Oracle® Fusion Middleware
Securing Applications with Oracle Platform Security Services

12¢(12.2.1.2.0)
E78083-02

November 2016

ORACLE

Oracle Fusion Middleware Securing Applications with Oracle Platform Security Services, 12c (12.2.1.2.0)
E78083-02
Copyright © 2003, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PUrOIACE ...t Xxiii
AN S Lo = U< J TSRS XXiii
Documentation AcCeSSIDILILYccciiiiiiiiiiiiiiiic e XXiii
Related DOCUIMENTATIONvviieieiiieceeieeeeeee ettt ettt eae e e teeeaaseateeeseeenteesseeenaeeseeseeenseeneas XXiii
COMVEIILIONS ..oeititeieeeeettee e e ettt e eee e e ee ettt e e e eesaabeeeeeeeataseeesessaaseessessaaeesesassssasesessnnseesessssstaseeesnnnsarees XXiv

What’s NeW in THiS GUIE ... e e eeee XXV
Changes in This Document for Release 12.2.1.2.0c..ccoooiioiiiiiiiiiiiiecccc XXV
Changes in This Document for Release 12.2.1.1.0 ... XXV
New Features in Release 12.2.1.0.0coouviiieieeeee ettt eearee e etaeseteseeneeeenanesesneeeennes XXV

Partl Understanding Security Concepts

1 Introduction to Oracle Platform Security Services

1.1 WAL IS OPSSY ...ttt ettt ettt e st e st et e esae st e ensesseensessesnsesseensenseens 1-1
1.1.1 OPSS Main FEALUTESoocveeiiiieiicieeeeceee ettt e e a e evseae s s saeeraenaeas 1-1
1.1.2 Supported Server Platforms.........ccccocociiiiiiiiniiiiniiiiiiii s 1-2
1.2 OPSS ArchiteCture OVEIVIEWccvievevieiieieceeieetesteete st te e eeessesseessessaessesssesseessessesssessesaens 1-2
1.2.1 Benefits of Using OPSS ... 1-3
1.3 OPSS 01 DEVEIOPETS ...t 1-3
1.3.1 About Java EE Application SeCUTitycccovviiviiiiiiiniiiiiii, 1-3
1.3.2 About Java SE Application SeCUrityc.cooiiieiiiiieic 1-4
1.4 ADF Security OVeIVIEWcccoiiiiiiiiiiiiiiiiiiicitcc st 1-4
1.4.1 Oracle ADF Application SecUrity ..o 1-5

2 Understanding Users and Roles

2.1 TerMINOLOZY ...evviiieeiciict e 2-1
2.2 ROIE MAPPINE ..ottt 2-3
2.2.1 Permission Inheritance and the Role Hierarchycccccccoeiiiiiiiiiiiniiiinns 2-3
22141 Role Hierarchy EXample.........ccooouiiiiiiiiiiiic s 2-3
2.3 About the Role Category ..o 2-6
2.4 About the Authenticated ROLEcc.oovieiiiiiiiciirieiecteceeteeeete ettt re e be e e 2-6
2.5 About the Anonymous User and Role..........c.ccooiiiiiiiiiiiie 2-7
2.6 About Administrative Users and ROLES........cccocieieiririiiniiieeeeeeteeceeeee e 2-7

2.7 Managing User ACCOUNES........ccoeieiiiiieiiiiiiieitei s 2-7

3 Understanding Identities, Policies, Credentials, Keys, Certificates, and Audit

3.1 Compeatibility Table for 11g and 12¢ Versions.........cccceieeiiniiieiniiicieecseeeeeeeeennes 3-1
3.2 Authentication BasiCs ... 3-2
3.2.1 WebLogic Server Authentication Providers ..o 3-2
3.2.1.1 Support for Multiple Authentication Providerscccooviiiiiiiiiiiiiiicinnns 3-3
3.2.1.2 Additional Authentication Methods ..o, 3-3
3.2.2 Identity Store Types and WebLogic Server Authentication Providers........................ 3-4
3.3 POLICIES BASICS ...vvvviviiiicicttci s 3-4
3.4 Credentials BasiCsccccoiiiiiiiiiiiiiiiiiiiiii s 3-5
3.5 Keys and Certificates BasiCscccocvvrririririrrriirrrcccsee e 3-6
3.6 AUit BASICS ..v.vvviiiiiiiii s 3-6

4 About the Security Store

4.1 Supported File, LDAP, and Database Stores ... 4-1
4.2 Packaging ReqUIIeMENtSc.coccuriiiiiicieiiicici e 4-2
4.3 FIPS SUpport in OPSS.......ccoiiiiiiiiiiic s 4-2

Partll Basic OPSS Administration

5 Security Administration

5.1 OPSS Administration: Main StEPS........cceueueuririeiiiiieieiiiciereeeeeeeeeeeeeeeeeeeeseeeee e 5-1
5.2 Security Management TOOISccooviiiiiiiiiiii s 5-2
5.3 Security Practices with Fusion Middleware Control............ccccccceviiiiiiiniiiiiiiins 5-2
5.4 Security Practices with WebLogic Server Administration Consolecccccoeueueueurnnnnne 5-3
5.4.1 Security Practices with WLSTcooiiii 5-4
5.5 Security Practices with OES.........cccccoooiiiiiiii s 5-4

6 Deploying Secure Applications

6.1 Developing Oracle ADF Applicationscccoceiuiiiiiiiiiiiiiiiiiiiieeiciceeieeecreeeeneveenas 6-1
6.2 Choosing the Tool for Deploymentccccieiiiiiiiiicieeeceeeeeee e 6-2
6.2.1 Deploying Secure Applications with Fusion Middleware Control.............ccccccceevnie. 6-2
6.3 Deploying Oracle ADF Applications to a New Environment............cccccccceviiiiniiiicnnnns 6-4
6.3.1 Deploying to a Test ENVIrONmMentccccccucuiuiiiiiiiiinieeiceeceeeeeeeeieeeeeeeeeeeeennas 6-4
6.3.1.1 Typical Administrative Tasks after Deployment............cccccocovviiiiinnnininnnne, 6-4
6.4 Deploying Standard Java EE Applicationscccccevvivivivniniinininninininncncccccne 6-5
6.5 Deploying Audit-Aware AppLiCationsccccceueueieeriinrrnrrrreeeer e 6-6
6.6 Migrating from a Test to a Production Environmentcccccooovivinnnnnnnnnne, 6-6
6.6.1 Migrating Identitiescciiiiiiiiiiiiiiii e 6-7
6.6.1.1 Migrating Identities with migrateSecurityStorecccocovvvvnvnnnnnninnrccne. 6-7
6.6.2 Migrating Policies and Credentials..........cccccoceeiiiiiiiiiiiiie, 6-8
6.6.2.1 Migrating Policies with migrateSecurityStore ..., 6-9
6.6.2.2 Migrating Credentials with migrateSecurityStore...........ccccccevuvvirnnnirnnccnes 6-12
6.6.3 Migrating Audit Data.........ccccoieiiiiiiiiiiiiiii 6-15
6.6.4 Migrating Keys and Certificates with migrateSecurityStore...........cccooevvvviinnnnnnnen. 6-16

6.6.4.1 Migrating Keys and Certificates in the Same Domain...........cccccoevvvvininininnnn 6-16
6.6.4.2 Migrating Keys and Certificates across Different Domains...........ccccccevveviinnnne. 6-19

Part Il OPSS Services

7 Life Cycle of Security Artifacts

7.1 How Security Artifacts Are Seeded...........ccooiiiiiiiiiiiiiiiiccs 7-1
7.2 About Fusion Middleware DOmMAINScccooeviiiiiiiiniiniiiiicceccennes 7-1
7.3 Creating Fusion Middleware DOMAINScccooiuiueiiiicicieieiicie s 7-2
7.3.1 Using a New Database INStance ..o 7-2
7.3.2 Sharing a Database INStance...........ccccccciiiiiiiiiiiiccccee e 7-2
7.4 Layered Component Security Artifacts ..o 7-4
7.5 Upgrading Security t0 12.2. 1.0 .ocouiiirieiiiicie e 7-4
7.5.1 Before Upgrading the Security StOre ..o 7-5
7.5.2 Upgrading Security: Main Steps.........ccoouoviiiiieiiiiicieccc e 7-5
7.5.3 Reconfiguring Domains with the Fusion Middleware Reconfiguration Wizard....... 7-9
7.5.4 Upgrading a Shared Security STOTe...........ccoiiiiiiiiiiiceieeceeeeeeeeeeeeeeeeeeeenes 7-9
7.5.41 Upgrading a Shared 12.1.2 or 12.1.3 Security Store........c.cccocoerieiiiicicieiinicieine, 7-9
7.5.4.2 Upgrading a Shared 11g Security StOrecccooovoiiiiiiiiiiiiiiiccecc, 7-10
7.6 Backing Up and Recovering the Security Store..........ccccovvviiivviinirccicrreceeees 7-10
7.6.1 Backing Up and Recovering a Database-Based Security Storecccccooirieinne. 7-11
7.6.2 Backing Up and Recovering LDAP Security Storesccocooveueieiiiccieiniccnciene 7-12
7.6.3 Recommendations ..o s 7-13
7.7 Upgrading Component Audit Definitions t0 12C.......ccccoeuiieiiiiiieiiecececec 7-13

8 Configuring the Identity Store

8.1 About the Identity StOTe..........cooiiiiiii 8-1
8.2 Configuring the Identity Store Provider ... 8-1
8.3 Configuring the Identity STOTe ... 8-2
8.3.1 Identity Store Parametersccccueviiieiiiiicicic s 8-2
8.3.1.1 Query Parameters..........ccooveiiniiiiiiniii e 8-2
8.3.1.2 Global Connection Parametersccoviieiiiniininiiiiic e 8-3
8.3.1.3 Back-End Connection Parameters...........cccoviiiiiieiiiiiiiiiiniiiiiiccccceeeenns 8-3
8.3.2 Understanding the Service Configurationccccceeeuiiiiiiciiiiiiiiiciiccccccene 8-3
8.3.2.1 Configuring the Service for a Single LDAP ... 8-4
8.3.2.2 Configuring the Service for Multiple LDAPs without Virtualization................... 8-4
8.3.2.3 Configuring the Service for Multiple LDAPs with Fusion Middleware Control 8-4
8.3.2.4 Configuring the Service with WLSTccoccviiiiiiiiiirerc e 8-4
8.3.2.5 Configuring the Timeout Setting with WLSTc.ccccoooiiiii 8-5
8.3.2.6 Configuring Other Parameters............cccccoeuiiiiiiiiiiiiiiiiiiiicccccecens 8-5
8.3.2.7 Restarting Servers........ciiii s 8-5
8.3.2.8 Configuring Single and Multiple LDAPS.........cccccoooiiiiiiiii 8-5
8.3.3 Configuring Split Profiles............cccoiiiiiiiiiiiiiiicecceeeeeeeeeas 8-6
8.3.4 Configuring Custom Authentication Providers.........c.cccoovvvinniinnnnnnnnceae. 8-6
8.3.5 Configuring Virtualization in Java SE Applications..........c.ccccceerivininiciniicicinicine, 8-7
8.4 Querying the Identity Store Programmaticallycccccoeiiiiiiiiniiiiiiiiiiiiicns 8-7

8.5 Configuring SSL for the Identity StOTe ..o 8-8

9 Configuring the Security Store

10

11

vi

9.1 About the Security STOre ... 9-1
9.1.1 Environments with Multiple Servers...........ccooooiiiiiiiice e, 9-2
9.2 Using an LDAP Security StOre ... 9-2
9.2.1 Prerequisites to Using the LDAP Security Store..........ccoviiiiiiiiiiiiiicccins 9-3
9.2.2 Resetting the LDAP User Password ... 9-3
9.3 Using a Database SECUTItY SOTE ..o 9-4
9.3.1 Prerequisites to Using the Database Security Store..........c.cocooviiiiiiiiiiiiiiiicinns 9-4
9.3.2 Maintaining a Database Security Store..........cccooiiiiiiiii 9-5
9.3.3 Resetting the OPSS Schema Password ..o 9-6
9.3.4 Setting Up an SSL Connection to the Database Security Storec.ccccoooiiiiininnan. 9-6
94 Reassociating the Security StOTecoouoiiiiiiiiiii e 9-6
9.4.1 Reassociating the Security Store with Fusion Middleware Control.............c.ccccccce...... 9-7
9.4.1.1 Securing Access to LDAP NOAEScouiimieiiiiii s 9-7
94.2 Reassociating the Security Store with reassociateSecurityStore.............ccccocrieiriae. 9-8
9.5 Migrating the SecUrity STOTe........cccccciiiiiiiiiiiriirrrr e 9-8
9.5.1 Migrating the Security Store with Fusion Middleware Control..............cccoovivinininnee. 9-8
9.5.2 Migrating the Security Store with migrateSecurityStore..........ccoooeiiiini, 9-8
9.5.2.1 Migrating All Policies with migrateSecurityStore...........ccococoeeiceiccccccccnnnes 9-9
9.5.2.2 Migrating System Policies with migrateSecurityStore...........cooeveiiriiiiiinnnan, 9-10
9.5.2.3 Migrating Application Policies with migrateSecurityStorecccceveeenie. 9-11
9524 Migrating All Credentials with migrateSecurityStore...........ccccoccececicccnnnne. 9-13
9.5.2.5 Migrating One Credential Map with migrateSecurityStore...........ccoooevevnnnnnen. 9-14
9.5.2.6 Migrating Audit Data with migrateSecurityStore...........cccccovviininnnnnnnn 9-15
9.56.2.7 migrateSecurityStore Usage Examples..........ccccocovviiivnniiinnniicrecceneene 9-15
9.6 Configuring Security Providers with Fusion Middleware Control............ccccccevvvivennnnnn. 9-15

Managing Policies

10.1 Determining the Security Store Characteristics.........ccccooiieieiiiiciiiiicc, 10-1
10.2 Managing the POLiCy StOTe........cccoiviiiiiiiiiiiicccccc s 10-1
10.3 Managing Policies with Fusion Middleware Controlc.cccccccecuevniincnvnccnene 10-2
10.3.1 Managing Application POLCIES..........cooeueiiiiiiiieiicice e 10-2
10.3.2 Managing Application ROLEs..........ccccccciiiiiiiiiiiiiiiias 10-3
10.3.3 Managing System POLICIESc.ccceuiuiiiuiiiiiiiiiccrcreeee s 10-4
10.4 Managing Policies with WLSTc.ccoooiiiiii 10-5
10.4.1 reassociateSecurityStore ... 10-6
10.5 Refreshing the Policy Cachecccocouviiiiiiiiniiiccceccceccee e 10-10
10.5.1 Authorization Scenarios Using Policy Refreshing............ccccoovioiiiiiiiiiiiiina, 10-10
10.6 Principals and Roles in WLST Commandscccoeuriiiniininiiiiniiccccccccnes 10-11
10.7 Application Stripe in WLST Commands..........ccccccuceueeueieimiiinicieeeeeeeceeeeeenenenenees 10-11
10.8 Managing Application Policies with OES.......ccccccooiiiiiiiii, 10-12

Managing Credentials
11,1 Credential TYPeS ... e 11-1

12

13

11.2 Encrypting Credentials ... 11-1

11.3 Managing Credentials with Fusion Middleware Control..............cccooeoiniiiiiiiniinne. 11-3
11.4 Managing Credentials with WLSTcococooiiiiiiiiiiiiccceeee s 11-4
Managing Keys and Certificates

12.1 About the Keystore SErvice ... 12-1
12.1.1 Structure of the Keystore Service ... 12-2
12.1.2 Types of KeYStOres. ... e 12-2
12.1.3 The TIUSESTOTEcviviiiiiici s 12-2
12.2 About Keystore Service COMMANAScoviuriiiiiiciciciiiec e 12-3
12.2.1 Getting Help for Keystore Service Commands...........ccooeeieiiiiiieiiinicciiccciee 12-4
12.2.2 Keystore Service Command Reference...........cccccoccueueueiriciiinieieiccicnieeeeeeeeneeeneees 12-4
12.3 Managing Keystores with Fusion Middleware Control...........c.ccoooeiieiiiiiiiiiinicne 12-4
12.4 Managing Keystores with WLST ..o 12-5
12.5 About Certificatesc.coviiiiiiiiiiiiiii s 12-6
126 Managing Certificates with Fusion Middleware Control............ccooeueiiiciiiiiiiniciine. 12-7
12.7 Managing Certificates with WLSTccocooii 12-9
12.8 Replacing Demonstration CA Signed Certificatescccocovvvnirinininiocniiicccicccenen 12-11
12.8.1 Replacing Demo CA Certificates With Domain CA Signed Certificates................ 12-11
12.8.2 Replacing Demo CA Certificates With Third-Party CA Signed Certificates 12-13
12.8.3 Replacing the Demo CA Trust Service Certificate..........ccccoceueururvveirrrnnnrnncnes 12-13
129 How Fusion Middleware Components Use the Keystore Servicec.c.ccooeueuinnnnen. 12-14
1291 Synchronizing the Local Keystore with the Security Store 12-14
12.9.1.1 SYNCKeyStores USagecccciviviiiiiiiiiiiiiiiicccnce e 12-14
12.9.1.2 When to Synchronize the Keystores ..., 12-15
Introduction to Oracle Fusion Middleware Audit Framework

13.1 What Are the Audit Objectives? ... 13-1
13.2 Audit TerminolOgyccovviiiiiiiiiiii s 13-2
13.3 About Auditing with Oracle Fusion Middleware Audit Framework.............cccccccccc...... 13-3
13.3.1 Overview of Oracle Fusion Middleware Audit Framework..........cccccoceviinnnnnn. 13-4
13.3.2 About Components and Applications..........cccccceuiciiiiiiiiiiiiiiiiiicecccccees 13-4
13.4 Understanding AUtccocooiiiiiiiiiiiicccee e 13-5
13.4.1 The Audit Model........cccoiiiiiiiiiiiiiii s 13-5
13.4.2 ADbout the AUIt STOTEocoviiiiiiciiiece s 13-6
13.4.3 How Audit Data Is Stored.........cccooviiiiiiiiies 13-6
13.4.4 About the Oracle Fusion Middleware Audit Frameworkcccccoeiiniinnnnnn 13-7
13.4.5 Audit Setup: Main SEEPSc.cueuimiiiiiiiiiiiciiiice s 13-7
13.4.6 Understanding the Runtime Audit Event FIOwc.ccccocoviiiininiiicne 13-7
13.5 About Audit Attributes, Events, and Event Categories..........cccccocoviiiiniiiiiincnnnn. 13-8
13.5.1 Audit Atribute GIOUPS ...c.cveuiviiiiiiiiiiicc s 13-8
13.5.1.1 About Generic Attribute GIroups ..o 13-9
13.5.1.2 About Custom Attribute Groups ... 13-9
13.5.1.3 About Audit Attribute Data Typesccccoviviiiiiiniiiiiiccccccccces 13-10
13.5.2 Audit Events and Event Categoriesccccccceciuriiiiiciniinciiceceeeeeeeeeeeeeeens 13-10
13.5.2.1 About System Categories and Events...........c.coooiiiiiiiiiii, 13-11

vii

14

viii

13.56.2.2 About Component and Application Categoriescccceevvviviiiniiininninnnnn 13-11

13.5.3 Audit Artifact Naming Requirementsc.cocoooeiiiiiiiiiiiiiciecccec 13-12
13.6 About Audit Definition Files........ccoiiiiiiiiiiiiicccccccce s 13-12
13.6.1 About the component_events.xml File..........ccccccoeiiinniiiiniice, 13-12
13.7 About Mapping and Version Rules..............ccooiiiii 13-14
13.7.1 What Are Version NUMDETs? ... 13-15
13.7.2 About Custom Attribute to Database Column Mappings..........cccooeeeviiiiiiinnnnnes 13-15

Managing Audit

14,1 Audit Administration Tasks.........ccccoeiiiiiiiniii 14-1
14.2 Managing the Audit StOrecooouoiiiiiii 14-1
14.2.1 About Audit Data SOUICES.........ccceveveieiiieieieiciee s 14-2
14.2.2 Managing Bus-Stop Files ..o 14-2
14.2.3 Configuring Standalone Audit Loader..........ccooiiiiiiiiiiicc e 14-2
14.2.3.1 Configuring the ENvironment ... 14-3
14.2.3.2 Running Standalone Audit Loader............ccoooooiiiiiiiiie, 14-3
14.3 Managing Audit POLCIeSs.cooouriiiiiiic s 14-4
14.3.1 Managing Audit Policies with Fusion Middleware Control............ccccccccvuvuvivrunenne. 14-4
14.3.2 Managing Audit Policies with WLSTcoooiiiiie 14-7
14.3.2.1 Viewing Audit Policies with WLST Commandsccoceveiirieieiiiccieienen, 14-7
14.3.2.2 Updating Audit Policies with WLST Commandscccccceevcueueuccreereucuercrcnennns 14-7
14.3.2.3 Configuring Audit Policies Example..........cccooiiiiiiiiiiiiiecc, 14-8
14.3.2.4 Configuring Audit Events Exampleccccoooiiiiiiiiiiiicce, 14-8
14.3.2.5 What Happens to Custom Configuration when the Audit Level Changes?.... 14-8
14.3.3 Managing Audit Policies Programmaticallyc.cccoovomeiiiiiiiiiniiice 14-9
14.4 Understanding Audit Time Stampscccoooriioiiiiiiiiiiicc s 14-9
145 About Audit Logs and Bus-stop Fles..........ccocooiiiiiiiiiiiiiiccccecceceeeeeeeeees 14-9
14.6 Audit Database Administration.........cccccoviiiiiiiiiiiiiii 14-10
14.6.1 Overview of the Audit Schema ..o 14-10
14.6.2 Base and Component Table Attributes.........cccccccceueiiiiiciininiircrcccreeeeereeeaes 14-10
14.6.3 Tuning Performance.........occoieieiiiiiiic e 14-11
14.6.4 Planning Backup and ReCOVEIY.........cccccviviiiiiiiiiiniiiiiiiicccncces 14-11
14.6.5 Importing and Exporting Data ... 14-12
14.6.6 Purging Datacoeveieiiiiii s 14-12
14.6.7 Partitioningccccovveiiiiiiiicc s 14-12
14.6.8 Performing Tiered Archival ... 14-13
14.6.9 Creating Indexes on Custom Table Attributes Using Materialized Views............ 14-13
14.7 Best Practices for Audit Event Definitions ... 14-14
14.7 1 Guidelines for Naming EVENtScccoovviviniinnnniin e 14-14
14.7.2 Differentiating EVENtscccoiiiiiiiii 14-14
14.7.3 Event Categorization.........ccccviviiieiiiiiiiiiiiiiiiccc s 14-15
14.7.4 Use of Generic AtIIbULESccovviiieiiiiiie e 14-15
14.7.5 Use of Component Attributescccoeeeiiiiniiiiiiic 14-15
14.7.6 Guidelines for Linking Across COMPONENLtScccovivirireiniiininiiiiiicecisennes 14-15
14.7.7 Updating Event Definitionscccooiiriiiniiiiniiiiciccccccccccceeee s 14-15

15

Using Audit Analysis and Reporting

15,1 About Audit RepOrtingcccoovviiiiiiiiiiiiiic 15-1
15.2 Audit Reporting with the Dynamic Metadata Modelcccccoeiiiiiiiccinccennee. 15-1
15.2.1 Audit Views Created at Registration.............ccooevoiiiiiiiiii 15-2
15.2.2 Manually Created Audit VIEWS.........cocoueuoiiiiiiiiiicc e 15-2

Part IV Developing with OPSS APIs

16

Integrating Application Security with OPSS

16.1 About Security Challenges ... 16-1
16.2 Security Integration Use Cases ..o 16-2
16.2.1 AUthentiCation........cciiiiiiiii s 16-3
16.2.1.1 Java EE Application Requiring Authenticated Users..........c.cccoouviiriiniiiinnce. 16-3
16.2.1.2 Java EE Application Requiring Programmatic Authentication...........c.ccccce...... 16-3
16.2.1.3 Java SE Application Requiring Authentication...........cccceeieiiiiniiiiiiinn, 16-4
16.2.2 TAENHHIES ..o 16-4
16.2.2.1 Application Running in Two Environmentsccccccccecuceiiieeiicnncccnnnes 16-4
16.2.2.2 Application Accessing User Profiles in Multiple Stores..........cccccovvviiinininnn 16-5
16.2.3 AUhOTIZAtION ... 16-5
16.2.3.1 Java EE Application Accessible by Specific Rolescccccocveeciiccvnicnnnne 16-5
16.2.3.2 Oracle ADF Application Requiring Fine-Grained Authorization...................... 16-5
16.2.3.3 Application Securing Web Services...........ccccoviiiiiiiininiiiiiiiceens 16-5
16.2.3.4 Java EE Application Requiring Codesource Permissions.........c.c.cccoeveecvccnnce. 16-5
16.2.3.5 Non-Oracle ADF Application Requiring Fine-Grained Authorization............. 16-6
16.2.4 Credentials.........cccociiiiiiiiiiiiii 16-6
16.2.4.1 Application Requiring Credentials to Access System...........cccceeueveuvvvverererenenes 16-6
16.2.5 AUt .o 16-6
16.2.5.1 Auditing Security-Related Activitycccooovviiiiiiiiii, 16-6
16.2.5.2 Auditing Business-Related ACHVItYccccccoevviiiiiiiricreccereceeee 16-7
16.2.6 Identity Propagation ... s 16-7
16.2.6.1 Propagating the Executing User Identity...........ccccccceveiiiiiiiiiiiiiicccnee, 16-7
16.2.6.2 Propagating a User Identityccccoceiiiiiiiiiiiiiicccccecccceeeeceees 16-8
16.2.6.3 Propagating Identities Across Domains...........ccccceevevviiiniiiiiniinnnn 16-8
16.2.6.4 Propagating Identities over HTTPccccccccciiiiiiiiiiiiiiiiccccccccce, 16-8
16.2.7 Administration and Management.........c.ccccccueueueerirrrrrinernnereeseeeeseeeeseeeeeeeseees 16-8
16.2.7.1 Application Requiring a Centralized Store...........ccccoevviviviiiiiiiiiiiic, 16-8
16.2.7.2 Application Requiring a Custom Management Toolccccevvvnnnininnennne. 16-9
16.2.7.3 Application Running in a Multiple Server Environment...........ccccccoceuvuverurenenne. 16-9
16.2.8 INt@ETAtiON. ...eciiictcec s 16-9
16.3 The OPSS TTUSE SEIVICEc.ovviuiviiiieieiiiriicictrertecterte ettt 16-9
16.4 Propagating Identities over HTTPccooiiiiiiiiiiiiicicecccececee e 16-9
16.5 Propagating Identities with the OPSS Trust Service ..o 16-10
16.5.1 Propagating Identities Across Multiple WebLogic Server Domains...................... 16-10
16.5.1.1 Token Generation on the Client-Side Domaincccocovvviviiiiininiieneinnns 16-11
16.5.1.2 Server Side or Token Validation Domaincccooviiiiiiiiiiiiiicinns 16-14
16.5.2 Propagating Identities Across Containers in a Single WebLogic Server Domain. 16-16

17

16.5.3 Trust Provider Properties ... 16-16

16.6 Implementing a Custom Graphical User Interfaceccccooooeriiiiiiiiiiiii, 16-17
16.6.1 IMPOTtS ASSUMED. ... 16-19
16.6.2 Query Identity Store Examplecccoooiiiiiiiiiiiii 16-19
16.6.3 Create Role EXample ..o 16-20
16.6.4 Query Roles EXample........ccooviiiiiiir e 16-20
16.6.5 Map Roles EXample..........cccovviiiiiiiiiiiiiiiiiiii s 16-21
16.6.6 Get Roles that Contain a User Examplecccooioiiiiiiii 16-22
16.6.7 Delete Role Mapping EXample ... 16-23
16.7 Securing Oracle ADF Applicationscccocvveeiviiiiiiiniiiininii e 16-24
16.7.1 Developing PRase ..o e 16-24
16.7.2 Deployment Phase.........cccciiiiiiririiiirrrcr e 16-24
16.7.3 Administration Phase...........cccoiiiiiiiic s 16-25
16.7.4 Summary of Tasks per Participant per Phase.........c.cccooooiiiiiiiii 16-25
16.8 Code and Configuration EXamplesc.ccoovriiinniniiiniiiccccecccccecceeeeeneenns 16-26
16.8.1 Programming EXamplesccooeiiiiiiiiiicii e 16-26
16.8.2 Configuration EXamples...........coooiiiiii e 16-26
16.9 Propagating Identities with JKS.........ccoooiiiiccccccce e 16-27
16.9.1 Single Domain SCENATIOocueviiurieiiicicie s 16-27
16.9.1.1 Create the Client Applicationccooieuiieiiiiiii i 16-27
16.9.1.2 Configure the Keystore........c.ccccoeuiiiiiiiriiiiiiiircrcreeeeereeeeses s 16-28
16.9.1.3 Configure Maps and Keys..........cccocoeviiiiiniiiiiiis 16-29
16.9.14 Configure a Grant...........oooceiiiceiii 16-29
16.9.1.5 Create the Java SEIVIEtccevveieieieieieeeeee ettt ens 16-29
16.9.1.6 Configure web.Xml........cccccooiiiiiiiiii 16-30
16.9.1.7 Configure the ASSerter.........coooiiiiiiiiiiie e 16-30
16.9.1.8 Update Trust Parameters...........cccocceeiuieiieciiieieeeieieeereeeenee s 16-30
16.9.2 Multiple Domain SCenario.........c.coveevieiiiiiiiiiiiiiiii 16-31
16.9.3 Domains Using Both Protocols ... 16-32
16.9.3.1 Single DOMAin SCENATIOc.ceuruririiieiririririceere e 16-32
16.9.3.2 Multiple Domain Scenario ... 16-33

The Security Model

17.1 About the OPSS Authorization and Policy Models.........c.cccoeirieiiiiiicieicce 17-1
17.2 AUthOrization IMOAEISccooieiririiieieeseeeete ettt ettt e sseese s eee 17-1
17.2.1 The Java EE Authorization MoOdel.........cc.ooveeveieieieiiieieieece sttt eee s s 17-1
17.2.1.1 Declarative AUthOriZation.........cocccueieiiiiininiiieieee e e 17-2
17.21.2 Programmatic Authorization.............ccccccoiiiiiiiiiiiiiicccceeces 17-2
17.2.1.3 Java EE Application EXample ..o, 17-2
17.2.2 The JAAS Authorization Modelcooieiiiiiiiiiieeeeeeeese e 17-3
17.3 The JAAS/OPSS Authorization MOdelcoueivieieiiieiiiieieeeceeeee e 17-4
17.3.1 The Resource Catalog........cccccuiiiiiiiiiiiceccccceeeeeeeee s 17-4
17.3.2 Managing POLICIES........c.cuoviurueiiicieie e 17-4
17.3.3 Checking Policies Programmatically ... 17-6
17.3.3.1 Using checkPermission..........ccccoccuicciciiiiiiiciciiiceieeeceeceeeeeeeeeeeeeeeeeeeeeees 17-6
17.3.3.2 Using doAs and doAsPrivileged..........cccouiiieiiiiciiciie, 17-10
17.3.3.3 Using checkBulk Authorization ... 17-11

18

19

17.3.3.4 Using getGrantedResources............coocucveiiiecieiciicicec e 17-11

17.3.4 The Class ResourcePermission ... 17-11
Developing with the Credential Store Framework

18.1 About the Credential Store Framework APL...........ccccoooiiiiiiiiiiii, 18-1
18.2 Guidelines for Using the Credential Store Framework API...........cccccccoociiiiiniinnnne. 18-1
18.3 About Map and Key Names...........c.cooriiiiiiiii e 18-2
18.4 Provisioning Access PermiSsionsccceiiiiiiiiiiiiiicc s 18-2
18.4.1 Permission to Access a Key Example........cccccocociiiiiiiiiiiiiiceccececeeenenenens 18-2
18.4.2 Permission to Access a Map Examplecccoooviiiiiiiiiiiiices 18-3
18.5 Using the Credential Store Framework API ..o 18-3
18.5.1 Using the Credential Store Framework API in Java SE Applications....................... 18-3
18.5.2 Using the Credential Store Framework APl in Java EE Applications 18-4
18.6 Credential Store Framework API Examples.........cccccooiiiiiiiiicieiciicieeccicece s 18-4
18.6.1 Credential Store Framework Operations Example.........c.cccccceceiiinniinnnnninene 18-4
18.6.2 Java SE Application with File Credentials Example...........cccccocovviniinnnn. 18-6
18.6.3 Java EE Application with File Credentials Examplecccccoooiiiiiin, 18-7
18.6.4 Java EE Application with LDAP Store Example..........cocovviiininnniininnccicccne, 18-9
18.6.5 Java EE Application with DB Store Examplecccccoviiiiiiiiiiiiiiiiccis 18-10
Developing with the User and Role API

19.1 About the User and Role APL.........cccccooiiiiiiiiiii s 19-1
19.1.1 Authentication Providers and the User and Role API...........cccccocoviiiiinnnininnnnn 19-2
19.2 Working with Service Providers. ... 19-2
19.2.1 Setting Up the ENvironmentcoooeioiiiiiieiiice s 19-2
19.2.2 Choosing the Provider RepositOrycccoooiiciciiiicieieiiccec e 19-3
19.2.3 Creating the Provider INStancec.ccccccccciiiiiniiicccceeee s 19-4
19.2.4 Configuring the Provider Start-Time and Runtime Propertiesc.c.cccoooeveueinnne. 19-4
19.2.4.1 Configuring Start-Time and Runtimecccoooiiiie, 19-4
19.2.4.2 Enabling Execution Context IDc.cccccoiiiiiiiiiiiiccececeeeeeeeees 19-6
19.2.5 Configuring the Provider when Creating a Factory Instancec.c.cccooooiennni. 19-6
19.2.5.1 Configuring Common Properties...........cccccceeuiiiiiiiiciiinniiiiicneiccceeeees 19-6
19.25.2 Configuring Constants, Number of Connections, and Pool Connection........... 19-6
19.2.6 Configuring the Provider when Creating a Store Instancecccccooveiiiiinni 19-7
19.2.7 Configuring the Provider at Runtime...........cccccccooiiiiiiincccce, 19-7
19.2.8 Programming GUIdElINesc.cccceuiimiuiiiiiiiiiiiiiiceceeeeeeee s 19-7
19.2.8.1 Switching Providers ...t 19-7
19.2.8.2 Using Identity Store ODJectsccccceuiiiiiiiiiiiiiiiiciiiicicccceees 19-8
19.2.9 The Provider’s Lifetimeccoiiiiiiiiiiic s 19-8
19.3 Searching the Identity StOTeccoouoiiiiiiiii s 19-9
19.3.1 Searching for a Specific Identitycccooooiiiiiiiiiiiiii 19-9
19.3.2 Searching for Multiple Identities. ... 19-9
19.3.3 Using Search Filters ..o 19-9
19.3.3.1 FAlter OpPerators.........ccccuiuiiiiiiiiiiiiiicicicicc s 19-9
19.3.3.2 Filter for Logged-In User and Role ... 19-9
19.3.3.3 Filters EXamples........ccccoviviiiiiiiiiiiiiiiiii s 19-10

xi

20

21

22

Xii

19.4 Creating and Modifying Entries in the Identity Store............ccooooiiiii, 19-11

19.4.1 Creating Identities and Roles............c.oooriiiiiiiiii 19-11
19.4.2 Modifying an IAeN itycccoouvueiiivieiiirr e 19-12
19.4.3 Deleting an Identitycc.oooiueiiiiicieii 19-12
19.5 User and Role API EXamPIESccoooiiuiiiiiiiiieieicciecii s 19-12
19.5.1 Searching Users EXampleccccccceiiiiiiiniriiiinccnercesr e 19-12
19.5.2 Managing Users EXample..........ccccooiiriiiiiiiiiieiicce e 19-13
19.6 Configuring SSL for LDAP Providers.......c...cooomoiiiiiiiiiiccce e 19-15
19.6.1 Setting Up SSL t0 PrOVIAETSc.c.cevvueiiiiiiiririicicicrccrre s 19-16
19.6.2 Customizing SSL t0 Providerscoocueiiiiicieiiiicicc 19-16

Developing with the Identity Governance Framework

20.1 About the Identity Governance Framework..........ccccoooeiiiiiiiiiiiicicie 20-1
20.1.1 Identity Directory APLI OVeIVIEWccccovuiiiiiiiiiiiiiiiiiiiinie s 20-1
20.2 About the Identity Directory API Configuration..........cccoceveeuvuverererererrnneenirrreeeeereeenes 20-2
20.3 Using the Identity Directory APL..........cocoooiiiiiiiiiiiiii e 20-2
20.3.1 Initializing and Obtaining the Identity Directory Handle..........cccccccooeiiinnni. 20-2
20.3.2 Creating and Deleting @ USerc.ccccccuiiiiiiiiiiieiiiicicciceeeeceeeeeeeeeeeeeeeeee s 20-3
20.3.3 Obtaining and Modifying @ USer ...t 20-4
20.3.4 Simple and Complex User Search ..o 20-5
20.3.5 Creating and Deleting @ GIrOUPcccccccceiiiiieiiieiiicccececeeeeeeeeee s 20-6
20.3.6 Obtaining @ GIOUPcveviierieiiicieie e 20-6
20.3.7 Group Search Filter.........ooiiiiiiiii e 20-6
20.3.8 Adding and Deleting a Member t0 @ GIoup........ccccccueueucueueucueiniciceeieeieeeeeeeeeenenens 20-7
20.4 Configuring SSL Using the Identity Directory API ..o 20-7

Developing with the Keystore Service

21.1 About the Keystore Service APIc.cccooiiiiiiiiiiii s 21-1
21.2 Setting Policy Permissions...........cccooieueieiiiicieiiicciciec s 21-2
21.21 Permission for a Keystore Example ... 21-2
21.2.2 Permission for a Map EXample...........ccccoviiiiiiiiiiiiiiccs 21-2
21.2.3 Permission for a Key Alias Example.........cccccccooiiiiiiiiiiiiiiicccccceees 21-3
21.3 Using the Keystore Service APl in Java EE Applicationsccccccceeuevvreeiiicevvecennenes 21-3
21.4 Using the Keystore Service APl in Java SE Applications...........cccoooeueieiincieiiiiciiiene, 21-3
21.5 Keystore Service API EXamples.......ccccccociiiiiiiiiiiiiiiiiiiiiiiciciiccceseeeees 21-4
21.5.1 Keystore Service Management Example..........cccccccciiiiiiinnniinnceccreeeceeeeenes 21-4
21.5.2 Reading Keys at Runtime Example...........cccoooiiiiiiiiiii e 21-5
21.5.21 Getting a Handle to the Keystore...........cccccociiiiiiiiiiiiiicccccc, 21-5
21522 Accessing Keystore Artifacts - Method 1 ... 21-6
21.5.2.3 Accessing Keystore Artifacts - Method 2., 21-6

Developing with Oracle Fusion Middleware Audit Framework

22.1 Integrating Applications with the Oracle Fusion Middleware Audit Framework........ 22-1
22.2 Creating Audit Definition Files..........ccooiiiiiiiiiiiiiiiiccces 22-1
22.2.1 The component-events.xml File.........c.cccccociiiiiiiiiiiceceeceeeeeeeeees 22-2
22.2.2 Translation Files ... 22-2

23

22.3 Registering the Application with the Service ... 22-2

22.3.1 Performing Declarative Audit Registration...........cccccooooerioiiiiiniiiicce 22-2
22.3.1.1 Application Audit Registrationcccocoeueeiciiiiciiieiceeceeeceeeeeeeeees 22-3
22.3.1.2 Custom Audit Registrationccooeuiiiiiiiiii e, 22-3
22.3.2 Programmatic Registration ... 22-4
22.3.3 Registering with WLST Commandsccccccocueeieiemieiieiieeiecceeeeeeneneneenenenenes 22-5
22.3.4 Using Domain Extension Templates for Audit Artifacts........cccooeiriiiiiicininnnn 22-5
22.4 Managing Policies Programmaticallycccooeiioiiiiiiiiiiiccc e 22-5
22.41 Querying Audit Dataccoceuiiiiiiiiiiiiic s 22-5
22.4.2 Viewing and Setting Audit Policies ..o 22-6
225 Logging Audit Events Programmaticallycccccooooiiiiiiiiii 22-7
22.5.1 Oracle Fusion Middleware Audit Framework Interfaces.........cccccocovvviivinininnen. 22-7
22.5.2 Setting System Grants ... 22-8
22.5.3 Obtaining the Auditor INStancecoceuoviiiiiiiiicc 22-9
22.6 Updating and Maintaining Audit Definitions..........cccccccceeviiiniiiiiniccceceeeee 22-9
Configuring Java EE Applications to Use OPSS

23.1 About Authentication in Java EE Applications........cccccccoceueuiiiieiciiiceeccceceeeeeeees 23-1
23.2 Developing Authentication in Java EE Applications...........cccccovvviiiiiiiniiiniinnnnn, 23-2
23.3 Configuring the Filter and the Interceptor..........c.cooerioiiiiiiiiicc e 23-2
23.3.1 Setting the Application SriPe........cccccociiiiiiiiiiiiicccece s 23-3
23.3.2 Setting Application Role SUPPOTIt.......c.cccoiiiiiiiiiiiiiiiiiiic 23-4
23.3.3 Setting the Anonymous User and Rolecoooiiiiiniiice 23-4
23.3.4 Setting Authenticated Role SUPPOTtccccccuiiiiiiiiiiiiiicccccceceeceeees 23-5
23.3.5 Setting JAAS MOoiiiiiic e 23-6
23.3.6 Interceptor Configuration Requirements.............ccocooeieioiiiiniiiiiiniicceccee 23-6
23.3.7 Summary of Filter and Interceptor Parameters...........cccccccocueueueiicieicciiccncicncnnnes 23-7
23.4 Choosing the Appropriate Class for Enterprise Groups and Users...........cccccoevevevenenenne. 23-7
23.5 Packaging a Java EE Application Manually............cccoooeiiiimiiiiiicce 23-8
23.5.1 Packaging Policies with the Application..........ccccoeuvvviriiiirnrnncrccceeeeeceees 23-8
23.5.2 Packaging Credentials with the Application...........c.cooooeeiiiiii 23-9
23.6 Configuring Java EE Applications to Use OPSS...........cccccccviiiiiiiiiiiiiicciccccecee 23-9
23.6.1 Controlling Policy MIgTationcccococicueiuiuicmiieiiierieeieieeeeieieereeeree e neseeeeeneneneaes 23-9
23.6.1.1 jps.policystore. migrationccooveiiuiviiiiiiiiiic e 23-10
23.6.1.2 jps.policystore.applicationid..........ccccceiiuiiiiiiiiiiiiiis 23-10
23.6.1.3 jps.apppolicy.idstoreartifact. migrationcocoevvrrrrirerinnnnrrccc e 23-10
23.6.1.4 jps.policystore.removal.........ccviiiiiiiiii 23-12
23.6.1.5 jps.policystore.migration.validate.principal............ccccoeiiiiiiiiiiiiiis 23-12
23.6.1.6 JpsApplicationLifecycleListener...........cccceeiiiiiiiiieieieeeeceecieeeeeeenes 23-12
23.6.2 Configuring Policy Migration According to Behavior..........ccccoooiin, 23-13
23.6.2.1 RecomMMENdAtIONSc.vvviieieiiiiiicciccee e 23-13
23.6.2.2 Skipping Migrating POLICIES........ccccceueuiiiieiiiciiiiiiccrccce e 23-13
23.6.2.3 Migrating Merging POLiCIes..........cccueviiueieiiiiiieiec e 23-13
23.6.2.4 Migrating Overwriting POLiCIES.........ccccevviviiiviviiiiiiiiiiiiccnae 23-14
23.6.2.5 Removing or Not Removing Policiescooueiiiiniiiiiiiiicccccecccennes 23-14
23.6.2.6 Migrating Policies in a Static Deployment..........c.ccoovoiiiiiiiiniiiiiiccce, 23-16
23.6.3 Using File Credential StOTes..........ccccovuviiiiiiiiiiiiiiiiiiiiiicccccene 23-16

xiii

23.6.4 Controlling Credential Migrationcccoouoiieieiiiiiciicce 23-17

23.6.4.1 jps-credstore.migrationococeeeiirieiiiiccc e 23-17
23.6.5 Configuring Credential Migration According to Behaviorccccovoceciiicnnnes 23-17
23.6.5.1 Skipping Migrating Credentials...........cccooioiiiiiiiiiie, 23-17
23.6.5.2 Migrating Merging Credentialsccooooiiiii e, 23-18
23.6.5.3 Migrating Overwriting Credentialsccccccoeeiernnninnrncrreeeeereeee 23-18
23.6.6 Using Supported Permission Classesccccocvvviviiiininiiiniiiniiccicccnnnas 23-18
23.6.6.1 Security Store Permission Class ..o 23-18
23.6.6.2 Credential Store Permission Classcccoveiviiieiiininiiiieccecceee, 23-19
23.6.6.3 Generic Permission Classcccceeeeiviiiiniiiiiiis 23-19
23.6.7 Specifying Bootstrap Credentials Manuallycooooiiiiii 23-20

24 Configuring Java SE Applications to Use OPSS

241 Using OPSS in Java SE Applications.........cccocueueiiriciniiccieiccii s 24-1
2411 The JPsStartup CLass......cccccuiiuiueiiiiiieeeeeeeee e 24-2
24111 JpsStartup.start Statesccoeeveiiiiiiiiii 24-2
2411.2 JpsStartup CONStIUCOTcuoveviiiiii 24-3
24113 JpsStartup runtime OPtioNScoviiiiiiiii 24-3
2411.4 OPSS Starting EXamples ... 24-4
242 Implementing Security Services in Java SE Applicationscccccooeurueieiicciiiiiinicene 24-6
24.3 Authentication in Java SE Applications.........c.ccococeiuiiiiciiiieeceicceeeeeeeeneneneenenes 24-6
24.31 Configuring the LDAP Identity Store in Java SE Applicationsccccccoooeeueinnnen. 24-6
24.3.2 Using Login Modules in Java Applicationsccocoeueieieirieiiiiciciecceccee 24-7
24.3.2.1 The User Authentication Login Modulecccccoeciiiiiiiiiieicceccceeenen 24-8
24.3.2.2 The User Assertion Login Module............coooiiiiiiiiii, 24-8
24.3.2.3 The Identity Store Login Module...........c.coooriiiiiiiie, 24-10
24.3.2.4 The Asserted USer ..., 24-14
24.3.3 Using the Login Modules in Java SE Applications..........c.cccocoeeieiiiicciiininiciee 24-16
24.4 Authorization in Java SE Applicationsccceeueiiiriciniiiiiec e 24-17
24.41 Configuring Policy and Credential File Stores............coooiiiiiociiiiiiciciccnenes 24-18
24.4.2 Configuring Policy and Credential LDAP Storesc.cooeeeivimicieiniiciciiici 24-18
24.4.3 Configuring DB Security StOres..........ccccooviiriiiiiiiiiiiiiiiiiiinicrrcress 24-19
24.4.4 File Store Unsupported Methodscoovvvininnnniininiicicccccccccccennes 24-21
245 AuditinJava SE Applications........ccoeueviiiiiiiiiiiiiiiiciicc 24-21
2451 About Audit in Java SE Applications ..ot 24-21
2452 Configuring the Audit Bus-stop DireCtorycooiiiiiiiiiiiiiiiiccccecenenes 24-22
24.5.3 Configuring Audit Loaders...........ccooviiiiiiiiiiiic s 24-22
2454 Common Audit Scenarios in Java SE Applicationscccccceeueuvviiivivvnnininennnnes 24-22
24541 Audit with a Collocated WebLogic Server ... 24-23
24542 Audit Without a Collocated WebLogic Server...........c.ooeeueiviinieiiiicicieienen, 24-23

Part V Appendixes

A OPSS Configuration File Reference

A1 First and Second Hierarchy Levels...........ccoooooiiiiiiiiii A-1
A.2 Third and Lower Hierarchy Levels..........ccocociiiiiiiiiiiiicccccccceeeeas A-2

Xiv

B File Store References

B.1 File Store HIierarchyccouoiiiiiiiic e
B.2 File Store Elements and AIDULES ...c..oocviiiiiieieeeee ettt

C Oracle Fusion Middleware Audit Framework Reference

C.1 AUit EVENES ..o
C.1.1 What Components Can Be Audited? ..o
Ci1.2 System Categories and EVeNts..........cc.ccoooveiiiiiiniiiciicc s
C13 OPSS Event Attributes ..o s
Cc.z2 The Audit Schema..........ccooiiiii
C.3 Audit Filter EXpression SYNtaXcccccocoeumuriiriniriniciniiciicisiceicse s
C.4 Naming and Logging Audit Files.........c.cccccoiiiiiiiiiiiiiceccecceeeeeeeeeeeeeeees

D User and Role API Reference

D.1 Mapping User Attributes to LDAP Directories..........ccocoviiiiiiiniiiininiiiiiiiceiiccns
D.2 Mapping Role Attributes to LDAP Directories ...
D.3 Default Configuration Parametersccooeeiiiiiiieiiiiicieiicc e,

E Administration with Scripts and MBeans

E.1 Configuring Services With SCIIptsooooiuiiiiiiii
E.2 Configuring Services with MBeaNS...........cccccocceuiiiiiiiiiiiccccceecceeee s
E.21 Supported OPSS MBEANS..........ccccvvviiieiiiiiiiiiiieicici s
E.2.2 Using OPSS MBeaNS.........ccuiuiiiiiciiciciciic s
E.2.3 Programming with OPSS MBEANSc.cccceueuiuriririiiiiiiririeieiereecceceeeeeeeeeeeeeeeee s
E.3 Restricting Access to MBeans...........cccooviiiiiiiiiiiii
E.3.1 Annotation EXamples..........ccooiii s
E.3.2 Mapping Logical Roles to Enterprise Groupsc.cccoeocucueueueueueucuemeieieieeneneeeicnenenennns
E.3.3 Particular Access ReStriCtions ...t

F OPSS System and Configuration Properties

F.1 OPSS System Properties..........coucueuiiiicieiiicicieecci i
F.2 OPSS Configuration Properties.........ococvvviiiiiiiiiniiiiiinniiiinccsncssesesssssses s
F.2.1 Properties Common to OPSS Services..........cccvviiiiiiiiniiiiiniiiiiiccccccenens
F.2.2 Policy Service Properties ...t
F.2.2.1 Policy Service Configurationcccccecvviiiiinnniinnnninncsncces
F.2.2.2 Runtime Policy Configuration............cccceeveveririrererererenirnrierereeeeeeeseseeeeeeeeeseeas
F.2.3 Credential Service Properties..........ccooueeiiiiiiiiiiiiiiiiiiiccccccccs
F.2.4 LDAP Identity Properties ...t
F.2.5 Properties Common to All LDAP SEIVETSc.ccccceuiueurinueiiriirereiiceeeeeeeeeeeeeeeeeeeeeees
F.2.6 Trust Service PrOPerties ...
F.2.7 Audit Service Properties. ...
F.2.8 Keystore Service Properties..........ccovviiiiiiiniiiiniiiniiiicccccns
F.2.9 Anonymous and Authenticated Roles Propertiescccccooirieieiiiiciciicicicine

C-1
C-2

XV

G OPSS API References

G.1

OPSS APT REEICIICES ...ttt ettt ettt e et e et e e et e e st e e ste e e s aaseessaseessaaeessnaeeenaeas G-1

H Using an OpenLDAP Identity Store

H.1

Using an OpenLDAP Identity StOTe.........ocoomueiiiiiiiiiiiiic e, H-1

Adapter Configuration for Identity Virtualization

1.1
1.2
1.3
1.4

About Split Profiles...........cooouiiiiiii e -1
Configuring Split PrOfIlesccccociiiiiiiiiiiicicceeeecee e -1
Implementing Split Profiles..........c.ccooeiiiiiiiiiiiiiiiicc s -2
Logging Identity Virtualization Library ..., -3

J Troubleshooting OPSS

XVi

J.1

J.2
J.2.1
J.2.11
J.2.1.2
J.2.2
J.2.2.1
J.2.22
J.2.2.3
J.2.24
J.2.3
J.2.4
J.3
J.3.1
J.3.2
J.3.3
J.3.4
J.4
J.4.1
J.4.2
J.4.3
J4.4
J.4.5
J.4.6
J.5
J.5.1
J.5.2
J.5.3
J.5.4
J.5.5
J.5.6
J.6
J.6.1

The OPSS Diagnostic Framework.............oociiiiiiiici s J-1
Diagnosing Security EITOIS........ccooiviiiiiiiiiiiicc s J-3
ADOUL OPSS LOZZETS ...ttt J-3
About Diagnostic Log Files..........coooiiiiiiii J-3

Offline WLST LOZZETSevvvimiiiiiiicieieieieieieiceeeeeeeeeieeeeeeeeeee e eeaes J-4

LOZEEers DY SeIVICE.....vvieieiiiiei J-4
Logging Authorization ... J-5
LOggINg AUit...c.cuiiiiiiiiiiciiicccceerr e J-5
Logging the User and Role APL..........c.c.ccooooii J-6
Logging Other COMPONENtScc.cuoviriiieiiiciciccie s J-6

System PrOPerties ... J-6
Understanding Log ENtries ..o J-8
Troubleshooting Reassociation and Migration.............ccceueviircieiiiiciiiccccce J-9
Reassociation Failure..........c.ccoiiiiniiic e, J-9
Unsupported Schema...........cccoiiiiiiiii e J-11
Missing Policies in Reassociated Security Store............ccooeveiiiiiiiiiiiniiecc, J-12
Migration FailUreccccoiiiiiiiiiiicccccecce e J-13
Troubleshooting Server Starting..........cccooeeeieiiiiiciicc s J-14
Missing Required LDAP Authentication Provider...........ccooooiiiiiiiiiniiinnnn, J-15
Missing Administrator ACCOUNL........ccccueuiuiiiuiuiiiiiiiieeeeeeteee e J-16
MiSSING PeImiSSION.cuiuiiiiiiiiiiiiiiciitcicicii it J-16
Server Fails t0 SEArt......cccoviiiiniriiciic et J-17
Other Server Start ISSUES..........coveveiiiiiiici e J-18
Permission Failure Before Server Starts ..., J-20
Troubleshooting Permissions..........c.cccccieuiiiiiiiiiiiiiiiiiccicice e J-20
Troubleshooting System Policy Failuresccccccoeviiiinnniiiiccicceceeeeeee J-20
Failure to Get Permissions - Case Mismatchc.cccooiieiiiniiiiiniiiiiccn, J-22
Authorization Check Failure..........cccoiiiiiiiiiiiiineceee s J-23
User Gets Unexpected PermiSSions ... J-24
Granting Permissions in Java SE Applications..........cccccoeveiiiiiiiiniiiicicicennnes J-24
Application Policies Not Seen in 12¢ HA Domain.........ccccoevveeiiieiecceeincceeccnen, J-25
Troubleshooting Connections and ACCESS ... eeenenenes J-26
Database Connection EXCEPiONccceiiiiiiiiiiiiiiiiiiiccccces J-26

J.6.2
J.6.3
J.6.4
J.6.5
J.6.6
J.6.7
J.6.8
J.7

J.8
J.8.1
J.8.2
J.9
J.9.1
J.9.2
J.10
J.10.1
J.10.2
J.10.3
J.10.4
J.10.5
J.10.5.1
J.10.5.2
J.10.5.3
J.10.5.4
J.10.6
J. 11

Other Database EXCEPLIONScccvviuiiiiiiiiiiiiiiiiicicce e J-26
JNDI Connection EXCEPHONc.ccveveieiiiiiiiiii e J-27
Failure to Connect to the Embedded LDAP Server.......c.cccooviivieniiniinieriicnnnnnnn, J-27
Failure to Connect to LDAP SeIVer........cccooiiiiiiiiiiiiiiiiiciiieceee e J-28
Failure to Access Data in the Credential Storecoooiiiiiiii, J-28
Security Access Control EXCEPLION........cccciviviiiiiiiiiniiiiiiiics J-29
Failure to Establish an Anonymous SSL Connection...........ccocceviinieiniiciciciccinen, J-31
Oracle Business Intelligence Publisher Time Zone...........cccooovrieiiiiiiniiicciecccee J-31
Troubleshooting SEarching............ccccoceuiiiiiiiieeeeeeee e neneeenes J-31
Search Failure when Matching Attribute in Security Store...........coooeviiiinan, J-32
Search Failure with an Unknown Host Exception...........cccooiiiiiiciiiiccici, J-34
TroublesShOOting VErSIONS........c.cccciuiiiiuiiiiiiiiieieiceicieieeeieieie ettt sene e neaenes J-35
Incompatible Versions of Binaries and Security Storecccoviriieiniiciciiicncnnan, J-35
Incompatible Versions of Security Stores............coocoeeiiiiiiiiiiiiiii, J-36
Troubleshooting Other EITOTS.........ccccocuiiiiiiiiiiiiecceece e J-36
Runtime Permission Check Failure..........ccccoooviiiiiiiiiiiiiccs J-37
Tablespace Needs ReSIZiNgccoooriiiiiiiiiiiiccc s J-38
Oracle Internet Directory EXCEPHIONccccuiuiuiiiiiiiiiiiiiiiiiiciecccccecceeeieeerceeees J-38
User and Role APLIFailure...........cccooiiiiiinininiiiiiieee e J-38
Characters in POLICIESccciiiiiiiiiiiiiiiiicii e J-39
Special Characters in Oracle Internet Directory 10.1.4.3.......cccccccciiiiiicennnnne J-39
Characters in File Security Stores..........ccooeoiiiiiiiiiiiicc e J-39
Characters in Application Role Namesccccooooiiiiiiiiiiiicece J-40
Missing Newline Characters in File Store...........cccccccocviviiiiiiiiiiiciicccenee J-40

INValid K@Y SIZeoueviieiiiiiieiie s J-40
Need Further Help? ... s J-41

xvii

xviii

List of Figures

1-1
16-1
16-2
16-3
16-4

The OPSS ArchiteCture.........covviiiiiiiiiiiiiiiiiii s 1-2
Applications, Security Stores, and Management ToOIS..........cccooioiiiiiiiiciiiic 16-2
Identity Propagation over HTTPccccoooiiiiiie 16-10
Mapping of Application Roles to Users and Groupscccccceeecueieieiccieieiicicieicccnen, 16-18
Application Life Cycle Phases..........cccooceiiiiiiiiiiiiiiice s 16-25

Xix

List of Tables

XX

mmUUUUUUCpOOOOOOUJ)r
o000 hON2NOGODWON =N

[
N

oo
N 2w

rrn
o bW

Granted and Inherited PermiSSionsccoceueueiiiieiiiniiicicicci e 2-5
Identity Store Types and Authentication Providers..........ccooooieiiiiiiiiiiiic 3-4
Tools to Deploy Java EE Applicationsccccevviviiiiiiiininiiiiiciiicccceceeee s 6-2
Files in a Component Template Used by OPSS..........cccoiiiiiiiiiiiiccceee 7-4
Upgrading from 12.1.2 0r 12.1.3 10 12.2.1.X c..eruriiiiiiiiieieiiceieccie e 7-6
Upgrading from 11.1.1.7 or 11.1.1.9 £0 12.2.1.X ceucvmiiiirieiiiiiciecee i 7-6
Global LDAP Identity Store Parameters.............cccoeueuiiiurieiiiiiiiciniececc s 8-3
Audit Attribute Data TyPes......cccoiiieieiiii 13-10
Security Tasks for the Application Architect..........cccccovvviiiniinini, 16-25
Security Tasks for the Application Developer............cccovvviinvniinnnnnnie, 16-26
Security Tasks for the Application Security Administratorcooceeiviiicieiiinnnen, 16-26
Comparing Authorization in the Java EE Model...........cccoooiiiiiiiii 17-2
checkPermission Behavior According to JAAS Mode.........cccoouoiiiiiiiiiiiiie 17-7
Repository and Provider Classes..........ccceuiiieieiiiicieieicicinc e 19-3
Start-Time Identity Provider Properties...........cccooiiioiiiciiiiiiicc e, 19-4
Runtime Identity Provider Properties ... 19-5
Parameters for Audit Registrationc.coccooeeiiioiiiiiniccccc 22-3
JpsFilter and JpsInterceptor Parameters..........cccoooviiiiiiiiiiiiiiccccccene 23-7
Settings to Skip Policy Migrationcccceueiiiiiiiiiiciccc 23-13
Settings to Migrate Merging POLCIEScovrueieiiiiciiici 23-13
Settings to Migrate Overwriting PoOLiciesccooooeieiiiiiiiiniii 23-14
Settings to Remove POLICIESocueviiiiiicic 23-14
Settings to Disable Removing Policies..........c.ccooeueiiiiiiiiiiiiccc e 23-15
Settings to Migrate Policies with Static Deployments..........cccouoiiiiiiiiniiiie 23-16
Settings Not to Migrate Policies with Static Deploymentsc.ccccooiniiiiinnicinne. 23-16
Settings to Skip Credential Migration..........cccceveiiiieiiiiiiciecc 23-17
Settings to Migrate Merging Credentialscocooeioiiiiiiiiiicieiic 23-18
Settings to Migrate Overwriting Credentials..........c.cccoooeiiiiiiiiiiiic 23-18
JpsStartup Runtime OPtions ..o 24-3
First- and Second-Level Elements in jps-config.Xml.........cccccccovivvnininiiiiiiinnn, A-2
Scenarios fOr <ProPerty> ... A-15
Hierarchy of Elements in system-jazn-data.xml and janz-data.xml..........c.c.c.cccoerennnne. B-3
System Categories and EVeNtscccoooiiiiiiiii C-2
COre OPSS EVENES ...t C-4
Identity Governance Service EVents ... C-8
Identity Virtualization Library Events..........c.cccoooiiiiiiiie C-8
Attributes of Audit EVeNts........c.ccooviiiii e C-9
The Audit SChema.........ccoooiiii C-11
Additional Audit Schema Tables............cccooooiiiiiiiiii e C-13
User Attributes in Directory SErvers..........coicieiiicicieieie e D-1
Role Attributes in Directory SEIVers ...t D-4
Oracle Internet Directory and Microsoft Active Directory Parameters..............c.cc........ D-4
Directory Server Enterprise Edition and Novell eDirectory Parameters D-5
OpenLDAP and Oracle Virtual Directory Parameters..........cccooevoiiiiiiiicciiincee D-6
Embedded LDAP Parameterscocccueuiiurieieiiiciciecici e D-7
List 0f OPSS MBEANScocuoiiiiiiiiicicictt it E-3
Mapping of Logical Roles to WebLogic Server Groups...........cococoeueveiiunieieininicieieecinen, E-12
Roles Required per Operation............cccceeiiiieiiiiiniiiniiiiiiiccs s E-12
OPSS System Properties.......c..coucueueiiiuciiiicicieeci e F-1
CommMON PrOPeTties.........ooouiuiiiiiiiiiiiiiiiiiiiiic e F-5
POLiCY PrOPErtiescoiiirieiiiicieic e F-8
Runtime Policy Properties ... F-11
Credential Store Properties...........cuiiiiiiiiiiiiiiiciicccieee e F-15

F-6
F-7

F-9
F-10
F—11
J—1

LDAP Identity Store Properties ..., F-16

Generic LDAP Properties. ... F-22
TTUStSTOTE PrOPETHIOS ...ttt F-23
AUdit PIOPEIties......ccooviviiiiiiiiiiiiiii e F-26
Keystore Service Properties.........c.ocoiucieiiiiieiiicici s F-27
Anonymous and Authenticated Roles Properties............ccoooeeviiiiiiniinciiiine, F-29
Log Files for Audit Diagnosticsccoeueviiieiiiiiiiiicci s J-5

XXi

XXii

Audience

Preface

This guide explains the features and administration of Oracle Platform Security
Services (OPSS).

