ORACLE"

Oracle® Fusion Middleware

REST API for Managing Credentials and Keystores with Oracle
Web Services Manager

Release 12¢12.2.1.2

E78152-01

October 2016

Documentation that describes how to use the Oracle Web
Services Manager REST API for credential store, keystore, and
trust store management.

Oracle Fusion Middleware REST API for Managing Credentials and Keystores with Oracle Web Services
Manager, Release 12¢ 12.2.1.2

E78152-01

Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved.
Primary Author: Oracle Corporation

Contributing Authors: Sudhira Subudhi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software” pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIAICE ... e v
Documentation AcCeSSIDIlitycouoviiueiiiiiiciec s v
COMVEINEIONS ...ttt ettt ettt ettt et e bbb bt s bbb et et et et et e st em e et eb e e bt e bt sbeebe b e sb e st et e s ententenee v

What's NEW IN THIS GUILE ...ttt vii
New and Changed Features for Release 12¢ (12.2.1.1) ..o Vi

Part | Getting Started with the REST API

1 About the REST API

1.1 Introduction to REST API.......ccccoviiiiiiiiiiiiiiiiiii s 11
1.2 URL Structure for Security StOTeSoovririiiiiiiieicie 1-1
1.3 Create and Manage Oracle WSM Instances Using REST............ccooooiiiiiiiiiicc 1-2
1.4 Authenticating REST RESOUICES ..o s 1-2
1.5 HTTP Status Codes for HTTP Methodscccccovininnininiiinininininiininnicninrccincnseeeeens 1-2

2 Use Cases for the REST API

2.1 Managing the Credential Store Framework Using the REST API.........c.cccccoovininiiiinicnnnen. 2-1
2.2 Managing JKS Keystores Using the REST APIL............cccoooiiiii, 2-3
2.3 Managing KSS Keystores Using the REST APL..........cccoooiii, 2-5
2.4 Managing Token Issuer Trust Using the REST APccccocoviiiiiinniiicccereeeeeeene 2-8

Part I REST API Reference

3 Manage Credentials in the Credential Store

3.1 View and Manage the Credential Store Using REST Resources..........cccccoururueieiiiinienninnnen. 3-1
3.2 POST Credential Method.........cccoviiiiiiiiiiiiiiiiiic s 3-1
3.3 GET Credential Method..........ccoooiuiiiiiiiiic s 3-3
3.4 PUT Credential Method.........ccccoviiiiiiiiiiiiiiiiiiiiii s 3-4
3.5 DELETE Credential Method ..o 3-5

4 Manage Java Keystore Keystores

5

41 View and Manage JKS keystores within a Domain Using REST Resources.............ccco......... 4-1
4.2 GET All Aliases Trusted Certificate JKS Keystore Methodcccooriiiiniiii, 4-2
4.3 POST Specified Alias Trusted Certificate JKS Keystore Method............ccoeeiiiiniiniiiinnnace. 4-2
4.4 POST PKCS#7 Trusted Certificate JKS Keystore Method...........ccovoiiiiiiiiiiniiiiiae, 4-4
4.5 GET Specified Alias Trusted Certificate JKS Keystore Method............cccoooeieiiiiiiniiinnnn, 4-6
4.6 DELETE Trusted Certificate JKS Keystore Method.............coooiiiii, 4-8

View and Manage Keystore Service Keystores

5.1 View and Manage KSS keystores Using REST ReSOUICes...........cccooomrueieiinicieiniiciciecie, 5-1
5.2 POST New KSS Keystore Method...........ccccviiiiiiiiiniiiiiiiicnnns 5-2
5.3 POST Import KSS Keystore Methodccccooeiiiiiiiniiiiiiiiiiieecereeeeeeeeeeas 5-3
54 PUT Password Update KSS Keystore Methodcocriiniiiiiiiiinicceecce 5-5
5.5 POST Trusted Certificate KSS Keystore Method ..o, 5-6
5.6 GET Stripe KSS Keystores Method ... 5-8
5.7 GET Alias KSS Keystore Methodccccccueuriviiiriiinniiiiicreecerreeeeeeeeeeeeees e 5-9
5.8 GET Trusted Certificate KSS Keystore Methodccccceviviiiiiiiniiiiiniccccccccece 5-10
5.9 DELETE Trusted Certificate KSS Keystore Methodcccccccvviniinnnniiiiiiin 5-12
510 POST Secret Key KSS Keystore..........couiiuiiiiiiiiiciicci i 5-13
511 GET Secret Key Properties KSS Keystore Method............cooouiiiiiii, 5-14
512 DELETE Keystore Service KSS Keystore Method............ccccoveuiiriiiiinrcierreeceeees 5-15

Manage Token Issuer Trust Configurations

6.1 View and Manage Token Issuer Trust Configurations Using REST Resources..................... 6-1
6.2 POST TrustDocument Name Methodccccciiiiniiiiiiiiniiiiicccces 6-2
6.3 POST Domain Trusted Issuers and Distinguished Name Lists Methodc.ccccccccc... 6-3
6.4 POST Document Trusted Issuers and Distinguished Name Lists Methodcc.c............ 6-5
6.5 GET All Trusted Issuer and Distinguished Name Lists Methodc.ccccooiiiiini. 6-8
6.6 GET Specified Document Trusted Issuer and Distinguished Name Lists Method 6-9
6.7 POST Token Attribute Rule Distinguished Name Method (Domain Context)..................... 6-11
6.8 POST Token Attribute Rule Distinguished Name Method (Document Context)................ 6-14
6.9 GET All Token Attribute Rules Method............ccccooviiiiiiii 6-17
6.10 GET Specified Document Token Attribute Rules Method ..o, 6-20
6.11 Import TrustDocument Name Configurations Methodccccceeiiiiiiiinnnniccne 6-23
6.12 GET TrustDocument Methodc.occccoiiniiiiiininiiiiccicceeeee e 6-24
6.13 DELETE Trust Document Methodccccovuiiiiiiiiiiiininiiiiis 6-25

A Summary of REST APIs

Preface

This preface describes the document accessibility features and conventions used in this
guide—REST API for Managing Credentials and Keystores with Oracle Web Services
Manager.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New In This Guide

This section summarizes the new features and significant product changes for Oracle
Web Services Manager in Oracle Fusion Middleware 12c (12.2.1).

New and Changed Features for Release 12¢ (12.2.1.1)

Oracle Fusion Middleware Release 12¢ (12.2.1.1) does not contain any new and
changed features for this document.

Vii

Part |

Getting Started with the REST API

You should get started using the Oracle Fusion Middleware REST API for managing
credentials and keystores.

Part I contains the following chapters:
¢ About the REST API

e Use Cases for the REST API

1

About the REST API

An introduction of Oracle Fusion Middleware representational state transfer (REST)
API for managing credentials and keystores is detailed in this chapter.

It includes the following topics:

¢ Introduction to REST API

® URL Structure for Security Stores

® Create and Manage Oracle WSM Instances Using REST
¢ Authenticating REST Resources

e HTTP Status Codes for HTTP Methods

1.1 Introduction to REST API

The credential and keystore management REST API provides endpoints for creating
and configuring credential stores, keystores, and trust stores for your domain or web
services.

You can access the REST endpoints through Web browsers and client applications.

You can also use the Oracle WSM REST endpoints in REST client applications that are
developed in languages such as:

e JavaScript
¢ Ruby

e Perl

e Java

e JavaFX

Before using the REST API, you need to understand a few important concepts, as
described in the following sections.

1.2 URL Structure for Security Stores

You can use certain URL structures to manage security stores.
Use the following URL to manage security stores:

http(s)://host:port/idaas/contextpath/adm n/vl/resource

Where:

¢ host :port—Host and port where Oracle Fusion Middleware is running.

About the REST API 1-1

Create and Manage Oracle WSM Instances Using REST

e cont ext pat h—Context path for the REST resource. This value can be set to
pl at f or mfor resources that apply across the domain (for example, keystore and
credential management resources), or webser vi ce for resources that apply to a
specific web service (for example, trust management resources).

* resour ce—Relative path that defines the REST resource. For more information,
see REST API Reference To access the Web Application Definition Language
(WADL) document, specify appl i cati on. wadl .

1.3 Create and Manage Oracle WSM Instances Using REST

The Oracle WSM REST endpoints support standard methods for creating and
managing Oracle WSM instances.

REST Method Task

GET Retrieve information about the REST resource.
PCST Add a REST resource.

PUT Update a REST resource.

DELETE Delete a REST resource.

1.4 Authenticating REST Resources

You can access the Oracle Fusion Middleware REST resources over HTTP and you
must provide your Oracle WebLogic Server administrator user name and password.

For example, to authenticate using cURL, pass the user name and password (for
example, weblogic and welcomel) using the - u cURL option.

curl -i -X GET -u webl ogic: wel conel http://nyhost:7001/idaas/ pl atf orm admi n/v1/
keystore

For POST and DELETE methods, which do not send data in the request body, if a
keystore or key is password-protected, you must pass the Base64-encrypted keystore
and key passwords, respectively, in custom headers. For example:

curl -i -X DELETE -u webl ogi c: wel conel -H keyst orePasswor d: cHdkM== -H
keyPasswor d: bXI Q2Qy http://nyhost: 7001/ i daas/ pl at f or mf adni n/ v1/ keyst or eser vi ce/
certificates?"stri peName=nmyStri pe&keyst or eNane=nyKeyst or e€keyAl i as=nyAl i as"

1.5 HTTP Status Codes for HTTP Methods

The HTTP methods used to manipulate the resources described in this topic return
one of the following HTTP status codes:

HTTP Status Code Description

200 OK The request was successfully completed. A 200 status is returned for successful GET
or POST method.

201 Created The request has been fulfilled and resulted in a new resource being created. The
response includes a Location header containing the canonical URI for the newly
created resource.

A 201 status is returned from a synchronous resource creation or an asynchronous
resource creation that completed before the response was returned.

1-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

HTTP Status Codes for HTTP Methods

HTTP Status Code

Description

202 Accepted

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

405 Method Not Allowed

406 Not Acceptable

415 Not Acceptable

500 Internal Server Error

503 Service Unavailable

The request has been accepted for processing, but the processing has not been
completed. The request may or may not eventually be acted upon, as it may be
disallowed at the time processing actually takes place.

When specifying an asynchronous (__det ached=t r ue) resource creation (for
example, when deploying an application), or update (for example, when redeploying
an application), a 202 is returned if the operation is still in progress. If

__det ached=f al se, a 202 may be returned if the underlying operation does not
complete in a reasonable amount of time.

The response contains a Location header of a job resource that the client should poll
to determine when the job has finished. Also, returns an entity that contains the
current state of the job

The request could not be processed because it contains missing or invalid
information (such as, a validation error on an input field, a missing required value,
and so on).

The request is not authorized. The authentication credentials included with this
request are missing or invalid.

The user cannot be authenticated. The user does not have authorization to perform
this request.

The request includes a resource URI that does not exist.

The HTTP verb specified in the request (DELETE, GET, POST, PUT) is not supported
for this request URL

The resource identified by this request is not capable of generating a representation
corresponding to one of the media types in the Accept header of the request. For
example, the client's Accept header request XML be returned, but the resource can
only return JSON.

The client's ContentType header is not correct (for example, the client attempts to
send the request in XML, but the resource can only accept JSON).

The server encountered an unexpected condition that prevented it from fulfilling the
request.

The server is unable to handle the request due to temporary overloading or
maintenance of the server. The Oracle WSM REST web application is not currently
running.

About the REST API 1-3

HTTP Status Codes for HTTP Methods

1-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

2

Use Cases for the REST API

A demonstration of several use cases using the REST APl is detailed in this chapter.
* Managing the Credential Store Framework Using the REST API

* Managing JKS Keystores Using the REST API

* Managing KSS Keystores Using the REST API

* Managing Token Issuer Trust Using the REST API

2.1 Managing the Credential Store Framework Using the REST API

You can view and manage the credential store framework using the REST APIs.

The following use case shows you how to:
e C(Create a credential in the credential store
e View all credentials in the credential store

e Delete a credential from the credential store

Note:

For more information about credential store management, see "Configuring
the Credential Store" in Administering Web Services.

TESTED
To manage the credential store framework using the REST API:

1. Create a credential in the credential store framework by performing the following
steps:

a. Create a JSON document, cr eat ecr ed. j son, that defines the credential that
you want to create.

The following shows an example of the request document. In this example,
the name of the credential map is def aul t, the credential key is myKey, and
the username and password credentials are nyUsr and my Pwd, respectively.

{
"username" : "username",
"credential" : "pwd",
"key" 1 "nmykey",
"map" : "oracle.wsmsecurity"
}

Use Cases for the REST APl 2-1

Managing the Credential Store Framework Using the REST API

For more information about the request attributes, see “POST Credential
Method”.

b. Using cURL, create a credential in the credential store framework, passing the
JSON document defined in the previous step.

curl -i -X POST -u username: password --data @reatecred.json -H Content-
Type: appl i cation/json http://nyhost:7001/i daas/ pl atfornf admi n/v1/credential

The following shows an example of the response indicating the request
succeeded.

{
}

"STATUS": "Succeeded"

For more information, see “POST Credential Method”.

2. View all credentials in the credential store.

curl -i -X GET -u usernane: password http://nyhost: 7001/ i daas/ pl atf orm admi n/ v1/
credential

The following shows an example of the response, showing all credentials in the
credential store:

{

"CSF_MAP_NAME": "CSF_KEY_NAME',

"default": "systemuser",

"oracl e.wsmsecurity": [
"sign-csf-key",
"jwt-sign-csf-key",
"owsntest.credential s",
"basic.client.credentials",
"webl ogi c- csf - key",
"enc-csf-key",

"nmykey",

" dummy- pwd- csf - key",

"webl ogi c- ker ber os- csf - key",
"keyst or e- csf-key",

"webl ogi c-wi ndowsdomai n- csf - key",
"oratest-csf-key",

"csr-csf-key",

“invalid-csf-key",

"ca- si gned- si gn- csf - key"

}

For more information, see “GET Credential Method”.

3. Delete the credential from the credential store.

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ webservi ce/
adnmi n/vl/ credential ?"key=nykey&map=oracl e. wsm security"

You must pass query parameters to define the map and key names associated
with the credential store that you want to delete. For more information, see
“DELETE Credential Method”.

The following shows an example of the response indicating the request
succeeded.

2-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Managing JKS Keystores Using the REST AP

{
}

2.2 Managing JKS Keystores Using the REST API

You can view and manage Java Keystore (JKS) certificates within the current domain
using the REST APIs.

"STATUS": "Succeeded"

The following use case shows you how to:

¢ View all aliases in the JKS keystore.

e Import a trusted certificate into the JKS keystore.
* View a trusted certificate in the JKS keystore.

® Delete a trusted certificate from the JKS keystore.

Note:

For information about JKS keystore management, see "Configuring Keystores
for Message Protection” in Administering Web Services.

TESTED
To manage JKS keystores using the REST API:

1. View all of the aliases that currently exist in the JKS keystore within the current
domain:

curl -i -X GET -u usernane: password http://nyhost: 7001/ i daas/ pl atf orm admi n/ v1/
keystore

The following shows an example of the response, showing all aliases in the JKS
keystore.

{
}

"aliases":"oratest, orakey,testkey,jkstest, ms-oaut hkey"

For more information, see “GET All Aliases Trusted Certificate JKS Keystore
Method”.

2. Import the trusted certificate into the JKS keystore at the specified alias, by
performing the following steps:

a. Create a JSON document, i nportj ks. j son, that defines the trusted
certificate to import into the JKS keystore.

