
Oracle® Fusion Middleware
Developing JNDI Applications for Oracle WebLogic Server

12c (12.2.1.1.0)

E77941-01

August 2016

This document explains how to use the JNDI API to provide a
unified interface to multiple naming and directory services in
the enterprise.

Oracle Fusion Middleware Developing JNDI Applications for Oracle WebLogic Server, 12c (12.2.1.1.0)

E77941-01

Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... v

Documentation Accessibility .. v

Conventions... v

1 Developing JNDI Applications for Oracle WebLogic Server

1.1 Introduction and Roadmap.. 1-1

1.1.1 Guide to this Document .. 1-1

1.1.2 Related Documentation... 1-1

1.1.3 Examples for the Web Application Developer .. 1-2

1.1.4 New and Changed Features in This Release .. 1-2

1.2 Understanding WebLogic JNDI .. 1-2

1.2.1 What is JNDI? ... 1-2

1.2.2 WebLogic Server JNDI... 1-3

1.3 WebLogic JNDI .. 1-3

1.3.1 Using WebLogic JNDI to Connect a Java Client to a Single Server 1-4

1.3.2 Setting Up JNDI Environment Properties for the Initial Context 1-4

1.3.3 Using the Context to Look Up a Named Object ... 1-8

1.3.4 Using a Named Object to Get an Object Reference ... 1-8

1.3.5 Closing the Context.. 1-8

1.3.6 Using WebLogic JNDI in a Clustered Environment .. 1-9

1.3.7 Using JNDI from Within Java EE Components ... 1-13

1.3.8 Setting Up Foreign JNDI ... 1-14

iii

iv

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing JNDI Applications for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Developing JNDI Applications for Oracle

WebLogic Server

This document explains how to set up WebLogic JNDI. It is intended for programmers
who are developing WebLogic Server applications and want to use the JNDI feature.

This document is written for application developers who want to design, develop,
configure, and manage applications using the Java Platform, Enterprise Edition (Java
EE) and want to use the JNDI API to provide a unified interface to multiple naming
and directory services in their enterprise. It is assumed that readers know JNDI and
the Java programming language.

1.1 Introduction and Roadmap
The following sections describe the contents and organization of this guide—.

• Guide to this Document

• Related Documentation

• Examples for the Web Application Developer

• New and Changed Features in This Release

1.1.1 Guide to this Document

• Introduction and Roadmap, describes the scope and organization of this guide.

• Understanding WebLogic JNDI, provides an overview of the Java Naming and
Directory Interface (JNDI) implementation in WebLogic Server.

• WebLogic JNDI, describes programming with WebLogic JNDI.

1.1.2 Related Documentation
For additional information on JNDI, see the following documentation:

• Fusion Middleware Error Message Reference provides a list of all WebLogic Server
error messages, including JNDI subsystem messages.

• Communications in a Cluster in Administering Clusters for Oracle WebLogic Server
provides information on the cluster-wide JNDI tree.

• Oracle WebLogic Server Administration Console Online Help contains sections that
describe how to add or modify security roles and policies on a JNDI Binding node,
Root Content node, or Context node.

• Configuring and Programming JNDI in Using WebLogic Server Multitenant.

Developing JNDI Applications for Oracle WebLogic Server 1-1

1.1.3 Examples for the Web Application Developer
In addition to this document, Oracle provides examples for software developers
within the context of the Avitek Medical Records Application (MedRec) sample
application, as well as JNDI code examples.

1.1.3.1 Avitek Medical Records Application (MedRec)

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects
\domains\medrec directory, where ORACLE_HOME is the directory you specified as
Oracle Home when you installed Oracle WebLogic Server. For more information, see
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

1.1.3.2 JNDI Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in the ORACLE_HOME
\wlserver\samples\server directory, where ORACLE_HOME represents the
Oracle Home directory for your WebLogic Server installation. For more information
about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

1.1.4 New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.

1.2 Understanding WebLogic JNDI
The following sections present an overview of the Java Naming and Directory
Interface (JNDI) implementation in WebLogic Server including:

• What is JNDI?

• WebLogic Server JNDI

1.2.1 What is JNDI?
Applications use naming services to locate objects in data sources, EJBs, JMS, Mail
Sessions, and so on in the network. A naming service associates names with objects
and finds objects based on their given names. (The RMI registry is a good example of a
naming service.)

