Oracle® Fusion Middleware

Developing Applications with Oracle Security Developer Tools
12¢ (12.2.1.2)

E78159-01

October 2016

Provides reference information about the Oracle Security
Developer Tools.

ORACLE"

Oracle Fusion Middleware Developing Applications with Oracle Security Developer Tools, 12¢ (12.2.1.2)
E78159-01

Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sudhira Subudhi

Contributing Authors: Gaurav Sharma

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACEooo xiii
Intended AUAIENCE ..o s Xiii
Documentation AcCeSSIDILILYcccvviiimiiiiiiiiiiiiiiiic e Xiii
Related DOCUINENTS.c.c.cuiiiiiiiiiiiiccceeeecete e Xiii
CONVENEIONS ...ttt b e Xiv

What's New in Oracle Security Developer TOOIS? ... XV
New Features in 120 (12.2.1) .icierieciereeierieeieeteteseeteseetesseesseessesseeseessesssesssessessesssesssessesseessesssessenseessenns XV
Updates in September 2014 Documentation Refresh for 12¢ (12.1.3).....cccccceiiiiiiiiiniiiiiicnee. XV
INeW Features in 12 (12.1.3).c.coiiriirieirteerie ettt ettt ettt sttt sttt et st ettt bt b e s b naene XV

1 Introduction to Oracle Security Developer Tools

1.1 About Cryptography ... s 1-2
1.1.1 Types of Cryptographic Algorithmsccccoooiiiiiii e 1-2
1.2 About Public Key Infrastructure (PKI)cocovevrirrrrnnrrrreeerrereee s 1-3
1.2.1 Understanding Key Pairsc.cccccociiiiiiiiiiiiiieecccceeeeceeeeene e 1-4
1.2.2 About the Certificate AUthOTItYccccoeuiiiiiiiiiiiiccces 1-4
1.2.3 What are Digital Certificates?............ocoooeiriiiiiiiii e 1-4
1.2.4 Related PKIStandards...........cccciiiiiiiiiiiiiiici e 1-4
1.2.5 Benefits of PKl.......cccoiiiiiiiiiiiiiiiiiiis s 1-6
1.3 About Web Services SECUTILYccovirriririniriririirrrrrrrr s 1-6
1.4 ADBOUE SAML. ... 1-7
141 Understanding SAML ASSEItions.........ccooeueiiuiiiiiicicieice e 1-7
1.4.2 Understanding SAML Requests and ReSponsescccccueveeiiriiiiiicciecicccee 1-8
1.5 About Identity FEderation ... e 1-10
1.6 About Oracle Security Developer TOOIS.........cccoiiiiiiiiiiiiiceceeeeeee e 1-11
1.6.1 Understanding Toolkit Architecture ..., 1-11
1.6.2 Tools for XML, SAML, and Web Services Security Applicationsc.cccccceuereneee. 1-12
1.6.3 Tools for Public Key Cryptography (PKI) Applications.........ccccccceuvueiruiiiciniiciniicnnnes 1-14
1.6.4 Tools for E-mail Security AppLicationsc.ccceceeueieiiiiieeiecceeeeeeee e 1-16
1.6.5 Tools for Low-level Cryptographic Applications............ccccceeeiiciiiicccceecenenes 1-16
1.6.6 T0OIS fOr Web TOKENSc.ociiiiiiiiiiiiiciiicceee e 1-17

1.7 About Supported Standards ..o 1-17

1.8 Setting the CLASSPATH Environment Variable ..o 1-18
1.8.1 Setting the CLASSPATH on WINdOwscccccciiiiiiiiiiiiiccccccceeceeenennes 1-18
1.8.2 Setting the CLASSPATH on UNIXccccoviiiiiiiiiiniiccriceecee s 1-19

Oracle Crypto

2.1 About Oracle Crypto Features and Benefits..............ccooooiii, 2-1
2.2 About the Oracle Crypto Packagesccocueueiiiriiiiiiiicic 2-2
2.3 Setting Up Your Oracle Crypto Environmentccoovimieieiiicieiiniiccccees 2-2
2.4 Understanding and Using Core Classes and Interfaces of Oracle Crypto........cccccevvvuruvenencne. 2-2
2.4.1 About Oracle Crypto Key Classes..........ccccciiiiiiiiiiiiiiciiccccccccneeens 2-3
2.4.2 Using the Oracle Crypto Key Generation Classes...........cccooereeiiiineininiccieccinen, 2-3
2.43 Using Oracle Crypto Cipher Classes.........ccocoeuoiiiiieiiiicieiiiccie 2-4
2.44 Using the Oracle Crypto Signature Classes.........ccccooviiiiiininiiiniiniinn, 2-7
2.4.5 Using Oracle Crypto Message Digest Classes...........cccccciiiiiiiiiiiiiiiccceceenens 2-8
2.4.6 Using the Oracle Crypto Key Agreement Class ..., 2-9
2.47 Using Oracle Crypto Pseudo-Random Number Generator Classes...........c.c.cccceuuee.. 2-9
2.5 The Oracle Crypto and Crypto FIPS Java API References...........ccccoooeuririnininicinicinicicicnns 2-10

Oracle Security Engine

3.1 Oracle Security Engine Features and Benefits...........ccccocoooriimiiiiiiniicce 3-1
3.2 Setting Up Your Oracle Security Engine Environment............cccccocovviivnnninnnnnncenene 3-2
3.3 Core Classes and Interfaces of Oracle Security Engine...........ccccccovvviivnnnnnnnnnninnne 3-2
3.3.1 Using the oracle.security.crypto.cert. X500RDN Class..........ccccoeverrivirierniniccininicnnennn. 3-3
3.3.2 Using the oracle.security.crypto.cert. X500Name CIassccccoerivirieieieircieinicninnn. 3-3
3.3.3 Using the oracle.security.crypto.cert.CertificateRequest Classccovvvviiiininnnncn. 3-3
3.3.4 Using the java.security.cert.X509Certificate Class...........ccccouveiiiioioiciiiniccieieenes 3-4
3.4 The Oracle Security Engine Java API Referencec..ccccoooveiviieniiiniinnniniceeeceecnes 3-5
Oracle CMS
4.1 Oracle CMS Features and Benefits............ccooiiiiiiiiiiiiiiiiiccccccccccs 4-1
41.1 Content Typesin Oracle CMS ..o 4-1
4.1.2 Differences Between Oracle CMS Implementation and RFCs...........cccoociiinennnne, 4-2
4.2 Setting Up Your Oracle CMS ENVIronment.........cccovvviviniiniiiiininescscnennne 4-3
4.3 Understanding and Developing Applications with Oracle CMS..........cccooiiiiniiniinininncne. 4-3
4.3.1 About Oracle CMS CIASSESccciuimimimimimiiiiiiiiiiiiccscs s 4-3
4.3.2 About CMS ODbject TYPEScceueiiirieiiicieie i 4-4
4.3.3 Constructing CMS Objects using the CMS***ContentInfo Classes.............ccovvururinnes 4-4
43.4 CMS Objects using the CMS**Stream and CMS***Connector Classes 4-23
4.4 The Oracle CMS Java API REfEIEINCEcovevvievieiiiiieeeeeieeeeeeteeteete ettt ettt ere e eve e eaeennas 4-27

Oracle SIMIME
5.1 Oracle S/MIME Features and Benefits........cccociioiieiiiiieeieeie ettt 5-1

52
53

54

Setting Up Your Oracle S/MIME Environment...........ccooeeuvviiinininiiiniiicnens 5-1

Developing Applications with Oracle S/MIME ... 5-2
5.3.1 Core Classes and Interfaces of Oracle S/MIMEcccccovenireriecierieieeeeeeeee e 5-2
5.3.2 Supporting Classes and Interfaces............cccouiiiiiiiiiiiiiiiiis 5-8
5.3.3 Using the Oracle S/MIME ClaSsesccoouviiiiiiiiiiiiiiccnens 5-10
The Oracle S/MIME Java API REfEIENCEcveeevirrieiiiriiiierieieetesteteietest s e ere e evesse v 5-16

Oracle PKI SDK

6.1

6.2

6.3

6.4

Oracle PKICMP SDK ..ottt sttt ettt ettt et e bbbt bbb saeaen 6-1
6.1.1 Oracle PKI CMP SDK Features and Benefits...........cccoeeinieeneinenenieineeneereeeeeeeee 6-1
6.1.2 Setting Up Your Oracle PKI CMP SDK Environmentcccccoevuvevevnnnnnnnnenenenes 6-2
6.1.3 The Oracle PKI CMP SDK Java API Referencec.ccocevevuerenieniesienieeeieeeeeeeeeeee e 6-2
Oracle PKIOCSP SDK ...ttt sttt st ettt et ettt ese bt e bt sbesbesbesbeseenean 6-3
6.2.1 Oracle PKI OCSP SDK Features and Benefitscccoceveveinieereienienenieeeeeeereeeeeeeee 6-3
6.2.2 Setting Up Your Oracle PKI OCSP SDK Environment.........c.cccccoevvveeerevrrenrenernenenes 6-3
6.2.3 The Oracle PKI OCSP SDK Java API Reference..........ccocevererienieriecienieieieeeeeeeeeseseenees 6-4
Oracle PKI TSP SDK ..ottt ettt ettt ettt sttt st et e et et et st et e st eseebessesbesbessessensan 6-4
6.3.1 Oracle PKI TSP SDK Features and Benefits..........cccocevveinieoenieinieiinieeneeeeeeeeeeeeenee 6-4
6.3.2 Setting Up Your Oracle PKI TSP SDK Environment.............cccccevuvevrevverrernnennrenenenes 6-5
6.3.3 The Oracle PKI TSP SDK Java API Referencecccecvevrerererieriecieieieieeneseesessessennas 6-5
Oracle PKILDAP SDKoocoiiieirieieietereieieteseeesetesessessssessssessssessesessesessessssesssessssessssessesessesessens 6-5
6.4.1 Oracle PKI LDAP SDK Features and Benefits...........ccceceveneienenieneniecceceeeeeeen 6-6
6.4.2 Setting Up Your Oracle PKI LDAP SDK Environmentc.cccocoooieiiininirciiiniinnnn, 6-6
6.4.3 The Oracle PKI LDAP SDK Java API Reference..........cccocveevevievierevieeeieeseseseseseenes 6-7

Oracle XML Security

7.1
7.2
7.3

74
7.5

7.6
7.7

7.8

Oracle XML Security Features and Benefitscccccociiiiiiiiiiiiiiicccceccceenennes 7-2
Setting Up Your Oracle XML Security Environmentcccccccceeiiiiiiiiiiiiiciccccenas 7-3
Signing Data with Oracle XML SeCUTtYcccccoviiiiiiiiiiiiiiiiiiiiiiiiccas 7-3
7.3.1 Identifying What t0 Signccooriiiiiiii 7-4
7.3.2 Deciding on a Signing Key.........cccooioiiiiiiiiiiiiiiiicie 7-6
Verifying XIML Datac.cciiiiiiiiiiiicccceeccee e e 7-7
Understanding how Data is Encrypted.........ccccooovoiiiiiiiiiccce s 7-7
7.5.1 Identifying what to ENCIYPt....oooioiiii e, 7-8
7.5.2 Decide on the Encryption Key........ccoooiiiiiiiii 7-9
Understanding Data Decryption with Oracle XML Securityccoovvviniiiiiinniininnnen 7-9
Understanding and Using Element Wrappers in the OSDT XML APIs..........ccccccccciuennnn. 7-10
7.7.1 Constructing the Wrapper ODbjectcccccovvivviiiiiiiniiiiiiiiiiinncccneeccas 7-10
7.7.2 Obtaining the DOM Element from the Wrapper Object.........c.c.ccoooriiinni, 7-11
7.7.3 Parsing Complex Elementsccoouiiiiiiiiiiiic 7-11
7.74 Constructing Complex EIEMeNtsccoeuvuririririiirirrriierereeeeeeeeeeeeeeeeeeeee s 7-12
Signing Data with the Oracle XML Security APL........cccccccooiiiiiiiiiiiiiceccccceeeeenenes 7-12
7.8.1 Creating a Detached Signature, Basic Procedurec.cocoooiiiniiiiinni, 7-12

8

9

Vi

7.8.2 Using Variations on the Basic Signing Procedure.cccoooiieiiiiiiieiiiiie, 7-14

7.9 Verifying Signatures with the Oracle XML Security APIcccccccoeiiiiiiiiincnceeeeeenenas 7-15
79.1 Checking What is Signed, Basic Procedure.............cccccccoeuvvnvniiinnnnniiiiniiceee, 7-15
7.9.2 Setting Up Callbacks.........ccccouviviiiiiiiiiiiiiiiiiiiiiiiiccis 7-16
7.9.3 Writing a Custom Key Retriever ..., 7-16
7.9.4 Checking What is Signed ..o 7-17
7.9.5 Verifying the SIGNatUre.........ccccoviviiiiiiiriirree s 7-17

7.10 Encrypting Data with the Oracle XML Security APL........ccccccooimiininiiniicecccee 7-18
7.10.1 Encrypting with a Shared Symmetric Keycccccovvniiiiiinnniiiii, 7-18
7.10.2 Encrypting with a Random Symmetric Key.........c.cocoooriiiiiiiiii, 7-19

7.11 Decrypting Data with the Oracle XML Security APL.........c.ccccoooiiiiiiii 7-20
7.11.1 Decrypting with a Shared Symmetric Keyccccovviiiininiiiniiiccccceee 7-20
7.11.2 Decrypting with a Random Symmetric Keycccccovivniniinniniiiiin, 7-21

7.12 About Supporting Classes and Interfaces............c.cooceueieiiiiiiiiieic 7-21
7.12.1 About the oracle.security.xmlsec.util. XMLURI Interface...........cccccoeevriiriniiininnnnn. 7-21
7.12.2 About the oracle.security. xmlsec.util. XMLUtils class........ccccccocvviriviinninninnnnn. 7-21

713 Common XML Security QUESLIONSccoviviiiiiiiiiiiiiiiic s 7-21

7.14 Best Practices for Oracle XML SECUTIYcccccviiiiiiiiiiiiiiiicccicccccccccnnes 7-22

7.15 The Oracle XML Security Java API Reference...........cccoooveriioiiinieiiiccicccic 7-22

Oracle SAML

8.1 Oracle SAML Features and BeNefitsccceoeiriririiiiriiiiseseie ettt 8-1
8.2 Oracle SAML 1.0/ 1.1 oottt ettt ettt ettt e et e e b e e eseneesaneens 8-1
8.2.1 Oracle SAML 1.0/1.1 PACKAGESccvvvrvrerereirererieeeeecereeeeeeee s 8-2
8.2.2 Setting Up Your Oracle SAML 1.0/1.1 Environmentcccccocevuvvvvvnvnnnnnnnenenes 8-2
8.2.3 Classes and Interfaces of Oracle SAML 1.X ..cccceieiririririnierieieiee ettt 8-2
8.24 The Oracle SAML 1.0/1.1 Java API Reference.........ccccoeecveveevereecieneeieeeereeeeveeveenne s 8-5
L I ©) =Yal (I 7N\ 02 O RSP TPTTP 8-5
8.3.1 Oracle SAML 2.0 PaCKages........cceuvururiruriririieriririeeeceeeeeceie e 8-6
8.3.2 Setting Up Your Oracle SAML 2.0 ENvironment...........cccccocevuvvvivvrnnnnnnnninnnenenes 8-6
8.3.3 Classes and Interfaces of Oracle SAML 2.0cccooiririririneieiee et 8-7
8.3.4 The Oracle SAML 2.0 Java API Referencecccoceeeeenerenienenieieeeeceeceeeieeeee e 8-9

Oracle Web Services Security

9.1 Setting Up Your Oracle Web Services Security Environment...........ccocooevoiineeiiiicnennnne. 9-1
9.2 Classes and Interfaces of Oracle Web Services Securityccooovvviivniiiiiiiiiinnn, 9-2
9.2.1 Element Wrappers in Oracle Web Services Security...........ccccouiiioiiiniinincccinnnnnan. 9-2
9.2.2 The <wsse:Security> header ... 9-3
9.2.3 Security Tokens (ST) in Oracle Web Services Securitycccccooviiiiiiiinninnnn, 9-4
9.2.4 Security Token References (STR)cccccoovviiiiiiiiiniiiiiiniinne 9-8
9.2.5 Signing and Verifying.........cciiiiiiiciicccceecc e 9-11
9.2.6 Encrypting and Decrypting ... 9-18
9.3 Additional Resources for Web Services Securitycccocoeeeiviiininiiinninicccecceee 9-21

10

11

12

9.4 The Oracle Web Services Security Java API Referenceccccooeuvvmueicniiceiicciiceicceie, 9-21

Oracle Liberty SDK
10.1 Oracle Liberty SDK Features and Benefits............cccoocoviiiiiiiiiniccc 10-1
10.2 Oracle LIDErty 1.1 ..o 10-1
10.2.1 Setting Up Your Oracle Liberty 1.1 Environmentccccocooevevviicenniccenecnnn 10-2
10.2.2 Overview of Oracle Liberty 1.1 Classes and Interfacesccccoevuiiiiiiiiinnnns 10-2
10.2.3 The Oracle Liberty 1.1 API Reference..........cccooovirieiiiiiiiciciciicicecce e 10-8
10.3 Oracle LIDerty 1.2.....ciiiieii s 10-8
10.3.1 Setting Up Your Oracle Liberty 1.2 Environmentccccccocoeeeccccucccccccccnenns 10-9
10.3.2 Overview of Oracle Liberty 1.2 Classes and Interfacescccccccueuiiiiiiicnnnns 10-9
10.3.3 The Oracle Liberty SDK 1.2 API Referenceccccoovoeeieiiiiiciniiicceecccee 10-17
Oracle XKMS
11.1 Understanding Oracle XKMS Features and Benefitscccoooiiiii 11-1
11.2 Setting Up Your Oracle XKMS ENvironmentccccevovireiiiiicieeiciceeece i 11-2
11.3 Core Classes and INterfaces..........cocovviiiiiiiiiiiiiiiiiic s 11-2
11.3.1 oracle.security.xmlsec.xkms.xkiss.LocateRequest............cccccoeiiiiiiiiicicinccnenas 11-3
11.3.2 Using the oracle.security.xmlsec.xkms.xkiss.LocateResult Classcccccccucuueses 11-3
11.3.3 Using the oracle.security. xmlsec.xkms.xkiss.ValidateRequest Class........................ 11-4
11.3.4 Using the oracle.security. xmlsec.xkms.xkiss.ValidateResult Class........................... 11-4
11.3.5 Using the oracle.security.xmlsec.xkms.xkrss.RecoverRequest Class 11-5
11.3.6 Using the oracle.security.xmlsec.xkms.xkrss.RecoverResult Classc.c.c....... 11-6
11.4 The Oracle XKMS Java API ReferenCe........ccceeveeieieieirieiieesieeiesesiesie ettt ettt eee e 11-7
Oracle JSON Web Token
12.1 Oracle JSON Web Token Features and Benefits..........ccccceveeveenieineninennenincneceeeene 12-1
12.1.1 About JSON WeD TOKEN.....cociriiiriiiriiiriiieeieeee ettt ettt 12-1
12.1.2 Oracle JSON Web Token Features ..o 12-2
12.2 Setting Up Your Oracle JSON Web Token Environment...........c.ccccceoeeiiiiicccccccncnenas 12-2
12.3 Using Core Classes and INterfaces ..o 12-3
12.4 Examples of Oracle JSON Web Token Usage..........ccooeueiirieiniiicieieicceieecci i 12-3
12.4.1 Creating the JWT TOKENc.coooimiiiiiici e 12-4
12.4.2 Signing the JWT TOKENcccoviiiiiiiiiiiiii s 12-4
12.4.3 Verifying the JWT TOKEN.....c.ccccoiiiiiiiiiiiccccccecccicee e 12-5
12.4.4 Serializing the JWT Token without Signingcccccoeveiiiiiiiiiiiiiiiiccennn, 12-5
12.5 The Oracle JSON Web Token Java API Referencecoceeeverenenienienienieieieeeeeeeeee e 12-5
Migrating to the JCE Framework

A1l About The JCE FramewWoOrkccooiiiiiieieieieeeeeeetee sttt ettt A-1
A2 Understanding JCE K@YS......ooooueiiiiiiriiiiicieieci it A-2
A.3 Converting Between OSDT Key Objects and JCE Key Objects........cccccceuvvverrvrnvrrnneenee A-2

A.3.1 Converting a Private Key from OSDT to JCE Object ..o, A-2

Vii

B

viii

A3.2 Converting a Private Key from JCE Object to OSDT Object..........ccceoevevririririnincnnnen A-3

A4 Working with JCE CertifiCates........cccovuvurueiiiririiiriciiircececereeeeeee e A-4
A.5 Working with JCE Certificate Revocation Lists (CRLS)ccccecevuviriviririrniiiiiirncccrne A-5
A6 UsSING JCE KeYStOres.cuouiuiiiiiiiiiiiiciceccc st A-5
A.6.1 Working with standard KeyStore-type Wallets...........ccooooioiiiiiiii, A-5
A.6.2 Working with PKCS12 and PKCS8 Walletscccoviiieiiiiiiicce, A-6
A.7 The Oracle JCE Java API REfEIENCEc.cveieieeieiieieiiciieieriistesteietetetestestesseeesaesassassessessassessens A-7
References

List of Tables

1-1
1-2
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
6-1
9-1
9-2
9-3
11-1
B-1

Summary of Public and Private Key Usage..........ccccocoeuririiiriniciiiiiiccccc s 1-4
Supported Standards............ooi s 1-18
Content Types Supported by Oracle CMS..........cccccoviiiiiiiieec s 4-1
CMS**ContentInfo Classes.........ccovuiiiiiiiniiiiiiiii e 4-4
Useful Methods of CMSContentInfo............cccooeiiiiiiiiiiiiiiiiiices 4-5
Useful Methods of ESSRECEIPL........ccoviiuiiiiiiciciicc 4-7
Useful Methods of CMSDigestedDataContentInfo............cccccoeviveviirnvnninnnnninrnenes 4-8
Useful Methods of CMSSignedDataContentInfo.............cccoouoceiiiiiieiicciiccce 4-10
Useful Methods of CMSEncryptedDataContentInfo...........c.cooorreiiiiiiii 4-14
Useful Methods of CMSEnvelopedDataContentInfo.............cccccoceiiiiiiiciiiciciennns 4-16
Useful Methods of CMSAuthenticatedDataContentInfo...........cccccovviiieiiniiiininnnnn, 4-19
The CMS***Stream Classes.........ccccviiiiiiiiiiiiiiiiiiiiiiiie e 4-23
The CMS***CoNNeCtOr ClasSes........covueueuiririeieiiiiieietrireeeitree et 4-24
Classes in the oracle.security.crypto.smime.ess Package...........cccoeevivivniniinininnnccninncnnc. 5-9
Oracle PKI TSP SDK Classes and Interfaces............coccoovviininiinniiiniiieinns 6-4
Element Wrappers for Oracle Web Services Security............ccoouiiiiiiiiiiiiiiiiicnen, 9-2
Security Tokens for Oracle Web Services Security.........ccccoeeueuvivniiiiiiiniiiiiciricccenns 9-5
Callbacks to Resolve STR Key Identifiers............cccooviviviminininiiniiiiinccs 9-14
Packages in the Oracle XKMS Library........ccccoooeeiiioiiiieieiicceeccce e 11-1
Security Standards and Protocols...........c.coeiiiiiiiiic B-1

List of Tables

1-1
1-2
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
6-1
9-1
9-2
9-3
11-1
B-1

Summary of Public and Private Key Usage..........ccccocoeuririiiriniciiiiiiccccc s 1-4
Supported Standards............ooi s 1-18
Content Types Supported by Oracle CMS..........cccccoviiiiiiiieec s 4-1
CMS**ContentInfo Classes.........ccovuiiiiiiiniiiiiiiii e 4-4
Useful Methods of CMSContentInfo............cccooeiiiiiiiiiiiiiiiiiices 4-5
Useful Methods of ESSRECEIPL........ccoviiuiiiiiiciciicc 4-7
Useful Methods of CMSDigestedDataContentInfo............cccccoeviveviirnvnninnnnninrnenes 4-8
Useful Methods of CMSSignedDataContentInfo.............cccoouoceiiiiiieiicciiccce 4-10
Useful Methods of CMSEncryptedDataContentInfo...........c.cooorreiiiiiiii 4-14
Useful Methods of CMSEnvelopedDataContentInfo.............cccccoceiiiiiiiciiiciciennns 4-16
Useful Methods of CMSAuthenticatedDataContentInfo...........cccccovviiieiiniiiininnnnn, 4-19
The CMS***Stream Classes.........ccccviiiiiiiiiiiiiiiiiiiiiiiie e 4-23
The CMS***CoNNeCtOr ClasSes........covueueuiririeieiiiiieietrireeeitree et 4-24
Classes in the oracle.security.crypto.smime.ess Package...........cccoeevivivniniinininnnccninncnnc. 5-9
Oracle PKI TSP SDK Classes and Interfaces............coccoovviininiinniiiniiieinns 6-4
Element Wrappers for Oracle Web Services Security............ccoouiiiiiiiiiiiiiiiiicnen, 9-2
Security Tokens for Oracle Web Services Security.........ccccoeeueuvivniiiiiiiniiiiiciricccenns 9-5
Callbacks to Resolve STR Key Identifiers............cccooviviviminininiiniiiiinccs 9-14
Packages in the Oracle XKMS Library........ccccoooeeiiioiiiieieiicceeccce e 11-1
Security Standards and Protocols...........c.coeiiiiiiiiic B-1

Xi

Xii

Preface

Developing Applications with Oracle Security Developer Tools provides reference
information about the Oracle Security Developer Tools. This Preface contains the
following topics:

¢ Intended Audience
* Documentation Accessibility
e Related Documents

e Conventions

Intended Audience

Developing Applications with Oracle Security Developer Tools is intended for Java
developers responsible for developing secure applications. This documentation
assumes programming proficiency using Java, and familiarity with security concepts
such as cryptography, public key infrastructure, Web services security, and identity
federation.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. coni pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc&i d=t r s if you are hearing impaired.

Related Documents

For more information, see the following documentation available in the Oracle Fusion
Middleware 12c (12.2.1) documentation set:

® Oracle Fusion Middleware Securing Web Services and Managing Policies with Oracle Web
Services Manager

® Oracle Fusion Middleware Securing Applications with Oracle Platform Security Services

Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Xiv

Conventions

The following text conventions are used in this document:

Convention

Meaning

boldface

italic

nonospace

Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

What's New in Oracle Security Developer
Tools?

This preface introduces the new and changed features of Oracle Security Developer
Tools.

New Features in 12¢ (12.2.1)

The API doc set (javadocs) has been consolidated into a single javadoc, the Java API
Reference for Oracle Security Developer Tools.

This edition of Developing Applications with Oracle Security Developer Tools contains
usability enhancements and editorial corrections.

Updates in September 2014 Documentation Refresh for 12¢ (12.1.3)

This edition of Developing Applications with Oracle Security Developer Tools contains
usability enhancements and editorial corrections.

New Features in 12¢ (12.1.3)

New Java API references (javadocs) have been published for all the tools.

XV

1

Introduction to Oracle Security Developer
Tools

Oracle Security Developer Tools provide the cryptographic building blocks necessary
for developing robust security applications, ranging from basic tasks such as digital
signatures and secure messaging to more complex projects such as securely
implementing a service-oriented architecture. The tools are built upon the core
foundations of cryptography, public key infrastructure, web services security, and
federated identity management.

Security tools are a critical component for application development projects.
Commercial requirements and government regulations dictate that sensitive data be
kept confidential and protected from tampering or alteration.

A wide range of Oracle products utilize the Oracle Security Developer Tools,
including:

¢ the Oracle JDeveloper integrated service environment

¢ Oracle Platform Security Services, which include SSL configuration features for
system components, and Oracle Wallet, which is utilized in multiple components
including Oracle Database

* system components like Oracle Web Services Manager (OWSM); Business
Integration (B2B); and Oracle SOA Suite

This chapter takes a closer look at the underlying security technologies and introduces
the components of the Oracle Security Developer Tools. It covers these topics:

* About Cryptography

e About Public Key Infrastructure (PKI)

* About Web Services Security

e About SAML

* About Identity Federation

® About Oracle Security Developer Tools

* About Supported Standards

e Setting the CLASSPATH Environment Variable

e References

Introduction to Oracle Security Developer Tools 1-1

About Cryptography

1.1 About Cryptography

Cryptography protects the transmitted messages in communication channels from
being intercepted (a passive attack) or modified (an active attack) by an intruder. To
protect the message, an originator uses a cryptographic tool to convert plain, readable
messages or plaintext into encrypted ciphertext. The message recipient likewise uses a
cryptographic tool to decrypt the ciphertext into its original readable format.

Cryptography secures communications over a network such as the internet by
providing:

* Authentication, which assures the receiver that the information is coming from a
trusted source. Authentication is commonly achieved through the use of a Message
Authentication Code (MAC), digital signature, and digital certificate.

¢ Confidentiality, which ensures that only the intended receiver can read a message.
Confidentiality is commonly attained through encryption.

¢ Integrity, which ensures that the received message has not been altered from the
original. Integrity is commonly ensured by using a cryptographic hash function.

* Non-repudiation, which is a way to prove that a given sender actually sent a
particular message. Non-repudiation is typically achieved through the use of
digital signatures.

For additional cryptography resources, refer References.

1.1.1 Types of Cryptographic Algorithms

Cryptographic algorithms or ciphers use keys to convert plain text to ciphertext and
vice versa. Essentially, there are three types of cryptographic algorithms categorized
by the number of keys used for encryption and decryption, and by their application
and usage. These are Symmetric Cryptographic Algorithms, Asymmetric
Cryptographic Algorithms, and Hash Functions.

Each type is optimized for certain applications. Hash functions are suited for ensuring
data integrity. Symmetric cryptography is ideally suited for encrypting messages.
Asymmetric cryptography is used for the secure exchange of keys, authentication, and
non-repudiation. Asymmetric cryptography could also be used to encrypt messages,
although this is rarely done. Symmetric cryptography operates about 1000 times faster,
and is better suited for encryption than asymmetric cryptography.

The cryptographic algorithm types are:
e About Symmetric Cryptographic Algorithms
¢ About Asymmetric Cryptographic Algorithms

¢ Understanding Hash Functions

1.1.1.1 About Symmetric Cryptographic Algorithms

A symmetric cryptography algorithm (also known as secret key cryptography) uses a
single key for both encryption and decryption. The sender uses the key to encrypt the
plaintext and sends the ciphertext to the receiver. The receiver applies the same key to
decrypt the message and recover the plaintext. The key must be known to both the
sender and receiver. The biggest problem with symmetric cryptography is the secure
distribution of the key.

1-2 Developing Applications with Oracle Security Developer Tools

About Public Key Infrastructure (PKI)

Symmetric cryptography schemes are generally categorized as being either a block
cipher or stream cipher. A block cipher encrypts one fixed-size block of data (usually
64 bits) at a time using the same key on each block. Some common block ciphers used
today include Blowfish, AES, DES, and 3DES.

Stream ciphers operate on a single bit at a time and implement some form of feedback
mechanism so that the key is constantly changing. RC4 is an example of a stream
cipher that is used for secure communications using the SSL protocol.

1.1.1.2 About Asymmetric Cryptographic Algorithms

An asymmetric cryptography algorithm (also known as public key cryptography) uses
one key to encrypt the plaintext and another key to decrypt the ciphertext. It does not
matter which key is applied first, but both keys are required for the process to work.

In asymmetric cryptography, one of the keys is designated the public key and is made
widely available. The other key is designated the private key and is never revealed to
another party. To send messages under this scheme, the sender encrypts some
information using the receiver's public key. The receiver then decrypts the ciphertext
using her private key. This method can also be used to prove who sent a message
(non-repudiation). The sender can encrypt some plaintext with her private key, and
when the receiver decrypts the message with the sender's public key, the receiver
knows that the message indeed came from that sender.

Some of the common asymmetric algorithms in use today are RSA, DSA, and Diffie-
Hellman.

1.1.1.3 Understanding Hash Functions

A hash function (also known as a message digest) is a one-way encryption algorithm
that essentially uses no key. Instead, a fixed-length hash value is computed based
upon the plaintext that makes it impossible for either the contents or length of the
plaintext to be recovered. Hash algorithms are typically used to provide a digital
fingerprint of a file's contents, often used to ensure that the file has not been altered by
an intruder or virus. Hash functions are also commonly employed by many operating
systems to encrypt passwords. Hash functions help preserve the integrity of a file.
Some common hash functions include MD2, MD4, MD5 and SHA.

1.2 About Public Key Infrastructure (PKI)

A public key infrastructure (PKI) is designed to enable secure communications over
public and private networks. Besides secure transmission and storage of data, PKI also
enables secure e-mail, digital signatures, and data integrity. PKI uses public key
cryptography, a mathematical technique that uses a pair of related cryptographic keys
to verify the identity of the sender (digital signature), and to ensure the privacy of a
message (encryption). PKI facilities secure information exchange over Internet.

Critical elements for achieving the goals of PKI include:

¢ Encryption algorithms and keys to secure communications

¢ Digital certificates that associate a public key with the identity of its owner
e Key distribution methods to permit widespread, secure use of encryption

* A trusted entity, known as a Certificate Authority (CA), to vouch for the
relationship between a key and its legitimate owner

e A Registration Authority (RA) that is responsible for verifying the information
supplied in requests for certificates made to the CA

Introduction to Oracle Security Developer Tools 1-3

About Public Key Infrastructure (PKI)

Relying third parties use the certificates issued by the CA and the public keys
contained in them to verify digital certificates and encrypt data.

1.2.1 Understanding Key Pairs

Encryption techniques often use a key, known only to the sender and the recipient.
Public key cryptography uses a key pair of mathematically related cryptographic keys
—the public key and the private key.

When both use the same key, the encryption scheme is called symmetric. Difficulties
with relying on a symmetric system include getting that key to both parties without
allowing an eavesdropper to get it, too; and the fact that a separate key is needed for
every two people, so that each individual must maintain many keys, one for each
recipient.

For an explanation of the use of key pairs, see “About Asymmetric Cryptographic
Algorithms”.

Table 1-1 summarizes who uses public and private keys and when:

Table 1-1 Summary of Public and Private Key Usage

Function Key Type Whose Key
Encrypt data for a recipient Public key Receiver
Sign data Private key Sender
Decrypt data received Private key Receiver
Verify a signature Public key Sender

1.2.2 About the Certificate Authority

A Certificate Authority (CA) is a trusted third party that vouches for the public key
owner's identity.

Examples of certificate authorities include Verisign and Thawte.

1.2.3 What are Digital Certificates?

The certification authority validates the public key's link to a particular entity by
creating a digital certificate. This digital certificate contains the public key and
information about the key holder and the signing certification authority.

Using a PKI certificate to authenticate one's identity is analogous to identifying oneself
with a driver's license or passport.

1.2.4 Related PKI Standards

A number of standards and protocols support PKI certificate implementation. These
are Cryptographic Message Syntax (CMS), Secure/Multipurpose Internet Mail
Extension (S/MIME), Lightweight Directory Access Protocol (LDAP), Time Stamp
Protocol (TSP), Online Certificate Status Protocol (OCSP), and Certificate Management
Protocol (CMP).

Cryptographic Message Syntax

Cryptographic Message Syntax (CMS) is a general syntax for data protection
developed by the Internet Engineering Task Force (IETF). It supports a wide variety of

1-4 Developing Applications with Oracle Security Developer Tools

About Public Key Infrastructure (PKI)

content types including signed data, enveloped data, digests, and encrypted data,
among others. CMS allows multiple encapsulation so that, for example, previously
signed data can be enveloped by a second party.

Values produced by CMS are encoded using X.509 Basic Encoding Rules (BER),
meaning that the values are represented as octet strings.

Secure/Multipurpose Internet Mail Extension

Secure/Multipurpose Internet Mail Extension (S/MIME) is an Internet Engineering
Task Force (IETF) standard for securing MIME data through the use of digital
signatures and encryption.

S/MIME provides the following cryptographic security services for electronic
messaging applications:

¢ Authentication
® Message integrity and non-repudiation of origin (using digital signatures)
¢ Privacy and data security (using encryption)

Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP) is the open standard for obtaining and
posting information to commonly used directory servers. In a public key
infrastructure (PKI) system, a user's digital certificate is often stored in an LDAP
directory and accessed as needed by requesting applications and services.

Time Stamp Protocol

In a Time Stamp Protocol (TSP) system, a trusted third-party Time Stamp Authority
(TSA) issues time stamps for digital messages. Time stamping proves that a message
was sent by a particular entity at a particular time, providing non-repudiation for
online transactions.

The Time Stamp Protocol, as specified in RFC 3161, defines the participating entities,
the message formats, and the transport protocol involved in time stamping a digital
message.

To see how a time-stamping system can work, suppose Sally signs a document and
wants it time stamped. She computes a message digest of the document using a secure
hash function and then sends the message digest (but not the document itself) to the
TSA, which sends her in return a digital time stamp consisting of the message digest,
the date and time it was received at the TSA server, and the signature of the TSA.
Since the message digest does not reveal any information about the content of the
document, the TSA cannot eavesdrop on the documents it time stamps. Later, Sally
can present the document and time stamp together to prove when the document was
written. A verifier computes the message digest of the document, makes sure it
matches the digest in the time stamp, and then verifies the signature of the TSA on the
time stamp.

Online Certificate Status Protocol

Online Certificate Status Protocol (OCSP) is one of two common schemes for checking
the validity of digital certificates. The other, older method, which OCSP has
superseded in some scenarios, is known as the certificate revocation list (CRL).

OCSP overcomes the chief limitation of CRL: the fact that updates must be frequently
down-loaded to keep the list current at the client end. When a user attempts to access
a server, OCSP sends a request for certificate status information. The server sends back
a response of good, revoked, or unknown. The protocol specifies the syntax for

Introduction to Oracle Security Developer Tools 1-5

About Web Services Security

communication between the server (which contains the certificate status) and the
client application (which is informed of that status).

Certificate Management Protocol

The certificate management protocol (CMP) handles all relevant aspects of certificate
creation and management. CMP supports interactions between public key
infrastructure (PKI) components, such as Certificate Authorities (CAs), Registration
Authorities (RAs), and end entities that are issued certificates.

1.2.5 Benefits of PKI

PKI provides secure and reliable authentication. It provides data integrity, non-
repudiation, and prevents unauthorized access to transmitted or stored information.

PKI provides users with the following benefits:

e Secure and reliable authentication of users

Reliable authentication relies on two factors. The first is proof of possession of the
private key part of the public/private pair, which is verified by an automatic
procedure that uses the public key. The second factor is validation by a certification
authority that a public key belongs to a specific identity. A PKI-based digital
certificate validates this identity connection based on the key pair.

¢ Data integrity

Using the private key of a public/private key pair to sign digital transactions
makes it difficult to alter the data in transit. This "digital signature"” is a coded
digest of the original message encrypted by the sender's private key. Recipients can
readily use the sender's corresponding public key to verify who sent the message
and the fact that it has not been altered. Any change to the message or the digest
would have caused the attempted verification using the public key to fail, telling
the recipient not to trust it.

¢ Non-repudiation

PKI can also be used to prove who sent a message. The sender encrypts some
plaintext with her private key to create a digital signature, and when the receiver
decrypts the message with the sender's public key, the receiver knows that the
message indeed came from that sender, making it difficult for the message
originator to disown the message; this capability is known as non-repudiation.

e Prevention of unauthorized access to transmitted or stored information

The time and effort required to derive the private key from the public key makes it
unlikely that the message would be decrypted by anyone other than the key pair
owner.

1.3 About Web Services Security

Web services provide a standard way for organizations to integrate Web-based
applications using open standard technologies such as XML, SOAP, and WSDL. While
the core SOAP specification solves many problems related to XML and Web Services,
it does not provide a means to address message security requirements such as
confidentiality, integrity, message authentication, and non-repudiation.

SOAP is a lightweight protocol for exchange of information in a service oriented
environment. In such an environment, applications can expose selected functionality
(business logic, for example) for use by other applications. SOAP provides the means

1-6 Developing Applications with Oracle Security Developer Tools

About SAML

by which applications supply and consume these services; it is an XML-based protocol
for message transport in a distributed, decentralized Web Services application
environment.

The need for securing SOAP prompted OASIS to put forward the Web Services
Security standard, which:

¢ Specifies enhancements to allow signing and encryption of SOAP messages.
® Describes a general-purpose method to associate security tokens with messages.

¢ Provides additional means for describing the characteristics of tokens that are
included with a message.

1.4 About SAML

Security Assertions Markup Language (SAML) is an XML-based framework for
exchanging security information over the Internet. SAML enables the exchange of
authentication and authorization information between various security services
systems that otherwise would not be able to interoperate.

The SAML 1.0, 1.1, and 2.0 specifications were adopted by the Organization for the
Advancement of Structured Information Standards (OASIS) in 2002, 2003, and 2005
respectively. OASIS is a worldwide not-for-profit consortium that drives the
development, convergence, and adoption of e-business standards.

SAML 2.0 marks the convergence of the Liberty ID-FF, Shibboleth, and SAML 1.0/1.1
federation protocols.

1.4.1 Understanding SAML Assertions

SAML associates an identity, such as an e-mail address or a directory listing, with a
subject, such as a user or system, and defines the access rights within a specific
domain. The basic SAML document is the Asser t i on, which contains declarations of
facts about a Subj ect (typically a user).

SAML provides three kinds of declarations, or St at erment s:

e Aut hnSt at ement asserts that the user was authenticated by a particular method
at a specific time.

e AttributeStatement asserts that the user is associated with particular attributes
or details, for example an employee number or account number.

e Aut hzDeci si onSt at ement asserts that the user's request for a certain access to a
particular resource has been allowed or denied.

Assertions are XML documents generated about events that have already occurred.
While SAML makes assertions about credentials, it does not actually authenticate or
authorize users. Example 1-1 shows a typical SAML authentication assertion wrapped
in a SAMLP response message:

Example 1-1 Sample SAMLP Response Containing a SAML 1.0 Authentication
Assertion

<sam p: Response
Mpj or Ver si on="1" M nor Ver si on="0"
Responsel D="128. 14. 234. 20. 90123456"
I nResponseTo="123. 45. 678. 90. 12345678"
| ssuel nst ant ="2005- 12- 14710: 00: 232"
xm ns: sam ="urn: oasi s: names: t ¢c: SAML: 1. 0: assertion"

Introduction to Oracle Security Developer Tools 1-7

About SAML

xm ns: sam p="urn: oasi s: names: t ¢c: SAM.: 1. 0: prot ocol ">
<sam p: St at us>
<san p: St at usCode Val ue="sanl p: Success" />
</ sam p: St at us>
<san : Assertion
Mpj or Ver si on="1" M nor Ver si on="0"
Assertionl D="123. 45. 678. 90. 12345678"
| ssuer="1Issui ngAut hority. conf
| ssuel nstant ="2005- 12- 14T10: 00: 232" >
<san : Condi ti ons
Not Bef or e="2005- 12- 14T10: 00: 302"
Not Af t er ="2005- 12- 14T10: 15: 00Z" />
</ sam : Condi ti ons
<san : Aut henti cati onSt at enent
Aut hent i cati onMet hod="ur n: oasi s: nanes: t c: SAM.: 1. 0: am passwor d"
Aut hent i cati onl nst ant ="2005- 12- 14T10: 00: 202" >
<sam : Subj ect >
<sani : Nanel dentifier NameQualifier="RelyingParty.conf>
john.snith
</ sam : Nanel dentifier>
<san : Subj ect Confi rmati on>
<san : Confirmati onMet hod>
urn:oasis:names:tc: SAML: 1. 0: cmartifact-01
</ sam : ConfirmationMet hod>
</ sam : Subj ect Confirmati on>
</ sam : Subj ect >
</ sam : Aut henti cati onSt at enent >
</sam : Assertion>
</ san p: Response>

1.4.2 Understanding SAML Requests and Responses

When a user signs into a SAML-compliant service, the service sends a "request for
authentication assertion" to the issuing authority (identity provider). The issuing
authority returns an "authentication assertion" reference stating that the user was
authenticated by a particular method at a specific time.

The authority that issues assertions is known as the issuing authority or identity
provider. An issuing authority can be a third-party service provider or an individual
business that is serving as an issuing authority within a private federation of
businesses. SAML-compliant applications and services, which trust the issuing
authority or identity provider and make use of its services, are called relying parties
or service providers.

1.4.2.1 About the SAML Request and Response Cycle

In a typical SAML cycle, the relying party (or service provider), which needs to
authenticate a specific client request, sends a SAML request to its issuing authority or
identity provider. The identity provider responds with a SAML assertion, which
supplies the relying party or service provider with the requested security information.

For example, when a user signs into a SAML-compliant service of a relying party or
identity provider, the service sends a "request for authentication assertion" to the
issuing authority (identity provider). The issuing authority returns an "authentication
assertion" reference stating that the user was authenticated by a particular method at a
specific time. The service can then pass this assertion reference to other relying party/
identity provider sites to validate the user's credentials. When the user accesses
another SAML-compliant site that requires authentication, that site uses the reference
to request the "authentication assertion” from the issuing authority or identity
provider, which states that the user has already been authenticated.

1-8 Developing Applications with Oracle Security Developer Tools

About SAML

At the issuing authority, an assertion layer handles request and response messages
using the SAML protocol, which can bind to various communication and transport
protocols (HTTP, SOAP, and so on). Note that while the client always consumes
assertions, the issuing authority or identity provider can act as producer and
consumer since it can both create and validate assertions.

This cycle is illustrated in Figure 1-1.

Figure 1-1 SAML Request-Response Cycle

L
l Relying Party [Relying Party
User
I Response I Response
Assertion | Assertion
Request T Request T
S R, SUP U
: Issuing Authority ;
Transport
i ‘ HTTP ‘ SOAP ... 5
Creates Validates
Assertion Assertion
Assertion
i ‘ SAML i

This figure shows a SAML request and response cycle, and shows a user, boxes for
relying parties, and a box for the issuing authority. The user or client request first goes
to the relying party, which sends a SAML request to its issuing authority. The issuing
authority responds with a SAML assertion, which supplies the relying party with the
requested security information. Two-way arrows denote the client communication
with the relying party (there can be more than one relying party), and also denote the
request-response communication between the relying party and issuing authority.

Finally, the box for the issuing authority separates out the assertion layer (SAML) from
the transport layer (HTTP, SOAP, and so on) to show that the communication between
these layers enables the issuing authority to create and validate assertions.

1.4.2.2 About SAML Protocol Bindings and Profiles

SAML defines a protocol, SAMLP, for requesting and obtaining assertions. Bindings
define the standard way that SAML request and response messages are transported
between the issuing authorities (identity providers) and relying parties (identity
providers) by providing mappings between SAML messages and standard
communication protocols. For example, the defined transport mechanism for SAML
requests and responses is Simple Object Access Protocol (SOAP) over HTTP. This

Introduction to Oracle Security Developer Tools 1-9

About Identity Federation

enables the exchange of SAML information across several Web services in a standard
manner.

A profile describes how SAML assertion and protocol messages are combined with
particular transport bindings to achieve a specific practical use case. Among the most
widely-implemented SAML profiles, for example, are Web browser profiles for single
sign-on and SOAP profiles for securing SOAP payloads.

1.4.2.3 How SAML Integrates with XML Security

In addition, SAML was designed to integrate with XML Signature and XML
Encryption, standards from the World Wide Web Consortium for embedding
encrypted data or digital signatures within an XML document. This support for XML
signatures allows SAML to handle not only authentication, but also message integrity
and nonrepudiation of the sender. See Oracle XML Security for more information
about Oracle XML Security.

1.5 About Identity Federation

As global businesses strive for ever-closer relationships with suppliers and customers,
they face challenges in creating more intimate, yet highly secure business transactions.
Parties conducting a business transaction must be certain of the identity of the person
or agent with whom they are dealing; they must also be assured that the other has the
authority to act on behalf of the business with whom the transaction is being
conducted. Federated Identity Management, makes parties establish trust
relationships that allow one party to recognize and rely upon security tokens issued
by another party. Identity Federation addresses challenges such as complexity, cost
control, enabling secure access to resources for employees and customers, and
regulatory compliance.

Historically, in the course of doing business with partners, companies have resorted to
acquiring names, responsibilities, and other pertinent information about all entities
who might act on behalf of the partner company. With changing roles and
responsibilities, and particularly in large enterprises, this can create significant
logistical problems as the data quickly becomes very costly to maintain and manage.

Key federation concepts include:

® Principal - the key actor in a federated environment, being an entity that performs
an authorized business task

* Identity Provider - a service that authenticates a Principal's identity

¢ Service Provider - an entity that provides a service to a principal or another entity.
For example, a travel agency can act as a Service Provider to a partner's employees
(principals).

* Single Sign-on - the Principal's ability to authenticate with one system entity (the
Identity Provider), and have other entities (the Service Providers) honor that
authentication

Note:

For additional information about the standards mentioned here, see
References.

1-10 Developing Applications with Oracle Security Developer Tools

About Oracle Security Developer Tools

1.6 About Oracle Security Developer Tools

Oracle Security Developer Tools are java tools that enable you implement a wide
range of security tasks and projects by using the cryptography standards and

protocols.

This section contains the topics:

¢ Understanding Toolkit Architecture

e Tools for XML, SAML, and Web Services Security Applications

¢ Tools for Public Key Cryptography (PKI) Applications

e Tools for E-mail Security Applications

¢ Tools for Low-level Cryptographic Applications

e Tools for Web Tokens

1.6.1 Understanding Toolkit Architecture

The Oracle Security Developer Tools consists of tools for XML, SAML, and Web
Services Security Applications, tools for Public Key Cryptography (PKI) Applications,
tools for E-mail Security Applications, tools for Low-level Cryptographic Applications,
and tools for Web Tokens arranged across different layers of the setup.

It is useful to consider the tools in the toolkit as a whole, and then to look at functional

subsets of tools for different applications.

Figure 1-2 The Oracle Security Developer Tools

Oracle Web Oracle Liberty
Servicas Security SDK
I I
‘ Oracle SAML l Oracle XKMS
Oracle Oracle S/MIME Oracle XML Security Oracle PKI SDK
JWT Secure Emall = Signature Encryption
: = JSR105/106 support Oracle Oracle Oracle Oracle
Oracle CMS LDAP TSP OCSP CMP
PKCS #7 SDK SDK SDK SDK
I I |
I
Cracle Security
Engine (Certificates)
I
‘ JCE API “
Oracle
Oracle Crypto JCE

Introduction to Oracle Security Developer Tools 1-11

About Oracle Security Developer Tools

Figure 1-2 shows the components of the Oracle Security Developer Tools. Typically, a
tool will utilize functions provided by the tool immediately below it in the stack. For
example, the Oracle SAML tool leverages functions provided by the Oracle XML
Security tool.

