Oracle® Fusion Middleware

Developing JMS .NET Client Applications for Oracle WebLogic
Server

12¢(12.2.1.2.0)

E77973-02

December 2016

This document is written for application developers who want
to develop JMS .NET client applications that access WebLogic
JMS resources.

ORACLE"



Oracle Fusion Middleware Developing JMS .NET Client Applications for Oracle WebLogic Server, 12¢
(12.2.1.2.0)

E77973-02
Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

PIEIACE ... v
Documentation AcCeSSIDIlity .........couoviiueiiiiiiciec s v
CONVENIONS ..ottt ettt a b ettt a b e st et a s a ettt ss e sasaeaens v

1 Introduction and Roadmap

1.1 Document Scope and AUIENCE. ... 11
1.2 Guide to this DOCUMENL ........cooiiiiiiiiiiie e 1-1
1.3 Related DOCUMENEATION .....c.oviiiiiiiiiciiiiccceee et e 1-2
1.4 Samples and Tutorials for the JMS Developer ... 1-2

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials..........c.cccoveueieriuiiinnnnnnes 1-2

2 Overview of the WebLogic JMS .NET Client

2.1 What is the WebLogic JMS .NET CHent? .........cccccooiiiioiiiiiieieiccti e 2-1
2.1.1 Supported JIMS FEatUres..........ccocoiiiiiiiiiiiiiciiiccctrcee e 2-1
2.2 How the WebLogic JMS .NET Client WOrks .........ccccccoviviininniiiiiirniiincnnnreeeeenes 2-2
2.3 Configuring WebLogiC SEIVET ... 2-4
2.3.1 Configuring the Listen Port ........ccccooooiiiiiiiii 2-4
2.3.2 Configuring JMS Resources for the JMS NET Client .........ccccovvvviviiniiniiiniiinnn. 2-4
2.3.3 Set System Properties..........cccooiiviiiiiiiiiniiiiiii s 2-4
2.4 Interoperating with Previous WebLogic Server Releases..............cocoooverniiirireininicniinnicnnnnn, 2-5
2.5 Understanding the WebLogic JMS .NET APL.........cccccooiiiiic 2-5

3 Installing and Copying the WebLogic JMS .NET Client Libraries

3.1 Installing the WebLogic JMS .NET Client ..........cccooooiiiiiiiriiiccec s 3-1
3.1.1 Location of Installed COMPONENLS.........ooviiuriiiriiiiiiiiiicc s 3-1
3.2 Copying the Library to the Client Machine ...........ccccoeueueiirrriiiinrrercereeeeeeeeeeeeeeeeeenes 3-2

4 Developing a Basic JMS Application Using the WebLogic JIMS .NET API

4.1 Creating a JMS NET Client AppLCation ... 4-1
4.2 Example: Writing a Basic PTP JMS .NET Client Application ..........cccoiiiiiiiinininiiinincnne. 4-2
421 PrerequiSites.......ccoiiiiiiiiiiiiiiciiececc s 4-3
4.2.2 BaSIC STEPS cuuviiiecet s 4-3



4.3

Using Advanced Concepts in J]MS .NET Client Applications..........ccccoceveiirieiiiiicnieiiicnnen, 4-5

5 Programming Considerations

51

52

53
54

5.5

5.6

5.7

5.8

59

Using WebLogic JMS EXteNSIONS.........ccocueiiiiiieiiiiciee i 5-1
5.1.1 Message COMPTIESSION .....c.cvvvrvimiriiiiiiiiiiiiniict s 5-4
5.1.2 UNIt-Of-OrdeT ..o 5-5
5.1.3 Message Delivery TIme ... 5-5
5.1.4 One-Way Message Sends .........ccoeueueiiiurieiiiicicieccie it 5-5
5.1.5 Include user-id as JMSXUSETIA ........ccccoueririririninininenesteereteeet ettt 5-5
5.1.6 Message Delivery AttemMPts.......cociiiiiiiiiiiiiiiicccceecee e 5-5
Limitations of Using the WebLogic JMS .NET Client ..........cccccoeevviviineiniiceeceecccnne, 5-5
5.2.1 Unsupported JMS 1.1 Standard Features.............cccooeinioiiiiiiiiiiccc, 5-6
5.2.2 Unsupported JMS 1.1 Optional Features .............ccooouemiiiiiiiiiiiiiccc, 5-6
5.2.3 Unsupported WebLogic JMS EXteNnSions.........ccccovivviiiimiiniiiiniiniiiccnnnne 5-6
5.2.4 TranSACHONS ....cooviiiiiiiiieictc s 5-7
Exchanging Messages Between Different Language Environments...........cccccooviiiiinnnnee. 5-7
Specifying the URL FOrmat .........cccouoiiiiiiiiic 5-7
5.4.1 Using DNS Alias Host NameS.........ccoooiiiiiiiiiiiicc e 5-8
Implementing Security With the JMS .INET CHeNt .......ccccccooiiiiiiiiiiiiicccccccccceeenene 5-8
Configuring Logging and Debugging ............cccccociiiiiiiiiiiiiiiciiciccccececcccceeens 5-9
5.6.1 SEIVET SIAE ...ovuiiiiciiiicce et 5-9
5.6.2 ClHENt SIde......couimiiiiiiiiiiii s 5-10
Understanding Socket and Threading Behavior ..o, 5-11
Data Conversion Between Java and .NET .........ccccooveiiiiiiiiniiiniseeseteeiee et ee e 5-12
5.8.1 Endian CONVErSIONS ........ccooeiuiiiiiuiieiiiiiiie et 5-12
5.8.2 Signed and Unsigned Byte CONVETrSioNns..........ccocoiiiiiiiiiiiiiiicccccccccnens 5-13
5.8.3 Byte Array Transfers.........o 5-14
5.8.4 Time CONVEISIONS. ....ccoiimimiririiiiiriii e 5-14
Best PractiCes .......oovovoviuiiiieec s 5-15

A JMS .NET Client Sample Application

Index



Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing JMS .NET Client Applications for Oracle WebLogic Server

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. conl pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.



http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs




1

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Developing
JMS .NET Client Applications for Oracle WebLogic Server.

* Document Scope and Audience
e Guide to this Document
e Related Documentation

¢ Samples and Tutorials for the J]MS Developer

1.1 Document Scope and Audience

This document is a resource for software developers who want to develop and
configure applications that include WebLogic Server Java Message Service (JMS). It
also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of WebLogic Server J]MS
for a particular application

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning JMS topics. For links to WebLogic Server documentation and
resources for these topics, see Related Documentation.

It is assumed that the reader is familiar with Java EE and JMS concepts. This document
emphasizes the value-added features provided by WebLogic Server JMS and key
information about how to use WebLogic Server features and facilities to get a JMS
application up and running.

1.2 Guide to this Document

¢ This chapter, Introduction and Roadmap, introduces the organization of this guide.

* Overview of the WebLogic JMS .NET Client, provides an overview of the
WebLogic JMS .NET client, illustrates how a JMS .NET client application accesses
WebLogic JMS resources, and provides a brief summary of the WebLogic JMS .NET
APIL.

¢ Installing and Copying the WebLogic JMS .NET Client Libraries, describes the
JMS NET client components installed on a WebLogic Server platform, the location
to which they are installed, and how to copy them to a .NET Framework machine.

Introduction and Roadmap 1-1



Related Documentation

¢ Developing a Basic J]MS Application Using the WebLogic JMS .NET API, describes
the steps required to develop a basic JMS application in C# using the JMS .NET
APIL.

* Programming Considerations, provides programming considerations and best
practices to use when creating a JMS .NET client application.

* JMS .NET Client Sample Application, provides a .NET client sample program
written in C# which includes basic features of the WebLogic JMS .NET APIL

1.3 Related Documentation

This document contains JMS-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

* Administering JMS Resources for Oracle WebLogic Server for information about
configuring and managing JMS resources.

® Developing [MS Applications for Oracle WebLogic Server is a guide to JMS API
programming with WebLogic Server.

* Administering the Store-and-Forward Service for Oracle WebLogic Server for
information about the benefits and usage of the Store-and-Forward service with
WebLogic JMS.

o Administering the WebLogic Persistent Store for information about the benefits and
usage of the system-wide WebLogic Persistent Store.

* Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

1.4 Samples and Tutorials for the JMS Developer

In addition to this document, Oracle provides a variety of code samples and tutorials
for JMS developers. The examples and tutorials illustrate WebLogic Server JMS in
action, and provide practical instructions on how to perform key JMS development
tasks.

Oracle recommends that you run some or all of the JMS examples before developing
your own JMS applications.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE _HOVE\ user _pr oj ects

\ dommai ns\ medr ec directory, where ORACLE_HOME is the directory you specified as
the Oracle Home when you installed Oracle WebLogic Server.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (E]Bs)
that work together to process requests from web applications, web services, and

1-2 Developing JMS .NET Client Applications for Oracle WebLogic Server



Samples and Tutorials for the JMS Developer

workflow applications, and future client applications. The application includes
message-driven, stateless session, stateful session, and entity EJBs.

Introduction and Roadmap 1-3



Samples and Tutorials for the JMS Developer

1-4 Developing JMS .NET Client Applications for Oracle WebLogic Server



2

Overview of the WebLogic JMS .NET Client

This chapter provides an overview of the WebLogic JMS .NET client, illustrates how a
JMS NET client application accesses WebLogic JMS resources, and provides a brief
summary of the WebLogic JMS .NET APL

It is assumed that the reader is familiar with .NET programming and JMS 1.1 concepts
and features.

This chapter includes the following sections:

e What is the WebLogic JMS .NET Client?

¢ How the WebLogic JMS .NET Client Works
e Configuring WebLogic Server

¢ Interoperating with Previous WebLogic Server Releases

Understanding the WebLogic J]MS .NET API

2.1 What is the WebLogic JMS .NET Client?

The WebLogic JMS .NET client is a fully-managed .NET runtime library and
application programming interface (API). It enables programmers to create client
applications using .NET C# or any other supported .NET programming languages to
access WebLogic Java Message Service (JMS) applications and resources.

WebLogic JMS is an enterprise-level messaging system that fully supports the JMS 1.1
Specification (see ht t p: / / www. or acl e. com t echnet wor k/ j ava/ j ns/

i ndex. ht m ) and also provides numerous WebLogic JMS Extensions to the standard
JMS APIs. For a summary of the WebLogic Server value-added JMS features, see
WebLogic Server Value-Added JMS Features in Administering JMS Resources for Oracle
WebLogic Server.

For complete details about all the classes and interfaces in the JMS .NET API], see the
Microsoft NET Messaging API for Oracle WebLogic Server documentation.

