivery, it
only provides ordered message delivery between a single instance of a producer and a
single instance of a consumer. In Joe's case, multiple MDBs were available to consume
messages from Queuel and the processing order of the messages was no longer
guaranteed.

11.3.3 How Message Unit-of-Order Solves the Problem

To ensure that all messages in Joe's order are processed correctly, the system
administrator for XYZ Bookstore configures a Message Unit-of-Order based on a user
session, such that all messages from a user session have a Unit-of-Order name
attribute with the value of the session id. See How to Create a Unit-of-Order. All
messages created during Joe's user session are processed sequentially in the order they
were created because WebLogic Server guarantees that messages in a Unit-of-Order
are not processed in parallel.

In Figure 11-2 and the corresponding actions demonstrate how Joe's order was
processed using Message Unit-of-Order.

Figure 11-2 Workflow for Joe's Order Using Unit-of-Order

N ©
|
client _’_‘ Queuel L'EI.".-D:E'
(1.3) | 249 S - (8.9
- ~
NS ~ .

MdbY

(6,7)

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queuel.
3. Joe cancels the order.

4. The cancel order (message B) is placed on Queuel.

5. MdbX takes message A from Queuel.

6. MdbY takes message B from Queuel.

7. Message B on MdbY is blocked until MdbX acknowledges the order message. See
What Happens When a Message Is Delayed During Processing?.

8. Message A is committed and written to the database.

Using the Message Unit-of-Order 11-5

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

How to Create a Unit-of-Order

9. Message B is committed and written to the database.

Because there is a corresponding order message, Joe's order is removed from the
database and he does not receive a book.

11.4 How to Create a Unit-of-Order

The following sections describe how to create a Message Unit-of-Order. Also see
Message Delivery with Unit-of-Order and Message Unit-of-Order Advanced Topics.

¢ Creating a Unit-of-Order Programmatically
* Creating a Unit-of-Order Administratively

¢ Unit-of-Order Naming Rules

11.4.1 Creating a Unit-of-Order Programmatically

Use the set Uni t OF Or der () method of the W.MessagePr oducer interface to
associate a producer with a Unit-of-Order name.

In the following example, the Unit-of-Order name attribute value is set to
myUOOname:

get Producer (). set Uni t Of Order (" nyUCOname") ;
After a producer is associated with a Unit-of-Order, all messages sent by this producer

are processed as a Unit-of-Order until either the producer is closed or the association
between the producer and the Unit-of-Order is dissolved.

The Example 11-1 shows how to associate a producer with a Unit-of-Order:

Example 11-1 Using the WLMessageProducer Interface to Create a Unit-of-Order

queue = (Queue)(ctx. | ookup(destName));

gsender = (\W.MessageProducer) g@s.createProducer (queue);
gsender. setUnit Of Order();

uooname = gsender. get Uni t Of Order();

Systemout. printIn("Using UnitOfOrder :" + uoonane);

11.4.2 Creating a Unit-of-Order Administratively

The following section provides information about how to configure JMS connection
factories or JMS destinations to enable Message Unit-of-Order.

11.4.2.1 Configuring Unit-of-Order for a Connection Factory and Destinations

Use one of the following methods to configure JMS connection factories and
destinations to enable Message Unit-of-Order:

¢ Configure a connection factory to always use a user-generated Unit-of-Order name.
As a result, all producers created from such a connection factory have Unit-of-
Order enabled. See Configure connection factory unit-of-order parameters in the
Oracle WebLogic Server Administration Console Online Help.

11-6 Developing JMS Applications for Oracle WebLogic Server

How to Create a Unit-of-Order

Configure a connection factory to always use a system-generated Unit-of-Order
name for each session. See Configure connection factory unit-of-order parameters
in the Oracle WebLogic Server Administration Console Online Help.

A client can call W.Pr oducer . set Uni t OF Or der (nane) and change the initial
connection factory setting on the producer.

Configure a standalone or distributed destination to always use a system-generated
Unit-of-Order name. See the following topics in the Administration Console Online
Help:

Configure advanced topic parameters

- Configure advanced queue parameters

— Uniform distributed topics - configure advanced parameters
— Uniform distributed queues - configure advanced parameters

— Configure advanced JMS template parameters

You should administratively configure a Unit-of-Order on a connection factory or
destination when interoperating with legacy JMS applications. This method provides a
simple mechanism to ensure messages are processed in the order they are created
without making any code changes.

11.4.3 Unit-of-Order Naming Rules

A Unit-of-Order is identified by a name attribute. Within a destination, messages that
have the same value for the Unit-of-Order name attribute belong to the same Unit-of-

Order. The name can be provided by either the system or the application. Messages in
the same Unit-of-Order all share the same name. See How to Create a Unit-of-Order.

The name attribute for a Unit-of-Order must adhere to the following rules:

A valid value for the Unit-of-Order name attribute is any non-null and non-empty
string.

System-generated Unit-of-Order names are timestamp-based and statistically
unique.

Applications can supply their own Unit-of-Order names. For example, WebLogic
Integration applications can use Workflow names and Web Services applications
can use conversation names.

Message Unit-of-Order has its own name space. A Unit-of-Order does not need to
be unique with respect to other named objects. For instance, it is valid to have a
Unit-of-Order named Foo and a queue named Foo.

The scope of a Message Unit-of-Order is limited to a single destination. Two
different Units of Order on two destinations can have the same name.

One or more producers can send messages with the same Unit-of-Order name by
using the same string to create the Unit-of-Order.

A system-generated Unit-of-Order name can be used by more than one producer.
This paradigm works just as well for application-assigned Unit-of-Order names. It
will be most efficient if the information is serialized in only one place, so a property
like Conversation ID can be stored only as the Unit-of-Order name. This paradigm

Using the Message Unit-of-Order 11-7

Getting the Current Unit-of-Order

does not work when the message is sent through a non-Unit-of-Order JMS
provider (releases before WebLogic 9.0 or non-WebLogic JMS providers).

11.5 Getting the Current Unit-of-Order

The Unit-of-Order name can be extracted from a delivered message. For example:

msg. get StringProperty("JMS_BEA UnitOf Order");

11.6 Message Unit-of-Order Advanced Topics

The following sections describe how Unit-of-Order processes messages in advanced or
more complex situations:

¢ What Happens When a Message Is Delayed During Processing?
¢ What Happens When a Filter Makes a Message Undeliverable

¢ What Happens When Destination Sort Keys Are Used

® Using Unit-of-Order with Distributed Destinations

¢ Using Unit-of-Order with Topics

¢ Using Unit-of-Order with J]MS Message Management

¢ Using Unit-of-Order with WebLogic Store-and-Forward

* Using Unit-of-Order with WebLogic Messaging Bridge

11.6.1 What Happens When a Message Is Delayed During Processing?

There are many situations that can occur during message processing that would
normally change the order in which a message is processed. The following is a short
list of typical message processing states that make a message not ready for delivery:

* A message is within an uncommitted transaction.

* A message's Ti meToDel i ver value prevents it from being delivered until the
Ti meToDel i ver interval has elapsed.

e A consumer calls a recover or rollback operation that prevents a message from
being re-delivered until the Redel i ver yDel ay interval has elapsed.

Suppose messages A and B arrive respectively in the same Unit-of-Order, and
message A cannot be delivered for any of the previously listed reason. Even though
nothing is delaying the delivery of message B, it is not deliverable until message A in
its Unit-of-Order is delivered.

11.6.2 What Happens When a Filter Makes a Message Undeliverable

Using a filter and a Unit-of-Order can provide unexpected behaviors. Suppose
messages A through Z are in the same Unit-of-Order in the same Queue. Consumerl
has a filter, and messages A, B, and C satisfy the filter, and they are delivered to
Consumerl.

1. Messages D through Z are undeliverable until messages A, B, and C are
acknowledged.

11-8 Developing JMS Applications for Oracle WebLogic Server

Message Unit-of-Order Advanced Topics

2. Messages A, B, and C are acknowledged or recovered.

3. Message D is available to the message delivery system.

4. Message D does not pass the filter and can never be presented to Consumerl.
5. Messages E through Z are undeliverable until message D is processed.

® The transaction that contains message D must be rolled back.

¢ After message D is processed, messages E through Z can be delivered.

For more information, see Filtering Messages.

11.6.3 What Happens When Destination Sort Keys Are Used

Destination sort keys control the order in which messages are presented to consumers
when messages are not part of a Unit-of-Order or are not part of the same Unit-of-
Order.

For example, messages A and B arrive and in the same Unit-of-Order on a queue that
is sorted by priority and the sort order is depending, but message B has a higher
priority than A.

Even though message B has a higher priority than message A, message B is still not
deliverable until message A is processed because they are in the same Unit-of-Order. If
a message C arrives and either does not have a Unit-of-Order or is not in the same
Unit-of-Order as message A, then the priority setting of message C and the priority
setting of message A determine the delivery order. See Configuring Basic JMS System
Resources in Administering JMS Resources for Oracle WebLogic Server.

11.6.4 Using Unit-of-Order with Distributed Destinations

As previously discussed in the Message Processing According to the JMS
Specification, the Java Message Service Specification (at ht t p: / / www. or acl e. con!
t echnet wor k/ j ava/ j ms/ i ndex. ht m) does not guarantee ordered message
delivery when applications use distributed queues. WebLogic JMS directs messages
with the same Unit-of-Order and having a distributed destination target to the same
distributed destination member. The member is selected by the destination's Unit-of-
Order configuration:

e Using the Path Service

¢ Using Hash-Based Routing
11.6.4.1 Using the Path Service

You can configure the WebLogic Path Service to provide a persistent map that can
store the information required to route the messages contained in a Unit-of-Order to
its destination resource; a member of a uniform distributed destination. If the
WebLogic Path Service is configured for a uniform distributed destination, then the
routing path to a member destination is determined by the server using the run-time
load balancing heuristics for the distributed queue.

11.6.4.2 Using Hash-Based Routing

If the WebLogic Path Service is not configured, then the default routing path to a
uniform queue member is chosen by the server based on the hash codes of the
Message Unit-of-Order name and the uniform distributed queue members. An

Using the Message Unit-of-Order 11-9

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Message Unit-of-Order Advanced Topics

advantage of this routing mechanism is that routes to a distributed queue member are
calculated quickly and do not require persistent storage in a cluster.

Consider the following when implementing Message Unit-of-Order in conjunction
with hash-based routing:

¢ If a distributed queue member has an associated Unit-of-Order and is removed
from the distributed queue, new messages are sent to a different distributed queue
member and the messages will not be continuous with older messages.

e If a distributed Queue member has an associated Unit-of-Order and is unreachable,
then the producer sending the message will throw a JMSOr der Except i on and
the messages are not routed to other distributed Queue members. The exception is
thrown because the JMS messaging system can not meet the quality-of-service
required ; only one distributed destination member consumes messages for a
particular Unit-of-Order.

11.6.4.3 Configuring Routing on Uniform Distributed Destinations

See the following topics to configure either the Path service or hash-based routing
mechanism on uniform distributed destinations using Message Unit-of-Order:

® Uniform distributed topics - configure advanced parameters in the Oracle WebLogic
Server Administration Console Online Help

¢ Uniform distributed queues - configure advanced parameters in the Oracle
WebLogic Server Administration Console Online Help

11.6.5 Using Unit-of-Order with Topics

Assigning a Unit-of-Order does not prohibit parallel processing of a message by two
subscribers on the same topic. Because individual subscribers for a topic have their
own destination and message list, similar to a queue with one consumer, messages are
processed by all subscribers according to the Unit-of-Order assigned at the time of
production.

11.6.5.1 Unit-of-Order and Distributed Topics

The routing of messages between physical topics can affect Unit-of-Order if an
application directly sends to a member of a distributed topic. To ensure correct order
of processing, the application must ensure the messages are sent using the logical
distributed topic (that is, the destination is obtained using the JNDI name of the
distributed topic). WebLogic Server then ensures messages with the same Unit-of-
Order take the same path to the distributed topic member.

11.6.5.2 Unit-of-Order, Topics, and Message Driven Beans

The WebLogic Server message-driven bean implementation goes beyond the
requirements of the EJB and JMS specifications to provide parallel processing of an
incoming message stream for a single topic subscription and JMS session. This parallel
processing does not take Unit-of-Order into account, so care is required to ensure that
the processing is still ordered correctly. There are two ways to achieve this : either
process each message in its own JTA transaction, or disable parallel processing by
setting the pool size to one.

When using Unit-of-Order with topics and message driven beans, you must either:

e Use JTA Transactions

11-10 Developing JMS Applications for Oracle WebLogic Server

Message Unit-of-Order Advanced Topics

or

e Set Pool Size to One

Start by configuring MDBs to Use JTA Transactions. In the unlikely event that the
transaction overhead is unacceptable, switch to Set Pool Size to One.

11.6.5.2.1 Use JTA Transactions

The simplest approach is to use JTA transactions. It has a processing overhead, but is
usually low because WebLogic Server has a highly optimized transaction engine and
the application benefits from parallel processing of messages that have different Units-
of-Order. The JTA transaction may be of benefit for some application use cases. For
example, it is necessary to ensure atomic interaction with other operations such as
sending JMS messages, or updating a database.

11.6.5.2.2 Set Pool Size to One

Setting the pool size to one allows more efficient, non-transactional messaging to be
used, but has a drastic effect on parallelism.

11.6.6 Using Unit-of-Order with JMS Message Management

JMS message management allows a JMS administrator to move and delete most
messages in a running JMS Server. This enables an administrator to violate the
delivery rules specified in Message Delivery with Unit-of-Order.

If messages A, B, C, and D are produced and sent to destination D1 and belong to
Unit-of-Order foo, consider the following:

* Moving messages C and D to destination D2 may allow parallel processing of
messages from both destinations.

* Moving messages B and C to destination D2 may allow parallel processing of
message A and messages B and C. After message A is processed, message D is
deliverable.

For applications that depend on maintaining message order, a best practice is to move
all of the messages in a Unit-of-Order as a single group.

To ensure Unit-of-Order delivery rules are maintained, use the following steps:
1. Pause the source destination and the target destination.
2. Select all of the messages with the Unit-of-Order you would like to move.

3. Move the selected messages to the target destination. If necessary, sort them
according to the order that you want them processed.

4. Resume the source and target destinations.

For more information, see "Troubleshooting WebLogic JMS" in Administering JMS
Resources for Oracle WebLogic Server.

11.6.7 Using Unit-of-Order with WebLogic Store-and-Forward

WebLogic Store-and-Forward supports Message Unit-of-Order. For example, a Store-
and-Forward producer sends messages with a Unit-of-Order named Foo. If the
producer disconnects and reconnects through a different connection, the producer
creates another Unit-of-Order with the name Foo and continues sending messages. All
messages sent before and after the reconnect are directed through the same Store-and-

Using the Message Unit-of-Order 11-11

Limitations of Message Unit-of-Order

Forward agent. See Administering the Store-and-Forward Service for Oracle WebLogic
Server.

11.6.8 Using Unit-of-Order with WebLogic Messaging Bridge

If both the source and target destinations are WebLogic Server 9.0 or later Messaging
Bridge instances, you can enable Pr eser veMsgPr oper t y on the Messaging Bridge to
preserve the Unit-of Order name and set the producer's Unit-of-Order accordingly.
See Administering WebLogic Tuxedo Connector for Oracle WebLogic Server.

11.7 Limitations of Message Unit-of-Order

This section provides additional general information to consider when using Message
Unit-of-Order:

* A browser enumeration contains the current queue messages in the order they are
to be received by the browser, where current is defined as those messages that are
deliverable. At most, the first message within a Unit-of-Order is deliverable.
Subsequent messages in the same Unit-of-Order are not deliverable.

* Some combinations of Unit-of-Order features can result in the starvation of
competing Unit-of-Order message streams, including the under utilization of
resources when the number of consumers exceed the number of in-flight messages
with different Unit-of-Order names. You will need to test your applications under
maximum loads to optimize your system's performance and eliminate conditions
that under utilize resources.

* This release of WebLogic Server Message Unit-of-Order does not support clients
connecting to a non-Unit-of-Order JMS provider (releases before than WebLogic 9.0
or non-WebLogic JMS providers).

11-12 Developing JMS Applications for Oracle WebLogic Server

12

Using Unit-of-Work Message Groups

This chapter describes how to use Unit-of-Work Message Groups to provide groups of
messages when using WebLogic JMS.

What Are Unit-of-Work Message Groups?

* Understanding Message Processing with Unit-of-Work
¢ How to Create a Unit-of-Work Message Group

* Message Unit-of-Work Advanced Topics

e Limitations of UOW Message Groups

12.1 What Are Unit-of-Work Message Groups?

Many applications need an even more restricted notion of a group than provided by
the Message Unit-of-Order (UOO) feature. If this is the case for your applications, then
WebLogic JMS provides the Unit-of-Work (UOW) Message Groups, which allows
applications to send JMS messages, identifying some of them as a group and allowing
a JMS consumer to process them as such. For example, a JMS producer can designate a
set of messages that must be delivered to a single client without interruption, so that
the messages can be processed as a unit. Further, the client will not be blocked waiting
for the completion of one unit when there is another unit that is already complete.

Note:

It is a programming error to use both the Unit-of-Order and Unit-of-Work
features on the same JMS message.

The following sections describe how to use Message UOW to provide strict message
grouping when using WebLogic JMS:

¢ Understanding Message Processing with Unit-of-Work
* How to Create a Unit-of-Work Message Group
* Message Unit-of-Work Advanced Topics

* Limitations of UOW Message Groups

12.2 Understanding Message Processing with Unit-of-Work

These sections provide basic conceptual information about UOW message groups.

Using Unit-of-Work Message Groups 12-1

Understanding Message Processing with Unit-of-Work

12.2.1 Basic UOW Terminology
Table 12-1 defines the terms used to define UOW.

Table 12-1 Unit-of-Work Terminology

Term Definition

Unit-of-Work (UOW) A set of JMS messages that must be processed as a single unit.

UOW Component Message A message that is part of a UOW. In order for WebLogic JMS
to identify a message as part of a UOW, the message must
have the JMS properties described in How to Write a Producer
to Set UOW Message Properties.

UOW Producer A producer that needs to split its work into multiple parts (i.e.,
a creator of a UOW). Multiple producers can concurrently
contribute component messages to a UOW message, as shown
in Message Unit-of-Work Case Study.

If fact, a UOW producer can close midway through a UOW
and a new producer can complete the UOW message, while
maintaining the same strict component message integrity (that
is detect duplicates, etc.).

Intermediate Destination A destination whose consumers have the job of processing
component messages separately rather than as a unit. No
special UOW configuration is required for intermediate
destinations.

When a component message arrives on an intermediate
destination it will be made available without waiting for other
component messages to arrive. Further, if the intermediate
destination is a distributed destination, no special routing
needs to occur. See How to Write a UOW Consumer/
Producer For an Intermediate Destination.

Terminal Destination A destination whose consumers have the job of processing a
full UOW. A destination is identified as a terminal destination
by the Unit-of-Work Message Handling Policy parameter on
standalone destinations, distributed destinations, or JMS
templates. See Configuring Terminal Destinations.

Available/Visible Messages ~ Equivalent JMS terms that refer to a message becoming ready
for consumption, pending the reception of any messages that
precede it. For example, a JMS message is not available until
its time to deliver has been reached or a JMS message that is
sent as part of a transaction is not visible until that transaction
is committed.

12.2.2 Rules For Processing UOW Messages
The following rules apply to UOW messages.

e All Messages Required For Processing

No message within the UOW will be available until all of them are available on the
terminal destination.

* Message Reordering

12-2 Developing JMS Applications for Oracle WebLogic Server

Understanding Message Processing with Unit-of-Work

No matter what order the messages arrive to the terminal destination, they will be
put into the order specified by the UOW producer.

¢ Gap Freedom

The group of messages will be delivered to the user without gaps. That is, all
messages in the group will be delivered to the user before messages from any other
group (or part of no group at all).

¢ Single Consumer Consumption

The group of messages will be delivered to the same consumer.

12.2.3 Message Unit-of-Work Case Study

This section provides a simple case study for Message Unit-of-Work based on an
online order that requires a variety of merchandise from multiple companies.

Jill Orders Miscellaneous Items from an Online Retailer:

The Megazon online retailer implements a processing design that uses JMS to process
customer orders for a variety of merchandise, some of which need to be routed to
Megazon's partner companies to complete the order. For example, Megazon can
directly fulfill book orders, but must re route some parts of the order for certain
electronics or houseware items. Since Megazon is configured to use UOW, items in an
order can be routed as UOW messages to these intermediate company destinations
before being passed onto Megazon's terminal destination where all the UOW
messages that make up the order are gathered before a final invoice can be processed.

The Megazon JMS processing system is composed of:

* A UOW producer sending order fulfillment component messages with the required
UOW properties to the appropriate intermediate and terminal destinations

¢ Intermediate destinations for non book items, where UOW component messages
are processed by consumer and/or producer clients before being passed onto the
final UOW destination

¢ A UOW terminal destination where the component messages are gathered for final
processing

Jill logs into her Megazon account and does some holiday shopping. She chooses a
book, flash drive, MP3 player, and a lava lamp, she then proceeds to the checkout, and
completes the sales transaction.

How Message Unit-of-Work Completes the Order:

To ensure that all messages in Jill's order are processed as a single unit, the order-
taking JMS producer client sets UOW properties on her order messages to indicate
that they are part of a single unit. These UOW message properties must also be copied
by any consumer or producer clients listening on the intermediate Gadget Planet,
Widget World, and Desperate Housewares destinations before they pass the UOW
messages onto the terminal destination. Last, the system administrator for Megazon
configures the terminal destination to UOW Message Handling Policy parameter to
Single Message Delivery. See How to Create a Unit-of-Work Message Group.

Figure 12-1 and the corresponding actions demonstrate how Jill's order was processed
using Message Unit-of-Work.

Using Unit-of-Work Message Groups 12-3

How to Create a Unit-of-Work Message Group

Figure 12-1 Workflow for Jill's Order Using Unit-of-Work

N

- LIOWW
— |ntermadiate ——0 " SR ObjeciMessage
Destinations uow Car
T Destination —
Megazon Three LI Generales
Portal UOW SEOQW2 - Lava Lamp Desperaie UOW SEQ #2 SEQ msgs Jill's Involcs for:
ara fommad

hlagarars PO prodhca
i DWW prapertes for
1) Flash Driva [SECHET
) WP Player [SECHT)
) Lave Larvg (SEQET)
&) Good Pooms |SECHT)

4.

Ii"i:g,,S
EG,

= | #1 Flash Drive
2 MP3

#3 Lava Lamp
#4 Good Posms

Howsewanes

©

inio a list

Jill clicks the order button from her shopping cart.
The order is split into three messages that use the same unique UOW name:

e SEQ#1, which is routed to the intermediate Gadget Planet queue, where a
consumer processes the Flash Drive order before passing SEQ#1 onto a
producer who then routes it to the intermediate Widget World queue, where a
consumer processes the MP3 player order before passing SEQ#1 to the
terminal Megazon queue for final invoice processing.

e SEQ#2, which is routed to the intermediate Desperate Housewares queue,
where a consumer processes the lava lamp order before passing SEQ#1 onto a
producer who routes it to the Megazon terminal processing queue for final
invoice processing.

o SEQ#3, which is routed directly to Megazon's terminal queue for book order
fulfillment and for final invoice processing.

The terminal Megazon queue gathers the three UOW messages before forming
them into an Cbj ect Message list for delivery to Megazon's invoice consumer
client.

Jill receives an invoice that shows her entire order was processed.

12.3 How to Create a Unit-of-Work Message Group

The following sections describe how to create a Message Unit-of-Work.

How to Write a Producer to Set UOW Message Properties
How to Write a UOW Consumer/Producer For an Intermediate Destination
Configuring Terminal Destinations

How to Write a UOW Consumer for a Terminal Destination

12-4 Developing JMS Applications for Oracle WebLogic Server

How to Create a Unit-of-Work Message Group

12.3.1 How to Write a Producer to Set UOW Message Properties

UOW enables a producer to split its work into multiple parts to accomplish its goal.
UOW is, in effect, taking these multiple messages and joining them into one. Whether
component messages are delivered as parts of a single message or as many messages,
it is easiest to envision them as a single virtual message, as well as individual
messages.

In order for WebLogic JMS to identify a message as part of a UOW, the message must
have the JMS properties in Table 12-1 set by the producer client.

Table 12-2 Unit-of-Work Properties

Type Description

A string property that is set by the standard JMS mechanism for

JNEB_BEA Uni t O ork setting properties. For example:

message. set Stri ngProperty("JM_BEA Unit Of Wrk",
"MyUni t OF Wor kNare™)

To avoid naming conflicts, the UOW ID should never be reused.
For example, if messages are lost or retransmitted, then they
may be perceived as part of a separate UOW. For this reason,
Oracle recommends using a Java universally unique identifier
(UUID). See ht t p: / / docs. or acl e. com j avase/ 6/
docs/api/javal/util/UU D. htm .

An integer property that is set by the standard JMS mechanism

JVB_BEA_Uni t Of VorkSequen ¢, setting properties. For example:

ceNunber
message. set | nt Property("JM5_BEA Unit Of Wor kSequenceNunber
Il, 5)

The valid values are integers greater than or equal to 1

A Boolean property that is set by the standard JMS mechanism

JNB_BEA Isni tOWrkEnd ¢, setting properties. For example:

message. set Bool eanProperty("JMS_BEA | sUnit Of Wor kEnd",
true)

When this property is set to true, the message is the last in the
Unit-of-Work. When this property is false or nonexistent, the
message is not last in the Unit-of-Work.

If the Uni t OF Wr k property is not set, then SequenceNunber and End will be
ignored.

12.3.1.1 Example UOW Producer Code
The Example 12-2copies the UOW properties defined in Table 12-1.

Example 12-1 Sample UOW Producer Message Properties

for (int i=1; i<=100; i++)

{
sendMsg. set StringProperty("JVS_BEA Unit OfWork","joul e");
sendMsg. set | nt Property("JVMS_BEA Unit OF Wor kSequenceNunber ", i) ;
if (i == 100)
{

Using Unit-of-Work Message Groups 12-5

http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html
http://docs.oracle.com/javase/6/docs/api/java/util/UUID.html

How to Create a Unit-of-Work Message Group

Systemout. printIn("set the end of message flag for message # " + i);
sendMsg. set Bool eanProperty("JVMS_BEA | sUnit OF Wr kEnd", true);

gSender . send(sendMsg, DeliveryMde. PERSI STENT, 7, 0);
1

12.3.1.2 UOW Exceptions

The following exceptions may be thrown to the producer when sending JMS messages
to a terminal destination. When a UOW exception is town, the UOW message is not
delivered.

Except for the last one, they are all in the webl ogi c. j ms. ext ensi ons package and
are subclasses of JMSExcept i on.

e BadSequenceNumber Except i on — This will occur if (a) Uni t Of Wor K is set on
the message, but SequenceNumnber is not or (b) the SequenceNumnber is less than
or equal to zero.

e Qut O SequenceRangeExcept i on — This will be thrown if (a) a message is sent
with a SequenceNumber that is higher than the sequence number of the message
which has already been marked as the end of the unit or (b) a message is sent with
a sequence number which is lower than a message which has already arrived in the
same unit, yet the new message is marked as the end message.

e Duplicat eSequenceNurrber Except i on — This will be thrown to the producer if
it sends a message with a sequence number which is the same as a previously sent
message in the same UOW.

e JMBExcepti on — A JMS exception will be thrown if a message has both the
Uni t O Or der property set and the Uni t Of Wor k property set.

