
Oracle® Fusion Middleware
Using Oracle WebLogic Server Proxy Plug-
Ins

12c (12.2.1.2.0)
E78107-04
February 2018

Oracle Fusion Middleware Using Oracle WebLogic Server Proxy Plug-Ins, 12c (12.2.1.2.0)

E78107-04

Copyright © 2015, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Tom Pfaeffle, Sebastian Arockiasamy, Pubali Dekaphukan

Contributing Authors: Sandeep Ramavana, Mike Rumph, Xiaodong Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility viii

Conventions viii

1 Overview of Oracle WebLogic Server Proxy Plug-In

1.1 What are Oracle WebLogic Server Proxy Plug-Ins? 1-1

1.1.1 Connection Pooling and Keep-Alive 1-1

1.1.2 Proxying Requests 1-2

1.2 Availability of Oracle WebLogic Server Proxy Plug-In 1-2

1.3 Upgrading from 1.0 Plug-Ins 1-2

1.3.1 Upgrade Instructions 1-3

1.3.2 Considerations for Upgrading From Oracle WebLogic Server Proxy
Plug-Ins Version 1.0 to 12c (12.2.1.2.0) 1-3

1.4 Features of the Version 12.2.1.2.0 Plug-Ins 1-4

1.4.1 Oracle WebLogic Server Proxy Monitoring 1-4

1.4.2 Support for Multi-tenancy and Partitions 1-4

1.4.3 SSL Support for IPlanet Web Server 1-4

1.4.4 Documentation for Using the Plug-In with Microsoft IIS 1-4

1.4.5 Deprecated Support for Certificates Signed Using the MD5 Algorithm 1-4

1.5 Support and Patching 1-5

2 Configuring the Plug-In for Oracle HTTP Server

2.1 Oracle HTTP Server Support Note 2-1

2.2 Preparing for Configuring the Oracle WebLogic Server Proxy Plug-In 2-2

2.2.1 Setting the WebLogic Plug-In Enabled Parameter 2-2

2.2.1.1 Understanding the WebLogic Plug-In Enabled Parameter 2-2

2.3 Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion
Middleware Control 2-3

2.3.1 Task 1: Navigate to the mod_wl_ohs Configuration Page 2-3

2.3.2 Task 2: Specify the Configuration Settings 2-6

2.3.3 Task 3: Configure Expression Overrides or Location Overrides
(Optional) 2-7

iii

2.3.4 Task 4: Apply Your Changes 2-8

2.3.5 Using the Search Function 2-8

2.3.6 Using the AutoFill Function 2-8

2.4 Configuring the Oracle WebLogic Server Proxy Plug-In Manually 2-9

2.4.1 Examples of <IfModule weblogic_module> Element Configurations 2-9

2.5 Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics 2-12

2.5.1 Configuring DMS Metrics for Oracle HTTP Server Proxy Plug-in 2-13

2.5.2 Viewing Performance Metrics for Oracle HTTP Server Proxy Plug-in 2-13

2.5.3 DMS State Metrics 2-14

2.5.4 DMS Event Metrics 2-15

2.5.5 DMS PhaseEvent Metrics 2-16

2.6 Deprecated Directives for Oracle HTTP Server 2-17

2.7 Troubleshooting Oracle WebLogic Server Proxy Plug-In Implementations 2-17

2.7.1 WLS Session Issues 2-18

2.7.2 CONNECTION_REFUSED Errors 2-18

2.7.3 NO_RESOURCES Errors 2-18

2.7.4 Changing the Oracle WebLogic Server Keystore Causes Unexpected
Behavior 2-19

3 Configuring the Plug-In for Apache HTTP Server

3.1 Apache HTTP Server Support Note 3-1

3.2 Install the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server 3-1

3.2.1 Installation Prerequisites 3-1

3.2.2 Installing the Apache HTTP Server Plug-In 3-2

3.3 Configure the Apache HTTP Server Plug-In 3-3

3.3.1 Configuring the httpd.conf File 3-3

3.3.1.1 Task 1: Configure MIME Requests 3-4

3.3.1.2 Task 2: Define Additional Parameters for Oracle WebLogic Server
Proxy Plug-In 3-6

3.3.1.3 Task 3: Enable HTTP Tunneling (Optional) 3-6

3.3.1.4 Task 4: Enable Web Services Atomic Transaction (Optional) 3-6

3.3.1.5 Task 5: Verify and Apply Your Configuration 3-6

3.3.2 Placing WebLogic Properties Inside Location or VirtualHost Blocks 3-7

3.3.3 Example: Configuring the Apache Plug-In 3-7

3.3.4 Including a weblogic.conf File in the httpd.conf File 3-8

3.3.4.1 Rules for Creating weblogic.conf Files 3-8

3.3.4.2 Sample weblogic.conf Configuration Files 3-9

3.3.4.3 Template for the Apache HTTP Server httpd.conf File 3-11

3.4 Understanding DMS Metrics for Apache HTTP Server Plug-in 3-11

3.4.1 Configuring Metrics DMS Metrics for Apache HTTP Server Plug-in 3-12

3.4.2 Viewing Performance Metrics for Apache HTTP Server Plug-in 3-12

iv

3.5 Deprecated Directives for Apache HTTP Server 3-12

4 Configuring the Plug-In for iPlanet Web Server

4.1 Overview of the Oracle WebLogic Server Proxy Plug-In for iPlanet 4-1

4.2 Installing and Configuring the Plug-In for iPlanet 4-1

4.2.1 Installation Prerequisites 4-2

4.2.2 Installing the Oracle WebLogic Server Proxy Plug-In for iPlanet Web
Server 4-3

4.2.3 Configuring the Oracle WebLogic Server Proxy Plug-In for iPlanet Web
Server 4-3

4.2.3.1 Proxying Requests by URL 4-3

4.2.3.2 Proxying the Request by MIME Type 4-4

4.2.3.3 Testing the Plug-In 4-5

4.2.4 Example: Configuring the iPlanet Plug-in 4-6

4.2.5 Guidelines for Modifying the obj.conf File 4-6

4.2.6 Sample obj.conf File (Not Using a WebLogic Cluster) 4-7

4.2.7 Sample obj.conf File (Using a WebLogic Cluster) 4-8

4.3 Deprecated Directives for iPlanet Web Server 4-9

5 Configuring the Plug-In for Microsoft IIS Web Server

5.1 Installing and Configuring the Plug-In for Microsoft Internet Information Server 5-2

5.2 Serving Static Files with IIS 5-4

5.3 Serving Static Files and Dynamic Content From the Same Request with IIS 5-5

5.4 Using Wildcard Application Mappings to Proxy by Path 5-8

5.4.1 Adding a Wildcard Script Map for IIS 5-9

5.5 Proxying Requests from Multiple Virtual Web Sites to WebLogic Server 5-9

5.5.1 Sample iisproxy.ini File 5-10

5.6 Creating ACLs Through IIS 5-10

5.7 Testing the Installation 5-11

6 Configuring Security

6.1 Using SSL with Plug-Ins 6-1

6.1.1 Configuring Libraries for SSL 6-2

6.1.2 Configuring a Plug-In for One-Way SSL 6-2

6.1.3 Configuring Two-Way SSL Between the Plug-In and Oracle WebLogic
Server 6-4

6.1.4 Replacing Certificates Signed Using the MD5 Algorithm 6-5

6.1.5 Enabling Support of Certificate Signed with MD5 Algorithm 6-6

6.2 Configuring SSL with the Plug-In for iPlanet Web Server 6-7

v

6.3 Configuring Perimeter Authentication 6-7

7 Common Configuration Tasks

7.1 Configuring IPv6 With Plug-Ins 7-1

7.2 Understanding Connection Errors and Clustering Failover 7-2

7.2.1 Possible Causes of Connection Failures 7-2

7.2.2 Tips for Reducing CONNECTION_REFUSED Errors 7-2

7.2.3 Failover with a Single, Non-Clustered WebLogic Server 7-3

7.2.4 The Dynamic Server List 7-3

7.2.5 Failover, Cookies, and HTTP Sessions 7-4

7.2.6 Failover Behavior When Using Firewalls and Load Directors 7-5

7.3 Tuning Oracle HTTP Server and Apache HTTP Server for High Throughput
for WebSocket Upgrade Requests 7-6

7.4 Working with Partitions 7-6

7.4.1 Adding a Partition 7-7

7.4.1.1 Apache Server and Oracle HTTP Server Configuration Changes 7-7

7.4.1.2 iPlanet Server Configuration Changes 7-9

7.4.1.3 IIS Server Configuration Changes 7-9

7.4.2 Modifying a Partition and Partition Migration 7-10

7.4.3 Configuring SSL Between the Web Server and Oracle WebLogic Server 7-11

7.4.4 Dynamic Discovery of Cluster Changes 7-11

8 Parameters for Web Server Plug-Ins

8.1 General Parameters for Web Server Plug-Ins 8-1

8.1.1 ConnectRetrySecs 8-2

8.1.2 ConnectTimeoutSecs 8-3

8.1.3 Debug 8-3

8.1.4 DebugConfigInfo 8-4

8.1.5 DefaultFileName 8-4

8.1.6 DynamicServerList 8-4

8.1.7 ErrorPage 8-5

8.1.8 FileCaching 8-5

8.1.9 Idempotent 8-5

8.1.10 KeepAliveEnabled 8-6

8.1.11 KeepAliveSecs 8-6

8.1.12 MatchExpression 8-6

8.1.13 MaxPostSize 8-7

8.1.14 MaxSkipTime 8-8

8.1.15 PathPrepend 8-8

8.1.16 PathTrim 8-8

vi

8.1.17 QueryFromRequest 8-9

8.1.18 WebLogicCluster 8-9

8.1.19 WebLogicHost 8-10

8.1.20 WebLogicPort 8-10

8.1.21 WLCookieName 8-10

8.1.22 WLDNSRefreshInterval 8-10

8.1.23 WLExcludePathOrMimeType 8-11

8.1.24 WLFlushChunks 8-11

8.1.25 WLForwardUriUnparsed 8-11

8.1.26 WLIOTimeoutSecs 8-11

8.1.27 WLLocalIP 8-12

8.1.28 WLLogFile 8-12

8.1.29 WLMaxWebSocketClients 8-12

8.1.30 WLProxyPassThrough 8-12

8.1.31 WLProxySSL 8-13

8.1.32 WLProxySSLPassThrough 8-13

8.1.33 WLRetryOnTimeout 8-13

8.1.34 WLRetryAfterDroppedConnection 8-13

8.1.35 WLSendHdrSeparately 8-14

8.1.36 WLServerInitiatedFailover 8-14

8.1.37 WLSocketTimeoutSecs 8-14

8.1.38 WLSRequest 8-14

8.1.39 WLTempDir 8-15

8.2 SSL Parameters for Web Server Plug-Ins 8-15

8.2.1 SecureProxy 8-15

8.2.2 WebLogicSSLVersion 8-16

8.2.3 WLSSLWallet 8-16

8.3 Location of POST Data Files 8-17

vii

Preface

This preface describes the document accessibility features and conventions used in
this guide—Using Oracle WebLogic Server Proxy Plug-Ins 12.2.1.2.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview of Oracle WebLogic Server
Proxy Plug-In

This chapter describes the plug-ins provided by Oracle for use with WebLogic Server:

• What are Oracle WebLogic Server Proxy Plug-Ins?

• Availability of Oracle WebLogic Server Proxy Plug-In

• Upgrading from 1.0 Plug-Ins

• Features of the Version 12.2.1.2.0 Plug-Ins

• Support and Patching

1.1 What are Oracle WebLogic Server Proxy Plug-Ins?
Web server plug-ins allow requests to be proxied from Oracle HTTP Server, Oracle
iPlanet Web Server, Apache HTTP Server, or Microsoft Internet Information Server
(IIS) to Oracle WebLogic Server. In this way, plug-ins enable the HTTP server to
communicate with applications deployed on the WebLogic Server.

The plug-in enhances an HTTP server installation by allowing Oracle WebLogic Server
to handle requests that require dynamic functionality. In other words, you typically use
a plug-in where the HTTP server serves static pages such as HTML pages, while
Oracle WebLogic Server serves dynamic pages such as HTTP Servlets and Java
Server Pages (JSPs).

Oracle WebLogic Server may be operating in a different process, possibly on a
different host. To the end user—the browser—the HTTP requests delegated to Oracle
WebLogic Server still appear to be coming from the HTTP server.

In addition, the HTTP-tunneling facility of the WebLogic client/server protocol also
operates through the plug-in, providing access to all Oracle WebLogic Server services.

1.1.1 Connection Pooling and Keep-Alive
The plug-ins improve performance using a pool of connections from the plug-in to
Oracle WebLogic Server. The plug-in implements HTTP 1.1 keep-alive connections
between the plug-in and Oracle WebLogic Server by reusing the same connection for
subsequent requests from the same plug-ins. If the connection is inactive for more
than 20 seconds, (or a user-defined amount of time), the connection is closed. See
KeepAliveEnabled.

Note:

The web server manages client connections.

1-1

1.1.2 Proxying Requests
The plug-in proxies requests to Oracle WebLogic Server based on a configuration that
you specify.

• You can proxy requests based on the URL of the request or a portion of the URL.
This is called proxying by path.

• You can also proxy a request based on the MIME type of the requested file, which
is called proxying by file extension.

You can also enable both methods. If you enable both methods and a request
matches both criteria, the request is proxied by path.

You can also specify additional parameters for each of these types of requests that
define additional behavior of the plug-in.

1.2 Availability of Oracle WebLogic Server Proxy Plug-In
Oracle WebLogic Server Proxy Plug-Ins are available for the following web servers:

Table 1-1 Availability of Version 12c (12.2.1.2.0) Plug-Ins

Web Server Plug-In Availability More Information

Oracle HTTP Server
12c

The plug-in is included in the Oracle
HTTP Server installation.

For information about
configuring this plug-in, see
Configuring the Plug-In for
Oracle HTTP Server .

Oracle iPlanet Web
Server (7.0.9 and later
releases)

Apache HTTP Server
2.2.x

Microsoft Internet
Information Server (IIS)
7.0 and later

The plug-ins are available for
download on the My Oracle Support
(http://support.oracle.com) and
Software Delivery Cloud (http://
edelivery.oracle.com) web sites as
zip files containing the necessary
binary and helper files.

For example, the following directories
are included in the mod_wl.so plug-in
distribution.

• lib/mod_wl.so (Apache HTTP
Server plug-in)

• lib/*.so (native libraries)
• bin/orapki or bin\orapki.bat

(orapki tool)
• jlib/*.jar (Java helper libraries for

orapki)

For information about
installing and configuring the
plug-ins for Apache HTTP
Server, Oracle iPlanet, and
Microsoft IIS Web Servers,
see the following:

• Configuring the Plug-In
for Apache HTTP Server

• Configuring the Plug-In
for iPlanet Web Server

• Configuring the Plug-In
for Microsoft IIS Web
Server

1.3 Upgrading from 1.0 Plug-Ins
The version 1.0 plug-ins are deprecated and are not guaranteed to be available for
future versions of Oracle WebLogic Server. The version 12c (12.2.1.2.0) plug-ins are
the recommended replacement.

Chapter 1
Availability of Oracle WebLogic Server Proxy Plug-In

1-2

http://support.oracle.com
http://edelivery.oracle.com
http://edelivery.oracle.com

Note:

For Apache HTTP Server 1.3.x or 2.0.x, continue to use the version 1.0 plug-in.

This section contains the following information:

• Upgrade Instructions

• Considerations for Upgrading From Oracle WebLogic Server Proxy Plug-Ins
Version 1.0 to 12c (12.2.1.2.0)

1.3.1 Upgrade Instructions
For upgrading from 11g plug-ins to the Oracle WebLogic Server Proxy Plug-Ins 12c
(12.2.1.2.0), use installation instructions included in the specific chapter for your web
server, as listed in Table 1-2.

Table 1-2 Upgrade Instructions by Plug-In

To upgrade to the 12c
(12.2.1.2.0) plug-ins for:

See:

Oracle HTTP Server Configuring the Plug-In for Oracle HTTP Server

Apache HTTP Server Configuring the Plug-In for Apache HTTP Server

iPlanet Web Server Configuring the Plug-In for iPlanet Web Server

Microsoft IIS Web Server Configuring the Plug-In for Microsoft IIS Web Server

1.3.2 Considerations for Upgrading From Oracle WebLogic Server
Proxy Plug-Ins Version 1.0 to 12c (12.2.1.2.0)

The version 12c (12.2.1.2.0) plug-ins are a superset of the version 1.0 plug-ins and
support the existing features. However, when you upgrade, keep the following
considerations in mind:

• The list of supported platforms has changed. See Oracle Fusion Middleware
Supported System Configurations at:

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-

certification-100350.html

• Because the version 1.0 plug-ins supported both 40- and 128-bit encryption
standards, the plug-in file names needed to identify which standard was
supported. For example, mod_wl_22.so indicated 40-bit encryption and
mod_wl128_22.so indicated 128-bit encryption. However, the version 12c
(12.2.1.2.0) plug-ins support only 128-bit encryption, and the plug-in names are
now simplified. For example, mod_wl.so is the only file name required.

Chapter 1
Upgrading from 1.0 Plug-Ins

1-3

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Note:

If you upgrade from the 1.0 plug-ins and had been using 128-bit encryption,
you must change your configuration file to reflect the new naming
convention. For example, you must change mod_wl128_22.so to
mod_wl.so.

1.4 Features of the Version 12.2.1.2.0 Plug-Ins
This section describes the additional features of the version 12c (12.2.1.2.0) plug-ins.

• Oracle WebLogic Server Proxy Monitoring

• Support for Multi-tenancy and Partitions

• SSL Support for IPlanet Web Server

• Documentation for Using the Plug-In with Microsoft IIS

• Deprecated Support for Certificates Signed Using the MD5 Algorithm

1.4.1 Oracle WebLogic Server Proxy Monitoring
The current release adds support for monitoring the performance of the Oracle HTTP
Server. The performance metrics are specific to the Oracle WebLogic Server Proxy
Plug-In where a request is proxied to the backend WebLogic server. See
Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics.

1.4.2 Support for Multi-tenancy and Partitions
In the current release, Oracle WebLogic Server Proxy Plug-Ins can be made partition-
aware. This plays a role in support of Oracle WebLogic Server MT (multi-tenancy).
See Working with Partitions.

1.4.3 SSL Support for IPlanet Web Server
In the current release, support has been added for using SSL with the iPlanet Web
Server. See Configuring SSL with the Plug-In for iPlanet Web Server.

1.4.4 Documentation for Using the Plug-In with Microsoft IIS
Instructions have been added to use Oracle WebLogic Server Proxy Plug-Ins with
Microsoft IIS Web Server. See Installing and Configuring the Plug-In for Microsoft
Internet Information Server.

1.4.5 Deprecated Support for Certificates Signed Using the MD5
Algorithm

Support for certificates signed with MD5 is deprecated. See Replacing Certificates
Signed Using the MD5 Algorithm.

Chapter 1
Features of the Version 12.2.1.2.0 Plug-Ins

1-4

1.5 Support and Patching
When you encounter issues with a plug-in, always report the version of the plug-in you
are using. You can find this information in the apache log or the plug-in debug log (if
configured). The version information looks like the following snippet:

WebLogic Server Plug-in version 12.2.1.2.0 <WLSPLUGINS_XXXX_XXXX_XXXXX.XXXX>

Note:

On the Apache Web Server for Linux, you can also obtain the plug-in version
by issuing the following command:

$ strings ${PLUGIN_HOME}/lib/mod_wl.so | grep -i wlsplugins

A patch for a plug-in typically will contain one or more shared objects to be replaced.
Ensure to backup your original files as you replace them with those in the patch.
Validate that the patch has been correctly updated by checking the version string in
the logs.

Chapter 1
Support and Patching

1-5

2
Configuring the Plug-In for Oracle HTTP
Server

Configure the Oracle WebLogic Server Proxy Plug-In, which is the plug-in for proxying
requests from Oracle HTTP Server to Oracle WebLogic Server. The Oracle WebLogic
Server Proxy Plug-In is included in the Oracle HTTP Server 12c (12.2.1.2.0)
installation. You do not have to download and install it separately.

Note:

The Oracle WebLogic Server Proxy Plug-In provides features that are identical
to those of the plug-in for Apache HTTP Server.

You can configure the Oracle WebLogic Server Proxy Plug-In either by using Fusion
Middleware Control or by editing the mod_wl_ohs.conf configuration file manually.

WebLogic Server Proxy Plug-in 12.2.1.0 and later version builds are moved from Intel
compiler to MSVC Compiler. When Apache HTTP Server is used as a front end with
WebLogic Server Proxy Plug-in, the plug-in library depends on the two dlls —
msvcp110.dll and msvcr110.dll, provided by Microsoft. These dlls are available with
Microsoft Visual C ++ Redistributable Package for x64.

This chapter contains the following topics:

• Oracle HTTP Server Support Note

• Preparing for Configuring the Oracle WebLogic Server Proxy Plug-In

• Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion Middleware
Control

• Configuring the Oracle WebLogic Server Proxy Plug-In Manually

• Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics

• Deprecated Directives for Oracle HTTP Server

• Troubleshooting Oracle WebLogic Server Proxy Plug-In Implementations

2.1 Oracle HTTP Server Support Note
The Oracle WebLogic Server Proxy Plug-In for Oracle HTTP Server is now able to
front-end WebSocket applications.

2-1

2.2 Preparing for Configuring the Oracle WebLogic Server
Proxy Plug-In

You must complete some installation and verification tasks before configuring the
Oracle WebLogic Server Proxy Plug-In.

• Ensure that Oracle WebLogic Server has been installed, a domain has been
created, and you can access the Oracle WebLogic Server administration console.
Oracle HTTP Server and WebLogic Server can be installed either in same domain
or in separate domains.

• Verify that Fusion Middleware Control has been installed and you can access the
Enterprise Manager Console. This is required to configure the Oracle WebLogic
Server Proxy Plug-In by using the graphical interface provided by Fusion
Middleware Control. The Fusion Middleware Control is available only for WebLogic
managed domains.

• To be able to test the configuration, ensure that the required Java applications are
deployed to Oracle WebLogic Server—either to a single managed server or to a
cluster—and are accessible.

2.2.1 Setting the WebLogic Plug-In Enabled Parameter
You must set the WebLogic Plug-In Enabled parameter if the version of the Oracle
WebLogic Server instances in the back end is 10.3.4 (or later) release.

1. Log in to the Oracle WebLogic Server administration console.

2. In the Domain Structure pane, expand the Environment node.

• If the server instances to which you want to proxy requests from Oracle HTTP
Server are in a cluster, select Clusters.

