ORACLE"

Oracle® Fusion Middleware

Developing Resource Adapters for Oracle WebLogic Server
12¢(12.2.1.1.0)

E76436-01

June 2016

Documentation for resource adapter users, deployers, and
software developers that describes how to develop applications
that include Java EE resource adapters to be deployed to
WebLogic Server.

Oracle Fusion Middleware Developing Resource Adapters for Oracle WebLogic Server , 12¢ (12.2.1.1.0)
E76436-01
Copyright © 2007, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ... ix
Documentation AcCesSIbIlityccoviurieiiiiiiei IX
CONVENIONS ..ottt ettt b ettt a s a sttt b sttt a s s e et iX

1 Introduction and Roadmap

1.1 Document SCope and AUIENCE.covvvreererereriririrereeer e 11
1.2 Guide to This DOCUMENt.........ccoiiiiiiiiiic e 11
1.3 Related DocUMENTAtiON ...t s 1-2
1.4 Examples for the Resource Adapter Developer ... 1-3
1.5 New and Changed Features in This Releaseccoceurioiiriiiiiiiicecc 1-3

2 Understanding Resource Adapters

2.1 Overview of Resource Adapters ... 2-1
2.1.1 Comparing WebLogic Server and WebLogic Integration Resource Adapters 2-1
2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters...........cccccceivriiiirinnnce. 2-2
2.1.3 Connector Architecture 1.7 SUPPOTIt......ccccoiiiiiiiiiiiiiii e 2-2
2.1.4 Connector Architecture 1.6 SUPPOIt.........ccooooiiiiiiiiiiiii e 2-2
2.1.5 Comparing 1.0 Resource Adapters to 1.5 and 1.6......ccccoevvvviiiiiiiiie, 2-3
2.1.6 Additional Support Provided by the WebLogic Server Connector Container 2-4

2.2 Java EE Connector ArChiteCtUTEcecveieieieieieieeeieeteete sttt se e see st s snens 2-5
2.2.1 Java EE Architecture Diagram and Components............cccooerreiniicieiiincccieeccienen, 2-5
2.2.2 System-Level CONtractscocooiieieiiiicieiicc 2-7

2.3 Resource Adapter Deployment Descriptors ... 2-8

3 Creating and Configuring Resource Adapters

3.1 Creating and Configuring Resource Adapters: Main Stepscccovverevrvererrrrnerrrneenes 3-1
3.2 Modifying an Existing Resource Adapter ..o 3-3
3.3 Configuring the ra.Xml Fileccccccovviiiiiiininiiiiiiiiiiiss 3-4
3.3.1 Creating the ra.xml File Manuallyccccooiiiiiiii 3-4
3.3.2 Using Metadata Annotations to Specify Deployment Information..........c.cccceveunee. 3-4
3.3.3 Resource Adapter XML Schema Definitions............ccccviiiiiiiiniiciiiiccceeeenene 3-5
3.4 Configuring the weblogic-ra.Xxml File.........cccccccoiiiiiiiiiiiiiiccrees 3-5

6

3.5
3.6
3.7
3.8

3.4.1 Editing Resource Adapter Deployment Descriptorscoooeeieiiciiieinicciciiiine, 3-6

3.4.2 Dynamic Descriptor Updates: Console Configuration Tabscccccoeoiiecciininnace. 3-7
3.4.3 Automatic Generation of the weblogic-ra.xml Fileccccoooiiiiiine. 39
3.44 (Deprecated) Configuring the Link-Ref Mechanism............ccccooviiiniiinnnninnnnnn, 3-10
Bean Validation Configuration File ... 3-10
Long-Running Work SUpPPOTt.........cciirieiiii e 3-11
TOOING SUPPOTL ...t 3-11
Monitoring Resource Adapter Health ..o 3-12
3.8.1 Obtaining Resource Adapter Health Statecccoooviiiiiii 3-12
3.8.2 Deployment Requirements for Monitoring Health...........c.c.coooiii 3-12

Programming Tasks

41
4.2

4.3

44
4.5

4.6

Required Classes for Resource Adaptersccoocuevrieiiueiiieiiieiieice e 4-1
Generic WOrk COnteXt... ..ottt 4-2
42.1 Interfaces, Classes, and Methods Added to Support the Generic Work Context....... 4-2
4.2.2 Deployment Descriptor Element Added to Support the Generic Work Context....... 4-3
Programming a Resource Adapter to Perform as a Startup Classccccceeeiviiiiiiiinnnes 4-3
4.3.1 Minimum Content of a Resource Adapterccocooevriiriiciniiiniece e 4-3
4.3.2 Submitting @ WOrk INSTANCEc.ccceiiiiiiiiiiccicccccccccc e 4-4
4.3.3 Retrying a Work SUDIMISSIONcccoiuimiiiiiiiiiiiiiccccccccc e 4-6
Suspending and Resuming Resource Adapter Activitycccooeeieioiiiiiiiiiincce 4-7
Extended BootstrapContextcoiriiiiiiciic s 4-9
4.5.1 Diagnostic Context ID........ccooooiiiiiiiii 4-10
452 DYe BitS..oooiiiiiiiii 4-10
4.5.3 Callback Capabilities.........cccooiiiiiiiiiiiiiic e 4-10
454 Bean Validation........ccoiiiiiiiiiiiiii s 4-11
4.5.5 BeanManagercooiiiuiiiiiiiiiiiiiii s 4-11
Administered Object UNiqUENESS............coruiuiuimiuimiiiiiiiiiitiiinessssessss s 4-11

Using Contexts and Dependency Injection in Resource Adapters

51
52
53
54
5.5

5.6

OVEIVIEW ..vttittcttct ettt b bttt a bttt et bbbttt sttt 5-1
Resource Adapter Bean DiSCOVETYcccvuiiiiiiiiiiiiiiiiiiiccccieeiceeeiee e 5-2
Obtaining Contextual References to Resource Adapter Beans..........ccccooovvvecieinicniiieicnnnnn 5-2
Invoking Resource Adapter Beans From Other Application Typesccccoeueieiicieinicnnnee. 5-2
Using Resource Adapters Deployed as CDI Bean Archives ..., 5-2
5.5.1 BeanManager SUPPOIt ... 5-3
5.5.2 Injection POINtS.......cccccviiiiiiiiiiiiiii s 5-3
Using CDI with Resource Adapter Component Beans.............ccooevviirniniiiicieicccene, 5-4
5.6.1 Resource Adapter Component Beans Must Not Be Managed Beans...............cc........ 5-5
5.6.2 Using Dependency INJeCtion..........coooiuiiiiiiiiciiiiic i 5-6

Connection Management

6.1

Connection Management CONtIactc.ooviieieiiiiciiiiicce s 6-1

7

6.2

6.3
6.4

6.5

6.6
6.7

7.1

6.1.1 Connection Factory and Connection ..o, 6-2

6.1.2 Resource Adapters Bound in JNDI Treeccocoviviririrvininirrrccrrreeeeceeeeeeeeeeeenes 6-2
6.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction).........c.ccccceevurrurrrrnenenes 6-2
6.1.4 Specifying and Obtaining Transaction Support Level............ccccovvvninnnnnnnnnnne 6-3
6.1.5 Specifying an Unshareable ManagedConnectionFactory ..o, 6-4
Configuring Outbound CONNECIONScccviiuiiiiiiiiiei s 6-4
6.2.1 Connection Pool Configuration Levelsc.cccoovrrvriiinnniciirrrccereeeeeeenes 6-4
6.2.2 Retrying a Connection Attemptccooveveiiiiiiiiiiiiec 6-5
6.2.3 Isolating, Troubleshooting, and Fixing Outbound Connection Pool Failures

Without Redeploying the Adapter ... 6-5
6.2.4 Multiple Outbound Connections Example...........cccocovviviiinrinnininnniiiinrneeeeene 6-8
Configuring Inbound ConNectioNnS ..o 6-10
Configuring Connection Pool Parameterscocoooueuoiiiiiiiiiiicieccc 6-11
6.4.1 initial-capacity: Setting the Initial Number of ManagedConnections...............c........ 6-11
6.42 max-capacity: Setting the Maximum Number of ManagedConnections................... 6-11
6.4.3 capacity-increment: Controlling the Number of ManagedConnections.................... 6-12
6.44 shrinking-enabled: Controlling System Resource Usageccccevvvurivvnniiinininnnnnes 6-12

6.4.5 shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim
Unused ManagedCONNECtiONS ...t 6-12
6.4.6 highest-num-waiters: Controlling the Number of Clients Waiting for a Connection
... 6-12

6.4.7 highest-num-unavailable: Controlling the Number of Unavailable Connections.... 6-12

6.4.8 connection-creation-retry-frequency-seconds: Recreating Connections.................... 6-13
6.4.9 match-connections-supported: Matching Connections............cccccevvvviinnniininnnnne 6-13
6.4.10 test-frequency-seconds: Testing the Viability of Connections..........c.cccccoeuevriinnnenn. 6-13
6.4.11 test-connections-on-create: Testing Connections upon Creation...........cccceueeunenee. 6-13
6.4.12 test-connections-on-release: Testing Connections upon Release to Connection

POOL i s 6-13
6.4.13 test-connections-on-reserve: Testing Connections upon Reservation...................... 6-13
6.4.14 deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole

Adapter Deployment ..o s 6-13
Connection Proxy Wrapper - 1.0 Resource Adapters............ccooeeieiiiriniiiniicicicccce 6-14
6.5.1 Possible ClassCastEXCEPHON.ccociiviiirimiiiiii e 6-14
6.5.2 Turning Proxy Generation On and Offcccooviiiiiinniiiirccceceeeeees 6-15
Reset a Connection POOL.........cccciiiiiiiiiiiiiiiiii e 6-15
Testing CONNECHONSc.coiiveiiiecic e 6-16
6.7.1 Configuring Connection TeSting..........ccoovurvriiiriiiiiiiiinie e 6-16
6.7.2 Testing Connections in the Administration Console.............cccceeuvvrerrrrnreenenne. 6-16

Transaction Management

Supported Transaction LEVELSc.cccciiiiiiiiiiiriiiiceeeececieeeee e 7-1
7.1.1 XA Transaction SUPPOTt......cccoviiiiiiiniiiiiiiccc s 7-1
7.1.2 Local Transaction SUPPOTt.......ccccoviviviriiiiiiininiiiiiiiiicsn s 7-2

9

Vi

7.1.3 No Transaction SUPPOItcccoeueieiiiiiiiiiice et 7-2

7.14 Runtime Transaction Support Level Specificationcococeveverrrnrvrvnrnrnreeene 7-2
7.2 Configuring Transaction LEVELS ... 7-3
7.2.1 Configure XA Transaction Recovery Credential Mapping.........cccccovvvvrninnnnininnnes 7-3

Message and Transactional Inflow

8.1 Opverview of Message and Transactional INflow.............cccccovviiiniiininnini 8-1
8.1.1 Architecture COMPONENESccevoiiiiiiiiicic e 8-2
8.1.2 Inbound Communication SCENATIO..........cocevvviviiiiiiiiiiiiiiiiiiic s 8-3

8.2 How Message INfIOW WOTKS..........ccouriiiiiiiiiiiiicirccrcee s 8-4
8.2.1 Handling INbound MeSSages.............ccovuviriiiririiiiiniiiiininiiiiniercesnssess s 8-4
8.2.2 Proprietary Communications Channel and Protocol...........cccoeoviiiiiiniiciiciine, 8-5

8.3 Message Inflow to Message Endpoints (Message-driven Beans)c.cccooeeeieiiiicicinnnne. 8-5
8.3.1 Deployment-Time Binding Between an MDB and a Resource Adapter...................... 8-5
8.3.2 Dispatching @ MESSAGEccvvvvurireririririririiieierree s 8-6
8.3.3 Activation SpecifiCationscccovviviiiiiiiiiniiiiiiii s 8-7
8.3.4 Administered ODJECtScoooiiiiiiiiii 8-7

8.4 Transactional INFIOW.........cccceviviiiiiiiiiiii s 8-7
8.4.1 Using the Transactional Inflow Model for Locally Managed Transactions 8-9

8.5 Configuring and Managing Long-Running Work............cccccceeivinnninnnnnnrnncenene 8-9
8.5.1 Setting the Maximum Number of Concurrent Long-Running Work Instances 8-9
8.5.2 Monitoring Long-Running Work............cccoii, 8-10

Security

9.1 Container-Managed and Application-Managed Sign-Oncccceoueireieiiiineeiiicceeee 9-1
9.1.1 Application-Managed Sign-0Mcccceeuiiiiiiiniiiicieic e 9-1
9.1.2 Container-Managed SIGN-ON........ccccciiiiiiiiiiiiiiiccceceeeeee e 9-2

9.2 Credential Mapping for Making Outbound Connections..........cc.cccoeverinvviceereinicnecnnen, 9-2
9.2.1 Authentication MeChanisSmsccccoiiiiiiiiiiiiii s 9-3
9.2.2 Outbound Credential Mappings.........cccceeuiurueieiiiiieieieiicieeeieie e 9-3
9.23 Creating Outbound Credential Mappings Using the Console...........c.cccoooerueiinnnnnn. 9-6

9.3 SeCUIILY INFIOW ..o 9-6
9.3.1 Inbound Principal Mappings........cccccouiiiiiiiiiiiiiiiiiiicccccsssecsssseaes 9-7
9.3.2 Security Inflow Callback Requirements..............ccoceueuriiirieiniiinieiecccecc e 9-8
9.3.3 Backward Compatibility with Connector Architecture 1.5 and 1.0..........ccccoeveeneen. 9-9

9.4 Security POLiCY PrOCESSINGccceivveveviririiiiiieieieieiceeetee s 9-9

9.5 Configuring Security Identities for Resource Adapters...........cccccevuviviirrviivnnnccccene 9-10
9.5.1 default-principal-name: Default Identity............ccccooiiiiiiiiiiiie, 9-11
9.5.2 manage-as-principal-name: Identity for Running Management Tasks 9-11

9.5.3 run-as-principal-name: Identity Used for Connection Calls from the Connector
Container into the Resource Adapter ... 9-12

9.54 run-work-as-principal-name: Identity Used for Performing Resource Adapter
Management TASKS ... e 9-12

10

9.6 Configuring Connection Factory-Specific Authentication and Re-authentication

MECRANISINS ...ttt sttt 9-13
Packaging and Deploying Resource Adapters
10.1 Packaging Resource Adapters ... 10-1
10.1.1 Packaging Directory Structurecccooooeiiiiiiiiicece s 10-1
10.1.2 Packaging Considerations...........ccccoieueieiiiicieiiiicie e 10-1
10.1.3 Packaging Limitation ... enenenes 10-2
10.1.4 Packaging Resource Adapter Archives (RARS) ..., 10-2
10.2 Deploying Resource Adapters..........ciiiiiiiiiiiciiiccccicccceeeeeenenes 10-3
10.2.1 Deployment OPtions........cccuoiirueieiiiiicie et 10-3
10.2.2 Resource Adapter Deployment Namescccocooeueieiiimcieiniiceiecce e 10-4
10.2.3 Production Redeploymentcccccoceuiuiiiiiiiiicccciccceeeeeeeeeeeneeneenenenenes 10-4
10.24 Deploying a Resource Adapter Configured with Multiple Outbound Connection
POOIS ..ottt s 10-6
weblogic-ra.xml Schema

Al WeblogiC-CONNECTOT........oviiiiici e A-1
A2 WOTK-INANAZET ..ot eees A-5
A3 cONNECtOr-WOTK-TNANAGETcoovviiiiiiiciieeeee s A-7
A4 SECUTILY vttt A-8
A4l default-principal-name............ccocoooiiiiiiii A-9
A42 manage-as-prinCcipal-Name ... A-10
A43 run-as-principal-Name ... A-10
A44 run-work-as-principal-Name ... A-10
A45 security-Work-CONteXt ..o A-11
AL PTOPETHIES ..ot A-12
A6 admiN-ODbJECES ..o A-13
A.6.1 admin-ODJECt-BIOUP......ooiimiiiiimiiiiiiiiicccccc et A-13
A7 outbound-1esoUrce-adapterccooiiiiiiiiiiii e A-15
A.7.1 default-connection-properties ... A-16
A7.2 connection-definitioN-group.......ccceuoiiriiiiiiici A-20

Resource Adapter Best Practices

B.1 Classloading Optimizations for Resource Adapters..........cccccoovuirniiieiiieiicniicciicececes B-1
B.2 Connection OptimiZationsccoeeveiiiiiiiiiiiiiiiicc s B-1
B.3 Thread Management..........cccccvueuiiiiriririiiniiiciiieeieeeeeeee e B-2
B.4 InteractionSpec INterface..........cccoovvviiiiiiiiiiiiiiiiiiic s B-2
B.5 Using javaxjms.ConnectionFactOryc.ocoiuiieiiiiiiiiiiiccecc s B-2

Vii

viii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Developing Resource Adapters for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. con pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1

Introduction and Roadmap

This document describes how to develop applications that include Java EE resource
adapters and how to deploy them on WebLogic Server. It is written for resource
adapter users, deployers, and software developers, and also contains information that
is useful for business analysts and system architects who are evaluating WebLogic
Server or considering the use of WebLogic Server resource adapters for a particular
application.

The following sections describe the contents and organization of this guide—
Developing Resource Adapters for Oracle WebLogic Server.

* Document Scope and Audience

® Guide to This Document

® Related Documentation

* Examples for the Resource Adapter Developer

* New and Changed Features in This Release

1.1 Document Scope and Audience

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning topics. For links to WebLogic Server documentation and resources
for these topics, see Related Documentation.

It is assumed that the reader is familiar with Java EE and resource adapter concepts.
The foundation document for resource adapter development is the JSR 322: Java EE
Connector Architecture 1.7. See ht t p: / /j cp. or g/ about Java/

communi t yprocess/final/jsr322/index. ht M . Resource adapter developers
should become familiar with the Java EE Connector Architecture 1.7 specification. This
document, Developing Resource Adapters for Oracle WebLogic Server, emphasizes the
value-added features provided by WebLogic Server resource adapters and key
information about how to use WebLogic Server features and facilities to get a resource
adapter up and running.

1.2 Guide to This Document

e This section, Introduction and Roadmap, introduces the organization of this guide.

Introduction and Roadmap 1-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Related Documentation

Understanding Resource Adapters, introduces you to the Oracle WebLogic Server
implementation of the Java EE Connector Architecture as well as the resource
adapter types and XML schema.

Creating and Configuring Resource Adapters, describes how to create resource
adapters using the Oracle WebLogic Server implementation of the Java EE
Connector Architecture.

Programming Tasks, describes programming tasks for resource adapters.

Using Contexts and Dependency Injection in Resource Adapters, describes
WebLogic Server support for Contexts and Dependency Injection (CDI) in resource
adapter beans.

Connection Management, introduces you to resource adapter connection
management.

Transaction Management, introduces you to the resource adapter transaction
management.

Message and Transactional Inflow, describes resource adapter messaging inflow
and transactional inflow.

Security, describes how to configure security for resource adapters.

Packaging and Deploying Resource Adapters, discusses packaging and deploying
requirements for resource adapters and provides instructions for performing these
tasks.

weblogic-ra.xml Schema, provides a complete reference for the schema for the
WebLogic Server-specific deployment descriptor, webl ogi c-ra. xmi .

Resource Adapter Best Practices, provides best practices for resource adapter
developers.

1.3 Related Documentation

The foundation document for resource adapter development is JSR 322: Java EE
Connector Architecture 1.7. Developing Resource Adapters for Oracle WebLogic Server
document assumes you are familiar with the Java EE Connector Architecture
specification, which contains design and development information that is specific to
developing WebLogic Server resource adapters.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

Deploying Applications to Oracle WebLogic Server is the primary source of information
about deploying WebLogic Server applications.

Tuning Performance of Oracle WebLogic Server contains information on monitoring
and improving the performance of WebLogic Server applications.

1-2 Developing Resource Adapters for Oracle WebLogic Server

Examples for the Resource Adapter Developer

1.4 Examples for the Resource Adapter Developer

In addition to this document, Oracle provides resource adapter examples for software
developers. WebLogic Server optionally installs API code examples in the

ORACLE _HOVE/ W server/sanpl es/ server/ exanpl es/ src/ exanpl es
directory. For more information about the WebLogic Server code examples, see
"Sample Applications and Code Examples" in Understanding Oracle WebLogic Server.

The resource adapter example provided with this release of WebLogic Server is
compliant with the 1.7 Connector Architecture. Oracle recommends that you examine,
run, and understand these resource adapter examples before developing your own
resource adapters.

1.5 New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.

Introduction and Roadmap 1-3

New and Changed Features in This Release

1-4 Developing Resource Adapters for Oracle WebLogic Server

2

Understanding Resource Adapters

This chapter describes WebLogic Server resource adapters, which provide
connectivity to Enterprise Information Systems (EISes), and the Java EE Connector
Architecture on which the resource adapters are based. This chapter also describes the
deployment descriptors that define the structure and run-time behavior of a resource
adapter that is deployed on WebLogic Server.

This chapter includes the following sections:
e Overview of Resource Adapters
e Java EE Connector Architecture

® Resource Adapter Deployment Descriptors

2.1 Overview of Resource Adapters

A resource adapter is a system library specific to an Enterprise Information System
(EIS) and provides connectivity to an EIS. A resource adapter is analogous to a JDBC
driver, which provides connectivity to a database management system. The interface
between a resource adapter and the EIS is specific to the underlying EIS; it can be a
native interface. The resource adapter plugs into an application server, such as
WebLogic Server, and provides seamless connectivity between the EIS, application
server, and enterprise application.

Multiple resource adapters can plug in to an application server. This capability enables
application components deployed on the application server to access the underlying
EISes. An application server and an EIS collaborate to keep all system-level
mechanisms - transactions, security, and connection management - transparent to the
application components. As a result, an application component provider can focus on
the development of business and presentation logic for application components and
need not get involved in the system-level issues related to EIS integration. This leads
to an easier and faster cycle for the development of scalable, secure, and transactional
enterprise applications that require connectivity with multiple EISes.

2.1.1 Comparing WebLogic Server and WebLogic Integration Resource Adapters

It is important to note the difference between WebLogic Integration (WLI) resource
adapters and WebLogic Server resource adapters. WebLogic Integration resource
adapters are written to be specific to WebLogic Server and, in general, are not
deployable to other application servers. However, WebLogic Server resource adapters
written without WLI extensions are deployable in any Java EE-compliant application
server. This document discusses the design and implementation of non-WLI resource
adapters.