Note:

As a programming best-practice, consider having your UOW producers send
all component messages that comprise a new UOW under a single transaction.
This way, either all of the work is completed or none of it is. For example, if a
UOW producer gets an exception or crashes partway through a UOW and
wants to then cancel the current UOW, then the entire transaction will be
rolled back and the application will not need to make a decision for each
message after a failure.

12.3.2 How to Write a UOW Consumer/Producer For an Intermediate Destination

An intermediate destination is one whose consumers have the job of processing
component messages separately rather than as a unit. A JMS For war dHel per
extension API is available to assist developers who are writing producers and/or
consumers at intermediate destinations. This is because there are many message
properties that need to be copied from the incoming message to the outgoing message.
For example, the message properties that control the behavior of UOW need to be
copied.

The following intermediate consumer code sample copies the UOW properties defined
in Table 12-1.

12-6 Developing JMS Applications for Oracle WebLogic Server

How to Create a Unit-of-Work Message Group

Example 12-2 Sample Client Code for UOW Intermediate Destination

msg = qReceiverl.receive();
try
{
text = msg.get Text();
Text Message forwardnsg = gsess. creat eText Message();
forwardmsg. set Text (text);
forwardnmsg. set StringProperty("JM_BEA Unit O Wrk",
msg. get StringProperty("JM_BEA UnitOfWork"));
forwardmsg. set | ntProperty("JVMS_BEA Unit Of Wor kSequenceNunber ",
msg. get | nt Property("JM5_BEA Unit Of Wor kSequenceNurber ")) ;
i f (tm getBool eanProperty("JMS_BEA | sUnitCf WorkEnd"))
forwar dnsg. set Bool eanProperty("JMS_BEA | sUnit O Wor kEnd",
nsg. get Bool eanProperty("JM5_BEA | sUnit Of Wor KEnd")) ;
gsend. send(f orwardnsg) ;

}

Note that the three UOW properties are copied from the incoming message to the
outgoing message.

12.3.3 Configuring Terminal Destinations

A destination is identified as a terminal destination by the Unit-of-Work Message
Handling Policy parameter on standalone destinations, distributed destinations, or
JMS templates. There is also a parameter that allows for expiration of incomplete work
on terminal destinations.

Using the WebLogic Server Administration Console, these Advanced configuration
options are available on the General Configuration page for all destination types (or by
using the Dest i nat i onBean API), as well as on JMS templates (or by using the
Tenpl at eBean API).

Table 12-3 Unit-of-Work Configuration Options

Console Label/MBean Name Description

Unit-of-Work (UOW) Message Specifies whether the Unit-of-Work (UOW) feature is

Handling Policy enabled for a destination.
Uni t OF ior kHandl i ngPol i ¢y e Pass- Thr ough : By default, destinations do not treat
messages as part of a UOW.

e Single Message Delivery :Select this option if
UOW consumers are receiving component messages on
this terminal destination. When selected, component
UOW messages are formed into a list and are
consumed as an Cbj ect Message containing the
java.util.list.

Using Unit-of-Work Message Groups 12-7

How to Create a Unit-of-Work Message Group

Table 12-3 (Cont.) Unit-of-Work Configuration Options
___|

Console Label/MBean Name Description

Expiration time for incomplete =~ The maximum length of time, in milliseconds, before
UOW Messages undeliverable messages in an incomplete UOW are
expired. Such messages will then follow the expiration
policy defined for undeliverable messages. Message
expiration begins after the first UOW message arrives.

This field is effective only if Unit-of-Work Handling Policy
is set to Si ngl e Message Del i very. The default value
of -1 means that UOW messages will never expire.

I nconpl et eWor kExpi rati onTi ne

Note: If an expiration time is not configured on terminal
destination, then it is possible for a UOW message to wait
indefinitely on the destination when a component message
was either: (A) never sent/committed, (B) expired, or (C)
manually deleted).

For instructions about configuring unit-of-work parameters on standalone
destinations, distributed destinations, or JMS templates using the WebLogic Server
Administration Console, see the following sections in the Oracle WebLogic Server
Administration Console Online Help:

¢ Configure advanced topic parameters

¢ Configure advanced queue parameters

¢ Uniform distributed topics - configure advanced parameters
e Uniform distributed queues - configure advanced parameters

¢ Configure advanced JMS template parameters

For more information about these parameters, see Dest i nat i onBean and
Tenpl at eBean in the MBean Reference for Oracle WebLogic Server.

12.3.3.1 UOW Message Routing for Terminal Distributed Destinations

The Unit-of-Order Routing field is used to determine the routing of UOW messages
for uniform distributed destinations, using either the path service or hash-based
routing. And similar to UOO, when a UOW terminal destination is also a distributed
destination, all messages within a UOW must go to the same distributed destination
member. For more information on the UOO routing mechanisms, see Using Unit-of-
Order with Distributed Destinations.

However, basic UOO routing and UOW routing are not the same. Strictly, all
messages within a single UOO do not have to go to the same member: when there are
no more unconsumed messages for a certain UOO, newly arrived messages can go to
any member. In UOW, message routing must be guaranteed until the whole UOW has
arrived at the physical destination and consumption is irrelevant.

12.3.4 How to Write a UOW Consumer for a Terminal Destination

The sample UOW consumer code in Example 12-3 shows how a consumer listening on
a terminal destination verifies that all component messages sent are contained within
the final UOW message.

12-8 Developing JMS Applications for Oracle WebLogic Server

Message Unit-of-Work Advanced Topics

Example 12-3 Sample Client Code for UOW Terminal Destination
{

msg = qReceiverl.receive();
if (msg !'=null)

{

count ++;

Systemout. println"Mssage received: " + nsg);

[/ Check that this one nessage contains all the nessages sent.
ArrayList nsgList = (ArrayList)(((OojectMssage)nsg).getvject());
nunsgs = nsglLi st. si ze();

Systemout. printin("no. of nessages in the msg =" + nunkgs);

}
} while (msg !'=null);

12.4 Message Unit-of-Work Advanced Topics

The following sections describe how Unit-of-Work processes messages in advanced or
more complex situations:

* Message Property Handling
e UOW and Uniform Distributed Destinations

e UOW and Store-and-Forward Destinations

12.4.1 Message Property Handling

UOW is, in effect, taking multiple messages and joining them into one. This is true
whether or not the messages are delivered as one message. For example, each message
will have an independent expiration time, but if one expires, none of them will ever be
delivered. Therefore, as a best practice your message producers should make sure that
messages that make up a UOW are as uniform as possible.

Whether component messages are delivered as parts of a single message or as many
messages, it is easiest to envision them as a single virtual message, as well as
individual messages. For example, because the messages must be seen consecutively,
UOW's effect on message sorting can be viewed as determining the correct placement
of the virtual message. The same is true of message selection (a consumer must see the
whole group or not see the group at all); WebLogic JMS must determine whether
"consumer A must see the virtual message" before deciding to deliver all of the
messages to consumer A.

12.4.1.1 System-Generated Properties

Some fields of the virtual message will need to be populated independently of the
component messages. For example, the virtual message cannot get its value for
delivery count from a component message. This is the list of property values that are
system-generated:

¢ Timestamp
¢ Delivery count (redelivered)
* Destination

12.4.1.2 Final Component Message Properties

The message properties will be derived from the component messages. However,
different properties get values derived in different ways. One way to derive virtual

Using Unit-of-Work Message Groups 12-9

Limitations of UOW Message Groups

message properties is to get their values directly from one of the component messages,
(this simplifies the handling of component messages with different property values).
For simplicity, the last message in the UOW is the message from which the values are
derived. For example, the message priority for the virtual message will be the priority
of the message marked as last (by having the property JM5_BEA | sUni t OF Wor KEnd
set to true).

This is the list of virtual message properties that are derived from the values contained
in the last message in the UOW:

* Message ID

¢ Correlation ID
® Priority

* User Properties

e UserlID

12.4.1.3 Component Message Heterogeneity

Another method for handling component message heterogeneity is to coerce all
component messages into the same value. For example, as mentioned earlier, a
mixture of expiration times doesn't make sense. This is the complete list of message
properties that are handled in this way:

¢ Delivery Mode
¢ Expiration

12.4.1.4 ReplyTo Message Property

The Repl yTo property value is not reflected in the virtual message because it is not
used in message selection or sorting and is only useful to the application, therefore it is
ignored.

12.4.2 UOW and Uniform Distributed Destinations

As discussed in UOW Message Routing for Terminal Distributed Destinations, the
Unit-of-Order Routing field is used to determine the routing mechanism for UOW
messages. One other requirement for UOW in distributed destinations is that all
member destinations must have the same value for the UOW Handling Policy. A
configuration that is configured otherwise is invalid.

As a best practice, the use of topics (especially distributed topics) is discouraged for
use as intermediate UOW destinations, because this configuration may lead to
duplicate component messages.

12.4.3 UOW and Store-and-Forward Destinations

The WebLogic Store-and-Forward service supports UOW, with the exception that a
store-and-forward (SAF) imported destination cannot be a terminal destination.
However, SAF obeys the routing rules of UOW messages, just as it does for UOO
messages. See Using Unit-of-Order with WebLogic Store-and-Forward.

12.5 Limitations of UOW Message Groups

This section provides additional general information to consider when using UOW.

12-10 Developing JMS Applications for Oracle WebLogic Server

Limitations of UOW Message Groups

® JMS clients created using WebLogic Server earlier than 9.0 cannot create messages
that will be processed as part of a UOW.

* The JMS C JNI client is not able to process UOW messages at a terminal
destination, because they are object messages. It can, however, be used as a UOW
producer or on an intermediate destination.

¢ UOW is poorly suited for sets of large file transfers. Ideally, your messaging
environment is configured for lower maximum message sizes and to facilitate the
streaming transfer of large chunks of data (such as large files) from a single
producer to a single consumer. UOW doesn't handle this use-case because the
individual messages are accumulated back into large giant message on the server
before they are pushed to the consumer, rather than streamed.

Using Unit-of-Work Message Groups 12-11

Limitations of UOW Message Groups

12-12 Developing JMS Applications for Oracle WebLogic Server

13

Using Transactions with WebLogic JMS

This chapter describes how to use transactions with WebLogic JMS.

e QOverview of Transactions

Using JMS Transacted Sessions

Using JTA User Transactions

JTA User Transactions Using Message Driven Beans

Example: JMS and EJB in a JTA User Transaction

Using Cross-Domain Security

Note:

For more information about the JMS classes described in this section, access
the latest JMS Specification and Javadoc supplied on the Java Web site at the
following location: ht t p: / / www. or acl e. cont t echnet wor k/ j ava/ j ns/
i ndex. htm .

13.1 Overview of Transactions

A transaction enables an application to coordinate a group of messages for production
and consumption, treating messages sent or received as an atomic unit.

When an application commits a transaction, all of the messages it received within the
transaction are removed from the messaging system and the messages it sent within
the transaction are delivered. If the application rolls back the transaction, then the
messages it received within the transaction are returned to the messaging system and
messages it sent are discarded.

When a topic subscriber rolls back a received message, the message is redelivered to
that subscriber. When a queue receiver rolls back a received message, the message is
redelivered to the queue, not the consumer, so that another consumer on that queue
can receive the message.

For example, when shopping online, you select items and store them in an online
shopping cart. Each ordered item is stored as part of the transaction, but your credit
card is not charged until you confirm the order by checking out. At any time, you can
cancel your order and empty your cart, rolling back all orders within the current
transaction.

There are three ways to use transactions with JMS:

¢ If you are using only JMS in your transactions, you can create a JMS transacted
session.

Using Transactions with WebLogic JMS 13-1

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Using JMS Transacted Sessions

¢ If you are mixing other operations, such as EJB, with JMS operations, you should
use a Java Transaction API (JTA) user transaction in a non-transacted JMS session.

* Use message driven beans.

The following sections explain how to use a JMS transacted session and JTA user
transaction.

Note:

When using transactions, it is recommended that you define a session
exception listener to handle any problems that occur before a transaction is
committed or rolled back, as described in Defining a Connection Exception
Listener.

If the acknowl edge() method is called within a transaction, then it is
ignored. If the recover() method is called within a transaction, a
JVBExcept i on is thrown.

13.2 Using JMS Transacted Sessions

A JMS transacted session supports transactions that are located within the session. A
JMS transacted session's transaction will not have any effect outside of the session. For
example, rolling back a session will roll back all sends and receives on that session, but
will not roll back any database updates. JTA user transactions are ignored by JMS
transacted sessions.

Transactions in JMS transacted sessions are started implicitly, after the first occurrence
of a send or receive operation, and chained together; whenever you commit or roll
back a transaction, another transaction automatically begins.

Before using a JMS transacted session, the system administrator should adjust the
connection factory (Transaction Timeout) and/or session pool (Transaction) attributes,
as necessary for the application development environment.

Figure 13-1 shows the steps required to set up and use a JMS transacted session.

Figure 13-1 Setting Up and Using a JMS Transacted Session

Step 1: Set Up JMS Application,
Creating Transacted Session
vy
- ™
Step 2: Perform Desired Operations

L. ‘ >

Step 3: Commit or Roll Back the
JMS Transacted Session
N A

13.2.1 Step 1: Set Up JMS Application, Creating Transacted Session

Set up the JMS application as described in Setting Up a JMS Application, when
creating sessions, as described in Step 3: Create a Session Using the Connection,

13-2 Developing JMS Applications for Oracle WebLogic Server

Using JMS Transacted Sessions

specify that the session is to be transacted by setting the t r ansact ed Boolean value
totrue.

For example, the following methods show how to create a transacted session for the
point-to-point and Publish/subscribe messaging models, respectively:

gsessi on = gcon. cr eat eQueueSessi on(
true,
Sessi on. AUTO_ACKNOW.EDGE

)

tsession = tcon. createTopi cSessi on(
true,
Sessi on. AUTO_ACKNOW.EDGE

)

After a session is defined, you can determine whether or not a session is transacted
using the following session method:

publ i c bool ean get Transact ed(
) throws JMSException

Note:

The acknowledge value is ignored for transacted sessions.

13.2.2 Step 2: Perform Desired Operations

Perform the desired operations associated with the current transaction.

13.2.3 Step 3: Commit or Roll Back the JMS Transacted Session

After you have performed the desired operations, execute one of the following
methods to commit or roll back the transaction.

To commit the transaction, execute the following method:

public void commit(
) throws JMSException

The conmi t () method commits all messages sent or received during the current
transaction. Sent messages are made visible, while received messages are removed
from the messaging system.

To roll back the transaction, execute the following method:

public void roll back(
) throws JMSException

Ther ol | back() method cancels any messages sent during the current transaction
and returns any messages received to the messaging system.

If either the comi t () orr ol | back() methods are issued outside of a J]MS
transacted session, then a | | | egal St at eExcept i on is thrown.

Using Transactions with WebLogic JMS 13-3

Using JTA User Transactions

13.3 Using JTA User Transactions

The Java Transaction API (JTA) supports transactions across multiple data resources.
JTA is implemented as part of WebLogic Server and provides a standard Java interface
for implementing transaction management.

You program your JTA user transaction applications using the
javax.transaction. User Tr ansact i on object, described at ht t p: //

www. or acl e. conf t echnet wor k/ j aval/ j avaee/j ta/i ndex. ht i, to begin,
commit, and roll back the transactions. When mixing JMS and E]B within a JTA user
transaction, you can also start the transaction from the EJB, as described in
Transactions in EJB Applications in Developing JTA Applications for Oracle WebLogic
Server.

You can start a JTA user transaction after a transacted session has been started;
however, the JTA transaction will be ignored by the session and vice versa.

WebLogic Server supports the two-phase commit protocol (2PC), enabling an
application to coordinate a single JTA transaction across two or more resource
managers. It guarantees data integrity by ensuring that transactional updates are
committed in all of the participating resource managers, or are fully rolled back out of
all the resource managers, reverting to the state before the start of the transaction.

Before using a JTA transacted session, the system administrator must configure the
connection factories to support JTA user transactions by selecting the XA Connection
Factory Enabled check box.

Figure 13-2 shows the steps required to set up and use a JTA user transaction.

Figure 13-2 Setting Up and Using a JTA User Transaction

g Step 1: Set Up JMS Application,

Creating Non-Transacted Session

v

Step 2: Look Up User
Transaction In JNDI

. ‘ !
" ™
Step 3: Start the JTA User Transaction
. ‘ !
" ™
Step 4. Perform Desired Operations
. ‘ v
Step 5 Commit or Roll Back the
JTA User Transaction

oy

13.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted Session

Set up the JMS application as described in Setting Up a JMS Application, however,
when creating sessions, as described in Step 3: Create a Session Using the Connection,

13-4 Developing JMS Applications for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

Using JTA User Transactions

specify that the session is to be non-transacted by setting the t r ansact ed boolean
value tof al se.

For example, the following methods illustrate how to create a non-transacted session
for the PTP and Pub/sub messaging models, respectively.

gsessi on = gcon. cr eat eQueueSessi on(
fal se,

Sessi on. AUTO_ACKNOW.EDGE

);

tsession = tcon. createTopi cSessi on(
fal se,

Sessi on. AUTO_ACKNOW.EDGE

)

Note:

When a user transaction is active, the acknowledge mode is ignored.

13.3.2 Step 2: Look Up the User Transaction in JNDI

The application uses JNDI to return an object reference to the User Tr ansact i on
object for the WebLogic Server domain.

You can look up the User Tr ansact i on object by establishing a JNDI context
(cont ext) and executing the following code, for example:

User Transaction xact = ctx.|ookup("javax.transaction. User Transaction");

13.3.3 Step 3: Start the JTA User Transaction

Start the JTA user transaction using the User Tr ansact i on. begi n() method. For
example:

xact . begin();

13.3.4 Step 4: Perform Desired Operations

Perform the desired operations associated with the current transaction.

13.3.5 Step 5: Commit or Roll Back the JTA User Transaction

Once you have performed the desired operations, execute one of the following
commit () orroll back() methods on the User Tr ansact i on object to commit or
roll back the JTA user transaction.

To commit the transaction, execute the following conmi t () method:

xact. comit();

The conmi t () method causes WebLogic Server to call the Transaction Manager to
complete the transaction, and commit all operations performed during the current
transaction. The Transaction Manager is responsible for coordinating with the
resource managers to update any databases.

To roll back the transaction, execute the following r ol | back() method:

xact.rollback();

Using Transactions with WebLogic JMS 13-5

JTA User Transactions Using Message Driven Beans

Ther ol | back() method causes WebLogic Server to call the Transaction Manager to
cancel the transaction, and roll back all operations performed during the current
transactions.

Once you call the conmmi t () orrol | back() method, you can optionally start
another transaction by calling xact . begi n() .

13.4 JTA User Transactions Using Message Driven Beans

Because JMS cannot determine which, if any, transaction to use for an asynchronously
delivered message, JMS asynchronous message delivery is not supported within JTA
user transactions.

However, message— driven beans provide an alternative approach. A message driven
bean can automatically begin a user transaction just before message delivery.

For information about using message— driven beans to simulate asynchronous
message delivery, see Designing Message-Driven E]Bs in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Server.

13.5 Example: JMS and EJB in a JTA User Transaction

The following example shows the steps to set up an application for mixed EJB and JMS
operations in a JTA user transaction by looking up a

javax.transaction. User Transact i on using JNDI, and beginning and then
committing a JTA user transaction. In order for this example to run, the XA
Connection Factory Enabled check box must be selected when the system
administrator configures the connection factory.

Note:

In addition to this simple JTA User Transaction example, see example
provided with WebLogic JTA, located in the EXAMPLES_HOVE\ W _ser ver
\ exanpl es\ src\ exanpl es\j t a\j nsj dbc directory, where
EXANMPLE_HOME represents the directory in which the WebLogic Server code
examples are configured.

Import the appropriate packages, including the
javax.transaction. User Transact i on package, athttp://
www. or acl e. com t echnet wor k/ j ava/j avaee/ jtalindex. htm .

inmport java.io.*;

inport java.util.*;

inport javax.transaction. UserTransacti on;
i mport javax.naming.*;

import javax.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA USER XACT=
"javax.transaction. User Transacti on";

13-6 Developing JMS Applications for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://www.oracle.com/technetwork/java/javaee/jta/index.html

Using Cross-Domain Security

13.5.1 Step 1 Set Up the JMS Application

Set up the JMS application, creating a non-transacted session. For more information on
setting up the JMS application, refer to Setting Up a JMS Application.

/1 IMS application setup steps including, for exanple:
gsession = gcon. creat eQueueSessi on(fal se,
Sessi on. CLI ENT_ACKNOALEDGE) ;
13.5.2 Step 2 Look Up the User Transaction
Look up the User Tr ansact i on using JNDI.
User Transaction xact = (UserTransaction)

ctx. | ookup(JTA_USER XACT);

13.5.3 Step 3 Start the JTA User Transaction

Start the JTA user transaction.

xact . begin();

13.5.4 Step 4 Perform the Desired Operations
Perform the desired operations.

/1 Performsome JMS and EJB operations here.

13.5.5 Step 5 Commit the JTA User Transaction

Commit the JTA user transaction.

xact . commi t ()

13.6 Using Cross-Domain Security

You must correctly configure either the Cross— Domain Security or Security
Interoperability Mode for all participating domains.

Keep all the domains used by your process symmetric with respect to Cross Domain
Security configuration and Security Interoperability Mode. Because both settings are
set at the domain level, it is possible for a domain to be in a mixed mode, meaning the
domain has both Cross Domain Security and Security Interoperability Mode set. For
more information, see Configuring Secure Inter-Domain and Intra-Domain
Transaction Communication in Developing JTA Applications for Oracle WebLogic Server.

Using Transactions with WebLogic JMS 13-7

Using Cross-Domain Security

13-8 Developing JMS Applications for Oracle WebLogic Server

14

Developing Advanced Pub/Sub
Applications

This chapter describes advanced WebLogic JMS publish and subscribe (pub/sub)
concepts and functionality of Uniform Distributed Topics (UDTs) necessary to design
high availability (HA) applications.

* Overview of Advanced High Availability Concepts

¢ Advanced Messaging Features for High Availability

¢ Design Strategies When Using Topics

¢ Considerations When Using JMS 2.0 Shared Subscriptions

® Best Practices for Distributed Topics

14.1 Overview of Advanced High Availability Concepts

The following sections provide information about WebLogic Server high availability
features and concepts:

¢ WebLogic Messaging High Availability Features
* Application Design Limitations When Using Replicated Distributed Topics

* Advanced Topic Features

Note:

Oracle recommends designing applications that utilize WebLogic Server
MDBs or the Oracle SOA JMS Adapter rather than explicitly handling all
potential topology changes.

14.1.1 WebLogic Messaging High Availability Features

Oracle's WebLogic messaging offer high availability (HA) and scalability using the
following features:

¢ Using Distributed Destinations

* Migration of JMS-related Services in Administering [MS Resources for Oracle
WebLogic Server

* Whole Server Migration in Administering Clusters for Oracle WebLogic Server

Developing Advanced Pub/Sub Applications 14-1

Overview of Advanced High Availability Concepts

Distributed Destinations make a group of JMS physical destinations accessible as a
single, logical destination to a client. Applications that use distributed destinations
usually have higher availability and better scalability because WebLogic JMS provides
load balancing and failover among member destinations of a distributed destination
within a cluster. Automatic Service Migration (ASM) and Whole Server Migration
(WSM) enable restarting either a set of services (including JMS servers and
destinations) or an entire WebLogic Server instance in a new location. These migration
features provide high availability for the individual members of a distributed
destination.

The nature of these technologies means that the topology of a JMS system can be
unknown to a client application as:

¢ The scaling of a cluster, along with the scaling of a distributed destination may
exceed the number of consumers defined by the application.

* The topology may dynamically change in the event of a server or service failure.

Typically, topology changes are handled transparently using MDBs either locally or
on a remote WebLogic Server instance. However, when using other client types, these
topology changes must be explicitly handled by the application, especially if the
application is remote to the servers hosting the JMS destinations.

14.1.2 Application Design Limitations When Using Replicated Distributed Topics

Applications implementing Uniform Distributed Topics earlier than WebLogic Server
10.3.4.0 were constrained by the following limitations:

* Messages are always forwarded and duplicated across a distributed topic, which
means that either parallel processing, and/or ensuring that a clustered application
gets one copy of each message, may requires significant additional configuration,
coding, and message hops.

* Only one consumer at a time can process the messages in a given subscription
except for the limited case of Non-XA MDBs where all processing of the
subscription must occur on the same server with a thread pool. This prevents most
customers from designing application architectures that intend to have "round-
robin" distributed or parallel processing of a single subscription's topic messages,
instead of single-threaded processing.

* MDBs only directly support durable subscriptions on distributed topics that are
located in the same cluster.

¢ For applications other than MDBs, a durable subscriber created for a distributed
topic can only be created on a distributed topic (DT) member, and the durable
subscription will only exist on that member. If the member hosting the subscription
is down, then the subscription will not be available to any subscriber (and is
therefore not "highly available" by definition).

* Pinning subscribers to a distributed topic member prevents automatic adjustment
to changes in topology in the same way that adjustments are made for distributed
queues.

14.1.3 Advanced Topic Features

Starting in WebLogic Server 10.3.4.0, partitioned distributed topics, combined with the
ability to share subscriptions and allow multiple connections to use the same Client

14-2 Developing JMS Applications for Oracle WebLogic Server

Advanced Messaging Features for High Availability

ID, provide the following application design patterns that provide parallel processing
and HA capabilities similar to distributed queues:

¢ One copy per instance: Each instance of an application gets one copy of each
message that is published to the Topic.

* One copy per application: Each application as a whole (that is all instances of the
application together) receives one copy of each message that is published to the
Topic. Each instance only receives a subset of the messages that are sent to the
Topic.

Note:

Oracle recommends designing applications that utilize WebLogic Server
MDBs. See Configuring and Deploying MDBs Using JMS Topics in
Programming Message-Driven Beans for Oracle WebLogic Server for detailed
information about how to design and implement applications that use
message-driven beans to provide improved HA and scalability.

14.2 Advanced Messaging Features for High Availability

In order to understand how an application can achieve One-copy-per-instance and
One-copy-per-application design patterns, you need to understand the following new
and changed features:

e Shared Subscriptions and Client ID Policy
* How Sharing a Non Durable Subscription Works
e How Sharing a Durable Subscription Works

* Advanced Programming with Distributed Destinations Using the JMS Destination
Availability Helper API

14.2.1 Shared Subscriptions and Client ID Policy

Before WebLogic Server 10.3.4.0, one subscription, durable or non durable, could only
be accessed by a single subscriber instance at any time. Each subscriber receives all
messages that are sent to a topic after the subscription is established and the messages
for each subscription are processed sequentially by one consumer.

In this WebLogic Server release, multiple subscribers can share one subscription
(durable or non durable). Messages are distributed among multiple consumers that
share the same subscription and can be processed in parallel. Subscription sharing
only occurs on the same destination instance or the same member instance of a DT. See
Configure Shared Subscriptions in Administering JMS Resources for Oracle WebLogic
Server.

In order to share a subscription, durable or non-durable subscriptions must have the
Client Id set on their connection factory or connection. Before WebLogic Server
10.3.4.0, a Client ID was exclusively used by one connection at any given time. In this
release of WebLogic Server, this restriction is relaxed and a new Client ID Policy is
used to restrict or not restrict use of a Client ID. The default policy, Restri ct ed,
allows only one Client ID to be used by one connection. The Unr est ri ct ed policy
allows multiple connections to use the same client ID. For more information, see How
Sharing a Durable Subscription Works.