Note that:

¢ Conceptually, the tools are arranged in layers with the fundamental building
blocks at the bottom layer; each additional layer utilizes and builds upon the layer
immediately below, to provide tools for specific security applications.

® The figure is not intended as a hierarchy or sequence diagram. Rather, it illustrates
the relationship among components and the progression from low-level tools to
more specialized and application-specific components higher up the stack.

Oracle Crypto and Oracle Security Engine are the basic cryptographic tools of the set.
The next layer consists of Oracle CMS for message syntax, Oracle XML Security for
signature encryption, and Oracle PKI SDK, which is a suite of PKI tools consisting of
Oracle PKI LDAP SDK, Oracle PKI TSP SDK, Oracle PKI OCSP SDK, and Oracle PKI
CMP SDK. Oracle S/MIME exploits Oracle CMS to provide a toolset for secure e-mail.
The next layer contains Oracle SAML and Oracle Liberty SDK, which provides
structured assertion markup and federated identity management capabilities. Finally,
Oracle Web Services Security facilitates secure interactions with web services.

1.6.2 Tools for XML, SAML, and Web Services Security Applications

Oracle XML Security package provides security for XML documents. It provides the
foundation for Oracle Web Services Security, Oracle SAML, and Oracle Liberty SDK.

The Oracle XML Security package provides the foundation for the following
components of the toolkit:

* Oracle Web Services Security
¢ Oracle SAML for developing SAML 1.0 and 2.0-compliant Java security services

¢ Oracle Liberty SDK for single sign-on (SSO) and federated identity applications
based on Liberty Alliance specifications

Figure 1-3 Tools for XML, SAML, and WS Security

Oracle Web

Services Security ‘ Oracle Liberty
SDK

‘ Oracla SAML

Oracle XML Security

This graphic shows that Oracle SAML, Oracle Web Services Security, and Oracle
Liberty tools are built on Oracle XML Security.

1-12 Developing Applications with Oracle Security Developer Tools

About Oracle Security Developer Tools

Note:

A diagram like this is necessarily simplified; in practice the jar relationships
between the Oracle Security Developer Tools are complex and depend upon
implementation details. For example, to use the SAML libraries, you actually
need several components:

® The Oracle XML Security library is needed as SAML requires signatures.

¢ Oracle Security Engine provides certificate and CRL management features

See Figure 1-2 for a more complete picture of dependencies. See the
subsequent tool chapters in this guide for instructions on setting up the
classpath for each tool, so that you have the correct environment for each type
of application.

1.6.2.1 About Oracle XML Security

XML Security refers to the common data security requirements of XML documents,
such as confidentiality, integrity, message authentication, and non-repudiation.

Oracle XML Security fulfills these needs by providing the following features:
¢ Support for the Decryption Transform proposed standard

* Support for the XML Canonicalization standard

* Support for the Exclusive XML Canonicalization standard

¢ Compatibility with a wide range of JAXP 1.1 compliant XML parsers and XSLT
engines

1.6.2.2 About Oracle SAML

The Oracle SAML API provides tools and documentation to assist developers of
SAML-compliant Java security services. You can integrate Oracle SAML into existing
Java solutions including applets, applications, E]Bs, servlets, and JSPs.

Oracle SAML provides the following features:
* Support for the SAML 1.0/1.1 and 2.0 specifications

* Support for SAML-based single sign-on (SSO), Attribute, Metadata, Enhanced
Client Proxy, and federated identity profiles

1.6.2.3 About Oracle Web Services Security

Oracle Web Services Security provides an authentication and authorization framework
based on Organization for the Advancement of Structured Information Standards
(OASIS) specifications. Oracle Web Services Security provides the following features:

e Support for the SOAP Message Security standard (SOAP 1.1,1.2)

* Support for the Username Token Profile standard (UsernameToken Profile 1.1)
* Support for the X.509 Certificate Token Profile standard

* Support for the WSS SAML Token Profile (version 1.0)

Introduction to Oracle Security Developer Tools 1-13

About Oracle Security Developer Tools

Note:

The WSS SAML Token Profile version is different from the SAML version.

1.6.2.4 About Oracle Liberty SDK

Oracle Liberty SDK allows Java developers to design and develop single sign-on (SSO)
and federated identity solutions based on the Liberty Alliance specifications. Oracle
Liberty SDK, available in versions 1.1 and 1.2, aims to unify, simplify, and extend all
aspects of development and integration of systems conforming to the Liberty Alliance
1.1 and 1.2 specifications.

Oracle Liberty SDK provides the following features:
* Support for the Liberty Alliance Project version 1.1 and 1.2 specifications

® Support for Liberty-based Single Sign-on and Federated Identity

Note:

For additional information about the standards and specifications mentioned
in this chapter, see References.

1.6.3 Tools for Public Key Cryptography (PKI) Applications

The Oracle PKI package consists of tools for working with digital certificates within an
LDAP repository, for developing timestamp services conforming to RFC 3161, for
OCSP messaging compliant with RFC 2560, and for the certificate management
protocol (CMP) specification. The Oracle PKI package also provides the foundation for
Oracle XKMS, which enables you to develop XML transactions for digital signature
processing.

Figure 1-4 PKI Tools

Oracle XKMS

Oracle PKI

Oracle QOracle Oracle Oracle
LDAP TSP QCSP CMP

This graphic shows that Oracle's XKMS tool is built on Oracle PKI tools, which consist
of Oracle LDAP, Oracle TSP, Oracle OCSP, and Oracle CMP.

1.6.3.1 About Oracle PKI LDAP SDK

Oracle PKI LDAP SDK provides facilities for accessing a digital certificate within an
LDAP directory. Some of the tasks you can perform using the Oracle PKI LDAP SDK
are:

* Validating a user's certificate in an LDAP directory

¢ Adding a certificate to an LDAP directory

1-14 Developing Applications with Oracle Security Developer Tools

About Oracle Security Developer Tools

¢ Retrieving a certificate from an LDAP directory

® Deleting a certificate from an LDAP directory

1.6.3.2 About Oracle PKI TSP SDK
The Oracle PKI TSP SDK provides the following features and functionality:

® Oracle PKI TSP SDK conforms to RFC 3161 and is compatible with other products
that conform to this time stamp protocol (TSP) specification.

¢ Oracle PKI TSP SDK provides an example implementation of a TSA server to use
for testing TSP request messages, or as a basis for developing your own time
stamping service.

1.6.3.3 About Oracle PKI OCSP SDK
The Oracle PKI OCSP SDK provides the following features and functionality:

¢ The Oracle PKI OCSP SDK conforms to RFC 2560 and is compatible with other
products that conform to this specification, such as Valicert's Validation Authority.

® The Oracle PKI OCSP SDK API provides classes and methods for constructing
OCSP request messages that can be sent through HTTP to any RFC 2560 compliant
validation authority.

¢ The Oracle PKI OCSP SDK API provides classes and methods for constructing
responses to OCSP request messages, and an OCSP server implementation that you
can use as a basis for developing your own OCSP server to check the validity of
certificates you have issued.

1.6.3.4 About Oracle PKI CMP SDK

Certificate management protocol (CMP) messages support the following set of
functions:

* Registration of an entity, which takes place prior to issuing a certificate
® [Initialization, such as the generation of a key pair

¢ Certification (issuing certificates)

® Key pair recovery for reissuing lost keys

¢ Key pair updates when a certificate expires and a new key pair and certificate
needs to be generated

* Revocation requests to the CA to include a certificate in a CRL

e (Cross-certification between two CAs

The Oracle PKI CMP SDK conforms to RFC 2510 and is compatible with other
products that conform to this certificate management protocol specification. In
addition, it conforms to RFC 2511 and is compatible with other products that conform
to this certificate request message format (CRMF) specification.

1.6.3.5 About Oracle XKMS

Oracle XKMS (XML Key Management Specification) provides a convenient way to
handle public key infrastructures by allowing developers to write XML transactions

Introduction to Oracle Security Developer Tools 1-15

About Oracle Security Developer Tools

for digital signature processing. Oracle XKMS implements the W3C XKMS standard
and avoids some of the cost and complexity involved with public key infrastructures.

1.6.4 Tools for E-mail Security Applications

Oracle CMS provides tools for reading and writing CMS objects, as well as the
foundation for the Oracle S/MIME tools for e-mail security, including certificate
parsing and verification, X.509 certificates, private key encryption, and related
features.

Figure 1-5 CMS and S/MIME Tools

‘ Oracle SIMIME

Oracle CMS

This graphic shows that Oracle's S/MIME tool is built on Oracle CMS.

1.6.4.1 About Oracle CMS

Oracle CMS provides an extensive set of tools for reading and writing CMS objects,
and supporting tools for developing secure message envelopes.

Oracle CMS implements the IETF Cryptographic Message Syntax specified in
RFC-2630. Oracle CMS implements all the RFC-2630 content types.

1.6.4.2 About Oracle S/MIME

Oracle S/MIME provides the following Secure/Multipurpose Internet Mail Extension
(S/MIME) features:

¢ Full support for X.509 Version 3 certificates with extensions, including certificate
parsing and verification

* Support for X.509 certificate chains in PKCS#7 and PKCS#12 formats
® Private key encryption using PKCS#5, PKCS#8, and PKCS#12

¢ Anintegrated ASN.1 library for input and output of data in ASN.1 DER/BER
format

1.6.5 Tools for Low-level Cryptographic Applications

Oracle Crypto provides a broad range of cryptographic algorithms, message digests,
and MAC algorithms, as well as the basis for the Oracle Security Engine for X.509
certificates and CRL extensions.

Figure 1-6 Cryptographic Tools

Oracle Security
Engine

| Oracle Crypto

This graphic shows that Oracle Security Engine is built upon the Oracle Crypto tool.

1-16 Developing Applications with Oracle Security Developer Tools

About Supported Standards

1.6.5.1 About Oracle Crypto
The Oracle Crypto toolkit provides the following features:

Public key cryptography algorithms such as RSA

Digital signature algorithms such as Digital Signature Algorithm (DSA) and RSA
* Key exchange algorithms such as Diffie-Hellman

® Symmetric cryptography algorithms such as Blowfish, AES, DES, 3DES, RC2, and
RC4

* Message digest algorithms such as MD2, MD4, MD5, SHA-1, SHA-256, SHA-384,
and SHA-512

¢ MAC algorithms such as HMAC-MD5 and HMAC-SHA-1

Methods for building and parsing ASN.1 objects

1.6.5.2 About Oracle Security Engine

The Oracle Security Engine toolkit provides the following features:

X.509 Version 3 Certificates, as defined in RFC 3280

Full PKCS#12 support

¢ PKCS#10 support for certificate requests

* CRLs as defined in RFC 3280

¢ Implementation of Signed Public Key And Challenge (SPKAC)
* Support for X.500 Relative Distinguished Name

¢ PKCS#7 support for wrapping X.509 certificates and CRLs

* Implementation of standard X.509 certificates and CRL extensions

1.6.6 Tools for Web Tokens

Oracle JWT enables you to create a JSON object that is digitally signed using a JSON
Web Signature (JWS) and optionally encrypted using JSON Web Encryption (JWE).

1.6.6.1 About Oracle JWT

Oracle JWT (JSON Web Token) provides support for the JSON Web Token standard.
Using Oracle JWT, you can construct and maintain JSON objects to represent claims
being transferred between parties using a compact token format.

1.7 About Supported Standards

Oracle Security Developer Tools support multiple standards for SAML, XML Security
Transforms, and WS-Security.

The supported standards and protocols are shown in the following table:

Introduction to Oracle Security Developer Tools 1-17

Setting the CLASSPATH Environment Variable

Table 1-2 Supported Standards
- - - __|

Feature/Component Standard

SAML e SAML 1.0
e SAML1.1
e SAML 20

XML Security Transforms The following transforms are supported:
* canonicalization 1.0
* canonicalization 1.1
* exclusive canonicalization
e decrypt transform
¢ xpath filter transform
¢ xpath filter 2.0 transform
¢ enveloped signature transform

WS-Security WS-Security 1.1, including;:
* WS-Security Core Specification 1.1
¢ Username Token Profile 1.1
e X.509 Token Profile 1.1
* SAML Token profile 1.1
¢ Kerberos Token Profile 1.1
¢ SOAP with Attachments (SWA) Profile 1.1

Note:

By way of clarification, note that SAML token profile 1.1 applies to SAML 2.0,
while SAML token profile 1.0 applies to SAML 1.0 and SAML 1.1.

1.8 Setting the CLASSPATH Environment Variable

Each tool in the OSDT toolkit has specific CLASSPATHrequirements. You must set the
CLASSPATH environment variable. Your CLASSPATH environment variable must
contain the full path and file names to all of the required jar and class files.

To determine which jars you need for a specific OSDT tool, refer the Setting Up Your
Environment section of the chapter that describes the tool.

1.8.1 Setting the CLASSPATH on Windows

On Windows, set your CLASSPATH environment variable to include the full path and
file name of all the required jar files, by using the Windows Control Panel.

To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.
3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment variable

for your user profile. If a CLASSPATH environment variable already exists, select it
and click Edit.

1-18 Developing Applications with Oracle Security Developer Tools

Setting the CLASSPATH Environment Variable

5. Add the full path and file names for all the required jar files to the CLASSPATH.

For example, your CLASSPATH might look like this:

YL ASSPATHY %ORACLE_HOME% modul es\ oracl e. osdt _11. 1. 1\ osdt _core.jar;
Y%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cert.jar;
Y%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _xn sec. j ar;
Y%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _sani . j ar;
Y%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _san 2. ar;
Y%ORACLE_HOVE% nodul es\org.jaxen_1.1.1.jar;

6. Click OK.

1.8.2 Setting the CLASSPATH on UNIX

On UNIX, set your CLASSPATH environment variable to include the full path and file
name of all the required jar and class files.

For example:

setenv CLASSPATH $CLASSPATH: $ORACLE_HOVE/ modul es/ oracl e. osdt _11.1. 1/ osdt_core.jar:
$ORACLE_HOVE/ modul es/ oracl e. osdt _11.1. 1/ osdt _cert.jar:

$ORACLE_HOVE/ nodul es/ or acl e. osdt _11. 1. 1/ osdt _xni sec.jar:

$ORACLE_HOVE/ modul es/ oracl e. osdt _11.1. 1/ osdt _sam .jar:

$ORACLE_HOVE/ nodul es/ oracl e. osdt _11. 1. 1/ osdt _sanl 2. ar:

$ORACLE_HOVE/ nodul es/org.jaxen_1.1.1.jar

Introduction to Oracle Security Developer Tools 1-19

Setting the CLASSPATH Environment Variable

1-20 Developing Applications with Oracle Security Developer Tools

2

Oracle Crypto

Oracle Crypto Software Development Kit (SDK) allows Java developers to create
applications that ensure data security and integrity.

Note:

The use of the Oracle Crypto library is not recommended with Release 11gR1
and higher. Instead, use the standard JCE interface for all cryptographic
operations.

However, for ASN.1 parsing you should continue to use the Oracle Crypto
library, as there are no standard APIs in the JDKs for that task.

For more information, see these resources:

* JDK documentation on using the JCE interfaces at ht t p: //
www. or acl e. conl t echnet wor k/ j ava/ i ndex. ht m

* Migrating to the JCE Framework

This chapter contains the following topics:

About Oracle Crypto Features and Benefits

Setting Up Your Oracle Crypto Environment

Understanding and Using Core Classes and Interfaces of Oracle Crypto

The Oracle Crypto and Crypto FIPS Java API References

2.1 About Oracle Crypto Features and Benefits
Oracle Crypto supports public key cryptography algorithms, digital signature
algorithms, key exchange algorithms, symmetric cryptography algorithms, message

digest algorithms, MAC algorithms, and methods for building and parsing ASN.1
objects.

Oracle Crypto provides the following features:

Public key cryptography algorithms such as RSA

Digital signature algorithms such as DSA and RSA

Key exchange algorithms such as Diffie-Hellman

* Symmetric cryptography algorithms such as Blowfish, AES, DES, 3DES, RC2, and
RC4

Oracle Crypto 2-1

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

About the Oracle Crypto Packages

® Message digest algorithms such as MD2, MD4, MD5, SHA-1, SHA-256, SHA-384,
and SHA-512

¢ MAC algorithms such as HMAC-MD5 and HMAC-SHA-1

® Methods for building and parsing ASN.1 objects

2.2 About the Oracle Crypto Packages

Oracle Crypto contains packages of basic cryptographic primitives, utility classes for
handling mathematical functions, various other utility classes, and facilities for
reading and writing both BER-encoded and DER-encoded ASN.1 structures.

Oracle Crypto contains the following packages:
e oracle.security.crypto.core -Basic cryptographic primitives

e oracle.security.crypto.core. math - Utility classes for handling
mathematical functions

e oracle.security.crypto.util -Various utility classes

e oracle.security.crypto.asnl - Facilities for reading and writing both BER-
encoded and DER-encoded ASN.1 structures

2.3 Setting Up Your Oracle Crypto Environment

In order to use the Oracle Crypto SDK, your system must have the Java Development
Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable must contain
the full path and file names to the required jar and class files.

Make sure that the osdt _cor e. j ar file is included in your CLASSPATH.
For example, your CLASSPATH might look like this:
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _core.jar

See Also:

Setting the CLASSPATH Environment Variable

2.4 Understanding and Using Core Classes and Interfaces of Oracle
Crypto

Oracle Crypto consists of multiple core classes and interfaces in the categories of Key
Classes, Key Generation Classes, Cipher Classes, Signature Classes, Message Digest
Classes, Key Agreement Class, and Pseudo-Random Number Generator Classes.

This section provides information and code samples for using the core classes and
interfaces of Oracle Crypto. The following sections explain it further:

® About Oracle Crypto Key Classes
¢ Using the Oracle Crypto Key Generation Classes
e Using Oracle Crypto Cipher Classes

¢ Using the Oracle Crypto Signature Classes

2-2 Developing Applications with Oracle Security Developer Tools

Understanding and Using Core Classes and Interfaces of Oracle Crypto

* Using Oracle Crypto Message Digest Classes
e Using the Oracle Crypto Key Agreement Class

* Using Oracle Crypto Pseudo-Random Number Generator Classes

2.4.1 About Oracle Crypto Key Classes
Oracle Crypto provides multiple classes and interfaces to work with keys.
These classes and interfaces are:
* The oracle.security.crypto.core. Key Interface
¢ The oracle.security.crypto.core.PrivateKey Interface
* The oracle.security.crypto.core.PublicKey Interface

¢ The oracle.security.crypto.core.SymmetricKey Class

2.4.1.1 The oracle.security.crypto.core.Key Interface

This interface represents a key which may be used for encryption or decryption, for
generating or verifying a digital signature, or for generating or verifying a MAC. A
key may be a private key, a public key, or a symmetric key.

2.4.1.2 The oracle.security.crypto.core.PrivateKey Interface

This interface represents a private key which may be an RSAPr i vat eKey, a
DSAPr i vat eKey, a DHPr i vat eKey, an ECPr i vat eKey or a Pri vat eKey PKCS8
instance that holds an encrypted private key.

2.4.1.3 The oracle.security.crypto.core.PublicKey Interface

This interface represents a public key which may be a RSAPubl i cKey, a

DSAPubl i cKey, a DHPubl i cKey or a ECPubl i cKey instance.

2.4.1.4 The oracle.security.crypto.core.SymmetricKey Class

This class represents a symmetric key which may be used for encryption, decryption
or for MAC operations.

2.4.2 Using the Oracle Crypto Key Generation Classes
Oracle Crypto provides classes for key generation.

These classes are:
e Using the oracle.security.crypto.core.KeyPairGenerator Class

* Using the oracle.security.crypto.core.SymmetricKeyGenerator Class

2.4.2.1 Using the oracle.security.crypto.core.KeyPairGenerator Class

This abstract class is used to generate key pairs such as RSA, DSA, Diffie-Hellman or
ECDSA key pairs.

To get a new key pair generator, create a new instance of KeyPai r Gener at or by
calling the static get | nst ance() method with an Al gori t hm denti fi er object as
a parameter. This example shows how to create a new KeyPai r Gener at or instance:

KeyPai r Generat or kpg = KeyPai r Generator. get I nstance(Al gl D. rsaEncryption);

Oracle Crypto 2-3

Understanding and Using Core Classes and Interfaces of Oracle Crypto

This creates a KeyPai r Gener at or object from one of the concrete classes:
RSAKeyPai r Gener at or , DSAKeyPai r Gener at or , DHKeyPai r Gener at or, or
ECKeyPai r Gener at or .

Initialize the key pair generator by using one of the i ni ti al i ze() methods.
Generate the key pair with the gener at eKeyPai r () method. This example shows
how to initialize the key pair generator and then generate a key pair:

kpg.initialize(1024, RandonBitsSource. getDefault());
KeyPair kp = kpg. generat eKeyPai r ();

PrivateKey privKey = kp.getPrivate();

Publ i cKey pubKey = kp.getPublic();

Save the keys using the out put () method, or in the case of the private key, encrypt it
and save it using the Pri vat eKeyPKCS8 class. This example shows how to save a key
pair.

Fi | eQut put Stream pubKeyFos = new

Fi | eQut put Strean(" ny- pub- key. der");
pubKey. out put (pubKeyFos) ;
pubKeyFos. cl ose();

Pri vat eKeyPKCS8 pri vKeyPKCS8 =
new Privat eKeyPKCS8(pri vKey, "myPassword");
Fi | eQut put Stream pri vKeyFos =
new Fi | eQut put Strean(" my-encrypt ed-priv-key. der");
pri vKeyPKCS8. out put (pri vKeyFos);
privKeyFos. cl ose();

2.4.2.2 Using the oracle.security.crypto.core.SymmetricKeyGenerator Class

This class generates symmetric key pairs such as Blowfish, DES, 3DES, RC4, RC2, AES,
and HMAC keys.

To get a new symmetric key generator, create a new instance of

Synmmet ri cKeyGener at or by calling the static get | nst ance() method with an
Al gorithm dentifier objectasa parameter. This example shows how to create a
new Symet ri cKeyGener at or instance:

Symet ri cKeyGenerat or skg = Symmetri cKeyGenerator. getlnstance(A gl D. desCBC);
Generate the key pair with the gener at eKey() method. You can then save the key

by using the get Encoded() method. This example shows how to generate and save a
symmetric key pair.

Symmetri cKey sk = skg. generat eKey();

Fi | eQut put St ream synKeyFos =

new Fi | eQut put Strean(" my-sym key. der");
symKeyFos. wri t e(sk. get Encoded());
synmKeyFos. cl ose();

2.4.3 Using Oracle Crypto Cipher Classes

Oracle Crypto provides classes for symmetric ciphers, RSA cipher, and methods for
password based encryption.

The Oracle Crypto Cipher classes and interfaces are divided into the following
categories:

2-4 Developing Applications with Oracle Security Developer Tools

Understanding and Using Core Classes and Interfaces of Oracle Crypto

* Using Symmetric Ciphers
e Using the RSA Cipher

¢ Using Password Based Encryption (PBE)

2.4.3.1 Using Symmetric Ciphers

The symmetric ciphers are made up of two categories: the block ciphers (such as
Blowfish, DES, 3DES, RC2, and AES) and the stream ciphers (such as RC4).

A symmetric cipher can be used for four types of operations:

* Encryption of raw data. Use one of the encr ypt () methods by passing data to be
encrypted.

¢ Decryption of encrypted data. Use one of the decr ypt () methods by passing
encrypted data to be decrypted.

¢ Wrapping of private or symmetric keys. Use one of the wr apKey() methods by
passing the private or symmetric key to be encrypted.

e Unwrapping of private or symmetric encrypted keys. Use either the
unw apPri vat eKey() or the unw apSymmet ri cKey() method by passing the
encrypted private or symmetric key to be decrypted.

The concrete block cipher classes extend the abstract

oracl e. security.crypto.core. Bl ockG pher class, which extends the

oracl e. security.crypto.core. G pher class. The stream cipher classes directly
extend the or acl e. security. crypto. core. G pher class.

To create a new instance of G pher, call the static get | nst ance() method with an
Al gorithm dentifier and a Key object as parameters.

This example shows how to create a new Cipher instance. First an RC4 object is
created and initialized with the specified key. Second a block cipher DES object is
created and initialized with the specified key and padding. This creates a cipher and
initializes it with the passed parameters. To re-initialize an existing cipher, call one of
theinitialize() methods.

Ci pher rc4 = Cipher.getlnstance(A glD.rc4, rc4SynKey);
Ci pher desCi pher = G pher.getlnstance(Al gl D.desCBC, desSynKey, Paddi ng. PKCS5);

When using CBC ciphers, the Al gori t hm denti fi er object may hold
cryptographic parameters such as the initialization vector (IV) or the effective key
length for RC2 ciphers. To specify these parameters when creating or initializing block
ciphers, build a CBCAl gori t hm denti fi er object or RC2Al gori t hml dentifier
object with the cryptographic parameters. This example shows how to create and
initialize a CBC cipher and a RC2 cipher.

CBCAl gorithm dentifier chcAlglD =
new CBCAl gorithm dentifier(A glD. desCBC, iv);
desCipher.initialize(cbcAl gl D, desSynKey, Padding.PKCS5);
RC2Al gorithm dentifier rc2AlglD =
new RC2Al gorithm dentifier(iv, 56);
Bl ockGCi pher rc2C pher =
(Bl ockGi pher) G pher. get | nstance(rc2Al gl D, rc2SynKey, Paddi ng. PKCS5);

Oracle Crypto 2-5

Understanding and Using Core Classes and Interfaces of Oracle Crypto

2.4.3.2 Using the RSA Cipher

The RSA cipher is an implementation of PKCS#1 v2.0 that supports the RSAES-OAEP
and RSAES-PKCS1-v1_5 encryption schemes. According to the specification, RSAES-
OAEP is recommended for new applications, and RSAES-PKCS1-v1_5 is included only
for compatibility with existing applications and protocols.

The encryption schemes are used to combine RSA encryption and decryption
primitives with an encoding method. Encryption and decryption can only be done
through the methods encrypt (byte[]) and decrypt (byte[]).

You can use an RSA cipher for four types of operations:

* Encryption of raw data. Use one of the encr ypt () methods by passing data to be
encrypted.

e Decryption of encrypted data. Use one of the decr ypt () methods by passing
encrypted data to be decrypted.

* Wrapping of keys. Use the wr apKey() method by passing the key to be encrypted.

¢ Unwrapping of encrypted keys. Use the unw apSymmret ri cKey() method by
passing the encrypted key to be decrypted.

To create a new instance of G pher, call the static get | nst ance() method with

Al gorithm dentifier and Key objects as parameters. This example demonstrates
how to create an RSApkcs1 object and initialize it with the specified key. The cipher
can then be used to encrypt or decrypt data.

Ci pher rsakEnc = G pher.getlnstance(Al gl D.rsaEncryption, pubKey);
byte[] encryptedData = rsaEnc. encrypt(data);

Ci pher rsaDec = G pher.getlnstance(Al glD..rsaEncryption, privKey);
byte[] decryptedData = rsabDec. decrypt (encryptedData);

When using RSA ciphers, the Al gori t him denti fi er object may hold cryptographic
parameters such as the mask generation function for RSAES-OAEP. To specify these
parameters when creating or initializing RSA ciphers, build an

OAEPAI gori t hm denti fi er, or use the default one located in the

oracl e. security.crypto.core. Al gl Dinterface.

2.4.3.3 Using Password Based Encryption (PBE)

The abstract or acl e. securi ty. crypto. core. PBE class provides methods for

Password Based Encryption (PBE) operations. The concrete classes extending the PBE
are the PKCS5PBE and PKCS12PBE classes.

You may use a PBE object for four types of operations:

¢ Encryption of raw data. For example:

byte[] encData = pbeEnc.encrypt("nyPassword", data);
* Decryption of encrypted data. For example:

byte[] decData = pbeDec. decrypt ("nmyPassword", encData);
e Wrapping of private or symmetric keys. For example:

byte[] encPrivKey = pbeEnc. encryptPrivateKey("myPassword", privKey);
byte[] encSynKey = pbeEnc. encrypt Symmetri cKey("myPassword", synKey);

2-6 Developing Applications with Oracle Security Developer Tools

Understanding and Using Core Classes and Interfaces of Oracle Crypto

* Unwrapping of private or symmetric encrypted keys. For example:

PrivateKey decPrivKey = pbeDec. decrypt Privat eKey("nyPassword", encPrivKey);
Symmet ri cKey decSynKey = pbeDec. decrypt Symmet ri cKey(" nyPassword", encSynkey);

To create a new instance of PBE, call the static get | nst ance() method with a
PBEAI gori t hmi denti fi er object as a parameter. For example:

PBE pbeEnc = PBE. get | nstance(pbeA gl D);

This will create a PKCS5PBE object and initialize it with the specified PBE algorithm.
The PBE can then be used to encrypt or decrypt data, wrap or unwrap keys.

When using PBE objects, the Al gori t hml dent i fi er object may hold cryptographic
parameters such as the salt or the iteration count as well as the ASN.1 Object Identifier
specifying the PBE algorithm to use. To specify these parameters when creating or
initializing PBEs, build a PBEAl gori t hml denti fi er object with the cryptographic
parameters.

Here is an example of creating a PBE object:

PBEAI gorithmi dentifier pbeA glD =
new PBEAl gorithm dentifier(PBEA gorithm dentifier.pbeWthMb5ANdDES_CBC, salt,
1024);
pbeEnc.initialize(pbeA glD);
PBE pbeDec = PBE. get | nstance(pbeA gl D);

2.4.4 Using the Oracle Crypto Signature Classes

The oracl e. security. crypto. core. Si gnat ur e abstract class provides
methods to sign and verify signatures. The concrete classes extending the Si gnat ur e
class are the RSAMDSI gnat ur e, DSA and the ECDSA classes.

The algorithms available for signature operations are:

e For RSA: Al gl D. nd2W t hRSAEncr ypti on, Al gl D. md5W t hRSAEncr ypti on
and Al gl D. sha_1W t hRSAEncr ypti on

e For DSA: Al gl D. dsaW t hSHAL
e For ECDSA: Al gl D. ecdsaW t hSHA1

To create a new instance of Si gnat ur e, call the static get | nst ance() method with
an Al gorithm dentifier andaPri vat eKey or Publ i cKey objects as
parameters. This example shows how to create a new Si gnat ur e object and initialize
it with the specified algorithm.

Signature rsaSign = Signature. getlnstance(Al gl D. nd5W t hRSAEncrypti on);
Signature rsaVerif = Signature.getlnstance(Al gl D. md5W t hRSAEncrypti on);

This example shows how to set the keys for the Si gnat ur e objects and set the
document to be signed or verified.

rsaSi gn. set Pri vat eKey(privKey);
rsaSi gn. set Docunent (dat a) ;
rsaVerif.set Publi cKey(pubKey);
rsaVerif.set Docunent (data);

This example shows how to compute the signature using the private key or to verify
the signature using the public key and the signature bytes.

byte[] sigBytes = rsaSign.sign();
bool ean verified = rsaVerif.verify(sigBytes);

Oracle Crypto 2-7

Understanding and Using Core Classes and Interfaces of Oracle Crypto

2.4.5 Using Oracle Crypto Message Digest Classes
Oracle Crypto contains message digest classes to hash, digest and compute data.

Oracle Crypto provides the following message digest classes:
* Using the oracle.security.crypto.core.MessageDigest Class

¢ Using the oracle.security.crypto.core. MAC Class

2.4.5.1 Using the oracle.security.crypto.core.MessageDigest Class

The MessageDi gest abstract class provides methods to hash and digest data. The
concrete classes extending the MessageDi gest class are the MD2, MD4, MD5 and the
SHA classes.

The available algorithms for message digest operations are: Al gl D. nd2, Al gl D. nd4,
Al gl D. md5, Al gl D. sha_1, Al gl D. sha_256, Al gl D. sha_384 and
Al gl D. sha_512.

The basic process for creating a message digest is as follows:

1. Create a new instance of MessageDi gest by calling the static get | nst ance()
method with an Al gori t hml denti fi er object as a parameter.

2. Add the data to be digested.

3. Compute the hash value.

This example shows how to create an MD5 message digest object.

/I Create a new MD5 MessageDi gest obj ect
MessageDi gest nd5 = Signature. getlnstance(A gl D. nd5);

[/ Add the data to be digested
nd5. udpat e(dat al) ;
nd5. udpat e(dat a2) ;

/I Conput e the hash val ue
md5. conput eCurrent () ;
byte[] digestBits = nu5. getDigestBits();

2.4.5.2 Using the oracle.security.crypto.core.MAC Class

The MAC abstract class provides methods to compute and verify a Message
Authentication Code (MAC). The concrete class extending the MACis the HVAC class.

The available algorithms for MAC operations are: Al gl D. hmacMD5 and
Al gl D. hmac SHA.

The basic process for creating a MAC is as follows:

1. Create a new instance of MACby calling the static get | nst ance() method with an
Al gorithm dentifier anda Symmetri cKey object as a parameter.

2. Add the data to be digested.

3. Compute the MAC value and verify it.

This example shows how to create a new HMAC object with the HMAC-SHA1
algorithm.

2-8 Developing Applications with Oracle Security Developer Tools

Understanding and Using Core Classes and Interfaces of Oracle Crypto

//Create an HVAC object with the HVAC SHAL al gorithm
MAC hrmacShalConmpute = MAC. get I nstance(Al gl D. hmacSHA, hnacShalKey);

//Add the data to be digested
hmacShalConput e. udpat e(dat a) ;

[/ Conpute the MAC val ue and verify
byte[] macVal ue = hmacShalConput e. conput eMAC() ;
bool ean verified = hmacShalVerify. verifyMAC(data, macVal ue);

2.4.6 Using the Oracle Crypto Key Agreement Class

The oracl e. security. crypto. core. KeyAgr eenent class abstract class
provides methods for public key agreement schemes such as Diffie-Hellman. The
concrete classes extending the Key Agr eenent class are the DHKey Agr eenment and
the ECDHKeyAgr eenent classes.

The available algorithms for key agreement operations are: Al gl D. dhKeyAgr eenment
and ECDHKeyAgr eenent (Elliptic Curve Diffie-Hellman key agreement).

The basic process for key agreement is as follows:

1. Create a new instance of KeyAgr eenent by calling the static get | nst ance()
method with an Al gori t hml denti fi er object as a parameter.

2. Set the local private key and the other party's public key.

3. Compute the shared secret value.

This example shows how to perform key agreement.

//Create a DH key agreement object
KeyAgreenent dh = KeyAgreenent. get | nstance(Al gl D. dhKeyAgreenent);

//Set the private key and public key
dh. set Privat eKey(privKey);
dh. set Publ i cKey(ot her PubKey) ;

/| Conput e the shared secret
byte[] sharedSecret = dh.generateSecret();

2.4.7 Using Oracle Crypto Pseudo-Random Number Generator Classes

In cryptography, random numbers are used to generate keys. Cryptographic systems
need cryptographically strong (pseudo) random numbers that cannot be guessed by
an attacker. Oracle Crypto provides pseudo-random number generator (PRNG)
classes.

These pseudo-random number generator (PRNG) classes are:
* Using the oracle.security.crypto.core.RandomBitsSource class

¢ Using the oracle.security.crypto.core.EntropySource class

2.4.7.1 Using the oracle.security.crypto.core.RandomBitsSource class

RandonBi t sSour ce is an abstract class representing secure PRNG implementations.
Note that, by the very nature of PRNGs, the security of their output depends on the
amount and quality of seeding entropy used. Implementing classes should provide
guidance as to their proper initialization and use. The concrete classes extending the

Oracle Crypto 2-9

The Oracle Crypto and Crypto FIPS Java API References

RandonBi t sSour ce are the MD5RandonBi t sSour ce, SHA1RandonBi t sSour ce,
and the DSARandonBi t sSour ce classes.

Create a new instance of RandonBi t sSour ce by calling the static get Def aul t ()
method to return the default PRNG:

RandonBi t sSour ce rbs = RandonBit sSource. get Defaul t();

A RandonBi t sSour ce object can also be created by instantiating one of the
subclasses:

RandonBi t sSource rbs = new SHA1RandonBit sSource();

By default, a newly created PRNG created from a subclass will be seeded. To seed a
generic RandonBi t sSour ce object, use one of the seed methods by using a byte
array or an Ent r opy Sour ce object:

rbs. seed(myByt eArray);

The object is then ready to generate random data:

rbs. randonByt es(myRandonByt eArray) ;

2.4.7.2 Using the oracle.security.crypto.core.EntropySource class

The Ent r opySour ce class provides a source of seed material for the PRNGs. The
concrete classes extending the Ent r opy Sour ce are the Spi nner Ent r opySour ce
and SREnt r opy Sour ce classes.

Create a new instance of Ent r opy Sour ce by calling the static get Def aul t ()
method to return the default entropy source:

Ent ropySour ce es = EntropySource. get Defaul t();

You can also create an Ent r opySour ce object by instantiating one of the subclasses:

Ent ropySour ce rbs = new Spi nner Ent r opySour ce();

The entropy source is readied for use by using one of the gener at eByt e methods:

es. gener at eByt es(mySeedi ngArray) ;

2.5 The Oracle Crypto and Crypto FIPS Java API References

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
guide explains the classes and methods for Oracle Crypto and Oracle Crypto FIPS.

You can access this guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

2-10 Developing Applications with Oracle Security Developer Tools

3

Oracle Security Engine

Oracle Security Engine Software Development Kit (SDK) is a superset of Oracle
Crypto. It contains all of the libraries and tools provided with Oracle Crypto, plus
additional packages and utilities for generating digital certificates.

Note:

The use of the Oracle Security Engine library is not recommended with
Release 11gR1 and higher. Instead use the JDK's Certificate APIs.

For details, see the JDK documentation at:
http://ww. oracl e. conit echnet wor k/j ava/i ndex. ht m

However, the following Public-Key Cryptography Standards (PKCS) have no
JCE equivalents:

o PKCS#7
e PKCS#10

¢ Signed Public Key And Challenge (SPKAC)

and you can continue using Oracle Security Engine for these features.

Oracle Crypto allows Java developers to develop applications that ensure data
security and integrity. For more information about the Oracle Crypto functionality, see
“ Oracle Crypto ”.

For an overview of public key infrastructure, see “About Public Key Infrastructure
(PKI)”.

This chapter contains the following topics:

® Oracle Security Engine Features and Benefits

e Setting Up Your Oracle Security Engine Environment
¢ Core Classes and Interfaces of Oracle Security Engine

¢ The Oracle Security Engine Java API Reference

3.1 Oracle Security Engine Features and Benefits

Oracle Security Engine supports X.509, PKCS#10, and PKCS#12 certificates, along with
RDN and CRLs. It contains packages to support handling of digital certificates, CRLs,
and PKCS#12. The packages also handle Standard X.509 certificates and CRL
extensions.

Oracle Security Engine provides the following features:

Oracle Security Engine 3-1

http://www.oracle.com/technetwork/java/index.html

Setting Up Your Oracle Security Engine Environment

X.509 Version 3 Certificates, as defined in RFC 3280

¢ Full PKCS#12 support

¢ PKCS#10 support for certificate requests

* certificate revocation list (CRL) functionality as defined in RFC 3280
¢ Implementation of Signed Public Key And Challenge (SPKAC)

¢ Support for X.500 Relative Distinguished Names

o PKCS#7 support for wrapping X.509 certificates and CRLs

¢ Implementation of standard X.509 certificates and CRL extensions
The Oracle Security Engine toolkit contains the following packages:

e oracle.security.crypto.cert -Facilities for handling digital certificates,
CRLs, and PKCS#12.

e oracle.security.crypto.cert.ext -Standard X.509 certificates and CRL
extensions.

3.2 Setting Up Your Oracle Security Engine Environment

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOQOME. In order to use Oracle Security Engine, your system must have the
Java Development Kit (JDK) version 1.6 or higher. Your CLASSPATH environment
variable must contain the full path and file names to the required jar and class files.

Make sure the following items are included in your CLASSPATH:
e osdt_core.jar

e osdt_cert.jar
For example, your CLASSPATH might look like this:

YCLASSPATHY
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _core.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cert.jar;

See Also:

Setting the CLASSPATH Environment Variable

3.3 Core Classes and Interfaces of Oracle Security Engine

Oracle Security Engine also includes all of the classes provided with Oracle Crypto. It
also includes multiple core certificate facility classes.

Class Changes in Release 11gR1

In Release 11gR1, the oracle.security.crypto.cert.X509 class for certificate management
was replaced with java.security.cert. X509Certificate

The Core Certificate Classes

The core certificate facility classes are:

3-2 Developing Applications with Oracle Security Developer Tools

Core Classes and Interfaces of Oracle Security Engine

Using the oracle.security.crypto.cert. X500RDN Class

Using the oracle.security.crypto.cert. X500Name Class

Using the oracle.security.crypto.cert.CertificateRequest Class

Using the java.security.cert.X509Certificate Class

3.3.1 Using the oracle.security.crypto.cert. X500RDN Class

The oracle.security.crypto.cert. X500RDN class represents an X.500 Relative
Distinguished Name (RDN). This is the building block for X.500 names. A RDN
consists of a set of attribute-value pairs. Typically, there is a single attribute-value pair
in each RDN.

/] Create the X500RDN obj ect
X500RDN rdn = new X500RDN(PKI X. i d_at _conmonNane, "Joe Smith");

/1 Retrieve the val ue
X500Nane n = | nstance of oracle.security.crypto.cert.X500Naneg;
String name = n.getAttribute(PKl X id_at_commnNane). get Val ue() . get Val ue();

3.3.2 Using the oracle.security.crypto.cert.X500Name Class

The oracle.security.crypto.cert. X500Name class represents distinguished names as
used in the X.500 series of specifications, defined in X.520. An X500Narre object is
made of X500RDN objects. An X500Name holds attributes defining an entity such as
the common name, country, organization, and so on.

To create an X500Namne object, use the standard constructor and then populate the
object with attributes. Once created, the object can then be DER-encoded to make it
available to other processes:

X500Nane name = new X500Nane();

nane. addConponent (PKI X.id_at_commonNane, "Joe Smith");

nane. addConponent (PKI X.id_at _countryName, "USA");

nane. addConponent (PKI X.id_at _stateO Provi nceNanme, "NY");

nane. addConponent (PKI X.id_at_| ocal i tyName, "New York");

nane. addConponent (PKI X.id_at _organi zati onNarme, "Oracle");

name. addConponent (PKI X. i d_at _or gani zat i onal Uni t Nane, "Engi neering");
name. addConponent (PKI X. emai | Address, "joe.smith@xanpl e. cont);

P

/1 Make object DER-encoded so its available to other processes

byte[] encodedNanme = Utils.toBytes(nane);

X500Nane n = new X500Nane(new Byt eArrayl nput St rean(encodedNane)) ;

String name = n.get Attribute(PKl X id_at_commnNane). get Val ue(). get Val ue();
String email = n.getAttribute(PKI X enail Address). get Val ue(). get Val ue();

3.3.3 Using the oracle.security.crypto.cert.CertificateRequest Class

The oracle.security.crypto.cert.CertificateRequest class represents a PKCS#10
certificate request containing information about an entity and a signature of the
content of the request. The certificate request is used to convey information and
authentication data (the signature) that will be used by a Certificate Authority (CA) to
generate a certificate for the corresponding entity.

Creating a new certificate request involves the following high-level steps:

Oracle Security Engine 3-3

Core Classes and Interfaces of Oracle Security Engine

1. Create a new instance of Certi f i cat eRequest by using the empty constructor
and setting the keys and the subject name, or by using the constructor taking an
X500Narre and a KeyPai r object.

2. Add X.509 extensions to the certificate request.
3. Sign the certificate request and save it to a file.

4. Send the certificate request you created to a Certificate Authority.

//Create CertificateRequest by setting the keys and subject name
CertificateRequest certReq = new CertificateRequest();
certReq. set Privat eKey(privKey);

certReq. set Publ i cKey(pubKey);
cert Req. set Subj ect (subj ect Nane) ;

I1CR

/1 Create CertificateRequest by taking an X500Nane and KeyPair object
CertificateRequest certReq = new CertificateRequest(subjectName, keyPair);

/1 Add X. 509 certificate extensions in a extensionRequest attribute
X509Ext ensi onSet ext Set = new X509Ext ensi onSet () ;

/| Basic Constraints: non-CA, critical
ext Set . addExt ensi on(new Basi cConst r ai nt sExt ensi on(fal se, true));

/1 Key Usage: signature, data enciphernent, key agreenent
/1 & non-repudiation flags, critical
ext Set . addExt ensi on(new KeyUsageExt ensi on(new i nt[] {

KeyUsageExt ensi on. DI G TAL_SI GNATURE,

KeyUsageExt ensi on. DATA_ENCI PHERVENT,

KeyUsageExt ensi on. KEY_AGREEMENT,

KeyUsageExt ensi on. NON_REPUDI ATI ON},

true));

/1 Subject Aternative Nane: emmil address, non-critical
if (email.length() > 0)
ext Set . addExt ensi on(new Subj ect Al t NameExt ensi on(
new Gener al Name(Gener al Nane. Type. RFC822_NAME, email), false));

/1 Subject Key ldentifier: key ID bytes, non-critical
ext Set . addExt ensi on(new Subj ect Keyl DExt ensi on

(Cryptoltils. generateKeyl D(kp. getPublic())));
reqg. addAttri but e(PKI X. ext ensi onRequest, ext Set);

[/ Sign the certificate request and save to file
req.sign();

req. out put (reqCs);

reqcs. cl ose();

/1 The certificate request can then be sent to a CA

3.3.4 Using the java.security.cert.X509Certificate Class

The java.security.cert. X509Certificate class supports the generation of new certificates
as well as parsing of existing certificates.

3-4 Developing Applications with Oracle Security Developer Tools

The Oracle Security Engine Java API Reference

Note:

This class replaces oracle.security.crypto.cert. X509 for X.509 certificate
management in Oracle WebLogic Server 11g.

Complete documentation of the java.security.cert.X509Certificate class is available at
http://ww. oracl e. conftechnet work/java/index. htm .

Converting Your Code to Use java.security.cert.X509Certificate

You can create the X509Certificate object using the certificate factory
java.security.cert.CertificateFactory.

The certificate is generated from an input stream, which can be:

¢ a FileInputSream, if the certificate is stored in a file, or

* a ByteArrayInputStream, if the encoded bytes are from an existing X509 object, or
* any other source.

An example follows:

/] CGenerating an X. 509 certificate froma file-based certificate

CertificateFactory cf = CertificateFactory. getlnstance("X 509");

X509Certificate cert = (X509Certificate)cf.generateCertificate(
new Fil el nput Streanm(certFil eName);

*%

3.4 The Oracle Security Engine Java APl Reference

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
guide explains the classes and methods of Oracle Security Engine.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Oracle Security Engine 3-5

http://www.oracle.com/technetwork/java/index.html

The Oracle Security Engine Java API Reference

3-6 Developing Applications with Oracle Security Developer Tools

A

Oracle CMS

The Oracle CMS SDK is a pure Java API with an extensive set of tools for reading and
writing CMS objects, sample programs, and supporting tools for developing secure
message envelopes.

This chapter contains these topics:

® Oracle CMS Features and Benefits

* Setting Up Your Oracle CMS Environment

¢ Understanding and Developing Applications with Oracle CMS

e The Oracle CMS Java API Reference

4.1 Oracle CMS Features and Benefits

The Oracle CMS SDK is a pure Java API with an extensive set of tools for reading and
writing CMS objects, sample programs, and supporting tools for developing secure
message envelopes. It implements the IETF Cryptographic Message Syntax specified
in RFC 2630. This syntax is used to digitally sign, digest, authenticate, and encrypt
messages.

The Cryptographic Message Syntax is derived from PKCS #7 version 1.5 as specified in
RFC 2315 [PKCS#7].

See Also:

References for a link to the specifications.

4.1.1 Content Types in Oracle CMS

Oracle CMS supports various content types including signed, enveloped, encrypted,
and other data. It supports all the content types specified in RFC-2630. It supports the
Enhanced Security Services for S/MIME content type specified in RFC-2634. It also
supports IETF PKIX TimeStamp Protocol content type corresponding to RFC-3161.

Table 4-1 Content Types Supported by Oracle CMS

Type Identifier

data 1.2.840.113549.1.7.1
signed-data 1.2.840.113549.1.7.2
enveloped-data 1.2.840.113549.1.7.3

Oracle CMS 4-1

Oracle CMS Features and Benefits

Table 4-1 (Cont.) Content Types Supported by Oracle CMS

Type Identifier
digested-data 1.2.840.113549.1.7.5
encrypted-data 1.2.840.113549.1.7.6
authenticated-data 1.2.840.113549.1.9.16.1.2

Oracle CMS is a full implementation of RFC-2630 with these exceptions:
¢ There is no support for Attribute Certificates

¢ There is no support for Key Agreement RecipientInfo

Oracle CMS supports the following Enhanced Security Services for S/MIME content
type specified in RFC-2634:

Type Identifier

receipt 1.2.840.113549.1.9.16.1.2

The following IETF PKIX TimeStamp Protocol content type corresponding to RFC
3161 is supported:

Type Identifier

TSTInfo 1.2.840.113549.1.9.16.1.4

Note:

Oracle CMS will not process a content type other than the ones specified
earlier.

A link to RFC 3161 is available in References.

4.1.2 Differences Between Oracle CMS Implementation and RFCs

Oracle CMS differs from PKCS #7 v1.5 [RFC 2315] and IETF CMS [RFC 2630] in certain
ways. You must know these differences if you require interoperability with PKCS#7
implementations.

The following are the differences:

The enveloped-data contains an optional OriginatorInfo.
¢ In RFC 2630 Enveloped data also contains optional unprotected attributes.

¢ The Signerldentifier in the signed-data SignerInfo is a choice of IssuerAndSerialNo
or SubjectKeyldentifier.

* In RFC 2630 the Signed Data contains encapsulatedcontentinfo, which contains an
optional content, whereas RFC 2315 contains content data.

4-2 Developing Applications with Oracle Security Developer Tools

Setting Up Your Oracle CMS Environment

Note:

You must keep these differences in mind if you require interoperability with
PKCS#7 implementations.

4.2 Setting Up Your Oracle CMS Environment

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HQME. In order to use Oracle CMS, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable
must contain the full path and file names to all of the required jar and class files.

Make sure the following items are included in your CLASSPATH:
e theosdt _core.jar file
e theosdt cert.jar file

e theosdt_cns.j ar file
For example, your CLASSPATH might look like this:

YCLASSPATHY

Y%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _core. j ar;
Y%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cert.jar;
Y%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cns. j ar;

4.3 Understanding and Developing Applications with Oracle CMS
The Oracle CMS API enables you to build nested (wrapped) CMS objects with no limit
on the number of wrappings. Through different approaches, you can use Oracle CMS
classes to develop CMS objects.