The intended audience of this guide are experienced Java developers, domain
administrators, deployers, and application managers who want to understand and use
OPSS.

This guide includes several parts, each of which groups related major topics. Parts I
through III are relevant to security administrators. Parts IV contains information about
the policy model and is intended for developers, and part V contains reference
information.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documentation

Additional information is found in the following documents:

» Administering Oracle Fusion Middleware

» Securing Web Services and Managing Policies with Oracle Web Services Manager

» Administrator’s Guide for Oracle Internet Directory

» Administrator’s Guide for Oracle Directory Integration Platform

» Administrator’s Guide for Oracle Identity Federation

» Developing Fusion Web Applications with Oracle Application Development Framework

» Administering Oracle Entitlements Server

xXiii

Understanding the WebLogic Scripting Tool

WLST Command Reference for Infrastructure Security
Creating Schemas with the Repository Creation Utility

For links to API documentation, see OPSS API References.

For a comprehensive list of Oracle documentation or to search for a particular topic
within Oracle documentation libraries, see
http://www.oracle.com/technetwork/indexes/documentation/index.html.

Conventions

XXiv

The following text conventions are used in this guide:
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated

with an action.

italic Italic type indicates book titles, emphasis, terms defined in text, or

placeholder variables for which you supply particular values.

monospace Monospace type within a paragraph indicates commands, URLs, Java

class names and method names, file and directory names, text that
appears on the screen, or text that you enter.

What’s New in This Guide

This chapter summarizes the main changes introduced in the 12.2.1.x releases.

Changes in This Document for Release 12.2.1.2.0

In release 12.2.1.2.0, the changes to this document include:

A procedure that describes how to synchronize the local keystore with the security
store. See Synchronizing the Local Keystore with the Security Store.

Procedures that describe how to replace demonstration certificates with
third-party or domain CA signed certificates. Demonstration CA certificates
should not be used in a production environment. See Replacing Demonstration
CA Signed Certificates.

Troubleshooting information about database connection errors. See Database
Connection Exception.

Changes in This Document for Release 12.2.1.1.0

In release 12.2.1.1.0, this document has been changed as follows:

The procedures in Upgrading Security to 12.2.1.x have been updated and
streamlined to improve usability.

New Features in Release 12.2.1.0.0

The new features and major changes introduced in release 12.2.1.0.0 include the
following:

Support for IBM DB2 and Microsoft SQL server databases. OPSS supports two
new databases as repositories for security stores. See Supported File, LDAP, and
Database Stores.

The ability to create database views of audit records at registration time using the
Dynamic Metadata Model. See Audit Views Created at Registration.

The new audit createIAUView and getIAUViewInfo commands, that allows you to
create and to get information about audit database views. See Audit Configuration
Commands in WLST Command Reference for Infrastructure Security.

The new merge. jdkcacerts.with. trust property, which specifies whether to
return public certification authority certificates in the kss://system/publicacerts
keystore with a keystore query to kss: //system/trust. See About Certificates.

The OPSS REST APIL

XXV

XXVi

Part |

Understanding Security Concepts

This part contains the following chapters:

» Introduction to Oracle Platform Security Services

s Understanding Users and Roles

s Understanding Identities, Policies, Credentials, Keys, Certificates, and Audit

= About the Security Store

1

Introduction to Oracle Platform Security
Services

Oracle Platform Security Services (OPSS) provides development teams a portable and
integrated framework to secure Java Platform Standard Edition (Java SE) and Java
Platform Enterprise Edition (Java EE) applications.

This chapter incudes the following sections:
= WhatIs OPSS?

»s OPSS Architecture Overview

» OPSS for Developers

»s ADF Security Overview

The scope of this document does not include Oracle Web Services security. For
information about Oracle Web Services security, see Securing Web Services and
Managing Policies with Oracle Web Services Manager.

1.1 What Is OPSS?

OPSS is the underlying security platform that provides security to Oracle Fusion
Middleware products, including Oracle WebLogic Server, service-oriented architecture
(SOA) applications, Oracle WebCenter, Oracle Application Development Framework
(Oracle ADF) applications, and Oracle Entitlements Server (OES).

OPSS provides an abstraction layer in the form of application programming interfaces
(APIs) that insulate developers from security and identity management
implementation details. Developers do not need to know the details of, for example,
cryptographic key management, repository interfaces, or other identity management
infrastructures. Using OPSS, in-house developed applications, third-party
applications, and integrated applications benefit from the same uniform security
services across the enterprise.

OPSS is installed as part of the Oracle Fusion Middleware installation.

1.1.1 OPSS Main Features

OPSS complies with the following standards: Role-Based Access Control (RBAC), Java
EE, Java Authorization and Authentication Services (JAAS), and Java Authorization
Contract for Containers (JACC).

Built upon these standards, OPSS provides an integrated security platform that
supports:

Introduction to Oracle Platform Security Services 1-1

OPSS Architecture Overview

= Authentication

= Identity assertion

= Authorization

= Managing roles and role mappings

= Managing application policies and credentials
= Managing keys and certificates

s Audit

= Identity Virtualization

= Security APIs

1.1.2 Supported Server Platforms
OPSS is supported on WebLogic Server.

1.2 OPSS Architecture Overview

OPSS includes the WebLogic Server security providers and the Oracle Fusion
Middleware security frameworks. Figure 1-1 illustrates the OPSS architecture.

Figure 1-1 The OPSS Architecture

Oracle Platiorm Security Services
XML Security
Authn ‘ Authz Creds & Keys Audit ‘ 1D Profile Trust Crypio, SSL
Security Service Providers
0OID, VD,
QAM ‘ OES ODSEE ‘ 8T8 OWSM
prus
=
OPSS security store * =
L Aﬂ"‘y
File

The OPSS architecture has the following layers:

» The security services, which includes authorization, authentication, credentials,
identity and trust, Secure Sockets Layer (SSL), and cryptographic services. For
authentication, OPSS uses WebLogic Server Authentication providers.

s The WebLogic Server security providers. The Security Services Provider Interface
(SSPI) provides Java container security, resource-based authorization for the
environment, and APIs for implementing security providers. A module
implementing any of these interfaces can be plugged into the framework to
provide a particular type of security service, such as custom authentication or a
particular role mapping.

» The security store with one of three types of repositories: file, Lightweight
Directory Access Protocol (LDAP), or database.

1-2 Securing Applications with Oracle Platform Security Services

OPSS for Developers

See also:

The Security Service Provider Interfaces (SSPIs) in Understanding
Security for Oracle WebLogic Server

1.2.1 Benefits of Using OPSS

OPSS offers many benefits, including the following:

= Allows developers to focus on application and domain problems
= Supports enterprise deployments

s Supports LDAP servers and SSO systems

s Is certified on WebLogic Server

= Integrates with Oracle products and technologies

= Offers a consistent security experience for developers and security administrators
= Provides a uniform set of APIs for all types of applications

= Optimizes development time by offering abstraction layers

s Provides a simplified application security maintenance

= Allows changing security rules without affecting application code
= Eases administration

= Integrates with identity management systems

OPSS provides security for Java EE applications, Oracle Fusion Middleware
applications, and Java SE applications. It also provides the tools to administer all
security in the enterprise, and allows changing security configurations without
modifying application code.

Using OPSS APlIs, developers secure all types of applications and integrate them with
other security systems, such as LDAP, databases, and custom security components.

Ready-to-use, the default security provider (embedded LDAP server) is available, but
domains can use identity data in other LDAP repositories.

1.3 OPSS for Developers

The following sections summarize the main security features that you use in Java
applications:

= About Java EE Application Security
= About Java SE Application Security

1.3.1 About Java EE Application Security

Java EE applications can use several interfaces to access and maintain security data,
including those provided with Credential Store Framework API, User and Role AP],
Identity Governance Framework API, and Keystore Service API. Using these interfaces
Java EE applications set and retrieve user attributes, and manage policies, keys, and
certificates.

Java EE applications can use authentication and authorization declaratively, with
specifications in the web.xml file, or programmatically, with calls to the isUserInRole
and isCallerInRole methods.

Introduction to Oracle Platform Security Services 1-3

ADF Security Overview

Java EE applications can use custom authentication providers and control
authentication between Java servlets and Enterprise JavaBeans (EJB) using roles and
enterprise groups.

See also:

Security Integration Use Cases

About the User and Role API
Configuring Java EE Applications to Use OPSS

1.3.2 About Java SE Application Security

Most of the OPSS features available for Java EE applications are also available for Java
SE applications, but there are some differences that apply to Java SE applications only,
including the following:

= Applications must use the AppSecurityContext.JpsStartup.start method before
calling any security operations.

= Application security configuration is defined in the jps-config-jse.xmlfile by
default installed in the following location:

SDOMAIN_HOME/config/fmwconfig/jps-config-jse.xml

To specify a different location, use the oracle.security.jps.config property:
-Doracle.security.jps.config=pathToConfigFile

= Applications use standard JAAS login modules by implementing a custom
authentication provider that calls the login module.

s The following Java archive (JAR) file must be added to the class path:

SORACLE_HOME/oracle_common/modules/oracle.jps_12.2.1/jps-manifest.jar

See also:

Authentication Providers in Developing Security Providers for Oracle
WebLogic Server

Using OPSS in Java SE Applications

1.4 ADF Security Overview

Oracle ADF is an end-to-end Java EE framework that simplifies development by
providing infrastructure services and a visual development experience. Oracle ADF is
integrated with Oracle JDeveloper.

ADF Security is based on the JAAS security model, uses OPSS and permission-based
authorization, and simplifies the configuration of application security with visual
editors and ADF Security wizard.

During the development of an Oracle ADF application, the authentication providers
are configured with Oracle WebLogic Server Administration Console, and policies are
kept in a file.

To summarize, ADF security allows you to:
= Control the granularity of declarative security

= Simplify permission with the role hierarchy

1-4 Securing Applications with Oracle Platform Security Services

ADF Security Overview

m Access to Oracle ADF resources

= Integrate with JDeveloper for quick development and test cycles

See also:

Enabling ADF Security in a Fusion Web Application in Developing
Fusion Web Applications with Oracle Application Development Framework

Securing Oracle ADF Applications

1.4.1 Oracle ADF Application Security

Oracle ADF simplifies the development of Java EE applications with JDeveloper by
minimizing the code that implements the application infrastructure. This helps
developers focus on application features.

Oracle ADF leverages container authentication and uses JAAS based authorization to
control access to Oracle ADF resources. Policies may include specific application roles
and JAAS authorization permissions. Oracle ADF connection credentials are stored in
the security store.

Oracle ADF and WebCenter applications include WebLogic Server Authentication
providers and may include a single sign-on solution such as Oracle Single Sign-On.

See also:

Overview of Single Sign-On with Microsoft Clients in Administering
Security for Oracle WebLogic Server

Securing Oracle ADF Applications

Introduction to Oracle Platform Security Services 1-5

ADF Security Overview

1-6 Securing Applications with Oracle Platform Security Services

2

Understanding Users and Roles

This chapter defines terms used throughout this document, and it introduces the role
category and role mapping. Special roles include the authenticated and anonymous
roles.

This chapter includes the following sections:
s Terminology

= Role Mapping

= About the Role Category

s About the Authenticated Role

= About the Anonymous User and Role

s About Administrative Users and Roles

= Managing User Accounts

2.1 Terminology
This section defines OPSS terms used throughout this document.
Users and Groups

A user is an end-user accessing a service. A group is a subset of users and other groups,
so a group has a hierarchical structure.

An authenticated user is a user whose credentials have been validated. To authenticate
users, OPSS uses WebLogic Server Authentication providers.

An anonymous user is an authenticated user who is permitted access to only
unprotected resources.

Application Stripe

An application stripe or stripe (when the application is understood) is a subset of
policies. An application chooses the policies to use by specifying a stripe in the
security store. Several applications can use the same stripe.

Roles
An enterprise role or enterprise group is a collection of users and groups.

An application role is a collection of users and other application roles. Application roles
are defined in application policies and they are not necessarily known to a Java
container.

Understanding Users and Roles 2-1

Terminology

Application roles can be mapped many-to-many to enterprise roles. For example, the
employee enterprise role (in the identity store) can be mapped to the helpdesk
service request application role (in one stripe) and to the self service HR
application role (in some other stripe).

Principal

A principal is the identity to which a policy grants permissions. A principal can be a
user, an external role, or an application role.

Policies

An application policy is a policy that specifies a set of permissions for principals, such as
viewing application web pages or modifying application reports. Application policies
must have at least one principal and can specify either separate permissions or a
permission set, but not both.

A system policy is a policy that specifies a set of permissions for a principal or a
codesource. The scope of system policies is the entire domain. System policies grant
permissions to codesources and principals, while application policies grant
permissions to principals only. Application and system policies are specified in the
jazn-data.xml file.

Subject

The subject is a collection of principals and user credentials, such as passwords and
cryptographic keys. The authentication service populates the subject with users,
groups, application roles, and credentials. The OPSS subject is critical in identity
propagation across domains.

OPSS Configuration File

The OPSS configuration file where all security services for the entire domain are
specified. The specifications in the OPSS configuration file apply to all servers and
applications running in the domain.

By default, the OPSS configuration file is the jps-config.xml file (for Java EE
applications) and the jps-config-jse.xml file (for Java SE applications) and they are
located in the $DOMAIN_HOME/config/fmwconfig directory.

OPSS Context

The context defines a collection of services instances common to a domain. Contexts
are specified in the OPSS configuration file.

Security Stores

The identity store is the repository of enterprise users and groups and must be LDAP.
Ready-to-use, users and groups can be stored in the default provider (embedded
LDAP server).

The security store is the repository of system and application policies, credentials, audit
data, keys, and certificates used by all applications running in a domain.

The policy store refers to the portion or the security store where application and system
policies are kept. The credential store refers to the portion of the security store where
credentials are kept. The keystore refers to the portion of the security store where keys
and certificates are kept. The truststore refers to a keystore where trusted certificates of
third-party certificate authorities are kept.

For information about audit terms, see Audit Terminology.

2-2 Securing Applications with Oracle Platform Security Services

Role Mapping

See also:

Role Mapping

About the Authenticated Role

About the Anonymous User and Role

Setting the Application Stripe

2.2 Role Mapping

OPSS supports the many-to-many mapping of application roles to enterprise groups.
This allows users in enterprise groups to access application resources as specified by
application roles.

Mapping an application role to an enterprise group rewrites the permission of the
enterprise group as the union of its permissions and those of the mapped role.
Therefore, the mapping may augment the permissions of the enterprise group but
never removes any permission from it.

After deploying the application, you map application roles to enterprise groups with
WebLogic Scripting Tool (WLST), Oracle Enterprise Manager Fusion Middleware
Control (Fusion Middleware Control), or Oracle Entitlements Server (OES).

See also:

Managing Application Roles for information about managing roles
with Fusion Middleware Control.

2.2.1 Permission Inheritance and the Role Hierarchy

Roles can be structured hierarchically by the relation “is a member of,” and a role can
have as members users or roles.

In a role hierarchy, role members inherit permissions from the parent role. Thus, if
roleA is a member of roleB, then all permissions granted to roleB are also granted to
roleA. In addition, roleA may have its own particular permissions.

See also:

grantAppRole and revokeAppRole in WLST Command Reference for
Infrastructure Security

Administering Oracle Entitlements Server

2.2.1.1 Role Hierarchy Example

The following example illustrates a role hierarchy of nested application users and
roles. In the example, the developerAppRole role has the following members:

developer
developer_group
managerAppRole
directorAppRole

and the directorAppRole role has the following members:

developer
developer_group

The relevant portions of the jazn-data.xml file specifying this hierarchy follows:

Understanding Users and Roles 2-3

Role Mapping

<policy-store>
<applications>
<application>
<name>MyApp</name>
<app-roles>
<app-role>
<name>developerAppRole</name>
<class>oracle.security.jps.service.policystore.ApplicationRole</class>
<display-name>Application developer role</display-name>
<description>Application developer role</description>
<guid>61FD29C0D47E11DABFI9BA765378CFIF5</guid>
<members>
<member>
<class>weblogic.security.principal .WLSUserImpl</class>
<name>developer</name>
</member>
<member>
<class>weblogic.security.principal .WLSUserImpl</class>
<name>directorAppRole</name>
</member>
<member>
<class>weblogic.security.principal .WLSGroupImpl</class>
<name>developer_group</name>
</member>
<member>
<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
<name>managerAppRole</name>
</member>
</members>
</app-role>
<app-role>
<name>directorAppRole</name>
<class>oracle.security.jps.service.policystore.ApplicationRole</class>
<display-name>Application director role </display-name>
<description>Application director role</description>
<guid>61FD29C0D47E11DABF9BA765378CFI9F8</guid>
<members>
<member>
<class>weblogic.security.principal .WLSUserImpl</class>
<name>developer</name>
</member>
<member>
<class>weblogic.security.principal .WLSGroupImpl</class>
<name>developer_group</name>
</member>
</members>
</app-role>
</app-roles>

<jazn-policy>
<grant>
<grantee>
<principals>
<principal>
<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
<name>developerAppRole</name>
</principal>
</principals>

2-4 Securing Applications with Oracle Platform Security Services

Role Mapping

</grantee>
<permissions>
<permission>
<class>java.io.FilePermission</class>
<name>/tmp/oracle. txt</name>
<actions>write</actions>
</permission>
</permissions>
</grant>

<grant>
<grantee>
<principals>
<principal>
<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
<name>managerAppRole</name>
</principal>
</principals>
</grantee>
<permissions>
<permission>
<class>java.util.PropertyPermission</class>
<name>myProperty</name>
<actions>read</actions>
</permission>
</permissions>

</grant>
<grant>
<grantee>
<principals>
<principal>
<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
<name>directorAppRole</name>
</principal>
</principals>
</grantee>
<permissions>
<permission>
<class>foo.CustomPermission</class>
<name>myProperty</name>
<actions>*</actions>
</permission>
</permissions>
</grant>
</jazn-policy>
</policy-store>

Table 2-1 summarizes the permissions of the five users and roles in the example.

Table 2-1 Granted and Inherited Permissions

Role Permission Granted Actual Permissions
developerAppRole Pl=java.io.FilePermission P1

managerAppRole P2=java.util. PropertyPermission P2 and (inherited) P1
directorAppRole P3=foo.CustomPPermission P3 and (inherited) P1

Understanding Users and Roles 2-5

About the Role Category

Table 2-1 (Cont.) Granted and Inherited Permissions

Role Permission Granted Actual Permissions
developer P1 and P3 (both inherited)
developer_group P1 and P3 (both inherited)

2.3 About the Role Category

A role category is a collection of application roles. A role category contains no
hierarchical structure.

The following example illustrates the configuration of a role category:

<app-roles>
<app-role>
<name>AppRole_READONLY</name>
<display-name>display name</display-name>
<description>description</description>
<class>oracle.security.jps.service.policystore.ApplicationRole</class>
<extended-attributes>
<attribute>
<name>ROLE_CATEGORY</name>
<values>
<value>RC_READONLY</value>
</values>
</attribute>
</extended-attributes>
</app-role>
</app-roles>
<role-categories>
<role-category>
<name>RC_READONLY</name>
<display-name>RC_READONLY display name</display-name>
<description>RC_READONLY description</description>
</role-category>
</role-categories>

The members of a role category are not configured within <role-category> but within
<extended-attributes> of the corresponding application role. The role category name
is case-insensitive. The role category can be managed with the RoleCategoryManager
interface.

See also:

Managing a Role Category in Administering Oracle Entitlements Server

Java API Reference for Oracle Platform Security Services

2.4 About the Authenticated Role

OPSS supports the authenticated role. This role is available to all applications and
need not be declared in the OPSS configuration fie. The permissions granted to the
authenticated role follow from the enterprise groups and application roles of which it
is a member, that is, it is granted inherited permissions only. A typical use of the
authenticated role is to allow authenticated users access to common application
resources. You configure this role in the Java servlet filter and the Enterprise JavaBeans
(EJB) interceptor.

2-6 Securing Applications with Oracle Platform Security Services

Managing User Accounts

See also:

Configuring the Filter and the Interceptor

2.5 About the Anonymous User and Role

OPSS supports the anonymous user and the anonymous role. The permissions granted
to them follow from the enterprise groups and application roles of which they are a
member, that is, they are granted inherited permissions only. A typical use of the
anonymous user and role is to allow unauthenticated users to access public,
unprotected resources. You can configure this role in the Java servlet filter and the EJB
interceptor.

See also:

Configuring the Filter and the Interceptor

2.6 About Administrative Users and Roles

A WebLogic Server administrator is any user member of the Administrators group,
and any user in a WebLogic Server security realm can be added to this group.
Generally, there is no default name for an administrator.

After a domain is configured, any member of the Administrators group can manage

users in the Administrators group. The tools to manage these accounts are Oracle

WebLogic Server Administration Console, WLST, and Fusion Middleware Control.
See also:

Install WebLogic Server in a Secure Manner in Securing a Production
Environment for Oracle WebLogic Server

Users, Groups, And Security Roles in Securing Resources Using Roles
and Policies for Oracle WebLogic Server

Add users to groups in Oracle WebLogic Server Administration Console
Online Help

Using the WebLogic Scripting Tool in Understanding the WebLogic
Scripting Tool

2.7 Managing User Accounts
For information about user accounts and passwords, see:

= Manage users and groups in Oracle WebLogic Server Administration Console Online
Help

= Securing the WebLogic Server Host in Securing a Production Environment for Oracle
WebLogic Server

» Managing the Embedded LDAP Server in Administering Security for Oracle
WebLogic Server

s Configuring the Password Validation Provider in Administering Security for Oracle
WebLogic Server

Understanding Users and Roles 2-7

Managing User Accounts

2-8 Securing Applications with Oracle Platform Security Services

3

Understanding Identities, Policies, Credentials,
Keys, Certificates, and Audit

Identities, policies, credentials, keys, and audit are fundamental to securing
applications. This chapter introduces these basic concepts and the table of compatible
security 11g and 12c versions.

This chapter includes the following sections:

s Compatibility Table for 11g and 12¢ Versions
= Authentication Basics

» Policies Basics

» Credentials Basics

= Keys and Certificates Basics

s Audit Basics

3.1 Compatibility Table for 11g and 12c¢ Versions

This section presents the compatible versions of binaries, configurations, schemas, and
stores for releases 11.1.1.5.0, 11.1.1.6.0, 11.1.1.7.0, 11.1.1.9.0, 12.1.2.0.0, 12.1.3.0.0 and
12.2.1.0.0. The compatible versions of these artifacts apply to both DB and LDAP
security stores. In DB stores, exactly one security store is assumed per database
schema.

The following table shows the versions compatible and it applies to both DB and
LDAP security stores. Note the following terminology symbols:

» The prefix => next to a version number denotes a version equal to or higher than the
stated version number.

» The prefix > next to a version number denotes a version higher than the stated
version number.

= The prefix < next to a version number denotes a version lower than the stated
version number.

Binary Configuration Schema Store Status
11.1.1.5.0 11.1.1.5.0 =>11.1.1.5.0 11.1.1.5.0 Certified
11.1.1.5.0 11.1.1.5.0 >11.1.1.5.0 >11.1.1.5.0 Not supported
11.1.1.6.0 11.1.1.5.0 =>11.1.1.5.0 11.1.1.5.0 Certified
11.1.1.6.0 11.1.1.5.0 >11.1.1.5.0 >11.1.1.5.0 Not supported

Understanding Identities, Policies, Credentials, Keys, Certificates, and Audit 3-1

Authentication Basics

Binary Configuration Schema Store Status
11.1.1.6.0 11.1.1.6.0 =>11.1.1.6.0 11.1.1.6.0 Certified
11.1.1.6.0 11.1.1.6.0 >11.1.1.6.0 >11.1.1.6.0 Not supported
11.1.1.7.0 11.1.1.7.0 =>11.1.1.6.0 <11.1.1.7.0 Not supported
11.1.1.7.0 11.1.1.6.0 =>11.1.1.6.0 11.1.1.6.0 Certified
11.1.1.7.0 11.1.1.6.0 >11.1.1.6.0 >11.1.1.6.0 Not supported
11.1.1.7.0 11.1.1.7.0 =>11.1.1.7.0 11.1.1.7.0 Certified
11.1.1.9.0 11.1.1.7.0 =>11.1.1.7.0 11.1.1.7.0 Certified
11.1.1.6.0 =>11.1.1.6.0 11.1.1.6.0
11.1.1.5.0 =>11.1.1.5.0 11.1.1.5.0
11.1.1.9.0 =>11.1.1.9.0 11.1.1.9.0
12.1.2.0.0 12.1.2.0.0 =>12.1.2.0.0 12.1.2.0.0 Certified (schema only
upgrade)
12.1.2.0.0 <12.1.2.0.0 <12.1.2.0.0 <12.1.2.0.0 Not supported
12.1.3.0.0 12.1.3.0.0 =>12.1.3.0.0 12.1.3.0.0 Certified (schema only
upgrade)
12.1.3.0.0 <12.1.3.0.0 <12.1.3.0.0 <12.1.3.0.0 Not supported
12.2.1.0.0 <12.2.1.0.0 <12.2.1.0.0 <12.2.1.0.0 Not supported

3.2 Authentication Basics

OPSS uses WebLogic Server Authentication providers, components that validate users
based on a user name/password combination or a certificate. Authentication
providers make user identity information available (in subjects) to other components
in the domain.

Java EE applications can use LDAP or DB authentication providers. Ready-to-use, Java
SE applications use a file identity store, but the store can be configured to use an
LDAP server or a database.

For information about Oracle WebLogic Server security, see Authentication in
Understanding Security for Oracle WebLogic Server.

The following sections describe WebLogic Server Authentication providers:
= WebLogic Server Authentication Providers

= Identity Store Types and WebLogic Server Authentication Providers

3.2.1 WebLogic Server Authentication Providers

By default, users and groups are stored in the WebLogic Server Default Authenticator.
This authentication provider uses cn as the default attribute.

The data stored in any LDAP authentication provider can be accessed by the User and
Role API to query user profile attributes, but custom code may be required to query
identity repositories that are not LDAP. Within an authentication provider, a group
name must be unique.

The following sections explain how to set up multiple authentication providers:
= Support for Multiple Authentication Providers
» Additional Authentication Methods

3-2 Securing Applications with Oracle Platform Security Services

Authentication Basics

See also:

How an LDAP X509 Identity Assertion Provider Works in
Administering Security for Oracle WebLogic Server

Configuring the SAML Authentication Provider in Administering
Security for Oracle WebLogic Server

3.2.1.1 Support for Multiple Authentication Providers

WebLogic Server allows the configuration of multiple authentication providers in a
given context. One of them must be an LDAP authentication provider.

The Default Authenticator has the control flag set (by default) to REQUIRED. To initialize
the identity store with an LDAP authentication provider other than the Default
Authenticator, change the control flag of the Default Authenticator or switch the order
of the authentication providers.

OPSS initializes the identity store with the LDAP authentication provider according to
the following algorithm:

1. Consider the set of LDAP authentication providers configured in the context. The
context must contain at least one LDAP authentication provider.

2. Within that set, consider those that have set the maximum flag. The flag ordering
used to compute this subset is the following:

REQUIRED > REQUISITE > SUFFICIENT > OPTIONAL

3. Within that subset, consider the first provider in the context.

The LDAP authentication provider singled out in step 3 is the one used to initialize the
identity store.

If a service instance initialization value is provided explicitly in the service instance
configuration, then the value configured takes precedence over the default one.
See also:
Securing a Production Environment for Oracle WebLogic Server

OPSS API References

3.2.1.2 Additional Authentication Methods

The WebLogic Server Identity Assertion providers support certificate authentication
using X.509 certificates, SPNEGO tokens, Security Assertion Markup Language
(SAML) assertion tokens, and CORBA Common Secure Interoperability version 2
(CSIv2).

The Negotiate Identity provider is used for SSO with Microsoft clients that support the
SPNEGO protocol. This provider decodes SPNEGO tokens to obtain Kerberos tokens,
validates the Kerberos tokens, and maps Kerberos tokens to WebLogic Server users.

See also:

Identity Assertion Providers and LoginModules in Understanding
Security for Oracle WebLogic Server

Overview of Single Sign-On with Microsoft Clients in Administering
Security for Oracle WebLogic Server

Creating a Kerberos Identification for WebLogic Server in
Administering Security for Oracle WebLogic Server

Understanding Identities, Policies, Credentials, Keys, Certificates, and Audit 3-3

Policies Basics

3.2.2 Identity Store Types and WebLogic Server Authentication Providers

The information in this section applies only to Java EE applications.

For supported versions of identity store types, see Oracle Fusion Middleware 12c

Certifications at

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certific

ation-100350.html.

The following table lists the WebLogic Server Authentication providers used with each

identity store type:

Table 3—1 Identity Store Types and Authentication Providers

Store Type

WebLogic Server Authentication Provider

Oracle Internet Directory
Oracle Virtual Directory
Open LDAP

Oracle Unified Directory

Oracle Directory Server Enterprise
Edition

Sun Java System Directory Server
Novell eDirectory

Tivoli Access Manager

Active Directory

Active Directory AM

Active Directory 2008

Oracle DB

OraclelnternetDirectory Authenticator
OracleVirtualDirectory Authenticator
OpenLDAPAuthenticator
iPlanetAuthenticator

iPlanetAuthenticator

iPlanetAuthenticator

Novell Authenticator
OpenLDAPAuthenticator
ActiveDirectory Authenticator
ActiveDirectory Authenticator
ActiveDirectory Authenticator

CustomDBMSAuthenticator
ReadOnlySQLAuthenticator
SQLAuthenticator

Any LDAP authentication provider other than the Default Authenticator requires that
you set the UseRetrievedUserNameAsPrincipal flag. Ready-to-use, this flag is set in

the Default Authenticator.

See also:

Configuring the LDAP Identity Store in Java SE Applications

Using an OpenLDAP Identity Store

Authentication Providers in Developing Security Providers for Oracle

WebLogic Server

Configuring Authentication Providers in Administering Security for

Oracle WebLogic Server

Configure authentication and identity assertion providers in Oracle
WebLogic Server Administration Console Online Help

3.3 Policies Basics

A policy specifies the permissions granted to code loaded from a given location.

3-4 Securing Applications with Oracle Platform Security Services

Credentials Basics

A Java Authorization and Authentication Services (JAAS) policy extends policies by
allowing an optional list of principals, so that permissions are granted to code run by a
user represented by those principals.

An application policy is a collection of JAAS policies that applies to the application
only (in contrast to policies that apply to all applications in the domain).

A system policy grants permissions to users and groups, or to code, such as a URL or a
JAR file.

The OPSS authorization service provides a central repository of system and
application policies and roles. Application roles can include enterprise users and
groups specific to the application (such as administrative roles). A policy can use any
of these groups or users as principals.

In the case of applications that manage their own roles, Java EE application roles
(configured in the web.xml or ejb-jar.xml files) get mapped to enterprise users and
groups and used by application policies.

The policy store refers to the portion of the security store where application and
system policies are kept. The type of the policy store can be file, LDAP, or DB. A file
store is an XML file. The only LDAP policy store type supported is Oracle Internet
Directory.

During development and by default, application policies are specified in the
jazn-data.xml file.

When you deploy the application with Oracle Enterprise Manager Fusion Middleware
Control (Fusion Middleware Control), policies can be automatically migrated into the
security store.

All permission classes must be specified in the system class path.

See also:
Migrating the Security Store with Fusion Middleware Control
Reassociating the Security Store

The Resource Catalog

3.4 Credentials Basics

The OPSS credential service provides a central repository of artifacts that certify the
authority of users, Java components, and system components. A credential can hold
user name and password combinations, tickets, or public key certificates. This data is
used during authentication, when principals are populated in subjects, and, further,
during authorization, when determining what actions the subject can perform.

The credential store refers to the portion of the security store where credentials are
kept. The type of the credential store can be file, LDAP, or DB. A file credential store is
the cwallet.sso file. The only LDAP credential store type supported is Oracle Internet
Directory.

An application can use either the credential store or its own credential store. The
credential store can be a file, LDAP, or DB.

When you deploy the application with Fusion Middleware Control, credentials can be
automatically migrated into the security store.

OPSS provides the Credential Store Framework that includes an API that applications
can use to create, read, update, and manage credentials programmatically.

Understanding Identities, Policies, Credentials, Keys, Certificates, and Audit 3-5

Keys and Certificates Basics

See also:
Migrating the Security Store with Fusion Middleware Control

Reassociating the Security Store

3.5 Keys and Certificates Basics

The keystore service (KSS) keystore provides a central repository for the keys and
certificates used by a domain components and applications. This eliminates the need
to associate keystores with individual applications, and it provides a single user
interface that allows you to manage keystore data uniformly in the domain.

The keystore repository can be file, DB, or LDAP. The keystore can be reassociated
from one type to another.

See also:
Reassociating the Security Store

Managing Keys and Certificates

3.6 Audit Basics

Oracle Fusion Middleware Audit Framework provides the audit store, a central
repository of audit records for the domain. Use this framework to audit events
triggered by configuration changes as well as operational activity for components and
deployed applications. The audit store can be file or database.

See also:

Introduction to Oracle Fusion Middleware Audit Framework

3-6 Securing Applications with Oracle Platform Security Services

4

About the Security Store

This chapter introduces the security store types supported, the package requirements
for application security, and the OPSS support for Federal Information Processing
Standards (FIPS).

This chapter includes the following sections:

= Supported File, LDAP, and Database Stores

» Packaging Requirements

s FIPS Support in OPSS

4.1 Supported File, LDAP, and Database Stores

OPSS supports the following repositories:

» Security store and keystores:
— File-based - XML file
- LDAP-based - Oracle Internet Directory

— Database-based

*

*

*

*

*

Oracle Database, Express Edition
Oracle Database, Standard Edition
Oracle Database, Standard Edition One
IBM DB2

Microsoft SQL Server

= Identity store-any LDAP authentication provider supported by Oracle WebLogic
Server. File identity stores are supported in Java SE applications only.

s Audit store:
— File-based - XML file
— Database-based

*

*

*

Oracle Database, Express Edition
Oracle Database, Standard Edition
Oracle Database, Standard Edition One
IBM DB2

Microsoft SQL Server

About the Security Store 4-1

Packaging Requirements

For supported versions, see Oracle Fusion Middleware 12¢ Certifications at
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certific
ation-100350.html.

If you are using Oracle Internet Directory version 10.1.4.3 with OPSS, then the patch
that fixes bug number 8351672 is required. For a list of patches to various versions of
Oracle Internet Directory, see Using an LDAP Security Store.

See also:

Managing Policies

Managing Credentials
Managing Keys and Certificates
Managing Audit

4.2 Packaging Requirements

Application policies are specified in the jazn-data.xnl file, and application
credentials are specified in the cwallet.sso file. Package these files in the META-INF
directory of the application Enterprise ARchive (EAR) file. At application deployment,
you typically migrate those policies and credentials to the security store.

See also:

Packaging a Java EE Application Manually

Deploying Secure Applications

4.3 FIPS Support in OPSS

FIPS-140 is enabled in the entire Oracle Fusion Middleware stack. For information
about FIPS, see FIPS-140 Support in Oracle Fusion Middleware in Administering Oracle
Fusion Middleware.

4-2 Securing Applications with Oracle Platform Security Services

Part Il

Basic OPSS Administration

This part contains the following chapters:
= Security Administration

= Deploying Secure Applications

O

Security Administration

This chapter describes the main tasks you carry out to manage application security
and the tools you use to accomplish those tasks.

It contains the following sections:

OPSS Administration: Main Steps

Security Management Tools

Security Practices with Fusion Middleware Control

Security Practices with WebLogic Server Administration Console

Security Practices with OES

5.1 OPSS Administration: Main Steps

Application security administration is an iterative process that incudes the following
main tasks:

Packing and deploying applications
Managing application roles and users
Managing application and system policies
Managing application credentials
Managing application keys and certificates

Managing audit

See also:

Deploying Secure Applications for information about packing security
with an application

Managing Application Policies
Managing Application Roles
Managing Credentials
Managing Keys and Certificates
Managing Audit

Administration with Scripts and MBeans

Security Administration 5-1

Security Management Tools

5.2 Security Management Tools
To administer security, use any of the following tools:
= Oracle WebLogic Server Administration Console
= Fusion Middleware Control
s WebLogic Scripting Tool (WLST)
s Oracle Entitlements Server (OES)
The tool you use depends on the type of data and the kind of store.

OPSS does not support automatic backup or recovery of server files. It is
recommended that all server configuration files be periodically backed up. For
information about backup, see Introduction to Backup and Recovery in Administering
Oracle Fusion Middleware.

Users and Groups

If a domain uses the WebLogic Server Default Authenticator to store identities, then
use WebLogic Server Administration Console to manage the stored data. This data can
be accessed by the User and Role API to query user profile attributes or to insert
additional attributes to users or groups.

If your domain uses the Default Authenticator, then the Administration Server must be
running for an application to access identity data with the User and Role APL
Otherwise, if it uses an LDAP server different from the Default Authenticator, then use
the utilities of that LDAP server to manage users and groups.

Policies, Credentials, Keys, and Certificates

Policies, keys, credentials, and certificates are stored in the same kind of storage (file,
LDAP, or DB). The tools to manage these artifacts are:

s WebLogic Server Administration Console, for identities.
= Fusion Middleware Control, WLST, or OES, for policies and credentials.
s WLST, for keys and certificates.

Changes to policies, credentials, or keys do not require server restart. Changes to the
jps-config.xml file require server restart.

See also:

Getting Started Managing Oracle Fusion Middleware in Administering
Oracle Fusion Middleware

5.3 Security Practices with Fusion Middleware Control

This section addresses only OPSS security-related operations. For other security
administrative operations, see WebLogic Server Security in Administering Oracle
WebLogic Server with Fusion Middleware Control.

Use Oracle Enterprise Manager Fusion Middleware Control (Fusion Middleware
Control):

s Post-installation and before you deploy the application to reassociate the security
store.

= Post-installation and before you deploy the application to define OPSS properties.

5-2 Securing Applications with Oracle Platform Security Services

Security Practices with WebLogic Server Administration Console

= Atapplication deployment, to configure the automatic migration of application
policies and credentials to the security store.

= After application deployment, to:
- Manage application policies.
- Manage credentials.
- Manage users and groups.

- Specify the mapping from application roles to users, groups, and application
roles.

= Manage system policies for the domain.

= Manage OPSS properties for the domain.

See also:

Deploying Oracle ADF Applications to a New Environment
Reassociating the Security Store with Fusion Middleware Control
Configuring Security Providers with Fusion Middleware Control
Migrating the Security Store

Managing the Policy Store

Managing Application Roles

Managing System Policies

Managing Credentials

5.4 Security Practices with WebLogic Server Administration Console
Use WebLogic Server Administration Console to:
= Start and stop WebLogic servers.
s Configure WebLogic servers and domains.
= Deploy applications.
s Configure failover support.
= Configure WebLogic Server domains and WebLogic Server realms.
= Manage WebLogic Server Authentication Providers.
= Enable single sign-on in Microsoft clients, Web browsers, and HTTP clients.

= Manage administrative users and administrative policies.

Security Administration 5-3

Security Practices with OES

See also:

Configuring Existing WebLogic Domains in Understanding the
WebLogic Scripting Tool

Understanding WebLogic Server Deployment in Deploying Applications
to Oracle WebLogic Server

Failover and Replication in a Cluster in Administering Clusters for
Oracle WebLogic Server

Starting and Stopping Servers in Administering Server Startup and
Shutdown for Oracle WebLogic Server

Secure servers and resources in Oracle WebLogic Server Administration
Console Online Help

5.4.1 Security Practices with WLST

All security configuration tasks you do with WebLogic Server Administration Console,
you can also do with WLST, including domain configuration and application
deployment.

A Java Virtual Machine (JVM) instance points to at most one jps-config.xml file. All
WLST commands called within the instance use the configuration file first obtained,
regardless of the configuration location passed to subsequent commands.

See also:

WLST Command Reference for Infrastructure Security

5.5 Security Practices with OES

OES provides a large number of functions to configure and maintain authorization,
including the ability to:

= Search application roles and the role hierarchy.

= Manage application policies and the role hierarchy.
= View the role hierarchy.

= Manage application role mappings.

For information about OES, see Introduction to Oracle Entitlements Server in
Administering Oracle Entitlements Server.

5-4 Securing Applications with Oracle Platform Security Services

6

Deploying Secure Applications

You typically deploy applications to Oracle WebLogic Server with Oracle WebLogic
Server Administration Console or Oracle Enterprise Manager Fusion Middleware
Control (Fusion Middleware Control). You can also start an application without
restarting the server by setting its bits in a location known to WebLogic Server. This
application start is known as hot deployment.

The recommendations in this chapter apply to Java EE applications using OPSS.
This chapter includes the following sections:

= Developing Oracle ADF Applications

s Choosing the Tool for Deployment

s Deploying Oracle ADF Applications to a New Environment

= Deploying Standard Java EE Applications

= Deploying Audit-Aware Applications

= Migrating from a Test to a Production Environment

See also:
Deploying Applications in Administering Oracle Fusion Middleware

Developing Fusion Web Applications with Oracle Application Development
Framework

Securing Oracle ADF Applications
Configuring Java EE Applications to Use OPSS

6.1 Developing Oracle ADF Applications

When developing an Oracle Application Development Framework (Oracle ADF)
application you:

= Use JDeveloper to develop the application and Oracle ADF Wizard to configure
security for the application.

= Use JDeveloper to copy the application users, roles, policies, and credentials to the
integrated WebLogic Server, into which you deploy the application during the test
cycles.

s Create the application Enterprise ARchive (EAR) file that packs application
policies and credentials.

= Deploy the EAR file to WebLogic Server using Fusion Middleware Control.

Deploying Secure Applications 6-1

Choosing the Tool for Deployment

This flow is illustrated in the following graphic:

Integrated WLS
- EAR
ADF Application e eepen
Users/Groul ile-base i i
Policy > _’Autu and Credential Stores (! | Policy
Credential Deploy Generate and Credantial
JDeveloper

Remote Cracle WebLogic Server

Domain Policy and Fusi i
usion Middlewara
Cradential Store — Control

Deploy

During development, you deploy your application with Oracle JDeveloper to the
embedded WebLogic Server. After the application transitions to test or production
environments, you deploy it with Oracle Enterprise Manager Fusion Middleware
Control (Fusion Middleware Control), WebLogic Server Administration Console, or by
a hot deployment.

The recommended way to deploy an application depends on the platform, the
application type, and whether the application is in the developing phase or in a
post-development phase.

See also:

Deploying Secure Applications with Fusion Middleware Control

6.2 Choosing the Tool for Deployment

Table 6-1 lists the tools you use to deploy Java EE applications.

Table 6—-1 Tools to Deploy Java EE Applications

Java EE Application Use

Non-Oracle ADF WebLogic Server Administration Console, Fusion Middleware
Control. The recommended tool is WebLogic Server
Administration Console.

Oracle ADF Fusion Middleware Control or WebLogic Scripting Tool (WLST).
The recommended tool is Fusion Middleware Control.

See also:

Deploying Secure Applications with Fusion Middleware Control

6.2.1 Deploying Secure Applications with Fusion Middleware Control

This section describes the security configurations available when you deploy a Java EE
application that uses OPSS with Fusion Middleware Control.

The appearance of the Configure Application Security page varies according to what
is packaged in the EAR fie:

6-2 Securing Applications with Oracle Platform Security Services

Choosing the Tool for Deployment

If the EAR file packages jazn-data.xml with application policies, then the page
displays the policy migration section.

If the EAR file packages credentials in the cwallet.sso file, then the page displays
the credential migration section.

If the EAR file does not include any of these files, then the page displays the
default Java EE security options.

The settings in this page control the migration of application policies and credentials
(packed in application EAR file) to the security store.

To Migrate Application Policies at Deployment

To migrate the packed application policies at deployment, deploy the application to
just one WebLogic Server. If you deploy an application with packed policies to
multiple Managed Servers, then your deployment must include the Administration
Server, so that the domain system-jazn-data.xnl file is updated with the packed
policies.

If you are deploying the application for the first time, then you want to migrate
application policies to the security store, so choose Append in the Application
Policy Migration area.

If for some reason you do not want the migration to take place, then choose
Ignore. The option Overwrite is also supported.

If you are redeploying the application and assuming that the migration of
application policies has taken place in a previous deployment, then choose
Append to merge the packed policies with the ones in the domain, or Ignore to
prevent policy migration.

The option Ignore is chosen when redeploying an application or when you want
to preserve changes made to the security store during previous deployments.

If you choose Append, then specify which grants and roles should be migrated.
The basic distinction is between Oracle ADF application roles and grants and
development-time only roles and grants.

To migrate Oracle ADF application roles and grants, and not to migrate
development-time only security roles and grants, check Migrate only application
roles and grants. Ignore identity store artifacts. Check it when you are deploying
to a production environment. Note that you must map application roles to
enterprise groups after the application deployment.

When you choose Append, then specify a particular stripe (different from the
default stripe, which is the application name) into which the application policies
are migrated, by entering the name of that stripe in the text field Application
Stripe ID.

If nothing is specified, then the default settings are Append (in deployments) and
Ignore (in redeployments).

To Migrate Application Credentials at Deployment

If you are deploying the application for the first time, then you want to migrate
application credentials to the credential store. Therefore, choose Append in the
Application Credential Migration area.

Choose Ignore (default value) to prevent credential migration.

Deploying Secure Applications 6-3

Deploying Oracle ADF Applications to a New Environment

Note: Application code using credentials may not work if you ignore
credential migration. Choose Ignore when the credentials were
created with the same map and key, but with different values.

= Overwrite is supported only when WebLogic Server is running in development
mode.

6.3 Deploying Oracle ADF Applications to a New Environment

When an Oracle ADF application transitions to a test or production environment, you
typically deploy it with Fusion Middleware Control to leverage all ADF security
features that the framework offers.

The following sections explain the tasks involved when the application transitions to a
new environment:

= Deploying to a Test Environment

= Migrating from a Test to a Production Environment

6.3.1 Deploying to a Test Environment

Before deploying an application that uses a file security store, verify that grants
contains no duplicate permissions. If a duplicate permission (one that has the same
name and class) appears in a grant, then the migration reports and error and halts. To
resolve, edit the jazn-data.xml file and remove duplicated permissions.

When you deploy an Oracle ADF application with Fusion Middleware Control, the
following processes take place:

= Application policies packed with the application are automatically migrated to the
security store.

= Application credentials packed with the application are automatically migrated to
the credential store.

» The bootstrap credentials needed to access LDAP repositories during migration
are created.

Identities packed with the application are nof migrated. You must configure an
authentication provider (with WebLogic Server Administration Console), update
identities, as appropriate, and map application roles to enterprise users and groups
(with Fusion Middleware Control).

When you deploy to a domain with LDAP security stores and want to preserve
application data integrity, Oracle recommends that you deploy the application at the
cluster level or to just one Managed Server.

When you deploy an application to multiple Managed Servers, include the
Administration Server so that data is migrated as expected.

See also:

Typical Administrative Tasks after Deployment

6.3.1.1 Typical Administrative Tasks after Deployment

After deploying the application, use Fusion Middleware Control or WebLogic Server
Administration Console to:

6-4 Securing Applications with Oracle Platform Security Services

Deploying Standard Java EE Applications

= Manage security providers

s Create and customize application policies
s Create and customize application roles

= Manage system policies

= Manage credentials

= Manage keystores

= Manage audit data

When you undeploy an application with Fusion Middleware Control from a server
running in production mode, the application policies are removed from the security
store. If you use any other tool to undeploy the application, then those policies must be
removed manually.