• Otherwise, select Servers.

3. Select the server or cluster to which you want to proxy requests from Oracle HTTP
Server.

4. Select WebLogic Server drop down menu, then Administration, then General
Settings.

The Configuration: General tab is displayed.

5. Scroll down to the Advanced section, expand it, and select Yes from the
WebLogic Plug-In Enabled drop-down list.

Yes must be selected if the WebLogic Plug-ins are used with the WebLogic
Server. See Understanding the WebLogic Plug-In Enabled Parameter.

6. If you selected Servers in step 2, repeat steps 3 and 4 for the other servers to
which you want to proxy requests from Oracle HTTP Servers.

7. Click Save.

For the change to take effect, you must restart the server instances.

2.2.1.1 Understanding the WebLogic Plug-In Enabled Parameter
The WebLogic Plug-In Enabled drop-down list contains these values:

Chapter 2
Preparing for Configuring the Oracle WebLogic Server Proxy Plug-In

2-2

• Yes—Yes must be selected if the WebLogic Plug-ins are used with the WebLogic
Server. When set to Yes on the server, it specifies that this server uses the
proprietary WL-Proxy-Client-IP header, which is recommended if the server
instance will receive requests from a proxy plug-in.

When set to Yes on the cluster, it specifies that the cluster will receive requests
from a proxy plug-in or HttpClusterServlet. A call to getRemoteAddr will return the
address of the browser client from the proprietary WL-Proxy-Client-IP header,
instead of the Web server.

• No—Selecting No for the server or cluster disables the weblogic-plugin-enabled
parameter (weblogic-plugin-enabled=false) in the config.xml file.

• Default—When Default is selected for WebLogic Plug-In Enabled in the servers
page, then the servers will inherit the value selected for WebLogic Plug-In
Enabled for the cluster. When Default is selected for WebLogic Plug-In Enabled
in the clusters page, then the clusters will inherit the value selected for WebLogic
Plug-In Enabled for the domain.

2.3 Configuring the Oracle WebLogic Server Proxy Plug-In
Using Fusion Middleware Control

Use Fusion Middleware Control to configure the mod_wl_ohs module. To configure the
mod_wl_ohs module, complete the following tasks:

• Task 1: Navigate to the mod_wl_ohs Configuration Page

• Task 2: Specify the Configuration Settings

• Task 3: Configure Expression Overrides or Location Overrides (Optional)

• Task 4: Apply Your Changes

2.3.1 Task 1: Navigate to the mod_wl_ohs Configuration Page
The mod_wl_ohs configuration page contains the parameters for configuring the
Oracle WebLogic Server Proxy Plug-In.

1. Ensure that you have fulfilled the prerequisites listed in Preparing for Configuring
the Oracle WebLogic Server Proxy Plug-In.

2. Select Administration from the Oracle HTTP Server menu.

3. Select mod_wl_ohs Configuration from the Administration menu. The
mod_wl_ohs Configuration page appears.

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion Middleware Control

2-3

The following table describes the fields in the mod_wl_ohs page.

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion Middleware Control

2-4

Field Description

Provide WebLogic Cluster
Details

List of Oracle WebLogic clusters that can be used for load
balancing. The server or cluster list is a list of host:port
entries. If a mixed set of clusters and single servers is
specified, the dynamic list returned for this parameter will
return only the clustered servers.

If you are not sure of the correct cluster, you can click the
search icon to see a list of all associated clusters. See
Using the Search Function.

The module does a simple round-robin between all
available servers. The server list specified in this property
is a starting point for the dynamic server list that the server
and module maintain. Oracle WebLogic Server and the
module work together to update the server list
automatically with new, failed, and recovered cluster
members.

You can disable the use of the dynamic cluster list by
disabling the Dynamic Server List ON field. The module
directs HTTP requests containing a cookie, URL-encoded
session, or a session stored in the POST data to the
server in the cluster that originally created the cookie.

Provide WebLogic Server
Host and Port Details

• WebLogic Host

Oracle WebLogic Server host (or virtual host name as
defined in Oracle WebLogic Server) to which HTTP
requests should be forwarded. If you are using a
WebLogic cluster, use the WebLogic Cluster
parameter instead of WebLogic Host.
If you are not sure of the correct server, you can click
the search icon to see a list of all associated clusters.
See Using the Search Function.

• WebLogic Port

Port at which the Oracle WebLogic Server host is
listening for connection requests from the module (or
from other servers). (If you are using SSL between
the module and Oracle WebLogic Server, set this
parameter to the SSL listen port.)

Dynamic Server List ON |
OFF

When set to OFF, the module ignores the dynamic cluster
list used for load balancing requests proxied from the
module and only uses the static list specified with the
WebLogic Cluster parameter. Normally this parameter
should be set to ON.

There are some implications for setting this parameter to
OFF:

• If one or more servers in the static list fails, the
module could waste time trying to connect to a
terminated server, resulting in decreased
performance.

• If you add a new server to the cluster, the module
cannot proxy requests to the new server unless you
redefine this parameter. Oracle WebLogic Server
automatically adds new servers to the dynamic server
list when they become part of the cluster.

Error Page You can create your own error page to appear when your
Web server cannot forward requests to Oracle WebLogic
Server.

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion Middleware Control

2-5

Field Description

WebLogic Temp Directory Specifies the location of the _wl_proxy directory for post
data files.

Exclude Path or MIME Type This parameter allows you exclude certain requests from
proxying.

This parameter can be defined locally at the Location tag
level and globally. When the property is defined locally, it
does not override the global property but defines a union
of the two parameters.

Match Expressions Use this region to specify any Expression overrides. For
example, if you were proxying by MIME type, you might
enter:

*.jsp WebLogicHost=myHost|paramName=value

You can define a new parameter for Match Expression by
using the following syntax:

*.jsp PathPrepend=/test|PathTrim=/foo

(parameters are separated by a |)

Location Use this table to specify any location overrides. See Task
3: Configure Expression Overrides or Location Overrides
(Optional).

Add Cross Component
Wiring

This button appears only if you have installed Oracle
HTTP Server in full JRF mode (collocated) and there is a
backing database.

Selecting this button opens the Service Tables page. A
service table provides a way for service providers to
publish endpoint information about their services, and
clients of these services to query and bind to these
services. A service table is a single table in a database
schema. There is one row for every endpoint that is
published to it. The service table schema is initially
created by the Repository Creation Utility.

See Wiring Components to Work Together in
Administering Oracle Fusion Middleware

2.3.2 Task 2: Specify the Configuration Settings
Specify the configuration settings for the Oracle WebLogic Server Proxy Plug-In. In the
General section, you can configure mod_wl_ohs for a WebLogic cluster or for
WebLogic servers.

• If you select the Provide WebLogic Cluster Details radio button, then provide
values for the WebLogic Cluster, Dynamic Server List ON, Error Page, WebLogic
Temp Directory, and Exclude Path or MIME Type fields.

• If you select the Provide WebLogic Server Host and Port Details radio button,
then provide values for the WebLogic Host, WebLogic Port, Dynamic Server List
ON, Error Page, WebLogic Temp Directory, and Exclude Path or MIME Type
fields.

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion Middleware Control

2-6

2.3.3 Task 3: Configure Expression Overrides or Location Overrides
(Optional)

If necessary, you can add expression or location overrides to your configuration.

1. Add any expression overrides in the Match Expression field.

2. Add any location overrides in the Location table.

a. Click Add Row to create a new row.

b. Enter the base URI for which the associated directives become effective.

c. Complete the WebLogic Cluster, WebLogic Host, and WebLogic Port
fields. You can automatically complete these fields by clicking AutoFill (see
Using the AutoFill Function).

d. Complete the Path Trim field.

According to the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/
{QUERY_STRING}...

Path Trim specifies the string trimmed by the module from the {PATH}/
{FILENAME} portion of the original URL, before the request is forwarded to
WebLogic Server. For example, if the URL:

http://myWeb.server.com/weblogic/foo

is passed to the module for parsing and if Path Trim has been set to strip off /
weblogic before handing the URL to WebLogic Server, the URL forwarded to
WebLogic Server is:

http://myWeb.server.com:7002/foo

Note:

If you are converting an existing third-party server to proxy requests to
WebLogic Server using the module for the first time, you must change
application paths to /foo to include weblogic/foo. You can use Path
Trim and Path Prepend in combination to change this path

e. Complete the Path Prepend field.

According to the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/
{QUERY_STRING}...

Path Prepend specifies the path that the module prepends to the {PATH}
portion of the original URL, after Path Trim is trimmed and before the request
is forwarded to WebLogic Server.

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion Middleware Control

2-7

Note:

If you need to append File Name, use the DefaultFileName module
parameter instead of Path Prepend.

f. Click Add Row again to save the new row.

2.3.4 Task 4: Apply Your Changes
Apply your changes to the mod_wl_ohs Configuration Page and restart Oracle HTTP
Server.

1. If the settings are correct, click Apply to apply the changes. If the settings are
incorrect or you decide to not apply the changes, click Revert to return to the
original settings.

2. Restart Oracle HTTP Server by selecting Control from the Oracle HTTP Server
menu, and then selecting Start Up.

The mod_wl_ohs module configuration is saved and displayed on the mod_wl_ohs
Configuration page.

2.3.5 Using the Search Function
The search function allows you to search for a particular WebLogic Cluster or
WebLogic Host that is available to the selected Oracle HTTP Server instance. By

clicking the search icon , you can see a list of clusters or servers available to the
selected Oracle HTTP Server instance. To use the search function, do the following:

1. Click the search icon for either WebLogic Cluster or WebLogic Host. The Select
WebLogic Cluster/Server dialog box appears.

2. Select the cluster or server you want to use and click OK.

The selected cluster or server name appears in the appropriate field.

2.3.6 Using the AutoFill Function

Note:

The AutoFill function is available only if you are using Oracle WebLogic Server
in full-JRF mode. It is not available if you are using Restricted-JRF.

You can easily add valid WebLogic Server and endpoint locations for a specified Base
URL to the Locations table on the Oracle WebLogic Server Proxy Plug-In
Configuration screen by using the AutoFill button. To do so:

1. Click Add to add a new location,

2. Enter a location name in the Location field.

3. Click AutoFill.

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion Middleware Control

2-8

Data for any location of the same name will be updated and any new locations will be
added to the table.

2.4 Configuring the Oracle WebLogic Server Proxy Plug-In
Manually

Specify directives in the mod_wl_ohs.conf file to manually configure the Oracle
WebLogic Server Proxy Plug-In.

1. Ensure that you have fulfilled the prerequisites listed in Preparing for Configuring
the Oracle WebLogic Server Proxy Plug-In.

2. Open the mod_wl_ohs.conf file in a text editor.

The mod_wl_ohs.conf file is located in the following directory:

DOMAIN_HOME/config/fmwconfig/components/OHS/componentHome

3. Add directives within the <IfModule weblogic_module> element in the configuration
file.

For examples, see Examples of <IfModule weblogic_module> Element
Configurations.

For information about the other directives that you can specify in the
mod_wl_ohs.conf file, see Parameters for Web Server Plug-Ins.

4. Restart Oracle HTTP Server by using one of the techniques described in Starting
Oracle HTTP Serverin Administering Oracle HTTP Server.

2.4.1 Examples of <IfModule weblogic_module> Element
Configurations

The configuration of the predefined <IfModule weblogic_module> element determines
how requests are sent to Oracle WebLogic Server. These examples demonstrates the
different ways in which you can configure this element.

Note:

Oracle recommends that you specify directives within the predefined <IfModule
weblogic_module> element.

If you specify directives outside the predefined <IfModule weblogic_module>
element, or in additional <IfModule weblogic_module> elements, or in
configuration files other than mod_wl_ohs.conf, the Oracle WebLogic Server
Proxy Plug-In might work, but the configuration state of the module, as
displayed in Fusion Middleware Control, could be inconsistent with the
directives specified in the mod_wl_ohs.conf configuration file.

To Forward Requests to a Single Oracle WebLogic Server Instance

To forward requests to an application running on a single Oracle WebLogic Server
instance, specify the details of that destination server within a <location> element.

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Manually

2-9

Syntax:

<IfModule weblogic_module>
<Location path>
WLSRequest On
WebLogicHost host
WeblogicPort port
</Location>
</IfModule>

Example:

With the following configuration, requests for the /myapp1 URI received at the Oracle
HTTP Server listen port will be forwarded to /myapp1 on the Oracle WebLogic Server
with the listen port localhost:7001

<IfModule weblogic_module>
<Location /myapp1>
WLSRequest On
WebLogicHost localhost
WeblogicPort 7001
</Location>
</IfModule>

To Forward Requests to a Cluster of Oracle WebLogic Server Instances

To forward requests to an application running on a cluster of Oracle WebLogic
Server instances, specify the details of that destination cluster within a new
<location> element.

Syntax:

<IfModule weblogic_module>
<Location path>
WLSRequest On
WebLogicCluster host:port,host:port,...
</Location>
</IfModule>

Example:

With the following configuration, requests for the /myapp2 URI received at the Oracle
HTTP Server listen port will be forwarded to /myapp2 on the Oracle WebLogic Server
cluster containing the managed servers with the listen ports localhost:8002 and
localhost:8003.

<IfModule weblogic_module>
<Location /myapp2>
WLSRequest On
WebLogicCluster localhost:8002,localhost:8003
</Location>
</IfModule>

To Configure Multiple Destinations

To configure multiple destinations—say, an application running on a single Oracle
WebLogic Server instance and another application running on a cluster—you must
specify each destination in a distinct <location> child element. All the <location> child
elements should be at the same level within the <IfModule weblogic_module> element,
as shown in the following syntax:

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Manually

2-10

<IfModule weblogic_module>
#For an application running on a single server instance
<Location path1>
WLSRequest On
WebLogicHost host
WeblogicPort port
</Location>

#For an application running on a cluster
<Location path2>
WLSRequest On
WebLogicCluster host:port,host:port,...
</Location>

</IfModule>

To Link to Managed Servers

To configure the Oracle WebLogic Server Proxy Plug-In so that it can link to managed
servers, for example to enable a high availability deployment of Oracle HTTP Server,
edit the mod_wl_ohs.conf file as follows:

<IfModule mod_weblogic.c>
 WebLogicCluster apphost1.mycompany.com:7050,apphost2.mycompany.com:7050
 MatchExpression *.jsp
 </IfModule>

<Location /weblogic>
 WLSRequest On
 WebLogicCluster apphost1.mycompany.com:7050,apphost2.com:7050
 DefaultFileName index.jsp
</Location>

Chapter 2
Configuring the Oracle WebLogic Server Proxy Plug-In Manually

2-11

Note:

If you are using SSL termination and routing requests to WebLogic, the
following additional configuration is required.

In the WebLogic console, WebLogic Plugin Enabled must be set to true,
either at the domain, cluster or Managed Server level.

In the Location block which directs requests to the WebLogic managed servers,
one of the following lines also must be added.

WLProxySSL ON
WLProxySSLPassThrough ON

(To help determine which parameter to use, see SSL Parameters for Web
Server Plug-Ins.)

For example:

<Location /weblogic>
 WLSRequest On
 WebLogicCluster apphost1.mycompany.com:7050,apphost2.com:7050
 WLProxySSL On
 WLProxySSLPassThrough ON
 DefaultFileName index.jsp
</Location>

After enabling the WebLogic plugin, restart the Administration Server. See
Terminating SSL Requests in Administering Oracle HTTP Server.

These examples show two different ways of routing requests to Oracle WebLogic
managed servers:

• The <IfModule> block sends any requests ending in *.jsp to the WebLogic
Managed Server cluster located on Apphost1 and Apphost2.

• The <Location> block sends any requests with URLs prefixed by /weblogic to the
WebLogic Managed Server cluster located on Apphost1 and Apphost2.

To Configure One-way and Two-way SSL

For information about configuring the Oracle WebLogic Server Proxy Plug-In to
support one-way and two-way SSL between Oracle HTTP Server and Oracle
WebLogic Server, see Using SSL with Plug-Ins.

2.5 Understanding Oracle WebLogic Server Proxy Plug-In
Performance Metrics

Oracle HTTP Server provides performance metrics specific to the Oracle WebLogic
Server Proxy Plug-In (mod_wl_ohs) module, where a request is proxied to the backend
WebLogic server.

These metrics are provided through the Oracle Dynamic Monitoring Service (DMS)
which enables Oracle Fusion Middleware components to provide administration tools,
such as Fusion Middleware Control, with data regarding the component's

Chapter 2
Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics

2-12

performance, state and on-going behavior. For the Oracle WebLogic Server Proxy
Plug-In module, for example, it could return the number of requests proxied, the
number of failed requests, and other specific metrics. For more information on DMS,
see Using the Oracle Dynamic Monitoring Service in Tuning Performance Guide.

Note:

The Oracle WebLogic Server Proxy Plug-In module metrics are available only
for Oracle HTTP Server and Apache server plug-ins. They are not available for
Microsoft IIS and iPlanet server plug-ins.

This section contains the following information on DMS metrics.

• Configuring DMS Metrics for Oracle HTTP Server Proxy Plug-in—How to
configure DMS metrics for Oracle WebLogic Server.

• Viewing Performance Metrics for Oracle HTTP Server Proxy Plug-in—How to view
DMS metrics for Oracle WebLogic Server.

• DMS State Metrics—These metrics represent a single data point, for example, a
counter, a status and so on.

• DMS Event Metrics—These metrics represent an event, for example a login failure
and so on.

• DMS PhaseEvent Metrics—These metrics represent a "phase" of an event.

2.5.1 Configuring DMS Metrics for Oracle HTTP Server Proxy Plug-in
The DMS metrics for Oracle WebLogic Server Proxy Plug-In are enabled by default in
the admin.conf file. They are included as part of the regular DMS metrics collection.

2.5.2 Viewing Performance Metrics for Oracle HTTP Server Proxy
Plug-in

You can view the performance metrics by using either the administration port, WLST
commands or Fusion Middleware Control. For details of each of the performance
metrics, see DMS State Metrics, DMS Event Metrics, and DMS PhaseEvent Metrics.

Using the Administration Port:

If administration port is configured, for example, at 127.0.0.1:9999, then you can view
the raw DMS metrics at the URL http://127.0.0.1/dms/.

The metrics under the section /WebLogicProxy [type=OHSWebLogic] are the metrics
coming from Oracle WebLogic Server plug-in.

Using WLST (Collocated Mode Only)

Use the WLST command displayMetricTables to view performance metrics, for
example:

displayMetricTables(servertype="OHS", servers=<instancename>)

Chapter 2
Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics

2-13

The metrics under the section /WebLogicProxy [type=OHSWebLogic] are the metrics
coming from Oracle WebLogic Server Proxy Plug-in.

Using Fusion Middleware Control (Collocated Mode Only)

To view performance metrics in Fusion Middleware Control, select Oracle HTTP
Server, then Monitoring, then Performance Summary. The metrics towards the bottom
of this page will have Oracle WebLogic Server Proxy Plug-in specific metrics. See
Viewing Performance Metrics in Administering Oracle HTTP Server.

2.5.3 DMS State Metrics
A state metric tracks system status information or to track a metric that is not
associated with an event. Table 2-1 describes the State metrics available for the
Oracle WebLogic Server Proxy Plug-In module.

These metrics can be returned for Oracle WebLogic Server and Apache HTTP Server
Plug-ins.

Table 2-1 State Metrics for the Oracle WebLogic Server Proxy Plug-In Module

Metric Name Description

totalDeclines The total number of requests declined (not processed by
mod_wl_ohs). This number indicates the requests that are not
configured, and/or rejected by the plug-in (for example, custom
HTTP methods are always rejected by the plug-in)

totalErrors Number of requests that could not be processed successfully.
See Event Metrics for errors.

totalHandled The total number of requests serviced by the mod_wl_ohs plug-
in.

totalRequests The total number of requests received by mod_wl_ohs. The
number includes all the requests that are targeted to the plug-in,
plus the requests that are not targeted to any module (not
configured).

totalRetries Number of times a request was retried. Requests are generally
retried on failure (depending on configuration). If a request is
ever retried, this metric will increment (once per request,
irrespective of how many times the request was retried).

totalSuccess The number of requests successfully processed. If the requests
are processed successfully (proxied to Oracle WebLogic Server,
and sent the response back to client), then this metric will be
incremented.

websocketActive Number of WebSocket upgrade requests currently active.

websocketClose Number of WebSocket upgrade requests closed. If the
WebSocket session is terminated (for any reason), then this
metric is updated.

Chapter 2
Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics

2-14

Table 2-1 (Cont.) State Metrics for the Oracle WebLogic Server Proxy Plug-In
Module

Metric Name Description

websocketMax Maximum number of simultaneous WebSocket requests that can
be active.

If the WLMaxWebSocketClients parameter is configured, the value
will be the lower of these:

• The configured value, OR
• 0.75 of the value of MaxRequestWorkers (Oracle HTTP

Server and Apache 2.4), OR
• 0.75 of the value of MaxClients (Apache 2.2), OR
• 0.75 of the value of ThreadsPerChild (Oracle HTTP Server

and Apache 2.2/2.4, Windows only)
If WLMaxWebSocketClients parameter is not configured, the value
will be:

• 0.5 of the value of MaxRequestWorkers (Oracle HTTP Server
and Apache 2.4), OR

• 0.5 of the value of MaxClients (Apache 2.2), OR
• 0.5 of the value of ThreadsPerChild (Oracle HTTP Server

and Apache 2.2/2.4, Windows only)
For more information on the WLMaxWebSocketClients parameter,
see Tuning Oracle HTTP Server and Apache HTTP Server for
High Throughput for WebSocket Upgrade Requests.

websocketPercent This value is defined by the number of active WebSockets
(websocketActive) divided by the maximum number of
simultaneous WebSocket requests (websocketMax) multiplied by
100:

(websocketActive/webocketMax)*100.

websocketRequests The number of WebSocket upgrade requests made. If the
request URI is an WebSocket upgrade request, this metric will
be incremented.

websocketSuccess Number of WebSocket upgrade requests completed
successfully. If Oracle WebLogic Server responds to a
WebSocket upgrade request with 101 Switching Protocols,
then this metric is updated.

2.5.4 DMS Event Metrics
A DMS event metric counts system events. A DMS event tracks system events that
have a short duration, or where the duration of the event is not of interest but the
occurrence of the event is of interest. Table 2-2 describes the Event metrics available
for the Oracle WebLogic Server Proxy Plug-In module.

These metrics can be returned for Oracle WebLogic Server and Apache HTTP Server
Proxy Plug-ins.

