
Oracle® Fusion Middleware
Developing Standalone Clients for Oracle WebLogic Server

12c (12.2.1.1.0)

E72108-01

August 2016

This document is a resource for developers who want to create
standalone client applications that interoperate with WebLogic
Server.

Oracle Fusion Middleware Developing Standalone Clients for Oracle WebLogic Server, 12c (12.2.1.1.0)

E72108-01

Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... vii

Documentation Accessibility .. vii

Conventions... vii

1 Introduction and Roadmap

1.1 Document Scope and Audience... 1-1

1.2 Guide to This Document... 1-1

1.3 Related Documentation .. 1-2

1.4 Samples and Tutorials... 1-2

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials...................................... 1-2

1.4.2 Examples in the WebLogic Server Distribution... 1-3

1.5 New and Changed Features for This Release.. 1-3

2 Overview of Standalone Clients

2.1 Distributing Client Jar Files.. 2-1

2.2 WebLogic T3 Clients.. 2-1

2.2.1 WebLogic Thin T3 Client... 2-1

2.2.2 WebLogic Full Client (Deprecated) ... 2-2

2.2.3 WebLogic Install Client ... 2-2

2.3 RMI-IIOP Clients.. 2-2

2.4 CORBA Clients... 2-3

2.5 JMX Clients ... 2-3

2.6 JMS Clients.. 2-3

2.7 Web Services Clients ... 2-4

2.8 WebLogic Tuxedo Connector Clients ... 2-4

2.9 Clients and Features .. 2-4

3 Developing a WebLogic Thin T3 Client

3.1 Understanding the WebLogic Thin T3 Client.. 3-1

3.1.1 WebLogic Thin T3 Features .. 3-1

3.1.2 Limitations and Considerations ... 3-2

3.1.3 Interoperability ... 3-2

iii

3.1.4 Security .. 3-2

3.1.5 Connection Considerations... 3-3

3.2 Developing a Basic WebLogic Thin T3 Client ... 3-3

3.3 Foreign Server Applications... 3-4

3.3.1 Deployment Considerations ... 3-4

3.3.2 Interoperating with OC4J ... 3-5

4 Developing a WebLogic Full Client (Deprecated)

4.1 Understanding the WebLogic Full Client .. 4-1

4.2 Limitations and Considerations when Using the WebLogic Full Client................................. 4-2

4.3 Developing a WebLogic Full Client .. 4-2

4.4 Communicating with a Server in Admin Mode.. 4-4

4.5 Running the WebLogic Full Client in a Non-Forked VM.. 4-4

5 Developing a Thin Client

5.1 Overview of the Thin Client... 5-1

5.1.1 Limitations... 5-2

5.2 How to Develop a Thin Client ... 5-2

5.3 Protocol Compatibility.. 5-5

6 WebLogic JMS Thin Client

6.1 Overview of the JMS Thin Client .. 6-1

6.2 JMS Thin Client Functionality.. 6-1

6.3 Limitations of Using the JMS Thin Client .. 6-2

6.4 Deploying the JMS Thin Client.. 6-2

7 Reliably Sending Messages Using the JMS SAF Client

7.1 Overview of Using Store-and-Forward with JMS Clients ... 7-1

7.2 Configuring a JMS Client To Use Client-side SAF.. 7-2

7.2.1 Generating a JMS SAF Client Configuration File .. 7-2

7.2.2 Encrypting Passwords for Remote JMS SAF Contexts ... 7-7

7.2.3 Installing the JMS SAF Client JAR Files on Client Machines... 7-9

7.2.4 Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI

Provider.. 7-10

7.3 JMS SAF Client Management Tools .. 7-11

7.3.1 The JMS SAF Client Initialization API .. 7-11

7.3.2 Client-Side Store Administration Utility .. 7-11

7.4 JMS Programming Considerations with JMS SAF Clients .. 7-11

7.4.1 How the JMSReplyTo Field Is Handled In JMS SAF Client Messages....................... 7-11

7.4.2 No Mixing of JMS SAF Client Contexts and Server Contexts 7-11

7.4.3 Using Transacted Sessions With JMS SAF Clients .. 7-12

7.5 JMS SAF Client Interoperability Guidelines.. 7-12

7.5.1 Java Run Time... 7-12

iv

7.5.2 WebLogic Server Versions .. 7-12

7.5.3 JMS C API .. 7-12

7.6 Tuning JMS SAF Clients ... 7-12

7.7 Limitations of Using the JMS SAF Client ... 7-13

7.8 Behavior Change in JMS SAF Client Message Storage .. 7-13

7.8.1 The Upgrade Process, Tools, and System Properties.. 7-13

8 Developing a Java SE Client

8.1 Java SE Client Basics.. 8-1

8.2 How to Develop a Java SE Client .. 8-1

9 Developing a WLS-IIOP Client (Deprecated)

9.1 WLS-IIOP Client Features .. 9-1

9.2 How to Develop a WLS-IIOP Client ... 9-1

10 Developing a CORBA/IDL Client

10.1 Guidelines for Developing a CORBA/IDL Client .. 10-1

10.1.1 Working with CORBA/IDL Clients .. 10-1

10.2 IDL Client (Corba object) relationships .. 10-2

10.2.1 Java to IDL Mapping.. 10-2

10.3 WebLogic RMI over IIOP object relationships .. 10-2

10.3.1 Objects-by-Value .. 10-2

10.4 Procedure for Developing a CORBA/IDL Client ... 10-3

11 Developing Clients for CORBA Objects

11.1 Enhancements to and Limitations of CORBA Object Types ... 11-1

11.2 Making Outbound CORBA Calls: Main Steps .. 11-1

11.3 Using the WebLogic ORB Hosted in JNDI... 11-2

11.3.1 ORB from JNDI... 11-2

11.3.2 Direct ORB creation.. 11-2

11.3.3 Using JNDI .. 11-2

11.4 Supporting Inbound CORBA Calls... 11-3

12 Developing a WebLogic C++ Client for a Tuxedo ORB

12.1 WebLogic C++ Client Advantages and Limitations... 12-1

12.2 How the WebLogic C++ Client Works... 12-1

12.3 Developing WebLogic C++ Clients... 12-2

13 Using Java EE Client Application Modules

13.1 Extracting a Client Application ... 13-1

13.2 Executing a Client Application.. 13-2

v

14 Developing Security-Aware Clients

14.1 Developing Clients That Use JAAS... 14-1

14.2 Developing Clients that Use JNDI Authentication... 14-1

14.3 Developing Clients That Use SSL.. 14-1

14.4 Thin-Client Restrictions for JAAS and SSL .. 14-3

14.5 Security Code Examples ... 14-4

15 Using EJBs with RMI-IIOP Clients

15.1 Accessing EJBs with a Java Client ... 15-1

15.2 Accessing EJBs with a CORBA/IDL Client ... 15-1

15.2.1 Example IDL Generation... 15-2

A Client Application Deployment Descriptor Elements

A.1 Overview of Client Application Deployment Descriptor Elements A-1

A.2 application-client.xml Deployment Descriptor Elements .. A-1

A.2.1 application-client ... A-1

A.3 weblogic-appclient.xml Descriptor Elements... A-3

A.3.1 application-client ... A-3

B Using the WebLogic JarBuilder Tool

B.1 Creating a wlfullclient.jar for JDK 1.7 client applications ... B-1

B.2 Creating a wlfullclient.jar for JDK 1.6 client applications ... B-2

vi

Preface

This preface describes the document accessibility features and conventions used in this
guide—.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Introduction and Roadmap

This chapter describes the contents and organization of this guide—.

This chapter includes the following sections:

• Document Scope and Audience

• Guide to This Document

• Related Documentation

• Samples and Tutorials

• New and Changed Features for This Release

1.1 Document Scope and Audience
This document is a resource for developers who want to create standalone client
applications that interoperate with WebLogic Server.

This document is relevant to the design and development phases of a software project.
The document also includes solutions to application problems that are discovered
during test and pre-production phases of a project.

It is assumed that the reader is familiar with Java Platform, Enterprise Edition (Java
EE) concepts. This document emphasizes the value-added features provided by
WebLogic Server and key information about how to use WebLogic Server features and
facilities when developing standalone clients.

1.2 Guide to This Document
• This chapter, Introduction and Roadmap, introduces the scope and organization of

this guide.

• Overview of Standalone Clients, describes basic client-server functionality.

• Developing a WebLogic Thin T3 Client describes how to create a WebLogic Thin T3
client.

• Developing a WebLogic Full Client (Deprecated), describes how to create a
WebLogic full client.

• Developing a Thin Client , describes how to create a thin client.

• WebLogic JMS Thin Client, describes how to a create WebLogic JMS thin client.

• Reliably Sending Messages Using the JMS SAF Client, describes how to create a
Store-and-Forward client.

Introduction and Roadmap 1-1

• Developing a Java SE Client, describes how to create a JSE client.

• Developing a WLS-IIOP Client (Deprecated), provides information on how to
create a WebLogic Server-IIOP client.

• Developing a CORBA/IDL Client, describes how to create a CORBA/IDL client.

• Developing Clients for CORBA Objects, describes how to create a client that
interoperates with CORBA objects.

• Developing a WebLogic C++ Client for a Tuxedo ORB, describes how to create a C
++ client for the Tuxedo ORB.

• Using Java EE Client Application Modules, describes how to use application
modules.

• Developing Security-Aware Clients , describes how to create a security-aware
client.

• Using EJBs with RMI-IIOP Clients, describes how to use EJBs with an RMI-IIOP
client.

• Client Application Deployment Descriptor Elements, is a reference for the standard
Java EE client application deployment descriptor, application-client.xml, and
weblogic-appclient.xml.

• Using the WebLogic JarBuilder Tool, provides information on creating the
wlfullclient.jar using the JarBuilder tool.

1.3 Related Documentation
For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see:

• Developing RMI Applications for Oracle WebLogic Server is a guide to using Remote
Method Invocation (RMI) and Internet Interop-Orb-Protocol (IIOP) features.

• Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

• Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

• Tuning Performance of Oracle WebLogic Server contains information on monitoring
and improving the performance of WebLogic Server applications.

1.4 Samples and Tutorials
In addition to this document, Oracle Systems provides a variety of code samples and
tutorials for developers. The examples and tutorials illustrate WebLogic Server in
action, and provide practical instructions on how to perform key development tasks.

Oracle recommends that you run some or all examples before developing your own
applications.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The

Related Documentation

1-2 Developing Standalone Clients for Oracle WebLogic Server

MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed in the WebLogic Server
installation. You can start MedRec from the ORACLE_HOME\user_projects
\domains\medrec directory, where ORACLE_HOME is the directory you specified as
the Oracle Home when you installed Oracle WebLogic Server. For more information,
see "Sample Applications and Code Examples" in Understanding Oracle WebLogic
Server.

MedRec includes a service tier consisting primarily of Enterprise Java Beans (EJBs)
that work together to process requests from Web applications, Web services, and
workflow applications, and future client applications. The application includes
message-driven, stateless session, stateful session, and entity EJBs.

1.4.2 Examples in the WebLogic Server Distribution
WebLogic Server optionally installs API code examples in the ORACLE_HOME
\wlserver\samples\server directory. For more information about the WebLogic
Server code examples, see "Sample Applications and Code Examples" in Understanding
Oracle WebLogic Server.

1.5 New and Changed Features for This Release
This release includes the following new and changed features:

• The WebLogic Full Client implements the JDK StAX parser to perform rim
RTD.xml parsing. See Limitations and Considerations when Using the WebLogic
Full Client.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.

New and Changed Features for This Release

Introduction and Roadmap 1-3

New and Changed Features for This Release

1-4 Developing Standalone Clients for Oracle WebLogic Server

2
Overview of Standalone Clients

This chapter describes what a standalone client is, types of clients, client features, and
how clients are distributed. In the context of this document, a standalone client is a
client that has a run-time environment independent of WebLogic Server. (Managed
clients, such as Web Services, rely on a server-side container to provide the run time
necessary to access a server.) Standalone clients that access WebLogic Server
applications range from simple command-line utilities that use standard I/O to highly
interactive GUI applications built using the Java Swing/AWT classes.

This chapter includes the following sections:

• Distributing Client Jar Files

• WebLogic T3 Clients

• RMI-IIOP Clients

• CORBA Clients

• JMX Clients

• JMS Clients

• Web Services Clients

• WebLogic Tuxedo Connector Clients

• Clients and Features

2.1 Distributing Client Jar Files
For information on license requirements when using client JARs and other resources
provided in Oracle WebLogic Server for creating standalone clients, see "Stand-Alone
WebLogic Clients" in .

2.2 WebLogic T3 Clients
The WebLogic T3 clients are Java RMI clients that use Oracle's T3 protocol to
communicate with WebLogic Server. T3 clients outperform other client types, and are
the most recommended type of client.

2.2.1 WebLogic Thin T3 Client
The WebLogic Thin T3 java client provides a light-weight alternative to the WebLogic
Install, Full, and Thin IIOP clients. This client provides the same performance that you
would see with the full client, but leverages a much smaller jar file. The Thin T3 client
supports most of the use cases in which the full client can be used.

Overview of Standalone Clients 2-1

The Thin T3 client can be used in standalone applications, and is also designed for
applications running on foreign (non-WebLogic) servers. One common use case is
integration with WebLogic JMS destinations.

• Developing a WebLogic Thin T3 Client

• "Using WebLogic RMI with T3 Protocol" in Developing RMI Applications for Oracle
WebLogic Server

2.2.2 WebLogic Full Client (Deprecated)
The WebLogic Full Client requires the largest JAR file (wlfullclient.jar) among
the standalone clients, but it has the most features and is the best overall performer.
All three T3 clients have the same performance. The wlfullclient.jar also
provides IIOP support. See:

• Developing a WebLogic Full Client (Deprecated)

• "Using WebLogic RMI with T3 Protocol" in Developing RMI Applications for Oracle
WebLogic Server

Note:

If you run the WebLogic Full Client from a <java> task that is invoked in an
Ant script, see Running the WebLogic Full Client in a Non-Forked VM, for
important information regarding the RSA Crypto-J library, which is included
in the wlfullclient.jar manifest classpath.

2.2.3 WebLogic Install Client
The Install client is available from a full WebLogic Server installation. It uses the
weblogic.jar file located at WL_HOME/server/lib and provides client-side
support for all WebLogic Server-specific value-added features. It is the only client that
supports server-side operations, such as:

• Operations necessary for development purposes, such as the ejbc compiler.

• Administrative operations such as deployment.

• WLST and client-side JSR 88 applications that invoke server-side operations.

2.3 RMI-IIOP Clients
IIOP can be a transport protocol for distributed applications with interfaces written in
Java RMI. When they are an option, Oracle recommends using T3 clients instead of
IIOP clients. For more information, see:

• Developing a Thin Client

• WebLogic JMS Thin Client

• Reliably Sending Messages Using the JMS SAF Client

• Developing a Java SE Client

• Developing a WLS-IIOP Client (Deprecated)

RMI-IIOP Clients

2-2 Developing Standalone Clients for Oracle WebLogic Server

For more information, see "Using RMI over IIOP" in Developing RMI Applications for
Oracle WebLogic Server.

2.4 CORBA Clients
If you are not working in a Java-only environment, you can use IIOP to connect your
Java programs with Common Object Request Broker Architecture (CORBA) clients
and execute CORBA objects. IIOP can be a transport protocol for distributed
applications with interfaces written in Interface Definition Language (IDL) or Java
RMI. However, the two models are distinctly different approaches to creating an
interoperable environment between heterogeneous systems. When you program, you
must decide to use either IDL or RMI interfaces; you cannot mix them.WebLogic
Server supports the following CORBA client models:

• Developing a CORBA/IDL Client

• Developing Clients for CORBA Objects

• Developing a WebLogic C++ Client for a Tuxedo ORB

2.5 JMX Clients
You can use a JMX client to access WebLogic Server MBeans. See "Accessing
WebLogic Server MBeans With JMX" in Developing Custom Management Utilities Using
JMX for Oracle WebLogic Server.

2.6 JMS Clients
WebLogic Server provides a number of JMS clients that provide Java EE and
WebLogic JMS functionality.

Tip:

Oracle recommends using an efficient T3 protocol capable Java client -- either
the Install, Full, and Thin T3. The Thin java client uses the slower IIOP
protocol and is only recommended when the Thin T3 client is considered to be
too large for your use case.

• WebLogic Thin T3 client, see Developing a WebLogic Thin T3 Client.

• WebLogic Full client, see Developing a WebLogic Full Client (Deprecated).

• WebLogic Install client, See WebLogic Install Client.

• JMS thin client, see WebLogic JMS Thin Client.

• JMS SAF client, see Reliably Sending Messages Using the JMS SAF Client.

• JMS C client, see "WebLogic JMS C API" in Developing JMS Applications for Oracle
WebLogic Server

• JMS .NET client, see Developing JMS .NET Client Applications for Oracle WebLogic
Server

• WebLogic AQ JMS client, see "Standalone WebLogic AQ JMS Clients" in
Administering JMS Resources for Oracle WebLogic Server. The WebLogic AQ JMS
client obtains destination information using WebLogic Server JNDI and provides

CORBA Clients

Overview of Standalone Clients 2-3

direct access to Oracle data base AQ JMS destinations using an embedded driver. It
does not provide access to WebLogic Server JMS destinations.

2.7 Web Services Clients
A standalone Web Services client (wseeclient.jar) uses WebLogic client classes to
invoke a Web Service hosted on WebLogic Server or on other application servers. See
"Using a Standalone Client JAR File When Invoking Web Services" in Developing JAX-
RPC Web Services for Oracle WebLogic Server.

2.8 WebLogic Tuxedo Connector Clients
WebLogic Tuxedo Connector provides inter-operability between WebLogic Server
applications and Tuxedo services. See:

• "Developing Oracle WebLogic Tuxedo Connector Client EJBs" in the Developing
Oracle WebLogic Tuxedo Connector Applications for Oracle WebLogic Server

• "How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo
Connector" in the Developing Oracle WebLogic Tuxedo Connector Applications for
Oracle WebLogic Server

• "How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the
CORBA Java API" in the Developing Oracle WebLogic Tuxedo Connector Applications
for Oracle WebLogic Server

2.9 Clients and Features
The following table lists the types of clients supported in a WebLogic Server
environment, and their characteristics, features, and limitations.