Credentials are not deleted when you undeploy the application.

See also:

Configuring Security Providers with Fusion Middleware Control
Managing Application Policies

Managing Application Roles

Managing System Policies

Managing Credentials with Fusion Middleware Control
Managing Keystores with Fusion Middleware Control

Managing the Audit Store

6.4 Deploying Standard Java EE Applications

There are two ways to secure Java EE applications that do not use OPSS but that use
standard Java authorization: administratively, with WebLogic Server Administration
Console or WLST commands, or programmatically, with deployment descriptors.

A Java EE application deployed to WebLogic Server is a WebLogic resource, so you set
security for the application the same way that you do for any other WebLogic resource.

Deploying Secure Applications 6-5

Deploying Audit-Aware Applications

See also:

Securing Resources Using Roles and Policies for Oracle WebLogic Server
= Application Resources

= Options for Securing Web Application and EJB Resources
Oracle WebLogic Server Administration Console Online Help:

= Use roles and policies to secure resources

Securing WebLogic Web Services for Oracle WebLogic Server:

s Overview of Web Services Security

Developing Applications with the WebLogic Security Service:

= Securing Web Applications. Particularly relevant is the subsection
Using Declarative Security with Web Applications

= Securing Enterprise JavaBeans (E]Bs)

= Using Java Security to Protect WebLogic Resources

6.5 Deploying Audit-Aware Applications

Audit-aware components refer to components integrated with Oracle Fusion
Middleware Audit Framework, whose audit policies can be configured and whose
events can be audited.

To use of this framework, you must register the application at deployment.

Registration

Configure audit registration parameters in the OPSS deployment descriptor file
packaged with the application EAR file. Files are processed automatically by audit
registration when you deploy the application.

Packaging Requirements
Package the following configuration files with the application EAR file:

= The event definitions file describing the auditable events for the application

s Translation files containing localizable elements

See also:

Migrating Audit Data

Creating Audit Definition Files

Registering the Application with the Service

Introduction to Oracle Fusion Middleware Audit Framework

6.6 Migrating from a Test to a Production Environment

The recommendations that follow apply to Java EE applications that use Java
Authorization and Authentication Services (JAAS) authorization, such as Oracle ADF,
service-oriented architecture (SOA) applications, and Oracle WebCenter applications,
and they do not apply to Java EE applications that use standard authorization.

6-6 Securing Applications with Oracle Platform Security Services

Migrating from a Test to a Production Environment

The recommended tool to deploy applications is Fusion Middleware Control, and the
user must have the appropriate permissions, including the permission to seed a
schema in an LDAP repository.

File security stores are not recommended in production environments.
Migrating to a production environment includes:

» Migrating Identities

= Migrating Policies and Credentials

= Migrating Audit Data

» Migrating Keys and Certificates with migrateSecurityStore

6.6.1 Migrating Identities

The configuration of authentication providers in the test environment must be
duplicated in the production environment. This task may include:

= Using WebLogic Server Administration Console to configure authentication
providers and to provision users and groups.

= Setting in the production environment any particular provider configuration used
in the test environment.

6.6.1.1 Migrating Identities with migrateSecurityStore

You migrate identity data from a source repository to a target repository with the
migrateSecurityStore WLST command, for example, when moving from a test
environment that uses a file identity store to a production environment that uses an
LDAP identity store.

The command does not require a connection to a running server to operate. The
configuration file you pass to the configFile argument need not be an actual domain
configuration file, but it only specifies the source and target repositories of the
migration.

To migrate identities, use one of the following:

migrateSecurityStore -type idStore
-configFile jpsConfigFileLocation
-src srcdpsContext
-dst dstJpsContext
[-dstLdifFile LdifFileLocation]
[-overwrite trueOrfalse]

migrateSecurityStore (type="idStore",
configFile="jpsConfigFileLocation",
src="srcdpsContext",
dst="dstJpsContext",
[dstLdifFile="LdifFileLocation"]
[,overwrite="trueOrfalse"])

where:

= configFile specifies the relative or absolute path of the jps-config.xml
configuration file.

» src specifies the name of a context in the configuration file passed to the
configFile argument, where the source store is specified. The embedded LDAP
server cannot be the source store.

Deploying Secure Applications 6-7

Migrating from a Test to a Production Environment

= dst specifies the name of another context in the configuration file passed to the
configFile argument where the target store is specified. The target store must be
LDAP. For list of supported types, see Identity Store Types and WebLogic Server
Authentication Providers.

» dstLdifFile specifies the relative or absolute path to the LDAP Data Interchange
format (LDIF) file created. Applies only when the target store is LDAP. Notice that
the LDIF file is not imported into the LDAP server and requires manual editing.

= overwrite specifies whether to overwrite data in the target store. Set to true to
overwrite target data. Set to false not to overwrite target data. Optional. If
unspecified, it defaults to false.

The contexts passed to src and dst must be defined in the configuration file and have
distinct names. From these two contexts, the command determines the locations of the
source and the target repositories involved in the migration.

The passwords in the generated LDIF file are all set to the string weblogic, and in case
the target is LDAP, they are set to the string change. Before importing the LDIF file into
the target LDAP store, change these passwords to real ones.

6.6.2 Migrating Policies and Credentials

In a production environment, it is strongly recommended that you reassociate the
security store to an LDAP or DB store.

This section explains how to migrate policies and credentials when you deploy the
application. For information about migrating security data after deployment, see
Migrating Policies with migrateSecurityStore and Migrating Credentials with
migrateSecurityStore.

If the application is hot deployed, then the migration of data in the jazn-data.xml file
to the security store is carried out provided the security store does not contain a stripe
with the same name as the application. In particular, if the application is hot
redeployed, then any changes introduced in the jazn-data.xml file are not migrated to
the security store.

To disable migrating policies and credentials for all applications deployed on a
WebLogic Server (regardless of the application migration particular settings), set the
jps.deployment.handler.disabled system property to true.

To preserve GUIDs during migration, set the jps.approle.preserveguid parameter.

When you transition an application from a test to a production environment, it is
critical that you know the answer to the following question:

Hawe policies or credentials packed in the application EAR file been modified in the test
environment?

Then, to deploy an application to a production environment:

1. Use Fusion Middleware Control to deploy the application EAR file to the
production environment with the following options:

= If policies (application or system) have been modified in the test environment,
then disable the option to migrate policies at deployment by choosing Ignore
under the Application Policy Migration area in Fusion Middleware Control’s
page Configuration Application Security. Otherwise, choose Append.

You can choose both Append and check Migrate only application roles and
grants. Ignore identity store artifacts, even when the mapping of application
roles have been modified in the test environment. Note that choosing this

6-8 Securing Applications with Oracle Platform Security Services

Migrating from a Test to a Production Environment

combination migrates application policies but disregards the maps to test
enterprise groups. Later on, you must remap application roles to production
enterprise groups.

s If credentials have been modified in the test environment, then disable the
option to migrate credentials at deployment by choosing the option Ignore
under the Application Credential Migration area in Fusion Middleware
Control’s page Configuration Application Security. Otherwise, choose
Append.

2. Use the migrateSecurityStore command to migrate modified data:

= If you chose to Ignore application policy migration, then migrate application
and system policies from the test to the production LDAP. For information
about the procedure, see the example in Migrating Policies with
migrateSecurityStore.

= If you chose to Ignore application credential migration, then migrate
credentials from the test to the production LDAP. For information about the
procedure, see the example in Migrating Credentials with
migrateSecurityStore.

3. Use Fusion Middleware Control to map application roles to production enterprise
groups, as appropriate.

4. Use Fusion Middleware Control to verify that administrative credentials in the
production environment are valid, in particular, test passwords versus production
passwords. If it is necessary, then modify the production data, as appropriate.

6.6.2.1 Migrating Policies with migrateSecurityStore

By default, the migrateSecurityStore command re-creates GUIDs and it may take a
long time to migrate a large number of policies. Therefore, when moving from a test to
a production environment, consider migrating policies and credentials with an
alternate procedure that uses bulk operations. For information about security store
backup, see Backing Up and Recovering LDAP Security Stores.

To migrate policies with migrateSecurityStore, assemble a configuration file where
the source and target are specified.

Here is a complete example of a configuration file, named t2p-policies.xml,
illustrating the specification of policy sources in LDAP, database, and file repositories,
and of policy targets in LDAP and DB repositories:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>

<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_
1.xsd" schema-major-version="11" schema-minor-version="1">

<serviceProviders>
<serviceProvider
class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider"
name="policystore.xml.provider" type="POLICY_STORE">
<description>XML-based policy store provider</description>
</serviceProvider>

<serviceProvider
class="oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider"
name="1ldap.policystore.provider" type="POLICY_STORE">

<property value="0ID" name="policystore.type"/>

<description>LDAP policy store provider</description>

Deploying Secure Applications 6-9

Migrating from a Test to a Production Environment

</serviceProvider>

<serviceProvider
class="oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider"
name="db.policystore.provider" type="POLICY_STORE">

<property value="DB_ORACLE" name="policystore.type"/>

<description>DB policy store provider</description>

</serviceProvider>

</serviceProviders>

<servicelInstances>
<!-- Source XML-based policy store instance -->
<servicelnstance location="./system-jazn-data.xml"
provider="policystore.xml.provider" name="policystore.xml.source">
<description>Replace location with the full path of the folder where the
system-jazn-data.xml is located in the source file system </description>
</servicelnstance>

<!-- Source LDAP policy store instance -->
<servicelInstance provider="ldap.policystore.provider"
name="policystore.ldap.source">
<description>Replace: A. mySourceDomain and mySourceRootName to appropriate
values according to your source LDAP directory structure; B. OID with OVD,
if your source LDAP is OVD; C. ldap://mySourceHost.com:3060 with the URL
and port number of your source LDAP</description>
<property value="0ID" name="policystore.type"/>
<property value="bootstrap" name="bootstrap.security.principal.key"/>
<property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="ldap://mySourceHost.com:3060" name="ldap.url"/>
</serviceIlnstance>

<!-- Source DB policy store instance -->
<servicelInstance provider="db.policystore.provider" name="policystore.db.source">
<description>Replace: mySourceDomain and mySourceRootName to appropriate
values according to your source DB policy store structure
</description>
<property value="DB_ORACLE" name="policystore.type"/>
<property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="jdbc:oracle:thin:@mySourceHost.com:1722:0rcl" name="jdbc.url"/>
<!-- the value of jdbc.url should be the value entered when the source
datasource was set up -->
<property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
<property name="bootstrap.security.principal.key" value="mySourceKeyName" />
<property name="bootstrap.security.principal.map" value="mySourceMapName" />
<!-- the values of bootstrap.security.principal.key and
bootstratp.security.principal.map
should be the values entered when the bootstrap credential was set up -->
</servicelnstance>

<!-- target LDAP policy store instance -->

<serviceInstance provider="ldap.policystore.provider"
name="policystore.ldap.target">

<description>Replace: A. myDestDomain and myDestRootName to appropriate values
according to your target LDAP directory structure; B. OID with OVD, if your target
LDAP is OVD; C. ldap://myDestHost.com:3060 with the URL and port number of your
target LDAP</description>

<property value="0ID" name="policystore.type"/>

<property value="bootstrap" name="bootstrap.security.principal.key"/>

6-10 Securing Applications with Oracle Platform Security Services

Migrating from a Test to a Production Environment

<property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="ldap://myDestHost.com:3060" name="ldap.url"/>
</servicelnstance>

<!-- target DB policy store instance -->
<servicelnstance provider="db.policystore.provider" name="policystore.db.target">
<description>Replace: myDestDomain and myDestRootName to appropriate values
according to your target DB policy store structure</description>
<property value="DB_ORACLE" name="policystore.type"/>
<property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="jdbc:oracle:thin:@myDestHostcom:1722:0rcl" name="jdbc.url"/>
<!-- the value of jdbc.url should be the value entered when the target datasource
was set up -->
<property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
<property name="bootstrap.security.principal.key" value="myDestKeyName" />
<property name="bootstrap.security.principal.map" value="myDestMapName" />
<!-- the value of bootstrap.security.principal.key and
bootstratp.security.principal.map
should be the value entered when the bootstrap credential was set up -->
</servicelnstance>

<!-- Bootstrap credentials to access source and target LDAPs or DBs-->
<servicelnstance location="./bootstrap" provider="credstoressp"
name="bootstrap.credstore">

<description>Replace location with the full path of the directory where the
cwallet.sso file is located; typically found in
targetDomain/config/fmwconfig/</description>

</servicelnstance>

</serviceInstances>

<jpsContexts>

<jpsContext name="XMLsourceContext">
<serviceInstanceRef ref="policystore.xml.source"/>
</jpsContext>

<jpsContext name="LDAPsourceContext">
<servicelInstanceRef ref="policystore.ldap.source"/>
</JjpsContext>

<jpsContext name="DBsourceContext">
<servicelnstanceRef ref="policystore.db.source"/>
</jpsContext>

<jpsContext name="LDAPtargetContext">
<servicelInstanceRef ref="policystore.ldap.target"/>
</jpsContext>

<jpsContext name="DBtargetContext">
<servicelInstanceRef ref="policystore.db.target"/>
</JjpsContext>

<!-- Do not change the name of the next context -->
<jpsContext name="bootstrap_credstore_context">
<servicelInstanceRef ref="bootstrap.credstore"/>
</jpsContext>

</JjpsContexts>

</jpsConfig>

Deploying Secure Applications 6-11

Migrating from a Test to a Production Environment

Note that because the migration involves LDAP and DB stores, the file includes a
context named bootstrap_credstore_context that specifies the directory where the
cwallet.sso bootstrap credential file is located. Furthermore, for each pair of map
name and key name in the example, you must provide the corresponding bootstrap
credentials with the addBootStrapCredential WLST command:

wls:/offline> addBootStrapCredential (jpsConfigFile='jps-config.xml"',
map='myMapName', key='myKeyName', username='myUserName',
password="'myPassword')

where myUserName and myPassaword specify the user account name and password to
access the target database.

Examples of Use
The following examples of use of migrateSecurityStore assume that:

s The t2p-policies.xml file is located on the target system in the directory where
the command is run.

s The directory structure of LDAP or DB system policies in the test and production
environments should be identical. If this is not the case, then before using the
command, restructure manually the system policy directory in the production
environment to match the corresponding structure in the test environment.

To migrate policies from a test (or source) LDAP store to a production (or target)
LDAP store, call migrateSecurityStore in the target system:

>migrateSecurityStore (type="policyStore",
configFile="t2p-policies.xml",
src="LDAPsourceContext",
dst="LDAPtargetContext")

To migrate policies from a test (or source) file store to a production (or target) LDAP
store, call migrateSecurityStore in the target system:

>migrateSecurityStore (type="policyStore",
configFile="t2p-policies.xml",
src="XMLsourceContext",
dst="LDAPtargetContext")

To migrate policies from a test (or source) DB store to a production (or target) DB store,
call migrateSecurityStore in the target system:

>migrateSecurityStore (type="policyStore",
configFile="t2p-policies.xml",
src="DBsourceContext",
dst="DBtargetContext")

6.6.2.2 Migrating Credentials with migrateSecurityStore

The migrateSecurityStore command re-creates GUIDs and it may take a long time to
migrate a large number of credentials. Therefore, when moving from a test to a
production environment, consider migrating policies and credentials with an alternate
procedure that uses bulk operations. For information about store backup, see Backing
Up and Recovering LDAP Security Stores.

To migrate credentials with migrateSecurityStore, assemble a configuration file
where the source and target are specified.

6-12 Securing Applications with Oracle Platform Security Services

Migrating from a Test to a Production Environment

Here is a complete example of a configuration file, named t2p-credentials.xml,
illustrating the specification of credential sources in LDAP, DB, and file repositories,
and of credential targets in LDAP and DB repositories:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>

<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_
1.xsd" schema-major-version="11" schema-minor-version="1">

<serviceProviders>

<serviceProvider
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider"
name="credstoressp" type="CREDENTIAL_STORE">

<description>File credential provider</description>

</serviceProvider>

<serviceProvider
class="oracle.security.jps.internal.credstore.ldap.LdapCredentialStoreProvider"
name="1dap.credentialstore.provider" type="CREDENTIAL_STORE">
<description>LDAP credential provider</description>

</serviceProvider>

<serviceProvider
class="oracle.security.jps.internal.credstore.rdbms.DbmsCredentialStoreProvider"
name="db.credentialstore.provider" type="CREDENTIAL_STORE">

<description>DB credential provider</description>

</serviceProvider>

</serviceProviders>

<servicelInstances>

<!-- Source file credential store instance -->

<serviceInstance location="myFileBasedCredStoreLocation" provider="credstoressp"
name="credential.file.source">

<description>Replace location with the full path of the folder where the file
source credential store cwallet.sso is located in the source file system;
typically located in sourceDomain/config/fmwconfig/
</description>

</servicelnstance>

<!-- Source LDAP credential store instance -->
<servicelInstance provider="ldap.credentialstore.provider"
name="credential.ldap.source">
<description>Replace: A. mySourceDomain and mySourceRootName to appropriate
values according to your source LDAP directory structure; B.
ldap://mySourceHost.com:3060 with the URL and port number of your source
LDAP</description>
<property value="bootstrap" name="bootstrap.security.credential.key"/>
<property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="ldap://mySourceHost.com:3060" name="ldap.url"/>
</serviceIlnstance>

<!-- Source DB credential store instance -->

<servicelnstance provider="db.credentialstore.provider"
name="credential.db.source">

<description>Replace: A. mySourceDomain and mySourceRootName to appropriate
values according to your source DB credential store</description>

Deploying Secure Applications 6-13

Migrating from a Test to a Production Environment

<property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="jdbc:oracle:thin:@mySourceHost:1722:0rcl" name="jdbc.url"/>
<!-- the value of jdbc.url should be the value entered when the source datasource
was set up -->
<property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
<property name="bootstrap.security.principal.key" value="mySourceKeyName" />
<property name="bootstrap.security.principal.map" value="mySourceMapName" />
<!-- the values of bootstrap.security.principal.key and
bootstratp.security.principal .map
should be the values entered when the bootstrap credential was set up -->
</servicelnstance>

<!-- target LDAP credential store instance -->
<servicelInstance provider="ldap.credentialstore.provider"
name="credential.ldap.target">
<description>Replace: A. myDestDomain and myDestRootName to appropriate values
according to your target LDAP directory structure; B. ldap://myDestHost.com:3060
with the URL and port number of your target LDAP</description>
<property value="bootstrap" name="bootstrap.security.credential.key"/>
<property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="ldap://myDestHost.com:3060" name="ldap.url"/>
</servicelnstance>

<!-- target DB credential store instance -->
<gservicelnstance provider="db.credentialstore.provider"
name="credential.db.target">
<description>Replace: myDestDomain and myDestRootName to appropriate values
according to your target DB credential store</description>
<property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="jdbc:oracle:thin:@myDestHost.com:1722:0rcl" name="jdbc.url"/>
<!-- the value of jdbc.url should be the value entered when the target datasource
was set up -->
<property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
<property name="bootstrap.security.principal.key" value="myDestKeyName" />
<property name="bootstrap.security.principal.map" value="myDestMapName" />
<!-- the values of bootstrap.security.principal.key and
bootstratp.security.principal .map
should be the values entered when the bootstrap credential was set up -->
</servicelnstance>

<!-- Bootstrap credentials to access source and target LDAPs and DBs -->

<gservicelnstance location="./bootstrap" provider="credstoressp"
name="bootstrap.credstore">

<description>Replace location with the full path of the directory where the
bootstrap file cwallet.sso is located; typically found in
targetDomain/config/fmwconfig/</description>

</servicelnstance>

</servicelnstances>

<jpsContexts>

<jpsContext name="FileSourceContext">
<servicelInstanceRef ref="credential.file.source"/>
</jpsContext>

<jpsContext name="LDAPsourceContext">

<servicelInstanceRef ref="credential.ldap.source"/>
</jpsContext>

6-14 Securing Applications with Oracle Platform Security Services

Migrating from a Test to a Production Environment

<jpsContext name="DBsourceContext">
<gservicelInstanceRef ref="credential.db.source"/>
</JjpsContext>

<jpsContext name="LDAPtargetContext">
<servicelnstanceRef ref="credential.ldap.target"/>
</jpsContext>

<jpsContext name="DBtargetContext">
<serviceInstanceRef ref="credential.db.target"/>
</jpsContext>

<!-- Do not change the name of the next context -->
<jpsContext name="bootstrap_credstore_context">
<gservicelInstanceRef ref="bootstrap.credstore"/>
</jpsContext>

</jpsContexts>

</jpsConfig>

Note that because the migration involves LDAP or DB stores, the file includes a
context named bootstrap_credstore_context that specifies the directory where the
cwallet.sso bootstrap credential file is located.

Examples of Use

The following examples of use of migrateSecurityStore assume that the
t2p-credentials.xml file is located on the target system in the directory where the
command is run.

To migrate credentials from a test (or source) LDAP store to a production (or target)
LDAP store, call migrateSecurityStore in the target system:

>migrateSecurityStore (type="credStore",
configFile="t2p-credentials.xml",
src="LDAPsourceContext",
dst="LDAPtargetContext")

To migrate credentials from a test (or source) file store to a production (or target)
LDAP store, call migrateSecurityStore in the target system:

>migrateSecurityStore (type="credStore",
configFile="t2p-credentials.xml",
src="FileSourceContext",
dst="LDAPtargetContext")

To migrate credentials from a test (or source) DB store to a production (or target) DB
store, call migrateSecurityStore in the target system:

>migrateSecurityStore (type="credStore",
configFile="t2p-credentials.xml",
src="DBSourceContext",
dst="DBtargetContext")

6.6.3 Migrating Audit Data

Audit data consists of component event definitions, attribute table mappings, and
audit policies, and this information resides in the audit store.

Use the migrateSecurityStore WLST command with the following syntax to migrate
audit data between source and target repositories:

Deploying Secure Applications 6-15

Migrating from a Test to a Production Environment

migrateSecurityStore (type="auditStore",
configFile="jps_config file_location",
src="sourceContext",
dst="targetContext"
[,overlirite="{true|false}"])

where:

= configFile specifies the absolute or relative location of a configuration file. This
configuration file is created just for the migration and serves no other purpose.
This file contains two contexts that specify the source and target stores.

= src specifies the name of a context in the configuration file passed to the
configFile argument. It is the source data store.

= dst specifies the name of another context in the configuration file passed to the
configFile argument. It is the target data store.

= overlirite indicates whether to overwrite data in the target store. Set to true to
always overwrite data. Set to false not to overwrite data unless specific
conditions are met. Optional. If unspecified, it defaults to false. Note that:

— System definitions are never overwritten regardless of the value of the flag.

- If overwrite is true, then component definitions in the target store are
replaced with the definitions in the source store.

- Ifoverwriteis false, then versions of the component definition in source and
target store are compared. If they have the same major version and the minor
version in the source component definition is higher, then the component
definition in the target store is replaced with the definition in the source store.
Otherwise, overwriting is skipped.

6.6.4 Migrating Keys and Certificates with migrateSecurityStore

Keys and certificates are migrated in two distinct scenarios:

= When source and target keystores lie in the same domain: the source and target
keystores use the same encryption key.

= When source and target keystores lie in different domains: the source and target
keystores use distinct encryption keys.

The following sections explain key migration in these scenarios:
= Migrating Keys and Certificates in the Same Domain

= Migrating Keys and Certificates across Different Domains

6.6.4.1 Migrating Keys and Certificates in the Same Domain

To migrate keys and certificates with migrateSecurityStore when both stores reside
in the same domain, create a configuration file to specify the source and target service
instances, and then use migrateSecurityStore. Note that a single configuration file is
sufficient to specify source and target contexts when the keystores reside in the same
domain.

The following example illustrates how to specify keystore sources in LDAP, DB, and
file stores, and keystore targets in LDAP and DB stores:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>

<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_

6-16 Securing Applications with Oracle Platform Security Services

Migrating from a Test to a Production Environment

1.xsd" schema-major-version="11" schema-minor-version="1">

<serviceProviders>

<serviceProvider
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider"
name="credstoressp" type="CREDENTIAL_STORE">

<description>File credential provider</description>

</serviceProvider>

<!-- provider for file, LDAP, and DB keystores -->
<serviceProvider type="KEY_STORE" name="keystore.provider"
class="oracle.security.jps.internal.keystore.KeyStoreProvider">
<description>PKI Based Keystore Provider</description>
</serviceProvider>

</serviceProviders>

<servicelInstances>

<!-- Source XML-based keystore instance -->

<servicelInstance location="./" provider="keystore.provider"
name="keystore.file.source">

<property name="keystore.provider.type" value="file"/>

<property name="keystore.file.path" value="./"/>

<description>Replace keystore.file.path with the full path of the folder where the
file source keystore keystores.xml is located in the source file system; typically
located in sourceDomain/config/fmwconfig/</description>

</servicelnstance>

<!-- Source LDAP keystore instance -->

<serviceInstance provider="keystore.provider" name="keystore.ldap.source">
<description>Replace: A. mySourceDomain and mySourceRootName to appropriate
values according to your source LDAP directory structure; B.
ldap://mySourceHost.com:3060 with the URL and port number of your source

LDAP</description>

<property value="bootstrap" name="bootstrap.security.credential.key"/>
<property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="ldap://mySourceHost.com:3060" name="ldap.url"/>

<property name="keystore.provider.type" value="ldap"/>

</servicelnstance>

<!-- Source DB keystore instance -->
<servicelnstance provider="keystore.provider" name="keystore.db.source">
<description>Replace: A. mySourceDomain and mySourceRootName to appropriate
values according to your source DB </description>
<property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="jdbc:oracle:thin:@mySourceHost:1722:0rcl" name="jdbc.url"/>
<!-- the value of jdbc.url should be the value entered when the source datasource
was set up -->
<property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
<property name="bootstrap.security.principal.key" value="mySourceKeyName" />
<property name="bootstrap.security.principal.map" value="mySourceMapName" />
<property name="keystore.provider.type" value="db"/>
<!-- the values of bootstrap.security.principal.key and
bootstratp.security.principal.map
should be the values entered when the bootstrap credential was set up -->
</servicelnstance>

<!-- target LDAP keystore instance -->
<servicelnstance provider="keystore.provider" name="keystore.ldap.target">

Deploying Secure Applications 6-17

Migrating from a Test to a Production Environment

<description>Replace: A. myDestDomain and myDestRootName to appropriate values
according to your target LDAP directory structure; B. ldap://myDestHost.com:3060
with the URL and port number of your target LDAP</description>
<property value="bootstrap" name="bootstrap.security.credential.key"/>
<property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="ldap://myDestHost.com:3060" name="ldap.url"/>
<property name="keystore.provider.type" value="ldap"/>
</servicelnstance>

<!-- target DB keystore instance -->
<servicelnstance provider="keystore.provider" name="keystore.db.target">
<description>Replace: myDestDomain and myDestRootName to appropriate values
according to your target DB </description>
<property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
<property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
<property value="jdbc:oracle:thin:@myDestHost.com:1722:0rcl" name="jdbc.url"/>
<!-- the value of jdbc.url should be the value entered when the target datasource
was set up -->
<property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
<property name="bootstrap.security.principal.key" value="myDestKeyName" />
<property name="bootstrap.security.principal.map" value="myDestMapName" />
<property name="keystore.provider.type" value="db"/>
<!-- the values of bootstrap.security.principal.key and
bootstratp.security.principal.map
should be the values entered when the bootstrap credential was set up -->
</servicelnstance>

<!-- Bootstrap credentials to access source and target LDAPs and DBs -->
<serviceInstance location="./bootstrap" provider="credstoressp"
name="bootstrap.credstore">

<description>Replace location with the full path of the directory where the
bootstrap file cwallet.sso is located; typically found in
targetDomain/config/fmwconfig/bootstrap</description>

</servicelnstance>

</servicelnstances>

<jpsContexts>

<jpsContext name="FileSourceContext">
<gservicelInstanceRef ref="keystore.file.source"/>
</jpsContext>

<jpsContext name="LDAPsourceContext">
<servicelInstanceRef ref="keystore.ldap.source"/>
</jpsContext>

<jpsContext name="DBsourceContext">
<serviceInstanceRef ref="keystore.db.source"/>
</jpsContext>

<jpsContext name="LDAPtargetContext">
<servicelInstanceRef ref="keystore.ldap.target"/>
</jpsContext>

<jpsContext name="DBtargetContext">
<servicelnstanceRef ref="keystore.db.target"/>

</jpsContext>

<!-- Do not change the name of the next context -->
<jpsContext name="bootstrap_credstore_context">

6-18 Securing Applications with Oracle Platform Security Services

Migrating from a Test to a Production Environment

<servicelInstanceRef ref="bootstrap.credstore"/>
</jpsContext>

</jpsContexts>

</jpsConfig>

Note that because the migration involves LDAP or DB stores, the file includes the
bootstrap_credstore_context context that specifies the location of the cwallet.sso
bootstrap credential file.

Examples of Use

The following examples assume that the t2p-keys.xml file is located on the target
system in the directory where the command is run.

To migrate all keys and certificates from a test (source) LDAP store to a production
(target) LDAP store, call migrateSecurityStore in the target system:

>migrateSecurityStore (type="keyStore",
configFile="t2p-keys.xml",
src="LDAPsourceContext",
dst="LDAPtargetContext")

To migrate all keys and certificates from a test (source) file store to a production
(target) LDAP store, call migrateSecurityStore in the target system:

>migrateSecurityStore (type="keyStore",
configFile="t2p-keys.xml",
src="FileSourceContext",
dst="LDAPtargetContext")

To migrate keys and certificates for a specific application stripe from a test (source)
database store to a production (target) database store, call migrateSecurityStore in
the target system:

>migrateSecurityStore (type="stripeKeyStore",
configFile="t2p-keys.xml",
src="DBSourceContext",
dst="DBtargetContext",
srcStripe="applicationl",
dstStripe="application2")

6.6.4.2 Migrating Keys and Certificates across Different Domains

To migrate keystore data when source and target keystores are located in different
domains, two different configuration files are required because the encryption keys
used to encrypt the keystores are different. Therefore the bootstrap credential stores
must be distinct.

When using the migrateSecurityStore WLST command, recall that:

= The context of the source keystore in the configuration file is specified in the
srcConfigFile parameter.

= The context of the target keystore in the configuration file is specified in the
configFile parameter.

Example of Use

To migrate all keys and certificates from a test (source) LDAP store to a production
(target) LDAP store, call migrateSecurityStore in the target system:

>migrateSecurityStore (type="keyStore",
srcConfigFile="/source_domain/config/fmwconfig/jps-config.xml",

Deploying Secure Applications 6-19

Migrating from a Test to a Production Environment

configFile="/target_domain/config/fmwconfig/jps-config.xml",
src="ksSrc",
dst="ksDst")

6-20 Securing Applications with Oracle Platform Security Services

Part Il

OPSS Services

This part contains the following chapters:

Life Cycle of Security Artifacts

Configuring the Identity Store

Configuring the Security Store

Managing Policies

Managing Credentials

Managing Keys and Certificates

Introduction to Oracle Fusion Middleware Audit Framework
Managing Audit

Using Audit Analysis and Reporting

7

Life Cycle of Security Artifacts

This chapter explains the security artifacts that your application can specify to seed in
the security store when you create or extend a WebLogic Server domain. It also
includes the procedure to upgrade the security store to version 12.2.1.x.

This chapter includes the following sections:

s How Security Artifacts Are Seeded

= About Fusion Middleware Domains

» Creating Fusion Middleware Domains

s Layered Component Security Artifacts

s Upgrading Security to 12.2.1.x

» Backing Up and Recovering the Security Store

s Upgrading Component Audit Definitions to 12c

7.1 How Security Artifacts Are Seeded

In 11g domains, the specification of product-specific security artifacts is bundled in the
application Enterprise ARchive (EAR) file and those artifacts are migrated to the
security store at application deployment, provided the deployment descriptors are set
appropriately.

In 12c domains, the specification of product-specific security artifacts is configured in a
product template, which provides a way to seed those artifacts to the security store
when the domain is created.

See also:

Layered Component Security Artifacts

7.2 About Fusion Middleware Domains

Fusion Middleware domains are created or extended with the Java Required Files
(JRF) template. The template specifies the provisioning of artifacts in the security store.
Specifically, the process creates:

= OPSS security artifacts.
s The cwallet.sso bootstrap file seeded with an encryption key.

= Keystores, including the truststore, a demonstration keystore, and a domain
identity keystore used by Oracle WebLogic Server.

Life Cycle of Security Artifacts 7-1

Creating Fusion Middleware Domains

A trust service wired to the truststore.

Three data sources: one for the OPSS schema, one for the OPSS audit viewer
schema, and one for the OPSS audit append schema.

Configurations for database security and audit stores.

The JRF template does not create Managed Servers. In Fusion Middleware domains,
all resources are targeted only to the Administration Server. If, at a later time, you add
a Managed Server to the domain, then you must apply the JRF template to the target
resources to that Managed Server also. To target OPSS and audit data sources to a
Managed Servers after domain reconfiguration, use the applyJRF WebLogic Scripting
Tool (WLST) command.

See also:
Layered Component Security Artifacts
applyJRF in WLST Command Reference for Infrastructure Components

7.3 Creating Fusion Middleware Domains

Production Fusion Middleware domains require database security stores. The database
can be a new database or a database associated with some other Fusion Middleware
domain.

The following sections explain how to create Fusion Middleware domains:

Using a New Database Instance

Sharing a Database Instance

7.3.1 Using a New Database Instance

To create or expand Fusion Middleware domains associated with a new database:

1.

Create a new database schema. For information about DB security stores, see
Prerequisites to Using the Database Security Store.

Use the Fusion Middleware Configuration Wizard to create or expand a domain,
as explained in Creating a WebLogic Domain in Creating WebLogic Domains Using
the Configuration Wizard.

This task includes supplying information about the database schema to use, such
as the one created in step 1, and choosing to use the JRF Template. The database
schema associated with the domain you create must be a new schema.

When you use the JRF template, three data sources are automatically created: one
for the OPSS schema, one for the OPSS audit viewer schema, and one for the OPSS
audit append schema.

See also:
Template Tools in Domain Template Reference

About Fusion Middleware Domains

7.3.2 Sharing a Database Instance

The following procedure uses WLST commands only. To create an expanded Fusion
Middleware domain associated with a domain database:

7-2 Securing Applications with Oracle Platform Security Services

Creating Fusion Middleware Domains

Assuming that domainl uses the dbl database (to which other domains want to
join), use the exportEncryptionKey command to export the encrypt key from
domainl to a specified location:

exportEncryptionKey (location, password)

Create a script similar to the following that will create a domain that shares the dbl
database:

argl - wls.jar loc

arg2 - jrf.jar loc

arg3 - domain home

argd - adminserver port

argb - Db host

argb - db port

arg 7 - DB service name (pdb)
arg8 - STB schema user,

readTemplate (sys.argv[1l], "Expanded")
cd('/Security/base_domain/User/weblogic')
cmo . setName ('weblogic')

cmo . setPassword ('password')
writeDomain(sys.argv([3])

closeTemplate()

#Set AdminServer Port

readDomain (sys.argv([3])
cd('/Servers/AdminServer"')

set ('ListenAddress','"')

set ('ListenPort', int(sys.argv([4]))
updateDomain ()

closeDomain ()

readDomain (sys.argv([3])
addTemplate(sys.argv([2])

cd (' /JDBCSystemResource/LocalSvcTblDataSource/JdbcResource/LocalSvcTblDataSourc

)

(
)
cd('JDBCDriverParams/NO_NAME _0')
set
t

('DriverName', 'oracle.jdbc.OracleDriver"')
set ('PasswordEncrypted', 'myPassw')
set ('URL', 'jdbc:oracle:thin:@'+sys.argv[5]+': '+sys.argv[6]+'/'+sys.argv([7])
set ('UsePasswordIndirection', 'false')
set ('UseXADataSourcelnterface', 'false')

create('myProps', 'Properties')
cd('Properties/NO_NAME_0/Property/user')
cmo.setValue(sys.argv[8])

getDatabaseDefaults ()

setSharedSecretStoreWithPassword (location, password)
updateDomain ()

Note: In the setSharedSecretStoreWithPassword command, use the
same values for location and password that you used in the
exportEncryptionKey command in step 1.

Life Cycle of Security Artifacts 7-3

Layered Component Security Artifacts

3.

Run the script that you created in step 2 to start all the servers in domainl and in
the new domain. Both domains now share the same security store.

Note: You can also use this script to create other Fusion Middleware
domains like domainl. To do so, delete the lines starting with
setSharedSecretStorelithPassword from the script.

See also:

exportEncryptionKey in WLST Command Reference for Infrastructure
Security

7.4 Layered Component Security Artifacts

To streamline the seeding and processing of security artifacts, components consuming
OPSS must provide a template during domain creation or extension. This template
defines and bundles artifacts specific to just the components that are required for the
component’s execution, and includes the files listed in Table 7-1.

Table 7-1 Files in a Component Template Used by OPSS

Location relative to the

File name Description template root folder
component-security-info.xml Required. Specifies the life cycle of ./security/component-se
security artifacts. curity-info.xml
jazn-data.xml Optional. Specifies policies. ./security /authorization/
jazn-data.xml
keystore.xml Optional. Specifies the keystore ./security /keystore/keys
metadata. tore.xml
credentials.xml Optional. Specifies the credential ./security /credential / cre
metadata used by the component. dentials.xml
component_events.xml Optional. Specifies the audit data. ./security/audit/compon
ent_events.xml
component_events_x1f.jar Optional. Specifies the localized ./security /audit/compon
audit data. ent_events_xIf jar

OPSS security artifacts bundled with a product template require the
component-security-info.xml file that indicates how artifacts are handled.

7.5 Upgrading Security to 12.2.1.x

The following sections explain how to upgrade security artifacts from release 11.1.1.7,
11.1.1.9,12.1.2, or 12.1.3 to release 12.2.1.x:

Before Upgrading the Security Store
Upgrading Security: Main Steps
Reconfiguring Domains with the Fusion Middleware Reconfiguration Wizard

Upgrading a Shared Security Stores

An upgraded system does not use old data sources but only newly created ones. After
upgrading from 11g, you may see duplicate OPSS data sources: one that existed before

7-4 Securing Applications with Oracle Platform Security Services

Upgrading Security to 12.2.1.x

upgrading and another created during the upgrade process. This duplication poses no
functional impact and the old data source is not used by the upgraded system.

After upgrading, consider moving the keystore from Java Keystore (JKS) to the
keystore service (KSS) keystore. In domains upgraded to 12.2.1.x, KSS keystores under
the system stripe differ from those in previous releases. For information about
certificates, see About Certificates.

7.5.1 Before Upgrading the Security Store

Before upgrading the security store:

s Perform a readiness check on the older version of Fusion Middleware to
determine if it is suitable for upgrading to version 12.2.1.x. For more information,
see About Using the Upgrade Assistant to Perform a Readiness Check Before an
Upgrade in Upgrading with the Upgrade Assistant.

s Create a backup so that you can recover it in case the upgrade fails. For more
information, see Backing Up and Recovering the Security Store.

7.5.2 Upgrading Security: Main Steps

The following tables describe the steps you take to upgrade a system according to the
type of security and audit stores. All of the procedures assume that your binaries have
been upgraded to 12.2.1.x Oracle Fusion Middleware binaries.

The supported databases that can be updated are listed in Supported File, LDAP, and
Database Stores.

Notes: If, during the upgrade process, you perform any OPSS
runtime operations on any of the servers before you restart them, you
may get errors related to operations being performed against the
OPSS Security store. These errors can occur if the binary and schema
have been upgraded, but the server process that is being run is still
using the old classes that have not been updated or refreshed.
Therefore, Oracle recommends that you always restart all of the
Managed Servers in the domain after the upgrade process is complete.

Synonym objects owned by IAU_APPEND and IAU_VIEWER will
appear as INVALID in the schema version registry table, but that does
not indicate a failure. Synonym objects become invalid because the
target object changes after the creation of the synonym. The synonyms
objects will become valid when they are accessed. You can safely
ignore these INVALID objects.

Life Cycle of Security Artifacts 7-5

Upgrading Security to 12.2.1.x

Table 7-2 Upgrading from 12.1.2 or 12.1.3 to 12.2.1.x

Security Store Audit Store

Type Type To upgrade to 12.2.1.x:
Oracle Internet Database 1. Upgrade the OPSS, Audit Services (IAU) and Service
Directory Table (STB) schemas. Note that in this scenario, the

OPSS schema is Oracle Internet Directory-based. See
Using the Upgrade Assistant to Perform an Upgrade
in Upgrading with the Upgrade Assistant.

2. Create the database-based OPSS schema using the
12.2.1.x Oracle Fusion Middleware Repository
Creation Utility. Use the existing IAU and STB prefix
for the OPSS schema. See Creating Schemas with the
Repository Creation Utility.

3. Reconfigure the domain to bind the OPSS data
source to the newly created OPSS schema. Enter the
audit schema details in the Fusion Middleware
Reconfiguration Wizard. See Reconfiguring Domains
with the Fusion Middleware Reconfiguration
Wizard.

Note that in this case, the database-based OPSS
12.2.1.x schema is redundant.

4. Restart all of the servers (Administration and
Managed) in the domain.

Database Database 1. Upgrade the OPSS, Audit Services TAU, IAU_Viewer,
IAU_APPEND, and Service Table STB schemas. See
Using the Upgrade Assistant to Perform an Upgrade
in Upgrading with the Upgrade Assistant.

2. Reconfigure the domain. See Reconfiguring Domains
with the Fusion Middleware Reconfiguration
Wizard.

3. Restart all of the servers (Administration and
Managed) in the domain.

Note: Upgrading from a 12c file security store is not supported.

Table 7-3 Upgrading from 11.1.1.7 or 11.1.1.9 to 12.2.1.x

Security Store | Audit Store
Type Type To upgrade to 12.2.1.x:

File File 1. Create the OPSS schema using the 12.2.1.x Oracle Fusion
Middleware Repository Creation Utility. Note that the
Audit Services (1aU) and Service Table (STB) schemas are
created by default with the OPSS schema. See Creating
Schemas with the Repository Creation Utility.

2. Reconfigure the domain to provide the new schema
details. See Reconfiguring Domains with the Fusion
Middleware Reconfiguration Wizard.

3. Restart all of the servers (Administration and Managed) in
the domain.

7-6 Securing Applications with Oracle Platform Security Services

Upgrading Security to 12.2.1.x

Table 7-3 (Cont.) Upgrading from 11.1.1.7 or 11.1.1.9 to 12.2.1.x

Security Store
Type

Audit Store
Type

To upgrade to 12.2.1.x:

File

Database

1.

Upgrade the 11g Audit Services (IAU) schema using the
Oracle Fusion Middleware Upgrade Assistant. See Using
the Upgrade Assistant to Perform an Upgrade in
Upgrading with the Upgrade Assistant.

Create the OPSS, Audit Services Viewer (IAU_VIEWER), and
Audit Services Append (IAU_APPEND) schemas using the
12.2.1.x Oracle Fusion Middleware Repository Creation
Utility. Use the existing IAU prefix that you upgraded in
step 1 for the new schemas. Note that the Service Table
(sTB) schema is created automatically. See Creating Schemas
with the Repository Creation Utility.

Reconfigure the domain to provide the new OPSS schema
details, and to enter the 11g audit schema details in Fusion
Middleware Reconfiguration Wizard. See Reconfiguring
Domains with the Fusion Middleware Reconfiguration
Wizard.

Restart all of the servers (Administration and Managed) in
the domain.

Oracle Internet
Directory

File

Upgrade the Oracle Internet Directory-based OPSS
schema using the Oracle Fusion Middleware Upgrade
Assistant. See Using the Upgrade Assistant to Perform an
Upgrade in Upgrading with the Upgrade Assistant.

Create the database-based OPSS schema using the 12.2.1.x
Repository Creation Utility. Note that the Audit Services
(1au, IAU_Viewer, IAU_APPEND) and Service Table (STB)
schemas are created by default with the OPSS schema. See
Creating Schemas with the Repository Creation Utility.

Reconfigure the domain to provide the new schema
details to bind the OPSS data source to the newly created
OPSS schema. See Reconfiguring Domains with the
Fusion Middleware Reconfiguration Wizard.

Note that in this case, the 12.2.1.x OPSS schema is
redundant.

Restart all of the servers (Administration and Managed) in
the domain.

Life Cycle of Security Artifacts 7-7

Upgrading Security to 12.2.1.x

Table 7-3 (Cont.) Upgrading from 11.1.1.7 or 11.1.1.9 to 12.2.1.x

Security Store
Type

Audit Store
Type

To upgrade to 12.2.1.x:

Oracle Internet
Directory

Database

1.

Upgrade the 11g OPSS and audit schemas using the
Oracle Fusion Middleware Upgrade Assistant. Note that
in this scenario, the OPSS schema is Oracle Internet
Directory-based. See Using the Upgrade Assistant to
Perform an Upgrade in Upgrading with the Upgrade
Assistant.

Create the database-based OPSS schema using the 12.2.1.x
Repository Creation Utility. Use the existing IAU prefix
that you upgraded in step 1 for the new schemas. Note
that the Service Table (STB) schema is created
automatically. See Creating Schemas with the Repository
Creation Utility.

Reconfigure the domain to bind the OPSS data source to
the newly created OPSS schema. Enter the 11g audit
schema details in Fusion Middleware Reconfiguration
Wizard. See Reconfiguring Domains with the Fusion
Middleware Reconfiguration Wizard.

Note that in this case, both the OPSS 12.2.1.x schema and
the 12.2.1.x IAU schema are redundant.

Restart all of the servers (Administration and Managed) in
the domain.

Database

File

Create the Audit Services IAU, IAU_Viewer, IAU_APPEND
schemas with 12.2.1.x Repository Creation Utility. Use the
existing OPSS schema prefix. Note that the Service Table
(sTB) schema is created automatically. See Creating Schemas
with the Repository Creation Utility.

Upgrade the 11g OPSS schema using the Oracle Fusion
Middleware Upgrade Assistant. See Using the Upgrade
Assistant to Perform an Upgrade in Upgrading with the
Upgrade Assistant.

Reconfigure the domain to provide the new audit schema
details, and to enter the 11g OPSS schema details. See
Reconfiguring Domains with the Fusion Middleware
Reconfiguration Wizard.

Restart all of the servers (Administration and Managed) in
the domain.

Database

Database

Create the Audit Services Viewer and Append schemas
(IAU_VIEWER and IAU_APPEND) and Service Table (STB)
schemas with the 12.2.1.x Repository Creation Ultility. Use
the same prefix as that used for the existing OPSS and
IAU schemas. See Creating Schemas with the Repository
Creation Utility.

Upgrade the OPSS and Audit Services (IAU) schemas
using the Oracle Fusion Middleware Upgrade
Assistant.Use the existing prefix for the schemas. See
Using the Upgrade Assistant to Perform an Upgrade in
Upgrading with the Upgrade Assistant.

Reconfigure the domain to provide the 11g OPSS schema
details. See Reconfiguring Domains with the Fusion
Middleware Reconfiguration Wizard.

Restart all of the servers (Administration and Managed) in
the domain.

7-8 Securing Applications with Oracle Platform Security Services

Upgrading Security to 12.2.1.x

Note: An 11g file security store is automatically upgraded to a
database-based security store.

7.5.3 Reconfiguring Domains with the Fusion Middleware Reconfiguration Wizard

Run the procedure in this section to reconfigure a domain using the Fusion
Middleware Reconfiguration Wizard. For complete details about the Reconfiguration
Wizard, see Reconfiguring WebLogic Domains in Upgrading Oracle WebLogic Server.

Note: In some configurations, you may get an invalid key size
exception when running the Reconfiguration Wizard. For more
information about this exception, see Invalid Key Size. Oracle
recommends that you check your configuration before running the
Reconfiguration Wizard, and if necessary, install the JCE Unlimited
Strength Jurisdiction Policy Files.

1. Start the Fusion Middleware Reconfiguration Wizard:

> cd oracle_common/common/bin
> ./reconfig.sh

2. In the Select Domain page, specify the directory of the domain to reconfigure, and
then click Next.

3. In the Database Configuration Type page, select RCU Data, enter the database
connection details, and click Get RCU Configuration. The results of the retrieval
are displayed.

4. Click Next.

5. The JDBC Component Schema page displays the table of schemas affected. Check
rows as appropriate, and then click Next.

6. In the JDBC Component Schema Test page, click Test Selected Connections. The
results of the test are displayed. Click Next.

7. In the Advanced Configuration page, check boxes as appropriate, and then click
Next.

Additional pages are displayed depending on the options you selected.

8. When you have finished providing all the required information in the remaining
pages, the Configuration Summary page displays the options you chose. Click
Reconfigure.

7.5.4 Upgrading a Shared Security Store

To upgrade a security store shared (joined) by several domains, use one of the
following tasks:

= Upgrading a Shared 12.1.2 or 12.1.3 Security Store
= Upgrading a Shared 11g Security Store

7.5.4.1 Upgrading a Shared 12.1.2 or 12.1.3 Security Store

Run the procedure in this section to upgrade to 12.2.1.x from a 12.1.2 or 12.1.3 shared
security store.

Life Cycle of Security Artifacts 7-9

Backing Up and Recovering the Security Store

1. Shut down all domains that share the store you want to upgrade.

2. Run the Upgrade Assistant to upgrade the OPSS schema of the shared security
store and the audit schema if the source audit data is a database store. See Using
the Upgrade Assistant to Perform an Upgrade in Upgrading with the Upgrade
Assistant.

3. In each of the domains sharing the security store, run Fusion Middleware
Reconfiguration Wizard to reconfigure the domain and to upgrade OPSS data,
directory information tree, and product security artifacts. See Reconfiguring
Domains with the Fusion Middleware Reconfiguration Wizard.

4. Restart all domains sharing the security store.

7.5.4.2 Upgrading a Shared 11g Security Store

Run the procedure in this section to upgrade to 12.2.1.x from an 11.1.1.7 or 11.1.1.9
shared security store.

1. Shut down all domains sharing the store you want to upgrade.

2. Run the Upgrade Assistant to upgrade the OPSS schema of the shared security
store, and the audit schema if the source audit is a database store. See Using the
Upgrade Assistant to Perform an Upgrade in Upgrading with the Upgrade Assistant.

3. Run the Fusion Middleware Reconfiguration Wizard in each of the domains
sharing the security store. When first run, it upgrades the data of the security store
and configuration of the domain. When run from any other domain, it will
upgrade only the configuration of that domain. See Reconfiguring Domains with
the Fusion Middleware Reconfiguration Wizard.

4. Restart all upgraded domains.

7.6 Backing Up and Recovering the Security Store

This section describes how to back up and recover the security store. In addition to
backing up the security store, note that the following configuration and data files must
also be saved:

{domain}/Config/config.xml
{domain}/Config/Fmwconfig/jps-config.xml
{domain}/Config/Fmwconfig/jps-config-jse.xml
{domain}/Config/Fmwconfig/cwallet.sso
{domain}/Config/Fmwconfig/keystores.cml
{domain}/Config/Fmwconfig/audit-store.xml
{domain}/Config/Fmwconfig/system-jazn-data.xml
{domain}/Config/Fmwconfig/ids-config.xml
{domain}/Config/Fmwconfig/mbeans/jps_mbeans.xml
{domain}/Config/Fmwconfig/bootstrap/cwallet.sso

This section contains the following topics:
= Backing Up and Recovering a Database-Based Security Store
= Backing Up and Recovering LDAP Security Stores

s Recommendations

7-10 Securing Applications with Oracle Platform Security Services

Backing Up and Recovering the Security Store

Note: You can use the migrateSecurityStore WLST command to
back up and recover security data. To back up security data, migrate
security data to a file store. To recover it, migrate the file store to the
target security store.

See also:

Administering Oracle Fusion Middleware

s Performing a Backup

= Recovering an Oracle WebLogic Server Domain
Migrating Identities

Migrating Policies and Credentials

Migrating Audit Data

Migrating Keys and Certificates with migrateSecurityStore

7.6.1 Backing Up and Recovering a Database-Based Security Store

The procedure in this section uses Oracle Database Utility Recovery Manager
(RMAN), a tool used to automate backup strategies and recoveries, and to duplicate
databases.

Use the following procedure to back up a DB security store on host A to a DB security
store on host B. The security store on host A has the jdbc URL set to proddb, and the
security store in host B has the jdbc URL set to testdb. The procedure sets the domain
to work with the cloned DB security store on host B.

To back up the DB security store:

1.

Set up the testdb database on host B:

a.

Create the inittestdb.ora file to contain the following lines:

#

db_name=testdb

#

Add testdb to the listener.ora file:

SID _LIST _LISTENER = (SID_LIST=(SID_DESC=(SID_NAME=testdb) (GLOBAL_
DBNAME=testdb) (ORACLE_HOME=/ade/b/3882746433/oracle))

Add testdb/proddb to the tnsnames.ora file:

proddb= (DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=hostA.com) (PORT=XX
XX)) (CONNECT_DATA= (SERVER=DEDICATED) (SERVICE_NAME= proddb)))

testdb= (DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) (HOST=hostB.com) (PORT=YY
YY)) (CONNECT_DATA= (SERVER=DEDICATED) (SERVICE_NAME=testdb)))

Restart the listener:

lsnrctl stop, lsnrctl start

Start the new instance using the pfile file in the nomount mode:
$ export ORACLE_SID=testdb

$ sglplus / as sysdba

Life Cycle of Security Artifacts 7-11

Backing Up and Recovering the Security Store

SYS@testdb SQL>startup nomount
pfile=/scratch/rdbms/dbs/inittestdb.ora

2. Use RMAN to clone the proddb database to the testdb database:
a. Add add testdb/proddb to the tnsnames.ora file:

proddb= (DESCRIPTION= (ADDRESS= (PROTOCOL=tcp) (HOST=myhostA.com) (PORT=
XXXX)) (CONNECT_DATA= (SERVER=DEDICATED) (SERVICE_NAME= proddb)))

testdb=(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=myhostB.com) (PORT=
YYYY)) (CONNECT_DATA= (SERVER=DEDICATED) (SERVICE_NAME=testdb)))

b. Make sure that the proddb database is using the spfile file. If it is not, then
generate a binary spfile from the init file by login in as the sysdba user and
running create spfile from pfile. Then, restart the server.

c. Restart the listener:
lsnrctl stop, lsnrctl start

d. Decide how to generate the names for the duplicate database files. Specifically,
how to name the control files, data files, online redo log files, and temporary
files.

For example, if in the proddb database the files on host A are in the directory
/oradata/proddb, and you want to saved them in the /oradata/testdb
directory on host B, then you would specify DB_FILE_NAME_CONVERT /proddb,
/testdb, as in the sequence below.

Run RMAN to clone the proddb database to the testdb database:

$rman
RMAN> CONNECT TARGET SYS@proddb
RMAN> CONNECT AUXILIARY SYS@testdb
RMAN> DUPLICATE TARGET DATABASE TO testdb
FROM ACTIVE DATABASE
DB_FILE_NAME_CONVERT '/proddb','/testdb'
SPFILE
PARAMETER_VALUE_CONVERT '/proddb','/testdb'
SET LOG_FILE_NAME_CONVERT '/proddb','/testdb';

Make sure that RMAN completes with no errors.