The WebLogic J]MS .NET client, which is bundled with WebLogic Server 10g Release 3
and higher, is supported on Microsoft .NET Framework versions 3.0 to 4.5.1.
Installation details are provided in Installing and Copying the WebLogic JMS .NET
Client Libraries.

2.1.1 Supported JMS Features

For this release, the WebLogic JMS .NET client supports the major standard features of
the JMS Version 1.1 Specification (see ht t p: / / www. or acl e. com t echnet wor k/
javaljms/index. ht m). For a list of the JMS 1.1 standard features that are not
supported, see Limitations of Using the WebLogic J]MS .NET Client .

Overview of the WebLogic JMS .NET Client 2-1


http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

How the WebLogic JMS .NET Client Works

In addition to the standard JMS 1.1 Specification support, the WebLogic JMS .NET
client also supports several WebLogic JMS extensions. For more information about the
features supported and how they can be used with the JMS .NET client, see Using
WebLogic JMS Extensions.

2.1.1.1 Messaging Models

The WebLogic JMS .NET client supports the following messaging models:

¢ The point-to-point (PTP) messaging model, which enables one application to send
a message to exactly one recipient.

e The publish/subscribe (pub/sub) messaging model, which enables an application
to send a message to multiple recipients.

Messages can be specified as persistent or non-persistent:

® Persistent messages are guaranteed to be delivered once-and-only-once. The message
will not be lost due to JMS server failure and it will not be redelivered once it is
acknowledged by an application. It is not considered sent until it has been safely
written to a file or database.

¢ Non-persistent messages are not stored. They are guaranteed to be delivered at-
most-once. Messages may be lost when there is a JMS provider failure and will not
be redelivered.

For more information, see Understanding the Messaging Models in Developing [MS
Applications for Oracle WebLogic Server.

2.1.1.2 Message Types

The WebLogic JMS .NET client supports the following message types, as defined in
the JMS 1.1 Specification (see ht t p: / / www. or acl e. coml t echnet wor k/
javaljms/index. htm):

* Message
* BytesMessage
* MapMessage

* ObjectMessage (between producers and consumers written in the same language
only)

* StreamMessage

¢ TextMessage

The XMLMessage type extension provided by WebLogic JMS is not supported in this
release. Such messages are automatically converted to a TextMessage type when
received by a .NET client.

For more information about using the supported message types, see Exchanging
Messages Between Different Language Environments.

2.2 How the WebLogic JMS .NET Client Works

The following figure illustrates how a JMS .NET client application running in a .NET
Framework CLR can access JMS resources deployed on WebLogic Server.

2-2 Developing JMS .NET Client Applications for Oracle WebLogic Server


http://www.oracle.com/technetwork/java/jms/index.html
http://www.oracle.com/technetwork/java/jms/index.html

How the WebLogic JMS .NET Client Works

Figure 2-1 JMS .NET Client Architecture

e
| Weblaogic Server 10.3

: or later Connection Host JMS Server

I
I
IS ' » Deslination
|
MNET Client ™ JMS NET sl [ ]
Client Host

\ Connection Host \ JMS Server

Connection Destiration
Factory B

Connection
Factory A

CLR

Note:

All of the WebLogic components shown in Figure 2-1 are hosted on a single
instance of WebLogic Server 10g Release 3 or later. In a multi-server or cluster
configuration, each of the WebLogic Server components can run on a separate
instance of WebLogic Server. However, the JMS .NET client host must run on
WebLogic Server 10g Release 3 or later, and the connection host and the JMS
server must run in the same WebLogic Server 9.x or later cluster.

The major components depicted in the illustration consist of the following:

* A JMS NET client written in C# or any supported .NET programming language,
running in a NET Framework CLR, that either produces messages to destinations
or consumes messages from destinations.

* A JMS .NET client host running on WebLogic Server 10g Release 3 or later that
provides the interface between the JMS .NET client and WebLogic JMS.

* A standard T3 protocol listen port configured on the .NET client host.
¢ One or more connection hosts (i.e., connection factories).

¢ One or more JMS servers that define a set of JMS destinations.

Traffic to the JMS servers is always routed from the .NET client through the JMS .NET
client host to the connection host to the JMS servers. Traffic to the JMS .NET client is
always routed from the JMS servers to the connection host and through the JMS .NET
client host to the .NET client.

A brief summary of the process used to exchange messages between the JMS .NET
client and a JMS server, as illustrated in Figure 2-1, is summarized in the following
steps:

1. The JMS .NET client establishes an initial T3 network connection with the
JMS .NET client host running on WebLogic Server 10g Release 3 or later.

2. The JMS .NET client obtains a connection factory from the JMS .NET client host.

3. The JMS .NET client host, in turn, obtains the connection factory from JNDIL

Overview of the WebLogic JMS .NET Client 2-3



Configuring WebLogic Server

4. The JMS .NET client creates a connection using the connection factory, which will
establish a connection from the JMS .NET client host to one of the connection hosts
where the connection factory resides.

5. When the JMS .NET client sends (produces) a message, the JMS .NET client host
sends it to the connection host, which in turn routes it to the JMS server hosting the
destination. Alternatively, when the JMS .NET client receives (consumes) a
message, the connection host routes it from the JMS server hosting the destination
to the JMS .NET client host, which passes the message to the JMS .NET client.

Instructions and examples for creating a JMS .NET client application are provided in
Developing a Basic JMS Application Using the WebLogic J]MS .NET APIL.

2.3 Configuring WebLogic Server

The following sections describe the configuration that must occur before a JMS .NET
client application can access JMS resources.

2.3.1 Configuring the Listen Port

The JMS .NET client requires that a listen port configured for T3 protocol is enabled on
the WebLogic Server instance hosting the JMS .NET client host. When you install
WebLogic Server, a default port is configured for use with T3 protocol. Because the
default port configuration can be changed or disabled, the system administrator needs
to ensure that the T3 protocol is enabled on the server's default port, or add a network
channel that supports the T3 protocol. For configuration information, see the following
topics:

¢ Configure default network connections in the Oracle WebLogic Server Administration
Console Online Help

* Understanding Network Channels in Administering Server Environments for Oracle
WebLogic Server

2.3.2 Configuring JMS Resources for the JMS .NET Client

Before a JMS .NET client application can access JMS resources deployed on WebLogic
Server, the WebLogic Server system administrator must configure the required JMS
resources, including the connection factories, JMS servers, and destinations. For
instructions for configuring JMS resources, see:

e Administering JMS Resources for Oracle WebLogic Server

* Configure Messaging in the Oracle WebLogic Server Administration Console Online
Help

2.3.3 Set System Properties

To enable JMS .NET clients developed prior to WebLogic Server 12.1.3 to interoperate
with WebLogic Server 12.1.3, set the following system property on your WebLogic
Server 12.1.3 instances:

- Dwebl ogi c. protocol .t 3.1 0gi n. repl yWthRel 10Cont ent =t r ue

The default value is f al se for interoperability with existing JMS .NET clients
developed prior to WebLogic Server 12.1.3.

2-4 Developing JMS .NET Client Applications for Oracle WebLogic Server



Interoperating with Previous WebLogic Server Releases

2.4 Interoperating with Previous WebLogic Server Releases

The JMS .NET client can communicate directly only with WebLogic Server 10g Release
3 and later. As shown in Figure 2-2, the JMS .NET client host must run on WebLogic
Server 10g Release 3 or later, however, the connection host and the JMS server can run
on WebLogic Server 9.x or later. Both the connection host and the JMS server must be
in the same cluster.

Figure 2-2 JMS .NET Client Interoperability
FWIEEL};; Server 10.3 | | Weblogic Server 3x orlater '
I or later :
I
I
I

Connection Host JMS Server

|

|

|

I |

I |

JMS l - JMS NET ,_La+-‘“ !

NET Client Client Host Ly |

I | \ |

|

\:Kl\ Connection Host M3 Server |

I : Connection 1 :

| | Destination I
| Factory B

! |

! |

! |

I |

To access destinations on WebLogic Server 9.x or later that are not in the same cluster
as the .NET client host running on 10g Release 3 or later, you must configure the
remote instance of WebLogic Server as a Foreign Server. For more information, see
Configuring Foreign Server Resources to Access Third-Party JMS Providers in
Administering JMS Resources for Oracle WebLogic Server.

Connection
Factory &

» Destination

i

CLR

Note:

Although you can also use Foreign Servers to connect to third-party JMS
providers using JMS Java clients, this feature is not supported in the WebLogic
JMS .NET client.

2.5 Understanding the WebLogic JMS .NET API

The following table lists the primary J]MS .NET API classes and interfaces used to
create a JMS .NET client application. For complete details about all the classes and
interfaces in the JMS .NET API, see the Microsoft .NET Messaging API for Oracle
WebLogic Serverdocumentation.

Table 2-1 WebLogic JMS .NET Classes and Interfaces

Interface/ Description
Class

The Const ant s family of classes is used to define commonly used constants/enumerations for
Constant s the APL

A Cont ext Fact ory is used to create contexts, which are network connections from the NET

Cont ext Fact or client to the client host.

y

Overview of the WebLogic JMS .NET Client 2-5



Understanding the WebLogic JMS .NET API

Table 2-1 (Cont.) WebLogic JMS .NET Classes and Interfaces
. _____________________________________________________________________________________|

Interface/ Description
Class

An | Cont ext object represents a network connection from the .NET client to the client host. It
is used to lookup destinations and connection factories, and to close the network connection
when it is no longer needed.

| Cont ext

An| Connect i onFact ory object encapsulates JMS connection configuration information. A

| Connect i onFa JMS .NET client looks up a connection factory using an | Cont ext object, and then uses it to

ctory create an | Connect i on with a JMS server.
. An | Connect i on object is the active connection between the JMS .NET client host and the JMS
| Connect i on connection host. Authentication optionally takes place during the creation of the connection. A
connection is used to create sessions.

, An | Sessi on object is a single-threaded entity for producing and consuming messages. A
| Sessi on session can create and service multiple message producers and consumers.

o An | Desti nati on object identifies a queue or topic. Queue and topic destinations manage the
| Destination messages delivered from the point-to-point and pub/sub messaging models, respectively.
| Tobi An | Topi ¢ object is pub/sub | Dest i nat i on that encapsulates a provider-specific topic name.

opi ¢

It is the way a client specifies the identity of a topic to JMS API methods. For those methods that
use an | Dest i nati on as a parameter, an | Topi ¢ object may be used as an argument. For
example, an | Topi ¢ can be used to create an | MessageConsuner and an

| MessagePr oducer by calling:

| Sessi on. Creat eConsuner (| Destination destination)
| Sessi on. Creat eProducer (| Destination destination)

An | Queue object is a point-to-point | Dest i nat i on that encapsulates a provider-specific
| Queue queue name. It is the way a client specifies the identity of a queue to JMS API methods.
Since | Queue and | Topi ¢ both inherit from | Dest i nat i on, for those methods that use an

I Desti nati on as a parameter, an | Queue object can be used as the argument. For example, an
I Queue can be used to create an | MessageConsuner and an | MessagePr oducer by calling:

| Sessi on. Creat eConsuner (| Queue queue)
| Sessi on. Creat eProducer (| Queue queue)

A JMS NET client uses an | MessageConsumner object to receive messages from a destination.