Understanding Resource Adapters 2-1

Overview of Resource Adapters

2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters

WebLogic Server supports three types of resource adapters:

Outbound resource adapter — Allows an application to connect to an EIS system
and perform work. All communication is initiated by the application. In this case,
the resource adapter serves as a passive library for connecting to an EIS and
executes in the context of the application threads.

Outbound resource adapters based on the Java EE Connector Architecture 1.5 and
1.6 can be configured to have more than one simultaneous outbound connection.
You can configure each outbound connection to have its own WebLogic Server-
specific authentication and transaction support. See Configuring Outbound
Connections.

Outbound resource adapters based on the Java EE Connector Architecture 1.0 are
also supported. These resource adapters can have only one outbound connection.

Inbound resource adapter (1.5 and 1.6 only) — Allows an EIS to call application
components and perform work. All communication is initiated by the EIS. The
resource adapter may request threads from WebLogic Server or create its own
threads; however, this is not the Oracle-recommended approach. Oracle
recommends that the resource adapter submit work by way of the WorkManager.
See Message and Transactional Inflow.

Note:

The WebLogic Server thin-client JAR also supports the WorkManager
contracts and thus can be used by non-managed resource adapters (resource
adapters not running in WebLogic Server).

Bi-directional resource adapter (1.5 and 1.6 only) — Supports both outbound and
inbound communication.

2.1.3 Connector Architecture 1.7 Support
WebLogic Server supports the following Java EE Connector Architecture (1.7) features:

Supports @\dni ni st er edCoj ect Defi nition/
@\dmi ni st er edObj ect Def i ni ti ons annotations and equivalent deployment
descriptors for defining an administered object resource.

Supports @onnect i onFact oryDefinition/
@onnect i onFact or yDef i ni ti ons and equivalent deployment descriptors for
defining a connection factory resource.

2.1.4 Connector Architecture 1.6 Support

The major themes of Connector Architecture 1.6 that are supported in WebLogic
Server Full Platform include the following:

Ease of development features

Connector Architecture 1.6 adds a number of features to simplify the development
process, such as metadata annotations and support for "sparse" deployment
descriptors. Metadata annotations can be embedded within resource adapter class

2-2 Developing Resource Adapters for Oracle WebLogic Server

Overview of Resource Adapters

files to specify deployment information, minimizing or even eliminating the need
to manually create the r a. xni file. See Using Metadata Annotations to Specify
Deployment Information.

Generic work context

A generic work context is the mechanism used by the resource adapter to
propagate contextual information, such as the transaction context and security
context, from the EIS to WebLogic Server during message delivery or submitting a
work instance. For more information, see Generic Work Context.

Security context

Connector Architecture 1.6 defines a standard, generic security context that
leverages the work done in JSR 196: Java Authentication Service Provider Interface
for Containers. For more information, see Security Inflow.

Miscellaneous improvements, including:

Integration of JSR 303: Bean Validation

— Dynamic Reconfigurable Configuration Properties

This includes the ability to designate specific properties of resource adapter
component beans to be dynamically configurable, enabling those properties to
be reconfigured at run time without requiring adapter restart or redeployment.
See Dynamic Reconfigurable Configuration Properties.

— The ability for a resource adapter to determine and classify the level of
transaction support it can provide at run time. See Specifying and Obtaining
Transaction Support Level.

— Optional distributed Wor k processing, which gives an application server
instance's WorkManager the choice to distribute a r k instance submitted by a
resource adapter to another Wor kManager residing in a different application
server instance.

2.1.5 Comparing 1.0 Resource Adapters to 1.5 and 1.6

WebLogic Server supports resource adapters developed under versions 1.0, 1.5, and
1.6 of the Java EE Connector Architecture. Java EE Connector Architecture 1.0 restricts
resource adapter communication to a single external system using one-way outbound
communication. Java EE Connector Architecture 1.5 lifts this restriction. Other
capabilities provided by and for 1.5 and 1.6 resource adapters that do not apply to 1.0
resource adapters include:

Outbound communication from the application to multiple systems, such as
Enterprise Information Systems (EISes) and databases. See Inbound, Outbound,
and Bidirectional Resource Adapters.

Inbound communication from one or more external systems such as an EIS to the
resource adapter. See Handling Inbound Messages.

Transactional inflow to enable a Java EE application server to participate in an XA
transaction controlled by an external Transaction Manager by way of a resource
adapter. See Transactional Inflow.

A Work Manager provided by WebLogic Server to enable resource adapters to
create threads through Wor k instances. See work-manager.

Understanding Resource Adapters 2-3

http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196
http://www.jcp.org/en/jsr/summary?id=303

Overview of Resource Adapters

* A life cycle contract for calling st art () and st op() methods of the resource
adapter by the application server. See Programming a Resource Adapter to
Perform as a Startup Class.

Another important difference between 1.0 resource adapters and 1.5 and 1.6 resource
adapters is regarding connection pools. For 1.5 and 1.6 resource adapters, you do not
automatically get one connection pool per connection factory; you must configure a
connection instance. You do so by setting the connect i on-i nst ance element in the
webl ogi c-ra. xm deployment descriptor.

Although WebLogic Server Full Platform is now compliant with JSR 322: Java EE
Connector Architecture 1.6, it continues to fully support versions 1.0 and 1.5. In
accordance with Connector Architecture 1.6, WebLogic Server supports schema-based
deployment descriptors. Resource adapters that have been developed based on the
Java EE Connector Architecture 1.0 use Document Type Definition (DTD)-based
deployment descriptors. Resource adapters that are built on DTD-based deployment
descriptors are still supported.

This document describes the development and use of 1.6 resource adapters.

2.1.6 Additional Support Provided by the WebLogic Server Connector Container

WebLogic Server provides a number of features in its Connector container that
supplement the JSR 322: Java EE Connector Architecture 1.6, including the following:

® Support for JSR 299: Contexts and Dependency Injection for the Java EE Platform
(CDI) in embedded and global resource adapters. CDI defines a set of services for
using injection to specify dependencies in an application. For more information, see
Using Contexts and Dependency Injection in Resource Adapters.

* Additional runtime transaction level specification. WebLogic Server exposes
information about the runtime transaction level in the
Connect or Connect i onPool Runti mneMBean. Runt i meTr ansacti onSupport
MBean attribute and in the WebLogic Server Administration Console. For more
information, see Supported Transaction Levels.

e Ability to lookup the Tr ansact i onSynchr oni zat i onRegi st ry object in JND],
using the standard name of j ava: conp/
Transacti onSynchroni zat i onRegi st ry. Oracle extends support by
providing two additional global JNDI names: j avax/t r ansact i on/
Transacti onSynchroni zat i onRegi stry and webl ogi ¢/ transacti on/
Transacti onSynchroni zat i onRegi st ry. For more information, see
j avax.transaction. Transacti onSynchroni zati onRegi stry.

* Management and monitoring of long-running Wor k instances, including the
number of current active work requests and the number of completed work
requests, which WebLogic Server exposes on the
Connect or Wr kManager Runt i neMBean and in the WebLogic Server
Administration Console. See Long-Running Work Support.

e Additional support for the j avax. r esour ce. spi . Ret r yabl eExcepti on
exception by extending it to outbound connection pools. When you try to get a
connection from a suspended connection pool, WebLogic Server throws a
Ret r yabl eAppl i cati onSer ver | nt er nal Except i on that implements the
Ret r yabl eExcept i on interface. You can then use the Ret r yabl eExcepti on
instance to determine whether the failure is transient.

2-4 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/index.html?javax/transaction/TransactionSynchronizationRegistry.html

Java EE Connector Architecture

* Supplemental support for the security context in the WebLogic Server
Administration Console by providing a means to create inbound EIS-to-WebLogic
principal mappings, which map EIS principals, such as users or groups defined in
the EIS security domain, to corresponding principals in the WebLogic domain. For
more information, see Inbound Principal Mappings.

* Support for module-level JSR 303: Bean Validation configuration. WebLogic Server
extends Java EE 6 by supporting the optional use this bean configuration file to
validate a resource adapter module.

e New methods on the
webl ogi c. connect or. ext ensi ons. Ext endedBoot st r apCont ext that:

— Provide a means for a resource adapter to look up the Val i dat or and
Val i dat or Fact or y instances of its own beans for validation. See Bean
Validation.

— Return the resource adapter's BeanManager instance to support CDI injection.
See BeanManager, and Using Resource Adapters Deployed as CDI Bean
Archives.

¢ Wor k Name Hint — Names a Wr k instance and is used as part of the thread name
assigned to a long-running Work instance. The nameHi nt forms part of the thread
name and is used only for long-running work. For more information, see Long-
Running Work Support.

* In resource adapters configured with multiple connection pools, the ability to
isolate failed connection pools from healthy ones during deployment. This enables
you to locate, diagnose, and fix failed connection pools, and then dynamically
update the adapter deployment, without redeploying the resource adapter.

The ability to detect outbound connection pool failures is available through the
health monitoring feature, which is extended to resource adapters. You can access
the health state of a resource adapter deployment using WLST or the WebLogic
Server Administration Console. For more information, see Monitoring Resource
Adapter Health, and Deploying a Resource Adapter Configured with Multiple
Outbound Connection Pools .

2.2 Java EE Connector Architecture

The Java EE Connector Architecture defines a standard architecture for connecting the
Java EE platform to heterogeneous Enterprise Information Systems (EISes), such as
Enterprise Resource Planning (ERP) systems, mainframe transaction processing (TP),
and database systems

The resource adapter serves as a protocol adapter that allows any arbitrary EIS
communication protocol to be used for connectivity. An application server vendor
extends its system once to support the Java EE Connector Architecture and is then
assured of seamless connectivity to multiple ElSes. Likewise, an EIS vendor provides
one standard resource adapter that can plug in to any application server that supports
the Java EE Connector Architecture.

See also "Resource Adapters and Contracts" in The Java EE 6 Tutorial.

2.2.1 Java EE Architecture Diagram and Components

Figure 2-1 and the discussion that follows describe a WebLogic Server implementation
of Connector Architecture 1.6.

Understanding Resource Adapters 2-5

http://jcp.org/en/jsr/detail?id=303
http://docs.oracle.com/javaee/6/tutorial/doc/gipgl.html

Java EE Connector Architecture

Figure 2-1 Connector Architecture Overview

Weblogic Server Resource Adapter May.
Connector Container ' Be hon-transactional
' Support local fransactions
Resource ' Support XA transactions
: Adapter Be Inbound Only
SonpeLtion Be Outhound Only
Pool iy :
' Be Bi-directional
: MCF1
Client « Application MC1 |
Application Component . [External System
. ElS1
3 Connection w MCn || /f"
Pool
MCF2 = |
TR ; ernal Systom
Endpoint T El32
Fuiee Messape
Application Endpoint //"
_ Factory Messape Source
Connector Container MDEB |. ({EIS or
Supports: Er Message Provider)
) Act Spec MLT-i -— M51
» Transactions Message
= Secirity Endpoint | Message Source
* Connection Mgmt Proxy : {EIS or
Act Spec MLT-i —
= Message Inflow Message Provider)
= Work Manager M52
* Lifecycle Momt
» Transaction Inflow LEGEND

MCF1 — ManadedConnectionFactony 1

MCF2 — ManaagedConnectionFactory 2

MC1 — MananedConnection 1

MCn — MarnagedConnection n

C-llandle — Connection | landle | landed to Client

Act Spec MLT-j — ActivationSpec Comesponding to Messaoel istener type-j
M51 - Message Source 1

The connector architecture shown in Figure 2-1 demonstrates a bi-directional resource
adapter. The following components are used in outbound connection operations:

* A client application that connects to WebLogic Server, but also needs to interact
with the EIS.

* An application component (an EJB or servlet) that the client application uses to
submit outbound requests to the EIS through the resource adapter

e The WebLogic Server Connector container in which the resource adapter is
deployed. The container in this example holds the following:

— A deployed resource adapter that provides bi-directional (inbound and

outbound) communication to and from the EIS.

One or more connection pools maintained by the container for the management
of outbound managed connections for a given ManagedConnect i onFact ory
(in this case, MCF-2 - there may be more corresponding to different types of
connections to a single EIS or even different EISes)

Multiple managed connections (MC1, MCn), which are objects representing the
outbound physical connections from the resource adapter to the EIS.

2-6 Developing Resource Adapters for Oracle WebLogic Server

Java EE Connector Architecture

— Connection handles (C-handle) returned to the application component from the
connection factory of the resource adapter and used by the application
component for communicating with the EIS.

The following components are used for inbound connection operations:

* One or more external message sources (MS1, MS2), which could be an Enterprise

Information System (EIS) or Message Provider, and which send messages inbound
to WebLogic Server.

One or more ActivationSpecs (Act Spec), each of which corresponds to a single
MessageListener type (MLT-i).

A MessageEndpoi nt Fact or y created by the E]JB container and used by the
resource adapter for inbound messaging to create proxies to MessageEndpoi nt
instances (MDB instances from the MDB pool).

A message endpoint application (a message-driven bean (MDB) and possibly other
Java EE components) that receives and handles inbound messages from the EIS
through the resource adapter.

2.2.2 System-Level Contracts

To achieve a standard system-level pluggability between WebLogic Server and an EIS,
WebLogic Server has implemented the standard set of system-level contracts defined
by the Java EE Connector Architecture. These contracts consist of SPI classes and
interfaces that are required to be implemented in the application server and the EIS, so
that the two systems can work cooperatively. The EIS side of these system-level
contracts are implemented in the resource adapter's Java classes. The following
standard contracts are supported:

Connection management contract — Enables WebLogic Server to pool connections
to an underlying EIS and enables application components to connect to an EIS.
Also allows efficient use of connection resources through resource sharing and
provides controls for associating and disassociating connection handles with EIS
connections.

Transaction management contract — A contract between the transaction manager
and an EIS that supports transactional access to EIS resource managers. Enables
WebLogic Server to use its transaction manager to manage transactions across
multiple resource managers.

Transaction inflow contract — Allows a resource adapter to propagate an imported
transaction to WebLogic Server. Allows a resource adapter to flow-in transaction
completion and crash recovery calls initiated by an EIS. Transaction inflow
involves the use of an external transaction manager to coordinate transactions.

Security contract — Extends the connection management contract by providing
secure access to an EIS and support for a secure application environment that
reduces security threats to the EIS and protects valuable information resources
managed by the EIS.

Life cycle management contract — Enables WebLogic Server to manage the life
cycle of a resource adapter. This allows bootstrapping a resource adapter instance
during its deployment or application server startup, and notification to the
resource adapter instance when it is undeployed or when the application server is
being shut down.

Understanding Resource Adapters 2-7

Resource Adapter Deployment Descriptors

e Work management contract — Allows a resource adapter to do work (monitor
network endpoints, call application components, and so on) by submitting Wr k
instances to WebLogic Server for execution.

* Generic work context contract — Enables a resource adapter to control the contexts
in which the Work instances that it submits are executed by the WorkManager in
WebLogic Server. A generic work context mechanism also enables WebLogic
Server to support new message inflow and delivery schemes, providing the
resource adapter with a robust contextual Work execution environment that
includes the ability to manage concurrent activity.

The generic work context contract standardizes the transaction context and the
security context. JSR 322: Java EE Connector Architecture 1.6 defines this contract
between the resource adapter and the application server in detail, including
interfaces and classes, the thread model, rules for verifying and establishing
contexts, error handling, event notifications, and so on.

¢ Message inflow contract — Allows a resource adapter to asynchronously or
synchronously deliver messages to message endpoints residing in WebLogic Server
independent of the specific messaging style, messaging semantics, and messaging
infrastructure used to deliver messages. Also serves as the standard message
provider pluggability contract that enables a wide range of message providers
(Java Message Service, Java API for XML Messaging, and so on) to be plugged into
WebLogic Server through a resource adapter.

These system-level contracts are described in detail in JSR 322: Java EE Connector
Architecture 1.6.

2.3 Resource Adapter Deployment Descriptors

The structure of a resource adapter and its run-time behavior are defined in
deployment descriptors. Programmers create the deployment descriptors during the
packaging process, and these become part of the application deployment when the
application is compiled.

WebLogic Server resource adapters have two deployment descriptors, each of which
has its own XML schema:

* ra.xm -Thestandard Java EE deployment descriptor. All resource adapters must
be specified in anr a. xm deployment descriptor file. The schema for r a. xm is
http://xmns.jcp.org/ xm/ns/javaeel/ connector_1 7. xsd.

Note:

Connector Architecture 1.6 introduces metadata annotations, which allow you
to specify deployment information in resource adapter class files, thereby
minimizing or eliminating the need to manually create the deployment
descriptor file r a. xm .

e webl ogi c-ra. xm - This WebLogic Server-specific deployment descriptor
contains elements related to WebLogic Server features such as transaction
management, connection management, and security. This file is required for the
resource adapter to be deployed to WebLogic Server. The schema for the
webl ogi c-ra. xm deployment descriptor fileis htt p: // xim ns. or acl e. cont
webl ogi ¢/ webl ogi c- connect or/ 1. 5/ webl ogi c- connect or . xsd. For a

2-8 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://xmlns.jcp.org/xml/ns/javaee/connector_1_7.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

Resource Adapter Deployment Descriptors

reference to the webl ogi c-ra. xm deployment descriptor, see weblogic-ra.xml
Schema.

Understanding Resource Adapters 2-9

Resource Adapter Deployment Descriptors

2-10 Developing Resource Adapters for Oracle WebLogic Server

3

Creating and Configuring Resource
Adapters

This chapter describes how to create and configure a WebLogic Server resource
adapter and also how to prepare the resource adapter for deployment.

This chapter includes the following sections:

¢ Creating and Configuring Resource Adapters: Main Steps
¢ Modifying an Existing Resource Adapter

¢ Configuring the ra.xml File

¢ Configuring the weblogic-ra.xml File

¢ Bean Validation Configuration File

¢ Long-Running Work Support

¢ Tooling Support

* Monitoring Resource Adapter Health

3.1 Creating and Configuring Resource Adapters: Main Steps

This section describes how to create a new WebLogic resource adapter. The next
section, Modifying an Existing Resource Adapter, describes how to take an existing
resource adapter and prepare it for deployment on WebLogic Server.

To create a new WebLogic resource adapter, you must create the classes for the
particular resource adapter (Connect i onFact ory, Connect i on, and so on), write
the resource adapter's deployment descriptors, and then package everything into an
archive file to be deployed to WebLogic Server.

The following are the main steps for creating a resource adapter:

1. Write the Java code for the various classes required by resource adapter
(Connect i onFact ory, Connect i on, and so on) in accordance with JSR 322: Java
EE Connector Architecture 1.7. These classes will be specified in the r a. xm file.
For example:

<managedconnecti onf act ory- cl ass>

com sun. connect or. bl ackbox. Local TxManagedConnect i onFact ory
</ managedconnect i onf act ory- cl ass>
<connectionfactory-interface>

j avax. sql . Dat aSour ce

</ connectionfactory-interface>

<connectionfactory-inpl-class>

Creating and Configuring Resource Adapters 3-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Creating and Configuring Resource Adapters: Main Steps

com sun. connect or. bl ackbox. JdbcDat aSour ce
</ connectionfactory-inpl-class>

<connection-interface>
j ava. sgl . Connecti on
</ connection-interface>

<connection-inpl - cl ass>
com sun. connect or. bl ackbox. JdbcConnecti on
</ connecti on-inpl - cl ass>

For 1.6 adapters, you can embed metadata annotations in the resource adapter class
files to specify deployment information, eliminating the need to create the r a. xm
file manually. For more information, see Configuring the ra.xml File.

Note:

The WebLogic Server implementation of Connector Architecture 1.6 includes
support for Contexts and Dependency Injection. This support has implications
on the set of annotations that may be used in resource adapter component
beans, which are beans that define special components managed by the
Connector container and that have a special life cycle. For more information,
see

For more information about programming resource adapters, see Programming
Tasks.

2. Compile the Java code for the interfaces and implementation into class files, using a
standard compiler.

3. Create the resource adapter's deployment descriptors. A WebLogic resource
adapter uses two deployment descriptor files:

* ra.xm describes the resource adapter-related attributes type and its
deployment properties using the standard XML schema specified by the Java EE
Connector Architecture specification.

Note:

Java EE Connector Architecture 1.6 no longer requires the r a. xni file to be
created manually. Instead, deployment information can be specified in
metadata annotations. See Configuring the ra.xml File.

¢ webl ogi c-ra. xm adds additional WebLogic Server-specific deployment
information, including connection and connection pool properties, security
identities, Work Manager properties, and logging.

For detailed information about creating WebLogic Server-specific deployment
descriptors for resource adapters, refer to Configuring the weblogic-ra.xml File,
and weblogic-ra.xml Schema.

4. Package the Java classes into a Java archive (JAR) file with a . r ar extension.

Create a staging directory anywhere on your hard drive. Place the JAR file in the
staging directory and the deployment descriptors in a subdirectory called META-
I NF.

3-2 Developing Resource Adapters for Oracle WebLogic Server

Modifying an Existing Resource Adapter

Then create the resource adapter archive by executing a j ar command similar to
the following in the staging directory:

jar cvf nyRAR rar *

Optionally, you can include the Bean Validation configuration file, META- | NF/
val i dati on. xm , inside the JAR file. WebLogic Server uses the Bean Validation
configuration file to validate the resource adapter module.

5. Deploy the resource adapter archive (RAR) file on WebLogic Server in a test
environment and test it.

During testing, you may need to edit the resource adapter deployment descriptors.
You can do this using the WebLogic Server Administration Console or manually
using an XML editor or a text editor. For more information about editing
deployment descriptors, see Configuring the weblogic-ra.xml File, and "Configure
resource adapter properties" in the Oracle WebLogic Server Administration Console
Online Help. See also weblogic-ra.xml Schema, for detailed information on the
elements in the deployment descriptor.

6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in
an enterprise archive (EAR) file to be deployed as part of an enterprise application.

For information about these steps, see Packaging and Deploying Resource
Adapters. See also Deploying Applications to Oracle WebLogic Server for detailed
information about deploying components and applications in general.