JNDI provides a common-denominator interface to many existing naming services,
such as LDAP (Lightweight Directory Access Protocol) and DNS (Domain Name
System). These naming services maintain a set of bindings, which relate names to
objects and provide the ability to look up objects by name. JNDI allows the
components in distributed applications to locate each other.

The JNDI API, at http://docs.oracle.com/javase/7/docs/technotes/
guides/jndi/reference.html, is defined to be independent of any specific

Understanding WebLogic JNDI

1-2 Developing JNDI Applications for Oracle WebLogic Server

http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/reference.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/reference.html

naming or directory service implementation. It supports the use of a number of
methods for accessing various new and existing services. This support allows any
service-provider implementation to be plugged into the JNDI framework using the
standard service provider interface (SPI) conventions.

1.2.2 WebLogic Server JNDI
The WebLogic Server implementation of JNDI supplies methods that:

• Give clients access to the WebLogic Server naming services

• Make objects available in the WebLogic namespace

• Retrieve objects from the WebLogic namespace

Each WebLogic Server cluster is supported by a replicated cluster-wide JNDI tree that
provides access to both replicated and pinned RMI and EJB objects. While the JNDI
tree representing the cluster appears to the client as a single global tree, the tree
containing the cluster-wide services is actually replicated across each WebLogic Server
instance in the cluster. For more information, see Using WebLogic JNDI in a Clustered
Environment .

Other WebLogic services can use the integrated naming service provided by
WebLogic Server JNDI. For example, WebLogic RMI can bind and access remote
objects by both standard RMI methods and JNDI methods.

In addition to the standard Java interfaces for JNDI, WebLogic Server provides its own
implementation, weblogic.jndi.WLInitialContextFactory, that uses the
standard JNDI interfaces.

You need not instantiate this class directly. Instead, you can use the standard
javax.naming.InitialContext class and set the appropriate hash table
properties, as documented in the section Setting Up JNDI Environment Properties for
the Initial Context. All interaction is done through the javax.naming.Context
interface, as described in the JNDI Javadoc.

For instructions on using the WebLogic JNDI API for client connections, see WebLogic
JNDI.

1.3 WebLogic JNDI
The following sections describe programming with WebLogic JNDI:

• Using WebLogic JNDI to Connect a Java Client to a Single Server

• Setting Up JNDI Environment Properties for the Initial Context

• Using the Context to Look Up a Named Object

• Using a Named Object to Get an Object Reference

• Closing the Context

• Using WebLogic JNDI in a Clustered Environment

• Using JNDI from Within Java EE Components

• Setting Up Foreign JNDI

WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server 1-3

1.3.1 Using WebLogic JNDI to Connect a Java Client to a Single Server
The WebLogic Server JNDI Service Provider Interface (SPI) provides an
InitialContext implementation that allows remote Java clients to connect to
WebLogic Server. The client can specify standard JNDI environment properties that
identify a particular WebLogic Server deployment and related connection properties
for logging in to WebLogic Server.

To interact with WebLogic Server, a Java client must be able to get an object reference
for a remote object and invoke operations on the object. To accomplish this, the client
application code must perform the following procedure:

1. Set up JNDI environment properties for the InitialContext.

2. Establish an InitialContext with WebLogic Server.

3. Use the context to look up a named object in the WebLogic Server namespace.

4. Use the named object to get a reference for the remote object and invoke operations
on the remote object.

5. Close the context.

The following sections discuss JNDI client operations for connecting to a specific
WebLogic Server instance. For information about using JNDI in a WebLogic Server
cluster, see Using WebLogic JNDI in a Clustered Environment .

Before you can use JNDI to access an object in a WebLogic Server environment, you
must load the object into the WebLogic Server JNDI tree.

1.3.2 Setting Up JNDI Environment Properties for the Initial Context
The first task that a Java client application must perform is to create environment
properties. The InitialContext factory uses various properties to customize the
InitialContext for a specific environment. You set these properties either by using
a hash table or the set() method of a WebLogic environment object. These
properties, which are specified name-to-value pairs, determine how the
WLInitialContextFactory creates the context.