I MessageConsu ap | MessageConsumner object is created by passing an | Dest i nat i on object to a message-
mer consumer creation method supplied by a session.

A JMS NET client uses an | MessagePr oducer object to send messages to a destination. An
| MessageProdu MessagePr oducer object is created by passing an | Dest i nat i on object to a message-
cer

producer creation method supplied by a session.

2-6 Developing JMS .NET Client Applications for Oracle WebLogic Server



Understanding the WebLogic JMS .NET AP

Table 2-1 (Cont.) WebLogic JMS .NET Classes and Interfaces
. _____________________________________________________________________________________|

Interface/
Class

Description

| Message

The | Message interface is the root interface of all JMS messages. It defines the message header
and the Acknowledge method used for all messages.

JMS messages are composed of the following parts:

Header - All messages support the same set of header fields. Header fields contain values used
by both clients and providers to identify and route messages.

Properties - Each message contains a built-in facility for supporting application-defined
property values. Properties provide an efficient mechanism for supporting application-defined
message filtering.

Body - The JMS API defines several types of message body, which cover the majority of
messaging styles currently in use.

| MapMessage

An | MapMessage object is used to send a set of name-value pairs. The names are String objects,
and the values are primitive data types in the Java and C# programming languages. The names
must have a value that is not null, and not an empty string. The entries can be accessed
sequentially or randomly by name. The order of the entries is undefined. | MapMessage inherits
from the | Message interface and adds a message body that contains a map.

| Qbj ect Messag
e

An | Obj ect Message object is used to send a message that contains a serializable object in the
Java and C# programming languages. It inherits from the | Message interface and adds a body
containing a single reference to an object. C# objects cannot be read by Java programs, and vice
versa. For more information, see Exchanging Messages Between Different Language
Environments.

| Streamvessag
e

An | St r eamVessage object is used to send a stream of primitive types in the Java
programming language. It is filled and read sequentially. It inherits from the | Message
interface and adds a stream message body. Its methods are based largely on those found in
java.io. Dat al nput St r eamand j ava. i 0. Dat aCut put St ream

| Text Message

An | Text Message object is used to send a message containing a St r i ng. It inherits from the
| Message interface and adds a text message body.

| Byt esMessage

An | Byt esMessage object is used to send a message containing a stream of uninterpreted
bytes. It inherits from the | Message interface and adds a bytes message body. The receiver of
the message supplies the interpretation of the bytes.

Overview of the WebLogic JMS .NET Client 2-7



Understanding the WebLogic JMS .NET API

2-8 Developing JMS .NET Client Applications for Oracle WebLogic Server



3

Installing and Copying the WebLogic
JMS .NET Client Libraries

This chapter describes the JMS .NET client components installed on a WebLogic Server
platform, the location to which they are installed, and how to copy them to a .NET
Framework machine.

This chapter includes the following sections:
¢ Installing the WebLogic JMS .NET Client

¢ Copying the Library to the Client Machine

3.1 Installing the WebLogic JMS .NET Client

The WebLogic J]MS .NET Client is bundled with WebLogic Server 10g Release 3 and
later. When you perform a Complete installation of WebLogic Server on a supported
platform, including non-Windows platforms, the WebLogic JMS .NET Client is
installed by default. If you choose the Custom installation option, ensure that the
WebLogic Server Clients component of WebLogic Server is selected. If you deselect
this component, the WebLogic JMS .NET Client is not installed.

For a list of supported platforms for WebLogic Server, see Supported Configurations
in What’s New in Oracle WebLogic Server 12.2.1.2.0

For details about installing WebLogic Server, see Installing and Configuring Oracle
WebLogic Server and Coherence.

3.1.1 Location of Installed Components

The WebLogic JMS .NET client is installed in the following directory on the WebLogic
Server platform:

ORACLE_HOVE/ Wl server/ modul es/ com bea. webl ogi ¢. j ns. dotnetclient _X. x. X. X

where ORACLE_HOME is the top-level installation directory that you selected during
the installation process and X. X. X. X is the version number of the client. If there is
more than one .NET client module directory, its recommended to use the latest version
in order to obtain the most recent updates.

The JMS .NET client installation consists of the following components:

e \WbLogi c. Messagi ng. dl | —The fully-managed JMS .NET client library used by
the client for the JMS client application.

e \\blLogi c. Messagi ng. pdb—The debug version of the JMS .NET client library
that can be used by the client, together with the WebLogi c. Messagi ng. dl |, to
debug the JMS .NET client application.

Installing and Copying the WebLogic JMS .NET Client Libraries 3-1



Copying the Library to the Client Machine

e jms. dotnet.api.zi p—HTML and Windows help-style documentation for the
WebLogic J]MS .NET API

Note:

The WebLogic JMS .NET client API documentation is also available at
Microsoft NET Messaging API for Oracle WebLogic Server.

3.2 Copying the Library to the Client Machine

After installing WebLogic Server on a supported platform, you need to copy the
WebLogi c. Messagi ng. dl | library from the installation directory specified in
Location of Installed Components to your development directory on a supported .NET
client machine, and you need to ensure that your .NET application references the
library. The JMS .NET client is a fully-managed runtime library that is supported on
the following Windows platforms running version 3.0 to 4.5.1 of the .NET Framework:

e Windows 2003
e Windows XP

e Windows Vista

If you are using Visual Studio, you can add the WebLogi c. Messagi ng. dl | asa
reference assembly in your project as follows:

1. Select Project > References

2. Select Add Reference and specify the WebLogi c. Messagi ng. dl | from the
directory into which you copied it on the .NET machine

Optionally, you can also copy the debug version of the JMS .NET client library,
WebLogi c. Messagi ng. pdb, and the API documentation to your client machine, but
it is not required.

3-2 Developing JMS .NET Client Applications for Oracle WebLogic Server



A

Developing a Basic JMS Application Using
the WebLogic JMS .NET API

This chapter describes the steps required to develop a basic JMS application in C#
using the JMS .NET API The process for developing a JMS application using the
WebLogic JMS .NET client is very similar to the process used to develop a Java client.

This chapter includes the following sections:
¢ Creating a JMS .NET Client Application
* Example: Writing a Basic PTP JMS .NET Client Application

¢ Using Advanced Concepts in J]MS .NET Client Applications

4.1 Creating a JMS .NET Client Application

The following flowchart illustrates the steps in a basic JMS .NET application.

Developing a Basic JMS Application Using the WebLogic JIMS .NET API 4-1



Example: Writing a Basic PTP JMS .NET Client Application

Figure 4-1 Basic Steps in a JMS .NET Client Application

Step 1, Create a Context

h

Step 2. Look up JMS Connection Factory

h

Step 3. Look up JMS Destinations

Y

Step 4. Create a Connection Using the
Conmection Factory

Y

Step 5. Start the Connection

k4

Step 6. Create a Session Using the
Connecticn

k4

Step 7. Create Message Producers andfor
IMessage Consumers Using the Session

Y

Step & Send and/or Receive Messages
Using Producers and Consumers

Y

Step 9. Close the Connaction

Y

Step 10, Closa the Context

Note:

Creating and closing resources has relatively higher overhead in comparison
to sending and receiving messages. Oracle recommends that contexts be
shared between threads, and that other resources be cached for reuse. For
more information, see Best Practices.

4.2 Example: Writing a Basic PTP JMS .NET Client Application

The following example shows how to create a basic PTP JMS .NET client application,
written in C#. It uses synchronous receive on a queue configured using auto
acknowledge mode. A complete copy of the example is provided in JMS .NET Client
Sample Application.

4-2 Developing JMS .NET Client Applications for Oracle WebLogic Server



Example: Writing a Basic PTP JMS .NET Client Application

For more information about the INET API classes and methods used in this example,
see Understanding the WebLogic JMS .NET API, or the WebLogic Messaging API
Reference for .NET Clients documentation.

4.2.1 Prerequisites

Before proceeding, ensure that the system administrator responsible for configuring
WebLogic Server has configured the following:

e Listen port configured for T3 protocol on the server hosting the JMS .NET client
host. For more information, see Configuring the Listen Port.

® The required JMS resources, including the connection factories, JMS servers, and
destinations. For more information, see Configuring JMS Resources for the
JMS .NET Client.

4.2.2 Basic Steps

The following steps assume you have defined the required variables, including the
WebLogic Server host, the connection factory, and the queue and topic names at the
beginning of your program.

using System

using System Col | ections;

using System Col | ections. Generi c;
usi ng System Threadi ng;

usi ng VebLogi c. Messagi ng;

public class Messagi ngSanpl e
{
private string host
private int port
private string cf Nane
private string queueNane

"l ocal host";

7001;

"webl ogi c. j nms. Connecti onFactory";
"j ms. queue. Test Queuel”;

4.2.2.1 Step 1

Create a context to establish a network connection to the WebLogic Server host and
optionally login.

I Di ctionary<string, bject> paramvap = new Dictionary<string, Ooject>();

par amvap[ Const ant s. Cont ext . PROVI DER_URL] =
"t3://" + this.host + ":" + this.port;

| Context context = ContextFactory. CreateContext (paranmiap);

Developing a Basic JMS Application Using the WebLogic JIMS .NET API 4-3



Example: Writing a Basic PTP JMS .NET Client Application

Note:

The Provider_URL may contain multiple addresses, separated by commas. For
details about specifying multiple addresses, see Specifying the URL Format.

When multiple addresses are specified, the context tries each address in turn
until one succeeds or they all fail, starting at a random location within the list
of addresses, and rotating through all addresses. Starting at a random location
facilitates load balancing of multiple clients, as different client contexts will
randomly load balance their network connection to different .NET client host
servers.

Note:

You also have the option of supplying a username and password with the
initial context, as follows:

par anivap[ Const ant s. Cont ext . SECURI TY_PRI NCl PAL] = user nane;
par anvap[ Const ant s. Cont ext . SECURI TY_CREDENTI ALS] = passwor d;

4.2.2.2 Step 2
Look up the JMS connection factory.

| ConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

4.2.2.3 Step 3
Look up JMS destination resources in the context using their configured JNDI names.

| Queue queue = (| Queue)context.LookupDestination(this.queueNane);

4.2.2.4 Step 4

Create a connection using the connection factory. This establishes a JMS connection
from the .NET client host to the JMS connection host. The connection host will be one
of the servers that is in the configured target list for the connection factory, and which
can be the same as the .NET client host.

| Connection connection = cf.CreateConnection();

4.2.2,5 Step 5
Start the connection to allow consumers to get messages.

connection. Start();

4.2.2.6 Step 6
Create a session using the AUTO_ACKNOW_ EDGE acknowledge mode.

Note:

Sessions are not thread safe. Use multiple sessions if you need to run
producers and/or consumers concurrently. For an example using multiple
sessions, see the asynchronous example in JMS .NET Client Sample
Application.