3.2 Modifying an Existing Resource Adapter

In some cases, you may already have a resource adapter available for deployment to
WebLogic Server. This section describes how to take an existing resource adapter that
is packaged in a RAR file and modify it for deployment to WebLogic Server. This
involves adding the webl ogi ¢c-ra. xm deployment descriptor and repackaging the
resource adapter. The following procedure supposes you have an existing resource
adapter packaged in a RAR file named bl ackbox- not x. rar.

1. Create a temporary directory anywhere on your hard drive to stage the resource
adapter:

mkdir c:/stagedir
2. Extract the contents of the resource adapter archive:

cd c:/stagedir
jar xf bl ackbox-notx.rar

The staging directory should now contain the following:
* A JAR file containing Java classes that implement the resource adapter

e A META-INF directory containing the Manifest.mf and ra.xml files
Execute these commands to see these files:

c:/stagedir>1|s
bl ackbox- not x. rar
META- | NF
c:/stagedir> s META-INF
Mani f est . nf
ra.xm

Creating and Configuring Resource Adapters 3-3

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00503
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00503

Configuring the ra.xml File

3. Create the webl ogi c-ra. xm file. This file is the WebLogic-specific deployment
descriptor for resource adapters. In this file, you specify parameters for connection
factories, connection pools, and security settings.

For more information, see Configuring the weblogic-ra.xml File, and also refer to
weblogic-ra.xml Schema, for information on the XML schema that applies to
webl ogi c-ra. xm .

4. Copy the webl ogi c-ra. xm file into the temporary directory's META- | NF
subdirectory. The META- | NF directory is located in the temporary directory where
you extracted the RAR file or in the directory containing a resource adapter in
exploded directory format. Use the following command:

cp webl ogi c-ra.xm c:/stagedir/META- I NF
c:/stagedir> s META-INF

Mani f est . nf

ra.xm

webl ogi c-ra. xm

5. Create the resource adapter archive:
jar cvf blackbox-notx.rar -C c:/stagedir

6. Deploy the resource adapter to WebLogic Server. For more information about
packaging and deploying the resource adapter, see Packaging and Deploying
Resource Adapters, and Deploying Applications to Oracle WebLogic Server.

3.3 Configuring the ra.xml File

All resource adapters must be specified in anr a. xm deployment descriptor file. For
1.0 or 1.5 resource adapters, you must create this file manually. If you are creating a
1.6 resource adapter, you can optionally specify metadata annotations in the resource
adapter classes, eliminating the need to create the r a. xnl file manually. The
following sections explain how to configure the r a. xnl file:

¢ Creating the ra.xml File Manually
¢ Using Metadata Annotations to Specify Deployment Information

* Resource Adapter XML Schema Definitions

For more information about creating a r a. xm file, you can also refer to JSR 322: Java
EE Connector Architecture 1.6.

3.3.1 Creating the ra.xml File Manually

If your resource adapter does not already containar a. xri file, and you are creating
a resource adapter, you must manually create or edit an existing one to set the
necessary deployment properties for the resource adapter. You can use a text editor or
XML editor to edit the properties.

3.3.2 Using Metadata Annotations to Specify Deployment Information

The Java EE Connector Architecture 1.6 no longer requires you to manually create a
ra.xm file. Instead, metadata annotations can be included in resource adapter classes
to provide the same functions that are specified in the r a. xnl file.

If you choose to specify all deployment informationinar a. xni file, the Java EE
Connector Architecture 1.6 includes the net adat a- conpl et e element, which you

3-4 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring the weblogic-ra.xml File

include in the r a. xrm file and set to t r ue. Setting the et adat a- conpl et e element
to t r ue causes all metadata annotations included in the resource adapter classes to be
ignored. If the et adat a- conpl et e element is not specified, or is set to f al se,
WebLogic Server merges the information specified in the annotations with the
information specified in the r a. xm file at run time, and uses this merged information
to deploy and manage the resource adapter.

For more information about deployment descriptors and annotations, see Chapter 18,
"Metadata Annotations," of JSR 322: Java EE Connector Architecture 1.6. See also
"Metadata Annotations" in The Java EE 6 Tutorial.

3.3.3 Resource Adapter XML Schema Definitions

The Java EE Connector Architecture 1.6 introduces changes to the r a. xm file schema,
primarily to support ease-of-development features such as metadata annotations. For
details about schema definition changes, see Section 20.7, "Resource Adapter XML
Schema Definition," in JSR 322: Java EE Connector Architecture 1.6.

The schema for the r a- xm file for 1.0 and 1.5 resource adaptersis ht t p: //

java. sun. com xm / ns/j 2ee/ connect or _1_5. xsd. For 1.6 and 1.7 adapters, the
schemaisathtt p://ww. or acl e. conl webf ol der/

technetwor k/j sc/ xm / ns/javaee/i ndex. html .

3.4 Configuring the weblogic-ra.xml File

In addition to supporting features of the standard resource adapter configuration

ra. xm file, WebLogic Server defines an additional deployment descriptor file, the
webl ogi c-ra. xm file. This file contains parameters that are specific to configuring
and deploying resource adapters in WebLogic Server. This functionality is consistent
with the equivalent webl ogi c- *. xnl extensions for E]Bs and Web applications in
WebLogic Server, which also add WebLogic-specific deployment descriptors to the
deployable archive. The basic RAR or deployment directory can be deployed to
WebLogic Server without a webl ogi c-ra. xni file. If a resource adapter is deployed
in WebLogic Server without a weblogic-ra.xml file, a template webl ogi c-ra. xni file
populated with default element values is automatically added to the resource adapter
archive. However, this automatically generated webl ogi c-ra. xn file is not
persisted to the RAR; the RAR remains unchanged.

The following summarizes the most significant features you can configure in the
webl ogi c-ra. xm deployment descriptor file.

® Descriptive text about the connection factory.

¢ JNDI name bound to a connection factory. (Resource adapters developed based on
JSR 322: Java EE Connector Architecture 1.6 are bound in the JNDI as objects
independently of their Connect i onFact ory objects.)

* Reference to a separately deployed connection factory that contains resource
adapter components that can be shared with the current resource adapter.

¢ Connection pool parameters that set the following behavior:

— Initial number of ManagedConnect i ons that WebLogic Server attempts to
allocate at deployment time.

— Maximum number of ManagedConnect i ons that WebLogic Server allows to
be allocated at any one time.

Creating and Configuring Resource Adapters 3-5

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://docs.oracle.com/javaee/6/tutorial/doc/girdd.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring the weblogic-ra.xml File

— Number of ManagedConnect i ons that WebLogic Server attempts to allocate
when filling a request for a new connection.

— Whether WebLogic Server attempts to reclaim unused ManagedConnect i ons
to save system resources.

— The time WebLogic Server waits between attempts to reclaim unused
ManagedConnecti ons.

* Logging properties to configure WebLogic Server logging for the
ManagedConnect i onFact ory or ManagedConnect i on.

¢ Transaction support levels (XA, local, or no transaction support).

* Principal names to use as security identities.

For detailed information about configuring the webl ogi c-ra. xnl deployment
descriptor file, see the reference information in weblogic-ra.xml Schema. See also the
configuration information in the following sections:

¢ Connection Management
¢ Transaction Management
® Message and Transactional Inflow

* Security

3.4.1 Editing Resource Adapter Deployment Descriptors

To define or make changes to the XML descriptors used in the WebLogic Server
resource adapter archive, you must define or edit the XML elements in the

webl ogi c-ra. xm andra. xm deployment descriptor files. You can edit the
deployment descriptor files with any plain text editor. However, to avoid introducing
errors, use a tool designed for XML editing.You can also edit most elements of the files
using the WebLogic Server Administration Console.

3.4.1.1 Editing Considerations
To edit XML elements manually:

e If you use an ASCII text editor, make sure that it does not reformat the XML or
insert additional characters that could invalidate the file.

¢ Use the correct case for file and directory names, even if your operating system
ignores the case.

* To use the default value for an optional element, you can either omit the entire
element definition or specify a blank value. For example: <max- conf i g-
property></max-confi g-property>

3.4.1.2 Schema Header Information

When editing or creating XML deployment files, it is critical to include the correct
schema header for each deployment file. The header refers to the location and version
of the schema for the deployment descriptor.

Although this header references an external URL at j ava. sun. com WebLogic Server
contains its own copy of the schema, so your host server need not have access to the
Internet. However, you must still include this <?xm ver si on. . . > element in your

3-6 Developing Resource Adapters for Oracle WebLogic Server

Configuring the weblogic-ra.xml File

ra. xm file, and have it reference the external URL because the version of the schema
contained in this element is used to identify the version of this deployment descriptor.

Table 3-1 shows the entire schema headers for the r a. xml and webl ogi c-ra. xm
files.

Table 3-1 Schema Header
- - - -

XML File Schema Header

ra. xm <?xm version="1.0" encodi ng="UTF-8"?>
<connector xm ns="http://xmns.jcp.org/ xm/ns/javaee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schemalocation="http://xmns.jcp.org/xm/ns/javaeel
connector_1 7. xsd"
version="1.7">

webl ogi c-ra. xn <?xm version = "1.5">
<webl ogi c- connector xm ns="http://xn ns. oracl e. com webl ogi c/
webl ogi c- connect or ">

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ej bc):

SAXException: This docunent may not have the identifier 'identifier_nane'

3.4.1.3 Conforming Deployment Descriptor Files to Schema

The contents and arrangement of elements in your deployment descriptor files must
conform to the schema for each file you use. The following links provide the public
schema locations for deployment descriptor files used with :

e connector_1_7. xsd contains the schema for the standard r a. xml deployment
file, required for all resource adapters. This schema is maintained as part of JSR
322: Java EE Connector Architecture 1.7 and is located at ht t p: / /
www. or acl e. com webf ol der/technetwork/jsc/xm /ns/javaeel
i ndex. ht ml #7.

¢ webl ogi c-r a. xsd contains the schema used for creating webl ogi c-ra. xm ,
which defines resource adapter properties used for deployment to . This schema is
located at ht t p: // xm ns. or acl e. conl webl ogi ¢/ webl ogi c-
connector/ 1. 5/ webl ogi c- connect or. xsd.

Note:

Your browser might not display the contents of files having the . xsd
extension. In that case, to view the schema contents in your browser, save the
links as text files and view them with a text editor.

3.4.2 Dynamic Descriptor Updates: Console Configuration Tabs

You can use the WebLogic Server Administration Console to view, modify, and (when
necessary) persist deployment descriptor elements. Some descriptor element changes
take place dynamically at run time without requiring the resource adapter to be
redeployed. Other descriptor elements require redeployment after changes are made.

Creating and Configuring Resource Adapters 3-7

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html#7
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html#7
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/index.html#7
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

Configuring the weblogic-ra.xml File

To use the WebLogic Server Administration Console to configure a resource adapter,
open Deployments and click the name of the deployed resource adapter. Use the
Configuration tab to change the configuration of the resource adapter and the other
tabs to control, test, or monitor the resource adapter.

For information about using the WebLogic Server Administration Console, see
"Configure resource adapter properties" in the Oracle WebLogic Server Administration
Console Online Help.

3.4.2.1 Dynamic Reconfigurable Configuration Properties

Dynamic reconfigurable configuration properties are described in Section 5.3.7.6 of JSR
322: Java EE Connector Architecture 1.6. For 1.6 resource adapters, WebLogic Server
supports dynamic reconfigurable configuration properties for the following adapter
component beans:

e Resour ceAdapt er beans
e ManagedConnect i onFact ory beans

* Administered object beans

At run time, after you update the dynamically configurable properties on any of these
adapter component beans, you must update the adapter to put changes into effect.
Updating the adapter is a relatively lightweight operation during which WebLogic
Server modifies the run-time bean instances without interfering with active connection
pools or admin objects that do not have configuration updates. You do not need to
update the adapter immediately. However, changes to properties on adapter
component beans do not go into effect unless the beans are dynamically updated or
the resource adapter is restarted.

The resource adapter should be designed carefully with regard to support for dynamic
changes to its properties during run time. Depending on the services provided by the
resource adapter, it might be critically important that some properties should never be
reconfigured when the adapter is running; for example, the listen address and port
number of a resource adapter used for the EIS connection (any reconfiguration of
those properties should require the adapter to be shut down and restarted). WebLogic
Server does not impose any requirements on an adapter component bean with regard
to whether specific properties may or may not be designated as dynamically
reconfigurable. It is entirely for the adapter developer to decide which adapter
component beans support dynamic update and which do not.

3.4.2.2 Dynamic Configuration Parameters

For 1.6 adapters, WebLogic Server supports dynamic update on properties of

Resour ce Adapt er, ManagedConnect i onFact or y, and admin object beans.
Using the WebLogic Server Administration Console, you can modify the following
configuration parameters on those beans dynamically, without requiring the resource
adapter to be redeployed:

e Edit the adapter JNDI name

¢ Create and delete outbound connection pools
¢ Edit the connection pool JNDI name

¢ Create and delete admin objects

¢ Edit admin object JNDI names

3-8 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring the weblogic-ra.xml File

3.4.2.3 Dynamic Pool Parameters

Using the WebLogic Server Administration Console, you can modify the following
webl ogi c-ra. xm pool parameters dynamically, without requiring the resource
adapter to be redeployed:

e initial-capacity

* max-capacity

e capacity-increnent

e shrink-frequency-seconds

e highest-numwaiters

¢ hi ghest - num unavai |l abl e

e connection-creation-retry-frequency-seconds
e connection-reserve-timeout-seconds

e test-frequency-seconds

3.4.2.4 Dynamic Logging Parameters

Using the WebLogic Server Administration Console, you can modify the following
webl ogi c-ra. xm logging parameters dynamically, without requiring the resource
adapter to be redeployed:

e |og-fil enane

e file-count

e file-size-limt

e |og-file-rotation-dir
e rotation-tine

e file-tine-span

3.4.3 Automatic Generation of the weblogic-ra.xml File

A resource adapter archive (RAR) deployed on WebLogic Server must include a
webl ogi c-ra. xm deployment descriptor file in addition to the r a. xml deployment
descriptor file specified in JSR 322: Java EE Connector Architecture 1.6.

If a resource adapter is deployed in WebLogic Server without a webl ogi ¢-ra. xm
file, a template webl ogi c-ra. xn file populated with default element values is
automatically added to the resource adapter archive. However, this automatically
generated webl ogi c-ra. xnl file is not persisted to the RAR; the RAR remains
unchanged. WebLogic Server instead generates internal data structures that
correspond to default information in the webl ogi c-ra. xm file.

For a 1.0 resource adapter that is a single connection factory definition, the JNDI name
will be ei s/ Modul eNane. For example, if the RAR is named MySpeci al RA. r ar, the
JNDI name of the connection factory will be ei s/ MySpeci al RA.

Creating and Configuring Resource Adapters 3-9

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Bean Validation Configuration File

For a 1.5 resource adapter with a Resour ceAdapt er bean class specified, the JNDI
name of the bean would be MySpeci al RA. Each connection factory would also have a
corresponding instance created with a JNDI name of ei s/ Modul eNare, ei s/

Modul eName_1, ei s/ Modul eNane_2, and so on.

3.4.4 (Deprecated) Configuring the Link-Ref Mechanism

The Link-Ref mechanism was introduced in the 8.1 release of WebLogic Server to
enable the deployment of a single base adapter whose code could be shared by
multiple logical adapters with various configuration properties. For 1.5 resource
adapters in the current release, the Link-Ref mechanism is deprecated and is replaced
by the new Java EE libraries feature. However, the Link-Ref mechanism is still
supported in this release for 1.0 resource adapters. For more information on Java EE
libraries, see "Creating Shared Java EE Libraries and Optional Packages" in Developing
Applications for Oracle WebLogic Server. To use the Link-Ref mechanism, use the r a-

l'i nk-ref element in your resource adapter's webl ogi c-ra. xni file.

The deprecated and optional r a- | i nk-r ef element allows you to associate multiple
deployed resource adapters with a single deployed resource adapter. In other words,
it allows you to link (reuse) resources already configured in a base resource adapter to
another resource adapter, modifying only a subset of attributes. Ther a- | i nk-r ef
element enables you to avoid - where possible - duplicating resources (such as classes,
JARs, image files, and so on). Any values defined in the base resource adapter
deployment are inherited by the linked resource adapter, unless otherwise specified in
thera-|ink-ref element.

If you use the optional r a- | i nk- r ef element, you must provide either all or none of
the values in the pool - par ans element. The pool - par ans element values are not
partially inherited by the linked resource adapter from the base resource adapter.

Do one of the following:

* Assign the max- capaci t y element the value of O (zero). This allows the linked
resource adapter to inherit its pool - par ans element values from the base
resource adapter.

* Assign the max- capaci t y element any value other than O (zero). The linked
resource adapter will inherit no values from the base resource adapter. If you
choose this option, you must specify all of the pool - par ans element values for
the linked resource adapter.

For further instructions on editing the webl ogi c-ra. xm file, see weblogic-ra.xml
Schema.

3.5 Bean Validation Configuration File

In its support of JSR 303: Bean Validation, WebLogic Server extends Java EE 6 by
providing a module-level bean validation configuration file. WebLogic Server
supports the optional use this file to validate a resource adapter module.

The bean validation configuration file can be specified for a resource adapter module
regardless of whether the resource adapter is deployed independently (as a standalone
RAR) or as part of an enterprise application (EAR). If no bean validation configuration
file is specified for an adapter module, WebLogic Server uses a default bean validation
configuration to validate the resource adapter module.

The bean validation configuration file is named val i dat i on. xm and is included
among the deployment descriptors in the META- | NF subdirectory of the RAR.

3-10 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/en/jsr/detail?id=303

Long-Running Work Support

For more information about bean validation, see Bean Validation.

3.6 Long-Running Work Support

Section 11.7 of JSR 322: Java EE Connector Architecture 1.6 defines two standard hints
to control the quality-of-service (QoS) characteristics afforded to it by the
Wor kManager :

¢ Wor k Name Hint — Names a Wr k instance and is used as part of the thread name
assigned to a long-running Work instance.

¢ Long-running Wr k instance Hint — Performs the same function as the WebLogic
Server extension annotation @LongRunning, which allows you to schedule a Wor k
instance in a separate thread and that also facilitates the control and monitoring
capabilities of long-running Work instances.

WebLogic Server allows you to configure a limit on the number of long-running
Wor k instances that can be submitted by a resource adapter to be executed
concurrently. The default limit is 10. You can change the limit to higher value, but
you need to exercise care not to overburden system resources.

This limit can be specified either by using the max- concur r ent - | ong-

runni ng-r equest s element in the webl ogi c-ra. xm file or by setting
Connect or Wr kManager Runt i neMBean. Act i veLongRunni ngRequest s
attribute, which is exposed in the WebLogic Server Administration Console. The
Connect or Wr kManager Runt i neMBean includes getter and setter methods on
the Acti veLongRunni ngRequest s and Conpl et edLongRunni ngRequest s
attributes that allow you to configure and monitor information about long-running
Wor k instances.

For more information, see Configuring and Managing Long-Running Work.

3.7 Tooling Support

WebLogic Server supports the following tools, which can be used to help with
resource adapter development and deployment:

e webl ogi c. appmner ge

Performs validation checks metadata annotations. When used with the -
writelnferredDescri ptors option, webl ogi c. appner ge generates a
merged r a. xm that combines deployment information specified in annotations
with the contents of any pre-existing r a. xnl file.

Note:

After you run the webl ogi c. appner ge tool, make sure the net adat a-
conpl et e element in the merged r a. xm is set to t r ue. This prevents the
deployer from processing annotations again, which improves overall
deployment performance and reduces deployment time.

For more information, see "Using weblogic.appmerge to Merge Libraries" in
Developing Applications for Oracle WebLogic Server.

® appc

Creating and Configuring Resource Adapters 3-11

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Monitoring Resource Adapter Health

Performs extensive validation checks on annotations, bean classes, r a. xni ,
webl ogi c-ra. xn , and the resource adapter deployment plan
(webl ogi c. appmer ge validates annotations only).

The appc tool also:
— Provides extensive reports that include both warnings and errors.

— Is particularly useful for validating a resource adapter and ensuring that its
configuration is correct without having to deploy it.

For more information, see "appc Reference" in Developing Enterprise JavaBeans,
Version 2.1, for Oracle WebLogic Server.

3.8 Monitoring Resource Adapter Health

WebLogic Server provides the ability to monitor the health status of standalone and
embedded resource adapters. By default if a standalone or embedded resource
adapter has a deployment error, the entire deployment of the adapter fails with a
health status of HEALTH_FAILED. However, if the resource adapter includes
multiple outbound connection pools and its deploy-as-a-whole flag is set to f al se,
the adapter deployment can succeed even if one or more outbound connection pool
failures occur. You can use the health monitoring feature to detect connection pool
failures and repair them without needing to redeploy the adapter.

The following sections explain how resource adapter health status monitoring is
available in WebLogic Server:

® Obtaining Resource Adapter Health State

¢ Deployment Requirements for Monitoring Health

3.8.1 Obtaining Resource Adapter Health State

To support health monitoring in both standalone and embedded resource adapters,
WebLogic Server provides the following MBean attributes, whose values can be
obtained using the WebLogic Server Administration Console, WLST, or JMX:

e Connect or Conponent Runt i mreMBean. Heal t hSt at e — Returns the overall
health state of either a standalone or embedded resource adapter. If an outbound
connection pool has a deployment failure, the health state of the resource adapter is
HEALTH_CRITICAL.

e ApplicationRunti meMBean. Over al | Heal t hSt at e — Returns the
aggregated health state of the application, including that of the embedded
components that report health. If an embedded resource adapter contains a failed
outbound connection pool, the health state of that connection pool is reflected in
the overall health of the application.

¢ Connect or Connect i onPool Runt i neMBean. Heal t hSt at e — Returns health
state of the individual outbound connection pool in a resource adapter.

3.8.2 Deployment Requirements for Monitoring Health

To deploy a resource adapter that is configured with multiple outbound connection
pools so that a failed connection pool does not cause the whole adapter deployment to
fail, you must set the depl oy- as- a- whol e element in the webl ogi c-ra. xnl file to
f al se. (By default, this element is set to t r ue.) For information about setting this

3-12 Developing Resource Adapters for Oracle WebLogic Server

Monitoring Resource Adapter Health

deployment option, see Deploying a Resource Adapter Configured with Multiple
Outbound Connection Pools .