The following properties are used to customize the InitialContext:

• Context.PROVIDER_URL— specifies the URL of the WebLogic Server instance
that provides the name service. The default is t3://localhost:7001.

• Context.SECURITY_PRINCIPAL—specifies the identity of the user (that is, a
user defined in a WebLogic Server security realm) for authentication purposes. The
property defaults to the guest user unless the thread has already been associated
with a WebLogic Server user. For more information, see Associating a WebLogic
User with a Security Context.

• Context.SECURITY_CREDENTIALS—specifies either the password for the user
defined in the Context.SECURITY_PRINCIPAL property or an object that
implements the weblogic.security.acl.UserInfo interface with the
Context.SECURITY_CREDENTIALS property defined. If you pass a UserInfo
object in this property, the Context.PROVIDER_URL property is ignored. The
property defaults to the guest user unless the thread has already been associated
with a user. For more information, see Associating a WebLogic User with a
Security Context.

WebLogic JNDI

1-4 Developing JNDI Applications for Oracle WebLogic Server

You can use the same properties on either a client or a server. If you define the
properties on a server-side object, a local context is used. If you define the properties
on a client or another WebLogic Server instance, the context delegates to a remote
context running on the WebLogic Server instance specified by the
Context.PROVIDER_URL property. A remote object bound to the server will not be
serviced by peerGone, and will not be reachable if the client should fail.

There are some properties that cannot be changed after the creation of the context.
These properties include provider URL, user credentials, and factories.
AddToEnvironment can be used to change other properties after the creation of the
context.

Example 1-1 shows how to obtain a context using the properties
Context.INITIAL_CONTEXT_FACTORY and Context.PROVIDER_URL.

Example 1-1 Obtaining a Context

Context ctx = null;
Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL,
 "t3://localhost:7001");

try {
 ctx = new InitialContext(ht);
 // Use the context in your program
}
catch (NamingException e) {
 // a failure occurred
}
finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred
 }
}

Additional WebLogic-specific properties are also available for controlling how objects
are bound into the cluster-wide JNDI tree. Bindings may or may not be replicated
across the JNDI tree of each server within the cluster due to the way these properties
are set. Properties such as these are identified by constants in the
weblogic.jndi.WLContext class. For more information about JNDI-related
clustering issues, see Using WebLogic JNDI from a Client in a Clustered Environment.

1.3.2.1 Creating a Context Using a Hashtable

You can create a context with a hashtable in which you have specified the properties
described in Setting Up JNDI Environment Properties for the Initial Context.

To do so, pass the hashtable to the constructor for InitialContext. The property
java.naming.factory.initial is used to specify how the InitialContext is
created. To use WebLogic JNDI, you must always set the
java.naming.factory.initial property to
weblogic.jndi.WLInitialContextFactory. This setting identifies the factory
that actually creates the context.

WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server 1-5

1.3.2.2 Creating a Context Using a WebLogic Environment Object

You can also create a context by using a WebLogic environment object implemented
by weblogic.jndi.environment. Although the environment object is WebLogic-
specific, it offers the following advantages:

• A set of defaults which reduces the amount of code you need to write.

• Convenience set() methods that provide compile-time type-safety. The type-
safety set() methods can save you time both writing and debugging code.

The WebLogic environment object provides the following defaults:

• If you do not specify an InitialContext factory, WLInitialContextFactory
is used.

• If you do not specify a user and password in the
Context.SECURITY_PRINCIPAL and Context.CREDENTIALS properties, the
guest user and password are used unless the thread has already been associated
with a user.

• If you do not specify a Context.PROVIDER_URL property, t3://localhost:
7001 is used.

If you want to create an InitialContext with these defaults, write the following
code:

 Environment env = new Environment();
 Context ctx = env.getInitialContext();

If you want to set only a WebLogic Server to a Distributed Name Service (DNS) name
for client cluster access, write the following code:

 Environment env = new Environment();
 env.setProviderURL("t3://myweblogiccluster.com:7001");
 Context ctx = env.getInitialContext();

Note:

Every time you create a new JNDI environment object, you are creating a new
security scope. This security scope ends with a context.close() method.
The environment.getInitialContext() method does not work
correctly with the IIOP protocol.

Example 1-2 illustrates using a JNDI environment object to create a security context.