Developing Advanced Pub/Sub Applications 14-3

Advanced Messaging Features for High Availability

14.2.1.1 What is the Subscription Key

A subscription key is used to uniquely identify a subscription. For non-durable
subscriptions, the key is composed of the Client ID and Client ID Policy. For durable
subscriptions, the key is composed of the Client ID, Client ID Policy, and Subscription
Name.

14.2.1.2 Configuring a Shared Subscription

To configure a shared subscription, you need to configure the Subscription Sharing
Policy attribute on the connection factory. Setting the Subscription Sharing Policy to
Shar abl e allows subscribers created using a connection factory to share their
subscriptions with other subscribers, regardless of whether those subscribers are
created using the same connection factory or a different connection factory.
Consumers can share a non-durable subscriptions only if they have the same Client ID
and Client ID Policy. Consumers can share a durable subscription only if they have the
same Client ID, Client ID Policy, and Subscription Name. See:

¢ Configure a connection factory subscription sharing policy in Oracle WebLogic
Server Administration Console Online Help

¢ ClientldPolicy in MBean Reference for Oracle WebLogic Server

14.2.2 How Sharing a Non Durable Subscription Works

In order to share a subscription among multiple non durable subscribers, the
subscribers have to have a Client ID, which serves to identify the subscription. All
subscribers that intend to share a subscription must have the same subscription key
(clientlDandclientl DPolicy)on their connection. If Subscription Sharing
Policy is set to SHARABLE, but the cl i ent | Dis not set on the Connect i on, the
subscription is not a shared subscription.

The first subscriber that is created with a subscription key creates the subscription. All
subsequently created subscribers with the same subscription key share the
subscription created by the first subscriber if all subscription details (such as: the
selector, noLocal option, and the physical destination) match. For example:

* If a subscription is created with a selector and noLocal option, a subscriber
creation call that uses the same subscription key but a different selector, noLocal
option or a different physical destination is treated as a different subscription.

e Ifaclientl Disused by an EXCLUSI VE subscriber, any current or subsequent
subscribers using the same cl i ent | D, selector, and noLocal option is treated as a
different subscription.

Note:

It is only possible to have the same cl i ent | Dif the subscriber is created with
the same connection instance or a connection using the UNRESTRI CTED client
ID policy).

14.2.2.1 How a Shared Subscription Policy for a Non durable Subscription Is
Determined

The Subscription Sharing Policy for a particular non-durable subscription is
dynamically determined by the first active subscriber on the subscription and does not

14-4 Developing JMS Applications for Oracle WebLogic Server

Advanced Messaging Features for High Availability

change for the life of the subscription. Any attempt to change the Shared Subscription
Policy for a subscription throws an | nval i dSubscri pti onShari ngExcepti on,
which extends j avax. j ms. JMSExcept i on. For example:

¢ If a non-durable subscription has an EXCLUSI VE subscriber on a destination, the
subscription is EXCLUSI VE, and any attempt to create an additional subscriber
using the subscription on the same destination fails with an
I nval i dSubscri pti onShari ngExcepti on, regardless of whether the yet-to-
be-created subscriber is EXCLUSI VE or SHARABLE.

e If a subscription has active subscribers with a SHARABLE policy, then the
subscription is SHARABLE, and any attempt to create a new EXCLUSI VE subscriber
on the subscription fail with an | nval i dSubscri pti onShari ngExcepti on.

14.2.2.2 How a Non durable Subscription Is Closed

After all subscribers that share the same subscription close, the subscription is cleaned
up. Specifically, when the last subscriber consumer on a shared subscription calls
thecl ose() method, the subscription and all the associated JMS resources cleaned

up.
There is no runtime mbean that represents a non-durable subscription, regardless of

whether it is a shared or exclusive subscription. It is possible to monitor individual
subscribers using the appropriate JMSConsuner Runt i me MBean.

14.2.3 How Sharing a Durable Subscription Works

In previous releases, the subscription key (<Cl i ent I D, Subscri pti onName>)
uniquely identified a subscription within a cluster where the subscription could only
exist on a single destination instance or a single member of a DT within the cluster. In
this WebLogic Server release, the subscription key becomes <Cl i ent | D,
ClientlDPolicy, SubscriptionNanme>. All durable subscribers that use the
same subscription key share the same subscription if they subscribe to a regular topic,
or if they subscribe to the same member of a distributed topic. Multiple subscriptions
that use the same subscription key can exist on multiple distributed destination
member destinations.

The first subscriber that is created with a particular subscription key creates the
subscription. All subsequently created subscribers with the same subscription key
share the subscription created by the first subscriber if all subscription details (such as
the selector, noLocal option, and the physical destination) match and they are on the
same physical destination.

If a subscription is created with a selector and the noLocal option, a subscriber
created on the same physical destination using the same subscription key with a
different selector and noLocal option will:

* Replace the existing durable subscription and clean-up all pending messages that
are saved for the durable subscription if there are no active subscribers using this
existing subscription.

e Throw anl nval i dSubscri pti onShari ngExcepti on if there are active
subscribers using the same subscription key with a different selector or noLocal
option.

14.2.3.1 How a Shared Subscription Policy for a Durable Subscription is Determined

The Subscription Sharing Policy for a particular durable subscription is dynamically
determined by the first active subscriber on the subscription and does not change

Developing Advanced Pub/Sub Applications 14-5

Advanced Messaging Features for High Availability

unless all current subscribers close and new subscribers attach with a different policy.
Any attempt to change the policy of a subscription that already has active subscribers
throws an | nval i dSubscri pti onShari ngExcept i on. For example:

e If a durable subscription has an EXCLUSI VE subscriber and the Subscription
Sharing Policy is EXCLUSI VE, any attempt to create an additional subscribers on
the subscription throws an | nval i dSubscri pti onShari ngExcepti on,
regardless of whether the yet-to-be-created subscriber is EXCLUSI VE or
aSHARABLE.

e If a durable subscription has active subscribers with a SHARABLE policy, the
Subscription Sharing Policy is SHARABLE and, any attempt to create a new
EXCLUSI VE subscriber on the subscription throws an
I nval i dSubscri pti onShari ngExcepti on.

Note:

Changing the Subscription Sharing Policy on an existing durable subscription
does not delete any messages that already exist on the subscription.

14.2.3.2 How to Unsubscribe a Durable Subscription

Before unsubscribing a subscription, you must consider the Client ID Policy for the
subscription:

¢ Applications that use a client ID Policy with a value of RESTRI CTED unsubscribe a
durable subscription using the standard Sessi on. unsubscri be(Stri ng
nanme) APL

Note:

Before WebLogic Server 10.3.4.0, all client IDs are RESTRI CTED by default. A
client ID could only be used by one connection at any given time in a WLS
JMS cluster.

¢ Applications that use a client ID Policy with a value of UNRESTRI CTED
unsubscribe a durable subscription using the W.Sessi on. unsubscri be(String
name, Topi c topic) extension by supplying the subscription name and the
topic or a distributed topic member object.

14.2.3.3 Considerations When Unsubscribing a Durable Subscriber

The following section provides information on how to unsubscribe or avoid scenarios
that throw an exception:

e [f there are active consumers on the subscription, a call to theunsubscri be()
method throws a JMSExcept i on.

e [f there are no active consumers on a subscription, then a call to
theunsubscri be() method deletes the matching durable subscription identified
by the subscription key < i ent I D, Qi entlDPolicy,
Subscri pti onName>.

e Theunsubscri be() method of a durable subscription is done per standalone
topic or per member of a DT.

14-6 Developing JMS Applications for Oracle WebLogic Server

Advanced Messaging Features for High Availability

® A subscription created using a connection with a RESTRI CTED client ID can only
be cleaned up from a connection that uses the same RESTRI CTED Client ID.

* A subscription created using a connection with an UNRESTRI CTED client ID can
only be cleaned up from a connection using the same UNRESTRI CTED client ID.

e If WebLogic JMS does not find a matching subscription on the topic that was
created with the same client ID and client ID Policy as the unsubscri be call, then
an | nval i dDest i nati onExcepti on is thrown.

e Ifanunsubscri be call with an UNRESTRI CTED client ID specifies a DT or does
not specify any Topic, then an | nval i dDest i nati onExcept i on is thrown.

* Although .Net and C API messaging applications can share subscriptions by using
the client ID Policy and Subscription Sharing Policy on a connection factory
deployed on WebLogic Server 10.3.4.0 or later, an unsubscribe API extension is not
yet available for subscriptions that use an unrestricted client ID. The workaround is
to use administrative measures described in Managing Durable Subscriptions.

14.2.3.4 Managing Durable Subscriptions

When there are subscriptions distributed throughout a cluster, it is possible there are
some subscriptions that should were deleted but have not been deleted. These
subscriptions are sometimes called "abandoned" subscriptions, and can continue to
accumulate messages even though there is no subscriber processing the messages. If
the accumulating messages never expire, they can eventually cause the topic to begin
throwing resource allocation exceptions (quota exceptions), or if quotas are not
configured, then the accumulating message can even cause a server to run out of
memory.

For example, the unsubscr i be call fails when there are active subscribers on the
subscription and the unsubscr i be call does not reach subscriptions on inactive
(shutdown) members. When this happens, the subscription is left on the member
where the call failed until it is manually removed by an administrator or the call is
repeated.

To help handle these situations, administrators have the following options to monitor
and manage durable subscriptions:

e There is one instance of the JMSDur abl eSubscri pti onRunt i meMBean for each
durable subscription. Administrators can monitor a topic or UDT using the
WebLogic Server Administration Console or by using WLST command line or
scripts. See Monitor JMS servers in Oracle WebLogic Server Administration Console
Online Help.

¢ To find an abandoned or orphaned durable subscription, the administrator can
check the Last MessagesRecei vedTi ne on the
JNMSDur abl eSubscri ber Runti meMBean. The
get Last MessagesRecei vedTi me() method returns the last time a message was
received by a subscriber from the subscription. Based on this information, together
with attributes like the MessagesPendi ngCount or Byt esPendi ngCount on the
same MBean, the administrator can build a clear picture of the status of a particular
durable subscription and take appropriate action, such as cleanup the resources.

14.2.3.4.1 Naming Conventions for JMSDurableSubscriberRuntimeMbean

If a durable subscription is created using the subscription key, <MyCl i ent | D,
MySubscri pt i onNanme>, then the name of the associated
JMSDur abl eSubscri ber Runt i meMBean is either:

Developing Advanced Pub/Sub Applications 14-7

Design Strategies When Using Topics

e Mydientl D_MSubscripti onName when the client ID Policy is RESTRI CTED.
Where MyCl i ent | Dis the Client ID for this subscription, and
MySubscri pt i onNane is the name of the subscription.

e Mydientl D MySubscripti onNane@ opi cName@ MSSer ver Nane when the
client ID Policy is UNRESTRI CTED. Where MyCl i ent | Dis the client ID for this
subscription, MySubscr i pt i onNane is the name of the subscription., t opi cName
is the name of a standalone topic or a member of a UDT, and JM5Ser ver Nare is
the name of the JMS Server that the topic or member is deployed on.

14.3 Design Strategies When Using Topics

The following sections provide information about Topic-based design strategies that
can be used to develop high availability applications:

¢ One-Copy-Per-Instance Design Strategy

¢ One-Copy-Per-Application Design Strategy

14.3.1 One-Copy-Per-Instance Design Strategy

The one-copy-per-instance design strategy is the traditional design pattern and is
backward compatible with WebLogic Server releases before 10.3.4.0. One-copy-per-
instance has the following characteristics:

* Each instance of an application gets one copy of each message that is published to
the topic.

¢ This pattern is usually best implemented by leveraging an MDB, which sets up
policies and subscriptions across a cluster automatically. See Best Practices for
Distributed Topics.

14.3.2 One-Copy-Per-Application Design Strategy

The One-Copy-Per-Application design strategy is a design pattern available in
WebLogic Server 10.3.4.0 and higher releases. One-copy-per-application design
strategyhas the following characteristics:

¢ This pattern is usually best implemented by leveraging an MDB, which sets up
policies and subscriptions across a cluster automatically. See Best Practices for
Distributed Topics.

* Each application as a whole (that is all instances of the application together)
receives one copy of each message that is published to the DT. That is, each
instance only receives a subset of the messages that are sent to the DT

e An UNRESTRI CTED Client ID Policy
¢ An SHARABLE Subscription Sharing Policy
® Uses the same subscription name if the subscribers are durable

¢ All consumers subscribe to the same topic instance (or member of a DT)

14-8 Developing JMS Applications for Oracle WebLogic Server

Considerations When Using JMS 2.0 Shared Subscriptions

14.4 Considerations When Using JMS 2.0 Shared Subscriptions

JMS 2.0 shared subscriptions internally leverage the proprietary WebLogic shared
subscription feature that is described in this chapter. Therefore, JMS 2.0 and
proprietary WebLogic shared subscriptions have similar semantics.

This section provides information about how to use JMS 2.0 shared subscriptions to
avoid throwing exceptions:

¢ When a shared non-durable subscription is created on a distributed topic directly
or on a distributed topic member, and if the client ID is not set on the connection,
use a connection with an UNRESTRI CTED client ID Policy.

* When a shared durable subscription is created on a distributed topic directly, either
use MDBs or use extensions and subscriptions on members.

* When a shared durable subscription is created on a distributed topic member, and
if the client ID is not set on the connection, then use a connection with an
UNRESTRI CTED client ID Policy.

Note:

When the client ID Policy is set to UNRESTRI CTED, unsubscribe a durable
subscription using the W.Sessi on. unsubscri be(String nanme, Topic
t opi c) extension by supplying the subscription name and the topic or a
distributed topic member object.

14.5 Best Practices for Distributed Topics

Oracle recommends the following when designing new applications using distributed
topics:

¢ Simplify application design and complexity by utilizing MDBs. See:

— Distributed Topic Deployment Scenarios in Developing Message-Driven Beans for
Oracle WebLogic Server

- Configuring and Deploying MDBs Using Distributed Topics in Developing
Message-Driven Beans for Oracle WebLogic Server

e If MDBs are not an option, consider using an UNRESTRI CTED Client ID Policy, a
SHARABL E Subscription Policy, in combination with a Partitioned Topic (a
distributed topic with a PARTI TI ONED forwarding policy). See:

— Configure an Unrestricted ClientID in Administering [MS Resources for Oracle
WebLogic Server

— Configure Shared Subscriptions in Administering JMS Resources for Oracle
WebLogic Server

— Configuring Partitioned Distributed Topics in Administering JMS Resources for
Oracle WebLogic Server

— Advanced Programming with Distributed Destinations Using the J]MS
Destination Availability Helper API

Developing Advanced Pub/Sub Applications 14-9

Best Practices for Distributed Topics

14-10 Developing JMS Applications for Oracle WebLogic Server

15

Recovering from a Server Failure

This chapter describes how WebLogic JMS client applications reconnect or recover
from a server/network failure and how to migrate JMS data after a server failure.

e Automatic JMS Client Failover
* Programming Considerations for WebLogic Server 9.0 or Earlier Failures

® Manually Migrating JMS Data to a New Server

15.1 Automatic JMS Client Failover

With the automatic JMS client reconnect feature, if a server or network failure occurs,
some JMS client objects will transparently failover to use a another server instance, as
long as one is available. For example, if a fatal server failure occurs, then JMS clients
automatically attempt to reconnect to the server when it becomes available.

A network connection failure could be due to transient reasons (a temporary
interruption in the network connection) or non-transient reasons (a server bounce or
network failure). In such cases, some JMS client objects will try to automatically
operate with another server instance in a cluster, or possibly with the host server.

By default, JMS producer session objects automatically try to reconnect to an available
server instance without any manual configuration or modifications to the existing
client code. If you do not want your JMS producers to be automatically reconnected,
then you must explicitly disable this feature either programmatically or
administratively.

In addition, JMS consumer session objects can also be configured to automatically
attempt to reconnect to an available server, but due to their potentially asynchronous
nature, you must explicitly enable this capability using the WebLogic Server
Administration Console or public WebLogic JMS APIs.

For more information, see to the following sections:

* Automatic Reconnect Limitations

e Automatic Failover for JMS Producers

¢ Configuring Automatic Failover for J]MS Consumers

¢ Explicitly Disabling Automatic Failover on JMS Clients

® Best Practices for JMS Clients Using Automatic Failover

15.1.1 Automatic Reconnect Limitations

Automatic reconnect logic can provide a seamless failover for clients in many failure
scenarios. However, there are some connection failure scenarios where the result of a

Recovering from a Server Failure 15-1

Automatic JMS Client Failover

message operation is undetermined and WebLogic Server throws an exception. Your
application must deal with the exception appropriately. For instance:

¢ If the message send operation is idempotent, resend the message.

* Otherwise, your application may need to take some action. For instance, you may
need to check if the message is already available on the queue before resending to
avoid duplicates.

Note:

If the destination or distributed destination member is unavailable, you will
not be able to determine if the message send operation was successful until
that member becomes available.

Implicit failover of the following JMS objects is not supported before WebLogic Server
9.2:

* Queue browsers: j avax. j ns. QueueBr owser
¢ The WebLogic JMS thin client (wljmsclient.jar) does not automatically reconnect.

¢ (lient statistics are reset on each reconnect, which results in the loss historical data
for the client.

* Under some circumstances, automatic reconnect is not possible. If it is not possible,
an exception is reported.

e Temporary destinations (j avax. j ms. Tenpor ar yQueue and
j avax. j nms. TenporaryTopi c).

Note:

Temporary destinations may still be accessible after a sever/network failure.
This is because temporary destinations are not always on the same server
instance as the local connection factory due to server load balancing.
Therefore, if a temporary destination survives a server/network failure and a
producer continues sending messages to it, an auto-reconnected consumer
may or may not be able consume messages from the same temporary
destination it was connected to before the failure occurred.

15.1.2 Automatic Failover for JMS Producers

In most cases, JMS producer applications will transparently failover to another server
instance if one is available. The following WebLogic JMS producer-oriented objects
will attempt to automatically reconnect to an available sever instance without any
manual configuration or modification to the existing client code:

e Connection
e Session

e MessageProducer

15-2 Developing JMS Applications for Oracle WebLogic Server

Automatic JMS Client Failover

If you do not want your JMS clients to be automatically reconnected, then you must
explicitly disable this feature either programatically or administratively, as described
in Explicitly Disabling Automatic Failover on JMS Clients.

15.1.2.1 Sample Producer Code

In the event of a network failure, the WebLogic JMS client code for message
production will try to reconnect to an available server during Steps 3-8 shown in
Example 15-1.

Example 15-1 Sample JMS Client Code for Message Production

//set exception |istener
1. public void onException(javax.jns. JMSException jsme) {
connection. set Excepti onLi st ener
/1 handl e the exception, which may require checking for duplicates
/1 or sending the nmessage again

}

2. Context ctx = create WebLogic JNDI context with credentials etc.
3. ConnectionFactory cf = ctx.|ookup(JNDI name of connection factory)
4, Destination dest = ctx. | ookup(JNDI name of destination)

Il the following operations recover fromnetwork failures
5. Connection con cf. createConnection()
6. Session sess con. creat eSessi on(no transactions, ack node)
7. MessageProducer prod = sess. creat eProducer(dest)

8. Loop over:

9. Message nsg = sess. creat eMessage()
/1 try block to handl e destination availablitiy scenarios
10. try {

prod. send(nsg) }

catch (Sone Destination Availability Exception e) {
//handl e the exception, in nost cases, the destination or menber
//is not yet available, so the code should try to resend

}
//end | oop

/1 done sendi ng messages
11. con.close(); ctx.close();

The JMS producer will transparently fail-over to another server instance, if one is
available. This keeps the client code as simple as listed in Example 15-1and eliminates
the need for client code for retrying across network failures.

The WebLogic JMS does not reconnect MessageConsuner s by default. For this to
automatically occur programmatically, your client application code must call the
WebLogic W.Connect i on extension, with the set Reconnect Pol i cy setto"al | ",
as explained in Configuring Automatic Failover for JMS Consumers.

15.1.2.2 Re usable ConnectionFactory Objects

A Connecti onFact ory object looked up using JNDI (see Step 1 in Example 15-1 and
Example 15-2) is re usable after a server or network failure without requiring a re-
lookup. A network failure could be between the JMS client JVM and the remote
WebLogic Server instance it is connected to as part of the JNDI lookup, or between the
JMS client JVM and any remote WebLogic Server instance in the same cluster where
the JMS client subsequently connects.

Recovering from a Server Failure 15-3

Automatic JMS Client Failover

15.1.2.3 Re usable Destination Objects

A destination object (queue or topic) looked up using JNDI (see Step 2 in Example 15-1
and Example 15-2) is re usable after a server or network failure without requiring
another lookup. The same principle applies to producers that send to a distributed
destinations, because the client looks up the distributed destination in JNDI, and not
the unavailable distributed member.

A network failure could be between the client JVM and the WebLogic Server instance
it is connected to, or between that WebLogic Server instance and the WebLogic Server
instance that actually hosts the destination. The Destination object will also be robust
after restarting the WebLogic Server instance hosting the destination.

Note:

For information on how consumers of distributed destinations behave with
automatic JMS client reconnect, see Consumers of Distributed Destinations.

15.1.2.4 Reconnected Connection Objects

The JMS connection object is used to map one-to-one to a physical network connection
between the client JVM and a remote WebLogic Server instance. With the JMS client
reconnect feature, the JMS Connection object that the client gets from the

Connecti onFact ory. creat eConnect i on() method (see Step 3 in Example 15-1
and Example 15-2) maps in a one-to-one-at-a-time fashion to the physical network
connection. One consequence is that while the JMS client continues to use the same
Connection object, it could be actually communicating with a different WebLogic
Server instance after an implicit failover.

If there is a network disconnection and a subsequent implicit refresh of the connection,
then all objects derived from the connection (such as j avax. j ms. Sessi on and
javax. j ms. MessagePr oducer objects) are also implicitly refreshed. During the
refresh, any synchronous operation on the connection or its derived objects that go to
the server (such as pr oducer . send() or connecti on. cr eat eSessi on()), may
block for a period of time before giving up on the connection refresh. This time is
configured using the WebLogic Server Administration Console or the

set Reconnect Bl ocki ngM | I'i s(| ong) APIin the

webl ogi c. j ms. ext ensi on. W.Connect i on interface.

The reconnect feature keeps trying to reconnect to the WebLogic Server instance's
ConnectionFactory object in the background until the application calls

connection. cl ose().The Reconnect Bl ocki ngM | | i s parameter is the time-
out for a synchronous caller trying to use the connection when the connection in being
retried in the background.

If a synchronous call times out without seeing a refreshed connection, then it then
behaves in exactly the same way (that is, throws the same Exceptions) as without the
implicit reconnect (that is, it will behave as if it was called on a stale connection
without the reconnect feature).

The caller can then decide to retry the synchronous call (with a potentially lower
quality of service, like duplicate messages), or decide to call

connect i on. cl ose() method , which will terminate the background retries for that
connection.

15-4 Developing JMS Applications for Oracle WebLogic Server

Automatic JMS Client Failover

15.1.2.4.1 Special Cases for Reconnected Connections

There are special cases that can occur when producer connections are refreshed:

e Connections with a ClientID for Durable Subscribers — If your Reconnect Policy field is
set to None or Producer, and a JMS Connection has a Client ID specified at the time
of a network/server failure, then the Connection will not be automatically
refreshed. The reason for this restriction is backward compatibility, which avoids
breaking existing JMS applications that try to re-create a JMS Connection with the
same connection name after a failure. If implicit failover also occurs on a network
failure, then the application's creation of the connection will fail due to a duplicate
ClientID.

Note:

For information on how a consumer connection with a ClientID behaves, see
Consumer Connections with a ClientID for Durable Subscriptions.

® Closed Objects Are Not Refreshed — When the application calls
j avax. j nms. Connection. cl ose(),j avax. j ns. Sessi on. cl ose(), etc., that
object and it descendents are not refreshed. Similarly, when the JMS client is told its
Connection has been administratively destroyed, it is not refreshed.

¢ Connection with Registered Exception Listener — If the JMS Connection has an
application ExceptionListener registered on it, that ExceptionListener's
onException() callback will be invoked even if the connection is implicitly
refreshed. This notifies the application code of the network disconnect event. The
JMS client application code might normally call connecti on. cl ose() in
onExcept i on; however, if it wants to take advantage of the reconnect feature, it
may choose not to call connect i on. cl ose() . The registered ExceptionListener is
also migrated transparently to the internally refreshed connection to listen for
exceptions on the refreshed connection.

* Multiple Connections — If there are multiple JMS Connections created off the same
ConnectionFactory object, each connection will behave independently of the other
connections as far as the reconnect feature is concerned. Each connection will have
its own connection status, its own connection retry machinery, etc.

15.1.2.5 Reconnected Session Objects

As described in Reconnected Connection Objects, JMS Session objects are refreshed
when their associated JMS connection gets refreshed (see Step 4 in Example 15-1 and
Example 15-2). Session states, such as acknowledge mode and transaction mode, are
preserved across each refresh occurrence. The same session object can be used for
calls, like cr eat eMessagePr oducer (), after a refresh.

15.1.2.5.1 Special Cases for Reconnected Sessions

These sections discuss special cases that can occur when Sessions are reconnected.

* Transacted Sessions With Pending Commits or Rollbacks — Operations similar to non-
transacted JMS Sessions, transacted JMS sessions are automatically refreshed.
However, if there were send or receive operations on a session pending a commit
or rollback at the time of the network disconnect, then the first commit call after the
Session refresh will fail throwing a
javax.jnms. Transacti onRol | edBackExcept i on. When a JMS session

Recovering from a Server Failure 15-5

Automatic JMS Client Failover

transaction spans a network refresh, the commit for that transaction cannot vouch
for the operations done before the refresh as part of that transaction (from an
application code perspective).

After a session refresh, operations like send() orrecei ve() will not throw an
exception; it is only the first commit after a refresh that will throw an exception.
However, the first commit after a session refresh will not throw an exception if
there were no pending transactional operations in that JMS session at the time of
the network disconneciont. In case of Sessi on. conmi t () throwing the
exception, the client application code can simply retry all the operations in the
transaction again with the same (implicitly refreshed) JMS objects. The stale
operations before a refresh will not be committed and will not be duplicated.

* Pending Unacknowledged Messages — If a session had unacknowledged messages
prior to the session refresh, then the first W.Sessi on. acknowl edge() call after a
refresh throws a webl ogi c. j ms. cormon. Lost Ser ver Except i on. This
indicates that the acknow edge() call may not have removed messages from the
server. As a result, the refreshed session may receive duplicate messages that were
also delivered before the disconnect.

15.1.2.6 Reconnected MessageProducer Objects

As described in Reconnected Connection Objects, JMS MessagePr oducer objects are
refreshed when their associated JMS connection gets refreshed (see Step 5 in

Example 15-1). If producers are non-anonymous, that is, they are specific to a
destination object (standalone or distributed destination), then the producer's
destination is also implicitly refreshed, as described in Re usable Destination Objects.
If a producer is anonymous, that is not specific to a destination object, then the
possibly stale destination object specified on the producer's send() operation is
implicitly refreshed.

15.1.2.6.1 Special Case for Distributed Destinations

It is possible that a producer can send a message at the same time that a distributed
destination member becomes unavailable. If WebLogic JMS can determine that the
distributed destination member is not available, or was not available when the
message was sent, the system will retry sending the message to another distributed
member. If there is no way to determine if the message made it through the connection
all the way to the distributed member before it went down, the system will not
attempt to resend the message because doing so may create a duplicate message. In
that case, WebLogic JMS will throw an exception. It is up to the application to catch
that exception and decide whether or not to resend the message.