Chapter 2
Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics

2-15

Table 2-2 Event Metrics for the Oracle WebLogic Server Proxy Plug-In Module.

Metric Name Description

errConnRefused The number of CONNECTION_REFUSED errors. Indicates the
number of times the configured WebLogicHost and/or
WebLogicPort is either not reachable or not listening.

errNoResources The number of NO_RESOURCES errors. One scenario where this
exception can occur is when SSL is configured in the plug-in, but
the corresponding SSL configuration is not defined in the
managed server.

errOthers The number of any other errors. For example, POST data size is
greater than the value of MaxPostSize.

errReadClient The number of READ_ERROR_FROM_CLIENT errors. Indicates the
number of times that the plug-in could not read from the client
(browser).

errReadServer The number of READ_ERROR_FROM_SERVER errors. Indicates the
number of times a read operation could not be successfully
performed on Oracle WebLogic Server.

errReadTimeout The number of READ_TIMEOUT errors. An example is Oracle
WebLogic Server not responding within WLIOTimeoutSecs.

errWriteClient The number of WRITE_ERROR_TO_CLIENT errors. Indicates the
number of times that the plug-in could not write to client. This
can be seen when the client sends a request but closes the
connection before receiving the response.

errWriteWLS The number of WRITE_ERROR_TO_SERVER errors. Indicates the
number of times that the plug-in could not write to Oracle
WebLogic Server.

wsClientClose Number of WebSocket upgrade requests closed by client. If the
client sends a WebSocket upgrade request, and client closes the
connection, then this metric is updated.

wsErrorClose Number of WebSocket sessions terminated due to error. If there
is any error which causes the WebSocket connection to close,
then this metric is updated.

wsNoUpgrade The number of times the WebSocket upgrade request was
rejected. The response to WebSocket upgrade request is not
"101 Switching Protocols". This can happen when the
upgrade request is sent to Oracle WebLogic Server that does
not support WebSockets (Oracle WebLogic Server version
12.1.2 or earlier).

wsServerClose Number of WebSocket upgrade requests closed by server. If
Oracle WebLogic Server initiates a close of WebSocket
communication, then this metric is updated. For example,
timeout or no communication (by default, 5 minutes) after
upgrading the request.

2.5.5 DMS PhaseEvent Metrics
A DMS PhaseEvent metric measures the time spent in a specific section of code that
has a beginning and an end. A PhaseEvent tracks time in a method or in a block of
code. For each phase event, an "active count", "completed count", "total time", "min

Chapter 2
Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics

2-16

time", "max time", and "average time" value is included. Table 2-3 describes the
PhaseEvent metrics available for the Oracle WebLogic Server Proxy Plug-In module.

These metrics can be returned for Oracle WebLogic Server and Apache HTTP Server
Proxy Plug-ins.

Table 2-3 PhaseEvent Metrics for the Oracle WebLogic Server Proxy Plug-In
Module

Metric Name Description

websocketPhase WebSocket communication in progress. The phase (time)
between "WebSocket upgrade succeeded" and "WebSocket
connection closed"

wlsWait The phase (time) between "the request sent to Oracle WebLogic
Server" and "Waiting for response".

2.6 Deprecated Directives for Oracle HTTP Server
The WebLogic Server plug-in logs for Oracle WebLogic Server Proxy Plug-In are now
part of the Web Server error log mechanism. References can be identified with module
name as weblogic. For example:

[2015-05-14T00:43:27.8355-06:00] [OHS] [TRACE:16] [OH99999] [weblogic] [client_id: ::
1] [host_id: XXXXXXXX] [host_addr: XX.XXX.XXX.XXX] [pid: 1240] [tid: 2424] [user:
sramavan] [ecid: 00iT9hK4DrhFw0zobn063z0BvEE3zsYyk0000JO00000H] [rid: 0]
[VirtualHost: main] ================New Request: [GET /favicon.ico HTTP/1.1]
=================

The WLLogFile and Debug directives are deprecated. If the configuration uses these
directives, the following note appears in the node manager plug-in log file
(ohs_nm.log):

<2015-05-14 00:36:25> <INFO> <OHS-0> <[Thu May 14 00:36:25.723286 2015]
[weblogic:warn] [pid 5084:tid 668] The Debug directive is ignored. The web server
log level is used instead.>

<2015-05-14 00:36:25> <INFO> <OHS-0> <[Thu May 14 00:36:25.724263 2015]
[weblogic:warn] [pid 5084:tid 668] The WLLogFile directive is ignored. The web
server log file is used instead.>

To enable plug-in logs:

• If OraLogMode is set to ODL-text, set OraLogSeverity to TRACE:16. The logs
appear in the directory OraLogDir (instance-name.log). This is the default.

• If OraLogMode is set to apache, set LogLevel to debug. The directive ErrorLog
points to the file where the errors are logged.

See Managing Oracle HTTP Server Logs in Administering Oracle HTTP Server guide.

2.7 Troubleshooting Oracle WebLogic Server Proxy Plug-In
Implementations

You might encounter some of the following problems when using the Oracle WebLogic
Server Proxy Plug-In. Descriptions of how to solve these problems are provided.

Chapter 2
Deprecated Directives for Oracle HTTP Server

2-17

• WLS Session Issues

• CONNECTION_REFUSED Errors

• NO_RESOURCES Errors

• Changing the Oracle WebLogic Server Keystore Causes Unexpected Behavior

2.7.1 WLS Session Issues
The Oracle WebLogic Server Proxy Plug-In routes the requests to backend Oracle
WebLogic Server or cluster. Oracle WebLogic Server maintains sessions so that
subsequent requests from the same client are routed to the same server. However,
due to various reasons, if the Oracle WebLogic Server Proxy Plug-In cannot
communicate with the Oracle WebLogic Server server, the request is handled in the
following ways:

• If the request is routed to a single WebLogic Server instance, the Oracle
WebLogic Server Proxy Plug-In continues trying to connect to that same
WebLogic Server instance for the maximum number of retries as specified by the
ratio of ConnectTimeoutSecs and ConnectRetrySecs. If all attempts fail, an HTTP
503 error message is returned back to the client.

• If the request is routed to WebLogic Cluster, then the current WLS server is
marked as bad, and the request is routed to the next available WLS server. If all
attempts fail, an HTTP 503 error message is returned back to the client.

In addition to sending a HTTP 503 error message, the following is displayed as a
response in the HTTP client:

Failure of Web Server bridge:
No backend server available for connection: timed out after xx seconds or idempotent
set to OFF or method not idempotent.

2.7.2 CONNECTION_REFUSED Errors
Occasionally, under stress conditions, a few requests might fail with the following error
logged in the error log file.

weblogic: Trying GET /uri at backend host 'xx.xx.xx.xx/port; got exception
'CONNECTION_REFUSED [os error=xxx, line xxxx of URL.cpp]: apr_socket_connect call
failed with error=xxx, host=xx.xx.xx.xx, port=xxxx'

As mentioned in Tips for Reducing CONNECTION_REFUSED Errors, Oracle
WebLogic Server might have reached the maximum allowed backlog connections.

To resolve, follow the steps mentioned in Tips for Reducing
CONNECTION_REFUSED Errors.

2.7.3 NO_RESOURCES Errors
Occasionally, under stress conditions, a few requests might fail with the following error
logged in the error log file.

weblogic: *******Exception type [NO_RESOURCES] (apr_socket_connect call failed with
error=70007, host=xx.xx.xx.xx, port=xxxx) raised at line xxxx of URL.cpp

This usually occurs if Oracle WebLogic Server is too busy to respond to the connect
request from the Oracle WebLogic Server Proxy Plug-In. This can be resolved by

Chapter 2
Troubleshooting Oracle WebLogic Server Proxy Plug-In Implementations

2-18

setting WLSocketTimeoutSecs to a higher value. This allows the Oracle WebLogic Server
Proxy Plug-In to wait longer for the connect request to be responded to by the Oracle
WebLogic Server.

2.7.4 Changing the Oracle WebLogic Server Keystore Causes
Unexpected Behavior

If the Oracle WebLogic Server keystore is changed (for example, by setting up
backend one-way SSL between Oracle HTTP Server and Oracle WebLogic Server) it
is possible to break communication between Oracle WebLogic Server and the
NodeManager. If this happens, this will also affect all provisioning and process
management commands issued through WLST. The error messaging in this situation
is poor and the situation can be confusing. For example, some errors indicate
NodeManager is down, when the user can see that it is clearly up.

Here are a few examples of the unexpected behavior that can occur. Note that in
these examples, the NodeManager is up and running.

• All state() commands run against Oracle HTTP Server instances return UNKNOWN.

wls:/OHSDomain/serverConfig/> state('ohs1')
Current state of "ohs1" : UNKNOWN

• Oracle HTTP Server process management commands return an SSLEngine failure:

wls:/OHSDomain/serverConfig/> start('ohs1')
Starting system component "ohs1" ...

General SSLEngine problem
Traceback (innermost last):
 File "<console>", line 1, in ?
 File "<iostream>", line 1384, in start
 File "<iostream>", line 553, in raiseWLSTException
WLSTException: Error occurred while performing start : System component with
name "ohs1" failed to start : General SSLEngine problem
....

• The Oracle HTTP Server custom command ohs_createInstance returns a message
that NodeManager is down and the command will be completed when it is back
up, for example:

ohs_createInstance(instanceName='ohs1',machine='myMachine.myCompany.com')
....
The node manager for "ohs1" is not reachable. Changes will be completed when the
node manager is available.
The node manager error is: Node Manager is not available on machine
myMachine.myCompany.com
Activation completed.

Workaround:

To workaround this issue, add the NodeManager demo trust certificate to the Java
standard trust. Note that this workaround applies only when the user is setting up one-
way backend SSL. Other steps may be needed for other scenarios.

1. Use keytool command to export the NodeManager demo trust certificate to the
Java keystore.

Chapter 2
Troubleshooting Oracle WebLogic Server Proxy Plug-In Implementations

2-19

keytool -exportcert -rfc -alias wlscertgenca -storepass
DemoTrustKeyStorePassPhrase -file /<path to location of nmCert.crt> -
keystore $ORACLE_HOME/wlserver/server/lib/DemoTrust.jks

2. Use keytool command to import the NodeManager demo trust certificate to the
Java standard trust.

keytool -importcert -alias wlscertgenca -file /<path to location of nmCert.crt>
-keystore $JAVA_HOME/jre/lib/security/cacerts -trustcacerts -storepass changeit -
noprompt

3. Oracle WebLogic Server may need to be bounced (shutdown and restarted) after
applying the keytool commands.

Chapter 2
Troubleshooting Oracle WebLogic Server Proxy Plug-In Implementations

2-20

3
Configuring the Plug-In for Apache HTTP
Server

For proxying requests from Oracle HTTP Server to Oracle WebLogic Server, use the
mod_wl_ohs plug-in. This plug-in is similar to the plug-in for Apache HTTP Server.
However, you do not need to download and install the plug-in separately. For
information about configuring mod_wl_ohs, see Configuring the Plug-In for Oracle HTTP
Server .

WebLogic Server Proxy Plug-in 12.2.1.0 and later version builds are moved from Intel
compiler to MSVC Compiler. When Apache HTTP Server is used as a front end with
WebLogic Server Proxy Plug-in, the plug-in library depends on the two dlls —
msvcp110.dll and msvcr110.dll, provided by Microsoft. These dlls are available
with Microsoft Visual C ++ Redistributable Package for x64.

To install and configure the Oracle WebLogic Server Proxy Plug-In for Apache HTTP
Server, read the following sections:

• Apache HTTP Server Support Note

• Install the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server

• Configure the Apache HTTP Server Plug-In

• Understanding DMS Metrics for Apache HTTP Server Plug-in

• Deprecated Directives for Apache HTTP Server

3.1 Apache HTTP Server Support Note
The Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server is supported on
Apache 2.2 and 2.4 web servers and can front-end WebSocket applications.

3.2 Install the Oracle WebLogic Server Proxy Plug-In for
Apache HTTP Server

After you download the Oracle WebLogic Server Proxy Plug-In for Apache HTTP
Server, as described in Availability of Oracle WebLogic Server Proxy Plug-In, you can
install it as an Apache HTTP Server module in your Apache HTTP Server installation.

• Installation Prerequisites

• Installing the Apache HTTP Server Plug-In

3.2.1 Installation Prerequisites
Before you install the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server,
complete these installation and verification tasks.

3-1

• Download the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server, as
described in Availability of Oracle WebLogic Server Proxy Plug-In.

• Extract the plug-ins zip distribution to PLUGIN_HOME. For example, /home/
myhome/weblogic-plugins-12.2.1.3.0/. This is the directory to which the extract the
plug-in is extracted.

This distribution contains these files:

Table 3-1 Files Included in the Apache Web Server Plug-in Zip

(path)/filename Description

README.txt The README file for the plug-in.

bin/orapki.bat orapki tool for configuring Oracle wallets

jlib/*.jar orapki helper Java libraries

lib/mod_wl.so WebLogic proxy module for Apache 2.2

lib/*.so Helper libraries

lib/mod_wl_24.so WebLogic proxy module for Apache 2.4

• Install JDK 8 to use SSL. The JDK 8 installation is required to use the orapki utility,
which manages public key infrastructure (PKI) elements, such as wallets and
certificate revocation lists, for use with SSL.

• Ensure that you have a supported Apache HTTP Server installation. See http://
www.oracle.com/technetwork/middleware/ias/downloads/fusion-

certification-100350.html .

• Ensure that a supported version of Oracle WebLogic Server is configured and
running on a target system. This server does not need to be running on the system
on which you extracted the plug-in zip distribution. For the supported Oracle
WebLogic Server versions, see http://www.oracle.com/technetwork/
middleware/ias/downloads/fusion-certification-100350.html .

3.2.2 Installing the Apache HTTP Server Plug-In
The Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server is distributed as
a shared object (.so) file. You can obtain the plug-in here:

http://www.oracle.com/technetwork/middleware/webtier/overview/index.html

To install the Apache HTTP Server plug-in:

1. Ensure that the weblogic-plugins-12.2.1.3.0/lib folder is included in
LD_LIBRARY_PATH on UNIX systems (and PATH on Windows systems). If you
do not do this, then you see linkage errors when starting Apache HTTP Server.

2. In the location where you unzipped the downloaded plug-in file, locate lib/
mod_wl.so; for example, /home/myhome/weblogic-plugins-12.2.1.3.0/lib/
mod_wl.so.

3. Verify that the mod_so.c module is enabled.

If you installed Apache HTTP Server using the script supplied by Apache,
mod_so.c is already enabled. Verify that mod_so.c is enabled by executing the
following command:

• UNIX/Linux

Chapter 3
Install the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server

3-2

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html%20
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html%20
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html%20
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html%20
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html%20
http://www.oracle.com/technetwork/middleware/webtier/overview/index.html

APACHE_HOME/bin/apachectl -l

(APACHE_HOME is the directory that contains the Apache HTTP Server
installation.)

This command lists all enabled modules. If mod_so.c is not listed, you must
rebuild your Apache HTTP Server, making sure that the following configure option
is specified:

...
--enable-module=so
...

4. Make a copy of the APACHE_HOME/bin/httpd.conf file for backup.

5. Open the httpd.conf file.

6. Depending on your version of Apache, use one of the following commands to
install the plug-in:

• Install the Apache HTTP Server plug-in module for Apache 2.2.x by adding the
following line.

LoadModule weblogic_module /home/myhome/weblogic-plugins-12.2.1.3.0/lib/
mod_wl.so

• Install the Apache HTTP Server plug-in module for Apache 2.4.x by adding the
following line.

LoadModule weblogic_module /home/myhome/weblogic-plugins-12.2.1.3.0/lib/
mod_wl_24.so

7. Verify the syntax of the httpd.conf file by running the following command:

• UNIX/Linux

> APACHE_HOME/bin/apachectl -t

If the httpd.conf file contains any errors, the output of this command shows the
errors; otherwise, the command returns the following:

Syntax OK

3.3 Configure the Apache HTTP Server Plug-In
This section describes how to edit the httpd.conf file to proxy requests by path or by
MIME type, to enable HTTP tunneling, and to use other Oracle WebLogic Server plug-
in parameters.

• Configuring the httpd.conf File

• Placing WebLogic Properties Inside Location or VirtualHost Blocks

• Example: Configuring the Apache Plug-In

• Including a weblogic.conf File in the httpd.conf File

3.3.1 Configuring the httpd.conf File
To configure the Apache HTTP Server plug-in, edit the httpd.conf file in your
Apache HTTP Server installation. Complete the following tasks:

• Task 1: Configure MIME Requests

Chapter 3
Configure the Apache HTTP Server Plug-In

3-3

• Task 2: Define Additional Parameters for Oracle WebLogic Server Proxy Plug-In

• Task 3: Enable HTTP Tunneling (Optional)

• Task 4: Enable Web Services Atomic Transaction (Optional)

• Task 5: Verify and Apply Your Configuration

3.3.1.1 Task 1: Configure MIME Requests
You can proxy requests by MIME type and/or by path. Open the httpd.conf file in a text
editor.

• Configuring Proxy Requests by MIME Type

• Configuring Proxy Requests by Path

Note:

If both MIME type and proxying by path are enabled, proxying by path takes
precedence over proxying by MIME type.

3.3.1.1.1 Configuring Proxy Requests by MIME Type
Follow these steps to configure MIME requests by MIME type in the httpd.conf file.

1. Add an <IfModule> block that defines one of the following:

• For a non-clustered WebLogic Server: define the WebLogicHost and
WebLogicPort parameters.

• For a cluster of WebLogic Servers: define the WebLogicCluster parameter.

Example:

<IfModule mod_weblogic.c>
 WebLogicHost myweblogic.example.com
 WebLogicPort 7001
 DebugConfigInfo ON
</IfModule>

2. Add a MatchExpression line to the <IfModule> block.

For example, the following <IfModule> block for a non-clustered WebLogic Server
specifies that all files with MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
 WebLogicHost my-weblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
 DebugConfigInfo ON
</IfModule>

You can also use multiple MatchExpressions, for example:

<IfModule mod_weblogic.c>
 WebLogicHost my-weblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
 MatchExpression *.xyz

Chapter 3
Configure the Apache HTTP Server Plug-In

3-4

 DebugConfigInfo ON
</IfModule>

If you are proxying requests by MIME type to a cluster of WebLogic Servers, use
the WebLogicCluster parameter instead of the WebLogicHost and WebLogicPort
parameters. For example:

<IfModule mod_weblogic.c>
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 MatchExpression *.jsp
 MatchExpression *.xyz
</IfModule>

3.3.1.1.2 Configuring Proxy Requests by Path
Follow these steps to configure MIME requests by path in the httpd.conf file.

1. Use the <Location> block and the WLSRequest statement to configure MIME
requests by path. WLSRequest specifies the handler for the Oracle WebLogic Server
Proxy Plug-In for Apache HTTP Server module. For example the following
Location block proxies all requests containing /weblogic in the URL:

<Location /weblogic>
WLSRequest On
PathTrim /weblogic
</Location>

2. Configure the PathTrim parameter inside the <Location> tag.

The PathTrim parameter specifies a string trimmed from the beginning of the URL
before the request is passed to the WebLogic Server instance (see General
Parameters for Web Server Plug-Ins).

These known issues arise when you configure the Oracle WebLogic Server Proxy
Plug-In for Apache HTTP Server to use SSL

• The following configuration is incorrect:

<Location /weblogic>
 WLSRequest On
</Location>

<IfModule mod_weblogic.c>
 WebLogicHost localhost
 WebLogicPort 7001
 PathTrim /weblogic
</IfModule>

The following configuration is correct:

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
</Location>

• The current implementation of the Oracle WebLogic Server Proxy Plug-In for
Apache HTTP Server does not support the use of multiple certificate files with
Apache SSL.

Chapter 3
Configure the Apache HTTP Server Plug-In

3-5

3.3.1.2 Task 2: Define Additional Parameters for Oracle WebLogic Server
Proxy Plug-In

Define any additional parameters for the Oracle WebLogic Server Proxy Plug-In for
Apache HTTP Server.

The Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server recognizes the
parameters listed in General Parameters for Web Server Plug-Ins. To modify the
behavior of your Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server,
define these parameters either:

• In a <Location> block, for parameters that apply to proxying by path, or

• At global or virtual host scope, for parameters that apply to proxying by MIME
type.

3.3.1.3 Task 3: Enable HTTP Tunneling (Optional)
You can enable HTTP tunneling for the t3 or IIOP protocols by configuring <Location>
blocks.

• To enable HTTP tunneling if you are using the t3 protocol and weblogic.jar, add
the following <Location> block to the httpd.conf file:

<Location /bea_wls_internal>
 WLSRequest On
</Location>

• To enable HTTP tunneling if you are using the IIOP, the only protocol used by the
WebLogic Server thin client, wlclient.jar, add the following Location block to the
httpd.conf file:

<Location /bea_wls_internal>
 WLSRequest On
</Location>

3.3.1.4 Task 4: Enable Web Services Atomic Transaction (Optional)
You can enable Web Services Atomic Transaction (WS-AT) by configuring the
<Location> blocks. The <wls-wsat> parameter applies to proxying by path. You can
optionally define the parameter to modify the behavior of your WebLogic Web Server
Proxy Plug-In for Apache HTTP Server.

<Location /wls-wsat>
 WLSRequest On
</Location>

WebLogic web services enable interoperability with other external transaction
processing systems, such as IBM WebSphere, JBoss, Microsoft .NET. For more
information about Web Services Atomic Transaction (WS-AtomicTransaction), see
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx.

3.3.1.5 Task 5: Verify and Apply Your Configuration
Follow these steps to verify your httpd.conf configuration and apply it to the Apache
HTTP Server.

Chapter 3
Configure the Apache HTTP Server Plug-In

3-6

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx

1. Verify the syntax of the httpd.conf file by running the following command:

• UNIX/Linux

> APACHE_HOME/bin/apachectl -t

If the httpd.conf file contains any errors, the output of this command shows the
errors; otherwise, the command returns the following:

Syntax OK

2. Start the Apache HTTP Server.

• UNIX/Linux

> APACHE_HOME/bin/apachectl start

3. Send a request to http://apache-host:apache-port/mywebapp/my.jsp from the
browser. Validate the response.

3.3.2 Placing WebLogic Properties Inside Location or VirtualHost
Blocks

If you choose to not use the <IfModule>, you can instead directly place the WebLogic
properties inside Location or <VirtualHost> blocks. Consider the following examples of
the <Location> and <VirtualHost> blocks:

<Location /weblogic>
WLSRequest On
WebLogicHost myweblogic.server.com
WebLogicPort 7001
</Location>

<Location /weblogic>
WLSRequest On
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
</Location>

<VirtualHost apachehost:80>
WLSRequest On
WebLogicServer weblogic.server.com
WebLogicPort 7001
</VirtualHost>

3.3.3 Example: Configuring the Apache Plug-In
This example demonstrates basic instructions for quickly setting up the Apache plug-in
to proxy requests to a backend WebLogic Server.