In this section we introduce Oracle CMS classes, and explain how they enable you to
take different approaches to developing CMS objects, and describe how to work with
the objects.

This section contains these topics:

About Oracle CMS Classes

About CMS Object Types

¢ Constructing CMS Objects using the CMS***ContentInfo Classes

CMS Objects using the CMS***Stream and CMS***Connector Classes

4.3.1 About Oracle CMS Classes
The Oracle CMS classes provides the ability to read and write CMS objects.

There are two approaches to reading and writing CMS objects with the
oracl e. security.crypto.cns package:

¢ Using the CMSCont ent | nf o classes, which are relatively easy to utilize
¢ Using one of the following classes:

— CWMVBI nput St ream

— CWVBQut put St ream

Oracle CMS 4-3

Understanding and Developing Applications with Oracle CMS

— QMBI nput Connect or

— CWVBQut put Connect or

These classes provide the ability to read and write CMS objects in a single pass,
eliminating the need to accumulate the input data before writing any output.

4.3.2 About CMS Object Types

Detached object and Degenerate object are some CMS object types. A detached
object applies to data and receipt content types. A degenerate object is a certificate-
only signed-data object and is defined only for the signed-data content type.

A detached object applies to data and receipt content types. For these types, a
detached object is one where the protected content is absent.

Degenerate object refers to the case where the signed-data object has no signers. It is
normally used to store certificates and is associated with file extensions p7b and p7c.

An external signature is defined only for the signed-data content type. It is essentially
a detached signed-data object; that is, the signed-data object has one or more signers
but the content that was signed is not present in the signed-data object.

4.3.3 Constructing CMS Objects using the CMS***Contentinfo Classes

You can use the CMS***ContentInfo classes to read and write objects of the
appropriate content type, construct and process detached objects, and create nested
objects.

Table 4-2 lists the classes which make up the CMS**ContentInfo classes.

Table 4-2 CMS**Contentinfo Classes
|

Class Content Type

CMSDataContentInfo CMS.id_data

ESSReceipt CMS.id_ct_receipt (RFC-2634 receipt)
CMSDigestedDataContentInfo CMS.id_digestedData
CMSSignedDataContentInfo CMS.id_signedData
CMSEncryptedDataContentInfo CMS.id_encryptedData
CMSEnvelopedDataContentInfo CMS.id_envelopedData
CMSAuthenticateDataContentInfo CMS.id_ct_authData

A detailed discussion of CM5* * * Cont ent | nf o classes follows in these sections:
* Using the Abstract Base Class CMSContentInfo

¢ Using the CMSDataContentInfo Class

* Using the ESSReceipt Class

¢ The CMSDigestedDataContentInfo Class

¢ The CMSSignedDataContentInfo Class

4-4 Developing Applications with Oracle Security Developer Tools

Understanding and Developing Applications with Oracle CMS

* Using the CMSEncryptedDataContentInfo Class
¢ Understanding and Using the CMSEnvelopedDataContentInfo Class

4.3.3.1 Using the Abstract Base Class CMSContentinfo

C\VBCont ent | nf o is an abstract class representing a fundamental CMS object. Table
4-2 lists the subclasses of CMBCont ent | nf o.

Some of the useful methods of this abstract class are described in Table 4-3.

Table 4-3 Useful Methods of CMSContentinfo
|

Method Description

contentTypeName Returns the content type of the object as a

(oracle.security.crypto.asnl.ASN1ObjectID string.

contentType)

getContentType() Returns the content type of the object as an
object identifier (OID).

input(java.io.InputStream is) Initializes this object by reading a BER
encoding from the specified input stream.

inputInstance(java.io.InputStream is) Creates a new CMSContentInfo object by
reading a BER encoding from the specified
input stream.

isDegenerate() Indicates if the object is degenerate.

isDetached() Indicates if the object is detached.

output(java.io.OutputStream os) Writes the encoding of the object to the given

output stream.

4.3.3.1.1 Constructing a CMS Object

You can create a CMSContentInfo object by specifying the content type.
Perform the following steps to construct a CMS object:

1. Create the object of the specified content type.

2. Initialize the object.

3. Call the out put (. .) method to write the object encoding.

To create a new object, use one of the constructors of the concrete subclass with which
you are working.

4.3.3.1.2 Reading a CMS Object

If you are reading in an existing CMSCont ent | nf o, but you do not know the concrete
type in advance, use i nput | nst ance() . To read in one of a known concrete type,
use the no- ar gs constructor and then invoke the i hput () method.

Perform the following steps to read an object:

Oracle CMS 4-5

Understanding and Developing Applications with Oracle CMS

1. CallCMsCont ent | nf o. i nput | nstance(..) toread in the object.
2. Call get Cont ent Type() to determine its content type.

3. You can now invoke the content type-specific operations.

4.3.3.2 Using the CMSDataContentinfo Class

The class CMBDat aCont ent | nf 0 represents an object of type id-data as defined by
the constant CMS.id_data, and is intended to refer to arbitrary octet strings whose
interpretation is left up to the application.

A useful method of this class is:

byte[] getData()

which returns the data stored in the data object.

To create a CMS data object:

1. Create an instance of CMSDat aCont ent | nf 0 using the constructor that takes a
byte array, documentBytes, that contains the information:

C\vSDat aContent I nfo exdata =
new CVSDat aCont ent | nf o(byte[] document Byt es)

2. Write the data object to a file, for example dat a. p7m
exdat a. out put (new Fi | eQut put Strean("data. p7ni'));
The steps you use when reading a CMS data object depend on whether you know the

object's content type.

1. Open a connection to the file using Fi | el nput St r eam

If you know that the object stored in the file dat a. p7mis of content type id-data:

C\VSDat aCont ent I nfo exdata =
new CMSDat aCont ent | nf o(new Fi | el nput Strean{"data. p7ni'));

However, if you do not know the content type in advance, check the type prior to
reading:

CVsContentInfo cnsdata =
CMSCont ent I nfo. i nput I nstance(new Fil el nput St rean("data. p7ni'));
if (cnsdata instanceof CMSDataContent! nfo)

{
CvSDat aContent I nfo exdata = (CMSDataContentlnfo) cnsdat a;
I

}
2. To access the information stored in the CMS data object:

byte[] docBytes = exdata.getData();

4.3.3.3 Using the ESSReceipt Class

Class ESSRecei pt represents an object of type id-ct-receipt as defined by the constant
CMS.id_ct_receipt, and refers to an RFC-2634 receipt.

Table 4-4 lists some useful methods of this class.

4-6 Developing Applications with Oracle Security Developer Tools

Understanding and Developing Applications with Oracle CMS

Table 4-4 Useful Methods of ESSReceipt
|

Method Description

byte[] getOriginatorSignatureValue() Returns the signature value of the message that
triggered the generation of this receipt.

ASNI1ObjectID getReceiptContentType() Returns the content type of the message that
triggered the generation of this receipt.

byte[] getReceiptData() Returns the encoded receipt.

byte[] getSignedContentldentifier() Returns the signed content identifier of the
message that triggered the generation of this
receipt.

void inputContent(InputStream is) Initialize this object by reading the BER

encoding from the specified input stream.

4.3.3.3.1 Creating an ESSReceipt Object

Take the following steps to create a CMS receipt object.

1. Create an instance of ESSRecei pt using the constructor that takes a content type
identifier, a byte array containing the signed content identifier and a byte array
containing the originator signature value:

ESSRecei pt rept =
new ESSRecei pt (cont ent Type, signedContent!dentifier,
origi nat or Si gnat ureVal ue) ;

2. Write the receipt object to a file, for example dat a. p7m

rcpt. out put (new Fil eQut put Stream("data. p7ni'));

Note:

When you create an ESSReceipt object, do not leave any input parameters set
tonul | .

4.3.3.3.2 Reading an ESSReceipt Object

To read a receipt object:
1. Open a connection to the file using Fi | el nput St r eam

If you know that the object stored in the file dat a. p7mis of content type id-ct-
receipt:

ESSRecei pt rcptdata = new ESSRecei pt (new Fi | el nput Strean("data. p7nt'));

Otherwise, if the content type is unknown:

CVsContentInfo cnsdata =
CMSCont ent I nf 0. i nput | nst ance(new Fi | el nput Stream("data. p7nt'));
if (cmsdata instanceof ESSReceipt)

{

Oracle CMS 4-7

Understanding and Developing Applications with Oracle CMS

ESSRecei pt rcptdata = (ESSRecei pt) cnsdat a;

oo
}

2. Access the information stored in the receipt object:

ASASN1Qbj ect | D cont ent Type = rcptdat a. get Recei pt Cont ent Type();
byte[] sciBytes = rcptdata.getSignedContentldentifier()
byte[] osvBytes = rcptdata.get OriginatorSignatureVal ue();

4.3.3.4 The CMSDigestedDataContentinfo Class

The class CVBDi gest edDat aCont ent | nf o represents an object of type id-
digestedData as defined by the constant CMS.id_digestedData.

Table 4-5 lists some of the useful methods of this class.

Table 4-5 Useful Methods of CMSDi gest edDat aCont ent | nf o

Method

Description

byte[] getDi gest()

Al gorithm dentifier getDi gestAl gl)

CVBCont ent I nf o get Encl osed()

ASN1bj ect | D get Encl osedCont ent Type()
ASNL1I nt eger get Versi on()

bool ean i sDet ached()

voi d set Encl osed(CMsCont ent | nf o

content)

voi d writeDetached(bool ean
wri t eDet ached)

Returns the message digest value.

Returns the message digest algorithm
ID.

Returns the digested content.

Returns the content type of the
digested content.

Returns the version number of this
object.

Indicates if this object is detached.

Sets the encapsulated content, that is,
the object that was originally
digested.

Indicates if the object that is being
digested should be omitted when
creating the
CMSDigestedDataContentInfo object.

4.3.3.4.1 Constructing a CMS Digested-data Object

Take the following steps to create a CMS digested-data object.

1. Create an instance of CMSDi gest edDat aCont ent | nf 0 using the constructor that
takes the object to be digested and the digest algorithm identifier. For example, if
contentInfo is a CMsDat aCont ent | nf 0 object and MD5 is the digest algorithm:

CMVSDi gest edDat aContentInfo dig =

new CMSDi gest edDat aCont ent | nf o(cont ent I nfo, CMVS. nd5);

2. Write the CMS digested-data object to a file named dat a. p7m

di g. out put (new Fi | eQut put Stream"data. p7nt'));

4-8 Developing Applications with Oracle Security Developer Tools

Understanding and Developing Applications with Oracle CMS

4.3.3.4.2 Reading a CMS Digested-data Object

The steps you need to read a CMS di gest ed- dat a object depend on whether you
know the object's content type.

1. Open a connection to the dat a. p7mfile using Fi | el nput St r eam

If you know that the object stored in the file is of content type id-digestedData,
open the connection as follows:

CMSDi gest edDat aCont ent I nfo digdata =
new CMSDi gest edDat aCont ent | nf o(new Fi | el nput Strean{"data. p7ni'));
However, if you do not know the content type in advance, open it as follows:

CvsContentInfo cnsdata =
CMSCont ent | nf o. i nput I nst ance(new Fi | el nput St rean("dat a. p7ni'));
if (cmsdata instanceof CMBSDi gestedDat aContent | nfo)

{
CMSDi gest edDat aCont ent I nfo digdata =

(COvBDi gest edDat aCont ent | nf o) cnsdat a;

2. To access the information stored in the CMS digested-data object:

int version = digdata.getVersionNunber().intVal ue();
Al gorithmdentifier digestAl glD = digdata.getDigestA glD();
byte[] digestValue = digdata.getDigest();
CMsContent I nfo di gContentInfo = digData. get Encl osed()
i f (digData.getEncl osedContent Type().equal s(CVS.id_data))
CMSDat aContent I nfo contentlnfo = (CVSDat aCont ent | nf o) di gCont ent | nf o;

3. To verify the integrity of the protected data, verify the digest:

digData.verify();
4.3.3.4.3 Working with Detached digested-data Objects

When working with a detached object, the object that is digested is not a part of the
resulting CMS digested-data structure. To generate a detached object, call the
witeDetached (true | fal se) method. For example:

dig.witeDetached(true);

While you can read in a detached CMS digested-data object as shown earlier, the
digest verification will fail because the original object that was digested is not present.
To resolve this, call the set Encl osed (CMscont ent | nf 0) method to set the

di gest edCont ent :

di gdat a. set Encl osed(CMScont ent | nfo obj ect);

followed by digest verification:

di gdat a. verify();

4.3.3.5 The CMSSignedDataContentinfo Class

The class CMBSi gnedDat aCont ent | nf 0 represents an object of type i d-
si gnedDat a as defined by the constant CMS. i d_si gnedDat a.

Oracle CMS 4-9

Understanding and Developing Applications with Oracle CMS

Oracle CMS supports a choice of | ssuer AndSer i al No or Subj ect Keyl denti fi er
for use as the Si gner | dent i fi er. For interoperability with PKCS #7 and S/MIME,
however, the | ssuer AndSer i al No must be used as the Si gner | dentifi er.

Table 4-6 lists some useful methods of this class:

Table 4-6 Useful Methods of CMSSignedDataContentinfo

Method

Description

void addCertificate(X509Certificate cert)

void addCRL(CRL crl)

void addSignature(AttributeSet authenticated Attributes,
PrivateKey signerKey, X509Certificate signerCert,
Algorithmldentifier digestAlgID, AlgorithmIdentifier
digestEncryptionAlgID, AttributeSet

unauthenticated Attributes)

void addSignature(AttributeSet authenticated Attributes,
PrivateKey signerKey, X509Certificate signerCert,
AlgorithmIdentifier digestAlgID, AlgorithmlIdentifier
digestEncryptionAlgID, AttributeSet

unauthenticated Attributes, boolean useSPKI64)

void addSignerInfo(X509Certificate signerCert,
CMSSignerInfo signerInfo)

Vector getCertificates()

Vector getCRLs()

CMSContentInfo getEnclosed()

ASN1ObjectID getEnclosedContentType()

CMSSignerInfo getSignerInfo(signerCert)

ASNlInteger getVersion()

boolean isDegenerate()

boolean isDetached()

4-10 Developing Applications with Oracle Security Developer Tools

Appends the given certificate to
the list of certificates which will
be included with this signed data
object.

Appends the given CRL to the
list of CRLs which will be
included with this signed data
object.

Adds a signature using the
IssuerAndSerialNumber as the
Signerldentifier, that is, a
Versionl CMSSignerInfo.

Adds a signature using the
SubjectKeyldentifier as the
Signerldentifier; that is, a
Version3 CMSSignerInfo.

Adds a CMSSignerInfo to the list
of signers.

Returns the list of certificates
included with this signed data
object.

Returns the list of CRLs included
with this signed data object.

Returns the signed document.

Returns the content type of the
document which was signed.

Returns the CMSSignerInfo
corresponding to the certificate.

Returns the version number of
this object.

IIndicates if this is a degenerate
CMSSignedDataContentInfo
object (that is, has no SignerInfo
structures)

Indicates if this is a detached
object.

Understanding and Developing Applications with Oracle CMS

Table 4-6 (Cont.) Useful Methods of CMSSignedDataContentinfo
__|

Method

Description

boolean isExternalSignature()

void setEnclosed(CMSContentInfo content)

Enumeration signers()

void verify(CertificateTrustPolicy trustPolicy)

void verify(CertificateTrustPolicy
trustPolicy, CMSContentInfo contentInfo)

void verifySignature(X509Certificate signerCert)

void verifySignature(X509Certificate signerCert,
CMSContentInfo contentInfo)

void writeExternalSignature(boolean
createExternalSignature)

Checks for the presence of
external signatures.

Sets the content which was
signed.

Returns the signatures on this
signed data object in the form of
an enumeration, each element of
which is an instance of

CMBSI gner | nf 0.

Returns normally if this CMS
signed data object contains at
least one valid signature,
according to the given trust

policy.

Returns normally if this signed
data object contains at least one
valid signature, according to the
given trust policy.

Returns successfully if this signed
data object contains a signature
which is validated by the given
certificate.

Returns successfully if this signed
data object contains a signature
which is validated by the given
certificate and data.

Indicates if an external signature
must be created.

Users of RSA and DSA signature algorithms should note that the providers are

pluggable in the Oracle CMS implementation.

4.3.3.5.1 Constructing a CMS Signed-data Object

Follow these steps to create a CMS signed-data object:

1. Create an instance of CMSSi gnedDat aCont ent | nf 0. For example, to create the
CMBSi gnedDat aCont ent | nf o object, pass the contentInfo object (the data that

is to be signed):
CMSSi gnedDat aContentInfo sig =

new CMSSi gnedDat aCont ent I nf o(content|nfo);

2. Add signatures:

CertificateFactory cf = CertificateFactory.getlnstance("X 509");
X509Certificate envCert = (X509Certificate)cf.generateCertificate(new

Oracle CMS 4-11

Understanding and Developing Applications with Oracle CMS

Fil el nput Strean("namel"));
PrivateKey signerKey =

a. Toadd a signature using the IssuerAndSerialNo as the Signerldentifier, MD5
digests and RSA Signature Algorithm:

si g.addSi gnature(nul |, signerKey, signerCert, CVS. nub,
CMS. rsaEncryption, null);

b. To add a signature using the 64 bit SubjectKeyldentifier as the
Signerldentifier, SHA-1 digests and DSS Signature Algorithm:

si g. addSi gnature(nul I, signerKey, signerCert, CMS.sha_1,
CMS. dsaWthSHA, null, true);

c. Toadd a signature using the 160 bit SubjectKeyldentifier as the
Signerldentifier, SHA-1 digests and RSA Signature Algorithm:

si g. addSi gnature(nul I, signerKey, signerCert, CMS.sha_1,
CMS. rsaEncryption, null, false);

3. Add any Certificates and CRLs:

sig.addCertificate (....)
sig.addCRL (...)

4. Write the CMS signed-data object to a file, for example dat a. p7m
si g. out put (new Fi | eQut put Strean{"data. p7nt'));

4.3.3.5.2 Reading a CMS Signed-data Object

The steps you need to read a CMS signed-data object depend on whether you know
the object's content type.

1. Open a connection to the dat a. p7mfile using Fi | el nput St r eam

If you know that the object stored in the file is of content type i d- si gnedDat a:

CMSSi gnedDat aContent I nfo sigdata =
new CMSSi gnedDat aCont ent I nf o(new Fi | el nput St rean("dat a. p7ni'));

However, if you do not know the content type in advance:

CVsContentInfo cnsdata =
CMSCont ent I nfo. i nput I nstance(new Fil el nput Strean("data. p7ni'));
if (cnsdata instanceof CMSSi gnedDat aContent | nf o)
{
CMSSi gnedDat aContent I nfo sigdata =
(OMBSi gnedDat aCont ent I nf o) cnsdat a;

2. Access the information stored in the CMS si gned- dat a object:

int version = sigdata.getVersion().intValue();

CMSCont ent I nfo si gContent I nfo = sigData. get Encl osed()
Vector certs = sigdata.getCertificates();

Vector crls = sigData.get CRLs();

Enuneration e = sigData.signers();

CMSCont ent I nfo sigContentInfo = sigData.getEnclosed();

4-12 Developing Applications with Oracle Security Developer Tools

Understanding and Developing Applications with Oracle CMS

i f (sigData.getEncl osedContent Type().equal s(CVS.id_data))
CvSDat aContent I nfo contentlnfo = (CVSDat aCont ent | nf o) si gCont ent | nf o;

3. Verify the signature using the signer's public key certificate:
sigData.verifySignature(signerCert);
4. To get more information about the signer:

CMsSi gner I nfo siglnfo = sigdata. get Signerlnfo(signerCert);

byte[] signatureVal ue = siglnfo.get EncryptedD gest();

Algorithmdentifier digest = siglnfo.getDigestA glD();

Al gorithmdentifier signature = siglnfo.getDigestEncryptionA glX);
AttributeSet signedAttributes = siglnfo.getAuthenticatedAttributes();
AttributeSet unsignedAttributes = siglnfo.getUnauthenticatedAttributes();

4.3.3.5.3 Working with External Signatures (Detached Objects)

For a detached object, the signed object is not part of the resulting CMS signed-data
structure. To generate a detached object, call the wr i t eExt er nal Si gnat ur e()
method:

sig.witeExternal Signature(true);
While you can read in a detached CMS signed-data object as shown in “Reading a
CMS Signed-data Object”, the signature verification will fail because the original

object that was signed is not present. To address this, first call the set Encl osed
(. .) method to set the signed content:

si gdat a. set Encl osed(content | nfo);

followed by signature verification:

sigdata. verifySignature(signerCert);
4.3.3.5.4 Working with Certificates/CRL-Only Objects

These are essentially CMSSi gnedDat aCont ent | nf o objects with attached
certificates, or CRLs, or both, but without any signatures. To generate a Certificate/
CRL-only object:

CMSSi gnedDat aCont ent I nfo sigdata =
new CMSSi gnedDat aCont ent | nf o(new CVSDat aCont ent | nf o(new byte[0]));
sigData.addCertificate (...);
si gData. addCRL(...);
sigbata.output(..);

You can read in a Certificate/CRL-only signed-data object as shown in “Reading a
CMS Signed-data Object”.

4.3.3.6 Using the CMSEncryptedDataContentinfo Class

The class CMSEncr ypt edDat aCont ent | nf o represents an object of type id-
encryptedData as defined by the constant CMS.id_encryptedData.

Table 4-7 lists some useful methods of this class.

Oracle CMS 4-13

Understanding and Developing Applications with Oracle CMS

Table 4-7 Useful Methods of CMSEncryptedDataContentinfo
|

Method Description
AlgorithmIdentifier getContentEncryptionAlgID() Returns the content encryption
algorithm

CMSContentInfo getEnclosed(SecreKey decryptionKey) Returns the decrypted content

ASN1ObjectID getEnclosedContentType() Returns the content type of the
encrypted content

byte[] getEncryptedContent() Returns the encrypted content

AttributeSet getUnprotected Attributes() Returns the set of unprotected
attributes

ASNlInteger getVersion() Returns the version number

boolean isDetached() Indicates if this is a detached
CMS object

void setUnprotected Attributes Sets the unprotected attributes

(oracle.security.crypto.cert. AttributeSet
unprotected Attributes)

void writeDetached (boolean writeDetachedObject) Indicates if the encryptedContent
will be a part of the
EncryptedContentInfo structure
in this object's output encoding

Users of encryption operations, including RC2, DES, Triple-DES, AES, and so on,
should note that the cipher providers are pluggable in the Oracle Security Engine
implementation.

4.3.3.6.1 Constructing a CMS Encrypted-data Object
To create an encr ypt ed- dat a object:

1. Create an instance of CMSEncr ypt edDat aCont ent | nf 0. For example, if
cont ent | nf o is a C\VBSDat aCont ent | nf 0 object and the cipher is Triple-DES in
CBC mode:

Secret Key content EncryptionKey =
KeyGenerat or. get | nst ance(" DESede") . gener at eKey() ;

CMSEncrypt edDat aContent I nfo enc =
new CMSEncrypt edDat aCont ent | nfo(contentnfo, content EncryptionKey,
CMS. des_ede3_chc);
2. Write the encr ypt ed- dat a object to a file, say dat a. p7m

enc. out put (new Fi | eQut put Stream("data. p7nt'));

4.3.3.6.2 Reading a CMS Encrypted-data Object

4-14 Developing Applications with Oracle Security Developer Tools

Understanding and Developing Applications with Oracle CMS

The steps you need to read an encr ypt ed- dat a object depend on whether you know
the object's content type.

1. Open a connection to the dat a. p7mfile using Fi | el nput St r eam

If you know that the object stored in the file dat a. p7mis of content type id-
encryptedData:

CMSEncrypt edDat aCont ent I nfo encdata =
new CMSEncrypt edDat aCont ent | nf o(new Fi | el nput Strean("data. p7nt'));

However, if you do not know the content type in advance:

CvsContentInfo cnsdata =
CMSCont ent I nf 0. i nput | nst ance(new Fi | el nput Stream("data. p7nt'));
if (cmsdata instanceof CMSEncryptedDataContent | nfo)

{
CMSEncrypt edDat aCont ent I nfo encdata =

(CVBEncr ypt edDat aCont ent I nfo) cnsdat a;

2. To access the information stored in the CMS encr ypt ed- dat a object:

int version = encdata.getVersion().intValue();
Al gorithmi dentifier encAl glD = encdat a. get Cont ent Encrypti onAl gl () ;
byte[] encVal ue = encdata. get Encrypt edContent();
CvsContentInfo encContentinfo =
encdat a. get Encl osed(Cont ent Encrypti onKey); //Decrypt the Content
i f (encData. get Encl osedCont ent Type(). equal s(CMS.id_data))
C\vSDat aContent I nfo contentlnfo = (CVSDat aCont ent | nf 0) encCont ent | nf o;

4.3.3.6.3 Generating a Detached encrypted-data CMS Object

If it is a detached object, the encrypted object is not a part of the resulting CMS
encr ypt ed- dat a structure. To generate a detached object, call the wr i t eDet ached
(..) method:

encData. writeDetached(true);

While you can read in a detached CMS encrypted-data object as shown in “Reading a
CMS Encrypted-data Object”, the content decryption will fail because the original
object that was encrypted is not present. Call the set Encl osed (..) method to set
the encryptedContent:

encDat a. set Encl osed(encrypt edcontent());

followed by content decryption:

encdat a. get Encl osed(Cont ent Encrypt i onKey) ;

4.3.3.7 Understanding and Using the CMSEnvelopedDataContentinfo Class

The class CMSEnvel opedDat aCont ent | nf o represents an object of type id-
envelopedData as defined by the constant CMS.id_envelopedData.

Table 4-8 lists some useful methods of this class:

Oracle CMS 4-15

Understanding and Developing Applications with Oracle CMS

Table 4-8 Useful Methods of CMSEnvelopedDataContentinfo
- - -~ -]

Method Description

void addRecipient(AlgorithmIdentifier
keyEncryptionAlgID, SecretKey keyEncryptionKey,
byte[] keyldentifier, Date keyDate, ASN1Sequence

Adds a recipient using the key
encryption (wrap) key exchange
mechanism.

otherKeyAttribute)

void addRecipient(CMSRecipientInfoSpec ris)

void addRecipient(X509Certificate recipientCert,
Algorithmldentifier keyEncryptionAlgID)

void addRecipient(X509Certificate recipientCert,

AlgorithmIdentifier keyEncryptionAlgID, boolean

useSPKI64)

Algorithmldentifier getContentEncryptionAlgID()

CMSContentInfo getEnclosed(PrivateKey privateKey,

X509Certificate recipientCert)

CMSContentInfo getEnclosed(SecretKey symmetricKey,

byte[] keyldentifier)

CMSContentInfo getEnclosed(SecretKey symmetricKey,

byte[] keyldentifier,Date keyDate)

ASN1ObjectID getEnclosedContentType()

byte[] getEncryptedContent()

OriginatorInfo getOriginatorInfo()

AttributeSet getUnprotected Attribs()

ASN1Integer getVersion()

boolean isDetached()

Enumeration recipients()

void setEnclosed(byte[] encryptedContent)
void setOriginatorInfo(OriginatorInfo origInfo)
void setUnprotected Attribs

(oracle.security.crypto.cert. AttributeSet
unprotected Attributes)

4-16 Developing Applications with Oracle Security Developer Tools

Adds a recipient using the key
exchange mechanism
specification

Adds a recipient using the key
transport (IssuerAndSerialNo)
key exchange mechanism

Adds a recipient the key
transport (SubjectKeyldentifier)

key exchange mechanism

Returns the content encryption
algorithm

Returns the enclosed content
after decryption using Key
Transport RecipientInfo
Returns the enclosed content
after decryption using Key

Encryption RecipientInfo

Returns the enclosed content
after decryption

Returns the content type of the
encrypted content

Returns the enclosed content
which is encrypted

Returns the OriginatorInfo

Returns the unprotected
attributes

Returns the version number

Indicates if the encrypted content
is not present

Returns the list of message
recipients

Sets the Encrypted Content
Sets the OriginatorInfo

Sets the unprotected attributes

Understanding and Developing Applications with Oracle CMS

Table 4-8 (Cont.) Useful Methods of CMSEnvelopedDataContentinfo
. __|

Method Description

void writeDetached(boolean writeDetached) Indicates if the encrypted content
must be omitted from this object's
output encoding

4.3.3.7.1 Constructing a CMS Enveloped-data Object
Take these steps to create an envel oped- dat a object:

1. Create an instance of CMSEnvel opedDat aCont ent | nf 0. For example, if
contentInfo is a CMSDat aCont ent | nf o object and the cipher is Triple-DES in CBC
mode:

CMSEnvel opedDat aContent I nfo env =
new CMSEnvel opedDat aCont ent | nf o(cont ent I nfo, CMS. des_ede3_chc);

2. Add recipients, keeping in mind the recipient's key management technique.

¢ If the recipient uses the key encryption (wrap) key management mechanism:

env. addReci pi ent (keyEncryptionAl gl D, keyEncryptionKey,
keyl dentifier, keyDate, otherKeyAttribute);

o [f the recipient key exchange mechanism was specified using a
CVBReci pi ent | nf oSpec object:

env. addReci pient (ris)

o If the recipient uses the key transport (I ssuer AndSer i al No recipient
identifier) key management mechanism:

env. addReci pi ent (reci pi ent Cert, CMS.rsaEncryption);

o [f the recipient uses the key transport (64-bit Subj ect Keyl denti fi er
recipient identifier) key management mechanism:

env. addReci pi ent (reci pi ent Cert, CMS.rsaEncryption, true)

o If the recipient uses the key transport (160-bit Subj ect Keyl denti fi er
recipient identifier) key management mechanism:

env. addReci pi ent (reci pi ent Cert, CMS.rsaEncryption, false)
3. Set any optional arguments:

env.setOriginatorlnfo(originatorlnfo);
env. set Unprot ectedAttribs(unprotectedAttributes);

4. Write the CMS envel oped- dat a object to a file, say dat a. p7m

enc. out put (new Fi | eQut put Stream("data. p7nt'));
4.3.3.7.2 Reading a CMS Enveloped-data Object

The steps you need to read the object depend on whether you know the object's
content type.

Oracle CMS 4-17

Understanding and Developing Applications with Oracle CMS

1. Open a connection to the dat a. p7mfile using Fi | el nput St r eam If you know
that the object stored in the file is of content type id-envelopedData, open the
connection as follows:

CMSEnvel opedDat aCont ent I nfo envdata =
new CMSEnvel opedDat aCont ent | nf o(new Fi | el nput Strean("data. p7nt'));

However, if you do not know the content type in advance, open it as follows:

CVsContent I nfo cnedata =
CMSCont ent | nfo. i nput I nstance(new Fil el nput Strean("data. p7ni'));
if (cmsdata instanceof CMSEnvel opedDat aContent | nf o)

{
CMSEnvel opedDat aCont ent I nfo envdata =

(CVBEnvel opedDat aCont ent I nfo) cnsdat a;

2. To access the information stored in the envel oped- dat a object:

int version = envdata.getVersion().intValue();

Al gorithnidentifier encAl glD = envdat a. get Cont ent Encrypti onAl gl () ;
ASNLQbj ect I D cont ent Type = envdat a. get Encl osedCont ent Type() ;

byte[] encryptedContent = envdata. get EncryptedContent();
Oiginatorinfo origlnfo = envdata.getOriginatorinfo();

AttributeSet unprotected = envdata. get UnprotectedAttribs();

3. Decrypt the content depending on the recipient information:

CVsContent I nfo envContentInfo =
env. get Encl osed(pri vat eKey, recipientCert);

or

CMsContent I nfo envContentInfo =
env. get Encl osed(symetricKey, keyldentifier);

or

CMsContent I nfo envContentInfo =

env. get Encl osed(symetri cKey, keyldentifier, keyDate)
if (envContentInfo instanceof CMSDataContentlnfo)
{

CvsDat aContent I nfo contentlnfo = (CvSDat aCont ent I nfo) envContent | nfo;
...
}
4.3.3.7.3 About the Key Transport Key Exchange Mechanism

This mechanism supports the use of either | ssuer AndSer i al No or
Subj ect Keyl dent i fi er as the recipient identifier.

4.3.3.7.4 About the Key Agreement Key Exchange Mechanism
This mechanism is not currently supported.
4.3.3.7.5 About the Key Encryption (Wrap) Key Exchange Mechanism

Oracle CMS supports CMS3DESWrap and CMSRC2Wrap algorithms. Mixed mode
wrapping is not supported; for example, 3DES keys cannot be RC2-wrapped.

4-18 Developing Applications with Oracle Security Developer Tools

Understanding and Developing Applications with Oracle CMS

Note:

Using the Ot her KeyAt t ri but e could cause interoperability problems.

4.3.3.7.6 Using the Detached Enveloped-data CMS Object

If working with a detached object, note that the enveloped object is not part of the
resulting CMS enveloped-data structure. Call the w i t eDet ached (. .) method to
generate a detached object:

envdata. writeDetached(true);

While you can read in a detached envel oped- dat a object as shown in “Reading a
CMS Enveloped-data Object”, the content decryption will fail because the original,
enveloped object is not present. Call the set Encl osed (. .) method to set the
enveloped content:

envdat a. set Encl osed(env. get Encrypt edContent());

followed by content decryption:

envdata. getEnclosed(............);

4.3.3.8 Using the CMSAuthenticatedDataContentinfo Class

The class CMBAut hent i cat edDat aCont ent | nf 0 represents an object of type id-ct-
authData as defined by the constant CVS. i d_ct _aut hDat a.

Note:

Oracle CMS supports HMAC with SHA-1 Message Authentication Code
(MAC) Algorithm.

Table 4-9 lists some useful methods of this class.

Table 4-9 Useful Methods of CMSAuthenticatedDataContentinfo
'

Method Description
void addRecipient(AlgorithmIdentifier keyEncryptionAlgID, Adds a recipient using the
SecretKey keyEncryptionKey, byte[] keyldentifier, key wrap key exchange

java.util.Date keyDate, ASN1Sequence otherKeyAttribute) mechanism

void addRecipient(CMSRecipientInfoSpec ris) Adds a recipient using the
specified key exchange
mechanism

void addRecipient(X509Certificate recipientCert, Adds a recipient using the

Algorithmldentifier keyEncryptionAlgID) key transport key
exchange mechanism
using the

IssuerAndSerialNo as the
recipient identifier

Oracle CMS 4-19

Understanding and Developing Applications with Oracle CMS

Table 4-9 (Cont.) Useful Methods of CMSAuthenticatedDataContentinfo
|

Method

Description

void addRecipient(X509Certificate recipientCert,
Algorithmldentifier keyEncryptionAlgID, boolean useSPKI64)

AttributeSet getAuthenticated Attributes()

Algorithmldentifier getDigestAlgID()

CMSContentInfo getEnclosed()

ASN1ObjectID getEnclosedContentType()

byte[] getMAC()

AlgorithmlIdentifier getMACAIgID()

OriginatorInfo getOriginatorInfo()

AttributeSet getUnauthenticated Attributes()

ASNlInteger getVersion()

boolean isDetached()

java.util. Enumeration recipients()

void setAuthenticated Attributes(AttributeSet

authenticated Attributes, AlgorithmIdentifier digestAlgorithm)
void setEnclosed(CMSContentInfo content)

void setOriginatorInfo(OriginatorInfo originatorInfo)

void setUnauthenticated Attributes(AttributeSet
unauthenticated Attributes)

4-20 Developing Applications with Oracle Security Developer Tools

Adds a recipient using the
key transport key
exchange mechanism
using the
SubjectKeyldentifier as
the recipient identifier

Returns the Authenticated
Attributes

Returns the digest
algorithm

Returns the authenticated
content

Returns the content type
of the enclosed content

Returns the message
authentication code

Returns the MAC
algorithm used for
authentication

Returns the Originator
information

Returns the
Unauthenticated
Attributes

Returns the version
number

Indicates if this object is
detached

Returns the list of
message recipients

Sets the Authenticated
attributes

Sets the authenticated
content

Sets the OriginatorInfo

Sets the unauthenticated
attributes

Understanding and Developing Applications with Oracle CMS

Table 4-9 (Cont.) Useful Methods of CMSAuthenticatedDataContentinfo
|

Method Description
void verifyMAC(PrivateKey privateKey, X509Certificate Returns the enclosed
recipientCert) content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyldentifier) =~ Returns the enclosed
content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyldentifier, = Returns the enclosed
Date keyDate) content after decryption

void verifyMAC(SecretKey symmetricKey, byte[] keyldentifier, = Returns the enclosed
Date keyDate, ASN1Sequence otherKeyAttribute) content after decryption

void writeDetached(boolean writeDetachedObject) Indicates if the
authenticated content
must be omitted from this
object's output encoding

4.3.3.8.1 Constructing a CMS Authenticated-data Object

The starting point for working with authenticated-data objects is the

CMBAut hent i cat edDat aCont ent | nf o class.

Take the following steps to create an authenticated-data object:

1. Create an instance of CMBAut hent i cat edDat aCont ent | nf 0. In the following

example, contentInfo is a CMSDat aCont ent | nf o object, Triple-DES HMAC key
and HMAC with SHA-1 MAC algorithm:

Secret Key contentEncryptionKey =
KeyGenerat or. get | nst ance(" DESede") . gener at eKey() ;
CMSAut hent i cat edDat aContent I nfo auth =
new CMBAut hent i cat edDat aCont ent | nf o(cont ent | nf o,
content Encrypti onKey, CMS. hmac_SHA 1);

2. Add recipients, keeping in mind the recipient's key management technique.

¢ If the recipient uses the key encryption (wrap) key management mechanism:

aut h. addReci pi ent (keyEncryptionAl gl D, keyEncryptionKey, keyldentifier,
keyDat e, otherKeyAttribute);

o [f the recipient key exchange mechanism was specified using a
CMBReci pi ent | nf oSpec object:

aut h. addReci pi ent (ris)

¢ If the recipient uses the key transport (I ssuer AndSer i al No recipient
identifier) key management mechanism:

aut h. addReci pi ent (reci pi ent Cert, CMS.rsaEncryption);

o [f the recipient uses the key transport (64-bit Subj ect Keyl denti fi er
recipient identifier) key management mechanism:

aut h. addReci pi ent (reci pientCert, CMS.rsaEncryption, true)

Oracle CMS 4-21

Understanding and Developing Applications with Oracle CMS

o [f the recipient uses the key transport (160-bit Subj ect Keyl denti fi er
recipient identifier) key management mechanism:

aut h. addReci pi ent (reci pi ent Cert, CMS.rsaEncryption, false)
3. Set any optional arguments:

aut h. set Aut henti catedAttributes(aut henticatedAttributes, CMS. nd5);
auth. set Origi natorlnfo(originatorlnfo);
aut h. set Unaut hent i cat edAttri but es(unaut henti cat edAttributes);

4. Write the CMS authenticated-data object to a file, say dat a. p7m
aut h. out put (new Fi | eQut put Stream("data. p7nf'));
4.3.3.8.2 Reading a CMS Authenticated-data Object
The steps you need to read the object depend on whether you know the object's
content type.
The steps to read an object are as follows:

1. Open a connection to the dat a. p7mfile using Fi | el nput St r eam If you know
that the object stored in the file is of content type i d- ct - aut hDat a:

CMSAut hent i cat edDat aContent I nfo authdata =
new CVBAut henti cat edDat aCont ent | nf o(new Fi | el nput Streanm("data. p7m'));

However, if you do not know the content type in advance:

CVsContentInfo cnsdata =
CMSCont ent | nfo. i nput I nstance(new Fil el nput Strean("data. p7ni'));
if (cnsdata instanceof CMBAuthenticatedDataContent|nfo)

{
CMBAut hent i cat edDat aCont ent I nfo authdata =

(CVBAut hent i cat edDat aCont ent | nf o) cnsdat a;

2. To access the information stored in the CMS aut hent i cat ed- dat a object:

int version = authdata.getVersion().intValue();
Al gorithm dentifier macAl gl D = aut hdat a. get MACAl gl IX) ;
byte[] macVal ue = authdata. get MAC();
CMSCont ent | nfo aut hCont ent I nfo = aut hdat a. get Encl osed() ;
i f (authData. get Encl osedCont ent Type(). equal s(CVS.id_data))
CMSDat aContent I nfo content I nfo = (CvSDat aCont ent | nf 0) aut hCont ent | nf o;

3. Verify the MAC depending on the recipient information:

aut hdat a. veri f yMAC(r eci pi ent Pri vat eKey, recipientCert);

or

aut hdat a. veri f yMAC(symmet ri cKey, keyldentifier)

or

aut hdat a. veri f yMAC(symet ri cKey, keyldentifier, keyDate)

or

4-22 Developing Applications with Oracle Security Developer Tools

Understanding and Developing Applications with Oracle CMS

aut hdat a. veri f yMAC(symmet ri cKey, keyldentifier, keyDate,
ot her KeyAttri bute)

4.3.3.8.3 Working with Detached Authenticated-data CMS Objects

While you can read in a detached authenticated-data object as shown earlier, the MAC
verification will fail because the original object that was authenticated is not present.
To resolve this, call the set Encl osed (..) method to set the authenticated content:

aut hdat a. set Encl osed(content | nfo);

followed by MAC verification using the appropriate key exchange mechanism:

aut hdat a. veri fyMAC(. . .)

4.3.3.9 Working with Wrapped (Triple or more) CMSContentinfo Objects

To wrap a CMSCont ent | nf o object in another CM5Cont ent | nf o object, you simply
pass an initialized CMSCont ent | nf o object to the enclosing CMSCont ent | nf o object
through its constructor. Call the out put (. .) method of the enclosing outermost
C\VBCont ent | nf o object to generate the nested object.

4.3.3.9.1 Reading a Nested (Wrapped) CMS Object

The approach to reading a nested object depends on whether you know the outermost
content type in advance.

If you do not know the outermost content type in advance, call the static method:

CMsContent I nfo.inputinstance(...)

If you do know the outermost content type in advance, call the appropriate
constructor:

new CVMS***DataContentInfo(....)

Then, recursively call the get Encl osed(. .) method to extract the next inner object.

4.3.4 CMS Obijects using the CMS***Stream and CMS***Connector Classes

The CMS**DataContentInfo classes provide the same functionality as the
CMS***Gtream classes. The primary advantage of the CMS***Stream classes over the
CMS**DataContentInfo classes is that CMS objects can be created or read in one pass
without having to accumulate all of the input data. A CMBI nput Connect or is used in
place of a CVBI nput St r eamwhen reading nested CMS objects.

Table 4-10 lists the content types of the CMS***Stream classes:

Table 4-10 The CMS***Stream Classes

Class Content Type

CMSDigestedDatalnputStream, CMS.id_digestedData
CMSDigestedDataOutputStream

CMSSignedDatalnputStream, CMS.id_signedData
CMSSignedDataOutputStream

CMSEncryptedDatalnputStream, CMS.id_encryptedData
CMSEncryptedDataOutputStream

Oracle CMS 4-23

Understanding and Developing Applications with Oracle CMS

Table 4-10 (Cont.) The CMS***Stream Classes
__|

Class Content Type

CMSEnvelopedDatalnputStream, CMS.id_envelopedData
CMSEnvelopedDataOutputStream

CMSAuthenticatedDatalnputStream, CMS.id_ct_authData
CMSAuthenticatedDataOutputStream

Table 4-11 lists the content types of the CMS**Connector classes:

Table 4-11 The CMS***Connector Classes

Class Content Type

CMSDigested DataInputConnector, CMS.id_digestedData
CMSDigested DataOutputConnector

CMSSignedDatalnputConnector, CMS.id_signedData
CMSSignedDataOutputConnector

CMSEncryptedDatalnputConnector, CMS.id_encryptedData
CMSEncryptedDataOutputConnector

CMSEnvelopedDatalnputConnector, CMS.id_envelopedData
CMSEnvelopedDataOutputConnector

CMSAuthenticatedDataInputConnector, CMS.id_ct_authData
CMSAuthenticatedDataOutputConnector

4.3.4.1 Limitations of the CMS***Stream and CMS***Connector Classes

There are some limitations to CMS***Stream and CMS***Connector classes when
processing objects:

1. They cannot verify the digest of a detached CMS i d- di gest edDat a object.
2. They cannot verify the signature of a detached CMS i d- si gnedDat a object.

3. They cannot verify the MAC of a detached CMS i d- ct - aut hDat a object.

Caution:

Always use the CMS**DataContentInfo classes when processing detached
objects.

4.3.4.2 Difference between CMS***Stream and CMS***Connector Classes

The CMS***OutputStream class is an output stream filter which wraps the data
written to it within a CMS (RFC-2630) ContentInfo structure, whose BER encoding is
then written to the underlying output stream. The CMS***OutputConnector class is an
output stream filter which likewise wraps the data written to it within a CMS
(RFC-2630) Cont ent | nf o structure, except that only the values octets of the Content
field of the Cont ent | nf o structure (minus the explicit [0] tag) are written to the
underlying output stream.

4-24 Developing Applications with Oracle Security Developer Tools

Understanding and Developing Applications with Oracle CMS

The CMS***InputStream class is an input stream filter which reads in a BER encoding
of a CMS (RFC-2630) Cont ent | nf o structure from the underlying output stream. The
CMS**InputConnector class is an input stream filter that expects the underlying input
stream to be positioned at the start of the value octets of the Cont ent field of the

Cont ent | nf o structure (after the explicit [0] tag).

CMS***Connectors are useful in creating and reading nested objects.

4.3.4.3 Using the CMS***OutputStream and CMS***InputStream Classes

CMS***InputStream includes methods to read in CMS objects. CMS***OutputStream
writes a CMS object to the output stream.

To construct an object:

1. Create a CMS**OutputStream class of the appropriate content type. All the
relevant parameters are passed through the constructor.

2. Write the data being protected to the CMS**OutputStream created in step 1.
3. After all the data is written, close the CMS**OutputStream created in step 1 .

To read an object:

1. Create a CMS**InputStream class of the appropriate content type by passing the
underlying input stream through the constructor.

2. Read the protected data from the CMS***InputStream created in step 1 using the
read() andread (byte[],...) methods.

3. Invoketerm nat e() after you have finished reading data from the
CMS**InputStream created in step 1. This completes the reading of the object.

4. Invoke the appropriate methods to verify that the protected content is secure.
4.3.4.3.1 Working with the CMS id-data Object

The get Dat a() method returns the data which can then be written to a
CMS**OutputStream or CMS***OutputConnector.

4.3.4.3.2 Working with the CMS id-ct-receipt Object

The get Recei pt Dat a() method returns the encoded receipt which can then be
written to a CMS***OutputStream or CMS***OutputConnector.

To read ESSRecei pt data from the input stream:

byte[] rcptData = in.read(...);

ESSRecei pt er = new ESSRecei pt();

er.input Content (rcptData);

4.3.4.3.3 Working with CMS id-digestedData Objects

You will not be able to verify the digest of a detached digested-data object. Setting the
boolean parameter writeEContentInfo in the CVMSDi gest edDat aQut put St r eam
constructor to false enables you to create a detached digested-data object.

4.3.4.3.4 Working with CMS id-signedData Objects

You will not be able to verify the signature of a detached si gned- dat a object.

Oracle CMS 4-25

Understanding and Developing Applications with Oracle CMS

The CMSSi gner | nf oSpec class stores signer-specific information. For every
signature you want to add, you will need to create a corresponding
CMVBSI gner | nf oSpec object which is then passed to the constructor.

Setting the boolean parameter cr eat eExt er nal Si gnat ur es in the
CVBSI gnedDat aQut put St r eamconstructor to true enables you to create a detached
si gned- dat a object or external signatures.

To create a Certificate/CRL only object, do not pass any signer information to the
CVBDSI ghedDat aCut put St r eamconstructor.

4.3.4.3.5 Working with CMS id-encryptedData Objects

Setting the boolean parameter wr i t eEncr ypt edQut put in the
CVBENcr ypt edDat aQut put St r eamconstructor to false enables you to create a
detached encr ypt ed- dat a object.

4.3.4.3.6 Working with CMS id-envelopedData Objects

The CMSReci pi ent | nf oSpec class stores recipient-specific information. For every
recipient you want to add, you will need to create a corresponding
CMBReci pi ent | nf oSpec object which is then passed to the constructor.

Setting the boolean parameter wr i t eCont ent in the
CMVBEnvel opedDat aCut put St r eamconstructor to f al se enables you to create a
detached envel oped- dat a object.

Recipients are classified according to their exchange mechanism. This table defines the
different mechanisms:

Exchange Mechanism How to Use
Key Transport Key Exchange Use the CVMBSKey Tr ansReci pi ent | nf oSpec class to
Mechanism store recipient information that uses the key transport

key management mechanism.

Key Agreement Key Exchange This mechanism is not supported at this time.
Mechanism

Key Encryption (wrap) Key Use the CMSKEKReci pi ent | nf oSpec class to store
Exchange Mechanism recipient information that uses the key wrap key

management mechanism.

4.3.4.3.7 About CMS id-ct-authData Objects

You will not be able to verify the MAC of a detached aut hent i cat ed- dat a object.

Setting the boolean parameter detachEncapContent in the

CVBAuUt hent i cat edDat aQut put St r eamconstructor to true enables you to create a
detached aut hent i cat ed- dat a object.

4.3.4.4 Wrapping (Triple or more) CMS***Connector Objects

You use CMS**OutputConnectors to create nested objects.

Use the following code to create signed, enveloped, digested, and encrypted data and
write it to the file nest ed. p7m

4-26 Developing Applications with Oracle Security Developer Tools

The Oracle CMS Java API Reference

/'l nested.p7m<--- FileQutputStream<--- CMSSi gnedDat aCut put Connect or

/1] <--- CMBEnvel opedDat aQut put Connector <---

/1 <---- CMBDi gest edDat aCut put Connector <---

/1 <---- CMBEncrypt edDat aQut put Connect or <---
/] <---- wite the data (byte[] data)

Fil eQut put Stream fos = new Fi | eQut put St rean(" nested. p7ni');
CMSSi gnedDat aQut put Connect or connl =

new CVBSi gnedDat aCut put Connector (fos,)
CMSEnvel opedDat aCut put Connector conn2 =

new CVBEnvel opedDat aQut put Connect or (connl, ...);
CMVSDi gest edDat aCut put Connect or conn3 =

new CVBDi gest edDat aQut put Connect or (conn2, ...);
CMSEncr ypt edDat aCut put Connect or conn4 =

new CMSEncr ypt edDat aCut put Connect or (conn3, ...);
Qut put Stream os = conn4. get Qut put Stream();
os.write(data);
0s.close();

To read signed, enveloped, digested, and encrypted data stored in file nest ed. p7m

/'l nested.p7m---> FilelnputStream ---> CVSSi gnedDat al nput Connect or -

11 ---> CMSEnvel opedDat al nput Connector ---

7 > CMBDi gest edDat al nput Connector - --

/] ----> CMBEncr ypt edDat al nput Connector ---
/] --->read the data (byte[] data)

Fil el nput Stream fos = new Fil el nput Stream"nested. p7ni');
CMSSi gnedDat al nput Connector connl =

new CVBSi gnedDat al nput Connector (fos,)
CMSEnvel opedDat al nput Connect or conn2 =

new CVBEnvel opedDat al nput Connect or (connl, ...);
CMSDi gest edDat al nput Connect or conn3 =

new CVBDi gest edDat al nput Connect or (conn2, ...);
CMSEncr ypt edDat al nput Connect or conn4 =

new CMSEncrypt edDat al nput Connect or (conn3, ...);
I nput Streamis = conn4. get | nput Strean();
is.read(data);

4.4 The Oracle CMS Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods of Oracle CMS.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Oracle CMS 4-27

The Oracle CMS Java API Reference

4-28 Developing Applications with Oracle Security Developer Tools

5

Oracle S/IMIME

Oracle S/MIME APl is a java solution, which includes classes, interfaces, and methods
to work with S/MIME objects.