Creating and Configuring Resource Adapters 3-13

Monitoring Resource Adapter Health

3-14 Developing Resource Adapters for Oracle WebLogic Server

A

Programming Tasks

This chapter describes the programming tasks for implementing a WebLogic Server
resource adapter. It lists the Java classes that are required by the Java EE Connector
Architecture; explains how to program a resource adapter to perform as a startup
class; explains how to suspend and resume resource adapter activity; and describes
the Ext endedBoot st r apCont ext class.

This chapter includes the following sections:

¢ Required Classes for Resource Adapters

* Generic Work Context

¢ Programming a Resource Adapter to Perform as a Startup Class
* Suspending and Resuming Resource Adapter Activity

¢ Extended BootstrapContext

* Administered Object Uniqueness

4.1 Required Classes for Resource Adapters

A resource adapter requires the following Java classes, in accordance with Java
Connector Architecture:

e ManagedConnecti onFact ory

e Connecti onFact ory interface

¢ Connecti onFact ory implementation
e Connecti on interface

¢ Connect i on implementation
These classes are specified in the r a. xmi file. For example:

<managedconnect i onf act ory-cl ass>
com sun. connect or . bl ackbox. Local TxManagedConnect i onFact ory
</ managedconnect i onf act ory- cl ass>

<connectionfactory-interface>

j avax. sql . Dat aSour ce

</ connectionfactory-interface>
<connectionfactory-inpl-class>

com sun. connect or. bl ackbox. JdbcDat aSour ce
</ connectionfactory-inpl-class>

<connection-interface>

Programming Tasks 4-1

Generic Work Context

j ava. sql . Connecti on
</connection-interface>

<connecti on-i npl - cl ass>
com sun. connect or. bl ackbox. JdbcConnecti on
</ connection-inpl-class>

In addition, if the resource adapter supports inbound messaging, the resource adapter
will require an Act i vat i onSpec class for each supported inbound message type. See
Message and Transactional Inflow.

The specifics of these resource adapter classes depend on the nature of the resource
adapter you are developing.

4.2 Generic Work Context

Connector Architecture 1.6 defines the generic work context, a mechanism for a
resource adapter to propagate contextual information from an EIS to WebLogic Server
during message delivery or when submitting a Work instance. The generic work
context comprises a set of classes, interfaces, and methods, and also includes new
schema elements supported in WebLogic Server.

The following sections describe these entities added to support the generic work
context:

¢ Interfaces, Classes, and Methods Added to Support the Generic Work Context

* Deployment Descriptor Element Added to Support the Generic Work Context

4.2.1 Interfaces, Classes, and Methods Added to Support the Generic Work Context

The following interfaces are added to support the generic work context:

Interface Description

Serves as a standard mechanism for a resource
adapter to propagate an imported context from an
EIS to an application server.

j avax. resource. spi . wor k. Wor kCont ext

Models the various events that occur during the
processing of the Wor kCont ext s associated with a
Wor k instance. This interface may be implemented
by a Wor kCont ext instance to receive notifications
from the Wor kManager when the Wor kCont ext is
set as the execution context of the Wor k instance it
is associated with.

j avax. resour ce. spi . wor k. Wor kCont ext Li f e
cycl eLi stener

Specifies the methods a Wr k instance uses to
associate a Li st of Wor kCont ext instances to be
set when the Wor k instance gets executed by a
Wor kManager .

j avax. resour ce. spi . wor k. Wor kCont ext Prov
i der

The following class is added to support the generic work context:

4-2 Developing Resource Adapters for Oracle WebLogic Server

Programming a Resource Adapter to Perform as a Startup Class

Class Description

. . Models the possible error conditions that might

javax. resour ce. spi . wor k. \Wr kCont ext Erro . . L. :

r Codes occur during associating a Wor kCont ext with a
Wor Kk instance.

The following method is added to Boot st r apCont ext interface to support the
generic work context:

Method Description

A resource adapter can check an application
server's support for a particular Wor kCont ext
type through this method. This mechanism enables
a resource adapter developer to dynamically
change the Wor kCont ext s submitted with a Wor k
instance based on the support provided by the
application server.

i sCont ext Support ed

4.2.2 Deployment Descriptor Element Added to Support the Generic Work Context

To support the generic work context, the r equi r ed- wor k- cont ext element is
added to ther a. xni file schema to represent a Wor kCont ext class that is required
by the resource adapter for WebLogic Server to support. For each Wor kCont ext class
that is required, an individual r equi r ed- wor k- cont ext element is specified.

Note that the @onnect or metadata annotation can be used in a resource adapter
source file to specify this deployment descriptor information. For more information,
see Section 18.4, "@Connector," in JSR 322: Java EE Connector Architecture 1.6.

4.3 Programming a Resource Adapter to Perform as a Startup Class

The following sections describe programming a resource adapter to perform as a
startup class:

e Minimum Content of a Resource Adapter
¢ Submitting a Work Instance

® Retrying a Work Submission

4.3.1 Minimum Content of a Resource Adapter

As an alternative to using a WebLogic Server startup class, you can program a
resource adapter with a minimal resource adapter class that implements

j avax. resour ce. Resour ceAdapt er , which definesa st art () and st op()
method.

Note:

Because of the definition of the ResourceAdapter interface, you must also
define the endpoi nt Acti vati on(),Deacti vation() and
get XAResour ce() methods.

Programming Tasks 4-3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Programming a Resource Adapter to Perform as a Startup Class

When the resource adapter is deployed, the st art () method is invoked. When it is
undeployed, the st op() method is invoked. Any work that the resource adapter
initiates can be performed in the st art () method as with a WebLogic Server startup
class.

Example 4-1 shows a resource adapter having a minimum resource adapter class. It is
the absolute minimum resource adapter that you can develop (other than removing
the pri nt| n statements). In this example, the only work performed by the st art ()
method is to print a message to st dout (standard out).

Example 4-1 Minimum Resource Adapter

i nport javax.resource. spi . Resour ceAdapt er;

i nport javax.resource. spi.endpoi nt. MessageEndpoi nt Fact ory;
inport javax.resource. spi.ActivationSpec;

i mport javax.resource. Resour ceExcepti on;

inport javax.transaction.xa. XAResour ce;

i mport javax.resource. Not SupportedExcepti on;

i mport javax.resource. spi. Boot strapContext;

/**

* This resource adapter is the absolute mininal resource adapter that anyone can
build (other than removing the printin's.)

*|

public class ResourceAdapter!|npl inplenments ResourceAdapt er

{ public void start(BootstrapContext bsCtx)
{ Systemout. println("ResourceAdapterlnpl started");
Lubl ic void stop()
i Systemout. println("ResourceAdapter!|npl stopped");

public void endpoint Activati on(MessageEndpoi nt Fact ory nmessageendpoi ntfactory,
ActivationSpec activationspec)
throws Resour ceException

{
}

public void endpoi nt Deacti vation(MessageEndpoi nt Fact ory messageendpoi nt factory,
ActivationSpec activationspec)

{

}

public XAResource[] get XAResources(ActivationSpec aactivationspec[])
throws ResourceException
{

}

t hrow new Not Support edException();

t hrow new Not Support edException();

}

4.3.2 Submitting a Work Instance

Because resource adapters have access to the Work Manager through the

Boot st r apCont ext in the st art () method, they should submit Wr k instances
instead of using direct thread management. This enables WebLogic Server to manage
threads effectively through its self-tuning Work Manager.

Once a Work instance is submitted for execution, the st art () method should return
promptly so as not to interfere with the full deployment of the resource adapter. Thus,
aschedul eWor k() or st artWr k() method should be invoked on the Work
Manager rather than the doWr k() method.

4-4 Developing Resource Adapters for Oracle WebLogic Server

Programming a Resource Adapter to Perform as a Startup Class

Example 4-2 shows resource adapter that submits work instances to the Work
Manager. The resource adapter starts some work in the st art () method, thus
serving as a Java EE-compliant startup class.

Example 4-2 Resource Adapter Using the Work Manager and Submitting Work
Instances

i mport javax.resource. Not SupportedExcepti on;
i mport javax.resource. Resour ceExcepti on;
i mport javax.resource. spi.ActivationSpec;
i mport javax.resource. spi. Boot strapContext;
i nport javax.resource. spi. Resour ceAdapt er;
i nport javax.resource. spi.endpoi nt. MessageEndpoi nt Fact ory;
i nport javax.resource. spi.work. Wrk;
i mport javax.resource. spi.work. WorkExcepti on;
i mport javax.resource. spi.work. WrkManager;
inport javax.transaction.xa. XAResour ce;
/**
* This Resource Adapter starts some work in the start() nethod,
* thus serving as a Java EE conpliant "startup class"
*|
public class ResourceAdapter\Wrker inplenents ResourceAdapter
{
private WrkManager wm
private M/\Work someWrKk;
public void start(BootstrapContext bsCtx)
{
Systemout. println("ResourceAdapterWrker started");
wm = bsCt x. get Wor kManager () ;
try
{
someWork = new M/Work();
wm startWork(someWork);

1
catch (WrkException ex)
{
Systemerr.printIn("Unable to start work: " + ex);
1
}
public void stop()
{

/] stop work that was started in the start() nethod
someVrk. rel ease();
Systemout. println("ResourceAdapter!|npl stopped");
1
public void endpoint Activati on(MessageEndpoi nt Fact ory nmessageendpoi ntfactory,
ActivationSpec activationspec)
throws Resour ceException

{
}

public void endpoi nt Deacti vati on(MessageEndpoi nt Fact ory
messageendpoi ntfactory, ActivationSpec activationspec)
{

}
public XAResource[] get XAResources(ActivationSpec activationspec[])
throws Resour ceException

t hrow new Not Support edException();

{

t hrow new Not Support edException();
1
Il Wrk class

Programming Tasks 4-5

Programming a Resource Adapter to Perform as a Startup Class

private class MWork inplenments Wrk
{

private bool ean i sRunning;
public void run()

{
i sSRunning = true;
whi I e (isRunning)
{
// do a unit of work (e.g. listen on a socket, wait for an inbound msg,
Il check the status of sonething)
Systemout. printIn("Doing some work");
/'l perhaps wait sonme anount of tinme or for some event
try
Thread. sl eep(60000); // wait a mnute
}
catch (InterruptedException ex)
{}
1
public void release()
{
/1 signal the run() loop to stop
i sRunning = fal se;
1
1

}

4.3.3 Retrying a Work Submission

There are instances in which the submission of a Wbr k instance by a resource adapter
can experience a transient failure. For example, JSR 322: Java EE Connector
Architecture 1.6 describes how you can use the optional st ar t Ti meout parameter in
a WorkManager interface implementation to specify a time interval within which the
execution of the Work instance must start. If a Work submission times out, a work
submission failure occurs and a WorkRejectedException is generated.

JSR 322: Java EE Connector Architecture 1.6 states that the application server throws
out a RetryableWorkRejectedException when it determines that the failure of a WWor k
submission may due to transient causes. When it receives a
RetryableWorkRejectedException, the resource adapter may retry submitting the Wor k
instance. WebLogic Server supports the RetryableWorkRejectedException in the
following transient failure situations:

® The Wor k instance was submitted to a suspended Work Manager.

e The Wbr k submission has timed out.

Note:

WebLogic Server extends retryable exception support to outbound connection
pools if a connection instance attempts to connect to a suspended connection
pool. For more information, see Retrying a Connection Attempt.

4-6 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Suspending and Resuming Resource Adapter Activity

4.4 Suspending and Resuming Resource Adapter Activity

You can program your resource adapter to use the suspend() method, which
provides custom behavior for suspending activity. For example, using the suspend()
method, you can queue up all incoming messages while allowing in-flight transactions
to complete, or you can notify the Enterprise Information System (EIS) that reception
of messages is temporarily blocked.

You then invoke the r esune() method to signal that the inbound queue be drained
and messages be delivered, or notify the EIS that message receipt was re-enabled.
Basically, the r esunme() method allows the resource adapter to continue normal
operations.

You initiate the suspend() and r esune() methods by making a call on the resource
adapter runtime MBeans programmatically, using WebLogic Scripting Tool, or from
the WebLogic Server Administration Console. See "Start and stop a resource adapter"
in the Oracle WebLogic Server Administration Console Online Help for more information.

The Suspendabl e. support sSuspend() method determines whether a resource
adapter supports a particular type of suspension. The

Suspendabl e. i sSuspended() method determines whether or not a resource
adapter is presently suspended.

A resource adapter that supports suspend(), r esune(), or production
redeployment must implement the Suspendabl e interface to inform WebLogic
Server that these operations are supported. These operations are invoked by WebLogic
Server when the following occurs:

* Suspend is called by the suspend() method on the connector component MBean.

® The production redeployment sequence of calls is invoked (when a new version of
the application is deployed that contains the resource adapter). See Suspendable
Interface and Production Redeployment.

Example 4-3 contains the Suspendabl e interface for resource adapters:
Example 4-3 Suspendable Interface

package webl ogi c. connect or. ext ensi ons;

import java.util.Properties;

i mport javax. resource. Resour ceExcepti on;

i mport javax. resource. spi. Resour ceAdapt er;

/**

* Suspendabl e may be inplemented by a ResourceAdapter JavaBean if it
* supports suspend, resume or side-by-side versioning

* @uthor Copyright (c) 2002 by BEA Systens, Inc. Al Rights Reserved.
* @ince Novenber 14, 2003

*|

public interface Suspendabl e

{

/**

* Used to indicate that inbound comunication is to be suspended/resumed
*|

int NBOUND = 1;

/**

* Used to indicate that outbound conmunication is to be suspended/resuned
*|

int QUTBOUND = 2;

/**

* Used to indicate that submission of Wrk is to be suspended/resuned

Programming Tasks 4-7

Suspending and Resuming Resource Adapter Activity

*|

int WORK = 4

/**

* Used to indicate that | NBOUND, OUTBOUND & WORK are to be suspended/resuned
*|

int ALL = 7,

/**

* May be used to indicate a suspend() operation

*|

int SUSPEND = 1;

/**

* My be used to indicate a resune() operation

*|

int RESUME = 2

/**

* Request to suspend the activity specified. The properties may be null or

* specified according to RA-specific needs

* @aramtype An int from1l to 7 specifying the type of suspension being

* requested (i.e. Suspendabl e. | NBOUND, .QUTBOUND, .WORK or the sum of one

* or nore of these, or the value Suspendable.ALL)

* (@aram props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes

* @xception ResourceException |f the resource adapter can't conplete the

* request

*|
voi d suspend(int type, Properties props) throws ResourceException

/**

* Request to resume the activity specified. The Properties may be null or
specified according to RA-specific needs

*
*
* @aramtype An int from1l to 7 specifying the type of resunme being

* requested (i.e. Suspendabl e.| NBOUND, . QUTBOUND, .WORK or the sum of

* one or nore of these, or the value Suspendable. ALL)

* (@aram props Optional Properties (or null) to be used for ResourceAdapter
* specific purposes

* @xception ResourceException If the resource adapter can't conplete the

* request

*|
void resunme(int type, Properties props) throws ResourceException

/**

*

* @aramtype An int from1 to 7 specifying the type of suspend this inquiry
* is about (i.e. Suspendable.|NBOUND, .CQUTBOUND, .WORK or the sum of

* one or nore of these, or the value Suspendable. ALL)

* @eturn true iff the specified type of suspend is supported

*|

bool ean supportsSuspend(int type)

/**

*

* Used to determine whether the specified type of activity is

* currently suspended

*

* @aramtype An int from1l to 7 specifying the type of activity
* requested (i.e. Suspendabl e.| NBOUND, . QUTBOUND, .WORK or the sum of
* one or nore of these, or the value Suspendable. ALL)

*

@eturn true iff the specified type of activity is suspened by this
* resource adapter

*|

bool ean i sSuspended(int type)

/**

* Used to determine if this resource adapter supports the init() nethod used for

4-8 Developing Resource Adapters for Oracle WebLogic Server

Extended BootstrapContext

* resource adapter versioning (side-by-side depl oyment)

*

* @eturn true iff this resource adapter supports the init() nethod

*|

bool ean supportsinit();

/**

* Used to determine if this resource adapter supports the startVersioning()

* method used for

* resource adapter versioning (side-by-side depl oyment)

*

* @eturn true iff this resource adapter supports the startVersioning() method
*|

bool ean supportsVersioning();

/**

* Used by WS to indicate to the current version of this resource adapter that
a new version of the resource adapter is being deployed. This nethod can

be used by the old RA to comunicate with the new RA and migrate services
fromthe old to the new

After being called, the ResourceAdapter is responsible for notifying the
Connector container via the ExtendedBootstrapContext.conplete() method, that
it is safe to be undepl oyed.

*
*
*
*
*
*
*
* @aramra The new Resour ceAdapter JavaBean

* (@aram props Properties associated with the versioning
* when it can be undepl oyed

* @xception ResourceException |f sonething goes wong
*|
voi d startVersioning(ResourceAdapter ra,

Properties props) throws ResourceException;

/**

* Used by WS to informa ResourceAdapter that it is a new version of an already
* depl oyed resource adapter. This nethod is called prior to start() so that

* the new resource adapter may coordinate its startup with the resource adapter
* it is replacing.

* @aramra The ol d version of the resource adapter that is currently running
* (@aram props Properties associated with the versioning operation

* @xception ResourceException If the init() fails.

*|
void init(ResourceAdapter ra, Properties props) throws ResourceException;

}

4.5 Extended BootstrapContext

If, when a resource adapter is deployed, it has a resource adapter JavaBean specified
in the r esour ce- adapt er - cl ass element of its r a. xrm descriptor, the WebLogic
Server connector container calls the st art () method on the resource adapter bean as
required by JSR 322: Java EE Connector Architecture 1.6. The resource adapter code
can use the Boot st r apCont ext object that is passed in by the st art () method to:

¢ Obtain a Wor kManager object for submitting Wor Kk instances
e Createa Ti ner
e (Obtain an XATer m nat or for use in transaction inflow

These capabilities are all prescribed by Connector Architecture 1.6.

In addition to implementing the required

j avax. resour ce. spi . Boot st r apCont ext , the Boot st r apCont ext object
passed to the resource adapter st art () method also implements

webl ogi c. connect or . ext ensi ons. Ext endedBoot st r apCont ext , which gives

Programming Tasks 4-9

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Extended BootstrapContext

the resource adapter access to some additional WebLogic Server-specific extensions
that enhance diagnostic capabilities and that also support Contexts and Dependency
Injection (CDI). These extensions are described in the following sections:

¢ Diagnostic Context ID
¢ Dye Bits

¢ Callback Capabilities
* Bean Validation

* BeanManager

4.5.1 Diagnostic Context ID

4.5.2 Dye Bits

In the WebLogic Server Diagnostic Framework, a thread may have an associated
diagnostic context. A request on the thread carries its diagnostic context throughout its
lifetime, as it proceeds along its path of execution. The

Ext endedBoot st r apCont ext allows the resource adapter developer to set a
diagnostic context payload consisting of a String that can be used, for example, to trace
the execution of a request from an EIS all the way to a message endpoint.

This capability can serve a variety of diagnostic purposes. For example, you can set the
String to the client ID or session ID on an inbound message from an EIS. During
message dispatch, various diagnostics can be gathered to show the request flow
through the system. As you develop your resource adapter classes, you can make use
of the set Di aghost i cCont ext | () and get Di agnosti cCont ext | D() methods
for this purpose.

Note the following regarding the contents of the diagnostic context payload:

¢ The payload can be viewed by other code in the same execution context, and it can
also flow out of the process along with the Wr k instance. Therefore, you should
ensure that the application does not include any sensitive data in the payload that,
for example, could be returned by the get Di agnost i cCont ext | D() method.

¢ The payload can be overwritten by other code in the same execution context.
Therefore, the application must never have a dependency on a specific context ID
being available in the payload. In addition, the application should also verify that
the context ID in the payload matches what is expected before using it.

For more information about the diagnostic context, see Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

The WebLogic Server diagnostic framework also provides the ability to dye a request.
The Ext endedBoot st r apCont ext allows you to set and retrieve four dye bits on
the current thread for whatever diagnostic purpose the resource adapter developer
chooses. For example, you might set priority of a request using the dye bits. For more
information about request dyeing, see Configuring and Using the Diagnostics Framework
for Oracle WebLogic Server.

4.5.3 Callback Capabilities

You can use the Ext endedBoot st r apCont ext .conpl et () method as a callback
to the connector container. For detailed information on this feature, see "Redeploying

4-10 Developing Resource Adapters for Oracle WebLogic Server

Administered Object Uniqueness

Applications in a Production Environment" in Deploying Applications to Oracle WebLogic
Server.

4.5.4 Bean Validation

In its support of JSR 303: Bean Validation, WebLogic Server extends Java EE 6 by
providing a module-level bean validation configuration file, which WebLogic Server
uses to validate the resource adapter module.

There are circumstances in which you might want a resource adapter to perform
validation on other bean instances that are managed by that resource adapter. Because
a resource adapter does not have its own JNDI namespace, it cannot look up its own
Val i dat or and Val i dat or Fact or y instances using JNDI Instead, the resource
adapter can inject those beans using CD], or use the following methods on the

Ext endedBoot st r apCont ext interface to obtain instances of those beans:

e getValidator()

e getValidatorFactory()

4.5.5 BeanManager

To support JSR 299: Contexts and Dependency Injection for the Java EE Platform
(CDI), WebLogic Server implements the get BeanManager method on the

Ext endedBoot st r apCont ext interface. A resource adapter can invoke this method
to obtain its own BeanManager instance and perform CDI-style injection of managed
beans inside the resource adapter.

Note:

Note the following restrictions:

* The use of a resource adapter's BeanManager instance by a separate, caller
thread is not supported.

* You cannot use a BeanManager instance to manage the life cycle of
resource adapter component beans.

For more information about using the get BeanManager method on the
Ext endedBoot st r apCont ext interface to use CDI, see Using Contexts and
Dependency Injection in Resource Adapters.

4.6 Administered Object Uniqueness

Connector Architecture 1.6 allows a resource adapter to have multiple administered
object classes that implement the same interface. However, there must be no more
than one administered object definition with the same interface and class name
combination (see Section 20.4.1, "Resource Adapter Provider" in JSR 322: Java EE
Connector Architecture 1.6). The admi nobj ect -t ype- uni queness constraint has
been added to the schema definition for the r a. X file to define the adm nobj ect -
i nt erface and admi nobj ect - ¢l ass combination.