4-4 Developing JMS .NET Client Applications for Oracle WebLogic Server



Using Advanced Concepts in JMS .NET Client Applications

| Sessi on session = connection. CreateSessi on(
Const ant s. Sessi onhvbde. AUTO_ACKNOALEDGE) ;

4.2.2.7 Step 7
Create a message producer and send a persistent message.

| MessageProducer producer = session. Creat eProducer (queue);

producer. Del i veryMbde = Constants. Del i veryMbde. PERS| STENT;

| Text Message sendMessage = session. Creat eText Message("My q nessage");
producer . Send( sendMessage) ;

4.2.2.8 Step 8

Create a message consumer and receive a message. Note that the message is
automatically deleted from the server because the session was created in
AUTO_ACKNOWLEDGE mode, as shown in Step 6.

| MessageConsuner consunmer = sessi on. Cr eat eConsuner (queue) ;
| Message recvMessage = consuner. Recei ve(500);

4.2.2,9 Step 9

Close the connection. Note that closing a connection also closes its child sessions,
consumers, and producers.

connection. G ose();

4.2.2.10 Step 10
Close the context.

context. Cl oseA | ();

Note:

cont ext . Cl ose() does not terminate the network connection until all the
IConnections have been closed. cont ext . O oseAl | () closes the network
connection and all open IConnections.

4.3 Using Advanced Concepts in JMS .NET Client Applications

JMS .NET Client Sample Application, provides a complete example of a J]MS .NET
client application, written in C#, that demonstrates some of the following advanced
concepts:

® The use of local transactions instead of acknowledge modes.

* Message persistence. For more information, see Persistent vs. Non-Persistent
Messages in Developing JMS Applications for Oracle WebLogic Server.

* Acknowledge modes. For more information, see Non-Transacted Session in
Developing JMS Applications for Oracle WebLogic Server.

* Exception listeners. For more information, see Best Practices.

Developing a Basic JMS Application Using the WebLogic JMS .NET API 4-5



Using Advanced Concepts in JMS .NET Client Applications

¢ Durable Subscriptions. For more information, see Setting Up Durable Subscriptions
in Developing [MS Applications for Oracle WebLogic Server.

For guidelines in the use of other advanced concepts in the JMS .NET client such as
interoperability, security, and best practices, see Programming Considerations.

4-6 Developing JMS .NET Client Applications for Oracle WebLogic Server



5

Programming Considerations

This chapter provides programming considerations and best practices to use when
creating a JMS .NET client application.

This chapter includes the following sections:

Using WebLogic JMS Extensions

Limitations of Using the WebLogic JMS .NET Client

Exchanging Messages Between Different Language Environments
Specifying the URL Format

Implementing Security With the J]MS .NET Client

Configuring Logging and Debugging

Understanding Socket and Threading Behavior

Data Conversion Between Java and .NET

Best Practices

5.1 Using WebLogic JMS Extensions

Table 5-1 lists the WebLogic JMS extensions that are supported in this release of the
JMS .NET client. There are several ways that messaging can be configured:

On the connection factory—This method often defines default configuration
settings.

Programmatically in the application using the API—Certain programming
constructs may override the connection factory configuration.

On the server—Certain settings may override both the connection factory and
programmatic constructs.

In some cases, there are differences in the way that an extension is configured, or in
the behavior, between a JMS .NET client and a Java client. For example, some
extensions cannot be enabled programmatically using the JMS .NET API, and can only
be enabled via configuration. The following table summarizes the differences.
Additional details, if required, are provided in the subsequent sections.

Programming Considerations 5-1



Using WebLogic JMS Extensions

Table 5-1 WeblLogic JMS Extensions Supported in the JMS .NET Client
- - - -~ _—- - |

Feature Config Config Java JMS .N Comments
urable urable API ET
on on the API
Conne Server
ction
Factor
y
Distributed Destinations (Uniform Yes Yes No No
and Weighted)

For more information, see:

¢ Using Distributed Destinations
in Developing JMS Applications
for Oracle WebLogic Server

* Configuring Distributed
Destination Resources in
Administering [MS Resources for
Oracle WebLogic Server

Flow Control Producers Yes Yes No No

For more information, see:
Controlling the Flow of Messages
on JMS Servers and Destinations in
Tuning Performance of Oracle
WebLogic Server

Blocking producers during quota Yes Yes No No
conditions

For more information, see Defining
a Send Timeout on Connection
Factories in Tuning Performance of
Oracle WebLogic Server

Foreign destinations for remote No Yes No No See
instances of WebLogic Server Interoperating
with Previous

For more information, see
Configuring Foreign Server
Resources to Access Third-Party
JMS Providers in Administering [MS
Resources for Oracle WebLogic Server

WebLogic
Server Releases.

Imported store-and-forward (SAF)  No Yes No No
destinations

For more information, see Imported
SAF Destinations in Administering
the Store-and-Forward Service for
Oracle WebLogic Server

Redelivery limit No Yes Yes No

For more information, see Setting a
Redelivery Limit for Messages in
Developing JMS Applications for
Oracle WebLogic Server

5-2 Developing JMS .NET Client Applications for Oracle WebLogic Server



Using WebLogic JMS Extensions

Table 5-1 (Cont.) WebLogic JMS Extensions Supported in the JMS .NET Client
______________________________________________________________________________|

Feature Config Config Java JMS .N Comments
urable urable API ET
on on the API
Conne Server
ction
Factor
y
Redelivery delay Yes No Yes No

For more information, see Setting a
Redelivery Delay for Messages in
Developing JMS Applications for
Oracle WebLogic Server

Error destinations No Yes No No

For more information, see
Configuring an Error Destination
for Undelivered Messages in
Developing JMS Applications for

Oracle WebLogic Server

WLDestination.getCreateDestinatio No No Yes Yes
nArgument

No Acknowledge Mode No No Yes Yes

For more information, see Using
NO_ACKNOWLEDGE in
Developing JMS Applications for

Oracle WebLogic Server
Unit-of-Order Yes Yes Yes Yes See Unit-of-
For more information, see: Order.

¢ Using Message Unit-of-Order in
Developing JMS Applications for
Oracle WebLogic Server

¢ Tuning Applications Using
Unit-of-Order in Tuning

WebLogic JMS in Tuning

Performance of Oracle WebLogic

Server
Scheduled message delivery Yes Yes Yes Yes See Message
For more information, see Setting Delivery Time.

Message Delivery Times in
Developing JMS Applications for
Oracle WebLogic Server

Asynchronous consumer messages  Yes No Yes No
maximum pipeline
e For more information, see:
Asynchronous Message Pipeline
in Developing JMS Applications
for Oracle WebLogic Server
¢ Tuning MessageMaximum in
Tuning Performance of Oracle
WebLogic Server

Programming Considerations 5-3



Using WebLogic JMS Extensions

Table 5-1 (Cont.) WebLogic JMS Extensions Supported in the IMS .NET Client
______________________________________________________________________________|

Feature Config Config Java JMS .N Comments
urable urable API ET
on on the API
Conne Server
ction
Factor
y
Message Compression Yes No Yes No See Message
For more information, see Message Compression.

Compression in Developing JMS
Applications for Oracle WebLogic
Server

Quotas No Yes No No

For more information, see Defining
Quota in Tuning Performance of

Oracle WebLogic Server
One-way message sends Yes No No No See One-Way
For more information, see Using Message Sends.

One-Way Message Sends For
Improved Non-Persistent
Messaging Performance in Tuning
Performance of Oracle WebLogic
Server

Acknowledge policy Yes No No No

For more information, see JMS
Connection Factory: Configuration:
Client in the Oracle WebLogic Server
Administration Console Online Help

Automatically include user-id as Yes Yes No No See Include
message property JM5XUser | D user-id as
JMSXUserld.
Get number of delivery attempts as No No No No See Message
message property Delivery
JMBXDel i ver yCount Attempts.

5.1.1 Message Compression

In this release, automatic message compression is not supported for client sends
between the JMS .NET client and the J]MS .NET client host running on WebLogic
Server. However, if the compression settings are set on the connection factory,
message compression behavior between the .NET client host and the destination is the
same as that of the Java client. The behavior is as follows:

o [f the client host and destination run on different instances of WebLogic Server,
then a sent message is automatically compressed on the client host.

e If the client host and destination run on the same instance of WebLogic Server, then
no sent message compression will occur.

5-4 Developing JMS .NET Client Applications for Oracle WebLogic Server



Limitations of Using the WebLogic JMS .NET Client

Compressed messages are decompressed by the JMS .NET client host on the server
side when they are received by the .NET client.

For more information, see Message Compression in Developing [MS Applications for
Oracle WebLogic Server

5.1.2 Unit-of-Order

The method used to specify Unit-of-Order (UOO) in the J]MS .NET API differs from
the Java APL To set Unit-of-Order in the JMS .NET API, add a string property named
Const ant s. MessagePr opert yNanes. UNI T_OF_ORDER PROPERTY_NANME to the
message with the desired UOO.

For more information, see Using Message Unit-of-Order in Developing JMS Applications
for Oracle WebLogic Server

5.1.3 Message Delivery Time

The method used to specify message delivery times in the JMS .NET API differs from
the Java APL To set message delivery times in the JMS .NET API, add a property of
type | ong named

Const ant s. MessagePr opert yNanes. DELI VERY_TI ME_PROPERTY_NAME to the
message, where the value is the number of milliseconds in the future in which the
message will be delivered.

5.1.4 One-Way Message Sends

Although you can configure one-way message sends on the connection factory, this
behavior is not fully supported in the JMS .NET client. Messages sent as one-way
sends will actually be two- way sends between the .NET client and the .NET client
host, and one-way sends between the .NET client host and the JMS connection host.

5.1.5 Include user-id as JMSXUserld

The optional JMSXUser | d system-generated message property on received messages
specifies the credential of the original sender. To enable this property, configure the
Attach Sender Credential attribute on destinations, distributed destinations, or
templates, and configure the Attach JMSXUserld attribute on connection factories. To
retrieve, call

neg. Get St ri ngProperty(Constants. MessagePr opertyNanes. USER | D PRO
PERTY_NAME) .