The following shows an example of the request document. In this example,
the trusted certificate provided must be Base64-encoded and the component
type must be set to JKS for this release.

{ "conponent":"JKS",

"certificate":
"M | C7DCCAqqgAW BAgl Eal hBSj ALBgcghkj COAQDBQAWSDEKMAgGA1UEBhMBe TEKMAg GA1UECBM
B
\ ne TEKMAG GALUEBx MBe TEKVAG GAL UECh MBe TEKMAG GAL UECK MBe TEKMAG GALUEAX MBe TAe FwOXND
A3\ nVDIVK MT AWMT Za FwOx NDEWVDEX MTAWMT ZaMVEgx G Al BgNVBAYTAXKxCj Al BgNVBAgTAXkx G Al

Use Cases for the REST APl 2-3

Managing JKS Keystores Using the REST API

BgN\v

\ nBACTAXkxCj Al ByNVBAOTAXKkxCj Al ByNVBAS TAXkxCj Al ByNVBAMIAXkwggG3M | BLAYHK0ZI Zj
gE\ nATCCARBCgYEA/ X9TgR11Ei | S30qcLuzk5/ YRt 11 870QAwx4/ gLZRIM FXUAI Uf t ZPY1Y+r/
FIbow\ n9subVW XgTUAHTRv8nZgt 2uZUKWkn5/ 0BHsQ sJPubnX/ r f GG g7V+ GoaKYVDWT7g/
bTxR7DA] VU nELoWKTL2df QuK2HXKu/

yI gMZndFIl Acc CFQCXYFCPFSM.zLKSuYKi 64QL8FgcIKBgQD34aCF1ps9\ n3su8qlw2uFe5eZSvu
/ 0660L5VOWLPQeCZ1FZV4661FI PSnEHEI GAt EKW SPoTCgWE7f PCTKMyKbh

\ nPBZ6i 1R8j Sj go64eK70miZFuo38L+i E1YvH7YnoBIDvMPG

+qFGQ ai D3+Fa5Z8Gkot mXoB7VSVk\ nAUW7/

s9JKgOBhAACYYBr vzkj o0zmv6t 6TOGNJES1R3ypRsBs8VLX2g3Got HAd7Kht / TG 4Hi kel ZDd

\ nuLOt 96R5Q4A3sr OgSI Z

+01 NRs 1ER8y 1QB7LyINf yqYn5KqLBI NObhSYAf cul pj wi XGvf LQGdBy D7\ nt r 4PSvZQx18K6p68H
UCh+j XQT9+7n3ZUl Bz H5aMhMBBWHQYDVROOBBYEFPdNpc EBbYSCYMIJi E4r

\ ncQxf 7Me4MAs GBy GSMA4 BANFAAMY ADAS AhQH/

GLi xr EaWAG3| GMaf kHgXxnzhwi UWbeSct gmaQBj \ nvKaYOE6f YJzcp5c="

}

For more information about the request attributes, see “POST Specified Alias
Trusted Certificate JKS Keystore Method”.

b. Using cURL, import the trusted certificate, specifying the alias of the trusted
key to be imported, nyt est key, and passing the JSON request document
defined in the previous step.

curl -i -X POST -u username: password -H Content-type:application/json --
data @nportjks.json http://myhost:7001/i daas/ pl atfornf adnin/v1/ keystorel
myt est key

The following shows an example of the response indicating the request
succeeded.

{
"STATUS": "Succeeded",

"SUBJECT_DN': " CN=y, QUsy, O=y, L=y, ST=y, C=y"
}

For more information, see “POST Specified Alias Trusted Certificate JKS
Keystore Method”.

3. View the trusted certificate that you imported in step 3:

curl -i -X GET -u usernane: password http://nyhost: 7001/ i daas/ pl atf orm admi n/ v1/
keyst or e/ nyt est key

The following shows an example of the response, showing the details for the
trusted certificate.

{

" SUBJECT_DN': " CN\ey, QU=y, O=y, L=y, ST=y, C=y",

"1 SSUER_DN': " CN=y, Oy, O=y, L=y, ST=y, C=y",

"NOT_BEFORE": " Thu Jul 03 04:00:16 PDT 2014",

"NOT_AFTER': "Wed Cct 01 04:00:16 PDT 2014",

"SERIAL_NO':"1784168778",

"SI GNI NG_ALGORI THM': " 1. 2. 840. 10040. 4. 3",

"CONTENT":"----- BEG N CERTI FI CATE- - - - - \
nM | C7DCCAqqgAw BAgl Eal hBSj ALBgcghkj OCAQDBQAW
SDEKMAg GA1 UEBh MBe TEKMAg GALUECBIVB\ ne TEKMAg GA1 UEBX MBe TEKMAG GA1 UECHh MBe TEKMAG GALUECX
MBe TEKMAg GALUEAX MBe TAe FwOx NDA3\ nIVDIVK MTAWMT Za FwOx NDEWVDEX MTAWMI ZaMEgX G Al BgNVBAYT
AXkxQj Al BgNVBAGTAXkx G Al BgNW\ nBACTAXkx G Al ByNVBAoTAXKx G Al ByNVBASTAXKkx G Al ByNVBA
MIAXkwggG3M | BLAYHKoZI zj gE\ nATCCARBCY YEA\ / X9TgR11Ei | S30qcLuzk5\ / YRt 11 870QAwx4\ / g
LZRIm FXUAI Uf t ZPY1Y+r\/ F9bowh n9subVW XgTuAHTRv8nZgt 2uZUKWKnNn5\ / 0BHsQ sJPubnX\/rf G

2-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Managing KSS Keystores Using the REST API

G/ g7V+f GgKYVDWI7g\ / bTXR7DAj VU nELoWK TL2df Quk2HXKu\ / yI gMZndFI Acc CFQCXYFCPFSM_zLK
SuYKi 64QL8FgcIQKBgQD34aCF1ps9\ n3su8qiw2uFe5eZSvu\ / 0660L5VOW.PQeCZ1FZVA661FI PSnEH
El GAt Ek\W SPoTCgWE7f PCTKMyKbh\ nPBZ6i 1R8] Sj go64eK70miZFuo38L+i E1YvH7YnoBJDvMpPGHGF
GQ ai D3+Fa5Z8Gkot mXoB7VSVK\ nAUW7\ / s9JKgOBhAACgYBr vzkj ozmv6t 6 TOGNJES1R3ypRsBs8VLX
293Got HA7Kht \ / TG 4Hi kel ZDd\ nuLOt 96R5Q4A3sr QySI Z+01 NRs1ER8y 1QB7LyJNf yqYn5KgLBI Nob
hSYAf cul pj wi XGvf LQGdBy D7\ nt r 4PSvZQx18K6p68HUCh+ XQT9+7n3ZUI Bz H5aMhMBSWHQYDVROOBB
YEFPdNMpcEBOYSCYMIJi E4r\ ncQxf 7Me4MAS GBy GSMA4ABAMFAAMY ADAS AhQH, / GLi xr EaWAG3I Gvaf kH
gXxnzhw WbeSct gmaQBj \ nvKaYOE6f Ydzcp5e=\n-- - - - END CERTI FI CATE-----

"SI GNATURE": " 7JndaAc+5T+spDFFo9gsRA==",

"Extensions": "{subjectKeyl DExtension {oid = 2.5.29.14, critical = false,
val ue = f74ca5c1016d848260c749884e2b710c5f ecc7b8}}"

}

For more information, see “GET Specified Alias Trusted Certificate JKS Keystore
Method”.

Delete the trusted certificate from the JKS keystore.

curl -i -X DELETE -u usernane: password http://myhost: 7001/i daas/platform
admi n/ v1/ keyst or e/ nyt est key

The following shows an example of the response indicating the request
succeeded.

{
}

For more information, see “DELETE Trusted Certificate JKS Keystore Method”.

"STATUS": "Succeeded"

2.3 Managing KSS Keystores Using the REST API

You can view and manage Keystore Service (KSS) keystores using the REST APIs.

The following use case shows you how to:

Create a KSS keystore

View all KSS keystores for a stripe

Import a trusted certificate into the KSS keystore
View a trusted certificate in the JKS keystore

Delete the KSS keystore

Note:

For more information about KSS keystore management, see "Configuring the
OPSS Keystore Service for Message Protection” in Administering Web Services.

TESTED
To manage KSS keystores using the REST API:

1.

Create a KSS keystore by performing the following steps:

a. Create a JSON document, cr eat ekss. j son, that defines the KSS keystore
that you want to create.

Use Cases for the REST APl 2-5

Managing KSS Keystores Using the REST API

The following shows an example of the request document. In this example,
the KSS stripe and keystore names are mySt r i pe and nmyKeyst or e,
respectively; the password for the KSS keystore is my pwd; and the KSS
keystore created is not permission-based.

{
"stripe" : "nmyStripe",
"keystore" : "nyKeystore",
“pwd” : "nypwd”,
"permssion" : "false"

}

For more information about the request attributes, see “POST New KSS
Keystore Method”.

b. Using cURL, create a KSS keystore, passing the JSON document defined in
the previous step.

curl -i -X POST -u usernane: password -H Content - Type: application/json --
data @reatekss.json http://myhost:7001/idaas/ pl atfornf adn n/vl/
keyst oreservi ce

The following shows an example of the response indicating the request
succeeded.

{
}

"STATUS": "Succeeded"

For more information, see “POST New KSS Keystore Method”.

2. View all KSS keystores for a stripe to confirm the KSS keystore was created.

curl -i -X GET -u usernane: password http://nyhost: 7001/ i daas/ pl atf orm admi n/ v1/
keyst oreservice/ nyStripe

The following shows an example of the response, showing all KSS keystores in the
stripe:

{
}

"keystore 1:"nmyKeystore"

For more information, see “GET Stripe KSS Keystores Method”.

3. Import a trusted certificate into the KSS keystore by performing the following
steps:

a. Create a JSON document, i mport kss. j son, that defines the details of the
trusted certificate that you want to import into the KSS keystore.

The following shows an example of the request document. In this example,
the KSS keystore is identified by its stripe and keystore names, mySt ri pe
and myKeyst or e, respectively; the KSS keystore password, nmypwd, is
required; the alias for the key is ny Al i as; the certificate is defined as a
TrustedCertificate;and keyst or eEnt ry specifies the encrypted
certificate contents.

{
"keyAlias" : "nyAlias",
"keystoreEntry":

2-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Managing KSS Keystores Using the REST API

"M | C7TDCCAqqgAw BAgl Eal hBSj ALBgcghkj OOAQDBQAWSDEKMAGGALUEBhMBe TEKMAG GALUECBM
B
\ ne TEKMAg GAL UEBX MBe TEKMAg GALUECh MBe TEKMAG GAT UECK MBe TEKMAGg GAL UEAX MBe TAe FWOX ND
A3\ nVDVK M AWMT Za Fw0x NDEWNVDEX MI AWM ZaMEgx G Al BgNVBAYTAXKkx G Al BgNVBAGTAXKx G Al
Bg\v
\ nBACTAXkxCj Al ByNVBAOTAXKkxCj Al ByNVBAS TAXkxCj Al ByNVBAMIAXkwggG3M | BLAYHK0ZI Zj
gE\ nATCCARBCgYEA/ X9TgR11Ei | S30qcLuzk5/ YRt 11 870QAwx4/ gLZRIM FXUAI Uf t ZPY1Y+r/
FIbow n9subVW XgTUAHTRV8nZgt 2uZUKWkn5/ 0BHsQ sJPu6nX/ r f GG g7V+ GaKYVDWT7g/
bTxR7DA] VU nELoWKTL2df QuK2HXKu/
yI gMZndFIl Acc CFQCXYFCPFSM.z LKSuYKi 64QL8FgcIXBgQD34aCF1ps9\ n3su8qlw2uFe5eZSvu
/ 0660L5VOWLPQeCZ1FZV4661FI PSnEHEI GAt EKW SPoTCgWE7f PCTKMyKbh
\ nPBZ6i 1R8j Sj go64eK70miZFuo38L+i E1YvH7YnoBIDvMPG
+gFGQ ai D3+Fa5Z8Gkot mXoB7VSVk\ nAUW7/
S$9JKgOBhAACGYBr vzkj oznv6t 6 TOGNJES1R3ypRsBs8VLX2g3CGot HI7Kht / TCj 4H kel ZDd
\ nuLOt 96R5Q4A3sr OgSI Z
+01 NRs 1ER8y 1QB7LyINf yqYn5KqLBI NObhSYAf cul pj wi XGvf LQGdBy D7\ nt r 4PSvZQx18K6p68H
UCh+j XQI9+7n3ZUl Bz H5aMvhMB8WHQYDVROOBBYEFPdMpc EBbYSCYMIJi E4r
\ ncQxf 7Me4MAs GBy qGSMA4 BANFAAMY ADAS AhQH/
Gli xr EaWAG3I Gaf kHgXxnzhwi UWbeSct gmaQBj \ nvKaYOE6f YJzcp5e=",
"keystoreEntryType" : "TrustedCertificate",
"keystoreNane" : "nyKeystore",
"stripeNanme" : "nyStripe",
"keyst orePassword" : "nyPwd"
}

For more information about the request attributes, see “POST Trusted
Certificate KSS Keystore Method”.

Using cURL, import a trusted certificate into the KSS keystore, passing the
JSON document defined in the previous step.

curl -i -X POST -u username: password -H Content-Type: application/json --
data @nportcertkss.json http://nyhost:7001/i daas/ pl atfornf adni n/v1/
keyst oreservice/certificates

The following shows an example of the response indicating the request
succeeded.

{
"STATUS": "Succeeded"

"SUBJECT_DN': "CN=y, OU=y, O=y, L=y, ST=y, C=y"
}

For more information, see “POST Trusted Certificate KSS Keystore Method”.

View the trusted certificate that you just imported into the KSS keystore.

curl -i -X GET -u usernane: password -H keyst orePasswor d: cHdkMQ== http://nyhost:
7001/ i daas/ pl at f or mf adm n/ v1/ keyst or eservi ce/

certificates?"stripeName=nyStripe&keystoreNane=nyKeyst or e€keyAl i as=nyAl i as&keyst o

reEntryType=TrustedCertificate"

You must pass query parameters to define the stripe name, keystore name and
entry type, and alias name associated with the trusted certificate you want to
view.

The following shows an example of the response, showing the details of the
trusted certificate.