In previous releases of WebLogic Server, the mapping of an admin object group
defined in webl ogi c-ra. xml to the corresponding admin object defined in r a. xmi
was based on the admin object interface only. However, to support multiple admin
object classes that have the same interface, WebLogic Server includes the optional

Programming Tasks 4-11

http://jcp.org/en/jsr/detail?id=303
http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Administered Object Uniqueness

admi n- obj ect - cl ass sub-element of the adni n- obj ect - gr oup element in
webl ogi c-ra. xm . You can use the admii n- obj ect - cl ass sub-element to define
an admin object interface and class combination that WebLogic Server is able to map
to the corresponding admin object defined in r a. xm .

When mapping an admin object group, WebLogic Server uses the following rules,
which also ensure backward compatibility with 1.0 and 1.5 adapters:

¢ If the admin object group defined in webl ogi ¢c-ra. xm includes both an admin
object interface and class, WebLogic Server attempts to match that interface and
class to the corresponding admin object definition in r a. xm .

e [f the admin object group defined in webl ogi c-ra. xm includes only one admin
object interface, and more than one matching admin object interface is defined in
ra. xm , WebLogic Server generates an error.

¢ If the admin object group defined in webl ogi c-ra. xm includes only one admin
object interface, and only one matching admin object interface is defined in
ra. xm , that specific admin object interface is used.

4-12 Developing Resource Adapters for Oracle WebLogic Server

5

Using Contexts and Dependency Injection
In Resource Adapters

This chapter describes WebLogic Server support forJSR 299: Contexts and Dependency
Injection for the Java EE Platform (CDI) in its implementation of Connector
Architecture 1.7.

This chapter includes the following sections:

¢ Overview

* Resource Adapter Bean Discovery

¢ Obtaining Contextual References to Resource Adapter Beans

¢ Invoking Resource Adapter Beans From Other Application Types
* Using Resource Adapters Deployed as CDI Bean Archives

¢ Using CDI with Resource Adapter Component Beans

5.1 Overview

The CDI specification defines a set of services for using injection to specify
dependencies in an application. CDI provides contextual life cycle management of
beans, type-safe injection points, a loosely coupled event framework, loosely coupled
interceptors and decorators, alternative implementations of beans, bean navigation
through the Unified Expression Language (EL), and a service provider interface (SPI)
that enables CDI extensions to support third-party frameworks or future Java EE
components.

CDI support in the WebLogic Server implementation of Connector Architecture 1.7 is
based on the following related specifications:

® JSR 299: Contexts and Dependency Injection for the Java EE Platform (ht t p: //
WWW. j cp. org/ en/j sr/sunmary?i d=299)

* JSR 330: Dependency Injection for Java (htt p: //j cp. org/ en/j sr/ summary?
i d=330)

For additional general information about CD], see:

¢ "Using Contexts and Dependency Injection for the Java EE Platform" in Developing
Applications for Oracle WebLogic Server

* "Introduction to Contexts and Dependency Injection for the Java EE Platform” in
the Java EE 6 Tutorial.

Using Contexts and Dependency Injection in Resource Adapters 5-1

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=330
http://jcp.org/en/jsr/summary?id=330
http://download.oracle.com/javaee/6/tutorial/doc/giwhb.html

Resource Adapter Bean Discovery

5.2 Resource Adapter Bean Discovery

A resource adapter RAR is a bean archive if it has a bean archive descriptor file,
beans. xni , in its META- | NF directory. If a resource adapter RAR is a bean archive,
then all JARs must conform to the CDI 1.1 standard. For more information, see "Using
CDI With JCA Technology" in Developing Applications for Oracle WebLogic Server.

When an application is deployed as a resource adapter RAR bean archive, the
WebLogic Server Connector container searches the following for beans and bean
references:

¢ The resource adapter RAR
e All classes packaged directly inside the resource adapter RAR

¢ Every bean archive referenced by the adapter RAR

5.3 Obtaining Contextual References to Resource Adapter Beans

A resource adapter is different from a Web application or an EJB in that a resource
adapter does not have its own JNDI namespace. That is, a resource adapter module
does not have aj ava: conp,j ava: nodul e, orj ava: app namespace. Therefore, it is
not possible to bind a named managed bean to a resource adapter's JNDI namespace,
and it is also not possible to perform a lookup (as specified in the Java EE 6 Managed
Beans Specification) from a resource adapter's JNDI namespace or to use the Java EE 6
@resour ce annotation to inject a predefined bean.

However, WebLogic Server provides the

Ext endedBoot st r apCont ext . get BeanManager () method. A resource adapter
can invoke the get BeanManager method to expose the BeanManager instance of its
adapter module.

5.4 Invoking Resource Adapter Beans From Other Application Types

The WebLogic Server Connector container does not support injecting CDI bean classes
contained in a resource adapter RAR bean archive into other Web applications or EJBs.
WebLogic Server support is limited to permitting CDI beans within an adapter RAR
bean archive to be used or invoked by other caller Web applications or E]Bs, provided
that those CDI beans are not client proxies.

5.5 Using Resource Adapters Deployed as CDI Bean Archives

If the resource adapter is deployed as a CDI bean archive, the WebLogic Server
Connector container provides the following support for CDI beans within the resource
adapter itself:

¢ The ability to discover managed beans, decorators, interceptors, events, and so on,
that are inside the deployed resource adapter

* Support for third-party portable extensions, as defined in Chapter 11, "Portable
Extensions," in JSR 299: Contexts and Dependency Injection for the Java EE
Platform

e Support for the CDI features that are exposed by the BeanManager

5-2 Developing Resource Adapters for Oracle WebLogic Server

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299

Using Resource Adapters Deployed as CDI Bean Archives

Support for bean instantiation, injection, decorators, interceptors, events, and so on,
for managed beans inside the resource adapter

Note the following:

A resource adapter's BeanManager instance is exposed by the get BeanManager
method on the Ext endedBoot st r apCont ext object.

WebLogic Server supports the use of an adapter's BeanManager only in the
adapter's own thread. An adapter's BeanManager cannot be used in another
application's thread.

The WebLogic Server Connector container supports the injection of built-in
BeanManager bean types that are inside the resource adapter module; for
example, injecting into the Resour ceAdapt er bean.

The use of the Resour ce injection annotation on a resource adapter's managed
beans is not supported.

5.5.1 BeanManager Support

A resource adapter's BeanManager can be used in either of the following situations:

During the adapter deployment process, such as when the
Resour ceAdapt er . st art method is invoked

Inside the Wor k. r un method, which is scheduled by the resource adapter's
Wor kManager instance

The WebLogic Server Connector container supports the injection of built-in
BeanManager bean types in the resource adapter module. However, the use of a
resource adapter's BeanManager instance by a caller thread is not supported.

5.5.2 Injection Points

The WebLogic Server Connector container supports injection points for the following
beans within a resource adapter deployed as a CDI bean archive:

The following built-in beans, which JSR 299: Contexts and Dependency Injection
for the Java EE Platform requires to be provided in a Java EE container:

- UserTransacti on — Provided by WebLogic JTA.

— Princi pal — The caller principal set by the WebLogic Server Connector
container. Its value is the current principal on the thread at the time this
instance is used, not when it was injected.

— Val i dationFactory — The Val i dati onFact ory instance of the resource
adapter module itself and that is also accessible from the
Ext endedBoot st r apCont ext . get Val i dat or Fact or y method.

— Val i dat or — The Val i dat or instance of the resource adapter module itself
and that is also accessible from the
Ext endedBoot st r apCont ext . get Val i dat or method.

The BeanManager instance, as defined in Section 11.3 of JSR 299: Contexts and
Dependency Injection for the Java EE Platform, of the resource adapter module
itself that is accessible from the

Ext endedBoot st r apCont ext . get BeanManager method.

Using Contexts and Dependency Injection in Resource Adapters 5-3

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299

Using CDI with Resource Adapter Component Beans

* Any managed bean that conforms to JSR 299: Contexts and Dependency Injection
for the Java EE Platform and the Java EE 6 Managed Beans Specification, which is a
part of JSR 316: Java Platform, Enterprise Edition 6 (Java EE 6) Specification.

* Any special Connector Architecture 1.6 built-in beans of the following types that
are part of the current resource adapter module:

- javax.resource. spi. Resour ceAdapt er allowing injection of a reference
to the current resource adapter bean, which always refers to either: the
Resour ceAdapt er bean instance of the current adapter module; or nul | if no
Resour ceAdapt er bean is defined for the current resource adapter module.

— javax.resource. spi . Boot strapCont ext or
webl ogi c. connect or . ext ensi ons. Ext endedBoot st r apCont ext
allowing injection of a reference to either: the current resource adapter's
Boot st r apCont ext bean instance; or nul | if no Resour ceAdapt er bean is
defined for the current resource adapter module. This bean type is also available
from a parameter in an invocation of the
Resour ceAdapt er. st art (Boot st rapCont ext ctx) method.

- javax.resource. spi.wor k. Wr kManager allowing injection of a reference
to either: the current resource adapter's Wor kManager instance, which is
available also from the Boot st r apCont ext . get Wr kManager () method; or
nul I if no Resour ceAdapt er bean is defined for the current resource adapter
module.

- javax.resource. spi. XATer m nat or allowing injection of a reference to
either: the current resource adapter's XATer m nat or instance, which is also
available from the Boot st r apCont ext . get XATer m nat or method; or nul |
if no Resour ceAdapt er bean is defined for the current resource adapter
module.

- javax.transaction. Transacti onSynchroni zati onRegi st ry allowing
injection of a reference to the JTA Tr ansact i onSynchr oni zat i onRegi stry
instance, which is also available also from the
Boot st rapCont ext . get Transacti onSynchroni zati onRegi stry
method.

5.6 Using CDI with Resource Adapter Component Beans

WebLogic Server supports four types of beans called resource adapter component
beans, which define special components managed by the WebLogic Server Connector
container. Resource adapter component beans are "POJOs" (Plain Old Java Objects),
but are created and managed by the resource adapter container and have a special life
cycle.

The adapter component bean types are:

¢ Resour ceAdapt er bean — Resource adapter class that implements
j avax. resour ce. spi . Resour ceAdapt er interface, which contains operations
for life cycle management and message endpoint setup.

e ManagedConnecti onFact ory bean — JavaBean class that implements the
j avax. resour ce. spi . ManagedConnect i onFact or y interface and is a factory
of both ManagedConnection and EIS-specific connection factory instances. This
interface supports connection pooling by providing methods for matching and
creation of a ManagedConnection instance.

5-4 Developing Resource Adapters for Oracle WebLogic Server

http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/summary?id=316

Using CDI with Resource Adapter Component Beans

* Activati onSpec bean — JavaBean class that implements the
j avax. resource. spi . Acti vati onSpec interface and that holds the activation
configuration information for a message endpoint.

* Administered objects, or admin objects — Optional set of JavaBean classes that
represent objects specific to a messaging style or message provider.

The following metadata annotations may be used within resource adapter component
beans:

¢ @Connector

® @Activation

¢ @ConnectionDefinition
¢ @ConnectionDefinitions

¢ @AdministeredObject

Note:

The preceding annotations are new in Connector Architecture 1.6 and are
recommended for use instead of the corresponding r a. xnl elements.

The following sections include important information about the programming
requirements for resource adapter component beans:

® Resource Adapter Component Beans Must Not Be Managed Beans
¢ Using Dependency Injection

For information about setting dynamically configurable properties on resource
adapter component beans, see Dynamic Reconfigurable Configuration Properties.

5.6.1 Resource Adapter Component Beans Must Not Be Managed Beans

Resource adapter component beans must not be managed beans. However, the
WebLogic Server Connector container does support CDI injection of managed beans,
as defined in JSR 299: Contexts and Dependency Injection for the Java EE Platform,
into a resource adapter component bean. WebLogic Server also supports the

Post Const ruct and Pr eDest r oy annotations in adapter component beans as well.

Note:

Note the following:

* The WebLogic Server Connector container does not support managed
beans that conform to the Java EE 6 Managed Beans Specification, which is
a part of JSR 316: Java Platform, Enterprise Edition 6 (Java EE 6)
Specification.

¢ For information about designing a managed bean that meets the conditions
required by JSR 299, see "About Managed Beans" in The Java EE 6 Tutorial.

Using Contexts and Dependency Injection in Resource Adapters 5-5

http://www.jcp.org/en/jsr/summary?id=299
http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=316
http://docs.oracle.com/javaee/6/tutorial/doc/gjfzi.html

Using CDI with Resource Adapter Component Beans

To ensure that a resource adapter component bean is not treated as a managed bean,
WebLogic Server will fail to deploy the adapter if any of the following class-level
annotations are used within an adapter component bean:

e Thej avax. annot ati on. ManagedBean annotation

* Any scope annotation

* Any qualifier annotation

* Any stereotype annotation

e javax.inject.Naned annotation

e javax.enterprise.inject.Alternative annotation
e javax.enterprise.inject. Specializes annotation
e javax.enterprise.inject. Typed annotation

e javax. decorator. Decor at or annotation

j avax. decor at or . Del egat e annotation

5.6.2 Using Dependency Injection

In a resource adapter that is deployed as a CDI bean archive, the WebLogic Server
Connector container supports CDI for adapter component beans once they are created
and initialized.

To support Dependency Injection for resource adapter component beans, consistent
with Section EE.5.20, "Support for Dependency Injection (JSR-330)" in the Java
Platform, Enterprise Edition (Java EE) Specification, Version 6, the WebLogic
Connector container does the following when initializing these beans:

1. Initializes the resource adapter component bean configuration properties using
values in deployment descriptors.

2. Uses the Post Const r uct annotation after dependency injection is done to
perform any initialization.

3. Performs bean validation, consistent with JSR 303: Bean Validation, and for an
Act i vat i onSpec bean, invokes the val i dat e() method.

4. For a Resour ceAdapt er bean, invokes the st art () method.

5. Makes all resource adapter component beans available either by binding them to
JNDI or exposing them to endpoint applications.

5.6.2.1 Notes on Injection Usage

Resource adapter component beans cannot be injected into other beans outside of the
resource adapter module because they are not standard managed beans. That is, they
are not visible outside the resource adapter module in a way that is consistent with
JSR 299: Contexts and Dependency Injection for the Java EE Platform. You can design
adapter component beans to support injection, but it is important to ensure that they
are not treated like managed beans because the notion of request scope or session
scope is meaningless in resource adapter component beans.

Injection is supported as follows:

5-6 Developing Resource Adapters for Oracle WebLogic Server

http://docs.oracle.com/javaee/6/api/javax/annotation/ManagedBean.html
http://docs.oracle.com/javaee/6/api/javax/inject/Named.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Alternative.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Specializes.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Typed.html
http://docs.oracle.com/javaee/6/api/javax/decorator/Decorator.html
http://docs.oracle.com/javaee/6/api/javax/decorator/Delegate.html
http://download.oracle.com/otndocs/jcp/javaee-6.0-fr-eval-oth-JSpec/
http://download.oracle.com/otndocs/jcp/javaee-6.0-fr-eval-oth-JSpec/
http://jcp.org/en/jsr/detail?id=303
http://www.jcp.org/en/jsr/summary?id=299

Using CDI with Resource Adapter Component Beans

¢ Field and method injection, but not constructor injection, is supported using the
j avax.inject.|nject annotation.

¢ Injected Fields, as defined in Section 3.8 of JSR 299: Contexts and Dependency
Injection for the Java EE Platform, is supported.

* All injection points listed in Injection Points, are supported, such as
webl ogi c. transacti on. User Transacti on or
j avax. resource. spi . Boot st rapCont ext .

e The Post Construct and Pr eDest r oy injection annotations are supported as
follows:

— For Resour ceAdapt er bean types, the @PostConstruct method is called after
the configuration properties are initialized but before the st art () method is
called. In addition, the @PreDestroy method is after the st op() method.

— For other bean types, the @PostConstruct method is called after the
configuration properties are initialized but before the bean is bound to JNDL In
addition, the @PreDestroy method is called when the resource adapter is
undeployed or when the server is shut down.

— For all beans, WebLogic Server performs bean validation consistent with its
support for JSR 303: Bean Validation and also call the val i dat e() method, if
applicable, after calling the @PostConstruct method.

¢ Events, as defined in Chapter 10, "Events," in JSR 299: Contexts and Dependency
Injection for the Java EE Platform, are supported.

The Resour ce injection annotation is not supported in a resource adapter module.

5.6.2.2 Example

The following example shows that during resource adapter deployment, WebLogic
Server first instantiates a MyResour ceAdapt er instance consistent with CDI.
MyResour ceAdapt er is the Resour ceAdapt er component bean of the resource
adapter module shown in this example because it is annotated with the Connect or
annotation. During deployment, WebLogic Server also:

¢ Instantiates MyBean and injects it into the MyResour ceAdapt er instance using
thej avax.inj ect. | nject annotation.

* Injects the Val i dat or instance of this adapter module into the
MyResour ceAdapt er instance.

* Injects the Wor kManager and User Tr ansact i on instances of this adapter
module into MyBean.

@onnect or

public class MyResourceAdapter inplenents ResourceAdapter{
private @nject MyBean bean;

private @/alidator v;

public void start(BootstrapContext ctx){

v.validate(this, AnotherGoup.class);
bean. do();

Using Contexts and Dependency Injection in Resource Adapters 5-7

http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/javax/resource/spi/BootstrapContext.html
http://jcp.org/en/jsr/detail?id=303
http://www.jcp.org/en/jsr/summary?id=299
http://www.jcp.org/en/jsr/summary?id=299
http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html

Using CDI with Resource Adapter Component Beans

}

public class MyBean{
private String nane;

private @\rkManager wm

private @kserTransaction ut;

public String getName(){

return nane;
}

public void setName(String nanme) {
this.name = nang;

}
public void do(){

Vork w= ..

wm schedul eWor k(w) ;
}

5-8 Developing Resource Adapters for Oracle WebLogic Server

6

Connection Management

This chapter describes the connection management contract between WebLogic Server
and a resource adapter, in accordance to the requirements in Connector Architecture
1.6. It also explains how to configure outbound and inbound connections and
connection pool parameters, and how to test connections.

This chapter includes the following sections:

¢ Connection Management Contract

* Configuring Outbound Connections

¢ Configuring Inbound Connections

¢ Configuring Connection Pool Parameters

¢ Connection Proxy Wrapper - 1.0 Resource Adapters
* Reset a Connection Pool

® Testing Connections

For more information about the connection management contract, see Chapter 6,
"Connection Management,” of JSR 322: Java EE Connector Architecture 1.6.

6.1 Connection Management Contract

One of the requirements of Connector Architecture 1.6 is the connection management
contract. The connection management contract between WebLogic Server and a
resource adapter:

e Provides a consistent application programming model for connection acquisition
for both managed and non-managed (two-tier) applications.

¢ Enables a resource adapter to provide a connection factory and connection
interfaces based on the common client interface (CCI) specific to the type of
resource adapter and EIS. This enables JDBC drivers to be aligned with the Java EE
Connector Architecture 1.6 with minimum impact on the existing JDBC APlIs.

¢ Enables an application server to provide various services — transactions, security,
advanced pooling, error tracing/logging — for its configured set of resource
adapters.

¢ Supports connection pooling.

The resource adapter's side of the connection management contract is embodied in the
resource adapter's Connect i on, Connect i onFact ory, ManagedConnecti on, and
ManagedConnect i onFact ory classes.

Connection Management 6-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Connection Management Contract

6.1.1 Connection Factory and Connection

A Java EE application component uses a public interface called a connection factory to
access a connection instance, which the component then uses to connect to the
underlying EIS. Examples of connections include database connections and JMS (Java
Message Service) connections.

A resource adapter provides connection and connection factory interfaces, acting as a
connection factory for EIS connections. For example, the j avax. sql . Dat aSour ce
and j ava. sql . Connect i on interfaces are JDBC-based interfaces for connecting to a
relational database.

An application looks up a connection factory instance in the Java Naming and
Directory Interface (JNDI) namespace and uses it to obtain EIS connections. See
Obtaining the ConnectionFactory (Client-JNDI Interaction).

6.1.2 Resource Adapters Bound in JNDI Tree

Version 1.5 and 1.6 resource adapters can be bound in the JNDI tree as independent
objects, making them available as system resources in their own right or as message
sources for message-driven beans (MDBs). In contrast, version 1.0 resource adapters
are identified by their Connect i onFact ory objects bound in the JNDI tree.

In a version 1.5 or 1.6 resource adapter, at deployment time, the Resour ceAdapt er
Bean (if it exists) is bound into the JNDI tree using the value of the jndi-name element,
shown in the webl ogi c-ra. xnl file. As a result, administrators can view resource
adapters as single deployable entities, and they can interact with resource adapter
capabilities publicly exposed by the resource adapter provider. For more information,
see jndi-name in weblogic-ra.xml Schema.

6.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction)

The application assembler or component provider configures the Connection Factory
requirements for an application component in the application's deployment
descriptor. For example:

res-ref-name: eis/nyEl S
res-type: javax.resource.cci.ConnectionFactory
res-auth: Application or Container

The resource adapter deployer provides the configuration information for the resource
adapter.

An application looks up a Connect i onFact or y instance in the Java Naming and
Directory Interface (JNDI) namespace and uses it to obtain EIS connections. The
following events occur when an application in a managed environment obtains a
connection to an EIS instance from a Connection Factory, as specified in the r es- t ype
variable.

Note:

A managed application environment defines an operational environment for a
Java EE-based, multi-tier, Web-enabled application that accesses ElSes.

1. The application server uses a configured resource adapter to create physical
connections to the underlying EIS.

6-2 Developing Resource Adapters for Oracle WebLogic Server

Connection Management Contract

2. The application component looks up a Connect i onFact or y instance in the
component's environment by using the JNDI interface, as shown in Example 6-1.

3. The application component uses the returned connection to access the underlying
EIS.

4. The application component invokes the get Connect i on method on the
Connect i onFact ory to obtain an EIS connection. The returned connection
instance represents an application level handle to an underlying physical
connection. An application component obtains multiple connections by calling the
method get Connect i on on the connection factory multiple times:

j avax. resource. cci . Connection cx = cxf.getConnection();

5. After the component finishes with the connection, it closes the connection using
the close method on the Connect i on interface:

cx.close();

If an application component fails to close an allocated connection after its use, that
connection is considered an unused connection. The application server manages
the cleanup of unused connections.