Note:

Oracle does not support combining clients to create extended feature sets.
Select a client that best fits your environment and use only the client classes
specified for that client type.

Web Services Clients

2-4 Developing Standalone Clients for Oracle WebLogic Server

Table 2-1 WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements

Key Features

WL Thin T3
Client

RMI Java T3 wlthint3cli
ent.jar

• Small Footprint
• Oracle WebLogic's T3/T3S protocol for

Remote Method Invocation (RMI).
• Supports WebLogic Server clustering.
• Supports JSSE SSL, except with HTTP

tunnelling.
• Faster and more scalable than IIOP

clients.
• Most WebLogic client JMS features,

including the WebLogic Store-and-
Forward (SAF) Service using the
wlsaft3client.jar.

• Supports most JavaEE features.
• Supports Network class loading.
• See Developing a WebLogic Thin T3

Client.

Deprecated

WL Full
Client (T3)

RMI Java T3 wlfullclien
t.jar

• Deprecated WebLogic Server 12.1.3.
• Supports most WebLogic Server-specific

features
• Supports WebLogic Server clustering.
• Faster and more scalable than IIOP

clients.
• Supports most Java EE features.
• See Developing a WebLogic Full Client

(Deprecated).

Deprecated

WLS-IIOP

(Introduced
in WebLogic
Server 7.0)

RMI Java IIOP wlfullclien
t.jar

• Supports WebLogic Server-specific
features.

Deprecated WebLogic Server 12.1.3.
• Supports WebLogic Server clustering.
• Faster and more scalable than IIOP thin

clients.
• Not ORB-based.
• Does not support WebLogic Server JMS

(use T3 protocol with same Jar instead).
• See Developing a WLS-IIOP Client

(Deprecated).

Thin Client RMI Java IIOP wlclient.ja
r

• Supports WebLogic Server clustering.
• Supports many Java EE features,

including security and transactions.
• Supports SSL.
• Uses CORBA 2.4 ORB.
• Consider using one of the faster T3 client

options.
• See Developing a Thin Client .

Clients and Features

Overview of Standalone Clients 2-5

Table 2-1 (Cont.) WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements

Key Features

CORBA/ID
L

CORBA Language
s that
OMG IDL
maps to,
such as C
++, C,
Smalltalk,
COBOL

IIOP no WebLogic
classes

• Uses CORBA 2.3 ORB.
• Does not support WebLogic Server-

specific features.
• Does not support Java.
• See Developing a CORBA/IDL Client.

Java SE RMI Java IIOP no WebLogic
classes

• Provides connectivity to WebLogic
Server environment.

• Does not support WebLogic Server-
specific features. Does not support many
Java EE features.

• Uses CORBA 2.3 ORB.
• Requires use of

com.sun.jndi.cosnaming.
CNCtxFactory.

• See Developing a Java SE Client.

JMS Thin
Client

RMI Java IIOP wljmsclient
.jar

wlclient.ja
r

• Thin client functionality
• WebLogic JMS, except for client-side

XML selection for multicast sessions and
JMSHelper class methods.

• Supports SSL.
• See WebLogic JMS Thin Client.
• Consider using one of the faster T3 client

options.

JMS SAF
Client

(Introduced
in WebLogic
Server 9.2)

RMI Java IIOP • wlsafclie
nt.jar
and
wlthint3c
lient.jar
(preferred)
or

• wlsafclie
nt.jar,
wljmsclie
nt.jar,
and
wlclient.
jar

• Locally stores messages on the client and
forwards them to server-side JMS
destinations when the client is
connected.

• Supports SSL.
• See Reliably Sending Messages Using the

JMS SAF Client.

JMS C Client

(Introduced
in WebLogic
Server 9.0)

JNI C Any Any WebLogic
JMS capable
Java client,
such as
wlthint3cli
ent.jar

• C client applications that can access
WebLogic JMS applications and
resources.

• Supports SSL.
• See "WebLogic JMS C API"

Clients and Features

2-6 Developing Standalone Clients for Oracle WebLogic Server

Table 2-1 (Cont.) WebLogic Server Client Types and Features

Client Type Language Protocol Client Class
Requirements

Key Features

JMS .NET
Client

(Introduced
in WebLogic
Server 10.3)

T3 .NET T3 WebLogic.Me
ssaging.dll
dynamic
library

• Microsoft .NET client applications,
written in C#, that can access WebLogic
JMS applications and resources.

• See Developing JMS .NET Client
Applications for Oracle WebLogic Server.

WebLogic
AQ JMS
Client

(Introduced
in WebLogic
Server
10.3.1)

JNDI/ Java IIOP/T3
+

aqapi.jar,
o6.jar,
orai18n.jar
and the
wlclient.ja
r,
wlfullclien
t.jar,
weblogic.ja
r (Install
client), or
wlthint3cli
ent.jar

See "Standalone WebLogic AQ JMS Clients"
in Administering JMS Resources for Oracle
WebLogic Server.

JMX RMI Java IIOP wljmxclient
.jar

See "Accessing WebLogic Server MBeans
with JMX" in Developing Custom Management
Utilities Using JMX for Oracle WebLogic
Server.

Web
Services

SOAP Java HTTP/S wseeclient.
jar

See "Invoking a Web Service from a
Standalone Client" in Developing JAX-WS
Web Services for Oracle WebLogic Server.

C++ Client CORBA C++ IIOP Tuxedo
libraries

• Interoperability between WebLogic
Server applications and Tuxedo clients/
services.

• Supports SSL.
• Uses CORBA 2.3 ORB.
• See Developing a WebLogic C++ Client

for a Tuxedo ORB.

Tuxedo
Server and
Native
CORBA
client

CORBA
or RMI

C++ Tuxedo-
General-
Inter-
Orb-
Protocol

(TGIOP)

Tuxedo
libraries

• Interoperability between WebLogic
Server applications and Tuxedo clients/
services.

• Supports SSL and transactions.
• Uses CORBA 2.3 ORB.
• See Developing Clients for CORBA

Objects.

Clients and Features

Overview of Standalone Clients 2-7

Clients and Features

2-8 Developing Standalone Clients for Oracle WebLogic Server

3
Developing a WebLogic Thin T3 Client

This chapter describes how to develop and use WebLogic Thin T3 clients.

This chapter includes the following sections:

• Understanding the WebLogic Thin T3 Client

• Developing a Basic WebLogic Thin T3 Client

• Foreign Server Applications

3.1 Understanding the WebLogic Thin T3 Client
The WebLogic Thin T3 Client jar (wlthint3client.jar) is a light-weight, high
performing alternative to the wlfullclient.jar and wlclient.jar (IIOP) remote
client jars. The Thin T3 client has a minimal footprint while providing access to a rich
set of APIs that are appropriate for client usage. As its name implies, the Thin T3
Client uses the WebLogic T3 protocol, which provides significant performance
improvements over the wlclient.jar, which uses the IIOP protocol.

The Thin T3 Client is the recommended option for most remote client use cases. There
are some limitations in the Thin t3 client as outlined below. For those few use cases,
you may need to use the full client or the IIOP thin client.

The Thin T3 client can be used in standalone applications, and is also designed for
applications running on foreign (non-WebLogic) servers. One common use case is
integration with WebLogic JMS destinations.

3.1.1 WebLogic Thin T3 Features
This release supports the following:

• Oracle WebLogic's T3/T3S protocol for Remote Method Invocation (RMI),
including: RMI over HTTP (HTTP tunneling) and RMI over HTTPS (HTTP
Tunneling over SSL). For more information on WebLogic T3 communication, see
"Using WebLogic RMI with T3 Protocol" in Developing RMI Applications for Oracle
WebLogic Server.

• Access to JMS, JMX, JNDI, and EJB resources available in WebLogic Server.

• The WebLogic Store-and-Forward (SAF) Service using the wlsaft3client.jar.

• Transaction initiation and termination (rollback or commit) using JTA.

• WebLogic client JMS features, including Unit-of-Order, Unit-of-Work, message
compression, XML messages, JMS automatic client reconnect, and Destination
Availability Helper APIs.

Developing a WebLogic Thin T3 Client 3-1

• Client-side clustering allowing a client application to participate in failover and
load balancing of a WebLogic Server instance. See "Clustered RMI Applications" in
Developing RMI Applications for Oracle WebLogic Server.

• JAAS authentication and JSSE SSL. See Security.

• Network class loading. By default the network class loading for the Thin T3 client
is disabled. Use the following system property to enable network classloading:

-Dweblogic.rmi.networkclassloadingenabled=true

3.1.2 Limitations and Considerations
This release does not support the following:

• Mbean-based utilities (such as JMS Helper, JMS Module Helper), and JMS
multicast are not supported. You can use JMX calls as an alternative to "mbean-
based helpers."

• JDBC resources, including WebLogic JDBC extensions.

• Running a WebLogic RMI server in the client.

The Thin T3 client uses JDK classes to connect to the host, including when connecting
to dual-stacked machines. If multiple addresses available on the host, the connection
may attempt to go to the wrong address and fail if the host is not properly configured.

3.1.3 Interoperability
This release of the WebLogic Thin T3 client has the following interoperability support:

• Prior WebLogic Server Releases

• Foreign Application Servers

3.1.3.1 Prior WebLogic Server Releases

For information on WebLogic Thin T3 client support for communicating with previous
WebLogic releases, see "Protocol Compatibility" in Understanding Oracle WebLogic
Server.

3.1.3.2 Foreign Application Servers

The WebLogic Thin T3 client jar is supported on the following application servers:

• GlassFish: version 3.1 and higher

• Oracle OC4J: version 10g and higher

• IBM WebSphere Application Server: Version 6.x and 7.x

• Red Hat JBoss Application Server: Version 5.x and 6.x

3.1.4 Security
For general information on client security see:

• "The Java Secure Socket Extension (JSSE)" in Understanding Security for Oracle
WebLogic Server.

Understanding the WebLogic Thin T3 Client

3-2 Developing Standalone Clients for Oracle WebLogic Server

• "Java Authentication and Authorization Services (JAAS)" in Understanding Security
for Oracle WebLogic Server.

• "Using SSL Authentication in Java Clients" in Developing Applications with the
WebLogic Security Service.

• "Using JAAS Authentication in Java Clients" in Developing Applications with the
WebLogic Security Service.

3.1.5 Connection Considerations
The WebLogic Thin T3 client uses JDK classes to connect to the host. If your host has
multiple addresses (Dual-Stack) available, your client may connect to the wrong IP
address if the host is not configured properly.

3.2 Developing a Basic WebLogic Thin T3 Client
Use the following steps to create a basic WebLogic Thin T3 client:

1. Obtain a reference to the remote object.

a. Get the initial context of the server that hosts the service using a T3 URL in
the form of t3://ip address:port or t3s://ip address:port.

b. Obtain an instance of the service object by performing a lookup using the
initial context. This instance can then be used just like a local object reference.

2. Call the remote objects methods.

3. Place the wlthint3client.jar in your client classpath. It is located in the
WL_HOME\server\lib directory of your WebLogic Server installation.

Note:

Oracle does not support combining clients to create extended feature sets.
Never add the wlfullclient.jar, wlthint3client.jar, or
wlclient.jar to a WebLogic Server classpath or a classpath that references
the weblogic.jar file in a full WebLogic install. The behavior is undefined.
WebLogic Server applications already have full access to WebLogic client
functionality.

Sample code to for a basic WebLogic Thin T3 client is provided in Example 3-1.

Example 3-1 Creating and Using a WebLogic Initial Context

Hashtable env = new Hashtable();
env.put("java.naming.factory.initial",
 "weblogic.jndi.WLInitialContextFactory");
env.put("java.naming.provider.url","t3://host:7001");
env.put("java.naming.security.principal","user");
env.put("java.naming.security.credentials","password");
Context ctx = new InitialContext(env);
try {
 Object homeObject =
 context.lookup("EmployeeBean");
//use the EmployeeBean
}
catch (NamingException e) {

Developing a Basic WebLogic Thin T3 Client

Developing a WebLogic Thin T3 Client 3-3

// a failure occurred
}
finally {
 try {ctx.close();}
 catch (Exception e) {
// a failure occurred
}
}

3.3 Foreign Server Applications
A foreign server hosted application can use the wlthint3client.jar to act as a
remote client to a WebLogic Server instance. To provide access to remote services such
as JMS, servlets, EJBs, and start-up classes, deploy any necessary application code
along with the wlthint3client.jar to your application server.

The following steps provide a guideline to connect to and access WebLogic Server
resources from a foreign application server using JNDI:

1. Include the wlthint3client.jar on the classpath of your client.

2. In your client application, create a WebLogic initial context and use the context to
lookup and use a resource. See Example 3-1 for more details.

3. It may be necessary to explicitly set the initial context factory as system property in
the client code to the following value:

env.put("java.naming.factory.initial", "weblogic.jndi.WLIniti
alContextFactory");

4. Deploy any necessary application code along with the wlthint3client.jar file
to your application server using standard Java EE methods, such as embedding the
wlthint3client.jar file in a servlet or using a shared library. See Deployment
Considerations.

5. Start or deploy the client.

The following sections outline specific items to consider when interoperating with a
foreign servers.

• Deployment Considerations

• Interoperating with OC4J

3.3.1 Deployment Considerations
You can deploy the wlthint3client.jar using standard Java EE methods.
However, when determining what deployment method to use, you must account for
client footprint, class loading, performance, and tolerance of the risk for code
incompatibility. For example:

• If you embed the wlthint3client.jar in your application, such as a servlet, the
application footprint is increased by the size of the wlthint3client.jar but the
risk of code incompatibility is limited to the scope of your application.

• If you deploy the wlthint3client.jar to your lib directory, the application
footprint is not affected but the risk of code incompatibility can include the entire
foreign server container.

Foreign Server Applications

3-4 Developing Standalone Clients for Oracle WebLogic Server

3.3.2 Interoperating with OC4J
Add the wlthint3client.jar file to the classpath of applications running within
OC4J that require WebLogic Server resources. See "Installing and Publishing a Shared
Library in OC4J" at http://docs.oracle.com/docs/cd/E14101_01/doc.
1013/e13979/classload.htm#CIHDGJGD.

The following section outlines important considerations when interoperating with the
Oracle OC4J application server as a remote client to WebLogic Server resources.

• Transaction propagation—Propagating transaction context objects between servers
is not supported.

• Security Context propagation—Propagating security/identity information between
servers is not supported.

For more information on OC4J, see "Introduction to Oracle WebLogic Server for OC4J
Users" in Upgrade Guide for Java EE.

3.3.2.1 Accessing WebLogic Server Resources

The following section demonstrates how connect to and access WebLogic Server
resources from OC4J using JNDI:

1. In your client application, create a WebLogic initial context and use the context to
lookup and use a resource. See Example 3-1 for more details.

2. Set the OC4J URL context factory property. See "Enabling the Server-Side URL
Context Factory" or "Enabling the Remote Client URL Context Factory" at
http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13975/
jndi.htm.

3. Include the wlthint3client.jar on the classpath of your client.

4. Add the JAR file as an OC4J shared library. See "Creating and Managing Shared
Libraries" in http://docs.oracle.com/docs/cd/E14101_01/doc.1013/
e13980/ascontrol.htm#BABFDHGB.

5. Start or deploy the client.

3.3.2.2 JMS Interoperability with WLS

When using ContextScanningResourceProvider resource provider to access
WebLogic server JMS destinations users require to use the resource.names
property to explicitly set a comma-separated list of JNDI names for the JMS resources
that are required from the external server. For more information on using the
ContextScanningResourceProvider resource provider to access third-party JMS
destinations, see "Using Oracle Enterprise Messaging Service" in http://
docs.oracle.com/docs/cd/E14101_01/doc.1013/e13975/jms.htm.

Note:

The syntax of resource.names does not support space between the comma
and the next JNDI name of the comma-separated list of JNDI names.

The following example demonstrates setting the resource.names property in the
orion-application.xml file. The resource.names property is set to

Foreign Server Applications

Developing a WebLogic Thin T3 Client 3-5

http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13979/classload.htm#CIHDGJGD
http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13979/classload.htm#CIHDGJGD
http://download.oracle.com/docs/cd/E12839_01/upgrade.1111/e10126/wls_oc4j_comparisons.htm
http://download.oracle.com/docs/cd/E12839_01/upgrade.1111/e10126/wls_oc4j_comparisons.htm
http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13975/jndi.htm
http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13975/jndi.htm
http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13980/ascontrol.htm#BABFDHGB
http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13980/ascontrol.htm#BABFDHGB
http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13975/jms.htm
http://docs.oracle.com/docs/cd/E14101_01/doc.1013/e13975/jms.htm

TopicOne,QueueOne,TopicTwo. This value represents a list of JNDI names for JMS
destinations that the ContextScanningResourceProvider resource provider
attempts to lookup from the external WebLogic server.

Example 3-2 Setting the resource.names Property

<resource-provider
class="com.evermind.server.deployment.ContextScanningResourceProvider"
name="WebLogicRP">
<property name="java.naming.factory.initial"
value="weblogic.jndi.WLInitialContextFactory"/>
<property name="java.naming.provider.url" value="t3://localhost:7001/"/>
<property name="java.naming.security.principal" value="user_name"/>
<property name="java.naming.security.credentials" value="user_password"/>
...
<!-- configure the set of known JMS destinations that are required for this
application -->
<property name="resource.names" value="TopicOne,QueueOne,TopicTwo"/>
...
</resource-provider>

Foreign Server Applications

3-6 Developing Standalone Clients for Oracle WebLogic Server

4
Developing a WebLogic Full Client

(Deprecated)

This chapter describes how to develop and use WebLogic full clients.

Note:

The WebLogic full client, wlfullclient.jar, is deprecated as of WebLogic
Server 12.1.3 and may be removed in a future release. Oracle recommends
using the WebLogic Thin T3 client or other appropriate client depending on
your environment. For more information on WebLogic client types, see Table
2-1.

This chapter includes the following sections:

• Understanding the WebLogic Full Client

• Limitations and Considerations when Using the WebLogic Full Client

• Developing a WebLogic Full Client

• Communicating with a Server in Admin Mode

• Running the WebLogic Full Client in a Non-Forked VM

4.1 Understanding the WebLogic Full Client
For WebLogic Server 10.0 and later releases, client applications need to use the
wlfullclient.jar file instead of the weblogic.jar. A WebLogic full client is a
Java RMI client that uses Oracle's proprietary T3 protocol to communicate with
WebLogic Server, thereby leveraging the Java-to-Java model of distributed computing.
For more information on WebLogic T3 communication, see "Using WebLogic RMI
with T3 Protocol" in Developing RMI Applications for Oracle WebLogic Server.