We provide a survey of the classes and features of Oracle S/MIME:
e Qracle S/MIME Features and Benefits

* Setting Up Your Oracle S/MIME Environment

¢ Developing Applications with Oracle S/MIME

e The Oracle S/MIME Java API Reference

5.1 Oracle S/IMIME Features and Benefits

Oracle S/MIME APl is a java solution with support for X.509 certificate and private
key encryption.

It has the following features:

e Full support for X.509 Version 3 certificates with extensions, including certificate
parsing and verification

* Support for X.509 certificate chains in PKCS #7 and PKCS #12 formats
¢ Private key encryption using PKCS #5, PKCS #8, and PKCS #12

¢ Anintegrated ASN.1 library for input and output of data in ASN.1 DER/BER
format

5.2 Setting Up Your Oracle S/MIME Environment

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOQOME. In order to use Oracle S/MIME, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable
must contain the full path and file names to all of the required jar and class files.

Oracle S/MIME also requires:

¢ Animplementation of the JavaBeans Activation Framework (JAF). Oracle's royalty-
free implementation is available at:

http://ww. oracl e. com t echnet wor k/ j ava/j af 11- 139815. ht m

¢ Animplementation of the JavaMail APL Oracle's royalty-free implementation is
available at:

http://ww. oracl e. conltechnet wor k/j ava/i ndex-138643. ht m

Oracle S/IMIME 5-1

http://www.oracle.com/technetwork/java/jaf11-139815.html
http://www.oracle.com/technetwork/java/index-138643.html

Developing Applications with Oracle S/MIME

If you are using POP or IMAP, be sure to download Oracle's POP3 (or IMAP)
Provider, which is also available at the JavaMail page.

Make sure the following items are included in your CLASSPATH:
e osdt_core.jar file

e osdt_cert.jar file

e osdt_cns.jar file

e osdt_snine.jar file

* Your JAF (Java Activation Framework), JavaMail, and POP3 provider installations.

Note:

Java Activation Framework is included in JDK 1.6.

For example:

setenv CLASSPATH $CLASSPATH:

$ORACLE_HOVE/ nodul es/ oracl e. osdt _11. 1. 1/ osdt _core. jar:
$ORACLE_HOVE/ nodul es/ oracl e. osdt _11. 1. 1/ osdt _cert.jar:
$ORACLE_HOVE/ nodul es/ oracl e. osdt _11. 1. 1/ osdt _cns. jar:
$ORACLE_HOVE/ nodul es/ oracl e. osdt _11. 1. 1/ osdt _sni ne. j ar:
fusr/libljaf-1.1/activation.jar:

fusr/libljavamail-1.4. U/ mil.jar

Any application using the Oracle S/MIME API must have all the neccessary MIME
types registered in its command map.

Some applications, specifically those reading S/MIME entries from a FileDataSource,
will need to register the S/MIME file types.

5.3 Developing Applications with Oracle S/MIME

You can develop applications by using the core and supporting classes and interfaces
in Oracle S/MIME API and the methods therein.

This section describes selected interfaces and classes in the Oracle S/MIME API and
illustrates their use. It includes these topics:

* Core Classes and Interfaces of Oracle S/MIME
* Supporting Classes and Interfaces

¢ Using the Oracle S/MIME Classes

Selected methods are described as appropriate.

5.3.1 Core Classes and Interfaces of Oracle S/MIME

Oracle S/MIME API consists of multiple core classes and interfaces.

This section describes core classes and interfaces in the Oracle S/MIME API, and
explains how to create and parse S/MIME objects.

Core classes and interfaces include:

* Using the oracle.security.crypto.smime.SmimeObject Interface

5-2 Developing Applications with Oracle Security Developer Tools

Developing Applications with Oracle S/MIME

Using the oracle.security.crypto.smime.SmimeSignedObject Interface
* Using the oracle.security.crypto.smime.SmimeSigned Class

* Using the oracle.security.crypto.smime.SmimeEnveloped Class

* Using the oracle.security.crypto.smime.SmimeMultipartSigned Class
* Using the oracle.security.crypto.smime.SmimeSignedReceipt Class

* Using the oracle.security.crypto.smime.SmimeCompressed Class

5.3.1.1 Using the oracle.security.crypto.smime.SmimeObject Interface

The oracl e. security.crypto.sm me. Sm meCbj ect interface represents an S/
MIME object.

Classes that implement this interface include:
e Sni neSi gned

e Sni neEnvel oped

e SnineMiltipartSi gned

e Sni neSi gnedRecei pt

e Sni neConpr essed

Methods in this interface include:

String generateContent Type ()

returns the content type string for this S/MIME object. For example:

"application/pkcs7-m me; snine-type=signed-data"
String generateContent Type (bool ean useSt andar dCont ent Types)

If the argument is true, returns the same as gener at eCont ent Type() ; if false,
returns old-style (Netscape) content type string. For example: "application/x-pkes7-
mime; smime-type=signed-data"

void witeTo (java.io.CQutputStreamos, java.lang.String mmeType)
outputs this object to the specified output stream.

5.3.1.2 Using the oracle.security.crypto.smime.SmimeSignedObject Interface

The oracl e. security. crypto. sm ne. Smi meSi gnedCbj ect interface extends
Sm mebj ect, and specifies methods common to all S/MIME signed objects,
including Sm meSi gned and Sm meMul ti part Si gned.

Methods in this interface include:

Vector getCertificates ()

Returns the list of certificates included in this S/MIME object's signed content.
Vector getCRLs ()

Returns the list of certificate revocation lists in the S/MIME object's signed content.

javax. mail.internet. M meBodyPart getEncl osedBodyPart ()

Oracle S/IMIME 5-3

Developing Applications with Oracle S/MIME

Returns the document which was signed.

oracl e.security.crypto.smne. ess. Equi val ent Label s get Equi val ent Label s
(java.security.cert.X509Certificate signerCert)

Returns the Equi val ent Label s if present or nul I .

oracl e.security.crypto.smne.ess. ESSSecuritylLabel get ESSSecuritylLabel
(java.security.cert.X509Certificate signerCert)

Returns the ESSSecur i t yLabel if presentor nul I .

oracl e.security.crypto.smme. ess. MLExpansi onH story get M.Expansi onHi st ory(
java.security.cert.X509Certificate signerCert)

Returns the M_LExpansi onHi st or y attribute if present or nul | .

oracl e.security.crypto.smne. ess. Recei pt Request get Recei pt Request (
java.security.cert.X509Certificate signerCert)

Returns the Recei pt Request attribute if present or nul | .

oracl e.security.crypto.smine.ess.SigningCertificate getSigningCertificate(
java.security.cert.X509Certificate signerCert)

Returns the Si gni ngCertificate.

void verify (oracle.security.crypto.cert.CertificateTrustPolicy trustPolicy)

Returns normally if the signed contents include at least one valid signature according
to the specified trust policy, otherwise throws an Aut hent i cati onExcepti on.

voi d verifySignature (java.security.cert.X509Certificate signerCert)

Returns normally if the signed contents contain a signature which can be validated by
the given certificate, otherwise throws an Aut hent i cat i onExcepti on.

The method can throw a Si gnat ur eExcept i on, if no signature exists corresponding
to the given certificate.
5.3.1.3 Using the oracle.security.crypto.smime.SmimeSigned Class

The oracl e. security. crypto.smi nme. Smi meSi gned class represents an S/
MIME signed message (.implements SmimeSignedObject). You may use this class to
build a new message or parse an existing one.

Constructors and methods include:

Sm neSi gned (j avax. nail.internet. M nmeBodyPart content)

Creates a new Smi meSi gned object, using the specified MIME body part for the
contents to be signed.

Sm neSi gned ()

Creates a new empty Smi neSi gned object, which is useful for building a "certificates-
only" S/MIME message.

Sm neSi gned (I nputStreamis)

Creates a new Snmi meSi gned object by reading its encoding from the specified input
stream.

5-4 Developing Applications with Oracle Security Developer Tools

Developing Applications with Oracle S/MIME

voi d addSi gnature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert,
oracl e.security.crypto.core. Algorithmdentifier digestAl glD

Adds a signature to the message, using the specified private key, certificate, and
message digest algorithm.

voi d addSi gnature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert,
oracle.security.crypto.core. Algorithm dentifier digestAl glD,
java.util.Date tineStanp)

Adds a signature to the message, including a time stamp.

voi d addSignature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert,
oracl e.security.crypto.core. Algorithmdentifier digestAl glD,
Sm neCapabi lities sni meCaps)

Adds a signature to the message, including S/MIME capabilities.

javax. mail.internet. M meBodyPart getEncl osedBodyPart ()

Returns the MIME body part that was signed.
To build a new message, use any of these three constructors:

/] Create a new S/M ME Signed Message
Sm neSi gned sig = new Sni neSi gned();

/1 -OR-

/] Create a new S'M ME Signed Message with a specified MME body part
M meBodyPart bp = new M neBodyPart();

bp. set Text ("Hel I o from SendSi gnedMsg! ") ;

Sm neSi gned si gl = new Smi meSi gned(bp);

/11 -OR-

/] Create a new S'M ME Signed Message with a specified MME body part
/1 and a flag switching conpression on or off

M meBodyPart bp = new M neBodyPart();

bp. set Text ("Hel I o from SendSi gnedMsg! ") ;

bool ean useConpression = true;

Sm neSi gned si g2 = new Smi meSi gned(bp, useConpression);

To parse a message, use the constructor that takesaj ava. i 0. | nput St r eam
InputStreamis = Input stream containing nessage to be parsed

Sm neSi gned sig = new Sni meSi gned(is);

5.3.1.4 Using the oracle.security.crypto.smime.SmimeEnveloped Class

The oracl e. security. crypto.sm nme. Smi meEnvel oped class represents an S/
MIME enveloped message (implements SmimeObject), and may be used to build a
new message or parse an existing one.

Constructors and methods include:

Sm meEnvel oped (javax. mail.internet. M nmeBodyPart content,
oracl e.security.crypto.core. Al gorithmdentifier contentEncryptionAl glD)

Creates a new S meEnvel oped object from the specified MIME body part, using the
specified content encryption algorithm.

Oracle SIMIME 5-5

Developing Applications with Oracle S/MIME

Sm neEnvel oped (I nputStreamis)
Creates a new Smi meEnvel oped object by reading its encoding from the specified
input stream.

voi d addReci pi ent (java.security.cert.X509Certificate cert)

Encrypts the message for the recipient using the given public key certificate.

byte[] getEncryptedContent ()

Returns the contents without decrypting.

javax. mail.internet. M meBodyPart getEncl osedBodyPart (
java.security. PrivateKey recipientKey,
java.security.cert.X509Certificate recipientCert)

Returns the MIME body part for the recipient specified by r eci pi ent Cer t, after
decryption using the given recipient private key.

Use the following code to build a new message:

/| Create a new S/M ME Envel oped Message with a specified MM body part and a
speci fied content

/1 encryption algorithm

M meBodyPart bp = new M neBodyPart();

bp. set Text ("Hel I o from SendSi gnedMsg! ") ;

Al gorithmdentifier algld = Al glD. aes256_CBC;

Sm meEnvel oped env = new Smi meEnvel oped(bp, al gld);

To parse a message, use the constructor that takesaj ava. i 0. | nput St r eam
InputStreamis = Input stream containing nessage to be parsed

Sm neEnvel oped env = new Smi neEnvel oped(is);
5.3.1.5 Using the oracle.security.crypto.smime.SmimeMultipartSigned Class

The oracl e. security. crypto.sm ne. Smi meMul ti part Si gned class
represents an S/MIME multi-part signed message. A multipart signed message is
intended for email clients that are not MIME-aware. This class can be used to build a
new message or parse an existing one.

Constructors and methods include:

SmimeMul tipart Signed (javax.mail.internet. M meBodyPart bodyPart,
oracl e.security.crypto.core. Al gorithm dentifier digestAl glD

Creates a new Simi meMul ti part Si gned message, with the specified MIME body
part and message digest algorithm.

voi d addBodyPart (javax. mail.BodyPart part)

Inherited from j avax. mai | . Mul ti part, adds the specified body part to this
Smi meMul ti part Si gned object. (See the javax.mail API documentation at htt p://
www. or acl e. conit echnet wor k/ j ava/ i ndex- 138643. ht m for more details.)

voi d addSi gnature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert)

Adds a signature to the message, using the specified private key and certificate.

voi d addSi gnature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert, java.util.Date tinmeStanp)

5-6 Developing Applications with Oracle Security Developer Tools

http://www.oracle.com/technetwork/java/index-138643.html
http://www.oracle.com/technetwork/java/index-138643.html

Developing Applications with Oracle S/MIME

Adds a signature to the message, using the specified private key and certificate plus a
time stamp.

voi d addSi gnature (java.security.PrivateKey signerKey,
java.security.cert.X509Certificate signerCert, java.util.Date tineStanp,
Sm neCapabi lities sni meCaps)

Adds a signature to the message, using the specified private key and certificate, plus
S/MIME capabilities.

javax. mail.internet. M meBodyPart getEncl osedBodyPart ()

Returns the MIME body part that was signed.
Use the following code to build a new message:

|/ Create a new SSMME Miltipart Signed Message with a specified
/1 MM body part and a specified digest algorithm

M meBodyPart bp = new M neBodyPart ();

bp. set Text ("Hel l o from SendSi gnedMsg! ") ;

Algorithmdentifier algld = Al gl D shal;

Sm meMut i part Signed sig = new SminmeMil tipartSigned(bp, algld);

To parse a message, use the constructor that takes a
j avax. activati on. Dat aSour ce:

Dat aSource ds = Data source containing nessage to be parsed
Sm meMil tipart Signed sig = new SmimeMiltipartSi gned(ds);

5.3.1.6 Using the oracle.security.crypto.smime.SmimeSignedReceipt Class

The oracl e. security. crypto.sm nme. Sm meSi gnedRecei pt class represents
an S/MIME wrapped and signed receipt. You may use this class to build a new
message or parse an existing one.

To build a new message, use any of these four constructors:

/] Create a new S'M M wrapped and signed receipt with the specified receipt,
Il the specified digest of the message's signed attributes

/1 and the addresses of the receipt recipients

ESSRecei pt recei pt = ESS receipt to include in message

byte [] nmsgSigDigest = Digest of signed attributes to be included in message
Address [] addresses = Addresses of receipt recipients

Sm meSi gnedRecei pt sig = new Smi neSi gned(recei pt, nmsgSi gDi gest, addresses);

I -OR-
/] Create a new S'M ME wrapped and signed recei pt
/1 with a specified S'MME Signed Message containing the receipt
Sm meSi gnedObj ect sso = S/M M signed message containing recei pt
Sm meSi gnedRecei pt sigl = new Sni neSi gnedRecei pt (sS0);

11 -OR-

[l Create a new S'M M wapped and signed receipt with a

/1 specified SIMME Signed Message containing the receipt,

/1 the signer's certificate and the addresses of the receipt recipients

Sm meSi gnedObj ect ssol = S/M ME signed message containing receipt
X509Certificate signerCert = The message signer's certificate

Address [] addressesl = Addresses of receipt recipients

Sm meSi gnedRecei pt si g2 = new Sni neSi gnedRecei pt (ssol, signerCert, addressesl);

11 -OR-

[l Create a new S'M M wapped and signed receipt with a

Oracle SIMIME 5-7

Developing Applications with Oracle S/MIME

/'l specified SSMME Signed Message containing the receipt,
Il the signer's certificate, the addresses of the receipt recipients and
/1 a specified M.ExpansionH story attribute.
Sm neSi gnedObj ect ssol = S/M M si gned message containing receipt
X509Certificate signerCert = The message signer's certificate
Address [] addressesl = Addresses of receipt recipients
M.Expansi onHi story nl Expansi onHi story = The M.Expansi onHi story attribute
Sm nmeSi gnedRecei pt sig2 =
new Sm neSi gnedRecei pt (ssol, signerCert, addressesl, nl ExpansionHi story);

To parse a message, use the constructor that takesaj ava. i 0. | nput St r eam
InputStreamis = Input stream containing nessage to be parsed

Sm neSi gnedRecei pt sig = new Smi neSi gnedRecei pt(is);

5.3.1.7 Using the oracle.security.crypto.smime.SmimeCompressed Class

The oracl e. security. crypto.sm nme. Smi meConpr essed class represents an S/
MIME compressed message as defined in RFC 3274. You can use this class to build a
new message or parse an existing one.

Note:
A link to RFC 3274 is available in References.

Use the following code to build a new message:

/] Create a new S/M ME Conpressed Message with a specified MM body part
M meBodyPart bp = new M neBodyPart();

bp. set Text ("Hel I o from SendSi gnedMsg! ") ;

Sm nmeConpressed conp = new Smi meConpr essed(bp) ;

/11 -OR-

/] Create a new S'M ME Conpressed Message with a specified MME body part
/1 and a specified conpression al gorithm

M meBodyPart bp = new M neBodyPart();

bp. set Text ("Hel I o from SendSi gnedMsg! ") ;

Algorithmdentifier algld = Smine.id_alg_zlibConpress;

Sm meConpressed conp = new Smi meConpr essed(bp, al gld);

To parse a message, use the constructor that takesaj ava. i 0. | nput St r eam
InputStreamis = Input stream containing nessage to be parsed
Sm meConpressed conpl = new Sm meConpressed(is);

5.3.2 Supporting Classes and Interfaces

Oracle S/MIME contains supporting interface that defines constants such as algorithm
identifiers, content type identifiers, and attribute identifiers. It contains supporting
classes that contains static utility methods, verify signatures on signed S/MIME
objects, and encapsulate capabilities for an S/MIME object.

This section describes Oracle S/MIME supporting classes and interfaces.

5.3.2.1 Using the oracle.security.crypto.smime.Smime Interface

The oracl e. security. crypto. sm nme. S e interface defines constants such as
algorithm identifiers, content type identifiers, and attribute identifiers.

5-8 Developing Applications with Oracle Security Developer Tools

Developing Applications with Oracle S/MIME

5.3.2.2 Using the oracle.security.crypto.smime.SmimeUtils Class

Theoracl e. security. crypto.sminme. Smi meUti |l s class contains static utility
methods.

Methods of this class include:

public static FileDataSource createFileDataSource (File file,
String content TypeHeader)

public static FileDataSource createFileDataSource (String name,
String content TypeHeader)

For transparent handling of multipart or multipart/signed S/MIME types, use these
methods instead of directly instantiating a j avax. acti vati on. Fi | eDat aSour ce.

Note:

The defaultj avax. acti vati on. Fi | eDat aSour ce included with JAF 1.0.1
does not handle multipart MIME boundaries when used with Javamail 1.1.x.

5.3.2.3 Using the oracle.security.crypto.smime.MailTrustPolicy Class

The oracl e. security. crypto.smme. Mai | Trust Pol i cy class implements a
certificate trust policy
(oracle.security.crypto.cert.CertificateTrustPolicy)used to verify
signatures on signed S/MIME objects.

5.3.2.4 Using the oracle.security.crypto.smime.SmimeCapabilities Class

The oracl e. security. crypto.smi me. Smi meCapabi | i ti es class encapsulates
a set of capabilities for an S/MIME object including, for example, the supported
encryption algorithms.

A useful method of this class is:

voi d addCapabi | ity(oracle.security.crypto.asnl. ASNL(oj ect|D capabilitylD)

which adds the capability with the specified object ID to this set of S/MIME
capabilities.
5.3.2.5 Using the oracle.security.crypto.smime.SmimeDataContentHandler Class

The oracl e. security. crypto. sm ne. Sm neDat aCont ent Handl er class
provides the DataContentHandler for S/MIME content types. It implements
j avax. activati on. Dat aCont ent Handl er.

5.3.2.6 Using the oracle.security.crypto.smime.ess Package

The oracl e. security. crypto.sm nme. ess package contains the following
classes:

Table 5-1 Classes in the oracle.security.crypto.smime.ess Package
|

Class Description
ContentHints Content hints
ContentReference Content reference

Oracle S/IMIME 5-9

Developing Applications with Oracle S/MIME

Table 5-1 (Cont.) Classes in the oracle.security.crypto.smime.ess Package
|

Class Description

EquivalentLabels ESS EquivalentLabels

ESSSecurityLabel An ESS security label

MLData Represents the MLData element which is used in the

MLExpansionHistory attribute

MLExpansionHistory Mailing list expansion history

ReceiptRequest An ESS Receipt Request

ReceiptRequest. AllOrFirstTier An 'AllOrFirstTier' is a part of the 'ReceiptsFrom' field of
a ReceiptRequest

SigningCertificate An ESS Signing Certificate

5.3.3 Using the Oracle S/MIME Classes

You can use the Oracle S/MIME SDK to work with multi-part signed messages, sign
messages and authenticate signed messages, create and open digital envelopes, and
implement Enhanced Security Services (ESS).

It covers these topics:

* Using the Abstract Class SmimeObject

* Signing Messages

¢ Creating "Multipart/Signed" Entities

¢ Creating Digital Envelopes

¢ Creating "Certificates-Only" Messages

* Reading Messages

* Authenticating Signed Messages

* Opening Digital Envelopes (Encrypted Messages)
¢ Adding Enhanced Security Services (ESS)
5.3.3.1 Using the Abstract Class SmimeObject

Smi meQbj ect is an abstract class representing a fundamental S/MIME message
content entity. Subclasses of Sm meQbj ect include :

e Sni neSi gned

e Sni neEnvel oped

Sm meMul ti part Si gned

Smi meSi gnedRecei pt, and

5-10 Developing Applications with Oracle Security Developer Tools

Developing Applications with Oracle S/MIME

e Sni neConpr essed

One of the characteristics of S meQbj ect implementations is that they "know their
own MIME type" -- that is, they implement the gener at eCont ent Type method.
Thus, to place such an object inside a MIME message or body part, follow the same
outline that was used in the Sri meSi gned example:

1. Create the object.
2. Invoke gener at eCont ent Type on the object to obtain a MIME type.

3. Pass the object, together with the generated content type, to the set Cont ent
method of a M meMessage or M meBodyPart object.

The Smi meCbj ect class provides another version of the gener at eCont ent Type
method, which takes a boolean parameter. When given true as a parameter,

gener at eCont ent Type behaves exactly as in the case of no argument. When given
false as a parameter, gener at eCont ent Type returns the older MIME types required
by certain mail clients, including Netscape Communicator 4.0.4. Specifically:

e "application/pkecs7-mime" becomes "application/x-pkecs7-mime"

* '"application/pkcs7-signature" becomes "application/x-pkcs7-signature"

5.3.3.2 Signing Messages
Create a signed message, or signed MIME body part, using these steps:
1. Prepare an instance of MimeBodyPart which contains the content you wish to sign.

This body part may have any content-type desired. In the following example we
create a "text/plain" body part:

M meBodyPart doc = new M neBodyPart();
doc. set Text (" Exanpl e si gned nessage.");

2. Create an instance of Sm meSi gned using the constructor which takes the
MimeBodyPart created earlier as argument.

Sm meSi gned sig = new Sni meSi gned (doc);

3. Add all desired signatures. For each signature, you need to specify a private key, a
certificate for the matching public key, and a message digest algorithm. For
example:

si g.addSi gnature (signatureKey, signatureCert, Al glD. shal);

In this example we specified the SHA-1 message digest algorithm. Alternatively,
we could have specified the MD5 algorithm by passing Al gl D. nd5 as the
argument.

4. Place your Sri meSi gnedChj ect intoa M meMessage or M neBodyPart, as
appropriate. For example:

M meMessage m = new M nmeMessage();
m set Content (sig, sig.generateContentType());

or

M meBodyPart bp = new M meBodyPart();
bp. set Content (sig, sig.generateContentType());

Oracle SIMIME 5-11

Developing Applications with Oracle S/MIME

The gener at eCont ent Type method used in these examples returns a string
identifying the appropriate MIME type for the object, which in this case is:

appl i cation/ pkcs7-m ne; smine-type=si gned- dat a

With these simple steps, you can now transport the MIME message, place the body
part containing S/MIME content into a MIME multipart object, or perform any other
operation appropriate for these objects. See the JavaMail API for details.

5.3.3.3 Creating "Multipart/Signed" Entities

The S meMul ti part Si gned class provides an alternative way to create signed
messages. These messages use the "multipart/signed” mime type instead of
"application/pkcs7-mime". The advantage is that the content of the resulting message
is readable with non-MIME enabled mail clients, although such clients will not, of
course, be able to verify the signature.

Creating a multi-part/signed message is slightly different from creating a signed
message. For example, to send a multi-part/signed text message:

/] create the content text as a MM body part

M meBodyPart bp = new M neBodyPart();

bp. set Text ("Exanpl e nul tipart/signed nessage.");

/1 the constructor takes the signature al gorithm

Sm nmeMil tipart Signed sig = new SmimeMil tipartSigned(bp, A glD shal);
/] sign the content

si g. addSi gnat ur e(si gner Key, signerCert);

/] place the content in a MME nessage

M nmeMessage nsg = new M neMessage();

msg. set Content (sig, sig.generateContentType());

The reason for identifying the message digest in the Sri mreMul ti part Si gned
constructor is that, unlike the case of application/pkcs7-mime signed data objects,
multipart/signed messages require that all signatures use the same message digest
algorithm.

The gener at eCont ent Type method returns the following string:

mul tipart/signed; protocol ="application/pkcs7-signature”

5.3.3.4 Creating Digital Envelopes

An S/MIME digital envelope (encrypted message) is represented by the

Smi meEnvel oped class. This is a MIME entity which is formed by encrypting a
MIME body part with some symmetric encryption algorithm (eg, Triple-Des or RC2)
and a randomly generated session key, then encrypting the session key with the RSA
public key for each intended message recipient.

In the following example, doc is an instance of M meBodyPar t , which is to be
wrapped in an instance of Sm meEnvel oped, and r eci pi ent Cert is the recipient's
certificate.

Sm meEnvel oped env = new Smi neEnvel oped(doc, Sm ne.dES_EDE3_CBC);
env. addReci pi ent (recipientCert);

You may add any number of envelope recipients by making repeated calls to
addReci pi ent.

5-12 Developing Applications with Oracle Security Developer Tools

Developing Applications with Oracle S/MIME

5.3.3.5 Creating "Certificates-Only" Messages

It is possible to create an S/MIME signed-data object that contains neither content nor
signatures; rather, it contains just certificates, or CRLs, or both. Such entities can be
used as a certificate transport mechanism. They have the special content type:

application/ pkcs7-nime; smne-type=certs-only

This example shows how to create a signed-data object:

X509Certificate certl, cert2;

Sm neSi gned certBag = new Snmi neSi gned();
certBag. addCertificate(certl);

certBag. addCertificate(cert2);

Now you can pass cer t Bag to an appropriate set Cont ent method. When
gener at eCont ent Type is invoked on cer t Bag, it will automatically return a
content type with the correct "certs-only" value for the sm nme-t ype parameter.

5.3.3.6 Reading Messages

The basic JavaMail API technique for extracting Java objects from MIME entities is to
invoke the get Cont ent () method on an instance of M nePar t , an interface which

models MIME entities and is implemented by the M meMesage and M neBodyPar t

classes.

The get Cont ent method consults the currently installed default command map -
which is part of the JavaBeans Activities Framework - to find a data content handler
for the given MIME type, which is responsible for converting the content of the MIME
entity into a Java object of the appropriate class.

The mai | cap file provided with your distribution can be used to install the
Smi meDat aCont ent Handl er class, which serves as a data content handler for the
following types:

Content Type Returns Instance Of
application/pkcs7-mime SmimeSigned or Smime Enveloped
application/pkes7-signature SmimeSigned

application/pkes10 oracle.security.crypto.cert.CertificateRequest
multipart/signed SmimeMultipartSigned

5.3.3.7 Authenticating Signed Messages

Once you obtain an instance of Sm meSi gned or S nreMut | i par t Si gned from
get Cont ent (), you will naturally want to verify the attached signatures. To explain
the available options for signature verification, it is neccessary to discuss the structure
of an S/MIME signed message.

The content of a signed S/MIME message is a CMS object of type Si gnedDat a. Such
an object itself has a content - the document to which the signatures are applied -
which is the text encoding of a MIME entity. It also contains from zero to any number
of signatures, and, optionally, a set of certificates, CRLs, or both, which the receiving
party may use to validate the signatures.

Oracle SIMIME 5-13

Developing Applications with Oracle S/MIME

The S meSi gned and Sri meMul ti par t Si gned classes encapsulate all of this
information. They provide two authentication methods: veri f yi ngSi gnat ur e and
verify.

To verify a particular signature with a certificate already in possession, ignoring any
certificate and CRLs attached by the signer, use veri f ySi gnat ur e. For example:

Sm neSi gnedbj ect sig =
(Sni meSi gnedChj ect) nsg. get Content (); // msg is a Message
sig.verifySignature(cert, msg.getFrom()); // cert is an X509Certificate object

If verification fails, the ver i f ySi gnat ur e method throws either a
Si gnat ur eExcepti on or an Aut hent i cat i onExcept i on ; otherwise, it returns
normally.

Use veri fy to verify that the content contains at least one valid signature; that is,
there exists a valid certificate chain, starting from a trusted root CA, and terminating
in a certificate for the private key which generated the signature. This method makes
use of the attached certificate and CRLs in order to follow certificate chains.

For example, given a trusted certificate authority (CA) certificate already in hand:

TrustedCAPol i cy trusts = new Trust edCAPolicy();

[l if true, need CRL for each cert in chain

trusts. set RequireCRLs(fal se);

/] caCert is an X509Certificate object with CA cert

trusts. addTrust edCA(caCert);

Sm neSi gnedObj ect sig = (Smi neSi gnedoj ect) msg. get Content ();
sig.verify(trusts, nsg.getFrom));

Like veri fySi gnat ur e, veri fy throws an Aut hent i cati onExcepti on if the
signature cannot be verified; otherwise it returns normally. In either case you can
recover the document that was signed, which is itself a MIME entity, by invoking
get Encl osedBodyPart () :

M meBodyPart doc = sig. get Encl osedBodyPart();

5.3.3.8 Opening Digital Envelopes (Encrypted Messages)
An S/MIME digital envelope consists of:

* A protected MIME body part, which has been encrypted with a symmetric key
algorithm (for example, DES or RC2)

* A randomly generated content encryption key

* Information that allows one or more intended recipients to decrypt the content

For each recipient, this information consists of the content encryption key, itself
encrypted with the recipient's public key.

To obtain the encrypted content from an Smi meEnvel oped object, you need the
recipient's private key and the corresponding certificate; the certificate is used as an
index into the recipient information table contained in the envelope's data structure.

For example:

Sm neEnvel oped env = (Smi neEnvel oped) msg. get Content ();

M meBodyPart mbp = env. get Encl osedBodyPart (privKey, cert)
/'l privKey is a PrivateKey object

/1 cert is an X509Certificate object

5-14 Developing Applications with Oracle Security Developer Tools

Developing Applications with Oracle S/MIME

Passing the private key and the certificate to the get Encl osedBodyPart method
returns the decrypted content as an instance of M meBodyPar't .

The get Cont ent method can now be invoked on the M neBodyPar t object to
retrieve the (now decrypted) content. This content may be a St ri ng (in the case of an
encrypted text message), or any other object such as an Sii meSi gned.

5.3.3.9 Adding Enhanced Security Services (ESS)

You can add the ESS services Recei pt Request s, Securi tylLabel s, and
Si gni ngCertificates toan S/MIME signed message by adding them to the
si gnedAttri but es of a signature.

/] Create a Signed Message
Sm neSi gned sig = new Sm neSi gned();
AttributeSet signedAttributes = new AttributeSet();

5.3.3.9.1 Requesting a Signed Receipt with ESS
oracl e.security.crypto.sm ne. ess.Recei pt Request supports the receipt

request service.

To request a signed receipt from the recipient of a message, add ar ecei pt Request
attribute to the si gnedAt t ri but es field while adding a signature:

Recei pt Request rr = new Recei pt Request();

signedAttributes. addAttribute(Smme.id_aa_recei pt Request, rr);
5.3.3.9.2 Attaching a Security Label with ESS
oracl e.security.crypto.sm ne. ess. ESSSecuritylLabel provides the

security label service.

To attach a security label to a message, add an ESSSecuri t yLabel attribute to the
si gnedAt t ri but es field while adding a signature:

ESSSecuritylLabel sl = new ESSSecuritylLabel ();

signedAttributes. addAttribute(Smme.id _aa_securitylabel, sl);
5.3.3.9.3 Attaching a Signing Certificate with ESS

oracle.security.crypto.smime.ess.SigningCertificate enables you to attach a signing
certificate.

To attach a signing certificate to a message, add a Si gni ngCer ti fi cat e attribute to
the si gnedAt tri but es field while adding a signature:

Si gningCertificate sc = new SigningCertificate();

signedAttributes. addAttribute(Snime.id aa_signingCertificate, sc);

Use the si gnedAt t ri but es while adding a signature:

si g. addSi gnat ur e(si gnerKey, signerCert, digestA glD, signedAttributes);
The ESS signed receipts are generated using the Smi meSi gnedRecei pt class in the
oracl e. security.crypto.sm nme package, in a manner similar to using a

Smi meSi gned class, except that the content that is signed is an
oracl e.security.crypto.cns. ESSRecei pt object.

Oracle SIMIME 5-15

The Oracle S/MIME Java API Reference

5.3.3.10 Processing Enhanced Security Services (ESS)

An S/MIME signed receipt must have correctly set content type parameters for the
data content handlers to recognize it. If the content type parameters are missing, the
signed receipt is treated as a signed message.

5.4 The Oracle S/MIME Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in Oracle S/MIME.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

5-16 Developing Applications with Oracle Security Developer Tools

6

Oracle PKI SDK

Public key infrastructure (PKI) is a security architecture that provides an increased
level of confidence when exchanging information over the Internet. Oracle PKI SDK
provides packages for PKI, LDAP, and timestamp functions for developing PKI-aware
applications.

We explain PKI features and the various sub-packages of Oracle PKI:
* Oracle PKI CMP SDK

¢ Oracle PKI OCSP SDK

* Oracle PKI TSP SDK

e Oracle PKI LDAP SDK

6.1 Oracle PKI CMP SDK

You can use Oracle public key infrastructure (PKI) Software Development Kit (SDK)
for certificate management protocol (CMP). Oracle PKI CMP SDK allows Java
developers to quickly implement certificate management functionality such as issuing
and renewing certificates, creating and publishing CRLs, and providing key recovery
capabilities.

e QOracle PKI CMP SDK Features and Benefits
e Setting Up Your Oracle PKI CMP SDK Environment

e The Oracle PKI CMP SDK Java API Reference

6.1.1 Oracle PKI CMP SDK Features and Benefits

Oracle PKI CMP SDK provides packages that implement certificate management
protocol (CMP) as described in RFC 2510, and certificate request message format
(CRMF) as described in RFC 2511.

The Oracle PKI CMP SDK provides the following features and functionality:

* Oracle PKI CMP SDK conforms to RFC 2510, and is compatible with other products
that conform to this certificate management protocol (CMP) specification. RFC 2510
defines protocol messages for all aspects of certificate creation and management.

¢ Oracle PKI CMP SDK conforms to RFC 2511, and is compatible with other products
that conform to this certificate request message format (CRMF) specification.
RFC 2511 describes the Certificate Request Message Format (CRMF), which is used
to convey X.509 certificate requests to a Certification Authority (CA).

The Oracle PKI CMP SDK toolkit contains the following packages:

Oracle PKI SDK 6-1

Oracle PKI CMP SDK

e Theoracl e.security.crypto.cnp package provides classes that implement
certificate management protocol (CMP) as described in RFC 2510, and certificate
request message format (CRMF) as described in RFC 2511.

e Theoracle.security.crypto.cnp. attribute package provides attribute
classes for registration controls, registration information, and general information.
This package includes the following classes and their subclasses:

— RegistrationControl
— Registrationlnfo

— I nfoTypeAndVal ue (which extends
oracl e.security.crypto.cert.Attri buteTypeAndVal ue)

e Theoracle.security.crypto.cnp.transport package provides classes for
CMP and CRMF transport protocols. It includes the TCPMessage class and its
specific message-type subclasses.

6.1.2 Setting Up Your Oracle PKI CMP SDK Environment

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOQOME. In order to use Oracle PKI CMP SDK, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Your CLASSPATH environment variable
must contain the full path and file names to all of the required jar and class files.

Make sure the following items are included in your CLASSPATH:
e osdt_core.jar

e osdt_cert.jar

e osdt_cns.jar

e osdt_cnp.jar

For example, your classpath may look like:

9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _core.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cert.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cns. | ar;
9%ORACLE_HOVE% nodul es\ or acl e. osdt _11. 1. 1\ osdt _cnp. j ar

See Also:

Setting the CLASSPATH Environment Variable

6.1.3 The Oracle PKI CMP SDK Java API Reference

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools
guide explains the classes and methods available in Oracle PKI CMP SDK.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

6-2 Developing Applications with Oracle Security Developer Tools

Oracle PKI OCSP SDK

6.2 Oracle PKI OCSP SDK

Oracle PKI OCSP SDK allows Java developers to quickly develop Online Certificate
Status Protocol (OCSP) enabled client applications and OCSP responders that conform
to RFC 2560 specifications.

This section contains the following topics:
® Oracle PKI OCSP SDK Features and Benefits
e Setting Up Your Oracle PKI OCSP SDK Environment

e The Oracle PKI OCSP SDK Java API Reference

6.2.1 Oracle PKI OCSP SDK Features and Benefits

Oracle PKI OCSP SDK conforms to RFC 2560 specifications. It provides classes and
methods to constructing OCSP request messages, responses, and OSCP server
implementations.

Oracle PKI OCSP SDK provides the following features and functionality:

¢ Oracle PKI OCSP SDK conforms to RFC 2560 and is compatible with other
products that conform to this specification, such as Valicert's Validation Authority.
RFC 2560 specifies a protocol useful in determining the current status of a digital
certificate without requiring CRLs.

e The Oracle PKI OCSP SDK API provides classes and methods for constructing
OCSP request messages that can be sent through HTTP to any RFC 2560 compliant
validation authority.

® The Oracle PKI OCSP SDK API provides classes and methods for constructing
responses to OCSP request messages, and an OCSP server implementation that you
can use as a basis for developing your own OCSP server to check the validity of
certificates you have issued.

6.2.2 Setting Up Your Oracle PKI OCSP SDK Environment

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOQOME. In order to use Oracle PKI OCSP SDK, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Also, make sure that your PATH
environment variable includes the Java bin directory. Your CLASSPATH environment
variable must contain the full path and file names to all of the required jar and class
files.

Make sure the following items are included in your CLASSPATH:
e osdt_core.jar

e osdt_cert.jar

* osdt_ocsp.jar

For example:

setenv CLASSPATH $CLASSPATH: $ORACLE_HOVE/ nodul es/ oracl e. osdt _11. 1. 1/ osdt _core. jar:
$ORACLE_HOMVEnDdul es/ oracl e. osdt _11.1. 1/ osdt _cert.jar:
$ORACLE_HOMENDdul es/ oracl e. osdt _11. 1. 1/ osdt _ocsp. j ar

Oracle PKI SDK 6-3

Oracle PKI TSP SDK

See Also:

Setting the CLASSPATH Environment Variable.

6.2.3 The Oracle PKI OCSP SDK Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in Oracle PKI OCSP SDK.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

6.3 Oracle PKI TSP SDK

Oracle PKI TSP SDK allows Java developers quickly implement time-stamping
functionality within a public key infrastructure (PKI) framework.

This section contains the following topics:
¢ Oracle PKI TSP SDK Features and Benefits
® Setting Up Your Oracle PKI TSP SDK Environment

¢ The Oracle PKI TSP SDK Java API Reference

6.3.1 Oracle PKI TSP SDK Features and Benefits

Oracle PKI TSP SDK conforms to RFC 3161 and is compatible with other products that
conform to this time stamp protocol (TSP) specification. It provides a sample
implementation of a TSA server which you can use for testing TSP request messages,
or as a basis for developing your own time stamping service.

Oracle PKI TSP SDK contains the following classes and interfaces:

Table 6-1 Oracle PKI TSP SDK Classes and Interfaces
- - - - -~~~ - - -]

Class or Interface Name Description

TSP Interface Defines various constants associated with the Time Stamp Protocol
(TSP).

Ht t pTSPRequest Class Implementation of a TSP request message over HTTP.

Ht t pTSPResponse Class Implementation of a TSP response message over HTTP.

Messagel npri nt Class This class represents a Messagel npri nt object as defined in
RFC 3161.

TSAPol i cyl DClass This class represents a TSAPol i cyl D object as defined in RFC 3161.

TSPCont ent Handl er Fact ory Class A content handler for TSP over HTTP.

TSPMessage Class A TSP message.
TSPTi neSt anpReq Class A TSP message of type Ti meSt anpReq as defined in RFC 3161.
TSPTi neSt anpResp Class A TSP message of type Ti meSt anpResp as defined in RFC 3161.

6-4 Developing Applications with Oracle Security Developer Tools

Oracle PKI LDAP SDK

Table 6-1 (Cont.) Oracle PKI TSP SDK Classes and Interfaces
. __|

Class or Interface Name Description

TSPUti | s Class Defines various utility methods for the
oracl e. security. crypto.tsp package.

6.3.2 Setting Up Your Oracle PKI TSP SDK Environment

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME. In order to use Oracle PKI TSP SDK, your system must have the Java
Development Kit (JDK) version 1.6 or higher. Also, make sure that your PATH
environment variable includes the Java bin directory. Your CLASSPATH environment
variable must contain the full path and file names to all of the required jar and class
files.

Make sure the following items are included in your CLASSPATH:
e osdt_core.jar

e osdt_cert.jar

e osdt_cns.jar

e osdt_cnp.jar

e osdt_tsp.jar

For example:

setenv CLASSPATH $CLASSPATH: $ORACLE_HOVE/ modul es/ oracl e. osdt _11.1. 1/ osdt_core.jar:
$ORACLE_HOWE/ modul es/ oracl e. osdt _11.1. 1/ osdt _cert.jar:

$ORACLE_HOVE/ nodul es/ oracl e. osdt _11. 1.1/ osdt_cns. jar:

$ORACLE_HOVE/ nodul es/ oracl e. osdt _11. 1. 1/ osdt _cnp. j ar;

$ORACLE_HOWE/ modul es/ oracl e. osdt _11. 1. 1/ osdt _tsp.jar

See Also:

Setting the CLASSPATH Environment Variable.

6.3.3 The Oracle PKI TSP SDK Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in Oracle PKI TSP SDK.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

6.4 Oracle PKI LDAP SDK

Oracle PKI LDAP SDK allows Java developers quickly implement operations that
involve publishing and retrieving digital certificates from a directory server.

This section contains the following topics:

e Qracle PKI LDAP SDK Features and Benefits

Oracle PKI SDK 6-5

Oracle PKI LDAP SDK

® Setting Up Your Oracle PKI LDAP SDK Environment

¢ The Oracle PKI LDAP SDK Java API Reference

6.4.1 Oracle PKI LDAP SDK Features and Benefits

Oracle PKI LDAP SDK provides classes and methods to access, validate, and manage a
digital certificate within an LDAP directory.

Oracle PKI LDAP SDK provides facilities for accessing a digital certificate within an
LDAP directory. Some of the tasks you can perform with Oracle PKI LDAP SDK are:

* Validating a user's certificate in an LDAP directory

* Adding a certificate to an LDAP directory

® Retrieving a certificate from an LDAP directory

® Deleting a certificate from an LDAP directory

The oracl e. securi ty. crypt o. LDAP package contains two classes:

e LDAPCertificateValidator, which validates a user certificate by checking
whether it exists in its subject's LDAP directory entry

e LDAPU i | s, which is a collection of methods to add, retrieve, and remove
certificates from a subject's LDAP directory entry

6.4.2 Setting Up Your Oracle PKI LDAP SDK Environment

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HQOVE. You must have Java Development Kit (JDK) version 1.6 or higher and
Oracle's Java Naming and Directory Interface (JNDI) version 1.2.1 or higher in your
system. Your CLASSPATH environment variable must contain the full path and file
names to all of the required jar and class files.

To use Oracle PKI LDAP SDK, your system must have the following:

* Java Development Kit (JDK) version 1.6 or higher. Also, make sure that the Java
bi n directory is added to your PATH environment variable.

® Oracle's Java Naming and Directory Interface (JNDI) version 1.2.1 or higher. You
must add all of the JNDI jar files to your CLASSPATH.

Make sure the following items are included in your CLASSPATH:
e osdt_core.jar

e osdt_cert.jar

osdt _| dap.j ar

e jndi.jar, ldapbp.jar, Idap.jar, jaas.jar, andproviderutil.jar
(Oracle's Java Naming and Directory Interface (JNDI))

For example:

9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _core.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cert.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _| dap. j ar;

6-6 Developing Applications with Oracle Security Developer Tools

Oracle PKI LDAP SDK

See Also:

Setting the CLASSPATH Environment Variable.

6.4.3 The Oracle PKI LDAP SDK Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in Oracle PKI LDAP SDK.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Oracle PKI SDK 6-7

Oracle PKI LDAP SDK

6-8 Developing Applications with Oracle Security Developer Tools

v

Oracle XML Security

XML security refers to standard security requirements of XML documents such as
confidentiality, integrity, message authentication, and non-repudiation. You can setup
your environment and use Oracle XML Securityto fulfil these standard security
requirements of XML documents.

The need for digital signature and encryption standards for XML documents
prompted the World Wide Web Consortium (W3C) to put forth an XML Signature
standard and an XML Encryption standard.

We cover features and provide code samples for implementing Oracle XML Security:

Oracle XML Security Features and Benefits

Setting Up Your Oracle XML Security Environment
Signing Data with Oracle XML Security

Verifying XML Data

Understanding how Data is Encrypted

Understanding Data Decryption with Oracle XML Security
Understanding and Using Element Wrappers in the OSDT XML APIs
Signing Data with the Oracle XML Security API

Verifying Signatures with the Oracle XML Security API
Encrypting Data with the Oracle XML Security API
Decrypting Data with the Oracle XML Security API
Common XML Security Questions

Best Practices for Oracle XML Security

The Oracle XML Security Java API Reference

See Also:

The following resources provide more information about XML and XML
standards:

¢ W3C's Recommendation for XML Signatures

e W3C's Recommendation for XML Encryption

Links to these resources are available in References.

Oracle XML Security 7-1

Oracle XML Security Features and Benefits

7.1 Oracle XML Security Features and Benefits

Oracle Security Developer Tools provide a complete implementation of the XML
Signature and XML Encryption specifications, and supports Signature Algorithms,
Digest Algorithms, Data Encryption Algorithms, Key Encryption and Key Wrapping
Algorithms, and Transforms.

These algorithms are:

Signature Algorithms
e DSA with SHA1
e RSA with SHA1

¢ HMAC-SHA1

Digest Algorithms

e MD5

SHA1

SHA256

SHA512

Transforms

e Canonicalization — Canonical XML 1.0, Canonical XML 1.1, exclusive Canonical
XML 1.0, (all forms are supported with and without comments)

e XSLT

e XPath Filter

e XPath Filter 2.0

e Base64 Decode

¢ Enveloped Signature

® Decrypt Transform

Data Encryption Algorithms
e AES-128 in CBC mode

e AES-192 in CBC mode

e AES-256 in CBC mode

e DES EDE in CBC mode

Key Encryption and Key Wrapping Algorithms
¢ RSAES-OAEP-ENCRYPT with MGF1

7-2 Developing Applications with Oracle Security Developer Tools

Setting Up Your Oracle XML Security Environment

¢ RSAES-PKCS1-v1_5
¢ AES-128 Key Wrap
e AES-192 Key Wrap
¢ AES-256 Key Wrap
¢ DES-EDE Key Wrap

7.2 Setting Up Your Oracle XML Security Environment

Setup your Oracle XML Security environment by installing Oracle Security Developer
Tools and JDK, and setting up CLASSPATH environment variable for jar files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOWVE/ nodul es/ oracl e. osdt _11. 1. 1.

System Requirements

In order to use Oracle XML Security, you must have JDK 5 or higher.

CLASSPATH Environment Variable
Make sure the following items are included in your CLASSPATH:

e osdt_core.jar
e osdt_cert.jar

¢ osdt _xm sec. j ar (This is the main jar containing all the Oracle XML Security
classes.)

e org.jaxen_1.1.1.jar,which islocated in $ORACLE_HOVE/ nodul es/
Oracle XML Security relies on the Jaxen XPath engine for XPath processing.

See Also:

Setting the CLASSPATH Environment Variable

7.3 Signing Data with Oracle XML Security

Using the Oracle Security Developer Tools Oracle XML Security API, you can sign an
XML document, a fragment of an XML document, or some binary data.

This section explains the concepts behind data signing.

The basic steps are as follows:
1. Identify what to sign and where to place the signature.

2. Decide on a signing key.

See Also:

For details of data signing with the Oracle XML Security APIs, see Signing
Data with the Oracle XML Security API through Decrypting Data with the
Oracle XML Security APL

Oracle XML Security 7-3

Signing Data with Oracle XML Security

7.3.1 Identifying What to Sign

As a first step, you must identify the data that you need to sign and where your
signature will be placed. You can do this by adding the xm : i d attribute to the
information element. The Signature uses this attribute to refer to the element.