5.1.6 Message Delivery Attempts

The JMSXDel i ver yCount system-generated message property on received messages
specifies the number of message delivery attempts. The first attempt is 1. To retrieve
the value, call

nsg. Get I nt Propert y(Const ants. MessagePr opert yNames. DELI VERY _COUNT
_PROPERTY_NAME.

5.2 Limitations of Using the WebLogic JMS .NET Client

The following sections describe the JMS features that are not supported in the
JMS .NET client.

Programming Considerations 5-5



Limitations of Using the WebLogic JMS .NET Client

5.2.1 Unsupported JMS 1.1 Standard Features

In this release, the following JMS 1.1 standard features are not supported:

* Creating and closing temporary destinations (j avax. j ms. Tenpor ar yQueue and

javax. j ms. Tenpor ar yTopi c). The JMS .NET client can still produce messages
to temporary destinations created by a Java client if the destination objects are
obtained from the JMSReplyTo header of received messages.

e javax.]j nms. QueueRequest er andj avax.j ns. Topi cRequest er . (These

helper classes are related to temporary destinations.)
Queue browsers: j avax. j ms. QueueBr owser .

Queue and Topic interfaces (QueueConnect i onFact ory,

Topi cConnecti onFact ory, QueueConnect i on, Topi cConnecti on,
QueueSessi on, Topi cSessi on). These queue and topic interfaces are legacy J]MS
1.0.2 interfaces that have been superseded by the JMS 1.1 common interfaces.

5.2.2 Unsupported JMS 1.1 Optional Features

In this release, the following JMS 1.1 optional features are not supported:

XA interfaces (XAConnect i onFact or y, XAConnect i on, and XASessi on).

e Participation in global XA transactions (See Transactions).

¢ Connection Consumer and Server session pools

(j avax. j ms. Connecti onConsumner, Server Sessi onPool , and
Ser ver Sessi on). These are optional capabilities that have been superseded by
Java EE MDBs, and are not supported by the WebLogic Java JMS client.

MessagePr oducer. set Di sabl eMessageTi nmest anp method. Note that the
WebLogic JMS Java client ignores this method.

5.2.3 Unsupported WebLogic JMS Extensions

In this release, the following WebLogic JMS extensions are not supported:

5-6 Developing JMS

SSL
HTTP tunneling

SAF Client—See Reliably Sending Messages Using the JMS SAF Client in
Developing Standalone Clients for Oracle WebLogic Server

Multicast Subscribers—See Using Multicasting with WebLogic JMS in Programming
WebLogic [MS

Automatic Reconnect—See Automatic JMS Client Failoverin Developing JMS
Applications for Oracle WebLogic Server

Unit-of-Work—If a .NET client attempts to set a UOW property on a message, a
bl ogi c. Messagi ng. MessageExcept i on is generated. In addition, a .NET
consumer cannot receive UOW messages with deserializable content that are sent
by a Java client. In this case, the consumer gets a MessageFor mat Except i on if it
calls the Obj ect Message. get Obj ect () method on the Obj ect Message. Note
that while Unit-of-Work is not supported, the more commonly used Unit-of-Order

.NET Client Applications for Oracle WebLogic Server



Exchanging Messages Between Different Language Environments

extension is fully supported. For more information about Unit-of-Order, see Unit-
of-Order.

Note:

The JMS .NET API does not provide extensions for programmatically
configuring JMS resources (for example, topics and queues). In Java,
programmatic configuration is accomplished using JMX MBeans or the

webl ogi c. j ms. ext ensi ons. JMSMbdul eHel per helper class. Alternative
ways to configure JMS include WLST scripting and the WebLogic Server
Administration Console.

5.2.4 Transactions

In this release, the JMS .NET client supports transacted sessions as defined in the J]MS
Specification only. Transacted sessions provide a standard local transaction capability.
As with the Java client, one or more WebLogic JMS destinations from within the same
cluster may participate in a transacted session local transaction, but no other resources
may participate (such as JMS servers in other clusters, databases, or foreign JMS
providers).

Global XA transactions are not supported, therefore JMS cannot participate in a .NET
transaction. The XA setting of the connection factory is ignored by the .NET client. The
JMS NET client operations cannot participant in any .NET transactions.

5.3 Exchanging Messages Between Different Language Environments

The following Java J]MS message types can be exchanged between a .NET producer
and a Java or C consumer, and vice versa:

e Message

e Byt esMessage
e Streamvessage
e MapMessage

e Text Message

An Qbj ect Message type, however, can be sent from one language and received by
another, but the message cannot be interpreted unless it is written in the same
language. The producer and consumer of an OBJECTMESSAGE type must be written in
the same language, either C# or Java. If a mismatch occurs; that is, if a NET

Cbj ect Message is received by a Java consumer, or a Java Cbj ect Message is
received by a .NET consumer, then message. get Obj ect () throwsa

MessageFor mat Excepti on.

5.4 Specifying the URL Format

The Pr ovi der _URL may contain multiple addresses, separated by commas, using the
following format:

t3://address [, address]...

where a particular address may specify multiple port ranges.

Programming Considerations 5-7



Implementing Security With the JMS .NET Client

The syntax for specifying multiple addresses is as follows:

address = hostlist : portlist

where
hostlist = hostname [, hostnane]...
portlist = portrange [+ portrange]...

portrange = port [- port]

Useport -port toindicate a port range, and + (plus sign) to separate multiple port
ranges.

Table 5-2 provides sample URL formats.

Table 5-2 URL Format Examples
- ____________________________________________________|

This format . . . Can also be specified as . . .

t3://host A: 7001 t 3://host A: 7001, host B: 7001, host C. 7002
t 3://host A host B: 7001, host C: 7002

t3://host A: 7001+7005+7007, host B: 7001 t 3://host A: 7001, host A: 7005, host A: 7007,
host B: 7001
t3://host A: 7001- 7003+7005+7007, host B: 8001 t3://host A: 7001, host A: 7002, host A: 7003,

host A: 7005, host A: 7007, host B: 8001

5.4.1 Using DNS Alias Host Names

You can also specify DNS alias host names, which are expanded into multiple hosts.
For example, if a DNS alias nycl ust er resolves to host 1, host 2, then the URL
t3:// mycl ust er: 7001 expands into the address list: t 3: / /

host 1: 7001, host 2: 7001. Contexts that are created with the URL will always retry
with host 2 if host 1 is unreachable. DNS aliases are typically configured by network
administrators.

5.5 Implementing Security With the JMS .NET Client

You need to be aware of the following security considerations when creating a
JMS .NET client:

e To access secure JNDI and JMS resources on the server, the JMS .NET client
application can supply a username and password as follows:

— When establishing the initial context to the server using
Cont ext Fact ory. Cr eat eCont ext () . The credentials supplied when
creating the initial context are used for authentication to gain access to secure
JNDI and JMS resources on the server.

—  When creating a connection using the
| Connecti onFact ory. creat eConnecti on() method. In this case, the
credentials supplied when creating a connection override the credentials
supplied during the initial context. That is, if user Fr ed is supplied during
initial context, and user Tony is supplied when the connection is created, the

5-8 Developing JMS .NET Client Applications for Oracle WebLogic Server



Configuring Logging and Debugging

user Tony credential is used for authentication to gain access to secure J]MS
resources.

Note:

In both instances, the password is encrypted. If the resources are not secured,
a username and password is optional.

Note:

Although usernames and passwords are protected, and passwords are
encrypted, a sophisticated user or intruder might be able to defeat the
protection mechanisms. Be sure to secure any network connections when
usernames and passwords are provided.

* Authentication for the .NET client is associated with the JMS object that invokes the
secured resource. That is, the credential for a JMS object is inherited from the
parent JMS context, or from the connection override if credentials are supplied
when creating the connection. This differs from Java client security where
credentials are associated with the current thread.

e SSL is not supported for the JMS .NET client in this release. Therefore, it is
important that you secure the networking services that the operating system
provides, as well as any networking connections. For more information, see
Securing Network Connections in Securing a Production Environment for Oracle
WebLogic Server.

* Similar to the Java client, the JMS.NET client does not support message level
encryption.

¢ Due to the use of non-encrypted communication, sniffing of application traffic (see
http://ww. owasp. or g/ i ndex. php/
Sni ffing_application_traffic_attack)ispossible. You need to either
accept these risks, or take remediation such as using a firewall to protect against
these attacks.

* The administration port, if configured, accepts only SSL traffic, and all connections
via the port require administrator privileges. In addition, once an administration
port is configured, all other ports will refuse connections that have administrator
privileges. Because SSL is not supported for the JMS .NET client in this release, it
cannot support users with administrative privileges if an administration port is
configured.

5.6 Configuring Logging and Debugging

Basic logging and debugging is available for the server-side transport and .NET client
host running on WebLogic Server.

5.6.1 Server Side

To enable debugging on the server side, use the following commands:

- Dwebl ogi c. debug. DebugJMsDot Net T3Ser ver =t r ue
- Dwebl ogi c. debug. Debug. JMSDot Net Pr oxy=t r ue

Programming Considerations 5-9


http://www.owasp.org/index.php/Sniffing_application_traffic_attack
http://www.owasp.org/index.php/Sniffing_application_traffic_attack

Configuring Logging and Debugging

5.6.2 Client Side

Client-side logging and debugging are enabled and controlled by various
configuration settings in the application configuration file. For generated build files,
the application configuration file is named your appl i cat i onnane. exe. confi g,
where your appl i cat i onnane is the name of the application that runs the
messaging client.

Example 5-1 provides the XML content that needs to be added to your application
configuration file to configure logging and debugging. The subsequent sections
provide additional details about each of the different settings. If you have an existing
your appl i cati onnane. exe. confi g file, add the XML content shown in the
following listing to the file. Otherwise, you can create one and locate it in the same
directory that contains the your appl i cat i onnarre. exe file.

Note:

If you are using Visual Studio, the logging and debugging settings shown in
Example 5-1 need to be added to the App.config file. Follow the instructions
on the Microsoft Web site ht t p: / / msdn. mi cr osof t. conf en- us/

l'i brary/ ms184658. aspx to add an App.config file to your C# project
inside a Visual Studio environment.