Example 1-2 Creating a Security Context with a JNDI Environment Object

weblogic.jndi.Environment environment = new weblogic.jndi.Environment();
environment.setInitialContextFactory(
 weblogic.jndi.Environment.DEFAULT_INITIAL_CONTEXT_FACTORY);
environment.setProviderURL("t3://bross:4441");
environment.setSecurityPrincipal("guest");
environment.setSecurityCrendentials("guest");
InitialContext ctx = environment.getInitialContext();

WebLogic JNDI

1-6 Developing JNDI Applications for Oracle WebLogic Server

1.3.2.3 Creating a Context from a Server-Side Object

You may also need to create a context from an object (an Enterprise JavaBean (EJB) or
Remote Method Invocation (RMI) object) that is instantiated in the Java Virtual
Machine (JVM) of WebLogic Server. When using a server-side object, you do not need
to specify the Context.PROVIDER_URL property. User names and passwords are
required only if you want to sign in as a specific user.

To create a context from within a server-side object, you first must create a new
InitialContext, as follows:

Context ctx = new InitialContext();

You do not need to specify a factory or a provider URL. By default, the context is
created as a context and is connected to the local naming service.

1.3.2.4 Associating a WebLogic User with a Security Context

See JNDI Contexts and Threads.

1.3.2.5 JNDI Contexts and Threads

When you create a JNDI context with a user name and password, you associate a user
with a thread. When the context is created, the user is pushed onto the context stack
associated with the thread. Before starting a new context on the thread, you must close
the first context so that the first user is no longer associated with the thread.
Otherwise, users are pushed down in the stack each time a new context created. This is
not an efficient use of resources and may result in the incorrect user being returned by
ctx.lookup() calls. This scenario is illustrated by the following steps:

1. Create a second context (with user name and credential) called ctx2 for user2.
At this point, the thread has a stack of users associated with it. User2 is at the top
of the stack and user1 is below it in the stack, so user2 is used is the current
user.

2. If you do a ctx1.lookup("abc") call, user2 is used as the identity rather than
user1, because user2 is at the top of the stack. To get the expected result, which
is to have ctx1.lookup("abc") call performed as user1, you need to do a
ctx2.close() call. The ctx2.close() call removes user2 from the stack
associated with the thread and so that a ctx1.lookup("abc") call now uses
user1 as expected.

Note:

When the weblogic.jndi.enableDefaultUser flag is enabled, there are
two situations where a close() call does not remove the current user from
the stack and this can cause JNDI context problems. For information on how
to avoid JNDI context problems, see How to Avoid Potential JNDI Context
Problems.

1.3.2.5.1 How to Avoid Potential JNDI Context Problems

Issuing a close() call is usually as described in JNDI Contexts and Threads.
However, the following is an exception to the expected behavior that occurs when the
weblogic.jndi.enableDefaultUser flag is enabled:

WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server 1-7

1.3.2.5.1.1 Last Used

When using IIOP, an exception to expected behavior arises when there is one context
on the stack and that context is removed by a close(). The identity of the last context
removed from the stack determines the current identity of the user. This scenario is
described in the following steps:

1. Do a ctx1.close() call.

2. Do a ctx1.lookup()call. The current identity is user1.

3. Create a context (with user name and credential) called ctx2 for user2. In the
process of creating the context, user2 is associated with the thread and stored in
the stack, that is, the current identity is set to user2.

4. Do a ctx2.close() call.

5. Do a ctx2.lookup() call. The current identity is user2.

1.3.3 Using the Context to Look Up a Named Object
The lookup() method on the context is used to obtain named objects. The argument
passed to the lookup() method is a string that contains the name of the desired
object. Example 1-3 shows how to retrieve an EJB named ServiceBean.

Example 1-3 Looking Up a Named Object

try {
 ServiceBean bean = (ServiceBean)ctx.lookup("ejb.serviceBean");
}catch (NameNotFoundException e) {
 // binding does not exist
}catch (NamingException e) {
 // a failure occurred
}

1.3.4 Using a Named Object to Get an Object Reference
EJB client applications get object references to EJB remote objects from EJB Homes.
RMI client applications get object references to other RMI objects from an initial
named object. Both initial named remote objects are known to WebLogic Server as
factories. A factory is any object that can return a reference to another object that is in
the WebLogic namespace.