3. Verify that the testdb database works as expected by switching your domain to
use the backed up database as the security store:

a. Stop WebLogic Server.

b. Change the jdbc URL from proddb to testdb in the
{domain}/config/fmwconfig/jps-config.xml and
{domain}/config/jdbc/*xml files.

c. Restart WebLogic Server.

d. Ensure that the domain security works as expected.

7.6.2 Backing Up and Recovering LDAP Security Stores

Use the procedure in this section to back up a source LDAP store to a target LDAP
store.

1. Inthe source LDAP system create an LDAP Data Interchange format (LDIF) file by
running 1difwrite:

7-12 Securing Applications with Oracle Platform Security Services

Upgrading Component Audit Definitions to 12¢

>ldifwrite connect="srcOidDbConnectStr" basedn="cn=jpsnode"
1diffile="srcOid.1dif"

This command writes all entries under the cn=jpsnode, c=us node to the
src0id.1ldif file.
Move this file to the target LDAP system.

2. In the target LDAP system, ensure that the schema has been seeded.

3. In the target LDAP system, verify that there are no schema errors or bad entries by
running bulkload:

>bulkload connect="dstOidDbConnectStr" check=true generate=true restore=true

file="fullPath2SrcOidLdif"

If duplicated distinguished names (common entries between the source and the
target directories) are detected, then review them to prevent unexpected results.

4. Load data into the target LDAP, by running bulkload:

>bulkload connect="dstOidDbConnectStr" load=true file="fullPath2SrcOidLdif"

See also:
Administrator’s Guide for Oracle Internet Directory:

= Dumping Data from Oracle Internet Directory to a File by Using
ldifwrite

= Migrating LDAP Data by Using an LDIF File and bulkload

7.6.3 Recommendations

Oracle recommends that you back up the security store periodically, according to a
schedule appropriate to your enterprise. In addition, unscheduled backups are

recommended soon after a new encryption key is (automatically) generated for the
domain, and soon after you create new security data such as policies or credentials.

7.7 Upgrading Component Audit Definitions to 12c

Components using the audit static model can upgrade the audit definitions to the
audit dynamic model used in Release 12¢ with AuditSchemaUpgradeTool. This tool
supports audit static definition files containing no more than one component
definition.

Before upgrading a component, add the displayName component to the AuditConfig
property in the component_events.xml file:

<AuditConfig componentType="SOA-HCFP"
xmlns="http://xmlns.oracle.com/ias/audit/audit.xsd"
displayName="Oracle SOA Suite Integration">

Syntax

java -classpath SMW_HOME/oracle_common/modules/oracle.jps_12.2.1/jps-manifest.jar
oracle.security.audit.tools.AuditSchemaUpgradeTool

-s source file

-t target_file or_directory

[, -v component_def_version]

where:

Life Cycle of Security Artifacts 7-13

Upgrading Component Audit Definitions to 12¢

m source_fileis the audit definition file, such as component_events.xml.

m target_file or_directory is either a) the file in which the 12g definition file will
be stored, or b) a target directory and the model definition file is placed in this
directory with the default file name source_file_dynamic.xml.

» component_def_version is the version number of the generated 12c definition. If
unspecified, then it defaults to 1.0.

Examples

The following example illustrates upgrading the OPSS component definition to the
Release 12c¢ dynamic model using the default version number and the target
component_events_OPSS.xml file:

java -classpath $SMW_HOME/oracle_common/modules/oracle.jps_12.2.1/jps-manifest.jar
oracle.security.audit.tools.AuditSchemaUpgradeTool

-s component_events.xml

-t component_events_0OPSS.xml

The following example illustrates upgrading the OPSS component definition to the
Release 12c dynamic model with a specific version number and a target directory. The
command uses the default target file name component_events_dynamic.xml:

java -classpath SMW_HOME/oracle_common/modules/oracle.jps_12.2.1/jps-manifest.jar
oracle.security.audit.tools.AuditSchemaUpgradeTool

-s component_events.xml

-t /scratch/example -v 2.0

7-14 Securing Applications with Oracle Platform Security Services

8

Configuring the Identity Store

This chapter explains how to configure and use the identity store, and how to query it
programmatically.

This chapter includes the following sections:

= About the Identity Store

» Configuring the Identity Store Provider

s Configuring the Identity Store

= Querying the Identity Store Programmatically
s Configuring SSL for the Identity Store

See also:

Overview of the Identity Directory API in Developing Applications with
Identity Governance Framework

8.1 About the Identity Store

The identity store stores users and groups, and the service lets you query that data. By
default, it supports querying a single LDAP identity store. You can configure the
service to use a virtualized identity store that lets you query multiple LDAP identity
repositories instead of just one. For information about identity virtualization, see
Configuring the Identity Store.

Depending on the configuration, the service uses a file or (one or more) LDAP servers
as the repository of identities. When the service is configured for LDAP, by default, it
queries a single LDAP, but you can configure the service to query multiple LDAPs.

The service is available in Java SE environments. For information about virtualization
in Java SE applications, see Configuring Virtualization in Java SE Applications.

8.2 Configuring the Identity Store Provider

Before using the identity store, you must configure the identity store provider. OPSS
supports both file and LDAP identity store providers, as the following configuration
example illustrates:

<serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider"
class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
<description>LDAP IdentityStore Provider</description>
</serviceProvider>

<serviceProvider type="IDENTITY STORE" name="idstore.xml.provider"

Configuring the Identity Store 8-1

Configuring the Identity Store

class="oracle.security.jps.internal.idstore.xml.XmlIdentityStoreProvider">
<description>XML-based IdentityStore Provider</description>
</serviceProvider>

If you set Active Directory as the identity store provider, then set the USERNAME_ATTR
and USER_LOGIN_ATTR properties to sAMAccountName in jps-config.xml (or
jps-config-jse.xml) if you want to override the default value (cn). For example:

<property value="sAMAccountName" name="username.attr"/>
<property value="sAMAccountName" name="user.login.attr"/>

Note: If you set virtualize to true, then do not set the
user.login.attr and username.attr properties.

See also:

Task 3, Configuring the Identity Store Provider

8.3 Configuring the Identity Store
The following sections explain how to configure the identity store:
= Identity Store Parameters
s Understanding the Service Configuration
= Configuring Split Profiles
= Configuring Custom Authentication Providers

s Configuring Virtualization in Java SE Applications

See also:

OPSS System and Configuration Properties

8.3.1 Identity Store Parameters

The following sections explain the use of the identity store configuration parameters:
s Query Parameters
= Global Connection Parameters

s Back-End Connection Parameters

8.3.1.1 Query Parameters
Use the following parameters to configure queries to multiple LDAPs:

» Thevirtualize property - This property can be either true (multiple LDAPs
lookup) or false (single LDAP lookup). If unspecified, it defaults to false.

= Global Connection Parameters (when the virtualize property is enabled) - The
calling application uses these parameters to specify global LDAP configuration
such as the search base, create base, and so on. If any of these parameters is
unspecified, then OPSS uses a default value.

= Back-end Connection Parameters - These parameters are specific to each LDAP
store. One set of back-end parameters is specified for each LDAP. You do not need
to set these parameters unless you want to overwrite default values.

8-2 Securing Applications with Oracle Platform Security Services

Configuring the Identity Store

8.3.1.2 Global Connection Parameters

Table 8-1 shows the global parameters. For a list of connection pool parameters, see
Configuration Parameters for IDS in Developing Applications with Identity Governance

Framework.
Table 8—1 Global LDAP Identity Store Parameters
Parameter Default Value

group.create.bases
group.filter.object.classes
group.mandatory.attrs
group.member.attrs
group.object.classes
group.search.bases
group.selected.create.base
group.selected.search.base
groupname.attr

max.search.filter.length

same as user.create.bases
groupofuniquenames
No default value
uniquemember
groupofuniquenames
No default value

No default value

No default value

cn

No default value

search. type No default value

If only one authentication provider, then it uses the create base
value. If multiple ones, then no default value is set.

user.create.bases

user.filter.object.classes inetorgperson
user.login.attr uid

user.mandatory.attrs No default value
user.object.classes inetorgperson
user.search.bases Same as group.search.bases

username.attr [aig]

See also:

Generic LDAP Properties

8.3.1.3 Back-End Connection Parameters

These parameters are specific to your particular LDAP store.
See also:
LDAP Identity Properties

Policy Service Properties

8.3.2 Understanding the Service Configuration

LDAP authentication providers are configured with Oracle WebLogic Server
Administration Console or WebLogic Scripting Tool (WLST). At runtime, the server
passes the configuration details to OPSS.

In WebLogic Server domains, you can configure multiple authentication providers in a
given context. By default, the first authentication provider in the list is used to

Configuring the Identity Store 8-3

Configuring the Identity Store

initialize the identity store. For information about authentication providers, see
Support for Multiple Authentication Providers.

To query multiple LDAPs requires setting up the virtualize property.

The following sections explain several configurations:

s Configuring the Service for a Single LDAP

s Configuring the Service for Multiple LDAPs without Virtualization

s Configuring the Service for Multiple LDAPs with Fusion Middleware Control
s Configuring the Service with WLST

= Configuring Single and Multiple LDAPs

8.3.2.1 Configuring the Service for a Single LDAP

The following example illustrates the configuration of a single LDAP service instance:

<!-- JPS WLS LDAP Identity Store Service Instance -->
<servicelnstance name=idstore.ldap provider=idstore.ldap.provider>
<property name=idstore.config.provider
value=oracle.security.jps.wls.internal.idstore.
WlsLdapIdStoreConfigProvider/>
<property name=CONNECTION_POOL_CLASS
value=oracle.security.idm.providers.stdldap.JNDIPool/>
</servicelnstance>

8.3.2.2 Configuring the Service for Multiple LDAPs without Virtualization

In cases when the virtualize property cannot be set, configure the service to query
more than one LDAP and override the configuration in WebLogic Server. To specify
multiple LDAPs, use a comma separated list of LDAP URLs:

<property name="ldap.url", value="ldap://hostl:portl,ldap://host2:port2"/>

8.3.2.3 Configuring the Service for Multiple LDAPs with Fusion Middleware Control

To configure the service for multiple LDAPs with Fusion Middleware Control:
1. Choose the domain in the navigation pane on the left.

Go to Security, then Security Provider Configuration.

Expand the Identity Store Provider section of the page.

Click Configure.

The Identity Store Configuration page appears.

Under Custom Properties, click Add.

N o a » o Db

Add the new property:

Property Name=virtualize
Value=true

Be sure to also add this property to the service instance in the default context of
the OPSS configuration file.

8. Click OK.

8.3.2.4 Configuring the Service with WLST

To configure and use virtualization using WLST:

8-4 Securing Applications with Oracle Platform Security Services

Configuring the Identity Store

1. Create a script file to connect to the Administration Server in the domain of
interest. You must specify the userName, userPass, localHost, and portNumber
attributes for this operation. For information about configuring services with
scripts, See Configuring Services with Scripts.

2. Go to SORACLE_HOME/common/bin.
3. Runwlst.sh.

For example, if the domain configuration file contains the idstore.ldap
authentication provider, then the following command configures the provider for
multiple LDAPs lookup:

wlst.sh /tmp/updateServiceInsta, nceProperty.py -si idstore.ldap
-key "virtualize" -value "true"

8.3.2.5 Configuring the Timeout Setting with WLST
To set adapter timeout using WLST:

1. Run the listAdapters command to obtain the list of adapters.

2. Run the modifyLDAPAdapter command to set the timeout for each adapter to, for
example, 120 seconds:

modifyLDAPAdapter ('<ADAPTER NAME>', 'OperationTimeout', 120000)

3. Restart WebLogic Server.

See also:

modifyLDAPAdapter in WLST Command Reference for Infrastructure
Security

8.3.2.6 Configuring Other Parameters

Optionally, update the configuration in the jps-config.xml file to set query
parameters listed in Identity Store Parameters. These parameters are optional and
have default values.

8.3.2.7 Restarting Servers

After configuring queries to multiple LDAPs, restart WebLogic Administration Server
and Managed Servers.

8.3.2.8 Configuring Single and Multiple LDAPs

The following example illustrates the configuration of a single LDAP:

<serviceInstance name=idstore.ldap provider=idstore.ldap.provider>
<property name=idstore.config.provider
value=oracle.security.jps.wls.internal.idstore.
WlsLdapIdStoreConfigProvider/>
<property name=CONNECTION_POOL_CLASS
value=oracle.security.idm.providers.stdldap.JNDIPool/>
</servicelnstance>

The following example illustrates the configuration of a multiple LDAPs:

<serviceProviders>
<serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider"
class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
<description>LDAP IdentityStore Provider</description>
</serviceProvider>

Configuring the Identity Store 8-5

Configuring the Identity Store

</serviceProviders>
<servicelnstances>
<!-- IDstore instance connecting to multiple ldap -->
<gservicelInstance name="idstore.virtualize"
provider="idstore.ldap.provider">
<!-- indicates using WLS ldap authentication providers -->
<property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>
<!-- enable virtualization -->
<property name="virtualize" value="true"/>
<!-- ldap properties (if not supplied, then it uses default values) -->
<extendedProperty>
<name>user.create.bases</name>
<values>
<value>cn=users_front, dc=us, dc=example, dc=com</value>
</values>
</extendedProperty>
<extendedProperty>
<name>group.create.bases</name>
<values>
<value>cn=groups_front, dc=us, dc=example, dc=com</value>
</values>
</extendedProperty>
</servicelnstance>
</servicelnstances>
<jpsContexts default="default">

<!-- the identity store uses multiple ldaps -->
<jpsContext name="default">
<!-- use multiple ldap -->
<servicelInstanceRef ref="idstore.virtualize"/>
<l-- ..., other services -->
</jpsContext>
</jpsContexts>
</jpsConfig>
Note that:

s The virtualize property of the service instance is true, and this allows queries to
multiples LDAP directories.

» The extendedProperty element allows you to set front-end parameters to override
default values.
See also:

Identity Store Parameters

8.3.3 Configuring Split Profiles

Identity virtualization supports split profiles, which lets applications access identity
attributes when they are stored in more than one LDAP repository.

This feature requires additional configuration explained in Adapter Configuration for
Identity Virtualization.

8.3.4 Configuring Custom Authentication Providers

OPSS supports WebLogic Authentication providers to access identities. If the available
providers are not suitable to your particular LDAP server, then, typically, you
customize one. This section explains how to configure and use a custom authentication
provider.

8-6 Securing Applications with Oracle Platform Security Services

Querying the Identity Store Programmatically

When using a custom LDAP authentication provider, the following configuration
illustrates how to specify the LDAP type so that the provider can find the proper
LDAP plug-in by overriding idstore. type in jps-config.xml:

<servicelInstance name="idstore.ldap" provider="idstore.ldap.provider">

<property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"
/>

<property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool" />

<property value="true" name="virtualize" />

<serviceInstanceRef ref="myGenericLDAPName"/>

</servicelnstance>
<servicelInstance name="myGenericLDAPName" provider="idstore.ldap.provider">
<!-- overrides the 'idstore.type' property -->
<property name="idstore.type" value="ACTIVE_DIRECTORY" />
</serviceInstance>

To override additional LDAP provider instances, insert similar entries. For information
about provider configuration, see Configuring Security Providers with Fusion
Middleware Control.

8.3.5 Configuring Virtualization in Java SE Applications

For Java SE applications, you set all configurations in the jps-config-jse.xml file.
According to your needs, edit this file to:

1. Define a new service instance.

2. Add the new service instance to the context and replace any previously defined
instances.

3. Enablevirtualize.

See also:

Configuring the LDAP Identity Store in Java SE Applications

8.4 Querying the Identity Store Programmatically

To programmatically query the identity store, use OPSS APIs to obtain a context. This
context acts like a bridge to obtain the store instance. Subsequently you use the User
and Role API to query the store instance:

try {
//find the JPS context
JpsContextFactory ctxFactory = JpsContextFactory.getContextFactory();
JpsContext ctx = ctxFactory.getContext();

//find the JPS IdentityStore service instance

// (assuming the back-end is ldap type)

LdapIdentityStore idstoreService =
(LdapIdentityStore)ctx.getServiceInstance (IdentityStoreService.class)

//get the User/Role API's Idmstore instance
oracle.security.idm.IdentityStore idmIdentityStore =

idstoreService.getIdmStore();

//use the User/Role API to query ID store
//

Configuring the Identity Store 8-7

Configuring SSL for the Identity Store

//alternatively, instead of using IdentityStore, use the
//IdentityDirectory to access LDAP
oracle.igf.ids.IdentityDirectory ids = idstoreService.getIdentityStore();
} catch (Exception e) {

e.printStackTrace ()

}

See also:

Configuring Services with MBeans

8.5 Configuring SSL for the Identity Store

You can use Secure Sockets Layer (SSL) connections between the identity store and the
LDAP server(s). Both the Identity Directory API and the User and Role API can
operate with multiple LDAPs.

When the connection to the identity store originates at a client in WebLogic Server,
then the SSL configuration is handled by the server.

See also:

Administering Oracle Fusion Middleware:

= Setting Up One-Way SSL to the LDAP Security Store
= Setting Up SSL in Identity Store Services

8-8 Securing Applications with Oracle Platform Security Services

9

Configuring the Security Store

The security store is the central repository of system and application-specific policies,
credentials, keys, and audit data used by all applications running in a WebLogic Server
domain.

This chapter includes the following sections:
= About the Security Store

s Using an LDAP Security Store

= Using a Database Security Store

= Reassociating the Security Store

» Migrating the Security Store

s Configuring Security Providers with Fusion Middleware Control

9.1 About the Security Store

The security store is the central repository of system and application-specific policies,
credentials, and keys. This centralization facilitates the administration and
maintenance of policies, credentials, and keys.

The type of the security store can be file, LDAP, or database. You can reassociate it
from file to LDAP or database, from database to LDAP or database, or from LDAP to
LDAP or database. Ready-to-use, the security store is a database store.

In Java EE applications, the security data is packaged with the application Enterprise
ARchive (EAR) file, and it can be migrated to the security store at when you deploy
the application.

When a WebLogic Server domain uses policies from the security store, Java
Authorization Contract for Containers (JACC) policies and the Java Security Manager
become unavailable to all Managed Servers in that domain.

All permission classes used in policies must be included in the class path so the policy
provider can load them when a service instance is initialized.

Configuring the Security Store 9-1

Using an LDAP Security Store

See also:

Reassociating the Security Store with Fusion Middleware Control
Reassociating the Security Store with reassociateSecurityStore
Migrating the Security Store with Fusion Middleware Control
Migrating the Security Store with migrateSecurityStore

Java EE and WebLogic Security in Understanding Security for Oracle
WebLogic Server

9.1.1 Environments with Multiple Servers
Production WebLogic Server domains with several server instances (Administration
and Managed Servers) on the same host or distributed across multiple machines, must
use an LDAP or a database security store. File-based providers are not supported in
production environments.
See also:

Policy Service Properties

Credential Service Properties

9.2 Using an LDAP Security Store

Production environments typically use LDAP security stores. The only LDAP
supported is Oracle Internet Directory.

OPSS does not support enabling referential integrity on LDAP servers. The server will
not work as expected if referential integrity is enabled. To disable a server’s referential
integrity, use Oracle Enterprise Manager Fusion Middleware Control to:

1. Choose first Administration, then Shared Properties, and then General.

2. In the Enable Referential Integrity list, choose Disabled.

Note: Depending on the version, the following Oracle Internet
Directory patches are required:

= Patch 10.1.4 to fix bug 9093298

= Patch 11.1.x to fix bug 8736355

s Patch 11.1.x and 10.1.4.3 to fix bug 8426457
= Patch 10.1.4.3 to fix bug 8351672

» Patch 10.1.4.3 to fix bug 8417224

» Patch 11.1.1.6.0 to fix bug 13782459

For information about supported Oracle Internet Directory versions, see Oracle Fusion
Middleware 12¢ Certifications at
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certific
ation-100350.html.

The following sections explain how to set up an LDAP security store:
s Prerequisites to Using the LDAP Security Store
= Resetting the LDAP User Password

9-2 Securing Applications with Oracle Platform Security Services

Using an LDAP Security Store

See also:

Setting Up One-Way SSL to the LDAP Security Store in Administering
Oracle Fusion Middleware

Properties Common to All LDAP Servers

9.2.1 Prerequisites to Using the LDAP Security Store

To ensure the proper access to LDAP, set a node in the server directory as explained in
this section.

When you use Fusion Middleware Control to reassociate to an LDAP store, the tool
automatically provides bootstrap credentials in the cwallet.sso file.

To set a node in an LDAP server:

1.

Create an LDAP Data Interchange format (LDIF) file (jpstestnode.1dif)
specifying the following entries:

dn: cn=jpsroot

cn: jpsroot

objectclass: top
objectclass: OrclContainer

The distinguished name of the root node jpsroot must be distinct from any other
distinguished name. Some LDAP servers enforce case-sensitivity by default.
Multiple WebLogic Server domains can share a root node. This node need not be
created at the top level, but the LDAP administrator must have read and write
access to all nodes below it.

Import this data into the LDAP server with the 1dapadd utility:

>ldapadd -h ldap_host -p ldap port -D cn=orcladmin -w password -v -f
jpstestnode.1ldif

Verify that the node has been successfully inserted with the 1dapsearch utility:

>ldapsearch -h ldap_host -p ldap port -D cn=orcladmin -w password -s base
-b "cn=jpsroot" objectclass="orclContainer"

Run oidstats.sql to generate database statistics for optimal database
performance:

>$ORACLE_HOME/ldap/admin/oidstats.sqgl
You need to run this utility only once after the initial provisioning.

See also:
Specifying Bootstrap Credentials Manually
oidstats.sql in Reference for Oracle Identity Management

9.2.2 Resetting the LDAP User Password

Use the procedure in this section to reset the LDAP user password.

1.

Create an LDIF file with a content that specifies the new password:

dn: <UserDN>

changetype: modify
replace: userPassword
userPassword: new_password

Configuring the Security Store 9-3

Using a Database Security Store

where userDN stands for the distinguished name of the administrator.

2. Use ldapmodify to apply the specifications in the created file as in the following
example, which uses specifications in the updatePassword.1dif file:

ldapmodify -h oid_hostName -p oid_port -D “cn=orcladmin” -w orcladmin_password
-f updatePassword.ldif

3. Run modifyBootStrapCredential to update the password in the bootstrap wallet.

See also:
Administrator’s Guide for Oracle Internet Directory

modifyBootStrapCredential in WLST Command Reference for
Infrastructure Security

9.3 Using a Database Security Store

A database security store is recommended in production environments. To configure
the security store, use Fusion Middleware Control or WebLogic Scripting Tool (WLST).
The database security store and the domain must be in the same data center.

For information about the database versions supported, see Oracle Fusion Middleware
12c Certifications at
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certific
ation-100350.html.

For information about the OPSS and audit schemas support of Edition-Based
Redefinition (EBR), see Creating an Edition on the Server for Edition-Based
Redefinition in Upgrading to the Oracle Fusion Middleware Infrastructure.

The following sections explain how to set up a database security store:
» Prerequisites to Using the Database Security Store

= Maintaining a Database Security Store

= Resetting the OPSS Schema Password

= Setting Up an SSL Connection to the Database Security Store

9.3.1 Prerequisites to Using the Database Security Store

To use a database repository for the security store, first use Oracle Fusion Middleware
Repository Creation Utility to create the required OPSS schema and to seed some
initial data. See About the Repository Creation Utility in Creating Schemas with the
Repository Creation Utility.

When using Repository Creation Utility to create the OPSS schema, choose all schemas
whose names contain the following suffixes:

s _OPSS

s _TAU

= _TAU_APPEND
s _TAU_VIEWER

n _STB

9-4 Securing Applications with Oracle Platform Security Services

Using a Database Security Store

9.3.2 Maintaining a Database Security Store

This section describes some of the tasks that you follow to maintain a database
security store, including changing the OPSS schema password.

A database security store maintains a change log that should be periodically purged.
To purge it, use the provided SQL opss_purge_changelog.sql script, which will purge
change logs older than 24 hours, or connect to the database and run the delete utility
(with the appropriate arguments):

SQL>delete from jps_changelog where createdate < (select (max(createdate) - 1) from
jps_changelog) ;
SQL>Commit;

To enhance performance when accessing a database security store, run the DBMS_STATS
package to gather statistics about the physical storage of database tables and indexes.
This information, stored in the data dictionary, is then used to optimize the execution
plan for SQL statements accessing analyzed objects.

When loading large amount of data into a database security store, such as when
creating thousands of new application roles, it is recommended that your run DBMS_
STATS within short periods and concurrently with the loading activity. Otherwise,
when the loading activity is small, then run DBMS_STATS just once or according to your
needs.

The following example illustrates the use of DBMS_STATS:

EXEC DBMS_STATS.GATHER_SCHEMA_STATS ('DEV_OPSS', DBMS_STATS.AUTO_SAMPLE_SIZE, no_
invalidate=>FALSE) ;

where DEV_0PSS denotes the name of the database schema created with Repository
Creation Utility.

Script Examples
The following example runs the DBMS_STATS command every 10 minutes:

#!/bin/sh

i=1

while [$1 -le 1000]

do

echo $i

sqlplus dev_opss/password@instl @opssstats.sqgl
sleep 600

i="expr $1 + 1°

done

where opssstats.sql contains the following text:

EXEC DBMS_STATS.gather_schema_stats('DEV_OPSS',DBMS_STATS.AUTO_SAMPLE_SIZE, no_
invalidate=>FALSE) ;
QUIT;

The following example also runs DBMS_STATS every 10 minutes:

variable jobno number;

BEGIN

DBMS_JOB. submit

(job => :jobno,

what => 'DBMS_STATS.gather_schema_stats(''DEV_OPSS'',DBMS_STATS.AUTO_SAMPLE_
SIZE,no_invalidate=>FALSE); "',

interval => 'SYSDATE+(10/24/60)");

COMMIT;

Configuring the Security Store 9-5

Reassociating the Security Store

END;
/

To stop the DBMS_STATS started by this SQL script, first find out its job number by
issuing the following commands:

sqglplus '/as sysdba'

SELECT job FROM dba_jobs WHERE schema_user = 'DEV_OPSS' AND what = 'DBMS_
STATS.gather schema_stats(''DEV_OPSS'',DBMS_STATS.AUTO_SAMPLE_SIZE, no_
invalidate=>FALSE);"';

Then run a command like the following (which assumes that the query returned the
job number 31):

EXEC DBMS_JOB.remove(31);

9.3.3 Resetting the OPSS Schema Password

To reset the OPSS schema password:

1. Use the database ALTER USER command to reset the password in the database.
Remember the new password entered, as it will be used in the next two steps.

2. Use Oracle WebLogic Server Administration Console to update the password that
the data source uses to connect to the OPSS schema with the new password.

3. Use the modifyBootStrapCredential WLST command to update the cwallet.sso
bootstrap file with the new password.
See also:

Creating a JDBC Data Source in Administering [DBC Data Sources for
Oracle WebLogic Server

modifyBootStrapCredential in WLST Command Reference for
Infrastructure Security

9.3.4 Setting Up an SSL Connection to the Database Security Store

Establishing a one- or two-way SSL connection to a database security store is optional
and explained in section Configuring SSL for the Database in Administering Oracle
Fusion Middleware.

9.4 Reassociating the Security Store

Reassociating the security store is the process that relocates security data from one
repository to another one. The source type can be file, LDAP, or database. The target
type can be LDAP or database.

Reassociation changes the repository while preserving the integrity of the data stored.
This operation can take place at any time after the domain has been created, and it is
carried out with either Fusion Middleware Control or the reassociateSecurityStore
WLST command as explained in the following sections:

= Reassociating the Security Store with Fusion Middleware Control

= Reassociating the Security Store with reassociateSecurityStore

9-6 Securing Applications with Oracle Platform Security Services

Reassociating the Security Store

9.4.1 Reassociating the Security Store with Fusion Middleware Control

Reassociation migrates the security store (policies, credentials, keys, and audit data)
from one repository to another and reconfigures security providers. For information
about the procedure, see Task 2, Migrating the Security Store.

Note the following points:

= Before reassociating to a target LDAP store, ensure that your setup satisfies the
Prerequisites to Using the LDAP Security Store.

= Before reassociating to a target database store, ensure that your setup satisfies the
Prerequisites to Using the Database Security Store.

= Before reassociating and if a one-way SSL to a target LDAP is required, then
follow the instructions in Setting Up One-Way SSL to the LDAP Security Store in
Administering Oracle Fusion Middleware.

= After reassociating to an LDAP store, to secure access to the root node of the
LDAP store, follow the instructions in Securing Access to LDAP Nodes.

» Reassociation updates the jps-config.xml and jps-config-jse.xml files with the
new configuration: it deletes old provider configuration, inserts the new provider
configuration, and moves data from the source to the target store.

s If the target store is LDAP, then the information is stored under the domain
distinguished name according to the following format:

cn=<domain_name>, cn=JpsContext,<JPS ROOT DN>

If your configuration relies on the domain distinguished name, then do not delete
this node from the LDAP Server.

9.4.1.1 Securing Access to LDAP Nodes

The procedure explained in this section is optional and performed only to enhance the
security to access LDAP servers.

An access control list (ACL) is a list that specifies who can access information and
what operations are allowed on the LDAP objects. The control list is specified at a
node, and its restrictions apply to all entries under that node.

Use ACL to control the access to data stored in an LDAP repository. Typically, you
specify this list at the root node of the store.

To specify an ACL at a node in the LDAP repository:
1. Create an LDIF file with a content that specifies the ACL:

dn: <storeRootDN>

changetype: modify

add: orclACI

access to entry by dn="<userDN>" (browse,add,delete) by * (none)

access to attr=(*) by dn="<userDN>" (search,read,write,compare) by * (none)

where storeRootDN stands for the root node of the store, and userDN stands for the
distinguished name of the administrator (the same distinguished name that was
entered to perform reassociation).

2, Use ldapmodify to apply these specifications to the Oracle Internet Directory:

dn: cn=jpsRootNode

changetype: modify

add: orclACI

access to entry by dn="cn=myAdmin, cn=users,dc=us,dc=oracle,dc=com"

Configuring the Security Store 9-7

Migrating the Security Store

(browse, add,delete) by * (none)
access to attr=(*) by dn="cn=myAdmin, cn=users, dc=us,dc=oracle,dc=com"
(search, read,write, compare) by * (none)

See also:

ldapmodify in Reference for Oracle Identity Management

9.4.2 Reassociating the Security Store with reassociateSecurityStore

The security store can be reassociated with the reassociateSecurityStore WLST
command. For information about this command, see reassociateSecurityStore.

9.5 Migrating the Security Store

Applications can specify their own policies and these policies are stored in the
application stripe (in the security store) when you deploy the application to WebLogic
Server. Each application running in the domain uses one stripe, and more than one
application can use the same stripe. In a file security store stripes are specified in the
$DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml file under the element
<applications>.

Migrating the security store is the process that relocates the policies, credentials, audit
data, and keys from one repository to another one. The source type can be file, LDAP,
or database. The target type can be LDAP or DB. The OPSS binaries and the target
security store must have compatible versions. For information about version issues,
see Incompatible Versions of Binaries and Security Store.

The following sections explain how to migrate application security to the security
store:

= Migrating the Security Store with Fusion Middleware Control
» Migrating the Security Store with migrateSecurityStore

9.5.1 Migrating the Security Store with Fusion Middleware Control

Applications can migrate security data specified in the jazn-data.xml application file
to the security store when you deploy the application to WebLogic Server with Oracle
Enterprise Manager Fusion Middleware Control (Fusion Middleware Control).
Policies can also be removed from the security store when the application is
undeployed and updated when the application is redeployed.

Set the jps.deployment.handler.disabled system property to true to disable the
migration of policies and credentials at deployment for all applications regardless of
particular settings in the weblogic-application.xml files.

See also:

Task 2, Migrating the Security Store

9.5.2 Migrating the Security Store with migrateSecurityStore

You can migrate identities, policies, system policies, and credentials, from a source
repository to a target repository with the migrateSecurityStore WLST command.

This command does not require a connection to a running server to operate. Therefore,
the configuration file passed to the configFile argument need not be an actual
domain configuration file, but assembled only to specify the source and target
repositories of the migration.

9-8 Securing Applications with Oracle Platform Security Services

Migrating the Security Store

Notes: The migrateSecurityStore command re-creates GUIDs and
takes a long time to migrate a large volume of data. Consider using
instead Oracle Internet Directory bulk operations to migrate large
volume stores. For information about the procedure, see Backing Up
and Recovering LDAP Security Stores.

If migrating a large volume of data to an IBM DB2-based security
store, you need to set the following configuration parameters on the
DB2 database:

s update db cfg using MAXLOCKS AUTOMATIC

s update db cfg using LOCKLIST AUTOMATIC

The following sections explain how to use this command:

= Migrating All Policies with migrateSecurityStore

= Migrating System Policies with migrateSecurityStore

= Migrating Application Policies with migrateSecurityStore
= Migrating All Credentials with migrateSecurityStore

= Migrating One Credential Map with migrateSecurityStore

See also:
Managing Policies with WLST

migrateSecurityStore Usage Examples

9.5.2.1 Migrating All Policies with migrateSecurityStore

To migrate all policies (system and application policies, for all applications) use one of
the following syntaxes:

migrateSecurityStore.py -type policyStore
-configFile jpsConfigFileLocation
-src srcdpsContext
-dst dstJpsContext
[-skip trueOrfalse]
[-overwrite trueOrfalse]

migrateSecurityStore (type="policyStore",
configFile="jpsConfigFileLocation",
src="srcdpsContext",
dst="dstJpsContext"
[,skip="trueOrfalse"]
[,overwrite="trueOrfalse"])

where:

= configFile specifies the location of a configuration file relative to the directory
where the command is run. This configuration file should be specially assembled
and must contain a contexts that specify:

— The source store
— The target store

— The bootstrap credentials

Configuring the Security Store 9-9

Migrating the Security Store

The bootstrap context specifies the location of the cwallet.sso file, which contains
the keys needed to access the source and target stores, and to decrypt and encrypt
security data.

For information about extracting the keys used in a domain, see the
exportEncryptionKey command in WLST Command Reference for Infrastructure
Security.

For information about storing a key into a wallet, see the importEncryptionKey
command in WLST Command Reference for Infrastructure Security.

For information about creating wallets, see Common Wallet Operations in
Administering Oracle Fusion Middleware.

= src specifies the name of a context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the
context in the configuration file.

= dst specifies the name of another context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the
context in the configuration file.

= skip specifies whether the migration should skip migrating incompatible artifacts
or to terminate upon encountering an incompatible artifact in the source
repository. Set to true to skip migrating incompatible artifacts and not to
terminate. Set to false to terminate when an incompatible artifact is detected.
Optional. If unspecified, then it defaults to false.

= overwrite specifies whether to overwrite data in the target store. Set to true to
overwrite target data. Set to false not to overwrite target data. Optional. If
unspecified, then it defaults to false.

The contexts you specify in src and dst must be defined in the passed configuration
file, have distinct names, and the case of the passed contexts must match the case of
the contexts in the configuration file. From these two contexts, the command
determines the locations of the source and the target repositories involved in the
migration.

9.5.2.2 Migrating System Policies with migrateSecurityStore

To migrate just system policies use one of the following syntaxes:

migrateSecurityStore.py -type globalPolicies
-configFile jpsConfigFileLocation
-src srcdpsContext
-dst dstJpsContext
[-overwrite trueOrfalse]

migrateSecurityStore (type="globalPolicies",
configFile="jpsConfigFileLocation",
src="srcdpsContext",
dst="dstJpsContext"
[,overwrite="trueOrfalse"])

where:

» configFile specifies the location of a configuration file relative to the directory
where the command is run. This configuration file should be specially assembled
and must contain contexts that specify:

— The source store

— The target store

9-10 Securing Applications with Oracle Platform Security Services

Migrating the Security Store

— The bootstrap credentials

The bootstrap context specifies the location of the cwallet.sso file, which contains
the keys needed to access the source and target stores, and to decrypt and encrypt

security data.

For information about extracting keys used by a domain, see exportEncryptionKey

in WLST Command Reference for Infrastructure Security.

For information about storing a key into a wallet, see importEncryptionKey in

WLST Command Reference for Infrastructure Security.

For information about creating wallets, see Common Wallet Operations in
Administering Oracle Fusion Middleware.

» src specifies the name of a context in the configuration file passed to the

configFile argument. The case of the string passed must match the case of the

context in the configuration file.

= dst specifies the name of another context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the

context in the configuration file.

= skip specifies whether the migration should skip migrating incompatible artifacts

or to terminate upon encountering an incompatible artifact in the source
repository. Set to true to skip migrating incompatible artifacts and not to
terminate. Set to false to terminate if an incompatible artifact is detected.
Optional. If unspecified, then it defaults to false.

= overwrite specifies whether to overwrite data in the target store. Set to true to

overwrite target data. Set to false not to overwrite target data. Optional. If
unspecified, then it defaults to false.

The contexts you specify in src and dst must be defined in the configuration file, have
distinct names, and the case of the passed contexts must match the case of the contexts

in the configuration file. From these two contexts, the command determines the
locations of the source and the target repositories involved in the migration.

9.5.2.3 Migrating Application Policies with migrateSecurityStore

To migrate just application-specific policies for an application, use one of the following

syntaxes:

migrateSecurityStore.py -type appPolicies
-configFile jpsConfigFileLocation
-src srcdpsContext
-dst dstJpsContext
-SrcApp srcAppName
-dstApp dstAppName]
-overWrite trueOrfalse]
migrateIdStoreMapping trueOrfalse]
mode laxOrstrict]
-skip trueOrfalse]

[
[
[
[
[

migrateSecurityStore (type="appPolicies",
configFile="jpsConfigFileLocation",
src="srcdpsContext",
dst="dstJpsContext",
srcApp="srcAppName",
[dstApp="dstAppName"],
[overWrite="trueOrfalse"],
[migrateIdStoreMapping="trueOrfalse"],

Configuring the Security Store

Migrating the Security Store

[mode="strict"],
skip="trueOrfalse")

where:

= configFile specifies the location of a configuration file relative to the directory
where the command is run. This configuration file should be specially assembled
and must contain contexts that specify:

- The source store
— The target store
— The bootstrap credentials

The bootstrap context specifies the location of the cwallet.sso file, which contains
the keys needed to access the source and target stores, and to decrypt and encrypt
security data.

For information about extracting keys used by a domain, see exportEncryptionKey
in WLST Command Reference for Infrastructure Security.

For information about storing a key into a wallet, see importEncryptionKey in
WLST Command Reference for Infrastructure Security

For information about creating wallets, see Common Wallet Operations in
Administering Oracle Fusion Middleware.

» src specifies the name of a context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the
context in the configuration file.

= dst specifies the name of another context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the
context in the configuration file.

= skip specifies whether the migration should skip migrating incompatible artifacts
or to terminate upon encountering an incompatible artifact in the source
repository. Set to true to skip migrating incompatible artifacts and not to
terminate. Set to false to terminate if an incompatible artifact is detected.
Optional. If unspecified, then it defaults to false.

= srcApp specifies the name of the application whose policies are migrated.

= dstApp specifies the name of the application whose policies are being written. If
unspecified, then it defaults to the name of the source application. Optional.

= migrateIdStoreMapping specifies whether enterprise policies should be migrated.
The default value is true. To migrate just application policies, set it to false.
Optional.

= overWirite specifies whether a target policy matching a source policy should be
overwritten by or merged with the source policy. Set to true to overwrite the
target policy. Set to false to merge matching policies. Optional. If unspecified,
then defaults to false.

= mode specifies whether the migration should stop and signal an error upon
encountering a duplicate principal or a duplicate permission in a policy. Either do
not specify or set to lax to allow the migration to continue when it encounters
duplicate items, to migrate just one of the duplicated items, and to log a warning
to this effect. Optional.

The contexts you specify in src and dst must be defined in the configuration file, have
distinct names, and the case of the passed contexts must match the case of the contexts

9-12 Securing Applications with Oracle Platform Security Services

Migrating the Security Store

in the configuration file. From these two contexts, the command determines the
locations of the source and the target repositories involved in the migration.

If the input does not follow these syntax requirements, then the command execution
fails. In particular, the input must satisfy the following requisites: (a) the
jps-config.xml file is found in the passed location, (b) the jps-config.xml file
includes the passed contexts, and (c) the source and the target context names are
distinct.

9.5.2.4 Migrating All Credentials with migrateSecurityStore
To migrate all credentials use one of the following syntaxes:

migrateSecurityStore.py -type credStore
-configFile jpsConfigFileLocation
-src srcdpsContext
-dst dstJpsContext
[-skip trueOrfalse]
[-overwrite trueOrfalse]

migrateSecurityStore (type="credStore",
configFile="jpsConfigFileLocation",
src="srcdpsContext",
dst="dstJpsContext",
[skip="trueOrfalse"],
[overwrite="trueOrfalse"])

where:

= configFile specifies the location of a configuration file relative to the directory
where the command is run. This configuration file should be specially assembled
and must contain contexts that specify:

- The source store
— The target store
- The bootstrap credentials

The bootstrap context specifies the location of the cwallet.sso file, which contains
the keys needed to access the source and target stores, and to decrypt and encrypt
security data.

For information about extracting keys used by a domain, see exportEncryptionKey
in WLST Command Reference for Infrastructure Security.

For information about storing a key into a wallet, see importEncryptionKey in
WLST Command Reference for Infrastructure Security.

For information about creating wallets, see Common Wallet Operations in
Administering Oracle Fusion Middleware.

» src specifies the name of a context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the
context in the configuration file.

= dst specifies the name of another context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the
context in the configuration file.

= skip specifies whether the migration should skip migrating incompatible artifacts
or to terminate upon encountering an incompatible artifact in the source
repository. Set to true to skip migrating incompatible artifacts and not to

Configuring the Security Store 9-13

Migrating the Security Store

terminate. Set to false to terminate if an incompatible artifact is detected.
Optional. If unspecified, it defaults to false.

= overwrite specifies whether to overwrite data in the target store. Set to true to
overwrite target data. Set to false not to overwrite target data. Optional. If
unspecified, then it defaults to false.

The contexts you specify in src and dst must be defined in the configuration file, have
distinct names, and the case of the passed contexts must match the case of the contexts
in the configuration file. From these two contexts, the command determines the
locations of the source and the target repositories involved in the migration.

9.5.2.5 Migrating One Credential Map with migrateSecurityStore

To migrate just one credential map, use one of the following syntaxes:

migrateSecurityStore.py -type folderCred
-configFile jpsConfigFileLocation
-src srcdpsContext
-dst dstJpsContext
[-srcFolder mapl]
[-dstFolder map2]
[-srcConfigFile alternConfigFileLocation]
[-overWrite trueOrFalse]
[-skip trueOrFalse]

migrateSecurityStore (type="folderCred",
configFile="jpsConfigFileLocation",
src="srcdpsContext",
dst="dstJpsContext",
[srcFolder="mapl"],
[dstFolder="map2"],
[srcConfigFile="alternConfigFileLocation"],
[overWrite="trueOrFalse"],
[skip="trueOrFalse"])

where:

= configFile specifies the location of a configuration file relative to the directory
where the command is run. This configuration file should be specially assembled
and must contain contexts that specify:

- The source store
— The target store
— The bootstrap credentials

The bootstrap context specifies the location of the cwallet.sso file, which contains
the keys needed to access the source and target stores, and to decrypt and encrypt
security data.

For information about extracting keys used by a domain, see exportEncryptionKey
in WLST Command Reference for Infrastructure Security.

For information about storing a key into a wallet, see importEncryptionKey in
WLST Command Reference for Infrastructure Security.

For information about creating a wallet, see Common Wallet Operations in
Administering Oracle Fusion Middleware.

9-14 Securing Applications with Oracle Platform Security Services

Configuring Security Providers with Fusion Middleware Control

src specifies the name of a context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the
context in the configuration file.

dst specifies the name of another context in the configuration file passed to the
configFile argument. The case of the string passed must match the case of the
context in the configuration file.

skip specifies whether the migration should skip migrating incompatible artifacts
or to terminate upon encountering an incompatible artifact in the source
repository. Set to true to skip migrating incompatible artifacts and not to
terminate. Set to false to terminate if an incompatible artifact is detected.
Optional. If unspecified, then it defaults to false.

srcFolder specifies the name of the map containing the credentials to migrate.
Optional. If unspecified, then the credential store is assumed to have only one map
and the value of this argument defaults to the name of that map.

dstFolder specifies the map where the source credentials are migrated. Optional.
If unspecified, then it defaults to the map passed to srcFolder.

srcConfigFile specifies the location of an alternate configuration file, and it is
used in the special case in which credentials are not configured in the file passed to
configFile. Optional. If unspecified, then it defaults to the value passed to
configFile. If specified, then the value passed to configFile is ignored.

overWrite specifies whether a target credential matching a source credential
should be overwritten by or merged with the source credential. Set to true to
overwrite target credentials. Set to false to merge matching credentials. Optional.
If unspecified, then it defaults to false. When false and if a matching is detected,
then the source credential is disregarded and a warning is logged.

The contexts you specify in src and dst must be defined in the configuration file, have
distinct names, and the case of the passed contexts must match the case of the contexts
in the configuration file. From these two contexts, the command determines the
locations of the source and the target repositories involved in the migration.

9.5.2.6 Migrating Audit Data with migrateSecurityStore

Use the migrateSecurityStore WLST command to migrate audit data to a different
security store. For information about the procedure, see Migrating Audit Data

9.5.2.7 migrateSecurityStore Usage Examples

For complete examples illustrating the use of migrateSecurityStore, see the
following sections:

Migrating Policies with migrateSecurityStore

Migrating Credentials with migrateSecurityStore
Migrating Audit Data

Migrating Keys and Certificates with migrateSecurityStore

9.6 Configuring Security Providers with Fusion Middleware Control

Follow the instructions in this section to migrate the security store, to configure the
identity store provider and security services, and to manage login modules and
properties with Fusion Middleware Control.

Task 1, Opening the Security Provider Configuration Page

Configuring the Security Store 9-15

Configuring Security Providers with Fusion Middleware Control

s Task 2, Migrating the Security Store

s Task 3, Configuring the Identity Store Provider
s Task 4, Configuring Security Services

s Task 5, Managing Login Modules

s Task 6, Managing Properties and Property Sets

Task 1, Opening the Security Provider Configuration Page

Log in to Fusion Middleware Control and go to Domain, then to Security, and then to
Security Provider Configuration. The Security Provider Configuration page is
displayed.

Task 2, Migrating the Security Store
1. Expand Security Store Provider and Security Stores.

2. Click Change Store Type. The Configure Security Stores page is displayed.
3. In this page, enter the target repository parameters.

4. Click OK.

Task 3, Configuring the Identity Store Provider
1. Expand Security Store Provider and Identity Store Provider.

2. Click the Configure button. The Identity Store Configuration page is displayed.
3. In this page, enter add or edit properties, as appropriate.

4. Click OK.

Task 4, Configuring Security Services
1. Expand Security Store Provider and Security Services.

2. Click a pencil icon to configure a provider. The provider’s page is displayed.
3. In this page, enter the required fields.
4. Click OK.

Task 5, Managing Login Modules

1. Expand Security Store Provider and Login Modules. The table of configured
login modules is displayed.

2. Click Create to create a new login module. The Create Login Module page is
displayed. Enter the login module parameters and click OK.

3. Click Edit to modify a login module. The Edit Login Module page is displayed.
Modify parameters and click OK.

4. Click Delete to remove a login module. Confirm deletion.

Task 6, Managing Properties and Property Sets
1. Expand Security Store Provider and Advanced Properties.

2, Click the Configure button. The Advanced Properties page is displayed.
3. In this page, do any of the following:
s Click Add to add a new property.

9-16 Securing Applications with Oracle Platform Security Services

Configuring Security Providers with Fusion Middleware Control

Click Edit to modify a property.

Click Delete to removed a property.

Click Add Property Set to add a new property set.

Click Add Property to add a property to a set.

Click Edit Property to modify a property in a property set.

Click Delete to remove a property set or a property in a property set.

Configuring the Security Store 9-17

Configuring Security Providers with Fusion Middleware Control

9-18 Securing Applications with Oracle Platform Security Services

10

Managing Policies

This chapter explains how to manage policies with Oracle Enterprise Manager Fusion
Middleware Control (Fusion Middleware Control), WebLogic Scripting Tool (WLST),
and Oracle Entitlements Server (OES).

This chapter includes the following sections:

Determining the Security Store Characteristics
Managing the Policy Store

Managing Policies with Fusion Middleware Control
Managing Policies with WLST

Refreshing the Policy Cache

Principals and Roles in WLST Commands
Application Stripe in WLST Commands

Managing Application Policies with OES

10.1 Determining the Security Store Characteristics

Use the 1listSecurityStoreInfo WLST command to determine several attributes of
the security store. For information about this command, see listSecurityStoreInfo in
WLST Command Reference for Infrastructure Security.

10.2 Managing the Policy Store

To avoid unexpected authorization failures and to manage policies effectively, note the
following points:

Before deleting a user, revoke all permissions, application roles, and enterprise
groups that have been granted to the user. If you fail to remove all security data
referencing a deleted user, then these artifacts are left dangling and, potentially, be
inadvertently inherited if another user with the same name is created at a later
time.

Similar considerations apply to when a user name is changed: all policies (grants,
permissions, groups) referring to old data must be updated so that authorization
works as expected with the changed data.

When applied, policies use case-sensitivity in names. The best way to avoid
possible authorization errors due to case in user or group names is to use the
spelling of those names exactly as specified in the identity store. Oracle
recommends that:

Managing Policies 10-1

Managing Policies with Fusion Middleware Control

— When provisioning a policy, spell the names of users and groups used in the
policy exactly as they are spelled in the identity store.

— When entering a user name at runtime, enter a name that matches exactly the
case of a name in the identity store.

= Resource type, resource, or entitlement names can contain printable characters
only and they cannot start or end with a white space.

= Authorization failures are not shown in the console by default. To have
authorization failures (such as JpsAuth.checkPermission failures) displayed in
the console, set the jps.auth.debug system variable to true.

The following sections explain how to manage policies with Fusion Middleware
Control, WLST, and OES. Typical operations include:

= Managing Policies with Fusion Middleware Control
= Managing Policies with WLST
s Managing Application Policies with OES

See also:
Failure to Get Permissions - Case Mismatch
User Gets Unexpected Permissions

Characters in Policies

10.3 Managing Policies with Fusion Middleware Control

Fusion Middleware Control allows you to manage system and application policies in a
WebLogic Server domain as explained in the following sections:

= Managing Application Policies
= Managing Application Roles

= Managing System Policies

10.3.1 Managing Application Policies

Follow the instructions in this section to manage application policies withFusion
Middleware Control.

s Task 1, Opening the Application Policies Page

s Task 2, Searching Application Policies

s Task 3, Creating an Application Policy

s Task 4, Creating an Application Policy Like Another One

Task 1, Opening the Application Policies Page

Log in to Fusion Middleware Control and go to Domain, then to Security, and then to
Application Policies. The Application Policies page is displayed. The Policy Store
Provider area is read-only and displays the provider currently used in the domain.

Task 2, Searching Application Policies

In the Search area, choose an application stripe, enter a string to match (a principal
name, principal group, or application role), and click the search button. The results of
the search are displayed in the table at the bottom of the page.

10-2 Securing Applications with Oracle Platform Security Services

Managing Policies with Fusion Middleware Control

Task 3, Creating an Application Policy
Choose an application stripe, and click Create. The Create Application Grant page is
displayed. In this page, add principals and permissions to the grant, as appropriate:

1. To add permissions, in the Permissions area click Add to display the Add
Permission dialog.

In the Search area of that dialog, first choose Permissions or Resource Types. If
you chose Permissions, then identify permissions matching a class or resource
name, and determine the Permission Class and Resource Name. If you chose
Resource Types, then identify the resource types matching a type name, and
determine a type. Then click OK to return to the Create Application Grant page.
The permission you chose is displayed in the table in the Permissions area.

2. To add principals, click Add in the Grantee area to display the Add Principal
dialog.

In the Search area of that dialog, choose a Type, enter strings to match principal
names and display names, and click the search button. The result of the query is
displayed in the Searched Principals table. Then choose one or more rows from
that table, and click OK to return to the Create Application Grant page. The
principals you chose are displayed in the table in the Grantee area

3. Click OK to return to the Application Policies page. The new policy is displayed
in the table at the bottom of the page.

Task 4, Creating an Application Policy Like Another One
1. Choose a policy.

2. Click Create Like. The Create Application Grant Like page is displayed and the
table of permissions is filled in with the data extracted from the chosen policy.

3. Modify those values, as appropriate, and then click OK.

10.3.2 Managing Application Roles

Follow the instructions in this section to manage application roles withFusion
Middleware Control.

s Task 1, Opening the Application Roles Page

» Task 2, Searching Application Roles

s Task 3, Creating an Application Role

s Task 4, Adding Application Roles to a Role

s Task 5, Creating an Application Role Like Another One

Task 1, Opening the Application Roles Page

Log in to Fusion Middleware Control and go to Domain, then to Security, and then to
Application Roles. The Application Roles page is displayed. The Policy Store
Provider area is read-only and displays the provider currently used in the domain.

Task 2, Searching Application Roles

In the Search area, choose an application stripe, enter a string to match, and click the
search button. The results of the search are displayed in the table at the bottom of the

page.

Managing Policies 10-3

Managing Policies with Fusion Middleware Control

Task 3, Creating an Application Role
Click Create to display the Create Application Role page.

You need not enter data in this page all at one time. For example, you could create a
role by entering the role name and display name, save your data, and later on specify
the members in it. Similarly, you could specify the role mapping at a later time.

In the area General:

= In the Role Name text field enter the name of the role.

= In the Display Name text field, optionally, enter the name to display for the role.
= In the Description text field, optionally, enter a description of the role.

= In the Members area, specify the users, groups, or other application roles into
which the role is mapped.

Task 4, Adding Application Roles to a Role
1. Choose a role and click Add. The Add Principal dialog is displayed.

2. Choose a Type (application role, group, or user), enter a string to match principal
names, and click the search button. The result of the search is displayed in the
Searched Principals table. Choose one or more principals from that table.

3. Choose one or more principals to which you want to add the role.

4. Click OK to return to the Create Application Role page. The new application role
is displayed in the Members table.

Task 5, Creating an Application Role Like Another One
1. Choose a role.

2. Click Create Like. The Create Application Role Like page is displayed and some
entries are filled in with data extracted from the role you chose.

3. Modify the list of roles and users, as appropriate, and then click OK.

To understand how permissions are inherited in the role hierarchy, see Permission
Inheritance and the Role Hierarchy.

10.3.3 Managing System Policies

Follow the instructions in this section to manage system policies withFusion
Middleware Control.

s Task 1, Opening the System Policies Page
» Task 2, Searching System Policies,
» Task 3, Creating a System Policy

Task 1, Opening the System Policies Page

Log in to Fusion Middleware Control and go to Domain, then to Security, and then to
System Policies. The System Policies page is displayed. The Policy Store Provider
area is read-only and displays the provider currently used in the domain.

Task 2, Searching System Policies

In the Search area, choose a type, enter a string to match, and click the search button.
The results of the search are displayed in the table at the bottom of the page.

10-4 Securing Applications with Oracle Platform Security Services

Managing Policies with WLST

Task 3, Creating a System Policy
1. Click Create. The Create System Grant page is displayed.

2. Choose type of policy to create: Principal or Codebase. The steps that follow
assume you chose Principal.

3. Toadd permissions, click the Add button. The Add Permission dialog is
displayed. Choose a permission to add to the policy being created.

= Use the Search area to query permissions matching a type, principal name, or
permission name. The result of the search is display in the table in the Search
area.

s Choose a permission to add. Details are rendered in the read-only Customize
area.