{
" SUBJECT_DN': " CN=y, OU=y, C=y, L=y, ST=y, C=y",
"| SSUER_DN': " ONey, Oy, O=y, L=y, ST=y, C=y",

Use Cases for the REST APl 2-7

Managing Token Issuer Trust Using the REST AP

"NOT_BEFORE": "Fri Jul 25 02:45:11 PDT 2014",

"NOT_AFTER': "Thu Cct 23 02:45:11 PDT 2014",

" SERI AL_NO': "982191050",

"SI GNING_ALGORI THM': " 1. 2. 840. 10040. 4. 3",

"CONTENT":"----- BEG N CERTI FI CATE- - - - -
\ nM | C7DCCAqqgAW BAgl ECosLyj ALBgcghkj OCOAQDBQAWS
EKMAg GA1UEBhNBCj EKMAGGALUECBNVB\ ncj EKMAGGALUEBX VBcj EKMAGGALUEChVBC] EKMAGGALUECKM
cj EKMAGGATUEAXMBUj AeFw0x NDA3\ nM UnOTQLMIFaFwOx NDEwN MVOTQLMTFaMEgx G Al BgNVBAYTA
I xG Al BgNVBAGTAXI xG Al BNV nBACTAXI xG Al BgNVBAOTAXI xG Al BgNVBASTAXI xG Al BgNVBAM
AVI wggG3M | BLAYHK0ZI zj gE\ nATCCARBCgYEA\ / X9TgRL1Ei | S30qcLuzk5\ / YRt 11 870QAwx4\ / gL
RIm FXUAI Uf t ZPY1Y+r\/ FObow\ n9subVWe XgTUAHTRv8niZgt 2uZUKWKkn5\ / 0BHsQ sJPuénX\/ r f GG
| g7V+f GgKYVDWT7g\ / bTXR7DAj VU nELoVKTL2df QuK2HXKu\ / yI gMZndFI Acc CFQCXYFCPFSM.zLKS
YKi 64QL8FgcIKByQD34aCF1ps9\ n3su8qlw2uFe5eZSvul / 0660L5VOWLPQeCZ1FZV4661FI PSnEHE
GAt EKW SPOTCGVE7 PCTKMyKbh\ nPBZ6i 1R8] Sj go64eK7OmiZFuo38L+i E1YvH7YnoBJDvMpPGHGFG
i ai D3+Fa5Z8Gkot mXoB7VSVKk\ nAUW7\ / s9JKgOBhAACG YA] hpZybXj 6r | XDow8sr nSFE9dZJJpCKaQV
ACagQogePV+x!| gPC DQoi QI\ nuvuUGHer Dr ThC1\ / W5 1+Tnk SKTy0qYxnmQog56xALad 7np9TKt gt
4\Vy8eUUor akGAl rj Nt \/ EgR\ nf 0675n+q! NkKXKpcxaCi cupRCYPKPXI nT4nt y KMVB8WHQYDVROOBB
EFDKbnPa2l | 6Syl JRPTv8\ nQ+4CqpEhMAS GBy q GSMA4BAMFAAMY ADAs AhQokml aUGSQDR5XUi YCT74p
\/ FBOWM UGx5! c5Y01ppo\ nvK3UgL7MBE3eCf c=\ n- - - - - END CERTI FI CATE- - - - -

"SI GNATURE" : FEZN2| 4SPFEKS5j t 2QZR05Q==",

"Ext ensions": "{subj ect Keyl DExtension {oid = 2.5.29.14 critical = false,
val ue = 329h98f 6b6225e92ca52513d3bf c43ee02aa9121}}"

}

For more information, see “GET Trusted Certificate KSS Keystore Method”.

Delete the KSS keystore.

curl -i -X DELETE -u usernane: password -H keyst orePasswor d: cHdkME= http://
myhost : 7001/ i daas/ pl at f or mf admi n/ v1/
keyst oreservice?"stri peName=nySt ri peg€keyst or eName=nyKeyst or e"

You must pass query parameters to define the stripe and keystore name of the
KSS keystore you want to delete. For more information, see “DELETE Keystore
Service KSS Keystore Method”.

The following shows an example of the response indicating the request
succeeded.

HTTP/ 1.1 204 No Content

2.4 Managing Token Issuer Trust Using the REST API

You can view and manage token issuer trust using the REST APlIs.

The following use case shows you how to:

View all trusted issuers
Create a trusted issuer
Create a token attribute rule
Delete a trusted issuer

Create a trust document

2-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Managing Token Issuer Trust Using the REST AP

Note:

For more information about token issuer trust management, see "Defining
Trusted Issuers and a Trusted DN List for Signing Certificates" in
Administering Web Services.

To manage token issuer trust using the REST APIL:

1.

Create a trusted issuer document.

curl -i -X POST -u username: password http://nyhost: 7001/ i daas/ webservi ce/
admi n/ v1/trust docunent ?" docunent Name=nyTr ust Docunent &di spl ayNane=nyTr ust Docunent "

You must pass query parameters to define the document and display names for
the trusted issuer document.

The following shows an example of the response indicating the request
succeeded.

{
"STATUS": "Succeeded",
"Result": "New Token Issuer Trust document nanmed "nyTrust Docunent" created."

}
For more information, see “POST TrustDocument Name Method”.
Create the trusted issuers and DN lists, by performing the following steps:

a. Create a JSON document, cr eat et r ust . j son, that defines the trusted
issuers and distinguished name (DN) lists that you want to create.

The following shows an example of the request document. In this example,
the following types of trusted issuers are created: SAML holder-of-key, SAML
sender vouches, and JSON Web Token (JWT). For each trusted issuer, the
name and DN list is defined.

{

"sanl -trusted-dns":
{
"sanm - hok-trusted-dns":
{
"issuer": [
{
"-nane": "ww. oracle. conf,
“dn": ["ws1",]
1
]
I
"sanl -sv-trusted-dns":
{
"issuer": |
{
"-pane": "ww. oracle.conf,
"dn": ["ws2",]

]
}

"jwt-trusted-issuers":

{

Use Cases for the REST APl 2-9

Managing Token Issuer Trust Using the REST AP

"issuer": [
{

"-name": "www. oracle. conf,

"dn": ["CNeorakey, OU=Crakey, O=Cracle, C=US',]
}

}

For more information about the request attributes, see “POST Domain
Trusted Issuers and Distinguished Name Lists Method”.

b. Using cURL, create the trusted issuers and DN lists, passing the JSON
document defined in step 2.

curl -i -X POST -u username: password --data @reatetrust.json -H Content-
Type: application/json http://nyhost:7001/i daas/ webservi ce/ admin/v1/trust/
i ssuers

The following shows an example of the response body indicating the request
succeeded.

{
}

"STATUS": "Succeeded"

For more information, see “POST Domain Trusted Issuers and Distinguished
Name Lists Method”.

Create a JSON document, cr eat et oken. j son, that defines the token attribute
rules for the trusted DN lists.

The following shows an example of the request document. In this example:

* Create a separate "t oken-attri bute-rul e" entry for each trusted DN list
for which you want to create a token attribute rule.

* Specify filters for the name-id and user attributes, as required.

For more information about the request attributes, see “POST Token Attribute
Rule Distinguished Name Method (Domain Context)”.

{
"token-attribute-rul es":
{
"token-attribute-rule":
[
{
"-dn": "cn=orcl adn n, o=oracl e",
"nanme-id":{
“filter":
{
"value":["filterl"]
}‘ .
" mappi ng":
{
"user-attribute": "val 3",
"user-mappi ng-attribute": "val 4"
}
¥
"attributes":

2-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Managing Token Issuer Trust Using the REST AP

{
"-name": "tenant1",
"attribute":
{
"filter":
{
"value": [
"filter1",
"filter2"
]
¥
" mappi ng": {
"user-attribute": "val 1",
"user-nappi ng-attribute": "val 2"
1
1
1

}

Create the token attribute rules for the trusted DN lists, passing the JSON
document defined in step 4.

curl -i -X POST -u usernane: password --data @reaterule.json http://myhost: 7001/
i daas/ webservi ce/ admin/v1/trust/token

The following shows an example of the response body indicating the request
succeeded.

{
}

"STATUS": "Succeeded"

For more information, see “POST Token Attribute Rule Distinguished Name
Method (Domain Context)”.

View the configuration details for the trusted issuer.

curl -i -X GET -u usernane: password http://nyhost: 7001/ i daas/ pl atf orm admi n/ v1/
trust docunent ?" docunment Name=nyTr ust Docunent "

The following shows an example of the response body, showing the configuration
details:

{
" STATUS": "Succeeded",

"Result":"List of token issuer trust docunments in the Repository:\nDetails
of the docunent matching your request:\nName . myTrust Docunent\t Di spl ay
Nanme : nyTrust Document\t Status : DOCUMENT_STATUS_COWM TED \ nLi st of
trusted issuers for this type:\tNone\nList of Token Attribute Rul es\tNone"

}

For more information, see “GET TrustDocument Method ”.

Delete the trusted issuer document.

Use Cases for the REST API 2-11

Managing Token Issuer Trust Using the REST AP

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ webservi ce/
admi n/ v1/trust docunent ?" docunent Name=nyTr ust Docunent &di spl ayNane=nyTr ust Docunent "

You must pass query parameters to define the document and display names for
the trusted issuer document that you want to delete. For more information, see
“DELETE Credential Method”.

The following example shows the contents of the response body.

{
"STATUS": "Succeeded",

"Result": "Token Issuer Trust document nanmed "nyTrust Docunent" del eted from
the repository."

}

2-12 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Part Il

REST API Reference

You can review details about the Oracle Fusion Middleware REST API for managing
credentials and keystores.

Part II contains the following chapters:

Manage Credentials in the Credential Store
Manage Java Keystore Keystores

View and Manage Keystore Service Keystores
Manage Token Issuer Trust Configurations

Summary of REST APIs

3

Manage Credentials in the Credential Store

Oracle Web Services Manager (WSM) uses the Credential Store Framework (CSF) to
manage the credentials in a secure form.

Before using the REST API to view and manage the credential store, you need to
understand how to access the REST resources and other important concepts. See
“About the REST API”.

For more information about credential store management, see "Configuring the
Credential Store" in Administering Web Services.

This chapter includes the following sections:

* View and Manage the Credential Store Using REST Resources
* POST Credential Method

* GET Credential Method

* PUT Credential Method

e DELETE Credential Method

3.1 View and Manage the Credential Store Using REST Resources

Representational state transfer (REST) resources enable you to view and manage the
credential store.

You can view and manage the credential store using a set of representational state
transfer (REST) resources, as summarized below.

Section Method Resource Path

POST Credential Method PCST /i daas/ pl at f orm admi n/ v1/credenti al
GET Credential Method CET /i daas/ pl at f orm admi n/ v1l/credenti al
PUT Credential Method PUT /i daas/ pl at f or mf admi n/ v1/ credenti al
DELETE Credential Method DELETE /i daas/ pl at f orm admi n/ v1/credenti al

3.2 POST Credential Method

Use the POST method to create a new credential in the domain credential store.

REST Request
POST /i daas/pl atform adm n/vl/credenti al

Manage Credentials in the Credential Store 3-1

POST Credential Method

Request Body
Media types for the request or response body: appl i cati on/j son

The request body contains the details of the create request:

Attribute Description Required
"credential"” Password for the credential. Yes
"key" Name of the key. Yes
" map" Name of the map (folder). Yes
"user nane"” Username for the credential. Yes
Response Body
Media types for the request or response body: appl i cati on/j son
The response body returns the status of the create operation, including:
Attribute Description
" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.
" STATUS" Status of operation. For example, " Succeeded" or

"Fail ed".

cURL Example

The following example shows how to create a credential in the credential store by

submitting a POST request on the REST resource using cURL
TESTED

curl -i -X POST -u username: password --data @reatecred.json -H Content-

Type: application/json http://nmyhost:7001/i daas/pl atform adm n/v1l/credential

Example of Request Body
The following shows an example of the request body in JSON format.
{
"username" : "username",
"credential" : "credential",
" keyll : " n,ykeyn ,
"map" : "oracle.wsmsecurity"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP

status codes, see HTTP Status Codes for HTTP Methods
HTTP/ 1.1 200 &K

3-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

GET Credential Method

Example of Response Body

The following shows an example of the response body in JSON format.

}

"STATUS": "Succeeded"

3.3 GET Credential Method

Use the GET method to view all credentials in the domain credential store.

REST Request
CET /i daas/pl atform adm n/vl/credenti al

Response Body

Media types for the request or response body: appl i cati on/j son

The response body contains information about all credentials in the credential store,

including:

Attribute Description
" CSF_MAP_NAME" Name of the credential store map.
"defaul t" List of keys in the default credential map.

"oracle.wsmsecurity Listof keys in the Oracle Web Services Manager (Oracle WSM)

security credential map.

CcURL Example

The following example shows how to view all credentials in a credential store by
submitting a GET request on the REST resource using cURL.

TESTED

curl

-i -X GET -u usernane: password http://nyhost: 7001/ i daas/ pl at f or ml admi n/ v1/

credenti al

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{

"CSF_MAP_NAME": "CSF_KEY_NAME",
"default": "systenuser",
"oracle.wsmsecurity": [

"si gn-csf-key",
"jwt-sign-csf-key",

"owsnt est.credential s",
"basic.client.credentials",

Manage Credentials in the Credential Store 3-3

PUT Credential Method

"webl ogi c- csf - key",

"enc- csf-key",

"nykey",

"dumy- pwd- csf - key",

"webl ogi c- ker ber os- csf - key",
"keyst ore- csf - key",

"webl ogi c- wi ndowsdonai n- csf - key",
"oratest-csf-key",
"csr-csf-key",
"invalid-csf-key",

"ca- si gned- si gn- csf - key"

}
3.4 PUT Credential Method

Use the PUT method to update a credential in the domain credential store.

REST Request
PUT /i daas/ pl atfornfadm n/v1/credenti al

Request Body
Media types for the request body: appl i cati on/j son
The request body contains the details of the update request:

Attribute Description Required

"credential" Updated password for the key in the Yes
keystore.

"key" Name of the key that you want to modify. Yes
The key must exist.

" map" Name of the map (folder) that you want to Yes
modify.

"user nanme" Username for the key in the keystore. Yes

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the update operation, including;:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

3-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

DELETE Credential Method

cURL Example

The following example shows how to update a credential in the credential store by
submitting a PUT request on the REST resource using cURL.

TESTED

curl -i -X PUT -u usernane: password --data @updatecred.json -H Content-
Type: appl i cation/json http://nyhost:7001/i daas/ patform adm n/vl/credenti al

Example of Request Body
The following shows an example of the request body in JSON format.
{
"usernane" : "usernane",
"credential" : "myNewPwd",
"key" : "nykey",
"map" : "oracle.wsmsecurity"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

{
}

3.5 DELETE Credential Method

Use the Delete method to delete a credential from the domain credential store.

"STATUS": "Succeeded"

REST Request
DELETE /i daas/ pl at f ornf adm n/ v1/credenti al

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

"key" Name of the key for the credential that you wantto Query
delete.

"map" Name of the map (folder) for the credential that Query

you want to delete.

Response Body
Media types for the request or response body: appl i cati on/j son

The response body returns the status of the delete operation, including:

Manage Credentials in the Credential Store 3-5

DELETE Credential Method

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example

The following example shows how to delete a credential from the credential store by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u usernane: password http://nmyhost: 7001/ i daas/ pl atf orm admi n/v1/
credenti al ?"key=nykey&map=or acl e. wsm security"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
}

"STATUS": "Succeeded"

3-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

A

Manage Java Keystore Keystores

Before using the REST API to view and manage Java Keystore (JKS) keystores within a
domain, you need to understand how to access the REST resources and other
important concepts.

For more information, see “About the REST API”.

For information about JKS keystore management, see "Configuring Keystores for

Message Protection” in Administering Web Services.

This chapter includes the following sections:

View and Manage JKS keystores within a Domain Using REST Resources

GET All Aliases Trusted Certificate JKS Keystore Method

POST Specified Alias Trusted Certificate JKS Keystore Method

POST PKCS#7 Trusted Certificate JKS Keystore Method

GET Specified Alias Trusted Certificate JKS Keystore Method

DELETE Trusted Certificate JKS Keystore Method

4.1 View and Manage JKS keystores within a Domain Using REST

Resources
Representational state transfer (REST) resources enable you to view and manage JKS
keystores.
You can view and manage JKS keystores within a domain using a set of
representational state transfer (REST) resources, as summarized below.