1. Make a copy of ${APACHE_HOME}/conf/httpd.conf file.

2. Edit the file to add the following code:

...
LoadModule weblogic_module /home/myhome/weblogic-plugins-12.2.1/lib/mod_wl.so

<IfModule mod_weblogic.c>
 WebLogicHost wls-host
 WebLogicPort wls-port
</IfModule>

Chapter 3
Configure the Apache HTTP Server Plug-In

3-7

<Location /mywebapp>
 WLSRequest On
</Location>
...

3. Include ${PLUGIN_HOME}/lib in the LD_LIBRARY_PATH by entering the
following command:

 $ export LD_LIBRARY_PATH=/home/myhome/weblogic-plugin-12.2.1/lib:...

Note:

You can also update the LD_LIBRARY_PATH by copying the 'lib' contents to
APACHE_HOME/lib or by editing the APACHE_HOME/bin/apachectl to
update the LD_LIBRARY_PATH.

4. At the prompt, start the Apache HTTP Server by entering:

$ ${APACHE_HOME}/bin/apachectl start

5. Send a request to http://apache-host:apache-port/mywebapp/my.jsp from the
browser and validate the response

3.3.4 Including a weblogic.conf File in the httpd.conf File
To keep several separate configuration files, you can define parameters in a separate
configuration file called weblogic.conf file, by using the Apache HTTP Server Include
directive in an <IfModule> block in the httpd.conf file.

<IfModule mod_weblogic.c>
 # Config file for WebLogic Server that defines the parameters
 Include conf/weblogic.conf
</IfModule>

The syntax of weblogic.conf files is the same as that for the httpd.conf file.

The following sections describe how to create weblogic.conf files, and include sample
weblogic.conf files.

• Rules for Creating weblogic.conf Files

• Sample weblogic.conf Configuration Files

• Template for the Apache HTTP Server httpd.conf File

3.3.4.1 Rules for Creating weblogic.conf Files
Be aware of the following rules and best practices for constructing a weblogic.conf file.

• Enter each parameter on a new line. Do not put "=" between a parameter and its
value. For example:

PARAM_1 value1
PARAM_2 value2
PARAM_3 value3

Chapter 3
Configure the Apache HTTP Server Plug-In

3-8

• If a request matches both a MIME type specified in a MatchExpression in an
<IfModule> block and a path specified in a Location block, the behavior specified by
the <Location> block takes precedence.

• If you use an Apache HTTP Server <VirtualHost> block, you must include all
configuration parameters (MatchExpression, for example) for the virtual host within
the <VirtualHost> block (see Apache Virtual Host documentation at http://
httpd.apache.org/docs/vhosts/).

• Sample httpd.conf file:

<IfModule mod_weblogic.c>
 WebLogicCluster johndoe02:8005,johndoe:8006
 WLTempDir "c:\myTemp"
 DebugConfigInfo ON
 KeepAliveEnabled ON
 KeepAliveSecs 15
</IfModule>

<Location /jurl>
 WLSRequest On
 WebLogicCluster myCluster:7001
 WLTempDir "c:\jurl"
</Location>

<Location /web>
 WLSRequest On
 PathTrim /web
 WebLogicHost myhost
 WebLogicPort 8001
 WLTempDir "c:\web"
</Location>
 <Location /foo>
 WLSRequest On
 WebLogicHost myhost02
 WebLogicPort 8090
 WLTempDir "c:\foo"
 PathTrim /foo
</Location>

• All the requests that match /jurl/* will have the POST data files in c:\jurl and will
reverse proxy the request to agarwalp01 and port 7001. All the requests that
match /web/* will have the POST data files in c:\web and will reverse proxy the
request to myhost and port 8001. All the requests that match /foo/* will have the
POST data files written to c:\foo and will reverse proxy the request to myhost02
and port 8090.

• You should use the MatchExpression statement instead of the <Files> block.

3.3.4.2 Sample weblogic.conf Configuration Files
These examples of weblogic.conf files may be used as templates that you can modify
to suit your environment and server. Lines beginning with # are comments.

Example Using WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>

Chapter 3
Configure the Apache HTTP Server Plug-In

3-9

http://httpd.apache.org/docs/vhosts/
http://httpd.apache.org/docs/vhosts/

 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 ErrorPage http://myerrorpage.mydomain.com
 MatchExpression *.jsp
</IfModule>
##

In the example, the MatchExpression parameter syntax for expressing the filename
pattern, the WebLogic Server host to which HTTP requests should be forwarded, and
various other parameters is as follows:

MatchExpression [filename pattern] [WebLogicHost=host] | [paramName=value]

The first MatchExpression parameter below specifies the filename pattern *.jsp, and
then names the single WebLogicHost. The paramName=value combinations following the
pipe symbol specify the port at which WebLogic Server is listening for connection
requests, and also activate the Debug option. The second MatchExpression specifies
the filename pattern *.html and identifies the WebLogic Cluster hosts and their ports.
The paramName=value combination following the pipe symbol specifies the error page for
the cluster.

Example Using Multiple WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>
 MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=7001|Debug=ON
 MatchExpression *.html WebLogicCluster=myHost1:7282,myHost2:7283|ErrorPage=
 http://www.xyz.com/error.html
</IfModule>

Example Without WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks.
<IfModule mod_weblogic.c>
 WebLogicHost myweblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
</IfModule>

Example Configuring Multiple Name-Based Virtual Hosts

VirtualHost1 = localhost:80
<VirtualHost 127.0.0.1:80>
DocumentRoot "C:/test/VirtualHost1"
ServerName localhost:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
</IfModule>
</VirtualHost>

VirtualHost2 = 127.0.0.2:80
<VirtualHost 127.0.0.2:80>
DocumentRoot "C:/test/VirtualHost1"

Chapter 3
Configure the Apache HTTP Server Plug-In

3-10

ServerName 127.0.0.2:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
#... WLS parameter ...
</IfModule>
</VirtualHost>

You must define a unique value for ServerName or some plug-in parameters will not
work as expected.

3.3.4.3 Template for the Apache HTTP Server httpd.conf File
This section contains a sample httpd.conf file for Apache HTTP Server. You can use
this sample as a template and modify it to suit your environment and server. Lines
beginning with # are comments.

Note:

Apache HTTP Server is not case sensitive.

Sample httpd.conf file for Apache HTTP Server

##
APACHE-HOME/conf/httpd.conf file
##
LoadModule weblogic_module /home/myhome/weblogic-plugins-12.2.1/lib/mod_wl.so

<Location /weblogic>
 WLSRequest On
 PathTrim /weblogic
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<Location /servletimages>
 WLSRequest On
 PathTrim /something
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<IfModule mod_weblogic.c>
 MatchExpression *.jsp
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 ErrorPage http://myerrorpage.mydomain.com
</IfModule>

3.4 Understanding DMS Metrics for Apache HTTP Server
Plug-in

You can configure and view DMS performance metrics for Apache HTTP Server. The
Apache HTTP server provides the same set of DMS metrics as the Oracle WebLogic
Server.

Chapter 3
Understanding DMS Metrics for Apache HTTP Server Plug-in

3-11

The DMS metrics that can be returned are described in DMS State Metrics, DMS
Event Metrics, and DMS PhaseEvent Metrics.

This section contains the following information:

• Configuring Metrics DMS Metrics for Apache HTTP Server Plug-in

• Viewing Performance Metrics for Apache HTTP Server Plug-in

3.4.1 Configuring Metrics DMS Metrics for Apache HTTP Server Plug-
in

To configure DMS metrics for the Apache HTTP Server, add the following code to the
httpd.conf file.

Add the following LoadModule only if it is not already present
Use mod_wl.so for Apache httpd 2.2
LoadModule weblogic_module $PLUGIN_HOME/mod_wl_24.so

<Location /metrics>
 SetHandler dms-handler
</Location>

3.4.2 Viewing Performance Metrics for Apache HTTP Server Plug-in
You can view the raw metrics using the URL:

http://apachehost:apacheport/metrics

where apachehost is the host name of the Apache server and apacheport is the port
number.

The metrics that are coming from Oracle WebLogic Server plug-in can be found under
the section /WebLogicProxy [type=OHSWebLogic].

3.5 Deprecated Directives for Apache HTTP Server
The WebLogic Server plug-in logs are now part of the Apache HTTP Server error log.
References can be identified with the prefix weblogic: to easily identify them.

Apache 2.4 example:

[Thu May 14 23:15:05.160459 2015] [weblogic:debug] [pid 6571:tid 139894556022528]
ApacheProxy.cpp(875): [client 10.184.61.77:53634] <657114316705052> =========New
Request: [GET /weblogic/index.html HTTP/1.1] ======

Apache 2.2 example:

[Thu Apr 16 04:15:37 2015] [debug] ApacheProxy.cpp(873): [client 10.184.61.77]
<2157714291829372> weblogic: ======New Request: [GET /weblogic/index.html HTTP/1.1]
======

The directives WLLogFile and Debug are deprecated. If the configuration uses these
directives, the following note appears during startup:

[Thu May 14 23:22:19 2015] [warn] weblogic: The Debug directive is ignored. The web
server log level is used instead.

Chapter 3
Deprecated Directives for Apache HTTP Server

3-12

To enable plug-in logs, set LogLevel to debug. The logs will be included in the file
pointed to by the ErrorLog directive.

Chapter 3
Deprecated Directives for Apache HTTP Server

3-13

4
Configuring the Plug-In for iPlanet Web
Server

This chapter describes how to install and configure the Oracle WebLogic Server Proxy
Plug-In for iPlanet Web Server. In previous releases, this plug-in was referred to as the
Netscape Enterprise Server plug-in.

This chapter contains the following sections:

• Overview of the Oracle WebLogic Server Proxy Plug-In for iPlanet

• Installing and Configuring the Plug-In for iPlanet

• Deprecated Directives for iPlanet Web Server

4.1 Overview of the Oracle WebLogic Server Proxy Plug-In
for iPlanet

The Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server enables requests
to be proxied from Oracle iPlanet Web Server to Oracle WebLogic Server. The plug-in
enhances an Oracle iPlanet Web Server installation by allowing Oracle WebLogic
Server to handle those requests that require the dynamic functionality of the server.

The Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server is designed for an
environment where Oracle iPlanet Web Server serves static pages, and an Oracle
WebLogic Server instance (operating in a different process, possibly on a different
machine) is delegated to serve dynamic pages, such as JSPs or pages generated by
HTTP Servlets. The connection between WebLogic Server and the Oracle WebLogic
Server Proxy Plug-In for iPlanet Web Server is made using clear text or Secure
Sockets Layer (SSL). To the end user—the browser—the HTTP requests delegated to
WebLogic Server appear to come from the same source as the static pages.
Additionally, the HTTP-tunneling facility of WebLogic Server can operate through the
Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server, providing access to all
WebLogic Server services (not just dynamic pages).

The Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server operates as a
module within an Oracle iPlanet Web Server. The module is loaded at startup and later
based on the configuration, certain HTTP requests are delegated to it.

For more information about Oracle iPlanet Web Server see, http://docs.oracle.com/
docs/cd/E18958_01/doc.70/e18789/chapter.htm

4.2 Installing and Configuring the Plug-In for iPlanet
The following sections provide information pertaining to the installation prerequisites
and configuring the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server.

• Installation Prerequisites

4-1

http://docs.oracle.com/docs/cd/E18958_01/doc.70/e18789/chapter.htm
http://docs.oracle.com/docs/cd/E18958_01/doc.70/e18789/chapter.htm

• Installing the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server

• Configuring the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server

• Example: Configuring the iPlanet Plug-in

• Guidelines for Modifying the obj.conf File

• Sample obj.conf File (Not Using a WebLogic Cluster)

• Sample obj.conf File (Using a WebLogic Cluster)

4.2.1 Installation Prerequisites
Before you install the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server,
complete these installation and verification tasks.

• Create a plug-in zip extract location (PLUGIN_HOME. For example, /home/myhome/
weblogic-plugins-12.2.1.3.0/)

• Download the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server, as
described in Availability of Oracle WebLogic Server Proxy Plug-In.

• Extract the plug-in zip distribution into the Web Server installation directory, install-
dir. Before extracting the plug-in zip distribution, rename the existing README.txt
within install-dir. This distribution contains these files:

Table 4-1 Files Included in the Oracle iPlanet Web Server Plug-in Zip

(path)/filename Description

README.txt information specific to the distribution, late-breaking updates,
and other errata.

bin/orapki (.bat on
Windows)

orapki tool for configuring Oracle wallets

jlib/*.jar orapki helper Java libraries

lib/mod_wl.so WebLogic proxy module

lib/*.so Helper libraries

• Install JDK 8 to use SSL. You must have a JDK 8 installation to use the orapki
utility. The orapki utility manages public key infrastructure (PKI) elements, such as
wallets and certificate revocation lists, for use with SSL.

• Create a supported Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server
installation (7.0.9 or later) installed on IPLANET_HOME, that is, iPlanet server
listening on iplanet-host:iplanet-port.

• Create an iPlanet instance location (INSTANCE-DIR. For example, $
{IPLANET_HOME}/https-foo.

• Create a supported version of WebLogic Server is configured and running on a
target system. This server does not need to run on the system to which you
extracted the plug-in zip distribution. For the supported WebLogic Server versions,
see http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html.

Chapter 4
Installing and Configuring the Plug-In for iPlanet

4-2

http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html
http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html

4.2.2 Installing the Oracle WebLogic Server Proxy Plug-In for iPlanet
Web Server

The Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server is distributed as a
shared object (.so).

To instruct Oracle iPlanet Web Server to load the native library (mod_wl.so) as a
module, add the following line to the magnus.conf file.

Init fn="load-modules" shlib="mod_wl.so"

The magnus.conf file is located in the INSTANCE-DIR/config directory. Where
INSTANCE-DIR is the web server instance directory.

See http://docs.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf

4.2.3 Configuring the Oracle WebLogic Server Proxy Plug-In for
iPlanet Web Server

This section provides information about configuring the Oracle WebLogic Server Proxy
Plug-In for iPlanet Web Server. To do this, you configure the obj.conf file. the obj.conf
file defines which requests are proxied to WebLogic Server and other configuration
information.

1. Locate and open the obj.conf file

The default obj.conf file is located in the INSTANCE-DIR/config directory. Where
INSTANCE-DIR is the web server instance directory.

See http://docs.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf

2. Configure the obj.conf file.

There are different ways to configure obj.conf file. See the guidelines described in
Guidelines for Modifying the obj.conf File.

4.2.3.1 Proxying Requests by URL
To proxy requests by URL, (also called proxying by path.) create a separate <Object>
tag for each URL that you want to proxy and define the PathTrim parameter. The
following is an example of an <Object> tag that proxies a request containing the string
/weblogic/

<Object ppath="*/weblogic/*">
Service fn=wl-proxy WebLogicHost=myserver.com WebLogicPort=7001 PathTrim="/weblogic"
</Object>

Here is an example of the object definitions for two separate ppaths that identify
requests to be sent to different instances of WebLogic Server:

<Object ppath="*/weblogic/*">
Service fn=wl-proxy WebLogicHost=myserver.com WebLogicPort=7001 PathTrim="/weblogic"
</Object>
<Object name="si" ppath="*/servletimages/*">
Service fn=wl-proxy WebLogicHost=otherserver.com WebLogicPort=7008
</Object>

Chapter 4
Installing and Configuring the Plug-In for iPlanet

4-3

http://docs.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf
http://docs.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf

Note:

Parameters that are not required, such as PathTrim, can be used to further
configure the way the ppath is passed through the Oracle WebLogic Server
Proxy Plug-In for iPlanet Web Server. For a complete list of plug-in parameters,
see General Parameters for Web Server Plug-Ins.

4.2.3.2 Proxying the Request by MIME Type
If you are proxying requests by MIME type, add any new MIME types referenced in the
obj.conf file to the mime.types file. You can add MIME types by using the iPlanet
server console or by editing the mime.types file directly.

• To directly edit mime.types file, open the file for editing and type the following line:

type=text/jsp exts=jsp

• To edit the mime.types file in the iPlanet Administration console, see http://
docs.oracle.com/docs/cd/E19146-01/821-1828/gdabr/index.html.

Note:

iPlanet Web Server 7.0.9 and above already defines the MIME type for JSPs.
Change the existing MIME type from magnus-internal/jsp to text/jsp.

All requests with a designated MIME type extension (for example, .jsp) can be proxied
to the WebLogic Server, regardless of the URL.

For example, to proxy all JSPs to a WebLogic Server, the following Service directive
should be added:

Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl-proxy
WebLogicHost=myserver.com WebLogicPort=7001 PathPrepend=/jspfiles

This Service directive proxies all files with the .jsp extension to the designated
WebLogic Server, where they are served with a URL like this:

http://myserver.com:7001/jspfiles/myfile.jsp

The value of the PathPrepend parameter should correspond to the context root of a
Web Application that is deployed on the WebLogic Server or cluster to which requests
are proxied.

After adding entries for the Oracle WebLogic Server Proxy Plug-In for iPlanet Web
Server, the default <Object> definition will be similar to the following example:

<Object name="default">
AuthTrans fn="match-browser" browser="*MSIE*" ssl-unclean-shutdown="true"
NameTrans fn="pfx2dir" from="/mc-icons" dir="/export/home/ws/lib/icons" name="es-
internal"
PathCheck fn="uri-clean"
PathCheck fn="check-acl" acl="default"
PathCheck fn="find-pathinfo"
PathCheck fn="find-index" index-names="index.html,home.html

Chapter 4
Installing and Configuring the Plug-In for iPlanet

4-4

http://docs.oracle.com/docs/cd/E19146-01/821-1828/gdabr/index.html
http://docs.oracle.com/docs/cd/E19146-01/821-1828/gdabr/index.html

ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"
Service method="(GET|HEAD|POST|PUT)" type="text/jsp" fn="wl-proxy"
WebLogicHost="myweblogic.server.com" WebLogicPort="7100"
Service method="(GET|HEAD)" type="magnus-internal/directory" fn="index-common"
Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"
Service method="TRACE" fn="service-trace"
AddLog fn="flex-log"
</Object>

You can add a similar Service statement to the default object definition for all other
MIME types that you want to proxy to WebLogic Server.

For proxy-by-MIME to work properly you must disable Java from the Oracle WebLogic
Server Proxy Plug-In for iPlanet Web Server. Otherwise, SUN One will try to serve all
requests that end in *.jsp and will return a 404 error as it will fail to locate the resource
under $doc_root.

To disable Java from the Oracle iPlanet Web Server, comment out the NameTrans line
that appears under name="default" in the obj.conf file. Then, restart the web server.

#NameTrans fn="ntrans-j2ee" name="j2ee"

As an alternative, you can do the following:

• If you are proxying by path, enable HTTP-tunneling.

If you are using weblogic.jar and tunneling the t3 protocol, add the following object
definition to the obj.conf file, substituting the WebLogic Server host name and the
WebLogic Server port number, or the name of a WebLogic Cluster that you want
to handle HTTP tunneling requests.

<Object name="tunnel" ppath="*/HTTPClnt*"
Service fn=wl-proxy WebLogicHost=myserver.com WebLogicPort=7001
</Object>

• If you are tunneling IIOP, which is the only protocol used by the WebLogic Server
thin client, wlclient.jar, add the following object definition to the obj.conf file,
substituting the WebLogic Server host name and the WebLogic Server port
number, or the name of a WebLogic Cluster that you want to handle HTTP
tunneling requests.

<Object name="tunnel" ppath="*/iiop*">
Service fn=wl-proxy WebLogicHost=myserver.com WebLogicPort=7001
</Object>

4.2.3.3 Testing the Plug-In
To test the Oracle iPlanet Web Server plug-in, follow these steps:

1. Start WebLogic Server.

2. Start Oracle iPlanet Web Server.

If Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server is already
running, you must either restart or reconfigure the server.

3. Test the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server.

You can test the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server
using the following URL. It starts the default WebLogic Server HTML page,

Chapter 4
Installing and Configuring the Plug-In for iPlanet

4-5

welcome file, or default servlet, as defined for the default Web Application as
shown in this example:

http://webserver_host:webserver_port/weblogic/

For information about how to create a default Web Application, see Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

4.2.4 Example: Configuring the iPlanet Plug-in
The following example demonstrates basic instructions for quickly setting up the
Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server to proxy requests to a
backend WebLogic Server (WLS).

1. Edit $IPLANET_INSTANCE_HOME /config/magnus.conf file and add the
following:

...
Init fn="load-modules" shlib="$PLUGIN_HOME/lib/mod_wl.so"
...

2. Open the $IPLANET_INSTANCE_HOME /config/<vs-obj.conf> file (the default
is $IPLANET_INSTANCE_HOME /config/obj.conf) and add the following code:

...
<Object name="weblogic" ppath="*/wls/*">
Service fn="wl-proxy" WebLogicHost=<wls-host> WebLogicPort=<wls-port>
DebugConfigInfo="ON"
PathTrim="/wls"
</Object>
...

For more information on configuring the contents of obj.conf, see Sample obj.conf
File (Not Using a WebLogic Cluster) and Sample obj.conf File (Using a WebLogic
Cluster).

3. At the prompt, include the $PLUGIN_HOME/lib in the LD_LIBRARY_PATH by entering:

set LD_LIBRARY_PATH=/home/user/weblogic-plugin-12.2.1.3.0/lib:..

Note:

You can also update the LD_LIBRARY_PATH by copying the 'lib' contents to
IPLANET_HOME/lib or editing the $IPLANET_INSTANCE_HOME /bin/startserv.

4. At the prompt, start the iPlanet server by entering:

$IPLANET_INSTANCE_HOME /bin/startserv

5. Send a request to http://iplanet-host:iplanet-port/mywebapp/my.jsp from the
browser and validate the response.

4.2.5 Guidelines for Modifying the obj.conf File
To use the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server, you must
make several modifications to the obj.conf file.

See http://docs.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf.

Chapter 4
Installing and Configuring the Plug-In for iPlanet

4-6

http://docs.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf

4.2.6 Sample obj.conf File (Not Using a WebLogic Cluster)
The following code is an example of lines that should be added to the obj.conf file if
you are not using a cluster. You can use this example as a template that you can
modify to suit your environment and server. Lines beginning with # are comments.