Note:

Although the WebLogic full client requires the largest JAR file among the
various clients, it has the most features and is faster and more scalable than
IIOP clients. The same JAR that provides the T3 protocol support also
provides IIOP support.

A WebLogic full client:

• Requires the wlfullclient.jar in your classpath.

Developing a WebLogic Full Client (Deprecated) 4-1

• Uses an URL in the form of t3://ip address:port for the initial context.

• Is faster and more scalable than IIOP clients.

• Supports most WebLogic Server-specific features.

• Supports WebLogic Server clustering.

• Supports most JavaEE features.

• Supports WebLogic JMS, JMS SAF clients, and JMS C clients.

• Uses Oracle WebLogic's T3/T3S protocol for Remote Method Invocation (RMI),
including: RMI over HTTP (HTTP tunneling) and RMI over HTTPS (HTTP
Tunneling over SSL). For more information on WebLogic T3 communication, see
"Using WebLogic RMI with T3 Protocol" in Developing RMI Applications for Oracle
WebLogic Server.

4.2 Limitations and Considerations when Using the WebLogic Full Client
Consider the following when using the WebLogic Full Client:

• Not all functionality available with weblogic.jar is available with the
wlfullclient.jar. For example, wlfullclient.jar does not support Web Services,
which requires the wseeclient.jar. Nor does wlfullclient.jar support
operations necessary for development purposes, such as ejbc, or support
administrative operations, such as deployment, which still require using the
weblogic.jar.

• In WebLogic Server 12.1.3 and higher releases, the WebLogic Full Client
implements the JDK StAX parser which does not perform validation during rim
RTD.xml parsing. In prior WebLogic Server releases, the WebLogic Full Client
used the WebLogic StAX parser, which included validation for rim RTD.xml
parsing.

4.3 Developing a WebLogic Full Client
Creating a basic WebLogic full client consists of the following

1. Generate the wlfullclient.jar file for client applications using the JarBuilder tool.
See Using the WebLogic JarBuilder Tool.

2. Obtain a reference to the remote object.

a. Get the initial context of the server that hosts the service using a T3 URL.

b. Obtain an instance of the service object by performing a lookup using the
initial context. This instance can then be used just like a local object reference.

3. Call the remote objects methods.

Sample code to for a simple WebLogic full client is provided in Example 4-1.

Example 4-1 Simple WebLogic Full hello Client

package examples.rmi.hello;

import java.io.PrintStream;
import weblogic.utils.Debug;
import javax.naming.*;

Limitations and Considerations when Using the WebLogic Full Client

4-2 Developing Standalone Clients for Oracle WebLogic Server

import java.util.Hashtable;

/**
* This client uses the remote HelloServer methods.
*
* @author Copyright (c) Oracle. All Rights Reserved.
*/
public class HelloClient {

private final static boolean debug = true;

/**
* Defines the JNDI context factory.
*/
public final static String JNDI_FACTORY="weblogic.jndi.WLInitialContextFactory";

int port;
String host;

 private static void usage() {
 System.err.println("Usage: java examples.rmi.hello.HelloClient " +
 "<hostname> <port number>");
 System.exit(-1);
 }

 public HelloClient() {}
 public static void main(String[] argv) throws Exception {
 if (argv.length < 2) {
 usage();
 }
 String host = argv[0];
 int port = 0;
 try {
 port = Integer.parseInt(argv[1]);
 }
 catch (NumberFormatException nfe) {
 usage();
 }
 try {

 InitialContext ic = getInitialContext("t3://" + host + ":" + port);

 Hello obj =
 (Hello) ic.lookup("HelloServer");
 System.out.println("Successfully connected to HelloServer on " +
 host + " at port " +
 port + ": " + obj.sayHello());
 }
 catch (Throwable t) {
 t.printStackTrace();
 System.exit(-1);
 }

 }

 private static InitialContext getInitialContext(String url)
 throws NamingException
 {
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);

Developing a WebLogic Full Client

Developing a WebLogic Full Client (Deprecated) 4-3

 return new InitialContext(env);
 }
}

4.4 Communicating with a Server in Admin Mode
To communicate with a server instance that is in admin mode, you need to configure a
communication channel by setting the following flag on your client:

 -Dweblogic.AdministrationProtocol=t3

4.5 Running the WebLogic Full Client in a Non-Forked VM
If the WebLogic Full Client is running in a non-forked VM, for example by means of a
<java> task invoked from an Ant script without the fork=true attribute, the
following error might be generated:

java.lang.SecurityException: The provider self-integrity check failed.

This error is caused by the self-integrity check that is automatically performed when
the RSA Crypto-J library is loaded. (The Crypto-J library, cryptoj.jar, is in the
wlfullclient.jar manifest classpath.)

This self-integrity check failure occurs when the client is started in a non-forked VM
and it uses the Crypto-J API, either directly or indirectly, as in the following situations:

• The client invokes the Crypto-J library directly.

• The client attempts to make a T3S connection, which triggers the underlying client
SSL implementation to invoke the Crypto-J API.

When the self-integrity check fails, further invocations of the Crypto-J API fail. To
prevent this error from occurring, always set the fork attribute to true when
running the full client in a <java> task that is invoked from an Ant script.

For more information about the self-integrity check, see "How a Provider Can Do Self-
Integrity Checking" in How to Implement a Provider in the Java™ Cryptography
Architecture, available at the following URL:

http://docs.oracle.com/javase/6/docs/technotes/guides/security/
crypto/HowToImplAProvider.html#integritycheck

Communicating with a Server in Admin Mode

4-4 Developing Standalone Clients for Oracle WebLogic Server

http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/HowToImplAProvider.html#integritycheck
http://docs.oracle.com/javase/6/docs/technotes/guides/security/crypto/HowToImplAProvider.html#integritycheck

5
Developing a Thin Client

This chapter describes how to develop and use a WebLogic thin client:

This chapter includes the following sections:

• Overview of the Thin Client

• How to Develop a Thin Client

• Protocol Compatibility

5.1 Overview of the Thin Client
Although a thin client is a Java application, it differs from a standalone Java
application client because it is a Java EE component, hence it offers the advantages of
portability to other Java EE-compliant servers, and can access Java EE services.

Oracle provides the following application client JAR files:

• A standard client JAR (wlclient.jar) that provides Java EE functionality. See
How to Develop a Thin Client.

• A JMS client JAR (wljmsclient.jar), which when deployed with the
wlclient.jar, provides Java EE and WebLogic JMS functionality. See WebLogic
JMS Thin Client.

• A JMS SAF client JAR (wlsafclient.jar), which when deployed with the
wljmsclient.jar and wlclient.jar enables standalone JMS clients to reliably
send messages to server-side JMS destinations, even when a destination is
temporarily unreachable. Sent messages are stored locally on the client and are
forwarded to the destination when it becomes available. See Reliably Sending
Messages Using the JMS SAF Client.

These application client JAR files reside in the WL_HOME/server/lib subdirectory of
the WebLogic Server installation directory.

The thin client uses the RMI-IIOP protocol stack and leverages features of Java SE. It
also requires the support of the JDK ORB. The basics of making RMI requests are
handled by the JDK, which makes possible a significantly smaller client. Client-side
development is performed using standard Java EE APIs, rather than WebLogic Server
APIs.

The development process for a thin client application is the same as it is for other Java
EE applications. The client can leverage standard Java EE artifacts such as
InitialContext, UserTransaction, and EJBs. The WebLogic Server thin client
supports these values in the protocol portion of the URL—IIOP, IIOPS, HTTP, HTTPS,
T3, and T3S—each of which can be selected by using a different URL in
InitialContext. Regardless of the URL, IIOP is used. URLs with T3 or T3S use

Developing a Thin Client 5-1

IIOP and IIOPS respectively. HTTP is tunnelled IIOP, HTTPS is IIOP tunnelled over
HTTPS.

Server-side components are deployed in the usual fashion. Client stubs can be
generated at either deployment time or run time. To generate stubs when deploying,
run appc with the -iiop and -basicClientJar options to produce a client jar
suitable for use with the thin client. Otherwise, WebLogic Server generates stubs on
demand at run time and serves them to the client. Downloading of stubs by the client
requires that a suitable security manager be installed. The thin client provides a
default light-weight security manager. For rigorous security requirements, a different
security manager can be installed with the command line options -
Djava.security.manager, -Djava.security.policy==policyfile. Applets
use a different security manager which already allows the downloading of stubs.

When deploying a thin client, the wlclient.jar file must be installed on the client's
file system and a reference to the wlclient.jar file included on the client's
CLASSPATH.

5.1.1 Limitations
The following limitations apply to the thin client:

• It does not provide the JDBC or JMX functionality of the wlfullclient.jar file.

• The WebLogic Server CMP 2.x extension that allows users to return a
java.sql.ResultSet to a client is not supported

• It is only supported by the JDK ORB.

5.2 How to Develop a Thin Client
To develop a thin client:

1. Define your remote object's public methods in an interface that extends
java.rmi.Remote.

This remote interface may not require much code. All you need are the method
signatures for methods you want to implement in remote classes. For example:

public interface Pinger extends java.rmi.Remote {
public void ping() throws java.rmi.RemoteException;
public void pingRemote() throws java.rmi.RemoteException;

2. Implement the interface in a class named interfaceNameImpl and bind it into
the JNDI tree to be made available to clients.

This class should implement the remote interface that you wrote, which means
that you implement the method signatures that are contained in the interface. All
the code generation that will take place is dependent on this class file. Typically,
you configure your implementation class as a WebLogic startup class and include
a main method that binds the object into the JNDI tree. Here is an excerpt from the
implementation class developed from the previous Ping example:

public static void main(String args[]) throws Exception {
 if (args.length > 0)
 remoteDomain = args[0];
 Pinger obj = new PingImpl();
 Context initialNamingContext = new InitialContext();
 initialNamingContext.rebind(NAME,obj);

How to Develop a Thin Client

5-2 Developing Standalone Clients for Oracle WebLogic Server

 System.out.println("PingImpl created and bound to "+ NAME);
}

3. Compile the remote interface and implementation class with a java compiler.
Developing these classes in an RMI-IIOP application is no different from doing so
in normal RMI. For more information on developing RMI objects, see Developing
RMI Applications for Oracle WebLogic Server.

4. Run the WebLogic RMI or EJB compiler against the implementation class to
generate the necessary IIOP stub. If you plan on downloading stubs, it is not
necessary to run rmic.

$ java weblogic.rmic -iiop nameOfImplementationClass

To generate stubs when deploying, run appc with the -iiop and -clientJar
options to produce a client JAR suitable for use with the thin client. Otherwise,
WebLogic Server will generate stubs on demand at run time and serve them to the
client.

A stub is the client-side proxy for a remote object that forwards each WebLogic
RMI call to its matching server-side skeleton, which in turn forwards the call to
the actual remote object implementation.

5. Make sure that the files you have created—the remote interface, the class that
implements it, and the stub—are in the CLASSPATH of WebLogic Server.

6. Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing a
lookup (see next step) on the object. The object is then cast to the appropriate type.

In obtaining an initial context, you must use
weblogic.jndi.WLInitialContextFactory when defining your JNDI
context factory. Use this class when setting the value for the
Context.INITIAL_CONTEXT_FACTORY property that you supply as a
parameter to new InitialContext().

Modify the client code to perform the lookup in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

RMI over IIOP RMI clients differ from regular RMI clients in that IIOP is defined
as the protocol when obtaining an initial context. Because of this, lookups and
casts must be performed in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method. For example, an
RMI client creates an initial context, performs a lookup on the EJBean home,
obtains a reference to an EJBean, and calls methods on the EJBean.

You must use the javax.rmi.PortableRemoteObject.narrow() method in
any situation where you would normally cast an object to a specific class type. A
CORBA client may return an object that does not implement your remote
interface; the narrow method is provided by your ORB to convert the object so
that it implements your remote interface. For example, the client code responsible
for looking up the EJBean home and casting the result to the Home object must be
modified to use the javax.rmi.PortableRemoteObject.narrow() as
shown below:

7. Connect the client to the server over IIOP by running the client with a command
such as:

$ java -Djava.security.manager -Djava.security.policy=java.policy
examples.iiop.ejb.stateless.rmiclient.Client iiop://localhost:7001

How to Develop a Thin Client

Developing a Thin Client 5-3

Example 5-1 Performing a lookup:

.

.

.
/**
 * RMI/IIOP clients should use this narrow function
 */
private Object narrow(Object ref, Class c) {
 return PortableRemoteObject.narrow(ref, c);
}
/**
 * Lookup the EJBs home in the JNDI tree
 */
private TraderHome lookupHome()
 throws NamingException
{
 // Lookup the beans home using JNDI
 Context ctx = getInitialContext();
 try {
Object home = ctx.lookup(JNDI_NAME);
return (TraderHome) narrow(home, TraderHome.class);
} catch (NamingException ne) {
log("The client was unable to lookup the EJBHome. Please
make sure ");
log("that you have deployed the ejb with the JNDI name
"+JNDI_NAME+" on the WebLogic server at "+url);
throw ne;
 }
}
/**
 * Using a Properties object will work on JDK130
 * and higher clients
 */
private Context getInitialContext() throws NamingException {
 try {
// Get an InitialContext
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
h.put(Context.PROVIDER_URL, url);
return new InitialContext(h);
 } catch (NamingException ne) {
log("We were unable to get a connection to the WebLogic
server at "+url);
log("Please make sure that the server is running.");
throw ne;
 }
}
.
.
.

The url defines the protocol, hostname, and listen port for the WebLogic Server
instance and is passed in as a command-line argument.

public static void main(String[] args) throws Exception {
 log("\nBeginning statelessSession.Client...\n");
 String url = "iiop://localhost:7001";

How to Develop a Thin Client

5-4 Developing Standalone Clients for Oracle WebLogic Server

Connect the client to the server over IIOP by running the client with a command such
as:

$ java -Djava.security.manager -Djava.security.policy=java.policy
examples.iiop.ejb.stateless.rmiclient.Client iiop://localhost:7001

5.3 Protocol Compatibility
For information on interoperability between this WebLogic Server release and
previous WebLogic Server releases, see "WebLogic Server Compatibility" in
Understanding Oracle WebLogic Server.

Protocol Compatibility

Developing a Thin Client 5-5

Protocol Compatibility

5-6 Developing Standalone Clients for Oracle WebLogic Server

6
WebLogic JMS Thin Client

This chapter describes how to develop, use and deploy a WebLogic JMS thin client.

This chapter includes the following sections:

• Overview of the JMS Thin Client

• JMS Thin Client Functionality

• Limitations of Using the JMS Thin Client

• Deploying the JMS Thin Client

6.1 Overview of the JMS Thin Client
The JMS thin client (the wljmsclient.jar deployed with the wlclient.jar),
provides Java EE and WebLogic JMS functionality using a much smaller client
footprint than a WebLogic Install or Full client, and a somewhat smaller client
footprint than a Thin T3 client. The smaller footprint is obtained by using:

• A client-side library that contains only the set of supporting files required by client-
side programs.

• The RMI-IIOP protocol stack available in the JRE. RMI requests are handled by the
JRE, enabling a significantly smaller client.

• Standard Java EE APIs, rather than WebLogic Server APIs.

You may want to consider using one of the faster T3 client options, such as the Thin T3
client. For more information on developing WebLogic Server thin client applications,
see Developing a Thin Client .

6.2 JMS Thin Client Functionality
Although much smaller in size than a WebLogic Full client or WebLogic Install, the
JMS thin client (the wljmsclient.jar and wlclient.jar) provide the following
functionality to client applications and applets:

• Full WebLogic JMS functionality—both standard JMS and WebLogic extensions—
except for client-side XML selection for multicast sessions and the JMSHelper class
methods

• EJB (Enterprise Java Bean) access

• JNDI access

• RMI access (indirectly used by JMS)

• SSL access (using JSSE in the JRE)

WebLogic JMS Thin Client 6-1

• Transaction capability

• Clustering capability

• HTTP/HTTPS tunneling

• Fully internationalized

6.3 Limitations of Using the JMS Thin Client
The following limitations apply to the JMS thin client:

• It does not provide the JDBC or JMX functionality of the wlfullclient.jar file.

• It does not support client-side Store and Forward (client SAF). See Reliably Sending
Messages Using the JMS SAF Client.

• The WebLogic Server CMP 2.x extension that allows users to return a
java.sql.ResultSet to a client is not supported

• It is only supported by the JDK ORB.

• It has lower performance than T3 protocol capable clients (Install, Thin T3, or Full),
especially with non-persistent messaging.

• Does not support automatic client reconnect for releases prior to WebLogic Server
9.2.

6.4 Deploying the JMS Thin Client
The wljmsclient.jar and wlclient.jar are located in the WL_HOME\server\lib
subdirectory of the WebLogic Server installation directory, where WL_HOME is the top-
level WebLogic Server installation directory (for example, c:\Oracle\Middleware
\Oracle_Home\wlserver\server\lib).

Deployment of the JMS thin client depends on the following requirements:

• The JMS thin client requires the standard thin client, which contains the base client
support for clustering, security, and transactions. Therefore, the wljmsclient.jar and
the wlclient.jar must be installed somewhere on the client's file system. However,
wljmsclient.jar has a reference to wlclient.jar so it is only necessary to put one or the
other Jar in the client's CLASSPATH.

• RMI-IIOP is required for client-server communication.

– URLs using t3 or t3s will transparently use iiop or iiops

– URLs using http or https will transparently use iiop tunneling.

• To facilitate the use of IIOP, always specify a valid IP address or DNS name for the
Listen Address attribute to listen for connections.

Note:

The Listen Address default value of null allows it to "listen on all configured
network interfaces". However, this feature only works with the T3 protocol. If
you need to configure multiple listen addresses for use with the IIOP protocol,

Limitations of Using the JMS Thin Client

6-2 Developing Standalone Clients for Oracle WebLogic Server

then use the Network Channel feature, as described in "Configuring Network
Resources" in Administering Server Environments for Oracle WebLogic Server.