Task Method Resource Path

GET All Aliases Trusted Certificate GET /i daas/ pl at f orm admi n/ v1/ keystore

JKS Keystore Method

POST Specified Alias Trusted PCST /i daas/ pl at f or mf admi n/ v1/ keystore/{alias}

Certificate JKS Keystore Method

POST PKCS#7 Trusted Certificate POST

JKS Keystore Method

GET Specified Alias Trusted CET
Certificate JKS Keystore Method

DELETE Trusted Certificate JKS DELETE

Keystore Method

/i daas/ pl at f or m admi n/ v1/ keyst or e/ pkcs7/
{ali as}

/i daas/ pl at f orm admi n/ v1/ keystore/{alias}

i daas/ pl at f orml adm n/ v1/ keystore/{alias}

Manage Java Keystore Keystores 4-1

GET All Aliases Trusted Certificate JKS Keystore Method

4.2 GET All Aliases Trusted Certificate JKS Keystore Method

Use the GET method to get all aliases for the trusted certificate entries in the JKS
keystore.

REST Request
CGET /i daas/pl atfornf adm n/vl/ keystore

Response Body
Media types for the request or response body: appl i cati on/j son

The response body contains the list of aliases:

Attribute Description

"al i ases" Comma-separated list of aliases.

cURL Example

The following example shows how to view all aliases for the trusted certificate entries
in the JKS keystore by submitting a GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl at f or ml admi n/ v1/
keystore

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

TESTED
{

}
4.3 POST Specified Alias Trusted Certificate JKS Keystore Method

Use the POST method to import a trusted certificate at the specified alias into the JKS
keystore. The certificate must be Base64 encoded.

"aliases":"oratest, orakey,testkey,jkstest, ms-oaut hkey"

REST Request
PCOST /i daas/ pl atfornf adm n/vl/ keystore/{alias}

Parameters

The following table summarizes the POST request parameter.

4-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST Specified Alias Trusted Certificate JKS Keystore Method

Name Description Type

alias Alias of the trusted certificate to be imported. Path

The alias will be created. The alias must not already
exist in the JKS keystore; otherwise, the request will
fail.

Request Body
Media types for the request body: appl i cati on/j son

The request body contains the details of the import request:

Attribute Description
"certificate" Base64-encoded certificate.
"conponent " Component to which the certificate is imported. This value

must be set to JKS.

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including;:

Attribute Description
" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.
"ERROR_M5G' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.
" STATUS" Status of operation. For example, " Succeeded" or
"Fai |l ed".
" SUBJECT_DN' Subject DN list that was imported.

cURL Example

The following example shows how to import a trusted certificate into the JKS keystore
by submitting a POST request on the REST resource using cURL.

TESTED

curl -i -X POST -u usernane: password --data @nportjkscert.json -H Content-
Type: application/json http://myhost:7001/i daas/ pl atform adm n/v1/keyst ore/ nyt est key

Example of Request Body
The following shows an example of the request body in JSON format.

{ "conponent":"JKS',
"certificate":
"M | C7DCCAqqgAW BAgl Eal hBSj ALBgcqhkj COAQDBQAWSDEKMAGGA1 UEBhMBe TEKMAGGALUECBNVB
\ ne TEKMAg GA1 UEBx MBe TEKMAG GAL UECh MBe TEKMAG GAL UECX VBe TEKMAG GAL UEAX MBe TAe FwOx NDA3\ niVDIVK M

Manage Java Keystore Keystores 4-3

POST PKCS#7 Trusted Certificate JKS Keystore Method

TAWMI ZaFw0x NDEWVDEX MTAWMI ZaMEgx G Al BgNVBAYTAXKx Cj Al ByNVBAgTAXkx G Al BgNV

\ nBACTAXkxCj Al ByNVBAOTAXkxJ Al BgNVBAS TAXkx Cj Al ByNVBAMTAXkwggG3M | BLAYHK0ZI zj gE
\ NATCCARBCg YEA/ X9TgRL1Ei | S30qcLuzk5/ YRt 11 870QAwx4/ gLZRIm FXUAI Uf t ZPY1Y+r / F9bow
\ n9subVW XgTuAHTRv8nZgt 2uZUKVkn5/ 0BHsQ sJPu6nX/ r f GG g7V+ GaKYVDWT7g/ bTxR7DAj VU
\ nELoVkTL2df QuK2HXKu/

yI gMZndFI Acc CFQCXYFCPFSM.zLKSuYKi 64QL8FgcIQKBgQD34aCF1ps9\ n3su8qlw2uFe5eZSvul/
0660L5VOWL.PQeCZ1FZV4661F| PSnEHEI GAt EK\W SPoTCgWETf PCTKMyKbh

\ nPBZ6i 1R8] Sj go64eK70miZFuo38L+i E1YvH7YnoBJDvMpPGHqFGQ ai D3+Fa5Z8Gkot mXoB7VSVK\ nAUW7/
S9JKgOBhAACYYBr vzkj oznv6t 6 TOGNJES1R3ypRsBs8VLX2g3Cot HA7Kht / TCj 4Hi kel ZDd

\ nuLOt 96R5Q4A3sr OgSl Z

+01 NRs1ER8y 1Q87LyINf yqYn5KqLBI N9bhSYAf cul pj wi XGvf LQGdBy D7\ nt r 4PSvZQx 18K6p68HUCh
+) XQT9+7n3ZUl Bz H5aMMB8WHQYDVROOBBYEFPdMyc EBbYSCYMIJi E4r

\ ncxf 7Me4MAs GBy q GSMA4 BAMFAAMY ADAs AhQH/ GLi xr EaWAG3I GMaf kHgXxnzhwt UnBeSct gnma QB

\ nvKaYOE6f YJzcp5c="

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.

{
"STATUS": "Succeeded",

"SUBJECT_DN': "CN=y, OFy, C=y, L=y, ST=y, C=y"
}

4.4 POST PKCS#7 Trusted Certificate JKS Keystore Method

Use the POST method to import a PKCS#7 trusted certificate or a certificate chain
associated with a private key indicated by the specified alias into the JKS keystore.

REST Request
POST /i daas/ pl atfornf adm n/v1l/ keyst ore/ pkcs7/{alias}

Parameters

The following table summarizes the POST request parameter.

Name Description Type

alias Alias of the private key for which the trusted Path
PKCS#7 certificate will be imported. The alias must
already in the JKS keystore.

Request Body
Media types for the request body: appl i cati on/j son

The request body contains the details of the import request:

4-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST PKCS#7 Trusted Certificate JKS Keystore Method

Attribute Description
"certificate” Base64-encoded certificate.
"conponent " Component to which the certificate is imported. This value

must be set to JKS.

"keyPasswor d" Password for the private key.

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including;:

Attribute Description
" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.
"ERROR_M5G' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.
" STATUS" Status of operation. For example, " Succeeded" or
"Fai | ed".
" SUBJECT_DN' Subject DN list that was imported.

cURL Example

The following example shows how to import a trusted PKCS#7 certificate into the JKS
keystore by submitting a POST request on the REST resource using cURL.

curl -i -X POST -u usernane: password --data @nportjkscert.json -H Content-
Type: application/json http://myhost:7001/i daas/pl atform adm n/v1/keyst ore/ pkcs7/
myprivat ekey

Example of Request Body
The following shows an example of the request body in JSON format.

{
“conponent": " JKS",

"certificate":
"M | C7DCCAqqgAW BAgl Eal hBSj ALBgcghkj COAQDBQAWSDEKMAGGA1 UEBhMBe TEKMAGGALUECBIVB
\ ne TEKMAG GAL UEBx MBe TEKMAG GAL UECh MBe TEKMAG GAL UECx MBe TEKMAG GAL UEAX MBe TAe FwOx NDA3\ nVDVKM
TAWMT ZaFw0x NDEWVDEX MT AWM ZaVEgx G Al ByNVBAYTAXkx Cj Al BgNVBAGTAXKxCj Al BgNV
\ nBACTAXkxCj Al ByNVBAOTAXkxCj Al BgNVBAs TAXkx G Al ByNVBAMTAXkwggG3M | BLAYHKoZI zj gE
\ NATCCARBCg YEA/ X9TgRL1Ei | S30qcLuzk5/ YRt 11 870QAwx4/ gLZRIm FXUAI Uf t ZPY1Y+r / F9bow
\ n9subVW XgTuAHTRv8nZgt 2uZUKVkn5/ 0BHsQ sJPu6nX/ r f GG g7V+ GaKYVDWT7g/ bTxR7DAj VU
\ nELoVk TL2df QuK2HXKu/
yI gMZndFI Acc CFQCXYFCPFSM.z LKSuYKi 64QL8FgcIQKBgQD34aCF1ps9\ n3su8qlw2uFe5eZSvu/
0660L5VOW.PQeCZ1FZV4661FI PSnEHEI GAt EK\W SPoTCgWETf PCTKMyKbh
\ nPBZ6i 1R8] Sj go64eK70miZFuo38L+i E1YvH7YnoBJDvMPGHqFGQ ai D3+Fa5Z8Ckot mXoB7VSVK\ nAUW?/
S9JKgOBhAACYYBr vzkj oznv6t 6 TOGNJES1IR3ypRsBs8VLX2g3Cot HA7Kht / TCj 4Hi kel ZDd
\ nuLOt 96R5QUA3sr OgSl Z
+01 NRs 1ER8y 1@B7LyJNf yqYn5KqLBI NobhSYAS cul pj wi XGvf LQGEdBy D7\ nt r 4PSvZQx 18K6p68HUCh
+ XQT9+7n3ZUl Bz HoaMhMBBWHQYDVROOBBYEFPdMpc EBbYSCYMIJi E4r
\ ncxf 7Me4MAs GBy q GSMA4BAMFAAMY ADAS AhQH/ GLi xr EaWAG3I GMaf kHgXxnzhwt UWBeSct gnma QB

Manage Java Keystore Keystores 4-5

GET Specified Alias Trusted Certificate JKS Keystore Method

\ nvKaYOE6f YJzcp5¢c=",
"keyPassword" : "nyprivat ekeypwd"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
"STATUS": "Succeeded",

"SUBJECT_DN': "CN=y, OFy, C=y, L=y, ST=y, C=y"
}

4.5 GET Specified Alias Trusted Certificate JKS Keystore Method

Use to GET method to view details of the trusted certificate at the specified alias in the
JKS keystore.

If the alias specifies a keySt or e. Trust edCerti fi cat eEntry, the details of the
trusted certificate are returned. If the alias specifies a KeySt or e. Pri vat eKeyEntry,
the first certificate in the trusted certificate chain is returned.

REST Request
CET /i daas/pl atform adm n/vl/ keystore/{alias}

Parameters

The following table summarizes the GET request parameters.

Name Description Type
alias Name of alias for which you want to view a trusted Path
certificate.

Response Body
Media types for the request or response body: appl i cati on/j son

The response body contains information about the certificate, including:

Attribute Description
" CONTENT" Contents of the Base64-encoded certificate.
" Ext ensi ons" Optional extensions that are used to issue a certificate for a

specific purpose. Each extension includes the following;:
* Object identifier (oid) that uniquely identifies it

* Flag indicating whether the extension is critical

e Value

4-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

GET Specified Alias Trusted Certificate JKS Keystore Method

Attribute Description

"1 SSUER_DN' List of trusted distinguished names.
" NOT_AFTER" Date the certificate expires.

" NOT_BEFORE" Date the certificate is activated.

" SERI AL_NO' Serial number of the JKS keystore.
"SI GNATURE" Base64-encoded signature key.

"SI GNI NG_ALGORI THM' Signing algorithm for the alias.

" SUBJECT_DN' Subject distinguished names list.

cURL Example

The following example shows how to view all certificates for an alias in the JKS
keystore by submitting a GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl at f or ml admi n/ v1/
keyst or e/ myt est key

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.

{

" SUBJECT _DN': " CNewebl ogi ¢, OU=Test key for JKS Mean
test, O=Oracl e, L=testcity, ST=teststate, Cus",

"1 SSUER_DN': " CN=webl ogi ¢, O=Test key for JKS Mean
test, O=Oracl e, L=testcity, ST=teststate, Czus",

"NOT_BEFORE": "Tue Jun 25 02:20:38 PDT 2013",

"NOT_AFTER': "Wed Nov 27 01:20:38 PST 2052",

"SERI AL_NO': "1372152038",

"SI GNI NG_ALGORI THM': " 1. 2. 840. 113549. 1. 1. 5",

" CONTENT":"----- BEG N CERTI FI CATE- - - - -
\ nM | DeDCCAMCgAW BAgl EUcl g5j ANBgkghki Gdw0BAQUFADBIMB wCQYDVQQGEW] 1cz ESMBAGALUE
\ nCBMJdGVzdHNOYXRI MREWDWYDVQQHEWh0ZXNOY2| 0e TEPMAOGALUEChMGT3JhY2xI MSMi QYDVQQL
\ nExpUZXN0a2V51 GZvci BKSIMyTWII YWigdGvz d DERVASGALUEAXM d2Vi bGnaVWm BcNMIMMY; | 1\ nvDky M
DVAVWhgPM A1M ExM cwOTl wivk haMHOXx Cz AJBgNVBAYTANVZ MRI WEAYDVQQ Ewl 0ZXNOc3Rh
\ ndGUXETAPBgNVBAC TCHRI ¢3Rj aXR5MBwWDQYDVQQKEWZPcnFj hGUx| zAhBgNVBASTA R ¢3Rr ZXkg
\ nZnmBy| EpLUy BNYmvhbi BOZXNOMREWDWYDVQQDEWh3ZW sb2dp Yz CCASI wDQYJKoZI hvc NAQEBBQAD
\ nggEPADCCAQuCggEBAJt nzl qcnU+9d40 or OFI Of cgpl \ / ECF | bkTi cUj Pr 1Aef YI 8EDnl +U7hl DQ+
\ nPzr sndj At FbcmxghGuw+P7\ / zt | XBBql Vi LFWWEBMInGc 06Cc9swDeabv! of wNt or 2h@ \ / ml UPNx
\ nd9ExE2JQugJngr 5RPy Thv6mmxr VUW GCuHg 4l e Qv SOOXx ZFRWKHHWFv 81 Whaqd Y3haYHVD2DI NwS
\ nEPWJVAPZD6Kcv 58] QucHXAEREN5+WJ PHH7kkGIL2gv2LI Uvhwy 3r | v2Fbhy 7\ / MTCe XYk Uno5CXHO\ n
+nnAAWZ\ / MeuVxXdzEZv72kmA / oHnXj SZt EdAWdQIAETZ9Cxqwt 9Vt zs CAWEAATANBgk ghki GOwWOB
\ nAQUFAACCAQEAG\ / kHT71 | gFw3MAekgl oOgwgl 870Vt | Ay SORxg2YNWOZAGYQRbRI L5I xp4kbMYi ¢
\ nhBLSj R7aPXV0Juf wBEKBZMDbLf 053d60PEGWF7e6r oCcH Y\ / nBFd7BQFHWOVI BAZN9e1Hkav WNE

Manage Java Keystore Keystores 4-7

DELETE Trusted Certificate JKS Keystore Method

\ n4k3qnj gct 5BegM 9j hGr Sws5az33qyr Wer 8z1 Z3dhu52z4uGRAWVeRnBendPl k++60bi REr U3+v\nl [\/
JYsQInDr QuZl WG znkXnQubt 0JQUWFdoE2TUPFLr 3KTZi J+TyVh64wt bnWpt xr 11 Fj t Sf gPq
\' nOnzVI ZI yXTi \/ Rv7X+0DkRp29Hozs95¢c9HA93vnCYRaneN n7Kw==\n- - - - - END CERTI FI CATE---- -
"SI GNATURE" : " eAnH79s¢8i MKLZRKW h4v Q="
"Ext ensi ons": "{subj ect Keyl DExtension {oid = 2.5.29.14 critical = false, value =
329h98f 6h6225€92ca52513d3bf c43ee02aa9121}}"

}
4.6 DELETE Trusted Certificate JKS Keystore Method

Use the Delete method to delete a trusted certificate
(keyStore. TrustedCertificat eEnt ry) with the specified alias from the JKS
keystore. You cannot delete the key St or e. Pri vat eKeyEntry.