• Proxy requests by URL

--------------BEGIN SAMPLE obj.conf CONFIGURATION---------
(no cluster)
Configure which types of HTTP requests should be handled by the
iPlanet NSAPI plug-In (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.
Here we configure the iPlanet plug-In module to pass requests for
"/weblogic" to a WebLogic Server listening at port 7001 on
the host myweblogic.server.com.
<Object ppath="*/weblogic/*">
Service fn=wl-proxy WebLogicHost=myweblogic.server.com WebLogicPort=7001
PathTrim="/weblogic"
</Object>
Here we configure the plug-in so that requests that
match "/servletimages/" is handled by the
plug-in/WebLogic.
<Object name="si" ppath="*/servletimages/*">
Service fn=wl-proxy WebLogicHost=myweblogic.server.com WebLogicPort=7001
</Object>
-------------END SAMPLE obj.conf CONFIGURATION-------------------

• Proxy requests by MIME type

This Object directive works by file extension rather than
request path. To use this configuration, you must modify the existing line or
add the following line to mime.types file.

-----------BEGIN SAMPLE mime.types CONFIGURATION---------------------
#
type=text/jsp exts=jsp
------------END SAMPLE mime.types CONFIGURATION----------------------

-------------BEGIN SAMPLE obj.conf CONFIGURATION---------------------
This configuration means that any file with the extension
".jsp" are proxied to WebLogic. Then you must add the
Service line for this extension to the Object "default",
which should already exist in your obj.conf file:
<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons dir="c:/Export/Home/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons dir="c://Export/Home/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir="c:/Export/Home/manual/https/ug"
NameTrans fn=document-root root="c:/Export/Home/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy
WebLogicHost=myweblogic.server.com WebLogicPort=7001 PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap
Service method=(GET|HEAD) type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file

Chapter 4
Installing and Configuring the Plug-In for iPlanet

4-7

AddLog fn=flex-log name="access"
</Object>
The following directive enables HTTP-tunneling of the
WebLogic protocol through the iPlanet plug-in.
<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl-proxy WebLogicHost=myweblogic.server.com WebLogicPort=7001
</Object>
#
-------------END SAMPLE obj.conf CONFIGURATION---------------------

4.2.7 Sample obj.conf File (Using a WebLogic Cluster)
The following code is an example of lines that should be added to obj.conf if you are
using a WebLogic Server cluster. You can use this example as a template that you
can modify to suit your environment and server. Lines beginning with # are comments.

• Proxy requests by URL

-------------BEGIN SAMPLE obj.conf CONFIGURATION-------------------
(using a WebLogic Cluster)

Configure which types of HTTP requests should be handled by the
iPlanet module (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.
Here we configure the iPlanet module to pass requests for
"/weblogic" to a cluster of WebLogic Servers.
<Object ppath="*/weblogic/*">
Service fn=wl-proxy WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,
theirweblogic.com:7001" PathTrim="/weblogic"
</Object>
Here we configure the plug-in so that requests that
match "/servletimages/" are handled by the
plug-in/WebLogic.
<Object name="si" ppath="*/servletimages/*">
Service fn=wl-proxy WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,
theirweblogic.com:7001"
</Object>
----------------END OF SAMPLE obj.conf CONFIGURATION------------------

• Proxy requests by MIME types

This Object directive works by file extension rather than
request path. To use this configuration, you must modify the existing line or
add the following line to mime.types file.:
-----------------BEGIN SAMPLE mime.types FILE -------------------------
type=text/jsp exts=jsp

--------------------END SAMPLE mime.types------------------------------

-------------BEGIN SAMPLE obj.conf CONFIGURATION-----------------------
This configuration means that any file with the extension
".jsp" is proxied to WebLogic. Then you must add the
Service line for this extension to the Object "default",
which should already exist in your obj.conf file:
<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons dir="c:/Export/Home/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons dir="c:/Export/Home/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir="c://Export/Home/manual/https/ug"
NameTrans fn=document-root root="c://Export/Home/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy
WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001, theirweblogic.com:

Chapter 4
Installing and Configuring the Plug-In for iPlanet

4-8

7001",PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap
Service method=(GET|HEAD) type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>
The following directive enables HTTP-tunneling of the
WebLogic protocol through the NES plug-in.
<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl-proxy WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001,
theirweblogic.com:7001"
</Object>
#
-------------END SAMPLE obj.conf CONFIGURATION--------------------

4.3 Deprecated Directives for iPlanet Web Server
The WebLogic Server plug-in logs are now part of the Oracle iPlanet Server error log.
References can be identified with the prefix weblogic: to easily identify them, for
example:

[14/May/2015:23:18:34] fine (21904): for host 10.184.61.77 trying to GET /wls/
testcluster, wl-proxy reports: <2190414316707144> weblogic: After trimming path: '/
testcluster'

The directives WLLogFile and Debug are deprecated. If the configuration uses these
directives, the following note will appear:

[14/May/2015:23:18:34] warning (21904): wl-proxy reports: weblogic: Debug &
WLLogFile directives are deprecated for the current plugin release. Please Refer to
the plugin documentation.

To enable plug-in logs, set log-level to fine.

Chapter 4
Deprecated Directives for iPlanet Web Server

4-9

5
Configuring the Plug-In for Microsoft IIS
Web Server

To install and configure the Oracle WebLogic Server Proxy Plug-In for Microsoft IIS
Web Server, download the Oracle WebLogic Server Proxy Plug-In for IIS Web Server,
as described in Availability of Oracle WebLogic Server Proxy Plug-In. The zip file
contains the following files:

Table 5-1 Files Included in the Microsoft IIS Plug-In Zip

(path)/filename Description

README.txt Information specific to the distribution, late-breaking updates,
and other errata.

bin/orapki.bat orapki tool for configuring Oracle wallets

jlib/*.jar orapki helper Java libraries

iisproxy.dll WebLogic proxy module

lib/*.dll Helper libraries

WebLogic Server Proxy Plug-in 12.2.1.0.0 and later version builds are moved from
Intel compiler to MSVC Compiler. When Microsoft IIS Web Server is used as a front
end with WebLogic Server Proxy Plug-in, the plug-in library depends on the two dlls —
msvcp110.dll and msvcr110.dll, provided by Microsoft. These dlls are available
with Microsoft Visual C ++ Redistributable Package for x64.

For information about the specific versions of Microsoft IIS Web Server that are
supported, see the Oracle Fusion Middleware Supported System Configurations page
on the Oracle Technology Network.

Learn about how to install and configure the plug-in for Microsoft IIS Web Server in the
following sections:

• Installing and Configuring the Plug-In for Microsoft Internet Information Server

• Serving Static Files with IIS

• Serving Static Files and Dynamic Content From the Same Request with IIS

• Using Wildcard Application Mappings to Proxy by Path

• Proxying Requests from Multiple Virtual Web Sites to WebLogic Server

• Creating ACLs Through IIS

• Testing the Installation

5-1

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

5.1 Installing and Configuring the Plug-In for Microsoft
Internet Information Server

Follow these steps to install and configure the Plug-In for Microsoft Internet
Information Server (IIS):

1. Install Microsoft IIS.

2. Ensure that all of the necessary features of Microsoft IIS are enabled.

a. In the Start menu, select Control Panel, and then select Programs and
Features.

b. Select Internet Information Services (IIS) Manager.

c. Click Turn Windows features on or off.

d. Expand the entire tree beneath Internet Information Services and ensure all of
the sub-features are selected.

Chapter 5
Installing and Configuring the Plug-In for Microsoft Internet Information Server

5-2

Figure 5-1 Windows Features for Internet Information Services

3. Download and install the latest Oracle WebLogic Server Proxy Plug-In zip file.

4. Create an iisproxy.ini file with the following content in the %PLUGIN_HOME%\lib\
folder:

 WebLogicHost=URL_of_WebLogic_Host
 WebLogicPort=WebLogic_Port
 Debug=ALL
 DebugConfigInfo=ON
 WLLogFile=C:\Temp\wl-proxy.log

5. Ensure that the %PLUGIN_HOME%\lib folder is included in the system PATH. (Select
Control Panel, select System, select System Properties, select Environment
Variables, select System Properties, and then select PATH.

Chapter 5
Installing and Configuring the Plug-In for Microsoft Internet Information Server

5-3

6. Open IIS Manager. Select Start, select All Programs, select Administrative
Tools, and then select Internet Information Services Manager.

7. Create a new Web Site in IIS. See the IIS Help system for more information.

8. Click the site name, open Handler Mappings and add a script map (set the
Extension to a value such as .jsp, set Executable to %PLUGIN_HOME%\lib
\iisproxy.dll, and assign a value to Name).

9. Click MIME Types and ensure a MIME type has been defined for the extension.
Add the MIME type and its definition if it is not present.

10. Click the site name, open Directory browsing and enable the feature.

11. Start IIS. Enter services.msc at the command prompt and go to "World Wide Web
Publishing Services" at the bottom and restart it. Also restart the web site.

Figure 5-2 Windows Services Window

12. Test your configuration by sending a request to http://iishost:iisport/
application_name/ from the browser and validate the response.

Here, iishost is the URL of the IIS server and iisport is the port number. Note
that the iisport number should be different from the port number of the WebLogic
Server.

5.2 Serving Static Files with IIS
After configuring the WLS plug-in and confirming it works (see Installing and
Configuring the Plug-In for Microsoft Internet Information Server) follow these steps to
serve static files.

1. Right click Default web site and then click Add Virtual Directory.

2. In the Alias field enter static and set the physical path to the location of the static
files, for example c:\inetpub\wwwroot\static. Click OK. A static folder will appear
under Default Web Site.

Note: The physical path may be different in your case if the files are in a different
location. Modify the path accordingly.

Chapter 5
Serving Static Files with IIS

5-4

3. Click static under Default Web Site to open the static Home page.

4. On the static Home page click Handler Mappings and then click View Ordered
List on the right-side pane. You will see an ordered list of Handler Mappings.

5. Click Add Script Map. Set Request Path to "*", set Executable to %PLUGIN_HOME%
\lib\iiproxy.dll, and assign the value proxy to Name). Click OK.

6. Click View Ordered List to re-order the list of handlers.

7. Click the proxy script map and move it down below the StaticFile handler
mapping. (That means the StaticFile handler mapping should appear above the
proxy handler mapping.)

8. Create a static folder under c:\inetpub\wwwroot and copy an HTML file into it, for
example index.html.

9. Restart IIS by restarting the "World Wide Web Publishing Service" under services.

10. Test your work. Access the index.html file by accessing: http://localhost:80/
static/index.html

5.3 Serving Static Files and Dynamic Content From the
Same Request with IIS

Suppose you want to serve the static files such as *.gif , *.png images for the request
http://localhost:80/console from the IIS and other dynamic content from the
backend WebLogic Server. Follow these steps in addition to Serving Static Files with
IIS.

1. Complete the steps described in the Serving Static Files with IIS.

2. Right-click the Default web site, then click Add Virtual Directory, and then enter
the following in the Add Virtual Directory dialog box.

Chapter 5
Serving Static Files and Dynamic Content From the Same Request with IIS

5-5

• Alias—console

• Physical Path—C:\path_to_the_wls_plug-in\console

In this example, the physical path to the console is C:\OHS_Plugin_IIS\console.

Click OK. You will see a consoleentry in the left pane under the Default Web Site.

3. Click console under Default Web Site. A console Home opens on the right side.

4. Click Handler Mappings on the console Home pane.

5. Right-click StaticFile and select Edit. Update the fields as follows in the Edit
Module Mapping dialog box:

• Request Path—*.png (that is, change "*" to "*.png")

• Module— StaticFileModule, DefaultDocumentModule, DirectoryListingModule
(should be the default)

• Executable—not required. Leave it blank.

• Name—StaticFile (it is not possible to change Name here)

Chapter 5
Serving Static Files and Dynamic Content From the Same Request with IIS

5-6

6. Click Request Restrictions. In the Mapping tab of the Request Restrictions
dialog box, ensure that Invoke Handler only if the request is mapped to is
selected, then select File or Folder. Click OK and OK to dismiss the dialog boxes.

Chapter 5
Serving Static Files and Dynamic Content From the Same Request with IIS

5-7

The above step is to serve the *.png from the IIS server.

7. To serve other image files, such as *.gif files, do the following.

a. Under "Console Home" click "Handler Mappings", then click on "Add Module
Mapping" on the right side and then enter the following.

Request Path—*.gif

Module—StaticFileModule, DefaultDocumentModule, DirectoryListingModule

Executable—not required. Keep it blank

Name—StaticFileForGIF

b. Click "Request Restrictions". Under "Mapping" make sure the "Invoke Handler
only if the request is mapped to" is selected and then select the "File or
Folder" and then click "OK" and "OK"

8. Arrange the order of the handlers.

a. Click on "console" under "Default web site" and then click on "Handler
Mappings" and then "View Ordered List" on the right side

b. Select "proxy" and move it down till the "proxy" is below the "StaticFile" and
"StaticFileForGIF. That is, the order should be like below.

StaticFile
StaticFileForGIF
proxy

9. Copy all of the static files that belong to http://loclhost:<iis-port>/console
request from WebLogic Server to IIS.

10. Restart the service, then restart the web site.

The images (*.png and *.gif) are now served by IIS and dynamic content by Weblogic
server.

For example, for the request http://localhost:80/console the images for console are
served by the IIS and all other requests other than *.png and *.gif are served by
Weblogic Server.

5.4 Using Wildcard Application Mappings to Proxy by Path
You can configure a website or virtual directory to run an Internet Server API (ISAPI)
application at the beginning of every request to that website or virtual directory,
regardless of the extension of the requested file. You can use this feature to insert a
mapping to iisproxy.dll and thereby proxy requests by path to WebLogic Server.

Chapter 5
Using Wildcard Application Mappings to Proxy by Path

5-8

5.4.1 Adding a Wildcard Script Map for IIS
The following steps summarize the instructions available at "Add a Wildcard Script
Map" for IIS (http://technet.microsoft.com/en-us/library/cc754606(WS.10).aspx) to
add a wildcard script map to do proxy-by-path with ISAPI in IIS:

1. Open IIS Manager and navigate to the level you want to manage.

For information about opening IIS Manager, see Open IIS Manager at http://
technet.microsoft.com/en-us/library/cc770472(WS.10).aspx.

For information about navigating to locations in the UI, see Navigation in IIS
Manager at http://technet.microsoft.com/en-us/library/cc732920(WS.10).aspx.

2. In Features View, on the server, site, or application Home page, double-click
Handler Mappings.

3. On the Handler Mappings page, in the Actions pane, click Add Wildcard Script
Map.

4. In the Executable box, type the full path or browse to the iisproxy.dll that
processes the request. For example, type systemroot\system32\inetsrv
\iisproxy.dll.

5. In the Name box, type a friendly name for the handler mapping.

6. Click OK.

7. Optionally, on the Handler Mappings page, select a handler to lock or unlock.
When you lock a handler mapping, it cannot be overridden at lower levels in the
configuration. Select a handler mapping in the list, and then in the Actions pane,
click Lock or Unlock.

8. After you add a wildcard script map, you must add the executable to the ISAPI and
CGI Restrictions list to enable it to run. For more information about ISAPI and CGI
restrictions, see Configuring ISAPI and CGI Restrictions at http://
technet.microsoft.com/en-us/library/cc730912(WS.10).aspx.

Note:

If you are proxying a request to multiple IIS applications within the same IIS
site, to prevent the subsequent request from proxying to the first website only,
create each IIS application and assign a unique application pool to each IIS
application.

With IIS 7.x, you cannot assign application pools to virtual directories.

5.5 Proxying Requests from Multiple Virtual Web Sites to
WebLogic Server

To proxy requests from multiple websites (defined as virtual directories in IIS) to
WebLogic Server:

Chapter 5
Proxying Requests from Multiple Virtual Web Sites to WebLogic Server

5-9

http://technet.microsoft.com/en-us/library/cc754606(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc770472(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc770472(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc732920(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc730912(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc730912(WS.10).aspx

1. Create a new directory for the virtual directories. This directory will contain .dll
and .ini files used to define the proxy.

2. Extract the contents of the plug-in .zip file to a directory.

3. For each virtual directory you configured, copy the contents of the plug-in \lib
folder to the directory you created in Step 1.

4. Create an iisproxy.ini file for the virtual websites, as described in Sample
iisproxy.ini File. Copy this iispoxy.ini file to the directory you created in Step 1.

5. Copy iisproxy.dll to the directory you created in Step 1.

5.5.1 Sample iisproxy.ini File
The following sample iisproxy.ini file can be used with a single, non-clustered
WebLogic Server. Comment lines are denoted with the "#" character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.
WebLogicHost=localhost
WebLogicPort=7001
ConnectTimeoutSecs=20
ConnectRetrySecs=2

The following sample iisproxy.ini file can be used with clustered WebLogic Servers.
Comment lines are denoted with the "#" character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.
WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001
ConnectTimeoutSecs=20
ConnectRetrySecs=2

Note:

If you are using SSL between the plug-in and WebLogic Server, the port
number should be defined as the SSL listen port.

5.6 Creating ACLs Through IIS
ACLs will not work through the Oracle WebLogic Server Proxy Plug-In 12c (12.2.1.3.0)
for Microsoft IIS Web Server if the Authorization header is not passed by IIS. Use the
following information to ensure that the Authorization header is passed by IIS.

1. Ensure that the user is logged on with local log-on rights when using Basic
Authentication.

2. Grant each user account the Log On Locally user right on the IIS server. To
enable the use of Basic Authentication, Two problems may result from Basic
Authentication's use of local logon:

• If the user does not have local logon rights, Basic Authentication does not
work even if the FrontPage, IIS, and Windows NT configurations appear to be
correct.

Chapter 5
Creating ACLs Through IIS

5-10

• A user who has local log-on rights and who can obtain physical access to the
host computer running IIS will be permitted to start an interactive session at
the console.

3. To enable Basic Authentication, in the Directory Security tab of the console,
ensure that the Allow Anonymous option is "on" and all other options are "off".

5.7 Testing the Installation
Follow these steps to ensure that the Microsoft IIS plug-in has been installed,
configured, and deployed successfully.

1. Make sure WebLogic Server and IIS are running.

2. Save a JSP file into the document root of the default Web Application.

3. Open a browser and set the URL to the IIS plus filename.jsp, as shown in this
example:

http://myiis.server.com/filename.jsp

If filename.jsp is displayed in your browser, the plug-in is functioning.

Chapter 5
Testing the Installation

5-11

6
Configuring Security

This chapter describes how to work with security for plug-ins. It contains the following
sections:

• Using SSL with Plug-Ins

• Configuring SSL with the Plug-In for iPlanet Web Server

• Configuring Perimeter Authentication

6.1 Using SSL with Plug-Ins
You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between the plug-in and Oracle WebLogic Server. The SSL protocol provides
confidentiality and integrity to the data passed between the plug-in and WebLogic
Server.

The plug-in does not use the transport protocol (HTTP or HTTPS) specified in the
HTTP request (usually by the browser) to determine whether to use SSL to protect the
connection between the plug-in and WebLogic Server; that is, the plug-in is in no way
dependent on whether the HTTP request (again, usually from the browser) uses
HTTPS (SSL).

Instead, the plug-in uses SSL parameters that you configure for the plug-in, as
described in SSL Parameters for Web Server Plug-Ins, to determine when to use SSL:

• WebLogicSSLVersion—Specifies the SSL protocol version to use for communication
between the plug-in and the WebLogic Server.

• WLSSLWallet—The version 12c (12.2.1.2.0) plug-ins use Oracle wallets to store
SSL configuration information. Use the WLSSLWallet SSL configuration parameter
to configure the wallets. The orapki utility is provided in the plug-in distribution for
this purpose.

The orapki utility manages public key infrastructure (PKI) elements, such as
wallets and certificate revocation lists, on the command line so the tasks it
performs can be incorporated into scripts. This enables you to automate many of
the routine tasks of maintaining a PKI. See Using the orapki Utility for Certificate
Validation and CRL Management.

• SecureProxy—The SecureProxy parameter determines whether SSL is enabled.

Note:

For more information on valid security protocols and ciphers for the current
release, see SSLCipherSuite and SSLProtocol in Administering Oracle HTTP
Server.

6-1

In the case of two-way SSL, the plug-in (the SSL client) automatically uses two-way
SSL when Oracle WebLogic Server is configured for two-way SSL and requests a
client certificate.

If a client certificate is not requested, the plug-ins default to one-way SSL.

Note:

If an Oracle Fusion Middleware 12c (12.2.1.2.0) product is installed on the
same system as the Apache (including Oracle HTTP Server) plug-in, the
ORACLE_HOME variable must point to a valid installation; otherwise, the plug-
in fails to initialize SSL.

For example, if ORACLE_HOME is invalid because the product was not cleanly
removed, the plug-in fails to initialize SSL.

This section contains the following information:

• Configuring Libraries for SSL

• Configuring a Plug-In for One-Way SSL

• Configuring Two-Way SSL Between the Plug-In and Oracle WebLogic Server

• Replacing Certificates Signed Using the MD5 Algorithm

• Enabling Support of Certificate Signed with MD5 Algorithm

6.1.1 Configuring Libraries for SSL
Plug-ins use Oracle libraries (NZ) to provide SSL support. Because the libraries are
large, they are loaded only when SSL is needed. You must ensure that the library files,
located in lib/*.so*, are available at the proper locations so that they can be
dynamically loaded by the plug-in.

To configure the libraries for the plug-ins for Apache HTTP Server, you have a few
options:

• Windows: Specify the lib directory that contains the .dll files in the PATH variable
or copy the *.dll files in the bin directory.

• UNIX: Configure LD_LIBRARY_PATH to point to the folder containing the libraries
or copy the libraries to the lib directory.

If you copy the libraries instead of updating the PATH (Windows) or
LD_LIBRARY_PATH (UNIX) variables, you must copy the libraries afresh each time
you install a new version of the plug-in.

6.1.2 Configuring a Plug-In for One-Way SSL
Perform the following steps to configure one-way SSL.

In these steps, you run the keytool commands on the system on which WebLogic
Server is installed, and you run the orapki commands on the system on which the
version 12c (12.2.1.2.0) plug-ins are installed.

Chapter 6
Using SSL with Plug-Ins

6-2

Note:

The examples in this section use the WebLogic Server demo CA. If you are
using the plug-in a production environment, ensure that trusted CAs are
properly configured for the plug-in and for Oracle WebLogic Server.