The most common case of signing is when you are signing a part of a document, and
the signature is also placed in the same document. For this you need to decide how
you refer to that part. The simplest way is to use an ID, for example:

<myDoc>
<inmportantinfo xm:id="fool">

</inportantlnfo>
<dsi g: Si gnature>

<dsi g: Ref erence URl ="#f o0l">

</ dsi g: Si gnat ure>
</ myDoc>

In this example myDoc is the entire document, of which you only want to sign the
<i mpor t ant | nf 0> element, and the signature is placed right after the

<i npor t ant | nf 0> element. The <i nport ant | nf 0> has an xn : i d attribute,
which the Signature uses to refer to it.

xm ;i d is a generic identifying mechanism.

If your schema does not allow you to add this attribute to your <i nport ant | nf 0>
element, you can instead use an Xpath to refer to it.

7.3.1.1 Determining the Signature Envelope

This example uses a "disjoint" signature where the signature and element to be signed
are completely separate.

There are two other ways of signing "enveloped":

* where the signature element is the child/descendant of the element to be signed,
and

¢ "enveloping" where the signature element is a parent/ancestor of the element to be
signed.

Here is an example of Enveloped Signing:

<myDoc>
<inportantinfo xnl:id="fool">

<d5| g: Si gnat ure>
<dSI g: Reference URI="#foo0l">
<Tr ansform Al gorithme". .. envel oped- si gnature">
</ d5| g Ref erence>

</ dsi g: Si gnat ure>

7-4 Developing Applications with Oracle Security Developer Tools

Signing Data with Oracle XML Security

</inportant!nfo>
</ myDoc>

When you use enveloped signature, you must use the

Envel opedSi gnat ur eTr ansf or mto exclude the signature itself from the signature
calculation, otherwise the very act of generating a signature changes the content of the
i mporttant| nf o element, and the verification will fail.

7.3.1.2 Deciding How to Sign Binary Data

It is also possible to sign binary data. To do this you must make the binary data
available through a URI. Oracle XML Security allows any URIs that can be resolved by
the JDK, such as http, file:, and zip: URIs.

You need to create a separate XML document which will hold the Si gnat ur e
element, and this signature will refer to the binary data using this URIL

You can sign XML data using this mechanism as well, provided your XML data can be
accessed by a URI. But for XML you can decide to either treat it as binary data and
sign as is, or apply canonicalization and sign as XML. To apply canonicalization you
need to add a canonicalization transform.

If your binary data is present as a base64 encoded string in your XML document, you
can use an ID-based or an Xpath-based reference to it, and then use a
Base64DecodeTr ansf or mto decode the data and sign the binary.

<myDoc>
<inportantBinaryData xnl:id="fool">
XJELGHKLasNDE12KL=
</i nport ant Bi nar yDat a>
<dsi g: Si gnature>

<dsi g: Ref erence URI ="#fo00l">
<Transform Al gorithne"...base64">
</ dsi g: Ref erence>

</ dsi g: Si gnat ure>
</ myDoc>

Note:

External URI dereferencing can be very insecure. For example, say you are
running Oracle Security Developer Tools code inside a server, and you verify
an incoming message; if this message has an external URI reference, it is
essentially causing your server to read from the file or from external web sites.
This can lead to denial of service attacks and cross-site scripting.

This is why External URI dereferencing is disabled by default. You need to set
the JVM property osdt . al | ow. ext er nal Ref er ences (or set
osdt . al | ow. al |) to allow external URI dereferencing.

7.3.1.3 Signing Multiple XML Fragments with a Signature

You can include multiple XML fragments into the same signature. For example, you
can have two ID-based references, and include both of them in the same signature. Or
you can use an Xpath expression which resolves to multiple subtrees.

Oracle XML Security 7-5

Signing Data with Oracle XML Security

You can also mix and match local ID-based references with remote URI references, and
have all of them in the same signature.

In fact it is recommended that you include multiple parts into the same signature to
cryptographically bind them together; for example, if you are using an XML signature
to sign a purchase order approval, you must include the items that are being
purchased, the user who approved it, and time it was approved, all in the same
signature. If you forget to include the user, somebody can potentially steal this
message, change the user name, resubmit it, and the signature will still verify.

7.3.1.4 Excluding Elements from a Signature

At times you may need to sign subtrees with exclusions, rather than signing complete
subtrees; to achieve this you need to use an Xpath expression.

7.3.2 Deciding on a Signing Key

Once you have decided on what to sign, and how to reference it, you can decide on a
signing key, by using a X509Certificate, a symmetric key, or a raw asymmetric signing
key, like a DSA, RSA, or DH key.

These options are:

e Use a X509Certificate.

This is the most common mechanism. You sign with the private key, and anybody
who has your public key can verify with it.

* Use a raw asymmetric signing key, like a DSA, RSA, or DH key.

When you are signing with an X509certificate, you are in fact signing with the
DSA /RSA/DH signing key that is associated with the certificate. You can also sign
with DSA /RSA /DH signing key that is not associated with any certificate,
although there is no good reason for doing so.

e Use a symmetric key.

You can also do HMAC signing with a symmetric key. This is useful when you and
the verifier already share a symmetric key; it could be a key derived from a
password, or it could be from a kerberos system which uses symmetric keys. The
Oracle Security Developer Tools WS Security APIs provide explicit APIs for
password-based keys and kerberos keys.

7.3.2.1 Setting Up Key Exchange

The key exchange needs to happen out of band. For example, if you signing with a
certificate, the receiver should already be set up with the trust points, so that the
receiver can verify your certificate. Or if you are signing with a symmetric key, the
receiver should already know this symmetric key. The XML Signature specification
does not define this initial key exchange mechanism.

7.3.2.2 Providing a Receiver Hint

You also need to provide a hint so that the receiver knows how to verify your
signature. This will be in the <dsi g: Key| nf 0> tag inside the <dsi g: Si gnat ur e>.
This can be accomplished in different ways:

® You can provide no hint at all. This perfectly acceptable, if you have already
communicated the key to the receiver, and the receiver is expecting all signatures
to be signed by this key. However this is not a likely situation.

7-6 Developing Applications with Oracle Security Developer Tools

Verifying XML Data

¢ When signing with an X509Cer ti fi cat e, you can provide one or more of the
following:

— The entire X509Cer ti fi cat e. This is the most common usage.

— The Subj ect DN of the certificate — This is useful when the receiver has access
to a LDAP directory, and it can look up the certificate based on the DN.

— The Subj ect Keyl denti fi er or the IssuerDN/Serial number pair — This is
useful when the receiver is only expecting a signatures from a set of certificates,
and it every time it has to verify a signature, it can loop over all the certificates
and find the one with matching SKI or | ssuer Ser i al .

* When signing with a raw asymmetric key, you can provide the actual values of the
RSA/DSA/DH public key. This is not recommended as the receiver cannot verify
the key; alternatively, if you include the certificate, the receiver can do PKIX
processing and verify it; that is, the receiver can check for certificate validity and
check against an OCSP or CRL.

¢ When signing with a symmetric key, you can provide a key name. This is just a
string that conveys some information that the receiver can use to retrieve/construct
the symmetric key.

7.4 Verifying XML Data

You can verify XML data by searching for the signature element and fetching the
verification key.

This section explains the concepts behind data verification.
Once you understand how to create a signature, you can use similar steps to verify the

signature. The basic steps are as follows:

1. Search for the signature element, and check what was signed

When you first search for the signature element in the XML document. Oracle XML
Security provides a method (put in link here) to list the elements included in this
signature. Verify that those are the elements you were expecting to be signed.

2. Fetch the verification key

Next identify the key with which the signature was signed. To do this, examine the
<dsi g: Keyl nf 0> for the certificate, raw public key, or symmetric key that should
be used for verification.

See Also:

For details of data verification with the Oracle XML Security APIs, see

7.5 Understanding how Data is Encrypted

You can encrypt an XML document, a fragment of an XML document or some binary
data by applying an encryption key.

This section explains the concepts behind data encryption.

The basic steps are as follows:

¢ Identifying what to Encrypt

Oracle XML Security 7-7

Understanding how Data is Encrypted

* Decide on the Encryption Key

See Also:

For details of data encryption with the Oracle XML Security APIs, see
Encrypting Data with the Oracle XML Security API.

7.5.1 Identifying what to Encrypt

The most common encryption scenario is to encrypt and replace. When you are
encrypting a part of the document, replace the document with the encrypted bytes.

For example:

<rryDoc>
<i nportant | nf o>

</inportant!nfo>
</ myDoc>

If you encrypt the importantInfo element, it will look like this:

<myDoc>
<xenc: Encrypt edDat a>

</ xenc: Encrypt edDat a>
</ myDoc>

Here the entire <i npor t ant | nf 0> and all its contents are replaced by an
Encr ypt edDat a element which essentially contains a large base64 string, which is
the base64 encoding of the encrypted <i nport ant | nf 0> element.

In this mode the <i npor t ant | nf 0> element is completely hidden, and the receiver
has no way of knowing the contents until it is decrypted.
7.5.1.1 Using the Content Only Encryption Mode

There is also a "Content only" encryption mode where the element tag itself is not
encrypted, but all its contents are encrypted.

<myDoc>
<i nportant | nfo>
<xenc: Encrypt edDat a>

</ xenc: Encrypt edDat a>
</inportant|nfo>
</ myDoc>

Use the "Content Only" mode if it is appropriate for everyone to know that the
<i npor t ant | nf 0> exists; only the intended party will know how to decrypt and
look at the contents of the <i nport ant | nf 0> element.

7.5.1.2 Encrypting Binary Data

If you are encrypting binary data present as a base64 encoded string, you can encrypt
it as if it were regular XML data.

However if you are encrypting external binary data (that is, data outside the XML
document), your options depend on where you will store the encrypted data.

7-8 Developing Applications with Oracle Security Developer Tools

Understanding Data Decryption with Oracle XML Security

You can store the data externally or inside the encrypted data element.

One option is to store the encrypted data externally as well. For SOAP Attachments
refer to the WS Security SOAP Attachments (insert link) which specifies a mechanism
to encrypt attachments and store the encrypted data back as an attachment.

To store the encrypted data externally, you need to use a xenc: Ci pher Ref er ence,
which is a subelement of xencEncr ypt edDat a and uses a URI to refer to the
encrypted bytes.

The other option is to store the encrypted bytes inside the Encr ypt edDat a, just as
you would with in-place XML encryption.

7.5.2 Decide on the Encryption Key

You can choose a random symmetric key and encrypt your data. Then you can encrypt
this symmetric key with your asymmetric key.

This is very similar to the task of deciding the signing key (see section Deciding on a
Signing Key) except that you never directly encrypt with an asymmetric key. Instead,
you usually:

1. choose a random symmetric key,

2. encrypt your data with this key,

3. encrypt this random symmetric key with your asymmetric key, and
4. send both the encrypted data and encrypted key to the receiver.
Even with a symmetric key, you can still choose to:

1. generate a random symmetric key,

2. encrypt this random symmetric key with your symmetric key and

3. send both the encrypted data key and the encrypted key to the receiver

To use this encrypted key mechanism, you need to decide where to place the
xenc: Encr ypt edKey in your document.

¢ If you only have one encr ypt edDat a element, place the Encr ypt edKey in the
Keyl nf o of the Encr ypt edDat a.

¢ Otherwise, place them separately and have one refer to the other.

Use the <dsi g: Key!l nf 0> inside the Encr ypt edKey to refer to the certificate,
asymmetric key, or key name that can be used to decrypt the Encr ypt edKey.

7.6 Understanding Data Decryption with Oracle XML Security

Data decryption follows the same process as for data encryption, but in reverse. You
need to decrypt the random symmetric key, and then use this key to decrypt the data.

The basic steps are as follows:

If the data was encrypted with a simple encryption in place, locate the
Encr ypt edDat a element and look at its Key| nf o.

If it is directly encrypted with a known symmetric key, decrypt it.

Otherwise if it is encrypted with a random symmetric key:

Oracle XML Security 7-9

Understanding and Using Element Wrappers in the OSDT XML APls

1. locate the corresponding Encr ypt edKey,
2. decrypt it first, and

3. use this decrypted random symmetric key to decrypt the Encr ypt edDat a.

See Also:

For details of data decryption with the Oracle XML Security APIs, see

7.7 Understanding and Using Element Wrappers in the OSDT XML APIs
All the XML-based Oracle Security Developer Tools APIs like Oracle XML Security

and Oracle Web Services Securityuse a wrapper concept, in which for each XML
element, there is a corresponding Java wrapper class.

For example, the <dsi g: Si gnat ur e> XML element corresponds to the

XSSi gnat ur e class. All these wrapper classes inherit from XM_LEIl enent , and they
contain only one data member, which is the pointer to the corresponding DOM
element.

This section shows how to work with wrapper objects in the Oracle Security
Developer Tools APIs. Topics include:

¢ Constructing the Wrapper Object
® Obtaining the DOM Element from the Wrapper Object
¢ Parsing Complex Elements

¢ Constructing Complex Elements

7.7.1 Constructing the Wrapper Object

You can invoke the constructor to construct a wrapper object from a DOM element. If
the DOM element does not exist, either you can first create a DOM element, and then
use the constructor, or you can use a newInstance method.

To construct a wrapper object from the DOM element, simply invoke the constructor.
For example:

El enent sigEl em =
(El ement) doc. get El ement sByTagNameNS(XMLURI . ns_dsi g, "Signature").iten(0);
XSSi gnature sig = new XSSi gnat ure(si gEl em;

To construct a Wrapper object when the DOM element does not exist, you can either:
e create a DOM element, and use the above method, or

* use a newInstance method

XSSi gnat ure sig = XSSi gnat ure. new nstance(doc, null);

This internally achieves the same ends, that is, it creates a <dsi g: Si gnat ur e> DOM
element, without appending it anywhere, then creates a wrapper object on top of the
element. You will need to append this element somewhere in your document.

For some wrapper classes, there is no newl nst ance method and you need to call a
constructor that takes the document object.

7-10 Developing Applications with Oracle Security Developer Tools

Understanding and Using Element Wrappers in the OSDT XML APls

XSSi gnedinfo siglnfo = new XSSi gnedl nfo(doc, null);

Another way to create the wrapper object from the element is to call the
XMLUti | s. getl nstance method:

XSSi gnature sig = (XSSignature) XMLUt il s. getlnstance(sigEl en;

The Oracle Security Developer Tools APIs internally maintain a table associating
element names to wrapper class names. The XMLUt i | s. get | nst ance uses this table
to invoke the appropriate constructor and return an instance of that wrapper class.

7.7.2 Obtaining the DOM Element from the Wrapper Object

You can use the method XMLEl errent . get El enent () to get the underlying DOM
element from the wrapper object.

The underlying DOM element is readily available. All wrapper classes extend from
XMLE!l ement which provides a method, XMLEI enent . get El enent (), to get the
underlying DOM element.

7.7.3 Parsing Complex Elements

For complex elements containing a hierarchy of subelements, there are an equivalent
hierarchy of wrapper objects.

For example, suppose you have an incoming document containing a signature:

<dsi g: Si gnat ure>
<dsi g: Si gnedl nf 0>
<dsi g: Canoni cal i zationMethod ... />

<dsi g: Si gnedl nf 0>
<dsi g: Si gnat ureVal ue>. . </ dsi g: Si gnat ur eVal ue>

</ dsi g: Si gnat ure>

Most of these elements have a corresponding wrapper class, such as
dsi g: Signature -> XSSi gnature, dsig:Signedlnfo -> XSSi gnedl nfo,
dsi g: Si gnat ur eVal ue -> XSSi gnhat ur eVal ue and so on.

But when you construct the XSSi gned| nf o object from the dsi g: Si gnat ur e DOM
element, it does not construct any of the child objects, in fact it does not even look at
any of the child elements. The new XSSi gnat ur e(si gEl en) is a quick call which
simply creates an object with the data member pointing to the si gEl em The child
objects are created every time. So when you call XSSi gnat ur e. get Si gned! nf o()
it searches the child elements of dsi g: Si gnat ur e to find the dsi g: Si gnedl nf o
element, constructs a wrapper object on that element, and returns it.

This wrapper object is not stored anywhere. So if you invoke

XSSi gnat ur e. get Si gnedl nf o() again, it does the same thing, returning a
different instance of the Si gnedI nf o object; however both these objects point to the
same DOM element, so they behave exactly the same way even though they are
different instances.

Oracle XML Security 7-11

Signing Data with the Oracle XML Security API

Note:

Remember that the DOM is the source of truth, while the wrapper objects are
throwaway objects. The get methods always create new wrapper objects, and
if you modify the underlying DOM, the wrapper objects always see the most
recent changes.

7.7.4 Constructing Complex Elements

You can create individual wrapper objects and assemble them by using the set
methods to construct a complex element.

Consider the same example as before, but now instead of the signature present in an
incoming document, you want to create a document containing a signature and send
this document to someone.

<dsi g: Si gnature>
<dsi g: Si gnedI nf 0>

<dsi g: Si gnedI nf 0>
</ dsi g: Si gnat ure>
To construct this complex element, you need to create individual wrapper objects and
assemble them using set methods.
For example:

XSSi gnat ure sig = XSSi gnat ure. new nstance(doc, null);
XSSi gnedl nfo siglnfo = new XSSi gnedl nfo(doc, null);
si g. set Si gnedl nf o(si gl nfo);

Remember that the DOM is always the source of truth; the set methods do not store or
copy the passed-in wrapper object, they just modify the underlying DOM.

So in this case the set Si gnedI nf o gets the dsi g: Si gnedl nf 0 element, and makes
that a child of the dsi g: Si gnat ur e element. So after invoking
set Si gnedl nf o(si gl nfo),if youdosiglnfo = null,itwill not affect anything.

Finally you need to insert the top-level object somewhere into your DOM:

el em appendChi | d(si g.get El enent());

7.8 Signing Data with the Oracle XML Security API

With Oracle XML Security APIs, you can create signatures for the XML data elements.
This section describes techniques for signing data with the Oracle XML Security APIs.

Topics include:
¢ C(Creating a Detached Signature, Basic Procedure

* Using Variations on the Basic Signing Procedure

7.8.1 Creating a Detached Signature, Basic Procedure

You can create a detached signature with an identified XML element, an ID attribute
added to the element, and a signing key and certificate.

To create a detached signature like this:

7-12 Developing Applications with Oracle Security Developer Tools

Signing Data with the Oracle XML Security AP|

<myDoc>
<inportantinfo xnl:id="fool">

</inportant!nfo>
<dsi g: Si gnat ure>

<dsi g: Ref erence URI ="#fo0l">

</ dsi g: Si gnat ure>
</ myDoc>

You need to do this:

/] assume you have your data set up in doc
Docurment doc = ...
El ement inpElem= ...

/1 Now put an ID on the inportantinfo el ement
i mpEl em set Attribut eNS(XMLURI . ns_xnd, "xm:id", "fool");

/1 Then get the signing key and certificate from

/] somewhere — e.g. you can load themfroma keystore
PrivateKey signKey = ...

X509Certificate signCert = ...

/] Create the Signature object
XSSi gnature sig = XSSi gnat ure. new nstance(doc, null);

Il Create the Signedlnfo object
/1 Normally you shoul d use exclusive canonicalization
/1 al g_excl usi veCl14N
/'l Depending on the type of your private key DSA or RSA
/1 use dsaWthSHAL or rsaWthSHAL
XSSi gnedi nfo siglnfo = sig.createSi gnedl nfo(
XMLURI . al g_excl usi veC14N, XMLURI . al g_rsaWthSHAL, null)
si g. set Si gnedl nfo(si gl nfo);

/] Create a Reference object to the inportantinfo el enent
/1 You need to specify the id which you set up earlier,
/1 and al so a digestMethod
XSRef erence ref = sig.createReference(null, "#fool", null,
XMLURI . al g_shal);
si gl nfo. addRef erence(ref);
/1 Create an exclusive cl4n Transform obj ect
[/ 1f you do not add this transformobject, it will use
[l inclusive by default
XSAl gorithm dentifier transforms=
new XSAl gorithm dentifier(doc, "Transfornt,
XMLURI . al g_excl usi veCl4n);
ref.addTransforn(transforn;

/] Create a Keylnfo object
XSKeyl nfo keylnfo = sig.createKeylnfo();
si g. set Keyl nfo(keylnfo);

/] Create an X509Data el enent for your signingCert, inside
/1 this keyingo

X509Dat a x509 = keyl nfo. creat eX509Dat a(si gni ngCert);

keyl nf 0. addKey| nf oDat a(x509) ;

Oracle XML Security 7-13

Signing Data with the Oracle XML Security API

/] Everything is setup, now do the actual signing
[l This will actually do all the canonicalization,
/1 digesting, signing etc

sig.sign(signKey, null);

[l Finally insert the signature sonewhere in your document
doc. get Docunent El ement () . appendChi | d(si g. getEl enent ());

Note:

After creating a child Wrapper object, you must call a set or add method to
put it in its parent, and also remember to insert the top level Si gnat ur e
object into your document.

7.8.2 Using Variations on the Basic Signing Procedure

While creating a signature you can include multiple references, enveloped signatures,
XPath expressions, certificate hints, and HMAC key signing.

The following topics explain it further:
¢ Including Multiple References

¢ Using an Enveloped Signature

¢ Using an XPath Expression

® Using a Certificate Hint

* Signing with an HMAC Key

7.8.2.1 Including Multiple References

To include multiple references in a signature, simply add more XSRef er ence objects
to the XSSi gnedl nf o object. Each XSRef er ence object needs its own list of
transforms.

7.8.2.2 Using an Enveloped Signature

To use an enveloped signature, add the enveloped signature transform to the
reference. This means inserting the following code just before the code that adds the
exclusive transform:

XSAl gorithm dentifier transforml =
new XSAl gorithm dentifier(doc, "Transfornt,
XMLUR! . al g_envel opedSi gnat ure);
ref.addTransforn{transforntl);

7.8.2.3 Using an XPath Expression

To use an XPath expression instead of an ID-based reference, pass in an empty string
instead of "#fool" for the URI parameter of cr eat eRef er ence, then add an XPath
transform to the Ref er ence as the first transform.

String xpathExpr = "ancestor-or-self:inportantlnfo";
El enent xpat hEl em = doc. creat eEl ement NS(XMLURI . ns_dsi g,
"dsi g: XPath");

xpat hEl em appendChi | d(doc. creat eText Node(xpat hExpr);
XSAl gorithm dentifier transforng =

7-14 Developing Applications with Oracle Security Developer Tools

Verifying Signatures with the Oracle XML Security AP|

new XSAl gorithm dentifier(doc, "Transfornt',
XMLURI . al g_xpat h);
transforn2. addPar anet er (xpat hEl en ;
ref.addTransforn{transforn?);

7.8.2.4 Using a Certificate Hint

If you do not want to include the entire certificate in the key info, but only a hint to the
certificate, use the no-argument form of XSKey| nf 0. cr eat eX509Dat a() and call
one of the methods X509Dat a. addl ssuer Seri al , addSubj ect Nang, or

addSubj ect Keyl D.

7.8.2.5 Signing with an HMAC Key

TO sign with an HMAC key, instead of signing with an RSA or DSA private key, use
the XSSi gnat ure. si gn(byte[] secret, String sigVal uel d) method, and pass
your HMAC key as the first argument.

Also use a different kind of KeyInfo, such as a KeyName, by calling
XSKeylInfo.createKeyName.

7.9 Verifying Signatures with the Oracle XML Security API

Using Oracle XML Security APIs, you can locate what is signed, fetch the keyi nf o of
the signature, and then verify the signature.

Signature verification topics include:

¢ Checking What is Signed, Basic Procedure
* Setting Up Callbacks

* Writing a Custom Key Retriever

® Checking What is Signed

e Verifying the Signature

7.9.1 Checking What is Signed, Basic Procedure

You can verify a signature by first locating the <dsi g: Si gnat ur e> element in your
document, using it to construct the XSSi gnat ur e wrapper object, and then fetching
the KeyI nf o of the signature.

El ement sigElem= ..
XSSi gnature sig = new XSSi gnat ure(si gEl em;

Next, fetch the Keyl nf o of the signature and examine the key to determine if you
trust the signer. There are different ways to deal with the Keyl nf o:

¢ For very simple cases, you may already know the verification key in advance, and
you do not need to look at the Key| nf o at all.

* In most cases, however, you should look at the Key| nf 0. One way is to set up
callbacks, so when you call XSSi gnat ure. veri fy() you call it with no
verification key. Internally, the Oracle Security Developer Tools look at the
Keyl nf o to see if it invokes a callback to fetch the key.

* The other option is to proactively look into the Key| nf o and determine the key
yourself.

Oracle XML Security 7-15

Verifying Signatures with the Oracle XML Security API

7.9.2 Setting Up Callbacks

If the KeyInfo contains the signing certificate, set a certificate validator callback. If the
KeyInfo contains a hint, write a KeyRet ri ever to fetch a certificate from a certificate
store.

If the KeyInfo Contains the Signing Certificate

If you expect the KeyInfo to contain the signing certificate, and you do not already
have this certificate, but you have set up the trust points, you just need to set a
certificate validator callback.

/] Create your certificate validator
CertificateVvalidator nmyValidator
= new CertificateValidator() {
public void validateCert(CertPath cp) {
/1 Code to validate the certificate

1
¥
KeyRetriever.setCertificateValidator(nyValidator);

The Oracle Security Developer Tools API retrieves the certificate from the Keyl nf o
and invokes your callback; if the callback returns t r ue, it will verify with that
certificate.

If the KeyInfo Contains a Hint

If you expect the Key| nf 0 to contain only a hint to the signing certificate, that is, the
subj ect DNor Issuer Seri al or subject key identifier, write a KeyRet ri ever to
fetch a certificate from a certificate store given this hint.

If your certificate store is a keystore, a PKCS12 wallet, or a PKCSS file, you can use one
of the built-in retrievers for these types. These retrievers iterate through all the
certificates in the keystore or Oracle wallet and find the one which matches the given
subjectDN/issuerSerial or SubjectKey.

Note:

You can also use this mechanism also if your Key| nf o contains the entire
certificate; the key retriever will simply match the entire certificate.

/1 Load your keystore
KeyStore ks =
/1 Set up a callback against this KeyStore
KeyRetriever. addKeyRetri ever (
new KeyStoreKeyRetriever(ks, passwd));

7.9.3 Writing a Custom Key Retriever

If these built-in retrievers are not suitable, you can write a custom KeyRet ri ever by
deriving from the KeyRet ri ever class.

For example you could do this when you expect the Keyl nf o to contain a
subj ect DN, and you will look up an LDAP directory to find the certificate for that
DN.

7-16 Developing Applications with Oracle Security Developer Tools

Verifying Signatures with the Oracle XML Security AP|

KeyRetriever nyRetriever = new KeyRetriever() {
X509Certificate retrieveCertificate (KeylnfoData keylnfo) {
Il wite code to fetch the certificate from
/1 the certificate store based on keylnfo

}

PublicKey retrieveCertificate (KeylnfoData keylnfo) {
/1 wite code to fetch the PublicKey from
/1 the certificate store based on keylnfo

}
|
KeyRetriever. addKeyRetriever(myRetriever);

If the signature used the symmetric key, and the Key| nf o has the keyname of that
key, write a custom key retriever which can fetch the symmetric key based on this key
name.

7.9.4 Checking What is Signed

You can check if a signature really signs what you were expecting it to sign. The
Oracle Security Developer Tools API provides methods to return this information.

/1 XSSignature has be created as nentioned before
XSSignature sig = ...

/1 at first locate the el ement that are expecting
/1 to be signed
El enent inpElem= ...

/1 Now check if the signature really signs this
Li st signedCojects = XM.Uils.resol veRef erences(sig);
if (signednjects.size() !'=1]|
signedCbj ects. get (0) != inpEl em
/] something is wong — inpElemis not signed by
[l this signature

}
7.9.5 Verifying the Signature

You can verify a signature by using the si g. veri f y() method and know whether
the signature format is correct. You can also debug the failed signatures.

The last step is to actually verify the signature. The call protocol depends on whether
callbacks are set up.

7.9.5.1 Verifying if Callbacks are Set Up
If you set up callbacks, then make this call:
bool ean result = sig.verify();

You need to check for both a false result and an exception:

* sig.verify() returnsf al se if the signature format is correct, but one of the
reference digests does not match, or if the signature does not verify.

e sig.verify() throws an exception if there is something wrong in the
construction of the signature; for example, if the algorithm names are wrong or
signature bytes are not of the right size.

Oracle XML Security 7-17

Encrypting Data with the Oracle XML Security API

7.9.5.2 Verifying if Callbacks are Not Set Up
If you did not set up callbacks, and you determined the key by yourself, you must call:

e sig.verify(byte[]) for HMAC keys or
e sig.verify(PublicKey) for DSA/RSA keys.

7.9.5.3 Debugging Verification

If you cannot determine why a particular signature does not verify, and you need to
debug it, set the JVM property —Dxm . debug. ver i f y=1. This flag instructs the
Oracle Security Developer Tools to print diagnostic output to the st der r for failed
signatures.

7.10 Encrypting Data with the Oracle XML Security API

You can encrypt data with a shared symmetric key or a random symmetric key.

The following topics explain it further:
¢ Encrypting with a Shared Symmetric Key

¢ Encrypting with a Random Symmetric Key

7.10.1 Encrypting with a Shared Symmetric Key

You can create a new XEEncryptedData instance and specify the encryption method.
Then, create a Keyinfo with a hint to the symmetric key. You can use the utility
method XEncUt i | s. encrypt El enent to perform all these steps.

To encrypt and replace the following <i npor t ant | nf 0> element:

<nmyDoc>
<i nportant | nfo>

</inportant|nfo>
</ myDoc>

you will need to take the following steps:

/] Assuming there is a shared symetric key
Secret Key dataEncKey = ...

/| Create a new XEEncryptedData instance
/'l use either obj _Elenent or obj_Content depending
/1 on whether you want to encrypt the whole el enent
[l or content only
XEEncrypt edData ed = XEEncrypt edDat a

.newl nstance(doc, null, XMURI.obj Elenent);

/1 Specify the data encryption nethod
XEEncryptionMet hod em =

ed. creat eEncrypti onMet hod(XMLUR! . al g_aes128 CBC);
ed. set Encrypti onMet hod(en;

/] Create a Keyinfo with a hint to the symetric key
XEKeyl nfo ki= ed.createKeylnfo();

ki . addKeyl nf oDat a(ki . cr eat eKeyNane(" MyKey"));

ed. set Keyl nfo(ki);

7-18 Developing Applications with Oracle Security Developer Tools

Encrypting Data with the Oracle XML Security API

/1 Locate the inportantlnfo el ement
El ement inpElem= ...

/1 Encrypt the inportantinfo el ement and replace

[/ it with the EncryptedData el ement

XEEncr yt edDat a. encr ypt AndRepl ace(i npEl em dat aEncKey,
null, ed);

There is a utility method which performs all these steps:

XEncW il s. encrypt El enent (

impElem // elenment to be encrypted

fal se, [l true = contentOnly, false = entire el ement
XMLUR! . al g_aes128 CBC, // data encryption alg

"M/Key" /1 hint to data key

)

7.10.2 Encrypting with a Random Symmetric Key

Usually you need to generate a random symmetric key and encrypt the data with that
key, and then encrypt this random symmetric key with the receiver's public key. The
XEncUt i | s. encrypt El ement method performs all these steps.

Here is how you would do that:

/1 Load up the encryption certificate of the reciever
X509Certificate encCert = ...

/1 Get the reciever's public key fromthe cert
Publ i cKey keyEncKey = encCert. get PublicKey();

/1 Then generate a random symetric key

KeyGenerator keyGen = KeyGenerator. getlnstance("AES");
keyGen.init(128);

Secret Key dat aEncKey = keyGen. gener at eKey();

/1 Now create an EncryptedKey object
XEEncrypt edKey = new XEEncrypt edKey(doc);

/1 set up the key encryption algorithm
XEEncryptionMethod em =

ek. creat eEncrypti onMet hod(XMLUR! . al g_r saCAEP_MGF1) ;
em set Di gest Met hod(XMLURI . al g_shal);
ek. set Encrypt i onMet hod(en;

/1 encrypt the random symetric key with public key
byte[] cipherVal ue = ek.encrypt (dataEncKey, keyEncKey);

/] store this cipherValue into ek

XEGi pherData cd = ek. creat eGi pherData();
cd. set Gi pher Val ue(ci pher Val ue) ;

ek. set G pher Dat a(cd);

/1 decide on how you woul d | et the receiver know the
/1 the key encryption key. W are putting in the

Il entire reciever's certificate

XEKeyl nfo kki = ek.createKeylnfo();

kki . addKeyl nf oDat a(kki . creat ex509Dat a(encCert);

/1 Now the encrypted key has been set up, let us
/1 do the data encryption as before

Oracle XML Security 7-19

Decrypting Data with the Oracle XML Security API

XEncU il s. encrypt El enent (

impElem // elenment to be encrypted

fal se, [l true = contentOnly, false = entire el ement
XMLURI . al g_aes128_CBC, // data encryption alg

null // No hint to data key

)

/1 Finally we need to put the EncryptedKey inside the
/'l Keylnfo of the EncryptedData
ed. addKey! nf oDat a(ek) ;

There is a utility method which performs all these steps:

XEncUtils. encrypt El ement (
impElem // elenment to be encrypted
fal se, [l true = contentOnly, false = entire el ement
XMLUR! . al g_aes128 CBC, // data encryption alg
dataEncKey, // the random symetric key that we generated
XMLUR! . al g_rsaQAEP_MGF1, // key encryption alg
KeyEncKey, // public key that we got fromcert
"RecieverCert" // Ahint to the certificate

)s

Notice that this utility method puts KeyName in the EncryptedKey's KeyInfo; if you
want to pass X509Data instead, pass null for keyEncKeyName and then add the
X509Data yourself:

/1 use utility method to create EncrytedData
XEEncrypt edData ed = XEncltils. ..

/1 no extract EncryptedKey fromit
XEEncrypt edKey ek = (XEEncrypt edKey) ed. get Keyl nf o()
. get Encrypt edKeys() . el ement At (0) ;

/1 Set the keylnfo of the ek
XEKeyl nfo kki = ek.createKeylnfo();
kki . addKey! nf oDat a(kki . cr eat eX509Dat a(encCert);

7.11 Decrypting Data with the Oracle XML Security API

Oracle XML Security API has different methods for decrypting data depending upon
whether you have used a shared symmetric key or a random symmetric key.

The topics in this section explain it further.

7.11.1 Decrypting with a Shared Symmetric Key

You can search for the encrypted data element and decrypt the data by using the
XEEncr yt edDat a. decr ypt AndRepl ace method.

If you have a shared symmetric key, do the following:

/'l search for the EncryptedData el enent
Elenent edElem= ...

/1 decrypt the data

Secret Key dataDecKey = ...
XEEncr yt edDat a. decr ypt AndRepl ace(dat aDecKey, edElem true);

7-20 Developing Applications with Oracle Security Developer Tools

About Supporting Classes and Interfaces

7.11.2 Decrypting with a Random Symmetric Key

With a random symmetric key, you can decrypt the data by using the
XEEncUti | s. decrypt El enent method.

If you expect to use a random symmetric key:

/'l search for the EncryptedData el enent
El ement edElem= ...

/1 decrypt the data
PrivateKey keyDecKey = ...
XEEncUti | s. decrypt El ement (edEl em keyDecKey);

7.12 About Supporting Classes and Interfaces

Oracle XML Security API contains supporting classes and interfaces. The
oracle.security.xm sec.util.XMURl interface defines URI string constants
for algorithms, namespaces, and objects. The

oracle.security.xm sec.util.XMUil s class contains static utility methods
for XML and XML-DSIG.

It contains these topics:
® About the oracle.security.xmlsec.util XMLURI Interface

¢ About the oracle.security.xmlsec.util. XMLUtils class

7.12.1 About the oracle.security.xmisec.util. XMLURI Interface

The oracl e. security. xm sec. util.XM.URI interface defines URI string
constants for algorithms, namespaces, and objects.

It uses the following naming convention:

¢ Algorithm URIs begin with "alg_".

"

¢ Namespace URIs begin with "ns_

* Object type URIs begin with "obj_".

7.12.2 About the oracle.security.xmisec.util. XMLUtils class

Theoracl e. security. xm sec.util.XMU il s class contains static utility
methods for XML and XML-DSIG.

Methods frequently used in applications include the cr eat eDocBui | der (),
creat eDocunent (),toByt esXM.(),andt oStri ngXM.() methods.

7.13 Common XML Security Questions
Learn frequently asked questions about Oracle XML Security.

What is the DER format? The PEM format? How are these formats used?

DER is an abbreviation for ASN.1 Distinguished Encoding Rules. DER is a binary
format that is used to encode certificates and private keys. Oracle XML Security SDK
uses DER as its native format, as do most commercial products that use certificates
and private keys.

Oracle XML Security 7-21

Best Practices for Oracle XML Security

Many other formats used to encode certificates and private keys, including PEM,
PKCS #7, and PKCS #12, are transformations of DER encoding. For example, PEM
(Privacy Enhanced Mail) is a text format that is the Base 64 encoding of the DER
binary format. The PEM format also specifies the use of text BEG Nand END lines that
indicate the type of content that is being encoded.

| received a certificate in my email in a text format. It has several lines of text
characters that don't seem to mean anything. How do | convert it into the format
that Oracle XML Security uses?

If you received the certificate in your email, it is in PEM format. You need to convert
the certificate from PEM (Privacy-Enhanced Mail) format to ASN.1 DER
(Distinguished Encoding Rules) format.

How do | use a certificate that is exported from a browser?

If you have exported the certificate from a browser, it is most likely in PKCS #12
format (*.p12 or *.pfx). You must parse the PKCS #12 object into its component parts.

7.14 Best Practices for Oracle XML Security

You can refer to discussions on best practices for implementors and users of the XML
Signature specification.

See the best practices at:

http://ww. w3. or g/ TR/ xm dsi g- best practi ces/

7.15 The Oracle XML Security Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods used in Oracle XML Security
APL

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

7-22 Developing Applications with Oracle Security Developer Tools

http://www.w3.org/TR/xmldsig-bestpractices/

8

Oracle SAML

Oracle SAML allows Java developers to develop cross-domain single sign-on and

federated access control solutions that conform to the SAML 1.0/1.1 and SAML 2.0
specifications.

This chapter contains the following topics:
e QOracle SAML Features and Benefits
e QOracle SAML 1.0/1.1

e QOracle SAML 2.0

8.1 Oracle SAML Features and Benefits

The Oracle SAML SDK provides a Java API with supporting tools, documentation,
and sample programs to assist developers of SAML-compliant Java security services.
Oracle SAML can be integrated into existing Java solutions, including applets,
applications, EJBs, servlets, and JSPs.

Oracle SAML provides the following features:
* Support for the SAML 1.0/1.1 and 2.0 specifications

* Support for SAML-based single sign-on (SSO), Attribute, Metadata, Enhanced
Client Proxy, and federated identity profiles

See Also:

For more information and links to these specifications and related documents,
see References.

8.2 Oracle SAML 1.0/1.1

Oracle SAML 1.0/1.1 conforms to the SAML 1.0/1.1 specifications. You can set up
your environment for Oracle SAML 1.0/1.1 toolkit, and use its classes and interfaces.

It contains the following topics:

® Oracle SAML 1.0/1.1 Packages

e Setting Up Your Oracle SAML 1.0/1.1 Environment
* C(Classes and Interfaces of Oracle SAML 1.x

e The Oracle SAML 1.0/1.1 Java API Reference

Oracle SAML 8-1

Oracle SAML 1.0/1.1

8.2.1 Oracle SAML 1.0/1.1 Packages

The Oracle SAML Java API contains the following packages for creating SAML
1.0/1.1-compliant Java applications: or acl e. security. xm sec. sam and
oracl e.security.xm sec.sanl p

oracl e.security.xm sec. sani

This package contains classes that support SAML assertions.

oracl e.security.xm sec.sanl p

This package contains classes that support the SAML request and response protocol
(SAMLP).

8.2.2 Setting Up Your Oracle SAML 1.0/1.1 Environment

You can setup Oracle SAML environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle SAML, your system must have the Java Development Kit (JDK)
version 1.6 or higher.

Your CLASSPATH environment variable must contain the full path and file names to
all of the required jar and class files. Make sure the following items are included in
your CLASSPATH:

e osdt_core.jar
e osdt_cert.jar
e osdt_xnlsec.jar
e osdt_sam .jar

e Theorg.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle
XML Security distribution)

See Setting the CLASSPATH Environment Variable for configuration details.

8.2.3 Classes and Interfaces of Oracle SAML 1.x

Oracle SAML 1.0/1/1 contains multiple core classes to create SAML assertions,
requests, and responses. It contains supporting interfaces which define URI string
constants for algorithms, namespaces, and objects. It also contains a supporting class
that is base class for all the SAML and SAML extension messages.

This section provides information and code samples for using the classes and
interfaces of Oracle SAML 1.0/1.1. It contains these topics:

e (Core Classes of Oracle SAML 1.x

e Supporting Classes and Interfaces

8-2 Developing Applications with Oracle Security Developer Tools

Oracle SAML 1.0/1.1

8.2.3.1 Core Classes of Oracle SAML 1.x

SAML assertions, requests, and responses are created with the Oracle SAML API.

This section provides a brief overview of the core SAML and SAMLP 1.0/1.1 classes
with some brief code examples.

Topics include:

* Using the oracle.security.xmlsec.saml.SAMLInitializer Class
¢ Using the oracle.security.xmlsec.saml.Assertion Class

* Using the oracle.security.xmlsec.samlp.Request Class

¢ Using the oracle.security.xmlsec.samlp.Response Class

8.2.3.1.1 Using the oracle.security.xmlsec.saml.SAMLInitializer Class

This class initializes the Oracle SAML toolkit. By default Oracle SAML is automatically
initialized for SAML v1.0. You can also initialize Oracle SAML for a specific version of
the SAML specification. When the i ni ti al i ze method is called for a specific
version, previously initialized versions will remain initialized.

This example shows how to initialize the SAML toolkit for SAML v1.0 and SAML v1.1.

[l initializes for SAML v1.1
SAMLInitializer.initialize(l, 1);

[l initializes for SAML v1.0, done by defaul t
SAMLInitializer.initialize(1, 0);

8.2.3.1.2 Using the oracle.security.xmlsec.saml.Assertion Class

This class represents the Asser t i on element of the SAML Assertion schema.

This example shows how to create a new Asserti on element and append it to an
existing XML document.

Docunent doc = Instance of org.w3c.dom Docunent;
Assertion assertion = new Assertion(doc);
doc. get Docunent El enent (). appendChi | d(assertion);

This example shows how to obtain Asserti on elements from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;
/] Get alist of all Assertion elenents in the docunent

NodeLi st assrtlList =

doc. get El enent sByTagNaneNS(SAMLURI . ns_sanl, "Assertion");
if (assrtList.getLength() == 0)

Systemerr.printIn("No Assertion elenents found.");

/1 Convert each org.w3c.dom Node object to a
/] oracle.security.xm sec.sam .Assertion object and process

for (int s =0, n=assrtList.getlength(); s < n; +4+s)

{

Assertion assertion = new Assertion((El ement)assrtList.iten(s));
/'l Process Assertion el enent

Oracle SAML 8-3

Oracle SAML 1.0/1.1

8.2.3.1.3 Using the oracle.security.xmlsec.samlp.Request Class
This class represents the Request element of the SAML Protocol schema.

This example shows how to create a new Request element and append it to an
existing XML document.

Docunment doc = Instance of org.w3c.dom Docunent ;
Request request = new Request(doc);
doc. get Docunent El enent () . appendChi | d(request);

This example shows how to obtain Request elements from an existing XML
document.

Docunent doc = Instance of org.w3c.dom Docunent;
/1 Get a list of all Request elements in the document

NodeLi st reqlList =

doc. get El ement sByTagNameNS(SAMLURI . ns_sani p, "Request");
if (reqgList.getLength() == 0)

Systemerr.printIn("No Request elements found.");

/1 Convert each org.w3c.dom Node object to a
/] oracle.security.xm sec. sam p. Request object and process

for (int s =0, n=reqlList.getlLength(); s < n; ++s)

{
Request request = new Request ((El enment)reqlList.items));

/] Process Request el enment

}

8.2.3.1.4 Using the oracle.security.xmlsec.samlp.Response Class
This class represents the Response element of the SAML Protocol schema.

This example shows how to create a Response element and append it to an existing
XML document.

Docunent doc = Instance of org.w3c.dom Docunent ;
Response response = new Response(doc);
doc. get Docunent El enent () . appendChi | d(response) ;

This example shows how to obtain Response elements from an existing XML
document.

Docunment doc = Instance of org.w3c.dom Docunent ;
/] Get a list of all Response elenents in the docunent

NodeLi st respList =

doc. get El ement sByTagNaneNS(SAMLURI . ns_sani p, "Response");
if (respList.getLength() == 0)

Systemerr.println("No Response el ements found.");

/1 Convert each org.w3c.dom Node object to a
/1 oracle.security.xm sec. sam p. Response object and process

for (int s =0, n=resplList.getlength(); s < n; ++s)

{

Response response = new Response((El enent)resplList.itenm(s));

8-4 Developing Applications with Oracle Security Developer Tools

Oracle SAML 2.0

/'l Process Response el enent

}

8.2.3.2 Supporting Classes and Interfaces

This section provides an overview of the supporting classes and interfaces of Oracle
SAML 1.0/1.1:

® Using the oracle.security.xmlsec.saml.SAMLURI Interface
¢ Using the oracle.security. xmlsec.saml.SAMLMessage Class

8.2.3.2.1 Using the oracle.security.xmlsec.saml.SAMLURI Interface

This interface defines URI string constants for algorithms, namespaces, and objects.
The following naming conventions are used:

¢ Action Namespace URIs defined in the SAML 1.0 specifications begin with
action_.

¢ Authentication Method Namespace URIs defined in the SAML 1.0 specifications
begin with aut hent i cati on_net hod_.

¢ Confirmation Method Namespace URIs defined in the SAML 1.0 specifications
begin with confi rmati on_net hod_ .

¢ Namespace URIs begin with ns_ .

8.2.3.2.2 Using the oracle.security.xmlsec.saml.SAMLMessage Class

This is the base class for all the SAML and SAML extension messages that may be
signed and contain an XML-DSIG (digital signature) structure.

8.2.4 The Oracle SAML 1.0/1.1 Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in Oracle SAML
1.0/1.1 APL

You can access this guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

8.3 Oracle SAML 2.0

Oracle SAML 2.0 conforms to the SAML 2.0 specifications. You can set up your
environment for Oracle SAML 2.0 toolkit, and use its classes and interfaces.

It contains the following topics:

® Oracle SAML 2.0 Packages

® Setting Up Your Oracle SAML 2.0 Environment
¢ C(Classes and Interfaces of Oracle SAML 2.0

e The Oracle SAML 2.0 Java API Reference

Oracle SAML 8-5

Oracle SAML 2.0

8.3.1 Oracle SAML 2.0 Packages

Oracle SAML 2.0 API contains multiple packages with classes to support SAML
assertions, SAML request and response protocol (SAMLP), and SAML authentication.

The Oracle SAML Java API contains the following packages for creating SAML 2.0-
compliant Java applications:

oracl e. security.xm sec.sam 2. core

This package contains classes that support SAML assertions.

oracl e. security.xm sec. sam 2. prot ocol

This package contains classes that support the SAML request and response protocol
(SAMLP).

oracle.security.xmlsec.saml2.ac

This package contains classes that support the SAML authentication context basic
types.

oracle.security.xmlsec.saml2.ac.classes

This package contains classes that support various SAML authentication context
classes.

oracle.security.xmlsec.saml2.metadata

This package contains classes that support the SAML metadata.

oracle.security.xmlsec.saml2.profiles.attributes

This package contains classes that support various SAML attribute profiles.

oracle.security.xmlsec.saml2.profiles.sso.ecp
This package contains classes that support the SAML ECP SSO profile.

8.3.2 Setting Up Your Oracle SAML 2.0 Environment

You can setup Oracle SAML environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle SAML, your system must have the Java Development Kit (JDK)
version 1.6 or higher.

Your CLASSPATH environment variable must contain the full path and file names to
all of the required jar and class files. Make sure the following items are included in

your CLASSPATH:
e osdt_core.jar

e osdt_cert.jar

8-6 Developing Applications with Oracle Security Developer Tools

Oracle SAML 2.0

e osdt_xnlsec.jar
e osdt_sanl .jar

e Theorg.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle
XML Security distribution)

For example, your CLASSPATH might look like this:

YCLASSPATHY% %ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _core.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cert.jar;
Y%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _xnl sec.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _sani.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _sanl 2.jar;
9%ORACLE_HOVE% nodul es\org.jaxen_1.1.1.jar;

See Setting the CLASSPATH Environment Variable for configuration details.

8.3.3 Classes and Interfaces of Oracle SAML 2.0

Oracle SAML 2.0 contains multiple core classes to create SAML assertions, requests,
and responses. It contains supporting interfaces which define URI string constants for
algorithms, namespaces, and objects.

This section provides information and code samples for using the classes and
interfaces of Oracle SAML 2.0. It contains these sections:

e (Core Classes of Oracle SAML 2.0

* Supporting Classes and Interfaces

8.3.3.1 Core Classes of Oracle SAML 2.0

Core classes of the Oracle SAML 2.0 API enable you to create assertions, requests, and
responses.

This section provides an overview of the core SAML and SAMLP classes with some
brief code examples. Topics are:

¢ Using the oracle.security.xmlsec.saml2.core.Assertion Class
* Using the oracle.security.xmlsec.saml2.protocol. AuthnRequest Class

¢ Using the oracle.security.xmlsec.saml2.protocol.StatusResponseType Class

8.3.3.1.1 Using the oracle.security.xmlsec.saml2.core.Assertion Class
This class represents the Assertion element of the SAML Assertion schema.

This example shows how to create a new Assertion element and append it to an
existing XML document.

Document doc = Instance of org.w3c.dom Docunent;
Assertion assertion = new Assertion(doc);
doc. get Docunent El ement () . appendChi | d(assertion);

This example shows how to obtain Assertion elements from an XML document.

/I Get alist of all Assertion elenments in the docunent
NodeLi st assrtList =

doc. get El enent sByTagNaneNS(SAML2URI . ns_sani, "Assertion");
if (assrtlList.getLength() == 0)

Oracle SAML 8-7

Oracle SAML 2.0

Systemerr.printIn("No Assertion elenents found.");

/1 Convert each org.w3c.dom Node object to a
/] oracle.security.xn sec.sam 2. core. Assertion object and process

for (int s =0, n=assrtList.getlength(); s < n; ++s)

{
Assertion assertion = new Assertion((El ement)assrtList.iten(s));
/] Process Assertion el enent

}

8.3.3.1.2 Using the oracle.security.xmlsec.saml2.protocol.AuthnRequest Class
This class represents the Aut hnRequest element of the SAML Protocol schema.

This example shows how to create a new Aut hnRequest element and append it to an
existing XML document.