15.1.3 Configuring Automatic Failover for JMUS Consumers

JMS MessageConsumer objects that are part of a JMS Connection (through a JMS
Session) can be refreshed during a JMS connection refresh (see Step 5 in

Example 15-2). However, due to the stateful nature of JMS consumers, as well as their
potential asynchronous nature, you must explicitly enable this capability using either
the webl ogi c. j ms. ext ensi on. W.Connect i on API or the WebLogic SErver
Administration Console.

Explicitly enabling automatic refresh of consumers also refreshes connections with a
configured client ID for a durable subscriber, as described in Consumer Connections
with a ClientID for Durable Subscriptions. However, refreshed consumers does not
include QueueBr owser clients, which are never refreshed, as described in Automatic
Reconnect Limitations.

15-6 Developing JMS Applications for Oracle WebLogic Server

Automatic JMS Client Failover

15.1.3.1 Sample Consumer Client Code

When Message Consumer refresh is explicitly activated, in the event of a network
failure, the WebLogic JMS client code for message consumption will attempt to
reconnect during Steps 3-8 in Example 15-2.

Example 15-2 Sample JMS Client Code for Message Consumption

0. Context ctx = create WbLogic JNDI context with credentials etc.
1. ConnectionFactory cf = ctx.lookup(JNDI nane of connection factory)

2. Destination dest = ctx. | ookup(JNDI name of destination)

/1 the following operations recover fromnetwork failures
3. Connection con = cf.createConnection()

(webl ogi c. j ns. ext ensi ons. W.Connect i on) con) . set Reconnect Pol i cy("al | ")
4. Session sess = con. createSession(no transactions, auto ack)

5. MessageConsumer cons = sess. createConsuner (dest, nessage sel ector)
- also for async consuners : cons. set MessagelLi st ener (onMessage i npl)
6. con.start()
7. Loop over:
for sync consuners: Message nsg = consuner.receive()
for async consunmers (in different thread): onMessage() invoked
8. con.close(), ctx.close()

Note that the connection factory does not refresh MessageConsurrer objects by
default. For this to occur programmatically, your client application code must call the
WebLogic W.Connect i on extension, with the set Reconnect Pol i cy setto"al | ",
as shown in Step 3 in Example 15-2.

15.1.3.2 Configuring Automatic Client Refresh Options

The JMS client reconnect API includes the following configuration parameters, which
enables you to make some choices that affect the behavior of the reconnect feature for
consumers.

Table 15-1 Automatic JMS Client Reconnect Options

Console Label/MBean Value Description
Attribute
Reconnect Policy ¢ None Determines which JMS client objects are implicitly refreshed

e Producer Wwhen a network disconnect or server reboot. It only affects the
(default) implicit refresh of connections, sessions, producers, and
o All consumers derived from this connection factory. This attribute
does not affect Destination or ConnectionFactory objects in the
JMS client, since those objects are always refreshed implicitly.
Nor does it affect the QueueBrowser object in the JMS client,
since that object is never refreshed.

Reconnect Pol i cy

Reconnect Blocking Time 6000 Determines how long any synchronous JMS calls, such as
producer. send(), consuner.recei ve(),and

sessi on. cr eat eBr owser () will block the calling thread
before giving up on a JMS client reconnect in progress.

Reconnect Bl ocki ngTi meM | |'i s

-1 Determines how long JMS clients should keep retrying to
connect after either the initial network disconnection or the last
synchronous JMS call attempt (whichever occurs most recently),
before giving up retrying.

Tot al Reconnect PeriodM I |is

Recovering from a Server Failure 15-7

Automatic JMS Client Failover

For instructions about configuring client parameters on a connection factory using the
WebLogic Server Administration Console, see Configure connection factory client
parameters in the Oracle WebLogic Server Administration Console Online Help. For more
information about these parameters, see Cl i ent Par ansBean in the MBean Reference
for Oracle WebLogic Server.

15.1.3.3 Common Cases for Reconnected Consumers

This section describes the common scenarios when refreshing synchronous and
asynchronous consumers.

15.1.3.3.1 Synchronous Consumers

Synchronous consumers use MessageConsurer . r ecei ve(),

MessageConsuner . recei ve(ti meout), and

MessageConsune. r ecei veNoWi t () methods to consume messages. The first two
methods are already expected to potentially block the application code, while the third
method is not expected to block the application code. To retain these semantics, the
following rules describe interaction of the reconnect feature with the synchronous
consumer calls:

e MessageConsuner . r ecei ve() - If there is a network disconnection during this
call, this method can block for up to Reconnect Blocking Time property (described
in the configuration section) for a reconnect to go through before throwing an
Exception.

e MessageConsunmer . recei ve(ti neout) — This call will block for the at-most
timeout in milliseconds specified by the caller. If the Reconnect Blocking Time
property is less than the timeout, then the receive will still block up to the
Reconnect Blocking Time setting; if the Reconnect Blocking Time value is more
than the timeout, the receive will only block up to timeout.

e MessageConsuner . recei veNoWi t () — This call will not block if the JMS
Connection is in the process of reconnecting. The Reconnect Blocking Time value
has no effect on this call.

If these methods eventually reach their respective timeout/wait periods, they all will
throw the same Exceptions. as they would reconnect. If a reconnect succeeds while
these methods are blocked/called, then these methods will continue returning
messages, but with a potentially lowered quality-of-service and with generally similar
semantics of receiving messages (like Redelivered messages), as after a recover. The
application is notified of this possibility by a Connection ExceptionListener callback
with theLost Ser ver Except i on. In addition, for non-AUTO_ACK acknowledge
modes, the first acknowledge call after a refresh will throw a

Lost Ser ver Except i on to notify the application of this possibility.

15.1.3.3.2 Asynchronous Consumers

In the context of a reconnect, the behavior for asynchronous consumers will be
governed by the setting on the Total Reconnect Period property. The JMS consumer's
registered message listener's onMessage() method will continue to be invoked if the
reconnect framework is able to successfully re-establish a connection within the Total
Reconnect Period setting after a connection failure. If the user explicitly calls a

cl ose() on the JMS Connection (or on the JMS Session corresponding to the
asynchronous Consumer), then the reconnect framework will not invoke any further
onMessages for that Consumer. The onMessage() should expect post recover
behavior (like redelivered messages) if the Connection ExceptionListener's

onExcept i on is invoked with a Lost Ser ver Excepti on.

15-8 Developing JMS Applications for Oracle WebLogic Server

Automatic JMS Client Failover

15.1.3.4 Special Cases for Reconnected Consumers

These sections discuss special cases that can occur when consumers are refreshed.

15.1.3.4.1 Consumers of Distributed Destinations

Before to WebLogic Server 9.2, consumers of distributed destinations (DDs) were
pinned to a particular destination member of the DD for the life of the pinned
consumer. This applies to queue consumers of distributed queues, and non-durable
subscribers of distributed topics (durable subscribers are not supported distributed
topics).

With MessageConsumer reconnect, DD consumers are also refreshed; however, the
refreshed consumer is almost never on the same destination member as the stale
consumer. Therefore, even though the application is using the same DD consumer
across a refresh, it is effectively not pinned to the same destination member across a
refresh.

15.1.3.4.2 Message-Driven EJBs

Message-driven E]Bs (MDBs) are a special sub case of asynchronous consumers that
have their own behavior requirements and their own refresh framework. As such,
MDBs are not expected to participate in MessageConsumer refreshes, and are not
expected to be affected in any other way by the JMS client reconnect framework.

15.1.3.4.3 Consumer Connections with a ClientlD for Durable Subscriptions

Durable subscriptions on standalone topics will not notice any difference due to the
client reconnect feature if the topic is still available across a disconnect. The JMS client
reconnect framework implicitly refreshes the durable subscriber on that topic and
continue from where it was interrupted. Note that if your Reconnect Policy is set to

Al |, JMS Connections with a ClientID will also refresh automatically, thus allowing
durable subscriptions (which are scoped by ClientID) to refresh automatically.
Connections with a ClientID set will not reconnect for any other Reconnect Policy
setting.

Note:

If a JMS Connection has a O i ent | Dspecified at the time of a network/server
failure, then reconnecting that client make take significantly longer than your
other clients. For example, in a cluster the JMS server must wait for the
WebLogic Server "heartbeat" notification that is broadcast from other
members of the cluster, as explained in Failover and Replication in a Cluster in
Administering Clusters for Oracle WebLogic Server.

WebLogic JMS does not support durable subscriptions on distributed topics,
so there is no issue of failover to another distributed topic member during a
refresh.

15.1.3.4.4 Non Durable Subscriptions and Possible Missed Messages

For consumers that are non-durable subscribers of topics, though the consumption
apparently continues successfully across a refresh from an application perspective, it is
possible for messages to be published to the topic and dropped (e.g., for lack of
consumers) while the reconnect was happening. Missed messages can occur with
either synchronous or asynchronous non durable subscribers.

Recovering from a Server Failure 15-9

Automatic JMS Client Failover

15.1.3.4.5 Duplicate Messages

Due to the nature of the consumer refresh feature, there is a possibility of redelivered
messages without the client application code calling recover explicitly because a
consumer refresh effectively does an implicit equivalent of a recover upon a refresh.
This is the main reason why implicit Consumer refresh is not on by default. The
semantics of never redelivering a successfully acknowledged message still hold true.

There is also an unlikely case when non-durable subscribers of distributed topics can
receive duplicate messages that are not marked redelivered (e.g., when failover
happens faster than messages are discarded in topics). This is a consequence of a non-
durable subscriber refresh for the distributed topic not being pinned to a topic
member across a refresh.

15.1.3.4.6 Variations Due to Acknowledge Modes

There will be no difference in the reconnect behaviors of Consumers due to different
acknowledge modes. However, the first acknowledge call after a refresh for non-
AUTO_ACK modes will throw a LostServerException as described earlier to notify user
of potential lowered quality of service.

15.1.3.4.7 Reconnecting with Migrated JMS Destinations In a Cluster

Consumers will not always reconnect after a JMS server (and its destinations) is
migrated to another server in a cluster. If consumers do not get migrated with the
destinations, then either an exception is thrown or onExcept i on will occur to inform
the application that the consumer is no longer valid. As a workaround, an application
can refresh the consumer either in the exception handler or through onExcept i on.

15.1.4 Explicitly Disabling Automatic Failover on JMS Clients
If you do not want your JMS clients to be automatically reconnected, then you must
explicitly disable this feature either programatically or administratively.
15.1.4.1 Programmatically

If you do not want your JMS clients to be automatically reconnected, then your
applications should call the following code:

ConnectionFactory cf = (javax.jms.ConnectionFactory)ctx.|ookup
(JNDI name of connection factory)
javax.j ms. Connection con = cf.createConnection();
((webl ogi c. j ms. ext ensi ons. W.Connect i on) con) . set Reconnect Pol i cy("none")

For more information about the set Reconnect Pol i cy method, see the
webl ogi c. j ns. ext ensi on. W.Connect i on APL

15.1.4.2 Administratively

Administrators that do not want JMS clients to automatically reconnect should use the
following steps to disable the Reconnect Policy on the JMS connection factory:

1. Follow the directions for getting to the JMS Connection Factory: Configuration:
Client pages, see Configure connection factory client parameters in the Oracle
WebLogic Server Administration Console Online Help.

2. In the Reconnect Policy field, select None to disable the JMS client reconnect
feature on this connection factory.

15-10 Developing JMS Applications for Oracle WebLogic Server

Automatic JMS Client Failover

For more information about the Reconnect Policy field, see JMS Connection
Factory: Configuration: Client in the Oracle WebLogic Server Administration Console
Online Help.

3. Click Save.

For more information about the other JMS connection factory client parameters, see
Cl i ent Par ansBean in the MBean Reference for Oracle WebLogic Server.

15.1.5 Best Practices for JMS Clients Using Automatic Failover

Oracle recommends the following best practices for JMS clients when using the
Automatic JMS Client Reconnect feature:

¢ Always Catch exceptions,
¢ Use Transactions to Group Message Work,

e JMS Clients Should Always Call the close() Method,

15.1.5.1 Always Catch exceptions

There are some connection failure scenarios where the result of a message operation is
undetermined and WebLogic Server throws an exception. Your application must deal
with the exception appropriately. See the following:

¢ Automatic Reconnect Limitations
e Special Cases for Reconnected Sessions

® Special Case for Distributed Destinations

15.1.5.2 Use Transactions to Group Message Work

Use transacted sessions (JMS) or user transactions (JTA) to group related or dependent
work, including messaging work, so that either all of the work is completed or none of
it is. If a server instance goes down and a message is lost in the middle of a
transaction, the entire transaction is rolled back and the application does not need to
make a decision for each message after a failure.

Note:

Be aware of transaction commit failures after a server reconnect, which may
occur if the transaction subsystem cannot reach all the participants involved in
the transaction.

15.1.5.3 JMS Clients Should Always Call the close() Method

As a best practice, your applications should not rely on the JVM's garbage collection to
clean up JMS connections because the J]MS automatic reconnect feature keeps a
reference to the JMS connection. Therefore, always use theconnect i on. cl ose() to
clean up your connections. Also consider using a Fi nal | y block to ensure that your
connection resources are cleaned up. Otherwise, WebLogic Server allocates system
resources to keep the connection available.

For more information about closing JMS client connections, see Best Practice: Always
Close Failed JMS ClientIDs.

Recovering from a Server Failure 15-11

Programming Considerations for WebLogic Server 9.0 or Earlier Failures

15.2 Programming Considerations for WebLogic Server 9.0 or Earlier
Failures

JMS client applications running on WebLogic Server 9.0 or earlier had to reestablish
j avax. j ms objects after a server failure. If you are still running release 9.0 or earlier

JMS clients, you may want to program your JMS clients to terminate gracefully in the
event of a server failure. For example:

Table 15-2 Programming Considerations for Server Failures

If a WebLogic Server Instance Then
Fails and

You are connected to the failed A JVMBExcept i on is delivered to the connection
WebLogic Server instance exception listener. You must restart the application after
the server is restarted or replaced.

A JMS server is targeted on the A Consuner C osedExcept i on is delivered to the
failed WebLogic Server instance session exception listener. You must re-establish any
message consumers were lost.

15.3 Manually Migrating JMS Data to a New Server

WebLogic JMS uses the migration framework to allow WebLogic JMS to respond
properly to migration requests and bring a WebLogic JMS server online and offline in
an orderly fashion. This includes both scheduled migrations as well as migrations in
response to a WebLogic Server failure.

After a JMS server is properly configured, a JMS server and all of its destinations can
migrate to another WebLogic Server within a cluster.

You can manually recover JMS data from a failed WebLogic Server by starting a new
server and doing one or more of the tasks in Table 15-3.

Note:

There are special considerations when you migrate a service from a server
instance that has crashed or is unavailable to the Administration Server. If the
Administration Server cannot reach the previously active host of the service at
the time you perform the migration, see Migrating a Service From an
Unavailable Server in Administering Clusters for Oracle WebLogic Server.

Table 15-3 Migration Task Guide

If Your JMS Application Uses Perform the Following Task

Persistent messaging—JDBC e If the JDBC database store physically exists on the
Store failed server, then migrate the database to a new
server and ensure that the JDBC connection pool URL
attribute reflects the appropriate location reference.
¢ If the JDBC database does not physically exist on the
failed server, access to the database has not been
affected , and no changes are required.

15-12 Developing JMS Applications for Oracle WebLogic Server

Manually Migrating JMS Data to a New Server

Table 15-3 (Cont.) Migration Task Guide
__|

If Your JMS Application Uses

Perform the Following Task

Persistent messaging—File Store

Migrate the file to the new server, ensuring that the
pathname within the WebLogic Server home directory is
the same as it was on the original server.

Transactions

To facilitate recovery after a failure , WebLogic Server
provides the Transaction Recovery Service, which
automatically tries to recover transactions when the
system startup. The Transaction Recovery Service owns
the transaction log for a server.

For detailed instructions about recovering transactions
from a failed server, see Transaction Recovery After a
Server Fails in Developing JTA Applications for Oracle
WebLogic Server.

Note:

JMS persistent stores can increase the amount of memory required during
initialization of WebLogic Server as the number of stored messages increases.
When rebooting WebLogic Server, if initialization fails due to insufficient
memory, then increase the heap size of the Java Virtual Machine (JVM)
proportionally to the number of messages that are currently stored in the JMS
persistent store and try the reboot again.

For information about starting a new WebLogic Server, see the Starting and Stopping
Servers: Quick Reference. For information about recovering a failed server, refer to
Avoiding and Recovering From Server Failure in Administering Server Startup and
Shutdown for Oracle WebLogic Server.

For more information about defining migratable services, see Service Migration in
Administering Clusters for Oracle WebLogic Server.

Recovering from a Server Failure 15-13

Manually Migrating JMS Data to a New Server

15-14 Developing JMS Applications for Oracle WebLogic Server

16

WebLogic JMS C API

This chapter describes the requirements, design principles, security considerations and
implementation guidelines need to use the WebLogic JMS C API to create C clients
that can access WebLogic JMS applications and resources.

¢ What Is the WebLogic JMS C API?
* System Requirements

® Design Principles

® Security Considerations

¢ Implementation Guidelines

16.1 What Is the WebLogic JMS C API?

The WebLogic J]MS C APl is an application program interface that enables you to
create C client applications that can access WebLogic JMS applications and resources.
The C client application then uses the Java Native Interface (JNI), described at
http://docs. oracl e. conl j avase/ 6/ docs/t echnot es/ gui des/jni/

i ndex. ht n, to access the client-side Java JMS classes. See Figure 16-1.

For this release, the WebLogic JMS C API adheres to the JMS Version 1.1 specification
to promote the porting of Java JMS 1.1 code. For more information, see the [MS C API
Reference for Oracle WebLogic Server.

Figure 16-1 WebLogic JMS C API Client Application Environment

WebLogic IMS
C API Client

—
k JMS Service

' '

k WebLogic Server k WebLogic Client

Metwork
(Server JVM ’(Client JVM

Server Process Client Process

WebLogic JMS C API 16-1

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/index.html

System Requirements

16.2 System Requirements

The following section provides information about the system requirements needed to
use the WebLogic JMS C APl in your environment:

¢ Alist of supported operating systems for the WebLogic JMS C APl is available
from the Oracle Fusion Middleware Supported System Configurations page. See
Supported Configurations at What's New in Oracle WebLogic Server 12.2.1.2.0.

* A supported JVM for your operating system.
¢ An ANSI C compiler for your operating system.

* One of the following WebLogic clients to connect your C client applications to your
JMS applications:

— The WebLogic Thin T3 Client jar (M t hi nt 3cl i ent . j ar). See Developing a
WebLogic Thin T3 Client in Developing Standalone Clients for Oracle WebLogic
Server.

— The WebLogic application client (M ful | cl i ent . j ar file). See Using the
WebLogic JarBuilder Tool in Developing Standalone Clients for Oracle WebLogic
Server.

— The WebLogic JMS thin client (M j mscl i ent . j ar file). See the WebLogic JMS
Thin Client in Developing Standalone Clients for Oracle WebLogic Server.
16.3 Design Principles

The following sections discuss guiding principals for porting or developing
applications for the WebLogic JMS C API:

¢ Java Objects Map to Handles

® Thread Utilization

¢ Exception Handling

¢ Type Conversions

* Memory Allocation and Garbage Collection
* C(Closing Connections

¢ Helper Functions

16.3.1 Java Objects Map to Handles

The WebLogic JMS C API is handle-based to promote modular code implementation.
This means that in your application you implement Java objects as handles in C code.
The details of how a JMS object is implemented is hidden inside a handle. However,
unlike in Java, when you are done with a handle, you must explicitly free it by calling
the corresponding Cl ose or Dest r oy methods. See Memory Allocation and Garbage
Collection.

16-2 Developing JMS Applications for Oracle WebLogic Server

Design Principles

16.3.2 Thread Utilization

The handles returned from the WebLogic JMS C API are as thread—safe as their Java
counterparts. For example:

e javax.]j Ims. Sessi on objects are not thread-safe, and the corresponding
WebLogic JMS C API handle, JnsSessi on, is not thread safe.

e java.j ms. Connecti on objects are thread-safe, and the corresponding WebLogic
JMS C API handle, JnrsConnect i on, is thread safe.

As long as concurrency control is managed by the C client application, all objects
returned by the WebLogic JMS C API can be used in any thread.

16.3.3 Exception Handling

Note:

The WebLogic J]MS C API uses integer return codes.

Exceptions in the WebLogic J]MS C API are local to a thread of execution. The
WebLogic JMS C API has the following exception types:

e JavaThr owabl e represents the class j ava. | ang. Thr owabl e.
e JavaExcepti on represents the class j ava. | ang. Excepti on.

e JmsExcepti on represents the class j avax. j ms. JMSExcept i on. All standard
subclasses of JMSExcept i on are determined by bits in the type descriptor of the
exception. The type descriptor is returned with a call to JmeCGet Last Excepti on.

16.3.4 Type Conversions

When you interoperate between Java code and C code, typically one of the main tasks
is converting a C type to a Java type. For example, a shor t type is a two-byte entity in
Java as well as in C. The following type conversions that require special handling:

16.3.4.1 Integer (int)
I nteger (int) convertstoJM532| (4-byte signed value).

16.3.4.2 Long (long)
Long (Il ong) converts to JIMS64I1 (8-byte signed value).

16.3.4.3 Character (char)

Character (char) convertstoshort (2-byte Java character).

16.3.4.4 String
String converts to JnsSt ri ng.

Java strings are arrays of 2 -byte characters. In C, strings are generally arrays of 1-byte
UTEF-8 encoded characters. Pure ASCII strings fit into the UTF-8 specification. For
more information about UTE-8 string, see ht t p: / / www. uni code. or g. Itis
inconvenient for C programmers to translate all strings into the 2-byte Java encoding.

WebLogic JMS C API 16-3

http://www.unicode.org

Design Principles

The Js St r i ng structure allows C clients to use native strings or Java strings,
depending on the requirements of the application.

Jms St ri ng supports two kinds of strings:
e Native Cstring (CSTRI NG

e JavaString (UN STRI NG

A union of the UNI STRI NGand CSTRI NGcalled uni Or Chas a character pointer called
st ri ng that can be used for a NULL terminated UTF-8 encoded C string. The uni Or C
union provides a structure called uni St ri ng, which contains a void pointer for the
string data and an integer length (bytes).

When the st ri ngType element of JnsSt r i ng is used as input, you should set it to
CSTRI NGor UNI STRI NG, depending on the type of string input. The corresponding
data field contains the string used as input.

The UNI STRI NGencoding encodes every 2—- bytes as a single Java character. The 2-
byte sequence is big-endian. Unicode calls this encoding UTF-16BE (as opposed to

UTF-16LE, which is a 2-byte sequence that is little-endian). The CSTRI NGencoding
expects a UTF-8 encoded string.

When the st ri ngType element of JnsSt r i ng is used as output, the caller has the
option to let the API allocate enough space for output using mal | oc, or you can
supply the space and have the system copy the returned string into the provided
bytes. If the appropriate field in the union (either string or data) is NULL, then the API
allocates enough space for the output using mal | oc. It is the callers responsibility to
free this allocated space using f r ee when the memory is no longer in use. If the
appropriate field in the union (string or data) is not NULL, then the al | ocat edSi ze
field of Jms St r i Ng must contain the number of bytes available to be written.

If there is not enough space in the string to contain the entire output, then

al | ocat edSi ze sets to the amount of space needed and the API called returns
JM5_NEED_SPACE. The appropriate field in the Jns St ri ng (either string or data)
contains as much data as could be stored up to the al | ocat edSi ze bytes. In this
case, the NULL character may or may not have been written at the end of the C string
data returned. Example:

For example, to allocate 100 bytes for the string output from a text message, you
would set the data pointer and the al | ocat edSi ze field to 100. The
JnsMessageCet Text Message API returns JIM5_NEED SPACE with

al | ocat edSi ze set to 200. Call r eal | oc on the original string to reset the data
pointer and call the function again. Now the call succeeds, and you are able to extract
the string from the message handle. Alternatively, you can free the original buffer and
allocate a new buffer of the correct size.

16.3.5 Memory Allocation and Garbage Collection

All resources that you allocate must also be disposed of it properly. In Java, garbage
collection cleans up all objects that are no longer referenced. However, in C, all objects
must be explicitly cleaned up. All WebLogic JMS C API handles given to the user must
be explicitly destroyed. Notice that some handles have a verb that ends in Cl ose
while others end in Dest r oy. This convention distinguishes between Java objects that
have a cl ose method and those that do not. For example:

e Thej avax.j ms. Sessi on object has a cl ose method so the WebLogic JMS C API
has a JmsSessi onC ose function.

16-4 Developing JMS Applications for Oracle WebLogic Server

Security Considerations

The j avax. j ms. Connecti onFact ory object does not have a cl ose method so
the WebLogic JMS C APl has a JmsConnect i onFact or yDest r oy function.

Note:

A handle that has been closed or destroyed should never be referenced again.

16.3.6 Closing Connections

In Java JMS, closing a connection implicitly closes all subordinate sessions, producers,
and consumers. In the WebLogic JMS C AP], closing a connection does not close any
subordinate sessions, producers, or consumers. After a connection is closed, all
subordinate handles are no longer available and need to be explicitly closed.

16.3.7 Helper Functions

The WebLogic JMS C API provides some helper functions that do not exist in
WebLogic JMS. These helpers are explained fully in the JMS C API Reference for Oracle
WebLogic Server. For example:

JmsMessageGet Subcl ass operates on a JnsMessage handle and returns an integer
corresponding to the subclass of the message. In JMS, this could be accomplished
using i nst anceof .

16.4 Security Considerations

The WebLogic JMS C API supports WebLogic compatibility realm security mode
based on a user namne and passwor d. The user nare and passwor d must be passed
to the initial context in the SECURI TY_PRI NCI PAL and SECURI TY_CREDENTI ALS
fields of the hash table used to create the | ni t i al Cont ext object.

16.5 Implementation Guidelines
Be aware of the following when you implement the WebLogic JMS C API:

It does not support WebLogic Server JMS extensions, including XML messages.
It does not support JMS Object messages.

It creates an error log if an error is detected in the client. This error log is named
ULOG. nmddyy (month/day/year). This log file is fully internationalized using the
NLSPATH, LOCALE, and LANGenvironment variables of the client.

Users who want to translate the message catalog can use the gencat utility
provided on Windows or the gencat utility of the host platform. If the generated
catalog file is placed according to the NLSPATH, LOCALE, and LANG variables, then
the translated catalog will be used when writing messages to the log file.

You can set the following environment variables in the client environment:
- JMSDEBUG Provides verbose debugging output from the client.
- JMBIJVMOPTS: Provides extra arguments to the JVM loaded by the client.

- ULOGPFX: Configures the pathname and file prefix where the error log file is
placed.

WebLogic JMS C API 16-5

Workarounds for Client Failure Thread Detach Issue

16.6 Workarounds for Client Failure Thread Detach Issue

A C program that uses the JMS C client library may fail when JVM failure. This could
be related to a known, intermittent race-condition that occurs only with certain JVM
products. The likelihood of failure can change based on the JVM version and patch
level, operating system, and hardware combination. Specifically, the JMS C-Client
library implicitly attaches C-threads to the JVM, but fails to detach them when it is
done with them. The suggested workarounds are as follows:

¢ Add code in the client to detach the JVM from any C thread that exits and that has
previously called into the J]MS C-APL

* Do not allow a C thread that has previously called into the JMS C-API to exit before
the entire process exits.

The sample Java JNI code shown in Example 16-1 describes how to detach the thread
from the JVM.