» Click OK to return to the Create System Grant page. The permission is
displayed in the Permissions table.

4. Click OK to return to the System Policies page.

5. The table in the Permissions for Codebase area is read-only and it displays the
resource name, actions, and permission class associated with the new system

policy.

10.4 Managing Policies with WLST

An online WLST command is a command that requires a connection to a running
server. Unless otherwise stated, commands listed in this section are online commands
and operate on the security store, regardless of its type. There are a few commands
that are offline which do not require a running server to operate.

Read-only commands can be performed only by users in the following WebLogic
Server groups: Monitor, Operator, Configurator, or Admin. Read/write commands
can be performed only by users in the following WebLogic Server groups: Admin or
Configurator. All commands are available with the installation of Oracle WebLogic
Server.

You can run WSLT commands in interactive or in script mode. In interactive mode,
you enter the command at a command-line prompt. In script mode, you write the
commands in a text file and run the script, much like the directives in a shell script.

All class names specified in commands must be fully qualified path names.
OPSS provides the following commands to administer application policies:
» listAppStripes

s listCodeSourcePermissions

= createAppRole

= deleteAppRole

= grantAppRole

= revokeAppRole

= listAppRoles

s listAppRolesMembers

= grantPermission

s revokePermission

Managing Policies 10-5

Managing Policies with WLST

» listPermissions

s deleteAppPolicies

» createResourceType

= getResourceType

s deleteResourceType

m createResource

» deleteResource

= listResources

» listResourceActions

= createEntitlement

= getEntitlement

» deleteEntitlement

» addResourceToEntitlement
» revokeResourceFromEntitlement
= listEntitlements

= grantEntitlement

= revokeEntitlement

s listResourceTypes

= reassociateSecurityStore

= migrateSecurityStore. see Migrating the Security Store with migrateSecurityStore

See also:

Security Practices with WLST

Principals and Roles in WLST Commands
Application Stripe in WLST Commands

10.4.1 reassociateSecurityStore

The reassociateSecurityStore WLST command migrates the security store from a
source to a target store and resets service configurations in the jps-config.xml and
jps-config-jse.xml files to the target repository. This command is supported in only
the interactive mode.

The source store can be a file, LDAP, or DB security store. The target store can be a new
store or an existing store in some other domain (see optional join argument below).
When the target is a store in some other domain, you specify whether to append the
source data to the target store (see optional migrate argument below).

The version of the source store must be equal to or greater than the version of the
target store. If the version of the source is later than the version of the target, then the
command runs a compatibility check between the source and the target security data.
If the check fails on some artifacts, then the command allows skipping the migration of
incompatible artifacts by setting the skip argument to true. If this argument is not
true and incompatible artifacts are detected, then the command terminates.

10-6 Securing Applications with Oracle Platform Security Services

Managing Policies with WLST

The command resets the bootstrap credentials (see admin and password arguments
below). For an alternate way to reset bootstrap credentials, see the
modifyBootStrapCredential and addBootStrapCredential commands.

Command Syntax

The command syntax varies according to the type of the target store. When the target
is an LDAP store, use the following syntax (arguments are displayed in separate lines
for clarity only):

reassociateSecurityStore (domain="domainName",
servertype="0ID",
ldapurl="hostAndPort",
jpsroot="cnSpecification",
admin="cnSpecification",
password="passWord",
[join="trueOrfalse"] [,keyFilePath="dirLoc", keyFilePassword="password"]]
[migrate="trueOrfalse"]
[skip="trueOrfalse"])

When the target is a DB security store, use the following syntax (arguments are
displayed in separate lines for clarity only):

reassociateSecurityStore (domain="domainName",
servertype="DB_ORACLE",
datasourcename="datasourceName",
jpsroot="jpsRoot",
jdbcurl="3jdbcURL",
jdbcdriver="jdbcDriverClass",
dbUser="dbUserName",
dbPassword="dbPassword",
[admin="adminAccnt", password="passWord",]
[,join="trueOrfalse"
[,keyFilePath="dirLoc", keyFilePassword="password"]
[,migrate="trueOrfalse" [,skip="trueOrfalse"]]])
[odbcdsn="odbcDsnSting"]
[migrate="trueOrfalse"]
[skip="trueOrfalse"])

The main points regarding the use of the join, migrate, and skip arguments are next

summarized:

s Themigrate argument is relevant only when join is true. Otherwise it is ignored.
Therefore, if migration is desired, then set both join and migrate to true.

» The keyFilePath and keyFilePassword arguments are required when join and
migrate are both true.

= When the join and migrate arguments are both true, then if skip is true, then the
migration of incompatible artifacts with the target store is skipped. If skip is
false, then the command terminates when it finds any incompatible artifacts.
Skipping is supported for generic credentials only.

The argument descriptions are:
= domain: specifies the name of the domain where the target store is located.

= adminin case of an LDAP target, specifies the administrator’s user name on the
target server. Use the format: cn=usrName.

In case of a DB security store, it is required only when the database has a data
source protected with user and password. In this case, this argument specifies the
user name that was set to protect the data source when the data source was

Managing Policies 10-7

Managing Policies with WLST

created. That user and password must be present in the bootstrap credential store.
If specified, then password must also be specified.

= password specifies the password associated with the user specified in admin. It is
required in case of an LDAP target.

In case of a DB security store, it is required only when the database has a protected
data source. In this case, it specifies the password associated with the user
specified in admin. If specified, then admin must also be specified.

» ldapurl specifies the URI of the LDAP server. Use the format 1dap//host:port, if
you are using the default port, or 1daps://host :port, if you are using an
anonymous Secure Sockets Layer (SSL) or one-way SSL. The secure port must be
configured to handle the desired SSL connection mode, and must be distinct from
the default (nonsecure) port.

= servertype specifies the kind of the target store. Valid types are 0ID, DB_ORACLE.

= jpsroot specifies the root node in the target LDAP repository under which all data
is migrated. The format is cn=nodeName.

= join specifies whether the target store is a store in some other domain. Optional.
Set to true to share a target store in some other domain. Set to false otherwise. If
unspecified, it defaults to false. The use of this argument allows multiple
WebLogic Server domains to point to the same security store, but note that:

- Joining to a security store is supported only when you create a new domain.
- Merging two distinct security stores in two domains is not supported.

- If joinis true, then you must export the OPSS encryption keys from one
domain and import them into the other domain.

Note: To export and import encryption keys use the following
procedure. For an alternate procedure, see keyFilePath argument.

Assume that Domainl has a security store and Domain2 has
reassociated to Domain1's security store with join set to true. Then:

1. Use the exportEncryptionkey WLST command to extract the key from
Domain1 into the ewallet.pl2 file. The value of the keyFilePassword
argument passed must be used later when you import that key into the
second domain.

2. Use the importEncryptionKey WLST command to import the extracted
ewallet.pl2 file into Domain2. The value of the keyFilePassword
argument must be identical to the one used when the ewallet.pl2 file
was generated.

3. Restart Domain2’s server.

For information about the export and import commands, see
exportEncrytionKey and importEncryptionKey in WLST Command
Reference for Infrastructure Security.

= migrateis meaningful only if join is true, otherwise ignored. Specifies whether
the data in the source store should be appended to the joined store. Set to true to
append source data to the target store. Set to false to join to the target store
without any appending source data. Optional. If unspecified, then it defaults to
false.

10-8 Securing Applications with Oracle Platform Security Services

Managing Policies with WLST

s skipis meaningful only if both join and migrate are true, otherwise it is ignored.
Specifies whether to skip the migration of incompatible artifacts. Set to true to
skip appending incompatible artifacts to the target store and not to terminate the
command. Set to false to terminate the command upon encountering an
incompatible artifact in the source store. Optional. If unspecified, it defaults to
false.

s datasourcename specifies the Java Naming and Directory Interface (JNDI) name of
the Java Database Connectivity (JDBC) data source. The value should be identical
to the value of the JNDI name data source entered when the data source was
created.

» keyFilePath specifies the directory where the ewallet.pl2 file for the target
domain is located. The content of this file is encrypted and secured by the value
passed to keyFilePassword. It is required only if join is true.

If join is true, then the encryption keys must be exported from one domain and
imported in the other. These tasks are carried out automatically when you use the
keyFilePath and keyFilePassword arguments.

Assume that Domain1 has a security store and Domain2 reassociates to Domain1
security store with join set to true and key file arguments. Then first run the
reassociateSecurityStore WLST command with the appropriate argument
values, and then restart Domain2’s server. For an alternate procedure to export
and import encryption keys, see Note in the description of join argument.

= keyFilePassword specifies the password to secure the ewallet.pl2 file. Required
only if joinis true.

= jdbcurl specifies the JDBC URL used by a Java SE application to connect to the
database. Applies only to Java SE applications. Required. Must be used with the
jdbcdriver, dbUser, and dbPassword. arguments.

s jdbcdriver specifies the class of the JDBC driver used to connect to the database.
Required. Must be used with the jdbcurl argument.

= dbUser specifies the database user (in the credential store) to add to the bootstrap
credentials. Required. Must be used with the jdbcurl argument.

= dbPassword specifies the password of the user specified by dbUser. Required. Must
be used with the jdbcurl argument.

= odbcdsn specifies the Open Database Connectivity (ODBC) data source name used
by the C Credential Store Framework API. Applies only to C programs.

Reassociation Examples
The following example illustrates how to reassociate to a DB security store:

reassociateSecurityStore(domain="targetDomain", servertype="DB_ORACLE",
jpsroot="cn=jpsroot", datasourcename="jdbc/opssds",
jdbcurl="jdbc:oracle:thin:@myhost.oracle.com:5555:testdb",
dbUser="test_opss", dbPassword="mypass",
jdbcdriver="oracle.jdbc.xa.client.OracleXADataSource")

To share the security store in otherDomain without migrating the contents of the source
security store:

reassociateSecurityStore (domain="otherDomain", servertype="DB_ORACLE",
jpsroot="cn=jpsroot", datasourcename="jdbc/opssds",
jdbcurl="jdbc:oracle:thin:@myhost.oracle.com:5555:testdb",dbUser="test_opss",
dbPassword="mypass", jdbcdriver="oracle.jdbc.xa.client.OracleXADataSource",
join="true", keyFilePath="/tmp/myFileDirectory", keyFilePassword="password")

Managing Policies 10-9

Refreshing the Policy Cache

To share the security store in otherDomain and to migrate the contents of the source
security store to the target DB security store skipping over incompatible artifacts:

reassociateSecurityStore (domain="otherDomain", servertype="DB_ORACLE",
jpsroot="cn=jpsroot", datasourcename="jdbc/opssds",
jdbcurl="jdbc:oracle:thin:@myhost.oracle.com:5555:testdb",dbUser="test_opss",
dbPassword="mypass", jdbcdriver="oracle.jdbc.xa.client.OracleXADataSource",
join="true", migrate="true", skip="true",

keyFilePath="/tmp/myFileDirectory", keyFilePassword="password")

10.5 Refreshing the Policy Cache

This topic applies to LDAP and DB security stores only. In case of a file store, the cache
is updated after a few seconds.

OPSS optimizes the authorization process by caching security artifacts. When a
security artifact is modified, the change becomes effective at different times depending
on where the tool used to modified the artifact and the application are running;:

= If both the application and the tool are running on the same host and in the same
domain, then the change becomes effective immediately.

» Otherwise, if the application and the tool are running on different hosts or in
different domains, then the change becomes effective after the store cache is
refreshed. The frequency of the cache refresh is determined by the value of the
oracle.security.jps.ldap.policystore.refresh.interval property. The
default value is 10 minutes.

Within a domain, any changes introduced with WLST or Fusion Middleware
Control are first accounted on the Administration Server only. Those changes are
pushed to all Managed Servers in the domain only when the server is restarted.

10.5.1 Authorization Scenarios Using Policy Refreshing

The following use case illustrates the authorization behavior in scenarios when (from a
different domain or host) OES is used to modify security data, and the property
oracle.security.jps.ldap.policystore.refresh.interval is set to 10 minutes.

This case assumes that:
= A user is member of an enterprise role.
= That enterprise role is included as a member of an application role.

= The application role is granted a permission that governs some application
functionality.

Consider a scenario where:
1. A user logs in to the application.
2. The user accesses the functionality secured by the application role.

3. From another host (or domain), the enterprise role is removed from the application
role.

Then consider the following actions and outcomes:

» The user logs out from the application, and immediately logs back in. The user can
still access the functionality secured by the application role, because the policy
cache has not yet been refreshed with the change introduced in step 3.

10-10 Securing Applications with Oracle Platform Security Services

Application Stripe in WLST Commands

» The user logs out from the application, and logs back in after 10 minutes. The user
is not able to access the functionality secured by the application role, because the
policy cache has been refreshed with the change introduced in step 3.

s The user does not log out and remains able to access the functionality secured by
the application role for 10 minutes, because the policy cache has not yet been
refreshed with the change introduced in step 3.

s The user does not log out, waits more than 10 minutes, and then attempts to access
the functionality secured by the application role: the access is denied, because the
policy cache has been refreshed with the change introduced in step 3.

10.6 Principals and Roles in WLST Commands

Several commands require that you specify the principal name and class for a role
involved in the operation, such as the following which adds a principal to the
myAppRole role in the myApp application stripe:

grantAppRole.py -appStripe myApp
-appRoleName myAppRole
-principalClass myPrincipalClass
-principalName myPrincipal

When the principal refers to the authenticated role or the anonymous role, the
principal names and principal classes are fixed and must be one of the following
name-class pairs:

s Authenticated role
— authenticated-role
— oracle.security.jps.internal.core.principals.JpsAuthenticatedRoleImpl
= Anonymous role
— anonymous-role
— oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl
The following WLST commands require principal name and class specification:
m grantAppRole
m revokeAppRole
m grantPermission
m revokePermission

m listPermissions

10.7 Application Stripe in WLST Commands

Several commands require that you specify an application stripe. If the application
does not have a version, then the application stripe defaults to the application name.
Otherwise, if the application has a version, then the application name and the
application stripe are not identical.

For example, the name of the myApp application with version 1 is myApp (v1.0), but the
application stripe name is myApp#v1.0. More generally, an application with name
appName (vers) gets assigned the application stripe appName#vers. Pass a string with
this last pattern as the application stripe name:

>listAppRoles myApp#vl.0

Managing Policies 10-11

Managing Application Policies with OES

The following WLST commands require stripe specification:
m createAppRole

m deleteAppRole

m grantAppRole

m revokeAppRole

m listAppRoles

s listAppRoleMembers

m grantPermission

m revokePermission

m listPermissions

s deleteAppPolicies

10.8 Managing Application Policies with OES

OES allows you to manage and search application policies and other security data in a
WebLogic Server domain.

For information about managing policies with OES, see the following topics in
Administering Oracle Entitlements Server:

= Querying Security Objects
= Managing Policies and Policy Objects

10-12 Securing Applications with Oracle Platform Security Services

11

Managing Credentials

OPSS includes the Credential Store Framework, a collection of interfaces that you use
to create, read, update, and manage credentials in your applications. Credentials are
kept in the credential store, and the framework supports credential encryption.

This chapter includes the following sections:

» Credential Types

» Encrypting Credentials

» Managing Credentials with Fusion Middleware Control

» Managing Credentials with WLST

11.1 Credential Types

A credential can hold user names, passwords, and tickets, and credentials can be
encrypted. Credentials are used during authentication, when principals are populated
in subjects, and, further, during authorization, when determining what actions the
subject can perform.

OPSS supports the following types of credentials according to the data they contain:
» A password credential encapsulates a user name and a password.

= A generic credential encapsulates any customized data or arbitrary token, such as a
symmetric key.

A credential is uniquely identified by a map name and a key name. A map can hold
several keys and the map name corresponds with the name of an application. All
credentials with the same map name define a group of credentials, such as the
credentials used by an application. The pair of map and key names must be unique for
all entries in the credential store.

A password can have any number of characters, but they cannot be empty nor null.

By default, the credential store is an Oracle wallet and it can store X.509 certificates.

11.2 Encrypting Credentials

OPSS supports storing encrypted data in file and LDAP credential stores. OPSS uses
an encryption key to encrypt and decrypt data when it is read from or written to the
credential store. This key is unique and has domain scope. To enable the encryption of
credentials in a file or LDAP store, set the following property in the credential store
instance of the jps-config.xml file:

<property name="encrypt" value="true" />

Managing Credentials 11-1

Encrypting Credentials

In case of DB credential stores, data is always encrypted using a client-side key.
The Domain Encryption Key

When you set the encrypt property to true, OPSS uses an encryption key to encrypt
new credentials entered in the credential store. This encryption key is a 128-bit
Advanced Encryption Standard (AES) key randomly generated when the domain is
started for the very first time and is valid for the entire domain. Eventually, the
domain encryption key may require being rolled over periodically. Rolling over a key
generates a new key and archives the previous one. Archived keys are used to decrypt
old data, and the new key is used to encrypt and decrypt new data.

When a new domain encryption key is generated, the credential store data is not
encrypted immediately with the new key. Instead, data is encrypted (with the new
key) only when it is written. This means that to get all data to use the same encryption
key, all credentials must be read and written.

Domains Sharing a Credential Store

If two or more domains share a credential store and encryption is enabled in that store,
then each of those domains must use the same encryption key. To facilitate this, OPSS
provides offline scripts to export, import, and restore keys in the cwallet.sso
bootstrap file so that an encryption key generated in one domain can be carried over to
all other domains sharing the credential store.

The following scenarios illustrate how to set encryption key in a cluster of two
domains, Domainl and Domain2. (In case of more than two domains, treat each
additional domain as Domain2).

Note: The following scenarios assume an LDAP credential store but
the use of the importEncryptionKey and exportEncryptionKey
commands to import and export keys across domains applies also to
DB credential stores (in which data is always encrypted).

First Scenario

Assume that Domain1 has reassociated to an LDAP credential store, and Domain2 has
not yet joined to that store. Then, to enable credential encryption on that store:

1. Set the encrypt property to true in Domainl’s jps-config.xml file and restart the
domain.

2. Use the exportEncryptionKey WebLogic Scripting Tool (WLST) command to
extract the key from Domain1 into the ewallet.pl2 file. Note that the value of
keyFilePassword passed to the command must be used later when you import
that key into another domain.

3. Set the encrypt property to true in Domain2’s jps-config.xml file.

At this point, complete the procedure in one of two ways. Both of them use the
reassociateSecurityStore WLST command but with different syntaxes.

The first approach:

1. Use the reassociateSecurityStore WLST command to reassociate Domain2’s
credential store to that used by Domainl. Use the join argument and do not use the
keyFilePassword and keyFilePath arguments.

11-2 Securing Applications with Oracle Platform Security Services

Managing Credentials with Fusion Middleware Control

3.

Use the importEncryptionKey WLST command to import the extracted
ewallet.pl2 file into Domain2. Note that the value of keyFilePassword must be
identical to the one used when the ewallet.pl2 file was generated.

Restart Domain2’s server.

The second approach:

1.

2.

Use the reassociateSecurityStore WLST command to reassociate Domain2’s
credential store to that used by Domainl. Use the join, keyFilePassword, and
keyFilePath arguments.

Restart Domain2’s server.

Second Scenario

Assume that Domain1 has reassociated to an LDAP credential store and Domain2 has
already joined to that store. Then, to enable credential encryption on that store:

1.

Set the encrypt property to true in Domainl’s jps-config.xml file and restart the
domain.

Use the exportEncryptionKey WLST command to extract the key from Domainl
into the ewallet.pl2 file. Note that the value of keyFilePassword passed to the
command must be used later when you import that key into another domain.

Set the property encrypt to true in Domain2’s jps-config.xml file.

Use the importEncryptionkKey WLST command to write the extracted
ewallet.pl2 file into Domain2. Note that the value of keyFilePassword must be
identical to the one used when the file ewallet.pl2 was generated.

Restart Domain2’s server.

Note: In case of multiple domains sharing a credential store in which
encryption has been enabled, every time a roll-over key is generated
in one of those domains, you must import that key to each of the other
domains in the cluster with the exportEncryptionKey and
importEncryptionkey commands.

See also:
Managing Credentials with WLST
reassociateSecurityStore

exportEncrytionKey and importEncryptionKey in WLST Command
Reference for Infrastructure Security

11.3 Managing Credentials with Fusion Middleware Control

Follow the instructions in this section to manage credentials with Oracle Enterprise
Manager Fusion Middleware Control (Fusion Middleware Control).

Task 1, Opening the Credentials Page
Task 2, Searching Credentials

Task 3, Creating a Credential Map

Task 4, Adding a Key to a Credential Map
Task 5, Editing a Key

Managing Credentials 11-3

Managing Credentials with WLST

Task 1, Opening the Credentials Page

Log in to Fusion Middleware Control and go to Domain, then to Security, and then to
Credentials. The Credentials page is displayed. The Policy Store Provider area is
read-only and displays the provider currently used in the domain.

Task 2, Searching Credentials

To display credentials matching a given key name, enter the string to match in the
Credential Key Name text field, and then click the search button. The result of the
search is displayed in the table at the bottom of the page.

Task 3, Creating a Credential Map
1. Click Create Map. The Create Map dialog is displayed.

2. Enter the name of the map for the new credential.

3. Click OK to return to the Credentials page. The new credential map name is
displayed in the table.

Task 4, Adding a Key to a Credential Map
1. Click Create Key. The Create Key dialog is displayed.

2. In the Select Map menu, choose a map, enter a key in the text Key text field, and
choose a type (Password or Generic) from the pull-down menu Type.

» For a Password key, enter the fields Key, User Name, Password, Confirm
Passwords.

» For a Generic key, enter the required field Key and the credential information
either as text (choose the Enter as Text radio button), or as a list of key-value
pairs (choose the Enter Map of Property Name and Value Pairs radio button).
To add a key-value pair, click Add Row, and then enter the Property Name,
Value, and Confirm Value in the added arrow.

3. Click OK to return to the Credentials page. The new key is displayed under the
map you chose.

Task 5, Editing a Key
1. Choose a key.

2. Click Edit. The Edit Key dialog is displayed.

3. Modify the data as appropriate. In case of editing a generic key, use the red X next
to a row to delete the corresponding property-value pair.

4. Click OK to save your changes and return to the Credentials page.

11.4 Managing Credentials with WLST

Executing an online command requires a connection to a running server. Unless
otherwise stated, the commands listed in this section are online and operate on a
security store.

Read-only scripts can be performed only by users in the following WebLogic Server
groups: Monitor, Operator, Configurator, or Admin. Read /write scripts can be
performed only by users in the following WebLogic Server groups: Admin or
Configurator. All WLST commands are available with the installation of Oracle
WebLogic Server.

11-4 Securing Applications with Oracle Platform Security Services

Managing Credentials with WLST

You can run WSLT commands in interactive or in script mode. In interactive mode,
you enter the command at a command-line prompt. In script mode, you write the
commands in a text file and run the script, much like the directives in a shell script.

OPSS provides the following commands to administer application credentials:
= updateCred

s createCred

s deleteCred

= modifyBootStrapCredential

= addBootStrapCredential

= exportEncryptionKey

= importEncryptionKey

= restoreEncryptionKey

s rollOverEncryptionKey

See also:
Security Practices with WLST
Managing Policies with WLST

Managing Credentials 11-5

Managing Credentials with WLST

11-6 Securing Applications with Oracle Platform Security Services

12

Managing Keys and Certificates

The keystore service allows you to manage and administer keys and certificates for
Secure Sockets Layer (SSL), message security, encryption, and other tasks that require
special certificates.

This chapter includes the following topics:

About the Keystore Service

About Keystore Service Commands

Managing Keystores with Fusion Middleware Control
Managing Keystores with WLST

About Certificates

Managing Certificates with Fusion Middleware Control
Managing Certificates with WLST

Replacing Demonstration CA Signed Certificates

How Fusion Middleware Components Use the Keystore Service

12.1 About the Keystore Service

The Keystore Service allows you to manage keys and certificates for SSL, message
security, encryption, and other tasks that require a key or a certificate. Typical keystore
management tasks include the following:

Creating a keystore in the context of an application stripe, directly or by importing
a keystore file from the file system.

Viewing the list of keystores and choosing some for updating.
Updating and deleting keystores.
Changing the keystore password.

Exporting and importing keystores.

The following topics introduce Keystore Service concepts:

Structure of the Keystore Service
Types of Keystores

The Truststore

Managing Keys and Certificates 12-1

About the Keystore Service

12.1.1 Structure of the Keystore Service

A keystore is uniquely identified by an application stripe and a keystore within that
stripe. Keys and certificates are created in keystores within stripes. Stripe names must
be unique in the security store, and keystore names within a stripe must be unique in
the stripe. For example, (stripel, keystored), (stripel,keystoreB),

and (stripe2, keystorea)refer to three distinct keystores.

Applications can create more than one keystore within the application stripe.

A keystore can contain the following entries, referenced by a unique alias within the
keystore:

= Asymmetric Keys, including public keys and private keys that are used with SSL.
Public keys are wrapped within a certificate.

= Symmetric Keys, generally used for encryption.

» Trusted Certificates, used to establish trust with an SSL peer.

12.1.2 Types of Keystores

The Keystore Service allows you to create two types of keystores:
= Keystores protected by a policy

These keystores are protected by policies and any access to them by runtime code
is protected by codesource policies. The key data is encrypted with the domain
encryption key.

= Keystores protected by password

These keystores are protected by keystore and/or key passwords. Any access to
them by runtime code requires access to the keystore and key password (if
different from the keystore password). The key data is encrypted with the
keystore/key password with password-based encryption.

Oracle recommends that you use password-protected keystores. However, if your
application requires a high security level, then consider using a keystore protected by
a codesource policy. You can export, import, and restore keys to a wallet.

In domains with multiple servers, the only supported store types are LDAP or DB. Do
not use the keystore service to manage passwords or keys. Instead, use the credential
store for your application.

12.1.3 The Truststore

The truststore is a keystore that contains trusted certificates of most well-known
third-party certificate authorities and a trusted certificate from the demonstration
certification authority (CA), which is configured with the Keystore Service. If your
application uses SSL, for example, it can point to the truststore for certificates, and you
do not need a dedicated keystore to store them.

12-2 Securing Applications with Oracle Platform Security Services

About Keystore Service Commands

Caution: The demonstration CA includes a hard-coded private key.
Oracle recommends that you neither use nor trust the demonstration
CA certificates in production environments. For more information
about replacing the demo CA certificates, see the following topics:

= Replacing Demo CA Certificates With Domain CA Signed
Certificates

= Replacing Demo CA Certificates With Third-Party CA Signed
Certificates

= Replacing the Demo CA Trust Service Certificate

The truststore is shared by all products and applications in a domain. The decision to
add or remove trust for a product may affect other products in the domain. Consider
creating a custom truststore only if your product's trust management requirements are
not met by the truststore.

A truststore is preconfigured for all products and applications to use, and applications
can configure multiple keystores, according to their needs.

One-Way SSL,

For one-way SSL, applications can use the truststore and you do not need to create a
specific keystore.

Two-Way SSL

For two-way SSL, applications create a keystore to keep just their identity certificate
and use the truststore for other certificates.

12.2 About Keystore Service Commands

The Keystore Service uses a dedicated set of commands for keystore operations such
as creating and managing keystores, exporting certificates, and generating key pairs.
While their usage is similar, these commands are distinct from other OPSS commands.

The starting point to all these commands is the getOpssService command, which gets
an OPSS service command object that lets you:

s Execute commands for the service
= Obtain command help
The command syntax is:

variable = getOpssService (name='service name')

In this command:
m variable stores the command object.

» service_name refers to the service whose command object is to be obtained. The
only valid value is 'KeyStoreService'.

For example:

svc = getOpssService (name='KeyStoreService')

Managing Keys and Certificates 12-3

Managing Keystores with Fusion Middleware Control

12.2.1 Getting Help for Keystore Service Commands

To obtain help for any Keystore Service command, start by obtaining a service
command object. Then use this object in conjunction with the help command and the
command in question.

To obtain the service command object and the list of all Keystore Service commands,
enter:

svc = getOpssService (name='KeyStoreService')
svc.help()

To obtain help for a specific command, enter:

svc.help (' command-name")

For example, the following returns help for the exportKeyStore command:

svc.help ('exportKeyStore')

12.2.2 Keystore Service Command Reference

For syntax and reference information about the Keystore Service commands, see OPSS
Keystore Service Commands in the WLST Command Reference for Infrastructure Security.

12.3 Managing Keystores with Fusion Middleware Control

Use the following tasks to manage keystores with Oracle Enterprise Manager Fusion
Middleware Control.

s Task 1, Opening the Keystore Page

s Task 2, Creating a Keystore

» Task 3, Deleting a Keystore

» Task 4, Changing a Keystore Password

Task 1, Opening the Keystore Page

Log in to Fusion Middleware Control and go to Domain, then to Security, and then
to Keystore. The Keystore page is displayed.

Task 2, Creating a Keystore
1. Choose the stripe in which to create the keystore. If necessary, then create a stripe.

2. Click Create Keystore. The Create Keystore dialog is displayed.
3. In this dialog, enter the following data:
s Keystore Name: a unique name.

= Protection Type: the protection mechanism for the keystore. Choose Policy or
Password. For a password-protected keystore, provide a valid password.

= Grant Permission: check this box to grant permissions to code URL.

4. Click OK. The new keystore is displayed under the stripe you chose.

Task 3, Deleting a Keystore
When you delete a keystore, note that all certificates in it are also deleted.

1. Expand the stripe in which the keystore resides, and choose a row.

12-4 Securing Applications with Oracle Platform Security Services

Managing Keystores with WLST

2. (Click Delete. The Delete Keystore dialog is displayed.
3. If this is a password-protected keystore, then enter the password.

4. Click OK.

Task 4, Changing a Keystore Password
This task applies to password-protected keystores only.

1. Expand the stripe in which the keystore resides. Choose the row corresponding to
the keystore.

2. Click Change Password. The Change Keystore Password dialog is displayed.
3. Enter the old and new passwords.

4. Click OK.

12.4 Managing Keystores with WLST

Use the following tasks to manage keystores with WebLogic Scripting Tool (WLST).
» Task 1, Creating a Keystore

» Task 2, Deleting a Keystore

s Task 3, Changing a Keystore Password

» Task 4, Exporting a Keystore

» Task 5, Importing a Keystore

Task 1, Creating a Keystore
Use the createkeyStore WLST command. For example, assuming the stripe name is
teststripel, create a permission-based keystore:

svc.createKeyStore (appStripe='teststripel', name='keystorel',
password="'mypassword', permission=true)

where mypassword is the password for keystorel. Any combination of characters is
allowed for a new stripe name, but it is recommended that you do not use the forward
slash (/) in it. The keystore name must unique.

Task 2, Deleting a Keystore

Use the deleteKeyStore WLST command. For example, assuming the stripe is
appstripel, delete keystorel:

svc.deleteKeyStore (appStripe="'appstripel', name='keystorel',
password="'mypassword')

where mypassword is the password for keystorel.

Task 3, Changing a Keystore Password

Use the changeKeyStorePassword WLST command. For example, assuming the stripe
name is system, change the password of keystore2:

svc.changeKeyStorePassword (appStripe="'system', name='keystore2',
currentpassword="'currentpassword', newpassword='newpassword')

where currentpassword and newpassword are the old and new passwords.

Managing Keys and Certificates 12-5

About Certificates

Task 4, Exporting a Keystore
Use the exportKeyStore WLST command.

To export a singe key to a file:

svc.exportKeyStore (appStripe='mystripe', name='keystorel',
password="'mypassword',aliases='myorakey', keypasswords='keypasswordl',
type='JKS', filepath="'/tmp/file.jks")

To export multiple keys to a file, specify a comma-separated list of aliases and key
passwords.
To export a symmetric key:

svc.exportKeyStore (appStripe='mystripe', name='keystorel',
password="'password',aliases='myorakey', keypasswords='keypasswordl',
type='JCEKS', filepath="'/tmp/file.jks")

To export to a wallet, use the OracleWallet type:

svc.exportKeyStore (appStripe='mystripe', name='keystore3',
password="'mypassword',aliases='myorakeyl,myorakey2', keypasswords='",
type='OracleWallet',6 filepath="'/tmp"')

Task 5, Importing a Keystore
Use the importKeyStore WLST command.

To import a single key, such as myOrakey:

svc.importKeyStore (appStripe='mystripe', name='keystorel',
password="'password',aliases="myOrakey', keypasswords='keypasswordl',6 type='JKS',
permission=true, filepath='/tmp/file.jks"')

To import multiple keys, specify a comma-separated list of aliases and key passwords.
To import keys from a wallet, use the OracleWallet type:

svc.importKeyStore (appStripe='mystripe', name='keystored',
password="'owPwdl234',aliases="'myorakeyl,myorakey2', keypasswords='",
type='OracleWallet', permission=true, filepath='/tmp"')

12.5 About Certificates

The Keystore Service (KSS) keystore supports the Java Keystore (JKS), Java
Cryptography Extension Keystore (JCEKS), and Oracle wallet certificate formats.
Typical certificate management tasks include the following:

» Creating a certificate for a key pair.

= Generating a Certificate Signing Request (CSR) for the certificate and saving it to a
file.

= Sending the CSR to a certificate authority who verifies the sender, and signs and
returns the certificate.

= Importing user and trusted certificates into the keystore, by either pasting it into a
text field or importing it from the file system.

Note: Keystore Service supports importing PEM /BASE64-encoded
certificates only. You cannot import DER-encoded certificates or
trusted certificates into a keystore.

12-6 Securing Applications with Oracle Platform Security Services

Managing Certificates with Fusion Middleware Control

Exporting certificates or trusted certificates from the keystore to a file.

Deleting certificates or trusted certificates from the keystore.

The following points regarding public CA certificates apply to domains upgraded to
12.2.1 and to new 12.2.1 Java Required Files (JRF) domains:

Well-known public CA certificates are no longer available in the trust keystore in
the system stripe.

Use instead the publiccacerts keystore in the system stripe, which has been
previously seeded with well-known public CA certificates from the Java SE
Development Kit (JDK) cacerts file. Alternatively, import your own certificates as
needed.

The merge.jdkcacerts.with. trust property specifies whether to return public
CA certificates in the kss: //system/ubliccacerts keystore when you query the
kss://system/trust keystore. Set to true, to have all publicacerts certificates
returned with the query. Do not set or set to false, to have no publicacerts
certificates returned with the query.

See also:

Trust Service Properties

12.6 Managing Certificates with Fusion Middleware Control

Use the following tasks to manage keystores with Fusion Middleware Control.

Task 1, Generating a Key Pair

Task 2, Generating a CSR for a Certificate
Task 3, Importing a Certificate

Task 4, Exporting a Certificate

Task 5, Changing a Certificate Password
Task 6, Deleting a Certificate

Task 1, Generating a Key Pair

1.

Log in to Fusion Middleware Control and go to Domain, then to Security, and
then to Keystore. The Keystore page is displayed.

Expand the stripe in which the keystore resides. Choose the row corresponding to
the keystore, and click Manage.

If the keystore is password-protected, then enter the keystore password and click
OK. The Manage Certificates page is displayed.

Click Generate Keypair. The Generate Keypair dialog is displayed.
In this dialog, enter the following data:

= Alias (required)

s Common Name (required)

s Organizational Unit

s Organization

n City

= State

Managing Keys and Certificates 12-7

Managing Certificates with Fusion Middleware Control

s Country: Choose one from the drop-down list.

s Key Type: Choose an algorithm from the drop-down list. The choices are
Elliptic Curve Cryptography (ECC) or RSA.

= Key Size: Choose a key size.
6. Click OK. The new certificate is displayed in the certificate list.
7. View the certificate details by clicking on the certificate alias.

The key pair is wrapped in a demonstration CA signed certificate and stored in the
truststore. To use this certificate for SSL, applications must either use the truststore or
import the demonstration CA certificate to a custom keystore.

Task 2, Generating a CSR for a Certificate

1. Login to Fusion Middleware Control and go to Domain, then to Security, and
then to Keystore. The Keystore page is displayed.

2. Expand the stripe in which the keystore resides. Choose the row corresponding to
the keystore, and click Manage.

3. If the keystore is password-protected, then enter the keystore password and click
OK. The Manage Certificates page is displayed.

4. Choose the row corresponding to the certificate and click Generate CSR. The
Generate CSR dialog appears

5. Do one of the following:
= Copy and paste the entire CSR into a text file, and click Close.
= Click Export CSR to save the CSR to a file.

Send the generated certificate to a certificate authority which will return a signed
certificate.

Task 3, Importing a Certificate

1. Login to Fusion Middleware Control and go to Domain, then to Security, and
then to Keystore. The Keystore page is displayed.

2. Expand the stripe in which the keystore resides. Choose the row corresponding to
the keystore, and click Manage.

3. If the keystore is password-protected, then enter the password and click OK. The
Manage Certificates page is displayed.

Click Import. The Import Certificate dialog is displayed.
Choose Certificate or Trusted Certificate from the drop-down.

Choose the alias from the drop-down.

N o a &

Specify the certificate source. If using the Paste option, then copy and paste the
certificate directly into the text field. If using the Select a file option, then click
Browse to choose the file from the operating system.

8. Click OK. The imported certificate or trusted certificate is displayed in the list of
certificates.

Task 4, Exporting a Certificate

1. Login to Fusion Middleware Control and go to Domain, then to Security, that
then to Keystore. The Keystore page is displayed.

12-8 Securing Applications with Oracle Platform Security Services

Managing Certificates with WLST

2. Expand the stripe in which the keystore resides. Choose the row corresponding to
the keystore, and click Manage.

3. If the keystore is password-protected, then enter the password and click OK. The
Manage Certificates page is displayed.

4. Choose the row corresponding to the certificate and click Export. The certificate
export dialog is displayed.

5. Do one of the following:
= Copy and paste the entire certificate into a text file, and click Close.

n Click Export Certificate to save the certificate to a file.

Task 5, Changing a Certificate Password

1. Login to Fusion Middleware Control and go to Domain, then to Security, and
then to Keystore. The Keystore page is displayed.

2. Expand the stripe in which the keystore resides. Choose the row corresponding to
the keystore, and click Manage.

3. If the keystore is password-protected, then enter the password and click OK. The
Manage Certificates page is displayed.

4. Choose the row corresponding to the certificate and click Change Password. The
Change Key Password dialog appears

5. Enter the old and new passwords and click OK.

Task 6, Deleting a Certificate

1. Login to Fusion Middleware Control and go to Domain, then to Security, and
then to Keystore. The Keystore page is displayed.

2. Expand the stripe in which the keystore resides. Choose the row corresponding to
the keystore, and click Manage.

3. If the keystore is password-protected, then enter the password and click OK. The
Manage Certificates page is displayed.

4. Choose the row corresponding to the certificate and click Delete. The Delete
Certificate dialog is displayed. Click OK.

12.7 Managing Certificates with WLST

Use the following tasks to manage certificates with WLST.
s Task 1, Generating a Key Pair

s Task 2, Generating a CSR for a Key Pair

s Task 3, Importing a Certificate

s Task 4, Exporting a Certificate

s Task 5, Changing a Certificate Password

s Task 6, Deleting a Certificate

Task 1, Generating a Key Pair

Use the generateKeyPair WLST command. For example, assuming an application
stripe named appstripe2, the following command creates a key pair with the myalias
alias using the ECC algorithm:

Managing Keys and Certificates 12-9

Managing Certificates with WLST

svc.generateKeyPair (appStripe='appstripe2', name='keystorel',
password="'mypassword', dn='cn=www.example.com', keysize='1024', alias='myalias',
keypassword="'keypassword', algorithm='EC’)

where mypassword is the keystore password and keypassword is the password of the
alias.

The key pair is wrapped in a demonstration CA certificate and stored in the truststore.
If your applications not using the truststore, then you must import the demonstration
CA certificate to a custom keystore.

Task 2, Generating a CSR for a Key Pair

Use the exportKeyStoreCertificateRequest WLST command. For example,
assuming an application stripe is stripel, the following command generates a CSR
from the testalias key pair:

svc.exportKeyStoreCertificateRequest (appStripe='stripel', name='keystorel',
password="'mypassword', alias='testalias', keypassword='keypassword',
filepath="'/tmp/csr-file')

where mypassword is the keystore password and keypassword is the password of the
alias. The CSR is exported to an operating system file.

Task 3, Importing a Certificate

Use the importKeyStoreCertificate WLST command. For example, assuming the
appstripel application stripe, the following command imports a certificate with mykey
alias from an operating system file:

svc. importKeyStoreCertificate (appStripe="'appstripel', name='keystore2',
password="'mypassword', alias='mykey', keypassword='keypassword',
type='Certificate', filepath='/tmp/cert.txt"')

where mypassword is the keystore password and keypassword is the password of the
alias.

Task 4, Exporting a Certificate

Use the exportKeyStoreCertificate WLST command. For example, assuming the
appstripel application stripe, the following command exports a certificate with mykey
alias to an operating system file:

svc.exportKeyStoreCertificate (appStripe="'appstripel', name='keystore2',
password="'mypassword', alias='mykey', keypassword='keypassword',
type='Certificate', filepath='/tmp/cert.txt"')

where mypassword is the keystore password and keypassword is the password of the
alias.

Task 5, Changing a Certificate Password
Use the changeKeyPassword WLST command. For example, assuming the system1
system stripe, the following command deletes a certificate with testkey alias:

svc.changeKeyPassword (appStripe='systeml', name='keystore', password='password',
alias='testkey', currentkeypassword='currentkeypassword',
newkeypassword="'newkeypassword"')

where password is the keystore password and keypassword is the password of the
certificate alias.

12-10 Securing Applications with Oracle Platform Security Services

Replacing Demonstration CA Signed Certificates

Task 6, Deleting a Certificate

Use the deleteKeyStoreEntry WLST command. For example, assuming the appstripe
application stripe, the following command deletes a certificate with orakey alias:

svc.deleteKeyStoreEntry (appStripe="'appstripe', name='keystore2',
password="'password', alias='orakey', keypassword='keypassword')

where password is the keystore password and keypassword is the password of the
alias.

12.8 Replacing Demonstration CA Signed Certificates

Oracle highly recommends that you use third-party Certificate Authority (CA) signed
certificates or domain CA signed certificates when you deploy applications to a
production environment. By default, any certificates created using the OPSS keystore
service in the domain are signed using the demonstration CA. These demonstrations
certificates should never be used in a production environment. The private key of the
demonstration certificate is available to all installations of WebLogic Server, therefore
each installation can generate a demo signed CA certificate using the same key. As a
result, you cannot trust these certificates.

A domain CA is a self-signed certificate that acts like a CA for a domain. Unlike a
demonstration CA, the private key used in a domain CA certificate is unique to each
domain, and provides more security. You can create a domain CA certificate and
replace all the demonstration CA certificates in a domain as described in Replacing
Demo CA Certificates With Domain CA Signed Certificates.

A third-party CA validates identities and issues certificates. To get the certificate, you
must create a Certificate Request and submit it to the CA. The CA will authenticate the
certificate requestor and create a digital certificate based on the request. To replace
demonstration certificates with third-party CA signed certificates, see Replacing Demo
CA Certificates With Third-Party CA Signed Certificates.

12.8.1 Replacing Demo CA Certificates With Domain CA Signed Certificates

To replace all the demonstration CA signed certificates in the domain with domain CA
signed certificates, use the following procedure:

1. Use the keytool command to create a JKS file that contains the custom CA key and
certificate. For example:

keytool -genkeypair -alias customca -keyalg RSA -keysize 2048 -dname
"cn=customca, o=oracle" -validity 3650 -keystore /tmp/file.jks -storepass
passwordl -keypass password2

2. Import the JKS file into the KSS keystore kss: //system/castore using the
svc. importKeyStore keystore service online WLST command. Before using this
command you must start WLST and connect to the server.

connect ("<wls adminuser>", "<wls admin password>","t3://<host>:<port>")
svc = getOpssService (name='KeyStoreService')

wls:/base_domain/domainRuntime/> svc.importKeyStore (appStripe='system',
name='castore', password='passwordl',

aliases='customca', keypasswords='password2', type='JKS', permission=true,
filepath="'/tmp/file.jks"')

Managing Keys and Certificates 12-11

Replacing Demonstration CA Signed Certificates

Note that the values of some parameters used in svc. ImportKeyStore WLST
command are derived from the values specified in the keytool command in the
previous step. The corresponding parameters, with the sample values used in
these commands, are shown in the following table.

Keytool Parameter svc.importKeyStore Parameter Sample Value
-alias aliases= customca
-keystore filepath= /tmp/file.jks
-storepass password= passwordl
-keypass keypasswords= password2

3. Verify that the key pair and certificate have been imported correctly into the KSS
store. The output of the command should contain an entry with the alias customca,
as shown.

wls:/base_domain/domainRuntime/> svc.listKeyStoreAliases (appStripe="'system',
name='castore', password='', type='Certificate')

Already in Domain Runtime Tree

democa
customca

4. Export the certificate from kss: //system/castore, and import it into
kss://system/trust. The value of the filepath parameter must be the same in
the export and import commands.

wls: /base_domain/domainRuntime/>
svc.exportKeyStoreCertificate (appStripe="'system', name='castore', password='",
alias='customca', type='Certificate', filepath='/tmp/cert.txt')

Already in Domain Runtime Tree

Certificate exported.

wls:/base_domain/domainRuntime/>

svc.importKeyStoreCertificate (appStripe='system', name='trust', password='",
alias='customca', keypassword='"', type='TrustedCertificate',
filepath='/tmp/cert.txt")

Already in Domain Runtime Tree

Certificate imported.

5. Verify that the certificate has been imported into the kss: //system/trust store.
The output of the command should include an alias by the name of customca, as
shown.

wls: /base_domain/domainRuntime/> svc.listKeyStoreAliases (appStripe="'system',
name='trust', password='"', type='TrustedCertificate')

Already in Domain Runtime Tree

democa
olddemoca

12-12 Securing Applications with Oracle Platform Security Services

Replacing Demonstration CA Signed Certificates

customca

Add the following property to the jps-config.xml and jps-config-jse.xml files
in DOMAIN_HOME/config/fmwconfig in the keystore service instance configured in
the default context:

<property name="ca.key.alias" value="customca"/>

To do so, follow the procedure in Configuring Services with Scripts to create the
updateServiceInstanceProperty.py script.

Execute the script as follows:

>cd $ORACLE_HOME/common/bin
>wlst.sh /tmp/updateServiceInstanceProperty.py -si keystore.db -key
ca.key.alias -value customca

Restart all the servers in the domain. The domain is now ready to function with
the new custom CA certificate. The older demoCA certificate and key still exist in
the domain, but are not used.

Renew the certificates by executing the following online WLST command:

svc.listExpiringCertificates(days='9999', autorenew=true)

12.8.2 Replacing Demo CA Certificates With Third-Party CA Signed Certificates

For each demo certificate in the domain that needs to be replaced with a third-party
CA signed certificate, do the following:

1.

Generate a CSR using the alias of the certificate that needs to be replaced. Note
that the alias must be of type "Certificate", and not "TrustedCertificate".

Submit the new CSR to a third-party Certificate Authority (CA). The CA will sign
the public key in the CSR and return a CA signed certificate and its own certificate.

Some CAs return a certificate chain containing both the CA signed certificate and
its own certificate, instead of two separate certificates.

Import the CA signed certificate (or the certificate chain) using the alias of the
certificate that is being replaced.

If the CA has provided its own certificate separately, import that CA certificate as
a trusted certificate in the trust store used by the product or application. By
default, most applications use the domain trust store kss: //system/trust for
trust.

See also:
Managing Certificates with Fusion Middleware Control

Managing Certificates with WLST

12.8.3 Replacing the Demo CA Trust Service Certificate

The OPSS trust service certificate is stored in the following keystores in the opss stripe:

trustservice_ks which is a keystore that contains the private key

trustservice_ts which is a trust store that contains the certificate

Managing Keys and Certificates 12-13

How Fusion Middleware Components Use the Keystore Service

By default, the trusted certificate is signed using the demonstration CA and has
identical copies in both the keystores listed above. To replace it with domain CA or
third party CA signed certificate, do the following;:

1. Replace the certificate in stripe opss and keystore trustservice_ks as described in
either (but not both) of the following sections:

= Replacing Demo CA Certificates With Domain CA Signed Certificates
= Replacing Demo CA Certificates With Third-Party CA Signed Certificates

2. Export the certificate from the keystore and import it into the trust store with the
stripe opss and keystore trustservice_ts using the following WLST commands:

svc.exportKeyStoreCertificate (appStripe="'opss', name='trustservice_ks',
password="'"', alias='trustservice',6 keypassword='', type='Certificate',
filepath="'/tmp/cert.txt"')

svc.deleteKeyStoreEntry (appStripe="'opss', name='trustservice_ts', password='",
alias='trustservice', keypassword='")

svc. importKeyStoreCertificate (appStripe="'opss', name='trustservice_ts',
password="'"', alias='trustservice',6 keypassword='"', type='TrustedCertificate',
filepath='/tmp/cert.txt"')

12.9 How Fusion Middleware Components Use the Keystore Service

After configuring keystores in Oracle WebLogic Server, use them to generate keys and
certificates. You can also configure Node Manager to use the Keystore Service.

See also:
Configuring SSL in Administering Security for Oracle WebLogic Server

Configure Keystores in Oracle WebLogic Server Administration Console
Online Help

Configuring Node Manager to Use the OPSS Keystore Service in
Administering Oracle Fusion Middleware

Administering Node Manager for Oracle WebLogic Server

12.9.1 Synchronizing the Local Keystore with the Security Store

All Oracle Fusion Middleware components keep keys and certificates in a central
security store. However, because certain infrastructure components must be started
before the security store is available, some components use a local file keystore
instance instead.

To synchronize the local file keystore with the central security store, use the
syncKeyStores command. Synchronization is a one-way procedure in which key data
is read from the central security store and synchronized in the local file keystore.

12.9.1.1 syncKeyStores Usage

The usage of the syncKeyStores command is:

syncKeyStores (appStripe="'system', keystoreFormat='KSS')

12-14 Securing Applications with Oracle Platform Security Services

How Fusion Middleware Components Use the Keystore Service

This command accesses the system stripe in the central security store and downloads
its contents into a file named keystores.xml in DOMAIN_HOME/config/fmwconfig on
the local system.

For more information, see syncKeyStores in WLST Command Reference for Infrastructure
Security.

12.9.1.2 When to Synchronize the Keystores

To determine when to use the syncKeyStores command to synchronize the keystores,
consider the following;:

= If the keystore being updated belongs to WebLogic Server, then the keystore
should be located under the system stripe.

= If you change the domain truststore, such as adding or removing a trusted
certificate, you need to execute syncKeyStores to synchronize the local copy used
by WebLogic Server with the central security store.

= You do not need to execute the syncKeyStores command if a layered component
such as Oracle Web Services Manager, or a Java EE application, update the
keystore. These components/applications access their keys and certificates from
the central security store directly.

Managing Keys and Certificates 12-15

How Fusion Middleware Components Use the Keystore Service

12-16 Securing Applications with Oracle Platform Security Services

13

Introduction to Oracle Fusion Middleware Audit
Framework

The Oracle Fusion Middleware Audit Framework allows you to audit application
events. Using this framework, you create events specific to your application, register
the application at deployment, and generate audit reports.

This chapter includes the following topics:

= What Are the Audit Objectives?

= Audit Terminology

= About Auditing with Oracle Fusion Middleware Audit Framework
s Understanding Audit

= About Audit Attributes, Events, and Event Categories

= About Audit Definition Files

= About Mapping and Version Rules

13.1 What Are the Audit Objectives?

The objectives of audit are to comply with regulations, to monitor business activity,
and to obtain data for risk analysis.

Compliance

To comply with regulations required in the enterprise and to allow the review of
compliance policies, customers must audit identity information and user access events
on applications and devices across the enterprise, including the following:

= User profile change
m Access rights change
s User access

= Operational activities, such as like application start and stop, upgrade, and backup
Monitoring

Audit data allows you to monitor activity, to create dashboards, and to build key
performance indicators to observe the health of the various systems in the enterprise.

Introduction to Oracle Fusion Middleware Audit Framework 13-1

Audit Terminology

Analytics

Audit data analysis can be used to assess the efficacy of controls and risks. Based on
historical data, a risk score is calculated and assigned to a user. Then, any runtime
evaluation of a user access to systems can include risk scores as additional criteria to
determine access permission.

Audit support across enterprises is not uniform. For example, there are no standards
to generate audit records, format records, or define audit policies. As a result, audit
solutions have a number of drawbacks:

» There is no centralized audit framework.

= Audit support is inconsistent from application to application.

» Audit data, audit policies, and configuration are scattered across the enterprise.
s Cross-component analysis of audit is complex and time-consuming.

» Scattered data, lack of consistency, and decentralization make the audit solutions
fragile with idiosyncrasies.

13.2 Audit Terminology

This section introduces several audit terms used in this document.

Component
A component refers to an Oracle Fusion Middleware component.

Audit-Aware Components

An audit-aware component is a component that is integrated with Audit Framework,
whose audit policies can be configured and whose events can be audited.

Audit Store

The audit store is a database that has a predefined audit schema and that stores audit
events. After you configure the audit store, the audit loader periodically uploads data
to this database. Audit data is cumulative and grows in size over time. Ideally, the
audit store should be a database not used by other applications but used exclusively
by audit. The audit store stores audit events generated by components as well as user
applications integrated with Audit Framework.

Audit Definition File

An audit definition file is a file where an applications specify its specific audit rules
(such as events and filters) that control audit.

Audit Events

An audit event is an event that is recorded by Audit Framework. This framework
provides a set of generic events that you map to application audit common events,
such as authentication or policy change. It also allows you to define specific
application events and to update audit configuration with Fusion Middleware Control
or with WebLogic Scripting Tool (WLST) commands.

Audit Loader

The audit loader is a module of Oracle WebLogic Server that supports audit activity in
the server. After you configured the audit store, the audit loader collects audit records
of all running components and loads them to the audit store. For Java components, the
audit loader starts when the container starts up. To upload events with the audit

13-2 Securing Applications with Oracle Platform Security Services

About Auditing with Oracle Fusion Middleware Audit Framework

loader, register the system component with audit (with the registeraudit WLST
command) or use the standalone audit loader.

Audit Policy

An audit policy specifies the events that Audit Framework captures for a particular
component. You define policies at the component level (so that it applies to a
particular component), or at the domain level (so that it applies to all components in
the domain).

Bus-Stop Files

A bus-stop file is a local file that contains audit data records. Bus-stop files are simple
text files that can be queried easily to look up specific audit events. If audit is
configured in the domain, then the data in these files is periodically uploaded to the
audit store after a configurable time interval. If audit is not configured in the domain,
then the data is kept in bus-stop files.

You correlate and combine audit data from multiple components in a report, for
example, when you want to identify authentication failures in all middleware
components and instances.

By default, the bus-stop files are located the following directory:

Weblogic Domain Home/servers/server_name/logs/auditlogs

with sub-directories for each component bus-stop files. For example, OPSS bus-stop
files are kept in the following directory:

Weblogic Domain Home/servers/server_name/logs/auditlogs/JPS

Event Filters

An event filter is a filter that controls whether the event is logged. For example, a
successful login event to a component is logged only for a certain subset of users.

Audit Configuration MBeans

Audit configuration MBeans are the MBeans that manage audit configuration. For Java
components and applications, these MBeans are present in WebLogic Administration
Server and the audit configuration is centrally managed. For system components, each
component has its separate MBeans.