Example 6-1 JNDI Lookup

[/obtain the initial JNDI Nam ng context
Context initctx = new Initial Context();

/1 perform JNDI |ookup to obtain the connection factory
j avax. resource. cci . ConnectionFactory cxf =
(j avax.resource. cci. ConnectionFactory)
initctx.lookup("java: conp/env/eis/ WEIS");

The JNDI name passed in the method Nam ngCont ext . | ookup is the same as that
specified in the r es- r ef - name element of the deployment descriptor. The JNDI
lookup results in an instance of type j ava. r esour ce. cci . Connect i onFact ory
as specified in the r es- t ype element.

6.1.4 Specifying and Obtaining Transaction Support Level

Section 7.13 of JSR 322: Java EE Connector Architecture 1.6 specifies that a resource
adapter may determine and classify the level of transaction support it can provide at
run time. To have the ability to specify the level of transaction support, a resource
adapter's ManagedConnect i onFact or y class must implement the

Transact i onSupport interface. If this interface is not implemented, the Connector
container uses the transaction support specified in the merged result of the resource
adapter'sra. xm file and Connect or annotations.

JSR 322: Java EE Connector Architecture 1.6 also defines the rules and priorities on the
transaction support level determined from the r a. xm file, Connect or annotation,
and the Tr ansact i onSupport interface.

WebLogic Server supplements support for obtaining transaction support level by
exposing the following two methods on the
Connect or Connect i onPool Runt i meMBean:

e Connect or Connecti onPool Runti mreMBean. get Runti meTr ansacti onSupp
ort () — Return the real transaction support level in use for this Connector
connection pool.

Connection Management 6-3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring Outbound Connections

This value may also be viewed in the WebLogic Server Administration Console in
the Resource Adapter: Monitoring: Outbound Connection Pools page.

e Connect or Connecti onPool Runt i neMBean. get Transacti onSupport () —
Returns the static transaction support level, which is configured either in r a. xm
or using the @Connector annotation, for the resource adapter for this Connector
connection pool.

6.1.5 Specifying an Unshareable ManagedConnectionFactory

In most cases, an adapter's ManagedConnect i onFact or y supports connection
sharing, as defined in section 7.9 of JSR 322: Java EE Connector Architecture 1.6. The
specification also says that a connection can be made unshareable by setting r es-
shari ng- scope to Unshar eabl e in the caller application's deployment descriptor
or annotation.

However, it can be inconvenient to define an unshareable resource reference in the
caller application. For example, the caller application may perform a look up to a
Connect i onFact ory pool from WebLogic's global JNDI directly, but the application
does not define unshareable resource references to this pool. WebLogic Server treats
such use of the pools as shareable by default. As a result, if an adapter does not
support connection sharing, the adapter will not work.

To circumvent this problem, WebLogic Server supports the public annotation

webl ogi c. connect or. ext ensi ons. Unshar eabl e. This annotation can be used
on a ManagedConnect i onFact or y class if the ManagedConnect i onFact ory does
not support sharing. When such an adapter is deployed, WebLogic Server checks the
ManagedConnect i onFact or y class and treats the ManagedConnect i onFact ory
and related pools as unshareable. If you configure a sharable resource reference to this
unshareable pool in a Web application or an Enterprise Java Bean, WebLogic Server
issues a warning message—but the Web application or the EJB nevertheless treats the
pool as unshareable. There is no need to configure anything in webl ogi c-ra. xm or
in the WebLogic Server Administration Console.

If a ManagedConnect i onFact ory is shareable, nothing needs to be changed in the
adapter's code. All ManagedConnect i onFact or y instances and pools are
considered shareable by default, unless the ManagedConnect i onFact or y contains
an Unshar eabl e annotation.

6.2 Configuring Outbound Connections

Outbound resource adapters based on Connector Architecture 1.6 can be configured to
have one or more outbound connections, each having its own WebLogic Server-
specific authentication and transaction support. You configure outbound connection
properties in the r a. xml and webl ogi c-ra. xm deployment descriptor files.

6.2.1 Connection Pool Configuration Levels

You use the out bound- r esour ce- adapt er element and its subelements in the
webl ogi c-ra. xm deployment descriptor to describe the outbound components of a
resource adapter.

You can define outbound connection pools at three levels:

* Global - Specify parameters that apply to all outbound connection groups in the
resource adapter using the def aul t - connecti on- properti es element. See
default-connection-properties.

6-4 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring Outbound Connections

* Group - Specify parameters that apply to all outbound connection instances
belonging to a particular connection factory specified in the r a. xm deployment
descriptor using the connect i on- defi ni ti on- gr oup element. A one-to-one
correspondence exists from a connection factory inr a. xm to a connection
definition group in webl ogi c-ra. xn . The properties specified in a group
override any parameters specified at the global level. See connection-definition-
group.

The connecti on-factory-i nt erf ace element (a subelement of the

connect i on-definition-group element) serves as a required unique element
(a key) to each connect i on-defi ni ti on- gr oup. There must be a one-to-one
relationship between the connect i on-defini ti on-i nt erf ace elementin
webl ogi c-ra. xm and the connecti ondefi niti on-interface elementin
ra.xm .

¢ Instance - Under each connection definition group, you can specify connection
instances using the connect i on-i nst ance element of the webl ogi c-ra. xni
deployment descriptor. These correspond to the individual connection pools for
the resource adapter. You can use the connect i on- properti es subelement to
specify properties at the instance level too; properties specified at the instance level
override those provided at the group and global levels. See connection-instance.

6.2.2 Retrying a Connection Attempt

If an application component attempts to obtain a connection instance from a
connection pool using the get Connect i on() method on the Connect i onFact ory,
but the pool is temporarily suspended, WebLogic Server generates an exception that
implements j avax. r esour ce. spi . Ret r yabl eExcept i on. The application
component can use an instance of Ret r yabl eExcept i on to determine whether the
connection failure is transient.

6.2.3 Isolating, Troubleshooting, and Fixing Outbound Connection Pool Failures
Without Redeploying the Adapter

By default, if a resource adapter has multiple outbound connection pools, a failure in
any one connection pool causes the entire deployment of the resource adapter to fail.
However, the deploy-as-a-whole deployment option is available, which you can set to
isolate individual outbound connection pool failures from the resource adapter
deployment. Using this deployment option enables you to use the adapter health
monitoring feature to identify connection pool failures, which you can troubleshoot
and repair without the need to redeploy the resource adapter.

For general information about the resource adapter health monitoring features, see
Monitoring Resource Adapter Health. For information about setting the depl oy- as-
a- whol e element in the webl ogi c-ra. xni file, see the following topics:

* deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole
Adapter Deployment

¢ Deploying a Resource Adapter Configured with Multiple Outbound Connection
Pools

The following sections explain how to use the deploy-as-a-whole deployment option
and how to diagnose and recover from outbound connection pool failures:

Connection Management 6-5

Configuring Outbound Connections

6.2.3.1 Using the Deploy-As-A-Whole Option

To deploy a resource adapter so that the failure of an individual outbound connection
pool does not cause the whole adapter deployment to fail, set the depl oy- as-whol e
element of the webl ogi c-ra. xml file to f al se (by default, this element is set to

t r ue). For details about setting this deployment option, see Deploying a Resource
Adapter Configured with Multiple Outbound Connection Pools .

If the deploy-as-a-whole option is set to f al se, note the following:

If there is no error during deployment, the resource adapter deployment succeeds
and is placed in an active state, with a health state of HEALTH_OK.

If an error occurs when creating or configuring at least one outbound connection
pool, the health state of the adapter deployment is set to HEALTH_CRITICAL.

If any other failure occurs, such as the following, the adapter deployment fails:

— An error parsing or validating the r a. xim file, the webl ogi c-r a. xnl file, or
the deployment plan.

— An error occurs when creating or configuring the ResourceAdapter or admin
object beans.

— Any pool-related classes failing to meet basic requirements defined by JSR 322:
Java EE Connector Architecture 1.6 that can be detected statically; for example,
the adapter's ManagedConnect i onFact or y class not implementing the
required standard interface
j avax. resour ce. spi . ManagedConnecti onFactory.

6.2.3.2 Troubleshooting Failed Connection Pools

If a connection pool is in a HEALTH_CRITICAL state, invoking most methods on the
Connect or Connect i onPool Runt i meMBean, such ast est Pool , may simply
throw an | | | egal St at eExcept i on. You can invoke only the following methods,
which provide static information and are not affected by connection pool failures:

get Key()
get Pool Nane()

get St at e() (always returns Shut down for failed pools)
get Heal t hSt at e()
get ManagedConnect i onFact or yC assNane()

get MCFCl assNane() (same as
get ManagedConnect i onFact or yd assNane())

get Connect i onFact or yCl assNane() (returns the ConnectionFactoryName of
the connection pool)

reset ()

forceReset ()

Note the following:

6-6 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring Outbound Connections

* A resource adapter module's health state may change from HEALTH_OK to
HEALTH_CRITICAL after one of the following actions:

— Performing a dynamic update.

— Performing either ar eset orforce reset of outbound connection pools
— Stopping then restarting the resource adapter

- Redeploying the adapter

e If a connection pool is in the HEALTH_CRITICAL state, the suspend and r esune
actions on the pool have no effect.

6.2.3.3 Connection Pool Recovery Steps

Once a connection pool has failed and is in the HEALTH_CRITICAL state, check the
failure reason and correct the error. For example, ensure that updated values for the
pool's properties are valid and properly assigned.

For most failures that are caused by an incorrect configuration, Oracle recommends
taking the following steps:

1. Modify the configuration of each failed pool, if necessary.
2. Save the new configuration to the adapter's deployment plan.

3. Using the updated adapter's deployment plan, perform a dynamic update of the
resource adapter.

The preceding steps can recover failed pools without affecting properly functioning
and in-use connection pools. During the dynamic update process, all failed connection
pools are recreated using the new configuration data, regardless of whether the
configuration changes for the pools have been made in the new deployment plan or
whether the configuration changes are dynamically updatable. For existing connection
pools that are functioning properly, non-dynamic configuration changes are ignored.
However, for failed connection pools, the configuration updates go into effect from the
dynamic update process.

6.2.3.4 Other Options for Recovering Failed Connection Pools

As an alternative to performing a dynamic update to recover a failed connection pool,
you can try one of the following methods. If the failure is due to causes other than an
invalid pool configuration, one of these method might be appropriate:

* Reset or force reset the failed connection pool, as described in Reset a Connection
Pool.. Depending on the reason for the failure, these actions may or may not
recover the failed pool. However, because no connections with failed pools are
active, reset and force reset have the same effect. Note the following:

— If the pool failure is not caused by an invalid configuration, the pool can
potentially be recovered by resetting it, which uses the existing configuration
data. For example, if the failure is due to a JNDI conflict, the pool can be
recovered if the conflicting object from JNDI tree is removed. Resetting the
connection pool would be recommended in this scenario.

— If the connection pool has failed due to an invalid configuration, resetting the
connection pool is not recommended. Resetting uses the existing deployment

Connection Management 6-7

Configuring Outbound Connections

plan, or existing deployment descriptor information, which contain the invalid
configuration data.

* Redeploy the adapter. Note that this action affects all outbound connection pools in
the resource adapter, including any that are functioning properly

® Stop and then restart the resource adapter. This action also affects all outbound
connection pools in the adapter. This method has drawbacks similar to performing
areset orforce reset action because it also uses the pre-existing configuration
data without first performing a dynamic update. In addition, configuration data
that has been revised that is not made available by dynamic update is not used. For
this reason, stopping and then restarting the resource adapter is not a
recommended option for recovering failed connection pools in most cases.

6.2.4 Multiple Outbound Connections Example

Example 6-2 is an example of a webl ogi c-ra. xm deployment descriptor that
configures multiple outbound connections:

Example 6-2 weblogic-ra.xml Deployment Descriptor: Multiple Outbound

Connections

<?xm version="1.0"

>

<webl ogi c- connect or xm ns="http://xn ns. oracl e. com webl ogi ¢/ webl ogi c- connect or ">
<j ndi - name>900ei saNanmeCf Bl ackBoxXATx</ j ndi - name>
<out bound-r esour ce- adapt er >
<connect i on- definition-group>
<connection-factory-interface> avax. sgl . Dat aSour ce
</ connection-factory-interface>

<connecti on-i nstance>

<j ndi - name>ei s/ 900ei saBl ackBox XATxConnect or JNDI NAMVEL

</jndi - name>
<connection-properties>
<pool - par ans>

<initial-capacity>2</initial-capacity>

<max- capaci t y>10</ max- capaci t y>

<capaci ty-increnent >1</ capaci t y-i ncrenent >

<shri nki ng- enabl ed>t r ue</ shri nki ng- enabl ed>

<shri nk-f requency- seconds>60</ shri nk- f r equency- seconds>

</ pool - par ans>
<properties>

<property>
<name>Connect i onURL</ name>
<val ue>

jdbc:oracl e: thin: @cpdb: 1531: bay920; cr eat e=t r ue; aut oconmi t =f al se

</val ue>
</ property>
<property>
<name>XADat aSour ceNane</ nane>
<val ue>0Or acl eXAPool </ val ue>
</ property>
<property>
<name>Test O assPat h</ name>
<val ue>Hel | oFr onset Test O assPat hGoodDay</ val ue>
</ property>
<property>
<name>uni que_ra_i d</ nane>
<val ue>ei sabl ackbox- xa. oracl e. 900</ val ue>
</ property>

</ properties>

6-8 Developing Resource Adapters for Oracle WebLogic Server

Configuring Outbound Connections

</ connecti on-properties>
</ connecti on-instance>
<connection-instance>
<j ndi - name>ei s/ 900ei saBl ackBoxXATxConnect or JNDI NAME2
</j ndi - name>
<connecti on-properties>
<pool - par ans>
<initial-capacity>2</initial-capacity>
<max- capaci t y>10</ max- capaci t y>
<capacity-increnent >1</ capacity-increment>
<shri nki ng- enabl ed>t r ue</ shri nki ng- enabl ed>
<shri nk-frequency- seconds>60
</ shrink-frequency-seconds>
</ pool - par ans>
<properties>
<property>
<nane>Connect i onURL</ nane>
<val ue>
jdbc:oracl e: thin: @cpdb: 1531: bay920; cr eat e=t r ue; aut oconmi t =f al se
</val ue>
</ property>
<property>
<nane>XADat aSour ceNane</ name>
<val ue>Or acl eXAPool </ val ue>
</ property>
<property>
<nane>Test O assPat h</ nane>
<val ue>Hel | oFr onset Test O assPat hGoodDay</ val ue>
</ property>
<property>
<nane>uni que_ra_i d</ nane>
<val ue>ei sabl ackbox- xa. or acl e. 900</ val ue>
</ property>
</ properties>
</ connecti on-properties>
</ connecti on-instance>
</ connecti on-definition-group>
<connect i on-definition-group>
<connection-factory-interface>j avax. sql . Dat aSour ceCopy
</ connection-factory-interface>
<connection-instance>
<j ndi - name>ei s/ 900ei saBl ackBoxXATxConnect or JNDI NAME3</ j ndi - name>
<connecti on-properties>
<pool - par ans>
<initial-capacity>2</initial-capacity>
<max- capaci t y>10</ max- capaci t y>
<capacity-increnent >1</ capacity-increment>
<shri nki ng- enabl ed>t r ue</ shri nki ng- enabl ed>
<shri nk-f requency- seconds>60</ shri nk- f requency- seconds>
</ pool - par ans>
<properties>
<property>
<nane>Connect i onURL</ nane>
<val ue>j dbc: oracl e: t hi n: @cpdb
1531: bay920; cr eat e=t r ue; aut oconmi t =f al se</ val ue>
</ property>
<property>
<nane>XADat aSour ceNane</ name>
<val ue>0Or acl eXAPool B</ val ue>
</ property>
<property>

Connection Management 6-9

Configuring Inbound Connections

<name>Test O assPat h</ nane>
<val ue>Hel | oFr onset Test O assPat hGoodDay</ val ue>
</ property>
<property>
<nanme>uni que_ra_i d</ nane>
<val ue>ei sabl ackbox- xa-t wo. or acl e. 900</ val ue>
</ property>
</ properties>
</ connecti on-properties>
</ connecti on-i nstance>
</ connecti on-definition-group>
</ out bound- r esour ce- adapt er >

</ webl ogi c- connect or >

6.3 Configuring Inbound Connections

Connector Architecture 1.6 permits you to configure a resource adapter to support
inbound message connections. The following are the main steps for configuring an
inbound connection:

1.

Provide a JNDI name for the resource adapter in the webl ogi c-ra. xm
deployment descriptor. See jndi-name in Table A-1

Configure a message listener and Act i vat i onSpec for each supported inbound
message type in the r a. xm deployment descriptor. For information about
requirements for an Act i vat i onSpec class, see Chapter 13, "Message Inflow" in
JSR 322: Java EE Connector Architecture 1.6.

Within the packaged enterprise application, include a configured EJB message-
driven bean (MDB). In the r esour ce- adapt er - j ndi - nane element of the

webl ogi c-ej b-j ar. xm deployment descriptor, provide the same JNDI name
assigned to the resource adapter in the previous step. Setting this value enables the
MDB and resource adapter to communicate with each other.

Configure the security identity to be used by the resource adapter for inbound
connections. When messages are received by the resource adapter, work must be
performed under a particular security identity. See Configuring Security Identities
for Resource Adapters.

Deploy the resource adapter as discussed in Deploying Applications to Oracle
WebLogic Server.

. Deploy the MDB. For more information, see "Message-Driven EJBs" in Developing

Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server and Deploying
Applications to Oracle WebLogic Server.

Example 6-3 Example of Configuring an Inbound Connection

<i nbound- r esour ceadapt er >

<nessageadapt er >
<nessagel i st ener>
<nessagel i st ener-type>
webl ogi c. ga. tests. connect or. adapt ers. f| ex. | nboundMsgLi st ener
</ nmessagel i st ener-type>
<activationspec>
<activationspec-cl ass>
webl ogi c. ga. tests. connect or. adapt ers. fl ex. Acti vati onSpecl npl
<l activationspec-cl ass>
</activationspec>
</ messagel i st ener >

6-10 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring Connection Pool Parameters

<nessagel i st ener>
<nessagel i st ener-type>
webl ogi c. qa. tests. connect or. adapt ers. f| ex. Servi ceRequest MsgLi st ener
</ nmessagel i st ener-type>
<activationspec>
<activationspec-cl ass>
webl ogi c. ga. tests. connect or. adapt ers. fl ex. Servi ceRequest Act i vati onSpec
</ activationspec-cl ass>
</activationspec>
</ messagel i st ener >
</ messageadapt er >
</'i nbound- r esour ceadapt er >

Example 6-3 shows how an inbound connection with two message listener/activation
specs could be configured in the r a. xm deployment descriptor:

6.4 Configuring Connection Pool Parameters

This section explains how to configure WebLogic Server resource adapter connection
pool parameters in the webl ogi c-ra. xm deployment descriptor. For more details,
see weblogic-ra.xml Schema.

6.4.1 initial-capacity: Setting the Initial Number of ManagedConnections

Depending on the complexity of the Enterprise Information System (EIS) that the
ManagedConnect i on is representing, creating ManagedConnect i ons can be
expensive. You may decide to populate the connection pool with an initial number of
ManagedConnect i ons upon startup of WebLogic Server and therefore avoid
creating them at run time. You can configure this setting using the i ni ti al -

capaci ty element in the webl ogi c-ra. xm descriptor file. The default value for
this element is 1 ManagedConnect i on.

Because no initiating security principal or request context information is known at
WebLogic Server startup, a server instance creates initial connections using a security
subject by looking up special credential mappings for the initial connection. See Initial
Connection: Requires a ManagedConnection from Adapter Without Application's
Request .

Note:

WebLogic Server uses nul | as Subj ect if a mapping is not found.

6.4.2 max-capacity: Setting the Maximum Number of ManagedConnections

As more ManagedConnect i ons are created, they consume more system resources -
such as memory and disk space. Depending on the Enterprise Information System
(EIS), this consumption may affect the performance of the overall system. To control
the effects of ManagedConnect i ons on system resources, you can specify a
maximum number of allocated ManagedConnect i ons in the max- capaci ty
element of the webl ogi c-ra. xml descriptor file.

If a new ManagedConnect i on (or more than one ManagedConnect i on in the case
of capaci ty-i ncrement being greater than one) needs to be created during a
connection request, WebLogic Server ensures that no more than the maximum number
of allowed ManagedConnect i ons are created. Requests for newly allocated

Connection Management 6-11

Configuring Connection Pool Parameters

ManagedConnect i ons beyond this limit results in a
Resour ceAl | ocat i onExcept i on being returned to the caller.

6.4.3 capacity-increment: Controlling the Number of ManagedConnections

In compliance with Connector Architecture 1.6, when an application component
requests a connection to an EIS through the resource adapter, WebLogic Server first
tries to match the type of connection being requested with an existing and available
ManagedConnect i on in the connection pool. However, if a match is not found, a
new ManagedConnect i on may be created to satisfy the connection request.

Using the capaci t y-i ncr enent element in the webl ogi c-ra. xm descriptor file,
you can specify a number of additional ManagedConnect i ons to be created
automatically when a match is not found. This feature provides give you the flexibility
to control connection pool growth over time and the performance hit on the server
each time this growth occurs.

6.4.4 shrinking-enabled: Controlling System Resource Usage

Although setting the maximum number of ManagedConnect i ons prevents the
server from becoming overloaded by more allocated ManagedConnect i ons than it
can handle, it does not control the efficient amount of system resources needed at any
given time. WebLogic Server provides a service that monitors the activity of
ManagedConnect i ons in the connection pool of a resource adapter. If the usage
decreases and remains at this level over a period of time, the size of the connection
pool is reduced to the initial capacity or as close to this as possible to adequately
satisfy ongoing connection requests.

This system resource usage service is turned on by default. However, to turn off this
service, you can set the shri nki ng- enabl ed element in the webl ogi c-r a. xml
descriptor file to f al se.

6.4.5 shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim
Unused ManagedConnections

Use the shri nk-frequency- seconds element in the webl ogi c-ra. xni
descriptor file to identify the amount of time (in seconds) the Connection Pool
Manager will wait between attempts to reclaim unused ManagedConnect i ons. The
default value of this element is 900 seconds.

6.4.6 highest-num-waiters: Controlling the Number of Clients Waiting for a Connection

If the maximum number of connections has been reached and there are no available
connections, WebLogic Server retries until the call times out. The hi ghest - num

wai t er s element controls the number of clients that can be waiting at any given time
for a connection.