Example 16-1 Sample Java JNI Code

#include <jni.h>

JavaVM *j vnli st [JVM LI ST_SI ZF] ;

jsize retSize = -1;

jint retvVal = JNI _Get CreatedJavaVMs(jvnlist, JVMLIST SIZE, &retSize);

if ((retVal '=0) || (retSize <1)) {
printf(' ERROR got %/ % on JNI _get CreatedJavaVMs\n', retVal, retSize);
return;

}

printf('INFO got %/ % on JNI _getCreatedJavaVMs\n', retVal, retSize);
/* The following line assunes that there's exactly one JVM */
(*(jvnList[0]))->DetachCurrent Thread(jvnList[0]);

If a program is not directly making JNI calls already, it may be necessary to add
compiler and linker parameters for access to the Java JNI libraries. For example, in
MicroSoft Visual C++, do the following:

e Add-1$(JAVA HOVE)/i ncl ude and - | $(JAVA_HOME) / i ncl ude/ wi n32 to
the compile

o Add $(JAVA HOVE) /1i b/jvm | i b to the link

16-6 Developing JMS Applications for Oracle WebLogic Server

A

Deprecated WebLogic JMS Features

This chapter describes how to configure and use Server Session Pools, a deprecated
JMS facility for defining a server-managed pool of server sessions. This facility enables
an application to process messages concurrently with a deprecated release of
WebLogic Server.

¢ Defining Server Session Pools

A.1 Defining Server Session Pools

Note:

Session pools are used rarely, because they are not a required part of the Java
EE specification, do not support JTA user transactions, and are largely
superseded by message-driven beans (MDBs), which are simpler, easier to
manage, and more capable. For more information about designing MDBs, see
Message-Driven E]Bs in Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

WebLogic JMS implements an optional JMS facility for defining a server-managed
pool of server sessions. This facility enables an application to process messages
concurrently.

The server session pool:

* Receives messages from a destination and passes them to a server-side message
listener that you provide to process messages. The message listener class provides
an onMessage() method that processes a message.

® Processes messages in parallel by managing a pool of JMS sessions, each of which
executes a single-threaded onMessage() method.

Figure A-1shows the server session pool facility, and the relationship between the
application and the application server components.

Deprecated WebLogic JMS Features A-1

Defining Server Session Pools

Figure A-1 Server Session Pool Facility

Application
Message
Producer
.
_ T4
Connection Connection. Session Destination
Factory > >
‘ApplicationServer v
i Connection |
i Consumer I
i ¥ Y i
Server > Message
i B A, N - ; ’
Sessiof) | P o ¥ Listener :

| < |

i Server Session Server Session |
Pool Factory > Poal -

e e i e A R i s i i e i i

As shown in the Figure A-1, the application provides a single-threaded message
listener. The connection consumer, implemented by JMS on the application server,
performs the following tasks to process one or more messages:

1. Gets a server session from the server session pool.
2. Gets the server session's session.

3. Loads the session with one or more messages.

4. Starts the server session to consume messages.

5. Releases the server session back to the pool when it has finished processing
messages.

Figure A-2shows the steps required to prepare for concurrent message processing.

Figure A-2 Preparing for Concurrent Message Processing

' Y
Step 1: Look Up Server Session Pool

Factory in JNDI
L. A

v

" ™
Step 2. Create a Server Session Pool
Using the Server Session Pool Factory

v

" ;
Step 3. Create a Connection Consumer

Using the Connection
. A

|

\

Applications can use other application server providers' session pool implementations
within this flow. Server session pools can also be implemented using message-driven

A-2 Developing JMS Applications for Oracle WebLogic Server

Defining Server Session Pools

beans. For information about using message driven beans to implement server session
pools, see Message-Driven E]Bs in Developing Enterprise JavaBeans, Version 2.1, for
Oracle WebLogic Server.

If the session pool and connection consumer were defined during configuration, then
you can skip this section. For more information about configuring server session pools
and connection consumers, see Configuring Basic JMS System Resources in
Administering JMS Resources for Oracle WebLogic Server.

Currently, WebLogic JMS does not support the optional

Topi cConnecti on. cr eat eDur abl eConnect i onConsurner () operation. For
more information about this advanced JMS operation, refer to the JMS Specification,
described athtt p: / / ww. or acl e. coni t echnet wor k/j ava/j ns/i ndex. htni .

A.1.1 Step 1: Look Up the Server Session Pool Factory in JNDI
You use a server session pool factory to create a server session pool.

WebLogic JMS defines one Ser ver Sessi onPool Fact or y object, by default:
webl ogi c. j ms. ext ensi ons. Ser ver Sessi onPool Fact ory: <nane>, where
<name> specifies the name of the JMS server to which the session pool is created.

After it is configured, you can look up a server session pool factory by first
establishing a JNDI context (cont ext) using the

Nam ngManager . | ni ti al Cont ext () method, athttp://docs. oracl e. conf
j avase/ 6/ docs/ api / j avax/ nam ng/

Initial Context.htm #l nitial Context().Foranyapplication other than a
servlet application, you must pass an environment used to create the initial context.
For more information, see the Nam ngManager . | ni ti al Cont ext () Javadoc, at
http://docs. oracl e.conijavase/ 6/ docs/ api /] avax/ nam ng/

Initial Context.htm #l nitial Context().

After the context is defined, to look up a server session pool factory in JNDI, use the
following code:

factory = (ServerSessi onPool Factory) context.|ookup(<ssp_nanme>);
The <ssp_namne> specifies a qualified or non-qualified server session pool factory
name.

For more information about server session pool factories, see
ServerSessionPoolFactory or the
webl ogi c. j ms. ext ensi ons. Ser ver Sessi onPool Fact ory Javadoc.

A.1.2 Step 2: Create a Server Session Pool Using the Server Session Pool Factory

You can create a server session pool for use by queue (Point-toPoint) or topic
(Publish/Subscribe) connection consumers, using the Ser ver Sessi onPool Fact ory
methods described in the following sections.

For more information about server session pools, see ServerSessionPool or the

j avax. j ms. Server Sessi onPool Javadoc, athtt p://docs. oracl e. cont
j avaeel 7/ api / j avax/j ns/ Server Sessi onPool . ht m .

A.1.2.1 Create a Server Session Pool for Queue Connection Consumers

The Ser ver Sessi onPool Fact or y provides the following method for creating a
server session pool for queue connection consumers:

public Server Sessi onPool get Server Sessi onPool (
QueueConnecti on connecti on,

Deprecated WebLogic JMS Features A-3

http://www.oracle.com/technetwork/java/jms/index.html
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javase/6/docs/api/javax/naming/InitialContext.html#InitialContext()
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html
http://docs.oracle.com/javaee/7/api/javax/jms/ServerSessionPool.html

Defining Server Session Pools

int nmaxSessions,

bool ean transact ed,

i nt ackMbde,

String |istenerd assNane
) throws JMSException

You must specify the queue connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3), whether or not the sessions are transacted, the
acknowledge mode (applicable for non-transacted sessions only), and the message
listener class that is instantiated and used to receive and process messages
concurrently.

For more information about the Ser ver Sessi onPool Fact or y class methods, see
the webl ogi c. j ms. ext ensi ons. Ser ver Sessi onPool Fact ory Javadoc. For
more information about the Connect i onConsuner class, see the

javax. j ms. Connect i onConsuner Javadoc, described athtt p://

docs. oracl e. com j avaee/ 7/ api / j avax/ j ns/ Connect i onConsuner. htm .

A.1.2.2 Create a Server Session Pool for Topic Connection Consumers

The Ser ver Sessi onPool Fact ory provides the following method for creating a
server session pool for topic connection consumers:

public Server Sessi onPool get Server Sessi onPool (
Topi cConnecti on connecti on,

int maxSessions,

bool ean transacted,

int ackMde,

String |istenerd assNane

) throws JMSException

You must specify the topic connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection (to
be created in step 3), whether or not the sessions are transacted, the acknowledge
mode (applicable for non-transacted sessions only), and the message listener class that
is instantiated and used to receive and process messages concurrently.

For more information about the Ser ver Sessi onPool Fact ory class methods, see
the webl ogi c. j ns. ext ensi ons. Ser ver Sessi onPool Fact ory Javadoc. For
more information about the Connect i onConsuner class, see the

j avax. j ms. Connecti onConsuner Javadoc, described athtt p://

docs. oracl e. com j avaee/ 7/ api / j avax/ j ns/ Connect i onConsuner. ht i .

A.1.3 Step 3: Create a Connection Consumer

You can create a connection consumer for retrieving server sessions and processing
messages concurrently using one of the following methods:

¢ Configuring the server session pool and connection consumer during the
configuration, as described in "Configuring Basic JMS System Resources" in
Administering JMS Resources for Oracle WebLogic Server.

¢ Including in your application the Connection methods described in the following
sections.

For more information about the Connect i onConsumner class, see
ConnectionConsumer or the j avax. j ms. Connect i onConsuner Javadoc, described

A-4 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html

Defining Server Session Pools

athttp://docs. oracl e. conlj avaee/ 7/ api / j avax/ j s/
Connecti onConsuner. htm .

A.1.3.1 Create a Connection Consumer for Queues

The QueueConnect i on provides the following method for creating connection
consumers for queues:

public Connecti onConsumer createConnecti onConsuner (
Queue queue,

String messageSel ector,

Server Sessi onPool sessi onPool ,

int maxMessages

) throws JMSException

You must specify the name of the associated queue, the message selector for filtering
messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session
simultaneously. For information about message selectors, see Filtering Messages.

For more information about the QueueConnect i on class methods, see the

j avax. j ms. QueueConnect i on Javadoc, athtt p: // docs. or acl e. cont

j avaeel 7/ api / j avax/j ms/ QueueConnect i on. ht m . For more information
about the Connect i onConsuner class, see the j avax. j ns. Connect i onConsuner
Javadoc, athtt p: // docs. oracl e. conl j avaee/ 7/ api / j avax/ j ns/

Connecti onConsuner. htmi .

A.1.3.2 Create a Connection Consumer for Topics

The Topi cConnect i on provides the following two methods for creating
Connect i onConsuner s for topics:

public ConnectionConsuner createConnecti onConsuner (
Topi ¢ topic,

String messageSel ector,

Ser ver Sessi onPool sessi onPool ,

int maxMessages

) throws JMSException

public ConnectionConsuner createDurabl eConnecti onConsurmer (
Topi ¢ topic,

String messageSel ector,

Ser ver Sessi onPool sessi onPool ,

int maxMessages

) throws JMSException

For each method, you must specify the name of the associated topic, the message
selector for filtering messages, the associated server session pool for accessing server
sessions, and the maximum number of messages that can be assigned to the server
session simultaneously. For information about message selectors, see Filtering
Messages.

Each method creates a connection consumer; but, the second method also creates a
durable connection consumer for use with durable subscribers. For more information
about durable subscribers, see Setting Up Durable Subscriptions.

For more information about the Topi cConnect i on class methods, see the

j avax. j ns. Topi cConnect i on Javadoc, athtt p: // docs. or acl e. cont

j avaeel 7/ api / j avax/ j ns/ Topi cConnect i on. ht m . For more information
about the Connect i onConsuner class, see the j avax. j ns. Connect i onConsuner

Deprecated WebLogic JMS Features A-5

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/QueueConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html
http://docs.oracle.com/javaee/7/api/javax/jms/TopicConnection.html

Defining Server Session Pools

Javadoc, athtt p: // docs. oracl e. conl j avaee/ 7/ api / j avax/ j ns/
Connecti onConsuner. htm .

A.1.4 Example: Setting Up a PTP Client Server Session Pool

The following example shows how to set up a server session pool for a JMS client. The
startup() method is similar to the i ni t () method in the

exanpl es. j ms. queue. QueueSend example, as described in Example: Setting Up a
Point-to-Point JMS Application Using the Classic API. This method also sets up the
server session pool.

The following illustrates the st ar t up() method, with comments highlighting each
setup step.

Include the following package on the import list to implement a server session pool
application:

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION POOL_FACTORY=
"webl ogi c. j ms. ext ensi ons. Server Sessi onPool Fact ory: exanpl esJMsSer ver";

private QueueConnectionFactory qconFactory;

private QueueConnection gcon;

private QueueSession gsession;

private QueueSender gsender;

private Queue queue;

private Server Sessi onPool Factory sessi onPool Factory;
private Server Sessi onPool sessionPool ;

private ConnectionConsuner consuner;

Create the required JMS objects.

public String startup(
String nane,

Hasht abl e args

) throws Exception

{

String connectionFactory = (String)args.get("connectionFactory");
String queueNane = (String)args.get("queue");
if (connectionFactory == null || queueName == null) {
throw new |11 egal Argunent Exception("connectionFact ory="+connecti onFact ory+
", queueNane="+queueNane);
}

Context ctx = new Initial Context();
gconFactory = (QueueConnecti onFact ory)

ct x. | ookup(connecti onFactory);
gcon =qconFact ory. cr eat eQueueConnection();
gsession = gcon. cr eat eQueueSessi on(fal se,

Sessi on. AUTO_ACKNOW.EDGE) ;
queue = (Queue) ctx.|ookup(queueNane);
gcon. start();

A.1.4.1 Step 1 Look Up the Server Session Pool Factory
Look up the server session pool factory in JNDL

sessi onPool Factory = (Server Sessi onPool Fact ory)
ct x. | ookup(SESSI ON_POOL_FACTQRY) ;

A-6 Developing JMS Applications for Oracle WebLogic Server

http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html
http://docs.oracle.com/javaee/7/api/javax/jms/ConnectionConsumer.html

Defining Server Session Pools

A.1.4.2 Step 2 Create a Server Session Pool
Create a server session pool using the server session pool factory, as follows:

sessi onPool = sessi onPool Factory. get Server Sessi onPool (gcon, 5,
fal se, Session. AUTO ACKNOW.EDGE,
exanpl es. j ns. startup. MsgLi stener);

The code defines the following;:

¢ gcon is the queue connection associated with the server session pool

¢ 5is the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

e Sessions will be non-transacted (f al se)
e AUTO_ACKNOWLEDCGE is the acknowledge mode

¢ Theexanpl es. j ms. st artup. MsgLi st ener will be used as the message
listener that is instantiated and used to receive and process messages concurrently.

A.1.4.3 Step 3 Create a Connection Consumer

Create a connection consumer, as follows:

The code defines the following:

consumer = qcon. cr eat eConnecti onConsuner (queue, "TRUE",
sessi onPool , 10);

® queue is the associated queue
* TRUEis the message selector for filtering messages
¢ sessi onPool is the associated server session pool for accessing server sessions

¢ 10 is the maximum number of messages that can be assigned to the server session
simultaneously

For more information about the JMS classes used in this example, see Understanding
the JMS APIJ, or the j avax. j ms Javadoc at ht t p: / / www. or acl e. com
technetwork/java/jns/index. htm.

A.1.5 Example: Setting Up a Publish/Subscribe Client Server Session Pool

The following example shows how to set up a server session pool for a JMS client. The
st art up() method is similar to the i ni t () method in the

exanpl es. j ms. t opi c. Topi cSend example, as described in Example: Setting Up a
Publish-Subscribe JMS Application Using the Classic APL It also sets up the server
session pool.

The following shows the st ar t up() method, with comments highlighting each setup
step.

Include the following package on the import list to implement a server session pool
application:

i mport webl ogi c. j ms. ext ensi ons. Server Sessi onPool Fact ory

Deprecated WebLogic JMS Features A-7

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Defining Server Session Pools

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSI ON_POOL_FACTORY=
"webl ogi c. j ms. ext ensi ons. Ser ver Sessi onPool Fact ory: exanpl esJMSServer";

private Topi cConnectionFactory tconFactory;

private Topi cConnection tcon;

private Topi cSession tsession;

private Topi cSender tsender;

private Topic topic;

private Server Sessi onPool Factory sessi onPool Factory;
private Server Sessi onPool sessionPool ;

private ConnectionConsuner consuner;

Create the required JMS objects.

public String startup(
String nane,

Hasht abl e args

) throws Exception

{
String connectionFactory = (String)args.get("connectionFactory");
String topicNane = (String)args.get("topic");
if (connectionFactory == null || topicName == null) {
throw new |11 egal Argunent Exception("connectionFact ory="+connecti onFactory+
", topi cNane="+t opi cNane) ;
1
Context ctx = new Initial Context();
tconFactory = (Topi cConnecti onFact ory)
ct x. | ookup(connecti onFactory);
tcon = tconFactory. createTopi cConnection();
tsession = tcon. createTopi cSession(fal se,
Sessi on. AUTO_ACKNOW.EDCE) ;
topic = (Topic) ctx.lookup(topicNane);
tcon.start();

A.1.5.1 Step 1
Look up the server session pool factory in JNDI.

sessi onPool Factory = (Server Sessi onPool Fact ory)
ct x. | ookup(SESSI ON_POOL_FACTQRY) ;

A.1.5.2 Step 2 Create a Server Session Pool
Create a server session pool using the server session pool factory, as follows:

sessi onPool = sessi onPool Fact ory. get Server Sessi onPool (tcon, 5,
fal se, Session. AUTO ACKNOW.EDGE,
exanpl es. j ns. startup. MsgLi stener);
The code defines the following:

® tcon as the topic connection associated with the server session pool

® 5 as the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

e Sessions will be non-transacted (f al se)

A-8 Developing JMS Applications for Oracle WebLogic Server

Defining Server Session Pools

* AUTO ACKNOWLEDGE as the acknowledge mode

e Theexanpl es. jns. startup. MsgLi st ener will be used as the message
listener that is instantiated and used to receive and process messages concurrently.

A.1.5.3 Step 3
Create a connection consumer, as follows:

consuner = tcon. createConnectionConsuner(topic, "TRUE",
sessi onPool , 10);

The code defines the following;:

e topic as the associated topic

* TRUE as the message selector for filtering messages

e sessi onPool as the associated server session pool for accessing server sessions

* 10 as the maximum number of messages that can be assigned to the server session
simultaneously

For more information about the JMS classes used in this example, see Understanding
the JMS API, or the j avax. j ms Javadoc described at ht t p: / / www. or acl e. conml
t echnet wor k/ j ava/j nms/ i ndex. htm .

Deprecated WebLogic JMS Features A-9

http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

Defining Server Session Pools

A-10 Developing JMS Applications for Oracle WebLogic Server

B

FAQs: Integrating Remote JMS Providers

This chapter provides information about how to integrate WebLogic Server with
remote JMS providers. The Java EE standards for J]MS (messaging), JTA (transaction),
and JNDI (naming) work together to provide reliable Java-to-Java messaging between
different host machines and even different vendors. Oracle WebLogic Server provides
a variety of tools that leverage these APIs to help integrate remote JMS providers into
a local application.

¢ Understanding JMS and JNDI Terminology

* Understanding Transactions

e How to Integrate with a Remote Provider

¢ Best Practices When Integrating with Remote Providers
¢ Using Foreign JMS Server Definitions

* Using EJB/Servlet JMS Resource References

¢ Using WebLogic Store-and-Forward

* Using WebLogic JMS SAF Client

e Using a Messaging Bridge

¢ Using Messaging Beans

e Using AQ JMS

B.1 Understanding JMS and JNDI Terminology
Q. What is a remote JMS provider?

A. A remote JMS provider is a JMS server that is hosted outside a local stand alone
WebLogic server or outside WebLogic server cluster. The remote JMS server can be a
WebLogic or a non-WebLogic (foreign) JMS server.

Q. What is JNDI?

A. Java Naming and Directory Interface (JNDI) is a Java EE lookup service that maps
names to services and resources. JNDI provides a directory of advertised resources
that exist on a particular stand alone (non-clustered) WebLogic server or within a
WebLogic server cluster. Examples of these resources include JMS connection
factories, JMS destinations, JDBC (database) data sources, and application E]Bs.

A client connecting to WebLogic Server in a WebLogic cluster can transparently
reference any JNDI advertised service or resource hosted on any WebLogic Server
within the cluster. The client doesn't require explicit knowledge of which particular
WebLogic Server in the cluster hosts a desired resource.

FAQs: Integrating Remote JMS Providers B-1

Understanding Transactions

Q. What is a JMS connection factory?

A. A JMS connection factory is a named entity resource stored in JNDI. Applications,
message driven beans (MDBs), and messaging bridges lookup a JMS connection
factory in JNDI and use it to create JMS connections. JMS connections are used in turn
to create JMS sessions, producers, and consumers that can send or receive messages.

Q. What is a JMS connection-id?

A. JMS connection-IDs are used to name JMS client connections. Durable subscribers
require named connections, otherwise connections are typically unnamed. Note that
within a clustered set of servers or stand alone server, only one JMS client connection
may use a particular named connection at a time. An attempt to create new connection
with the same name as an existing connection will fail.

Q. What is the difference between a JMS topic and a JMS queue?

A. JMS queues deliver a message to one consumer, while JMS topics deliver a copy of
each message to each consumer.

Q. What is a topic subscription?

A. A topic subscription can be thought of as an internal queue of messages waiting to
be delivered to a particular subscriber. This internal queue accumulates copies of each
message published to the topic after the subscription was created. Conversely, it does
not accumulate messages that were sent before the subscription was created.
Subscriptions are not sharable, only one subscriber may subscribe to a particular
subscription at a time.

Q. What is a non-durable topic subscriber?

A. A non durable subscriber creates unnamed subscriptions that exist only for the life
of the JMS client. Messages in a non durable subscription are never persisted—even
when the message's publisher specifies a persistent quality of service (QOS). Shutting
down a JMS server terminates all non durable subscriptions.

Q. What is a durable subscriber?

A. A durable subscriber creates named subscriptions that continue to exist even after
the durable subscriber exits or the server reboots. A durable subscriber connects to its
subscription by specifying the topic-name, connection-ID, and subscriber-ID.
Together, the connection-id and subscriber-id uniquely name the subscriber's
subscription within a cluster. A copy of each persistent message published to a topic is
persisted to each of the topic's durable subscriptions. In the event of a server failure
and restart, durable subscriptions and their unconsumed persistent messages are
recovered.

B.2 Understanding Transactions

Q. What is a transaction?

A. A transaction is a set of distinct application operations that must be treated as an
atomic unit. To maintain consistency, all operations in a transaction must either all
succeed or all fail. See Introducing Transactions in Developing JTA Applications for
Oracle WebLogic Server.

Q. Why are transactions important for integration?

A. Integration applications often use transactions to ensure data consistency. For
example, to ensure that a message is forwarded exactly-once, a single transaction is
often used to encompass the two operations of receiving the message from its source
destination and sending the message to the target destination. Transactions are also

B-2 Developing JMS Applications for Oracle WebLogic Server

Understanding Transactions

often used to ensure atomicity of updating a database and performing a messaging
operation.

Q. What is a JTA/XA/global transaction?

A.InJava EE, the terms JTA transaction, XA transaction, user transaction, and global
transaction are often used interchangeably to refer to a single global transaction. This
type of transaction can include operations on multiple different XA capable resources
and different resource types. A JTA transaction is always associated with the current
thread, and can be passed from server to server as one application calls another. A
common example of an XA transaction is one that includes both a WebLogic J]MS
operation and a JDBC (database) operation.

Q. What is a local transaction?

A. A JMS local transaction is a transaction in which only a single resource or service
can participate. A JMS local transaction is associated with a particular JMS session
where the destinations of a single vendor participate. Unlike XA transactions, a
database operation can not participate in a JMS local transaction.

Q. How does JMS provide local transactions?

A. Local transactions are enabled by a JMS specific API called t r ansact ed

sessi ons. For vendors other than WebLogic JMS, the scope of a transacted session is
typically limited to a single JMS server. In WebLogic JMS, multiple JMS operations on
multiple destinations within an entire cluster can participate in a single transacted
session's transaction. In other words, it is scoped to a WebLogic cluster and no remote
JMS provider to the JMS session's cluster can participate in a transaction.

Q. Are JMS local transactions useful for integration purposes?

A. Local transactions are generally not useful for integration purposes because they
are limited in scope to a single resource, typically a messaging or database server.

Q. What is Automatic Transaction Enlistment?

A. Operations on resources such as database servers or messaging servers participate
in a Java EE JTA transaction provided that:

* The resource is XA transaction capable
e The resource was enlisted with the current transaction

¢ The client library used to access the resource is transaction aware (XA enabled).

Automatic participation of operations on an XA capable resource in a transaction is
technically referred to as automatic enlistment.

* WebLogic clients using XA enabled WebLogic APIs automatically enlist operation
in the current thread's JTA transaction. Examples of XA enabled WebLogic clients
include WebLogic JMS XA enabled (or user transaction enabled) connection
factories, and JDBC connection pool data sources that are global transaction
enabled.

* Foreign (non-WebLogic) JMS clients do not automatically enlist in the current JTA
transaction. These clients must either go through an extra step of programmatically
enlisting in the current transaction, or use WebLogic provided features that wrap
the foreign JMS client and automatically enlist when the foreign JMS client is
accessed via wrapper APls.

JMS features that provide automatic enlistment for foreign vendors are:

FAQs: Integrating Remote JMS Providers B-3

How to Integrate with a Remote Provider

Message-Driven E]Bs
JMS resource-reference pools

Messaging Bridges

To determine if a non-WebLogic vendor's JMS connection factory is XA capable, check
the vendor documentation. Remember, support for transacted sessions (local
transactions) does not imply support for global/XA transactions.

B.3 How to Integrate with a Remote Provider

Q. What does a JMS client do to communicate with a remote JMS provider?

A. To communicate with any JMS provider, a JMS client must perform the following

steps:

1. Look up a JMS connection factory object and a JMS destination object using JNDI
2. Create a JMS connection using the connection factory object

3. Create message consumers or producers using the JMS connection and JMS

destination objects.

Q. What information do I need to set up communications with a remote JMS provider?

A. You will need the following information to set up communications with a remote
JMS provider:

The destination type: Whether the remote JMS destination is a queue or a topic.
The JNDI name of the remote JMS destination.

For durable topic subscribers: The connection-id and subscriber-id names that
uniquely identify them. Message Driven E]Bs provide default values for these
values based on the EJB name.

For non-WebLogic remote JMS providers

— Initial Context Factory Class Name: The java class name of the remote JMS
Provider's JNDI lookup service.

— The file location of the java jars containing the remote JMS provider's JMS client
and JNDI client libraries. Ensure that these jars are specified in the local JVM's
classpath.

The URL of the remote provider's JNDI service. For WebLogic servers, the URL is
usually in the form t 3: / / host addr ess: port . If you are tunneling over HTTP,
begin the URL with ht t p rather than t 3. No URL is required for server application
code that accesses a WebLogic JMS Server that resides on the same WebLogic
Server or WebLogic cluster as the application.

The JNDI name of the remote provider's JMS connection factory. This connection
factory must exist on the remote provider, not the local provider.

If the JMS application requires transactions, the connection factory must be XA
capable. WebLogic documentation refers to XA capable factories as user
transactions enabled.

By default, WebLogic servers automatically provide three non-configurable
connection factories:

B-4 Developing JMS Applications for Oracle WebLogic Server

Best Practices When Integrating with Remote Providers

— webl ogi c. j me. Connect i onFact or y: A non-XA capable factory.

- webl ogi c. j ms. XAConnect i onFact or y: An XA-capable factory

- webl ogi c. j ms. MessageDri venBeanConnect i onFact or y: An XA-capable
factory for message-driven E]Bs.

Additional WebLogic JMS connection factories must be explicitly configured.