See also:

About the Audit Store

How Audit Data Is Stored

About Audit Definition Files
Overview of the Audit Schema
Running Standalone Audit Loader
Managing Audit Policies

Audit Events

13.3 About Auditing with Oracle Fusion Middleware Audit Framework
The following sections describe the Audit Framework support to audit components:

m Overview of Oracle Fusion Middleware Audit Framework

Introduction to Oracle Fusion Middleware Audit Framework 13-3

About Auditing with Oracle Fusion Middleware Audit Framework

About Components and Applications

13.3.1 Overview of Oracle Fusion Middleware Audit Framework

The Audit Framework includes the following features:

A uniform way to administer audits across Java components, system components,
and applications.

A Java component audit, including:
- Support audit for applications that are not audit-aware.
— The ability to search for audit data at any application level.

Capturing authentication history and failures, authorization history, user
management, and other common transaction data.

Flexible policies including:

— Previously seeded audit policies, which capture most common audit events,
available for ease of configuration.

- A tree-like policy structure.

The ability to write your own reports based on the published audit schema. For
information about audit analysis, see Using Audit Analysis and Reporting.

Keeping audit data and files in a common location (the audit store), which
simplifies record maintenance.

A common audit record format including:
— Baseline attributes such as outcome (status), event date-time, and user.

— Event-specific attributes such as the authentication method, source IP address,
target user, and resource.

— Contextual attributes such as the execution context ID (ECID), and session ID.
A common and unified way to configure audit policies for the entire domain.
Oracle Fusion Middleware support, so that audit:

— Can be used across Oracle Fusion Middleware components and services.

- Integrates with Oracle Enterprise Manager Fusion Middleware Control
(Fusion Middleware Control).

- Integrates with WLST.

A dynamic metadata model that integrates with the Audit Framework and that
allows applications to:

- Register at any time.
- Define and log specific audit events.

- Upgrade definitions independent of release cycles by providing event
definitions versions.

13.3.2 About Components and Applications

Oracle Fusion Middleware Audit Framework provides a centralized framework for all
Oracle Fusion Middleware products. Specifically, it provides audit for the following
applications and components:

13-4 Securing Applications with Oracle Platform Security Services

Understanding Audit

= Middleware Platform - This includes Java components such as OPSS and Oracle
Web Services Manager. All the deployed applications leveraging Java components
benefit from audit, which happens at the platform level.

= Java EE applications - The framework provides audit for Java EE applications,
including Oracle Java EE-based components, and applications and components
can specify their own specific audit events.

= System Components - For system components, such as Oracle HTTP Server, the
framework provides an end-to-end solution similar to that of Java components,
including APIs for C and C++ applications.

See also:

Oracle Fusion Middleware Components in Administering Oracle Fusion
Middleware.

13.4 Understanding Audit
The following sections explain fundamental audit concepts:
s The Audit Model
= Audit Setup: Main Steps
= About the Audit Store
s How Audit Data Is Stored

13.4.1 The Audit Model

The audit model provides a standards-based, integrated framework for Java EE and SE
applications and components across Oracle Fusion Middleware.

Dynamic Model

The Oracle Fusion Middleware Audit Framework features a dynamic audit model that
lets applications manage audit event definitions and make version changes
independent of release cycles. Audit event definitions can be dynamically updated at
redeployment.

Application Life Cycle Support

The model supports all aspects of the application life cycle from design to
development to deployment.

Application Registration
A versatile registration lets you register applications with audit in different ways:

s Declaratively, by packaging the configuration in the META-INF directory of the
application Enterprise ARchive (EAR) file.

= Programmatically, by calling the audit registration methods.
= At the command line, by calling WLST audit commands.

= When you create a domain, by specifying security artifacts in a product template.

Introduction to Oracle Fusion Middleware Audit Framework 13-5

Understanding Audit

Distributed Environments

Oracle Fusion Middleware Audit Framework supports distributed environments with
multiple servers. It monitors the audit store so changes in audit policies introduced in
one server are synchronized with all other servers in the domain.

Consider, for example, a distributed environment consisting of an Administration
Server and three Managed Servers. A single security store (that includes audit data)
supports all the servers in the domain. When you change an audit policy in the
Administration Server with Fusion Middleware Control, then those changes are
automatically propagated and synchronized with all other servers in the domain.
See also:
Performing Declarative Audit Registration

registerAudit in WLST Command Reference for Infrastructure Security
How Security Artifacts Are Seeded

13.4.2 About the Audit Store

The audit store contains component event definitions, attribute table mappings, and
audit policies.

The audit store includes:
= Audit registration that allows you:
- Create, modify, and delete event definition entries.
- Create attribute database mappings to store audit data.
» The service that retrieves event definitions and runtime policies.

= Audit MBean commands that allow you to look up and modify component audit
definitions and runtime policies.

The Audit Framework requires a database to store audit data, and this database can be
any of the supported ones. For information about supported types, see Supported File,
LDAP, and Database Stores.

When a new application registers with audit, the following artifacts are stored in the
audit store:

= Audit event definitions including custom attribute group, categories, events, and
filter preset definitions

s Localized translation entries
s Custom attribute-database column mapping tables

= Runtime audit policies

13.4.3 How Audit Data Is Stored

Audit data resides in intermediate or permanent storages.

» Intermediate storage, in bus-stop files. Each component instance writes to its own
separate bus-stop file. Bus-stop files are text-based and easy to query.

= Permanent storage, in the audit store (if configured in the environment). Audit
records generated by all components in the domain are written to the same store.

13-6 Securing Applications with Oracle Platform Security Services

Understanding Audit

Advantages to Using a Database Store
Having the audit records stored in bus-stop files has some limitations:

= You cannot view domain-level audit data.

= You cannot obtain reports easily.

And there are advantages to using the audit store:
= It allows you to generate audit reports.

= The database store contains records from all components in the domain, whereas
the bus-stop contains audit records for one component only.

= Itimproves performance.

13.4.4 About the Oracle Fusion Middleware Audit Framework

The Audit Framework provides a set of interfaces for any audit-aware components
integrating with it. During runtime, applications may call these APIs to manage audit
policies and to audit the necessary information about a particular event happening in
the application code. These interfaces allow applications to specify event details and
attributes needed to provide the context of the event they want to audit.

See also:

Developing with Oracle Fusion Middleware Audit Framework

13.4.5 Audit Setup: Main Steps

The following list includes the major tasks that you carry out to you set up and
maintain audit in your environment:

= Understanding the audit architecture, the essential elements of the framework, the
flow of actions, and the Audit Framework. For information about these tasks, see
Audit Administration Tasks.

= Integrating applications with the framework. For information about integration,
see Integrating Applications with the Oracle Fusion Middleware Audit
Framework.

» Creating the audit definition file that specifies the application’s audit events and
how they map to the audit schema. For information about audit definition files,
see Creating Audit Definition Files.

= Registering the application with audit. For information about audit registration,
see Registering the Application with the Service.

= Migrating audit information. For information about audit data migration, see
Migrating Audit Data.

= Generating audit reports. For information about audit reporting, see Using Audit
Analysis and Reporting.

13.4.6 Understanding the Runtime Audit Event Flow

If the audit store is not configured in your environment, then the audit records are
kept in bus-stop files. An application does not stop execution if it is unable to record
an audit event.

Introduction to Oracle Fusion Middleware Audit Framework 13-7

About Audit Attributes, Events, and Event Categories

The audit event flow is best understood by looking at the following sequence that
takes place when an audit event occurs within an application running in an
environment where you have configured audit:

1.

During application deployment or service start-up, a client Java EE application
registers with audit.

The service reads the application audit definition file and updates definitions in
the audit store.

When a user accesses the component or application, an audit function is called to
audit the event.

The Audit Framework checks whether to audit events with this type, status, and
attributes. If they must be audited, then the audit function is called to create the
event and collect information such as the status, initiator, resource, and ECID.

The event is stored in a bus-stop file. Each application or component has its own
bus-stop file.

The audit loader pulls the events from bus-stop files, formats the data using the
application’s metadata, and moves it to the audit store.

See also:

Using Audit Analysis and Reporting

13.5 About Audit Attributes, Events, and Event Categories

The Audit Framework supports a model that allows you to specify and define
dynamically application audit attribute groups, categories, and events.

The following sections explain this support:

Audit Attribute Groups
Audit Events and Event Categories

Audit Artifact Naming Requirements

13.5.1 Audit Attribute Groups

Attribute groups provide broad classification of audit attributes and consist of three
types: common, generic, and custom.

The common attribute group contains system attributes common to all
applications, such as the component type, system IP address, and host name. The
IAU_COMMON database table contains attributes in this group.

Generic attribute groups contain attributes for audit authentication and user
provisioning.

Custom attribute groups are those defined by an application to meet specific
needs. The scope of attributes in a custom group is limited to a component. These
attribute groups and attributes are stored in the IAU_CUSTOMn table, where n
denotes an integer (1,2, and so on).

13-8 Securing Applications with Oracle Platform Security Services

About Audit Attributes, Events, and Event Categories

See also:

About Generic Attribute Groups
About Custom Attribute Groups
About Audit Attribute Data Types
OPSS Event Attributes

13.5.1.1 About Generic Attribute Groups

A generic attribute group refers to a namespace and a version number, and contains
one or more attributes. The following example illustrates an attribute group with the
authorization namespace and version 1.0:

<AuditConfig xmlns="http://xmlns.oracle.com/ias/audit/audit-2.0.xsd" >
<Attributes ns="authorization" version="1.0">
<Attribute displayName="CodeSource" maxLength="2048" name="CodeSource"
type="string"/>
<Attribute displayName="Principals" maxLength="1024" name="Principals"
type="string"/>
<Attribute displayName="InitiatorGUID" maxLength="1024"
name="InitiatorGUID" type="string"/>
<Attribute displayName="Subject" maxLength="1024" name="Subject"
type="string">
<HelpText>Used for subject in authorization</HelpText>
</Attribute>
</Attributes>

You refer to the CodeSource attribute like this:

<Attribute name="CodeSource" ns="authorization" version="1.0" />

Each generic attribute group is stored in a dedicated database table. The naming
conventions are:

» TAU_GENERIC_ATTRIBUTE_GROUP_NAME for table names

= TAU_ATTRIBUTE_NAME for table columns

For example, the authorization attribute group is stored in the TAU_AUTHORIZATION
table with these columns:

= IAU_CODESOURCE as string
= TAU_PRINCIPALS as string

n IAU_INITIATORGUIDaSShing

13.5.1.2 About Custom Attribute Groups

A custom attribute group refers to a namespace, a version number, and one or more
attributes. Each custom attribute incudes:

s Attribute name
= Data type

= Attribute-database column mapping order - This property specifies the order in
which an attribute is mapped to a database column of a specific data type in the
custom attribute table.

= Help text (optional)

Introduction to Oracle Fusion Middleware Audit Framework 13-9

About Audit Attributes, Events, and Event Categories

= Maximum length
= Display name

» Size - This property denotes how many values of the same data type the attribute
can have. The default size value is 1. A size greater than 1 denotes an attribute that
can have two or more values of the same data type. These attributes support all
data types except for binary types.

The following example illustrates the definition of the Accounting attribute group
with the accounting namespace and version 1.0:

<Attributes ns="accounting" version="1.0">
<Attribute name="TransactionType" displayName="Transaction Type" type="string"
order="1"/>
<Attribute name="AccountNumber" displayName="Account Number" type="int"
order="2">
<HelpText>Account number.</HelpText>
</Attribute>

</Attributes>

The following example defines the AccountBalance attribute with multiple values:

<Attribute order="3" displayName="AccountBalance" type="double" name="Balance"
size="2" sinceVersion="1.1">
<Multivalues>
<MultiValueName displayName="Previous Balance" index="0">
<HelpText>the previous account balance</HelpText>
</MultiValueName>
<MultiValueName displayName="Current Balance" index="1"/>
</Multivalues>
</Attribute>

13.5.1.3 About Audit Attribute Data Types
Table 13-1 shows the attribute data types supported and the corresponding Java object
types:

Table 13-1 Audit Attribute Data Types

Attribute Data Type Java Object Type Notes

Integer Integer

Long Long

Float Float

Double Double

Boolean Boolean

DateTime java.util.Date

String String Maximum length 2048 bytes
LongString String Unlimited length

Binary byte[]

13.5.2 Audit Events and Event Categories

An event category contains audit events in a functional area. For example, a session
category may contain login and logout events significant to the life cycle of a user

13-10 Securing Applications with Oracle Platform Security Services

About Audit Attributes, Events, and Event Categories

session. An event category does not itself define attributes. Instead, it references
attributes in component and system attribute groups.

There are two types of event categories:
= System categories

s Component and application categories

See also:

System Categories and Events

13.5.2.1 About System Categories and Events

A system category references common and generic attribute groups and includes audit
events. System categories are the base set of component event categories and events.
Applications can refer to system categories and use the events in them to log audit
events and set filter preset definitions.

The following example illustrates the definition of attributes, events, and the
UserSession system category with an attribute referencing the common
AuthenticationMethod attribute:

<SystemComponent major="1" minor="0">
<Attributes ns="common" version ="1.0"></Attributes>
<Attributes ns="identity" version ="1.0"></Attributes>
<Attributes ns="authorization" version ="1.0"></Attributes>
<Events>
<Category name="UserSession" displayName="User Sessions">
<Attributes>
<Attribute name="AuthenticationMethod" ns="common" version ="1.0" />
</Attributes>
<HelpText></HelpText>
<Event name="UserLogin" displayName="User Logins" shortName="uLogin"></Event>
<Event name="UserLogout" displayName="User Logouts" shortName="uLogout"
xdasName="terminateSession"></Event>
<Event name="Authentication" displayName="Authentication"></Event>
<Event name="InternallLogin" displayName="Internal Login" shortName="iLogin"
xdasName="CreateSession"></Event>
<Event name="InternalLogout" displayName="Internal Logout" shortName="iLogout"
xdasName="terminateSession"></Event>
<Event name="QuerySession" displayName="Query Session"
shortName="gSession"></Event>
<Event name="ModifySession" displayName="Modify Session"
shortName="mSession"></Event>
</Category>
<Category displayName="Authorization" name="Authorization"></Category>
<Category displayName="ServiceManagement" name="ServiceManagement"></Category>
</Events>
</SystemComponent>

13.5.2.2 About Component and Application Categories
A component or application can extend system categories or define new component
event categories.

The following example illustrates the definition of a category with the AccountNumber,
Date, and Amount attributes from the accounting attribute group, and it includes the
purchase and deposit events:

<Category displayName="Transaction" name="Transaction">
<Attributes>

Introduction to Oracle Fusion Middleware Audit Framework 13-11

About Audit Definition Files

<Attribute name="AccountNumber" ns="accounting" version="1.0"/>
<Attribute name="Date" ns="accounting" version="1.0" />
<Attribute name="Amount" ns="accounting" version="1.0" />
</Attributes>

<Event displayName="purchase" name="purchase"/>

<Event displayName="deposit" name="deposit">
<HelpText>depositing funds.</HelpText>

</Event>

</Category>

Extend system categories by creating category references in your application audit
definitions, listing the system events that the category includes, and adding attribute
references and events to the category reference.

The following example illustrates the definition of the ServiceManagement system
category reference with the ServiceTime attribute, and the restartService event:

<CategoryRef name="ServiceManagement" componentType="SystemComponent">
<Attributes>
<Attribute name="ServiceTime" ns="accounting" version="1.0" />
</Attributes>
<EventRef name="startService"/>
<EventRef name="stopService"/>
<Event displayName="restartService" name="restartService">
<HelpText>restart service</HelpText>
</Event>
</CategoryRef>

13.5.3 Audit Artifact Naming Requirements

The name of a category, an event, or an attribute must:
= Be an English word

» Beless than 26 characters

= Contain characters a-z, A-Z, and numbers 0-9 only

m Start with a letter

13.6 About Audit Definition Files

An audit definition file specifies the application’s specific audit rules (such as events
and filters). Audit definition files provide a way to translate event definitions to
foreign languages. There are two types of audit definition files:

s The component_events.xml file. For information about this file, see About the
component_events.xml File.

» Translation files, which are used to display audit definition in different languages.
For information about translation files, see Translation Files.

13.6.1 About the component_events.xml File

13-12

The component_events.xml file specifies the properties audit uses to log audit events,
including the following:

= Basic properties

— The component type, which applications use to register with audit and obtain
a runtime auditor instance

Securing Applications with Oracle Platform Security Services

About Audit Definition Files

- Major and minor version of the application
= A custom attribute group
= Event categories with attribute references and events
s Component level filter definitions
= Runtime policies
The following example illustrates the definition of this file:

<?xml version="1.0"?>
<AuditConfig xmlns="http://xmlns.oracle.com/ias/audit/audit-2.0.xsd">
<AuditComponent componentType="ApplicationAudit" major="1" minor="0">
<Attributes ns="accounting" version="1.0">
<Attribute name="TransactionType" displayName="Transaction Type"
type="string" order="1">
<HelpText>Transaction type.</HelpText>
</Attribute>
<Attribute name="AccountNumber" displayName="Account Number"
type="int" order="2">
<HelpText>Account number.</HelpText>
</Attribute>
<Attribute name="Date" displayName="Date" type="dateTime" order="3"/>
<Attribute name="Amount" displayName="Amount" type="float" order="4">
<HelpText>Transaction amount.</HelpText>
</Attribute>
<Attribute name="Status" displayName="Account Status" type="string"
order="5">
<HelpText>Account status.</HelpText>
</Attribute>
</Attributes>
<Events>
<Category displayName="Transaction" name="Transaction">
<Attributes>
<Attribute name="AccountNumber" ns="accounting" version="1.0" />
<Attribute name="Date" ns="accounting" version="1.0" />
<Attribute name="Amount" ns="accounting" version="1.0" />
</Attributes>
<Event displayName="purchase" name="purchase">
<HelpText>direct purchase.</HelpText>
</Event>
<Event displayName="deposit" name="deposit">
<HelpText>depositing funds.</HelpText>
</Event>
<Event displayName="withdrawing" name="withdrawing">
<HelpText>withdrawing funds.</HelpText>
</Event>
<Event displayName="payment" name="payment">
<HelpText>paying bills.</HelpText>
</Event>
</Category>
<Category displayName="Account" name="Account">
<Attributes>
<Attribute name="AccountNumber" ns="accounting" version="1.0" />
<Attribute name="Status" ns="accounting" version="1.0" />
</Attributes>
<Event displayName="open" name="open">
<HelpText>Open a new account.</HelpText>
</Event>
<Event displayName="close" name="close">

Introduction to Oracle Fusion Middleware Audit Framework 13-13

About Mapping and Version Rules

<HelpText>Close an account.</HelpText>
</Event>
<Event displayName="suspend" name="suspend">
<HelpText>Suspend an account.</HelpText>
</Event>
</Category>
</Events>
<FilterPresetDefinitions>
<FilterPresetDefinition displayName="Low" helpText="" name="Low">
<FilterCategory enabled="partial" name="Transaction">
deposit.SUCCESSESONLY (HostId -eq "NorthEast"),withdrawing
</FilterCategory>
<FilterCategory enabled="partial"
name="Account ">open.SUCCESSESONLY, close.FAILURESONLY</FilterCategory>
</FilterPresetDefinition>
<FilterPresetDefinition displayName="Medium" helpText=""
name="Medium">
<FilterCategory enabled="partial"
name="Transaction">deposit,withdrawing</FilterCategory>
<FilterCategory enabled="partial"
name="Account">open, close</FilterCategory>
</FilterPresetDefinition>
<FilterPresetDefinition displayName="High" helpText="" name="High">
<FilterCategory enabled="partial"
name="Transaction">deposit,withdrawing, payment</FilterCategory>
<FilterCategory enabled="true" name="Account"/>
</FilterPresetDefinition>
</FilterPresetDefinitions>

<Policy filterPreset="Low">
<CustomFilters>
<FilterCategory enabled="partial" name="Transaction"> purchase
</FilterCategory>
</CustomFilters>
</Policy>
</AuditComponent>
</AuditConfig>

About Runtime Properties

In addition, there are runtime properties you create with Fusion Middleware Control,
WLST commands, or during registration. They include the following properties:

» filterPreset, to specify the audit filter level
= specialUsers, to specify the users to audit always

= maxBusstopFileSize, to specify the size of a bus-stop file

See also:

Managing Audit Policies

13.7 About Mapping and Version Rules

Audit registration applies certain rules to create the audit data for the application, and
this data is used to maintain different versions of the audit definition and to generate
reports.

The following sections explain how the registration works:

s What Are Version Numbers?

13-14 Securing Applications with Oracle Platform Security Services

About Mapping and Version Rules

= About Custom Attribute to Database Column Mappings

13.7.1 What Are Version Numbers?

An audit definition file has a major and a minor version number. Any change
introduced to an audit event definition requires updating the version number. These
numbers are used by audit registration to determine the compatibility of event
definitions and attribute mappings between versions. These version numbers have no
relation to Oracle Fusion Middleware version numbers.

Component Version

When you register a component, audit registration checks if this is a first-time
registration or an upgrade.

In case of a new registration, the service:

1. Retrieves the component audit and translation information.

2. Parses and validates the definition, and stores it in the audit store.

3. Generates the attribute-column mapping table and saves it in the audit store.

In case of an upgrade, the current version number for the component in the audit store
is compared with the new version number to determine whether to proceed with the
upgrade.

Java EE Application Version

To reset the version number after you modified an application audit definition, Oracle
recommends that you:

= Increase the minor version number only when making changes in an audit
definition that will work with the audit data created by the previous attribute
database mapping table.

For example, suppose the current definition version 2.1. When adding a new event
that does not affect the attribute database mapping table, you change the version
to 2.2, and leave the major version unchanged (major=2). Similarly, increase the
minor version after adding a new attribute.

= Increase major version number when making changes where the new mapping
table is incompatible with the previous table.

Changes becomes effective after you restart the server.

13.7.2 About Custom Attribute to Database Column Mappings

When you register a new component or application, audit registration creates an
attribute-to-database column mapping table from the custom attributes, and then
saves this table to the audit store.

If the number of custom attributes is greater than 100, then you must create additional
tables manually. OPSS ships with the tables IAU_CUSTOM and IAU_CUSTOM_01 only.

Attribute-database mapping tables are required to ensure unique mappings between
your application's attribute definitions and database columns. The audit loader uses
mapping tables to load data into the audit store. These tables are also used to generate
audit reports from custom IAU_CUSTOM database table.

Use the createAuditDBView WLST command to generate a SQL file that creates a
database view of the audit definitions for your component.

Introduction to Oracle Fusion Middleware Audit Framework 13-15

About Mapping and Version Rules

Understanding the Mapping Table for your Component

A custom attribute-database column mapping has the following properties: name,
database column name, and data type.

Each custom attribute must have a mapping order number in its definition. Attributes
with the same data type are mapped to the database column in the sequence of
attribute mapping order.

For example, the following definition file:

<Attributes ns="accounting" version="1.1">
<Attribute name="TransactionType" type="string" maxLength="0"
displayName="Transaction Type" order="1"/>
<Attribute name="AccountNumber" type="int" displayName="Account Number"
order="2">
<Attribute name="Date" type="dateTime" displayName="Date" order="3"/>
<Attribute name="Amount" type="float" displayName="Amount" order="4"/>
<Attribute name="Status" type="string" maxLength="0" displayName="Account
Status" order="5"/>
<Attribute name="Balance" type="float" displayName="Account Balance"
order="6"/>
</Attributes>

maps to:

<AttributesMapping ns="accounting" tableName="IAU_CUSTOM" version="1.1">
<AttributeColumn attribute="TransactionType" column="IAU_STRING_001"
datatype="string"/>
<AttributeColumn attribute="AccountNumber" column="IAU_INT 001"
datatype="int"/>
<AttributeColumn attribute="Date" column="IAU_DATETIME_001"
datatype="dateTime"/>
<AttributeColumn attribute="Amount" column="TIAU_FLOAT 001" datatype="float"/>
<AttributeColumn attribute="Status" column="TIAU_STRING_002" datatype="string"/>
<AttributeColumn attribute="Balance" column="IAU_FLOAT 002" datatype="float"/>
</AttributesMapping>

The version number of the attribute-database column mapping table matches the
version number of the custom attribute group. This allows your application to
maintain a backward compatibility of attribute mappings across audit definition
versions.

See Also:

createAuditDBView in WLST Command Reference for Infrastructure
Security

Oracle Fusion Middleware Audit Framework Reference

What Are Version Numbers?

13-16 Securing Applications with Oracle Platform Security Services

14

Managing Audit

This chapter explains the main administration tasks and tools you use to manage the
audit store, audit policies, and bus-stop files.

This chapter includes the following topics:

Audit Administration Tasks
Managing the Audit Store

Managing Audit Policies
Understanding Audit Time Stamps
About Audit Logs and Bus-stop Files
Audit Database Administration

Best Practices for Audit Event Definitions

14.1 Audit Administration Tasks

Setting up audit in your environment involves the following major tasks:

Planning the type of store to use for audit records and the store configuration
details. For information about audit store management, see Managing the Audit
Store.

Configuring and maintaining audit policies so that audit events are generated. For
information about audit policies, see Managing Audit Policies.

Configuring audit reports and queries. For information about reporting, see Using
Audit Analysis and Reporting.

Registering applications. For information about application registration, see
Registering the Application with the Service.

Migrating audit information. For information about audit data migration, see
Migrating Audit Data.

Administering the audit database, including increasing the database size that
stores the generated audit data, and backing up and purging that data. For
information about audit administration, see Audit Database Administration.

14.2 Managing the Audit Store

The audit store is a database that provides the scalability and high-availability needed
to store audit records and that allows you to view and generate reports.

Managing Audit 14-1

Managing the Audit Store

The following sections introduce the audit store and explain how to manage it:
= About Audit Data Sources

= Managing Bus-Stop Files

s Configuring Standalone Audit Loader

14.2.1 About Audit Data Sources

When you create a domain, the process generates the audit schema, a data structure
required to store audit records in the database. It also sets up an audit data source in
the server that uses the audit schema. If your environment is not set up with a
database to store records, then audit records are kept in bus-stop files.

See also:

Bus-Stop Files

14.2.2 Managing Bus-Stop Files

After the bus-stop file reaches a certain size and all the data was uploaded to the
database, the audit loader deletes the file from the file system. Specify the location and
maximum size of bus-stop files, so that bus-stop files are automatically deleted.
Deleting audit files manually is not recommended.

Bus-Stop File Locations
Bus-stop files for Java components are located in the following directory:

SDOMAIN_HOME/servers/$SERVER _NAME/logs/auditlogs/Component_Type

Bus-stop files for system components are located in the following directory:

SORACLE_INSTANCE/auditlogs/Component_Type/Component_Name

Bus-Stop File Size

In Java components, the maximum size of a bus-stop file is set with the
audit.maxFileSize property.

In system components, the maximum size of a bus-stop file is set in the
auditconfig.xml file:

<servicelInstance name="audit" provider="audit.provider">
<property name="audit.maxFileSize" value="10240" />
<property name=" audit.loader.repositoryType " value="Db" />
</servicelnstance>

When you switch from a file to a database store for audit data, all the events collected
in the files are moved to the database tables and the audit files are deleted.

14.2.3 Configuring Standalone Audit Loader

The standalone audit loader moves records from bus-stop files to the audit store
periodically. The mechanism driving the audit loader depends on the application
environment:

= Java EE components and applications use the audit loader functionality provided
by OPSS runtime. The standalone audit loader is not needed in these
environments.

14-2 Securing Applications with Oracle Platform Security Services

Managing the Audit Store

= System components and non-Java applications use the audit loader functionality
provided by the StandAloneAuditLoader command.

= Java SE applications also use the standalone audit loader depending on where the
bus-stop files are written. For information about audit for Java SE applications, see
Common Audit Scenarios in Java SE Applications.

The following sections explain how to set up and run the standalone audit loader:
s Configuring the Environment

= Running Standalone Audit Loader

14.2.3.1 Configuring the Environment
The following settings apply only to non-Java applications and system components.

Before you run the standalone audit loader, set the following audit loader parameters:
= ORACLE_HOME, the full path to the home directory

= COMMON_COMPONENTS_HOME, the full path to the Java Required Files (JRF) directory
= ORACLE_INSTANCE, the full path of an Oracle instance directory

s auditloader.jdbcString, the Java Database Connectivity (JDBC) connection
string for the database where the audit data is stored

s auditloader.username, the name of the user who runs the audit loader

In addition, make sure that the password for the database schema user is available and
stored. This password is specified once.

To specify the database schema user password, use the java StandAloneAuditLoader
command with the -Dstore.password=true property:

$JDK_HOME/bin/java
-classpath $SCOMMON_COMPONENTS_HOME/modules/oracle.jps_12.2.1/jps-manifest.jar
-Doracle.home=$ORACLE_INSTANCE -Doracle.instance=$ORACLE_INSTANCE
-Dauditloader.jdbcString=jdbc:oracle:thin:@host:port:sid
-Dauditloader.username=username
-Dstore.password=true
oracle.security.audit.ajl.loader.StandaloneAuditLoader

which will prompt you to enter a password. The command generates the cwallet.sso
file containing the password you entered.

14.2.3.2 Running Standalone Audit Loader

To run the loader, use the StandAloneAuditLoader command:

SJDK_HOME/bin/java
-classpath $COMMON_COMPONENTS_HOME/modules/oracle.jps_12.2.1/jps-manifest.jar
-Doracle.home=$ORACLE_INSTANCE -Doracle.instance=$ORACLE_INSTANCE
-Dauditloader.jdbcString=jdbc:oracle:thin:@host:port:sid
-Dauditloader.username=username
oracle.security.audit.ajl.loader.StandaloneAuditLoader

This command is typically scheduled to run automatically so that audit records are
periodically uploaded to the audit store.

Managing Audit 14-3

Managing Audit Policies

14.3 Managing Audit Policies

An audit policy is a declaration of the type of events that are recorded by Oracle
Fusion Middleware Audit Framework for a particular component. In Java
components, the audit policy is defined at the domain level. In system components,
the audit policy is managed at the component instance level.

Note that you must update audit policies when you introduce changes to the
application environment, such as adding or deleting components or users. Policy
changes do not require server or instance restart.

The Audit Framework lets you configure audit policies and provides high control over
the types of events and data being audited. You configure audit policies with Oracle
Enterprise Manager Fusion Middleware Control (Fusion Middleware Control),
WebLogic Scripting Tool (WLST), or programmatically, as explained in the following
sections:

= Managing Audit Policies with Fusion Middleware Control
= Managing Audit Policies with WLST

= Managing Audit Policies Programmatically

See also:
Audit Terminology

Oracle Fusion Middleware Audit Framework Reference

14.3.1 Managing Audit Policies with Fusion Middleware Control

Follow the instructions in this section to manage audit policies for Java and system
components with Fusion Middleware Control.

» Task 1, Opening the Audit Page

» Task 2, Choosing Events to Audit for a Java Component

» Task 3, Customizing Audit Policies for a Java Component

» Task 4, Creating Audit Filters for a Java Component

» Task 5, Importing and Exporting Audit Policies for a Java Component

» Task 6, Choosing Events to Audit for a System Component

» Task 7, Customizing Audit Policies for a System Component

» Task 8, Creating Audit Filters for a System Component

s Task 9, Importing and Exporting Audit Policies for a System Component

Task 1, Opening the Audit Page

Log in to Fusion Middleware Control and go to Domain, then to Security, and then to
Audit Policy. The Audit Policy page is displayed.

Task 2, Choosing Events to Audit for a Java Component

1. In the Audit Component Name drop-down, choose a Java component. The table
of audit categories relevant to the component is displayed in the Audit Policy
Settings area.

14-4 Securing Applications with Oracle Platform Security Services

Managing Audit Policies

Note: The values you enter in the Audit Policy Settings area do not
apply to Oracle Access Manager audit.

In the Audit Level drop-down, choose the audit level according to your needs:
= None - Selects no event categor.ies

s Low, Medium, High - Selects subsets of event categories representing
predefined audit levels.

s Custom - Selects custom filters.

Check flags are displayed in the Select for Audit column, and events in the chosen
categories will be audited. View the events within a flagged category by clicking
on that row in the categories table. The table of events can be edited in a custom
level only.

Task 3, Customizing Audit Policies for a Java Component

1.

In the Audit Component Name drop-down, choose a Java component. The table
of audit categories relevant to the component is displayed in the Audit Policy
Settings area.

In the Audit Level drop-down, choose Custom. All categories become available.

Choose categories and events to customize the audit policy by checking the box in
the Select For Audit column.

Click Apply to save the changes.

Task 4, Creating Audit Filters for a Java Component

1.

In the Audit Component Name drop-down, choose a Java component. The table
of audit categories relevant to the component is displayed in the Audit Policy
Settings area.

A pencil icon in the Edit Filter column denotes that a filter is available for the
event. Click on a pencil icon for an event. The Edit Filter dialog is displayed.

Each filter attribute has a formal name and a display name. Either name is
displayed in the Edit Filter edit dialog.

Create a filter condition by choosing an item from the Condition drop-down, an
operator, and a value. Then click the add button. When you are finished adding
conditions, click OK.

Optionally, under Users to Always Audit, specify a comma-separated list of users
to audit events initiated by these users. Audit occurs regardless of the audit level
or filters that have been specified. User names you enter in this field are not
validated

Restart Oracle WebLogic Server on which the Java component is running for the
changes to take place.

Task 5, Importing and Exporting Audit Policies for a Java Component

1.

In the Audit Component Name drop-down, choose a Java component. The table
of audit categories relevant to the component is displayed in the Audit Policy
Settings area.

At any time while editing a policy, do one of the following:

» Click Export to save the current settings to a file

Managing Audit 14-5

Managing Audit Policies

s Click Import to load settings from a file

Task 6, Choosing Events to Audit for a System Component

1. Go to a system component home page. The table of audit categories relevant to the
component is displayed in the Audit Policy Settings area.

2. In the Audit Level drop-down, choose the audit level.

= None, selects no event categor.ies

s Low, Medium, High - Selects subsets of event categories representing
predefined audit levels.

s Custom - Selects custom filters.

Check flags are displayed in the Select for Audit column, and events in the chosen
categories will be audited. View the events within a flagged category by clicking
on that row in the categories table. The table of events can be edited in a custom
level only.

Task 7, Customizing Audit Policies for a System Component

1. go to a system component home page. The table of audit categories relevant to the
component is displayed in the Audit Policy Settings area.

2. In the Audit Level drop-down, choose Custom. All categories become available.

3. Choose categories and events to customize the audit policy by checking the box in
the Select For Audit column.

4. Click Apply to save the changes.

Task 8, Creating Audit Filters for a System Component

1. Go to a system component home page. The table of audit categories relevant to the
component is displayed in the Audit Policy Settings area.

2. A pencil icon in the Edit Filter column denotes that a filter is available for the
event. Click on a pencil icon for an event. The Edit Filter dialog is displayed. A
filter attribute has a formal name and a display name. Either name is displayed in
the Edit Filter edit dialog

3. Create a filter condition by choosing an item from the Condition drop-down, an
operator, and a value. Then click the add button. When you are finished adding
conditions, click OK.

4. Optionally, under Users to Always Audit, specify a comma-separated list of users
to audit events initiated by these users. Audit occurs regardless of the audit level
or filters that have been specified. User names you enter in this field are not
validated. Particular users, such as a system administrator, will generate audit
traffic anytime that user executes any auditable events for any component.

5. Restart WebLogic Server on which the system component is running.

Task 9, Importing and Exporting Audit Policies for a System Component

1. Go to a system component home page. The table of audit categories relevant to the
component is displayed in the Audit Policy Settings area.

2. Atany time while editing a policy, do one of the following:
» Click Export to save the current settings to a file

» Click Import to load settings from a file

14-6 Securing Applications with Oracle Platform Security Services

Managing Audit Policies

14.3.2 Managing Audit Policies with WLST

Use this section manage audit policies with WLST.

Viewing Audit Policies with WLST Commands

Updating Audit Policies with WLST Commands

Configuring Audit Policies Example

Configuring Audit Events Example

What Happens to Custom Configuration when the Audit Level Changes?

14.3.2.1 Viewing Audit Policies with WLST Commands

1.

Connect to the WebLogic Server:

>java weblogic.WLST
>connect ('userName', 'userPassword', 'url', 'adminServerName')

To view domain or Java component audit policies, use the getAuditPolicy
command:

(view domain audit policies)
wls:/mydomain/serverConfig> getAuditPolicy()

(view component audit policies)
wls: /mydomain/serverConfig> getAuditPolicy (componentType="JPS")

To view a system component audit policies:

a. Obtain the system component MBean name with the getNonJava
EEAuditMBeanName command.

b. Use the getAuditPolicy command:

wls:/mydomain/serverConfig> getAuditPolicy
(on="oracle.security.audit.test:type=CSAuditMBean, name=CSAuditProxyMBean")

14.3.2.2 Updating Audit Policies with WLST Commands

1.

Connect to WebLogic Server:

>java weblogic.WLST
>connect ('userName', 'userPassword', 'url', 'adminServerName'

Go the hierarchy to access the domain of interest:

wls:/mydomain/serverConfig>

Use the setAuditPolicy command to update the audit policy configuration.

For system components use the setAuditPolicy command and include an MBean
name to update the audit policy configuration. The name for an audit MBean has
the following format:

oracle.as.management .mbeans.register:type=component.auditconfig, name=auditconfi
gl, instance=INSTANCE, component=COMPONENT_ NAME

For example:

oracle.as.management .mbeans.register: type=component.auditconfig, name=auditconfi
gl, instance=instancel, component=0idl

Managing Audit 14-7

Managing Audit Policies

5. For system components, such as Oracle HTTP Server or LDAPs, call save
explicitly after issuing the setAuditPolicy or importAuditConfig commands.

The following example illustrates this step: navigating to the root proxy MBean in
the tree, using the invoke command to call setAuditPolicy, and using the save
command:

ORACLE_COMMON_HOME/common/bin/wlst.sh
connect ('username', 'password', 'protocol://localhost:7001', 'localhost:7001")
custom()
cd('oracle.as.management .mbeans.register')
cd('oracle.as.management .mbeans.register: type=component,name=0idl, instance=inst
ancel')
invoke('load', jarray.array([],java.lang.Object),jarray.array([],
java.lang.String))
setAuditPolicy(filterPreset="'None',
on="'oracle.as.management .mbeans.register:type=component.auditconfig,
name=auditconfigl, instance=instancel, component=0idl")
invoke('save', jarray.array([],java.lang.0Object),jarray.array([],
java.lang.String))

14.3.2.3 Configuring Audit Policies Example

Assume that the domain current policy audits a user named user1, and you want to
add two names, user2 and user3, to the list of users who are always audited, and
remove userl from the list of users audited.

To accomplish these tasks, run the following command:

setAuditPolicy
(filterPreset="None",addSpecialUsers="user2,user3", removeSpecialUsers="userl")

14.3.2.4 Configuring Audit Events Example

Assume that the domain current policy audits user logout events, and you would like
to remove logout events and add audit login events.

To accomplish these tasks, run the following command:

setAuditPolicy (on="OHS mbean name")
(filterPreset="Custom",addCustomEvents="0HS:UserLogin",
removeCustomEvents="0HS:UserLogout")

Notice the Custom filter preset called to add and remove events.

14.3.2.5 What Happens to Custom Configuration when the Audit Level Changes?

When you configure audit at the custom audit level, and you subsequently use WLST
to switch to a different (non-custom) audit level, the custom audit settings are retained
unless you explicitly remove them.

The following sequence illustrates how changing the audit level affects audit data
collection:

1. The custom audit level is set in a component's policy, and an audit filter is
specified as part of the configuration.

2. Atruntime, audit data is collected according to the filter.

3. The component's audit policy is then changed, for example, from the custom audit
level to low with the setAuditPolicy command. The filter that was set up as part
of the custom audit level remains in the audit configuration.

4. Thereafter, audit data is collected based on the low audit level.

14-8 Securing Applications with Oracle Platform Security Services

About Audit Logs and Bus-stop Files

5. The component's audit policy is changed back to the custom level, and an
additional filter is added. This new filter is appended to the original filter. Unless
the original filter is explicitly deleted, it remains part of the configuration.

6. Thereafter, audit data is collected based on both filters at the custom level.

14.3.3 Managing Audit Policies Programmatically

The Oracle Fusion Middleware Audit Framework provides a set of interfaces that
applications can use to retrieve and update audit policies. For information about
policy management, see Managing Policies Programmatically.

14.4 Understanding Audit Time Stamps

Before Release 11.1.1.7.0, audit wrote out audit records using the application server’s
time zone. Starting with Release 11.1.1.7.0, audit and the server can use a different time
zone. This means that:

= New sites see audit events written in Coordinated Universal Time (UTC).

= Sites that upgrade from release 11.1.1.6.0 continue, by default, to use the
application server time zone for audit records unless you explicitly specify to use
UTC.

Records in bus-stop files use UTC.

Audit Time Stamps at New Sites

Audit records in new installations use UTC time stamps. Use the audit. timezone
property in the audit configuration to specify it:

<servicelInstance name="audit" provider="audit.provider"
location="./audit-store.xml">
<property name="audit.filterPreset" value="None"/>
<property name="audit.timezone" value="utc" />
<property name="audit.loader.repositoryType" value="File" />
<property name="auditstore.type" value="file"/>
</servicelnstance>

Audit Time Stamps at Upgraded Sites

Audit records prior to release 11.1.1.7 used the application server time stamp. After
upgrading to that release, the service configuration remains unchanged and, by
default, the records are written using the application server time stamp.

If you wish to use the UTC after upgrading to 12¢, then move the current records to
avoid any potential inconsistencies and insert the audit.timezone service property in
your configuration file.

See also:

Audit Service Properties

14.5 About Audit Logs and Bus-stop Files

The Audit Framework has several runtime components that log error messages. This
framework provides a set of log files that you use to trace errors and to diagnose
failures when the Audit Framework runs into exceptions.

Time stamps in the audit bus-stop files are recorded in Coordinated Universal Time.
This may differ from the machine time depending on the machine's time zone setting.

Managing Audit 14-9

Audit Database Administration

See also:

Logging Audit

Naming and Logging Audit Files
Understanding Audit Time Stamps

14.6 Audit Database Administration

This section explains the organization and administration of the audit schema in the
following topics:

Overview of the Audit Schema

Base and Component Table Attributes
Tuning Performance

Planning Backup and Recovery
Importing and Exporting Data
Partitioning

Performing Tiered Archival

Creating Indexes on Custom Table Attributes Using Materialized Views

14.6.1 Overview of the Audit Schema

The tables in the Audit Framework schema includes:

Base data in a base table. This table contains the basic data for an audit record and
is related to the component-specific tables with the IAU_ID attribute.

Common attributes in the TAU_COMMON table. This table contains the basic data for
an audit record and is related to the custom tables with the IAU_ID attribute.

Generic attributes in dedicated tables.

Custom attributes in the IAU_CUSTOM_nnn tables.

Not all these tables are used at the same time. The dynamic model uses the common
and custom tables. The static (older) model uses the base table and component-specific
tables.

See also:
About Audit Attributes, Events, and Event Categories
The Audit Model

14.6.2 Base and Component Table Attributes

The audit loader stores two kinds of data records in tables:

General information (such as time, event type, and event status), stored in one row
of the common table (dynamic model) or the base table.

Component-specific information, stored in one row of the custom table (dynamic
model) or the component table.

The average audit record size is approximately 0.3 KB. Use this average when you
plan to resize database tables, and in addition, monitor how your audit database size
grows according to policies and level of activity.

14-10 Securing Applications with Oracle Platform Security Services

Audit Database Administration

The attributes of the base table are derived from the following file:

SORACLE_HOME/modules/oracle.iau_12.2.1/components/generic/generic_events.xml

The attributes of the component table are derived from the following file:

SORACLE_HOME/modules/oracle.iau_12.2.1/components/componentName/component_
events.xml

Table C-6 lists the attributes defined in the IAU_BASE base table. Table C-7 lists the
attributes defined in the IAU_COMMON common table.

To get a list of attribute names for individual component tables, use the
listAuditEvents WLST command.

See also:
The Audit Schema
listAuditEvents in WLST Command Reference for Infrastructure Security.

14.6.3 Tuning Performance

For efficient queries, an index is created by default for the IAU_TSTZORIGINATING
column in the base table and for each of the component-specific tables.

The default index in IAU_BASE is EVENT_TIME_INDEX, and in component tables is
tableName_INDEX (such as OVDCOMPONENT _INDEX, OIDCOMPONENT INDEX, JPS_INDEX).

Additional columns and indexes in the common table are:

= IAU_TSTZORIGINATING, indexed by DYN_EVENT TIME_INDEX

= IAU_AuditUser, indexed by DYN_USER_INDEX

= IAU_ComponentType, indexed by DYN_COMPONENT TYPE_INDEX
= IAU_EventCategory, indexed by DYN_EVENT_ CATEGORY_INDEX

= IAU_EventType, indexed by DYN_EVENT_TYPE_ INDEX

14.6.4 Planning Backup and Recovery

When planning the audit database backup, consider the following points.
= Growth rate of audit events

Your audit policies determine the number of audit events the framework generates
and the number of audit events generated daily determines how often you want to
back up the store.

= Compliance regulations

Consult you organization's compliance regulations to determine the frequency of
backups and number of years for which audit data storage is mandatory.

Use Oracle Database Utility Recovery Manager (RMAN) to back up and recover an
Oracle Database. Note that you need to back up the IAU_DISP_NAMES_TL translation
table just once, because it typically does not change over time.

See also:

Backing Up and Recovering a Database-Based Security Store

Managing Audit 14-11

Audit Database Administration

14.6.5 Importing and Exporting Data

Import and export the audit schema to migrate data, for example, if you wish to
combine several audit repositories into a single audit store, or if you wish to scale up
the database. Use Oracle Data Pump to import and export data from an Oracle
Database.

14.6.6 Purging Data

The framework provides the following SQL scripts to purge records from the audit
store, in the directory $MW_HOME/oracle_common/common/sql/iau/scripts:

s auditDataPurge.sqgl
s auditDeleteData.sql
s auditReclaimSpace.sqgl

To delete records without taking any other action, use auditDeleteData.sqgl. This
script has the following syntax:

auditDeleteData.sqgl audit_schema_user number_of_days_to_keep

For example, to delete records older that 100 days:

sglplus> QauditDeleteData.sgl DEV_IAU 100

To reclaim space, use auditReclaimSpace.sql. This script has the following syntax:
auditReclaimSpace.sql audit_schema_user

To delete audit records and reclaim space, use auditDataPurge.sql. This script has the
following syntax:

auditDataPurge.sql audit_schema_user number_of_days_to_keep

For example, to delete all records older than 100 days and enable row movements to
shrink space:

sglplus> QauditDataPurge.sqgl DEV_IAU 100

14.6.7 Partitioning

Not all database systems support partitioning, all the tables in the audit schema are
not partitioned by default.

Because audit data grows over time, if you store a large volume of data, then consider
partitioning the audit schema to allow for easier archiving.

Benefits of partitioning include:

» Improved Performance: If a table is range-partitioned by time stamps, for
example, then queries by time stamps can be processed on the partitions within
that time frame only.

= Better Manageability: Partitions can be created on separate tablespaces (thus
different disks). This lets you move older data to slower and larger disks, while
keeping newer data in faster and smaller disks.

In addition, partitioning makes archival much easier.

s Increased Availability: If a single partition is unavailable, for example, and you
know that your query can eliminate this partition from consideration, then the

14-12 Securing Applications with Oracle Platform Security Services

Audit Database Administration

query can be processed without waiting for the unavailable partition to become
available.

14.6.8 Performing Tiered Archival

Partitioning tables allows you to store individual partitions on different storage tiers.
Typically, you create tablespaces in high-performance or low-cost disks, and create
partitions in different tablespaces based on the value of the data or other criteria.

Oracle Information Lifecycle Management (ILM) features streamlined data
management with partitioning and compression.

14.6.9 Creating Indexes on Custom Table Attributes Using Materialized Views

Database views enable you to run queries against audit records. Furthermore, you can
create indexes on custom tables for their attributes with indexable views. We
recommend that applications create a simple view first and switch to an indexable
view later on when needed.

To create an indexable view:

1.

Specify the event attributes in the component_events.xml file. In Release 12¢
(12.2.1) the new indexable attribute has been added to the AttributeType
element.

Component_events.xml
<?xml version="1.0"?>
<AuditConfig xmlns="http://xmlns.oracle.com/ias/audit/audit-2.0.xsd">
<AuditComponent componentType="ApplicationAudit" major="1" minor="1">
<Attributes ns="accounting" version="1.0">
<Attribute name="TransactionType" displayName="Transaction Type"
type="string" order="1" indexable="true">
<HelpText>Transaction type.</HelpText>
</Attribute>
<Attribute name="AccountNumber" displayName="Account Number"
type="int" order="2">
<HelpText>Account number.</HelpText>
</Attribute>
<Attribute name="Date" displayName="Date" type="dateTime"
order="3"/>
<Attribute name="Amount" displayName="Amount" type="float"
order="4">
<HelpText>Transaction amount.</HelpText>
</Attribute>
<Attribute name="Status" displayName="Account Status" type="string"
order="5" indexable="true">
<HelpText>Account status.</HelpText>
</Attribute>
</Attributes>

</AuditComponent>
</AuditConfig>

Create indexable views either at registration or after registration.
If at registration time, use any of the following:

» Specify the opss.audit.iauview deployment parameter as INDEXABLE in
weblogic-application.xml.

» Pass the createView=INDEXABLE option to the registerAudit command.

Managing Audit 14-13

Best Practices for Audit Event Definitions

= Implement the AuditRegistrationExt interface and returning
AuditRegistrationExt.TYPE.INDEXABLE from the get IAUViewSupportType
method.

If after registration time, use any of the following:
= Run the createIAUView command to switch to an INDEXABLE view.

= Generate a SQL script with the createAuditDBView command, to which you
specify an INDEXABLE view type. Then run the script as administrator.

If you change event definitions, then drop the associated materialized view before
redeployment.

14.7 Best Practices for Audit Event Definitions

This section provides guidelines for managing audit configuration and maximizing
the value of the collected audit data, in the following topics:

= Guidelines for Naming Events

» Differentiating Events

s Event Categorization

s Use of Generic Attributes

= Use of Component Attributes

= Guidelines for Linking Across Components

» Updating Event Definitions

14.7.1 Guidelines for Naming Events

Ensure that all audit names conform to the following naming conventions:

= Do not use any of the following characters in componentType, Category, Event, or
Attribute names: !, @, “, #,$, %, ’, (,), *, +, comma, period, -, _, /, space, :, ;, <, =, >,

241~ N
= The space character is allowed in display names only.
When you name audit events:
= Do not prefix the event name with the component name.

= Try to make names as specific as possible. For example, use HTTPResponse
instead of Response when defining an HTTP response code.

= Do not append the suffix Event to all event names. For example, instead of
AuthenticationEvent, use Authentication.

14.7.2 Differentiating Events

To optimize the use of events:

= Define separate events for each operation. For example, instead of defining the
event Policy with attributes Delete and Create, define the separate events
PolicyCreate and PolicyDelete.

= Do not define separate events for the events success and failure. For example, do
not define the separate events PolicyCreateSuccess and PolicyCreateFailure.
Instead use the EventStatus attribute to record them.

14-14 Securing Applications with Oracle Platform Security Services

Best Practices for Audit Event Definitions

14.7.3 Event Categorization

To categorize events:

= Refer system categories when applicable. For example, UserSession and
Authorization.

= For configuration operations, make a category around a group of operations. For
example, put PolicyCreate, PolicyDelete in a component specific category called
Policy.

14.7.4 Use of Generic Attributes

When you define generic attributes:
= Include the following event attributes:
— Initiator - the user who performed the event action
— MessageText - a short description of what happened.
- EventStatus - the event outcome
- FailureCode - the error code applicable to the failure.

n Use the attribute Resource - the object that was affected, such as the accessed URI
or the granted permission.

14.7.5 Use of Component Attributes

The Audit Framework considers the union of all common attributes in each event and
defines a database column for each of them. So try to define as many common
attributes as possible.

14.7.6 Guidelines for Linking Across Components

Define enough information so that events generated by your component can be cross
linked to other events.

14.7.7 Updating Event Definitions

The component_events.xml file provides version support. If you decide to change the
event definitions, make sure to delete any associated materialized view.

Managing Audit 14-15

Best Practices for Audit Event Definitions

14-16 Securing Applications with Oracle Platform Security Services

15

Using Audit Analysis and Reporting

This chapter describes how to configure audit reporting and view audit reports.

This chapter includes the following topics:

About Audit Reporting
Audit Reporting with the Dynamic Metadata Model

15.1 About Audit Reporting

The Oracle Fusion Middleware Audit Framework offers two approaches to audit
reporting. The approach you adopt is determined by the audit model that components
use at your site:

Dynamic Metadata Model

This model was introduced in 11¢ Release 1 (11.1.1.6.0). Oracle Fusion Middleware
installations starting with 12c¢ (12.1.2) use this mode. For information about this
model, see Audit Reporting with the Dynamic Metadata Model.

Report Template Model

This earlier model is used by system components. When you upgrade, the Oracle
Fusion Middleware Audit Framework continues to use this model.

15.2 Audit Reporting with the Dynamic Metadata Model

Audit events are saved into the iau_common common attribute table and the iau_
custom_nnn custom attribute tables. Oracle Platform Security Services Common Audit
Framework generates SQL scripts to create Oracle Database views. Component
reporting applications can use these views to query audit event data from audit
database tables.

To set up audit reporting with the Dynamic Metadata Model:

1.

Register your application with audit. Audit registration creates audit views that
lets you run queries on audit data. For information about generating audit views
manually, see Registering the Application with the Service.

Configure audit policies so that audit logs events to generate audit data. For
information about audit logging, see Logging Audit Events Programmatically.

Configure the audit loader to ensure bus-stop files are migrated to the database.
For information about bus-stop files, see Managing Bus-Stop Files.

If audit views were not created at registration, then:

Using Audit Analysis and Reporting 15-1

Audit Reporting with the Dynamic Metadata Model

s Use createAuditDBView to generate a SQL script of audit definitions.

s Log in to the database as the IAU schema user to create a view using the SQL
script.

Configure your reporting application to query the view.

See also:

createAuditDBView in WLST Command Reference for Infrastructure
Security

Audit Views Created at Registration
Manually Created Audit Views

15.2.1 Audit Views Created at Registration

Starting with Release 12c (12.2.1), database views of your audit data can be created at
registration. The views supported are:

Simple view - This view is based on the runtime database mappings of the
component attributes against the columns in TAU_COMMON and IAU_CUSTOM_* tables.

A Simple database view is created in the IAU VIEWER schema when a component
registers with audit. This view type is available for all supported databases. Note
that a simple view is automatically generated for the component when you create
the schema with Oracle Fusion Middleware Repository Creation Utility.

Indexable view - A simple view that is indexable. This view leverages Oracle
materialized views for improved performance of reporting queries. These views
are supported ready-to-use for Oracle Databases only.

Use indexable views with care, as they can impact the audit loader performance. A
component can switch to an indexable view with the createIAUView WebLogic
Scripting Tool (WLST) command. Qualified event attributes must be present in the
component audit definitions. For information about indexes, see Creating Indexes
on Custom Table Attributes Using Materialized Views.

File audit repositories do not support views.