Docunent doc = Instance of org.w3c.dom Docunent;
Aut hnRequest request = new Aut hnRequest (doc);
doc. get Docunent El enent () . appendChi | d(r esponse) ;

This example shows how to obtain Aut hnRequest elements from an existing XML
document.

Docunent doc = Instance of org.w3c.dom Docunent;
[l Get a list of all AuthnRequest elements in the document

NodeLi st reqlList =

doc. get El enent sByTagNaneNS(SAML2URI . ns_sam p, "Aut hnRequest");
if (reqList.getLength() == 0)

Systemerr.printIn("No Request elements found.");

/1 Convert each org.w3c.dom Node object to a
/'l oracle.security.xn sec.san 2. protocol . Aut hnRequest
/| object and process

for (int s =0, n=reqList.getLength(); s < n; ++s)

{
Aut hnRequest request = new Aut hnRequest ((El enent)reqList.iten(s));
/'l Process Request el enent

}

8.3.3.1.3 Using the oracle.security.xmlsec.saml2.protocol.StatusResponseType Class
This class represents the Response element of the SAML Protocol schema.

The sam p: St at usResponseType element is a base type representing an extension
point for the SAML 2.0 protocols. The various protocols defined in the SAML 2.0
specification use sub-types such as sam p: Response or sani p: Logout Response.

This example shows how to create a Response element and append it to an existing
XML document.

Docunent doc = Instance of org.w3c.dom Docunent;
Response response = new Response(doc);
doc. get Docunent El enent () . appendChi | d(response) ;

This example shows how to obtain Response elements from an existing XML
document.

8-8 Developing Applications with Oracle Security Developer Tools

Oracle SAML 2.0

Docunent doc = Instance of org.w3c.dom Docunent;
/] Get a list of all Response elenents in the docunent

NodeLi st respList =

doc. get El enent sByTagNaneNS(SAML2URI . ns_sam p, "Response");
if (respList.getLength() == 0)

Systemerr.println("No Response el ements found.");

/1 Convert each org.w3c.dom Node object to a
/'l oracle.security.xm sec.sanm 2. protocol . Response object and process

for (int s =0, n=respList.getLength(); s < n; ++s)

{
Response response = new Response((El ement)resplList.iten(s));
/'l Process Response el enent

}

8.3.3.2 Supporting Classes and Interfaces

This section provides an overview of the supporting classes and interfaces of Oracle
SAML 2.0. It includes:

¢ Using the oracle.security.xmlsec.saml2.util. SAML2URI Interface

8.3.3.2.1 Using the oracle.security.xmlsec.saml2.uti. SAML2URI Interface

This interface defines URI string constants for algorithms, namespaces, and objects.
The interface uses these naming conventions:

* Action namespace URIs defined in the SAML 1.0/1.1/2.0 specifications begin with
action_ .

* Authentication method namespace URIs defined in the SAML 1.0/1.1/2.0
specifications begin with aut hent i cati on_net hod_.

¢ Confirmation method namespace URIs defined in the SAML 1.0/1.1/2.0
specifications begin with conf i r mati on_met hod_ .

* Namespace URIs begin with ns_.

8.3.4 The Oracle SAML 2.0 Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in Oracle SAML 2.0
API.

The Oracle SAML Java API reference (Javadoc) is available at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Oracle SAML 8-9

Oracle SAML 2.0

8-10 Developing Applications with Oracle Security Developer Tools

9

Oracle Web Services Security

Oracle Web Services Security provides a complete implementation of the OASIS WS
Security 1.1 standard. It provides mechanisms to sign and encrypt messages, and
security tokens to ascertain the sender's identity.

This chapter describes how to install and use the SDK. This chapter contains these
topics:

e Setting Up Your Oracle Web Services Security Environment
® (lasses and Interfaces of Oracle Web Services Security

¢ The Oracle Web Services Security Java API Reference

9.1 Setting Up Your Oracle Web Services Security Environment

You can setup Oracle Web Services Security environment by installing Oracle Security
Developer Tools and Java Development Kit (JDK), and setting the CLASSPATH
variable to all the required jar files.

The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME.

To use Oracle Web Services Security, you must have Development Kit (JDK) version
1.6 or higher.

Make sure the following items are included in your CLASSPATH:

e osdt_core.jar

e osdt_cert.jar

e osdt_xm sec. j ar - This is the Oracle XML Security jar.

e osdt_sanl . jar - Thisis the Oracle SAML 1.0 and 1.1 jar.

e osdt_saml 2.j ar - This is the Oracle SAML 2.0 jar.

e org.jaxen_1.1.1.jar, whichisincluded in $ORACLE_HOVE/ nodul es/ .
e osdt_wss.j ar - This is the main jar containing Oracle Web Services Security.

e saaj-api.jar -Thisisthestandard SAAJ API and is included in JDKS6; for
previous JDKs, you can obtain it from your JavaEE container.

e mail.jar, activation.jar -Youcan obtain thesejars from your JavaEE
container.

Oracle Web Services Security 9-1

Classes and Interfaces of Oracle Web Services Security

See Also:

Setting the CLASSPATH Environment Variable.

9.2 Classes and Interfaces of Oracle Web Services Security

Oracle Web Services Security provides classes, interfaces, and methods to sign and
encrypt messages, and security tokens to ascertain the sender's identity.

Note:

Review Oracle XML Security before proceeding.

This section describes classes and interfaces in the Oracle Web Services Security APL. It
contains these topics:

Element Wrappers in Oracle Web Services Security

® The <wsse:Security> header

e Security Tokens (ST) in Oracle Web Services Security
® Security Token References (STR)

e Signing and Verifying

* Encrypting and Decrypting

9.2.1 Element Wrappers in Oracle Web Services Security

Oracle Web Services Security provides element wrappers to all XML elements.

See Also:

Understanding and Using Element Wrappers in the OSDT XML APIs

Table 9-1 lists the element wrappers provided by Oracle Web Services Security.

Table 9-1 Element Wrappers for Oracle Web Services Security
- - -~ -]

XML Tag Name Java Class Name

<wsse:Security> oracle.security.xmlsec.wss.WSSecurity

<wsse:BinarySecurityToken oracle.security.xmlsec.wss.WSSBinarySecurityToken or one of

> its derived classes depending on the valueType attribute:
oracle.security.xmlsec.wss.x509.X509BinarySecurity Token
oracle.security.xmlsec.wss.kerberos.KerberosBinarySecurityTo

ken
<wsse: oracle.security.xmlsec.wss.WSSecurity TokenReference
SecurityTokenReference>
<wsse: Embedded> oracle.security.xmlsec.wss. WSSEmbedded

9-2 Developing Applications with Oracle Security Developer Tools

Classes and Interfaces of Oracle Web Services Security

Table 9-1 (Cont.) Element Wrappers for Oracle Web Services Security
__|

XML Tag Name Java Class Name

<wssell:EncryptedHeader> oracle.security.xmlsec.wss.WSSEncryptedHeader

<wssell:SignatureConfirmat oracle.security.xmlsec.wss.WSSignatureConfirmation

ion>

<wsse:Keyldentifier> oracle.security.xmlsec.wss.WSSKeyldentifier or one of its
derived classes depending on the valueType attribute:
oracle.security.xmlsec.wss.x509. X509Keyldentifier
oracle.security.xmlsec.wss.saml.SAMLAssertionKeyldentifier
oracle.security.xmlsec.wss.saml2.SAML2AssertionKeyldentifi
er oracle.security xmlsec.wss kerberos.KerberosKeyldentifier
oracle.security.xmlsec.wss.WSSEncryptedKeyldentifier

<wsse:Reference> oracle.security.xmlsec.wss.WSSReference

<wsu:Created> oracle.security.xmlsec.wss.WSUCreated

<wsu:Expires> oracle.security.xmlsec.wss.WSUExpires

<wsu:Timestamp> oracle.security.xmlsec.wss. WSUTimestamp

<wsse:UsernameToken> oracle.security.xmlsec.wss.username.UsernameToken

oracle.security.xmlsec.wss. oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss. oracle.security.xmlsec.wss.
oracle.security.xmlsec.wss. oracle.security.xmlsec.wss.

As explained in Understanding and Using Element Wrappers in the OSDT XML APIs,
the java classes are only throwaway wrappers, while the DOM elements are the source
of truth. You can create these wrapper classes using the appropriate constructor,
which takes in the DOM element; you can get the underlying DOM element using the
get El enent method.

9.2.2 The <wsse:Security> header

The WS Security specification defines a new SOAP Header called <wsse:Security>. All
security information, such as Security Tokens, Timestamp, Signatures, EncryptedKeys,
and Referencel ist, are stored inside this header.

Security Tokens - Contain user name tokens, certificates, SAML assertion and so on
(see next section)

Timestamp - The current time stamp is often included in the security header, and it
is usually included in a signature to prevent replay attacks.

Signatures - Any signatures are stored inside the header. Even though the
signature is in the Secur i t y header, what it signs is often outside the header - for
example, a single signature can sign the SOAP Body, some SOAP attachments, a
User Nane token inside the Securi t y header, and a Ti nest anp token in the
Securi ty header.

EncryptedKeys - Any encrypted session keys are stored here.

ReferenceList - Contains a list of all the Encr ypt edDat a sections.

Oracle Web Services Security 9-3

Classes and Interfaces of Oracle Web Services Security

9.2.2.1 Handling Outgoing Messages

For outgoing messages, you need to create a new <wsse: Secur i t y> header, add
security tokens and then encrypt and/or sign parts of the document. Here is how to
accomplish this task:

/1 Assuming we the outgoing message has al ready been constructed into
/1 a SOAPMessage object (part of SAAJ API)
SOAPMessage nsg = ...

/1 Now create a new <wsse: Security> Header

/1 newinstance will internally use SOAPHeader.addHeader El ement
SOAPEnvel ope env = nsg. get SOAPPart (). get Envel ope();

WsSecurity ws = WsSecurity. newl nstance(env);

/1 Add required prefixes to this SOAP header

/1 Now add sone security tokens (refer to the next section on
/] howto create security tokens)

UsernaneToken ut = ...

ws. addUser naneToken(ut);

Il Create sone security token references to this token
Il (refer to follow ng sections)
ws. createSTR. ..

Now sign or encrypt some data (refer to follow ng sections)
These shoul d use the above STRs

ws.sign(...);
ws. encrypt Wt hEncKey(...);
ws. encrypt NoEncKey(...);

9.2.2.2 Handling Incoming Messages

For incoming messages, you need to look for a particular <wsse: Secur i t y> header,
inspect its contents, and verify or decrypt parts of the document. To accomplish this
task:

/1 Assuming we the incom ng message has al ready been constructed into
/1 a SOAPMessage object (part of SAAJ API)
SOAPMessage nsg = ...

9.2.3 Security Tokens (ST) in Oracle Web Services Security

A security token represents an artifact such as a certificate, a kerberos ticket, a user
name with password, a Single sign-on token and so on. Oracle Web Services Security
contains different types security tokens, such as Username token, X509 certificate,
Kerberos ticket, and SAML Assertion, with multiple variations.

Usually a key is derived/extracted from this token, and this key is used to encrypt/
decrypt sign/verify parts of the message. However, the security token can also be
used just as a data object.

9-4 Developing Applications with Oracle Security Developer Tools

Classes and Interfaces of Oracle Web Services Security

Table 9-2

Security Tokens for Oracle Web Services Security

|
Variations

Type of Token (Java Class)

Keys

Username token
oracle.security.xmlsec.wss.us
ername. UsernameToken

X509 certificate
oracle.security.xmlsec.wss.x5
09. X509BinarySecurity Token

Kerberos ticket
oracle.security.xmlsec.wss.ke
rberos.
KerberosBinarySecurityToke
n

SAML Assertion 1.1
oracle.security. xmlsec.wss.sa
ml.SAMLAssertionToken
SAML Assertion 2.0

oracle.security.xmlsec.wss.sa
ml2. SAML2AssertionToken

With no password

With a SHA1 digest of the
password

With the actual password,
or a different kind of
digest/derived password.

Single v3 certificate
Chain of certificates in
PKIPath format

Chain of certificates in
PKCS7 format

AP_REQ packet

GSS-wrapped AP_REQ
packet

holder_of_key
sender_vouchers
bearer

Symmetric key obtained by
running KeyDerivation on
user's password

® Public key inside
certificate

* DPrivate key associated
with certificate

Either the session key present
in the ticket, or a subkey.

For holder_of_key the
subject's key is used — this is,
the key inside the
<saml:SubjectConfirmation>
which is inside the
<saml:Assertion>.

For sender_vouches, the key
of the attesting entity is used.
Keys are not extracted from
bearer tokens.

9.2.3.1 Creating a WSS Username Token

First, create a User nanmeToken and place it inside your WsSecur i t y header. The
only mandatory field in the User naneToken is the username:

/| create a Username token
WsSecurity ws = ...

User naneToken ut = new User nameToken(doc);

ut. set User Nane("Zoe");

/1 remenber to put this inside your WSSecurity header.
/1 addUser NaneToken puts it at the beginning, you can al so
/1 use a regular DOM net hod appendChild or insertChild to put it in.

ws. addUser naneToken(ut) ;

/] optionally add an wsu:ld, so you can refer to it

ut.set Wsul d(" MyUser");

Next, decide how to put the password into this token. There are several choices:

1. Add a clear text password. Consider using this technique only when the whole
message is being sent over a secure channel like SSL.

Oracle Web Services Security 9-5

Classes and Interfaces of Oracle Web Services Security

2. Add a digest of the password or some other kind of derived password. A digest is
not necessarily more secure than a clear text password, as it can also be replayed
unless it is protected by a nonce and time.

3. Add a digest of the password using the digest mechanism given in the WS Security
specification. This uses the nonce and the cr eat edDat e.

4. Do not add the password or its digest at all. Instead derive a key from the
password and use that to sign the message, to demonstrate knowledge of the key.

/1 For options 1 and 2, use the setPassword nethod
ut. set Password("Il oveDogs");

/1 Wth this mechanism the reciever should sinply call
/1 UsernanmeToken. get Password to check if the password is as expected.

/1 For option 3, use the setPasswordDi gest nethod, but before doi ng

/1 thatfor that you have to at first set a nonce and a created date.

Secur eRandom random = Secur eRandom get | nst ance(" SHALPRNG') ;

byte nonce[] = new byte[20];

random next Byt es(nonce); // conpute a 20 byte random nonce

ut . set Nonce(nonce);

ut.set CreatedDate(new Date()); // Set the date to now

ut. set PasswordDi gest ("1l oveDogs"); // will conpute the digest from
/] this clear text password using
/1 nonce and createdDate

/1 For this mechanism the reciever should use the following

byte nonce[] = ut.getNonce();

. check against the used nonces, to make sure this is a new nonce
Date createdDate = ut.getCreated();

. check that this createdDate is within an expected clock skew
bool ean valid = ut.isValid(userNanme, passwd),

/] above call will reconpute the digest fromthe passwd

/1 and the nonce and created date, and check if this digest matches
/1 the digest in the usernanme token

/1 For option 4, set the salt and iteration count

Secur eRandom random = Secur eRandom get | nst ance(" SHALPRNG') ;
byte salt[] = new byte[15];

random next Bytes(salt); // conpute a 15 byte random salt

ut.setSalt(1, salt);
ut.setlteration(1000);
SecretKey key = ut.deriveKey("lloveDogs");

Now you can use this secret key to sign or encrypt data.

9.2.3.2 Creating an X509 Token

You can either use the X509Bi nar ySecur i t yToken constructor followed by the
set Token method, or use the equivalent helper method
W5Security. creat eBST_X509:

WSSecurity ws = ...
X509Certificate cert = ...
X509Bi narySecurityToken x509t oken = WSSecurity. creat eBST_X509(cert);

/1 remenber to put this inside your WSSecurity header.
/1 addX509CertificateToken puts it at the beginning, you can also

9-6 Developing Applications with Oracle Security Developer Tools

Classes and Interfaces of Oracle Web Services Security

/] use a regular DOM net hod appendChild or insertChild to put it in.
ws. addX509Certi fi cat eToken(x509Token) ;

/] optionally add an wsu:ld, so you can refer to it
x509Token. set Wsul d("MyCert");

You can also create an X509Bi nar ySecur i t yToken from a Cer t Pat h object if you
want to include an entire chain of certificates.

For encryption data with this certificate, you need the public key which you can obtain
by using cert . get Publ i cKey() . For signing, however, you need the private key,
which you should maintain in a keystore.

9.2.3.3 Creating a Client-Side Kerberos Token
Kerberos tokens are used, as a rule, in conjunction with the Java GSS-API.
This example shows how to create a client-side token:

/1 Use JAAS Authentication with Kerberos Login Mdul e

/1 Set up the config files and then call 1ogin()

/1 to login using this module. This will cause the client to contact
/'l the Kerberos Authentication-Service and get a ticket to talk to the
/'l Kerberos Ticket-Ganting-Service

Logi nContext |c = new Logi nContext(...);

Ic.login();

/1 Use JAAS Authorization to set the subject into the thread context
Subj ect . doAs(| c. get Subj ect (), action)

/1 The rest of the code should be executed as a Privileged action
/] Create a GSSContext to talk to a particular server.

GSSManager gssManager = GSSManager. get | nstance();

GSSNane servi ceName = gssManager. cr eat eNane(svcPrinci pal Nane, null);

GSSCont ext gssCont ext = gssManager. creat eCont ext (servi ceNane, nul |,
nul |, GSSCredential . DEFAULT_LI FETI ME) ;

/1 Then call initSecContext. this will cause the client to contact

/1 the Ticket-Ganting-Service to obtain a ticket for talking to that
[l particular server. The token that is returned by the initSecContext
/] is a GSS wapped AP_REQ packet.

byte[] token = new byte[1];

token = gssContext.initSecContext(token, 0, token.length);

/] Create a Kerberos BST using this AP_REQ packet

WsSecurity ws = ...

Ker ber osBi narySecurityToken kbst = ws. creat eBST_Ker ber os(t oken,
WBSURI . vt _GSSKer ber osv5) ;

ws. addKer ber osToken(kbst) ;

/] Get the sessionKey that is present inside the AP_REQ packet,
/1 this is the session that is generated by the TGT and returned
/1 to the client in the initSecContext class
/11
/'l This getSessionKey call sinply calls Subject.getPrivateCredentials
/] to get a list of tickets associated with the subject, and then
[l iterates through themto find the one to be used for
[l for that particul ar server
Secret Key sessionKey =
KerberosUtils. get Sessi onKey(|l c. get Subj ect (), svcPrinci pal Nane) ;

Oracle Web Services Security 9-7

Classes and Interfaces of Oracle Web Services Security

Now you can use this secret key to sign or encrypt data.

Server Side

9.2.3.4 Creating a Server-side Kerberos Token

Server-side kerberos tokens require creation of the GSSContext and extraction of the
session key.

This example shows how to create a server-side kerberos token:

/1 Use JAAS Authentication and Authorization as for the client

/] Create GSSContext will null credentials

SSManager manager = GSSManager. get | nstance();

GSSCont ext gssCont ext = manager . creat eCont ext ((GSSCredential)nul I);

/] Locate the KerberosBinarySecurityToken in the incom ng WsSecurity
/1 header. You can do this by doing a DOM search

WsSecurity = ...

Ker ber osBi narySecurityToken kbst = ...

/1 Now extract the AP_REQ fromthe BST and cal | accept SecCont ext
byte ap_req[] = kbst.getVal ue();
gssCont ext . accept SecCont ext (ap_req);

/1 The context is now extablished. (Note Mitual authentication woul d
/1 need one nore round trip)

/1 Now extract the session key
/1 KerberosUtils.getSession is an overloaded method, and this
/1 particular one is neant to be used by server. Internally
/1 it decrypts the ap_req packet using the server's key (or the
/1 tgtSession key) and extracts the key fromthe decrypted ap_req
/'l packet
Subj ect srvrSubject = ...
Secret Key sessionKey =
KerberosUtils. get Sessi onKey(srvrSubject, ap_req);

Now you can decrypt or verify using this key.

9.2.3.5 Creating a SAML Assertion Token

Refer to Oracle XML Security for information on how to create Asser ti on objects.
From the Asser t i on object you can create a SAML assertion token by simply
invoking the SAM_LAsser ti onToken(Assertion assertion) constructor.

9.2.4 Security Token References (STR)

The WS Security specifications defines the concept of Security Token Reference (STR),
which is a mechanism to refer to a security token. A Si gnat ur e or Encr ypt i on uses
this STR mechanism to identify the key that was used to sign or encrypt. STR supports
mechanisms such as Direct Reference, Key Identifier, and Embedded.

STR typically supports the following mechanisms:

e Direct Reference: The STR uses a URI to refer to the ST.

9-8 Developing Applications with Oracle Security Developer Tools

Classes and Interfaces of Oracle Web Services Security

¢ Key Identifier: The STR does not use a URI, but instead uses some other
mechanism to identify the token, such as the | ssuer serial for X509 tokens and the
assertion ID for SAML tokens. The token may not be in the message at all.

¢ Embedded: The token is directly embedded in the Key| nf o.

9.2.4.1 Creating a direct reference STR

STRs are created using a uniform procedure; the mechanism to pass in the STR
depends on the type of token.

To create the STR:

1. Create the token as mentioned earlier.
2. Call.setWsul d() tosetan ID on that token
3. Create the STR with the ID from Step 2

4. Pass in that STR in the W5SSi gnat ur ePar ans or WSENncr ypt i onPar ans

Subsequent sections demonstrate how to pass in the STR for various tokens.

9.2.4.2 Creating a Reference STR for a username token
This example shows how to create a reference STR for a username token:

WsSecurity ws = ...
WsSecuri tyTokenRef erence str =
ws. creat eSTR _User nane_ref ("#MyUser");

9.2.4.3 Creating a Reference STR for a X509 Token
This example shows how to create a reference STR for an X509 token:

WSSecurity ws = ...
WSSecuri t yTokenRef erence str =
ws. creat eSTR_X509_Ref ("#MyCert");
9.2.4.4 Creating a Reference STR for Kerberos Token

This example shows how to create a reference STR for a kerberos token:

WsSecurity ws = ...
/] use the appropriate value type
String val ueType = WSSURI . vt _GSSKer ber osv5;
WsSecurityTokenRef erence str =
ws. creat eSTR_Ker ber osKeyRef ("#MToken");

9.2.4.5 Creating a Reference STR for a SAML Assertion token
This example shows how to create a reference STR for a SAML assertion token:

WSSecurity ws = ...
WSSecuri tyTokenRef erence str =

ws. creat eSTR_SAM__Asserti on_Ref 20(" MySAM_Assertion")
9.2.4.6 Creating a Reference STR for an EncryptedKey

This example shows how to create a reference STR for an encrypted key:

WsSecurity ws = ...
WsSecurityTokenRef erence str =
ws. creat eSTR_EncKeyRef (" M/EncKey")

Oracle Web Services Security 9-9

Classes and Interfaces of Oracle Web Services Security

9.2.4.7 Creating a Reference STR for a generic token

Instead of using the cr eat eSTRmethods you can also create the reference directly
with the appropriate val ueType and t okenType:

WsSecurity ws = ...

String uri = "#MToken";

WSSRef erence ref = new WSSRef erence(doc, uri);

ref.setVal ueType(val ueType); // set an optional val ueType
WsSecuri tyTokenRef erence str = new WSSecuri t yTokenRef er ence(doc);
str.set TokenType(tokenType); // set an optional tokenType
str.appendChild(ref);

9.2.4.8 Creating a Key Identifier STR

A Keyldentifier isanother way to refer to a security token that uses some intrinsic
property of the token; for example, an asserti onl Dfor a SAML Token or a
Subj ect Key ldentifier foran X509 token.

Keyl denti f er s are often used when the token itself is not present in the document.
For example, an incoming message can be encrypted with a X509Cer t , but instead of
having that X509Cer t in the message, it can have only a hint to it, in the form of a
Subj ect Keyl dentifier.

9.2.4.9 Creating a Keyldentifier STR for an X509 Token
There are three different ways to identify an X509 Token:

1. Issuer Serial: A combination of Issuer DN and Serial number of the certificate
2. Subject Key Identifier : The subject key Identifier of the certificate

3. Thumbprint SHA1: SHA1 of the certificate.

X509Certificate cert = ...
WsSecurity ws = ...
WsSecuri t yTokenRef erence str =
ws. creat eSTR _X509_I ssuer Serial (cert);
/1l alternatively use ws.createSTR X509 SKI (cert)
[l or ws. createSTR X509 _Thunbpri nt SHAl(cert)

9.2.4.10 Creating a Keyldentifier STR for a Kerberos Token

Kerberos tokens can be identified by the SHA1 of the AP_REQ packet or of the GSS
wrapped AP_REQ packet.

byte ap_req[]
WsSecurity ws = ...
String val ueType = WSSURI . vt _GSSKer ber osv5;
WsSecurityTokenRef erence str =

Ws. creat eSTR_Ker ber osKeyl dSHAL(ap_req, val ueType);

9.2.4.11 Creating a Keyldentifier STR for a SAML Assertion Token
SAML assertions can be identified by the Assertion ID.
For local SAML 1.1 assertions use:

WSSecurity. creat eSTR SAM._Assertionl dvll(byte assertionld[])

For remote SAML 1.1 assertions use:

9-10 Developing Applications with Oracle Security Developer Tools

Classes and Interfaces of Oracle Web Services Security

creat eSTR_SAM._Asserti onl dv1l(
byte assertionld[], AuthorityBinding authorityBinding)

For local SAML 2.0 assertions use:
creat eSTR_SAM._Assertionl dv20(byte assertionld[])

For remote SAML 2.0 assertions use a reference URI:

creat eSTR_SAM__Asserti on_Ref 20(" MySAM.Assertion")

9.2.4.12 Creating a Keyldentifier STR for an EncryptedKey

Remote encrypted keys can be identified by their SHA1 hash. Use this function to
create the Keyl dentifier:

creat eSTR_EncKeySHAL(byte shal[])

9.2.4.13 Adding an STRTransform

An STRTransform is a very useful transform that you add to your signatures. This
transform causes a temporary replacement of the STRs wth the corresponding STs
while calculating the signature.

For example, you might include an X509 SKI based STR in your reference. Without the
STRTr ansf or mthis will result in only the STR reference being included in the
signature,that is, only the SKI value. But if you add an STRTr ansf or my during the
signing and verifiing process the STR will be replaced by the actual X509 Certificate,
that is, the entire X509 certificate will be included in the message.

9.2.5 Signing and Verifying
You can sign and verify SOAP messages, and confirm signatures.
This section contains a discussion of signing and verifying data.
Topics include:
¢ Signing SOAP Messages
¢ Verifying SOAP Messages

¢ Confirming Signatures

9.2.5.1 Signing SOAP Messages
Take these steps to sign a SOAP message:

1. Decide how you want to identify the data to be signed — the most common
mechanism is to use an ID, but instead of an ID you can also use an XPath
expression

2. Decide on additional transforms — exclusive c14n and STR transforms are two
common transforms that you might add.

3. Decide on the signing key — you can either do HMAC signing with a symmetric
key or do RSA /DSA signatures.

4. Decide on how to indicate this signing key to the receiver — for this you usually
need to create an STR as mentioned earlier.

Oracle Web Services Security 9-11

Classes and Interfaces of Oracle Web Services Security

9.2.5.1.1 Adding IDs to elements

IDs may be added to DOM elements.
Use the function:

WSSUt i | s. addWsul dToEl enent (String id, El ement el ement)

to add awsu: | d to the element to be signed. You can use this mechanism to add an ID
to regular DOM element, or SAA] objects which also derive from DOM Elements.

You must declare the wsu namespace prefix. For example, you can declare it at the
SOAP Envelope level like this

SOAPEnvel ope env = ...
env. addNanespaceDecl aration("wsu" , WSSURI . ns_wsu);

To sign attachments, you must assign a Cont ent | d to each attachment. For this you
need to use the following method:

setContent d(String contentld)
of the SAA]J AttachmentPart object.
9.2.5.1.2 Creating the WSSignatureParams object

A WESSi gnat ur ePar ams object must be created with all the signing parameters.

Use the following constructor to create the initial WBSi gnat ur ePar ans object. If you
want to use HMAC signing, pass in a value for hmacKey, and null for the

si gni ngKey; to use asymmetric signing, pass in a value for the si gni ngKey and
null for hmacKey.

WBSi gnat ur ePar ans(byte[] hmacKey, PrivateKey signi ngkey);
This constructor assumes c14nMet hod=excCLl4N, di gest Met hod=SHA1 and

si gnMet hod=hmacSHA/ r saSHA1/ dsaSHAL (depending on the key). If you want
different algorithms use the following setters to set them:

set Di gest Met hod(String di gest Met hod)
set Si gnMet hod(String si gnMet hod)
set Cl4nMet hod(String net hod)

You also need to set the STR that you have created earlier into this object; use the
set Keyl nf oDat a for setting the STR.

set Keyl nf oDat a(Keyl nf oDat a keyl nf oDat a)

When signing attachments, you need to set the SOAPMessage into this
WESi gnat ur ePar as object so that it can resolve the cid references by locating
corresponding attachments.

set SOAPMessage(SOAPMessage nsg)

9.2.5.1.3 Specifying Transforms

There are two ways to specify transforms - a simpler but limited way, and an
advanced and flexible way.

9-12 Developing Applications with Oracle Security Developer Tools

Classes and Interfaces of Oracle Web Services Security

For the simple way, you need to set the following parameters in the
WSSignatureParams:

set At t achment Cont ent Onl y(bool ean)

In the simple mode, all ci d references automatically get the

At t achment Cont ent Onl y transform, but if you call

set At t achment Cont ent Onl y(f al se) then the ci d references will get an
At t achnment Conpl et e transform

set Usi ngSTRTr ansf or m(bool ean)

If you set this to true, each reference will be checked whether it points to an STR, if it
does an STRTr ansf or mwill we added to that reference. Note the STRTr ansf or mis
only added if the reference directly points to an STR, not if the reference points to a an
ancestor of an STR.

set CL4Nmet hod(Stri ng)

This parameter defaults to exclusive c14n, and specifies both the canonicalization
method for each of the references and the canonicalization method for the
Si gnedl nf o section.

set Usi ngDecr ypt Tr ansf on(bool ean)
Set this to t r ue if you want a decrypt transform to be added.

9.2.5.1.4 Calling the WSSecurity.sign method

The final step is to call the following method in WSSecurity to perform the actual
signing.

XSSignature sign (String[] uris, WSSignatureParans sigParans, XSAl gorithmdentifier[]
[] trans)

This method creates the <Si gnat ur e> element, computes digests of each reference
and finally computes the signature.

uris is an array of IDs to be signed. A separate <Ref er ence> will be created for each
element of this array.

As described earlier there are two ways to specify the transforms — a simple way in
which the transform must be nul | , and the transformation information is specified
throught the various set methods mentioned above (in WESi gnat ur ePar ans). Or a
more advanced way where the transform parameter must explicitly specify all the
transforms for each reference, thatis, t r ans. | engt h must be equal to
uris.|length.

9.2.5.2 Verifying SOAP Messages

When verifying a signature you first need to locate the signature elements in the
<wsse: Secur i t y> header; for this you can use the method

WsSecurity ws = ...
Li st <XSSi gnat ure>si gs = ws. get Si gnatures();

This method searches the DOM tree to find all immediate children of

<wsse: Secur it y> that are <dsi g: Si ghat ur e> and then creates XSSi gnat ur e
wrapper objects for each of those elements and returns them. (Note the namespace
prefixes do not have to use wsse and dsig).

Oracle Web Services Security 9-13

Classes and Interfaces of Oracle Web Services Security

If you already have the verification key in hand, you can call the following method -
either pass in an hmacKey for HMAC signatures or a si gni ngKey for asymmetric
key signatures. The SOAPMessage is only need when attachments are signed.

XSSi gnature sig = sigs[0];

byte [] hmacKey = ...
Publ i cKey signingKey = ...

SOAPMessage nsg = null; // needed only for attachnents
bool ean res = WsSecurity.verify(sig, byte[] hmacKey, signingKey, nsg);

; 11 Need either hmacKey of signingKey

However, if you do not have the verification key, you need to set up the following
callbacks for resolving STR Key Identifiers. Recall that STR Key Identifiers are usually
references to tokens outside the document, so Oracle Security Developer Tools cannot
locate these tokens unless you explicitly set up these callbacks.

Table 9-3 Callbacks to Resolve STR Key Identifiers
|

Token Type

Implementation Interface and Notes

Registration

Username Token

Username Token

Interface: PasswordRetriever

Registration:
UsernameToken.addPassword
Retriever

Interface: KeyDerivator

Registration:
UsernameToken.addKeyDeriv
ator

9-14 Developing Applications with Oracle Security Developer Tools

This callback resolves the
UsernameToken Reference
STRs.

In the getPassword() callback,
return the password
corresponding to the user.

This secret key will be
derived from password,
iteration count and salt.

login() and logout() callbacks
are not used

This callback also resolves the
UsernameToken Reference
STRs. Use it when you want
to use your own key
derivation algorithm. In the
resolve() callback, derive the
key and return it.

Classes and Interfaces of Oracle Web Services Security

Table 9-3 (Cont.) Callbacks to Resolve STR Key Identifiers
|

Token Type Implementation Interface and Notes
Registration

X509 Interface: This callback resolves
X509KeyldentifierResolver Thumbprint and SKI Key
Registration: Identifier STRs.

X509Keyldentifier.addResolve = Implement the resolve() and

r getPrivateKey() callbacks to
return the certificate and the
private key respectively.
Note: The private key is not
required for verification, but
it is required for decryption.
If you have an array of
certificates, use the
X509Keyldentifier.matches()
method to match each

cerificate against the passed-

in X509 Keyldentifier.
X509 Interface: This callback resolves Issuer
X509IssuerSerialResolver Serial Key Identifier STRs.
Registration: Implement the resolve() and

X509IssuerSerial.addResolver getPrivateKey() callbacks as
in the previous case.

Oracle Web Services Security 9-15

Classes and Interfaces of Oracle Web Services Security

Table 9-3 (Cont.) Callbacks to Resolve STR Key Identifiers
|

Token Type Implementation Interface and Notes
Registration
Kerberos Interface: This callback resolves

SAML Assertion v1.1

KerberosKeyldentifierResolver

Registration:
KerberosKeyldentifier.addRes
olver

Interface:
SAMLAssertionKeyldentifierR
esolver

Registration:
SAMLAssertionKeyldentifier.a
ddResolver

9-16 Developing Applications with Oracle Security Developer Tools

Kerberos STRs.

Implement the resolve() and
resolveKey() method to
return the ap_req packet and
the session key/subkey

which corresponds to the
SHAL1 value present in the
Keyldentifier.

If you have an array of ap_req
packets, calculate the SHA1 of
each one of them, and find
the one

whose SHA1 matches the
value returned by
KerberosKeyldentifier.getVal
ue().

Return this ap_req packet in
the resolve() method.

For the resolveKey() method
you need to take one more
step and return they key
present inside

the ap_Req packet, for this
youe can use the
KerberosUtils.getSessionKey(
Subject, byte[]) method,

which decrypts the ap_req
packet using the Subject's key
and extracts the session key/
sub-key from: it.

This callback resolves SAML
Assertion Keyldentifier STRs.

Implement the resolve(),
getPublicKey() and
getPrivateKey() methods to
return the SAML assertion,
SAMLX509Cert, and private
key respectively. (Note: The
private key is required only
for decryption, not for
verification.)

Classes and Interfaces of Oracle Web Services Security

Table 9-3 (Cont.) Callbacks to Resolve STR Key Identifiers
|

Token Type Implementation Interface and Notes
Registration

SAML Assertion v 2.0 Interface: See previous notes for SAML
SAML2AssertionKeyldentifier ~ Assertion v1.1.
Resolver
Registration:
SAML2AssertionKeyldentifier.
addResolver

For tokens that use symmetric keys - UserName Token, Kerberos, and EncryptedKey -
you need to set up a resolver, because the document does not have this symmetric key,
and Oracle Security Developer Tools cannot verify (or decrypt) unless you set the
resolvers.

For tokens that use asymmetric keys - SAML Assertions and X509 Tokens - you do not
need to set up a resolver if it uses a direct URI reference STR or an embedded token,
because in these cases Oracle Security Developer Tools can locate the certificate on its
own. However you still need to set up the Certi fi cat eVal i dat or callback because
Oracle Security Developer Tools will not blindly use a certificate in the message unless
you have validated the certificate in your callback.

See Also:

Oracle XML Security

After you have set up all the resolvers and the Certi fi cat eVal i dat or, use the
following method:

SOAPMessage nmsg = null; // needed only for attachnents
bool ean searchTokens = true;
bool ean res = WsSecurity.verify(sig, searchTokens, nsg);

This method inspects the Signature's Key| nf o and either searches for the certificate,
or calls the appropriate resolvers to get the signing key.

You can also use the WsSecuri ty. veri f yAl | method which searches for signatures
and verifies them one by one.

9.2.5.3 Confirming Signatures

You use the WESi gnat ur eConf i r mat i on wrapper class to contruct and process
signature confirmation elements.

9.2.5.3.1 Signature Confirmation Response Generation

For response generation use the following function in WSSecurity:

Li st <WBSi gnat ureConfirmation> createSi gnat ureConfirnati ons(Docunent doc);

This looks at all the Si gnat ur es present in the current WSecur i t y element, and
constructs corresponding Si gnat ur eConf i r mat i on elements in a new document.
These could be put in the response's WSSecuirty header.

Oracle Web Services Security 9-17

Classes and Interfaces of Oracle Web Services Security

9.2.5.3.2 Signature Confirmation Response Processing

For response processing, first use this function (at request time) to save all the
Signature values.

String [] getSignatureVal ues()

At response processing time, you can then use this saved list to compare against the
incoming Si gnat ur eConfi r mati ons as follows:

bool ean verifySignatureConfirmations(String sigValue[])

9.2.6 Encrypting and Decrypting
You can encrypt or decrypt SOAP messages with or without an Encr ypt edKey.

There are two primary encryption methods:

1. With Encr ypt edKey: Encrypt the elements with a random session key, then
encrypt this session key into an <Encr ypt edKey> element and place that element
in the <wsse: Securi t y> header.

2. Without Encr ypt edKey: Encrypt the elements with known symmetric keys,
which may be different for each element; construct a <Ref er enceLi st > element
with references to each of these encrypted data sections, and place the
<Ref er encelLi st > in the <wsse: Securi t y> header.

Note:

While encrypting regular DOM elements is standard practice, you can also
encrypt SOAP headers, the SOAP body, and attachments. Special
considerations apply for encrypting these objects as explained later.

9.2.6.1 Encrypting SOAP messages with EncryptedKey
You can encrypt SOAP messages by means of Encr ypt edKey.

First decide on a key to use to encrypt this random session key, then create an STR
with the information that the receiver will use to locate this decryption key:

Key keyEncKey = ... ; WSSecurityTokenReference str = ...

create a WESENcr ypt i onPar ans with this information:

/1 Choose a data encryption algorithm- say AES 128
String dataEncAlg = XMLURI . al g_aes128_CBC;

/1 Either generate a random session key yourself, or set this to
[/ null to indicate that OSDT shoul d generate it
Secret Key dataEncKey = nul | ;

/1 Depending on the KeyEncryptionKey that you have chosen choose
[/ either an RSA key wrap or a symetric key wrap
String keyEncAlg = XM.URI . al g_rsaOAEP_MGF1;

[/ Now put all this information into a WSSEncryptionParans

WSSEncr ypti onPar ans eParam = new WSSEncrypt i onPar ams(
dataEncAl g, dataEncKey, keyEncAl g, keyEncKey, str);

9-18 Developing Applications with Oracle Security Developer Tools

Classes and Interfaces of Oracle Web Services Security

regular DOM element, SOAP headers, the SOAP Body or AttachmentParts:

Elenent elenml = ... // one object to be encrypted
El enent elen2 = ...// another object to be encrypted
ArraylList objectList[] = new ArrayList();

obj ect Li st. add(el eml);
obj ect Li st. add(el en?) ;

Create two more arrays to indicate whether each object is to be encrypted content
only, and what IDs will be assigned to the resulting Encr ypt edDat a objects:

Note:

SOAP bodies are always encrypted content only, regardless of what you pass
in this flag. For attachments, "not content only" means content plus mime
headers.

/1 both these elenents are not content only
bool ean[] contentOnlys = { false, false };

/1 After encryption the EncryptedData el ements will get these ids
String encDatalds[] = { "idl", "id2" };

Finally, call the encr ypt W t hEncKey method:

WSSecurity ws = ...
XEEncrypt edKey encKey = ws. encrypt WthEncKey(objectList, contentOnlys,
encDat al ds, eParanj;

9.2.6.2 Encrypting SOAP messages without EncryptedKey
Use these steps if you do not wish to use an Encr ypt edKey:

Decide on a data encryption key; you can either use the same one for all the
EncryptedData sections or a different one for each. Also create an STR with the
information that the receiver will use to locate this decryption key, and put into a
WSSEncr ypt i onPar ans object:

Secret Key dataEncKey = ... ; [/ assuming 128 bit AES key
String dataEncAlg = XMLURI . al g_aes128_CBC;
WsSecuri tyTokenRef erence str = ...

/1 Now put all this information into a WSSEncrypti onPar ans
WSSEncrypti onParans eParam = new WSSEncr ypt i onPar ans(
dataEncAl g, dataEncKey, null, null, str);

Now create a list of elements to be encrypted as before, along with the associated
cont ent Onl y and encDat al ds array:

Elenent elenml = ... // one object to be encrypted
El enent elen2 = ...// another object to be encrypted
ArraylList objectList[] = new ArrayList();

obj ect Li st. add(el eml) ;
obj ect Li st. add(el en?) ;

/1 both these el enents are not content only
bool ean[] contentOnlys = { false, false };

/| After encryption the EncryptedData el ements will get these ids
String encDatalds[] = { "idl", "id2" };

Oracle Web Services Security 9-19

Classes and Interfaces of Oracle Web Services Security

Finally, call the encr ypt W t hNoEncKey method:

WsSecurity ws = ...
XEEncrypt edKey encKey = ws. encrypt Wt hNoEncKey(obj ect Li st,
contentOnlys, encDatalds, new WSEncrypti onParans[]{eParam eParan});

In this example we used the same encr ypt i onPar ans for both elements.

9.2.6.3 Encrypting SOAP Headers into an EncryptedHeader

When you call the encrypt methods on the SOAP header block , with content only set
to f al se, the entire SOAP header block is encrypted into an Encr ypt edDat a
element; this element is placed inside an Encr ypt edHeader element, which replaces
the original SOAP header block.

The must Under st and and act or attributes are copied over from the current
wsse: Security header.

9.2.6.4 Decrypting SOAP messages with EncryptedKey

To decrypt SOAP messages with Encr ypt edKey, use:

WSSecuri ty. decrypt (XEEncrypt edKey, PrivateKey, SOAPMessage)

which first decrypts the Encr ypt edKey with the given Pri vat eKey to obtain a
symmetric key, then uses this symmetric key to decrypt all the references inside the
Encryt edKey.

If you do not know the Pri vat eKey, call:
decrypt (XEEncr ypt edKey, SOAPMessage)

which looks into the Key| nf o of the Encr ypt edKey and calls the registered callbacks
to obtain the private key.

If you already know the decrypted form of the Encr ypt edKey then use:
decrypt (XEEncrypt edKey, Secret Key, SOAPMessage)

which uses the given symmetric key to decrypt all the references inside the
Encrypt edKey.

9.2.6.5 Decrypting SOAP messages without EncryptedKey

When you wish to decrypt all the elements (or attachments) mentioned in a top level
Ref er enceli st , use:

decrypt (XERef er encelLi st, SecretKey, SOAPMessage)

which uses the given symmetric key to decrypt all the references inside the
Ref er enceLi st . This functions assumes that all the references are encrypted with
the same key.

If you do not know the Secr et Key, or if all the references are not encrypted with the
same key, send in a nul | for the Secr et Key; decr ypt then looks into the Keyl nf o
of each of the Encr yt edDat a and calls the registered callbacks to obtain the
symmetric key.

9-20 Developing Applications with Oracle Security Developer Tools

Additional Resources for Web Services Security

9.3 Additional Resources for Web Services Security

OASIS Specifications, such as OASIS WSS SOAP Message Security Specification and
OASIS WSS Username Token Profile Specification, provide more information about
Web Services Security.

The following resources provide more information about Web Services Security:

OASIS WSS SOAP Message Security Specification
OASIS WSS Username Token Profile Specification
OASIS WSS X.509 Certificate Token Profile Specification
OASIS WSS SAML Assertion Token Profile Specification
OASIS WSS SWA Token Profile Specification 1.1

See Also:

Links to these documents are available in References.

9.4 The Oracle Web Services Security Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in the Oracle Web
Services Security API.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Oracle Web Services Security 9-21

The Oracle Web Services Security Java AP| Reference

9-22 Developing Applications with Oracle Security Developer Tools

10

Oracle Liberty SDK

Oracle Liberty SDK allows Java developers to design and develop single sign-on (SSO)
and federated identity management (FIM) solutions. It aims to unify, simplify, and
extend all aspects of development and integration of systems conforming to the
Liberty Alliance ID-FF 1.1 and 1.2 specifications.

The Liberty Alliance was founded with the goal of allowing individuals and
businesses to engage in virtually any transaction without compromising the privacy
and security of vital identity information. Specifications issued by the Liberty Alliance
are based on an open identity federation framework, allowing partner companies to
form business relationships based on a cross-organizational, federated network
identity model.

This chapter contains these topics:
¢ Oracle Liberty SDK Features and Benefits
¢ Oracle Liberty 1.1

® Oracle Liberty 1.2

10.1 Oracle Liberty SDK Features and Benefits

Oracle Liberty SDK 1.1 and 1.2 enable simplified software development through the
use of an intuitive and straightforward Java API. The toolkits provide tools,
information, and examples to help you develop solutions that conform to the Liberty
Alliance specifications. The toolkits can also be seamlessly integrated into any existing
Java solution, including applets, applications, E]Bs, servlets, JSPs, and so on.

The Oracle Liberty SDK is a pure java solution which provides the following features:
* Support for the Liberty Alliance ID-FF version 1.1 and 1.2 specifications
* Support for Liberty-based Single Sign-on and Federated Identity protocols

* Support for the SAML 1.0/1.1 specifications

See Also:

You can find the Liberty Alliance specifications at ht t p: //
Www. projectliberty.org/resources/specifications. php.

10.2 Oracle Liberty 1.1

Oracle Liberty 1.1 conforms to the Liberty Alliance ID-FF 1.1 specifications. It contains
classes, interfaces, and methods to provide functionality such as authentication
request/response, logout request/response, and federation termination.

Oracle Liberty SDK 10-1

http://www.projectliberty.org/resources/specifications.php
http://www.projectliberty.org/resources/specifications.php

Oracle Liberty 1.1

This section explains how to set up your environment for and use Oracle Liberty 1.1,
and describes the classes and interfaces of Oracle Liberty 1.1. It contains the following
topics:

® Setting Up Your Oracle Liberty 1.1 Environment
* Overview of Oracle Liberty 1.1 Classes and Interfaces

¢ The Oracle Liberty 1.1 API Reference

10.2.1 Setting Up Your Oracle Liberty 1.1 Environment

You can setup Oracle Liberty 1.1 environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.
10.2.1.1 Understanding System Requirements for Oracle Liberty 1.1

In order to use Oracle Liberty 1.1, your system must have the Java Development Kit
(JDK) version 1.6 or higher.

Your CLASSPATH environment variable must contain the full path and file names to

all of the required jar and class files. Make sure the following items are included in
your CLASSPATH:

e osdt_core.jar
e osdt_cert.jar
e osdt_xnlsec.jar
e osdt_sanl .jar

e The org.jaxen_1.1.1.j ar file (Jaxen XPath engine, included with your Oracle
XML Security distribution)

e theosdt |ib_vll.jar file
For example, your CLASSPATH might look like this:

YCLASSPATHY %ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _core.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cert.jar;
%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _xm sec.j ar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _sanl .jar;
9%ORACLE_HOVE% nodul es\org.jaxen_1.1.1.jar;

%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\osdt _|ib_v1l.jar;

See Also:

Setting the CLASSPATH Environment Variable

10.2.2 Overview of Oracle Liberty 1.1 Classes and Interfaces

Oracle Liberty SDK v. 1.1 contains core and supporting classes and interfaces to
provide functionality such as authentication request/response, logout request/
response, and federation termination

10-2 Developing Applications with Oracle Security Developer Tools

Oracle Liberty 1.1

This section introduces some useful classes and interfaces of Oracle Liberty SDK v. 1.1.
It contains these topics:

¢ Using Core Classes and Interfaces
¢ Using Supporting Classes and Interfaces

10.2.2.1 Using Core Classes and Interfaces

The core classes and interfaces of the Oracle Liberty SDK v. 1.1 enable you to create
authentication request and response elements, logout request and response elements,
and register name identifiers.

This section contains the topics:
* Using the oracle.security.xmlsec.liberty.v11. AuthnRequest Class
¢ Using the oracle.security.xmlsec.liberty.v11.AuthnResponse Class

* Using the oracle.security.xmlsec.liberty.v11.FederationTerminationNotification
Class

* Using the oracle.security.xmlsec liberty.v11l.LogoutRequest Class
* Using the oracle.security.xmlsec.liberty.v11.LogoutResponse Class
* Using the oracle.security.xmlsec liberty.v11.RegisterNameldentifierRequest Class

* Using the oracle.security.xmlsec.liberty.v11.RegisterNameldentifierResponse Class
10.2.2.1.1 Using the oracle.security.xmlisec.liberty.v11.AuthnRequest Class

This class represents the Aut hnRequest element of the Liberty protocol schema.

This example shows how to create a new Aut hnRequest element and append it to a
document.

Docunment doc = Instance of org.w3c.dom Docunent ;
Aut hnRequest aut hnRequest = new Aut hnRequest (doc) ;
doc. get Docunent El enent () . appendChi | d(aut hnRequest) ;

This example shows how to obtain Aut hnRequest elements from an XML document.

Document doc = I nstance of org.w3c.dom Docunent;

/1 Get list of all AuthnRequest elenments in the document.
NodeLi st arList =

doc. get El ement sByTagNanmeNS(Li bertyURI . ns_l i berty, "AuthnRequest");
if (arlList.getlLength() == 0)

Systemerr.println("No AuthnRequest el ements found.");

/1 Convert each org.w3c.dom Node object to an
/1 oracle.security.xm sec.|iberty.v1l. AuthnRequest object and process
for (int s =0, n=arList.getlLength(); s < n; +4+s)

Aut hnRequest aut hnRequest =
new Aut hnRequest ((El ement)arList.iten(s));

/1 Process AuthnRequest el ement

Oracle Liberty SDK 10-3

Oracle Liberty 1.1

10.2.2.1.2 Using the oracle.security.xmisec.liberty.v11.AuthnResponse Class

This class represents the Aut hnResponse element of the Liberty protocol schema.