1. Configure Oracle WebLogic Server for SSL. See Configuring SSL in Administering
Security for Oracle WebLogic Server.

2. Create an Oracle Wallet, by using the orapki utility.

orapki wallet create -wallet mywallet -auto_login_only

See Using the orapki Utility for Certificate Validation and CRL Management in the
Administering Oracle Fusion Middleware.

Note:

Only the user who creates the wallet (or for Windows, the account
SYSTEM) has access to the wallet.

This is typically sufficient for the Oracle WebLogic Server Proxy Plug-In for
Apache HTTP Server because Apache runs as the account SYSTEM on
Windows, and as the user who creates it on UNIX. However, for IIS the
wallet will not work because the default user is
IUSR_<Machine_Name>(IIS6.0 and below) or IUSR (IIS7.0 and above).

If the user who runs the Oracle WebLogic Server Proxy Plug-In for Apache
HTTP Server or Oracle WebLogic Server Proxy Plug-In 12c (12.2.1.2.0) for
Microsoft IIS Web Server is different from the user who creates the wallet
(or for Windows, the account SYSTEM), you need to grant the user access
to the wallet by running the command cacls (Windows) or chmod (UNIX)
after you create the wallet. For example:

cacls <wallet_path>\cwallet.sso /e /g IUSR:R

3. Import the WLS trust certificate into the Oracle Wallet.

orapki wallet add -wallet mywallet -trusted_cert -cert <cert_file_name> -
auto_login_only

4. Configure the web server configuration files as follows:

• For Oracle HTTP Server, edit the mod_wl_ohs.conf file as follows:

<IfModule mod_weblogic.c>
 WebLogicHost host
 WebLogicPort port
 SecureProxy ON
 WLSSLWallet path_to_wallet
</IfModule>

• For Microsoft IIS, edit the iisproxy.ini file as follows:

 WebLogicHost=host
 WebLogicPort=port

Chapter 6
Using SSL with Plug-Ins

6-3

 SecureProxy=ON
 WLSSLWallet=path_to_wallet

For more information about the parameters in these examples, see Parameters for
Web Server Plug-Ins.

5. Complete these steps if the version of the Oracle WebLogic Server instances in
the back end is 10.3.4 (or a later release).

a. Log in to the Oracle WebLogic Server administration console.

b. In the Domain Structure pane, expand the Environment node.

• If the server instances to which you want to proxy requests from Oracle
HTTP Server are in a cluster, select Clusters.

• Otherwise, select Servers.

c. Select the server or cluster to which you want to proxy requests from Oracle
HTTP Server.

d. In the Configuration: General tab, scroll down to the Advanced section, then
expand it.

e. Do one of the following:

To... Select...

Enable one-way SSL WebLogic Plug-In
Enabled

Enable two-way SSL where client certificates are used to
authenticate

Client Cert Proxy
Enabled

Enable two-way SSL with client certificates. Both

f. If you selected Servers in Step 2, repeat steps Step 3 and Step 4 for the other
servers to which you want to proxy requests from Oracle HTTP Servers.

g. Click Save.

For the change to take effect, you must restart the server instances.

6. Send a request to http://host:port/mywebapp/my.jsp from the browser and validate
the response.

6.1.3 Configuring Two-Way SSL Between the Plug-In and Oracle
WebLogic Server

When Oracle WebLogic Server is configured for two-way SSL, the plug-in forwards the
user certificate to WebLogic Server. As long as WebLogic Server can validate the user
certificate, two-way SSL can be established.

In addition to the steps described in Configuring a Plug-In for One-Way SSL, perform
the following steps:

In these steps, you run the keytool commands on the system on which WebLogic
Server is installed. You run the orapki commands on the system on which the version
12c (12.2.1.2.0) plug-ins are installed.

1. From the Oracle wallet, generate a certificate request.

Chapter 6
Using SSL with Plug-Ins

6-4

2. Use this certificate request to create a certificate by using a CA or some other
mechanism.

3. Import the user certificate as a trusted certificate in the WebLogic trust store.
Oracle WebLogic Server needs to trust the certificate.

keytool -file user.crt -importcert -trustcacerts -keystore DemoTrust.jks -
storepass <passphrase>

4. Set the WebLogic Server SSL configuration options that require the presentation
of client certificates (for two-way SSL). See Configure two-way SSL in Oracle
WebLogic Server Administration Console Online Help.

6.1.4 Replacing Certificates Signed Using the MD5 Algorithm
When using SSL to connect to WebLogic Server, ensure that any certificate request or
certificates signed with MD5 are replaced by SHA-2 signed certificates in the wallet;
otherwise, the server will fail to start.

Checking the Certificate Singing Algorithm

To check the certificate singing algorithm :

1. To search the certificate with it’s distinguished name, using the following command

${PLUGIN_HOME}/bin/orapki wallet display -wallet
<wallet__location>

2. Export certificate available in wallet

${PLUGIN_HOME}/bin/orapki wallet export -wallet
<wallet_Location> -dn 'DN_string' -cert <certificate_file>

3. Check the signature algorithm used to sign <certificate_file> using the
keytool

$JAVA_HOME/bin/keytool -printcert -file <certificate_file>

Removing a Certificate Request or Certificate Signed with MD5 algorithm

• To remove a user certificate signed using MD5 algorithm

 ${PLUGIN_HOME}/bin/orapki wallet remove -wallet <wallet_location> -dn
'DN_string' -user_cert [-pwd <pwd>] | [-auto_login_only]

• To remove a self-signed certificate available in the trusted and requested
certificate list:

${PLUGIN_HOME}/bin/orapki wallet remove -wallet < wallet_location > -dn
'DN_string' -trusted_cert [-pwd <pwd>] | [-auto_login_only]
 ${PLUGIN_HOME}/bin/orapki wallet remove -wallet < wallet_location > -dn
'DN_string' -cert_req [-pwd <pwd>] | [-auto_login_only]

• To remove a trusted certificate signed using MD5 algorithm

${PLUGIN_HOME}/bin/orapki wallet remove -wallet < wallet_location > -dn
'DN_string' -trusted_cert [-pwd < pwd >] | [-auto_login_only]

• To remove a certificate request signed using MD5 algorithm

${PLUGIN_HOME}/bin/orapki wallet remove -wallet < wallet_location > -dn
'DN_string' -cert_req [-pwd <pwd>] | [-auto_login_only]

Chapter 6
Using SSL with Plug-Ins

6-5

Adding a Self-Signed User Certificate Signed with SHA-2 Algorithm

Use the following command to add a self-signed user certificate, signed using MD5
algorithm with a self-signed certificate signed using a SHA-2 algorithm in the wallet:

${PLUGIN_HOME}
/bin/orapki wallet add -wallet <wallet_Location>
-dn 'DN_String'
keysize 2048 -sign_alg sha256 -self_signed
-validity 9125 [-pwd <pwd>] | [-auto_login_only]

Updating the Existing Certificate Authority Signed User Certificate Using MD5
Algorithm

Contact the certificate authority to get a user certificate signed using SHA-2 signature
algorithm and replace it with existing user certificate.

${PLUGIN_HOME}/bin/orapki -wallet add -wallet <wallet_Location> -user_cert -cert
<certificate_file> [-pwd <pwd>] | [-auto_login_only]

Updating the Existing Trusted Certificates Signed Using MD5 Algorithm

If you have any trusted certificate that is signed using MD5 signature algorithm
imported in your wallet, update the certificate of the corresponding backend WebLogic
Server to use the SHA-2 signature algorithm. Once updated, replace the MD5 trusted
certificate in your wallet with the updated certificate.

${PLUGIN_HOME}/bin/orapki -wallet add -wallet <wallet_Location> -trusted_cert -cert
<certificate_file> [-pwd <pwd>] | [-auto_login_only]

6.1.5 Enabling Support of Certificate Signed with MD5 Algorithm

Note:

Certificates signed using MD5 algorithm are not recommended, due to
compromised security. To continue using certificates signed using MD5
algorithm by setting ORACLE_SSL_ALLOW_MD5_CERT_SIGNATURES=1
environment variable.

Set the environment. variable in the plugin:

• Oracle HTTP Server Plugin: Add
environment.ORACLE_SSL_ALLOW_MD5_CERT_SIGNATURES=1 in
DOMAIN_HOME/config/fmwconfig/components/OHS/instances/
instanceName /ohs.plugin.nodemanger.properties

• Apache plugin : Add export ORACLE_SSL_ALLOW_MD5_CERT_SIGNATURES=1
in $APACHE_HOME/bin/envvars.

• iPlanet plugin : Add export ORACLE_SSL_ALLOW_MD5_CERT_SIGNATURES=1
in $IPLANET_INSTANCE_HOME/bin/startserv.

• IIS Plugin : Add ORACLE_SSL_ALLOW_MD5_CERT_SIGNATURES=1 in System
environment variable.

Chapter 6
Using SSL with Plug-Ins

6-6

6.2 Configuring SSL with the Plug-In for iPlanet Web Server
You can use the Secure Sockets Layer (SSL) protocol to protect the connection
between the Oracle WebLogic Server Proxy Plug-In 12c (12.2.1.2.0) for iPlanet Web
Server plug-in and Oracle WebLogic Server. The SSL protocol provides confidentiality
and integrity to the data passed between the Oracle iPlanet Web Server plug-in and
Oracle WebLogic Server.

The Oracle WebLogic Server Proxy Plug-In 12c (12.2.1.2.0) for iPlanet Web Server
plug-in does not use the transport protocol (http or https) specified in the HTTP
request (usually by the browser) to determine whether the SSL protocol will be used to
protect the connection between the Oracle WebLogic Server Proxy Plug-In 12c
(12.2.1.2.0) for iPlanet Web Server and Oracle WebLogic Server.

To use the SSL protocol between Oracle iPlanet Web Server plug-in and Oracle
WebLogic Server:

1. Configure Oracle WebLogic Server for SSL. See Configuring SSL in Administering
Security for Oracle WebLogic Server.

2. Set the WebLogicPort parameter in the Service directive in the obj.conf file to the
listen port configured in Step 1.

3. Set the SecureProxy parameter in the Service directive in the obj.conf file to ON.

4. Set additional parameters, as required, in the Service directive in the obj.conf file
that define information about the SSL connection. For the list of parameters, see
SSL Parameters for Web Server Plug-Ins.

6.3 Configuring Perimeter Authentication
Use perimeter authentication to secure WebLogic Server applications that are
accessed by using the plug-in.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems
that access your WebLogic Server application, including users who access your
WebLogic Server application through the plug-in. Create an Identity Assertion Provider
that will safely secure your plug-in as follows:

1. Create a custom Identity Assertion Provider on your WebLogic Server application.
See How to Develop a Custom Identity Assertion Provider in Developing Security
Providers for Oracle WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the Cert token type
and make Cert the active token type. See How to Create New Token Types in
Developing Security Providers for Oracle WebLogic Server.

3. Set clientCertProxy to True in the web.xml deployment descriptor file for the Web
application (or, if using a cluster, optionally set the Client Cert Proxy Enabled
attribute to true for the whole cluster on the Administration Console Cluster then
Configuration then General tab).

The clientCertProxy attribute can be used with a third party proxy server, such as
a load balancer or an SSL accelerator, to enable 2-way SSL authentication. For
more information about the clientCertProxy attribute, see context-param in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Chapter 6
Configuring SSL with the Plug-In for iPlanet Web Server

6-7

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure
that WebLogic Server accepts connections only from the machine on which the
plug-in is running. See Using Network Connection Filters in Developing
Applications with the WebLogic Security Service.

5. Web server plug-ins require a trusted Certificate Authority file to use SSL between
the plug-in and WebLogic Server. See Using SSL with Plug-Ins for the steps you
need to perform to configure SSL.

See Identity Assertion Providers in Developing Security Providers for Oracle WebLogic
Server.

Chapter 6
Configuring Perimeter Authentication

6-8

7
Common Configuration Tasks

This chapter describes tasks that are common across all the web servers for
configuring the plug-ins provided by Oracle. It contains the following sections:

• Configuring IPv6 With Plug-Ins

• Understanding Connection Errors and Clustering Failover

• Tuning Oracle HTTP Server and Apache HTTP Server for High Throughput for
WebSocket Upgrade Requests

• Working with Partitions

7.1 Configuring IPv6 With Plug-Ins
The version 12c (12.2.1.2.0) plug-ins support IPv6. Specifically, the WebLogicHost and
WebLogicCluster configuration parameters (see WebLogicCluster and WebLogicHost)
now support IPv6 addresses. For example:

<IfModule mod_weblogic.c>
 WebLogicHost [a:b:c:d:e:f]
 WebLogicPort 7002
 ...
</IfModule>

or

<IfModule mod_weblogic.c>
 WebLogicCluster [a:b:c:d:e:f]:<port>, [g:h:i:j:k:l]:<port>

</IfModule>

You can also use the IPv6 address mapped host name.

Note:

As of Windows 2008, the DNS server returns the IPv6 address in preference to
the IPv4 address. If you are connecting to a Windows 2008 (or later) system
using IPv4, the link-local IPv6 address format is tried first, which may result in a
noticeable delay and reduced performance. To use the IPv4 address format,
configure your system to instead use IP addresses in the configuration files or
add the IPv4 addresses to the etc/hosts file.

In addition, you may find that setting the DynamicServerList property to OFF in
the mod_wl_ohs.conf/mod_wl.conf/iisproxy.ini file also improves performance
with IPv6. When set to OFF, the plug-in ignores the dynamic cluster list used
for load balancing requests proxied from the plug-in and uses the static list
specified with the WebLogicCluster parameter.

7-1

7.2 Understanding Connection Errors and Clustering
Failover

When the plug-in attempts to connect to WebLogic Server, the plug-in uses several
configuration parameters to determine how long to wait for connections to the
WebLogic Server host and, after a connection is established, how long the plug-in
waits for a response. If the plug-in cannot connect or does not receive a response, the
plug-in attempts to connect and send the request to other WebLogic Server instances
in the cluster. If the connection fails or there is no response from any WebLogic Server
in the cluster, an error message is sent.

Figure 7-1 illustrates how the plug-in handles failover.

This section contains the following information:

• Possible Causes of Connection Failures

• Tips for Reducing CONNECTION_REFUSED Errors

• Failover with a Single, Non-Clustered WebLogic Server

• The Dynamic Server List

• Failover, Cookies, and HTTP Sessions

• Failover Behavior When Using Firewalls and Load Directors

7.2.1 Possible Causes of Connection Failures
Failure of the WebLogic Server host to respond to a connection request could indicate
the following problems:

• Physical problems with the host machine

• Network problems

• Other server failures

Failure of all WebLogic Server instances to respond could indicate the following
problems:

• WebLogic Server is not running or is unavailable

• A hung server

• A database problem

• An application-specific failure

7.2.2 Tips for Reducing CONNECTION_REFUSED Errors
Under load, a plug-in may receive CONNECTION_REFUSED errors from a back-end
WebLogic Server instance. Follow these tuning tips to reduce
CONNECTION_REFUSED errors:

• Increase the AcceptBackLog setting in the configuration of your WebLogic Server
domain.

Chapter 7
Understanding Connection Errors and Clustering Failover

7-2

• Decrease the time wait interval. This setting varies according to the operating
system you are using. For example:

– On Windows NT, set the TcpTimedWaitDelay on the proxy and WebLogic Server
servers to a lower value. Set the TIME_WAIT interval in Windows NT by
editing the registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay

If this key does not exist you can create it as a DWORD value. The numeric
value is the number of seconds to wait and may be set to any value between
30 and 240. If not set, Windows NT defaults to 240 seconds for TIME_WAIT.

– On Windows 2000, lower the value of the TcpTimedWaitDelay by editing the
registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

– On Solaris, reduce the setting tcp_time_wait_interval to one second (for both
the WebLogic Server machine and the Apache machine, if possible):

$ndd /dev/tcp
 param name to set - tcp_time_wait_interval
 value=1000

• Increase the open file descriptor limit on your machine. This limit varies by
operating system. Using the limit (.csh) or ulimit (.sh) directives, you can make a
script to increase the limit. For example:

#!/bin/sh
ulimit -S -n 100
exec httpd

• On Solaris, increase the values of the following tunables on the WebLogic Server
machine:

tcp_conn_req_max_q tcp_conn_req_max_q0

7.2.3 Failover with a Single, Non-Clustered WebLogic Server
If you run only a single WebLogic Server instance the plug-in only attempts to connect
to the server defined with the WebLogicHost parameter. If the attempt fails, an HTTP
503 error message is returned. The plug-in continues trying to connect to that same
WebLogic Server instance for the maximum number of retries as specified by the ratio
of ConnectTimeoutSecs and ConnectRetrySecs.

7.2.4 The Dynamic Server List
The WebLogicCluster parameter is required to proxy to a list of back-end servers that
are clustered, or to perform load balancing among non-clustered managed server
instances.

In the case of proxying to clustered managed servers, when you use the
WebLogicCluster parameter to specify a list of WebLogic Servers, the plug-in uses that
list as a starting point for load balancing among the members of the cluster. After the
first request is routed to one of these servers, a dynamic server list is returned
containing an updated list of servers in the cluster.

The updated list adds any new servers in the cluster and deletes any that have been
shut down, or are being suspended, or are no longer part of the cluster or that have

Chapter 7
Understanding Connection Errors and Clustering Failover

7-3

failed to respond to requests. This feature can be controlled by using
DynamicServerList. For example, to disable this feature, set DynamicServerList to OFF.

DynamicServerList ON is a preferred performance tuning parameter. It is useful, for
example, if a member of a cluster is temporarily down for maintenance or if
administrators decide they want to add another member, and not need to restart the
web server.

Note:

If DynamicServerList is set to ON, and the list of backend WebLogic Servers
specified in WebLogicCluster is not in a cluster, then the behavior would be
undefined.

7.2.5 Failover, Cookies, and HTTP Sessions
When a request contains session information stored in a cookie or in the POST data,
or encoded in a URL, the session ID contains a reference to the specific server
instance in which the session was originally established (called the primary server). A
request containing a cookie attempts to connect to the primary server. If that attempt
fails, the plug-in attempts to make a connection to the next available server in the list
in a round-robin fashion. That server retrieves the session from the original secondary
server and makes itself the new primary server for that same session. See Figure 7-1.

Note:

If the POST data is larger than 64K, the plug-in will not parse the POST data to
obtain the session ID. Therefore, if you store the session ID in the POST data,
the plug-in cannot route the request to the correct primary or secondary server,
resulting in possible loss of session data.

Chapter 7
Understanding Connection Errors and Clustering Failover

7-4

Figure 7-1 Connection Failover

In this figure, the Maximum number of retries allowed in the red loop is equal to
ConnectTimeoutSecs/ConnectRetrySecs.

7.2.6 Failover Behavior When Using Firewalls and Load Directors
In most configurations, the Oracle WebLogic Server Proxy Plug-In 12c (12.2.1.2.0) for
iPlanet Web Server sends a request to the primary instance of a cluster. When that
instance is unavailable, the request fails over to the secondary instance. However, in
some configurations that use combinations of firewalls and load-directors, any one of

Chapter 7
Understanding Connection Errors and Clustering Failover

7-5

the servers (firewall or load-directors) can accept the request and return a successful
connection while the primary instance of WebLogic Server is unavailable. After
attempting to direct the request to the primary instance of WebLogic Server (which is
unavailable), the request is returned to the plug-in as "connection reset."

Requests running through combinations of firewalls (with or without load-directors) are
handled by WebLogic Server. In other words, responses of connection reset fail over
to a secondary instance of WebLogic Server. Because responses of connection reset
fail over in these configurations, servlets must be idempotent. Otherwise duplicate
processing of transactions may result.

7.3 Tuning Oracle HTTP Server and Apache HTTP Server
for High Throughput for WebSocket Upgrade Requests

WebLogic Server 12c (12.2.1.2.0) supports deploying WebSocket applications. Oracle
WebLogic Server Proxy Plug-In 12c (12.2.1.2.0) for Oracle HTTP Server 12c
(12.2.1.2.0) and Apache HTTP Server 2.2.x and 2.4.x can now handle such
WebSocket connection upgrade requests and effectively proxy to WebSocket
applications hosted within WebLogic Server 12c (12.2.1.2.0) and later. As a result of
adding this support, a new configuration parameter WLMaxWebSocketClients is
introduced.

The WLMaxWebSocketClients parameter limits the number of active WebSocket
connections at any instant of time. The maximum value you can set for this parameter
is 75 percent of ThreadsPerChild (Windows) or 75 percent of MaxRequestWorkers
(non-Windows). Hence, to tune your HTTP Server for maximum WebSocket
connection upgrade requests, set MaxRequestWorkers/ThreadsPerChild to a value
that can accommodate WebSocket connections as well. Also, ensure that
WLMaxWebSocketClients is set to 75 percent of MaxRequestWorkers/
ThreadsPerChild.

7.4 Working with Partitions
By doing some manual configuration, Oracle WebLogic Server Proxy Plug-Ins can
front-end Oracle WebLogic Server MT (Multi-Tenency).

This section contains the following information:

Note:

This section describes partitions and multi-tenancy only as far as they apply to
Oracle WebLogic Server Proxy Plug-Ins. For more information about Oracle
WebLogic Server MT, partitions, and multi-tenancy, see Oracle Fusion
Middleware Using WebLogic Server MT.

• Adding a Partition

• Modifying a Partition and Partition Migration

• Configuring SSL Between the Web Server and Oracle WebLogic Server

• Dynamic Discovery of Cluster Changes

Chapter 7
Tuning Oracle HTTP Server and Apache HTTP Server for High Throughput for WebSocket Upgrade Requests

7-6

7.4.1 Adding a Partition
Whenever a partition is added on the Oracle WebLogic Server MT side, you must
make corresponding changes to the web server configuration to front the new partition.
The details of adding a partition itself is documented by Oracle WebLogic Server MT,
(see "Configuring Domain Partitions" in Oracle Fusion Middleware Using WebLogic
Server MT).

The following sections describe how to make corresponding changes to web server
configuration to front-end a newly added partition in Oracle WebLogic Server MT.

Note:

These sections assume that you have already created one or more domain
partitions in Oracle WebLogic Server. For more information on creating domain
partitions, see Configuring Domain Partitions in Oracle Fusion Middleware
Using WebLogic Server MT.

This section includes the following topics:

• Apache Server and Oracle HTTP Server Configuration Changes

• iPlanet Server Configuration Changes

• IIS Server Configuration Changes

7.4.1.1 Apache Server and Oracle HTTP Server Configuration Changes
The following is a sample configuration that must be added to the Oracle HTTP Server
or Apache plug-in configuration file (httpd.conf) for each new partition being added.
The configuration identifies the hostname and port of the partition, the server and the
WebLogic cluster it belongs to, and any optional URI that is configured for the partition.