6.4.7 highest-num-unavailable: Controlling the Number of Unavailable Connections

When a connection is created and fails, the connection is placed on an unavailable list.
WebLogic Server attempts to recreate failed connections on the unavailable list. The
hi ghest - num unavai | abl e element controls the number of unavailable
connections that can exist on the unavailable list at one time.

6-12 Developing Resource Adapters for Oracle WebLogic Server

Configuring Connection Pool Parameters

6.4.8 connection-creation-retry-frequency-seconds: Recreating Connections

To configure WebLogic Server to attempt to recreate a connection that fails while
creating additional ManagedConnect i ons, enable the connecti on-creati on-
retry-frequency-seconds element. By default, this feature is disabled.

6.4.9 match-connections-supported: Matching Connections

A connection request contains parameter information. By default, the connector
container calls the mat chManagedConnect i ons() method on the
ManagedConnect i onFact or y to match the available connection in the pool to the
parameters in the request. The connection that is successfully matched is returned.

It may be that the ManagedConnect i onFact or y does not support the call to

mat chManagedConnecti ons() . If so, the mat chManagedConnect i ons() method
call throws a j avax. r esour ce. Not Support edExcept i on. If the exception is
caught, the connector container automatically stops calling the

mat chManagedConnect i ons() method on the ManagedConnect i onFact ory.

You can set the mat ch- connect i ons- support ed element to specify whether the
resource adapter supports connection matching. By default, this element is set to true
and the mat chManagedConnect i ons() method is called at least once. If it is set to
false, the method call is never made.

If connection matching is not supported, a new resource is created and returned if the
maximum number of resources has not been reached; otherwise, the oldest
unavailable resource is refreshed and returned.

6.4.10 test-frequency-seconds: Testing the Viability of Connections

Thet est - f r equency- seconds element allows you to specify how frequently (in
seconds) connections in the pool are tested for viability.

6.4.11 test-connections-on-create: Testing Connections upon Creation

You can set the t est - connect i ons- on- cr eat e element to enable the testing of
connections as they are created. The default value is f al se.

6.4.12 test-connections-on-release: Testing Connections upon Release to Connection
Pool

You can set the t est - connect i ons-on-r el ease element to enable the testing of
connections as they are released back into the connection pool. The default value is
fal se.

6.4.13 test-connections-on-reserve: Testing Connections upon Reservation
You can set the t est - connect i ons- on-r eser ve element to enable the testing of

connections as they are reserved from the connection pool. The default valueis f al se.

6.4.14 deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole
Adapter Deployment

You can set the depl oy- as- a- whol e element to determine whether or not the
deployment of a resource adapter, which contains multiple outbound connection
pools, should fail if a failure occurs in any connection pool. The default value is t r ue,

Connection Management 6-13

Connection Proxy Wrapper - 1.0 Resource Adapters

which causes the whole resource adapter deployment to fail if any error occurs (not
just with connection pools).

Setting this element to f al se enables the resource adapter deployment to succeed as
long as at least one outbound connection pool remains healthy, allowing you isolate,
diagnose, repair, and dynamically update the resource adapter without the need to
redeploy it.

6.5 Connection Proxy Wrapper - 1.0 Resource Adapters

The connection proxy wrapper feature is valid only for resource adapters that are
created based on the Java EE Connector Architecture 1.0. When a connection request is
made, WebLogic Server returns to the client (by way of the resource adapter) a proxy
object that wraps the connection object. WebLogic Server uses this proxy to provide
the following features:

¢ Connection leak detection capabilities

* Late XAResource enlistment when a connection request is made before starting a
global transaction that uses that connection

6.5.1 Possible ClassCastException

If the connection object returned from a connection request is cast as a Connect i on
implementation class (rather than an interface implemented by the Connect i on
class), a €l assCast Except i on can occur. This exception is caused by one of the
following:

¢ The resource adapter performing the cast

¢ The client performing the cast during a connection request

An attempt is made by WebLogic Server to detect the Cl assCast Except i on caused
by the resource adapter. If the server detects that this cast is failing, it turns off the
proxy wrapper feature and proceeds by returning the unwrapped connection object
during a connection request. The server logs a warning message to indicate that proxy
generation has been turned off. When this occurs, connection leak detection and late
XAResource enlistment features are also turned off.

WebLogic Server attempts to detect the Cl assCast Except i on by performing a test
at resource adapter deployment time by acting as a client using container-managed

security. This requires the resource adapter to be deployed with security credentials
defined.

If the client is performing the cast and receiving a Cl assCast Except i on, the client
code can be modified, as in the following example.

Assume the client is casting the connection object to MyConnect i on.

1. Rather than having MyConnect i on be a class that implements the resource
adapter's Connect i on interface, modify MyConnect i on to be an interface that
extends Connect i on.

2. Implement a MyConnect i onl npl class that implements the MyConnect i on
interface.

6-14 Developing Resource Adapters for Oracle WebLogic Server

Reset a Connection Pool

6.5.2 Turning Proxy Generation On and Off

If you know for sure whether or not a connection proxy can be used in the resource
adapter, you can avoid a proxy test by explicitly setting the use- connecti on-

pr oxi es element in the WebLogic Server 8.1 version of webl ogi c-ra. xml totrue
orfal se.

Note:

WebLogic Server still supports Java EE Connector Architecture 1.0 resource
adapters. For 1.0 resource adapters, continue to use the WebLogic Server 8.1
deployment descriptors found in weblogic-ra.xml. It contains elements that
continue to accommodate 1.0 resource adapters.

If set to t r ue, the proxy test is not performed and connection properties are
generated.

If set to f al se, the proxy test is not performed and connection proxies are generated.

If use- connecti on- pr oxi es is unspecified, the proxy test is performed and
proxies are generated if the test passes. (The test passes if a O assCast Except i on is
not thrown by the resource adapter).

Note:

The test cannot detect a Cl assCast Except i on caused by the client code.

6.6 Reset a Connection Pool

You may need to reset a connection pool to:

® Recover a connection pool in an unhealthy state without interfering other running
connection pools.

¢ Make non-dynamic configuration changes that could not take effect through an
update operation. For example: changing properties on a
ManagedConnect i onFact or y or changing transaction support for connection.

You can reset a connection pool in one of two ways:

® Reset—If no connections in the pool are in use, the pool is recreated. The new pool
includes any configuration changes you may have made prior to the reset. If a
connection is in use, the pool is not reset.

* Force Reset—Immediately discards all used and unused connections and the pool
is recreated. The new pool includes any configuration changes you may have made
prior to the reset.

Use the following steps to reset a connection pool from the WebLogic Server
Administration Console:

1. Select your resource adapter from the Summary of Deployments table.

2. Select Control > Outbound Connection Pools

Connection Management 6-15

Testing Connections

3.

4.

Select the connection pools to reset.

Click Reset or Force Reset.

6.7 Testing Connections

If a resource adapter's ManagedConnect i onFact or y implements the Val i dat i ng
interface, then the application server can test the validity of existing connections. You
can test either a specific outbound connection or the entire pool of outbound
connections for a particular ManagedConnect i onFact or y. Testing the entire pool
results in testing each connection in the pool individually. For more information on
this feature, see section 6.5.3.4 "Detecting Invalid Connections" in JSR 322: Java EE
Connector Architecture 1.6.

6.7.1 Configuring Connection Testing

The following optional elements in the webl ogi c-ra. xm deployment descriptor
allow you to control the testing of connections in the pool.

t est - frequency- seconds - The connector container periodically tests all the
free connections in the pool. Use this element to specify the frequency with which
the connections are tested. The default is 0, which means the connections will not
be tested.

t est - connecti ons- on- cr eat e - Determines whether the connection should be
tested upon its creation. By default it is false.

t est - connecti ons-on-r el ease - Determines whether the connection should
be tested upon its release. By default it is false.

t est - connecti ons- on-reser ve - Determines whether the connection should
be tested upon its reservation. By default it is false.

6.7.2 Testing Connections in the Administration Console

To test a resource adapter's connection pools:

1.

3.

In the WebLogic Server Administration Console, open the Deployments page and
select the resource adapter in the Deployments table.

Select the Test tab.

You will see a table of connection pools for the resource adapter and the test status
of each pool.

Select the connection pool you want to test and click Test.

See "Test outbound connections" in the Oracle WebLogic Server Administration Console
Online Help.

6-16 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00511

v

Transaction Management

This chapter describes the system-level transaction management contract that is used
for outbound communication from WebLogic Server to Enterprise Information
Systems.

This chapter includes the following sections:
e Supported Transaction Levels

* Configuring Transaction Levels

For more information about transaction management, see Chapter 7, "Transaction
Management," in JSR 322: Java EE Connector Architecture 1.6. For information about
transaction management for inbound communication from ElISes to WebLogic Server,
see Transactional Inflow.

7.1 Supported Transaction Levels

A transaction is a set of operations that must be committed together or not at all for
the data to remain consistent and to maintain data integrity. Transactional access to
ElSes is an important requirement for business applications. The Java EE Connector
Architecture 1.6 supports the use of transactions.

WebLogic Server utilizes the WebLogic Server Transaction Manager implementation
and supports resource adapters having XA, local, or no transaction support. You
define the type of transaction support in the t r ansact i on- support element in the
ra.xm file; a resource adapter can support only one type. You can use the
transacti on-support elementin the webl ogi c-ra. xm deployment descriptor
to override the value specified in r a. xm . See Configuring Transaction Levels, and
#unique_116/unique_116_Connect_42_I1082166 in Table A-18 for details.

Resource adapters conforming to Java EE Connector Architecture 1.6 can optionally
specify the level of transaction support at run time. This requires the implementation
of the Tr ansact i onSupport interface. For more information, see Specifying and
Obtaining Transaction Support Level.

7.1.1 XA Transaction Support

XA transaction support allows a transaction to be managed by a transaction manager
external to a resource adapter (and therefore external to an EIS). When an application
component demarcates an EIS connection request as part of a transaction, the
application server is responsible for enlisting the XA resource with the transaction
manager. When the application component closes that connection, the application
server cleans up the EIS connection once the transaction has completed.

Oracle recommends creating a LocalTransaction outbound connection pool for an XA
transaction capable resource adapter for improved performance.

Transaction Management 7-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Supported Transaction Levels

7.1.2 Local Transaction Support

Local transaction support allows WebLogic Server to manage resources that are local
to the resource adapter. Unlike XA transaction, local transaction generally cannot
participate in a two-phase commit protocol (2PC). The only way a local transaction
resource adapter can be involved in a 2PC transaction is if it is the only local
transaction resource involved in the transaction and if the WebLogic Server Connector
container uses a Last Resource Commit Optimization whereby the outcome of the
transaction is governed by the resource adapter's local transaction.

A local transaction is normally started by using the API that is specific to that resource
adapter, or the CCl interface if it is supported for that adapter. When a resource
adapter connection that is configured to use local transaction support is created and
used within the context of an XA transaction, WebLogic Server automatically starts a
local transaction to be used for this connection. When the XA transaction completes
and is ready to commit, prepare is first called on the XA resources that are part of the
XA transaction. Next, the local transaction is committed.

If the commit fails on the local transaction, the XA transaction and all the XA resources
are rolled back. If the commit succeeds, all the XA resources for the XA transaction are
committed. When an application component closes the connection, WebLogic Server
cleans up the connection once the transaction has completed.

7.1.3 No Transaction Support

If a resource adapter is configured to use no transaction support, the resource adapter
can still be used in the context of a transaction. However, in this case, the connections
used for that resource adapter are never enlisted in a transaction and behave as if no
transaction was present. In other words, operations performed using these
connections are made to the underlying EIS immedjiately, and if the transaction is
rolled back, the changes are not undone for these connections.

7.1.4 Runtime Transaction Support Level Specification

JSR 322: Java EE Connector Architecture 1.6 states that a resource adapter may
optionally determine and classify the level of transaction support it can provide at run
time. To expose information about the level of transaction support at run time, a
ManagedConnect i onFact or y must implement the Tr ansact i onSupport
interface. JSR 322: Java EE Connector Architecture 1.6 also defines rules and priorities
on transaction support levels set in descriptors, annotations, and the

Transact i onSupport interface. For example, WebLogic Server uses the value
returned by the get Tr ansact i onSuppor t method and ignores the value specified
by the resource adapter's deployment descriptor and the @onnect or metadata
annotation.

WebLogic Server exposes information about the runtime transaction support level in
the Connect or Connect i onPool Runt i neMBean. Runt i neTr ansact i onSupport
MBean attribute and also in the WebLogic Server Administration Console.

To view the runtime transaction level support in the WebLogic Server Administration
Console:

1. In the Summary of Deployments page, select the resource adapter.

2. Click Monitoring > Outbound Connection Pools, and view the items in the
Runtime Transaction Support column.

7-2 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring Transaction Levels

7.2 Configuring Transaction Levels

You specify a transaction support level for a resource adapter in the Java EE standard
resource adapter deployment descriptor, r a. xm . To specify the transaction support
level:

¢ For No Transaction, add the following entry to the r a. xm deployment descriptor
file: <t ransact i on- support >NoTr ansacti on</transacti on- support>

e For XA Transaction, add the following entry to the r a. xm deployment descriptor
file: <t ransact i on- support >XATr ansact i on</transacti on- support >

¢ For Local Transaction, add the following entry to the r a. xm deployment
descriptor file: <t r ansact i on- support>Local Transact i on</
transacti on- support >

Resource adapters conforming to Java EE Connector Architecture 1.6 can optionally
specify the level of transaction support at run time. This requires the implementation
of the Tr ansact i onSupport interface. For more information, see Specifying and
Obtaining Transaction Support Level.

The transaction support value specified in the r a. xm deployment descriptor is the
default value for all Connection Factories of the resource adapter. You can override
this value for a particular Connection Factory by specifying a value in the

transacti on-support element of the webl ogi c-ra. xm deployment descriptor.

The value of t ransact i on- suppor t must be one of the following:
e NoTransacti on
e Local Transacti on

e XATransacti on

For more information on specifying the transaction level in the r a. xm deployment
descriptor, see Section 20.7, "Resource Adapter XML Schema Definition," in JSR 322:
Java EE Connector Architecture 1.6. For more information on specifying the
transaction level in the webl ogi c-ra. xm deployment descriptor, see weblogic-
ra.xml Schema.

7.2.1 Configure XA Transaction Recovery Credential Mapping

For pools which support XA Transactions, WebLogic Server may try to perform
transaction recovery for the Java EE Connector Architecture connection pool if
WebLogic Server finds pending transactions in the pool during a server startup. If
pending transactions are found, WebLogic Server gets a ManagedConnection to EIS
during recovery using

ManagedConnecti onFact ory. cr eat eManagedConnect i on(j avax. security.
aut h. Subj ect subj ect, Connecti onRequest|nfo cxRequestl| nfo).

If EIS requires explicit credentials (such as user name and password) to sign-on, the
you need to configure WebLogic Server with appropriate credentials by configuring a
special credential mapping for the initial connection. See Initial Connection: Requires a
ManagedConnection from Adapter Without Application's Request . WebLogic Server
uses nul | as Subj ect if a mapping is not found.

Transaction Management 7-3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring Transaction Levels

Note:

You do not need to configure this special credential mapping if the EIS doesn't
require explicit credentials.

7-4 Developing Resource Adapters for Oracle WebLogic Server

8

Message and Transactional Inflow

This chapter describes how WebLogic resource adapters use inbound connections to
handle message inflow and transactional inflow.

This chapter includes the following sections:

Overview of Message and Transactional Inflow

How Message Inflow Works

Message Inflow to Message Endpoints (Message-driven Beans)
Transactional Inflow

Configuring and Managing Long-Running Work

8.1 Overview of Message and Transactional Inflow

Message inflow refers to inbound communication from an EIS to the application
server, using a resource adapter. Inbound messages can be part of a transaction that is
governed by a Transaction Manager that is external to WebLogic Server and the
resource adapter, as described in Transactional Inflow.

The following diagram provides an overview of how messaging and transaction
inflow occurs within a resource adapter and the role played by the Work Manager.

Message and Transactional Inflow 8-1

Overview of Message and Transactional Inflow

Figure 8-1 Messaging and Transactional Inflow Architecture

Webl ogic Server
Work
Manager |«
g External
Connector Container Transaction
Client .| Application LRI it

Application Component
Connection
; Pool y
R MCF-2 ;ﬁzﬁ h
e T

Message
Message -‘"\h\—_..,ﬁhh& @ . | Source (EIS
Endpoint Message |, e Or Message
Application Endpoint C. Provider)
Factory andle ¥
-
\ Acil. =
essane Spec
Endpoint | * MLTj

Proxy

LEGEND

MCF2 — ManagedConnectionbactory 2

MC1 — ManagedConnection 1

MCn — ManagedConnection n

C-Handle — Connection Handle Handed to Client

Act Spec MLT-j — Activationsnec Comresponding to Messaoel istener type-j

8.1.1 Architecture Components

Figure 8-1 contains the following components:

¢ A client application, which connects to an application running on WebLogic Server,
but which also needs to connect to an EIS

* An external system (in this case, an EIS or Enterprise Information System)

¢ Anapplication component (an E]B) that the client application uses to submit
outbound requests to the EIS through the resource adapter

* A message endpoint application (a message-driven bean and possibly other Java
EE components) used for the receipt of inbound messages from the EIS through the
resource adapter

¢ The WebLogic Server Work Manager and an associated thread (or threads) to
which the resource adapter submits Work instances to process inbound messages
and possibly process other actions.

8-2 Developing Resource Adapters for Oracle WebLogic Server

Overview of Message and Transactional Inflow

An external Transaction Manager, to which the WebLogic Server Transaction
Manager is subordinate for transactional inflow of messages from the EIS

The WebLogic Server Connector container in which the resource adapter is
deployed. The container manages the following:

A deployed resource adapter that provides bi-directional (inbound and
outbound) communication to and from the EIS.

An active Wor k instance.

Multiple managed connections (MC1, ..., MCn), which are objects representing
the outbound physical connections from the resource adapter to the EIS.

Connection handles (C-handle) returned to the application component from the
connection factory of the resource adapter and used by the application
component for communicating with the EIS.

One of perhaps many activation specifications. There is an activation
specification (Act i vat i onSpec) that corresponds to each specific message
listener type, MLT-j. For information about requirements for an

Acti vat i onSpec class, see Chapter 13, "Message Inflow" in JSR 322: Java EE
Connector Architecture 1.6.

One of the connection pools maintained by the container for the management of
managed connections for a given ManagedConnect i onFact or y (in this case,
MCF-2. A Connector container could include multiple connection pools, each
corresponding to a different type of connections to a single EIS or even different
ElSes).

A MessageEndpoi nt Fact or y created by the E]JB container and used by the
resource adapter to create proxies to MessageEndpoi nt instances (MDB
instances from the MDB pool).

¢ An external message source, which could be an EIS or Message Provider

8.1.2 Inbound Communication Scenario

This section describes a basic inbound communication scenario that may be described
using the diagram, showing how inbound messages originate in an EIS, flow into the
resource adapter, and are handled by a Message-driven Bean. For related information,
see Figure 2-1.

A typical simplified inbound sequence involves the following steps:

1.

2.

The EIS sends a message to the resource adapter.
The resource adapter inspects the message and determines what type of message
itis.

The resource adapter may create a Wr k object and submit it to the Work
Manager. The Work Manager performs the succeeding work in a separate Thread,
while the resource adapter can continue waiting for other incoming messages.

Based on the message type, the resource adapter (either directly or as part of a
Wor k instance) looks up the correct message endpoint to which it will send the
message.

Message and Transactional Inflow 8-3

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

How Message Inflow Works

5. Using the message endpoint factory corresponding to the type of message
endpoint it needs, the resource adapter creates a message endpoint (which is a
proxy to a message-driven bean instance from the MDB pool).

6. The resource adapter invokes the message listener method on the endpoint,
passing it message content based on the message it received from the EIS.

7. The message is handled by the MDB in one of several possible ways:

a. the MDB may handle the message directly and possibly return a result to the
EIS through the resource adapter

b. the MDB may distribute the message to some other application component
c. the MDB may place the message on a queue to be picked up by the client

d. the MDB may directly communicate with the client application.

8.2 How Message Inflow Works

A resource adapter that supports inbound communication from an EIS to the
application server typically includes the following:

® A proprietary communications channel and protocol for connecting to and
communicating with an EIS. The communications channel and protocol are not
visible to the application server in which the resource adapter is deployed. See
Proprietary Communications Channel and Protocol.

¢ One or more message types recognized by the resource adapter.

* A dispatching mechanism to dispatch a message of a given type to another
component in the application server.

8.2.1 Handling Inbound Messages

A resource adapter may handle an inbound message in a variety of ways. For
example, it may:

¢ Handle the message locally, that is, within the Resour ceAdapt er bean, without
involving other components.

* Pass the message off to another application component. For example, it may look
up an EJB and invoke a method on it.

¢ Send the message to a message endpoint. Typically, a message endpoint is a
message-driven bean (MDB). For more information, see Message Inflow to Message
Endpoints (Message-driven Beans).

Inbound messages may return a result to the EIS that is sending the message. A
message requiring an immediate response is referred to as synchronous (the sending
system waits for a response). This is also referred to as request-response messaging. A
message that does not expect a response as part of the same exchange with the
resource adapter is referred to as asynchronous or event notification-based
communication. A resource adapter can support asynchronous or synchronous
communications for all three destinations listed above.

Depending upon the transactional capabilities of the resource adapter and the EIS,
inbound messages can be either part of a transaction (XA) or not (non-transactional). If
the messages are XA, the controlling transaction may be coordinated by an external

8-4 Developing Resource Adapters for Oracle WebLogic Server

Message Inflow to Message Endpoints (Message-driven Beans)

Transaction Manager (transaction inflow) or by the application server's Transaction
Manager. See Transactional Inflow.

In most cases, inbound messages in a resource adapter are dispatched through a Wor k
instance in a separate thread. The resource adapter wraps the work to be done in a
Wor k instance and submits it to the application server's Work Manager for execution
and management. A resource adapter can submit a Work instance using the

doWor k() ,startWork(), or schedul eWr k() methods depending upon the
scheduling requirements of the work.