Example 5-1 XML File Content for yourapplicationname.exe.config File

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<appSettings>
<I-- To forward log output to a file, please uncomment the following line, and replace the file
name with the desired one -->
<l--- <add key="webl ogi c. debug. JMSDot Net . confi g. LogFi | eNane" val ue="c:\test\MLogFile.log" /> -->

<l-- To prevent |og nessages fromdisplaying to the console, use the value 'false' -->
<l-- <add key="webl ogi c. debug. JMSDot Net . confi g. | sLogToConsol e" val ue="fal se" /> -->

</ appSettings>

<system di agnosti cs>

<swi t ches>
<I-- Please set the switch value as desired for |ogging to each Category -->
<I-- value for OFf=0, Error=1, Warning=2, Info=3, Verbose=4 -->
<I-- if "AllLogger" is enabled (no zero for the value), every individual category is set to the

sane | evel as the Al Logger,
no matter how individual category's value is set -->
<add name="webl ogi c. debug. JMSDot Net . Al | " val ue="0" />
<add nanme="webl ogi c. debug. JMSDot Net . Socket" val ue="0" />
<add nanme="webl ogi c. debug. JMSDot Net . T3" val ue="0" />
<add name="webl ogi c. debug. JMSDot Net . Transport" val ue="0" />
<add name="webl ogi c. debug. JMSDot Net . Physi cal Msg" val ue="0" />
<add nanme="webl ogi c. debug. JMSDot Net . Logi cal Msg" val ue="0" />
</ swit ches>
</ system di agnosti cs>
</ confi guration>

5.6.2.1 Message Output

Use the <appSet t i ngs> element to specify whether log messages are output to the
console or saved to a file as shown in Table 5-3.

5-10 Developing JMS .NET Client Applications for Oracle WebLogic Server


http://msdn.microsoft.com/en-us/library/ms184658.aspx
http://msdn.microsoft.com/en-us/library/ms184658.aspx

Understanding Socket and Threading Behavior

Table 5-3 appSettings Values
- - ______________________________________________|

Key Value  Setting

String  Full path and file name for the log file, for example c:\test
\MyLogFile.log.
NOTE: The default log file size limit is 500KB. Each time the log
file reaches this size, the server renames the log file and creates a
new MyLogFi | e. | 0g to store new messages. By default, the
rotated log files are numbered in order of creation, for example
MyLogFi l e. 1 0g. 0, MLogFil e. |l 0g. 1, MyLogFi |l e. | og.
2,...,with MyLogFi | e. | 0g. O containing the latest log
messages.

webl ogi c. debug.
JMsDot Net . confi
g. LogFi | eName

Boolea ® True — Displays log messages to the console

vebl ogi . debug. ¢ False — Does not display log messages to the console

JMSDot Net . conf i
g. I sLogToConsol
e

5.6.2.2 Log Categories and Levels

Client-side logging is grouped into the following categories:
e Socket

e T3

e Transport

¢ Physi cal Msg

e Logical Msg

e Al (represents all individual categories listed above)

For each of the categories, you can specify any of these logging levels:

Off(0), Error(1), Warning(2), Info(3), Verbose(4)

Note that the severity level on the Al | category overrides the setting on each
individual category.

5.7 Understanding Socket and Threading Behavior

WebLogic JMS .NET clients share the same WebLogic Server T3 port as other types of
WebLogic clients. When an | Cont ext initial context is created by a .NET client using
the Cont ext Fact or y class, the client specifies a URL that references a T3 capable
port on the server, and a socket pair is implicitly created to service the requested
network connection. The socket pair consists of one socket on the client and another
socket on the WebLogic Server JMS .NET client host. All JMS operations on JMS
objects obtained from the .NET context route through the implicit network connection
of the context.

If two concurrent | Cont ext initial context instances on the same .NET CLR connect
to the same WebLogic Server J]MS .NET client host, then two network connections are
created. Each network connection has its own pair of sockets: a server-side socket and
a client-side socket. Therefore, when two network connections are created, two sockets

Programming Considerations 5-11



Data Conversion Between Java and .NET

are created on the CLR client and two sockets are created on the WebLogic Server
acting as the JMS .NET client host. This contrasts with WebLogic Java clients, which
automatically detect and close duplicate network connections to a remote JVM and,
instead, implicitly multiplex all traffic to and from a particular remote JVM over a
single network connection.

A server-side socket for a J]MS .NET client is serviced by the same WebLogic Server
socket-reader muxer thread pool as other types of WebLogic clients. When working on
behalf of JMS .NET client requests, the socket-reader muxer thread pool reads the
incoming requests from the socket and dispatches work into the WebLogic Server
default thread pool which, in turn, processes the requests and sends the responses
back to the client.

On a JMS .NET client, a new internal thread is automatically created for each network
connection (that is, per | Cont ext initial context instance). This dedicated thread
reads all incoming data on the client socket and dispatches the related work into the
CLR thread pool. This means that asynchronous message event handlers in the NET
client application run in the CLR thread pool.

Note:

The CLR thread pool is supplied by the NET Framework
System.Threading.ThreadPool class. There is one thread pool per process. The
thread pool has a default size of 25 threads per available processor, however,
you can change the number of threads in the thread pool using the
ThreadPool.SetMaxThreads method. Each thread in the thread pool uses the
default stack size and runs at the default priority. For more information, refer
to the Microsoft NET Framework documentation for the
System.Threading.ThreadPool class.

For JMS .NET applications that create many concurrent initial contexts that all connect
to the same WebLogic Server .NET client host, you may obtain performance
improvements by modifying the application so that it uses a single, shared initial
context. A shared context ensures that the client only creates a single network
connection.

5.8 Data Conversion Between Java and .NET

Endian Conversions

Signed and Unsigned Byte Conversions

Byte Array Transfers

e Time Conversions

5.8.1 Endian Conversions

Java and .NET use different byte order formats for storing primitive types:
e Microsoft Windows .NET uses the Little-Endian (low-order) format

¢ Java uses the Big-Endian (high-order) format

To support interoperability between Java and .NET, data is transferred over the
network using the Big-Endian format. When a .NET application uses the J]MS .NET

5-12 Developing JMS .NET Client Applications for Oracle WebLogic Server



Data Conversion Between Java and .NET

API to read and write primitives, data is automatically converted between Big-Endian
and Little-Endian, as needed. For example, if you use Byt esMessage. Wit el nt in
the JMS .NET API], the data is always stored as Big Endian and can be read using both
the Java API and the JMS .NET API bytes message read integer methods.

For specialized applications that do not use the JMS .NET API to pass primitives, but
instead transfer primitive data using raw byte arrays, you need to manually convert
the byte format to Big Endian when communicating with Java. If you need to perform
a manual Endian conversion in your application, you can use the following helper
methods from the utility class

WebLogi c. Messagi ng. Transport. Util . Endi anConvert or provided in the
JMS NET client library:

public static char SwitchEndi an(char x)
public static short SwitchEndian(short x)
public static int SwitchEndian(int Xx)
public static long SwtchEndi an(long x)
public static ushort Sw tchEndian(ushort x)
public static uint SwtchEndi an(uint x)
public static ulong Sw tchEndi an(ul ong x)
public static double Sw tchEndi an(doubl e x)
public static float SwitchEndian(float x)
public static byte[] SwitchEndian(byte[] x)

For example, the standard .NET classes Syst em | O. Bi nar yReader and

System | O Bi naryWiter forreading and writing primitives to raw byte arrays
use Little Endian. The following code snippet illustrates how to store and retrieve an
integer to/from a .NET byte array:

bi naryWiter. Witelnt(Endi anConverter. SwitchEndian(i))
i =Endi anConverter. Swi t chEndi an( bi nar yReader. Readl nt ())

5.8.2 Signed and Unsigned Byte Conversions

With the exception of the byt e data type, there is an equivalent C# data type, with the
same name and definition, for every Java primitive data type. The following table lists
the different names used for signed and unsigned bytes in C# and Java.

Table 5-4 Byte Primitive Data Type in C# and Java
L _________________________________________________________________________|

C# Java Description

byte N A Unsigned byte
Signed byt

shyte byte rpnec byte

As shown in Table 5-4, Microsoft .NET supports both byt e (unsigned byte) and
sbyt e (signed byte) as primitive data types, but Java supports only byt e (signed
byte) as a direct primitive type. The standard convention in both languages is to use
the byt e data type; however, in .INET this represents an unsigned byte and in Java
this represents a signed byte.

For interoperability between .NET and Java, the JMS .NET client allows only the use of
the signed byte for reading and writing bytes. There is no difference between signed
bytes and unsigned bytes when the byte value is 127 or less. An unsigned byte with a
value of 127 or less is stored as an sbyt e. However, if a .NET client needs to store an

Programming Considerations 5-13



Data Conversion Between Java and .NET

unsigned byte with a value greater than 127 in a signed byte, it needs to be converted
from a signed byte to an unsigned byte. The following samples illustrate conversion
methods that you can use to read and write an unsigned byte as a signed byte:

¢ Byte Conversion in C#

An unsigned byte value of 255 can be passed as a signed byte as follows:
— byte unsi gnedByteVal ue = 255;

— sbyte signedByteVal ue = unchecked
( (sbyte)unsignedByteValue ); // converted signed value=-1

Similarly, you can use the following method to convert a signed byte value to an
unsigned byte value:

— sbyte signedByteVal ue = -1;

— byte unsi gnedByteVal ue = unchecked
( (byte)signedByteValue ); // converted unsigned val ue=255

¢ Byte Conversion in Java

The unsigned value can be read as a signed byte and converted to an unsigned byte
value as follows:

— byte signedByteValue = -1;

— int unsignedByteVal ue = OxFF & signedByteVal ue; //converted
signed val ue = 255

An unsigned value can be written as follows:
— Int unsignedByteVal ue = 255

— byte signedByteVal ue = OxFF & unsi gnedByt eVal ue; //
converted signed val ue=-1

The JMS .NET API only allows for storing single bytes as signed bytes. When the
JMS .NET API is used to retrieve sbyt e values as short ,i nt,| ong, or st ri ng, the
value is treated as an sbyt e, not an unsigned byte. For example, if the unsigned byte
value 255 is stored using nessage. Set Byt ePr opert y(" nyval ue"

unchecked( (sbyte)((byte)255) )),acallto

nessage. Get Byt eProperty("nyval ue") or

nessage. Get Short Property("nyval ue") returns "-1".

5.8.3 Byte Array Transfers

When transferring byte arrays from the JMS .NET client to WebLogic JMS, all byte
arrays (byt e[ ] ) are passed as is (that is, there is no conversion from unsigned to
signed.) Therefore, no data is lost in the translation.

5.8.4 Time Conversions

The WebLogic JMS .NET API represents dates and times using Java rather than .NET
conventions. The JMSTimestamp and JMSExpiration attributes of the

WebLogi c. Messagi ng. | Message message interface are type | ong and contain a
millisecond absolute time value as specified in the Java programming language. The
Java millisecond absolute time value is the difference, measured in milliseconds,
between a given time and midnight, January 1, 1970 UTC.

5-14 Developing JMS .NET Client Applications for Oracle WebLogic Server



Best Practices

The following examples demonstrate how to convert between .NET times and Java
millisecond absolute time values.