1. Install and configure the plug-in for Oracle HTTP Server or Apache Server. See
Preparing for Configuring the Oracle WebLogic Server Proxy Plug-In or Install the
Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server.

2. Edit the httpd.conf file and add the following section for every new partition:

For OHS: Uncomment the following line
LoadModule weblogic_module modules/mod_wl_ohs.so
For Apache 2.2: Uncomment the following line
LoadModule weblogic_module modules/mod_wl.so
For Apache 2.4: Uncomment the following line
LoadModule weblogic_module modules/mod_wl_24.so

<VirtualHost hostname_and_port_of_the_partition>
<IfModule mod_weblogic.c>
ServerName server_URL
WebLogicCluster comma_separated_list_of_WebLogic_clusters
SetHandler weblogic-handler
PathPrepend optional_uri_of_the_partition
</IfModule>
</VirtualHost>

Chapter 7
Working with Partitions

7-7

3. After making the configuration change, you must restart the Apache or Oracle
HTTP Server.

7.4.1.1.1 Oracle HTTP Server/Apache Plug-in Examples
The following examples provide sample configurations for different use cases.

Example 1: Client may not configure the partition path

Assume there are there are two partitions in the domain:

• Host Name of the VirtualTarget1 is www.myCompany1.com and the URI Prefix
(partition path) is null as configured in Oracle WebLogic Server.

• Host Name of the VirtualTarget2 is www.myCompany2.com and the URI Prefix
(partition path) is null as configured in Oracle WebLogic Server.

In this case, you do not need to configure the partition path

LoadModule weblogic_module modules/mod_wl_24.so

<VirtualHost *:8080>
<IfModule mod_weblogic.c>
ServerName www.myCompany1.com
WebLogicCluster wls1:7001,wls2:7001,wls3:7001
SetHandler weblogic-handler
</IfModule>
</VirtualHost>

<VirtualHost *:8080>
<IfModule mod_weblogic.c>
ServerName www.myCompany2.com
WebLogicCluster wls1:7002,wls2:7002,wls3:7002
SetHandler weblogic-handler
</IfModule>
</VirtualHost>

This configuration proxies all of the requests coming to myCompany1.com:8080 or
myCompany1.com to the managed servers wls1:7001, wls2:7001 and wls3:7001. Similarly,
all of the requests coming to myCompany2.com:8080 or myCompany2.com will be proxied to
the managed servers wls1:7002, wls2:7002 and wls3:7002.

Example 2: Client may divide the web site by the partition path

Assume there are there are two partitions in the domain:

• Host Name of the VirtualTarget1 is www.foo.com and URI Prefix (partition path) is /
myCompany1 as configured in Oracle WebLogic Server.

• Host Name of the VirtualTarget2 is www.foo.com and URI Prefix (partition path) is /
myCompany2 as configured in Oracle WebLogic Server.

In this case, you do not need to configure the partition path:

<VirtualHost *:8080>
<IfModule mod_weblogic.c>
ServerName server1
WebLogicCluster wls1:7001,wls2:7001,wls3:7001
SetHandler weblogic-handler
</IfModule>
</VirtualHost>

Chapter 7
Working with Partitions

7-8

The available urls will be:

www.foo.com:8080/myCompany1

www.foo.com:8080/myCompany2

7.4.1.2 iPlanet Server Configuration Changes
The following is a sample configuration that must be added to the iPlanet Server plug-
in configuration file for each new partition being added.

1. Install the plug-in for iPlanet Server. See Installing and Configuring the Plug-In for
iPlanet .

2. Edit the magnus.conf file to add the following section:

ServerName server_URL
Init fn="load-modules" shlib="path to the /plugin/mod_wl.so file"

For example:

ServerName www.myCompany.com
Init fn="load-modules" shlib="/scratch/plugin/mod_wl.so"/"

3. Edit the obj.conf file to add the following section for every new partition:

<Object name="weblogic" ppath="*">
Service ChunkedRequestBufferSize="0" fn="wl-proxy"
WebLogicCluster="comma_separated_list_of_WebLogic_clusters"
PathPrepend="optional_uri_of_the_partition" SecureProxy="OFF"
WLIOTimeoutSecs="10"
</Object>

For example:

<Object name="weblogic" ppath="*">
Service ChunkedRequestBufferSize="0" fn="wl-proxy"
WebLogicCluster="wls1:7001,wls2:7001,wls3:7001" PathPrepend="/partition1"
SecureProxy="OFF" WLIOTimeoutSecs="10"
</Object>

4. After making the configuration change, you must restart the iPlanet Server.

7.4.1.3 IIS Server Configuration Changes
The following is a sample configuration that must be added to the Microsoft IIS plug-in
configuration file for each new partition being added.

1. Install the plug-in for Microsoft IIS Server. See Installing and Configuring the Plug-
In for Microsoft Internet Information Server.

2. Open IIS Manager and create a new Web Site.

Set Host name. For example, set it to www.myCompany.com.

3. Add the plug-in to the IIS server.

Click Handler Mappings in IIS Manager to set the mappings to the handler for a
particular MIME type.

4. Create a plug-in configuration file:

Create a file named iisproxy.ini with the following content and place it in the
directory with the plug-in. Create similar content in the file for every new partition:

Chapter 7
Working with Partitions

7-9

WebLogicCluster=comma_separated_list_of_WebLogic_clusters
Debug=ALL
WLLogFile=path to the wlproxy.log file
PathPrepend=optional_uri_of_the_partition
SecureProxy=OFF
WLIOTimeoutSecs=10

For example:

WebLogicCluster=wls1:7001,wls2:7001,wls3:7001
Debug=ALL
WLLogFile=C:/pp_iis_home/myCompany/logs/iis7.0_wlproxy.log
PathPrepend=/partition1
SecureProxy=OFF
WLIOTimeoutSecs=10

5. After making the configuration change, you must restart the Microsoft IIS Server.

7.4.2 Modifying a Partition and Partition Migration
Partition migration is an Oracle WebLogic Server MT feature. You cannot migrate
partitions on the Oracle WebLogic Server Proxy Plug-In side. Once the partition is
migrated, the Oracle WebLogic Server Proxy Plug-In configuration must be updated
manually to use the new partition information.

For more information about partition migration, see Exporting and Importing Partitions
in Oracle Fusion Middleware Using WebLogic Server MT.

If you make any changes in the partition on the Oracle WebLogic Server side, you
must make corresponding changes in the plug-in configuration. On the Oracle
WebLogic Server side you can typically change the VirtualHost parameters (host and
port) and the optional URI. In this case, you must edit the ServerName and
PathPrepend parameters in the plug-in configuration.

If you add, delete, or migrate managed servers on the Oracle WebLogic Server side,
you must also make corresponding changes in the plug-in configuration.

For example, assume you have the following Oracle HTTP Server (or Apache) plug-in
configuration:

<VirtualHost *:8080>
<IfModule mod_weblogic.c>
ServerName server1
WebLogicCluster wls1:7001,wls2:7001,wls3:7001
SetHandler weblogic-handler
</IfModule>
</VirtualHost>

If you add managed server wls4 to the partition, Then add wls4 to the WebLogicCluster
parameter:

<VirtualHost *:8080>
<IfModule mod_weblogic.c>
ServerName server1
WebLogicCluster wls1:7001,wls2:7001,wls3:7001,wls4:7001
SetHandler weblogic-handler
</IfModule>
</VirtualHost>

Chapter 7
Working with Partitions

7-10

If you delete managed server wls1 from the partition, Then delete wls1 from the
WebLogicCluster parameter:

<VirtualHost *:8080>
<IfModule mod_weblogic.c>
ServerName server1
WebLogicCluster wls2:7001,wls3:7001,wls4:7001
SetHandler weblogic-handler
</IfModule>
</VirtualHost>

If you migrate managed server wls2 to wls5 then remove wls2 and add wls5 to the
WebLogicCluster parameter:

<VirtualHost *:8080>
<IfModule mod_weblogic.c>
ServerName server1
WebLogicCluster wls3:7001,wls4:7001,wls5:7001
SetHandler weblogic-handler
</IfModule>

For information about modifying a partition of the Oracle WebLogic Server side, see
Configuring Domain Partitions, Configuring Virtual Targets, and Exporting and
Importing Partitions in Oracle Fusion Middleware Using WebLogic Server MT.

7.4.3 Configuring SSL Between the Web Server and Oracle WebLogic
Server

You configure SSL on Oracle WebLogic Server MT in the same way as with Oracle
WebLogic Server, however, the partitions that are targeted to the same host name
should have same certificate.

7.4.4 Dynamic Discovery of Cluster Changes
The dynamic discovery of cluster changes is a feature of both Oracle WebLogic Server
Proxy Plug-In and Oracle WebLogic Server. It is not affected by Multitenancy. This
feature can be controlled by the DynamicServerList parameter. See DynamicServerList.

Chapter 7
Working with Partitions

7-11

8
Parameters for Web Server Plug-Ins

This chapter describes the parameters that you can use to configure the Oracle HTTP
Server, Apache HTTP Server, Microsoft IIS, and Oracle iPlanet Web Server plug-ins. It
contains the following sections:

• General Parameters for Web Server Plug-Ins

• SSL Parameters for Web Server Plug-Ins

• Location of POST Data Files

Note:

The parameters for the web-server plug-ins should be specified in special
configuration files, which are named and formatted uniquely for each web
server. For information about the configuration files specific to the plug-ins for
Apache HTTP Server, Oracle HTTP Server, Microsoft IIS, and Oracle iPlanet
Web Server, see the following chapters:

• Configuring the Plug-In for Oracle HTTP Server

• Configuring the Plug-In for Apache HTTP Server

• Configuring the Plug-In for iPlanet Web Server

• Configuring the Plug-In for Microsoft IIS Web Server

8.1 General Parameters for Web Server Plug-Ins
The general parameters for Web server plug-ins are described in the following
sections. The parameter names are case sensitive.

• ConnectRetrySecs

• ConnectTimeoutSecs

• Debug

• DebugConfigInfo

• DefaultFileName

• DynamicServerList

• ErrorPage

• FileCaching

• Idempotent

• KeepAliveEnabled

• KeepAliveSecs

8-1

• MatchExpression

• MaxPostSize

• MaxSkipTime

• PathPrepend

• PathTrim

• QueryFromRequest

• WebLogicCluster

• WebLogicHost

• WebLogicPort

• WLCookieName

• WLDNSRefreshInterval

• WLExcludePathOrMimeType

• WLFlushChunks

• WLForwardUriUnparsed

• WLIOTimeoutSecs

• WLLocalIP

• WLLogFile

• WLMaxWebSocketClients

• WLProxyPassThrough

• WLProxySSL

• WLProxySSLPassThrough

• WLRetryOnTimeout

• WLRetryAfterDroppedConnection

• WLSendHdrSeparately

• WLServerInitiatedFailover

• WLSocketTimeoutSecs

• WLSRequest

• WLTempDir

8.1.1 ConnectRetrySecs
Default: 2

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Interval in seconds that the plug-in should sleep between attempts to connect to the
WebLogic Server host (or all of the servers in a cluster). Make this number less than
the ConnectTimeoutSecs. The number of times the plug-in tries to connect before
returning an HTTP 503/Service Unavailable response to the client is calculated by
dividing ConnectTimeoutSecs by ConnectRetrySecs.

Chapter 8
General Parameters for Web Server Plug-Ins

8-2

To specify no retries, set ConnectRetrySecs equal to ConnectTimeoutSecs. However, the
plug-in attempts to connect at least twice.

You can customize the error response by using the ErrorPage parameter.

8.1.2 ConnectTimeoutSecs
Default: 10

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Maximum time in seconds that the plug-in should attempt to connect to the WebLogic
Server host. Make the value greater than ConnectRetrySecs. If ConnectTimeoutSecs
expires without a successful connection, even after the appropriate retries (see
ConnectRetrySecs), an HTTP 503/Service Unavailable response is sent to the client.

You can customize the error response by using the ErrorPage parameter.

8.1.3 Debug
Default: OFF

Applies to: Microsoft IIS

Sets the type of logging performed for debugging operations. The debugging
information is written to c:\TEMP\wlproxy.log on Windows NT/2000 systems.

Override this location and filename by setting the WLLogFile parameter to a different
directory and file. (See the WLTempDir parameter for an additional way to change this
location.)

Ensure that the directory of the log file has write permission. Set any of the following
logging options (HFC,HTW,HFW, and HTC options may be set in combination by
entering them separated by commas, for example "HFC,HTW"):

• ON: The plug-in logs informational and error messages.

• OFF: No debugging information is logged.

• HFC: The plug-in logs headers from the client, informational, and error messages.

• HTW: The plug-in logs headers sent to WebLogic Server, and informational and
error messages.

• HFW: The plug-in logs headers sent from WebLogic Server, and informational and
error messages.

• HTC: The plug-in logs headers sent to the client, informational messages, and error
messages.

• ERR: Prints only the Error messages in the plug-in.

• ALL: The plug-in logs headers sent to and from the client, headers sent to and from
WebLogic Server, information messages, and error messages.

For information on setting logging without using the deprecated parameter, see
Deprecated Directives for Apache HTTP Server.

Chapter 8
General Parameters for Web Server Plug-Ins

8-3

8.1.4 DebugConfigInfo
Default: OFF

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Enables the special query parameter "__WebLogicBridgeConfig". Use it to get details
about configuration parameters from the plug-in.

For example, if you enable "__WebLogicBridgeConfig" by setting DebugConfigInfo and
then send a request that includes the query string ?__WebLogicBridgeConfig, then the
plug-in gathers the configuration information and run-time statistics and returns the
information to the browser. The plug-in does not connect to WebLogic Server in this
case.

This parameter is strictly for debugging and the format of the output message can
change with releases. For security purposes, keep this parameter turned OFF in
production systems.

8.1.5 DefaultFileName
Default: none

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

If the URI is "/" then the plug-in performs the following steps:

1. Trims the path specified with the PathTrim parameter.

2. Appends the value of DefaultFileName.

3. Prepends the value specified with PathPrepend.

This procedure prevents redirects from WebLogic Server.

Set the DefaultFileName to the default welcome page of the Web Application in
WebLogic Server to which requests are being proxied. For example, If the
DefaultFileName is set to welcome.html, an HTTP request like "http://somehost/
weblogic" becomes "http://somehost/weblogic/welcome.html". For this parameter to
function, the same file must be specified as a welcome file in all the Web Applications
to which requests are directed. See Configuring Welcome Pages.

Note for Apache users: If you are using Stronghold or Raven versions, define this
parameter inside of a Location block, and not in an IfModule block.

8.1.6 DynamicServerList
Default: ON

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

When set to OFF, the plug-in ignores the dynamic cluster list used for load balancing
requests proxied from the plug-in and only uses the static list specified with the
WebLogicCluster parameter. Normally this parameter should remain set to ON.

Chapter 8
General Parameters for Web Server Plug-Ins

8-4

There are some implications for setting this parameter to OFF:

• If one or more servers in the static list fails, the plug-in could waste time trying to
connect to a terminated server, resulting in decreased performance.

• If you add a new server to the cluster, the plug-in cannot proxy requests to the
new server unless you redefine this parameter. WebLogic Server automatically
adds new servers to the dynamic server list when they become part of the cluster.

8.1.7 ErrorPage
Default: none

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

You can create your own error page that is displayed when your Web server cannot
forward requests to WebLogic Server.

The plug-in redirects to an error page when the back-end server returns an HTTP 503/
Service Unavailable response and there are no servers for failover.

8.1.8 FileCaching
Default: ON

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

When set to ON, and the size of the POST data in a request is greater than 2048 bytes,
the POST data is first read into a temporary file on disk and then forwarded to the
WebLogic Server in chunks of 8192 bytes. This preserves the POST data during
failover, allowing all necessary data to be repeated to the secondary if the primary
goes down.

When FileCaching is ON, any client that tracks the progress of the POST will see that
the transfer has completed even though the data is still being transferred between the
WebServer and WebLogic. So, if you want the progress bar displayed by a browser
during the upload to reflect when the data is actually available on the WebLogic
Server, you might not want to have FileCaching ON.

When set to OFF and the size of the POST data in a request is greater than 2048 bytes,
the reading of the POST data is postponed until a WebLogic Server cluster member is
identified to serve the request. Then the plug-in reads and immediately sends the
POST data to the WebLogic Server in chunks of 8192 bytes.

Turning FileCaching OFF limits failover. If the WebLogic Server primary server goes
down while processing the request, the POST data already sent to the primary cannot
be repeated to the secondary.

Finally, regardless of how FileCaching is set, if the size of the POST data is 2048 bytes
or less the plug-in will read the data into memory and use it if needed during failover to
repeat to the secondary.

8.1.9 Idempotent
Default: ON

Chapter 8
General Parameters for Web Server Plug-Ins

8-5

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

When set to ON and if the servers do not respond within WLIOTimeoutSecs, the plug-
ins fail over if the method is Idempotent.

The plug-ins also fail over if Idempotent is set to ON and the servers respond with an
error such as READ_ERROR_FROM_SERVER.

If Idempotent is set to OFF, the plug-ins do not fail over. If you are using the Apache
HTTP Server, you can set this parameter differently for different URLs or MIME types.

Idempotent only takes effect if the request is successfully sent to the WebLogic Server
and the plug-in is now waiting for a response from the back end server.

POST requests are not retried even if marked as Idempotent.

8.1.10 KeepAliveEnabled
Default: true (Microsoft IIS plug-in), ON (Oracle HTTP Server and Apache HTTP
Server), ON (Oracle iPlanet Web Server)

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Enables pooling of connections between the plug-in and WebLogic Server.

• Valid values for the Microsoft IIS plug-ins are true and false.

• Valid values for the Apache HTTP Server are ON and OFF.

While using Apache prefork mpm, Apache web server might fail. Set
KeepAliveEnabled to OFF when using prefork mpm or use worker mpm in Apache.

• Valid values for Oracle iPlanet Webserver are ON and OFF

8.1.11 KeepAliveSecs
Default: 20

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

The length of time after which an inactive connection between the plug-in and
WebLogic Server is closed. You must set KeepAliveEnabled to true (ON when using the
Apache HTTP Server) for this parameter to be effective.

The value of this parameter must be less than or equal to the value of the Duration
field set in the Administration Console on the Server/HTTP tab, or the value set on the
server Mbean with the KeepAliveSecs attribute.

8.1.12 MatchExpression
Default: none

Applies to: Oracle HTTP Server, Apache HTTP Server

Use this parameter to modify the values of existing parameters or add a new
parameter for a particular configuration.

Chapter 8
General Parameters for Web Server Plug-Ins

8-6

The MatchExpression parameter supports only the * and ? regular expressions

• * which matches 0 or more characters

• ? which matches exactly one character

This parameter can be configured for two scenarios.

Proxying by MIME type:

You can use this parameter in the following format to set other parameters for a
particular MIME type.

Syntax:

MatchExpression <file_extension> <param=value>|<param-value>|…

For example, the following configuration proxies *.jsp to myHost:8080:

<IfModule weblogic_module>
MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=8080
</IfModule>

Proxying by path:

You can also use this parameter in the following format to set other parameters for a
particular path.

Syntax:

MatchExpression <path> <param=value>|<param-value>|…

For example, the following configuration proxies the URIs beginning with /weblogic to
myHost:9090:

<IfModule weblogic_module>
MatchExpression /weblogic WebLogicHost=myHost|WebLogicPort=9090
</IfModule>

You can also use MatchExpression to override the parameter values, as shown above.
It can also be used to define new parameters (this is, those that have not been used in
the configuration).

For example, the configuration below proxies all the requests to myHost:8080. The
URIs that match the type jpg will be proxied to myHost:8080/images and others will be
proxied to myHost:8080.

<IfModule weblogic_module>
SetHandler weblogic-handler
WebLogicHost myHost
WebLogicPort 8080
MatchExpression *.jpg PathPrepend=/images
</IfModule>

You can find more examples of how to use MatchExpression in Configuring the Plug-
In for Apache HTTP Server.

8.1.13 MaxPostSize
Default: 0

Chapter 8
General Parameters for Web Server Plug-Ins

8-7

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Maximum allowable size of POST data, in bytes. If the content-length exceeds
MaxPostSize, the plug-in returns an error message. If set to 0, the size of POST data is
not checked. This is useful for preventing denial-of-service attacks that attempt to
overload the server with POST data.

8.1.14 MaxSkipTime
Default: 10

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

If a WebLogic Server listed in either the WebLogicCluster parameter or a dynamic
cluster list returned from WebLogic Server fails, the failed server is marked as "bad"
and the plug-in attempts to connect to the next server in the list.

MaxSkipTime sets the amount of time after which the plug-in will retry the server marked
as "bad." The plug-in attempts to connect to a new server in the list each time a unique
request is received (that is, a request without a cookie).

8.1.15 PathPrepend
Default: null

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

As per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

PathPrepend specifies the path that the plug-in prepends to the {PATH} portion of the
original URL, after PathTrim is trimmed and before the request is forwarded to
WebLogic Server.

If you must append a File Name, use DefaultFileName parameter instead of
PathPrepend.

8.1.16 PathTrim
Default: null

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

As per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_STRING}...

PathTrim specifies the string trimmed by the plug-in from the {PATH}/{FILENAME} portion
of the original URL, before the request is forwarded to WebLogic Server. For example,
if this URL:

http://myWeb.server.com/weblogic/foo

Chapter 8
General Parameters for Web Server Plug-Ins

8-8

is passed to the plug-in for parsing and if PathTrim has been set to strip off /weblogic
before handing the URL to WebLogic Server, the URL forwarded to WebLogic Server
is:

http://myWeb.server.com:7001/foo

If you are newly converting an existing third-party server to proxy requests to
WebLogic Server using the plug-in, you will need to change application paths to /foo
to include weblogic/foo. You can use PathTrim and PathPrepend in combination to
change this path.

8.1.17 QueryFromRequest
Default: OFF

Applies to: Oracle HTTP Server, Apache HTTP Server

When set to ON, specifies that the Apache HTTP Server use

(request_rec *)r->the_request

to pass the query string to WebLogic Server. (For more information, see the Apache
documentation.) This behavior is desirable when a Netscape version 4.x browser
makes requests that contain spaces in the query string

When set to OFF, the Apache HTTP Server uses (request_rec *)r->args to pass the
query string to WebLogic Server.

8.1.18 WebLogicCluster
Required when proxying to a cluster of WebLogic Servers, or to multiple non-clustered
servers.

Default: none

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

The WebLogicCluster parameter is required to proxy a list of back-end servers that are
clustered, or to perform load balancing among non-clustered managed server
instances.