15.2.2 Manually Created Audit Views

To create audit views manually, use the createAuditDBView command. Here is the
output that this command generated when it was called to create a view for the
ApplicationAudit component:

-- Audit View for Component

CREATE VIEW ApplicationAudit_AUDITVIEW AS
SELECT IAU_AUDITSERVICE.IAU_TRANSACTIONID AS AUDITSERVICE_TRANSACTIONID,
TAU_COMMON. IAU_COMPONENTTYPE AS ComponentType,
TAU_COMMON.IAU_MAJORVERSION AS MajorVersion,
TAU_COMMON.IAU_MINORVERSION AS MinorVersion,
TAU_COMMON.IAU_INSTANCEID AS Instanceld,
TAU_COMMON.IAU_HOSTID AS HostId,
TAU_COMMON.IAU_HOSTNWADDR AS HostNwaddr,
TAU_COMMON.IAU_MODULEID AS ModuleId,
TIAU_COMMON. IAU_PROCESSID AS ProcessId,
TAU_COMMON.IAU_ORACLEHOME AS OracleHome,
TAU_COMMON.IAU_HOMEINSTANCE AS HomelInstance,
TAU_COMMON.IAU_ECID AS ECID,
TAU_COMMON.IAU_RID AS RID,

15-2 Securing Applications with Oracle Platform Security Services

Audit Reporting with the Dynamic Metadata Model

TAU_COMMON.IAU_CONTEXTFIELDS AS ContextFields,
IAU_COMMON.IAU_SESSIONID AS SessionId,

TAU_COMMON. IAU_TARGETCOMPONENTTYPE AS TargetComponentType,
IAU_COMMON. IAU_APPLICATIONNAME AS ApplicationName,
TAU_COMMON.IAU_EVENTTYPE AS EventType,

TAU_COMMON. IAU_EVENTCATEGORY AS EventCategory,
TAU_COMMON.IAU_EVENTSTATUS AS EventStatus,
TAU_COMMON.IAU_TSTZORIGINATING AS TstzOriginating,
TAU_COMMON.IAU_THREADID AS ThreadId,
TAU_COMMON.IAU_COMPONENTNAME AS ComponentName,
IAU_COMMON.IAU_INITIATOR AS Initiator,
TAU_COMMON.IAU_MESSAGETEXT AS MessageText,
TAU_COMMON.IAU_FAILURECODE AS FailureCode,
IAU_COMMON.IAU_REMOTEIP AS RemotelIP,

TAU_COMMON.IAU_TARGET AS Target,

TAU_COMMON. IAU_RESOURCE AS IAU_RESOURCE,

TAU_COMMON.IAU_ROLES AS Roles,

IAU_COMMON.IAU_DOMAINNAME AS DomainName,

TAU_COMMON. IAU_COMPONENTDATA AS ComponentData,
IAU_COMMON.IAU_AUDITUSER AS AuditUser,

TAU_COMMON.IAU_TENANTID AS TenantId,

IAU_COMMON. IAU_TRANSACTIONID AS TransactionId,
TAU_COMMON.IAU_USERTENANTID AS UserTenantId,
TAU_CUSTOM.IAU_INT_001 AS AccountNumber,
TAU_CUSTOM.IAU_DATETIME_001 AS Date,

IAU_CUSTOM.IAU_FLOAT 001 AS Amount,

IAU_CUSTOM.IAU_STRING_002 AS Status,

TAU_CUSTOM.IAU_FLOAT 002 AS Balance,
IAU_USERSESSION.IAU_AUTHENTICATIONMETHOD AS AuthenticationMethod
FROM IAU_AUDITSERVICE, IAU_COMMON, IAU_CUSTOM, IAU_USERSESSION WHERE IAU_
COMMON.IAU_ID = IAU_AUDITSERVICE.IAU_ID AND IAU_COMMON.IAU_ID = IAU_CUSTOM.IAU_ID
AND TAU_COMMON.TAU_ID = IAU_USERSESSION.IAU_ID AND IAU_COMMON.IAU_ComponentType =
'ApplicationAudit';

Using Audit Analysis and Reporting 15-3

Audit Reporting with the Dynamic Metadata Model

15-4 Securing Applications with Oracle Platform Security Services

Part IV

Developing with OPSS APlIs

This part contains the following chapters:

Integrating Application Security with OPSS

The Security Model

Developing with the Credential Store Framework

Developing with the User and Role API

Developing with the Identity Governance Framework
Developing with the Keystore Service

Developing with Oracle Fusion Middleware Audit Framework
Configuring Java EE Applications to Use OPSS

Configuring Java SE Applications to Use OPSS

16

Integrating Application Security with OPSS

This chapter describes a number of security use cases, including the propagation of
identities in domains and across domains, and the typical life cycle of an Oracle
Application Development Framework (Oracle ADF) application security.

This chapter includes the following sections:

= About Security Challenges

s Security Integration Use Cases

s The OPSS Trust Service

» Propagating Identities over HTTP

= Propagating Identities with the OPSS Trust Service
s Implementing a Custom Graphical User Interface
= Securing Oracle ADF Applications

s Code and Configuration Examples

» Propagating Identities with JKS

16.1 About Security Challenges

This chapter introduces use cases that solve several typical security challenges. Use
these use cases as the departing point to solve your particular application security
requirements. The audience includes developers, security architects, and security
administrators, and the solutions presented offer both declarative and programmatic
approaches.

The top security issues that you face include managing users, user passwords, and
controlling access to resources. OPSS provides solutions to these challenges by
supporting;:

= External security artifacts separate from the application logic
= A declarative approach to security

= A complete user identity life cycle

= Policy-driven access controls

Figure 16-1 illustrates how applications access the security stores and the tools you
use to manage them.

Integrating Application Security with OPSS 16-1

Security Integration Use Cases

Figure 16-1 Applications, Security Stores, and Management Tools

APM EM Olm
Application Policy and Role Configuration Security Artifact Identity and Enterprise Role
Management Management Management Management

Identity and Role Provisioning

0AM
Single Sign-On i &
QPSS Security Store
A
Authentication Function Security User and
| Iy Authorization Role Profile Identity Store
Credentials
WLS Container Kays
| Applications Audit
| ADF, SOA, WebCenter, BI
| OWSM Agent SPML Data Security
—— Application Transaction Data ————————»
| OPSS
Oracle RDBMS
See also:

OPSS Architecture Overview
Administrator’s Guide for Oracle Access Management

Developing Fusion Web Applications with Oracle Application Development
Framework

Developing Applications with Oracle Security Developer Tools
OPSS API References

16.2 Security Integration Use Cases
The following sections introduce several use cases:
= Authentication
= Identities
= Authorization
s Credentials
s Audit
= Identity Propagation
» Administration and Management
= Integration

Each use case includes a brief description of the problem it attempts to solve, the
security and features involved, and links to details.

16-2 Securing Applications with Oracle Platform Security Services

Security Integration Use Cases

16.2.1 Authentication

The following sections describe authentication use cases:

= Java EE Application Requiring Authenticated Users - Users must be authenticated
to access a Java EE application.

= Java EE Application Requiring Programmatic Authentication - A Java EE
application requires authenticating a user programmatically.

= Java SE Application Requiring Authentication - A Java SE application requires
authenticating against the domain identity store.

16.2.1.1 Java EE Application Requiring Authenticated Users

To access a Java EE application, users must be authenticated against the identity store
in cases where the identity store is any of the following:

= A single LDAP store.
s Several LDAP stores of the same kind.

» Several LDAP stores of different kinds, such as, for example Microsoft Active
Directory and Oracle Internet Directory.

= A single DB store.

= Several LDAP and DB stores.

This use case requires:

= Allowing access to the application to only authenticated users.

= Not modifying the application code, even when customers have user identities in
different repositories.

This use case features:

= Configuring the appropriate authentication providers according to your particular
set of user repositories.

s Configuring the authentication provider in case of a mixed LDAP or mixed LDAP
and DB types.

According to the repository used, the details of this use case are divided into the
following scenarios:

= Single user repository - Configure the appropriate WebLogic Server
Authentication Provider.

= Multiple user repositories - Configure the LDAP providers.
= DB repositories - Configure the database providers.

For information about authentication providers, see WebLogic Server Authentication
Providers.

16.2.1.2 Java EE Application Requiring Programmatic Authentication

A Java EE application not using deployment descriptors must authenticate the user
programmatically against the configured identity store(s).

This use case requires using OPSS APIs to authenticate a user, and it features:
= Configuring authentication providers for a Java container

s Using the oracle.security.jps.service.login.LoginService interface to
authenticate the user.

Integrating Application Security with OPSS 16-3

Security Integration Use Cases

For information about authentication, see About Authentication in Java EE
Applications.

16.2.1.3 Java SE Application Requiring Authentication

A Java SE application must authenticate users against the LDAP identity store used in
the domain. The application code requesting authentication must be the same
regardless of the specifics of the domain’s identity store.

This use case requires configuring the identity store(s) against which the
authentication should take place and using the
oracle.security.jps.service.login.LoginService interface. A Java SE application
can use only one identity login module.

For information about using login modules programmatically, see Using the Login
Modules in Java SE Applications.

16.2.2 Identities

The following sections describe identity use cases:

= Application Running in Two Environments - An Application, to run in two
different environments, requires access user profile information in a single LDAP
store.

= Application Accessing User Profiles in Multiple Stores - An Application requires
access user profile information stored in multiple LDAP stores.

16.2.2.1 Application Running in Two Environments

An application that can run in two different environments requires access to user
profile information stored in an LDAP store. The LDAP server may differ with the
environment.

More specifically, this use case assumes that:

s The application uses the UserProfile.getEmail method.

= Inone environment, mail is configured in the Microsoft Active Directory server:
mail.attr = msad_email

= In the other environment, mail is configured in the Oracle Identity Directory
server:

mail.attr = mail

For the application to retrieve the correct information without modifying the code and
regardless of the environment (first or second) in which it runs, you must configure
the identity store providers with the correct property in each of the environments.

In Microsoft Active Directory, set the identity store provider name property:

<property name="mail.attr" value="msad_mail">

In Oracle Identity Directory, set the identity store provider name property:

<property name="mail.attr" value="mail"

For information about identity store provider configuration, see Configuring the
Identity Store Provider.

16-4 Securing Applications with Oracle Platform Security Services

Security Integration Use Cases

16.2.2.2 Application Accessing User Profiles in Multiple Stores

An application requires access to user profile information located in more than one
LDAP store servers. In this scenario, you must configure the environment for multiple
LDAP stores. For information about the procedure, see Configuring Single and
Multiple LDAPs.

16.2.3 Authorization

The following sections describe authorization use cases:

= Java EE Application Accessible by Specific Roles - A Java EE application accessible
only by users configured in web descriptors.

s Oracle ADF Application Requiring Fine-Grained Authorization - An Oracle ADF
application requires fine-grained authorization.

= Application Securing Web Services - An requires securing web services.

= Java EE Application Requiring Codesource Permissions - A Java EE application
requires codesource permissions.

s Non-Oracle ADF Application Requiring Fine-Grained Authorization - A
non-Oracle ADF application requires fine-grained authorization.

16.2.3.1 Java EE Application Accessible by Specific Roles

For a Java EE application that allows access only to users that had been assigned
specific roles in web descriptors, the group-to-role assignment must be configurable at
deployment based on the customer's environment.

For information about declarative security, see the following topics in Developing
Applications with the WebLogic Security Service:

= Using Declarative Security with Web Applications
s Using Declarative Security with EJBs

16.2.3.2 Oracle ADF Application Requiring Fine-Grained Authorization

For an Oracle ADF application that requires fine-grained authorization at the level of
individual controls on the pages of the application, you must externalize policies and
customize them after you application deployment.

See also:
Securing Oracle ADF Applications

Enabling ADF Security in a Fusion Web Application in Developing
Fusion Web Applications with Oracle Application Development Framework

16.2.3.3 Application Securing Web Services

The application requires securing web services with fine-grained authorization. For
information about Web services, see Configuring Authorization Using Oracle Web
Services Manager in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

16.2.3.4 Java EE Application Requiring Codesource Permissions

A Java EE application requires codesource permissions to perform specific actions.
Typical examples are reading a credential from the credential store or looking up
policies. For information about permissions, see Configure a Grant.

Integrating Application Security with OPSS 16-5

Security Integration Use Cases

16.2.3.5 Non-Oracle ADF Application Requiring Fine-Grained Authorization

A non-Oracle ADF application requires fine-grained authorization checks. In this
scenario:

= Place checks in the application code
= Configure the appropriate policies

For information about managing and checking policies programmatically, see The
JAAS/OPSS Authorization Model.

16.2.4 Credentials

16.2.5 Audit

The following section describe a credential use case:

= Application Requiring Credentials to Access System - An Application requires
credentials to access a back-end system.

16.2.4.1 Application Requiring Credentials to Access System

An application requires a credential to connect to a back-end system, such as a
database or an LDAP server. The application code should reference this credential in
such a way that the specifics of the credential can be changed per customer post
deployment without modifying the application code. Furthermore, this use case also
requires specifying who can access the credential store and what operations an
authorized user can perform on credential data.

This use case features:
= Using the credential store to persist credentials

» Fetching credentials at runtime with the Credential Store Framework API in
application code

= Defining and enforcing system policies on codesource

See also:

Managing Credentials

Provisioning Access Permissions
Credential Store Framework API Examples

Packaging Credentials with the Application

The following sections describe audit use cases:

= Auditing Security-Related Activity - An application requires recording
security-related activity.

= Auditing Business-Related Activity - An application requires recording business
activity in the context of a flow.

16.2.5.1 Auditing Security-Related Activity

The settings explained in this use case apply to all applications and components in a
domain. Applications running in a domain require recording when policies,
credentials, or keys are changed, and the policies evaluated in a particular time
interval.

This use case features:

16-6 Securing Applications with Oracle Platform Security Services

Security Integration Use Cases

= Integrating applications with Oracle Platform Security Services Common Audit
Framework.

s Defining application audit categories and events in security areas, and making the
application audit-aware.

= Setting the appropriate filter level in each application.

See also:
Registering the Application with the Service
Logging Audit Events Programmatically

16.2.5.2 Auditing Business-Related Activity

The settings explained in this use case apply to all applications and components in a
domain. Applications must record business-related activity in the context of a
functional flow. Specifically, the application requires logging the users and the
business actions performed by them in a particular time interval.

To implement this scenario, you create audit events based on business needs, and the
application logs the event activity in the audit store. In addition, you generate audit
reports from audit events, manage runtime audit policies, and modify audit event
definitions, as needed.

This use case features:

= Allowing applications to define business functional areas (as audit categories),
business activities (as audit events in categories), and attributes in each category.

= Registering applications at deployment, updating audit definitions, deregistering
applications after deployment.

» Managing audit artifacts with Oracle Enterprise Manager Fusion Middleware
Control (Fusion Middleware Control) or WebLogic Scripting Tool (WLST)
commands.

See also:

Registering the Application with the Service
Logging Audit Events Programmatically
Creating Audit Definition Files

Managing Audit Policies

16.2.6 Identity Propagation

The following sections describe identity propagation use cases:
= Propagating the Executing User Identity

= Propagating a User Identity

= Propagating Identities Across Domains

= Propagating Identities over HTTP
16.2.6.1 Propagating the Executing User Identity

A client application in a container requires propagating the executing user identity to a
web service over the Simple Object Access Protocol (SOAP). The web service may be

Integrating Application Security with OPSS 16-7

Security Integration Use Cases

running in the same domain (same or different Managed Server), or in a different
domain.

For information about OWSM, see Securing Web Services and Managing Policies with
Oracle Web Services Manager.

16.2.6.2 Propagating a User Identity

A client application in container requires propagating a user identity (distinct from the
executing user identity) to a web service over SOAP.

In this use case, the application gets the specific identity to propagate from the
credential store and uses OWSM ability to propagate the identity to a remote server.

For information about OWSM, see Securing Web Services and Managing Policies with
Oracle Web Services Manager.

16.2.6.3 Propagating Identities Across Domains

A client application in container requires propagating a user identity (stored in the
security store) to a different WebLogic Server domain.

For information about domain trust, see Enabling Trust Between WebLogic Server
Domains in Administering Security for Oracle WebLogic Server.

16.2.6.4 Propagating Identities over HTTP

A client application in container requires propagating identities over HTTP. The
recommended implementation is to use the OPSS trust service.

See also:
Propagating Identities with the OPSS Trust Service
Propagating Identities with JKS

16.2.7 Administration and Management

The following sections describe administration and management use cases:
= Application Requiring a Centralized Store
= Application Requiring a Custom Management Tool

= Application Running in a Multiple Server Environment

16.2.7.1 Application Requiring a Centralized Store

An application requires a central repository of policies, credentials, audit
configuration, trusts, and keys, and a set of tools to manage it. To implement this use
case, use OPSS services and the tools to manage security services.

See also:

About the Security Store

Managing Policies with Fusion Middleware Control
Managing Policies with WLST

Managing Credentials with Fusion Middleware Control
Managing Credentials with WLST

Managing Keys and Certificates

16-8 Securing Applications with Oracle Platform Security Services

Propagating |dentities over HTTP

16.2.7.2 Application Requiring a Custom Management Tool
An application requires a custom tool to manage externalized security data. To

implement this use case, create a custom graphical user interface that calls OPSS APIs
to display and manage security data in a context meaningful to the application.
See also:

Implementing a Custom Graphical User Interface

OPSS API References

16.2.7.3 Application Running in a Multiple Server Environment
An application running in a domain (where several server instances may be
distributed across multiple machines) requires propagating security data changes
when you initiate changes on the Administration Server and data on Managed Servers
is refreshed based on caching policies. Changes must take effect in all components of
the application regardless of where they are running. To implement this use case, use
the OPSS MBeans or OPSS APIs to modify security data.

See also:

Environments with Multiple Servers

Configuring Services with MBeans

16.2.8 Integration

A product requires multiple WebLogic Server domains to run and these domains must
share a single central security store. To implement this use case, use the
reassociateSecurityStore command to join to a store in some other domain, and the
OPSS support for several domains to share a centralized security store.

Joining to a security store is supported only when you create a new domain.

See also:
reassociateSecurityStore

Encrypting Credentials

16.3 The OPSS Trust Service

The OPSS trust service uses the Identity Asserter to provide and validate tokens and
allows applications to propagate identities across HTTP-enabled applications.

See also:

Trust Service Properties

updateTrustServiceConfig in WLST Command Reference for
Infrastructure Security

16.4 Propagating Identities over HTTP

Note: Oracle recommends that you implement identity propagation
using the OPSS trust service as explained in Propagating Identities
with the OPSS Trust Service.

Integrating Application Security with OPSS 16-9

Propagating Identities with the OPSS Trust Service

Figure 16-2 illustrates the typical flow of identity propagation using HTTP:

1. A client application in Domain1 requests a token for an authenticated user from
Domainl's OPSS trust instance.

2. The service accesses Domainl’s keystore and generates a token for the client
application.

3. The client application encodes the token in an HTML header and dispatches an
HTTP request to a Java servlet in Domain2. Domain 2's asserter intercepts the
request and extracts the token.

4. The asserter requests a validation of that token from Domain2's OPSS trust
instance.

5. The service accesses Domain2’s keystore to validate the token and returns a
response.

6. Assuming that the validation is successful, the asserter sends the request to the
Java servlet with the asserted identity.

7. The Java servlet sends an HTTP response to the client application request.

Figure 16-2 Identity Propagation over HTTP

Domain 1 Domain 2
! ! |
—n-‘ Client Application —(3 __..| Identity Asserter g —:-| Serviet Application

| " T Y

: ¢ |8 §

Authent_i-catad OPSES Trust Service QPSS Trust Service

User Accesses (Issues Token) {Validates Token})

Application I [
L

‘ Keystore | Keystore

The ready-to-use configuration sets the key alias based on the server name.

16.5 Propagating Identities with the OPSS Trust Service

To propagate identities across multiple domains or across containers in a single
domain, Oracle recommends that you use the OPSS trust service as explained in the
following sections:

= Propagating Identities Across Multiple WebLogic Server Domains
= Propagating Identities Across Containers in a Single WebLogic Server Domain

» Trust Provider Properties

16.5.1 Propagating Identities Across Multiple WebLogic Server Domains

In this use case there are two different WebLogic Server domains: Domainl and
Domain?2. The client application is running in Domain1, and the Java servlet is running
in Domain2. The client application uses Domain1’s service for token generation, and
the Java servlet uses Domain2’s service for token validation.

16-10 Securing Applications with Oracle Platform Security Services

Propagating Identities with the OPSS Trust Service

The following sections include examples and configurations to implement this use
case:

s Token Generation on the Client-Side Domain

m Server Side or Token Validation Domain

16.5.1.1 Token Generation on the Client-Side Domain
On the client side (Domainl) where the token is generated:

= Develop the Client Application
s Configure the Truststore
= Add a TrustServiceAccessPermission Grant

= Configure the Provider

16.5.1.1.1 Develop the Client Application The client application can be a Java SE or Java
EE application. The following example illustrates the client application:

// Authentication type name

public static final String AUTH_TYPE NAME = "OIT";
// The authenticated username

String user = "weblogic";

// URL of the target application

URL url = "http://<host>:<port>/<destinationApp>";

JpsContextFactory ctxFactory = JpsContextFactory.getContextFactory();

JpsContext jpsCtx = ctxFactory.getContext();

final TrustService trustService = jpsCtx.getServicelnstance (TrustService.class);

final TokenManager tokenMgr = trustService.getTokenManager () ;

final TokenContext ctx = tokenMgr.createTokenContext (
TokenConfiguration.PROTOCOL_EMBEDDED) ;

UsernameToken ut = WSSTokenUtils.createUsernameToken ("wsuid", user);

GenericToken gtok = new GenericToken (ut);

ctx.setSecurityToken (gtok) ;

ctx.setTokenType (SAML2URI.ns_saml) ;

Map<String, Object> ctxProperties = ctx.getOtherProperties();

ctxProperties.put (TokenConstants.CONFIRMATION_METHOD,
SAML2URI.confirmation_method_bearer) ;

AccessController.doPrivileged (new PrivilegedAction<String>() {
public String run() {
try {
tokenMgr.issueToken (ctx) ;
} catch (Exception e) {
e.printStackTrace() ;
}

return null;

)

Token token = ctx.getSecurityToken();
String b64Tok = TokenUtil.encodeToken (token) ;

HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod ("GET") ;

connection.setDoOutput (true) ;

connection.setReadTimeout (10000) ;

connection.setRequestProperty ("Authorization", AUTH_TYPE_NAME + " " + b64Tok);
connection.connect () ;

Integrating Application Security with OPSS 16-11

Propagating Identities with the OPSS Trust Service

BufferedReader rd = new BufferedReader (new InputStreamReader (
connection.getInputStream()));
StringBuilder sb = new StringBuilder();

String line = null;

while ((line = rd.readLine()) != null) {
sb.append(line) ;

}

connection.disconnect () ;

System.out.println(sb.toString());

16.5.1.1.2 Configure the Truststore The truststore should be provisioned with a client
certificate and a private key. The certificate is exported from the keystore and imported
into the truststore. Both the keystore and the truststore, are managed by the keystore
service (KSS) keystore in the client domain.

Note: When you set the trust.keystoreType property to XSS, it is
recommended not to use passwords for the keystore or the truststore.
In this case, by default, the keystore and truststore are protected by
codesource permissions and therefore do not require password
protection.

The following script illustrates these tasks:

Update following values with correct value
user = "<username>"

password = "<password>"

wlsurl = "t3(s)://<host>:<port>"

stripeName = "<stripeNmae>"

ksName = "<trustservice_ks>"
tsName = "<trustservice_ts>"
aliasName = "<trustservice>"
issuerDN = "cn=" + aliasName

print "Stripe Name: " + stripeName
print "KeyStore Name: " + ksName
print "TrustStore Name: " + tsName
print "Alias Name: " + aliasName
print "Issuer DN: " + issuerDN

connect (user, password, wlsurl)

svc = getOpssService (name='KeyStoreService')
svc.listKeyStores (appStripe=stripeName)

svc.createKeyStore (appStripe=stripeName, name=ksName, password="",
permission=true)

svc.generateKeyPair (appStripe=stripeName, name=ksName, password="", dn=issuerDN,
keysize="1024", alias=aliasName, keypassword="", algorithm="RSA")
svc.exportKeyStoreCertificate (appStripe=stripeName, name=ksName, password="",
alias=aliasName, keypassword="", type="Certificate",

filepath="./trustservice.cer")

svc.createKeyStore (appStripe=stripeName, name=tsName, password="",

16-12 Securing Applications with Oracle Platform Security Services

Propagating Identities with the OPSS Trust Service

permission=true)

svc. importKeyStoreCertificate (appStripe=stripeName, name=tsName, password="",
alias=aliasName, keypassword="", type="TrustedCertificate",
filepath="./trustservice.cer")

svc.listKeyStores (appStripe=stripeName)

svc.listKeyStoreAliases (appStripe=stripeName, name=ksName, password="",
type="Certificate")

exit ()

16.5.1.1.3 Add a TrustServiceAccessPermission Grant The following grant (in the
application jazn-data.xml file) illustrates a codesource permission that allows clients
to use trust methods:

<grant>
<grantee>
<codesource>

<url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
</codesource>
</grantee>
<permissions>
<permission>

<class>oracle.security.jps.service.trust.TrustServiceAccessPermission</class>
<name>appIld=*</name>
<actions>issue</actions>
</permission>
</permissions>
</grant>

Add this grant to the security store with the grantPermission WLST command, or if
the application is a Java EE application and the jazn-data.xml file is packed with the
application, then have the grant migrated to the security store at application
deployment.

See also:
grantPermission in WLST Command Reference for Infrastructure Security.

Configuring the Filter and the Interceptor

16.5.1.1.4 Configure the Provider The following example illustrates trust provider
properties:

<propertySet name="trust.provider.embedded">
<property name="trust.keystoreType" value="KSS"/>

<property name="trust.keyStoreName" value="kss://<stripeName>/<keystoreName>"/>

<property name="trust.trustStoreName"
value="kss://<stripeName>/<truststoreName>"/>

<property name="trust.aliasName" value="<aliasName>"/>

<property name="trust.issuerName" value="<issuerName>"/>

<property name="trust.provider.className"
value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>

<property name="trust.clockSkew" value="60"/>

<property name="trust.token.validityPeriod" value="1800"/>

<property name="trust.token.includeCertificate" value="false"/>
</propertySet>

Integrating Application Security with OPSS 16-13

Propagating Identities with the OPSS Trust Service

16.5.1.2 Server Side or Token Validation Domain
On the server side (Domain2) where the token is validated:

= Develop the Server Application
= Configure web.xml

= Configure the Asserter

= Provision the Keystore

= Add Permissions

= Configure the Provider

16.5.1.2.1 Develop the Server Application The Java servlet code first obtains the asserted
user:

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
String username = request.getRemoteUser();
ServletOutputStream out = response.getOutputStream();
out.print ("Asserted username: " + username);
out.close();

16.5.1.2.2 Configure web.xml Set the login configuration method to CLIENT-CERT in the
web.xml file:

<web-app id="WebApp_ID"

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>Identity Assertion </realm-name>
</login-config>

</web-app>

16.5.1.2.3 Configure the Asserter Configure the asserter in one of the following ways:

= Log in to Oracle WebLogic Server Administration Console and go to Security
Realms, then to the Providers tab, then to Authentication, and then choose
TrustServiceldentityAsserter.

This asserter calls trust methods to decode and validate the token from the
incoming request, and passes the user name to WebLogic Server to establish the
asserted subject.

» Use a script like the following:

connect ("<username>", "<password>", "t3://<host>:<port>")

edit ()

startEdit ()

realm = cmo.getSecurityConfiguration().getDefaultRealm()

tsia = realm.lookupAuthenticationProvider ("TSIA")

if tsia != None:
realm.destroyAuthenticationProvider (tsia)

tsia = realm.createAuthenticationProvider ("TSIA",

"oracle.security.jps.wls.providers.trust.TrustServiceIdentityAsserter")

save ()

activate()

disconnect ()

16-14 Securing Applications with Oracle Platform Security Services

Propagating Identities with the OPSS Trust Service

16.5.1.2.4 Provision the Keystore Export the client certificate you provisioned in the
Domainl’s keystore and import it into the Domain2’s truststore, as illustrated in the
following example.

Note: Import the certificate in the keystore with an alias that matches
the client name. In case of multiple domains, the issuerName set
during token generation on the client side is used as the alias name to
search for the certificate name on the server side.

Update following values with correct value

user = "<username>"

password = "<password>"

wlsurl = "t3(s)://<host>:<port>"
stripeName = "<stripeName>"

ksName = "<trustservice_ks>"
tsName = "<trustservice_ts>"
aliasName = "<trustservice>"

print "Importing certificate for : " + aliasName
print "Stripe Name: " + stripeName
print "TrustStore Name: " + tsName
print "Alias Name: " + aliasName

connect (user, password, wlsurl)
svc = getOpssService (name='KeyStoreService')
svc.listKeyStores (appStripe=stripeName)

switch Trust service to using FKS

svc.createKeyStore (appStripe=stripeName, name=tsName, password="",
permission=true)

svc.importKeyStoreCertificate (appStripe=stripeName, name=tsName, password="",
alias=aliasName, keypassword="", type="TrustedCertificate",
filepath="./trustservice.cer")

svc.listKeyStoreAliases (appStripe=stripeName, name=tsName, password="",
type="TrustedCertificate")

exit ()

16.5.1.2.5 Add Permissions Use the grantPermission WLST command to add
codesource grants to the application’s jazn-data.xml file.

For example, the following codesource grant is required for the MyApp application to
use trust methods:

<grant>
<grantee
<codesource>
<url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
</codesource>
</grantee>
<permissions>
<permission>
<class>oracle.security.jps.service.trust.TrustServiceAccessPermission</class>
<name>appId=*</name>
<actions>validate</actions>
</permission>
</permissions>
</grant>

See also:

grantPermission in WLST Command Reference for Infrastructure Security

Integrating Application Security with OPSS 16-15

Propagating Identities with the OPSS Trust Service

16.5.1.2.6 Configure the Provider The following example illustrates trust provider
properties:

<propertySet name="trust.provider.embedded">
<property name="trust.keystoreType" value="KSS"/>

<property name="trust.keyStoreName" value="kss://<stripeName>/<keystoreName>"/>

<property name="trust.trustStoreName"
value="kss://<stripeName>/<truststoreName>"/>

<property name="trust.aliasName" value="<aliasName>"/>

<property name="trust.issuerName" value="<issuerName>"/>

<property name="trust.provider.className"
value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>

<property name="trust.clockSkew" value="60"/>

<property name="trust.token.validityPeriod" value="1800"/>

<property name="trust.token.includeCertificate" value="false"/>
</propertySet>

If the provider is used only for token validation, then the aliasName and issuerName
attributes are not used for token validation and are therefore optional. In this case to
validate a token, the provider looks for the certificate using the name included in the
token.

16.5.2 Propagating Identities Across Containers in a Single WebLogic Server Domain

In this use case the client and server applications run in the same domain, both
applications can use the same keystore, and therefore it is not necessary to import the
client certificate (into some other keystore). All other information remains identical to
that explained in the multiple-domain scenario.

16.5.3 Trust Provider Properties

To configure the trust provider, use the following properties:
m trust.keyStoreType

m trust.keyStoreName

m trust.trustStoreName

m trust.aliasName

m trust.issuerName

m trust.provider.className

m trust.clockSkew

m trust.token.validityPeriod

m trust.token.includeCertificate

The following example illustrates a trust provider configuration:

<propertySet name="trust.provider.embedded">

<property name="trust.keystoreType" value="KSS"/>

<property name="trust.keyStoreName" value="kss://<stripeName>/<keystoreName>"/>

<property name="trust.trustStoreName"
value="kss://<stripeName>/<truststoreName>"/>

<property name="trust.aliasName" value="<aliasName>"/>

<property name="trust.issuerName" value="<aliasName>"/>

<property name="trust.provider.className"
value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/

16-16 Securing Applications with Oracle Platform Security Services

Implementing a Custom Graphical User Interface

>
<property name="trust.clockSkew" value="60"/>
<property name="trust.token.validityPeriod" value="1800"/>
<property name="trust.token.includeCertificate" value="false"/>
</propertySet>

To modify the properties of the trust provider, use the updateTrustServiceConfig
WLST command. For information about this command, see updateTrustServiceConfig
in WLST Command Reference for Infrastructure Security.

16.6 Implementing a Custom Graphical User Interface

This section illustrates some of the operations needed when you implement, for
example, a custom graphic Ul to manage policies. The examples use the OPSS APIs
and demonstrate how to:

= Queue users in the identity store.
= Queue application roles in the security store.

= Queue the mapping of users and groups to application roles. Specifically, given a
user identify all the application roles mapped to that user (Recall that the mapping
of users and groups to application roles is a many-to-many relationship).

» Create, read, update, and delete the mapping of users and groups to application
roles.

This use case assumes that:
» The identity store is an LDAP store.
» The security store is an LDAP store.
= The identity store contains the following hierarchy of users and groups:
— The Mary, John, Tom, and Helen users.
— The IT, Training, and Development groups.
— The Training and Development groups, members of the IT group.
- The Mary user, member of the Training group.
- The Tom and John users, members of the Development development.

» The security store contains the following application policies and hierarchy of
application roles:

- The ApplicationPolicyl and ApplicationPolicy2 application policies.

— The System Manager, System Developer, and System Analyst roles,
application roles referenced in the policy ApplicationPolicyl. The System
Manager role is a member of the System Developer role. The System
Developer role is a member of the System Analyst role.

- The Director, Instructor, and Lecturer roles are application roles referenced in
the ApplicationPolicy2 policy. The Director role is a member of the Instructor
role. The Instructor role is a member of the Lecturer role.

= Application roles are mapped to users and groups:
— The System Manager role is mapped to the Helen user.
— The System Developer role is mapped to the Development group.

- The Director role is mapped to the Tom user.

Integrating Application Security with OPSS 16-17

Implementing a Custom Graphical User Interface

— The Instructor role is mapped to the Training and Development groups.

Figure 16-3 illustrates this hierarchy of application roles, users and groups, and the
mapping of application roles to users and groups.

Figure 16-3 Mapping of Application Roles to Users and Groups

ID Store Policy Store
Y ApplicationPolicy1
ofo
u [%) C C ee
IT Group %
System System Syslem
Manager Developer Analyst
Applluatiml’olbcy:!
"
© © © 00
G ¢ ' ';
Tom Helen Director Instructor Lacturer

Note that this role hierarchy implies that a user in the System Manager role is also in
the System Developer role, and similarly with the other roles. The role membership for
each of the four users is next summarized:

= User Tom is a member of the following application roles: System Developer,
System Analyst, Director, Instructor, and Lecturer.

= User Helen is a member of the following application roles: System Manager,
System Developer, and System Analyst.

= User Mary is a member of the following application roles: Instructor and Lecturer.

= User John is a member of the following application roles: System Developer,
System Analyst, Instructor, and Lecturer.

For the examples details, see the following sections:
= Imports Assumed

= Query Identity Store Example

s Create Role Example

= Query Roles Example

= Map Roles Example

= Get Roles that Contain a User Example

= Delete Role Mapping Example

16-18 Securing Applications with Oracle Platform Security Services

Implementing a Custom Graphical User Interface

16.6.1 Imports Assumed

The examples assume the following import statements:

import java.security.AccessController;

import java.security.Policy;

import java.security.Principal;

import java.security.PrivilegedExceptionAction;

import java.security.Security;

import java.util.HashSet;

import java.util.List;

import java.util.Set;

import javax.security.auth.Subject;

import oracle.security.idm.Identity;

import oracle.security.idm.IdentityStore;

import oracle.security.idm.ObjectNotFoundException;

import oracle.security.idm.Role;

import oracle.security.idm.RoleManager;

import oracle.security.idm.SearchParameters;

import oracle.security.idm.SearchResponse;

import oracle.security.idm.SimpleSearchFilter;

import oracle.security.idm.User;

import oracle.security.idm.UserProfile;

import oracle.security.jps.ContextFactory;

import oracle.security.jps.JpsContext;

import oracle.security.jps.JpsContextFactory;

import oracle.security.jps.principals.JpsApplicationRole;

import oracle.security.jps.service.idstore.IdentityStoreService;
import oracle.security.jps.service.policystore.ApplicationPolicy;
import oracle.security.jps.service.policystore.PolicyObjectNotFoundException;
import oracle.security.jps.service.policystore.PolicyStore;

import oracle.security.jps.service.policystore.PolicyStoreException;
import oracle.security.jps.service.policystore.entitymanager.AppRoleManager;
import oracle.security.jps.service.policystore.info.AppRoleEntry;
import oracle.security.jps.service.policystore.search.AppRoleSearchQuery;
import oracle.security.jps.service.policystore.search.ComparatorType;
import oracle.security.jps.util.JpsAuth;

import weblogic.security.principal.PrincipalFactory;

16.6.2 Query Identity Store Example

The following example illustrates two queries to users in the identity store:

private void queryUsers() throws Exception {
// Using IDM U/R to query ID store
IdentityStore idmStore = idStore.getIdmStore();

// Query an individual user by name
User employee = idmStore.searchUser (USER_TOM) ;

log("==mmmmmmmmm ")i

log ("### Query individual user (Tom) from ID store ###");

1log(USER_TOM + ": " + employee.getName() + " GUID: " +
employee.getGUID()) ;

log();

// Get all users whose name is not "Paul"
SimpleSearchFilter filter =
idmStore.getSimpleSearchFilter (UserProfile.NAME,
SimpleSearchFilter.TYPE_NOTEQUAL,
"Paul");
SearchParameters sps =

Integrating Application Security with OPSS 16-19

Implementing a Custom Graphical User Interface

new SearchParameters(filter, SearchParameters.SEARCH_USERS_ONLY) ;
SearchResponse result = idmStore.searchUsers(sps);

log ("### Query all users (whose name is not Paul) from ID store ###");
log("Found the following users:");
while (result.hasNext()) {
Identity user = result.next();
log("\t user: " + user.getName() + ", GUID: " + user.getGUID());
}
log();

16.6.3 Create Role Example

The following example illustrates how to create an application role and how to make a
role a member of another role:

private void createAppRolesl () throws Exception {
AppRoleManager arml = apl.getAppRoleManager () ;

log("### Creating app roles in app policyl with hierachy ###");

AppRoleEntry sysAnalystRole =
arml.createAppRole (APP_ROLE_SYS_ANALYST, APP_ROLE_SYS_ANALYST,
APP_ROLE_SYS_ANALYST) ;
AppRoleEntry sysDeveloperRole =
arml.createAppRole (APP_ROLE_SYS_DEVELOPER, APP_ROLE_SYS_DEVELOPER,
APP_ROLE_SYS_DEVELOPER) ;
AppRoleEntry sysManagerRole =
arml.createAppRole (APP_ROLE_SYS_MANAGER, APP_ROLE_SYS_MANAGER,
APP_ROLE_SYS_MANAGER) ;

apl.addPrincipalToAppRole (sysManagerRole, APP_ROLE_SYS_DEVELOPER) ;
apl.addPrincipalToAppRole (sysDeveloperRole, APP_ROLE_SYS_ANALYST) ;
log ("### App roles in app policy #1 have been created ###");
log();

16.6.4 Query Roles Example
The following example illustrates several ways to query application roles:

private void queryAppRolesInApplicationPolicyl () throws Exception {
AppRoleManager arml = apl.getAppRoleManager () ;

// Get role that matches a name
AppRoleEntry are = arml.getAppRole (APP_ROLE_SYS_MANAGER) ;

log("### Query app roles in application policy #1, by name ###");
log("Found " + are.getName() + " by app role name.");
log();

// Get the role that matches a name exactly
AppRoleSearchQuery gq =
new AppRoleSearchQuery (AppRoleSearchQuery.SEARCH_PROPERTY.NAME,

false, ComparatorType.EQUALITY,
APP_ROLE_SYS_ANALYST,
AppRoleSearchQuery .MATCHER.EXACT) ;

List<AppRoleEntry> arel = arml.getAppRoles(q);

log ("### Query app roles in application policy #1, by exact query ###");

16-20 Securing Applications with Oracle Platform Security Services

Implementing a Custom Graphical User Interface

log("Found " + arel.get(0).getName() + " by exact query.");
log();

// Get roles with names that begin with a given string
q:
new AppRoleSearchQuery (AppRoleSearchQuery.SEARCH_PROPERTY.NAME, false,

ComparatorType.EQUALITY,
APP_ROLE_SYS_DEVELOPER. subSequence (0, 7),
AppRoleSearchQuery.MATCHER.BEGINS_WITH) ;

arel = arml.getAppRoles(q);

log ("### Query app roles in app policy #1, by begins_with query ###");

log("Found " + arel.get(0).getName() + " by begins_with query.");

log();

// Get roles with names that contain a given substring
q:
new AppRoleSearchQuery (AppRoleSearchQuery.SEARCH_PROPERTY.NAME, false,

ComparatorType.EQUALITY, "dummy",
AppRoleSearchQuery.MATCHER.ANY) ;

arel = arml.getAppRoles(q);

log ("### Query app roles in app policy #1, by matcher any ###");

log("Found " + arel.size() + " app roles by matcher any.");

for (AppRoleEntry ar : arel) {

log("\t" + ar.getName());
}
log();

16.6.5 Map Roles Example
The following example illustrates how to map application roles to users and groups:

private void assignAppRoleToUsersAndGroups () throws Exception {
// Obtain the user/group principals
IdentityStore idmStore = idStore.getIdmStore();
User tom = idmStore.searchUser (USER_TOM) ;
User helen = idmStore.searchUser (USER_HELEN) ;

Role trainingRole =

idmStore.searchRole(IdentityStore.SEARCH_BY_ NAME, GROUP_TRAINING) ;
Role devRole =

idmStore.searchRole (IdentityStore.SEARCH_BY NAME, GROUP_DEV) ;

Principal tomPrincipal =
PrincipalFactory.getInstance() .createWLSUser (tom.getName(),
tom.getGUID(),

tom.getUniqueName ()) ;
Principal helenPrincipal =
PrincipalFactory.getInstance() .createWLSUser (helen.getName(),
helen.getGUID(),
helen.getUniqueName()) ;
Principal trainingPrincipal =
PrincipalFactory.getInstance() .createWLSGroup (trainingRole.getName (),
trainingRole.getGUID(),
trainingRole.getUniqueName ()) ;
Principal devPrincipal =
PrincipalFactory.getInstance () .createWLSGroup (devRole.getName (),
devRole.getGUID(),
devRole.getUniqueName()) ;

Integrating Application Security with OPSS 16-21

Implementing a Custom Graphical User Interface

// RApplication policy #1

log ("### Assigning appl roles to users and groups, app policy #1 ###");
apl.addPrincipalToAppRole (helenPrincipal, APP_ROLE_SYS_MANAGER) ;
apl.addPrincipalToAppRole (devPrincipal, APP_ROLE_SYS_DEVELOPER) ;

// Application policy #2

log("### Assigning app roles to users and groups, app policy #2 ###");
ap2.addPrincipalToAppRole (tomPrincipal, APP_ROLE_DIRECTOR) ;
ap2.addPrincipalToAppRole (devPrincipal, APP_ROLE_INSTRUCTOR) ;
ap2.addPrincipalToAppRole (trainingPrincipal, APP_ROLE_INSTRUCTOR) ;

log("### App roles have been assigned to users and groups ###");
log();

16.6.6 Get Roles that Contain a User Example
The following example illustrates how to get all the roles that contain a specified user:

private void showAppRoles() throws Exception {
Subject tomSubject = getUserSubject (USER_TOM) ;
Subject helenSubject = getUserSubject (USER_HELEN) ;
Subject johnSubject = getUserSubject (USER_JOHN) ;
Subject marySubject = getUserSubject (USER_MARY) ;

Set<String> applications = new HashSet<String>();
applications.add (APPLICATION_NAMEL) ;
applications.add (APPLICATION_NAME2) ;

log ("### Query application roles for Tom ###");
showAppRoles (applications, USER_TOM, tomSubject);
log();
log ("### Query application roles for Helen ###");
showAppRoles (applications, USER_HELEN, helenSubject);
log();
log ("### Query application roles for John ###");
showAppRoles (applications, USER_JOHN, johnSubject);
log();
log ("### Query application roles for Mary ###");
showAppRoles (applications, USER_MARY, marySubject);
log();
}

private Subject getUserSubject (String userName) throws Exception {

Subject subject = new Subject();

// Query users from ID store using user/role API,for user principal

IdentityStore idmStore = idStore.getIdmStore();

User user = idmStore.searchUser (userName) ;

Principal userPrincipal =

PrincipalFactory.getInstance() .createWLSUser (user.getName(),

user.getGUID(),
user.getUniqueName ()) ;

subject.getPrincipals () .add(userPrincipal) ;

// Query users from ID store using user/role API, for enterprise roles
RoleManager rm = idmStore.getRoleManager () ;
SearchResponse result = null;
try {
result = rm.getGrantedRoles (user.getPrincipal(), false);

16-22 Securing Applications with Oracle Platform Security Services

Implementing a Custom Graphical User Interface

} catch (ObjectNotFoundException onfe) {
// ignore

// Add group principals to the subject
while (result != null && result.hasNext()) {
Identity role = result.next();
Principal groupPrincipal =
PrincipalFactory.getInstance() .createWLSGroup (role.getName (),
role.getGUID(),
role.getUniqueName()) ;
subject.getPrincipals () .add(groupPrincipal) ;

// The subject now contains both user and group principals.
return subject;

private void showAppRoles (Set<String> applications, String user, Subject subject)
{
// Get all granted application roles for this subject
Set<JpsApplicationRole> result = null;
try {
result = JpsAuth.getAllGrantedAppRoles (subject, applications);
} catch (PolicyStoreException pse) {
log(pse.toString());
}
if (result.size() <= 1) {
log(user + " has " + result.size() + " application role.");
if (result.size() == 1) {
for (JpsApplicationRole ar : result) {
log("\tApplication role: " + ar.getName());

}
} else {
System.out.println(user + " has " + result.size() +
" application roles.");
for (JpsApplicationRole ar : result) ({
log("\tApplication role: " + ar.getAppID() + "/" +
ar.getName()) ;

16.6.7 Delete Role Mapping Example

The following example illustrates how to remove the mapping of an application role to
a group:

private void removeAppRoleForUserDirector () throws Exception {
// Remove instructor role from Dev group

log ("### Removing Instructor application role from Dev group ###");

IdentityStore idmStore = idStore.getIdmStore();
Role devRole =
idmStore.searchRole (IdentityStore.SEARCH_BY NAME, GROUP_DEV) ;
Principal devPrincipal =
PrincipalFactory.getInstance () .createWLSGroup (devRole.getName (),
devRole.getGUID(),

Integrating Application Security with OPSS 16-23

Securing Oracle ADF Applications

devRole.getUniqueName ()) ;
ap2.removePrincipalFromAppRole (devPrincipal, APP_ROLE_INSTRUCTOR) ;
log ("### Instructor app role has been removed from Dev group ###");
log();

log("### Now query application roles for user John, again ###");
Set<String> applications = new HashSet<String>();
applications.add (APPLICATION_NAMEL) ;

applications.add (APPLICATION_NAME2) ;

Subject johnSubject = getUserSubject (USER_JOHN) ;

showAppRoles (applications, USER_JOHN, johnSubject);

log();

16.7 Securing Oracle ADF Applications

The following sections explain the typical tasks performed in Oracle ADF applications
developed with Oracle JDeveloper:

= Developing Phase
= Deployment Phase
= Administration Phase

The participants are the application product manager, developers, and security
administrators.

See also:

Summary of Tasks per Participant per Phase

16.7.1 Developing Phase

In the development phase developers design the application to work with the full
range of security options available in Oracle Fusion Middleware. Developers have
access to a rich set of security services exposed by JDeveloper, the built-in Oracle ADF
framework, and Oracle WebLogic Server, all of which ensure a consistent approach to
security throughout the application’s life span.

You use ADF Security Wizard (an authorization editor) and the expression language
editor, all within JDeveloper. Additionally and optionally, you may use OPSS APIs to
implement more complex security tasks. Thus, some parts of the application use
declarative security, others use programmatic security, and they both rely on security
features available in the development and runtime environment.

You also define a number of application entitlements and roles required to secure the
application, and this data is kept in a source control system together with the
application source code.

16.7.2 Deployment Phase

After you have developed the application, you test it in a staging environment before
deploying it to a production environment. In a production environment, the
application and runtime services are integrated with other security components, such
as single sign-on, user provisioning, and audit.

16-24 Securing Applications with Oracle Platform Security Services

Securing Oracle ADF Applications

The type of security services usually change with the phase: for example, during
development you keep credentials in a file or Oracle wallet, but in a production
environment you store them in an LDAP server.

In the deployment phase, you migrate the policies to the production security store,
and map application roles to enterprise groups according to application policies.

16.7.3 Administration Phase

The administration phase starts after you have deployed the application to a
production environment. In this phase, you manage day-to-day security tasks, such as
granting users access to application resources, reviewing audit logs, responding to
security incidents, and applying security patches.

16.7.4 Summary of Tasks per Participant per Phase

The following tables summarize the major responsibilities per participant in each of
the security life cycle phases and Figure 164 illustrates the basic flow.

Figure 16-4 Application Life Cycle Phases

Development Phase Deployment Phase Administration Phase
JDeveloper Environmeant — Generate — Remote Oracle WebLogic Server
| ADF Application EAR - Policies Enterprise OPSS
| and Credentials ldentity Store Security Store
T Configured with
‘ Fusion Middleware Deployment T T
Descriptors
‘ Declarative Security Ip 0PRSS
‘ (R 15 Sacurty " Fusion Middleware
Fusion
‘ OPSS Middleware
|
v v e Container
Local Application Security
[dentity Store Puolicy Store ‘ e
(WLS] (lazn-data.xmi) Deploy ——»| Deployed ADF Application
Table 16—1 Security Tasks for the Application Architect
Phase Task
Development Define high-level application roles based on functional security and data

security requirements. Populate the initial security store.

Deployment Define real-world customer scenarios for the QA (quality assurance) team to
test.
Administration Understand and identify the requirements to customize application policies.

Consider defining templates for vertical industries.

Integrating Application Security with OPSS 16-25

Code and Configuration Examples

Table 16-2 Security Tasks for the Application Developer

Phase

Task

Development

Deployment

Use tools and processes, specifically JDeveloper, to build the application and
to create security data, such as application roles and permissions.

Use grants to specify data-level security.

Test the application using a local security store with users and roles.

Assist the QA team to troubleshoot and resolve runtime issues.

Table 16-3 Security Tasks for the Application Security Administrator

Phase

Task

Deployment

Administration

Use deployment services to migrate data in jazn-data.xml to the production
security store.

Map application roles to enterprise groups so that security policies can be
enforced.

Apply patches and upgrades software, as necessary.

Manage users and roles, as enterprise users and the application role
hierarchy changes overtime.

Manage policies packed with the application and creates new ones.

Integrate with and manage the identity infrastructure.

16.8 Code and Configuration Examples

The following sections list code and configuration examples found elsewhere in this

guide.

s Programming Examples

= Configuration Examples

16.8.1 Programming Examples

The following topics include examples of typical security-related programming tasks:

= Querying the Identity Store Programmatically

s Implementing a Custom Graphical User Interface.

» Programmatic Authorization

= Managing Policies

s Checking Policies Programmatically

s The Class ResourcePermission

= Using the Identity Store Login Module for Authentication

s Using the Identity Store Login Module for Assertion

16.8.2 Configuration Examples

The following topics include examples of typical security-related configuration tasks:

m The Class ResourcePermission

s Configuring the Filter and the Interceptor

16-26 Securing Applications with Oracle Platform Security Services

Propagating Identities with JKS

= Migrating Policies with migrateSecurityStore

= Migrating Credentials with migrateSecurityStore

= Configuring Single and Multiple LDAPs

s Configuring the LDAP Identity Store in Java SE Applications

= Authorization in Java SE Applications

16.9 Propagating Identities with JKS

The ready-to-use configuration sets the token name and the key alias based on the
server name. To change these default values, use the procedures explained in Update
Trust Parameters.

The following sections explain the propagation of identities over HTTP using Java
Keystore (JKS):

= Single Domain Scenario
= Multiple Domain Scenario

» Domains Using Both Protocols

16.9.1 Single Domain Scenario

In this scenario, the both client and Java servlet use the same service to generate and
validate tokens. The following sections explain the tasks necessary to implement
identity propagation when the client and Java servlet run in the same domain:

» Create the Client Application
= Configure the Keystore

= Configure Maps and Keys

= Configure a Grant

s Create the Java Servlet

= Configure web.xml

» Configure the Asserter

» Update Trust Parameters

16.9.1.1 Create the Client Application

The following example illustrates a client application. Note that the jps-api.jar file
and the osdt_ws_sx.jar, osdt_core.jar, osdt_xmlsec.jar, and osdt_saml2.jar files
must be included in the class path.

// Authentication type name

public static final String AUTH_TYPE NAME = "OIT";
// The authenticated username

String user = "weblogic";

// URL of the target application

URL url = "http://<host>:<port>/<destinationApp>";

JpsContextFactory ctxFactory = JpsContextFactory.getContextFactory();

JpsContext jpsCtx = ctxFactory.getContext();

final TrustService trustService = jpsCtx.getServicelnstance (TrustService.class);
final TokenManager tokenMgr = trustService.getTokenManager () ;

final TokenContext ctx = tokenMgr.createTokenContext (

Integrating Application Security with OPSS 16-27

Propagating Identities with JKS

TokenConfiguration.PROTOCOL_EMBEDDED) ;
UsernameToken ut = WSSTokenUtils.createUsernameToken ("wsuid", user);
GenericToken gtok = new GenericToken (ut);
ctx.setSecurityToken (gtok) ;
ctx.setTokenType (SAML2URI.ns_saml) ;
Map<String, Object> ctxProperties = ctx.getOtherProperties();
ctxProperties.put (TokenConstants.CONFIRMATION_METHOD,
SAML2URI.confirmation_method_bearer) ;

AccessController.doPrivileged (new PrivilegedAction<String>() {
public String run() {
try {
tokenMgr.issueToken (ctx) ;
} catch (Exception e) {
e.printStackTrace() ;
}

return null;

)

Token token = ctx.getSecurityToken();
String b64Tok = TokenUtil.encodeToken (token) ;

HttpURLConnection connection = (HttpURLConnection) url.openConnection();

connection.setRequestMethod ("GET") ;

connection.setDoOutput (true) ;

connection.setReadTimeout (10000) ;

connection.setRequestProperty ("Authorization", AUTH_TYPE_NAME + " " + Db64Tok);

connection.connect () ;

BufferedReader rd = new BufferedReader (new InputStreamReader (
connection.getInputStream()));

StringBuilder sb = new StringBuilder();

String line = null;

while ((line = rd.readLine()) != null) {
sb.append(line);

}

connection.disconnect () ;
System.out.println(sb.toString());

16.9.1.2 Configure the Keystore

Assuming that the server name is jrfServer_admin, the following command
illustrates the creation of the keystore, represented by the generated
default-keystore. jks file:

JAVA_HOME/bin/keytool -genkeypair
-alias orakey
-keypass welcome
-keyalg RSA
-dname "CN=jrfServer_admin,O=Oracle,C=US"
-keystore default-keystore.jks
-storepass password

the generated file must be placed on the domain configuration location
cp default-keystore.jks ${domain.home}/config/fmwconfig

Make sure that the keystore service configured in the jps-config.xnl file points to the
generated default-keystore.jks:

16-28 Securing Applications with Oracle Platform Security Services

Propagating Identities with JKS

<!-- KeyStore Service Instance -->
<servicelInstance name="keystore"
provider="keystore.provider" location="./default-keystore.jks">
<description>Default JPS Keystore Service</description>
<property name="keystore.provider.type" value="file"/>
<property name="keystore.file.path" value="./"/>
<property name="keystore.type" value="JKS"/>
<property name="keystore.csf.map" value="oracle.wsm.security"/>
<property name="keystore.pass.csf.key" value="keystore-csf-key"/>
<property name="keystore.sig.csf.key" value="sign-csf-key"/>
<property name="keystore.enc.csf.key" value="enc-csf-key"/>
</servicelnstance >

16.9.1.3 Configure Maps and Keys

Create a map/key pair used to open the keystore and another map/key pair used to
generate tokens. The following commands illustrate these operations with the
createCred WLST command:

// JKS keystore opening password
createCred (map="oracle.wsm.security", key="keystore-csf-key",
user="keystore", password="password")

// Private key password to issue tokens
createCred (map="oracle.wsm.security", key="sign-csf-key",
user="orakey", password="password")

For information about createCred, see Managing Credentials with WLST.