• Each client must have the JRE 1.4.x or higher installed.

• Applications must adhere to Java EE programming guidelines, in particular the use
of PortableRemoteObject.narrow() rather than using casts.

For more information on developing thin client applications for WebLogic Server, see
Developing a Thin Client .

Deploying the JMS Thin Client

WebLogic JMS Thin Client 6-3

Deploying the JMS Thin Client

6-4 Developing Standalone Clients for Oracle WebLogic Server

7
Reliably Sending Messages Using the JMS

SAF Client

This chapter describes how to configure and use the JMS SAF Client feature to reliably
send JMS messages from standalone JMS clients to server-side JMS destinations.

This chapter includes the following sections:

• Overview of Using Store-and-Forward with JMS Clients

• Configuring a JMS Client To Use Client-side SAF

• JMS SAF Client Management Tools

• JMS Programming Considerations with JMS SAF Clients

• JMS SAF Client Interoperability Guidelines

• Tuning JMS SAF Clients

• Limitations of Using the JMS SAF Client

• Behavior Change in JMS SAF Client Message Storage

7.1 Overview of Using Store-and-Forward with JMS Clients
The JMS SAF Client feature extends the JMS store-and-forward service introduced in
WebLogic Server 9.0 to standalone JMS clients. Now JMS clients can reliably send
messages to server-side JMS destinations, even when the client cannot reach a
destination (for example, due to a temporary network connection failure). While
disconnected from the server, messages sent by a JMS SAF client are stored locally on
the client file system and are forwarded to server-side JMS destinations when the
client reconnects.

The JMS SAF client feature consists of two main parts: the JMS SAF client
implementation that writes messages directly to a client-side persistent store on the
local file system and a SAF forwarder that takes the messages written to the store and
sends them to a WebLogic Server instance. There is also an optional SAFClient
initialization API in "weblogic.jms.extensions" that allows JMS SAF clients to
turn the SAF forwarder mechanism on and off whenever necessary. For more
information, see The JMS SAF Client Initialization API.

Note:

For information on the server-side WebLogic JMS SAF for reliably sending
JMS messages to potentially unavailable destinations, see "Configuring SAF

Reliably Sending Messages Using the JMS SAF Client 7-1

for JMS Messages" in Administering the Store-and-Forward Service for Oracle
WebLogic Server.

7.2 Configuring a JMS Client To Use Client-side SAF
No configuration is required on the server-side, but running client-side SAF does
require some configuration on each client. These sections describe how to configure a
JMS client to use client-side SAF.

• Generating a JMS SAF Client Configuration File

• Encrypting Passwords for Remote JMS SAF Contexts

• Installing the JMS SAF Client JAR Files on Client Machines

• Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI
Provider

7.2.1 Generating a JMS SAF Client Configuration File
Each client machine requires a JMS SAF client configuration file that specifies
information about the server-side connection factories and destinations needed by the
JMS SAF client environment to operate. You generate the JMS SAF client configuration
file from a specified JMS module's configuration file by using the
ClientSAFGenerate utility bundled with your WebLogic installation.

The ClientSAFGenerate utility creates entries for all connection factories,
standalone destinations, and distributed destinations found in the source JMS
configuration file, as described in Steps to Generate a JMS SAF Client Configuration
File from a JMS Module. The generated file defines the connection factories and
imported destinations that the JMS SAF client will interact with directly through the
initial JNDI context described in Modify Your JMS Client Applications To Use the JMS
SAF Client's Initial JNDI Provider. However, the generated file will not contain entries
for any foreign JMS destinations or SAF destinations in server-side JMS modules.
Furthermore, only JMS destinations with their SAF Export Policy set to All are added
to the file (the default setting for destinations).

7.2.1.1 How the JMS SAF Client Configuration File Works

The JMS SAF client XML file conforms to the WebLogic Server weblogic-jms.xsd
schema for JMS modules and contains the root element weblogic-client-jms. The
weblogic-jms.xsd schema contains several top-level elements that correspond to
server-side WebLogic JMS SAF features, as described in Valid SAF Elements for JMS
SAF Client Configurations.

The top-level elements in the file describe the connection factory and imported
destination elements that the JMS SAF client will interact with directly. The SAF
sending agent, remote SAF context, and SAF error handling elements describe the
function of the SAF forwarder. The persistent store element is used by both the JMS
SAF client API and the SAF forwarder.

7.2.1.2 Steps to Generate a JMS SAF Client Configuration File from a JMS Module

Use the ClientSAFGenerate utility to generate a JMS SAF client configuration file
from a JMS module configuration file in a WebLogic domain. You can also generate a
configuration file from an existing JMS SAF client configuration file, as described in
ClientSAFGenerate Utility Syntax.

Configuring a JMS Client To Use Client-side SAF

7-2 Developing Standalone Clients for Oracle WebLogic Server

Note:

Running the ClientSAFGenerate utility on a client machine to generate a
configuration file from an existing JMS SAF client configuration file requires
using the wlfullclient.jar in the CLASSPATH instead of the thin JMS and JMS
SAF clients. See Installing the JMS SAF Client JAR Files on Client Machines.

These steps demonstrate how to use the ClientSAFGenerate utility to generate a JMS
SAF client configuration file from the examples-jms.xml module file bundled in
WebLogic Server installations.

1. Navigate to the directory in the WebLogic domain containing the JMS module file
that you want to use as the basis for the JMS SAF client configuration file:

c:\Oracle\Middleware\wlserver_12.1\samples\domains\wl_server\config\jms

2. From a Java command-line, run the ClientSAFGenerate utility:

> java weblogic.jms.extensions.ClientSAFGenerate -url http://10.61.6.138:7001 -
username weblogic -moduleFile examples-jms.xml -outputFile d:\temp\ClientSAF-
jms.xml

Table 7-1 explains the valid ClientSAFGenerate arguments.

3. A configuration file named SAFClient-jms.xml is created in the current directory.
Here is a representative example of its contents:

<weblogic-client-jms xmlns="http://www.bea.com/ns/weblogic/100"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <connection-factory name="exampleTrader">
 <jndi-name>jms.connection.traderFactory</jndi-name>
 <transaction-params>
 <xa-connection-factory-enabled>false
 </xa-connection-factory-enabled>
 </transaction-params>
 </connection-factory>
 <saf-imported-destinations name="examples">
 <saf-queue name="exampleQueue">
 <remote-jndi-name>weblogic.examples.jms.exampleQueue
 </remote-jndi-name>
 <local-jndi-name>weblogic.examples.jms.exampleQueue
 </local-jndi-name>
 </saf-queue>
 <saf-topic name="quotes">
 <remote-jndi-name>quotes</remote-jndi-name>
 <local-jndi-name>quotes</local-jndi-name>
 </saf-topic>
 </saf-imported-destinations>
 <saf-remote-context name="RemoteContext0">
 <saf-login-context>
 <loginURL>t3://localhost:7001</loginURL>
 <username>weblogic</username>
 </saf-login-context>
 </saf-remote-context>
</weblogic-client-jms>

Tip:

To include additional remote SAF connection factories and destinations from
other JMS modules deployed in a cluster or domain, re-run the

Configuring a JMS Client To Use Client-side SAF

Reliably Sending Messages Using the JMS SAF Client 7-3

ClientSAFGenerate utility against these JMS module files and specify the
same JMS SAF configuration file name in the -outputFile parameter. See
ClientSAFGenerate Utility Syntax.

4. The generated configuration file does not contain any encrypted passwords for
the SAF remote contexts used to connect to remote servers. To create encrypted
passwords for the remote SAF contexts and add them to the configuration file,
follow the directions in Encrypting Passwords for Remote JMS SAF Contexts.

5. Copy the generated configuration can file to the client machine(s) where you will
run your JMS SAF client applications. See Installing the JMS SAF Client JAR Files
on Client Machines.

Note:

ClientSAF.xml is the default name expected in the current working
directory of the JMS client, but you can also explicitly specify a file name by
passing an argument in the JMS client, as described in Modify Your JMS
Client Applications To Use the JMS SAF Client's Initial JNDI Provider.

7.2.1.3 ClientSAFGenerate Utility Syntax

The weblogic.jms.extensions.ClientSAFGenerate utility generates a JMS
SAF client configuration file, using either a JMS module file or an existing JMS SAF
client configuration file.

java [weblogic.jms.extensions.ClientSAFGenerate]
[-url server-url]
[-username name-of-user]
[-existingClientFile file-path]
[-moduleFile file-path ['@' plan-path]]*
[-outputFile file-path]

Table 7-1 ClientSAFGenerate Arguments

Argument Definition

url The URL of the WebLogic Server instance where the JMS SAF client
instance should connect.

username The name of a valid user that this JMS SAF client instance should
use when forwarding messages.

existingClientFil
e

The name of an existing JMS SAF client configuration file. If this
parameter is specified, then the existing file will be read and new
entries will be added. If any conflicts are detected between items
being added and items already in the JMS SAF client configuration
file, a warning will be given and the new item will not be added. If
a JMS SAF client configuration file is specified but the file cannot be
found, then an error is printed and the utility exits.

moduleFile The name of a JMS module configuration file and optional plan file.

outputFile stdout.

ClientSAF.xml is the default name expected in the current
working directory of the JMS client, but you can also explicitly
specify a file name by passing an argument in the JMS client.

Configuring a JMS Client To Use Client-side SAF

7-4 Developing Standalone Clients for Oracle WebLogic Server

7.2.1.4 Valid SAF Elements for JMS SAF Client Configurations

The weblogic-client-jms root element of the weblogic-jms.xsd schema contains
several top-level elements that correspond to server-side WebLogic JMS SAF features.
Table 7-2 identifies the management MBean to which each top-level element in the
schema corresponds.

Table 7-2 weblogic-client-saf Elements

weblogic-client-jms Element WebLogic Server Management Bean

connection-factory JMSConnectionFactoryBean

saf-agent SAFAgentMBean

saf-imported-
destinations

SAFImportedDestinationsBean

saf-remote-context SAFRemoteContextBean

saf-error-handling SAFErrorHandlingBean

persistent-store For more information, seeDefault Store Options for JMS
SAF Clients.

Note:

You can only specify one persistent-store and saf-agent element in a
JMS SAF client configuration file.

All of the properties in these management MBeans work the same in the JMS SAF
client implementation as they do in server-side SAF JMS configurations, except for
those described in the following tables.

Table 7-3 describes the differences between the standard SAFAgentMBean fields and
the fields in the JMS SAF client configuration file.

Table 7-3 Modified SAFAgentMBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

PersistentStore Not available. There is only one persistent store defined.

ServiceType Not available. This can only be a sending agent.

BytesThresholdHigh Threshold properties are not available.

BytesThresholdLow Threshold properties are not available.

MessagesThresholdHigh Threshold properties are not available.

MessagesThresholdLow Threshold properties are not available.

ConversationIdleTimeMaximu
m

Not available. This field is only valid for receiving
messages.

AcknowledgeInterval Not available. Only valid for receiving messages.

Configuring a JMS Client To Use Client-side SAF

Reliably Sending Messages Using the JMS SAF Client 7-5

Table 7-3 (Cont.) Modified SAFAgentMBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

IncomingPausedAtStartup Not available. No way to un-pause; same effect achieved by
not setting the JMS SAF client property.

ForwardingPausedAtStartup Not available. No way to un-pause; same effect achieved by
not setting the JMS SAF client property.

ReceivingPausedAtStartup Not available. No way to un-pause; same effect achieved by
not setting the JMS SAF client property.

Note:

You can only specify one saf-agent element in a JMS SAF client
configuration file.

Table 7-4 describes the differences between the standard
JMSConnectionFactoryBean fields and the fields in the JMS SAF client
configuration file.

Table 7-4 Modified JMSConnectionFactoryBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

SubDeploymentName Ignored. These connection factories are not targeted.

ClientParamsBean:
MulticastOverrunPolicy

Ignored. This client cannot do multicast receives.

TransactionParamsBean:
XAConnectionFactoryEnabled

Ignored. JMS SAF client cannot do XA transactions.

FlowControlParamsBean All fields are ignored. JMS SAF client cannot receive
messages.

LoadBalancingParamsBean All fields are ignored. JMS SAF client cannot load
balance since it is not connected to a server.

Table 7-5 describes the differences between the standard
SAFImportedDestinationsBean fields and the fields in the JMS SAF client
configuration file.

Table 7-5 Modified SAFImportedDestinationsBean Fields

Server-side SAF Fields Difference in JMS SAF Client Configuration File

SubDeploymentName Ignored. These are targeted to the single SAF agent
defined in this file.

UnitOfOrderRouting Ignored. Message unit-of-order is not supported.

Configuring a JMS Client To Use Client-side SAF

7-6 Developing Standalone Clients for Oracle WebLogic Server

7.2.1.5 Default Store Options for JMS SAF Clients

Each JMS SAF client has a default store that requires no configuration, and which can
be shared by multiple JMS SAF clients. The default store is a file-based store that
maintains its data in a group of files directly under the JMS SAF client configuration
directory.

Using the persistent-store element, you can specify another location for the
default store and also change its default write policy by specifying the following
elements in the JMS SAF client configuration file:

Table 7-6 persistent-store Elements

Element Name What it does

directory-path Specifies the path to the directory on the file system where the file
store is kept.

synchronous-write-
policy

Defines how hard a file store will try to flush records to the disk.
Values are: Direct-Write (default), Cache-Flush, and Disabled.

Note:

You can only specify one persistent-store element in a JMS SAF client
configuration file.

Here's an example of a customized JMS SAF client default store in a JMS SAF client
configuration file:

 <persistent-store>
 <directory-path>config/jms/storesdom</directory-path>
 <synchronous-write-policy>Disabled</synchronous-write-policy>
 </persistent-store>

For more information on using the Synchronous Write Policy for a file store, see
"Using the WebLogic Persistent Store" in Administering the WebLogic Persistent Store.

7.2.2 Encrypting Passwords for Remote JMS SAF Contexts
The generated SAF configuration file does not contain any encrypted passwords for its
generated SAF remote contexts, regardless of whether any were configured in the
source JMS module file. If security credentials are configured for the remote cluster or
server contexts defined in the JMS SAF client configuration file, then encrypted
passwords are required to connect to the remote servers or cluster.

To create encrypted passwords for your remote SAF contexts, you must use the
ClientSAFEncrypt utility bundled with your WebLogic installation, which encrypts
cleartext strings for use with the JMS SAF client feature.

Note:

The existing weblogic.security.Encrypt command-line utility cannot be
used because it expects access to the domain security files, which are not
available on the client.

Configuring a JMS Client To Use Client-side SAF

Reliably Sending Messages Using the JMS SAF Client 7-7

7.2.2.1 Steps to Generate Encrypted Passwords

The following steps demonstrate how to use the ClientSAFEncrypt to generate
encrypted passwords:

1. From a Java command-line, run the ClientSAFEncrypt utility:

> java -Dweblogic.management.allowPasswordEcho=true
weblogic.jms.extensions.ClientSAFEncrypt [key-password] [remote-password]*

2. If the key-password or the remote-password fields are not specified, then you
will be prompted for the key-password and the remote-password
interactively.

3. Here's an example of obtaining an encrypted password:

Password Key ("quit" to end):
Password ("quit" to end):
<password-
encrypted>{Algorithm}PBEWithMD5AndDES{Salt}9IsTPAuZdcQ={Data}d6SSPp3GwPAfEXn8izyZA
0IRCV/izT8H</password-encrypted>
Password ("quit" to end):

4. Continue generating as many remote passwords as necessary for the remote
contexts defined in the JMS SAF client configuration file.

5. Copy the encrypted remote password before the closing </saf-login-
context> stanza in the JMS SAF client configuration file. For example:

<saf-remote-context name="RemoteContext0">
<saf-login-context>
<loginURL>http://10.61.6.138:7001</loginURL>
<username>weblogic</username>
<password-
encrypted>{Algorithm}PBEWithMD5AndDES{Salt}dWENfrgXh8U={Data}u8xZ968dElHckso/
ZYm2LQ6xVNBPpBGQ</password-encrypted>
</saf-login-context>
</saf-remote-context>

Use the ClientSAFEncrypt utility for all passwords (with the same key-
password) required by the remote contexts defined in the JMS SAF client
configuration file. When a client starts using the JMS SAF client, it must supply the
same key-password that was provided to the ClientSAFEncrypt utility.

6. Type quit to exit the ClientSAFEncrypt utility.

7.2.2.2 ClientSAFEncrypt Utility Syntax

The weblogic.jms.extensions.ClientSAFEncrypt utility encrypts cleartext
strings for use with JMS SAF clients in order to access remote SAF contexts.

java [-Dweblogic.management.allowPasswordEcho=true]
weblogic.jms.extensions.ClientSAFEncrypt [key-password]
weblogic.jms.extensions.ClientSAFEncrypt [remote-password]

Configuring a JMS Client To Use Client-side SAF

7-8 Developing Standalone Clients for Oracle WebLogic Server

Table 7-7 ClientSAFEncrypt Arguments

Argument Definition

weblogic.management.allo
wPasswordEcho

Optional. Allows echoing characters entered on the
commandweblogic.jms.extensions.ClientSAFEn
cryptexpects that no-echo is available; if no-echo is not
available, set this property to true.

key-password The key to use when encrypting all remote passwords
needed for the remote contexts defined in the JMS SAF
client configuration file.

If omitted from the command line, you will be prompted
to enter a key-password.

remote-password Cleartext string to be encrypted. Multiple passwords for
each remote context can be generated in one session.

If omitted from the command line, you are prompted to
enter a remote-password.

7.2.3 Installing the JMS SAF Client JAR Files on Client Machines
WebLogic Server provides three JMS SAF client options:

• weblogic.jar, see WebLogic Install Client

• wlfullclient.jar, see WebLogic Full Client (Deprecated)

• A thin client that uses the wlsafclient.jar, wljmsclient.jar,
wlclient.jar

The required JAR files are located in the WL_HOME\server\lib subdirectory of the
WebLogic Server installation directory, where WL_HOME is the top-level installation
directory for the entire WebLogic product installation (for example, c:\Oracle
\Middleware\Oracle_Home\wlserver\server\lib).