Example 5-2 Example C# Code for Converting the Current .NET Time to Java Millisecond Time

/| Exanple: C# code for converting the current .NET tine to Java millisecond tine
Dat eTi me baseTi me = new DateTime(1970, 1, 1, 0, 0, 0);

Dat eTi me ut cNow = Dat eTi me. Ut cNow;

long tinelnMIlis = (utcNow. Ticks - baseTine. Ti cks)/10000;

Console. WiteLine(timelnMIlis);

Example 5-3 Example C# Code for Converting Java Millisecond Time to .NET Time

/| Exanple: C# code for converting Java mllisecond tinme to .NET tine
Dat eTi me baseTi me = new DateTine(1970, 1, 1, 0, 0, 0);

long utcTineTicks = (tinmelnMIlis * 10000) + baseTi ne. Ti cks;

Dat eTi me utcTime = new DateTi ne(utcTi neTi cks, DateTimeKind. Uc);

Consol e. Wi teLine(utcTine);

Consol e. Wi teLine(utcTine. ToLocal Time());

5.9 Best Practices

The following list identifies best practices to use when creating a JMS .NET client
application:

¢ Always register a connection exception listener using an | Connect i on if the
application needs to take action when an idle connection fails. The connection
exception listener is asynchronously notified when there is a communications
failure between the .NET client and the .NET client WebLogic host, or between the
WebLogic host and the JMS connection host. Applications may choose to
implement the connection exceptions listener callback to close all open resources
and then periodically attempt a reconnect.

* To obtain performance improvements, have multiple .NET client threads share a
single context to ensure that they use a single socket. For more information, see
Understanding Socket and Threading Behavior. It is important to note that a
context creates a socket and that closing the context closes the socket.

® Cache and reuse frequently accessed JMS resources, such as contexts, connections,
sessions, producers, destinations, and connection factories. Creating and closing
these resources consumes significant CPU and network bandwidth.

e With the exception of cl ose() methods, JMS sessions and their child resources are
not thread safe. For example, do not call a producer send() in one thread, and a
consumer r ecei ve() in parallel in another thread, if the producer and consumer
were created using the same session. As another example, do not call any method
other than cl ose() in an arbitrary thread for sessions that have asynchronous
consumers because a message may arrive and invoke the callback at the same time.

¢ Use DNS aliases or comma separated addresses for load balancing J]MS .NET
clients across multiple JMS .NET client host servers in a cluster. In this release, the
JMS .NET client does not support automatic cluster load balancing as is implicitly
supplied with the Java client.

Programming Considerations 5-15



Best Practices

5-16 Developing JMS .NET Client Applications for Oracle WebLogic Server



A

JMS .NET Client Sample Application

This chapter provides a .NET client sample program written in C# which includes
basic features of the WebLogic J]MS .NET APL For details about the API, see
Microsoft NET Messaging API for Oracle WebLogic Server.

Example A-1 MessagingSample.cs

using System

using System Col | ections;

using System Col | ections. Generi c;
usi ng System Threadi ng;

usi ng VebLogi c. Messagi ng;

/1] <summary> Denonstrate the WebLogic JVS . NET API.
/1] <para>
[/l This command |ine program connects to WebLogic JM5 and perforns
/1l queue and topic messaging operations. It is supported with
/1l versions 10g Rel ease 3 and later. To conpile the program
[1] link it with "WbLogi c. Messagi ng.dl|". For usage information,
{1l run the programwith "-hel p" as a paraneter.
Il <l para>
/1] <para>
/1] Copyright 1996,2008, Oracle and/or its affiliates. All rights reserved.
Il <l para>
[l <l summary>
public class Messagi ngSanpl e
{
private static string NL = Environnment. NewLi ne;
private string host = "l ocal host";
private int port = 7001;
private string cfName = "webl ogi c. j ms. Connecti onFactory";
private string queueName = "jns. queue. Test Queuel";
private string topi cName = "jns.topic. Test Topi c1";
private static string USAGE =

"Usage: " + Environnent. Get ConmandLi neArgs()[0] + NL +

[-host <hostnanme>] [-port <portnump] " + NL +
[-cf <connection factory JNDI name>] " + NL +
[-queue <queue JNDI nanme>] [-topic <topic JNDI nanme>]";

public static void Min(string[] args)

{
try {

Messagi ngSanpl e ms = new Messagi ngSanpl e();

JMS .NET Client Sample Application A-1



Il override defaults with command |ine argunents
if (!ms.ParseConmandLi ne(args)) return;

ms. DemoSyncQueueRecei veW t hAut oAcknow edge() ;
ms. DemoAsyncNondur abl eTopi cConsumer Aut oAcknow edge() ;
nms. DemoSyncTopi cDur abl eSubscri ber O i ent Acknow edge();

} catch (Exception e) {
Consol e. Wi teLine(e);

private voi d DenoSyncQueueRecei veW t hAut oAcknowl edge()

{
Consol e. Wi teLine(
NL + "-- DenpSyncQueueRecei veWt hAut oAcknowl edge -- " + NL);

R e
/1 Make a network connection to WbLogic and | ogin:
R e

I Dictionary<string, bject> paraniMap = new Dictionary<string, Ooject>();

par amvap[ Const ant s. Cont ext . PROVI DER_URL] =
"t3://" + this.host +":" + this.port;

| Context context = ContextFactory. CreateContext (paranap);

try {
R P

/1 Look up our resources in the context:
LR L L L R L L L P L L P L

| ConnectionFactory cf = context.LookupConnectionFactory(this.cfName);
| Queue queue = (I Queue)context.LookupDestination(this.queueNane);

L R R TR T LR
Il Create a connection using the connection factory:
L R R T TR T LR

| Connection connection = cf.CreateConnection();

L e e e T LR PP T
/1 Start the connection in order to allow receivers to get messages:
L e e e T LR PP T

connection. Start();

Il Create a session:

I

/1 1 MPORTANT: Sessions are not thread-safe. Use mul tiple sessions
/1 if you need to run producers and/or consuners concurrently. For
Il nmore information, see the asynchronous consuner exanple bel ow.

I

| Session session = connection. CreateSessi on(

A-2 Developing JMS .NET Client Applications for Oracle WebLogic Server



Const ant s. Sessi onMbde. AUTO_ACKNOALEDCE) ;

R e e e e PR TP
I/ Create a producer and send a persistent nessage:
R e e e e PR TP

| MessageProducer producer = session. Creat eProducer (queue);

producer. Del i veryMbde = Constants. Del i ver yMbde. PERSI STENT;

| Text Message sendMessage = session. Creat eText Message("My q nessage");
producer . Send( sendMessage) ;

Print Message("Sent Message:", sendMessage);

I e E LR L L LR P LR PP R PP

I/ Create a consuner and receive a nessage:

I e E LR L L LR P LR PP R PP

Il The message will automatically be deleted fromthe server as the
/1 consuner's session was created in AUTO ACKNOALEDGE node.

I

| MessageConsuner consumer = sessi on. Creat eConsuner (queue) ;
| Message recvMessage = consuner. Recei ve(500);
Print Message( " Recei ved Message:", recvMessage);

e
/1 Close the connection. Note that closing a connection also closes
Il its child sessions, consuners, and producers.

e

connection. C ose();

} finally {

R
/1 Cose the context. The CoseAll nethod closes the network

Il connection and all related open connections, sessions, producers,
/1 and consuners.

R e

context. C oseAl | ();

}
}

/1 Inplenent a MessageEvent Handl er del egate. It will receive
/1 asynchronously delivered messages.

public void OnMessage(| MessageConsumer consumer, MessageEvent Args args) {
Print Message(" Recei ved Message Asynchronously:", args.Message);

[l 1f the consumer's session is CLI ENT_ACKNOALEDGE, renmenber to

/] call args.Message. Acknow edge() to prevent the nessage from

/'l getting redelivered, or consumer.Session.Recover() to force redelivery.
[l Simlarly, if the consuner's session is TRANSACTED, remenber to

/1 call consuner. Session.Conmit() to prevent the message from

/1 getting redeliverd, or consumer. Session. Rol | back() to force redeivery.

JMS .NET Client Sample Application A-3



}

private voi d DenpAsyncNondur abl eTopi cConsuner Aut oAcknow edge()
{
Consol e. Wi teLi ne(
NL + "-- DenpAsyncNondur abl eTopi cConsuner Aut oAcknowl edge -- " + NL);

e T
/1 Make a network connection to WbLogic and | ogin:
e e

I Dictionary<string, bject> paranivap = new Dictionary<string, Ooject>();

par amvap[ Const ant s. Cont ext . PROVI DER_URL] =
"t3://" + this.host +":" + this.port;

| Context context = ContextFactory. CreateContext (paraniap);

try {
R P

/1 Look up our resources in the context:
LR L L L R L L L P L L P L

| ConnectionFactory cf = context.LookupConnectionFactory(this.cfName);
| Topi ¢ topic = (ITopic)context.LookupDestination(this.topicNane);

L e R E e T TP L
Il Create a connection using the connection factory and start it:
L e R E e T TP L

| Connection connection = cf.CreateConnection();

L R e T LR PP T
/1 Start the connection in order to allow receivers to get messages:
L e e e TR PP T

connection. Start();

/| Create the asynchronous consumer del egate.
e

Il Create a session and a consuner; also designate a del egate

Il that listens for messages that arrive asynchronously.

I

/1 Unlike queue consuners, topic consuners nust be created

Il *before* a message is sent in order to receive the nessage!

I

/1 1 MPORTANT: Sessions are not thread-safe. W use multiple sessions
I/ in order to run the producer and async consuner concurrently. The
I/ consuner session and any of its producers and consuners

/1 can no longer be used outside of the OnMessage

/1 cal I back once OnMessage is designated as its event handler, as

/1 messages for the event handler nay arrive in another thread.

I

| Sessi on consuner Sessi on = connection. Creat eSessi on(
Const ant s. Sessi onMbde. AUTO_ACKNOALEDCE) ;

| MessageConsunmer consumer = consuner Sessi on. Cr eat eConsumer (t opi c);

A-4 Developing JMS .NET Client Applications for Oracle WebLogic Server



consuner. Message += new MessageEvent Handl er (t hi s. OnMessage) ;

/1 Send Message:

Il

Il Create a producer and send a non-persistent nessage. Note

Il that even if the message were sent as persistent, it would be
I/ automatical ly downgraded to non-persistent, as there are only
/1 non-durabl e consuners subscribing to the topic.

I

| Sessi on producer Sessi on = connection. Creat eSessi on(
Const ant s. Sessi onMbde. AUTO_ACKNOALEDCE) ;

| MessageProducer producer = producer Sessi on. Creat eProducer (t opic);
producer. Del i veryMbde = Constants. Del i ver yMode. NON_PERS| STENT;

| Text Message sendMessage = producer Sessi on. Cr eat eText Message(
"My topic nessage");

producer . Send( sendMessage) ;
Print Message("Sent Message:", sendMessage);

e

/1 Wit for Message:

e

/1 Sleep for one second to allowthe delegate tine to receive and
I/ automatical ly acknow edge the message. The delegate will print
Il to the console when it receives the message.