16.9.1.4 Configure a Grant

Add a system policy with a codesource grant, which allows the client application to
use trust methods:

<grant>
<grantee>
<codesource>
<url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
</codesource>
</grantee>
<permissions>
<permission>
<class>oracle.security.jps.service.trust.TrustServiceAccessPermission</class>
<name>appld=*</name>
<actions>issue</actions>
</permission>
</permissions>
</grant>

You must stop and restart WebLogic Server for the grant to take effect.

16.9.1.5 Create the Java Servlet

The following example illustrates how a Java servlet obtains an asserted user name:

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
String username = request.getRemoteUser();
ServletOutputStream out = response.getOutputStream();
out.print ("Asserted username: " + username);
out.close();

Integrating Application Security with OPSS 16-29

Propagating Identities with JKS

16.9.1.6 Configure web.xml
Set the appropriate login method in the web.xm1 file:

<web-app id="WebApp_ID"

<login-config>
<auth-method>CLIENT-CERT</auth-method>
<realm-name>Identity Assertion</realm-name>
</login-config>

</web-app>

16.9.1.7 Configure the Asserter

To configure the asserter:

1. Copy the jps-wls-trustprovider.jar identity asserter file to the location
${domain.home}/lib/mbeantypes:

cp ${common.components.home}/modules/oracle.jps_
12.2.1/jps-wls-trustprovider.jar ${domain.home}/lib/mbeantypes

2. Restart WebLogic Server.
3. Use WebLogic Server Administration Console to configure the asserter:

1. Log in as an administrator and go to Security Settings, then to Security
Realms, then to Providers, then to the Authentication tab, and then click
New. The Create a New Authentication Provider dialog is displayed.

2. In this dialog, enter TrustServiceIdentityAsserter in the name text field,
and choose TrustServiceIdentityAsserter from the pull-down list. Then
click OK.

4. Verify that a grant like the following is present in the security store. This grant is
required so that the asserter can use OPSS trust methods:

<grant>
<grantee>
<codesource>

<url>file:${domain.home}/lib/mbeantypes/jps-wls-trustprovider.jar</url>
</codesource>
</grantee>
<permissions>
<permission>

<class>oracle.security.jps.service.trust.TrustServiceAccessPermission</class>
<name>appld=*</name>
<actions>validate</actions>
</permission>
</permissions>
</grant>

Changes to the jps-config.xml file require that you restart the server.
16.9.1.8 Update Trust Parameters

This section explains how to modify the trust parameters in the jps-config.xml file by
executing a script.

16-30 Securing Applications with Oracle Platform Security Services

Propagating Identities with JKS

By default, the trust.aliasName and trust.issuerName parameters are set to the
server name. To modify these values, adapt and use the following script:

import sys

wlsAdmin = 'weblogic'
wlsPwd ='password_value'
wlUrl="t3://localhost:7001"
issuer= 'issuer'

alias = 'alias’'

print "OPSS Trust Service provider configuration management script.\n"

instance = 'trust.provider'

name = 'trust.provider.embedded'
cfgProps = HashMap ()

cfgProps.put ("trust.issuerName", issuer)
cfgProps.put ("trust.aliasName", alias)
pm = PortableMap (cfgProps) ;

connect (wlsAdmin, wlsPwd, wlUrl)

domainRuntime ()
params = [instance, name, pm.toCompositeData (None)]
sign = ["java.lang.String", "java.lang.String",

"javax.management . openmbean.CompositeData"]

on = ObjectName ("com.oracle.jps:type=JpsConfig")

mbs . invoke (on, "updateTrustServiceConfig", params, sign)
mbs.invoke (on, "persist", None, None)

print "Done.\n"

16.9.2 Multiple Domain Scenario

In this scenario there are two different domains: Domainl and Domain2. The client
application is running in Domainl, and the Java servlet is running in Domain2. It is
assumed that these two domains have each a trust service properly configured as
explained in the Single Domain Scenario. The client uses Domain1’s trust service for
token generation, and the Java servlet uses Domain2’s trust service for token
validation.

In Domain1, the client code and the following configurations are identical to those
described in the Single Domain Scenario:

= The client application as illustrated in Create the Client Application.
= The configuration of the keystore as illustrated in Configure the Keystore.

s The Credential Store Framework configuration as illustrated in Configure Maps
and Keys.

s The grant configuration as in Configure a Grant.

In Domain 2, the Java servlet code and web.xml configuration are identical to those
described in the Single Domain Scenario:

s TheJava servlet code as illustrated in Create the Java Servlet.
s The configuration of the web.xml file as illustrated in Configure web.xml.

» The client certificate used to sign the token in Domainl must be present in
Domain2’s keystore. To comply:

Integrating Application Security with OPSS 16-31

Propagating Identities with JKS

1. Export the certificate from Domain 1’s keystore:

JAVA_HOME/bin/keytool -export
-orakey orakey.cer

-keystore default-keystore.jks
-storepass password

2. Import the certificate into Domain 2’s keystore. Note that the alias used to
import the certificate must match the name of the on the client side:

JAVA_HOME/bin/keytool -importcert
-alias orakey
-keypass welcome
-keyalg RSA
-keystore default-keystore.jks
-storepass password

3. Set the Domain2’s keystore password in the (Domain2’s) credential store with
the createCred WLST command:

createCred (map="oracle.wsm.security", key="keystore-csf-key",
user="keystore", password="password")

See createCred in WLST Command Reference for Infrastructure Security.

16.9.3 Domains Using Both Protocols

In this scenario, applications use either HTTP or SOAP, and not all applications in the
domain use the same protocol. In such scenario, the keystore can be shared by HTTP
and SOAP services.

The following sections explain the special configurations required in this case:
= Single Domain Scenario

= Multiple Domain Scenario

16.9.3.1 Single Domain Scenario

In this scenario, there is one keystore. The following example illustrates the
configuration required for a certificate with orakey alias:

<propertySet name="trust.provider.embedded">
<property name="trust.provider.className"

value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>

<property name="trust.clockSkew" value="60"/>

<property name="trust.token.validityPeriod" value="1800"/>

<property name="trust.token.includeCertificate" value="false"/>

<!-- The alias used to get the signing certificate from JKS -->
<property name="trust.aliasName" value="orakey"/>

<!-- The issuer name to add in the token used by the target
trust service instance as an alias to pick up the corresponding certificate
to validate the token signature -->
<property name="trust.issuerName" value="orakey"/>
</propertySet>

16-32 Securing Applications with Oracle Platform Security Services

Propagating Identities with JKS

16.9.3.2 Multiple Domain Scenario

In this scenario, there are two domains and two keystores. The following example
illustrates the configuration required in the domain that is issuing tokens for a
certificate with orakey alias:

<!-- issuer domain truststore must have a signing certif. w. alias orakey -->
<propertySet name="trust.provider.embedded">
<property name="trust.provider.className"

value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>

<property name="trust.clockSkew" value="60"/>

<property name="trust.token.validityPeriod" value="1800"/>

<property name="trust.token.includeCertificate" value="false"/>

<!-- the signing certificate alias in local JKS -->
<property name="trust.aliasName" value="orakey"/>

<!-- the token issuer’s name -->
<property name="trust.issuerName" value="domainl"/>
</propertySet>

On the client side, the value of trust.issuerName can be same as trust.aliasName.
However the name value can be overridden by setting a different value for
trust.issuerName (as shown in the example). This name will be set in the token
generated on the client side.

On the server side, if the server is used only for token validation, then it is not
mandatory to set trust.aliasName and trust.issuerName. The name set during the
token generation is used while looking for a certificate on the server side. Hence the
certificate imported from the client should be exported on the server side with the
client side name as the alias (domainl in the example).

The following example illustrates the configuration required in the domain that is
receiving tokens for a certificate with orakey alias:

<!- the recipient domain must have a token validation certificate
for domainl, which is the one was used to sign the token with alias "domainl" -->
<propertySet name="trust.provider.embedded">

<property name="trust.provider.className"

value="oracle.security.jps.internal.trust.provider.embedded.EmbeddedProviderImpl"/
>

<property name="trust.clockSkew" value="60"/>

<property name="trust.token.validityPeriod" value="1800"/>

<property name="trust.token.includeCertificate" value="false"/>

<!-- the signing certificate alias in local JKS -->
<property name="trust.aliasName" value="orakey"/>

<!-- the token issuer’s name -->
<property name="trust.issuerName" value="domain2"/>
</propertySet>

Integrating Application Security with OPSS 16-33

Propagating Identities with JKS

16-34 Securing Applications with Oracle Platform Security Services

17

The Security Model

This chapter describes the OPSS authorization and policy models, and compares them
with the Java EE and Java Authorization and Authentication Services (JAAS)
authorization models.

This chapter includes the following sections:
= About the OPSS Authorization and Policy Models
s Authorization Models

s The JAAS/OPSS Authorization Model

17.1 About the OPSS Authorization and Policy Models

For information about the OPSS authorization and policy models, see Administering
Oracle Entitlements Server.

17.2 Authorization Models

A policy specifies the permissions granted to code loaded from a given location. The
JAAS model extends policies by allowing an optional list of principals. These policies
grant permissions to code from a specified location that is run by any of those
principals.

The OPSS model is based on the JAAS model and, moreover, allows application
policies and roles, and system policies. Application roles can be mapped to enterprise
users and groups (such as administrative roles). A policy can grant permissions to any
of these roles, groups, or principals.

A Java EE application can delegate authorization to the container where it runs, or it
can implement its own authorization with calls to methods such as checkPermission,
checkBulkAuthorization, or getGrantedResources.

The following sections describe the main points of the Java EE and JAAS authorization
models:

s TheJava EE Authorization Model
s TheJAAS Authorization Model

17.2.1 The Java EE Authorization Model

The Java EE authorization model uses role membership to control access to Enterprise
JavaBeans (E]JB) and web resources that are referenced by URLs. Policies assign
permissions to users and roles, and they are enforced by the container.

The Security Model 17-1

Authorization Models

In the Java EE model, authorization is implemented in either of the following ways:

s Declaratively, where policies are specified in deployment descriptors. The
container reads those policies from deployment descriptors and enforces them. No
special application code is required to enforce authorization.

= Programmatically, where policies are processed in application code. The code
checks whether a subject has the appropriate permission to execute specific
sections of code. If the subject fails to have the proper permission, then the code
throws an exception.

Table 17-1 shows the advantages and disadvantages of each approach.

Table 17-1 Comparing Authorization in the Java EE Model

Authorization Type Advantages Disadvantages

Declarative No coding needed. Easy to Authorization is specified at the
update by modifying just URL level or at the EJB method
deployment descriptors. level.

Programmatic Specified in application code. Not so easy to update, because it
Provides fine-grained involves code changes and
authorization. recompilation.

A container can provide authorization to applications running in it in two ways:
declaratively and programmatically, as explained in the following sections:

s Declarative Authorization
= Programmatic Authorization

= Java EE Application Example

17.2.1.1 Declarative Authorization

Declarative authorization allows you to control access to URL-based resources (such as
Java servlets and pages) and EJB methods.

To configure declarative authorization:

1. Specify (in standard deployment descriptors) the resource to protect and a role
that has access to that resource. Alternatively, use code annotations.

2. Map the role to an enterprise group (in proprietary deployment descriptors, such
as the web.xmnl file).

17.2.1.2 Programmatic Authorization

Programmatic authorization provides a fine-grained authorization not available in
declarative approach, and it requires that the application code call the isUserInRole
method (for Java servlets) or the isCallerInRole method (for EJB), both available
from standard Java APIs.

Although these methods still depend on role membership to determine authorization,
they give finer control over authorization decisions because the controlling access is
not limited to EJB or URL.

17.2.1.3 Java EE Application Example

The following example illustrates an application calling the isUserInRole method.
The example assumes that the application Enterprise ARchive (EAR) file includes the
web.xml and weblogic-application.xml files, and that these files include the
following specifications:

17-2 Securing Applications with Oracle Platform Security Services

Authorization Models

<!-- security roles in web.xml -->
<security-role>

<role-name>sr_developer</role-name>
</security-role>

<!-- maaping of user to role in weblogic.application.xml -->

<wls:security-role-assignment>
<wls:role-name>sr_developer</wls:role-name>
<wls:principal-name>weblogic</wls:principal-name>

</wls:security-role-assignment>

Code Calling isUserInRole

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

import java.util.Date;

public class PolicyServlet extends HttpServlet {
public PolicyServlet() {
super () ;
}
public void init(ServletConfig config)
throws ServletException {
super.init (config);
}
public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
final ServletOutputStream out = response.getOutputStream();
response.setContentType ("text/html") ;
out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");

out.println("Time stamp: " + new Date().toString());

out.println("
request.getRemoteUser = " + request.getRemoteUser() +
"
");

out.println("request.isUserInRole('sr_developer') = " +
request.isUserInRole("sr_developer") + "
");

out.println("request.getUserPrincipal = " + request.getUserPrincipal() +
"
");

out.println("</BODY>");

out.println("</HTML>");

}

}

17.2.2 The JAAS Authorization Model

The JAAS authorization model introduces permissions but also uses roles. In this
model, a policy binds permissions with a subject (role, group, or user) and, optionally,
with code. You grant permission to a role by calling the addPrincipalsToAppRole
method. Permissions are evaluated by calls to the static
AccessController.checkPermission method. The model allows a high control of
resources.

In a policy you specify the following data:

= Application roles and enterprise groups allowed the permission(s).

The Security Model 17-3

The JAAS/OPSS Authorization Model

s Permissions (in application policies) and codesources (in system policies).
Application polices define what a user or the member of a group is allowed to
access. System policies define what actions the code is allowed to perform.

When you program with this model, you precede sensitive parts of the your
application with checks that determine whether the current user or role has the
appropriate permissions to the code, and the code is run if the user has the right
permissions. For an example, see Using Supported Permission Classes.

17.3 The JAAS/OPSS Authorization Model

JAAS/OPSS authorization is based on controlling the operations that a class can
perform when it is loaded and run in the environment.

The following sections explain the OPSS authorization model:
s The Resource Catalog

= Managing Policies

s Checking Policies Programmatically

» The Class ResourcePermission

17.3.1 The Resource Catalog

OPSS supports the specification and runtime support of the resource catalog in
security stores.

The resource catalog allows you to:

= Describe policies and secured artifacts in human-readable terms.

= Define and modify policies independently of the application source code.
= Browse and search policies, roles, and the role hierarchy.

= Group permissions in entitlements.

17.3.2 Managing Policies

Manage the resource catalog with the following interfaces, all sub-interfaces of
oracle.security.jps.service.policystore.EntityManager:

= GrantManager - Use this interface to query grants using search criteria, to obtain
list of grants that satisfy various combinations of resource catalog artifacts, and to
grant or revoke permissions to principals.

= PermissionSetManager - Use this interface to create, modify, and query permission
entitlements.

= ResourceManager - Use this interface to create, delete, and modify resource
instances.

= ResourceTypeManager - Use this interface to create, delete, modify, and query
resource types.

To create a resource type, a resource instance, actions, or a permission set, use code like
the following:

import oracle.security.jps.service.policystore.entitymanager.*;
import oracle.security.jps.service.policystore.search.*;

import oracle.security.jps.service.policystore.info.resource.*;
import oracle.security.jps.service.policystore.info.*;

17-4 Securing Applications with Oracle Platform Security Services

The JAAS/OPSS Authorization Model

import oracle.security.jps.service.policystore.*;
import java.util.*;

public class example {
public static void main(String[] args) throws Exception {
ApplicationPolicy ap;

ResourceTypeManager rtm = ap.getEntityManager (ResourceTypeManager.class);
ResourceTypeSearchQuery query = new ResourceTypeSearchQuery () ;
query.setANDMatch () ;

query.addQuery (ResourceTypeSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "resourceType", BaseSearchQuery.MATCHER.EXACT) ;
List<ResourceTypeEntry> allResourceTypes = rtm.getResourceTypes (query) ;

ResourceManager rm = ap.getEntityManager (ResourceManager.class);
ResourceSearchQuery ResourceQuery = new ResourceSearchQuery();
ResourceQuery.setANDMatch() ;

ResourceQuery.addQuery (ResourceSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "R2", BaseSearchQuery.MATCHER.EXACT) ;
List<ResourceEntry> allResources = rm.getResources ("RT2", ResourceQuery);

PermissionSetManager psm = ap.getEntityManager (PermissionSetManager.class);
PermissionSetSearchQuery pssqg = new PermissionSetSearchQuery();
pssq.setANDMatch() ;

pssq.addQuery (PermissionSetSearchQuery.SEARCH PROPERTY.NAME, false,
ComparatorType.EQUALITY, "PS1l", BaseSearchQuery.MATCHER.EXACT);
List<PermissionSetEntry> allPermSets = psm.getPermissionSets (pssq);

RoleCategoryManager rcm = ap.getEntityManager (RoleCategoryManager.class);
RoleCategorySearchQuery rcsg = new RoleCategorySearchQuery () ;
rcsqg.setANDMatch() ;

rcsqg.addQuery (RoleCategorySearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "roleCategoryCartoon",
BaseSearchQuery.MATCHER.EXACT) ;

List<RoleCategoryEntry> allRoleCategories = rcm.getRoleCategories(rcsq);

The following example illustrates a complex query involving resource catalog
elements:

//ApplicationPolicy ap as in the preceeding example

ResourceTypeManager rtm = ap.getEntityManager (ResourceTypeManager.class);
ResourceTypeSearchQuery query = new ResourceTypeSearchQuery();
query.setANDMatch () ;

query.addQuery (ResourceTypeSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "resourceType", BaseSearchQuery.MATCHER.EXACT) ;
List<ResourceTypeEntry> enties = rtm.getResourceTypes (query) ;

ResourceManager rm = ap.getEntityManager (ResourceManager.class);
ResourceSearchQuery ResourceQuery = new ResourceSearchQuery();
ResourceQuery.setANDMatch () ;

ResourceQuery.addQuery (ResourceSearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "R2", BaseSearchQuery.MATCHER.EXACT);
ArrayList<BaseSearchQuery> querries = ResourceQuery.getQueries();
List<ResourceEntry> resources = rm.getResources("RT2", ResourceQuery);

PermissionSetManager psm = ap.getEntityManager (PermissionSetManager.class);

PermissionSetSearchQuery pssqg = new PermissionSetSearchQuery () ;
pssqg.setANDMatch () ;

The Security Model 17-5

The JAAS/OPSS Authorization Model

pssq.addQuery (PermissionSetSearchQuery.SEARCH _PROPERTY.NAME, false,
ComparatorType.EQUALITY, "PS1", BaseSearchQuery.MATCHER.EXACT) ;
List<PermissionSetEntry> psets = psm.getPermissionSets (pssq);

RoleCategoryManager rcm = ap.getEntityManager (RoleCategoryManager.class);
RoleCategorySearchQuery rcsq = new RoleCategorySearchQuery();
rcsqg.setANDMatch() ;

rcsqg.addQuery (RoleCategorySearchQuery.SEARCH_PROPERTY.NAME, false,
ComparatorType.EQUALITY, "roleCategoryCartoon", BaseSearchQuery.MATCHER.EXACT);
ArrayList<BaseSearchQuery> queries = rcsqg.getQueries();

List<RoleCategoryEntry> rcs = rcm.getRoleCategories(rcsq);

The following example illustrates how to create a grant:

GrantManager gm = ap.getEntityManager (GrantManager.class);
Set<PrincipalEntry> pe = new HashSet<PrincipalEntry>();
List<AppRoleEntry> are = ap.searchAppRoles (appRoleName) ;
pe.addAll (are);

gm.grant (pe, null, permissionSetName) ;

17.3.3 Checking Policies Programmatically

When you check policies programmatically, keep in mind the following points:

= By default, authorization failures are not visible in the console. To have
authorization failures sent to the console, set the jps.auth.debug system variable:
-Djps.auth.debug=true.

In particular, to have JpsAuth.checkPermission failures sent to the console, you
must set that variable.

s The policy provider must be explicitly set in Java SE applications:

java.security.Policy.setPolicy (new
oracle.security.jps.internal.policystore.JavaPolicyProvider())

Not setting the policy provider explicitly in a Java SE application may cause
runtime methods (such as JpsAuth. checkPermission) to return incorrect values.

The following sections illustrate the use of several methods to check policies
programmatically:

= Using checkPermission
s Using doAs and doAsPrivileged
= Using checkBulkAuthorization

» Using getGrantedResources

17.3.3.1 Using checkPermission

Oracle Fusion Middleware supports the checkPermission method in the
java.security.AccessController and oracle.security.jps.util.JpsAuth classes.

Oracle recommends the use of checkPermission in the JpsAuth class because it
provides better debugging support, better performance, and audit support.

The static AccessController.checkPermission method uses the default access control
context (the context inherited when the thread was created). To check permissions on
some other context, call the instance checkPermission method on a particular
AccessControlContext instance.

17-6 Securing Applications with Oracle Platform Security Services

The JAAS/OPSS Authorization Model

The following table describes the behavior of checkPermission according to the value
of the JAAS mode:

Table 17-2 checkPermission Behavior According to JAAS Mode

JAAS Mode checkPermission Behavior

off or undefined Enforces codesource security based on the security policy in
effect, and there is no provision for subject-based security.

doAs Enforces a combination of codesource and subject-based security
using the access control context created in the doAs block.

doAsPrivileged Enforces subject-based security using a null access control
context.

subjectOnly Takes into consideration grants involving principals only (and it
disregards those involving codesource) when evaluating a
permission.

Note: If you call checkPermission inside a doAs block and the check
permission call fails, then to display the failed protection domain you
must set the java.security.debug=access, failure system property.

The following example illustrates an application checking a permission. It assumes
that the application EAR file includes the configuration jazn-data.xml and web.xml
files.

jazn-data.xml

<?xml version="1.0" ?>
<jazn-data>
<policy-store>
<applications>
<application>
<name>MyApp</name>

<app-roles>

<app-role>
<name>AppRole</name>
<display-name>AppRole display name</display-name>
<description>AppRole description</description>
<guid>F5494E409CFB11DEBFEBC11296284F58</guid>
<class>oracle.security.jps.service.policystore.ApplicationRole</class>

</app-role>

</app-roles>

<resource-types>
<resource-type>
<name>MyResourceType</name>
<display-name>MyResourceType display name</display-name>
<description>MyResourceType description</description>
<provider-name>MyResourceType provider</provider-name>
<matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
<actions-delimiter>,</actions-delimiter>
<actions>write, read</actions>
</resource-type>
</resource-types>

<resources>
<resource>

The Security Model 17-7

The JAAS/OPSS Authorization Model

<name>MyResource</name>
<display-name>MyResource display name</display-name>
<description>MyResource description</description>
<type-name-ref>MyResourceType</type-name-ref>
</resource>
</resources>

<permission-sets>
<permission-set>
<name>MyEntitlement</name>
<display-name>MyEntitlement display name</display-name>
<description>MyEntitlement description</description>
<member-resources>
<member-resource>
<type-name-ref>MyResourceType</type-name-ref>
<resource-name>MyResource</resource-name>
<actions>write</actions>
</member-resource>
</member-resources>
</permission-set>
</permission-sets>

<jazn-policy>
<grant>
<grantee>
<principals>
<principal>
<class>
oracle.security.jps.service.policystore.ApplicationRole</class>
<name>AppRole</name>
<guid>F5494E409CFB11DEBFEBC11296284F58</guid>
</principal>
</principals>
</grantee>

<!-- entitlement -->
<permission-set-refs>
<permission-set-ref>
<name>MyEntitlement</name>
</permission-set-ref>
</permission-set-refs>
</grant>
</jazn-policy>
</application>
</applications>
</policy-store>
<jazn-policy></jazn-policy>
</jazn-data>

web.xml
The following example illustrates the JpsFilter filter configuration:

<web-app>
<display-name>PolicyTest: PolicyServlet</display-name>
<filter>
<filter-name>JpsFilter</filter-name>
<filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
<init-param>
<param-name>application.name</param-name>
<param-value>PolicyServlet</param-value>

17-8 Securing Applications with Oracle Platform Security Services

The JAAS/OPSS Authorization Model

</init-param>

</filter>

<filter-mapping>
<filter-name>JpsFilter</filter-name>
<servlet-name>PolicyServlet</servlet-name>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>...

Example

In the following example, Subject.doAsPrivileged may be replaced by
JpsSubject.doAsPrivileged:

import javax.security.auth.Subject;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

import java.io.PrintWriter;

import java.io.StringWriter;

import java.security.*;

import java.util.Date;

import java.util.PropertyPermission;

import java.io.FilePermission;

public class PolicyServlet extends HttpServlet {

public PolicyServlet() {
super () ;

public void init (ServletConfig config)
throws ServletException {
super.init (config);

public void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
final ServletOutputStream out = response.getOutputStream();

response.setContentType ("text/html") ;
out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");

out.println("Time stamp: " + new Date().toString());

out.println("
request.getRemoteUser = " + request.getRemoteUser() +
"
") ;

out.println("request.isUserInRole('sr_developer') = " +
request.isUserInRole("sr_developer") + "
");

out.println("request.getUserPrincipal = " + request.getUserPrincipal() +
"
");

Subject s = null;
s = Subject.getSubject (AccessController.getContext());

out.println("Subject in servlet " + s);

out.println("
");

final RuntimePermission rtPerm = new RuntimePermission("getClassLoader");
try {
Subject.doAsPrivileged (s, new PrivilegedAction() {

The Security Model 17-9

The JAAS/OPSS Authorization Model

public Object run() {
try {
AccessController.checkPermission (rtPerm) ;
out.println("
");
out.println("CheckPermission passed for permission: " +
rtPerm+ " seeded in application policy");
out.println("
");
} catch (IOException e) {
e.printStackTrace();
printException ("IOException", e, out);
} catch (AccessControlException ace) {
ace.printStackTrace();
printException ("Accesscontrol Exception", ace, out);
}
return null;

}
}, null);

} catch (Throwable e) {
e.printStackTrace() ;
printException("application policy check failed", e, out);
}
out.println("</BODY>");
out.println("</HTML>");

void printException(String msg, Throwable e, ServletOutputStream out) {
Throwable t;
try {
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter (sw, true);
e.printStackTrace (pw) ;

out.println("<p>" + msg + "<p>");
out.println("<code>");
out.println(sw.getBuffer().toString());

t =e;
/* Print the root cause */
while ((t = t.getCause()) != null) {

sw = new StringWriter();
pw = new PrintWriter (sw, true);
t.printStackTrace (pw) ;

out.println("<hr>");

out.println("<p> Caused By ... </p>");

out.println(sw.getBuffer().toString());
}

out.println("</code><p>");
} catch (IOException ioe) {
ioe.printStackTrace() ;

17.3.3.2 Using doAs and doAsPrivileged

Oracle Fusion Middleware supports the doAs and doAsPrivileged methods in the
javax.security.auth.Subject and oracle.security.jps.util.JpsSubject classes.

Oracle recommends you use the oracle.security.jps.util.JpsSubject class
because it renders better performance and provides audit.

17-10 Securing Applications with Oracle Platform Security Services

The JAAS/OPSS Authorization Model

Note: If you call checkPermission inside a doAs block and the check
permission call fails, then to display the failed protection domain you
must set the java.security.debug=access, failure system property.

17.3.3.3 Using checkBulkAuthorization

The checkBulkAuthorization method determines whether a subject has access to one
or more resource actions. This method returns the set of resource actions the subject is
authorized on the resources. Grants using resources must include the resource type.

When you call this method, make sure that:

1. You have set the java.security.policy system property to the location of the
Oracle WebLogic Server policy file.

2. Your application calls checkBulkAuthorization after setPolicy:

java.security.Policy.setPolicy (new
oracle.security.jps.internal.policystore.JavaPolicyProvider())

checkBulkAuthorization assumes that:

» The caller can provide a subject with user and enterprise role principals, and a list
of resources including the stripe each resource belongs to.

= The application can access the application stripes configured in the domain where
the application is running.

17.3.3.4 Using getGrantedResources

The getGrantedResources method provides a runtime authorization query to fetch all
granted resources on a given subject by returning the resource actions that have been
granted to the subject. This method returns only permissions associated with resource
types and is available only when for LDAP security stores.

17.3.4 The Class ResourcePermission

A permission class provides the means to control the actions that a grantee is allowed
on a resource. Even though a custom permission class gives you complete control over
the actions, target matching, and logic, to work as expected at runtime, a custom
permission class must be specified in the system classpath of the server so that it is
available and can be loaded when it is required. But modifying the system class path
in environments is difficult and, in some environments, such modification might not
be even possible.

OPSS includes the oracle.security.jps.ResourcePermission class that you use as
the permission class within any application grant to protect application or system
resources. In this way, you no longer need to write custom permission classes and can
readily use that class in permissions within application grants stored in any supported
policy provider. Do not use this class in system policies, but use it only in application
policies.

Configuring Resource Permissions

A permission that uses the ResourcePermission class is called a resource permission,
and it specifies the resource type, the resource name, and an optional list of actions:

<permission>
<class>oracle.security.jps.ResourcePermission</class>
<name>resourceType=type, resourceName=name</name>

The Security Model 17-11

The JAAS/OPSS Authorization Model

<actions>character-separated-list-of-actions</actions>
</permission>

Even though the resource type information is not used at runtime, the resource type
definition is required.

The following examples illustrate the specifications of resource permissions, which
include the required resource types:

<permission>
<class>oracle.security.jps.ResourcePermission</class>
<name>resourceType=epm.calcmgr.permission, resourceName=EPM_Calc_Manager</name>
</permission>

<resource-types>
<resource-type>
<name>epm.calcmgr.permission</name>
<display-name>CalcManager ResourceType</display-name>
<description>Resourcetype for managing CalcManager grants</description>
<provider-name></provider-name>
<matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
<actions-delimiter>,</actions-delimiter>
<actions></actions>
</resource-type>
</resource-types>

<permission>
<class>oracle.security.jps.ResourcePermission</class>
<name>resourceType=oracle.bi.publisher.Reports, resourceName=GLReports</name>
<actions>develop; schedule</actions>

</permission>

<resource-types>
<resource-type>
<name>oracle.bi.publisher.Reports</name>
<display-name>BI Publisher Reports</display-name>
<provider-name></provider-name>
<matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
<actions-delimiter>;</actions-delimiter>
<actions>view;develop;schedule</actions>
</resource-type>
</resource-types>

A resource type associated with a resource permission can have an empty list of
actions. Note the following points about resource permissions:
s The name must conform to the following format:

resourceType=aType, resourceName=aName

You must define the resource type of a resource permission. To obtain the type of a
resource, use the ResourcePermission.getType method.

» The character-separated list of actions is optional. If specified, then it must be a
subset of the actions specified in the associated resource type. The method
ResourcePermission.getActions returns this list.

The character used to separate the items of the list must equal to the character
specified in the <actions-delimiter> of the associated resource type.

» The ResourcePermission.getResourceName method returns the display name of a
resource used in a permission.

17-12 Securing Applications with Oracle Platform Security Services

The JAAS/OPSS Authorization Model

s Wildcard characters are not supported in resource permissions.
Managing and Checking Resource Permissions
The following lines illustrate how to create a resource permission and how to check it:

ResourcePermission rp =
new ResourcePermission("oracle.bi.publisher.Reports", "GLReps", "develop");
JpsAuth.checkPermission(rp) ;

The permission check succeeds if the resource permission satisfies the following
conditions:

s The permission is an instance of the ResourcePermision class.
» The resource type name matches (ignoring case) the name of a resource type.
» The resource name matches exactly the name of a resource instance.

» The list of actions is a comma-separated subset of the set of actions specified in the
resource type.

About the Class for a Resource Type

When you create a resource type, optionally specify a class. If unspecified, then it
defaults to the oracle.security.jps.ResourcePermission class.

If two or more resource types share a class, then that class must be one of the
following:

s Theoracle.security.jps.ResourcePermission class.

= A concrete class extending the oracle.security.jps.AbstractTypedPermission
abstract class, as illustrated by MyAbstractTypedPermission:

public class MyAbstractTypedPermission extends AbstractTypedPermission {
private static final long serialVersionUID = 8665318227676708586L;
public MyAbstractTypedPermission (String resourceType,
String resourceName,
String actions) {super (resourceType,
resourceName, actions);
}
}
= A class implementing the oracle.security.jps.TypePermission class and
extending the java.security.Permission class.

The Security Model 17-13

The JAAS/OPSS Authorization Model

17-14 Securing Applications with Oracle Platform Security Services

18

Developing with the Credential Store
Framework

This chapter explains how to use the Credential Store Framework in your applications
and describes guidelines for the credential store configuration.

This chapter includes the following topics:

= About the Credential Store Framework API

= Guidelines for Using the Credential Store Framework API
s About Map and Key Names

s Provisioning Access Permissions

= Using the Credential Store Framework API

s Credential Store Framework API Examples

18.1 About the Credential Store Framework API

You use the CFS APIs to access, retrieve, and manage credentials kept in the credential
store. This APIs allow you to:

» Check whether a credential map or a map and key is stored in the credential store.
= Obtain credentials associated within a map or a map and key.

= Assign credentials to a a map or to a map and key.

= Delete credentials within a map or a map and key.

Operations on the credential store are secured by the CredentialAccessPermission
class, a class implementing the fine-grained control used by the credential framework.

See also:

Managing Credentials

18.2 Guidelines for Using the Credential Store Framework API

When you develop applications that use the Credential Store Framework API, make
sure that you:

= Provision security policies that enable applications access to credentials.

= Determine appropriate map and key names to use, specially in environments
where multiple applications use the same credential store.

Developing with the Credential Store Framework 18-1

About Map and Key Names

= Make sure that a credential store instance is defined and properly configured in
the jps-config.xml file.

See also:

Provisioning Access Permissions

About Map and Key Names

Using the Credential Store Framework API

Credential Store Framework API Examples

18.3 About Map and Key Names

Each application must have a unique map name associated with it in the credential
store. This guarantees that no conflicts will arise between the various map and key
names in the store, and that the map name identifies the application unambiguously.
Within a given map, an application can store multiple keys each of which also has a
unique name, so that the pair map name/key name identifies a single key in the
credential store.

18.4 Provisioning Access Permissions

The credential framework secures access to maps, all keys within a map, and to
specific keys within a map. To use the Credential Store Framework API you must
specify access permissions that allow your application to use the API. Moreover, any
code calling this API also requires a codesource permission, but these permissions are
typically restricted to specific jars only. It is not recommended that you define access
permissions to all maps and keys.

The following sections illustrate access permissions:
s Permission to Access a Key Example

» Permission to Access a Map Example

18.4.1 Permission to Access a Key Example

18-2

The following example shows an access permission to a source code to perform any
action on a specific key within a map:

<jazn-policy>

<grant>
<grantee>
<principals>...</principals>
<codesource>
<url>file:${oracle.deployed.app.dir}/<MyApp>S${oracle.deployed.app.ext}</url>
</codesource>
</grantee>
<permissions>
<permission>
<class>oracle.security.jps.service.credstore.
CredentialAccessPermission</class>
<name>context=SYSTEM, mapName=myMap, keyName=myKey</name>
<actions>*</actions>
</permission>
</permissions>
</grant>

</jazn-policy>

Securing Applications with Oracle Platform Security Services

Using the Credential Store Framework API

18.4.2 Permission to Access a Map Example

The following example shows an access permission to a source code to perform
specific actions to a map and all keys in that map:

<jazn-policy>

<grant>
<grantee>
<principals>...</principals>
<codesource>
<url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
</codesource>
</grantee>
<permissions>
<permission>
<class>oracle.security.jps.service.credstore.
CredentialAccessPermission</class>
<name>context=SYSTEM, mapName=myMap, keyName=*</name>
<actions>read,write,update,delete</actions>
</permission>
</permissions>
</grant>

</jazn-policy>

18.5 Using the Credential Store Framework API

The following sections explain how to use this framework in Java SE and Java EE
applications:

= Using the Credential Store Framework API in Java SE Applications
= Using the Credential Store Framework API in Java EE Applications

18.5.1 Using the Credential Store Framework API in Java SE Applications

To use the Credential Store Framework API in Java SE applications:
1. Ensure that the jps-manifest. jar file is in your class path.
2. Provide permissions to access Credential Store Framework APIs.

3. SetJava Virtual Machine (JVM) options as appropriate. Options include the
following:

-Doracle.security.jps.config
specifies the full path to the jps-config-jse.xml file, if different from the
default location ($DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml).

-Djava.security.policy
specifies the location of the weblogic.policy file, if different from the default
location ($WL_HOME/server/1ib).

-Dcommon . components . home
specifies the location of the oracle_common directory under middleware home.

-Dopss.version
specifies the version used in the environment.

See also:
Provisioning Access Permissions

Using OPSS in Java SE Applications

Developing with the Credential Store Framework 18-3

Credential Store Framework APl Examples

18.5.2 Using the Credential Store Framework API in Java EE Applications

To use the Credential Store Framework API in a Java EE application, provide the
access permissions necessary for your application to work before deploying it to
Oracle WebLogic Server.

See also:

Provisioning Access Permissions

18.6 Credential Store Framework APl Examples

The following examples illustrate how credential store operations use the required
access permissions:

s Credential Store Framework Operations Example
= Java SE Application with File Credentials Example
= Java EE Application with File Credentials Example
= Java EE Application with LDAP Store Example

= Java EE Application with DB Store Example

18.6.1 Credential Store Framework Operations Example

The following example illustrates Credential Store Framework API operations that are
used in by other examples:

package demo.util;

import java.security.AccessController;

import java.security.PrivilegedAction;

import oracle.security.jps.JpsException;

import oracle.security.jps.service.credstore.Credential;

import oracle.security.jps.service.credstore.CredentialAlreadyExistsException;
import oracle.security.jps.service.credstore.CredentialFactory;

import oracle.security.jps.service.credstore.CredentialStore;

import oracle.security.jps.service.credstore.PasswordCredential;

public class CsfUtil {
final CredentialStore store;
public CsfUtil (CredentialStore store) {
super () ;
this.store = store;

private void doOperation() {
try {
PasswordCredential pc = null;
try {
// this call requires read privilege
pc = (PasswordCredential)store.getCredential ("pc_map", "pc_key");
if (pc == null) {
// key not found, create one
pc = CredentialFactory.newPasswordCredential ("jdoe",
"password".toCharArray());
// this call requires write privilege
store.setCredential ("pc_map", "pc_key", pc);
System.out.print ("Created ");
}
else {

18-4 Securing Applications with Oracle Platform Security Services

Credential Store Framework APl Examples

if (pc instanceof PasswordCredential) {
System.out.print ("Found ");
} else {
System.out.println("Unexpected credential type found");

System.out.println("password credential: Name=" + pc.getName() +
", Password=" +
new String(pc.getPassword()));

} catch (CredentialAlreadyExistsException e) {
// ignore because credential already exists.
System.out.println("Credential already exists for
<pc_map, pc_key>: " + pc.getName() + ":" +
new String(pc.getPassword()));

try {
// permission corresponding to
// "context=SYSTEM, mapName=gc_map, keyName=gc_key"
byte[] secret =
new byte[] { 0x7e, 0x7f, 0x3d, 0x4f, 0x10,
0x20, 0x30 };
Credential gc =
CredentialFactory.newGenericCredential (secret) ;
store.setCredential ("gc_map", "gc_key", gc);
System.out.println("Created generic credential");
} catch (CredentialAlreadyExistsException e) {
// ignore because credential already exists.
System.out.println("Generic credential already exists
for <gc_map,gc_key>");

try {
//no permission for pc_map2 & pc_key2 to perform
//operation on store
Credential pc2 =
CredentialFactory.newPasswordCredential ("pc_jode2",
"pc_password".toCharArray());
store.setCredential ("pc_map2", "pc_key2", pc2);

} catch (Exception expected) {
//CredentialAccess Exception expected here. Not enough permission
System.out.println("This is expected :" +
expected.getLocalizedMessage()) ;

} catch (JpsException e) ({
e.printStackTrace() ;

* This method performs a non-privileged operation. all code

* in the call stack must have CredentialAccessPermission

* OR

* the caller must have the CredentialAccessPermission only and
* invoke this operation in doPrivileged block

*/

Developing with the Credential Store Framework 18-5

Credential Store Framework APl Examples

public void doCredOperation() {
doOperation() ;

/*
* because the following performs a privileged operation, only
* jar containing this class needs CredentialAccessPermission
*/
public void doPrivilegedCredOperation() {
AccessController.doPrivileged(new PrivilegedAction<String>() {
public String run() {
doOperation();
return "done";

18.6.2 Java SE Application with File Credentials Example

The example in this section illustrates a Java SE application that uses a file credential
store represented by the $DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml
file.

In the example, the projectsrc.home system property points to the directory
containing the Java SE application, and clientApp.jar is the application JAR file
which is present in the dist directory.

The following grant illustrates access permissions:

<grant>
<grantee>
<codesource>
<url>file:${projectsrc.home}/dist/clientApp.jar</url>
</codesource>
</grantee>
<permissions>
<permission>
<class>oracle.security.jps.service.credstore.CredentialAccessPermission
</class>
<name>context=SYSTEM, mapName=pc_map, keyName=*</name>
<actions>read,write</actions>
</permission>
<permission>
<class>oracle.security.jps.service.credstore.CredentialAccessPermission
</class>
<name>context=SYSTEM, mapName=gc_map, keyName=gc_key</name>
<actions>write</actions>
</permission>
</permissions>
</grant>

Because no permission is granted to mapName=pc_map2, keyName=pc_key2, the call to
setCredential for that map and key will fail.
The credential store used by the application is specified in jps-config-jse.xml:

<servicelInstances>
<serviceInstance name="credstore_file_instance"
provider="credstore_file_provider">
<property name="location" value="store" />

18-6 Securing Applications with Oracle Platform Security Services

Credential Store Framework APl Examples

</serviceInstances>

</servicelnstance>

Here is the Java SE code that calls the program.

package demo;
java.io.ByteArrayInputStream;

java.security.AccessController;
java.security.PrivilegedAction;
JpsContext;
JpsStartup;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

public

}

oracle

oracle.
oracle.
oracle.

oracle

oracle.
oracle.
oracle.
oracle.
oracle.
oracle.

oracle

.security.
security.
security.

security

.security.
security.
security.
security.
security.
security.
security.
.security.

jps.
jps.
.JpsContextFactory;
.Jjps.
jps.
.service

ips

ips

jps.
jps.
jps.
jps.
.service.

ips

ips.

demo.util.CsfUtil;

class CsfApp {
public CsfApp() {
super () ;

JpsException;
jaas.JavaPolicy;
.credstore.Credential;
service.

service.

service

service

credstore.CredentialAlreadyExistsException;
credstore.CredentialFactory;

.credstore.CredentialStore;
service.

credstore.PasswordCredential;
policystore.PolicyStore;

.policystore.PolicyStoreException;

public static void main(String[] a) {
// perform operation as privileged code
JpsContextFactory ctxFactory;

try {

new JpsStartup().start();
ctxFactory = JpsContextFactory.getContextFactory();

JpsContext ctx
CredentialStore store
ctx.getServiceInstance (CredentialStore.class);

CsfUtil csf = new CsfUtil(store);

// next call is in a doPrivileged block and should succeed
csf.doPrivilegedCredOperation() ;

= ctxFactory.getContext () ;

// because next call is not in a doPrivileged block,

// it fails if CredentialAccessPermission is not granted to this class

csf.doCredOperation() ;
} catch (JpsException e) {

e.printStackTrace();

18.6.3 Java EE Application with File Credentials Example

This example shows a Java EE application using file credentials that calls the
Credential Store Framework API The jazn-data.xml file defines the appropriate
access permissions, the codesource permissions, the permissions required for different
combinations of map and key.

The following grant illustrates access permissions:

<grant
<gr

>
antee>

<codesource>

Developing with the Credential Store Framework 18-7

Credential Store Framework APl Examples

<url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}</url>
</codesource>
</grantee>
<permissions>
<permission>
<class>oracle.security. jps.service.credstore.CredentialAccessPermission
</class>
<name>context=SYSTEM, mapName=pc_map, keyName=*</name>
<actions>read,write</actions>
</permission>
<permission>
<class>oracle.security.jps.service.credstore.CredentialAccessPermission
</class>
<name>context=SYSTEM, mapName=gc_map, keyName=gc_key</name>
<actions>write</actions>
</permission>
</permissions>
</grant>

The credential store used by the application is specified in the jps-config.xml file:

<serviceProviders>
<serviceProvider type="CREDENTIAL_STORE" name="credstoressp"
class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider">
<description>SecretStore-based CSF provider</description>
</serviceProvider>
</serviceProviders>

<servicelInstances>
<serviceInstance name="credstore" provider="credstoressp">
<property name="location" value="./" />
</serviceInstance>
</serviceInstances>

<jpsContexts default="default">
<jpsContext name="default">

<serviceInstanceRef ref="credstore"/>

</jpsContext>
</jpsContexts>

The location property specifies the location of the cwallet.sso file.
Here is the example using these configurations:

package demo;

import demo.util.CsfUtil;

import java.io.IOException;

import java.io.PrintWriter;

import java.net.URL;

import java.util.Date;

import javax.servlet.*;

import javax.servlet.http.*;

import oracle.security.jps.JpsException;

import oracle.security.jps.service.JpsServiceLocator;

import oracle.security.jps.service.credstore.CredentialStore;

public class CsfDemoServlet extends HttpServlet {
private static final String CONTENT_TYPE = "text/html; charset=windows-1252";
public void init(ServletConfig config) throws ServletException {

super.init (config);

18-8 Securing Applications with Oracle Platform Security Services

Credential Store Framework APl Examples

}
public void doGet (HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException {
response.setContentType (CONTENT_TYPE) ;
PrintWriter out = response.getWriter();
//ServletOutputStream out = response.getOutputStream();
try {
response.setContentType ("text/html") ;
out.println("<html><body bgcolor=\"#FFFFFF\">");
out.println("Current Time: " + new Date().toString() +
"

");

//get hold of app-level CSF service store

//Outside app context, it returns the domain CSF store

final CredentialStore store =

JpsServiceLocator.getServiceLocator () .lookup (CredentialStore.class);

CsfUtil csf = new CsfUtil(store);

csf.doPrivilegedCredOperation() ;

out.println("Credential operations completed using privileged code.");
} catch (JpsException e) {

e.printStackTrace (out) ;

The create operation is implemented inside a privileged block. Note that in a Java SE
environment, the following two calls are equivalent:

CredentialStore store =
JpsServiceLocator.getServiceLocator () .lookup (CredentialStore.class);

CredentialStore store =
JpsContextFactory.getContextFactory () .getContext () .getServiceInstance (CredentialSt
ore.class);

18.6.4 Java EE Application with LDAP Store Example

The following example uses the same application used in Java EE Application with
File Credentials Example, but the credential store is now LDAP instead of a file.

Here is an example of an LDAP store configuration:

<serviceProviders>
<serviceProvider name="ldap.credentialstore.provider"
class="oracle.security.jps.internal.credstore.ldap.LdapCredentialStoreProvider">
<description>Prototype LDAP CSF provider</description>
</serviceProvider>
</serviceProviders>

<servicelInstances>
<gservicelInstance provider="ldap.credentialstore.provider"

name="credstore.ldap">

<property value="bootstrap"
name="bootstrap.security.principal.key"/>

<property value="cn=wls-jrfServer"
name="oracle.security.jps.farm.name"/>

<property value="cn=jpsTestNode"
name="oracle.security.jps.ldap.root.name" />

<property value="ldap://mynode.us.mycorp.com:1234"
name="1ldap.url"/>

Developing with the Credential Store Framework 18-9

Credential Store Framework APl Examples

</servicelnstance>
</servicelnstances>

<jpsContexts default="appdefault">
<jpsContext name="appdefault">
<servicelInstanceRef ref="credstore.ldap"/>
</jpsContext>
</jpsContexts>

18.6.5 Java EE Application with DB Store Example

The following example uses the same application used in Java EE Application with
File Credentials Example, but the credential store is now a database instead of a file.

Here is a example of a DB store configuration:

<serviceProviders>
<serviceProvider type="CREDENTIAL_STORE" name="db.credentialstore.provider"
class="oracle.security.jps.internal.credstore.rdbms.DbmsCredentialStoreProvider"/>
<description>DB CSF provider</description>
</serviceProvider>
</serviceProviders>

<servicelnstances>
<servicelnstance provider="db.credentialstore.provider"
name="credstore.db">
<property value="bootstrap"
name="bootstrap.security.principal.key"/>
<property value="cn=wls-jrfServer"
name="oracle.security.jps.farm.name"/>
<property value="cn=jpsTestNode"
name="oracle.security.jps.ldap.root.name" />
<property name="jdbc.url" value="jdbc:oracle:thin:@localhost:5521:1dapoid"/>
<property name="jdbc.driver" value="oracle.jdbc.OracleDriver"/>
<property name="datasource.jndi.name" value="jdbc/OpssDS"/>
</servicelnstance>
</servicelnstances>

<jpsContexts default="appdefault">
<jpsContext name="appdefault">
<gservicelInstanceRef ref="credstore.db"/>
</jpsContext>
</jpsContexts>

18-10 Securing Applications with Oracle Platform Security Services

19

Developing with the User and Role API

This chapter explains how to use the User and Role API to access, search, and modify
entries in the identity store, and how to configure Secure Sockets Layer (SSL) with
LDAP providers.

It includes the following sections:

= About the User and Role API

= Working with Service Providers

= Searching the Identity Store

s Creating and Modifying Entries in the Identity Store
= User and Role API Examples

s Configuring SSL for LDAP Providers

19.1 About the User and Role API

Note: The User and Role APl is deprecated. Oracle recommends that
you use instead the Identity Governance Framework and migrate
usage to this framework. For information about this migration, see
Migrating to Identity Directory API in Developing Applications with
Identity Governance Framework.

The User and Role API allows applications to access identity information in a uniform
and portable way regardless of the particular underlying identity repository. This
repository can be an LDAP server, a database, a file, or some custom repository.

The User and Role API provides programmatic access to any repository, ensures
portability, and helps you simplify application. For example, using this API, your
application can access several repositories without requiring any changes to the
application code.

This API includes methods to create, update, and delete users and roles, and search
them for attributes; it allows you, for example, to obtain the email addresses of all
users in a certain role.

To use the User and Role API from a Java container, the identity store must be LDAP
and the Administration Server must be up and running. In addition, application role
members must use the weblogic.security.principal .WLSUserImpl class.

Oracle recommends that you authenticate users with an authentication provider and
that do not use User and Role API for that purpose, and that you do not use

Developing with the User and Role APl 19-1

Working with Service Providers

concurrently the User and Role API and other APIs accessing entries in the same
LDAP server.

See also:

Authentication Providers and the User and Role API

Developing Security Providers for Oracle WebLogic Server

Java API Reference for Oracle Platform Security Services User and Role

19.1.1 Authentication Providers and the User and Role API

The User and Role API uses, by default, the first authentication provider configured in
the domain. If your application requires using any other configured authentication
provider, then configure this special use as explained in Working with Service
Providers.

When more than one provider is configured in the environment, you specify providers
in an ordered list and set a control flag in each of them. Using this order and the
control flags, the server determines which provider to use. After one is chosen, the
remaining providers are ignored.

19.2 Working with Service Providers

To implement a provider, choose the provider class appropriate to the underlying
repository, configure that provider, and then configure the provider runtime, as
explained in the following sections:

s Setting Up the Environment

s Choosing the Provider Repository

s Configuring the Provider Start-Time and Runtime Properties
= Configuring the Provider when Creating a Factory Instance
s Configuring the Provider when Creating a Store Instance

s Configuring the Provider at Runtime

s Programming Guidelines

s The Provider’s Lifetime

See also:

Identity Assertion Providers in Developing Security Providers for Oracle
WebLogic Server

19.2.1 Setting Up the Environment

The User and Role API interacts with the identity repository through an identity
provider, which carries out the actual communication with the underlying repository.
This offers flexibility because the same code can be used with different repositories by
modifying the provider’s connection information.

To configure your environment to use the User and Role API:

= Ensure that the provider JAR file, which implements the underlying particular
identity repository, and component JARs required by your provider are available
in your environment.

= Specify the object classes that the search method use:

19-2 Securing Applications with Oracle Platform Security Services

Working with Service Providers

<servicelnstance name="idstore.ldap" provider="idstore.ldap.provider">
<property name="idstore.config.provider"
value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/
>

<property name="CONNECTION_POOL_CLASS"
value="oracle.security.idm.providers.stdldap.JNDIPool" />
<extendedProperty>
<name>user.object.classes</name>
<values>
<value>top</value>
<value>person</value>
<value>inetorgperson</value>
<value>organizationalperson</value>
<value>otherActiveDirectorySpecificClasses</value>
</values>
</extendedProperty>
s Incase of an LDAP provider, configure the provider user so that it has permissions
to read the cn=common, cn=products, cn=oraclecontext nodes.

See also:

Configuring Security Providers with Fusion Middleware Control

19.2.2 Choosing the Provider Repository

OPSS supports a number of user repositories for an identity service provider. For
systems and versions, see Oracle Fusion Middleware 12c Certifications at
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certific
ation-100350.html.

The choice of repository determines the provider class to use with the provider, as
described in the following table:

Table 19-1 Repository and Provider Classes

Repository Provider Class

Microsoft Active Directory oracle.security.idm.providers.ad. ADIdentityStoreFactory

Novell eDirectory oracle.security.idm.providers.edir. EDIdentityStoreFactory

Oracle Directory Server oracle.security.idm.providers.iplanet.IPIdentityStoreFactory
Enterprise Edition

Oracle Internet Directory oracle.security.idm.providers.oid.OIDIdentityStoreFactory
OpenLDAP oracle.security.idm.providers.openldap.OLdapldentityStoreFactory
embedded LDAP server oracle.security.idm.providers.wlsldap. WLSLDAPIdentityStoreFactory
Oracle Virtual Directory oracle.security.idm.providers.ovd.OVDIdentityStoreFactory
Microsoft ADAM oracle.security.idm.providers.ad. ADIdentityStoreFactory

IBM Tivoli oracle.security.idm.providers.openldap.OLdapIdentityStoreFactory

The provider class must implement the interface specified by the User and Role API
framework. For information about this API, see Java API Reference for Oracle Platform
Security Services.

Developing with the User and Role APl 19-3

Working with Service Providers

19.2.3 Creating the Provider Instance

To create a provider instance after having identified the provider’s class:

1. Use the IdentityStoreFactoryBuilder.getIdentityStoreFactory method to
create a factory instance:

IdentityStoreFactoryBuilder builder =new IdentityStoreFactoryBuilder ();

2. Use the IdentityStoreFactory.getIdentityStoreInstance method to create a
store instance:

IdentityStoreFactory oidFactory = builder.getIdentityStoreFactory (
“oracle.security.idm.providers.oid.OIDIdentityStoreFactory", factEnv);

3. Obtain the handle to the identity store:

oidStore = oidFactory.getIdentityStoreInstance (storeEnv);

19.2.4 Configuring the Provider Start-Time and Runtime Properties

You can set a number of properties for the factory instance and the store instance, such
as the URL, the repository port number, and the user and password to acce