REST Request
DELETE /i daas/ pl at formi adm n/ v1/ keystore/{alias}

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

alias Alias of the trusted certificate entry to be deleted. Path

Response Body
Media types for the request or response body: appl i cati on/j son

The response body returns the status of the delete operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ pl atf orm admin/v1/
keystore/testalias

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

4-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

DELETE Trusted Certificate JKS Keystore Method

Example of Response Body

The following shows an example of the response body in JSON format.

"STATUS": "Succeeded"

Manage Java Keystore Keystores 4-9

DELETE Trusted Certificate JKS Keystore Method

4-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

5

View and Manage Keystore Service
Keystores

Before using the REST API to view and manage Keystore Service (KSS) keystores, you
need to understand how to access the REST resources and other important concepts.

See “About the REST API”.

For more information about KSS keystore management, see "Configuring the OPSS
Keystore Service for Message Protection" in Administering Web Services.

This chapter includes the following sections:

View and Manage KSS keystores Using REST Resources
POST New KSS Keystore Method

POST Import KSS Keystore Method

PUT Password Update KSS Keystore Method
POST Trusted Certificate KSS Keystore Method
GET Stripe KSS Keystores Method

GET Alias KSS Keystore Method

GET Trusted Certificate KSS Keystore Method
DELETE Trusted Certificate KSS Keystore Method
POST Secret Key KSS Keystore

GET Secret Key Properties KSS Keystore Method

DELETE Keystore Service KSS Keystore Method

5.1 View and Manage KSS keystores Using REST Resources

You can view and manage KSS keystores using a set of representational state transfer
(REST) resources, as summarized below.

Section Method Resource Path

POST New KSS Keystore Method PCST /i daas/ pl at f or mf admni n/ v1/ keyst or eservi ce
POST Import KSS Keystore PCST /i daas/ pl at f or mf admi n/ v1/ keyst or eser vi ce/
Method keystore

PUT Password Update KSS PUT /i daas/ pl at f orm adm n/ v1/ keyst oreservice
Keystore Method

View and Manage Keystore Service Keystores 5-1

POST New KSS Keystore Method

Section Method Resource Path
POST Trusted Certificate KSS PCST /i daas/ pl at f orm adm n/ v1/ keyst oreservi ce/
Keystore Method certificates

GET Stripe KSS Keystores Method ~ GET

GET Alias KSS Keystore Method GET

GET Trusted Certificate KSS CET
Keystore Method

DELETE Trusted Certificate KSS DELETE
Keystore Method

POST Secret Key KSS Keystore POST
GET Secret Key Properties KSS GET
Keystore Method

DELETE Keystore Service KSS DELETE
Keystore Method

/i daas/ pl at f orm adm n/ v1/ keyst oreservi ce/
{stri peNane}

/i daas/ pl at f or m adm n/ v1/ keyst oreservi ce/

al i as/ {stri peNane}/ {keystoreNane}/{entryType}

/i daas/ pl at f or mf admi n/ v1/ keyst or eser vi ce/
certificates

/i daas/ pl at f orm adm n/ v1/ keyst oreservi ce/
certificates

/i daas/ pl at f or m adm n/ v1/ keyst oreservi ce/
secret key

/i daas/ pl at f or mf admi n/ v1/ keyst or eser vi ce/
secret key

/i daas/ pl at f orm adm n/ v1l/ keyst oreservi ce

5.2 POST New KSS Keystore Method

Use the POST method to create a new Keystore Service (KSS) Keystore.

REST Request

POST /i daas/ pl atformf adm n/v1/ keyst oreservice

Request Body

Media types for the request or response body: appl i cati on/j son

The request body contains the details of the create request:

Attribute

Description

"keyst ore"

"perm ssi on"

" pV\d"

"stripe"

Name for the KSS keystore.

Boolean value that specifies whether to create a permission-

based keystore.
Password for the KSS keystore.

Name of the stripe to contain the KSS keystore.

Response Body

Media types for the request or response body: appl i cati on/j son

The response body returns the status of the create operation, including:

5-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST Import KSS Keystore Method

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username: password --data @reatekss.json -H Content-
Type: application/json http://myhost:7001/i daas/pl atform adm n/v1/keystoreservice

Example of Request Body
The following shows an example of the request body in JSON format.

{
"stripe" : "nyStripe",
"keystore" : "myKeystore",
"pwd" "nyPwd”,
"permission" : "false"
}
Note:

A password is required unless creating a permission-based keystore
("perm ssion" : "true").

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 201 Created

Example of Response Body
The following shows an example of the response body in JSON format.

{
}

5.3 POST Import KSS Keystore Method

Use the POST method to import a Keystore Service (KSS) keystore from a JKS keystore
file.

"STATUS": "Succeeded"

REST Request
PCOST /i daas/ pl atfornf adm n/ vl/ keyst oreservi ce/ keyst ore

View and Manage Keystore Service Keystores 5-3

POST Import KSS Keystore Method

Request Body
Media types for the request body: mul ti part/form dat a

The response body contains information about the import request, including:

Attribute Description

"keyAl i ases” Comma-separated list of aliases for the keys to be imported
from the keyst or eFi | e.

"keyPasswor ds" Comma-separated list of passwords for the keys to be
imported from the keyst or eFi | e.

"keystoreFile" Name of a valid local JKS keystore file
"keyst or eName" Name for the JKS keystore.
"keyst or ePasswor d" Password for the local keystore file that is being imported

and the keystore entry, if password-protected.
"keyst oreType" Keystore type. This value must be set to JKS.

" per mi ssi on” Boolean value that specifies whether to import as a
permission-based keystore.

"stri peNane" Name of the stripe.

Response Body
Media types for the response body: appl i cati on/j son

The response body contains information about the import operation, including:

Attribute Description

"alias n" List of keystores in the stripe, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
keystore.

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

"ERROR_M5G' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example

The following example shows how to import a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username: password -H Content-Type: mul tipart/formdata --form
"stripeNane=nyStripe" --form"keystoreFile=@lientkeystore" --form
"keyst or eNane=nyKeyst ore" --form "keyst orePasswor d=nyPwd" --form "keystoreType=JKS"

5-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

PUT Password Update KSS Keystore Method

--form"keyAliases=client" --form"keyPasswords=nyPwd2" --form "pernission=fal se"
http://myhost: 7001/ i daas/ pl at f or nf adni n/ v1/ keyst or eservi ce/ keystore

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 201 Created

Example of Response Body

The following shows an example of the response body in JSON format.

{
"STATUS": " Succeeded",
" SUCCESS_MSG': "Aliases:client inported successfully",
"alias 1":"client"

}

5.4 PUT Password Update KSS Keystore Method

Use the PUT method to update the password for a Keystore Service (KSS) keystore.

REST Request

PUT /i daas/ pl atfornif adni n/ vl/ keyst oreservice

Request Body
Media types for the request body: appl i cati on/j son

The response body contains information about the Load Balancer patches, including:

Attribute Description

"keystore" Name of the KSS keystore.
"newpass" New password for the keystore.
"ol dpass” Old password for the keystore.
"stripe" Name of the stripe.

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the update operation, including;:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

View and Manage Keystore Service Keystores 5-5

POST Trusted Certificate KSS Keystore Method

cURL Example

The following example shows how to import a KSS keystore by submitting a PUT
request on the REST resource using cURL.

TESTED

curl -i -X PUT -u usernane: password --data @updatekss.json -H Content-
Type: application/json http://myhost:7001/i daas/ pl atform adm n/v1/keystoreservice

Example of Request Body
The following shows an example of the request body in JSON format.
{
"stripe" : "nyStripe",
"keystore" . "nykssstore",
"ol dpass" : "nmyPwd",
"newpass" : "nmyNewPwd"
}

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.

{
}

5.5 POST Trusted Certificate KSS Keystore Method

Use the POST method to Import a trusted certificate into a Keystore Service (KSS)
keystore.

"STATUS": "Succeeded"

REST Request

POST /i daas/ pl atfornf adm n/vl/ keystoreservicel/certificates

Request Body
Media types for the request body: appl i cati on/j son

The response body contains information about the import request, including:

Attribute Description
"keyAli as" Alias for the trusted certificate.
"keystoreEntry" Base64-encoded certificate.

"keyst oreEntryType" Keystore entry type. Valid values include: Certi fi cate,
TrustedCertificate,or SecretKey.

"keyst or eName" Name of the KSS keystore.

"keyst or ePasswor d" Password for the KSS keystore.

5-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST Trusted Certificate KSS Keystore Method

Attribute Description

"stripeNane" Name of the stripe.

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Failed".

" SUBJECT_DN' Subject DN list that was imported.

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u usernane: password --data @nportcertkss.json -H Content-
Type: appl i cation/json http://nyhost:7001/i daas/ pl at f ormf admi n/ v1/ keyst or eservi ce/
certificates

Example of Request Body
The following shows an example of the request body in JSON format.

{

"keyAlias" : "nyAias",

"keystoreEntry":
"M | C7DCCAqqgAW BAgl Eal hBSj ALBgcghkj OOAQDBQAWSDEKMAGGALUEBhMBe TEKMAgGAL1UECBMVB
\ ne TEKMAg GA1UEBx MBe TEKMAG GAL UECh MBe TEKMAG GAL UECK VBe TEKMAG GAT UEAX MBe TAe FwOx NDA3\ nVDIVk M
TAWMIZaFwOx NDEWVDEX MTAWMT ZaMEgX Cj Al BgNVBAYTAXKX G Al BgNVBAgTAXkxCj Al BgNV
\ nBACTAXkxCj Al BgNVBAoTAXkxCj Al BgNVBASTAXkxCj Al BgNVBAMIAXkwggG3M | BLAYHKoZI zj gE
\ nATCCARSBCgYEA/ X9TgR11Ei | S30qcLuzk5/ YRt 11 870QAwx4/ gLZRIm FXUAI Uf t ZPY1Y+r / F9bow
\ N9subVW¥ Xg TUAHTRv8nizgt 2uZUKVWkn5/ 0BHsQ sJPubnX/ r f GG g7V+f GgKYVDWT7g/ bTxR7DAj VU
\ nELoVKTL2df QuK2HXKu/
yI gMZndFI Acc CFQCXYFCPFSM_z LKSuYKi 64QL8Fgc9IQKBgQD34aCF1ps9\ n3su8qlw2uFe5eZSvu/
0660L5VOW.PQeCZ1FZV4661F PSnEHEI GAt EKW SPoTCgWE7f PCTKM Kbh
\ nPBZ6i 1R8] Sj go64eK70nmdZFuo38L+i E1YvH7YnoBJDvMpPG+qFGQ ai D3+Fa528Gkot mXoB7VSVKk\ nAUwW7/
$9JKgOBhAACgYBr vzkj ozmv6t 6 TOGNJES1R3ypRsBs8VLX2g3Got Hd7Kht / TG 4Hi kel ZDd
\ nuLOt 96R5Q4A3sr OgSI Z
+01 NRs1ER8Y1@37LyJNf ygYn5KgLBl N9bhSYAf cul pj wi XGvf LQGABY D7\ nt r 4PSvZQx 18K6p68HUCHh
+ XQT9+7n3ZUl Bz H5aMhMB8WHQYDVROOBBYEFPdMpc EBbYSCYMIJi E4r
\ ncxf 7Me4MAs GBy GSMA4BAMFAAMY ADAS AhQH/ GLi xr EaWAG3I GMaf kHgXxnzhwt UnBeSct gma QB
\ nvKaYOE6f YJzcp5c=",

"keystoreEntryType" : "TrustedCertificate",

"keystoreNanme" : "nyKeystore",

View and Manage Keystore Service Keystores 5-7

GET Stripe KSS Keystores Method

"stripeNane" : "nyStripe",
"keyst orePassword" : "nyPwd"
}

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
"STATUS": "Succeeded"

"SUBJECT_DN': "CN=y, Oy, Oy, L=y, ST=y, CG=y"
}

5.6 GET Stripe KSS Keystores Method

Use the GET method to return all Keystore Service (KSS) keystores for a stripe.

REST Request
CET /i daas/pl atform adm n/vl/ keyst oreservice/{stri peNane}

Parameters

The following table summarizes the GET request parameters.

Name Description Type
stri peNane Name of stripe for which you want to view all KSS Path
keystores.

Response Body
Media types for the request or response body: appl i cati on/j son

The response body contains information about the certificate, including:

Attribute Description

"keystore n" List of keystores in the stripe, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
keystore.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f or mf admi n/ v1/
keystoreservice/ nyStripe

Example of Response Header

5-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

GET Alias KSS Keystore Method

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body
The following shows an example of the response body in JSON format.

{
"keystore 1":"trust",
"keystore 2":"castore"

}
5.7 GET Alias KSS Keystore Method

Use the GET method to view the alias for the Keystore Service (KSS) keystore.

REST Request

CET /i daas/ pl at form adm n/vl/ keystoreservice/alias/{stripeNane}/
{keyst oreNane}/{entryType}

Parameters

The following table summarizes the GET request parameters.

Name Description Type

entryType Keystore type. Valid values include Certi fi cate, Path
TrustedCertificate,or Secret Key.

keyst or eNane Name of the keystore. Path

stri peNane Name of the stripe. Path

Response Body
Media types for the request or response body: appl i cati on/j son

The response body contains information about the certificate, including:

Attribute Description

"keystore n" List of keystore aliases in the stripe where n serves as an
index that starts at 1 and is incremented by 1 for each
additional property.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f or mf admi n/ v1/
keystoreservice/alias/myStripel nyKeystore/ TrustedCertificate

Example of Response Header

View and Manage Keystore Service Keystores 5-9

GET Trusted Certificate KSS Keystore Method

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K
Example of Response Body

The following shows an example of the response body in JSON format.

{
"keystore 1":"nyAlias",
}

5.8 GET Trusted Certificate KSS Keystore Method

Use the GET method to view trusted certificates in the Keystore Service (KSS)

keystore. If the keystore is password-protected, you must provide a Base64-encoded
header value for the keystore password.

REST Request

CGET /i daas/ pl at form adm n/v1/ keystoreservice/certificates

Parameters

The following table summarizes the GET request parameters.

Name Description Type

keyAl i as Alias for trusted certificate. Query

keyst oreEntryTyp Type of keystore entry. Valid values include Query

e Certificate, TrustedCertificate,or
CertificateChain.

keyst or eNane Name of the keystore. Query

stri peNane Name of the stripe. Query

Response Body

Media types for the request or response body: appl i cati on/j son

The response body contains information about the certificate, including:

Attribute Description
" CONTENT" Contents of the Base64-encoded certificate.
" Ext ensi ons" Optional extensions that are used to issue a certificate for a

specific purpose. Each extension includes the following:
* Object identifier (oid) that uniquely identifies it

¢ Flag indicating whether the extension is critical

* Set of values

" | SSUER_DN' List of trusted distinguished names.

5-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

GET Trusted Certificate KSS Keystore Method

Attribute Description

"NOT_AFTER" Date the certificate expires.

" NOT_BEFORE" Date the certificate is activated.

" SERI AL_NO' Serial number of the JKS keystore.
"SI GNATURE" Base64-encoded signature key.
"SI GNI NG_ALGORI THV! Signing algorithm for the alias.