I

Thread. Sl eep(1000);

Ioeeeee -

Il Cean Up:

Ioeeeee -

/1 W could just call connection.C ose(), which would close

/1 the connection's sessions, etc, or we could even just

I/ call context.C oseAl(), but we want to denonstrate closing each
/1 individual resource.

I

producer. C ose();
consuner. C ose();

pr oducer Sessi on. C ose();
consuner Sessi on. G ose();
connection. C ose();

finally {

R R R
I/ Close the context. The CoseAll nmethod closes the network
/'l connection and any open JMS connections, sessions, producers,
/1 or consumers.

R R R

context.C oseAl | ();

JMS .NET Client Sample Application A-5



}

private voi d DenoSyncTopi cDur abl eSubscri ber G i ent Acknow edge() {

Consol e. Wi teLi ne(

NL + "-- DenpSyncTopi cDurabl eSubscriber Qi ent Acknowl edge -- " + NL);
T
/1 Make a network connection to WbLogic and | ogin:
T

I Dictionary<string, bject> paranivap = new Dictionary<string, Ooject>();

par amvap[ Const ant s. Cont ext . PROVI DER_URL] =
"t3://" + this.host +":" + this.port;

| Context context = ContextFactory. CreateContext (paraniap);

try {
R P

/1 Look up our resources in the context:
LR L L L R L L L P L L P L

| ConnectionFactory cf = context.LookupConnectionFactory(this.cfName);
| Topi ¢ topic = (ITopic)context.LookupDestination(this.topicNane);

L R R T T LR
Il Create a connection using the connection factory:
L R R T T LR

| Connection connection = cf.CreateConnection();

/1 Assign a unique client-id to the connection:
R e R e e e e e T PP PP

/1 Durable subscribers nmust use a connection with an assigned
Il client-id. Only one connection with a given client-id

Il can exist in a cluster at the same time. An alternative

I/ to using the APl is to configure a client-id via connection
Il factory configuration.

connection.CientlID = "MConnectionlD';

L e e T LR PP
/1 Start the connection in order to allow consuners to get messages:
L e e e T LR PP T

connection. Start();

Il Create a session:

I

/1 1 MPORTANT: Sessions are not thread-safe. Use mul tiple sessions
/1 if you need to run producers and/or consuners concurrently. For
Il nmore information, see the asynchronous consuner exanple above.

I

| Sessi on session = connection. CreateSessi on(
Const ant s. Sessi onhWbde. CLI ENT_ACKNOALEDCE) ;

A-6 Developing JMS .NET Client Applications for Oracle WebLogic Server



Il Create a durable subscription and its consumer.

I e L T T T

/1 Only one consuner at a time can attach to the durable

Il subscription for connection ID "MConnectionlD' and

/1 subscription ID "MSubscriberlD.

I

/1 Unlike queue consuners, topic consunmers nust be created

Il *before* a message is sent in order to receive the nessage!
I

| MessageConsuner consuner = session. Creat eDur abl eSubscri ber (
topic, "MSubscriberlD");

R e e e e PR TP

I/ Create a producer and send a persistent nessage:
R e e e e PR TP

| MessageProducer producer = session. CreateProducer(topic);

producer. Del i veryMbde = Constants. Del i ver yMbde. PERSI STENT;

| Text Message sendMessage = session. Creat eText Message(" My durabl e message");

producer . Send( sendMessage) ;

Print Message("Sent Message To Durabl e Subscriber:", sendMessage);

I e T L LR

Il Denonstrate closing and re-creating the consumer.

11

/1 The new consumer will inplicitly connect to the durable

/'l subscription created above, as we specify the sanme

I/ connection id and subscription id.

I

/1 A durable subscription continues to exist and accunul ate
Il new messages when it has no consuner, and even keeps

Il its persistent nessages in the event of a client or server
Il crash and restart.

I

/1 Non-durabl e subscriptions and their nessages cease to

Il exist when they are closed, or when their host server

Il shuts down or crashes.
R

consuner. C ose();

consuner = session. Creat eDur abl eSubscri ber (
topic, "MSubscriberlD");

Il Denonstrate client acknow edge. GCet the message, force

[l it to redeliver, get it again, and then finally delete the message.
e R
Il Inclient ack nmode "recover()" forces nmessage redelivery, while

/1 "acknow edge()" deletes the message. |If the client application

/1 crashes or closes wthout acknow edging a message, it will be

Il redelivered.

| Text Message recvMessage = (| Text Message) consuner. Recei ve(500);

JMS .NET Client Sample Application A-7



Print Message("Durabl e Subscriber Received Message:", recvMessage);

sessi on. Recover();

recvMessage = (| Text Message) consuner. Recei ve(500);

Print Message("Durabl e Subscriber Received Message Again:", recvMessage);
recviMessage. Acknow edge();

e
/| Delete the durable subscription, otherwise it would continue
Il to exist after the demp exits.
e
I

consuner.ose(); // closes consumer, but doesn't delete subscription
sessi on. Unsubscri be("M/SubscriberID'); // del etes subscription

e
/1 Cose the connection. Note that closing a connection also closes
Il its child sessions, consuners, and producers.

e

connection. C ose();

} finally {

e
/1 Cose the context. The CoseAll nethod closes the network

Il connection and all related open connections, sessions, producers,
/1 and consuners.

e

context.C oseAl | ();

}
}

private void PrintMessage(String header, | Message nsg) {
string nsgtext;

if (msg is |TextMessage)

megtext = " Text=" + ((ITextMessage)nsg). Text + NL;
el se
msgtext = " The message is not an | Text Message";

string dcProp =
Const ant s. MessagePr oper t yNanmes. DELI VERY_COUNT_PROPERTY_NAME;

System Consol e. Wit eLi ne(
header + NL +
" JMBMessagel D=" + msg. JMSMessagel D + NL +
" JMBRedel i vered=" + msg. JMSRedel ivered + NL +
" " 4+ dcProp + "=" + meg. Get Obj ect Property(dcProp) + NL +
msgt ext);

}

private bool ParseCommandLine(string[] args)

{
int i =0;

A-8 Developing JMS .NET Client Applications for Oracle WebLogic Server



try {
for(i =0; i < args.Length; i+
if (args[i].Equals("-host"))
host = args[++i];
continue;

+

) {
{

}

if (args[i].Equals("-port")) {
port = Convert.Tolnt32(args[++i]);
conti nue;

}

if (args[i].Equals("-cf")) {
cfName = args[++i];
conti nue;

if (args[i].Equals("-queue")) {
queueName = args[++i];
conti nue;

}
if (args[i].Equals("-topic")) {
topi cName = args[++i];
conti nue;
}
if (args[i].Equals("-help") || args[i].Equals("-?")) {
Consol e. Wit eLi ne( USAGE) ;
return fal se;
}
Consol e. Wi teLi ne("Unrecogni zed paraneter '" + args[i] + "'.");
Consol e. Wi teLi ne( USAGE) ;
return fal se;

} catch (System | ndexQut Of RangeException) {
Consol e. Wit eLi ne(
"Mssing argunent for " + args[i - 1] +"."
);
Consol e. Wit eLi ne( USACGE) ;
return fal se;
} catch (Fornmat Exception) {
Consol e. Wit eLi ne(
“Invalid argunent '" + args[i] + "' for " + args[i - 1] +"."
);
Consol e. Wit eLi ne( USACGE) ;
return fal se;
}
Consol e. Wi teLi ne(
"WebLogic JM5 .NET Client Denmo " + NL +

NL +

"Settings: " + NL +

" host =" + host + NL +
port =" + port + NL +
cf =" + cfName + NL +
queue =" + queueNane + NL +
topic =" + topicName + NL

)s

return true,;

JMS .NET Client Sample Application A-9



A-10 Developing JMS .NET Client Applications for Oracle WebLogic Server



	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 Samples and Tutorials for the JMS Developer
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials


	2 Overview of the WebLogic JMS .NET Client
	2.1 What is the WebLogic JMS .NET Client?
	2.1.1 Supported JMS Features
	2.1.1.1 Messaging Models
	2.1.1.2 Message Types


	2.2 How the WebLogic JMS .NET Client Works
	2.3 Configuring WebLogic Server
	2.3.1 Configuring the Listen Port
	2.3.2 Configuring JMS Resources for the JMS .NET Client
	2.3.3 Set System Properties

	2.4 Interoperating with Previous WebLogic Server Releases
	2.5 Understanding the WebLogic JMS .NET API

	3 Installing and Copying the WebLogic JMS .NET Client Libraries
	3.1 Installing the WebLogic JMS .NET Client
	3.1.1 Location of Installed Components

	3.2 Copying the Library to the Client Machine

	4 Developing a Basic JMS Application Using the WebLogic JMS .NET API
	4.1 Creating a JMS .NET Client Application
	4.2 Example: Writing a Basic PTP JMS .NET Client Application
	4.2.1 Prerequisites
	4.2.2 Basic Steps
	4.2.2.1 Step 1
	4.2.2.2 Step 2
	4.2.2.3 Step 3
	4.2.2.4 Step 4
	4.2.2.5 Step 5
	4.2.2.6 Step 6
	4.2.2.7 Step 7
	4.2.2.8 Step 8
	4.2.2.9 Step 9
	4.2.2.10 Step 10


	4.3 Using Advanced Concepts in JMS .NET Client Applications

	5 Programming Considerations
	5.1 Using WebLogic JMS Extensions
	5.1.1 Message Compression
	5.1.2 Unit-of-Order
	5.1.3 Message Delivery Time
	5.1.4 One-Way Message Sends
	5.1.5 Include user-id as JMSXUserId
	5.1.6 Message Delivery Attempts

	5.2 Limitations of Using the WebLogic JMS .NET Client
	5.2.1 Unsupported JMS 1.1 Standard Features
	5.2.2 Unsupported JMS 1.1 Optional Features
	5.2.3 Unsupported WebLogic JMS Extensions
	5.2.4 Transactions

	5.3 Exchanging Messages Between Different Language Environments
	5.4 Specifying the URL Format
	5.4.1 Using DNS Alias Host Names

	5.5 Implementing Security With the JMS .NET Client
	5.6 Configuring Logging and Debugging
	5.6.1 Server Side
	5.6.2 Client Side
	5.6.2.1 Message Output
	5.6.2.2 Log Categories and Levels


	5.7 Understanding Socket and Threading Behavior
	5.8 Data Conversion Between Java and .NET
	5.8.1 Endian Conversions
	5.8.2 Signed and Unsigned Byte Conversions
	5.8.3 Byte Array Transfers
	5.8.4 Time Conversions

	5.9 Best Practices

	A JMS .NET Client Sample Application