The client application invokes a method on a factory to obtain a reference to a remote
object of a specific class. The client application then invokes methods on the remote
object, passing any required arguments.

Example 1-4 contains a code fragment that obtains a remote object and then invokes a
method on it.

Example 1-4 Using a Named Object to Get an Object Reference

ServiceBean bean = ServiceBean.Home.create("ejb.ServiceBean")
Servicebean.additem(66);

1.3.5 Closing the Context
After clients finish working with a context, Oracle recommends that the client close the
context in order to release resources and avoid memory leaks. Oracle recommends
that you use a finally{} block and wrap the close() method in a try{} block. If

WebLogic JNDI

1-8 Developing JNDI Applications for Oracle WebLogic Server

you attempt to close a context that was never instantiated because of an error, the Java
client application throws an exception.

In Example 1-5, the client closes the context, releasing the resource being used.

Example 1-5 Closing the Context

try {
 ctx.close();
} catch () {
//a failure occurred
}

1.3.6 Using WebLogic JNDI in a Clustered Environment
The intent of WebLogic JNDI is to provide a naming service for Java EE services,
specifically EJB, RMI, and Java Messaging Service (JMS). Therefore, it is important to
understand the implications of binding an object to the JNDI tree in a clustered
environment.

The following sections discuss how WebLogic JNDI is implemented in a clustered
environment and offer some approaches you can take to make your own objects
available to JNDI clients.

1.3.6.1 Using the Relationship of RMI and JNDI to Enable WebLogic Clusters

WebLogic RMI is the enabling technology that allows clients in one JVM to access EJBs
and JMS services from a client in another JVM. RMI stubs marshal incoming calls from
the client to the RMI object. To make Java EE services available to a client, WebLogic
binds an RMI stub for a particular service into its JNDI tree under a particular name.
The RMI stub is updated with the location of other instances of the RMI object as the
instances are deployed to other servers in the cluster. If a server within the cluster
fails, the RMI stubs in the other server's JNDI tree are updated to reflect the server
failure.

When a client connects to a cluster, it is actually connecting to one of the WebLogic
Server instances in the cluster. Because the JNDI tree for this WebLogic Server instance
contains the RMI stubs for all services offered by the other WebLogic Servers in the
cluster in addition to its own services, the cluster appears to the client as one
WebLogic Server instance hosting all of the cluster-wide services. When a new
WebLogic Server instance joins a cluster, each WebLogic Server instance already in the
cluster is responsible for sharing information about its own services to the new
WebLogic Server instance. With the information collected from all the other servers in
the cluster, the new server will create its own copy of the cluster-wide JNDI tree.

RMI stubs significantly affect how WebLogic JNDI is implemented in a clustered
environment:

• RMI stubs are relatively small. This allows WebLogic JNDI to replicate stubs across
all WebLogic Server instances in a cluster with little overhead in terms of server-to-
server cross-talk.

• RMI stubs serve as the mechanism for replication across a cluster. An instance of a
RMI object is deployed to a single WebLogic Server instance, however, the stub is
replicated across the cluster.

1.3.6.2 Making Custom Objects Available to a WebLogic Server Cluster

When you bind a custom object (a non-RMI object) into a JNDI tree in a WebLogic
Server cluster, the object is replicated across all the servers in the cluster. However, if

WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server 1-9

the host server goes down, the custom object is removed from the cluster's JNDI tree.
Custom objects are not replicated unless the custom object is bound again. You need to
unbind and rebind a custom object every time you want to propagate changes made to
the custom object. Therefore, WebLogic JNDI should not be used as a distributed
object cache. You can use a third-party solution with WebLogic Server to provide
distributed caches.

Suppose the custom object needs to be accessed only by EJBs that are deployed on
only one WebLogic Server instance. Obviously it is unnecessary to replicate this
custom object throughout all the WebLogic Server instances in the cluster. In fact, you
should avoid replicating the custom object in order to avoid any performance
degradation due to unnecessary server-to-server communication. To create a binding
that is not replicated across WebLogic Server instances in a cluster, you must specify
the REPLICATE_BINDINGS property when creating the context that binds the custom
object to the namespace. Example 1-6 illustrates the use of the REPLICATE_BINDINGS
property.