" SUBJECT_DN' Subject distinguished names list.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password -H keyst or ePasswor d: cHIkM== http://myhost: 7001/
i daas/ pl at f or ml admi n/ v1/ keyst or eservi ce/

certificates?"stri peName=nyStri pe&keyst or eNane=nyKeyst or e&keyAl i as=cl i ent &eyst or eEnt
ryType=Certificate"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{

"SUBJECT_DN': " CN=y, Oy, O=y, L=y, ST=y, C=y",

"I SSUER_DN': " CN\ey, Oy, O=y, L=y, ST=y, C=y",

"NOT_BEFORE": "Fri Jul 25 02:45:11 PDT 2014",

"NOT_AFTER": "Thu Cct 23 02:45:11 PDT 2014",

" SERI AL_NO': "982191050",

"SI GNING_ALGORI THM': " 1. 2. 840. 10040. 4. 3",

" CONTENT": "----- BEG N CERTI FI CATE- - - - -
\ nM | C7DCCAqqgAW BAgl EQosLyj ALBgcghkj OQAQDBQAWS
EKMAgGALUEBhMBCj EKMAgGALUECBMB\ ncj EKMAGGALUEBX MBcj EKMAGGALUEChVBCj EKMAGGALUECKM
¢j EKMAgGALUEAXMBUj AeFwOxNDA3\ nM UnOTQLMTFaFwOx NDEWN MvOTQLMTFaMEgxCj Al BgNVBAYTA
I xG Al BgNVBAGTAXI xCj Al ByNVA nBACTAXI xCj Al BgNVBAOTAXI xGj Al BgNVBASTAXI xG Al BgNVBAM
AVI wggG3M | BLAYHK0ZI zj gE\ nATCCARBCGYEA\ / X9TgRL1Ei | S30qcLuzk5\ / YRt 11 870Qawx4\ / gL
RIm FXUAI Uf t ZPY1Y+r\/ F9bowh n9subVW XgTUAHTRv8nizgt 2uZUKVKkn5\ / 0BHsQ sJPubnX\/ r f GG
1 g7V+f GgKYVDWT7g\ / bTXR7DAj VA nELoVK TL2df QuK2HXKU\ / yI gMZndFI Acc CFQCXYFCPFSMLzLKS
YKi 64QL8FgcIKBgQD34aCF1ps9\ n3su8qlw2uFe5eZSvul / 0660L5VOWLPQeCZ1FZV4661FI PSnEHE
GAt EKW SPoTCgVE7f PCTKMyKbh\ nPBZ6i 1R8] Sj go64eK7OmiZFuo38L+i E1YvH7YnoBJDvMpPGHFG
i ai D3+Fa5Z8Gkot mXoB7VSVk\ nAUW7\ / s9JKgOBhAACg YA] hpZybXj 6r | XDow8sr nSFE9dZJJpCKaQV
ACagQogePV+xI qPCl DOoi QI\ nuvuUCGHer Dr ThCL\ / W§5Uj 1+Tnk SKTy0qYxmQog56xALa47np9TKt gt
4\y8eUlor akGAl rj Nt \ / EgR\ nf 0675n+q! NkKXKpcxaC cupRCYPKPXI nT4nt y KMhiVB8WHQYDVROOBB
EFDKbnPa2! | 6Syl JRPTv8\ nQ+4CqpEhMAs GBy q GSMA4BAMFAAMY ADAs AhQbkm aUGBQDR5XUI YC74p
\/ FBOM UGx51 ¢5Y01ppo\ nvK3UgL7MBE3eCf c=\n-- - - - END CERTI FI CATE-----

"SI GNATURE" : FEZN2| 4SPFEKS5] t 2QZRo5Q==",

View and Manage Keystore Service Keystores 5-11

DELETE Trusted Certificate KSS Keystore Method

"Extensions":"{subj ect Keyl DExtension {oid = 2.5.29.14 critical = false, value =
329h98f 606225e€92¢a52513d3bf c43ee02aa9121} } "

}

5.9 DELETE Trusted Certificate KSS Keystore Method

Use the Delete method to delete a certificate from a Keystore Service (KSS) keystore. If
the keystore is password-protected, you must provide Base64-encoded header values
for the keystore and key passwords.

REST Request

DELETE /i daas/ pl at for i adm n/ v1/ keystoreservice/certificates

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

keyAl i as Alias for the certificate in the KSS keystore. Query
keyst or eNanme Name of the keystore. Query
stri peNane Name of stripe. Query

Response Body
Media types for the request or response body: appl i cati on/j son

The response body returns the status of the import operation, including;:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_M5G' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u usernane: password -H keyst or ePasswor d: cHlkM== -H
keyPasswor d: bXI Q2Qy http://nyhost: 7001/ i daas/ pl at f or m adni n/ v1/ keyst or eser vi ce/
certificates?"stri peName=nmyStri pe&keyst or eNane=nyKeyst or e€keyAl i as=nyAl i as"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

5-12 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST Secret Key KSS Keystore

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.

"STATUS": "Succeeded"
}

5.10 POST Secret Key KSS Keystore

Use the POST method to create a secret key used in symmetric encryption/decryption
for a KSS keystore.

REST Request
POST /i daas/ pl atform adm n/v1l/ keyst oreservi ce/ secret key

Request Body
Media types for the request body: appl i cati on/j son

The request body contains the details of the create request:

Attribute Description

"al gorithnt Controls the cryptographic characteristics of the algorithms
that are used when securing messages.

"keyAl i as" Alias for the secret key.

"keyPasswor d" Password for the secret key.

"keySi ze" Size measured in bits of the of the key used in cryptographic
algorithm.

"keyst or eName" Name for the KSS keystore.

"keyst or ePasswor d" Password for the KSS keystore.

"stripeNane" Name of the stripe.

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including;:

Attribute Description
" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.
"ERROR_M5G' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.
" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

View and Manage Keystore Service Keystores 5-13

GET Secret Key Properties KSS Keystore Method

cURL Example

The following example shows how to create a secret key by submitting a POST request
on the REST resource using cURL.

TESTED
curl -i -X POST -u username: password --data @ecretkey.json -H Content-
Type: application/json http://myhost: 7001/ i daas/ pl atform adm n/v1/keyst oreservice/
secretkey
Example of Request Body
The following shows an example of the request body in JSON format.
{
"stripeName" : "nmyStripe",
"keystoreNane" : "nyKeystore",
"keyAlias" : "nyKeyAlias",
"keySi ze" : "56",
“algorithmt : "DES',
"keyst orePassword" : "nyPwd",
"keyPassword" : "nyKeyPwd"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body
The following shows an example of the response body in JSON format.

{
}
5.11 GET Secret Key Properties KSS Keystore Method

Use the GET method to view the secret key properties for a KSS keystore. If the
keystore is password-protected, you must provide Base64-encoded header values for
the keystore and key passwords.

"STATUS": "Succeeded"

REST Request

CET /i daas/pl atfornf adm n/vl/ keyst oreservi cel/ secret key

Parameters

The following table summarizes the GET request parameters.

Name Description Type

keyAl i as Alias of the secret key. Query
keyst or eName Name of the keystore. Query
stri peNane Name of the stripe. Query

5-14 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

DELETE Keystore Service KSS Keystore Method

Response Body
Media types for the request or response body: appl i cati on/j son

The response body contains information about the certificate, including;:

Attribute Description

"Property n" List of secret key properties, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
property.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password -H keyst orePasswor d: bXl Qd2Q= -H
keyPasswor d: bXl LZXI Qd2Q= http://nyhost: 7001/ i daas/ pl at f or ml adm n/ v1/ keyst or eservi ce/
secret key?"stri peNane=nySt ri pe&keyst or eNane=nyKeyst or e&keyAl i as=myKeyAl i as"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

{
}

5.12 DELETE Keystore Service KSS Keystore Method

Use the Delete method to delete a Keystore Service (KSS) keystore. If the keystore is
password-protected, you must provide Base64-encoded header values for the keystore
password.

“Property 1":"DES"

REST Request
DELETE /i daas/ pl at f or mf admi n/ v1/ keyst or eservice

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type
keyst or eNane Name of the keystore. Query
stri peName Name of the stripe. Query

View and Manage Keystore Service Keystores 5-15

DELETE Keystore Service KSS Keystore Method

Response Body
Media types for the request or response body: appl i cati on/j son

The response body returns the status of the delete operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u usernane: password -H keyst orePasswor d: bXl Qd2Q= http://myhost:
7001/ i daas/ pl at f or ml admi n/ v1/
keyst oreservi ce?"stri peName=nySt ri pe&keyst or eNane=nyKeyst or e"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 204 No Content

5-16 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

6

Manage Token Issuer Trust Configurations

Before using the REST API to view and manage token issuer trust configurations, you
need to understand how to access the REST resources and other important concepts.

For more information, see “About the REST API”.

For more information about token issuer trust management, see "Defining Trusted
Issuers and a Trusted DN List for Signing Certificates" in Administering Web Services.

This chapter includes the following sections:

View and Manage Token Issuer Trust Configurations Using REST Resources
POST TrustDocument Name Method

POST Domain Trusted Issuers and Distinguished Name Lists Method

POST Document Trusted Issuers and Distinguished Name Lists Method

GET All Trusted Issuer and Distinguished Name Lists Method

GET Specified Document Trusted Issuer and Distinguished Name Lists Method
POST Token Attribute Rule Distinguished Name Method (Domain Context)
POST Token Attribute Rule Distinguished Name Method (Document Context)
GET All Token Attribute Rules Method

GET Specified Document Token Attribute Rules Method

Import TrustDocument Name Configurations Method

GET TrustDocument Method

DELETE Trust Document Method

6.1 View and Manage Token Issuer Trust Configurations Using REST

Resources

You can view and manage token issuer trust configurations using a set of
representational state transfer (REST) resources, as summarized below.

Section

Method Resource Path

POST TrustDocument Name Method POST /i daas/ webservi ce/ adm n/ v1/trust docunent

POST Domain Trusted Issuers and POST /i daas/ webservi ce/ adm n/vl/trust/issuers
Distinguished Name Lists Method

Manage Token Issuer Trust Configurations 6-1

POST TrustDocument Name Method

Section Method Resource Path

POST Document Trusted Issuers and POST /i daas/ webservi ce/ adm n/vl/trust/issuers
Distinguished Name Lists Method

GET All Trusted Issuer and GET /i daas/ webservi ce/ adm n/vl/trust/issuers
Distinguished Name Lists Method

GET Specified Document Trusted Issuer ~ GET /i daas/ webser vi ce/ adnmi n/v1l/trust/issuers
and Distinguished Name Lists Method

POST Token Attribute Rule PCST /i daas/ webservi ce/ adm n/v1l/trust/token
Distinguished Name Method (Domain

Context)

POST Token Attribute Rule PCOST /idaas/webservice/admin/v1/trust/token
Distinguished Name Method (Document

Context)

GET All Token Attribute Rules Method CET /i daas/ webservi ce/ adm n/v1l/trust/token
GET Specified Document Token CET /idaas/webservice/admin/v1/trust/token

Attribute Rules Method

Import TrustDocument Name PCST /i daas/ webser vi ce/ admi n/ v1/trustdocument/
Configurations Method i nport

GET TrustDocument Method CET /i daas/ webservi ce/ adm n/v1l/trustdocunent
DELETE Trust Document Method DELETE /i daas/ webservi ce/ adm n/v1/trustdocunent

6.2 POST TrustDocument Name Method

Use the Post method to create a trusted issuer document.

REST Request

PGST /i daas/ webservi ce/ adm n/v1/trustdocunent

Parameters

The following table summarizes the POST request parameters.

Name Description Type
"di spl ayNane" Display name for the document. Query
"docurent Name" Name of the document. Query

Response Body
Media types for the request or response body: appl i cati on/j son

The response body returns the status of the import operation, including;:

6-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST Domain Trusted Issuers and Distinguished Name Lists Method

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or
"Fai |l ed".

cURL Example
TESTED

The following example shows how to create a trusted issuer document by submitting
a POST request on the REST resource using cURL.

curl -i -X POST -u username: password http://myhost: 7001/ i daas/ webservi ce/ admi n/ v1/
t rust docunent ?" document Nane=my Tr ust Docunent &di spl ayNanme=nyTr ust Document "

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.

"STATUS": "Succeeded",
"Result": "New Token |ssuer Trust document named "myTrust Docunent" created."

}

6.3 POST Domain Trusted Issuers and Distinguished Name Lists Method

Use the POST method to create trusted issuers and distinguished name (DN) lists for
signing certificates in a domain context (that is, it applies to the entire domain).

REST Request

PCST /i daas/ webservi ce/ adm n/vl/trust/issuers

Request Body
Media types for the request body: appl i cati on/j son
The request body contains the details of the add request:

Manage Token Issuer Trust Configurations 6-3

POST Domain Trusted Issuers and Distinguished Name Lists Method

Attribute Description Required

"dn" List of DN values to be added to the Yes
trusted issuer. For each DN, use a string
that conforms to RFC 2253, as described at
the following URL: ht t p: //
ww. i etf.org/rfc/rfc2253.1txt

"issuer" Groups information about a trusted issuer. Yes

" - name" Name of the trusted issuer. For example, Yes
www. your conpany. com The default
value for the predefined SAML client
policies is www. or acl e. com

"jW -trusted-dns" Groups information about JSON Web No
Token (JWT) trusted issuers.

"sant - hok-trusted-dns" Groups information about SAML holder- ~ No
of-key trusted issuers.

"sam -sv-trusted-dns" Groups information about SAML sender No
vouches trusted issuers.

"sam -trusted-dns" Groups the trusted issuers and DN lists. Yes

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example
TESTED

The following example shows how to create a trusted issuers and DN lists by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username: password --data @reatetrust.json -H Content-
Type: application/json http://myhost: 7001/ i daas/ webservice/ adm n/vl/trust/issuers

Example of Request Body
The following shows an example of the request body in JSON format.

6-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

POST Document Trusted Issuers and Distinguished Name Lists Method

{
"sanl -trusted-dns":
{
"sanl - hok-trusted-dns":
{
"issuer": |
{
"-name": "ww. oracl e. cont,
"dn": ["wsl",]
}
]
}
"sanl -sv-trusted-dns":
{
"issuer": |
{
"-name": "ww. oracle. conf,
"dn": ["ws2",]
}
]
H
"jwt-trusted-issuers":
{
"issuer": |
{
"-npame": "ww. oracle. conf,
"dn": ["CNeorakey, OU=Orakey, O=Oracle, C=US',]
}
]
}
}
}

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body
The following shows an example of the response body in JSON format.

{
}

"STATUS": "Succeeded",

6.4 POST Document Trusted Issuers and Distinguished Name Lists
Method

Use the POST method to create trusted issuers and distinguished name (DN) lists for
signing certificates in a document context (that is, it applies to a specified document).
The trusted issuers will be stored in the specified trusted issuers document.

REST Request

POST /i daas/ webservi ce/ adm n/vl/trust/issuers/{docunent Nane}

Parameters

The following table summarizes the POST request parameters.

Manage Token Issuer Trust Configurations 6-5

POST Document Trusted Issuers and Distinguished Name Lists Method

Name Description Type

docunent Nane Name of trusted issuer document. For information Query
about creating a trusted issuer document, see “POST
TrustDocument Name Method”.

Request Body
Media types for the request body: appl i cati on/j son
The request body contains the details of the add request:

Attribute Description Required

"dn" List of DN values to be added to the Yes
trusted issuer. For each DN, use a string
that conforms to RFC 2253, as described at
the following URL: ht t p: //
www. i etf.org/rfc/rfc2253. txt

"issuer" Groups information about a trusted issuer. Yes

" - nane" Name of the trusted issuer. For example, Yes
www. your conpany. com The default
value for the predefined SAML client
policies is www. or acl e. com

"jwt-trusted-dns"” Groups information about JSON Web No
Token (JWT) trusted issuers.