Q. What if a foreign JMS provider JNDI service has limited functionality?

A. The preferred method for locating JMS provider connection factories and
destinations is to use a standard Java EE JNDI lookup. Occasionally a non-WebLogic
JMS provider's JNDI service is hard to use or unreliable. The solution is to create a
startup class or load-on-start servlet that runs on a WebLogic server that does the

following:

® Uses the foreign provider's proprietary (non-JNDI) APIs to locate connection
factories and JMS destinations.

* Registers the JMS destinations and JMS connection factories in WebLogic JNDIL

Q. How can I pool JMS resources?

A. Remote and local JMS resources, such as client connections and sessions, are often
pooled to improve performance. Message— driven E]JBs automatically pool their
internal JMS consumers. JMS consumers and producers accessed through resource-
references are also automatically pooled.

Q. Which tools are available for integrating with remote JMS providers?

A. The following table summarizes the tools available for integrating with remote JMS

providers:
Method Automatic Enlistment JMS Resource Pooling
Direct use of the remote Yes for a WebLogic server No. Can be done
provider's JMS client provider. Other providers programmatically.
must perform enlistment
programmatically.
Messaging Bridge Yes N/A
Foreign JMS Server No. To get automatic No. To get resource pooling, use
Definition enlistment, use in conjunction in conjunction with a JMS

JMS Resource Reference
Message Driven E]Bs
SAF Client

SAF

with a JMS resource reference
or MDB.

Yes
Yes
N/A

Yes

resource reference or MDB.

Yes
Yes
N/A

N/A

B.4 Best Practices When Integrating with Remote Providers

Q. How do I receive messages from a remote a JMS provider from within an EJB or

Servlet?

FAQs: Integrating Remote JMS Providers B-5

Using Foreign JMS Server Definitions

A. Use a message driven EJB. Synchronous receives are not recommended because
they idle a server side thread while the receiver blocks waiting for a message. See
Using Messaging Beans.

Q. How do I send messages to a remote JMS provider from within an EJB or Servlet?

A. Use a resource reference. It provides pooling and automatic enlistment. See Using
EJB/Servlet JMS Resource References. In limited cases where wrappers are not
sufficient, you can write your own pooling code.

If the target destination is remote, then consider adding a local destination and
messaging bridge to implement a store-and-forward high availability design. See
Using a Messaging Bridge.

Another best practice is to use foreign JMS server definitions. Foreign JMS server
definitions allow an application's JMS resources to be administratively changed and
avoid the problem of hard coding URLs into application code. In addition, foreign JMS
server definitions are required to enable resource references to reference remote JMS
providers. See Using Foreign JMS Server Definitions.

Q. How do I communicate with remote JMS providers from a client?

A. If the destination is not provided by WebLogic Server, and you to include
operations on the destination in a global transaction, use a server proxy to encapsulate
JMS operations on the foreign vendor in an EJB. Applications running on WebLogic
Server have facilities to enlist non-WebLogic JMS providers that are transaction (XA)
capable with the current transaction.

If you need store-and-forward capability, consider sending to local destinations and
using messaging bridges to forward the message to the foreign destination. See:

* Using a Messaging Bridge
¢ Using WebLogic Store-and-Forward

¢ Using WebLogic JMS SAF Client

Another option is to simply use the remote vendor's JNDI and JMS API directly or
configuring foreign JMS providers to avoid hard-coding references to them. You must
add the foreign provider's class libraries to the client's class-path.

Q. How can I tune WebLogic JMS interoperability features?

A. See Tuning WebLogic Server EJBs, Tuning WebLogic Message Bridge, and Tuning
WebLogic JMS Store-and-Forward in Tuning Performance of Oracle WebLogic Server.

B.5 Using Foreign JMS Server Definitions
Q. What are Foreign JMS Server Definitions?

A. Foreign JMS server definitions are an administratively configured symbolic link
between a JNDI object in a remote JNDI directory, such as a JMS connection factory or
destination object, and a JNDI name in the JNDI name space for a stand-alone
WebLogic Server or a WebLogic cluster. They can be configured using the WebLogic
Server Administration Console, standard JMX MBean APIs, or programmatically
using scripting. See Simplified Access to Foreign JMS Providers.

Q. When is it best to use a Foreign JMS Server Definition?

A. For this release, a Foreign JMS Server definition conveniently moves JMS JNDI
parameters into one central place. You can share one definition between EJBs, servlets,

B-6 Developing JMS Applications for Oracle WebLogic Server

Using EJB/Servlet JMS Resource References

and messaging bridges. You can change a definition without recompiling or changing
deployment descriptors. They are especially useful for:

* Any message driven E]B (MDB) where it is desirable to administer standard JMS
communication properties via configuration rather than hard code them into the
application's EJB deployment descriptors. This applies even if the MDB's source
destination isn't remote.

* Any MDB that has a destination remote to the cluster. This simplifies deployment
descriptor configuration and enhances administrative control.

* Any EJB or servlet that sends or receives from a remote destination.

¢ Enabling resource references to refer to remote JMS providers. See Using EJB/
Servlet JMS Resource References.

B.6 Using EJB/Serviet JMS Resource References

Q. What are JMS resource references?

A. Resource references are specified by servlet and E]B application developers and
packaged with an application. They are easy-to-use and provide a level of indirection
that lets applications reference JNDI names defined in an E]JB descriptor rather than
hard coding JNDI names directly into application source code.

JMS resource-references provide two additional features:

* Automatic pooling of JMS resources when those resources are closed by the
application.

e Automatic enlistment of JMS resources with the current transaction, even for non-
WebLogic JMS providers.

Inside an EJB or servlet application code, use a JMS resource references by including
resource-ref elements in the deployment descriptors and then use a JNDI context to
look them up using the syntax j ava: conp/ env/ j ms/ <r ef er ence nane>.

Resource references provide no functionality outside of application code, and
therefore are not useful for configuring a message driven EJB's source destination or a
messaging bridge's source or target destinations.

For WebLogic documentation on JMS resource-reference pooling, see Enhanced
Support for Using WebLogic JMS with E]JBs and Servlets.

Q. What advantages do JMS resource references provide?

A. JMS resource references provide the following advantages:

e They ensure portability of servlet and EJB applications: they can be used to change
an application's JMS resource without recompiling the application's source code.

¢ They provide automatic pooling of JMS Connection, Session, and MessageProducer
objects.

¢ They provide automatic transaction enlistment for non-WebLogic JMS providers.
This requires XA support in the JMS provider. If resource references are not used,
then enlisting a non-WebLogic JMS provider with the current transaction requires
extra programmatic steps.

Q. How do I use resource references with foreign JMS providers?

FAQs: Integrating Remote JMS Providers B-7

Using WebLogic Store-and-Forward

A. To enable resource references to reference remote JMS providers, they must be used
in conjunction with a foreign JMS definition. This is because resources references do
not provide a place to specify a URL or initial context factory. See Using Foreign JMS
Server Definitions.

Q. How do I use resource references with non-transactional messaging?

A. For non-transactional cases, do not use a global transaction (XA) capable connection
factory. This will affect messaging performance. If you do, the resource reference will
automatically begin and commit an internal transaction for each messaging operation.
See Understanding Transactions.

B.7 Using WebLogic Store-and-Forward
Q. What is the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service enables WebLogic Server to
deliver messages reliably between applications that are distributed across WebLogic
Server instances. For example, with the SAF service, an application that runs on or
connects to a local WebLogic Server instance can reliably send messages to a
destination that resides on a remote server. If the destination is not available at the
moment the messages are sent, either because of network problems or system failures,
then the messages are saved on a local server instance, and are forwarded to the
remote destination when it becomes available. See Understanding the Store-and-
Forward Service in Administering the Store-and-Forward Service for Oracle WebLogic
Server.

Q. When should I use the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service should be used when forwarding
JMS messages between WebLogic Server 9.0 or later domains. The SAF service can
deliver messages:

e Between two stand-alone server instances

e Between server instances in a cluster

Across two clusters in a domain

® Across separate domains
Q. When can't I use WebLogic Store-and-Forward?
A.

You can't use the WebLogic Store-and-Forward service in the following situations:

* Receiving from a remote destination—use a message driven EJB or implement a
client consumer directly

* Sending messages to a local destination—send directly to the local destination

¢ Forwarding messages to prior releases of WebLogic Server. See Using a Messaging
Bridge

¢ Interoperating with third-party JMS products (for example, MQSeries) See Using a
Messaging Bridge.

* When using temporary destinations with the JMSRepl yTo field to return a
response to a request

¢ Environment with low tolerance for message latency. SAF increases latency and
may lower throughput

B-8 Developing JMS Applications for Oracle WebLogic Server

Using WebLogic JMS SAF Client

B.8 Using WebLogic JMS SAF Client

Q. What is the WebLogic JMS SAF Client?

A. The JMS SAF Client feature extends the JMS store-and-forward service introduced
in WebLogic Server 9.0 to standalone JMS clients. Now JMS clients can reliably send
messages to server-side JMS destinations, even when the client cannot reach a
destination (for example, due to a temporary network connection failure). While
disconnected from the server, messages sent by a JMS SAF client are stored locally on
the client file system and are forwarded to server-side JMS destinations when the
client reconnects. See Reliably Sending Messages Using the JMS SAF Client.

Q. When should I use the WebLogic J]MS SAF Client?

A. Use when forwarding JMS messages to WebLogic Server 9.0 or later domains.
Q. What are the limitations of using the JMS SAF Client?

A. See Limitations of Using the JMS SAF Client.

B.9 Using a Messaging Bridge
Q. What is a Messaging bridge?

A. Messaging bridges are administratively configured services that run on a WebLogic
server. They automatically forward messages from a configured source JMS
destination to a configured target JMS destination. These destinations can be on
different servers than the bridge and can even be foreign (non-WebLogic) destinations.
Each bridge destination is configured using the four common properties of a remote
provider:

* The initial context factory
¢ The connection URL
® The connection factory JNDI name

¢ The destination]NDI name

Messaging bridges can be configured to use transactions to ensure exactly-once
message forwarding from any XA capable (global transaction capable) JMS provider to
another.

Q. When should I use a messaging bridge?

A. Typically, messaging bridges are used to provide store-and-forward high
availability design requirements. A messaging bridge is configured to consume from a
sender's local destination and forward it to the sender's actual target remote
destination. This provides high availability because the sender is still able to send
messages to its local destination even when the target remote destination is
unreachable. When a remote destination is not reachable, the local destination
automatically begins to store messages until the bridge is able to forward them to the
target destination when the target becomes available again.

Q. When should I avoid using a messaging bridge?

A. Other methods are preferred in the following situations:

® Receiving from a remote destination :Use a message driven EJB or implement a
client consumer directly.

FAQs: Integrating Remote JMS Providers B-9

Using Messaging Beans

Sending messages to a local destination : Send directly to the local destination.

Environment with low tolerance for message latency. Messaging Bridges increase
latency and may lower throughput. Messaging bridges increase latency for
messages as they introduce an extra destination in the message path and may
lower throughput because they forward messages using a single thread.

Forward messages between WebLogic 9.0 domains: Use WebLogic Store-and-
Forward. See Using WebLogic Store-and-Forward.

Q. Why are some of my messages not being forwarded?

A. Usually, a messaging bridge should forward all messages. If some messages are not
being forwarded, here are some possible reasons:

Some messages may have an expiration time, in which case either the JMS provider
for the source or target destination expires the message.

If you configured the bridge source destination to specify a selector filter, then only
the filtered messages are forwarded.

A bridge does not directly provide an option to automatically move messages to an
error destination or to automatically delete messages after a limited number of
forward attempts. That said, it is possible that a JMS provider may provide such an
option, which could effect any messages on the bridge source destination. If a
redelivery limit option is enabled on the JMS provider that hosts the bridge source
destination, then you may need to reconfigure the provider to prevent the bridge
automatic retry mechanism from causing messages to exceed the redelivery limit.

B.10 Using Messaging Beans
Q. What is a Message Driven EJB (MDB)?

A. Message Driven E]Bs are E]B containers that internally use standard JMS APIs to
asynchronously receive messages from local, remote, or foreign JMS destinations and
then call application code to process the messages. MDBs have the following
characteristics:

Automatically connects to a source destination and automatically retries
connecting if the remote destination is inaccessible.

Support automatic enlistment of the received messages in container managed
transactions, even when the JMS provider is not WebLogic.

Automatically pool their internal JMS connections, sessions, and consumers.

A MDB's source destination, URL, and connection factory are configured in the EJB
and WebLogic descriptors which are packaged as part of an application.

The messaging processing application logic is contained in a single method
callback onMessage() .

A MDB is an EJB that supports transactions, security, JDBC, and other typical EJB
actions.

For more information, see Message-Driven E]Bs in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

Q. When should I use a MDB?

B-10 Developing JMS Applications for Oracle WebLogic Server

Using AQ JMS

A. MDBs are the preferred mechanism for WebLogic Server applications that receive
and process JMS messages.

Q. Do I need to use a Messaging Bridge with a MDB?

A. Configure MDBs to directly consume from their source destination rather than
insert a messaging bridge between them. MDBs automatically retry connecting to their
source destination if the source destination is inaccessible, so there is no need to insert
a messaging bridge in the message path to provide higher availability. Introducing a
messaging bridge may have a performance effect. See Using a Messaging Bridge.

Q. What is the best way to configure a MDB?
A. The following section provides tips for configuring a MDB:

* To configure MDB concurrency and thread pools, use the max- beans-in-free-
pool and di spat ch- pol i cy descriptor fields. WebLogic Server may create fewer
concurrent instances than max- beans-i n-f r ee- pool depending on the number
of available server threads in the MDB's thread pool.

¢ Use foreign JMS server definitions when configuring a MDB to consume from a
remote JMS provider. Although WebLogic MDB descriptors can be configured to
directly refer to remote destinations, this information is packaged with the
application and is not dynamically editable. You should configure a foreign JMS
server definition and then configure the MDB to reference the foreign definition
instead. Please note that some documentation refers to foreign JMS server
definitions as wrappers. See Using Foreign JMS Server Definitions.

® Use care when configuring a MDB for container managed transactions. A MDB
supports container managed XA transactions when a MDB's descriptor files have
transacti on-type of Contai ner andatrans-attribute of Requi redand
the JMS connection factory is XA enabled. Failure to follow these steps will result
in the MDB being non-transactional. The default WebLogic Server setting for a
MDB connection factory is XA enabled. The MDB automatically begins a
transaction and automatically enlists the received message in the transaction.

B.11 Using AQ JMS

Q. Can I interoperate with AQ JMS?

A. Oracle WebLogic Server applications interoperate with Oracle Streams Advanced
Queuing (AQ) through the J]MS API using either WebLogic Server resources (Web
Apps, E]Bs, MDBs) or stand alone clients. AQ JMS uses a database connection and
stored JMS messages in a database accessible to an entire WebLogic Server cluster,
enabling the use of database features and tooling for data manipulating and backup.

Use the JMS Foreign Server configuration to interoperate with Oracle Streams
Advanced Queuing (AQ) through the JMS API using either WebLogic Server
resources (Web Apps, EJBs, MDBs) or stand-alone clients. See Interoperating with
Oracle AQ JMS in Administering JMS Resources for Oracle WebLogic Server.

Q. How do I migrate my OC4] applications to WebLogic Server?

A. For information on how to migrate your applications from Oracle OC4]J to Oracle
WebLogic Server, see .

FAQs: Integrating Remote JMS Providers B-11

Using AQ JMS

B-12 Developing JMS Applications for Oracle WebLogic Server

C

How to Look Up a Destination

This chapter describes how to use JNDI and a Create Destination Identifier to look up
a message destination.

e Use a JNDI Name
e Use a Create Destination Identifier

e Examples of Syntax Used to Look Up Destinations

Note:

For information about how to configure JMS resources, see Understanding
JMS Resource Configurationin Administering [MS Resources for Oracle WebLogic
Server

C.1 Use a JNDI Name

The recommended way to lookup any type of destination is to use JNDI. You can look
up a destination by establishing a JNDI context (context) and executing one of the
following commands, for PTP or Pub/Sub messaging, respectively:

Queue queue = (Queue) context.|ookup(Dest_nane);
Topic topic = (Topic) context.|ookup(Dest_nane);

The Dest_name argument specifies the destination's JNDI name defined during
configuration. See Using a JNDI Name and Examples of Syntax Used to Look Up
Destinations.

C.2 Use a Create Destination Identifier

Create Destination Identifier (CDI) is a less common method to lookup a destination
or member of a distributed destination that does not use JNDI. CDI uses one of the
following QueueSessi on or Topi cSessi on methods to reference a queue or topic,
respectively:

public Queue createQueue(
String queueNane
) throws JMSException

public Topic createTopic(
String topi cNane
) throws JMSException

The syntax of the queueNanme and t opi cNane strings is not defined by the JMS
specification. For WebLogic JMS, the syntax is described here:

How to Look Up a Destination C-1

http://docs.oracle.com/javaee/6/api/javax/jms/Session.html#createQueue(java.lang.String)
http://docs.oracle.com/javaee/6/api/javax/jms/Session.html#createTopic(java.lang.String)

Use a Create Destination Identifier

* Default WebLogic CDI Syntax

e Custom WebLogic CDI Syntax

Note:

The cr eat eQueue() and cr eat eTopi ¢() methods do not create
destinations dynamically; they create only references to destinations that
already exist. For information about creating destinations dynamically, see
Using JMS Module Helper to Manage Applications.

C.2.1 Default WebLogic CDI Syntax

Default WebLogic CDI Syntax is a string which contains a JMS server name, module,
and the destination configuration name. See Examples of Syntax Used to Look Up
Destinations.

C.2.2 Custom WebLogic CDI Syntax

In addition to the default CDI syntax, WebLogic JMS provides the
JMSCreateDestinationldentifier as an additional configuration parameter of a
Destination or Uniform Distributed Destination. This enables you to configure a
unique reference name when there is more than one queue or topic defined (in one or
more modules) with the same value for the default CDI syntax. In other words, it is
useful for differentiating two different destinations in two different modules that have
the same default CDI name. See Examples of Syntax Used to Look Up Destinations

This name must be unique within the scope of the JMS server to which this destination
is targeted. However, it does not need to be unique within the scope of the entire J]MS
module. For example, two queues can have the same CDI name as long as those
queues are targeted to different JMS servers.

Note:

Because, this name must be unique within the scope of a JMS server, verify
whether other JMS modules may contain destination names that conflict with
this name. It is the responsibility of the deployer to resolve the destination
names targeted to JMS servers.

C.2.3 Server Affinity When Looking Up Destinations

The cr eat eTopi c() and cr eat eQueue() methods also allow a". /

Dest i nat i on_Nane" syntax to indicate server affinity when looking up destinations.
This will locate destinations that are locally deployed in the same JVM as the JMS
connection's connection factory host. If the name is not on the local JVM an exception
is thrown, even though the same name might be deployed on a different JVM.

An application might use this convention to avoid hard-coding the server name when
using the cr eat eTopi c() and cr eat eQueue() methods so that the code can be
reused on different JMS servers without requiring any changes.

C-2 Developing JMS Applications for Oracle WebLogic Server

Examples of Syntax Used to Look Up Destinations

C.3 Examples of Syntax Used to Look Up Destinations

The following sections provide examples of the syntax used to reference a destination
or a member of a distributed destination:

e Non distributed Destinations
e Uniform Distributed Destinations

¢ Weighted Distributed Destinations

C.3.1 Non distributed Destinations

The following section provides examples of syntax used to reference regular
destinations (destinations that are not distributed):

¢ JNDI Syntax for Non distributed Destinations
e (DI Syntax for Non distributed destinations

C.3.1.1 JNDI Syntax for Non distributed Destinations

Most applications use JNDI instead of CDI to lookup destinations. The following

section provides examples of the syntax used to reference non distributed destinations
using INDIL:

* When a JNDI name is configured, a string defined by:
Dest _JNDI _Nane

* When alocal JNDI name is configured:

Dest Local JNDI _Nare

Note:

The local JNDI name only works when the JNDI context host is on the same
server as the non distributed destinations. The JNDI context host is not
necessarily the same as the JMS connection host.

C.3.1.2 CDI Syntax for Non distributed destinations

This section provides examples of the syntax used to reference a non-distributed
destination using thecr eat eQueue or cr eat eTopi cmethod using CDI:

¢ When using the default CD], a string defined by:
JVS_Server Nane/ JMS_Modul e_Nane! Dest i nati on_Nane

¢ When using the default CDI in an interop module, a string defined by:

JVS_Server _Narme/interop-jns! Destinati on_Nane

¢ When a custom CDI is configured, a string defined by:
JMS_Server _Narre/ CDI _Nane

How to Look Up a Destination C-3

Examples of Syntax Used to Look Up Destinations

Note:

When using server affinity (replacing JM5_Ser ver _Nane with ". "), the
search is restricted to the JMS connection host rather than the entire cluster.

To reference destination in releases earlier than WebLogic 9.0 Server , use a
string defined by JM5_Ser ver _Nane! Dest i nati on_Nare (for example,
nyj neserver! nydesti nati on).

C.3.2 Uniform Distributed Destinations

The following section provides examples of the syntax used to reference Uniform
Distributed Destinations (UDDs):

¢ JNDI Syntax for UDDs
e CDI Syntax for UDDs

C.3.2.1 JNDI Syntax for UDDs

Most applications use JNDI instead of CDI to lookup destinations. The following
section provides examples how to reference an individual member or logical UDD
using JNDI

¢ For alogical UDD, a string defined by:

udd- j ndi - name

¢ For an individual member logical UDD, a string defined by:

j me-server - nane@dd- j ndi - nane

C.3.2.2 CDI Syntax for UDDs

Note:

You can use the helper methods

webl ogi c. j ms. ext ensi ons. JVMsSModul eHel per class uddMenber Nane
and uddMenber JNDI Name APIs to help create UDD CDI names in the correct
syntax.

This section provides an example of how to reference a UDD member using
cr eat eQueue or cr eat eTopi ¢ using CDI:

¢ For an individual member when CDI is not configured, a string defined by

j ms-server - nane/ nodul e- nane! j ms- server - nane@add- namne

e For an individual member when CDI is configured, a string defined by:

j ms-server - nane/ cdi - nane

¢ Alogical UDD is referenced using a string defined by: nodul e- nanme! udd- nane.

C-4 Developing JMS Applications for Oracle WebLogic Server

Examples of Syntax Used to Look Up Destinations

Note:

When j ms- ser ver - nane is replaced with ".", the API returns the first locally
available/started member of the UDQ. A member is considered to be locally
available if the JMS client connection is hosted by the same WebLogic Server
that currently hosts the member.

C.3.3 Weighted Distributed Destinations

Note:

Weighted distributed destinations are deprecated in Weblogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

A weighted distributed destination is a set of individually configured regular
destinations that has its own JNDI and CDI name. The logical name of the WDD
represents the entire set, and is configured as a JNDI name. There is no option for
accessing the logical for a WDD using CDL

* JNDI Syntax for WDDs

e (DI Syntax for WDDs

C.3.3.1 JNDI Syntax for WDDs

The following section provides examples how to reference an individual member or
logical WDD using JNDI:

e For a logical WDD, a string defined by:
wdd- j ndi - nane

¢ For an individual member logical WDD, see JNDI Syntax for Non distributed
Destinations.

C.3.3.2 CDI Syntax for WDDs

This section provides an example of how to reference a WDD member using
thecr eat eQueue or cr eat eTopi cmethod with and without using CDI:

¢ There is no option for accessing a WDD logical name using the cr eat eQueue() or
creat eTopi ¢() methods. A logical WDD must always be referenced using a
string defined by the JNDI name of the member. Sometimes it is useful to look up

the local individual member using the "." server affinity syntax for non distributed
destinations.

e For an individual member when CDI is configured on the member, see CDI Syntax
for Non distributed destinations.

How to Look Up a Destination C-5

Examples of Syntax Used to Look Up Destinations

C-6 Developing JMS Applications for Oracle WebLogic Server

D

Advanced Programming with Distributed
Destinations Using the JMS Destination
Availability Helper API

This chapter provides information about how to design a distributed application or a
container that offers high availability (HA), scalability, and flexibility when using JMS
distributed destinations in a clustered environment.

Note:

This guide includes advanced information for experienced JMS developers.
Oracle recommends that you use Message Driven Beans (MDBs) when
interacting with Distributed Destinations. The MDB container automatically
creates and closes internal consumers across all members of a Distributed
Destination as needed. It also handles security, threading, pooling, application
life cycle, automatic reconnect, and transaction enlistment. If you cannot use
MDBs, then you can use simpler workarounds, such as periodically restarting
consumers to rebalance consumers across a distributed destination, or if
messaging ordering and performance are not a concern, then enabling the
distributed queue forwarding option.

¢ Introduction

¢ Controlling DD Producer Load Balancing

¢ Using the JMS Destination Availability Helper API

® Strategies for Uniform Distributed Queue Consumers

* Strategies for Subscribers on Uniform Distributed Topics

D.1 Introduction

A distributed destination (DD) is a group of JMS physical destinations (a group of
queues or a group of topics) that is accessed as a single logical destination. Messages
are load balanced across members, and clients can failover between member
destinations.

Distributed destination users that don't leverage MDBs may encounter problems with
consumer applications. These include:

¢ Failing to ensure that all DD members are serviced by consumers.

* Unprocessed messages accumulating on DD members that have no consumers.

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper APl D-1

Controlling DD Producer Load Balancing

e DD Consumers not automatically rebalancing in the event of a JMS server
migration, WebLogic Server restart, or any other event that results in DD member
changes.

To address these use cases, WebLogic Server provides the JMS Destination
Availability Helper APIs and advanced topic features in Developing Advanced
Pub/Sub Applications.

D.2 Controlling DD Producer Load Balancing

Before discussing consumer load balancing, it is helpful to first explore producer load
balancing basics and best practices.

e Basic JMS
® Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)

* Senders to Replicated Distributed Topics (RDTs)

D.2.1 Basic JMS

A JMS program sets up message sends in three stages:
1. Clients create a JMS connection into WebLogic using a JMS connection factory.
2. Clients use the connection to create JMS sessions and senders.

3. Clients use the senders to send messages.

In WebLogic JMS, the WebLogic server that the client is connected to is called the
client's connection host, and messages always route from the sender, through its
connection host, and then on to a destination that's in the same cluster as the
connection host. Connections stay pinned to their connection host for the life of the
connection.

A WebLogic connection factory can be targeted at one or more WebLogic servers. If a
client is running on the same WebLogic server where a connection factory is targeted,
then the factory always returns a connection with a connection host that is the same
server as the client (the connection is local). On the other hand, if a client is not
running on a WebLogic server that is included in its connection factory targets, the
factory automatically load balances among the targets and returns a connection to one
of them.

When working with a distributed destination, senders should always send to the JNDI
name of the DQ or PDT (its "logical name") instead of sending to the JNDI names of
the individual members, as this enables automatic load balancing behavior.

D.2.2 Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)

The default behavior for a sender to a DQ or PDT is: If there are members that run on
the sender’s connection host, all sent messages go to one of these local members,
otherwise messages move in a round-robin among all members.

To force messages from the same DQ or PDT sender to move in a round-robin among
all active members even when local members reside on the sender's connection host,
use a custom connection factory with Server Affinitysettofal se and Load

Bal ance settot r ue.

D-2 Developing JMS Applications for Oracle WebLogic Server

Using the JMS Destination Availability Helper API

D.2.3 Senders to Replicated Distributed Topics (RDTSs)

Senders to RDTs always load balance once and then pin to a particular member for all
messages - this member becomes the "sender host". After a message arrives on the
sender host, the message is automatically replicated to every subscription on every
RDT member.