Example 1-6 Using the REPLICATE_BINDINGS Property

Hashtable ht = new Hashtable();
//turn off binding replication
ht.put(WLContext.REPLICATE_BINDINGS, "false");
try {
 Context ctx = new InitialContext(ht);
 //bind the object
 ctx.bind("my_object", MyObect);
} catch (NamingException ne) {
//failure occured
}

When you are using this technique and you need to use the custom object, you must
explicitly obtain an InitialContext for the WebLogic Server instance. If you
connect to any other WebLogic Server instance in the cluster, the binding does not
appear in the JNDI tree.

If you need a custom object accessible from any WebLogic Server instance in the
cluster, deploy the custom object on each WebLogic Server instance in the cluster
without replicating the JNDI bindings.

When using WebLogic JNDI to replicate bindings, the bound object will be handled as
if it is owned by the host WebLogic Server instance. If the host WebLogic Server
instance fails, the custom object is removed from all the JNDI trees of all WebLogic
Server instances in the cluster. This behavior can have an adverse effect on the
availability of the custom object.

1.3.6.3 Data Caching Design Pattern

A common task in Web applications is to cache data used by multiple objects for a
period of time to avoid the overhead associated with data computation or connecting
to another service.

Suppose you have designed a custom data caching object that performs well on a
single WebLogic Server instance and you would like to use this same object within a
WebLogic Server cluster. If you bind the data caching object in the JNDI tree of one of
the WebLogic Server instances, WebLogic JNDI will, by default, copy the object to
each of the other WebLogic Server instances in the cluster. It is important to note that
since this is not an RMI object, what you are binding into the JNDI tree (and copying
to the other WebLogic Server instances) is the object itself, not a stub that refers to a
single instance of the object hosted on one of the WebLogic Server instances. Do not
assume from the fact that WebLogic Server copies a custom object between servers

WebLogic JNDI

1-10 Developing JNDI Applications for Oracle WebLogic Server

that custom objects can be used as a distributed cache. Remember the custom object is
removed from the cluster if the WebLogic Server instance to which it was bound fails
and changes to the custom object are not propagated through the cluster unless the
object is unbound and rebound to the JNDI tree.

For performance and availability considerations, it is often desirable to avoid using
WebLogic JNDI's binding replication to copy large custom objects with high
availability requirements to all of the WebLogic Server instances in a cluster. As an
alternative, you can deploy a separate instance of the custom object on each of the
WebLogic Server instances in the cluster. When binding the object to each WebLogic
Server instance's JNDI tree, you should make sure to turn off binding replication as
described in Making Custom Objects Available to a WebLogic Server Cluster. In this
design pattern, each WebLogic Server instance has a copy of the custom object but you
will avoid copying large amounts of data from server to server.

Regardless of which approach you use, each instance of the object should maintain its
own logic for when it needs to refresh its cache independently of the other data cache
objects in the cluster. For example, suppose a client accesses the data cache on one
WebLogic Server instance. It is the first time the caching object has been accessed, so it
computes or obtains the information and saves a copy of the information for future
requests. Now suppose another client connects to the cluster to perform the same task
as the first client only this time the connection is made to a different WebLogic Server
instance in the cluster. If this is the first time this particular data caching object has
been accessed, it will need to compute the information regardless of whether other
data caching objects in the cluster already have the information cached. Of course, for
any future requests, this instance of the data cache object will be able to refer to the
information it has saved.

1.3.6.4 Exactly-Once-Per-Cluster Design Pattern

In some cases, it is desirable to have a service that appears only once in the cluster.
This is accomplished by deploying the service on one machine only. For RMI objects,
you can use the default behavior of WebLogic JNDI to replicate the binding (the RMI
stub) and the single instance of your object will be accessible from all WebLogic Server
instances in the cluster. This is referred to as a pinned service. For non-RMI objects,
make sure that you use the REPLICATE_BINDINGS property when binding the object
to the namespace. In this case, you will need to explicitly connect to the host WebLogic
Server instance to access the object. Alternatively, you can create an RMI object that is
deployed on the same host WebLogic Server instance that can act as a proxy for your
non-RMI object. The stub for the proxy can be replicated (using the default WebLogic
JNDI behavior) allowing clients connected to any WebLogic Server instance in the
cluster to access the non-RMI object via the RMI proxy.