This example shows how to create a new Aut hnResponse element and append it to a
document.

Docunment doc = Instance of org.w3c.dom Docunent;
Aut hnResponse aut hnResponse = new Aut hnResponse(doc);
doc. get Docunent El enent () . appendChi | d(aut hnResponse) ;

This example shows how to obtain Aut hnResponse elements from an XML
document.

Docunent doc = Instance of org.w3c.dom Docunent ;

/1 Get list of all AuthnResponse el ements in the document.
NodeLi st arlList =

doc. get El ement sByTagNaneNS(Li bertyURI . ns_l i berty, "AuthnResponse");
if (arlList.getlLength() == 0)

Systemerr.println("No AuthnResponse el enents found.");

/1 Convert each org.w3c.dom Node object to an
/1 oracle.security.xm sec.liberty.v1l. AuthnResponse object and process
for (int s =0, n=arlList.getLength(); s < n; +4+s)

Aut hnResponse aut hnResponse =
new Aut hnResponse((El ement)arList.iten(s));
/'l Process AuthnResponse el enent

}

10.2.2.1.3 Using the oracle.security.xmisec.liberty.v11.FederationTerminationNotification Class

This class represents the Feder at i onTer mi nati onNot i fi cati on element of the
Liberty protocol schema.

This example shows how to create a new federation termination notification element
and append it to a document.

Docunment doc = Instance of org.w3c.dom Docunent;
FederationTerm nationNotification ftn =

new FederationTerm nati onNotification(doc);
doc. get Docunent El enent () . appendChil d(ftn);

This example shows how to obtain federation termination notification elements from
an XML document.

Docunment doc = Instance of org.w3c.dom Docunent ;

/1 Get list of all FederationTerm nationNotification elenments in the docunent
NodeLi st ftnList = doc. get El ement sByTagNameNS(Li bertyURI . ns_|iberty,
"FederationTerninationNotification");
if (ftnList.getLength() == 0)
Systemerr.println("No FederationTerninationNotification elements found.");

/1 Convert each org.w3c.dom Node object to an

/] oracle.security.xm sec.liberty.v1l. FederationTerninationNotification
/| object and process

for (int s =0, n=ftnlist.getlLength(); s < n; ++s)

{

10-4 Developing Applications with Oracle Security Developer Tools

Oracle Liberty 1.1

FederationTerm nationNotification ftn =
new FederationTerm nationNotification((E enent)ftnList.item(s));

/1 Process FederationTerninationNotification elenment

}

10.2.2.1.4 Using the oracle.security.xmisec.liberty.vi1.LogoutRequest Class

This class represents the Logout Request element of the Liberty protocol schema.

This example shows how to create a new Logout Request element and append it to a
document.

Docunent doc = Instance of org.w3c.dom Docunent;
Logout Request |r = new Logout Request (doc);
doc. get Docunent El enent () . appendChi I d(Ir);

This example shows how to obtain Logout Request elements from an XML
document.

Docunent doc = Instance of org.w3c.dom Docunent;

/1 Get list of all LogoutRequest elements in the document.

NodeLi st |rList = doc. get El enent sByTagNameNS(Li bertyURI . ns_liberty,
"Logout Request");

if (IrList.getLength() == 0)
Systemerr.println("No Logout Request el enents found.");

/1 Convert each org.w3c.dom Node object to an

/'l oracle.security.xm sec.liberty.vll. Logout Request
/| object and process

for (int s =0, n=1IrList.getLength(); s < n; ++s)

{
Logout Request |r = new Logout Request ((El enment)IrList.iten(s));

/'l Process Logout Request el enent

}

10.2.2.1.5 Using the oracle.security.xmlsec.liberty.vi1.LogoutResponse Class

This class represents the Logout Response element of the Liberty protocol schema.

This example shows how to create a new Logout Response element and append it to
a document.

Docunent doc = Instance of org.w3c.dom Docunent;
Logout Response | r = new Logout Response(doc);
doc. get Docunent El enent () . appendChi I d(Ir);

This example shows how to obtain Logout Response elements from an XML
document.

Docunent doc = Instance of org.w3c.dom Docunent;

/1 Get list of all Logout Response el enments in the docunment.
NodeList IrList =

doc. get El ement sByTagNaneNS(Li bertyURI . ns_l i berty, "Logout Response");
if (IrList.getLength() == 0)

Systemerr.println("No Logout Response el enents found.");

Oracle Liberty SDK 10-5

Oracle Liberty 1.1

/1 Convert each org.w3c.dom Node object to an

/1 oracle.security.xmsec.liberty.vll. Logout Response
/| object and process

for (int s =0, n=1IrList.getLength(); s < n; ++s)
{

Logout Response |r = new Logout Response((El enent)IrList.items));
/'l Process Logout Response el enent

}

10.2.2.1.6 Using the oracle.security.xmlsec.liberty.v11.RegisterNameldentifierRequest Class

This class represents the Regi st er Narrel dent i fi er Request element of the Liberty
protocol schema.

This example shows how to create a new Regi st er Narmel denti fi er Request
element and append it to a document.

Docunent doc = Instance of org.w3c.dom Docunent;
Regi ster Nanel denti fi er Request rnir =

new Regi st er Nanel denti fi er Request (doc);
doc. get Docunent El enent () . appendChil d(rnir);

This example shows how to obtain Regi st er Nanel denti fi er Request elements
from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;

/1 Get list of all RegisterNaneldentifierRequest elenents in the docunent
NodeLi st rnirList = doc.getEl ement sByTagNameNS(Li bertyURI.ns_|iberty,

"Regi st er Nanel denti fi er Request™);
if (rnirList.getLength() == 0)

Systemerr.println("No RegisterNaneldentifierRequest elements found.");

/1 Convert each org.w3c.dom Node object to an
[loracle.security.xm sec.liberty.vll. RegisterNaneldentifierRequest
/] object and process

for (int s =0, n=rnirList.getlLength(); s < n; ++s)

{
Regi ster Nanel denti fi er Request rnir = new
Regi st er Nanel denti fi er Request ((El enent)rnirList.items));
/'l Process RegisterNanmeldentifierRequest el enent
}

10.2.2.1.7 Using the oracle.security.xmlsec.liberty.v11.RegisterNameldentifierResponse Class

This class represents the Regi st er Nanel dent i f i er Response element of the
Liberty protocol schema.

This example shows how to create a new Regi st er Nanel denti fi er Response
element and append it to a document.

Docunent doc = Instance of org.w3c.dom Docunent;
Regi st er Namel denti fi er Response rnir = new Regi st erNanel denti fi er Response(doc);
doc. get Docunent El enent () . appendChild(rnir);

This example shows how to obtain Regi st er Nanel denti fi er Response elements
from an XML document.

10-6 Developing Applications with Oracle Security Developer Tools

Oracle Liberty 1.1

Docunent doc = Instance of org.w3c.dom Docunent;

/1 Get list of all RegisterNaneldentifierResponse el ements in the document
NodeLi st rnirList = doc. getEl ement sByTagNaneNS(Li bertyURI. ns_|iberty,

"Regi st er Nanel denti f i er Response") ;
if (rnirList.getLength() == 0)

Systemerr.println("No RegisterNaneldentifierResponse el ements found.");

/1 Convert each org.w3c.dom Node object to an

/] oracle.security.xm sec.liberty.vll. RegisterNaneldentifierResponse
/| object and process

for (int s =0, n=rnirList.getLength(); s < n; ++s)

{
Regi st er Nanel dent i fi er Response rnir = new
Regi st er Nanel dent i fi er Response((El enent)rnirList.iten(s));
/'l Process RegisterNaneldentifierResponse el enent
}

10.2.2.2 Using Supporting Classes and Interfaces
This section describes supporting classes and interfaces of Oracle Liberty SDK v. 1.1.

The supporting classes and interfaces are:

* Using the oracle.security.xmlsec.liberty.v11.Libertylnitializer class

¢ The oracle.security.xmlsec.liberty.v11.Liberty URI interface

* Using the oracle.security.xmlsec.liberty.v11.ac. AuthenticationContextURI interface
* The oracle.security.xmlsec.util.ac. AuthenticationContextStatement class

® The oracle.security.xmlsec.saml.SAMLURI Interface

¢ The oracle.security.xmlsec.saml.SAMLMessage class

10.2.2.2.1 Using the oracle.security.xmlsec.liberty.v11.Libertylnitializer class

Theoracl e. security.xm sec.liberty.v1ll. Libertylnitializer class
handles load-time initialization and configuration of the Oracle Liberty SDK library.
You must call this class's statici ni ti al i ze() method before making any calls to the
Oracle Liberty SDK APL

10.2.2.2.2 The oracle.security.xmisec.liberty.vi1.LibertyURI interface

The oracl e. security. xnm sec.liberty.v1l. Li bertyURl interface defines
URI string constants for algorithms, namespaces and objects. The following naming
convention is used:

¢ Algorithm URIs begin with "al g_".
* Namespace URIs begin with "ns_"
* Object type URIs begin with "obj _".

"

e Liberty profile namespace URIs begin with "pr of _".

10.2.2.2.3 Using the oracle.security.xmisec.liberty.v11.ac.AuthenticationContextURI interface

Oracle Liberty SDK 10-7

Oracle Liberty 1.2

The

oracl e.security.xm sec.liberty.vll. ac. Aut henti cati onCont ext URI
interface defines URI string constants for algorithms, namespaces and objects. The
following naming convention is used:

"

¢ Algorithm URIs begin with "al g_".

"

e Namespace URIs begin with "ns_
* Object type URIs begin with "obj _".
10.2.2.2.4 The oracle.security.xmisec.util.ac.AuthenticationContextStatement class

The

oracl e.security.xm sec.util.ac. Aut henti cati onCont ext St at ement
class is an abstract class representing the top-level

Aut henti cati onCont ext St at ement element of the Liberty authentication context
schema. Each concrete implementation of this class represents a respective class
defined in the Liberty Authentication Context Specification.

10.2.2.2.5 The oracle.security.xmisec.saml.SAMLURI Interface

The or acl e. security. xnl sec. sam . SAMLURI interface defines URI string
constants for algorithms, namespaces and objects. The following naming convention is
used:

¢ Action namespace URIs defined in the SAML 1.0 specifications begin with
"action_"

* Authentication method namespace URIs defined in the SAML 1.0 specifications
begin with "aut henti cati on_net hod_".

¢ Confirmation method namespace URIs defined in the SAML 1.0 specifications
begin with "confi r mati on_net hod_".

"

e Namespace URIs begin with "ns_
10.2.2.2.6 The oracle.security.xmisec.saml.SAMLMessage class

The or acl e. security. xnl sec. sanl . SAMLMessage class is the base class for all
the SAML and SAML extension messages that may be signed and contain an XML-
DSIG structure.

10.2.3 The Oracle Liberty 1.1 API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains classes, interfaces, and the methods available in Oracle Liberty
SDK v1.1.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

10.3 Oracle Liberty 1.2

Oracle Liberty 1.2 conforms to the Liberty Alliance ID-FF 1.2 specifications. You can
setup your environment and use the classes and interfaces in Oracle Liberty 1.2 to
provide functionality as per the specifications.

10-8 Developing Applications with Oracle Security Developer Tools

Oracle Liberty 1.2

This section describes the classes and interfaces of Oracle Liberty 1.2, and explains
how to set up your environment and use Oracle Liberty 1.2.

It contains these sections:
® Setting Up Your Oracle Liberty 1.2 Environment
* Overview of Oracle Liberty 1.2 Classes and Interfaces

¢ The Oracle Liberty SDK 1.2 API Reference

10.3.1 Setting Up Your Oracle Liberty 1.2 Environment

You can setup Oracle Liberty 1.2 environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle Liberty 1.2, your system must have the Java Development Kit
(JDK) version 1.6 or higher. Also, make sure that your PATH environment variable
includes the Java bin directory.

Your CLASSPATH environment variable must contain the full path and file names to

all of the required jar and class files. Make sure the following items are included in
your CLASSPATH:

e osdt_core.jar
e osdt_cert.jar
e osdt_xnlsec.jar
e osdt_sam .jar

e Theorg.jaxen_1.1.1.jar file (Jaxen XPath engine, included with your Oracle
XML Security distribution)

e osdt _lib vi2.jar
For example your classpath may look like this:

setenv CLASSPATH $CLASSPATH: $ORACLE_HOVE/ modul es/ oracl e. osdt _11.1.1/osdt_core.jar:
$ORACLE_HOVE/ nodul es/ oracl e. osdt _11.1. 1/ osdt _cert.jar:

$ORACLE_HOVE/ nodul es/ or acl e. osdt _11. 1. 1/ osdt _xni sec.jar:

$ORACLE_HOVE/ modul es/ oracl e. osdt _11.1. 1/ osdt _saml .jar:

$ORACLE_HOVE/ nodul es/org.jaxen_1.1.1.jar:

$ORACLE_HOVE/ nodul es/ oracl e. osdt _11.1.1/osdt_lib_v12.jar

10.3.2 Overview of Oracle Liberty 1.2 Classes and Interfaces

Oracle Liberty 1.2 contains multiple core and supporting classes and interfaces. Useful
classes of Liberty 1.2 include assertion, request, response, authentication request/
response, and others.

This section introduces classes and interfaces of Oracle Liberty SDK v. 1.2. It contains
these topics:

e (Core Classes and Interfaces

® Supporting Classes and Interfaces

Oracle Liberty SDK 10-9

Oracle Liberty 1.2

10.3.2.1 Core Classes and Interfaces

This section describes core classes and interfaces of the Oracle Liberty SDK, v. 1.2.
The core classes are:

* Using the oracle.security.xmlsec.saml.Assertion class

¢ Using the oracle.security.xmlsec.samlp.Request class

* Using the oracle.security.xmlsec.samlp.Response class

¢ Using the oracle.security.xmlsec.liberty.v12. AuthnRequest class

* Using the oracle.security.xmlsec.liberty.v12. AuthnResponse class

¢ Using the oracle.security.xmlsec.liberty.v12.FederationTerminationNotification
class

* Using the oracle.security.xmlsec.liberty.v12.LogoutRequest class
¢ Using the oracle.security.xmlsec.liberty.v12.LogoutResponse class
* Using the oracle.security.xmlsec.liberty.v12.RegisterNameldentifierRequest class

e Using the oracle.security.xmlsec.liberty.v12.RegisterNameldentifierResponse class
10.3.2.1.1 Using the oracle.security.xmlsec.saml.Assertion class

The oracl e. security. xm sec. sanl . Asser ti on class represents the Assertion
element of the SAML Assertion schema.

This example shows how to create a new assertion element and append it to a
document.

Docunent doc = Instance of org.w3c.dom Docunent;
Assertion assertion = new Assertion(doc);
doc. get Docunent El enent (). appendChi | d(assertion);

This example shows how to obtain assertion elements from an XML document.

Document doc = Instance of org.w3c.dom Document;

Il Get list of all Assertion elements in the document
NodeLi st assrtlist =

doc. get El enent sByTagNaneNS(SAMLURI . ns_sanl, "Assertion");
if (assrtList.getLength() == 0)

Systemerr.printIn("No Assertion elenents found.");

/1 Convert each org.w3c.dom Node object to

/1 an oracle.security.xm sec.sanl . Assertion

/| object and process

for (int s =0, n=assrtList.getLength(); s < n; ++s)

{
Assertion assertion = new Assertion((El ement)assrtList.iten(s));
/'l Process Assertion el enent

}

10.3.2.1.2 Using the oracle.security.xmlisec.samip.Request class

10-10 Developing Applications with Oracle Security Developer Tools

Oracle Liberty 1.2

The oracl e. security. xm sec. sam p. Request class represents the Request
element of the SAML Protocol schema.

This example shows how to create a new Request element and append it to a
document.

Document doc = Instance of org.w3c.dom Docunent;
Request request = new Request(doc);
doc. get Docunent El enent (). appendChi | d(request);

This example shows how to obtain Request elements from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;

Il Get list of all Request elenents in the docunent
NodeLi st reqList =

doc. get El enent sByTagNaneNS(SAMLURI . ns_sani p, "Request");
if (reqList.getLength() == 0)

Systemerr.printIn("No Request elements found.");

/| Convert each org.w3c.dom Node object to an

/'l oracle.security.xm sec. sam p. Request

/] object and process

for (int s =0, n=reqList.getLength(); s < n; ++s)

{
Request request = new Request ((El ement)reqlList.iten(s));

/'l Process Request el enent

}

10.3.2.1.3 Using the oracle.security.xmlsec.samlp.Response class

The oracl e. security. xm sec. sam p. Response class represents the Response
element of the SAML Protocol schema.

This example shows how to create a new element and append it to a document.

Docunent doc = Instance of org.w3c.dom Docunent;
Response response = new Response(doc);
doc. get Docunent El enent () . appendChi | d(response) ;

This example shows how to obtain Response elements from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;

Il Get list of all Response elenments in the docunent
NodeLi st respList =

doc. get El enent sByTagNaneNS(SAMLURI . ns_sani p, "Response");
if (respList.getLength() == 0)

Systemerr.println("No Response el ements found.");

/1 Convert each org.w3c.dom Node object to an

/] oracle.security.xn sec.sam p. Response

/] object and process

for (int s =0, n=resplList.getlength(); s < n; ++s)
{

Response response = new Response((El enent)respList.iten(s));

/'l Process Response el ement

Oracle Liberty SDK 10-11

Oracle Liberty 1.2

10.3.2.1.4 Using the oracle.security.xmlsec.liberty.v12.AuthnRequest class

Theoracl e. security. xm sec. |iberty.v12. Aut hnRequest class represents
the Aut hnRequest element of the Liberty protocol schema.

This example shows how to create a new authorization request element and append it
to a document.

Docunment doc = Instance of org.w3c.dom Docunent ;
Aut hnRequest aut hnRequest = new Aut hnRequest (doc);
doc. get Docunent El enent () . appendChi | d(aut hnRequest) ;

This example shows how to obtain Aut hnRequest elements from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent ;

/1 Get list of all AuthnRequest elenents in the docunent
NodeLi st arlList = doc. get El ement sByTagNameNS(Li bertyURl . ns_liberty, "AuthnRequest");

if (arList.getlength() == 0)
Systemerr.println("No AuthnRequest el ements found.");

/1 Convert each org.w3c.dom Node object to

/1 an oracle.security.xm sec.|iberty.v12. Aut hnRequest
/| object and process

for (int s =0, n=arList.getLength(); s < n; ++s)

Aut hnRequest aut hnRequest = new Aut hnRequest ((El ement)arList.iten(s));

/1 Process AuthnRequest el ement

}

10.3.2.1.5 Using the oracle.security.xmlsec.liberty.v12.AuthnResponse class

Theoracl e. security. xm sec.|iberty.v12. Aut hnResponse class represents
the Aut hnResponse element of the Liberty protocol schema.

This example shows how to create a new authorization response element and append
it to a document.

Docunent doc = Instance of org.w3c.dom Docunent;
Aut hnResponse aut hnResponse = new Aut hnResponse(doc);
doc. get Docunent El enent () . appendChi | d(aut hnResponse) ;

This example shows how to obtain Aut hnResponse elements from an XML
document.

Docunment doc = Instance of org.w3c.dom Docunent ;

/1 Get list of all AuthnResponse el ements in the document.
NodeLi st arlList =

doc. get El ement sByTagNaneNS(Li bertyURI . ns_li berty, "AuthnResponse");
if (arlList.getlLength() == 0)

Systemerr.println("No AuthnResponse el enents found.");

/1 Convert each org.w3c.dom Node object to

/1 an oracle.security.xm sec.|iberty.v12. Aut hnResponse
/| object and process

for (int s =0, n=arList.getLength(); s < n; ++s)

{

10-12 Developing Applications with Oracle Security Developer Tools

Oracle Liberty 1.2

Aut hnResponse aut hnResponse =
new Aut hnResponse((El ement)arList.iten(s));

/'l Process AuthnResponse el enent

}

10.3.2.1.6 Using the oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class

The

oracl e.security.xm sec.liberty.v12. FederationTerm nationNotifica
t i on class represents the Feder at i onTer mi nati onNoti fi cati on element of the
Liberty protocol schema.

This example shows how to create a new federation termination notification element
and append it to a document.

Docunent doc = Instance of org.w3c.dom Docunent;
FederationTerm nationNotification ftn =

new FederationTerm nati onNoti fication(doc);
doc. get Docunent El enent () . appendChil d(ftn);

This example shows how to obtain federation termination notification elements from
an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;

Il Get list of all FederationTerm nationNotification elenents in the docunent
NodeLi st ftnList = doc. get El ement sByTagNanmeNS(Li bertyURI.ns_|iberty,
"FederationTerminationNotification");
if (ftnList.getLength() == 0)
Systemerr.println("No FederationTerninationNotification elements found.");

/| Convert each org.w3c.dom Node object to an

/] oracle.security.xmsec.liberty.v12. FederationTermninationNotification
/| object and process

for (int s =0, n=ftnList.getLength(); s < n; ++s)

{
FederationTernminati onNotification ftn = new
FederationTerm nationNotification((El ement)ftnList.iten(s));
/'l Process FederationTermi nationNotification el enent
}

10.3.2.1.7 Using the oracle.security.xmlsec.liberty.vi2.LogoutRequest class

Theoracl e. security. xm sec. |iberty.v12. Logout Request class represents
the Logout Request element of the Liberty protocol schema.

This example shows how to create a new element and append it to a document.

Docunent doc = Instance of org.w3c.dom Docunent;
Logout Request |r = new Logout Request (doc);
doc. get Docunent El enent () . appendChi I d(Ir);

This example shows how to obtain logout request elements from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;

/1 Get list of all LogoutRequest elements in the docunent
NodeLi st IrList =

Oracle Liberty SDK 10-13

Oracle Liberty 1.2

doc. get El enent sByTagNaneNS(Li bertyURI . ns_Ii berty, "LogoutRequest");
if (IrList.getLength() == 0)
Systemerr.println("No Logout Request el enents found.");

/1 Convert each org.w3c.dom Node object to

/1 an oracle.security.xmsec.liberty.v12. Logout Request
/] object and process

for (int s =0, n=IrList.getLength(); s < n; ++s)

{
Logout Request |Ir = new Logout Request ((El enment)IrList.iten(s));

/'l Process Logout Request el enent

}

10.3.2.1.8 Using the oracle.security.xmisec.liberty.vi2.LogoutResponse class

The oracl e. security.xm sec.|iberty.v12. Logout Response class
represents the Logout Response element of the Liberty protocol schema.

This example shows how to create a new logout response element and append it to a
document.

Docunent doc = Instance of org.w3c.dom Docunent;
Logout Response | r = new Logout Response(doc);
doc. get Docunent El enent () . appendChi I d(Ir);

This example shows how to obtain logout response elements from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;

/1 Get list of all LogoutResponse el ements in the document
NodeLi st IrList =

doc. get El ement sByTagNaneNS(Li bertyURI . ns_l i berty, "Logout Response");
if (IrList.getLength() == 0)

Systemerr.println("No Logout Response el enents found.");

/1 Convert each org.w3c.dom Node object to

/1 an oracle.security.xmsec.liberty.v12. Logout Response
/| object and process

for (int s =0, n=IrList.getLength(); s < n; ++s)

{

Logout Response | r = new Logout Response((El ement)IrList.iten(s));

/'l Process Logout Response el enent

}

10.3.2.1.9 Using the oracle.security.xmisec.liberty.vi2.RegisterNameldentifierRequest class

The

oracl e.security.xm sec.liberty.v12. Regi sterNanel dentifier Request
class represents the Regi st er Nanmel denti fi er Request element of the Liberty
protocol schema.

This example shows how to create a new Regi st er Narel denti fi er Request
element and append it to a document.

10-14 Developing Applications with Oracle Security Developer Tools

Oracle Liberty 1.2

Docunent doc = Instance of org.w3c.dom Docunent;
Regi st er Namel dent i fi er Request rnir = new Regi sterNanel dentifi er Request (doc);
doc. get Docunent El enent () . appendChi ld(rnir);

This example shows how to obtain Regi st er Nanel denti fi er Request elements
from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;

[l Get list of all
/'l Regi sterNanmel dentifierRequest el enents
/1 in the document
NodeLi st rnirList =
doc. get El enent sByTagNaneNS(Li bertyURI . ns_l i berty,
"Regi st er Nanel denti fi er Request");
if (rnirList.getLength() == 0)
Systemerr.println("No RegisterNaneldentifierRequest elements found.");

/1 Convert each org.w3c.dom Node object to a

/] oracle.security.xm sec.|iberty.v12. Regi sterNanel dentifierRequest
/| object and process

for (int s =0, n=rnirList.getLength(); s < n; ++s)

{
Regi ster Nanel denti fi erRequest rnir =
new Regi sterNanel dentifierRequest ((El ement)rnirList.iten(s));
/'l Process RegisterNanmeldentifierRequest el enent
}

10.3.2.1.10 Using the oracle.security.xmisec.liberty.v12.RegisterNameldentifierResponse class

The

oracl e.security.xm sec.liberty.v12. Regi sterNanel dentifierRespons
e class represents the Regi st er Nanel dent i fi er Response element of the Liberty
protocol schema.

This example shows how to create a new Regi st er Nanel denti fi er Response
element and append it to a document.

Docunent doc = Instance of org.w3c.dom Docunent;
Regi st er Nanel denti fi er Response rnir =

new Regi st er Nanel denti fi er Response(doc);
doc. get Docunent El enent () . appendChi l d(rnir);

This example shows how to obtain Regi st er Nanmel denti fi er Response elements
from an XML document.

Docunent doc = Instance of org.w3c.dom Docunent;

/1 Get list of all RegisterNaneldentifierResponse el ements in the document
NodeLi st rnirList =
doc. get El ement sByTagNaneNS(Li bertyURI . ns_li berty,
"Regi st er Nanel denti f i er Response");

if (rnirList.getLength() == 0)
Systemerr.println("No RegisterNaneldentifierResponse el ements found.");

/1 Convert each org.w3c.dom Node object to an

/1 oracle.security.xmsec.liberty.v12. RegisterNanel dentifierResponse
/] object and process

Oracle Liberty SDK 10-15

Oracle Liberty 1.2

for (int s =0, n=rnirList.getLength(); s < n; ++s)

{
Regi st er Nanel denti fi er Response rnir = new
Regi st er Nanel dent i fi er Response((El enent)rnirList.iten(s));
/'l Process RegisterNaneldentifierResponse el enent
}

10.3.2.2 Supporting Classes and Interfaces

This section describes supporting classes and interfaces of Oracle Liberty SDK v. 1.2:
e Theoracle.security.xmsec.|iberty.v12. Libertylnitializer class
e Theoracle.security.xm sec.liberty.v12. LibertyURl interface

e The
oracl e.security.xm sec.util.ac. Aut henti cati onCont ext St at emrent
class

e Theoracle.security.xm sec.sam . SAMLI nitializer class
e Theoracl e.security.xm sec. sam . SAMLURI interface

10.3.2.2.1 The oracle.security.xmisec.liberty.v12.Libertylnitializer class

This class handles load-time initialization and configuration of the Oracle Liberty SDK
1.2 Iibrary. You must call this class's statici ni ti al i ze() method before making any
calls to the Oracle Liberty SDK 1.2 APL

10.3.2.2.2 The oracle.security.xmlisec.liberty.vi2.LibertyURI interface
This interface defines URI string constants for algorithms, namespaces, and objects.
10.3.2.2.3 The oracle.security.xmisec.util.ac.AuthenticationContextStatement class

This is an abstract class representing the top-level

Aut henti cati onCont ext St at erent element of the Liberty authentication context
schema. Each concrete implementation of this class represents the respective class
defined in the Liberty Authentication Context Specification.

10.3.2.2.4 The oracle.security.xmlsec.saml.SAMLInitializer class

This class handles load-time initialization and configuration of the Oracle SAML
library. You should call this class's statici ni ti al i ze(int major, int mnor)
method, for version 1.1, before making any calls to the Oracle SAML Toolkit API for
SAML 1.1.

10.3.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface

The oracl e. security. xm sec. sanl . SAMLURI interface defines URI string
constants for algorithms, namespaces, and objects. The following naming convention
is used:

® Action Namespace URIs defined in the SAML 1.1 specifications begin with
"action_"

10-16 Developing Applications with Oracle Security Developer Tools

Oracle Liberty 1.2

* Authentication Method Namespace URIs defined in the SAML 1.1 specifications
begin with "aut hent i cat i on_net hod_"

¢ Confirmation Method Namespace URIs defined in the SAML 1.1 specifications
begin with "confi r mati on_net hod_"

"

* Namespace URIs begin with "ns_
10.3.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage Class

oracl e. security.xm sec. sam . SAM_LMessage is the base class for all the SAML
and SAML extension messages that may be signed and contain an XML-DSIG
structure.

10.3.3 The Oracle Liberty SDK 1.2 API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in Oracle Liberty
SDK v1.2 APL

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Oracle Liberty SDK 10-17

Oracle Liberty 1.2

10-18 Developing Applications with Oracle Security Developer Tools

11

Oracle XKMS

XKMS (XML Key Management Specification) is a W3C specification for public key
management. Oracle XKMS API conforms to this specification. It provides a
convenient way to handle public key infrastructures by enabling developers to write
XML transactions for digital signature processing.

This chapter contains these topics:

¢ Understanding Oracle XKMS Features and Benefits
* Setting Up Your Oracle XKMS Environment

¢ Core Classes and Interfaces

e The Oracle XKMS Java API Reference

11.1 Understanding Oracle XKMS Features and Benefits

Oracle XKMS is a pure Java solution which consists of a toolkit for locating keys and
verifying user identities across businesses and applications. It supports the secure,
trusted messaging required for web services, and provides a way to sidestep some of
the costs and complexity associated with PKI.

Oracle XKMS provides the following features:

¢ Simplified access to PKI functionality - by implementing the W3C XKMS Standard,
Oracle XKMS combines the simplicity of XML with the robustness of PKI. With this
toolkit, developers can easily deploy robust application functionality by deploying
secure, lightweight client software.

* Supports complete key/ certificate life cycle - Oracle XKMS helps enterprise
applications locate, retrieve, and validate signature and encryption keys using
lightweight Web Services infrastructure.

¢ Secures XKMS messages using XML Signatures - requests and responses can be
digitally signed using Oracle XML toolkit.

* 100% Java with no native methods

¢ Works with JAXP 1.1 compliant XML parsers

The Oracle XKMS library contains the following packages:

Table 11-1 Packages in the Oracle XKMS Library
- -]

Package Description

oracl e.security. xnm sec. xkns Contains the main XKMS message elements

Oracle XKMS 11-1

Setting Up Your Oracle XKMS Environment

Table 11-1 (Cont.) Packages in the Oracle XKMS Library
. __|

Package Description

oracle.security.xnl sec. xkms. xki ss Contains the classes for the Key Information
Service Specification

oracl e. security. xm sec. xkns. xkr ss Contains the classes for the Key Registration
Service Specification

oracle.security.xnl sec. xkns. util Contains constants and utility classes

11.2 Setting Up Your Oracle XKMS Environment

You can setup Oracle XKMS environment by installing Oracle Security Developer
Tools and Java Development Kit (JDK), and setting the CLASSPATH variable to all of
the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle XKMS, your system must have the following components
installed:

* The Java Development Kit (JDK) version 1.6 or higher

¢ the Oracle XML Security toolkit

Your CLASSPATH environment variable must contain the full path and file names to
the required jar and class files. Make sure that the following files are included in your
CLASSPATH:

e osdt_core.jar
e osdt_cert.jar
e osdt_xnlsec.jar

e org.jaxen_1.1.1.jar,which islocated in the $ORACLE_HOVE/ nodul es/
directory of the security tools distribution. Oracle XML Security relies on the Jaxen
XPath engine for XPath processing.

For example, your CLASSPATH might look like this:

C. %0RACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _core.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _cert.jar;
9%ORACLE_HOVE% nodul es\ oracl e. osdt _11. 1. 1\ osdt _xnl sec.j ar;
9%ORACLE_HOMVE% nodul es\org.jaxen_1.1.1.jar;

See Also:

Setting the CLASSPATH Environment Variable

11.3 Core Classes and Interfaces

Core classes of Oracle XKMS enable you to locate, validate, and recover message
requests and results. You can refer the code samples to use the core classes and
interfaces of Oracle XKMS.

11-2 Developing Applications with Oracle Security Developer Tools

Core Classes and Interfaces

The core classes are:

¢ oracle.security.xmlsec.xkms.xkiss.LocateRequest

* Using the oracle.security.xmlsec.xkms.xkiss.LocateResult Class

¢ Using the oracle.security. xmlsec.xkms.xkiss.ValidateRequest Class
* Using the oracle.security.xmlsec.xkms.xkiss.ValidateResult Class

* Using the oracle.security.xmlsec.xkms.xkrss.RecoverRequest Class

® Using the oracle.security.xmlsec.xkms.xkrss.RecoverResult Class

11.3.1 oracle.security.xmlsec.xkms.xkiss.LocateRequest

The oracl e. security. xm sec. xknms. xki ss. Locat eRequest class represents
the XKMS Locat eRequest element. You can refer examples and create an instance of
Locat eRequest, and attach RespondW t h attribute to Locat eRequest .

/| Parse the XM. docunent containing the dsig: Signature.
Docunent sigbDoc = //lnstance of org.w3c.dom Docunent;

[/ Create Query Key Binding
Quer yKeyBi ndi ng quer yKeyBi ndi ng = new Quer yKeyBi ndi ng(si gDoc) ;
quer yKeyBi ndi ng. set Ti mel nst ant (new Date());

/] Create the xkms: Locat eRequest .
Locat eRequest | oc = new Locat eRequest (si gDoc, queryKeyBi ndi ng);

Client requests of type Locat eRequest must include an xknms: RespondW t h
attribute.
This example shows how RespondW t h can be added to a Locat eRequest :

[/ Add xkns: RespondWth as X 509 Certificate.
| oc. addRespondW t h(XKMSURI . r espondW t h_X509Cert) ;

11.3.2 Using the oracle.security.xmlsec.xkms.xkiss.LocateResult Class

oracl e. security.xm sec. xknms. xki ss. Locat eResul t class represents the
xkms: Locat eResul t element. You can create an instance of Locat eResul t
element. If the Locat eRequest contains a RespondW t h attribute of
X509Certificate, you can add an X509 Certificate to the Locat eResul t element.

Example:

[/ Parse the XM. docunent containin the dsig:Signature
Docunent sigDoc = //Instance of org.w3c.doc. Docunent;

Il Create the xkns: Locat eResul t
LocateResult | ocRes = new Locat eResul t (sigDoc);

//Set ResultMajor to Success.
| ocRes. set Resul t Code(XKMSURI . resul t _naj or _success, null);

If the Locat eRequest contained a RespondW t h attribute of X509Cer ti fi cate,
use the following code to add an X509 Certificate to the Locat eResul t :

/I Creating a signature and adding X509 certificate to the Keylnfo el enent.
X509Certificate userCert = // Instance of java.security.cert.X509Certificate
XSSi gnature Sig = XSSi gnat ure. new nstance(si gDoc, "MSignature");

Oracle XKMS 11-3

Core Classes and Interfaces

XSKeyl nfo xsInfo = sig.getKeylnfo();
X509Dat a xData = xslnfo. createX509Dat a(user Cert);

/1 Add X509Data to the Keylnfo
xsl nf o. addKeyl nf oDat a(xDat a) ;

//Set Key Binding and add Keylnfo the the KeyBinding
Unveri fi edKeyBi ndi ng keyBi ndi ng = new Unveri fi edKeyBi ndi ng(si gDoc) ;
keyBi ndi ng. set Keyl nf o(xsl nfo);

[/ Add Key Binding to LocateResult
| ocRes. addKeyBi ndi ng(keyBi ndi ng) ;

11.3.3 Using the oracle.security.xmlsec.xkms.xkiss.ValidateRequest Class

The oracl e. securi ty. xml sec. xkns. xki ss. Val i dat eRequest class
represents the XKMS xkns: Val i dat eRequest element. With this class you can
create an instance of xkns: Val i dat eRequest element.

This example shows how to create an instance of xkis: Val i dat eRequest :

/| Parse the XM. docunent containing the dsig:Signature.
Docunent sigDoc = //Instance of org.w3c.dom Docunent;

[/ Create Query Key Binding
Quer yKeyBi ndi ng quer yKeyBi ndi ng = new Quer yKeyBi ndi ng(si gDoc) ;
quer yKeyBi ndi ng. set Ti mel nst ant (new Date());

/1 Create the xkms: Validat eRequest.
Val i dat eRequest val i dateReq = new Val i dat eRequest (si gDoc, queryKeyBi nding);

Requests of type Val i dat eRequest must include an xkns: RespondW t h attribute.
This example shows how to add RespondW t h to a Val i dat eRequest :

/1 Add xkns: RespondWth as X 509 Certificate.
val i dat eReq. addRespondW t h(XKMSUR! . r espondW t h_X509Cert);

11.3.4 Using the oracle.security.xmlsec.xkms.xkiss.ValidateResult Class

With the or acl e. security. xm sec. xkis. xki ss. Val i dat eResul t class, you
can create an instance of Val i dat eResul t . You can also set a status in response to a
Val i dat eRequest .

This example shows how to create an instance of Val i dat eResul t:

/[Parse the XML docunent containin the dsig: Signature
Docunent sigDoc = //Instance of org.w3c.doc. Docunent;

/] Create the xkns: ValidateResult
Val i dat eResult val Res = new Val i dat eResul t (si gDoc);

//Set ResultMajor to Success.
val Res. set Resul t Code(XKMSURI . resul t _maj or _success, null);

Use the following code to set a status in response to a Val i dat eRequest :

//Create a status element and add reasons.

Status responseStatus = new Status(sigDoc);

responseSt at us. addVal i dReason(XKMBUR! . r easonCode_| ssuer Trust) ;
responseSt at us. addVal i dReason(XKMBUR! . r easonCode_Revocat i onSt at us) ;
responseSt at us. addVal i dReason(XKMSURI . r easonCode_Val i di tyl nterval);
responseSt at us. addVal i dReason(XKMSURI . r easonCode_Si gnat ure) ;

11-4 Developing Applications with Oracle Security Developer Tools

Core Classes and Interfaces

[/ Create a xkns: KeyBinding to add status and X509Dat a
XSKeyl nfo xsInfo =
/'l Instance of oracle.security.xm sec.dsig. XSKeyl nfo,
/1 which contains X509Dat a
KeyBi ndi ng keyBi ndi ng = new KeyBi ndi ng(si gDoc) ;
keyBi ndi ng. set St at us(responseSt at us) ;
keyBi ndi ng. set Keyl nf o(xsl nfo);

/1 Add the key binding to the ValidateResult.
val Res. addKeyBi ndi ng(keyBi ndi ng) ;

11.3.5 Using the oracle.security.xmlsec.xkms.xkrss.RecoverRequest Class

The oracl e. security. xm sec. xkims. xkr ss. Recover Request class represents
the XKMS Recover Request element. With this class, you can create an instance of
Recover Request . You can also add the Aut hent i cati on and

Recover KeyBi ndi ng elements to Recover Request .

This example shows how to create an instance of Recover Request :

/| Parse the XM. docunent containing the dsig:Signature.
Docunent sigDoc = //Instance of org.w3c.dom Docunent;

/] Create the xkns: Recover Request
Recover Request recReq = new Recover Request (si gDoc);

/1 Set RespondWth to PrivateKey, so that the RecoverResult
contains the private key.
recReq. addRespondW t h(XKMSUR! . r espondW t h_Pri vat eKey) ;

A Recover Request must include the Aut hent i cat i on and Recover KeyBi ndi ng
elements. These can be added with the following code:

//Create an instance of XSSignature.
XSSignature sig =
//1nstance of oracle.security.xn sec.dsig. XSSi gnature

/I Create an instance of Authentication el ement.
Aut hentication auth = new Aut henti cation(sigDoc);

/1 Set key binding authentication.
aut h. set KeyBi ndi ngAut hent i cati on(sig);

//Set Authentication for the RecoverRequest.
recReq. set Aut henti cation(auth);

/1 Add Recover KeyBinding to Recover Request.
Recover KeyBi ndi ng recKeyBi nd = new Recover KeyBi ndi ng(si gDoc) ;

/1 Add Key Info on the key to be recovered.
XSKeyl nfo xsinfo =

[/1nstance of oracle.security.xn sec.dsig. XSKeyl nfo
recKeyBi nd. set Keyl nf o(xsl nfo);

[/ Adding status, as known to the key hol der, to the KeyBinding
Status keyStatus = new Status(sigDoc);

keySt at us. set St at usVal ue(XKMSURI . kbs_I ndet er mi nat e) ;

recKeyBi nd. set St at us(keyStatus);

Oracle XKMS 11-5

Core Classes and Interfaces

/1 Addi ng Recover KeyBi ndi ng to Recover Request.
recReq. set KeyBi ndi ng(recKeyBi nd) ;

11.3.6 Using the oracle.security.xmlsec.xkms.xkrss.RecoverResult Class

The or acl e. security. xnl sec. xkns. xkr ss. Recover Resul t class represents
the xknms: Recover Resul t element. With this class, you can create an instance of
Recover Resul t . You can set KeyBi ndi ng for Recover Resul t . You can also set
the recovered Pri vat eKey into the Recover Resul t.

This example shows how to create an instance of Recover Resul t :

/| Parse the XM. docunent containing the dsig:Signature.
Docunent sigDoc = //Instance of org.w3c.dom Docunent;

/1 Create the xkms: Recover Resul t
RecoverResult recResult = new RecoverResul t(sigDoc);

//Set ResultMajor to Success.
recResul t. set Resul t Code(XKMSURI . resul t _maj or _success, null);

The KeyBi ndi ng needs to be set for a Recover Resul t . You can accomplish this
with the following code:

//Create a xkns: KeyBinding to add status and X509Dat a
XSKeyl nfo xsinfo =
//1nstance of oracle.security.xn sec.dsig. XSKeyl nfo,
[/ which contains X509Dat a
KeyBi ndi ng keyBi ndi ng = new KeyBi ndi ng(si gDoc) ;
keyBi ndi ng. set Keyl nf o(xsl nfo);

/I Create a status el ement and add reasons.
//Status is set to Invalid because the service can decide
//to revoke the key binding in the case of recovery.

Status responseStatus = new Status(sigDoc);

responseSt at us. addl nval i dReason(XKMSURI . r easonCode_| ssuer Trust);
responseSt at us. addl nval i dReason(XKMSURI . r easonCode_Revocat i onSt at us) ;
responseSt at us. addl nval i dReason(XKMSURI . r easonCode_Val i ditylnterval);
responseSt at us. addl nval i dReason(XKMSURI . r easonCode_Si gnat ure) ;
responseSt at us. set St at usVal ue(XKMSUR! . kbs_I nval i d);

keyBi ndi ng. set St at us(responseSt at us) ;

/1 Set KeyBinding into RecoverResul t
recResul t. addKeyBi ndi ng(keyBi ndi ng) ;

Finally, this example shows how to set the recovered Pr i vat eKey into the
Recover Resul t:

//Create an Instance of dsig: XEEncrypt edDat a
XEEncrypt edData encryptedData = //1nstance of
oracl e. security.xn sec. enc. XEEncr ypt edDat a

//Create an instance of oracle.security.xm sec.xkms. xkrss. Privat eKey
PrivateKey privKey = new PrivateKey(sigDoc);
privKey. set Encrypt edDat a(encrypt edDat a) ;

[/ Add PrivateKey to RecoverResult
recResul t. set Privat eKey(privKey);

11-6 Developing Applications with Oracle Security Developer Tools

The Oracle XKMS Java API Reference

11.4 The Oracle XKMS Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes, interfaces, and methods available in Oracle XKMS
APIL.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Oracle XKMS 11-7

The Oracle XKMS Java API Reference

11-8 Developing Applications with Oracle Security Developer Tools

12

Oracle JSON Web Token

Oracle JSON Web Token APl is a full Java solution that provides extensive support for
JSON Web Token (JWT). You can use the API to construct Base64url encoded tokens
and set the token's header and claim parameter values, parse and verify tokens, and
sign and serialize tokens.

Oracle JSON Web Token, introduced in Release 11g, provides support for the JSON
Web Token (JWT) standard.

¢ Oracle JSON Web Token Features and Benefits

* Setting Up Your Oracle JSON Web Token Environment
e Using Core Classes and Interfaces

¢ Examples of Oracle JSON Web Token Usage

e The Oracle JSON Web Token Java API Reference

12.1 Oracle JSON Web Token Features and Benefits

JSON Web Token (JWT) represents claims to be transferred between two parties. JWT
is a compact token format intended for space- constrained environments such as HTTP
Authorization headers and URI query parameters. You can use the API to construct
Base64url encoded tokens and set the token's header and claim parameter values,
parse and verify tokens, and sign and serialize tokens.

This section introduces JWT concepts and key features of Oracle JSON Web Token.
e About JSON Web Token

e QOracle JSON Web Token Features

12.1.1 About JSON Web Token

JSON Web Token (JWT) represents claims to be transferred between two parties. JWT
is a compact token format intended for space- constrained environments such as HTTP
Authorization headers and URI query parameters. A JSON object is digitally signed
using a JSON Web Signature (JWS) and optionally encrypted using JSON Web
Encryption (JWE).

The claims in a JWT are encoded as a JSON object that is base64url encoded and
consists of zero or more name/value pairs (or members), where the names are strings

and the values are arbitrary JSON values. Each member is a claim represented by the
JWT.

The JWT is represented as the concatenation of three segments:

* JWT Header Segment describes the cryptographic operations applied to the token.

Oracle JSON Web Token 12-1

Setting Up Your Oracle JSON Web Token Environment

* JWT Claim Segment encodes the claims contained in the JWT.

* JWT Crypto Segment contains the cryptographic material that secures the contents
of the token.

The segments are separated by period ('.") characters. All three segments are always
Base64url encoded values.

See Also:

JSON Web Token IETF draft document athttp://tool s.ietf.org/
htm /draft-jones-json-web-token-05.

12.1.2 Oracle JSON Web Token Features

You can use the API to construct Base64url encoded tokens and set the token's header
and claim parameter values, parse and verify tokens, and sign and serialize tokens.

Oracle JSON Web Token is a full Java solution that provides extensive support for
JWT tokens. You can use the API to:

¢ construct Base64url encoded tokens and set the token's header and claim parameter
values, including user-defined headers

¢ parse and verify tokens

¢ sign and serialize tokens

The oracle.security jwt.JwtToken class represents the JSON Web Token (JWT).
Representative methods of oracle.security jwt.JwtToken include:

¢ setAlgorithm(String), getAlgorithm()
¢ signAndSerialize(PrivateKey)
¢ serializeUnsigned()

* claim methods such as setPrincipal(String), getPrincipal(), getlIssuer()

For details, see the tables of header and claim parameter names and corresponding
get/set methods in the Javadoc.

See Also:

The Oracle JSON Web Token Java API Reference.

12.2 Setting Up Your Oracle JSON Web Token Environment

You can setup Oracle JSON Web Token environment by installing Oracle Security
Developer Tools and Java Development Kit (JDK), and setting the CLASSPATH
variable to all of the required jar and class files.

The Oracle Security Developer Tools are installed with Oracle WebLogic Server in
ORACLE_HOME.

In order to use Oracle JSON Web Token, your system must have the Java
Development Kit (JDK) version 1.6 or higher.

12-2 Developing Applications with Oracle Security Developer Tools

http://tools.ietf.org/html/draft-jones-json-web-token-05
http://tools.ietf.org/html/draft-jones-json-web-token-05

Using Core Classes and Interfaces

Your CLASSPATH environment variable must contain the full path and file names to
all of the required jar and class files. Make sure the following items are included in
your CLASSPATH:

e osdt_core.jar file
e osdt_cert.jar file
e jackson-core-1.1.1.jar file

e jackson-mapper-1.1.1.jar file
For example, your CLASSPATH might look like this:

setenv CLASSPATH $CLASSPATH:

$ORACLE_HOWE/ nodul es/ oracl e. osdt _11. 1. 1/ osdt _core.jar:
$ORACLE_HOWE/ nodul es/ oracl e. osdt _11.1. 1/ osdt _cert.jar:
$Jackson. library. path/jackson-core-1.1.1.jar

$Jackson. library. path/jackson-mapper-1.1.1.jar

At run-time, the following locations are searched for the Jackson jars:

1. If present, the jars are loaded from the system class path.

2. If the jars are not present in the system class path, the system property
Jackson. li brary. pat h is examined. If present, the jars are loaded from that
location for both Java SE and Java EE clients.

3. If the system property Jackson. | i brary. pat h is not set or the Jackson jars are
not found there, they are picked up from the predefined location $ORACLE _HOME/
nmodul es (for Java EE environment) and from the present directory (for Java SE
client).

See Also:

Setting the CLASSPATH Environment Variable

12.3 Using Core Classes and Interfaces

The Oracle JSON Web Token consists of the oracle.security.restsec.jwt.JwtToken class.
Key functions by this class include constructing a JWT token, setting the parameter
values of the JWT token, signing the token, verifying the token, and token
serialization.

Examples of Oracle JSON Web Token Usage demonstrates how to use Oracle JSON
Web Token.

12.4 Examples of Oracle JSON Web Token Usage

You can refer the examples of constructing a JWT token, signing the token, verifying
the token, and serializing the token without signing to know how to use Oracle JSON
Web Token.

This section provides some examples of using Oracle JSON Web Token.
* Creating the JWT Token

e Signing the JWT Token

Oracle JSON Web Token 12-3

Examples of Oracle JSON Web Token Usage

* Verifying the JWT Token

e Serializing the JWT Token without Signing

Note:

These are specific examples to demonstrate how to use Oracle JSON Web
Token. For details and other options for using the methods described here, see
the JWT javadoc (The Oracle JSON Web Token Java API Reference).

12.4.1 Creating the JWT Token

Creating the JWT token involves creating the object itself, then setting header and
claim parameters as needed.

The steps are as follows:

1. To create a JWT token, begin by using the constructor method JwtToken() to create
a JwtToken object.

Jwt Token jwt Token = new Jwt Token();
You can use various setter methods to set the parameter values of the JWT token.

2. To set header parameters, the header parameter al g must first be set; use the
setAlgorithm(String) and getAlgorithm() methods, respectively, to set and get this
parameter. By default, the al g parameter is set to "none" implying that you do not
want to sign the token.

Use the set Header Par amet er (String, Object) method to set a user-defined
header parameter in the JWT header segment.

3. Oracle JSON Web Token provides methods to set claim parameters exp, iat, iss,
aud, prn. All the claim parameters are optional.