"sant - hok-trusted-dns" Groups information about SAML holder- ~ No
of-key trusted issuers.

"sam - sv-trusted-dns" Groups information about SAML sender No
vouches trusted issuers.

"sam -trusted-dns" Groups the trusted issuers and DN lists. Yes

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

6-6 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

POST Document Trusted Issuers and Distinguished Name Lists Method

cURL Example
TESTED

The following example shows how to create trusted issuers and DN lists by
submitting a POST request on the REST resource using cURL

curl -i -X PCST -u usernanme: password --data @reatetrust.json -H Content-

Type: application/json http://nyhost:7001/i daas/ webservi ce/ adm n/v1/trust/issuers/
mydocunent

Example of Request Body

The following shows an example of the request body in JSON format.
{

"sanl -trusted-dns":

{
"sanl - hok-trusted-dns":
{
"issuer": [
{
"-name": "www. oracl e. conf,
“dn": ["wisl",]
}
]
h
"sanl -sv-trusted-dns":
{
"issuer": [
{
"-nane": "www. oracle.cont,
“dn": ["ws2",]
1
]
H
"jwt-trusted-issuers":
{
"issuer": [
{
"-nane": "www. oracle.cont,
"dn": ["CN=orakey, OU=Orakey, O=Oracle, C=US",]
1
]
1
1

}

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.

{
}

"STATUS": "Succeeded",

Manage Token Issuer Trust Configurations 6-7

GET All Trusted Issuer and Distinguished Name Lists Method

6.5 GET All Trusted Issuer and Distinguished Name Lists Method

Use the GET method to view a trusted issuer and its distinguished name (DN) lists for
all domain documents.

REST Request

CGET /i daas/ webservi ce/ adm n/vl/trust/issuers

Response Body
Media types for the request or response body: appl i cati on/j son

The response body contains information about the trusted issuer and DN lists,

including:

Attribute Description

"dn" List of DN values to be added to the trusted issuer.

"issuer" Groups information about a trusted issuer.

"-name" Name of the trusted issuer.

"jwt-trusted-dns"” Groups information about JSON Web Token (JWT)
trusted issuers.

"sant - hok-trusted-dns" Groups information about SAML holder-of-key trusted
issuers.

"sam -sv-trusted-dns" Groups information about SAML sender vouches trusted
issuers.

"sam -trusted-dns" Groups the DN lists.

cURL Example
TESTED

The following example shows how to view a trusted issuer and its DN lists by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl atform adm n/v1l/trust/
i ssuers

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.

{

"sam -trusted-dns":

{

"sam - hok-trusted-dns":

{

6-8 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

GET Specified Document Trusted Issuer and Distinguished Name Lists Method

"issuer": |
{
"-pame": "ww. oracle.cont,
"dn": ["wsl",]
}
]
}
"sanl -sv-trusted-dns":
{
"issuer": |
{
"-npame": "ww. oracle. conf,
"dn": ["ws2",]
}
]
H
"jwt-trusted-issuers":
{
"issuer": |
{
"-npame": "ww. oracle. conf,
"dn": ["CNeorakey, OU=Orakey, O=Oracle, C=US',]
}
]
}

6.6 GET Specified Document Trusted Issuer and Distinguished Name
Lists Method

Use the GET method to view a trusted issuer and its distinguished name (DN) lists
based on the document name provided.

REST Request

CGET /i daas/webservi ce/ adm n/v1l/trust/issuers/{docunent Nane}

Parameters

The following table summarizes the GET request parameters.

Name Description Type
docunent Nare Name of document for which you want to view issuer ~ Path
and DN lists.

Response Body
Media types for the request or response body: appl i cati on/j son

The response body contains information about the trusted issuer and DN lists,

including:
Attribute Description
"dn" List of DN values to be added to the trusted issuer.

Manage Token Issuer Trust Configurations 6-9

GET Specified Document Trusted Issuer and Distinguished Name Lists Method

Attribute Description

"issuer" Groups information about a trusted issuer.

"-name" Name of the trusted issuer.

"jwt-trusted-dns"” Groups information about JSON Web Token (JWT)
trusted issuers.

"sam - hok-trust ed-dns" Groups information about SAML holder-of-key trusted
issuers.

"sanl - sv-trusted-dns"” Groups information about SAML sender vouches trusted
issuers.

"sanl -trust ed-dns" Groups the DN lists.

cURL Example
TESTED

The following example shows how to view a trusted issuer and its DN lists by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl at f ornf admi n/v1/trust/
i ssuers/ mydocunent

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{

"sanl -trusted-dns":
{
"sanl - hok-trusted-dns":
{
"issuer": |
{
"-panme": "ww. oracle.conf,
"dn": ["wsl",]
}
]
}
"sanl -sv-trusted-dns":
{
"issuer": |
{
"-name": "ww. oracle. conf,
"dn": ["ws2",]

]
1

"jwt-trusted-issuers":

{

6-10 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST Token Attribute Rule Distinguished Name Method (Domain Context)

"issuer": |
{

"-nane": "www. oracle. cont,

"dn": ["CNeorakey, OU=Crakey, O=Oracle, C=US',]
}

}

6.7 POST Token Attribute Rule Distinguished Name Method (Domain
Context)

Use the POST method to create a token attribute rule for a trusted distinguished name
(DN) for a domain context (that is, it applies to the entire domain). This operation can
be performed by the REST service or client. Only token attribute mapping is
supported on the client side.

REST Request

PCST /i daas/ webservi ce/ adm n/ v1l/trust/token

Request Body
Media types for the request body: appl i cati on/j son
The request body contains the details of the add request:

Attribute Description

"attributes” Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, set this value to a trusted DN for
which you are configuring an attribute rule. Use a string
that conforms to RFC 2253, as described at the following
URL:http://ww.ietf.org/rfc/rfc2253.txt

On the client side, set this value to a URL of the domain
hosting the targeted services using the following format:
http(s)://host orhttp(s)://host/root.For
example, if you set this value to ht t ps: //

messagi ng. us2. cont , then the attribute rule applies
to all service invocations with the service URL of the
form ht t ps: // messagi ng. us2. conf <pat h>

"filter" Defines the constraint values for trusted users and
attributes.

Note: This attribute is not applicable on the client side.
" mappi ng" Defines the mapping attributes for trusted users.

" - nanme" Name of the attribute rule.

Note: This attribute is not applicable on the client side.

"name-id" Defines the users that are accepted for the trusted DN.

Manage Token Issuer Trust Configurations 6-11

http://www.ietf.org/rfc/rfc2253.txt

POST Token Attribute Rule Distinguished Name Method (Domain Context)

Attribute Description

"token-attribute-rule" Groups information about a single token attribute rule.
"tokn-attribute-rul es" Groups information about all token attribute rules.
"user-attribute” Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user - mappi ng-attri bute” Defines the user mapping attribute that the trusted DN
can assert.

"val ue" Defines values for the constraint filter attribute. This
value can be a full name or name pattern with a wildcard
character (*), such as " your Tr ust ed* " . Multiple values
must be separated by a comma.

Note: This attribute is not applicable on the client side.

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

CcURL Example
TESTED

The following example shows how to create a token attribute rule for a trusted DN by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username: password --data @reaterule.json http://myhost: 7001/
i daas/ webservi ce/ adni n/v1/trust/token

Example of Request Body - Service Side

The following shows an example of the request body in JSON format for creating a
token attribute rule for a trusted DN on the service side.

{

"token-attribute-rules":

{

"token-attribute-rule":

(
{

"-dn": "cn=orcladmn, o=oracl e",
"name-id":{

6-12 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST Token Attribute Rule Distinguished Name Method (Domain Context)

"filter":
{
"value":["filterl"]
},
"mappi ng":
{
"user-attribute": "val 3",
"user-mapping-attribute": "val 4"
}
},
"attributes":
[
{
"-nanme": "tenant1",
"attribute":
{
"filter":
{
"val ue": [
"filterl",
"filter2"
]

},

" mappi ng": {
"user-attribute": "val 1",
"user-mapping-attribute": "val 2"

}

}
}
]

}

Example of Request Body - Client Side

The following shows an example of the request body in JSON format for creating a
token attribute rule on the client side.

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "https://messaging.us2.com",
"nane-id":{
" mappi ng":
{
"user-mapping-attribute":"mail"
}
b
}
]
"token-attribute-rule":
[
{
"-dn": "https://messaging.us2.con nysvcl nstancel-acne/",
"nane-id":{
" mappi ng":
{

Manage Token Issuer Trust Configurations 6-13

POST Token Attribute Rule Distinguished Name Method (Document Context)

"user-nmapping-attribute": "uid"

}

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body
The following shows an example of the response body in JSON format.

{
}

6.8 POST Token Attribute Rule Distinguished Name Method (Document
Context)

"STATUS": "Succeeded"

Use the POST method to create a token attribute rule for a trusted distinguished name
(DN) for a document context (that is, it applies to a specified document). This
operation can be performed by the REST service or client. Only token attribute
mapping is supported on the client side.

REST Request

POST /i daas/webservi ce/ adm n/v1/trust/token/ {docunent Nane}

Parameters

The following table summarizes the POST request parameters.

Name Description Type

docunent Nane Name of document for which you want to create a Path
token attribute rule.

Request Body
Media types for the request body: appl i cati on/j son
The request body contains the details of the add request:

Attribute Description

“attributes"” Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

6-14 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

POST Token Attribute Rule Distinguished Name Method (Document Context)

Attribute

Description

" dnu

"filter"

" n.appl ngu

"-name"

"nane-id"
"token-attribute-rule"
"tokn-attribute-rul es"

"user-attribute"

"user-mappi ng-attri bute"

"val ue"

On the service side, set this value to a trusted DN for
which you are configuring an attribute rule. Use a string
that conforms to RFC 2253, as described at the following
URL:http://ww.ietf.org/rfc/rfc2253.txt

On the client side, set this value to a URL of the domain
hosting the targeted services using the following format:
http(s)://host orhttp(s)://host/root.For
example, if you set this value to ht t ps: //

messagi ng. us2. cont , then the attribute rule applies
to all service invocations with the service URL of the
form ht t ps: // nessagi ng. us2. contf <pat h>

Defines the constraint values for trusted users and
attributes.

Note: This attribute is not applicable on the client side.
Defines the mapping attributes for trusted users.

Name of the attribute rule.

Note: This attribute is not applicable on the client side.
Defines the users that are accepted for the trusted DN.

Groups information about a single token attribute rule.
Groups information about all token attribute rules.

Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

Defines the user mapping attribute that the trusted DN
can assert.

Defines values for the constraint filter attribute. This
value can be a full name or name pattern with a wildcard
character (*), such as " your Tr ust ed* " . Multiple values
must be separated by a comma.

Note: This attribute is not applicable on the client side.

Response Body

Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including;:

Attribute Description
" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the

error message.

Manage Token Issuer Trust Configurations 6-15

http://www.ietf.org/rfc/rfc2253.txt

POST Token Attribute Rule Distinguished Name Method (Document Context)

Attribute Description
" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example
TESTED

The following example shows how to create a token attribute rule for a trusted DN by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username: password --data @reaterule.json http://myhost: 7001/
i daas/ webservi ce/ adni n/v1/trust/token/ mydocunent

Example of Request Body - Service Side

The following shows an example of the request body in JSON format for creating a
token attribute rule for a trusted DN on the service side.

{
"token-attribute-rul es":
{
"token-attribute-rule":
[
{
“-dn": "cn=orcl adm n, o=or acl e",
"name-id":{
"filter":
{
"value":["filterl"]
b
" mappi ng":
{
"user-attribute": "val 3",
"user-mapping-attribute": "val 4"
}
b
"attributes":
[
{
"-name": "tenantl",
"attribute":
{
"filter":
{
"value": [
“filterl",
"filter2"
]
b
" mappi ng": {
"user-attribute": "val 1",
"user-mapping-attribute": "val 2"
}
}
}
]
}

6-16 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

GET All Token Attribute Rules Method

}

Example of Request Body - Client Side

The following shows an example of the request body in JSON format for creating a
token attribute rule on the client side.

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "https://messaging.us2.com",
"nane-id":{
" mappi ng":
{
"user-mapping-attribute":"mil"
}
H
}
]
"token-attribute-rule":
[
{
"-dn": "https://messaging.us2.con nysvcl nstancel-acne/",
"nane-id":{
" mappi ng":
{
"user-mappi ng-attribute": "uid"
}
1
}
]
}
}

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.

"STATUS": "Succeeded"
}

6.9 GET All Token Attribute Rules Method

Use the GET method to view all token attribute rules for a domain context (applies to
entire domain). This operation can be performed by the REST service or client. Only
token attribute mapping is supported on the client side.

REST Request

CGET /i daas/ webservi ce/ adm n/ vl/trust/token

Manage Token Issuer Trust Configurations 6-17

GET All Token Attribute Rules Method

Response Body

Media types for the request or response body: appl i cati on/j son

The response body contains information about all token attribute rules, including:

Attribute

Description

"attributes"

"o dnu

"filter"

" mappi ng”

"-nanme"

"nane-id"
"token-attribute-rule"
"tokn-attribute-rul es"”

"user-attribute"

"user-mappi ng-attribute

"val ue"

Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

On the service side, trusted DN for which you are
configuring an attribute rule. The string conforms to RFC
2253, as described at the following URL: ht t p: //

www. i etf.org/rfc/rfc2253.txt

On the client side, URL specified using the following
format: htt p(s)://host orhttp(s)://host/root

Defines the filter values for trusted users and attributes.

You can enter a complete name or a name pattern with a
wildcard character (*), such as your Tr ust ed* . If you
specify multiple attribute filters, each filter should be
separated by a comma.

Defines the mapping attributes for trusted users.

Note: This attribute is not applicable on the client side.

Name of the attribute rule.

Note: This attribute is not applicable on the client side.
Defines the users that are accepted for the trusted DN.

Groups information about a single token attribute rule.
Groups information about all token attribute rules.

Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

Defines the user mapping attribute that the trusted DN
can assert.

Defines values for the constraint filter attribute. This
value can be a full name or name pattern with a wildcard
character (*), such as " your Tr ust ed* " . Multiple values
must be separated by a comma.

cURL Example

TESTED against MAIN -- was asked to remove trust document name for URL in

review.

The following example shows how to view all token attribute rules by submitting a
GET request on the REST resource using cURL.

6-18 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

GET All Token Attribute Rules Method

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl atfornmf adm n/v1l/trust/
t oken

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body—Service Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the service side.

{
"token-attribute-rul es":
{
"token-attribute-rule":
[
{
"-dn": "cn=orcl adm n, o=or acl e",
"attributes":
[
{
"-name": "tenantl",
"attribute":
{
"filter":
{
"value": [
“filterl",
"filter2"
]
1
" mappi ng": {
"user-attribute": "val 1",
"user-mapping-attribute": "val 2"
}
}
}
1
"name-id":{
"filter":
{
"value":["filterl"]
1
" mappi ng":
{
"user-attribute": "val 3",
"user-mapping-attribute": "val 4"
}
}
}
]
}
}

Example of Response Body - Client Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the client side.

Manage Token Issuer Trust Configurations 6-19

GET Specified Document Token Attribute Rules Method

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "https://messaging.us2.com",
"nane-id":{
"mappi ng":
{
"user-mapping-attribute": "mail"
}
¥
}
]
"token-attribute-rule":
[
{
"-dn": "https://messaging. us2.con nysvcl nstancel-acnme/",
"nane-id":{
"mappi ng":
{
"user-nmapping-attribute": "uid"
}
¥
}
]
}
}

6.10 GET Specified Document Token Attribute Rules Method

Use the GET method to view token attribute rules for a specified document. This
operation can be performed by the REST service or client. Only token attribute
mapping is supported on the client side.