For services with high-availability requirements, you can configure automatic
migration of an RMI object to another server. For more information about automatic
migration, see Whole Server Migration in Administering Clusters for Oracle WebLogic
Server.

1.3.6.5 Using WebLogic JNDI from a Client in a Clustered Environment

The JNDI binding for an object can appear in the JNDI tree for one WebLogic Server
instance in the cluster, or it can be replicated to all the WebLogic Server instances in
the cluster. If the object of interest is bound in only one WebLogic Server instance, you
must explicitly connect to the host WebLogic Server instance by setting the
Context.PROVIDER_URL property to the host WebLogic Server URL when creating
the InitialContext, as described in Using WebLogic JNDI to Connect a Java Client
to a Single Server.

WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server 1-11

In most cases, however, the object of interest is either a clustered service or a pinned
service. As a result, a stub for the service is displayed in the JNDI tree for each
WebLogic Server instance in the cluster. In this case, the client does not need to name a
specific WebLogic Server instance to provide its naming service. In fact, it is best for
the client to simply request that a WebLogic cluster provide a naming service, in
which case the context factory in WebLogic Server can choose whichever WebLogic
Server instance in the cluster seems most appropriate for the client.

Currently, a naming service provider is chosen within WebLogic using a DNS name
for the cluster that can be defined by the ClusterAddress attribute. This attribute
defines the address to be used by clients to connect to a cluster. This address may be
either a DNS host name that maps to multiple IP addresses or a comma separated list
of single address host names or IP addresses. If network channels are configured, it is
possible to set the cluster address on a per channel basis. See Communications In a
Cluster in Administering Clusters for Oracle WebLogic Server.

The context that is returned to a client of clustered services is, in general, implemented
as a failover stub that can transparently change the naming service provider if a failure
(such as a communication failure) with the selected WebLogic Server instance occurs.

Example 1-7 shows how a client uses the cluster's naming service.

Example 1-7 Using the Naming Service in a WebLogic Cluster

Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL, "t3://acmeCluster:7001");
try {
 Context ctx = new InitialContext(ht);
 // Do the client's work
}
catch (NamingException ne) {
 // A failure occurred
}
finally {
 try {ctx.close();}
 catch (Exception e) {
 // a failure occurred
 }
}

The hostname specified as part of the provider URL is the DNS name for the cluster
that can be defined by the ClusterAddress setting in a Cluster stanza of the
config.xml file. ClusterAddress maps to the list of hosts providing naming
service in this cluster. For more information, see Understanding Cluster Configuration
in Administering Clusters for Oracle WebLogic Server.

In Example 1-7, the cluster name acmeCluster is used to connect to any of the
WebLogic Server instances in the cluster. The resulting context is replicated so that it
can fail over transparently to any WebLogic Server instance in the cluster.

An alternative method of specifying the initial point of contact with the WebLogic
Server cluster is to supply a comma-delimited list of DNS server names or IP
addresses.

• The following example specifies a list of WebLogic Server instances using the same
port:

ht.put(Context.PROVIDER_URL,"t3://acme1,acme2,acme3:7001");

WebLogic JNDI

1-12 Developing JNDI Applications for Oracle WebLogic Server

All the WebLogic Server instances listen on the port specified at the end of the
URL.

• The following example specifies a list of WebLogic Server instances using different
ports:

ht.put(Context.PROVIDER_URL,"t3://node1:7001,node2:7002,node3:7003");

When you use a DNS name which maps to multiple servers, WebLogic Server relies
on DNS for load balancing.

When you use a comma-delimited list of DNS names for WebLogic Server nodes,
failover is accomplished using the round-robin method, with the request going to a
randomly chosen server until that server fails to respond, after which the request will
go to the next server on the list. This will continue for each server instance that fails.

Once the client has gotten a context, no additional load balancing occurs unless there
is a failure, in which case a WebLogic Server instance will fail over to another node in
the cluster.

A remote client will get the context from the first available server. A client that is local
to a server in the cluster will never go to a remote server for JNDI operations.

When you look up a stub, the first invocation of the stub will ordinarily go to the
server from which you got the context. If the stub is clusterable, subsequent
invocations will be load balanced based on the user defined load balancing policy.

For additional information about JNDI and clusters see Overview in Administering
Clusters for Oracle WebLogic Server.