If you want to control the initial load balance decision for the sender host so that it is
not biased towards being the same as its connection host, then use a connection factory
with Server Affinity configured tof al se (defaultist r ue), and Load Balance
configured to t r ue (the default).

D.3 Using the JMS Destination Availability Helper API

The following sections provide information on how to use the
JMBDest i nati onAvai l abi |l ityHel per APIs:

e Overview

* General Flow

¢ Handling the weblogic.jms.extension.DestinationDetail
® Best Practices for Consumer Containers

¢ Interoperability Guidelines

® Security Considerations

e Transaction Considerations

D.3.1 Overview

When a consumer is created using the clientj avax. j ms APl and a DD logical JNDI
name is specified, the consumer is load balanced to an active DD member and remains
pinned to that member over its lifetime. If new members become active after all
consumers were created, then the new members have no consumers.

The JMBDest i nat i onAvai | abi | i t yHel per APIs provide a way to get
notifications when destinations become available or unavailable. These notifications
can help ensure that an application creates consumers on all DD members even when
there are unavailable members at the time the application is initialized. The same
mechanism can also be used to detect availability of other types of destinations (not
just WebLogic distributed destinations, but also regular destinations and foreign
vendor destinations).

Applications register a notification listener with the helper by specifying JNDI context
parameters and the JNDI name of a destination. For DDs, the helper notifies listeners
when members become available and unavailable, as they are undeployed, added as a
new member, migrated, shut down, or restarted.

Note that MDBs in WebLogic Server internally use this same mechanism for both local
MDBs (deployed in the same cluster as a DD) and remote MDBs (deployed in a cluster
that is separate from the cluster that hosts the DD). MDBs provide an out-of-the-box
solution that achieves the same dynamic adaptability to DD topology changes that the
JMBDest i nati onAvai | abi | ityHel per APIs provide.

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper APl D-3

Using the JMS Destination Availability Helper API

D.3.2 General Flow

Applications that use the JMSDest i nat i onAvai | abi | i t yHel per APIs should
follow these general steps:

1. Implement the
webl ogi c. j ms. ext ensi ons. Desti nati onAvai | abl eLi st ener interface to
provide behavior as per step 3 below.

2. Register interest with the helper by specifying JNDI context properties (typically
just a URL and context factory), the JNDI name of the destination, and a listener
instance. Do not specify a URL if the client is running in the same cluster as the
DD.

inport java.util.Hashtable;
inport javax.nam ng. Cont ext;
i mport webl ogi c. j ms. ext ensi ons. JMSDest i nati onAvai | abi | it yHel per;

Hasht abl e context Props = new Hashtabl e();

cont ext Props. put (j avax. nam ng. Cont ext . PROVI DER_URL, nyURL);

cont ext Props. put (Context. | NI TI AL_CONTEXT_FACTCRY, "webl ogi c.jndi.W.Initial Context
Factory");

JMBDest i nati onAvail abi | ityHel per dah = JMSDesti nationAvail abilityHel per.getlnstan
ce();

Regi strationHandl er rh = dah.register(
cont ext Properties,
destinati onJNDI Nane,
myDest i nati onAvai | abl eLi st ener

)

3. Handle listener callbacks. Callbacks are single-threaded for each listener instance,
so no two callbacks occur concurrently.

a. onDestinationsAvail abl e(): Typically the first notification.
Implementations of this callback usually react by creating zero or more
consumers on each given destination, and if this fails, periodically retrying.

b. onDesti nati onsUnavai | abl e() : This callback is usually used to destroy
existing consumers on the destination.

c. onFai |l ure(): This callback is usually used simply to log a failure. The
helper continues to retry internally and make subsequent callbacks, but
administrators may need to see the failure. The helper makes a best effort to
just call theonFai | ur e() method once for the same repeated failures.

4. When you are done, unregister interest in a destination by calling the
r h. unregi st er () method.

D.3.3 Handling the weblogic.jms.extension.DestinationDetail

As described previously, an onDest i nat i onsAvai | abl e() notification indicates
that a stand alone destination, foreign destination, or distributed destination member
has become available. The notification consists of a list of Dest i nat i onDet ai |
instances, where key information is obtained by calling theget Dest i nat i onType(),
get JNDI Nane(),i sLocal W.SServer (), andi sLocal C ust er () on each Detail.

D-4 Developing JMS Applications for Oracle WebLogic Server

Using the JMS Destination Availability Helper API

The destination detail helps determine the actions that the caller should take. If the
destination is of type DD_QUEUE, REPLI CATED_DT, or PARTI TI ONED_DT then the
detail's get JNDI Nanme() method returns the JNDI name of a specific DD member and
the caller may or may not want to deploy instances of the application consumer on the
member. If the destination is of type PHYSI CAL or FOREI GN, then the application
treats the destination as a regular destination.

Especially when working with DDs, it is highly recommended that you take
advantage of the co-location flags in Dest i nat i onDet ai | . You can determine the
co-location nature of a destination by calling i sLocal W.SSer ver (), and

i sLocal d ust er () . See Best Practice for Local Server Consumers.

For more information about APIs and their methods, see DestinationDetail in Java API
Reference for Oracle WebLogic Server.

D.3.4 Best Practices for Consumer Containers

The following sections provide best practice guidelines for consumer containers:

When to Register and Unregister

URL Handling

Failure Handling

JNDI Context Handling

* JMS Connection Handling

D.3.4.1 When to Register and Unregister

1. Register with JMSDest i nati onAvai | abi | i t yHel per at application
deployment time. Do not fail the deployment if the helper calls the onFai | ur e()
callback on your listener (assume it could be an intermittent failure).

2. Unregister with JMSDest i nat i onAvai | abi | i t yHel per at application
undeployment time.

D.3.4.2 URL Handling

1. If the client is running on the same server or same cluster as the destination, then
don't specify a URL when registering with the helper or creating a JNDI context.
This ensures that the helper creates a local context.

2. Consider logging a single warning if i sLocal Cl ust er () ori sLocal Server ()
returns t r ue, but a URL was specified (as no URL is needed in this case).

D.3.4.3 Failure Handling

1. Log the errors reported by onFai | ur e() notifications, so that the application
developer can have a chance to correct possible configuration/application errors.
Avoid repeatedly logging the same exception. The helper continues to retry
internally and make subsequent callbacks on success or different types of failures,
but administrators may need to see the failures. The error may be caused by an
application or administrative error such as an incorrect URL, invalid security
information, or non-existent destination. It might also be caused by temporary
unavailability of the JNDI context host or the destination.

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper APl D-5

Using the JMS Destination Availability Helper API

When a JMS call throws an exception, or when a JMS connection exception
listener reports a connection failure, close the connection. Once all resources have
been cleaned up, then periodically attempt to re-initialize all resources. Re-
initialization generally involves creating a context, performing JNDI lookups, and
then creating a connection, session, and a consumer.

Avoid immediately retrying after a failure. Instead periodically retry every few
seconds to avoid overloading the server.

D.3.4.4 JNDI Context Handling

1.

In general, avoid creating multiple JNDI initial context instances to the same
server or cluster.

Note:

It may be necessary to use additional context instances to work around some
security problems, especially in inter-domain scenarios.

Call cl ose() on a context on undeploy to prevent a memory leak.

Call cl ose() on a context and re create on any failure (including a lookup
failure).

D.3.4.5 JMS Connection Handling

1.

For JMS connections, always register a standard JMS connection "exception
listener".

On an onException(), close the connection and periodically retry JNDI lookups,
recreating a JMS connection, and setting up consumers in another thread.

Close connections on undeploy to prevent memory leaks.

Instead of sharing a WebLogic Server connection among multiple sessions,
consider creating one connection per session. With WebLogic Server, multiple
connections allow for better load balancing. There is no performance penalty
when working with WebLogic Server, but this might have unexpected overhead
with foreign vendors, because some foreign vendors create a TCP/IP socket or a
similarly expensive resource for each connection.

D.3.5 Interoperability Guidelines

The JMSDestinationAvailabilityHelper in Java API Reference for Oracle WebLogic Server
includes details about usage and behavior of the various methods available, including
details about interoperability guidelines discussed in the following sections:

API Availability

Foreign Contexts
Destination Type Support
Unavailable Notifications

Interoperating with WebLogic Server 9.0 and Earlier Distributed Queues

D-6 Developing JMS Applications for Oracle WebLogic Server

Using the JMS Destination Availability Helper API

¢ Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed Topics

e DestinationDetail Fields

D.3.5.1 API Availability

The public JMS Destination Availability Helper APl is available on AS11gR1PS2
(WebLogic Server version 10.3.3) and later clients and servers.

D.3.5.2 Foreign Contexts

The context properties that are specified when registering a notification listener with
the DA Helper can resolve to any valid JNDI context, including contexts from foreign
vendors and older versions of WebLogic Server.

For foreign (non-WebLogic) contexts, the foreign JNDI vendor's classes must be in the
current classpath and the Cont ext . | NI TI AL_CONTEXT_FACTORY property must
reference the foreign vendor JNDI context factory class name.

D.3.5.3 Destination Type Support

The JMBDest i nat i onAvai | abi | i t yHel per API works with any type of
destination that can be registered in a JNDI context, including non-distributed
destinations and foreign vendor destinations. However, unavailable notifications are
only generated for DD members and certain Dest i nat i onDet ai | fields apply only
to DD members. Unavailable notifications do not apply to foreign destinations.

D.3.5.4 Unavailable Notifications

Unavailable notifications only apply to DD type destinations (DQ_QUEUE,
PARTITIONED_DT, REPLICATED_DT).

D.3.5.5 Interoperating with WebLogic Server 9.0 and Earlier Distributed Queues

When interoperating with a WebLogic Server 9.0 or later DDs, the DA Helper
generates notifications for each individual member of the DD, when working with
versions prior to 9.0, the helper only generates a single Dest i nat i onDet ai |
notification which contains the logical JNDI name for the DD destination and

get Desti nati onType() returns PHYSI CAL.

WebLogic Server 9.0 and earlier DDs are usually treated as a regular destination, and
consequently have the same limitations as outlined in Application Design Limitations
When Using Replicated Distributed Topics.

D.3.5.6 Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed Topics

In releases prior to WebLogic Server 10.3.4, there are no features that enable
unrestricted (non-exclusive) client IDs or shared subscriptions.

Note:

For information about how to configure unrestricted client-ids and shared
subscriptions, see Configure an Unrestricted ClientID and Configure Shared
Subscriptions in Administering [MS Resources for Oracle WebLogic Server.

To determine if a destination is a WebLogic 10.3.4.0 topic or later, ensure that the
destination type is PHYSI CAL_TOPI C, REPLI CATED_DT or PARTI TI ONED_DT and

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper APl D-7

Using the JMS Destination Availability Helper API

not FOREI GN_TOPI Cand thati sAdvancedTopi cSupported() returnstrue. A
topic prior to WebLogic Server 10.3.4.0:

e Will never be a PARTI TI ONED_DT.

e PHYSI CAL_TOPI Cs are usually treated as regular topics and are limited to one
consumer per subscription.

Automatic attempts to durably subscribe to individual members of WebLogic 10.3.4.0
and earlier DT when a logical DT name is specified are not recommended. Oracle
recommends that your applications do not support this option and log an error
informing users that need durable subscriptions on a of WebLogic 10.3.4.0 and earlier
DT to directly specify the JNDI name of a member instead of specifying the logical DT
name.

When subscribing non-durably to a distributed topic prior to WebLogic Server
10.3.4.0, Oracle recommends creating a consumer on any single member JNDI name,
or on the logical DR name, and ignoring all other notifications (one subscriber gets all
messages sent to the DT and there can be only one consumer thread on the
subscription).

D.3.5.7 DestinationDetail Fields

The behavior of some destination detail fields changes based on the type of
destination, the JMS vendor, and, when working WebLogic JMS, the WebLogic Server
version. See J]MSDestinationAvailabilityHelper in Java API Reference for Oracle WebLogic
Server.

D.3.6 Security Considerations

The following sections provide information about implementing security using the
Java EE and WebLogic Server security models:

¢ WebLogic Server Security Model

¢ Passing Credentials Between Threads
¢ When to Use Cross-Domain Security
¢ Authentication of Users

¢ Securing Destinations

® Securing Wire Data

D.3.6.1 WebLogic Server Security Model

WebLogic Server credential propagation is thread based in most cases. The current
thread credentials are established by specifying them when creating a JNDI context or
application descriptor. These credentials are automatically propagated along with any
RMI-based calls between JVMs including WebLogic JMS calls.

D.3.6.2 Passing Credentials Between Threads

The subject associated with a JNDI context is lost if the context instance is passed to
and used in a different thread, which can cause security problems in some multi
domain application scenarios. The following sections provide methods on passing
credentials:

® Using the Same Thread

D-8 Developing JMS Applications for Oracle WebLogic Server

Using the JMS Destination Availability Helper API

® Pass as Anonymous User

e Cache and Reuse a Subject from the Initial Context

D.3.6.2.1 Using the Same Thread

If possible, you can avoid the issue by using the same thread to create the context,
perform all JMS and JNDI operations, and close the context.

D.3.6.2.2 Pass as Anonymous User

Use an anonymous subject if the JMS destination and JNDI resources are not secured.
In particular, when interoperating among multiple WebLogic domains, it is usually
simplest to force all calls to use an anonymous subject if the JMS destination and JNDI
resources are not secured. Non-anonymous credentials are typically only valid for a
particular domain, leading to security exceptions if an attempt is made to use them for
a different domain.

D.3.6.2.3 Cache and Reuse a Subject from the Initial Context

The following code provides an example of how to cache a subject and associate it
with another thread using an anonymous user.

import java.security.PrivilegedExceptionAction;
inmport java.security.PrivilegedActionException;

i mport javax.security.auth. Subject;
i mport webl ogi c. security. Security;

class M/Cass {

/1 don't make the cached subject public
private Subject subject;

MW ass() {
subj ect = Security.get Current Subject();

}

voi d doSomet hi ng() {

/1 run some operation as the subject on the original thread

try {
Security. runAs(subject, new Privil egedExcepti onAction() {

public Object run() throws Exception {
/1 do sonet hing;
return null; // or return sone (bject

30K
} catch (PrivilegedActionException e) {

/1 handl e exception

}
}
}

D.3.6.3 When to Use Cross-Domain Security

Cross-Domain Security is a feature introduced in WebLogic Server 10.0 for
establishing security across two or more WebLogic Server domains. WebLogic Server
establishes a security role for cross-domain users and uses the WebLogic Credential
Mapping security provider in each domain to store the credentials to be used by the
cross-domain users. The cross-main security feature can be enabled on a per domain
basis. A cross-domain credential mapping must be configured for each remote domain

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper APl D-9

Using the JMS Destination Availability Helper API

where internal communications needs to be secure. JTA, MDBs, and JMS are the three
subsystems that depend on this feature. For more information about how to configure
Cross-Domain security, see:

¢ Enabling Trust Between WebLogic Server Domains in Administering Security for
Oracle WebLogic Server

® Using Cross Domain Security in Developing JMS Applications for Oracle WebLogic
Server

¢ SAF and Cross Domain Security in Administering the Store-and-Forward Service for
Oracle WebLogic Server

¢ Configuring Cross Domain Security in Developing JTA Applications for Oracle
WebLogic Server

e Using MDBs With Cross Domain Security in Developing Message-Driven Beans for
Oracle WebLogic Server

D.3.6.4 Authentication of Users

The following sections provide methods to provide the username and password when
accessing JMS, which authenticates an application user, and also authorizes an
application for JNDI and JMS operations.

e Specifying Credentials for a JNDI Context

® Specifying Credentials for a JMS Connection

¢ Using Credentials of a Foreign JMS Server JNDI Context
* Using Credentials of a Foreign JMS Server Connection

D.3.6.4.1 Specifying Credentials for a JNDI Context

In order to access JMS resources, an application must have access to the JNDI
provider. The credentials can be supplied when a application code creates an initial
context to the JNDI provider. The thread that establishes the initial context carries the
subject, and is therefore used for all sub sequential operations. When an application is
running on a WebLogic Server and no server URL and security credentials are
provided while creating an initial context, the thread continues to have the same
credentials that were on the thread before the initial context was created. When the
thread that creates an initial context closes the context, the thread will resume the
original security credentials that are on the thread before creating the context.

D.3.6.4.2 Specifying Credentials for a JMS Connection

The Connecti onFact ory. cr eat eConnecti on() call optionally supports a
username and password. The credentials that are provided at the connection creation
time do not have any affect with respect to security in JMS operations on the
connection that is created (This is a WebLogic JMS specific behavior for WebLogic JMS
Java clients, with the exception of the .NET client). The credentials are only be used to
check, whether or not the user is a valid user in the domain where the connection is
created.

D.3.6.4.3 Using Credentials of a Foreign JMS Server JNDI Context

Configure the Foreign JMS Server instance with JNDI Properties to gain access to the
JNDI provider. The JNDI properties contain the options for setting the security
principal and credentials.

D-10 Developing JMS Applications for Oracle WebLogic Server

Strategies for Uniform Distributed Queue Consumers

D.3.6.4.4 Using Credentials of a Foreign JMS Server Connection

The user name and password that can be specified when configuring a Foreign
Connection Factory mapping are ignored unless you use an EJB or Servlet resource
reference to look up the JMS connection factory. See Improving Performance Through
Pooling.

D.3.6.5 Securing Destinations

WebLogic JMS provides the ability to specify ACLs for destinations. This enables the
destination to be secured and only authorized users are allowed to perform operations
on that destination. See Java Messaging Service (JMS) Resources in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

D.3.6.6 Securing Wire Data

When an application must protect JMS data passed on a wire, configure the network
to use SSL. See Configuring SSL in Administering Security for Oracle WebLogic Server.

D.3.7 Transaction Considerations

WebLogic Server JTA transaction propagation is thread-based. The thread that starts a
transaction should be the one that commits or rolls back the transaction. If there is a
WebLogic JTA transaction on the current thread when you perform send orr ecei ve
operations on a WebLogic JMS destination, then the JMS resources are automatically
enlisted with the WebLogic transaction manager, and there is no need to perform your
own enlistment.

You only need to do explicit "manual” enlistment when there is a need for WebLogic
JMS resources to participate in a foreign or third-party transaction, or there's a need
for a non-WebLogic destination to participate in a transaction. Enlisting with a foreign
transaction manager (TM) is not directly supported on WebLogic JMS stand-alone
clients. EJB and Servlet resource references enable automatic enlistment of non-
WebLogic JMS vendors with the WebLogic TM.

Applications should not use transacted sessions if JMS operations are required to
participate in a global XA— transaction. Global transactions require use of XA-based
connection factories, while local transactions use non-XA based JMS connection
factories.

D.4 Strategies for Uniform Distributed Queue Consumers

A consumer application can be either running in the same JVM of a WebLogic Server
or not, which are called a "server side consumer" and "stand-alone consumer"
respectively.

While a JMS UDQ consumer is deployed on a WebLogic Server or cluster, the
application can either run on the same cluster/server as the UDQ, or on a different
cluster. We call these two different application configurations the local case and the
remote case respectively.

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper APl D-11

Strategies for Uniform Distributed Queue Consumers

Note:

Oracle recommends using MDBs to implement advanced message distribution
modes using replicated and partitioned distributed topics. For detailed
information about advanced publish/subscribe application design using
MDBs, see Developing Advanced Pub/Sub Applications and Configuring and
Deploying MDBs Using Distributed Topics in Developing Message-Driven Beans
for Oracle WebLogic Server.

For application that cannot use MDBs in their application architecture for some
reason, the following guidelines should be followed:

* General Strategies

e Best Practice for Local Server Consumers

D.4.1 General Strategies

In order to for an application to receive all the messages that are sent to a UDQ, the
application must make sure that it creates one consumer on each member of the UDQ
using the member JNDI name. This requires that applications know the topology of
the domains and UDQ configuration, and this is where
JMSDestinationAvailabilityHelper can help.

The general strategy is that each deployment instance of a particular application
should register with JMSDest i nat i onAvai | abi | i t yHel per. The listener will
receive notifications about member availability.

¢ Upon receipt of an onDest i nat i onsAvai | abl e() notification, the application
gets a list of Dest i nat i onDet ai | instances for all available members, and then it
must create one or more consumer instances using the member JNDI name for each
member in the list. For remote consumers, each instance of the application should
create a consumer on each member of the UDQ. For local consumers, the
application should create a consumer on the local UDQ member only. See Best
Practice for Local Server Consumers for more details.

* Upon receipt of an onDest i nati onsUnavai | abl e() notification, the
application gets a list of Dest i nati onDet ai | instances for all destinations that
becomes unavailable since the last notification. Then for each member destination
in the list, the application must find the consumer previously created for the
member destination and close it.

D.4.2 Best Practice for Local Server Consumers

An application should be deployed on the same server, group of servers, or cluster
that host the UDQ whenever possible. Under this configuration, for best performance,
the application should receive messages only from the local members; local members
can be determined using the Dest i nati onDet ai | i sLocal W.SCl ust er () call if
the servers are in a cluster or the i sLocal W.SSer ver () call for individual servers or
individual cluster members. This approach yields high performance because all
messaging is local (it avoids transferring messages over network calls), and still
ensures that all members are serviced by consumers.

In some use cases, the local server optimization network savings does not outweigh
the benefit of distributing message processing for unbalanced queue loads across all
JVMs in a cluster. This is especially a concern when message backlogs develop

D-12 Developing JMS Applications for Oracle WebLogic Server

Strategies for Subscribers on Uniform Distributed Topics

unevenly throughout the cluster, and message processing is expensive. In these use
cases, the optimization should be avoided in favor of the general strategy model for
remote consumers.

D.5 Strategies for Subscribers on Uniform Distributed Topics

Note:

Oracle recommends using MDBs to implement advanced message distribution
modes using replicated and partitioned distributed topics. For detailed
information about advanced publish/subscribe application design using
MDBs, see Developing Advanced Pub/Sub Applications and Configuring and
Deploying MDBs Using Distributed Topics in Developing Message-Driven Beans
for Oracle WebLogic Server.

For all clustered and distributed applications that process messages from a UDT,
Oracle recommends using product 10.3.4 or later topics in combination with the
following settings:

® Set the Client ID Policy to Unr est ri ct ed. See Configure an Unrestricted ClientID
in Administering JMS Resources for Oracle WebLogic Server.

¢ Set Subscription Sharing Policy to SHARABLE. See Configure Shared Subscriptions
in Administering [MS Resources for Oracle WebLogic Server.

* Use the JMSDest i nat i onAvai | abi | i t yHel per API to get the notification of
member availability

* Always create subscribers on the member destinations.

WebLogic JMS has two types of Uniform distributed topics:

* A replicated distributed topic (RDT) has forwarding capability among its members.
As a result, each member of a RDT has a copy of all messages that are sent to the
RDT.

® A partitioned distributed topic (PDT) does not have forwarding capability among
its members. As a result, each member of a PDT has its own copy of all messages
that were sent to this particular member. This is a new type of DT introduced in
WebLogic Server 10.3.4.0. See Configuring Partitioned Distributed Topics in
Administering JMS Resources for Oracle WebLogic Server.

The following subsections discuss configuration requirements and programming
patterns when using RDTs and PDTs:

® One Copy Per Instance

* One Copy Per Application

D.5.1 One Copy Per Instance

The one copy per instance pattern ensures that each instance gets a copy of each
message published to a topic. For example, if each instance is a JVM, then this pattern
ensures that each JVM gets a copy of each message sent to the source topic. The
following sections provide information on developing design patterns based on one
copy per instance:

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper APl D-13

Strategies for Subscribers on Uniform Distributed Topics

* General Pattern Design Strategy for One Copy Per Instance

e Best Practice for Local Server Consumers using One Copy Per Instance

D.5.1.1 General Pattern Design Strategy for One Copy Per Instance

In order for the instances of a distributed application/container to receive messages
that are sent to a DT in a one-copy-per-instance manner, each instance must do the
following:

1. Choose a base d i ent | D that will be shared by all connections and a durable
subscription name that will be shared by all durable subscribers. The subscription
name should uniquely identify your application instance. For example, if each
instance runs on a differently named WebLogic Server JVM, then the subscription
name for each instance could be based on the WebLogic Server name.

2. Create JMS connections and sessions according to standard JMS specifications. The
connection's Cl i ent | Dshould be set to the base Cl i ent | Dappended by an
identifier that is unique for this instance, For example, use the WebLogic Server
name or the third-party application server that the application or container is
running on. The Cl i ent | DPol i cy should be set to Unrestri ct ed.

3. Set the Subscri pti onShari ngPol i cy to Shar abl e.

4. Register with the JMSDest i nati onAvai | abi | i t yHel per for membership
availability notifications, specifying the JNDI name of the DT.

5. Set an Exception listener.

6. Upon receipt of an onDest i nat i onsAvai | abl e() notification, create a
subscriber on each newly available destination in the list. If the DT is a replicated
DT, the subscriber must use a "NOT JM5_W._ DDFor war ded" selector or prefix
"(NOT JMS_W._DDFor war ded) AND' to the existing application provided
selector.

7. Upon receipt of an onDest i nat i onsUnavai | abl e() notification, close the
corresponding consurer () .

D.5.1.2 Best Practice for Local Server Consumers using One Copy Per Instance

An application should be deployed on the same server, group of servers, or cluster
that hosts the UDT whenever possible. Under this configuration, the application needs
follow the same steps as outlined in General Pattern Design Strategy for One Copy Per
Instance except that it creates consumers only on local members. You can use the
JMVBDest i nati onAvai |l abilityHel per. DestinationDetail.isLocal W.SSer
ver () call to determine if a member is local.

D.5.2 One Copy Per Application

The one-copy-per application pattern ensures that an application receives one copy of
each message sent to a topic, even when the application is clustered across multiple
JVMs. For example: If messages "A", "B", and "C" are sent to a topic, the messages are
processed once by the application, instead of getting one-copy-per application
instance.

The following sections provide information about developing design patterns based
on one-copy-per application:

D-14 Developing JMS Applications for Oracle WebLogic Server

Strategies for Subscribers on Uniform Distributed Topics

¢ General Pattern Design Strategy for One Copy Per Application

¢ Best Practice for Local Server Consumers Using One Copy Per Application

D.5.2.1 General Pattern Design Strategy for One Copy Per Application

In order for the instances of a distributed application/container to receive messages
that are sent to a DT in a one-copy-per-application manner, each instance must do the
following:

1. Choose a base O i ent | Dfor all connections and the durable subscription name for
all durable subscribers. The subscription name should uniquely identify your
application instance. For example, if each instance runs on a differently named
WebLogic Server JVM, the subscription name for each instance could be based on
the WebLogic Server name then..

2. Create JMS connections and sessions according to standard JMS specifications. The
connection's Cl i ent | Dshould be set to the base Cl i ent | D. The
C i entlDPolicy should setto Unrestri cted.

3. Set the Subscri pti onShari ngPol i cy to Shar abl e.

4. Register with the JMSDest i nati onAvai | abi | it yHel per for membership
availability notifications, specifying the JNDI name of the DT.

5. Set an Exception listener.

6. Upon receipt of an onDest i nat i onsAvai | abl e() notification, create a
subscriber on each newly available destination in the list. If the DT is a replicated
DT, the subscriber needs to use a "NOT JMS_W._DDFor war ded" selector or prefix
"(NOT JMS_W._DDFor war ded) AND' to the existing application provided
selector.

D.5.2.2 Best Practice for Local Server Consumers Using One Copy Per Application

An application should be deployed on the same server, group of servers, or cluster
that hosts the UDT whenever possible. Under this configuration, the application must
follow the same step outlined in General Pattern Design Strategy for One Copy Per
Application except that it creates consumers only on local members. You can use the
JMVBDest i nati onAvai |l abi | ityHel per. DestinationDetail.isLocal W.SSer
ver () call to determine if a member is local.