Oracle recommends the using either the higher-performing WebLogic Full or Install
client unless a small jar size is of high importance. To use the wlfullclient.jar,
install it to a directory on the client machine's file system and added to its
CLASSPATH. Using the wlfullclient.jar file also allows you to run the
ClientSAFGenerate utility on a client machine to generate a configuration file from
an existing JMS SAF client configuration file, as described in Steps to Generate a JMS
SAF Client Configuration File from a JMS Module. When smaller JAR sizes are
required for thin clients, the JMS SAF client requires installing the following JAR files
to a directory on the client machine's file system and added to its CLASSPATH:

• wlsafclient.jar

• wljmsclient.jar

• wlclient.jar

The wljmsclient.jar has a reference to the wlclient.jar so it is only necessary
to put one or the other JAR in the client machine's CLASSPATH.

For more information on deploying thin clients, see Overview of the Thin Client.

Note:

Configuring a JMS Client To Use Client-side SAF

Reliably Sending Messages Using the JMS SAF Client 7-9

The WebLogic Thin T3 client does not support JMS SAF clients using the
wlsafclient.jar and wljmsclient.jar. For information on how to create JMS SAF
clients using the WebLogic Thin T3 client, see Understanding the WebLogic
Thin T3 Client.

7.2.4 Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI
Provider

The JMS SAF client requires a special initial JNDI provider to look up the server-side
JMS connection factories and destinations specified in the JMS SAF client
configuration file that was generated during Steps to Generate a JMS SAF Client
Configuration File from a JMS Module.

7.2.4.1 Required JNDI Context Factory for JMS SAF Clients

Modify your JMS client applications to use the JMS SAF client JNDI context factory in
place of the standard server initial context. The name used for the JMS SAF client JNDI
property java.naming.factory.initial is
weblogic.jms.safclient.jndi.InitialContextFactoryImpl.

An example JNDI initial context factory could look like this in a JMS SAF client
application:

 public final static String
JNDI_FACTORY="weblogic.jms.safclient.jndi.InitialContextFactoryImpl";

With the standard JNDI lookup, the JMS SAF client is started automatically and looks
up the server-side JMS connection factories and destinations specified in the
configuration file. For the configuration file, ClientSAF.xml is the default name
expected in the current working directory of the JMS client, but you can also explicitly
specify a configuration file name by passing an argument in the JMS client.

Items returned from the initial context created with the JMS SAF client do not work in
JMS calls from third-party JMS providers. Also, there can be no mixing of JMS SAF
client initial contexts with server initial contexts, as described in No Mixing of JMS
SAF Client Contexts and Server Contexts.

You can also update your JMS client applications to use the
weblogic.jms.extensions.ClientSAF extension class, which allows the JMS
client to control when the JMS SAF client system is in use. See The JMS SAF Client
Initialization API.

7.2.4.2 Optional JNDI Properties for JMS SAF Clients

There are also two optional JMS SAF client JNDI properties:

• Context.PROVIDER_URL – This must be an URL that points to your JMS SAF
client configuration file. If one is not specified, it defaults to a file named
ClientSAF.xml in the current working directory of the JVM.

• Context.SECURITY_CREDENTIALS – If you are using security, specify a key
password used to encrypt the remote context passwords in the configuration file.

The local JNDI provider only supports the lookup(String) and close() APIs. All
other APIs throw an exception stating that the functionality is not supported.

Configuring a JMS Client To Use Client-side SAF

7-10 Developing Standalone Clients for Oracle WebLogic Server

7.3 JMS SAF Client Management Tools
The following management features are available for use with the JMS SAF client
implementation:

• The JMS SAF Client Initialization API

• Client-Side Store Administration Utility

7.3.1 The JMS SAF Client Initialization API
The weblogic.jms.extensions.ClientSAF extension class allows the JMS client
to control when the JMS SAF client system is in use. JMS clients do not need to use this
extension mechanism, but can do so in order to get finer control of the JMS SAF client
system. For example, the close() method can be used to stop a JMS client from
forwarding messages.

7.3.2 Client-Side Store Administration Utility
The JMS SAF client provides a utility to administer the default file store used by JMS
SAF clients. Similar to the server-side WebLogic Store utility, it enables you to
troubleshoot a JMS SAF client store or extract its data. Run the utility from a Java
command line or from the WebLogic Scripting Tool (WLST). The store utility operates
only on a store that is not currently opened by a running JMS SAF client.

The most common uses-cases for store administration are for compacting a file store to
reduce its size and for dumping the contents of a file store to an XML file for
troubleshooting purposes. For more information, see "Administering a Persistent
Store" in Administering the WebLogic Persistent Store.

7.4 JMS Programming Considerations with JMS SAF Clients
The following JMS programming considerations apply when you use the JMS SAF
client:

• How the JMSReplyTo Field Is Handled In JMS SAF Client Messages

• No Mixing of JMS SAF Client Contexts and Server Contexts

• Using Transacted Sessions With JMS SAF Clients

7.4.1 How the JMSReplyTo Field Is Handled In JMS SAF Client Messages
Generally, JMS applications can use the JMSReplyTo header field to advertise its
temporary destination name to other applications. However, as with server-side JMS
SAF imported destinations, the use of temporary destinations with a JMSReplyTo
field is not supported for JMS SAF clients.

For more information on using JMS temporary destinations, see "Using Temporary
Destinations" in Developing JMS Applications for Oracle WebLogic Server.

7.4.2 No Mixing of JMS SAF Client Contexts and Server Contexts
When items returned from the JMS SAF client naming context are used in conjunction
with items returned from a server initial context, the JMS API fails with a reasonable
exception message. Likewise, when items returned from a server initial context is used

JMS SAF Client Management Tools

Reliably Sending Messages Using the JMS SAF Client 7-11

in conjunction with items returned from the JMS SAF client naming context, the JMS
API fails with a reasonable exception message.

7.4.3 Using Transacted Sessions With JMS SAF Clients
Transacted sessions are supported with JMS SAF clients, but Client SAF operations do
not participate in any global (XA) transactions. If there is an XA transaction, the
message send operation is done outside the XA transaction and no exception is
thrown.

7.5 JMS SAF Client Interoperability Guidelines
The interoperability guidelines apply when using the JMS SAF client to forward
messages to server-side WebLogic JMS destinations:

• Java Run Time

• WebLogic Server Versions

• JMS C API

7.5.1 Java Run Time
Each client machine must have Java SE 1.4 run time or higher installed.

7.5.2 WebLogic Server Versions
The WebLogic JMS SAF client system only works with WebLogic Server 9.2 and later.

On the client-side, the WebLogic JMS SAF client code must be running with WebLogic
Server JAR files that are release 9.2 or later. For more information on installing
WebLogic Server JAR files, see Installing the JMS SAF Client JAR Files on Client
Machines.

7.5.3 JMS C API
Client-side SAF is usable from C environments using the JMS C API. This
implementation of the JMS C API uses JNI in order to access a Java Virtual Machine
(JVM). However, the JMS C API cannot use the
weblogic.jms.extensions.ClientSAF interface because it is a non-standard
JMS API.

To use SAF with the JMS C API, set the SAF context on the jndiFactory. By default,
if you pass NULL as the jndiFactory you would get the normal WebLogic Server
context. For example:

int JmsContextCreate(JmsString *uri, JmsString *jndiFactory, JmsString *username,
JmsString *password, JmsContext **context, JMS64I flags)

For more information, see "WebLogic C API" in Developing JMS Applications for Oracle
WebLogic Server.

7.6 Tuning JMS SAF Clients
JMS SAF clients can take advantage of the tuning parameters available with the
server-side SAF service. For more information, see "Tuning WebLogic JMS Store-and-
Forward" in the Tuning Performance of Oracle WebLogic Server.

JMS SAF Client Interoperability Guidelines

7-12 Developing Standalone Clients for Oracle WebLogic Server

7.7 Limitations of Using the JMS SAF Client
In addition to the field-level limitations discussed in Valid SAF Elements for JMS SAF
Client Configurations, the following limitations apply to the JMS SAF client:

• The JMS Message Unit-of-Order and Unit-of-Work JMS Message Group features
are not supported.

• A destination consumer of an imported SAF destination is not supported. An
exception is thrown if you attempt to create such a consumer in JMS SAF client
environment.

• A destination browser of an imported SAF destination is not supported. An
exception is thrown if you attempt to create such a browser in JMS SAF client
environment.

• Transacted sessions are supported, but not user (XA) transactions. Client SAF
operations do not participate in any global transactions. See Using Transacted
Sessions With JMS SAF Clients.

• JMS SAF clients are not supported in Java Applets.

• You can only specify one persistent-store and saf-agent element in a
JMS SAF client configuration file.

• The WebLogic Server CMP 2.x extension that allows users to return a
java.sql.ResultSet to a client is not supported.

7.8 Behavior Change in JMS SAF Client Message Storage
In the Weblogic JMS SAF Client, messages are stored into local storage before
forwarded to the remote destinations. Each remote destination corresponds to a local
storage unit called a kernel queue. In releases prior to WebLogic Server 10.3.3.0, a JMS
SAF client instance uses a different kernel queue each time it is closed and reopened.
This behavior allowed multiple kernel queues to correspond to a destination. If the
destination was:

• A single remote destination—Under some circumstances, a JMS SAF client may not
forward messages or be forward them out of order.

• A distributed destination— Under some circumstances, some messages could be
permanently lost or duplicate messages sent.

In this release, the same kernel queue is used for a remote destination regardless of
how many times the JMS SAF client is opened and closed. For the application
environments only open a JMS Client SAF instance once, there is no change in
behavior.

7.8.1 The Upgrade Process, Tools, and System Properties
The following sections provide information on process, tools, and system properties
used to upgrade JMS SAF Clients to use one kernel queue for each destination,
regardless of how many times the client opens and closes the kernel queue.

• If your application environment only opens a JMS SAF client once, no action is
required.

Limitations of Using the JMS SAF Client

Reliably Sending Messages Using the JMS SAF Client 7-13

• New JMS SAF clients require no changes.

• If your application environment opens and close a JMS SAF client more than once,
existing messages can be located in multiple kernel queues in the client. Oracle
provides an user-tunable process to migrate messages from multiple kernel queues
to a single kernel queue when a JMS SAF client starts for the first time after being
upgraded. Although the migration ensures messages are not lost, there is a small
possibility that message duplication can occur. Any message that is migrated
retains it's normal SAF QoS. You can opt out of migrating existing messages by
either removing the local store or specifying
weblogic.jms.safclient.MigrateExistingMessages=false. See JMS
SAF Client Migration Properties. If the message migration fails for any reason, the
JMS SAF client does not start.

7.8.1.1 JMS SAF Client Discovery Tool

The discovery tool is a Java program packaged in the WLS JMS client library that can
be used to survey existing local SAF messages before upgrading. The discovery tool
reviews the client configuration, including checking each remote destination, the
corresponding kernel queues, prints the number of messages in each kernel queue,
and prints some header information from the first message in each kernel queue (for
example: message id, correlation id, SAF sequence name, SAF sequence number and
Unit-of-Order. The results of the survey can be used to tune upgrade system
properties. See JMS SAF Client Migration Properties.

Usage: java weblogic.jms.extensions.ClientSAFDiscover options

where options are described in the following table:

Option Description

-help Print usage information.

-clientSAFRootDir <client-
saf-root-directory>

Optional. Defaults to current directory.

The root directory of the target SAF Client to discover. Any
relative paths in the SAF Client configuration file are relative to
this directory.

-configurationFile
<configuration-file>

Optional. Defaults to ClientSAF.xml.

The location of the configuration file used by the targeted JMS
SAF Client. This option is required if the clientSAFRootDir
option is specified. If the clientSAFRootDir option or this
option is specified, the ClientSAF.xml file under the current
working directory is used. If the specified configuration file
does not exist, an exception is thrown.

-cutoffFormat <pattern> Optional. Defaults to yyyy-MM-dd'T'HH:mm:ss.SSSZ.

The date and time pattern for the optional cutoff time used. See
http://docs.oracle.com/javase/6/docs/api/java/
text/DateFormat.html for more information.

Behavior Change in JMS SAF Client Message Storage

7-14 Developing Standalone Clients for Oracle WebLogic Server

http://docs.oracle.com/javase/6/docs/api/java/text/DateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DateFormat.html

Option Description

-cutoffTime <cutoff-time> Optional. Defaults to null set.

Prints data on messages that would be discarded during
upgrade if
weblogic.jms.safclient.MigrationCutoffTime is set.
No messages are discarded. The cut off time format depends
on -cutoffFormat. An exception is thrown if the specified
cutoff time does not match the cutoffFormat pattern.If a cut
off time is not specified, no messages would be discarded and
no messages are printed.

-discoveryFile <discovery-
file>

Optional. Defaults to SAF_DISCOVERY.

The file that contains the output generated by
ClientSAFDiscover. It is placed relative to the root
directory unless an absolute path is specified. If the specified
file already exists, it is deleted and a new file is created.

7.8.1.1.1 Example

If you created a JMS SAF CLient using:

ClientSAFFactory.getClientSAF(new File("c:\
\foo"), new FileInputStream("c:\\ClientSAF-jms.xml"));

You can survey the existing messages using the ClientSAFDiscover tool before
upgrading the JMS SAF client. For example:

java weblogic.jms.client.ClientSAFDiscover -clientSAFRootDir c:
\foo -configurationFile c:\ClientSAF-jms.xml

The discovery information will be written to the default location at c:\foo
\SAF_DISCOVERY.

7.8.1.2 JMS SAF Client Migration Properties

As message migration can be complex issue even when automated, Oracle provides
the following system properties to manage the process.

• weblogic.jms.safclient.MigrateExistingMessages—If false, this
property prevents the migration of message from multiple queues to a single
queue. The default is true.

• weblogic.jms.safclient.MigrationCutoffTime—Use to specify a time,
the format specified by
weblogic.jms.safclient.MigrationCutoffTimeFormat, after which
messages are migrated to a single kernel queue. Any remaining messages are
discarded. If not specified, all existing messages are upgraded.

For example, if the cut off format is the default, an valid cutoff time is
2009-12-16T10:34:17.887-0800. An exception is thrown if the specified time
does not match the format pattern and the JMS SAF client stops all message
processing.

• weblogic.jms.safclient.MigrationCutoffTimeFormat—Specifies the
format of the weblogic.jms.safclient.MigrationCutoffTime. The default
is "yyyy-MM-dd'T'HH:mm:ss.SSSZ". Check the javadoc of the
java.text.SimpleDateFormat class for more information.

Behavior Change in JMS SAF Client Message Storage

Reliably Sending Messages Using the JMS SAF Client 7-15

Behavior Change in JMS SAF Client Message Storage

7-16 Developing Standalone Clients for Oracle WebLogic Server

8
Developing a Java SE Client

This chapter provides information on how to develop and use a Java SE client. A Java
SE client is oriented towards the Java EE programming model; it combines the
capabilities of RMI with the IIOP protocol without requiring WebLogic Server classes.

This chapter includes the following sections:

• Java SE Client Basics

• How to Develop a Java SE Client

8.1 Java SE Client Basics
A Java SE client runs an RMI-IIOP-enabled ORB hosted by a Java EE or Java SE
container, in most cases a 1.3 or higher JDK. A Java SE client has the following
characteristics:

• It provides a light-weight connectivity client that uses the IIOP protocol, an
industry standard.

• It is a Java SE-compliant model, rather than a Java EE-compliant model—it does
not support many of the features provided for enterprise-strength applications. It
does not support security, transactions, or JMS.

• Distributed interoperability for EJBs, based on the EJB 3.0 specification, is
supported by WebLogic Server through the EJB 2.1 remote client view from clients.

8.2 How to Develop a Java SE Client
To develop an application using RMI-IIOP with an RMI client:

1. Define your remote object's public methods in an interface that extends
java.rmi.Remote.

This remote interface may not require much code. All you need are the method
signatures for methods you want to implement in remote classes. For example:

public interface Pinger extends java.rmi.Remote {
public void ping() throws java.rmi.RemoteException;
public void pingRemote() throws java.rmi.RemoteException;
public void pingCallback(Pinger toPing) throws java.rmi.RemoteException;
}

2. Implement the interface in a class named interfaceNameImpl and bind it into the
JNDI tree to be made available to clients.

This class should implement the remote interface that you wrote, which means
that you implement the method signatures that are contained in the interface. All
the code generation that will take place is dependent on this class file. Typically,

Developing a Java SE Client 8-1

you configure your implementation class as a WebLogic startup class and include
a main method that binds the object into the JNDI tree. For example:

public static void main(String args[]) throws Exception {
 if (args.length > 0)
 remoteDomain = args[0];
 Pinger obj = new PingImpl();
 Context initialNamingContext = new InitialContext();
 initialNamingContext.rebind(NAME,obj);
 System.out.println("PingImpl created and bound to "+ NAME);
}

3. Compile the remote interface and implementation class with a Java compiler.
Developing these classes in an RMI-IIOP application is no different than doing so
in normal RMI. For more information on developing RMI objects, see Developing
RMI Applications for Oracle WebLogic Server.

4. Run the WebLogic RMI or EJB compiler against the implementation class to
generate the necessary IIOP stub. Note that it is no longer necessary to use the -
iiop option to generate the IIOP stubs:

$ java weblogic.rmic nameOfImplementationClass

A stub is the client-side proxy for a remote object that forwards each WebLogic
RMI call to its matching server-side skeleton, which in turn forwards the call to
the actual remote object implementation. Note that the IIOP stubs created by the
WebLogic RMI compiler are intended to be used with the JDK 1.3.1_01 or higher
ORB. If you are using another ORB, consult the ORB vendor's documentation to
determine whether these stubs are appropriate.

5. Make sure that the files you have now created -- the remote interface, the class
that implements it, and the stub -- are in the CLASSPATH of WebLogic Server.

6. Obtain an initial context.

RMI clients access remote objects by creating an initial context and performing a
lookup (see next step) on the object. The object is then cast to the appropriate type.

In obtaining an initial context, you must use
com.sun.jndi.cosnaming.CNCtxFactory when defining your JNDI context
factory. Use com.sun.jndi.cosnaming.CNCtxFactory when setting the
value for the "Context.INITIAL_CONTEXT_FACTORY" property that you
supply as a parameter to new InitialContext().