List of WebLogic Servers that can be used for load balancing. The server or cluster list
is a list of host:port entries. If a mixed set of clusters and single servers is specified,
the dynamic list returned for this parameter will return only the clustered servers.

The syntax for specifying the value of this parameter varies depending on the web
server for which you are configuring the plug-in. See the following topics:

• Configuring the Plug-In for Oracle HTTP Server

• Configuring the Plug-In for Apache HTTP Server

• Configuring the Plug-In for iPlanet Web Server

• Configuring the Plug-In for Microsoft IIS Web Server

If you are using SSL between the plug-in and WebLogic Server, set the port number to
the SSL listen port and set the SecureProxy parameter to ON.

Chapter 8
General Parameters for Web Server Plug-Ins

8-9

The plug-in does a simple round-robin between all available servers. The server list
specified in this property is a starting point for the dynamic server list that the server
and plug-in maintain. WebLogic Server and the plug-in work together to update the
server list automatically with new, failed, and recovered cluster members.

You can disable the use of the dynamic cluster list by setting the DynamicServerList
parameter to OFF.

The plug-in directs HTTP requests containing a cookie, URL-encoded session, or a
session stored in the POST data to the server in the cluster that created the cookie.

8.1.19 WebLogicHost
Required when proxying to a single WebLogic Server.

Default: none

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

WebLogic Server host (or virtual host name as defined in WebLogic Server) to which
HTTP requests should be forwarded. If you are using a WebLogic cluster, use the
WebLogicCluster parameter instead of WebLogicHost.

8.1.20 WebLogicPort
Required when proxying to a single WebLogic Server.

Default: none

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Port at which the WebLogic Server host is listening for connection requests from the
plug-in (or from other servers). (If you are using SSL between the plug-in and
WebLogic Server, set this parameter to the SSL listen port and set the SecureProxy
parameter to ON).

If you are using a WebLogic Cluster, use the WebLogicCluster parameter instead of
WebLogicPort.

8.1.21 WLCookieName
Default: JSESSIONID

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

If you change the name of the WebLogic Server session cookie in the WebLogic
Server Web application, then you must change the WLCookieName parameter in the plug-
in to the same value. The name of the WebLogic session cookie is set in the
WebLogic-specific deployment descriptor, in the <session-descriptor> element in
weblogic.xml.

8.1.22 WLDNSRefreshInterval
Default: 0 (Lookup once, during startup)

Chapter 8
General Parameters for Web Server Plug-Ins

8-10

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server

If defined in the proxy configuration, specifies number of seconds interval at which
WebLogic Server refreshes DNS name to IP mapping for a server. This can be used if
a WebLogic Server instance is migrated to a different IP address, but the DNS name
for that server's IP remains the same. In this case, at the specified refresh interval the
DNS<->IP mapping will be updated.

8.1.23 WLExcludePathOrMimeType
Default: none

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

This parameter allows you to exclude certain requests from proxying.

This parameter can be defined locally at the Location tag level and globally. When the
property is defined locally, it does not override the global property but defines a union
of the two parameters.

8.1.24 WLFlushChunks
Default: False

Applies to: Microsoft IIS

By default, IIS plug-in buffers chunked transfer encoding responses instead of
streaming the chunks as they are received. When the flag WLFlushChunks is set to true,
the plug-in flushes chunks immediately as they are received from WebLogic Server.

8.1.25 WLForwardUriUnparsed
Default: OFF

Applies to: Oracle HTTP Server, Apache HTTP Server

When set to ON, the WLS plug-in will forward the original URI from the client to
WebLogic Server. When set to OFF (default), the URI sent to WebLogic Server is
subject to modification by mod_rewrite or other web server plug-in modules.

8.1.26 WLIOTimeoutSecs
New name for HungServerRecoverSecs.

Default: 300

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Defines the amount of time the plug-in waits for a response to a request from
WebLogic Server. The plug-in waits for WLIOTimeoutSecs for the server to respond and
then declares that server dead, and fails over to the next server. The value should be
set to a very large value. If the value is less than the time the servlets take to process,
then you may see unexpected results.

Minimum value: 10

Chapter 8
General Parameters for Web Server Plug-Ins

8-11

Maximum value: Unlimited

8.1.27 WLLocalIP
Default: none

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Defines the IP address (on the plug-in's system) to bind to when the plug-in connects
to a WebLogic Server instance running on a multihomed machine.

If WLLocalIP is not set, then the TCP/IP stack will choose the source IP address.

8.1.28 WLLogFile
Default: See the Debug parameter

Applies to: Microsoft IIS

Specifies path and file name for the log file that is generated when the Debug parameter
is set to ON. You must create this directory before setting this parameter.

For information on setting logging without using the deprecated parameter, see
Deprecated Directives for Apache HTTP Server.

8.1.29 WLMaxWebSocketClients
Default: Windows: Half of ThreadsPerChild, Non-Windows: Half of
MaxRequestWorkers (or MaxClients for Apache 2.2)

Applies to: Oracle HTTP Server, Apache HTTP Server

Limits the number of active WebSocket connections at any instant of time.

Note:

The maximum value you can set for this parameter is 75 percent of
ThreadsPerChild (Windows) or 75 percent of MaxRequestWorkers (or MaxClients
for Apache 2.2, non-Windows). If the value specified for this parameter is
greater than the maximum allowed, it will be automatically lowered to that
maximum.

8.1.30 WLProxyPassThrough
Default: OFF

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

If you have a chained proxy setup, where a proxy plug-in or HttpClusterServlet is
running behind some other proxy or load balancer, you must explicitly enable the
WLProxyPassThrough parameter. This parameter allows the header to be passed through
the chain of proxies.

Chapter 8
General Parameters for Web Server Plug-Ins

8-12

8.1.31 WLProxySSL
Default: OFF

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Set this parameter to ON to maintain SSL communication between the plug-in and
WebLogic Server when the following conditions exist:

• An HTTP client request specifies the HTTPS protocol

• The request is passed through one or more proxy servers (including the Oracle
WebLogic Server Proxy Plug-In)

• The connection between the plug-in and WebLogic Server uses the HTTP protocol

When WLProxySSL is set to ON, the location header returned to the client from WebLogic
Server specifies the HTTPS protocol.

8.1.32 WLProxySSLPassThrough
Default: OFF

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

If a load balancer or other software deployed in front of the web server and plug-in is
the SSL termination point, and that product sets the WL-Proxy-SSL request header to
true or false based on whether the client connected to it over SSL, set
WLProxySSLPassThrough to ON so that the use of SSL is passed on to the Oracle
WebLogic Server.

If the SSL termination point is in the web server where the plug-in operates, or the load
balancer does not set WL-Proxy-SSL, set WLProxySSLPassThrough to OFF (default).

8.1.33 WLRetryOnTimeout
Default: None

Applies to: Oracle HTTP Server, Apache HTTP Server

Tells the WebLogic plug-in whether to retry requests (including POST requests) when
a time-out occurs before the WebLogic server sends the status line. Valid arguments
are:

• ALL: All requests are retried.

• IDEMPOTENT: Only requests that use idempotent methods are retried.

• NONE: No requests are retried.

8.1.34 WLRetryAfterDroppedConnection
Default: ALL

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Chapter 8
General Parameters for Web Server Plug-Ins

8-13

Tells the Apache plug-in which requests to retry when a connection is lost before WLS
sends the status line. Valid arguments are:

• ALL: All requests will be retried.

• IDEMPOTENT: Only requests using idempotent methods will be retried.

• NONE: No requests will be retried.

8.1.35 WLSendHdrSeparately
Default: ON

Applies to: Microsoft IIS

When this parameter is set to ON, the header and body of the response are sent in
separate packets.

Note:

If you must send the header and body of the response in two calls, for example,
in cases where you have other ISAPI filters or programmatic clients that expect
headers before the body, set this parameter to ON.

8.1.36 WLServerInitiatedFailover
Default: ON

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

This controls whether a 503 error response from Oracle WebLogic Server triggers a
failover to another server. Normally, the plug-in will attempt to failover to another
server when a 503 error response is received. When WLServerInitiatedFailover is set
to OFF, the 503 error response will be returned to the client immediately.

8.1.37 WLSocketTimeoutSecs
Default: 2 (must be greater than 0)

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Set the timeout for the socket while connecting, in seconds. See ConnectTimeoutSecs
and ConnectRetrySecs for additional details.

8.1.38 WLSRequest
Default: OFF

Applies to: Oracle HTTP Server, Apache HTTP Server

This is an alternative to the WLSRequest On mechanism of identifying requests to be
forwarded to Oracle WebLogic Server. For example,

Chapter 8
General Parameters for Web Server Plug-Ins

8-14

<Location /weblogic>
 WLSRequest ON
 PathTrim /weblogic
</Location>

The use of WLSRequest ON instead of SetHandler weblogic-handler has the following
advantages:

• Lower web server processing overhead in general

• Resolves substantial performance degradation when the web server DocumentRoot
is on a slow filesystem

• Resolves 403 errors for URIs which cannot be mapped to the filesystem due to the
filesystem length restrictions

8.1.39 WLTempDir
Default: See the Debug parameter

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

For Oracle HTTP Server, Apache HTTP Server and Oracle iPlanet HTTP Server, this
directive specifies the location of the _wl_proxy directory for POST data files.

For Microsoft IIS, this directive specifies the directory where a wlproxy.log will be
created. If the location fails, the Plug-In resorts to creating the log file under C:/temp. It
also specifies the location of the _wl_proxy directory for POST data files. When both
WLTempDir and WLLogFile are set, WLLogFile will override the location of wlproxy.log.
WLTempDir will still determine the location of _wl_proxy directory.

8.2 SSL Parameters for Web Server Plug-Ins

Note:

SCG Certificates are not supported for use with Oracle WebLogic Server Proxy
Plug-In. Non-SCG certificates work appropriately and allow SSL
communication between WebLogic Server and the plug-in.

KeyStore-related initialization parameters are not supported for use with Oracle
WebLogic Server Proxy Plug-In.

The SSL parameters for Web Server plug-ins are described in the following sections.
Parameters are case sensitive.

• SecureProxy

• WebLogicSSLVersion

• WLSSLWallet

8.2.1 SecureProxy
Default: OFF

Chapter 8
SSL Parameters for Web Server Plug-Ins

8-15

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

Set this parameter to ON to enable the use of the SSL protocol for all communication
between the plug-in and WebLogic Server. Remember to configure a port on the
corresponding WebLogic Server for the SSL protocol before defining this parameter.

This parameter may be set at two levels: in the configuration for the main server and—
if you have defined any virtual hosts—in the configuration for the virtual host. The
configuration for the virtual host inherits the SSL configuration from the configuration of
the main server if the setting is not overridden in the configuration for the virtual host.

8.2.2 WebLogicSSLVersion
Default: The best protocol supported by both the plug-in and WebLogic Server.

Applies to: Oracle HTTP Server, Apache HTTP Server

Specifies the SSL protocol version to use for communication between the plug-in and
the WebLogic Server. This setting does not need to match that of the web server's
ssl.conf file. Plug-in can have its own SSL version to communicate with WebLogic
Server.

The following values are accepted:

• TLSv1: Uses TLS v1.0

• TLSv1_1: Uses TLS v1.1

• TLSv1_2: Uses TLS v1.2

For example:

WebLogicSSLVersion TLSv1_1 TLSv1_2

You can define multiple protocols by using a space-separated list. The SSL protocol
version chosen is used for all the connections from the plug-in to WebLogic Server.
Hence define this parameter at the global scope.

If not configured, the plug-in uses the best protocol supported by both the plug-in and
WebLogic Server.

8.2.3 WLSSLWallet
Default: none

Applies to: Oracle HTTP Server, Oracle iPlanet Web Server, Apache HTTP Server,
Microsoft IIS

WLSSLWallet performs one-way or two-way SSL based on how SSL is configured for
Oracle WebLogic Server.

Requires the path of an Oracle Wallet (containing an SSO wallet file) as an argument.
For example:

WLSSLWallet "${ORACLE_INSTANCE}/config/fmwconfig/components/${COMPONENT_TYPE}/

instances/${COMPONENT_NAME}/keystores/default"

Chapter 8
SSL Parameters for Web Server Plug-Ins

8-16

8.3 Location of POST Data Files
When the FileCaching parameter is set to ON, and the size of the POST data in a
request is greater than 2048 bytes, the POST data is first read into a temporary file on
disk and then forwarded to the WebLogic Server in chunks of 8192 bytes. This
preserves the POST data during failover.

The temporary POST file is located under /tmp/_wl_proxy for UNIX. For Windows it is
located as follows (if WLTempDir is not specified):

1. Environment variable TMP

2. Environment variable TEMP

3. C:\Temp

/tmp/_wl_proxy is a fixed directory and is owned by the HTTP Server user. When there
are multiple HTTP Servers installed by different users, some HTTP Servers might not
be able to write to this directory. This condition results in an error.

To correct this condition, use the WLTempDir parameter to specify a different location for
the _wl_proxy directory for POST data files.

Chapter 8
Location of POST Data Files

8-17

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Overview of Oracle WebLogic Server Proxy Plug-In
	1.1 What are Oracle WebLogic Server Proxy Plug-Ins?
	1.1.1 Connection Pooling and Keep-Alive
	1.1.2 Proxying Requests

	1.2 Availability of Oracle WebLogic Server Proxy Plug-In
	1.3 Upgrading from 1.0 Plug-Ins
	1.3.1 Upgrade Instructions
	1.3.2 Considerations for Upgrading From Oracle WebLogic Server Proxy Plug-Ins Version 1.0 to 12c (12.2.1.2.0)

	1.4 Features of the Version 12.2.1.2.0 Plug-Ins
	1.4.1 Oracle WebLogic Server Proxy Monitoring
	1.4.2 Support for Multi-tenancy and Partitions
	1.4.3 SSL Support for IPlanet Web Server
	1.4.4 Documentation for Using the Plug-In with Microsoft IIS
	1.4.5 Deprecated Support for Certificates Signed Using the MD5 Algorithm

	1.5 Support and Patching

	2 Configuring the Plug-In for Oracle HTTP Server
	2.1 Oracle HTTP Server Support Note
	2.2 Preparing for Configuring the Oracle WebLogic Server Proxy Plug-In
	2.2.1 Setting the WebLogic Plug-In Enabled Parameter
	2.2.1.1 Understanding the WebLogic Plug-In Enabled Parameter

	2.3 Configuring the Oracle WebLogic Server Proxy Plug-In Using Fusion Middleware Control
	2.3.1 Task 1: Navigate to the mod_wl_ohs Configuration Page
	2.3.2 Task 2: Specify the Configuration Settings
	2.3.3 Task 3: Configure Expression Overrides or Location Overrides (Optional)
	2.3.4 Task 4: Apply Your Changes
	2.3.5 Using the Search Function
	2.3.6 Using the AutoFill Function

	2.4 Configuring the Oracle WebLogic Server Proxy Plug-In Manually
	2.4.1 Examples of <IfModule weblogic_module> Element Configurations

	2.5 Understanding Oracle WebLogic Server Proxy Plug-In Performance Metrics
	2.5.1 Configuring DMS Metrics for Oracle HTTP Server Proxy Plug-in
	2.5.2 Viewing Performance Metrics for Oracle HTTP Server Proxy Plug-in
	2.5.3 DMS State Metrics
	2.5.4 DMS Event Metrics
	2.5.5 DMS PhaseEvent Metrics

	2.6 Deprecated Directives for Oracle HTTP Server
	2.7 Troubleshooting Oracle WebLogic Server Proxy Plug-In Implementations
	2.7.1 WLS Session Issues
	2.7.2 CONNECTION_REFUSED Errors
	2.7.3 NO_RESOURCES Errors
	2.7.4 Changing the Oracle WebLogic Server Keystore Causes Unexpected Behavior

	3 Configuring the Plug-In for Apache HTTP Server
	3.1 Apache HTTP Server Support Note
	3.2 Install the Oracle WebLogic Server Proxy Plug-In for Apache HTTP Server
	3.2.1 Installation Prerequisites
	3.2.2 Installing the Apache HTTP Server Plug-In

	3.3 Configure the Apache HTTP Server Plug-In
	3.3.1 Configuring the httpd.conf File
	3.3.1.1 Task 1: Configure MIME Requests
	3.3.1.1.1 Configuring Proxy Requests by MIME Type
	3.3.1.1.2 Configuring Proxy Requests by Path

	3.3.1.2 Task 2: Define Additional Parameters for Oracle WebLogic Server Proxy Plug-In
	3.3.1.3 Task 3: Enable HTTP Tunneling (Optional)
	3.3.1.4 Task 4: Enable Web Services Atomic Transaction (Optional)
	3.3.1.5 Task 5: Verify and Apply Your Configuration

	3.3.2 Placing WebLogic Properties Inside Location or VirtualHost Blocks
	3.3.3 Example: Configuring the Apache Plug-In
	3.3.4 Including a weblogic.conf File in the httpd.conf File
	3.3.4.1 Rules for Creating weblogic.conf Files
	3.3.4.2 Sample weblogic.conf Configuration Files
	3.3.4.3 Template for the Apache HTTP Server httpd.conf File

	3.4 Understanding DMS Metrics for Apache HTTP Server Plug-in
	3.4.1 Configuring Metrics DMS Metrics for Apache HTTP Server Plug-in
	3.4.2 Viewing Performance Metrics for Apache HTTP Server Plug-in

	3.5 Deprecated Directives for Apache HTTP Server

	4 Configuring the Plug-In for iPlanet Web Server
	4.1 Overview of the Oracle WebLogic Server Proxy Plug-In for iPlanet
	4.2 Installing and Configuring the Plug-In for iPlanet
	4.2.1 Installation Prerequisites
	4.2.2 Installing the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server
	4.2.3 Configuring the Oracle WebLogic Server Proxy Plug-In for iPlanet Web Server
	4.2.3.1 Proxying Requests by URL
	4.2.3.2 Proxying the Request by MIME Type
	4.2.3.3 Testing the Plug-In

	4.2.4 Example: Configuring the iPlanet Plug-in
	4.2.5 Guidelines for Modifying the obj.conf File
	4.2.6 Sample obj.conf File (Not Using a WebLogic Cluster)
	4.2.7 Sample obj.conf File (Using a WebLogic Cluster)

	4.3 Deprecated Directives for iPlanet Web Server

	5 Configuring the Plug-In for Microsoft IIS Web Server
	5.1 Installing and Configuring the Plug-In for Microsoft Internet Information Server
	5.2 Serving Static Files with IIS
	5.3 Serving Static Files and Dynamic Content From the Same Request with IIS
	5.4 Using Wildcard Application Mappings to Proxy by Path
	5.4.1 Adding a Wildcard Script Map for IIS

	5.5 Proxying Requests from Multiple Virtual Web Sites to WebLogic Server
	5.5.1 Sample iisproxy.ini File

	5.6 Creating ACLs Through IIS
	5.7 Testing the Installation

	6 Configuring Security
	6.1 Using SSL with Plug-Ins
	6.1.1 Configuring Libraries for SSL
	6.1.2 Configuring a Plug-In for One-Way SSL
	6.1.3 Configuring Two-Way SSL Between the Plug-In and Oracle WebLogic Server
	6.1.4 Replacing Certificates Signed Using the MD5 Algorithm
	6.1.5 Enabling Support of Certificate Signed with MD5 Algorithm

	6.2 Configuring SSL with the Plug-In for iPlanet Web Server
	6.3 Configuring Perimeter Authentication

	7 Common Configuration Tasks
	7.1 Configuring IPv6 With Plug-Ins
	7.2 Understanding Connection Errors and Clustering Failover
	7.2.1 Possible Causes of Connection Failures
	7.2.2 Tips for Reducing CONNECTION_REFUSED Errors
	7.2.3 Failover with a Single, Non-Clustered WebLogic Server
	7.2.4 The Dynamic Server List
	7.2.5 Failover, Cookies, and HTTP Sessions
	7.2.6 Failover Behavior When Using Firewalls and Load Directors

	7.3 Tuning Oracle HTTP Server and Apache HTTP Server for High Throughput for WebSocket Upgrade Requests
	7.4 Working with Partitions
	7.4.1 Adding a Partition
	7.4.1.1 Apache Server and Oracle HTTP Server Configuration Changes
	7.4.1.1.1 Oracle HTTP Server/Apache Plug-in Examples

	7.4.1.2 iPlanet Server Configuration Changes
	7.4.1.3 IIS Server Configuration Changes

	7.4.2 Modifying a Partition and Partition Migration
	7.4.3 Configuring SSL Between the Web Server and Oracle WebLogic Server
	7.4.4 Dynamic Discovery of Cluster Changes

	8 Parameters for Web Server Plug-Ins
	8.1 General Parameters for Web Server Plug-Ins
	8.1.1 ConnectRetrySecs
	8.1.2 ConnectTimeoutSecs
	8.1.3 Debug
	8.1.4 DebugConfigInfo
	8.1.5 DefaultFileName
	8.1.6 DynamicServerList
	8.1.7 ErrorPage
	8.1.8 FileCaching
	8.1.9 Idempotent
	8.1.10 KeepAliveEnabled
	8.1.11 KeepAliveSecs
	8.1.12 MatchExpression
	8.1.13 MaxPostSize
	8.1.14 MaxSkipTime
	8.1.15 PathPrepend
	8.1.16 PathTrim
	8.1.17 QueryFromRequest
	8.1.18 WebLogicCluster
	8.1.19 WebLogicHost
	8.1.20 WebLogicPort
	8.1.21 WLCookieName
	8.1.22 WLDNSRefreshInterval
	8.1.23 WLExcludePathOrMimeType
	8.1.24 WLFlushChunks
	8.1.25 WLForwardUriUnparsed
	8.1.26 WLIOTimeoutSecs
	8.1.27 WLLocalIP
	8.1.28 WLLogFile
	8.1.29 WLMaxWebSocketClients
	8.1.30 WLProxyPassThrough
	8.1.31 WLProxySSL
	8.1.32 WLProxySSLPassThrough
	8.1.33 WLRetryOnTimeout
	8.1.34 WLRetryAfterDroppedConnection
	8.1.35 WLSendHdrSeparately
	8.1.36 WLServerInitiatedFailover
	8.1.37 WLSocketTimeoutSecs
	8.1.38 WLSRequest
	8.1.39 WLTempDir

	8.2 SSL Parameters for Web Server Plug-Ins
	8.2.1 SecureProxy
	8.2.2 WebLogicSSLVersion
	8.2.3 WLSSLWallet

	8.3 Location of POST Data Files