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper APl D-15

Strategies for Subscribers on Uniform Distributed Topics

D-16 Developing JMS Applications for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 Samples and Tutorials for the JMS Developer
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

	1.5 New and Changed JMS Features in This Release

	2 Understanding WebLogic JMS
	2.1 Overview of the Java Message Service and WebLogic JMS
	2.1.1 What Is the Java Message Service?
	2.1.2 Implementation of Java Specifications
	2.1.3 WebLogic JMS Architecture

	2.2 Understanding the Messaging Models
	2.2.1 Point-to-Point Messaging
	2.2.2 Publish/Subscribe Messaging
	2.2.3 Message Persistence

	2.3 Value-Added Public JMS API Extensions
	2.3.1 WebLogic Server Value-Added JMS Features

	2.4 Understanding the JMS API
	2.4.1 ConnectionFactory
	2.4.1.1 Using the Default Connection Factories
	2.4.1.2 Configuring and Deploying Connection Factories
	2.4.1.3 The ConnectionFactory Class

	2.4.2 JMSContext
	2.4.3 Connection
	2.4.4 Session
	2.4.4.1 WebLogic JMS Session Guidelines
	2.4.4.2 Session Subclasses
	2.4.4.3 Non-Transacted Sessions
	2.4.4.4 Transacted Sessions

	2.4.5 Destination
	2.4.5.1 Distributed Destinations

	2.4.6 MessageProducer and MessageConsumer
	2.4.7 Messages
	2.4.7.1 Message Header Fields
	2.4.7.2 Message Property Fields
	2.4.7.3 Message Body

	2.4.8 ServerSessionPoolFactory
	2.4.9 ServerSessionPool
	2.4.10 ServerSession
	2.4.11 ConnectionConsumer

	3 Best Practices for Application Design
	3.1 Message Design
	3.1.1 Serializing Application Objects
	3.1.2 Serializing Strings
	3.1.3 Server-side Serialization
	3.1.4 Selection

	3.2 Message Compression
	3.3 Message Properties and Message Header Fields
	3.4 Message Ordering
	3.5 Topics Vs. Queues
	3.6 Asynchronous Vs. Synchronous Consumers
	3.7 Persistent Vs. Non Persistent Messages
	3.8 Deferring Acknowledges and Commits
	3.9 Using AUTO_ACK for Non Durable Subscribers
	3.10 Alternative Qualities of Service, Multicast and No-Acknowledge
	3.10.1 Using MULTICAST_NO_ACKNOWLEDGE
	3.10.2 Using NO_ACKNOWLEDGE

	3.11 Avoid Multi threading
	3.12 Using the JMSXUserID Property
	3.13 Performance and Tuning

	4 Enhanced Support for Using WebLogic JMS with EJBs and Servlets
	4.1 Enabling WebLogic JMS Wrappers
	4.1.1 Declaring a JMSContext Object Using @Inject Annotation
	4.1.1.1 Specifying a Lookup Name in JMSContext Injection
	4.1.1.2 Determining the Authentication Type for JMSContext Injection

	4.1.2 Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors
	4.1.2.1 Declaring a Wrapped JMS Factory using Deployment Descriptors
	4.1.2.2 Declaring JMS Destinations using Deployment Descriptors
	4.1.2.2.1 Declaring JMS Destinations Using the jms-destination Element
	4.1.2.2.2 Declaring JMS Destinations Using the resource-env-ref Element

	4.1.3 Referencing a Packaged JMS Application Module In Deployment Descriptor Files
	4.1.3.1 Referencing Application Modules in a weblogic-application.xml Descriptor
	4.1.3.2 Referencing JMS Resources in a WebLogic Application
	4.1.3.3 Referencing JMS Resources in a Java EE Application

	4.1.4 Declaring JMS Destinations and Connection Factories Using Annotations
	4.1.4.1 Injecting Resource Dependency into a Class
	4.1.4.2 Non-Injected EJB 3.0 Resource Reference Annotations

	4.1.5 Avoid Transactional XA Interfaces

	4.2 Disabling Wrapping and Pooling
	4.3 What's Happening Under the JMS Wrapper Covers
	4.3.1 Automatically Enlisting Transactions
	4.3.2 Container-Managed Security
	4.3.3 Connection Testing
	4.3.4 Java EE Compliance
	4.3.5 Pooled JMS Connection Objects
	4.3.6 Monitoring Pooled Connections

	4.4 Improving Performance Through Pooling
	4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects
	4.4.2 Speeding Up Object Creation Through Caching
	4.4.3 Enlisting the Proper Transaction Mode

	4.5 Simplified Access to Foreign JMS Providers
	4.6 Examples of JMS Wrapper Functions
	4.6.1 Examples of JMS Wrapper Functions
	4.6.1.1 ejb-jar.xml
	4.6.1.2 weblogic-ejb-jar.xml
	4.6.1.3 PoolTest.java
	4.6.1.4 PoolTestHome.java
	4.6.1.5 PoolTestBean.java

	4.6.2 Sending a JMS Message in a Java EE Container
	4.6.2.1 Using comp/env

	4.6.3 Dependency Injection
	4.6.4 EJB 3.0 Wrapper Without Injection

	5 Understanding the Simplified API Programming Model
	5.1 About JMS 2.0 Simplified API
	5.2 New Interfaces in the Simplified JMS API
	5.2.1 JMSContext
	5.2.2 JMSProducer
	5.2.3 JMSConsumer

	5.3 New Methods to Simplify Messaging in JMS 2.0
	5.3.1 Method to Extract the Body Directly from a Message
	5.3.2 Method to Receive a Message Body Directly
	5.3.3 Method to Create a Session

	6 Developing a Basic JMS Application
	6.1 Importing Required Packages
	6.2 Setting Up a JMS Application
	6.2.1 Using a Simplified API to Set Up a JMS Application
	6.2.1.1 Look Up a Connection Factory in JNDI
	6.2.1.2 Look Up a Queue or Topic
	6.2.1.3 Create a JMSContext Object
	6.2.1.4 Create JMSProducer and JMSConsumer Objects
	6.2.1.5 Sending and Receiving Messages using the Simplified API

	6.2.2 Using the Classic API to Set Up a JMS Application
	6.2.2.1 Step 1: Look Up a Connection Factory in JNDI
	6.2.2.2 Step 2: Create a Connection Using the Connection Factory
	6.2.2.2.1 Create a Queue Connection
	6.2.2.2.2 Create a Topic Connection

	6.2.2.3 Step 3: Create a Session Using the Connection
	6.2.2.3.1 Create a Session Using the createSession Method
	6.2.2.3.2 Create a Queue Session
	6.2.2.3.3 Create a Topic Session

	6.2.2.4 Step 4: Look Up a Destination (Queue or Topic)
	6.2.2.4.1 Using a JNDI Name
	6.2.2.4.2 Use a Reference

	6.2.2.5 Step 5: Create Message Producers and Message Consumers
	6.2.2.5.1 Create QueueSenders and QueueReceivers
	6.2.2.5.2 Create TopicPublishers and TopicSubscribers

	6.2.2.6 Step 6a: Create the Message Object (Message Producers)
	6.2.2.7 Step 6b: Optionally Register an Asynchronous Message Listener
	6.2.2.8 Step 7: Start the Connection

	6.2.3 Example: Setting Up a Point-to-Point JMS Application Using the Classic API
	6.2.4 Example: Setting Up a Publish-Subscribe JMS Application Using the Classic API

	6.3 Sending Messages
	6.3.1 Sending Messages Using the Simplified JMS API
	6.3.2 Sending Messages Using the Classic JMS API
	6.3.2.1 Create a Message Object
	6.3.2.2 Define a Message
	6.3.2.3 Send the Message to a Destination Using MessageProducer

	6.3.3 Sending a Message Asynchronously
	6.3.4 Setting JMSProducer and MessageProducer Attributes
	6.3.5 Example: Sending Messages Within a Point-toPoint Application
	6.3.6 Example: Sending Messages Within a Publish/Subscribe Application

	6.4 Receiving Messages
	6.4.1 Receive Messages Asynchronously Using the Simplified API
	6.4.2 Receiving Messages Asynchronously using the Classic API
	6.4.3 Asynchronous Message Pipeline
	6.4.3.1 Configuring a Message Pipeline
	6.4.3.2 Behavior of Pipelined Messages

	6.4.4 Receive Messages Synchronously Using the Simplified API
	6.4.5 Receiving Messages Synchronously Using the Classic API
	6.4.5.1 Example: Receiving Messages Synchronously Within a PTP Application
	6.4.5.2 Example: Receiving Messages Synchronously Within a Pub/Sub Application

	6.4.6 Use Prefetch Mode to Create a Synchronous Message Pipeline
	6.4.7 Recovering Received Messages

	6.5 Acknowledging Received Messages
	6.6 Releasing Object Resources

	7 Managing Your Applications
	7.1 Managing Rolled Back, Recovered, Redelivered, or Expired Messages
	7.1.1 Setting a Redelivery Delay for Messages
	7.1.1.1 Setting a Redelivery Delay
	7.1.1.2 Overriding the Redelivery Delay on a Destination

	7.1.2 Setting a Redelivery Limit for Messages
	7.1.2.1 Configuring a Message Redelivery Limit on a Destination
	7.1.2.2 Configuring an Error Destination for Undelivered Messages

	7.1.3 Ordered Redelivery of Messages
	7.1.3.1 Required Message Pipeline Setting for the Messaging Bridge and MDBs
	7.1.3.2 Performance Limitations

	7.1.4 Handling Expired Messages

	7.2 Setting Message Delivery Times
	7.2.1 Setting a Delivery Time on Producers
	7.2.2 Setting a Delivery Time on Messages
	7.2.3 Overriding a Delivery Time
	7.2.3.1 Interaction with the Time-to-Live Value
	7.2.3.2 Setting a Relative Time-to-Deliver Override
	7.2.3.3 Setting a Scheduled Time-to-Deliver Override
	7.2.3.4 JMS Schedule Interface

	7.3 Managing Connections
	7.3.1 Defining a Connection Exception Listener
	7.3.2 Accessing Connection Metadata
	7.3.3 Starting, Stopping, and Closing a Connection

	7.4 Managing Sessions
	7.4.1 Defining a Session Exception Listener
	7.4.2 Closing a Session

	7.5 Managing Destinations
	7.5.1 Dynamically Creating Destinations
	7.5.2 Dynamically Deleting Destinations
	7.5.2.1 Required Conditions for Deleting Destinations
	7.5.2.2 What Happens when a Destination Is Deleted
	7.5.2.3 Message Timestamps for Troubleshooting Deleted Destinations
	7.5.2.4 Deleted Destination Statistics

	7.6 Using Temporary Destinations
	7.6.1 Creating a Temporary Queue
	7.6.2 Creating a Temporary Topic
	7.6.3 Deleting a Temporary Destination

	7.7 Setting Up Durable Subscriptions
	7.7.1 Defining the Persistent Store
	7.7.2 Setting the Client ID Policy
	7.7.3 Defining the Client ID
	7.7.4 Creating a Sharable Subscription Policy
	7.7.5 Creating Subscribers for a Durable Subscription
	7.7.5.1 Using JMS 2.0 API
	7.7.5.2 Using JMS 1.1 API

	7.7.6 Best Practice: Always Close Failed JMS ClientIDs
	7.7.7 Deleting Durable Subscriptions
	7.7.8 Modifying Durable Subscriptions
	7.7.9 Managing Durable Subscriptions

	7.8 Setting and Browsing Message Header and Property Fields
	7.8.1 Setting Message Header Fields
	7.8.2 Setting Message Property Fields
	7.8.3 Browsing Header and Property Fields

	7.9 Filtering Messages
	7.9.1 Defining Message Selectors Using SQL Statements
	7.9.2 Defining XML Message Selectors Using XML Selector Method
	7.9.3 Displaying Message Selectors
	7.9.4 Indexing Topic Subscriber Message Selectors to Optimize Performance

	7.10 Sending XML Messages
	7.10.1 WebLogic XML APIs
	7.10.2 Using a String Representation
	7.10.3 Using a DOM Representation

	8 Using JMS Module Helper to Manage Applications
	8.1 Configuring JMS System Resources Using JMSModuleHelper
	8.2 Configuring JMS Servers and Store-and-Forward Agents
	8.3 JMSModuleHelper Sample Code
	8.3.1 Creating a JMS System Resource
	8.3.2 Deleting a JMS System Resource

	8.4 Security Considerations for Anonymous Users
	8.5 Best Practices When Using JMSModuleHelper

	9 Using Multicasting with WebLogic JMS
	9.1 Benefits of Using Multicasting
	9.2 Limitations of Using Multicasting
	9.3 Using WebLogic Server Unicast
	9.4 Configuring Multicasting for WebLogic Server
	9.4.1 Prerequisites for Multicasting
	9.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber
	9.4.3 Step 2: Set Up the Message Listener
	9.4.4 Dynamically Configuring Multicasting Configuration Attributes
	9.4.5 Example: Multicast Time-to-Live

	10 Using Distributed Destinations
	10.1 What Is a Distributed Destination?
	10.2 Why Use a Distributed Destination
	10.3 Creating a Distributed Destination
	10.4 Types of Distributed Destinations
	10.4.1 Uniform Distributed Destinations
	10.4.2 Weighted Distributed Destinations

	10.5 Using Distributed Destinations
	10.5.1 Using Distributed Queues
	10.5.1.1 Queue Forwarding
	10.5.1.2 QueueSenders
	10.5.1.3 QueueReceivers
	10.5.1.4 QueueBrowsers

	10.5.2 Using Replicated Distributed Topics
	10.5.2.1 TopicPublishers
	10.5.2.2 TopicSubscribers
	10.5.2.3 Deploying Message-Driven Beans on a Distributed Topic

	10.5.3 Using Partitioned Distributed Topics
	10.5.4 Accessing Distributed Destination Members
	10.5.5 Distributed Destination Failover

	10.6 Using Message-Driven Beans with Distributed Destinations
	10.7 Common Use Cases for Distributed Destinations
	10.7.1 Maximizing Production
	10.7.2 Maximizing Availability
	10.7.2.1 Using Queues
	10.7.2.2 Using Topics

	10.7.3 Stuck Messages

	11 Using the Message Unit-of-Order
	11.1 What is Message Unit-Of-Order?
	11.2 Understanding Message Processing with Unit-of-Order
	11.2.1 Message Processing According to the JMS Specification
	11.2.2 Message Processing with Unit-of-Order
	11.2.3 Message Delivery with Unit-of-Order

	11.3 Message Unit-of-Order Case Study
	11.3.1 Joe Orders a Book
	11.3.2 What Happened to Joe's Order
	11.3.3 How Message Unit-of-Order Solves the Problem

	11.4 How to Create a Unit-of-Order
	11.4.1 Creating a Unit-of-Order Programmatically
	11.4.2 Creating a Unit-of-Order Administratively
	11.4.2.1 Configuring Unit-of-Order for a Connection Factory and Destinations

	11.4.3 Unit-of-Order Naming Rules

	11.5 Getting the Current Unit-of-Order
	11.6 Message Unit-of-Order Advanced Topics
	11.6.1 What Happens When a Message Is Delayed During Processing?
	11.6.2 What Happens When a Filter Makes a Message Undeliverable
	11.6.3 What Happens When Destination Sort Keys Are Used
	11.6.4 Using Unit-of-Order with Distributed Destinations
	11.6.4.1 Using the Path Service
	11.6.4.2 Using Hash-Based Routing
	11.6.4.3 Configuring Routing on Uniform Distributed Destinations

	11.6.5 Using Unit-of-Order with Topics
	11.6.5.1 Unit-of-Order and Distributed Topics
	11.6.5.2 Unit-of-Order, Topics, and Message Driven Beans
	11.6.5.2.1 Use JTA Transactions
	11.6.5.2.2 Set Pool Size to One

	11.6.6 Using Unit-of-Order with JMS Message Management
	11.6.7 Using Unit-of-Order with WebLogic Store-and-Forward
	11.6.8 Using Unit-of-Order with WebLogic Messaging Bridge

	11.7 Limitations of Message Unit-of-Order

	12 Using Unit-of-Work Message Groups
	12.1 What Are Unit-of-Work Message Groups?
	12.2 Understanding Message Processing with Unit-of-Work
	12.2.1 Basic UOW Terminology
	12.2.2 Rules For Processing UOW Messages
	12.2.3 Message Unit-of-Work Case Study

	12.3 How to Create a Unit-of-Work Message Group
	12.3.1 How to Write a Producer to Set UOW Message Properties
	12.3.1.1 Example UOW Producer Code
	12.3.1.2 UOW Exceptions

	12.3.2 How to Write a UOW Consumer/Producer For an Intermediate Destination
	12.3.3 Configuring Terminal Destinations
	12.3.3.1 UOW Message Routing for Terminal Distributed Destinations

	12.3.4 How to Write a UOW Consumer for a Terminal Destination

	12.4 Message Unit-of-Work Advanced Topics
	12.4.1 Message Property Handling
	12.4.1.1 System-Generated Properties
	12.4.1.2 Final Component Message Properties
	12.4.1.3 Component Message Heterogeneity
	12.4.1.4 ReplyTo Message Property

	12.4.2 UOW and Uniform Distributed Destinations
	12.4.3 UOW and Store-and-Forward Destinations

	12.5 Limitations of UOW Message Groups

	13 Using Transactions with WebLogic JMS
	13.1 Overview of Transactions
	13.2 Using JMS Transacted Sessions
	13.2.1 Step 1: Set Up JMS Application, Creating Transacted Session
	13.2.2 Step 2: Perform Desired Operations
	13.2.3 Step 3: Commit or Roll Back the JMS Transacted Session

	13.3 Using JTA User Transactions
	13.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted Session
	13.3.2 Step 2: Look Up the User Transaction in JNDI
	13.3.3 Step 3: Start the JTA User Transaction
	13.3.4 Step 4: Perform Desired Operations
	13.3.5 Step 5: Commit or Roll Back the JTA User Transaction

	13.4 JTA User Transactions Using Message Driven Beans
	13.5 Example: JMS and EJB in a JTA User Transaction
	13.5.1 Step 1 Set Up the JMS Application
	13.5.2 Step 2 Look Up the User Transaction
	13.5.3 Step 3 Start the JTA User Transaction
	13.5.4 Step 4 Perform the Desired Operations
	13.5.5 Step 5 Commit the JTA User Transaction

	13.6 Using Cross-Domain Security

	14 Developing Advanced Pub/Sub Applications
	14.1 Overview of Advanced High Availability Concepts
	14.1.1 WebLogic Messaging High Availability Features
	14.1.2 Application Design Limitations When Using Replicated Distributed Topics
	14.1.3 Advanced Topic Features

	14.2 Advanced Messaging Features for High Availability
	14.2.1 Shared Subscriptions and Client ID Policy
	14.2.1.1 What is the Subscription Key
	14.2.1.2 Configuring a Shared Subscription

	14.2.2 How Sharing a Non Durable Subscription Works
	14.2.2.1 How a Shared Subscription Policy for a Non durable Subscription Is Determined
	14.2.2.2 How a Non durable Subscription Is Closed

	14.2.3 How Sharing a Durable Subscription Works
	14.2.3.1 How a Shared Subscription Policy for a Durable Subscription is Determined
	14.2.3.2 How to Unsubscribe a Durable Subscription
	14.2.3.3 Considerations When Unsubscribing a Durable Subscriber
	14.2.3.4 Managing Durable Subscriptions
	14.2.3.4.1 Naming Conventions for JMSDurableSubscriberRuntimeMbean

	14.3 Design Strategies When Using Topics
	14.3.1 One-Copy-Per-Instance Design Strategy
	14.3.2 One-Copy-Per-Application Design Strategy

	14.4 Considerations When Using JMS 2.0 Shared Subscriptions
	14.5 Best Practices for Distributed Topics

	15 Recovering from a Server Failure
	15.1 Automatic JMS Client Failover
	15.1.1 Automatic Reconnect Limitations
	15.1.2 Automatic Failover for JMS Producers
	15.1.2.1 Sample Producer Code
	15.1.2.2 Re usable ConnectionFactory Objects
	15.1.2.3 Re usable Destination Objects
	15.1.2.4 Reconnected Connection Objects
	15.1.2.4.1 Special Cases for Reconnected Connections

	15.1.2.5 Reconnected Session Objects
	15.1.2.5.1 Special Cases for Reconnected Sessions

	15.1.2.6 Reconnected MessageProducer Objects
	15.1.2.6.1 Special Case for Distributed Destinations

	15.1.3 Configuring Automatic Failover for JMS Consumers
	15.1.3.1 Sample Consumer Client Code
	15.1.3.2 Configuring Automatic Client Refresh Options
	15.1.3.3 Common Cases for Reconnected Consumers
	15.1.3.3.1 Synchronous Consumers
	15.1.3.3.2 Asynchronous Consumers

	15.1.3.4 Special Cases for Reconnected Consumers
	15.1.3.4.1 Consumers of Distributed Destinations
	15.1.3.4.2 Message-Driven EJBs
	15.1.3.4.3 Consumer Connections with a ClientID for Durable Subscriptions
	15.1.3.4.4 Non Durable Subscriptions and Possible Missed Messages
	15.1.3.4.5 Duplicate Messages
	15.1.3.4.6 Variations Due to Acknowledge Modes
	15.1.3.4.7 Reconnecting with Migrated JMS Destinations In a Cluster

	15.1.4 Explicitly Disabling Automatic Failover on JMS Clients
	15.1.4.1 Programmatically
	15.1.4.2 Administratively

	15.1.5 Best Practices for JMS Clients Using Automatic Failover
	15.1.5.1 Always Catch exceptions
	15.1.5.2 Use Transactions to Group Message Work
	15.1.5.3 JMS Clients Should Always Call the close() Method

	15.2 Programming Considerations for WebLogic Server 9.0 or Earlier Failures
	15.3 Manually Migrating JMS Data to a New Server

	16 WebLogic JMS C API
	16.1 What Is the WebLogic JMS C API?
	16.2 System Requirements
	16.3 Design Principles
	16.3.1 Java Objects Map to Handles
	16.3.2 Thread Utilization
	16.3.3 Exception Handling
	16.3.4 Type Conversions
	16.3.4.1 Integer (int)
	16.3.4.2 Long (long)
	16.3.4.3 Character (char)
	16.3.4.4 String

	16.3.5 Memory Allocation and Garbage Collection
	16.3.6 Closing Connections
	16.3.7 Helper Functions

	16.4 Security Considerations
	16.5 Implementation Guidelines
	16.6 Workarounds for Client Failure Thread Detach Issue

	A Deprecated WebLogic JMS Features
	A.1 Defining Server Session Pools
	A.1.1 Step 1: Look Up the Server Session Pool Factory in JNDI
	A.1.2 Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	A.1.2.1 Create a Server Session Pool for Queue Connection Consumers
	A.1.2.2 Create a Server Session Pool for Topic Connection Consumers

	A.1.3 Step 3: Create a Connection Consumer
	A.1.3.1 Create a Connection Consumer for Queues
	A.1.3.2 Create a Connection Consumer for Topics

	A.1.4 Example: Setting Up a PTP Client Server Session Pool
	A.1.4.1 Step 1 Look Up the Server Session Pool Factory
	A.1.4.2 Step 2 Create a Server Session Pool
	A.1.4.3 Step 3 Create a Connection Consumer

	A.1.5 Example: Setting Up a Publish/Subscribe Client Server Session Pool
	A.1.5.1 Step 1
	A.1.5.2 Step 2 Create a Server Session Pool
	A.1.5.3 Step 3

	B FAQs: Integrating Remote JMS Providers
	B.1 Understanding JMS and JNDI Terminology
	B.2 Understanding Transactions
	B.3 How to Integrate with a Remote Provider
	B.4 Best Practices When Integrating with Remote Providers
	B.5 Using Foreign JMS Server Definitions
	B.6 Using EJB/Servlet JMS Resource References
	B.7 Using WebLogic Store-and-Forward
	B.8 Using WebLogic JMS SAF Client
	B.9 Using a Messaging Bridge
	B.10 Using Messaging Beans
	B.11 Using AQ JMS

	C How to Look Up a Destination
	C.1 Use a JNDI Name
	C.2 Use a Create Destination Identifier
	C.2.1 Default WebLogic CDI Syntax
	C.2.2 Custom WebLogic CDI Syntax
	C.2.3 Server Affinity When Looking Up Destinations

	C.3 Examples of Syntax Used to Look Up Destinations
	C.3.1 Non distributed Destinations
	C.3.1.1 JNDI Syntax for Non distributed Destinations
	C.3.1.2 CDI Syntax for Non distributed destinations

	C.3.2 Uniform Distributed Destinations
	C.3.2.1 JNDI Syntax for UDDs
	C.3.2.2 CDI Syntax for UDDs

	C.3.3 Weighted Distributed Destinations
	C.3.3.1 JNDI Syntax for WDDs
	C.3.3.2 CDI Syntax for WDDs

	D Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API
	D.1 Introduction
	D.2 Controlling DD Producer Load Balancing
	D.2.1 Basic JMS
	D.2.2 Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)
	D.2.3 Senders to Replicated Distributed Topics (RDTs)

	D.3 Using the JMS Destination Availability Helper API
	D.3.1 Overview
	D.3.2 General Flow
	D.3.3 Handling the weblogic.jms.extension.DestinationDetail
	D.3.4 Best Practices for Consumer Containers
	D.3.4.1 When to Register and Unregister
	D.3.4.2 URL Handling
	D.3.4.3 Failure Handling
	D.3.4.4 JNDI Context Handling
	D.3.4.5 JMS Connection Handling

	D.3.5 Interoperability Guidelines
	D.3.5.1 API Availability
	D.3.5.2 Foreign Contexts
	D.3.5.3 Destination Type Support
	D.3.5.4 Unavailable Notifications
	D.3.5.5 Interoperating with WebLogic Server 9.0 and Earlier Distributed Queues
	D.3.5.6 Interoperating with WebLogic Server 10.3.4.0 and Earlier Distributed Topics
	D.3.5.7 DestinationDetail Fields

	D.3.6 Security Considerations
	D.3.6.1 WebLogic Server Security Model
	D.3.6.2 Passing Credentials Between Threads
	D.3.6.2.1 Using the Same Thread
	D.3.6.2.2 Pass as Anonymous User
	D.3.6.2.3 Cache and Reuse a Subject from the Initial Context

	D.3.6.3 When to Use Cross-Domain Security
	D.3.6.4 Authentication of Users
	D.3.6.4.1 Specifying Credentials for a JNDI Context
	D.3.6.4.2 Specifying Credentials for a JMS Connection
	D.3.6.4.3 Using Credentials of a Foreign JMS Server JNDI Context
	D.3.6.4.4 Using Credentials of a Foreign JMS Server Connection

	D.3.6.5 Securing Destinations
	D.3.6.6 Securing Wire Data

	D.3.7 Transaction Considerations

	D.4 Strategies for Uniform Distributed Queue Consumers
	D.4.1 General Strategies
	D.4.2 Best Practice for Local Server Consumers

	D.5 Strategies for Subscribers on Uniform Distributed Topics
	D.5.1 One Copy Per Instance
	D.5.1.1 General Pattern Design Strategy for One Copy Per Instance
	D.5.1.2 Best Practice for Local Server Consumers using One Copy Per Instance

	D.5.2 One Copy Per Application
	D.5.2.1 General Pattern Design Strategy for One Copy Per Application
	D.5.2.2 Best Practice for Local Server Consumers Using One Copy Per Application