REST Request

CET /i daas/webservi ce/ adm n/v1/trust/token/{docunent Nane}

Parameters

The following table summarizes the GET request parameters.

Name Description Type

docunent Nare Name of document for which you want to view token ~ Path
attribute rules.

Response Body
Media types for the request or response body: appl i cati on/j son

The response body contains information about all token attribute rules for the
document, including;:

6-20 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

GET Specified Document Token Attribute Rules Method

Attribute

Description

"attributes

"o dnu

"filter"

" mappi ng”

" - nanme"

"nane-id"
"token-attribute-rule"
"tokn-attribute-rul es"”

"user-attribute"

"user - mappi ng-attri bute"

"val ue"

Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

On the service side, trusted DN for which you are
configuring an attribute rule. The string conforms to RFC
2253, as described at the following URL: ht t p: //

www. i etf.org/rfc/rfc2253.txt

On the client side, URL specified using the following
format: htt p(s)://host orhttp(s)://host/root

Defines the filter values for trusted users and attributes.

You can enter a complete name or a name pattern with a
wildcard character (*), such as your Tr ust ed* . If you
specify multiple attribute filters, each filter should be
separated by a comma.

Defines the mapping attributes for trusted users.

Note: This attribute is not applicable on the client side.

Name of the attribute rule.

Note: This attribute is not applicable on the client side.
Defines the users that are accepted for the trusted DN.

Groups information about a single token attribute rule.
Groups information about all token attribute rules.

Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

Defines the user mapping attribute that the trusted DN
can assert.

Defines values for the constraint filter attribute. This
value can be a full name or name pattern with a wildcard
character (*), such as " your Tr ust ed* " . Multiple values
must be separated by a comma.

CcURL Example

TESTED against MAIN -- was asked to remove trust document name for URL in

review.

The following example shows how to view all token attribute rules by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl at f ornf adm n/v1l/trust/

t oken/ mydocunent

Example of Response Header

Manage Token Issuer Trust Configurations 6-21

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

GET Specified Document Token Attribute Rules Method

The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body—Service Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the service side.

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "cn=orcl adm n, o=oracl e",
"attributes":
[
{
"-name": "tenant1",
"attribute":
{
"filter":
{
"val ue": [
"filterl",
“filter2"
]
},
" mappi ng": {
"user-attribute": "val 1",
"user-mappi ng-attribute": "val 2"
1
1
1
1,
"nane-id":{
"filter":
{
"value":["filterl"]
}Y .
"mappi ng":
{
"user-attribute": "val 3",
"user-mappi ng-attribute": "val 4"
1
1
1
]
1
1

Example of Response Body - Client Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the client side.

{

"token-attribute-rul es":

{

"token-attribute-rule":

[

6-22 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

Import TrustDocument Name Configurations Method

{
"-dn": "https://messaging.us2.com",
"nane-id":{
"mappi ng":
{
"user-mapping-attribute": "mail"
}
¥
}

]

"token-attribute-rule":

[

{
"-dn": "https://messaging.us2.con nysvcl nstancel-acnme/",
"nane-id":{
"mappi ng":
{
"user-nmapping-attribute": "uid"
}
¥
}

6.11 Import TrustDocument Name Configurations Method

Use the POST method to import trusted issuer configurations, including issuer names,
distinguished name (DN) lists, and token attribute rules.

REST Request
PCOST /i daas/ webservi ce/ adm n/v1/trustdocunent/i nport

Request Body
Media types for the request body: appl i cat i on/ xmi

The request body contains the details of the import request, in XML format. You must
create a trusted issuers document, as described in “POST TrustDocument Name
Method”, and pass it using the or at r ust : nane element. For example:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<oratrust: Tokenl ssuer Trust xm ns:oratrust="http://xm ns.oracle.conf wsn security/
trust" oratrust:name="trustdocunent">
<oratrust:|ssuers>
<oratrust:lssuer oratrust:name="ww. oracle. cont
oratrust:tokentype="sanl . hok">
<oratrust: Trust edKeys/ >
</oratrust:|ssuer>
<oratrust:|ssuer oratrust:name="wmv oracle.cont oratrust:tokentype="sani.sv">
<oratrust: Trust edKeys/ >
</ oratrust:|ssuer>
<oratrust:|lssuer oratrust:nanme="ww. oracle.con oratrust:tokentype="jw">
<oratrust: Trust edKeys/ >
</oratrust:|ssuer>
<l/oratrust:|ssuers>
<oratrust: TokenAttributeRul es/>
</ oratrust: Tokenl ssuer Trust >

Manage Token Issuer Trust Configurations 6-23

GET TrustDocument Method

Response Body
Media types for the response body: appl i cati on/j son

The response body returns the status of the import operation, including:

Element Description

" ERROR_CODE" If * STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example

The following example shows how to view all certificates for an alias by submitting a
POST request on the REST resource using cURL.

curl -i -X POST -u username: password --data @nport.xm -H Content-Type: application/
xm -H Accept:application/json http://nyhost:7001/idaas/ pl atform admi n/v1/
trust docunent /i nport

Example of Request Body
The following shows an example of the request body in XML format.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<oratrust: Tokenl ssuer Trust xm ns:oratrust="http://xm ns. oracl e. comf wsm security/
trust" oratrust:name="test">
<oratrust:|ssuers>
<oratrust:lssuer oratrust:name="ww.oracle. conf
oratrust:tokentype="sanl . hok">
<oratrust: Trust edKeys/ >
</oratrust:|ssuer>
<oratrust:lssuer oratrust:name="ww.oracle.con oratrust:tokentype="san .sv">
<oratrust: Trust edKeys/ >
</oratrust:|ssuer>
<oratrust:lssuer oratrust:name="ww. oracle.con oratrust:tokentype="jw">
<oratrust: Trust edKeys/ >
</oratrust:|ssuer>
</oratrust:|ssuers>
<oratrust: TokenAttributeRul es/>
</ oratrust: Tokenl ssuer Trust >

6.12 GET TrustDocument Method

Use the GET method to view configuration details for the trusted issuer document.

REST Request

CGET /i daas/ webservi ce/ adm n/ vl/trustdocunent

6-24 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

DELETE Trust Document Method

Parameters

The following table summarizes the POST request parameters.

Name Description Type

"docunent Nane" Name of the document. Query

Response Body
Media types for the request or response body: appl i cati on/j son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example

The following example shows how to view all token attribute rules by submitting a
GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://myhost:7001/i daas/ pl at f ornf adm n/ v1/
trust docunent ?" docunent Name=nyTr ust Docunent "

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 X
Example of Response Body

The following shows an example of the response body in JSON format.

" STATUS": " Succeeded",
"Result":"List of token issuer trust documents in the Repository:\nDetails of

the docunent matching your request:\nNane : nyTrust Document\t Di spl ay Nane :
myTr ust Docunent \ t St at us : DOCUMENT_STATUS_COWM TED \nList of trusted issuers
for this type:\tNone\nList of Token Attribute Rul es\tNone"

}

6.13 DELETE Trust Document Method

Use the Delete method to delete a trusted issuer document.

REST Request

DELETE /i daas/ webservi ce/ adm n/ v1/trustdocunent

Manage Token Issuer Trust Configurations 6-25

DELETE Trust Document Method

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type
" di spl ayNare" Display name for the document. Query
"docurent Name" Name of trusted issuer document. Query

Response Body
Media types for the request or response body: appl i cati on/j son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or
"Fail ed".

cURL Example
TESTED

The following example shows how to delete a SAML issuer trust document by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u usernane: password http://nmyhost: 7001/ i daas/ webservi ce/ adm n/v1/
t rust docunent ?" document Nane=my Tr ust Docunent &di spl ayNanme=nyTr ust Docurment "

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{

"STATUS": "Succeeded",

"Result": "Token Issuer Trust document named "myTrustDocunent" deleted fromthe
repository.”
}

6-26 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

A

The credential and keystore management REST API provides a powerful set of

Summary of REST APIs

resources that you can use to manage web service security, including credential stores,
keystores, and trust stores.

Before using the REST API, you need to understand how to access the REST resources
and other important concepts. See “About the REST API”.

The following table summarizes the REST resource paths, alphabetically by resource

path.

REST Resource Meth More Information
od

/i daas/ pl at f ormf GET GET Credential Method
admi n/vl1/ credenti al
/i daas/pl atform DEL Delete Credential Method
admi n/ v1/credenti al ETE
/i daas/ pl atform POS POST Credential Method
admi n/vl/credenti al T
/i daas/ pl at f ormf PUT PUT Credential Method
admi n/ v1/ credenti al
/i daas/pl atform CGET GET All Aliases Trusted Certificate JKS Keystore Method
admi n/ vl/ keystore
/i daas/ pl atform GET GET Specified Alias Trusted Certificate JKS Keystore Method
admi n/ v1/ keystore/
{alias}
/i daas/ pl atform DEL DELETE Trusted Certificate JKS Keystore Method
admi n/ v1/ keyst ore/ ETE
{alias}
/i daas/ pl atform PGS POST Specified Alias Trusted Certificate JKS Keystore Method
admi n/ v1/ keyst ore/ T
{al i as}
/i daas/ pl atform PCS GET Specified Alias Trusted Certificate JKS Keystore Method
adm n/vl1/ keystorel/ pkcs7/ T
{alias}
/i daas/ pl at f orm DEL DELETE Keystore Service KSS Keystore Method
admi n/ v1l/ keystoreservice ETE
/i daas/ pl atform PGS POST New KSS Keystore Method
admi n/vl/ keystoreservice T

Summary of REST APIs A-1

REST Resource Meth More Information
od
/i daas/ pl atform PUT PUT Password Update KSS Keystore Method
admi n/ v1/ keyst oreservi ce
/i daas/ pl at f orm GET GET Alias KSS Keystore Method
admi n/ v1/
keyst oreservi ce/ al i as/
{stripeNane}/
{keyst or eNane}/
{entryType}
/i daas/ pl atform CGET GET Trusted Certificate KSS Keystore Method
adm n/v1/
keyst oreservi ce/
certificates
/i daas/ pl at form DEL DELETE Trusted Certificate KSS Keystore Method
admi n/ v1/ ETE
keyst or eservi ce/
certificates
/i daas/ pl at f orm POS POST Trusted Certificate KSS Keystore Method
admi n/ v1/ T
keyst oreservi ce/
certificates
/i daas/ pl atform PGS POST Import KSS Keystore Method
adm n/v1/ T
keyst or eservi ce/ keystore
/i daas/ pl atform GET GET Secret Key Properties KSS Keystore Method
admi n/ v1/
keyst or eservi ce/
secret key
/i daas/ pl atform PGS POST Secret Key KSS Keystore
admi n/ v1/ T
keyst oreservi ce/
secr et key
/i daas/ pl atform CGET GET Stripe KSS Keystores Method
adm n/v1/
keyst oreservi ce/
{stri peNane}
/i daas/ webservi ce/ GET GET All Trusted Issuer and Distinguished Name Lists Method
admin/vl/trust/issuers
/i daas/ webser vi ce/ GET GET Specified Document Trusted Issuer and Distinguished Name
admi n/v1/trust/issuers/ Lists Method
{document Nane}
/i daas/ webser vi ce/ PGS POST Domain Trusted Issuers and Distinguished Name Lists Method
adm n/vl/trust/issuers T
/i daas/ webser vi ce/ PCS POST Document Trusted Issuers and Distinguished Name Lists
admi n/vl/trust/issuers/ T Method

{document Nane}

A-2 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

REST Resource

Meth
od

More Information

/i daas/ webservi ce/
adm n/vl/trust/token

/i daas/ webservi ce/
adm n/vl/trust/token/
{document Nane}

/i daas/ webservi ce/
adm n/vl/trust/token

/i daas/ webservi ce/
adm n/vl/trust/token/
{document Nane}

/i daas/ webservi ce/
adm n/ vl/trustdocunent

/i daas/ webservi ce/
adm n/v1/trustdocunent

/i daas/ webservi ce/
adm n/vl/trustdocunent

/i daas/ webservi ce/
adm n/vl/trustdocunent/

i mport

GET

GET

PGS

PGS

GET

ETE

PGS

PGS
T

GET All Token Attribute Rules Method

GET TrustDocument Method

DELETE Trust Document Method

POST TrustDocument Name Method

GET Specified Document Token Attribute Rules Method

POST Token Attribute Rule Distinguished Name Method (Domain

POST Token Attribute Rule Distinguished Name Method (Document

Import TrustDocument Name Configurations Method

Summary of REST APIs A-3

A-4 REST API for Managing Credentials and Keystores with Oracle Web Services Manager

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New In This Guide
	New and Changed Features for Release 12c (12.2.1.1)

	Part I Getting Started with the REST API
	1 About the REST API
	1.1 Introduction to REST API
	1.2 URL Structure for Security Stores
	1.3 Create and Manage Oracle WSM Instances Using REST
	1.4 Authenticating REST Resources
	1.5 HTTP Status Codes for HTTP Methods

	2 Use Cases for the REST API
	2.1 Managing the Credential Store Framework Using the REST API
	2.2 Managing JKS Keystores Using the REST API
	2.3 Managing KSS Keystores Using the REST API
	2.4 Managing Token Issuer Trust Using the REST API

	Part II REST API Reference
	3 Manage Credentials in the Credential Store
	3.1 View and Manage the Credential Store Using REST Resources
	3.2 POST Credential Method
	3.3 GET Credential Method
	3.4 PUT Credential Method
	3.5 DELETE Credential Method

	4 Manage Java Keystore Keystores
	4.1 View and Manage JKS keystores within a Domain Using REST Resources
	4.2 GET All Aliases Trusted Certificate JKS Keystore Method
	4.3 POST Specified Alias Trusted Certificate JKS Keystore Method
	4.4 POST PKCS#7 Trusted Certificate JKS Keystore Method
	4.5 GET Specified Alias Trusted Certificate JKS Keystore Method
	4.6 DELETE Trusted Certificate JKS Keystore Method

	5 View and Manage Keystore Service Keystores
	5.1 View and Manage KSS keystores Using REST Resources
	5.2 POST New KSS Keystore Method
	5.3 POST Import KSS Keystore Method
	5.4 PUT Password Update KSS Keystore Method
	5.5 POST Trusted Certificate KSS Keystore Method
	5.6 GET Stripe KSS Keystores Method
	5.7 GET Alias KSS Keystore Method
	5.8 GET Trusted Certificate KSS Keystore Method
	5.9 DELETE Trusted Certificate KSS Keystore Method
	5.10 POST Secret Key KSS Keystore
	5.11 GET Secret Key Properties KSS Keystore Method
	5.12 DELETE Keystore Service KSS Keystore Method

	6 Manage Token Issuer Trust Configurations
	6.1 View and Manage Token Issuer Trust Configurations Using REST Resources
	6.2 POST TrustDocument Name Method
	6.3 POST Domain Trusted Issuers and Distinguished Name Lists Method
	6.4 POST Document Trusted Issuers and Distinguished Name Lists Method
	6.5 GET All Trusted Issuer and Distinguished Name Lists Method
	6.6 GET Specified Document Trusted Issuer and Distinguished Name Lists Method
	6.7 POST Token Attribute Rule Distinguished Name Method (Domain Context)
	6.8 POST Token Attribute Rule Distinguished Name Method (Document Context)
	6.9 GET All Token Attribute Rules Method
	6.10 GET Specified Document Token Attribute Rules Method
	6.11 Import TrustDocument Name Configurations Method
	6.12 GET TrustDocument Method
	6.13 DELETE Trust Document Method

	A Summary of REST APIs