Note:

The Sun JNDI client supports the capability to read remote object references
from the namespace, but not generic Java serialized objects. This means that
you can read items such as EJBHome out of the namespace but not
DataSource objects. There is also no support for client-initiated transactions
(the JTA API) in this configuration, and no support for security. In the
stateless session bean RMI Client example, the client obtains an initial context
as shown in the example “Obtaining an InitialContext” at the end of this
section.

7. Modify the client code to perform the lookup in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

How to Develop a Java SE Client

8-2 Developing Standalone Clients for Oracle WebLogic Server

RMI-IIOP clients differ from regular RMI clients in that IIOP is defined as the
protocol when the client is obtaining an initial context. Because of this, lookups
and casts must be performed in conjunction with the
javax.rmi.PortableRemoteObject.narrow() method.

For example, an RMI client creates an initial context, performs a lookup on the
EJBean home, obtains a reference to an EJBean, and calls methods on the EJBean.

You must use the javax.rmi.PortableRemoteObject.narrow() method in
any situation where you would normally cast an object to a specific class type. A
CORBA client may return an object that does not implement your remote
interface; the narrow method is provided by your orb to convert the object so that
it implements your remote interface. For example, the client code responsible for
looking up the EJBean home and casting the result to the Home object must be
modified to use the javax.rmi.PortableRemoteObject.narrow() as
shown in the example “Performing a lookup” at the end of this section.

8. Connect the client to the server over IIOP by running the client with a command
such as:

$ java -Djava.security.manager -Djava.security.policy=java.policy
examples.iiop.ejb.stateless.rmiclient.Client iiop://localhost:7001

9. Set the security manager on the client:

java -Djava.security.manager -Djava.security.policy==java.policy myclient

To narrow an RMI interface on a client, the server needs to serve the appropriate
stub for that interface. The loading of this class is predicated on the use of the JDK
network classloader and this is not enabled by default. To enable it you set a
security manager in the client with an appropriate java policy file. For more
information on Java SE security, see http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136007.html at the Oracle
Technology Network. The following is an example of a java.policy file:

grant {
// Allow everything for now
permission java.security.AllPermission;
}

Example 8-1 Obtaining an InitialContext

.

.

.
* Using a Properties object as follows will work on JDK13
* and higher clients.
 */
 private Context getInitialContext() throws NamingException {
try {
 // Get an InitialContext
 Properties h = new Properties();
 h.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.cosnaming.CNCtxFactory");
 h.put(Context.PROVIDER_URL, url);
 return new InitialContext(h);
} catch (NamingException ne) {
 log("We were unable to get a connection to the WebLogic server at "+url);
 log("Please make sure that the server is running.");
 throw ne;
 }

How to Develop a Java SE Client

Developing a Java SE Client 8-3

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

/**
* This is another option, using the Java2 version to get an * InitialContext.
* This version relies on the existence of a jndi.properties file in
* the application's classpath. See
* "Programming JNDI for Oracle WebLogic Server" for more information
private static Context getInitialContext()
 throws NamingException
{
 return new InitialContext();
}
.
.
.

Example 8-2 Performing a lookup

.

.

.
/**
 * RMI/IIOP clients should use this narrow function
 */
private Object narrow(Object ref, Class c) {
 return PortableRemoteObject.narrow(ref, c);
}
/**
 * Lookup the EJBs home in the JNDI tree
 */
private TraderHome lookupHome()
 throws NamingException
{
 // Lookup the beans home using JNDI
 Context ctx = getInitialContext();
 try {
Object home = ctx.lookup(JNDI_NAME);
return (TraderHome) narrow(home, TraderHome.class);
} catch (NamingException ne) {
log("The client was unable to lookup the EJBHome. Please
make sure ");
log("that you have deployed the ejb with the JNDI name
"+JNDI_NAME+" on the WebLogic server at "+url);
throw ne;
 }
}
/**
 * Using a Properties object will work on JDK130
 * and higher clients
 */
private Context getInitialContext() throws NamingException {
 try {
// Get an InitialContext
Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.cosnaming.CNCtxFactory");
h.put(Context.PROVIDER_URL, url);
return new InitialContext(h);
 } catch (NamingException ne) {
log("We were unable to get a connection to the WebLogic
server at "+url);
log("Please make sure that the server is running.");
throw ne;

How to Develop a Java SE Client

8-4 Developing Standalone Clients for Oracle WebLogic Server

 }
}
.
.
.

The url defines the protocol, hostname, and listen port for the WebLogic Server and is
passed in as a command-line argument.

public static void main(String[] args) throws Exception {
 log("\nBeginning statelessSession.Client...\n");
 String url = "iiop://localhost:7001";

How to Develop a Java SE Client

Developing a Java SE Client 8-5

How to Develop a Java SE Client

8-6 Developing Standalone Clients for Oracle WebLogic Server

9
Developing a WLS-IIOP Client (Deprecated)

This chapter describes how to develop and use a WebLogic Server-IIOP client. A WLS-
IIOP client is a non-ORB based JS2E client that provides WebLogic Server-specific
features.

Note:

The WebLogic Server-IIOP client is deprecated as of WebLogic Server 12.1.3
because of its dependency on the wlfullclient.jar and may be removed
in a future release. For more information on other WebLogic client types, see
Table 2-1.

This chapter includes the following sections:

• WLS-IIOP Client Features

• How to Develop a WLS-IIOP Client

9.1 WLS-IIOP Client Features
The WLS-IIOP client supports WebLogic Server specific features, including

• Clustering

• SSL

• Scalability

Note:

The WebLogic Server-IIOP client does not support the Java Authentication
and Authorization Service (JAAS). Use JNDI Authentication, see Developing
Clients that Use JNDI Authentication.

For more information, see Clients and Features.

9.2 How to Develop a WLS-IIOP Client
The procedure for developing a WLS-IIOP Client is the same as the procedure
described in Developing a Java SE Client with the following additions:

• Include the full wlfullclient.jar (located in WL_HOME/server/lib) in the
client's CLASSPATH.

Developing a WLS-IIOP Client (Deprecated) 9-1

• Use weblogic.jndi.WLInitialContextFactory when defining your JNDI
context factory. Use this class when setting the value for the
"Context.INITIAL_CONTEXT_FACTORY" property that you supply as a
parameter to new InitialContext().

• You do not need to use the -D weblogic.system.iiop.enableClient=true
command line option to enable client access when starting the client. By default, if
you use wlfullclient.jar, enableClient is set to true.

How to Develop a WLS-IIOP Client

9-2 Developing Standalone Clients for Oracle WebLogic Server

10
Developing a CORBA/IDL Client

This chapter describes how to develop clients for heterogeneous distributed
applications. RMI over IIOP with CORBA/IDL clients involves an Object Request
Broker (ORB) and a compiler that creates an interoperating language called IDL. C, C+
+, and COBOL are examples of languages that ORBs may compile into IDL. A CORBA
programmer can use the interfaces of the CORBA Interface Definition Language (IDL)
to enable CORBA objects to be defined, implemented, and accessed from the Java
programming language.

This chapter includes the following sections:

• Guidelines for Developing a CORBA/IDL Client

• Procedure for Developing a CORBA/IDL Client

10.1 Guidelines for Developing a CORBA/IDL Client
Using RMI-IIOP with a CORBA/IDL client enables interoperability between non-Java
clients and Java objects. If you have existing CORBA applications, you should
program according to the RMI-IIOP with CORBA/IDL client model. Basically, you
will be generating IDL interfaces from Java. Your client code will communicate with
WebLogic Server through these IDL interfaces. This is basic CORBA programming.

The following sections provide some guidelines for developing RMI-IIOP applications
with CORBA/IDL clients.

For further reference see the following Object Management Group (OMG)
specifications:

• Java Language to IDL Mapping Specification at http://www.omg.org/cgi-
bin/doc?formal/01-06-07

• CORBA/IIOP 2.4.2 Specification at http://www.omg.org/cgi-bin/doc?
formal/01-02-33

10.1.1 Working with CORBA/IDL Clients
In CORBA, interfaces to remote objects are described in a platform-neutral interface
definition language (IDL). To map the IDL to a specific language, you compile the IDL
with an IDL compiler. The IDL compiler generates a number of classes such as stubs
and skeletons that the client and server use to obtain references to remote objects,
forward requests, and marshall incoming calls. Even with IDL clients it is strongly
recommended that you begin programming with the Java remote interface and
implementation class, then generate the IDL to allow interoperability with WebLogic
and CORBA clients, as illustrated in the following sections. Writing code in IDL that
can be then reverse-mapped to create Java code is a difficult and bug-filled enterprise,
and Oracle does not recommend it.

Developing a CORBA/IDL Client 10-1

http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-06-07
http://www.omg.org/cgi-bin/doc?formal/01-02-33
http://www.omg.org/cgi-bin/doc?formal/01-02-33

10.2 IDL Client (Corba object) relationships

10.2.1 Java to IDL Mapping
In WebLogic RMI, interfaces to remote objects are described in a Java remote interface
that extends java.rmi.Remote. The Java-to-IDL mapping specification defines how
an IDL is derived from a Java remote interface. In the WebLogic RMI over IIOP
implementation, you run the implementation class through the WebLogic RMI
compiler or WebLogic EJB compiler with the -idl option. This process creates an IDL
equivalent of the remote interface. You then compile the IDL with an IDL compiler to
generate the classes required by the CORBA client.

The client obtains a reference to the remote object and forwards method calls through
the stub. WebLogic Server implements a CosNaming service that parses incoming
IIOP requests and dispatches them directly into the RMI run-time environment.

10.3 WebLogic RMI over IIOP object relationships

10.3.1 Objects-by-Value
The Objects-by-Value specification allows complex data types to be passed between
the two programming languages involved. In order for an IDL client to support
Objects-by-Value, you develop the client in conjunction with an Object Request Broker

IDL Client (Corba object) relationships

10-2 Developing Standalone Clients for Oracle WebLogic Server

(ORB) that supports Objects-by-Value. To date, relatively few ORBs support Objects-
by-Value correctly.

When developing an RMI over IIOP application that uses IDL, consider whether your
IDL clients will support Objects-by-Value, and design your RMI interface accordingly.
If your client ORB does not support Objects-by-Value, you must limit your RMI
interface to pass only other interfaces or CORBA primitive data types. The following
table lists ORBs that Oracle has tested with respect to Objects-by-Value support:

Table 10-1 ORBs Tested with Respect to Objects-by-Value Support

Vendor Versions Objects-by-Value

Oracle Tuxedo 8.x C++ Client ORB Supported

Borland VisiBroker 3.3, 3.4 Not supported

Borland VisiBroker 4.x, 5.x Supported

Iona Orbix 2000 Supported (Oracle has
encountered problems with
this implementation)

For more information on Objects-by-Value, see "Limitations of Passing Objects by
Value" in Developing RMI Applications for Oracle WebLogic Server.

10.4 Procedure for Developing a CORBA/IDL Client
To develop an RMI over IIOP application with CORBA/IDL:

1. Follow steps 1 through 3 in Developing a Java SE Client.

2. Generate an IDL file by running the WebLogic RMI compiler or WebLogic EJB
compiler with the -idl option.

The required stub classes will be generated when you compile the IDL file. For
general information on the these compilers, refer to "Understanding WebLogic
RMI" and Developing RMI Applications for Oracle WebLogic Server. Also reference
the Java IDL specification at Java Language Mapping to OMG IDL Specification at
http://www.omg.org/technology/documents/index.htm.

The following compiler options are specific to RMI over IIOP:

Table 10-2 RMI-IIOP Compiler Options

Option Function

-idl Creates an IDL for the remote interface of the
implementation class being compiled

-idlDirectory Target directory where the IDL will be generated

-idlFactories Generate factory methods for value types. This is useful if
your client ORB does not support the factory value type.

-idlNoValueTypes Suppresses generation of IDL for value types.

-idlOverwrite Causes the compiler to overwrite an existing idl file of the
same name

Procedure for Developing a CORBA/IDL Client

Developing a CORBA/IDL Client 10-3

http://www.omg.org/technology/documents/index.htm

Table 10-2 (Cont.) RMI-IIOP Compiler Options

Option Function

-idlStrict Creates an IDL that adheres strictly to the Objects-By-
Value specification. (not available with appc)

-idlVerbose Display verbose information for IDL generation

-idlVisibroker Generate IDL somewhat compatible with Visibroker 4.1 C
++

The options are applied as shown in this example of running the RMI compiler:

 > java weblogic.rmic -idl -idlDirectory /IDL rmi_iiop.HelloImpl

The compiler generates the IDL file within sub-directories of the idlDirectoy
according to the package of the implementation class. For example, the preceding
command generates a Hello.idl file in the /IDL/rmi_iiop directory. If the
idlDirectory option is not used, the IDL file is generated relative to the
location of the generated stub and skeleton classes.

3. Compile the IDL file to create the stub classes required by your IDL client to
communicate with the remote class. Your ORB vendor will provide an IDL
compiler.

4. The IDL file generated by the WebLogic compilers contains the directives:
#include orb.idl. This IDL file should be provided by your ORB vendor. An
orb.idl file is shipped in the /lib directory of the WebLogic distribution. This
file is only intended for use with the ORB included in the JDK.

5. Develop the IDL client.

IDL clients are pure CORBA clients and do not require any WebLogic classes.
Depending on your ORB vendor, additional classes may be generated to help
resolve, narrow, and obtain a reference to the remote class. In the following
example of a client developed against a VisiBroker 4.1 ORB, the client initializes a
naming context, obtains a reference to the remote object, and calls a method on the
remote object.

Code segment from C++ client of the RMI-IIOP example

// string to object
CORBA::Object_ptr o;
cout << "Getting name service reference" << endl;
if (argc >= 2 && strncmp (argv[1], "IOR", 3) == 0)
 o = orb->string_to_object(argv[1]);
else
 o = orb->resolve_initial_references("NameService");
// obtain a naming context
cout << "Narrowing to a naming context" << endl;
CosNaming::NamingContext_var context = CosNaming::NamingContext::_narrow(o);
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup("Pinger_iiop");
name[0].kind = CORBA::string_dup("");
// resolve and narrow to RMI object
cout << "Resolving the naming context" << endl;
CORBA::Object_var object = context->resolve(name);
cout << "Narrowing to the Ping Server" << endl;
::examples::iiop::rmi::server::wls::Pinger_var ping =

Procedure for Developing a CORBA/IDL Client

10-4 Developing Standalone Clients for Oracle WebLogic Server

 ::examples::iiop::rmi::server::wls::Pinger::_narrow(object);
// ping it
cout << "Ping (local) ..." << endl;
ping->ping();
}

Notice that before obtaining a naming context, initial references were resolved
using the standard Object URL (see the CORBA/IIOP 2.4.2 Specification, section
13.6.7). Lookups are resolved on the server by a wrapper around JNDI that
implements the COS Naming Service API.

The Naming Service allows WebLogic Server applications to advertise object
references using logical names. The CORBA Name Service provides:

• An implementation of the Object Management Group (OMG) Interoperable
Name Service (INS) specification.

• Application programming interfaces (APIs) for mapping object references into
an hierarchical naming structure (JNDI in this case).

• Commands for displaying bindings and for binding and unbinding naming
context objects and application objects into the namespace.

6. IDL client applications can locate an object by asking the CORBA Name Service to
look up the name in the JNDI tree of WebLogic Server. In the example above, you
run the client by entering:

Client.exe -ORBInitRef NameService=iioploc://localhost:7001/NameService

Procedure for Developing a CORBA/IDL Client

Developing a CORBA/IDL Client 10-5

Procedure for Developing a CORBA/IDL Client

10-6 Developing Standalone Clients for Oracle WebLogic Server

11
Developing Clients for CORBA Objects

This chapter describes how to use the CORBA API to develop clients using CORBA
objects.

This chapter includes the following sections:

• Enhancements to and Limitations of CORBA Object Types

• Making Outbound CORBA Calls: Main Steps

• Using the WebLogic ORB Hosted in JNDI

• Supporting Inbound CORBA Calls

11.1 Enhancements to and Limitations of CORBA Object Types
The RMI-IIOP run time is extended to support all CORBA object types (as opposed to
RMI valuetypes) and CORBA stubs. Enhancements include:

• Support for out and in-out parameters

• Support for a call to a CORBA service from WebLogic Server using transactions
and security

• Support for a WebLogic ORB hosted in JNDI rather than an instance of the JDK
ORB used in previous releases

CORBA Object Type support has the following limitations:

• It should not be used to make calls from one WebLogic Server instance to another
WebLogic Server instance.

• Clustering is not supported. If a clustered object reference is detected, WebLogic
Server uses internal RMI-IIOP support to make the call. Out and in-out parameters
will not be supported.

• CORBA services created by ORB.connect() result in a second object hosted
inside the server. It is important that you use ORB.disconnect()to remove the
object when it is no longer needed.

11.2 Making Outbound CORBA Calls: Main Steps
Follow these steps to implement a typical development model for customers wanting
to use the CORBA API for outbound calls.

1. Generate CORBA stubs from IDL using idlj, the JDKs IDL compiler.

2. Compile the stubs using javac.

Developing Clients for CORBA Objects 11-1

3. Build EJB(s) including the generated stubs in the jar.

4. Use the WebLogic ORB hosted in JNDI to reference the external service.

11.3 Using the WebLogic ORB Hosted in JNDI
This section provides examples of several mechanisms to access the WebLogic ORB.
Each mechanism achieves the same effect and their constituent components can be
mixed to some degree. The object returned by narrow() will be a CORBA stub
representing the external ORB service and can be invoked as a normal CORBA
reference. In the following code examples it is assumed that the CORBA interface is
called MySvc and the service is hosted at "where" in a foreign ORB's CosNaming
service located at exthost:extport:

11.3.1 ORB from JNDI
The following code listing provides information on how to access the WebLogic ORB
from JNDI.

Example 11-1 Accessing the WebLogic ORB from JNDI

.

.

.
ORB orb = (ORB)new InitialContext().lookup("java:comp/ORB");
NamingContext nc =
NamingContextHelper.narrow(orb.string_to_object("corbaloc:iiop:exthost:extport/
NameService"));
MySvc svc = MySvcHelper.narrow(nc.resolve(new NameComponent[] { new
NameComponent("where", "")}));
.
.
.

11.3.2 Direct ORB creation
The following code listing provides information on how to create a WebLogic ORB.

Example 11-2 Direct ORB Creation

.

.