Use the setClaimParameter(String, Object) method to set the user-defined claim
parameter in the JWT claim segment.

12.4.2 Signing the JWT Token

Signing a token involves actions such as creating a token instance, setting token
parameters, and finally signing the token.

The steps are as follows:

1. Create and sign the JWT token, by first creating the instance of the JwtToken class:
Jwt Token jwt Token = new Jwt Token(String);

2. Next set the parameters like algorithm, issuer, expiry time, other claims and so on:

j wt Token. set Al gorit hn{ Jwt Token. SI GN_ALGORI THM HS256. t oString());
j wt Token. set Type(Jwt Token. JWI) ;

j wt Token. set | ssuer ("ny. conpany. cont');

j wt Token. set Pri nci pal ("] ohn. doe");

3. Finally obtain the private key and sign the token with a secret key or private key:

PrivateKey privateKey ;
String jwtString = jw Token. si gnAndSeri al i ze(privat eKey);

12-4 Developing Applications with Oracle Security Developer Tools

The Oracle JSON Web Token Java AP Reference

12.4.3 Verifying the JWT Token

Verifying a token involves actions such as reading the token from the HTTP header,
checking the token issuer, and so on.

This example code verifies the expiry date and token issuer:

/1 Read the JWI token as a String from HTTP header
String jwtStr = "eyJ.eyJp.dB';
Jwt Token token = new Jwt Token(jwt Str);

/1 Validate the issued and expiry time stanp.
if (token.getExpiryTime().after(new Date())) {

[l Get the issuer fromthe token
String issuer = token.getlssuer();

12.4.4 Serializing the JWT Token without Signing

If the JWT token is not required to be digitally signed, you can serialize the token
without signing.

Example:

Jwt Token jwt Token = new Jwt Token();

j wt Token. set Type(Jwt Token. JWI) ;

j wt Token. set I ssuer ("ny. exanpl e. cont') ;

j wt Token. set Princi pal ("j ohn. doe");

String jwString = jw Token. serial i zeUnsi gned();

12.5 The Oracle JSON Web Token Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in the Oracle JSON Web Token
APIL.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Oracle JSON Web Token 12-5

The Oracle JSON Web Token Java AP| Reference

12-6 Developing Applications with Oracle Security Developer Tools

A

Migrating to the JCE Framework

The Oracle Security Developer Tools framework introduced changes to low-level
libraries starting in 11g Release 1 to comply with the Java Cryptography Extension
(JCE) framework. The changes affected both client programs and higher-level libraries
of the Oracle Security Developer Tools. You can migrate your legacy programs to
leverage the JCE functions.

This chapter describes how the changes affected the toolkit architecture, and explain
how you can migrate your legacy programs to leverage the JCE functions. It contains
these topics:

e About The JCE Framework

* Understanding JCE Keys

¢ Converting Between OSDT Key Objects and JCE Key Objects
¢ Working with JCE Certificates

e Working with JCE Certificate Revocation Lists (CRLs)

¢ Using JCE Keystores

e The Oracle JCE Java API Reference

A.1 About The JCE Framework

Prior to Oracle Fusion Middleware 11g, Oracle Security Developer Tools used a
cryptographic engine that was developed prior to the adoption of JCE in the market.
To enable applications (including Oracle WebLogic Server) to continue their move to
adopt JCE, the Oracle Security Developer Tools have standardized on low-level
libraries that are compliant with the Java Cryptography Extension (JCE) framework
with Oracle Fusion Middleware 11g.

Benefits of the JCE framework include:

¢ standards-based implementations of cryptographic and certificate management
engines

¢ apluggable JCE provider architecture that enables you to leverage third-party JCE
provider implementations

¢ the ability to use third-party providers as the cryptographic engine
Additional Reading

This chapter’s primary focus is on the changes to the Oracle Security Developer Tools
for the JCE framework, and how to migrate your existing security artifacts to JCE
objects.

Migrating to the JCE Framework A-1

Understanding JCE Keys

A.2 Understanding JCE Keys

As of Release 11gR1, the higher level toolkits (Oracle XML Security, Oracle Web
Services Security, Oracle CMS, Oracle S/MIME, Oracle XKMS) have changed so that
instead of taking Oracle cryptographic keys and certificates, they take standard JCE
keys and certificates.

Thus, APIs that were taking:
oracl e. security.crypto.core. PublicKey
now take a:

java. security. PublicKey

Note:

This discussion highlights changes in the Oracle Security Developer Tools in
support of JCE. For fuller details of all the available cryptographic functions,
see the API documentation.

e oracle.security.crypto.core. PublicKey changed to
j ava. security. PublicKey

e oracle.security.crypto.core. PrivateKey changed to
java.security. Privat eKey

e oracle.security.crypto.core. Symretri cKey changed to
j avax. crypt o. Secr et Key

A.3 Converting Between OSDT Key Objects and JCE Key Objects

You can convert keys from Oracle Security Developer Tools (OSDT) objects to JCE
objects and vice versa.

If you are using a java.security.KeyStore to store your keys, you will directly get a
java.security.PrivateKey object from it, so you do not need to do any conversion.

However if you are using a oracle.security.crypto.cert. PKCS12 object to store your
keys, you will get an oracle.security.crypto.core.PrivateKey from it, and then you need
to convert to a java.security.PrivateKey object.

A.3.1 Converting a Private Key from OSDT to JCE Object

You can convert keys in Oracle Security Developer Tools (OSDT) format to JCE
objects.

Here is an example:

[[***** Conversion of PrivateKeys from OSDT -> JCE ******x

{

/| Exanple code to convert an RSAPrivateKey (non CRT) to JCE
oracl e.security.crypto.core. RSAPrivat eKey osdtKey = null;
RSAPri vat eKeySpec keySpec = new RSAPri vat eKeySpec(

osdt Key. get Modul us(), osdt Key. get Exponent ());

KeyFactory kf = KeyFactory. getlnstance("RSA");

RSAPri vat eKey jceKey = (RSAPrivat eKey)kf. generat ePri vat e(keySpec);
}

A-2 Developing Applications with Oracle Security Developer Tools

Converting Between OSDT Key Objects and JCE Key Objects

{
/| Exanpl e code to convert an RSAPrivateKey (CRT) to JCE

oracl e.security.crypto.core. RSAPrivat eKey osdtKey = null;
RSAPri vat eKeySpec keySpec = new RSAPri vat eCrt KeySpec(
osdt Key. get Mbdul us(),

osdt Key. get Publ i cExponent (),

osdt Key. get Exponent (),

osdt Key. get Pri meP(),

osdt Key. get Primeq(),

osdt Key. get Pri meExponent P(),

osdt Key. get Pri meExponent (),

osdt Key. get Crt Coefficient());

KeyFactory kf = KeyFactory. getlnstance("RSA");
RSAPrivateCrtKey jceKey = (RSAPrivateCrtKey)kf.generatePrivate(keySpec);

}

{
/1 Exanmple code to convert a DSAPrivateKey to JCE

oracl e.security.crypto.core. DSAPrivat eKey osdtKey = null;
DSAPri vat eKeySpec keySpec = new DSAPri vat eKeySpec(

osdt Key. get X(),

osdt Key. get Parans(). get P(),

osdt Key. get Parans(). get Q),

osdt Key. get Parans(). getQq));

KeyFactory kf = KeyFactory. getlnstance("DSA");
DSAPri vat eKey jceKey = (DSAPrivat eKey)kf. generat ePri vat e(keySpec);

}

{
/1 Exanple code to convert a DHPrivateKey to JCE

oracl e.security.crypto.core. DHPrivat eKey osdtKey = null;

/1 Note q is assuned to be (p-1)/2

DHPr i vat eKeySpec keySpec = new DHPri vat eKeySpec(
osdt Key. get X(),

osdt Key. get Parans(). get P(),

osdt Key. get Parans().getQq));

KeyFactory kf = KeyFactory.getlnstance("DiffieHel man");
DHPri vat eKey jceKey = (DHPrivat eKey)kf. generat ePri vat e(keySpec);

}
A.3.2 Converting a Private Key from JCE Object to OSDT Object

You can convert private key objects from JCE to OSDT format.
Here is an example:

[[***** Conversion or Private Keys fromJCE -> OSDT *****x*

{

/1 Exanple code to convert an RSAPrivateKey (non CRT) to OSDT
RSAPri vat eKey jceKey = null;

oracl e.security.crypto.core. RSAPrivat eKey osdtKey =

new oracl e. security.crypto.core. RSAPri vat eKey(

j ceKey. get Modul us(),

j ceKey. get Pri vat eExponent ());

}

Migrating to the JCE Framework A-3

Working with JCE Certificates

{
/1 Exanple code to convert an RSAPrivateKey (CRT) to OSDT

RSAPrivateCrtKey jceKey = null;

oracl e.security.crypto.core. RSAPrivat eKey osdtKey =
new oracl e. security.crypto.core. RSAPri vat eKey(
j ceKey. get Modul us(),

j ceKey. get Pri vat eExponent (),

j ceKey. get Publ i cExponent (),

j ceKey. get PrimeP(),

j ceKey. get PrimeQ),

j ceKey. get Pri meExponent P(),

j ceKey. get Pri meExponent Q),

jceKey. getCrtCoefficient());

}

{
/'l Exanple code to convert an DSAPrivateKey to OSDT

DSAPri vat eKey jceKey = null;

oracl e.security.crypto.core. DSAPrivat eKey osdtKey =
new oracl e. security.crypto.core. DSAPri vat eKey(

j ceKey. get X(),

new oracl e. security.crypto.core. DSAPar anms(

j ceKey. get Params() . get P(),

j ceKey. get Params() . getQ),

j ceKey. get Params().getQd)));

}

{
/1 Exanple code to convert an DHPrivateKey to OSDT

DHPri vat eKey jceKey = null;

/1 Note calculate q = (p-1)/2

oracl e.security.crypto.core. DHPrivat eKey osdtKey =

new oracl e. security.crypto.core. DHPri vat eKey(

j ceKey. get X(),

new oracl e. security.crypto.core. DHPar ans(

j ceKey. get Params() . get P(),

j ceKey. get Params() . get),

j ceKey. get Params(). get P().subtract(new Biglnteger("1")).divide(new
Biglnteger("2"))));

}

A.4 Working with JCE Certificates

As of Release 11gR1, or acl e. securi ty. crypto. cert. X509 is changed to
java.security.cert.X509Certificat e.Several utility methods are available
for creating and working with JCE certificates. An X509Certificate object can be
created from an input stream using java.security.cert.CertificateFactory.

The input stream can be one of the following:
¢ a FileInputSream, if the certificate is stored in a file, or
* a ByteArrayInputStream, if we got the encoded bytes from an old X509 object, or

¢ any other sources.

For example, the following code converts an Oracle Security Developer Tools
certificate to a JCE certificate:

CertificateFactory cf = CertificateFactory. getlnstance("X 509");

A-4 Developing Applications with Oracle Security Developer Tools

Working with JCE Certificate Revocation Lists (CRLs)

X509Certificate cert = (X509Certificate)cf.generateCertificate(

new Fil el nput Stream(certFil eName);

where cer t Fi | eNane is the name of the certificate file.

A.5 Working with JCE Certificate Revocation Lists (CRLs)

In Release 11gR1, or acl e. security. crypto. cert. CRL is replaced by
java.security.cert.CRL. Youcan create the j ava. security. cert. CRL object
from an input stream by using j ava. security. cert. CertificateFactory.

The input stream can be one of the following:

Fi | el nput Sr eam if the CRL is stored in a file

Byt eArr ayl nput St r eam if the encoded bytes were obtained from an old
oracl e.security.crypto.cert. CRL object

any other source

Here is an example of a CRL object creation:

CertificateFactory cf = CertificateFactory. getlnstance("X 509");

509Certificate cert = (X509Certificate)cf.generateCRL(

new Fil el nput Strean(cr!| Fil eName));

where the cr | Fi | eNane is the name of the CRL file.

A.6 Using JCE Keystores

Oracle Security Developer Tools provide four types of keystore: JKS keystore, Oracle
wallet, PKCS12 wallet, and PKCS8 wallet.

These are:

1.

the JKS keystore, which is Oracle's implementation of the java.security.KeyStore
interface

the Oracle wallet, which is Oracle's implementation of the java.security.KeyStore
interface

the PKCS12 wallet, which is a proprietary Oracle interface/implementation of
PKCS12

the PKCS8 wallet, which is a proprietary Oracle interface/implementation of
PKCS8

A.6.1 Working with standard KeyStore-type Wallets

You can instantiate a Keystore object using an Oracle provider, load a Keystore file,
and retrieve a certificate.

Creating a PKCS12 Wallet

This example instantiates a PKCS12 wallet for the Oracle provider:

java.security. KeyStore keystore = KeyStore. getlnstance("PKCS12", "Oracl ePKl");

Loading a Keystore File

You perform this task with the keyst or e. | oad method:

Migrating to the JCE Framework A-5

Using JCE Keystores

keystore. | oad(new Filelnput Stream(wal | etFile), pass);

Retrieving a Certificate
To retrieve a certificate and private key using an alias:

Key key = keystore. getKey(alias);
Certificate cert = keystore.getCert(alias);

If the alias is not known in advance, you can list all aliases by calling:

keystore. aliases();

A.6.2 Working with PKCS12 and PKCS8 Wallets

If you maintain keystores in the PKCS12 or PKCS8 oracle wallet format, you can
retrieve keys, certificates or CRLs from those stores in Oracle Security Developer Tools
format.

® Retrieving a PKCS Object

* Retrieving a Certificate

* Retrieving CRLs

A.6.2.1 Retrieving a PKCS Object

In Oracle wallets, the key is found in oracle.security.crypto.core.PrivateKey.

After retrieval, you can convert the keys into the JCE key format, using the utility class
PhaosJCEKeyTranslator.

For more information, see Converting Between OSDT Key Objects and JCE Key
Objects.

A.6.2.2 Retrieving a Certificate

In Oracle wallets, the certificate is found in oracle.security.crypto.cert. X509.
After retrieval, you can:

1. get the encoded value of the X509 certificate, for example X509.getEncoded();

2. use the CertificateFactory to create a X509Certificate instance, based on the
encoded bytes value.

For more information, see Working with JCE Certificates.

A.6.2.3 Retrieving CRLs
In Oracle wallets, the CRL is found in oracle.security.crypto.cert. CRL.

After retrieval, you can:

1. get the encoded value of the CRL, for example CRL.getEncoded();

2. use the CertificateFactory to create a java.security.cert. CRL instance, based on the
encoded bytes value.

For more information, see Working with JCE Certificate Revocation Lists (CRLs).

A-6 Developing Applications with Oracle Security Developer Tools

The Oracle JCE Java API Reference

A.7 The Oracle JCE Java API Reference

The Oracle Fusion Middleware Java API Reference for Oracle Security Developer
Tools guide explains the classes and methods available in the Oracle JCE framework.

You can access the guide at:

Oracle Fusion Middleware Java API Reference for Oracle Security Developer Tools

Migrating to the JCE Framework A-7

The Oracle JCE Java API Reference

A-8 Developing Applications with Oracle Security Developer Tools

B

References

A list of standards forms the basis of Oracle Security Developer Tools. You can refer
these standards and protocols referenced in this document.

Table B-1 Security Standards and Protocols

Document

Reference

[AES-128]

[AES-192]

[AES-256]

Cryptography

Cryptography

[DES-EDE]

Diffie-Hellman Key

Agreement

[DSA-SHA]

JSON Web Token

Liberty Alliance

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption Algorithmsht t p: //
www. W3. or g/ 2001/ 04/ xm enc#aes128-cbc and http://

www. W3. or g/ 2001/ 04/ xm enc#kw aes128

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption Algorithmsht t p: //
www. W3. or g/ 2001/ 04/ xm enc#aes192-cbc and http://

www. W3. or g/ 2001/ 04/ xm enc#kw aes192

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption Algorithmsht t p: //
www. W3. or g/ 2001/ 04/ xm enc#aes256-chc and http://

www. W3. or g/ 2001/ 04/ xm enc#kw aes256

Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source
Code in C (2nd Edition), John Wiley and Sons, 1996.

William Stallings, Cryptography and Network Security: Principles and
Practice (3rd Edition), Prentice Hall, 2002.

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption Algorithmshtt p: //
www. W3. or g/ 2001/ 04/ xm enc#aes128-chcand http://

www. W3. or g/ 2001/ 04/ xm enc#kwtri pl edes

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Diffie-Hellman Key Agreement,
http://ww. w3. or g/ 2001/ 04/ xm enc#dh

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See DSA, ht t p: / / www. w3. or g/ TR/
xm enc-cor e/

JSON Web Token (JWT) Draft. Seehttp: //tools.ietf.org/htm/
draft-jones-json-web-token-05

Liberty Alliance Project ID-FF 1.2 and ID-WSF 2.0 Specifications,
http://ww. projectliberty.org/resources/
speci fi cations. php

References B-1

http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#dh
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://tools.ietf.org/html/draft-jones-json-web-token-05
http://tools.ietf.org/html/draft-jones-json-web-token-05
http://www.projectliberty.org/resources/specifications.php
http://www.projectliberty.org/resources/specifications.php

Table B-1 (Cont.) Security Standards and Protocols
___|

Document Reference

[PKCS] RSA Laboratories, "Public-Key Cryptography Standards (PKCS)",
http://wwmv. rsasecurity. conirsal abs/ node. asp?i d=2125

[PKCS1] RSA Laboratories, "PKCS #1: RSA Cryptography Standard", ht t p: / /
WWw. r sasecurity. conlrsal abs/ node. asp?i d=2125

[PKCS3] RSA Laboratories, "PKCS #3: Diffie-Hellman Key Agreement Standard",
http://ww.rsasecurity.confrsal abs/ node. asp?i d=2126

[PKCS5] RSA Laboratories, "PKCS #5: Password-Based Cryptography Standard",
http://wwmv. rsasecurity. conirsal abs/ node. asp?i d=2127

[PKCS6] RSA Laboratories, "PKCS #6: Extended-Certificate Syntax Standard",
http://ww. rsasecurity. conlrsal abs/ node. asp?i d=2128

[PKCS7] RSA Laboratories, "PKCS #7: Cryptographic Message Syntax Standard",
http://ww.rsasecurity.confrsal abs/ node. asp?i d=21299

[PKCSS] RSA Laboratories, "PKCS #8: Private-Key Information Syntax
Standard"”, htt p: / / ww. r sasecuri ty. coni r sal abs/ node. asp?
i d=2130

[PKCS9] RSA Laboratories, "PKCS #9: Selected Attribute Types", ht t p: //
WWw. r sasecurity. contrsal abs/ node. asp?i d=2131

[PKCS10] RSA Laboratories, "PKCS #10: Certification Request Syntax Standard",
http://ww.rsasecurity.confrsal abs/ node. asp?i d=2132

[PKCS11] RSA Laboratories, "PKCS #11: Cryptographic Token Interface
Standard", htt p: / / ww. r sasecuri ty. coni r sal abs/ node. asp?
i d=2133

[RFC2311] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, L. Repka, "S/MIME

Version 2 Message Specification". March 1998, ht t p: / /
www. i etf.org/rfc/rfc2311.txt

[RFC2459] R. Housley, W. Ford, W. Polk, D. Solo, "Internet X.509 Public Key
Infrastructure Certificate and CRL Profile". January 1999, ht t p: / /
www. i etf.org/rfc/rfc2459.txt

[REC2510] C. Adams, S. Farrell, "Internet X.509 Public Key Infrastructure
Certificate Management Protocols". March 1999, ht t p: //
www. i etf.org/rfc/rfc2510. txt

[RFC2511] M. Myers, C. Adams, D. Solo, D. Kemp, "Internet X.509 Certificate
Request Message Format". March 1999, ht t p: //
www. i etf.org/rfc/rfc2511.txt

[RFC2560] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams, "X.509
Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP". June 1999, ht t p: / / www. i et f. org/ rfc/rfc2560.t xt

[REC2630] R. Housley, "Cryptographic Message Syntax". June 1999, ht t p: //
www. i etf.org/rfc/rfc2630.txt

[RFC2634] P. Hoffman, Editor, "Enhanced Security Services for S/MIME". June
1999, http://ww. ietf.org/rfc/rfc2634.txt

B-2 Developing Applications with Oracle Security Developer Tools

http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.rsasecurity.com/rsalabs/node.asp?id=2125
http://www.rsasecurity.com/rsalabs/node.asp?id=2126
http://www.rsasecurity.com/rsalabs/node.asp?id=2127
http://www.rsasecurity.com/rsalabs/node.asp?id=2128
http://www.rsasecurity.com/rsalabs/node.asp?id=2129
http://www.rsasecurity.com/rsalabs/node.asp?id=2130
http://www.rsasecurity.com/rsalabs/node.asp?id=2130
http://www.rsasecurity.com/rsalabs/node.asp?id=2131
http://www.rsasecurity.com/rsalabs/node.asp?id=2131
http://www.rsasecurity.com/rsalabs/node.asp?id=2132
http://www.rsasecurity.com/rsalabs/node.asp?id=2133
http://www.rsasecurity.com/rsalabs/node.asp?id=2133
http://www.ietf.org/rfc/rfc2311.txt
http://www.ietf.org/rfc/rfc2311.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2510.txt
http://www.ietf.org/rfc/rfc2510.txt
http://www.ietf.org/rfc/rfc2511.txt
http://www.ietf.org/rfc/rfc2511.txt
http://www.ietf.org/rfc/rfc2560.txt
http://www.ietf.org/rfc/rfc2630.txt
http://www.ietf.org/rfc/rfc2630.txt
http://www.ietf.org/rfc/rfc2634.txt

Table B-1

(Cont.) Security Standards and Protocols

Document

Reference

[RFC3161]

[RFC3274]

[RFC3275]

[RFC3280]

[RSA-OAEP]

[RSA-SHA]

[RSAES-OAEP]

[RSAES-PKCS1-

v1_5]

[SAML]

[WSS]

[WSS v1.0]

[XKMS 2.0]

C. Adams, P. Cain, D. Pinkas, R. Zuccherato, "Internet X.509 Public Key
Infrastructure Time-Stamp Protocol (TSP)". August 2001, ht t p: //
ww. i etf.org/rfc/rfc3161. txt

P. Gutmann, "Compressed Data Content Type for Cryptographic
Message Syntax (CMS)". June 2002, ht t p: // www. i et f. org/rfc/
rfc3274. txt

D. Eastlake, J. Reagle, D. Solo, "(Extensible Markup Language) XML-
Signature Syntax and Processing". March 2002, ht t p: / /
www. i etf.org/rfc/rfc3275.txt

R. Housley, W. Polk, W. Ford, D. Solo, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile".
April 2002, ht t p: / / www. i et f. org/rfc/rfc3280. t xt

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See RSA-OAEP, ht t p: / / ww. wW3. or g/
2001/ 04/ xm enc#r sa- oaep- ngf 1p

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See PKCS1 (RSA-SHA1), http: //
www. W3. or g/ TR/ xnl enc- cor e/

R. Housley. "RFC 3560 - Use of the RSAES-OAEP Key Transport
Algorithm in Cryptographic Message Syntax (CMS)," ht t p: / /
www. f ags. org/ rfcs/rfc3560. ht i

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See RSA Version 1.5, htt p: / /
www. W3. or g/ 2001/ 04/ xm enc#rsa-1_5

OASIS Security Services (SAML) TC, ht t p: / / www. oasi s-
open. org/ conmi ttees/security/

OASIS Web Services Security (WSS) TC, ht t p: / / www. oasi s-
open. org/ conmi ttees/tc_home. php?wg_abbr ev=wss

OASIS Standards and Other Approved Work, ht t p: / / ww. oasi s-
open. or g/ specs/ i ndex. php#wssvl. 0.

This OASIS standard contains the following;:

1. OASIS WSS SOAP Message Security Specification

2. OASIS WSS Username Token Profile Specification

3. OASIS WSS X.509 Certificate Token Profile Specification
4. OASIS WSS SAML Assertion Token Profile Specification

5. OASIS WSS REL Token Profile Specification

W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway, B. LaMacchia,]J. Epstein,
J. Lapp, "XML Key Management Specification", 30 March 2001,
http://ww. wW3. org/ TR/ xkns/ .

References B-3

http://www.ietf.org/rfc/rfc3161.txt
http://www.ietf.org/rfc/rfc3161.txt
http://www.ietf.org/rfc/rfc3274.txt
http://www.ietf.org/rfc/rfc3274.txt
http://www.ietf.org/rfc/rfc3275.txt
http://www.ietf.org/rfc/rfc3275.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://www.faqs.org/rfcs/rfc3560.html
http://www.faqs.org/rfcs/rfc3560.html
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.oasis-open.org/committees/security
http://www.oasis-open.org/committees/security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.w3.org/TR/xkms/

Table B-1 (Cont.) Security Standards and Protocols
___|

Document Reference

[xml.com] O'Reilly xml.com, ht t p: / / wwww. xni . coml

[XML 1.0] W3C Recommendation XML 1.0: Extensible Markup Language (XML)
1.0 (Third Edition), 04 February 2004. ht t p: / / www. W3. or g/ TR/ REC-
xm /

[XML W3C Recommendation Canonical XML: Canonical XML Version 1.0, 15

Canonicalization] March 2001. ht t p: / / www. W3. or g/ TR/ xml - c14n

[Exclusive XML W3C Recommendation Exclusive XML Canonicalization: Exclusive
Canonicalization] XML Canonicalization Version 1.0, 15 March 2001. ht t p: / /
www. W3. or g/ TR/ xm - exc- cl4n/

[XML Decryption ~ W3C Recommendation XML Decryption Transform: Decryption
Transform] Transform for XML Signature, 10 December 2002. ht t p: / /
www. W3. or g/ TR/ xml enc- decr ypt

[XML Encryption] =~ W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. ht t p: / / www. w3. or g/ TR/ xnl enc-
core/

[XML FAQ] Java Technology and XML FAQs, ht t p: / / www. or acl e. con!
technetwor k/ j ava/ faqg-141681. ht m

[XML Signatures] ~ W3C Recommendation XML Signature: XML-Signature Syntax and
Processing, 12 February 2002. ht t p: / / www. W3. or g/ TR/ xm dsi g-
core/

B-4 Developing Applications with Oracle Security Developer Tools

http://www.xml.com/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xmlenc-decrypt
http://www.w3.org/TR/xmlenc-decrypt
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://www.oracle.com/technetwork/java/faq-141681.html
http://www.oracle.com/technetwork/java/faq-141681.html
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/

	Contents
	List of Tables
	List of Tables
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle Security Developer Tools?
	New Features in 12c (12.2.1)
	Updates in September 2014 Documentation Refresh for 12c (12.1.3)
	New Features in 12c (12.1.3)

	1 Introduction to Oracle Security Developer Tools
	1.1 About Cryptography
	1.1.1 Types of Cryptographic Algorithms
	1.1.1.1 About Symmetric Cryptographic Algorithms
	1.1.1.2 About Asymmetric Cryptographic Algorithms
	1.1.1.3 Understanding Hash Functions

	1.2 About Public Key Infrastructure (PKI)
	1.2.1 Understanding Key Pairs
	1.2.2 About the Certificate Authority
	1.2.3 What are Digital Certificates?
	1.2.4 Related PKI Standards
	1.2.5 Benefits of PKI

	1.3 About Web Services Security
	1.4 About SAML
	1.4.1 Understanding SAML Assertions
	1.4.2 Understanding SAML Requests and Responses
	1.4.2.1 About the SAML Request and Response Cycle
	1.4.2.2 About SAML Protocol Bindings and Profiles
	1.4.2.3 How SAML Integrates with XML Security

	1.5 About Identity Federation
	1.6 About Oracle Security Developer Tools
	1.6.1 Understanding Toolkit Architecture
	1.6.2 Tools for XML, SAML, and Web Services Security Applications
	1.6.2.1 About Oracle XML Security
	1.6.2.2 About Oracle SAML
	1.6.2.3 About Oracle Web Services Security
	1.6.2.4 About Oracle Liberty SDK

	1.6.3 Tools for Public Key Cryptography (PKI) Applications
	1.6.3.1 About Oracle PKI LDAP SDK
	1.6.3.2 About Oracle PKI TSP SDK
	1.6.3.3 About Oracle PKI OCSP SDK
	1.6.3.4 About Oracle PKI CMP SDK
	1.6.3.5 About Oracle XKMS

	1.6.4 Tools for E-mail Security Applications
	1.6.4.1 About Oracle CMS
	1.6.4.2 About Oracle S/MIME

	1.6.5 Tools for Low-level Cryptographic Applications
	1.6.5.1 About Oracle Crypto
	1.6.5.2 About Oracle Security Engine

	1.6.6 Tools for Web Tokens
	1.6.6.1 About Oracle JWT

	1.7 About Supported Standards
	1.8 Setting the CLASSPATH Environment Variable
	1.8.1 Setting the CLASSPATH on Windows
	1.8.2 Setting the CLASSPATH on UNIX

	2 Oracle Crypto
	2.1 About Oracle Crypto Features and Benefits
	2.2 About the Oracle Crypto Packages
	2.3 Setting Up Your Oracle Crypto Environment
	2.4 Understanding and Using Core Classes and Interfaces of Oracle Crypto
	2.4.1 About Oracle Crypto Key Classes
	2.4.1.1 The oracle.security.crypto.core.Key Interface
	2.4.1.2 The oracle.security.crypto.core.PrivateKey Interface
	2.4.1.3 The oracle.security.crypto.core.PublicKey Interface
	2.4.1.4 The oracle.security.crypto.core.SymmetricKey Class

	2.4.2 Using the Oracle Crypto Key Generation Classes
	2.4.2.1 Using the oracle.security.crypto.core.KeyPairGenerator Class
	2.4.2.2 Using the oracle.security.crypto.core.SymmetricKeyGenerator Class

	2.4.3 Using Oracle Crypto Cipher Classes
	2.4.3.1 Using Symmetric Ciphers
	2.4.3.2 Using the RSA Cipher
	2.4.3.3 Using Password Based Encryption (PBE)

	2.4.4 Using the Oracle Crypto Signature Classes
	2.4.5 Using Oracle Crypto Message Digest Classes
	2.4.5.1 Using the oracle.security.crypto.core.MessageDigest Class
	2.4.5.2 Using the oracle.security.crypto.core.MAC Class

	2.4.6 Using the Oracle Crypto Key Agreement Class
	2.4.7 Using Oracle Crypto Pseudo-Random Number Generator Classes
	2.4.7.1 Using the oracle.security.crypto.core.RandomBitsSource class
	2.4.7.2 Using the oracle.security.crypto.core.EntropySource class

	2.5 The Oracle Crypto and Crypto FIPS Java API References

	3 Oracle Security Engine
	3.1 Oracle Security Engine Features and Benefits
	3.2 Setting Up Your Oracle Security Engine Environment
	3.3 Core Classes and Interfaces of Oracle Security Engine
	3.3.1 Using the oracle.security.crypto.cert.X500RDN Class
	3.3.2 Using the oracle.security.crypto.cert.X500Name Class
	3.3.3 Using the oracle.security.crypto.cert.CertificateRequest Class
	3.3.4 Using the java.security.cert.X509Certificate Class

	3.4 The Oracle Security Engine Java API Reference

	4 Oracle CMS
	4.1 Oracle CMS Features and Benefits
	4.1.1 Content Types in Oracle CMS
	4.1.2 Differences Between Oracle CMS Implementation and RFCs

	4.2 Setting Up Your Oracle CMS Environment
	4.3 Understanding and Developing Applications with Oracle CMS
	4.3.1 About Oracle CMS Classes
	4.3.2 About CMS Object Types
	4.3.3 Constructing CMS Objects using the CMS***ContentInfo Classes
	4.3.3.1 Using the Abstract Base Class CMSContentInfo
	4.3.3.1.1 Constructing a CMS Object
	4.3.3.1.2 Reading a CMS Object

	4.3.3.2 Using the CMSDataContentInfo Class
	4.3.3.3 Using the ESSReceipt Class
	4.3.3.3.1 Creating an ESSReceipt Object
	4.3.3.3.2 Reading an ESSReceipt Object

	4.3.3.4 The CMSDigestedDataContentInfo Class
	4.3.3.4.1 Constructing a CMS Digested-data Object
	4.3.3.4.2 Reading a CMS Digested-data Object
	4.3.3.4.3 Working with Detached digested-data Objects

	4.3.3.5 The CMSSignedDataContentInfo Class
	4.3.3.5.1 Constructing a CMS Signed-data Object
	4.3.3.5.2 Reading a CMS Signed-data Object
	4.3.3.5.3 Working with External Signatures (Detached Objects)
	4.3.3.5.4 Working with Certificates/CRL-Only Objects

	4.3.3.6 Using the CMSEncryptedDataContentInfo Class
	4.3.3.6.1 Constructing a CMS Encrypted-data Object
	4.3.3.6.2 Reading a CMS Encrypted-data Object
	4.3.3.6.3 Generating a Detached encrypted-data CMS Object

	4.3.3.7 Understanding and Using the CMSEnvelopedDataContentInfo Class
	4.3.3.7.1 Constructing a CMS Enveloped-data Object
	4.3.3.7.2 Reading a CMS Enveloped-data Object
	4.3.3.7.3 About the Key Transport Key Exchange Mechanism
	4.3.3.7.4 About the Key Agreement Key Exchange Mechanism
	4.3.3.7.5 About the Key Encryption (Wrap) Key Exchange Mechanism
	4.3.3.7.6 Using the Detached Enveloped-data CMS Object

	4.3.3.8 Using the CMSAuthenticatedDataContentInfo Class
	4.3.3.8.1 Constructing a CMS Authenticated-data Object
	4.3.3.8.2 Reading a CMS Authenticated-data Object
	4.3.3.8.3 Working with Detached Authenticated-data CMS Objects

	4.3.3.9 Working with Wrapped (Triple or more) CMSContentInfo Objects
	4.3.3.9.1 Reading a Nested (Wrapped) CMS Object

	4.3.4 CMS Objects using the CMS***Stream and CMS***Connector Classes
	4.3.4.1 Limitations of the CMS***Stream and CMS***Connector Classes
	4.3.4.2 Difference between CMS***Stream and CMS***Connector Classes
	4.3.4.3 Using the CMS***OutputStream and CMS***InputStream Classes
	4.3.4.3.1 Working with the CMS id-data Object
	4.3.4.3.2 Working with the CMS id-ct-receipt Object
	4.3.4.3.3 Working with CMS id-digestedData Objects
	4.3.4.3.4 Working with CMS id-signedData Objects
	4.3.4.3.5 Working with CMS id-encryptedData Objects
	4.3.4.3.6 Working with CMS id-envelopedData Objects
	4.3.4.3.7 About CMS id-ct-authData Objects

	4.3.4.4 Wrapping (Triple or more) CMS***Connector Objects

	4.4 The Oracle CMS Java API Reference

	5 Oracle S/MIME
	5.1 Oracle S/MIME Features and Benefits
	5.2 Setting Up Your Oracle S/MIME Environment
	5.3 Developing Applications with Oracle S/MIME
	5.3.1 Core Classes and Interfaces of Oracle S/MIME
	5.3.1.1 Using the oracle.security.crypto.smime.SmimeObject Interface
	5.3.1.2 Using the oracle.security.crypto.smime.SmimeSignedObject Interface
	5.3.1.3 Using the oracle.security.crypto.smime.SmimeSigned Class
	5.3.1.4 Using the oracle.security.crypto.smime.SmimeEnveloped Class
	5.3.1.5 Using the oracle.security.crypto.smime.SmimeMultipartSigned Class
	5.3.1.6 Using the oracle.security.crypto.smime.SmimeSignedReceipt Class
	5.3.1.7 Using the oracle.security.crypto.smime.SmimeCompressed Class

	5.3.2 Supporting Classes and Interfaces
	5.3.2.1 Using the oracle.security.crypto.smime.Smime Interface
	5.3.2.2 Using the oracle.security.crypto.smime.SmimeUtils Class
	5.3.2.3 Using the oracle.security.crypto.smime.MailTrustPolicy Class
	5.3.2.4 Using the oracle.security.crypto.smime.SmimeCapabilities Class
	5.3.2.5 Using the oracle.security.crypto.smime.SmimeDataContentHandler Class
	5.3.2.6 Using the oracle.security.crypto.smime.ess Package

	5.3.3 Using the Oracle S/MIME Classes
	5.3.3.1 Using the Abstract Class SmimeObject
	5.3.3.2 Signing Messages
	5.3.3.3 Creating "Multipart/Signed" Entities
	5.3.3.4 Creating Digital Envelopes
	5.3.3.5 Creating "Certificates-Only" Messages
	5.3.3.6 Reading Messages
	5.3.3.7 Authenticating Signed Messages
	5.3.3.8 Opening Digital Envelopes (Encrypted Messages)
	5.3.3.9 Adding Enhanced Security Services (ESS)
	5.3.3.9.1 Requesting a Signed Receipt with ESS
	5.3.3.9.2 Attaching a Security Label with ESS
	5.3.3.9.3 Attaching a Signing Certificate with ESS

	5.3.3.10 Processing Enhanced Security Services (ESS)

	5.4 The Oracle S/MIME Java API Reference

	6 Oracle PKI SDK
	6.1 Oracle PKI CMP SDK
	6.1.1 Oracle PKI CMP SDK Features and Benefits
	6.1.2 Setting Up Your Oracle PKI CMP SDK Environment
	6.1.3 The Oracle PKI CMP SDK Java API Reference

	6.2 Oracle PKI OCSP SDK
	6.2.1 Oracle PKI OCSP SDK Features and Benefits
	6.2.2 Setting Up Your Oracle PKI OCSP SDK Environment
	6.2.3 The Oracle PKI OCSP SDK Java API Reference

	6.3 Oracle PKI TSP SDK
	6.3.1 Oracle PKI TSP SDK Features and Benefits
	6.3.2 Setting Up Your Oracle PKI TSP SDK Environment
	6.3.3 The Oracle PKI TSP SDK Java API Reference

	6.4 Oracle PKI LDAP SDK
	6.4.1 Oracle PKI LDAP SDK Features and Benefits
	6.4.2 Setting Up Your Oracle PKI LDAP SDK Environment
	6.4.3 The Oracle PKI LDAP SDK Java API Reference

	7 Oracle XML Security
	7.1 Oracle XML Security Features and Benefits
	7.2 Setting Up Your Oracle XML Security Environment
	7.3 Signing Data with Oracle XML Security
	7.3.1 Identifying What to Sign
	7.3.1.1 Determining the Signature Envelope
	7.3.1.2 Deciding How to Sign Binary Data
	7.3.1.3 Signing Multiple XML Fragments with a Signature
	7.3.1.4 Excluding Elements from a Signature

	7.3.2 Deciding on a Signing Key
	7.3.2.1 Setting Up Key Exchange
	7.3.2.2 Providing a Receiver Hint

	7.4 Verifying XML Data
	7.5 Understanding how Data is Encrypted
	7.5.1 Identifying what to Encrypt
	7.5.1.1 Using the Content Only Encryption Mode
	7.5.1.2 Encrypting Binary Data

	7.5.2 Decide on the Encryption Key

	7.6 Understanding Data Decryption with Oracle XML Security
	7.7 Understanding and Using Element Wrappers in the OSDT XML APIs
	7.7.1 Constructing the Wrapper Object
	7.7.2 Obtaining the DOM Element from the Wrapper Object
	7.7.3 Parsing Complex Elements
	7.7.4 Constructing Complex Elements

	7.8 Signing Data with the Oracle XML Security API
	7.8.1 Creating a Detached Signature, Basic Procedure
	7.8.2 Using Variations on the Basic Signing Procedure
	7.8.2.1 Including Multiple References
	7.8.2.2 Using an Enveloped Signature
	7.8.2.3 Using an XPath Expression
	7.8.2.4 Using a Certificate Hint
	7.8.2.5 Signing with an HMAC Key

	7.9 Verifying Signatures with the Oracle XML Security API
	7.9.1 Checking What is Signed, Basic Procedure
	7.9.2 Setting Up Callbacks
	7.9.3 Writing a Custom Key Retriever
	7.9.4 Checking What is Signed
	7.9.5 Verifying the Signature
	7.9.5.1 Verifying if Callbacks are Set Up
	7.9.5.2 Verifying if Callbacks are Not Set Up
	7.9.5.3 Debugging Verification

	7.10 Encrypting Data with the Oracle XML Security API
	7.10.1 Encrypting with a Shared Symmetric Key
	7.10.2 Encrypting with a Random Symmetric Key

	7.11 Decrypting Data with the Oracle XML Security API
	7.11.1 Decrypting with a Shared Symmetric Key
	7.11.2 Decrypting with a Random Symmetric Key

	7.12 About Supporting Classes and Interfaces
	7.12.1 About the oracle.security.xmlsec.util.XMLURI Interface
	7.12.2 About the oracle.security.xmlsec.util.XMLUtils class

	7.13 Common XML Security Questions
	7.14 Best Practices for Oracle XML Security
	7.15 The Oracle XML Security Java API Reference

	8 Oracle SAML
	8.1 Oracle SAML Features and Benefits
	8.2 Oracle SAML 1.0/1.1
	8.2.1 Oracle SAML 1.0/1.1 Packages
	8.2.2 Setting Up Your Oracle SAML 1.0/1.1 Environment
	8.2.3 Classes and Interfaces of Oracle SAML 1.x
	8.2.3.1 Core Classes of Oracle SAML 1.x
	8.2.3.1.1 Using the oracle.security.xmlsec.saml.SAMLInitializer Class
	8.2.3.1.2 Using the oracle.security.xmlsec.saml.Assertion Class
	8.2.3.1.3 Using the oracle.security.xmlsec.samlp.Request Class
	8.2.3.1.4 Using the oracle.security.xmlsec.samlp.Response Class

	8.2.3.2 Supporting Classes and Interfaces
	8.2.3.2.1 Using the oracle.security.xmlsec.saml.SAMLURI Interface
	8.2.3.2.2 Using the oracle.security.xmlsec.saml.SAMLMessage Class

	8.2.4 The Oracle SAML 1.0/1.1 Java API Reference

	8.3 Oracle SAML 2.0
	8.3.1 Oracle SAML 2.0 Packages
	8.3.2 Setting Up Your Oracle SAML 2.0 Environment
	8.3.3 Classes and Interfaces of Oracle SAML 2.0
	8.3.3.1 Core Classes of Oracle SAML 2.0
	8.3.3.1.1 Using the oracle.security.xmlsec.saml2.core.Assertion Class
	8.3.3.1.2 Using the oracle.security.xmlsec.saml2.protocol.AuthnRequest Class
	8.3.3.1.3 Using the oracle.security.xmlsec.saml2.protocol.StatusResponseType Class

	8.3.3.2 Supporting Classes and Interfaces
	8.3.3.2.1 Using the oracle.security.xmlsec.saml2.util.SAML2URI Interface

	8.3.4 The Oracle SAML 2.0 Java API Reference

	9 Oracle Web Services Security
	9.1 Setting Up Your Oracle Web Services Security Environment
	9.2 Classes and Interfaces of Oracle Web Services Security
	9.2.1 Element Wrappers in Oracle Web Services Security
	9.2.2 The <wsse:Security> header
	9.2.2.1 Handling Outgoing Messages
	9.2.2.2 Handling Incoming Messages

	9.2.3 Security Tokens (ST) in Oracle Web Services Security
	9.2.3.1 Creating a WSS Username Token
	9.2.3.2 Creating an X509 Token
	9.2.3.3 Creating a Client-Side Kerberos Token
	9.2.3.4 Creating a Server-side Kerberos Token
	9.2.3.5 Creating a SAML Assertion Token

	9.2.4 Security Token References (STR)
	9.2.4.1 Creating a direct reference STR
	9.2.4.2 Creating a Reference STR for a username token
	9.2.4.3 Creating a Reference STR for a X509 Token
	9.2.4.4 Creating a Reference STR for Kerberos Token
	9.2.4.5 Creating a Reference STR for a SAML Assertion token
	9.2.4.6 Creating a Reference STR for an EncryptedKey
	9.2.4.7 Creating a Reference STR for a generic token
	9.2.4.8 Creating a Key Identifier STR
	9.2.4.9 Creating a KeyIdentifier STR for an X509 Token
	9.2.4.10 Creating a KeyIdentifier STR for a Kerberos Token
	9.2.4.11 Creating a KeyIdentifier STR for a SAML Assertion Token
	9.2.4.12 Creating a KeyIdentifier STR for an EncryptedKey
	9.2.4.13 Adding an STRTransform

	9.2.5 Signing and Verifying
	9.2.5.1 Signing SOAP Messages
	9.2.5.1.1 Adding IDs to elements
	9.2.5.1.2 Creating the WSSignatureParams object
	9.2.5.1.3 Specifying Transforms
	9.2.5.1.4 Calling the WSSecurity.sign method

	9.2.5.2 Verifying SOAP Messages
	9.2.5.3 Confirming Signatures
	9.2.5.3.1 Signature Confirmation Response Generation
	9.2.5.3.2 Signature Confirmation Response Processing

	9.2.6 Encrypting and Decrypting
	9.2.6.1 Encrypting SOAP messages with EncryptedKey
	9.2.6.2 Encrypting SOAP messages without EncryptedKey
	9.2.6.3 Encrypting SOAP Headers into an EncryptedHeader
	9.2.6.4 Decrypting SOAP messages with EncryptedKey
	9.2.6.5 Decrypting SOAP messages without EncryptedKey

	9.3 Additional Resources for Web Services Security
	9.4 The Oracle Web Services Security Java API Reference

	10 Oracle Liberty SDK
	10.1 Oracle Liberty SDK Features and Benefits
	10.2 Oracle Liberty 1.1
	10.2.1 Setting Up Your Oracle Liberty 1.1 Environment
	10.2.1.1 Understanding System Requirements for Oracle Liberty 1.1

	10.2.2 Overview of Oracle Liberty 1.1 Classes and Interfaces
	10.2.2.1 Using Core Classes and Interfaces
	10.2.2.1.1 Using the oracle.security.xmlsec.liberty.v11.AuthnRequest Class
	10.2.2.1.2 Using the oracle.security.xmlsec.liberty.v11.AuthnResponse Class
	10.2.2.1.3 Using the oracle.security.xmlsec.liberty.v11.FederationTerminationNotification Class
	10.2.2.1.4 Using the oracle.security.xmlsec.liberty.v11.LogoutRequest Class
	10.2.2.1.5 Using the oracle.security.xmlsec.liberty.v11.LogoutResponse Class
	10.2.2.1.6 Using the oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class
	10.2.2.1.7 Using the oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse Class

	10.2.2.2 Using Supporting Classes and Interfaces
	10.2.2.2.1 Using the oracle.security.xmlsec.liberty.v11.LibertyInitializer class
	10.2.2.2.2 The oracle.security.xmlsec.liberty.v11.LibertyURI interface
	10.2.2.2.3 Using the oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface
	10.2.2.2.4 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class
	10.2.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface
	10.2.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage class

	10.2.3 The Oracle Liberty 1.1 API Reference

	10.3 Oracle Liberty 1.2
	10.3.1 Setting Up Your Oracle Liberty 1.2 Environment
	10.3.2 Overview of Oracle Liberty 1.2 Classes and Interfaces
	10.3.2.1 Core Classes and Interfaces
	10.3.2.1.1 Using the oracle.security.xmlsec.saml.Assertion class
	10.3.2.1.2 Using the oracle.security.xmlsec.samlp.Request class
	10.3.2.1.3 Using the oracle.security.xmlsec.samlp.Response class
	10.3.2.1.4 Using the oracle.security.xmlsec.liberty.v12.AuthnRequest class
	10.3.2.1.5 Using the oracle.security.xmlsec.liberty.v12.AuthnResponse class
	10.3.2.1.6 Using the oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class
	10.3.2.1.7 Using the oracle.security.xmlsec.liberty.v12.LogoutRequest class
	10.3.2.1.8 Using the oracle.security.xmlsec.liberty.v12.LogoutResponse class
	10.3.2.1.9 Using the oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class
	10.3.2.1.10 Using the oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class

	10.3.2.2 Supporting Classes and Interfaces
	10.3.2.2.1 The oracle.security.xmlsec.liberty.v12.LibertyInitializer class
	10.3.2.2.2 The oracle.security.xmlsec.liberty.v12.LibertyURI interface
	10.3.2.2.3 The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class
	10.3.2.2.4 The oracle.security.xmlsec.saml.SAMLInitializer class
	10.3.2.2.5 The oracle.security.xmlsec.saml.SAMLURI Interface
	10.3.2.2.6 The oracle.security.xmlsec.saml.SAMLMessage Class

	10.3.3 The Oracle Liberty SDK 1.2 API Reference

	11 Oracle XKMS
	11.1 Understanding Oracle XKMS Features and Benefits
	11.2 Setting Up Your Oracle XKMS Environment
	11.3 Core Classes and Interfaces
	11.3.1 oracle.security.xmlsec.xkms.xkiss.LocateRequest
	11.3.2 Using the oracle.security.xmlsec.xkms.xkiss.LocateResult Class
	11.3.3 Using the oracle.security.xmlsec.xkms.xkiss.ValidateRequest Class
	11.3.4 Using the oracle.security.xmlsec.xkms.xkiss.ValidateResult Class
	11.3.5 Using the oracle.security.xmlsec.xkms.xkrss.RecoverRequest Class
	11.3.6 Using the oracle.security.xmlsec.xkms.xkrss.RecoverResult Class

	11.4 The Oracle XKMS Java API Reference

	12 Oracle JSON Web Token
	12.1 Oracle JSON Web Token Features and Benefits
	12.1.1 About JSON Web Token
	12.1.2 Oracle JSON Web Token Features

	12.2 Setting Up Your Oracle JSON Web Token Environment
	12.3 Using Core Classes and Interfaces
	12.4 Examples of Oracle JSON Web Token Usage
	12.4.1 Creating the JWT Token
	12.4.2 Signing the JWT Token
	12.4.3 Verifying the JWT Token
	12.4.4 Serializing the JWT Token without Signing

	12.5 The Oracle JSON Web Token Java API Reference

	A Migrating to the JCE Framework
	A.1 About The JCE Framework
	A.2 Understanding JCE Keys
	A.3 Converting Between OSDT Key Objects and JCE Key Objects
	A.3.1 Converting a Private Key from OSDT to JCE Object
	A.3.2 Converting a Private Key from JCE Object to OSDT Object

	A.4 Working with JCE Certificates
	A.5 Working with JCE Certificate Revocation Lists (CRLs)
	A.6 Using JCE Keystores
	A.6.1 Working with standard KeyStore-type Wallets
	A.6.2 Working with PKCS12 and PKCS8 Wallets
	A.6.2.1 Retrieving a PKCS Object
	A.6.2.2 Retrieving a Certificate
	A.6.2.3 Retrieving CRLs

	A.7 The Oracle JCE Java API Reference

	B References