1.3.7 Using JNDI from Within Java EE Components
Although it is possible for Java EE components to use the global environment directly,
it is preferable to use the component environment. Each Java EE component within a
Java EE application had its own component environment which is set up based on
information contained in the component's deployment descriptors.

Java EE components are able to look up their component environments using the
following code:

Context ctx = new InitailContext();
Context comp_env = (Context)ctx.lookup("java:comp/env");

Because you are working within a Java EE component, you do not need to set up the
hashtable or environment objects to define the connection information.

This context is used in the same way as the global environment, however, the names
you use are the ones defined in the deployment descriptor for your component. For
example, if you have an ejb-ref in your deployment descriptor that looks like:

<ejb-ref>
...
<ejb-ref-name>ejb1</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>ejb1.EJB1Home</home>
<remote>ejb1.EJB1</remote>
...
</ejb-ref>

you would look up the name defined with the <ejb-ref-name> setting, which in
this case is "ejb1".

WebLogic JNDI

Developing JNDI Applications for Oracle WebLogic Server 1-13

Using the component environment rather than the global environment to set your
JNDI name is advantageous because the name it refers to is resolved during
deployment. This means that naming conflicts can be resolved without rewriting the
code.

1.3.8 Setting Up Foreign JNDI
Foreign JNDI is an API that allows you to access objects on a remote JNDI tree without
having to connect directly to the remote tree.

Foreign JNDI enables you to make links to a JNDI tree on another server or provider
including, but not limited to, WebLogic Server, or a JNDI tree in a Java program. Once
you have configured Foreign JNDI, you can use an object that is somewhere else with
the same ease that you would use an object bound in your WebLogic Server instance.

To configure Foreign JNDI, create a ForeignJNDIProvider with the address of the
remote JNDI provider whose objects you want to use, and create a user name and
password to access those objects. Optionally, you can target Foreign JNDI references
to specific servers, clusters, or both. (If no targets are selected, Foreign JNDI references
will be deployed to the entire domain). Then you can create ForeignJNDILinks and
ForeignJNDIObjects that set up a relationship between a name in the local JNDI
tree to the object in the remote tree.

For more information on how to configure Foreign JNDI, see Create a foreign JNDI
provider in the Oracle WebLogic Server Administration Console Online Help.

WebLogic JNDI

1-14 Developing JNDI Applications for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Developing JNDI Applications for Oracle WebLogic Server
	1.1 Introduction and Roadmap
	1.1.1 Guide to this Document
	1.1.2 Related Documentation
	1.1.3 Examples for the Web Application Developer
	1.1.3.1 Avitek Medical Records Application (MedRec)
	1.1.3.2 JNDI Examples in the WebLogic Server Distribution

	1.1.4 New and Changed Features in This Release

	1.2 Understanding WebLogic JNDI
	1.2.1 What is JNDI?
	1.2.2 WebLogic Server JNDI

	1.3 WebLogic JNDI
	1.3.1 Using WebLogic JNDI to Connect a Java Client to a Single Server
	1.3.2 Setting Up JNDI Environment Properties for the Initial Context
	1.3.2.1 Creating a Context Using a Hashtable
	1.3.2.2 Creating a Context Using a WebLogic Environment Object
	1.3.2.3 Creating a Context from a Server-Side Object
	1.3.2.4 Associating a WebLogic User with a Security Context
	1.3.2.5 JNDI Contexts and Threads
	1.3.2.5.1 How to Avoid Potential JNDI Context Problems
	1.3.2.5.1.1 Last Used

	1.3.3 Using the Context to Look Up a Named Object
	1.3.4 Using a Named Object to Get an Object Reference
	1.3.5 Closing the Context
	1.3.6 Using WebLogic JNDI in a Clustered Environment
	1.3.6.1 Using the Relationship of RMI and JNDI to Enable WebLogic Clusters
	1.3.6.2 Making Custom Objects Available to a WebLogic Server Cluster
	1.3.6.3 Data Caching Design Pattern
	1.3.6.4 Exactly-Once-Per-Cluster Design Pattern
	1.3.6.5 Using WebLogic JNDI from a Client in a Clustered Environment

	1.3.7 Using JNDI from Within Java EE Components
	1.3.8 Setting Up Foreign JNDI