.
ORB orb = ORB.init();
MySvc svc =
MySvcHelper.narrow(orb.string_to_object("corbaname:iiop:exthost:extport#where"));
.
.
.

11.3.3 Using JNDI
The following code listing provides information on how to access the WebLogic ORB
using JNDI.

Example 11-3 Accessing the WebLogic ORB Using JNDI

.

.

.
MySvc svc = MySvcHelper.narrow(new

Using the WebLogic ORB Hosted in JNDI

11-2 Developing Standalone Clients for Oracle WebLogic Server

InitialContext().lookup("corbaname:iiop:exthost:extport#where"));
.
.
.

The WebLogic ORB supports most client ORB functions, including DII (Dynamic
Invocation Interface). To use this support, you must not instantiate a foreign ORB
inside the server. This will not yield any of the integration benefits of using the
WebLogic ORB.

11.4 Supporting Inbound CORBA Calls
WebLogic Server also provides basic support for inbound CORBA calls as an
alternative to hosting an ORB inside the server. To do this, you use ORB.connect()
to publish a CORBA server inside WebLogic Server by writing an RMI-object that
implements a CORBA interface. Given the MySVC examples above:

Example 11-4 Supporting Inbound CORBA Calls

.

.

.
class MySvcImpl implements MvSvcOperations, Remote
{
public void do_something_remote() {}

public static main() {
MySvc svc = new MySvcTie(this);
InitialContext ic = new InitialContext();
((ORB)ic.lookup("java:comp/ORB")).connect(svc);
ic.bind("where", svc);
}
}
.
.
.

When registered as a startup class, the CORBA service will be available inside the
WebLogic Server CosNaming service at the location "where".

Supporting Inbound CORBA Calls

Developing Clients for CORBA Objects 11-3

Supporting Inbound CORBA Calls

11-4 Developing Standalone Clients for Oracle WebLogic Server

12
Developing a WebLogic C++ Client for a

Tuxedo ORB

This chapter describes how a WebLogic C++ client uses the Tuxedo 8.1 or higher C++
Client ORB to generate IIOP requests for EJBs running on WebLogic Server. This client
supports object-by-value and the CORBA Interoperable Naming Service (INS).

This chapter includes the following sections:

• WebLogic C++ Client Advantages and Limitations

• How the WebLogic C++ Client Works

• Developing WebLogic C++ Clients

12.1 WebLogic C++ Client Advantages and Limitations
A WebLogic C++ client offers these advantages:

• Simplifies your development process by avoiding third-party products

• Provides a client-side solution that allows you to develop or modify existing C++
clients

• The Tuxedo C++ Client ORB is packaged with Tuxedo 8.1 and higher.

The WebLogic C++ client has the following limitations:

• Provides security through the WebLogic Server Security service.

• Provides only server-side transaction demarcation.

12.2 How the WebLogic C++ Client Works
The WebLogic C++ client processes requests as follows:

• The WebLogic C++ client code requests a WebLogic Server service.

– The Tuxedo ORB generates an IIOP request.

– The ORB object is initially instantiated and supports Object-by-Value data
types.

The client uses the CORBA Interoperable Name Service (INS) to look up the EJB object
bound to the JNDI naming service. For more information on how to use the
Interoperable Naming Service to get object references to initial objects such as
NameService, see "Interoperable Naming Service Bootstrapping Mechanism" in
CORBA Programming Reference for Oracle Tuxedo 8.0 at http://www.oracle.com/
technology/documentation/bea_tuxedo.html.

Developing a WebLogic C++ Client for a Tuxedo ORB 12-1

http://www.oracle.com/technology/documentation/bea_tuxedo.html
http://www.oracle.com/technology/documentation/bea_tuxedo.html

Example 12-1 WebLogic C++ Client to WebLogic Server Interoperability

12.3 Developing WebLogic C++ Clients
Use the following steps to develop a C++ client:

1. Use the ejbc compiler with the -idl option to compile the EJB with which your C+
+ client will interoperate. This action generates an IDL script for the EJB.

2. Use the C++ IDL compiler to compile the IDL script and generate the CORBA client
stubs, server skeletons, and header files. For information on the use of the C++ IDL
Compiler, see "OMG IDL Syntax and the C++ IDL Compiler" in CORBA
Programming Reference for Oracle Tuxedo 8.0 at http://www.oracle.com/
technology/documentation/bea_tuxedo.html.

3. Discard the server skeletons; the EJB represents the server side implementation.

4. Create a C++ client that implements an EJB as a CORBA object. For general
information on how to create CORBA client applications, see Creating CORBA
Client Applications for Oracle Tuxedo 8.0 at http://www.oracle.com/
technology/documentation/bea_tuxedo.html.

5. Use the Tuxedo buildobjclient command to build the client.

Developing WebLogic C++ Clients

12-2 Developing Standalone Clients for Oracle WebLogic Server

http://www.oracle.com/technology/documentation/bea_tuxedo.html.
http://www.oracle.com/technology/documentation/bea_tuxedo.html.
http://www.oracle.com/technology/documentation/bea_tuxedo.html
http://www.oracle.com/technology/documentation/bea_tuxedo.html

13
Using Java EE Client Application Modules

This chapter describes how Java EE specifies a standard for including client
application code (a client module) in an EAR file. This allows the client side of an
application to be packaged along with the other modules that make up the application.

The client module is declared in the META-INF/application.xml file of the EAR using
a <java> tag. See "Enterprise Application Deployment Descriptor Elements" in
Developing Applications for Oracle WebLogic Server.

Note:

The <java> tag is often confused to be a declaration of Java code that can be
used by the server-side modules. This is not its purpose, it is used to declare
client-side code that runs outside of the server-side container.

A client module is basically a JAR file containing a special deployment descriptor
named META-INF/application-client.xml. This client JAR file also contains a Main-
Class entry in its META-INF/MANIFEST.MF file to specify the entry point for the
program. For more information on the application-client.xml file, see Client
Application Deployment Descriptor Elements.

This chapter includes the following sections:

• Extracting a Client Application

• Executing a Client Application

13.1 Extracting a Client Application
WebLogic Server includes two utilities that facilitate the use of client modules. They
are:

• weblogic.ClientDeployer—Extracts the client module from the EAR and
prepares it for execution.

• weblogic.j2eeclient.Main—Executes the client code.

You use the weblogic.ClientDeployer utility to extract the client-side JAR file
from a Java EE EAR file, creating a deployable JAR file. Execute the
weblogic.ClientDeployer class on the Java command line using the following
syntax:

java weblogic.ClientDeployer ear-file client1 [client2 client3 ...]

The ear-file argument is a Java archive file with an .ear extension or an expanded
directory that contains one or more client application JAR files.

Using Java EE Client Application Modules 13-1

The client arguments specify the clients you want to extract. For each client you name,
the weblogic.ClientDeployer utility searches for a JAR file within the EAR file
that has the specified name containing the .jar extension.

For example, consider the following command:

java weblogic.ClientDeployer app.ear myclient

This command extracts myclient.jar from app.ear. As it extracts, the
weblogic.ClientDeployer utility performs two other operations.

• It ensures that the JAR file includes a META-INF/application-client.xml file. If it
does not, an exception is thrown.

• It reads from a file named myclient.runtime.xml and creates a weblogic-
application-client.xml file in the extracted JAR file. This is used by the
weblogic.j2eeclient.Main utility to initialize the client application's
component environment (java:comp/env). For information on the format of the
runtime.xml file, see Client Application Deployment Descriptor Elements.

Note:

You create the <client>.runtime.xml descriptor for the client program to
define bindings for entries in the module's META-INF/application-client.xml
deployment descriptor.

13.2 Executing a Client Application
Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and
point it to a WebLogic Server instance using the following command:

java weblogic.j2eeclient.Main clientjar URL [application args]

For example:

java weblogic.j2eeclient.Main myclient.jar t3://localhost:7001

The weblogic.j2eeclient.Main utility creates a component environment that is
accessible from java:comp/env in the client code.

If a resource mentioned by the application-client.xml descriptor is one of the following
types, the weblogic.j2eeclient.Main class attempts to bind it from the global
JNDI tree on the server to java:comp/env using the information specified earlier in
the myclient.runtime.xml file.

• ejb-ref

• javax.jms.QueueConnectionFactory

• javax.jms.TopicConnectionFactory

• javax.mail.Session

• javax.sql.DataSource

The user transaction is bound into java:comp/UserTransaction.

Executing a Client Application

13-2 Developing Standalone Clients for Oracle WebLogic Server

The <res-auth> tag in the application.xml deployment descriptor is currently
ignored and should be entered as application. Oracle does not currently support
form-based authentication.

The rest of the client environment is bound from the weblogic-application-client.xml
file created by the weblogic.ClientDeployer utility.

The weblogic.j2eeclient.Main class emits error messages for missing or
incomplete bindings.

Once the environment is initialized, the weblogic.j2eeclient.Main utility
searches the JAR manifest of the client JAR for a Main-Class entry. The main method
on this class is invoked to start the client program. Any arguments passed to the
weblogic.j2eeclient.Main utility after the URL argument is passed on to the
client application.

The client JVM must be able to locate the Java classes you create for your application
and any Java classes your application depends upon, including WebLogic Server
classes. You stage a client application by copying all of the required files on the client
into a directory and bundling the directory in a JAR file. The top level of the client
application directory can have a batch file or script to start the application. Create a
classes/ subdirectory to hold Java classes and JAR files, and add them to the client
Class-Path in the startup script.

You may also want to package a Java Runtime Environment (JRE) with a Java client
application.

Note:

The use of the Class-Path manifest entries in client module JARs is not
portable, as it has not yet been addressed by the Java EE standard.

Executing a Client Application

Using Java EE Client Application Modules 13-3

Executing a Client Application

13-4 Developing Standalone Clients for Oracle WebLogic Server

14
Developing Security-Aware Clients

This chapter describes how you can develop WebLogic clients that use the Java
Authentication and Authorization Service (JAAS) and Secure Sockets Layer (SSL) to
create security-aware clients.

This chapter includes the following sections:

• Developing Clients That Use JAAS

• Developing Clients that Use JNDI Authentication

• Developing Clients That Use SSL

• Thin-Client Restrictions for JAAS and SSL

• Security Code Examples

14.1 Developing Clients That Use JAAS
JAAS enforces access controls based on user identity and is the preferred method of
authentication for most WebLogic Server clients. A typical use case is providing
authentication to read or write to a file. For more information about how to implement
JAAS authentication, see "Using JAAS Authentication in Java Clients" in Developing
Applications with the WebLogic Security Service.

Note:

The WLS-IIOP client does not support JAAS. See Developing Clients that Use
JNDI Authentication.

14.2 Developing Clients that Use JNDI Authentication
Users requiring client certificate authentication (also referred to as two-way SSL
authentication) should use JNDI authentication, as described in "Using JNDI
Authentication" in Developing Applications with the WebLogic Security Service.

14.3 Developing Clients That Use SSL
WebLogic Server provides Secure Sockets Layer (SSL) support for encrypting data
transmitted between WebLogic Server clients and servers, Java clients, Web browsers,
and other servers.

All SSL clients need to specify trust. Trust is a set of CA certificates that specify which
trusted certificate authorities are trusted by the client. In order to establish an SSL
connection, RMI clients need to trust the certificate authorities that issued the server's

Developing Security-Aware Clients 14-1

digital certificates. The location of the server's trusted CA certificate is specified when
starting the RMI client.

Note:

WebLogic Server's integration with Java Secure Socket Extension (JSSE) does
not use the default javax.net.ssl.SSLContext instance or any of the
following JVM system properties that define keystore settings:

• javax.net.ssl.keyStore

• javax.net.ssl.keyStorePassword

• javax.net.ssl.keyStoreType

• javax.net.ssl.trustStore

• javax.net.ssl.trustStorePassword

• javax.net.ssl.trustStoreType

By default, all trusted certificate authorities available from the JDK (...\jre\lib
\security\cacerts) are trusted by RMI clients. However, if the server's trusted CA
certificate is stored in one of the following trust keystores, you need to specify certain
command line arguments in order to use the keystore:

• Demo Trust—The trusted CA certificates in the demonstration Trust keystore
(DemoTrust.jks) are located in the WL_HOME\server\lib directory. In
addition, the trusted CAs in the JDK cacerts keystore are trusted. To use the Demo
Trust, specify the following command-line argument:

-Dweblogic.security.TrustKeyStore=DemoTrust

Optionally, use the following command-line argument to specify a password for
the JDK cacerts trust keystore:

-Dweblogic.security.JavaStandardTrustKeyStorePassPhrase=password

where password is the password for the Java Standard Trust keystore. This
password is defined when the keystore is created.

• Custom Trust—A trust keystore you create. To use Custom Trust, specify the
following command-line arguments.

Specify the fully qualified path to the trust keystore:

-Dweblogic.security.CustomTrustKeyStoreFileName=filename

Specify the type of the keystore:

-Dweblogic.security.CustomTrustKeyStoreType=jks

Optionally, specify the password defined when creating the keystore:

-Dweblogic.security.CustomTrustKeyStorePassPhrase=password

• Oracle's keytool utility can also be used to generate a private key, a self-signed
digital certificate for WebLogic Server, and a Certificate Signing Request (CSR). For
more information about Oracle's keytool utility, see the keytool-Key and Certificate

Developing Clients That Use SSL

14-2 Developing Standalone Clients for Oracle WebLogic Server

Management Tool description at http://docs.oracle.com/javase/7/docs/
technotes/tools/windows/keytool.html.

For a tutorial on using keytool to create a client certificate, see section "Creating a
Client Certificate for Mutual Authentication" in The Java EE Tutorial, at https://
docs.oracle.com/javaee/7/tutorial/security-
advanced002.htm#GLIEN.

Note:

When using the keytool utility, the default key pair generation algorithm is
DSA. WebLogic Server does not support the use of the Digital Signature
Algorithm (DSA). Specify another key pair generation and signature
algorithm when using WebLogic Server.

You can find more information about how to implement SSL in "Configuring SSL" and
"Configuring Keystores" in Administering Security for Oracle WebLogic Server 12c
(12.2.1).

Note:

Although JSSE supports Server Name Indication (SNI) in its SSL
implementation, WebLogic Server does not support SNI.

14.4 Thin-Client Restrictions for JAAS and SSL
WebLogic thin-client applications only support JAAS authentication through the
following methods:

• weblogic.security.auth.login.UsernamePasswordLoginModule.logi
n

• weblogic.security.Security.runAs

WebLogic thin-clients only support two-way SSL by requiring the SSLContext to be
provided by the SECURITY_CREDENTIALS property. For example, see the client
code below:

Example 14-1 Client Code with sslcontext

.

.

.
System.out.println("Getting initial context");
Hashtable props = new Hashtable();
props.put(Context.INITIAL_CONTEXT_FACTORY,"weblogic.jndi.WLInitialContextFactory");
props.put(Context.PROVIDER_URL,"corbaloc:iiops:" + host + ":" + port +"/
NameService");

props.put(Context.SECURITY_PRINCIPAL,"weblogic");
props.put(Context.SECURITY_CREDENTIALS, "password");

//Set the ssl properties through system property
//set the path to the keystore file (one key inside the store)
System.setProperty("javax.net.ssl.keyStore", YOUR-KEY_STORE_FILE_PATH);
//set the keystore pass phrase

Thin-Client Restrictions for JAAS and SSL

Developing Security-Aware Clients 14-3

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
https://docs.oracle.com/javaee/7/tutorial/security-advanced002.htm#GLIEN
https://docs.oracle.com/javaee/7/tutorial/security-advanced002.htm#GLIEN
https://docs.oracle.com/javaee/7/tutorial/security-advanced002.htm#GLIEN

System.setProperty("javax.net.ssl.keyStorePassword",YOUR_KEY_STORE_PASS_PHRASE);

//Set the trust store
//set the path to the trust store file
System.setProperty("javax.net.ssl.trustStore",YOUR-TRUST_STORE_FILE_PATH);
//set the trust store pass phrase
System.setProperty("javax.net.ssl.trustStorePassword",YOUR_TRUST_STORE_PASS_PHRASE);

Context ctx = new InitialContext(props);
.
.
.

14.5 Security Code Examples
Security samples are optionally provided with the WebLogic Server product. The
samples are located in the ORACLE_HOME\wlserver\samples\server\examples
\src\examples\security directory. A description of each sample and instructions
on how to build, configure, and run a sample, are provided in the package-
summary.html file. You can modify these code examples and reuse them. For more
information, see "Sample Applications and Code Examples" in Understanding Oracle
WebLogic Server.

Security Code Examples

14-4 Developing Standalone Clients for Oracle WebLogic Server

15
Using EJBs with RMI-IIOP Clients

This chapter describes how you can implement Enterprise JavaBeans that use RMI-
IIOP to provide EJB interoperability in heterogeneous server environments.

This chapter includes the following sections:

• Accessing EJBs with a Java Client

• Accessing EJBs with a CORBA/IDL Client

15.1 Accessing EJBs with a Java Client
A Java RMI client can use an ORB and IIOP to access Enterprise beans residing on a
WebLogic Server instance. See "Understanding Enterprise JavaBeans" in Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

15.2 Accessing EJBs with a CORBA/IDL Client
A non-Java platform CORBA/IDL client can access any Enterprise bean object on
WebLogic Server. The sources of the mapping information are the EJB classes as
defined in the Java source files. WebLogic Server provides the weblogic.appc utility
for generating required IDL files. These files represent the CORBA view into the state
and behavior of the target EJB. Use the weblogic.appc utility to:

• Place the EJB classes, interfaces, and deployment descriptor files into a JAR file.

• Generate WebLogic Server container classes for the EJBs.

• Run each EJB container class through the RMI compiler to create stubs and
skeletons.

• Generate a directory tree of CORBA IDL files describing the CORBA interface to
these classes.

The weblogic.appc utility supports a number of command qualifiers. See
Developing a CORBA/IDL Client.

Resulting files are processed using the compiler, reading source files from the
idlSources directory and generating CORBA C++ stub and skeleton files. These
generated files are sufficient for all CORBA data types with the exception of value
types (see "Limitations of WebLogic RMI-IIOP" in Developing RMI Applications for
Oracle WebLogic Server.) Generated IDL files are placed in the idlSources directory.
The Java-to-IDL process is full of pitfalls. Refer to the Java Language Mapping to OMG
IDL specification at http://www.omg.org/technology/documents/
index.htm.

For more information, see Enterprise JavaBeans Components and CORBA Clients: A
Developer Guide, at http://docs.oracle.com/javase/7/docs/technotes/
guides/rmi-iiop/interop.html.

Using EJBs with RMI-IIOP Clients 15-1

http://www.omg.org/technology/documents/index.htm
http://www.omg.org/technology/documents/index.htm
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi-iiop/interop.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi-iiop/interop.html

15.2.1 Example IDL Generation
The following is an example of how to generate the IDL from a bean you have already
created:

1. Generate the IDL files

> java weblogic.appc -compiler javac -keepgenerated -idl -idlDirectory
idlSources build\std_ejb_iiop.jar %APPLICATIONS%\ejb_iiop.jar

2. Compile the EJB interfaces and client application (the example here uses a
CLIENT_CLASSES and APPLICATIONS target variable):

> javac -d %CLIENT_CLASSES% Trader.java TraderHome.java TradeResult.java
Client.java

3. Run the IDL compiler against the IDL files built in Step 1:

>%IDL2CPP% idlSources\examples\rmi_iiop\ejb\Trader.idl
. . .

>%IDL2CPP% idlSources\javax\ejb\RemoveException.idl

4. Compile your C++ client.

Accessing EJBs with a CORBA/IDL Client

15-2 Developing Standalone Clients for Oracle WebLogic Server

A
Client Application Deployment Descriptor

Elements

This appendix describes deployment descriptors for Java EE client applications
supported by .

This appendix includes the following sections:

• Overview of Client Application Deployment Descriptor Elements

• application-client.xml Deployment Descriptor Elements

• weblogic-appclient.xml Descriptor Elements

A.1 Overview of Client Application Deployment Descriptor Elements
When it comes to Java EE applications, often users are only concerned with the server-
side modules (Web applications, EJBs, and connectors). You configure these server-
side modules using the application.xml deployment descriptor, discussed in
"Enterprise Application Deployment Descriptor Elements" in Developing Applications
for Oracle WebLogic Server.

However, it is also possible to include a client module (a JAR file) in an EAR file. This
JAR file is only used on the client side; you configure this client module using the
application-client.xml deployment descriptor. This scheme makes it possible to
package both client and server side modules together. The server looks only at the
parts it is interested in (based on the application.xml file) and the client looks only at
the parts it is interested in (based on the application-client.xml file).

For client-side modules, two deployment descriptors are required: a Java EE standard
deployment descriptor, application-client.xml, and a WebLogic-specific run time
deployment descriptor with a name derived from the client application JAR file.

A.2 application-client.xml Deployment Descriptor Elements
The application-client.xml file is the deployment descriptor for Java EE client
applications. It must begin with the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,
Inc.//DTD Java EE Application Client 1.2//EN"
"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

The following sections describe each of the elements that can appear in the file.

A.2.1 application-client
application-client is the root element of the application client deployment
descriptor. The application client deployment descriptor describes the EJB modules
and other resources used by the client application.

Client Application Deployment Descriptor Elements A-1

The following table describes the elements you can define within an application-
client element.

Table A-1 application-client Elements

Element Description

<icon> Optional. Locations of small and large images that represent the
application in a GUI tool. This element is not currently used by
WebLogic Server.

<display-name> Application display name, a short name that is intended to be
displayed by GUI tools.

<description> Optional. Description of the client application.

<env-entry> Contains the declaration of a client application's environment
entries.

Elements you can define within a env-entry element are:

• description—Optional. Contains a description of the
particular environment entry.

• env-entry-name—Contains the name of a client application's
environment entry.

• env-entry-type—Contains the fully qualified Java type of the
environment entry. The possible values are:
java.lang.Boolean, java.lang.String,
java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and
java.lang.Float.

• env-entry-value—Optional. Contains the value of a client
application's environment entry. The value must be a String that
is valid for the constructor of the specified env-entry-type.

<ejb-ref> Used for the declaration of a reference to an EJB referenced in the
client application.

Elements you can define within an ejb-ref element are:

• description—Optional. Provides a description of the
referenced EJB.

• ejb-ref-name—Contains the name of the referenced EJB.
Typically the name is prefixed by ejb/, such as ejb/Deposit.

• ejb-ref-type—Contains the expected type of the referenced
EJB, either Session or Entity.

• home—Contains the fully-qualified name of the referenced EJB's
home interface.

• remote—Contains the fully-qualified name of the referenced
EJB's remote interface.

• ejb-link—Specifies that an EJB reference is linked to an
Enterprise Java Bean in the Java EE application package. The
value of theejb-link element must be the name of the ejb-
name of an EJB in the same Java EE application.

application-client.xml Deployment Descriptor Elements

A-2 Developing Standalone Clients for Oracle WebLogic Server

Table A-1 (Cont.) application-client Elements

Element Description

<resource-ref> Contains a declaration of the client application's reference to an
external resource.

Elements you can define within a resource-ref element are:

• description—Optional. Contains a description of the
referenced external resource.

• res-ref-name—Specifies the name of the resource factory
reference name. The resource factory reference name is the name
of the client application's environment entry whose value
contains the JNDI name of the data source.

• res-type—Specifies the type of the data source. The type is
specified by the Java interface or class expected to be
implemented by the data source.

• res-auth—Specifies whether the EJB code signs on
programmatically to the resource manager, or whether the
container will sign on to the resource manager on behalf of the
EJB. In the latter case, the container uses information that is
supplied by the deployer. The res-auth element can have one of
two values: Application or Container.

A.3 weblogic-appclient.xml Descriptor Elements
This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory as the client application JAR file.

The file name for the deployment descriptor is the base name of the JAR file, with the
extension .runtime.xml. For example, if the client application is packaged in a file
named c:/applications/ClientMain.jar, the run-time deployment descriptor is in the
file named c:/applications/ClientMain.runtime.xml.

A.3.1 application-client
The application-client element is the root element of a WebLogic-specific run-
time client deployment descriptor. The following table describes the elements you can
define within an application-client element.

Table A-2 application-client Elements

Element Description

<env-entry> Specifies values for environment entries declared in the
deployment descriptor.

Elements you can define within a env-entry element are:

• env-entry-name—Name of an application client's
environment entry. Example: <env-entry-
name>EmployeeAppDB</env-entry-name>

• env-entry-value—Value of an application client's
environment entry. The value must be a valid String for
the constructor of the specified type, which takes a single
String parameter.

weblogic-appclient.xml Descriptor Elements

Client Application Deployment Descriptor Elements A-3

Table A-2 (Cont.) application-client Elements

Element Description

<ejb-ref> Specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

Elements you can define within an ejb-ref element are:

• ejb-ref-name—Name of an EJB reference. The EJB
reference is an entry in the application client's
environment. Oracle recommends that name is prefixed
withejb/. Example: <ejb-ref-name>ejb/Payroll</
ejb-ref-name>.

• jndi-name—JNDI name for the EJB.

<resource-ref> Declares an application client's reference to an external
resource. It contains the resource factory reference name, an
indication of the resource factory type expected by the
application client's code, and the type of authentication (bean
or container).

Example:

<resource-ref>

<res-ref-name>EmployeeAppDB</res-ref-name>

<jndi-name>enterprise/databases/HR1984</jndi-
name>

</resource-ref>

Elements you can define within a resource-ref element
are:

• res-ref-name—Name of the resource factory reference
name. The resource factory reference name is the name of
the application client's environment entry whose value
contains the JNDI name of the data source.

• jndi-name—JNDI name for the resource.

<resource-description> Maps the JNDI name of a server resource to an EJB resource
reference in WebLogic Server.

Elements you can define within a resource-description
element are:

• res-ref-name—Specifies the name of a resource
reference.

• jndi-name—Specifies a JNDI name for the resource.

<resource-env-
description>

Maps a resource-env-ref, declared in the ejb-jar.xml
deployment descriptor, to the JNDI name of the server
resource it represents.

Elements you can define within a resource-env-
description element are:

• res-env-ref-name—Specifies the name of a resource
environment reference.

• jndi-name—Specifies a JNDI name for the resource
environment reference.

<ejb-reference-
description>

Elements you can define within an ejb-reference-
description element are:

• ejb-ref-name—Specifies the name of an EJB reference
used in your Web application.

• jndi-name—Specifies a JNDI name for the reference.

weblogic-appclient.xml Descriptor Elements

A-4 Developing Standalone Clients for Oracle WebLogic Server

Table A-2 (Cont.) application-client Elements

Element Description

<service-reference-
description>

Elements you can define within an ejb-reference-
description element are:

• service-ref-name

• wsdl-url

• call-property—The call-property element has
the following sub-elements:

– name

– value

• port-info—The port-info element has the following
sub-elements:

– port-name

– stub-property

– call-property

weblogic-appclient.xml Descriptor Elements

Client Application Deployment Descriptor Elements A-5

weblogic-appclient.xml Descriptor Elements

A-6 Developing Standalone Clients for Oracle WebLogic Server

B
Using the WebLogic JarBuilder Tool

This appendix describes how to create the wlfullclient.jar using the WebLogic
JarBuilder tool.

Note:

The WebLogic full client, wlfullclient.jar, is deprecated as of WebLogic
Server 12.1.3 and may be removed in a future release. Oracle recommends
using the WebLogic Thin T3 client or other appropriate client depending on
your environment. For more information on WebLogic client types, see Table
2-1.

This appendix includes the following sections:

• Creating a wlfullclient.jar for JDK 1.7 client applications

• Creating a wlfullclient.jar for JDK 1.6 client applications

Note:

If you run the WebLogic Full Client from a <java> task that is invoked in an
Ant script, see Running the WebLogic Full Client in a Non-Forked VM, for
important information regarding the RSA Crypto-J library, which is included
in the wlfullclient.jar manifest classpath.

B.1 Creating a wlfullclient.jar for JDK 1.7 client applications
Use the following steps to create a wlfullclient.jar file for a JDK 1.7 client application:

1. Change directories to the server/lib directory.

cd WL_HOME/server/lib

2. Use the following command to create wlfullclient.jar in the server/lib directory:

java -jar wljarbuilder.jar

3. You can now copy and bundle the wlfullclient.jar along with cryptoj.jar
with client applications. The wlfullclient.jar and cryptoj.jar must be
kept in the same directory as the wlfullcient.jar references cryptoj.jar in
its manifest Class-Path.

4. Add the wlfullclient.jar to the client application's classpath.

Using the WebLogic JarBuilder Tool B-1

Note:

JDK 1.7 introduces new manifest file attributes in Update 25 (JDK 7u25). Only
the main jar of the Applet or Web Start deployment requires the new
permissions attribute. Do not modify the cryptoj.jar which is a licensed
signed jar. See http://www.oracle.com/technetwork/java/javase/7u25-
relnotes-1955741.html#jar-att.

B.2 Creating a wlfullclient.jar for JDK 1.6 client applications
Use the following steps to create a wlfullclient.jar file for a JDK 1.6 client application:

1. Change directories to the server/lib directory.

cd WL_HOME/server/lib

2. Use the following command to create wlfullclient.jar in the server/lib directory:

java -jar wljarbuilder.jar

3. You can now copy and bundle the wlfullclient.jar along with cryptoj.jar
with client applications. The wlfullclient.jar and cryptoj.jar must be
kept in the same directory as the wlfullcient.jar references cryptoj.jar in
its manifest Class-Path.

4. Add the wlfullclient.jar to the client application's classpath.

Creating a wlfullclient.jar for JDK 1.6 client applications

B-2 Developing Standalone Clients for Oracle WebLogic Server

http://www.oracle.com/technetwork/java/javase/7u25-relnotes-1955741.html#jar-att
http://www.oracle.com/technetwork/java/javase/7u25-relnotes-1955741.html#jar-att

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.4.2 Examples in the WebLogic Server Distribution

	1.5 New and Changed Features for This Release

	2 Overview of Standalone Clients
	2.1 Distributing Client Jar Files
	2.2 WebLogic T3 Clients
	2.2.1 WebLogic Thin T3 Client
	2.2.2 WebLogic Full Client (Deprecated)
	2.2.3 WebLogic Install Client

	2.3 RMI-IIOP Clients
	2.4 CORBA Clients
	2.5 JMX Clients
	2.6 JMS Clients
	2.7 Web Services Clients
	2.8 WebLogic Tuxedo Connector Clients
	2.9 Clients and Features

	3 Developing a WebLogic Thin T3 Client
	3.1 Understanding the WebLogic Thin T3 Client
	3.1.1 WebLogic Thin T3 Features
	3.1.2 Limitations and Considerations
	3.1.3 Interoperability
	3.1.3.1 Prior WebLogic Server Releases
	3.1.3.2 Foreign Application Servers

	3.1.4 Security
	3.1.5 Connection Considerations

	3.2 Developing a Basic WebLogic Thin T3 Client
	3.3 Foreign Server Applications
	3.3.1 Deployment Considerations
	3.3.2 Interoperating with OC4J
	3.3.2.1 Accessing WebLogic Server Resources
	3.3.2.2 JMS Interoperability with WLS

	4 Developing a WebLogic Full Client (Deprecated)
	4.1 Understanding the WebLogic Full Client
	4.2 Limitations and Considerations when Using the WebLogic Full Client
	4.3 Developing a WebLogic Full Client
	4.4 Communicating with a Server in Admin Mode
	4.5 Running the WebLogic Full Client in a Non-Forked VM

	5 Developing a Thin Client
	5.1 Overview of the Thin Client
	5.1.1 Limitations

	5.2 How to Develop a Thin Client
	5.3 Protocol Compatibility

	6 WebLogic JMS Thin Client
	6.1 Overview of the JMS Thin Client
	6.2 JMS Thin Client Functionality
	6.3 Limitations of Using the JMS Thin Client
	6.4 Deploying the JMS Thin Client

	7 Reliably Sending Messages Using the JMS SAF Client
	7.1 Overview of Using Store-and-Forward with JMS Clients
	7.2 Configuring a JMS Client To Use Client-side SAF
	7.2.1 Generating a JMS SAF Client Configuration File
	7.2.1.1 How the JMS SAF Client Configuration File Works
	7.2.1.2 Steps to Generate a JMS SAF Client Configuration File from a JMS Module
	7.2.1.3 ClientSAFGenerate Utility Syntax
	7.2.1.4 Valid SAF Elements for JMS SAF Client Configurations
	7.2.1.5 Default Store Options for JMS SAF Clients

	7.2.2 Encrypting Passwords for Remote JMS SAF Contexts
	7.2.2.1 Steps to Generate Encrypted Passwords
	7.2.2.2 ClientSAFEncrypt Utility Syntax

	7.2.3 Installing the JMS SAF Client JAR Files on Client Machines
	7.2.4 Modify Your JMS Client Applications To Use the JMS SAF Client's Initial JNDI Provider
	7.2.4.1 Required JNDI Context Factory for JMS SAF Clients
	7.2.4.2 Optional JNDI Properties for JMS SAF Clients

	7.3 JMS SAF Client Management Tools
	7.3.1 The JMS SAF Client Initialization API
	7.3.2 Client-Side Store Administration Utility

	7.4 JMS Programming Considerations with JMS SAF Clients
	7.4.1 How the JMSReplyTo Field Is Handled In JMS SAF Client Messages
	7.4.2 No Mixing of JMS SAF Client Contexts and Server Contexts
	7.4.3 Using Transacted Sessions With JMS SAF Clients

	7.5 JMS SAF Client Interoperability Guidelines
	7.5.1 Java Run Time
	7.5.2 WebLogic Server Versions
	7.5.3 JMS C API

	7.6 Tuning JMS SAF Clients
	7.7 Limitations of Using the JMS SAF Client
	7.8 Behavior Change in JMS SAF Client Message Storage
	7.8.1 The Upgrade Process, Tools, and System Properties
	7.8.1.1 JMS SAF Client Discovery Tool
	7.8.1.1.1 Example

	7.8.1.2 JMS SAF Client Migration Properties

	8 Developing a Java SE Client
	8.1 Java SE Client Basics
	8.2 How to Develop a Java SE Client

	9 Developing a WLS-IIOP Client (Deprecated)
	9.1 WLS-IIOP Client Features
	9.2 How to Develop a WLS-IIOP Client

	10 Developing a CORBA/IDL Client
	10.1 Guidelines for Developing a CORBA/IDL Client
	10.1.1 Working with CORBA/IDL Clients

	10.2 IDL Client (Corba object) relationships
	10.2.1 Java to IDL Mapping

	10.3 WebLogic RMI over IIOP object relationships
	10.3.1 Objects-by-Value

	10.4 Procedure for Developing a CORBA/IDL Client

	11 Developing Clients for CORBA Objects
	11.1 Enhancements to and Limitations of CORBA Object Types
	11.2 Making Outbound CORBA Calls: Main Steps
	11.3 Using the WebLogic ORB Hosted in JNDI
	11.3.1 ORB from JNDI
	11.3.2 Direct ORB creation
	11.3.3 Using JNDI

	11.4 Supporting Inbound CORBA Calls

	12 Developing a WebLogic C++ Client for a Tuxedo ORB
	12.1 WebLogic C++ Client Advantages and Limitations
	12.2 How the WebLogic C++ Client Works
	12.3 Developing WebLogic C++ Clients

	13 Using Java EE Client Application Modules
	13.1 Extracting a Client Application
	13.2 Executing a Client Application

	14 Developing Security-Aware Clients
	14.1 Developing Clients That Use JAAS
	14.2 Developing Clients that Use JNDI Authentication
	14.3 Developing Clients That Use SSL
	14.4 Thin-Client Restrictions for JAAS and SSL
	14.5 Security Code Examples

	15 Using EJBs with RMI-IIOP Clients
	15.1 Accessing EJBs with a Java Client
	15.2 Accessing EJBs with a CORBA/IDL Client
	15.2.1 Example IDL Generation

	A Client Application Deployment Descriptor Elements
	A.1 Overview of Client Application Deployment Descriptor Elements
	A.2 application-client.xml Deployment Descriptor Elements
	A.2.1 application-client

	A.3 weblogic-appclient.xml Descriptor Elements
	A.3.1 application-client

	B Using the WebLogic JarBuilder Tool
	B.1 Creating a wlfullclient.jar for JDK 1.7 client applications
	B.2 Creating a wlfullclient.jar for JDK 1.6 client applications