8.2.2 Proprietary Communications Channel and Protocol

The resource adapter can expose connection configuration information to the deployer
by various means; for example, as properties on the Resour ceAdapt er bean or
properties on the Act i vat i onSpec object. An alternative is to use the same
communication channel for inbound as well as outbound traffic. Thus you can also set
configuration information on the outbound connection pool.

8.3 Message Inflow to Message Endpoints (Message-driven Beans)

Prior to EJB 2.1, a message-driven bean (MDB) supported only Java Message Service
(JMS) messaging. That is, an MDB had to implement the

j avax. j ms. MessagelLi st ener interface, including the

onMessage(j avax. j ns. Message) message listener method. MDBs were bound to
JMS components and the JMS subsystem delivered the messages to MDBs by invoking
the onMessage() method on an instance of the MDB.

With EJB 2.1, the JMS-only MDB restriction has been lifted to accommodate the
delivery of messages from inbound resource adapters. The main ingredients for
message delivery to an MDB by way of a resource adapter are:

* An inbound message of a certain type (determined by the resource adapter/EIS
contract)

* AnActivati onSpec object implemented by the resource adapter
* A mapping between message types and message listener interfaces
¢ An MDB that implements a given message listener interface

* A deployment-time binding between an MDB and a resource adapter

For more information about message-driven Beans, see "Message-Driven E]Bs" in
Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

8.3.1 Deployment-Time Binding Between an MDB and a Resource Adapter

A resource adapter can be deployed independently (as a standalone RAR) or as part of
an enterprise application (EAR). An MDB can also be deployed independently (as a
standalone JAR) or as part of an enterprise application (EAR). In either case, an MDB
whose messages are derived from a resource adapter must be bound to the resource
adapter. The following sections describe binding the MDB and resource adapter and
subsequent messaging operations.

8.3.1.1 Binding an MDB and a Resource Adapter

To bind an MDB and a resource adapter, you must:

Message and Transactional Inflow 8-5

Message Inflow to Message Endpoints (Message-driven Beans)

Set the j ndi - nane element in the webl ogi c- r a. xml deployment descriptor for
the resource adapter. See jndi-name in weblogic-ra.xml Schema.

Set the adapt er - j ndi - nane element in the webl ogi c-ej b-j ar. xmni
deployment descriptor to match the value set in the corresponding j ndi - nane
element in the resource adapter.

Assume that the resource adapter is deployed prior to the MDB. (The MDB could
be deployed before the resource adapter is deployed; in that case, the deployed
MBDB polls until the resource adapter is deployed.) When the resource adapter is
deployed, the Resour ceAdapt er bean is bound into JNDI using the name
specified.

The MDB is deployed, and the MDB container invokes an application server-
specific API that looks up the resource adapter by its JNDI name and invokes the
specification-mandated endpoi nt Act i vati on(MessageEndpoi nt Fact ory,
Acti vati onSpec) method on the resource adapter.

The MDB container provides the resource adapter with a configured
Act i vat i onSpec (containing configuration information) and a factory for the
creation of message endpoint instances.

The resource adapter saves this information for later use in message delivery. The
resource adapter thereby knows what message listener interface the MDB
implements. This information is important for determining what kind of messages
to deliver to the MDB.

8.3.2 Dispatching a Message

When a message arrives from the EIS to the resource adapter, the resource adapter
determines where to dispatch it. The following is a possible sequence of events:

1.

2.

A message arrives from the EIS to the resource adapter.

The resource adapter examines the message and determines its type by looking it
up in an internal table. The resource adapter determines the message type
corresponds to a particular pair (MessageEndpoi nt Factory,

Act i vat i onSpec).

The resource adapter determines the message should be dispatched to an MDB.

Using the MessageEndpoi nt Fact or y for that type of message endpoint (one to
be dispatched to an MDB), the resource adapter creates an MDB instance by
invoking cr eat eEndpoi nt () on the factory.

The resource adapter then invokes the message listener method on the MDB
instance, passing any required information (such as the body of the incoming
message) to the MDB.

If the message listener does not return a value, the message dispatching process is
complete.

If the message listener returns a value, the resource adapter determines how to
handle that value. This may or may not result in further communication with the
EIS, depending upon the contract with the EIS.

8-6 Developing Resource Adapters for Oracle WebLogic Server

Transactional Inflow

8.3.3 Activation Specifications

A resource adapter is configured with a mapping of message types and activation
specifications. The activation specification is a JavaBean that implements

j avax. resource. spi . Acti vat i onSpec. The resource adapter has an

Act i vat i onSpec class for each supported message type. The mapping of message
types and activation specifications is configured in the r a. xm deployment
descriptor, as described in Configuring Inbound Connections, For more information
about Act i vat i onSpecs, see Chapter 13, "Message Inflow," in JSR 322: Java EE
Connector Architecture 1.6.

8.3.4 Administered Objects

As described in section 13.4.2.3 of JSR 322: Java EE Connector Architecture 1.6, a
resource adapter may provide the Java class name and the interface type of an
optional set of JavaBean classes representing administered objects that are specific to a
messaging style or message provider. You configure administered objects in the

admi n- obj ect s elements of the r a. xm and webl ogi c-ra. xm deployment
descriptor files. As with outbound connections and other WebLogic resource adapter
configuration elements, you can define administered objects at three configuration
scope levels:

¢ Global - Specify parameters that apply to all administered objects in the resource
adapter using the def aul t - properti es element. See weblogic-ra.xml Schema in
Table A-15

* Group - Specify parameters that apply to all administered objects belonging to a
particular administered object group specified in the r a. xrm deployment
descriptor using the admni n- obj ect - gr oup element. The properties specified in a
group override any parameters specified at the global level. See admin-object-
group.

The adm n- obj ect - i nt er f ace element (a subelement of the adm n- obj ect -
gr oup element) serves as a required unique element (a key) to each admi n-

obj ect - gr oup. There must be a one-to-one relationship between the admi n-
obj ect -i nt er f ace element in webl ogi c-ra. xm and the admi n- obj ect -
interfaceelementinra. xn .

¢ Instance - Under each admin object group, you can specify administered object
instances using the admi n- obj ect - i nst ance element of the webl ogi c-
ra. xm deployment descriptor. These correspond to the individual administered
objects for the resource adapter. You can use the admi n- obj ect - properties
subelement to specify properties at the instance level too; properties specified at the
instance level override those provided at the group and global levels. See admin-
object-instance.

8.4 Transactional Inflow

This section discusses how transactions flow into WebLogic Server from an EIS and a
resource adapter. A transaction inflow contract allows the resource adapter to handle
transaction completion and crash recovery calls initiated by an EIS. It also ensures that
ACID properties of the imported transaction are preserved. For more information on
transaction inflow, see Chapter 15, "Transaction Inflow," in JSR 322: Java EE Connector
Architecture 1.6.

Message and Transactional Inflow 8-7

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Transactional Inflow

When an EIS passes a message through a resource adapter to the application server, it
may pass a transactional context under which messages are delivered or work is
performed. The inbound transaction will be controlled by a transaction manager
external to the resource adapter and application server. See Message Inflow to
Message Endpoints (Message-driven Beans).

A resource adapter may act as a bridge between the EIS and the application server for
transactional control. That is, the resource adapter receives messages that it interprets
as XA callbacks for participating in a transaction with a external Transaction Manager.

WebLogic Server can function as an XA resource to a external Transaction Manager
through its interposed Transaction Manager. The WebLogic Server Transaction
Manager maps external transaction IDs to WebLogic Server-specific transaction IDs
for such transactions.

The WebLogic Server Transaction Manager is subordinate to the external Transaction
Manager, which means that the external Transaction Manager ultimately determines
whether the transaction succeeds or is rolled back. See "Participating in Transactions
Managed by a Third-Party Transaction Manager" in Developing JTA Applications for
Oracle WebLogic Server. As part of the Java EE Connector Architecture 1.6, the ability
for a resource adapter to participate in such a transaction is now exposed through a
Java EE standard API.

The following process explains how a resource adapter would participate in a external
transaction. For more information, see section 15.4, "Transaction Inflow Model," in JSR
322: Java EE Connector Architecture 1.6.

1. The resource adapter receives an inbound message with the transaction context
that arrived along with the incoming message.

2. The resource adapter represents the transaction context using the
j avax. transaction. xa. Xi d instance.

3. The resource adapter creates a new Wr K instance to process the incoming
message and deliver it to a message endpoint, and also creates an instance of an
Execut i onCont ext (j avax. resource. spi . wor k. Execut i onCont ext),
setting the Xi d it created and also setting a transaction timeout value. Version 1.6
of the Connector Architecture defines a standard class, Tr ansact i onCont ext,
which resource adapters may use instead of the Execut i onCont ext for
propagating the transaction context from the EIS to the application server.

4. The resource adapter submits the Wbr k object and the Tr ansact i onCont ext (or
Execut i onCont ext) to the Work Manager for processing. At this point, the
Work Manager performs the necessary work to enlist the transaction and start it
with the WebLogic Server Transaction Manager.

To use a Tr ansact i onCont ext , the Wr k class must:

a. Implement the j avax. r esource. spi . wor k. Wor kCont ext Provi der
interface.

b. Create and return a Tr ansact i onCont ext instance in the
get Wor kCont ext s() method.

Note:

If the resource adapter uses a Tr ansact i onCont ext, the adapter must not
use an Execut i onCont ext .

8-8 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring and Managing Long-Running Work

5. Subsequent XA calls from the external Transaction Manager are sent through the
resource adapter and communicated to the WebLogic Server Transaction
Manager. In this way, the resource adapter acts as a bridge for the XA calls
between the external Transaction Manager and the WebLogic Server Transaction
Manager, which is acting as a resource manager.

8.4.1 Using the Transactional Inflow Model for Locally Managed Transactions

When the resource adapter receives requests from application components running in
the same server instance as the resource adapter that need to be delivered to an MDB
as part of the same transaction as the resource adapter request, the transaction ID must
be obtained from the transaction on the current thread and placed in a

Transact i onCont ext (or Executi onCont ext).

In this case, WebLogic Server does not use the Interposed Transaction Manager but
simply passes the transaction on to the Work Thread used for message delivery to the
MDB.

8.5 Configuring and Managing Long-Running Work

As mentioned in Long-Running Work Support, WebLogic Server supports the use of
Hi nt sCont ext . LONGRUNNI NG_HI NT. If set to t r ue in a resource adapter VWor k
class, LONGRUNNI NG_HI NT causes a Wr k instance to be established as a long-running
work item that WebLogic Server schedules in a separate daemon thread, not in a Work
Thread. LONGRUNNI NG_HI NT performs the same function as the WebLogic Server
extension annotation @LongRunning.

WebLogic Server extends Connector Architecture 1.6 by providing the
ConnectorWorkManagerRuntimeMBean, which contains attributes for configuring
and monitoring long-running Wr k instances. These attributes, described in the
following sections, are also exposed in the WebLogic Server Administration Console.

¢ Setting the Maximum Number of Concurrent Long-Running Work Instances

* Monitoring Long-Running Work

For more information about the @LongRunning extension annotation, see
LongRunni ng in Java API Reference for Oracle WebLogic Server.

8.5.1 Setting the Maximum Number of Concurrent Long-Running Work Instances

Oracle recommends that you minimize the number of long-running Wr k instances
executing concurrently because each long running work runs in its own daemon
thread. Having too many concurrent long-running Work instances can exhaust the
thread resources in WebLogic Server and cause a negative impact on server
performance and stability. WebLogic Server may introduce restrictions on maximum
concurrent long running works allowed in a future release.

You can use the WebLogic Server Administration Console to set the maximum
allowed number of concurrent Wor k instance requests as follows:

1. Select the resource adapter in the Summary of Deployments > Control page.
2. Select Configuration > Workload.

3. Enter a new value in Maximum Number of Concurrent Long Running Requests,
if desired, and click Save.

Message and Transactional Inflow 8-9

Configuring and Managing Long-Running Work

If you save a new value, the Save Deployment Plan Assistant is displayed, which
prompts you to select or enter the path of a deployment plan file. For more
information about working with deployment plans, see "Understanding WebLogic
Server Deployment" in Deploying Applications to Oracle WebLogic Server.

Note the following:

* You can also view the maximum number of concurrent Wr k instance requests
allowed from the Resource Adapter: Monitoring: Workload page in the WebLogic
Server Administration Console, as described in Monitoring Long-Running Work.

* Asan alternative to using the WebLogic Server Administration Console, you can
use the max- concur r ent -1 ong- r unni ng- r equest s element in the
webl ogi c-ra. xnl file to set the maximum allowed number of concurrent Wr k
instance requests. For information, see connector-work-manager.

8.5.2 Monitoring Long-Running Work

The ConnectorWorkManagerRuntimeMBean exposes long-running run-time
information about the resource adapter's specific Work Manager in the following
MBean attributes:

e Connect or Wr kManager Runt i mneMBean. Act i veLongRunni ngRequest s —
Returns the number of current active long-running Wor k instance requests.

e Connect or Wr kManager Runt i mreMBean. Conpl et edLongRunni ngRequest s
— Returns the number of completed long-running Wr k instance requests.

e Connect or Wor kManager Runt i meMBean. MaxConcur r ent LongRunni ngRequ
est s — Returns the maximum number of concurrent Wr k instance requests
allowed.

To view information about the currently active or completed long-running W\or k
instance requests using the WebLogic Server Administration Console:

1. Select the resource adapter in the Summary of Deployments > Control page.
2. Select Monitoring > Workload.

The following information about long-running Wr k instance requests is available
from the Long Running Work Managers table:

The column labeled identifies the following

Active Requests The number of currently active long-running Wor k
instance requests.

Completed Requests The number of completed long-running Wr k
instance requests.

Max Concurrent Requests The maximum number of concurrent Wor k instance

Allowed requests allowed.

8-10 Developing Resource Adapters for Oracle WebLogic Server

9

Security

This chapter describes WebLogic Server resource adapter security for inbound and
outbound communication. Resource adapters must be configured with authentication
and other necessary security information to be able to establish connections with
external systems.

This chapter includes the following sections:

¢ Container-Managed and Application-Managed Sign-on
* Credential Mapping for Making Outbound Connections
e Security Inflow

¢ Security Policy Processing

¢ Configuring Security Identities for Resource Adapters

* Configuring Connection Factory-Specific Authentication and Re-authentication
Mechanisms

For more information about WebLogic security, see Understanding Security for Oracle
WebLogic Server and Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

9.1 Container-Managed and Application-Managed Sign-on

When a resource adapter makes an outbound connection to an Enterprise Information
System (EIS), it needs to sign on with valid security credentials. In accordance with
JSR 322: Java EE Connector Architecture 1.6, WebLogic Server supports both
container-managed and application-managed sign-on for outbound connections. At
run time, WebLogic Server determines the chosen sign-on mechanism, based on the
information specified in either the invoking client component's deployment descriptor
or the r es- aut h element of the resource adapter deployment descriptor. A sign-on
mechanism specified in a resource adapter's deployment descriptor takes precedence
over one specified in the calling component's deployment descriptor. Even when
using container-managed sign-on, any security information explicitly specified by the
client component is presented on the call to obtain the connection.

If the WebLogic Server Java EE 1.6 Connector Architecture implementation cannot
determine which sign-on mechanism is being requested by the client component, the
connector container attempts container-managed sign-on.

9.1.1 Application-Managed Sign-on

With application-managed sign-on, the client component supplies the necessary
security credentials (typically a user name and password) when making the call to
obtain a connection to an EIS. In this scenario, the application server provides no

Security 9-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Credential Mapping for Making Outbound Connections

additional security processing other than to pass along this information in the request
for the connection.

9.1.2 Container-Managed Sign-on

WebLogic Server and an EIS each maintain independent security realms. A goal of
container-managed sign-on is to permit a user to sign on to WebLogic Server and be
able to use applications that access an EIS through a resource adapter without having
to sign on separately to the EIS. Container-managed sign-on in WebLogic Server uses
outbound credential mappings, which map credentials (either username/password
pairs or security tokens) of WebLogic security principals (which may be either
authenticated individual users or client applications) to the corresponding credentials
required to access the EIS. For any deployed resource adapter, you can configure
outbound credential mappings for applicable security principals. For related
information, see Outbound Credential Mappings.

9.2 Credential Mapping for Making Outbound Connections

JSR 322: Java EE Connector Architecture 1.6 requires storage of credentials in a

j avax. security. aut h. Subj ect . The credentials are passed to either the

cr eat eManagedConnect i on() or the mat chManagedConnect i on() methods of
the ManagedConnect i onFact ory object. Outbound credential mapping
information is stored in the WebLogic Server embedded LDAP server. Outbound
credential mappings are specific to outbound resource adapters.

When creating outbound credential mappings of WebLogic Server users to usernames
in an EIS to which you want to connect using a resource adapter, note the following:

* WebLogic Server supports creating outbound credential mappings for WebLogic
Server users who are defined in the default security realm only. If you are using a
security realm that you have customized, you need to define it as the default
security realm before configuring outbound credential mappings for resource
adapters. For more information, see "Customizing the Default Security
Configuration" in Administering Security for Oracle WebLogic Server 12¢ (12.2.1) and
"Change the default security realm" in Oracle WebLogic Server Administration Console
Online Help.

¢ You must define the aut hent i cat i on- mechani smelement for the connection
pool in either of the following deployment descriptor files:

— ra. xn , which works for all connection pools of the resource adapter

- webl ogi c-ra. xm for each individual connection pool

If there is no valid aut hent i cat i on- nechani smelement defined, the outbound
credential mapping will not take effect, as explained in Authentication
Mechanisms. The following is a sample r a. xm file snippet:

<aut henti cati on- mechani sne

<aut henti cati on- mechani sm t ype>Basi cPasswor d</ aut henti cat i on- mechani smt ype>
<credential -interface>javax. resource. spi.security. PasswordCredenti al </ credenti al -
interface>

</ aut henti cati on- mechani sn»

9-2 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH03006

Credential Mapping for Making Outbound Connections

9.2.1 Authentication Mechanisms

WebLogic Server users must be authenticated whenever they request access to a
protected WebLogic Server resource. For this reason, each user is required to provide a
credential (a username/password pair or a digital certificate) to WebLogic Server.

Password authentication is the only authentication mechanism supported by
WebLogic Server out of the box. Password authentication consists of a user ID and
password. Based on the configured mappings, when a user requests connection to a
resource adapter, the appropriate credentials for that user are supplied to the resource
adapter.

The SSL (or HTTPS) protocol can be used to provide an additional level of security to
password authentication. Because the SSL protocol encrypts the data transferred
between the client and WebLogic Server, the user ID and password of the user do not
flow in clear text. Using SSL, WebLogic Server can authenticate the user without
compromising the confidentiality of the user's ID and password. For more
information, see "Configuring SSL" in Administering Security for Oracle WebLogic Server
12¢(12.2.1).

9.2.2 Outbound Credential Mappings

Outbound credential mappings are specific to outbound resource adapters. You
configure outbound credential mappings using the WebLogic Server Administration
Console. Before you can configure credential mappings, you must successfully deploy
the resource adapter.

Note:

The first time you deploy a resource adapter, it has no configured outbound
credential mappings and the initial connections will fail until they are
configured.

If the resource adapter requires credentials and is configured to create connections at
deployment time (meaning the i ni ti al - capaci t y element in the webl ogi c-
ra.xml is setto greater than 0), the initial connection may fail. To prevent initial
connection failure, Oracle recommends you set the i ni ti al - capaci t y element the
connection pool to O for its connection pool for the initial installation and deployment
of a resource adapter. Once the resource adapter is deployed for the first time, you can
change the value of the i ni ti al - capaci ty element. For more information, see
initial-capacity: Setting the Initial Number of ManagedConnections.

You can configure outbound credential mappings for individual outbound connection
pools or globally for all the connection pools in the resource adapter. When the
resource adapter receives a request for a connection, WebLogic Server searches for
outbound credential mappings configured for a specific connection pool and then
checks the mappings configured globally for the resource adapter.

Review the situations described in the following sections:

¢ Non-initial Connection: Requires ManagedConnection from Adapter Upon
Application's Request

¢ Initial Connection: Requires a ManagedConnection from Adapter Without
Application's Request

Security 9-3

Credential Mapping for Making Outbound Connections

® Special Users

9.2.2.1 Non-initial Connection: Requires ManagedConnection from Adapter Upon
Application's Request

WebLogic Server requires a ManagedConnection from the adapter upon an
application's request. For example, an application wants to get a connection from a
pool but there is no available ManagedConnection in the pool so WebLogic Server
needs to make a request to the adapter to create a new ManagedConnection.

Note:

Applies only to Container-Managed sign-on.

The server searches for outbound mappings in the following order:

1. Specific mappings (or anonymous mapping if unauthenticated) at the connection
factory level.

2. Specific mappings (or anonymous mapping if unauthenticated) at the global level.
3. Default mappings at the connection factory level.

4. Default mappings at the global level.

Example 9-1 Outbound Credential Mapping Examples

pool A
systemuser nane: admin
system password: adm n_password
default user name: guestl
default password: guestl password

pool B
w sjoe user name: harry
w sj oe password: harry_password

gl obal
system user name: sysman
system password: sysman_password
w sj oe user name: scott
w sj oe password: scott_password
defaul t user nane: viewer
defaul t password: viewer_password
anonynous user name: foo
anonynmous password: foo_password

Referring to the example provided in Example 9-1, consider an application
authenticated as syst emthat makes a connection request against pool A. Because a
specific outbound credential mapping is defined for syst emfor pool A, the resource
adapter uses this mapping (admri n/ adri n_passwor d).

If the application makes the same request against pool B as syst em there is no
corresponding specific outbound credential mapping for syst em Therefore, the
server searches for the credential mapping at the gl obal level where it finds a
mapping (sysman/sysman_passwor d).

If another application authenticates as W sj oe and makes a request against pool A, it
finds no mapping for W sj oe defined for pool A. It then searches at the global level

9-4 Developing Resource Adapters for Oracle WebLogic Server

Credential Mapping for Making Outbound Connections

and finds a mapping for W sj oe (scott /scott _passwor d). Against pool B, the
application would find the mapping defined for pool B (har ry /happy_passwor d).

If an application authenticated as user 1 makes a request against pool A, it finds no
mapping for user 1 for pool A. The following sequence occurs:

1. The application searches at the global level, which also has no mapping for
user 1.

2. The application searches the pool A outbound mappings for a default mapping
and finds a default mapping.

If an application does not authenticate to WebLogic Server and makes a request
against pool A, it finds no outbound mapping for anonymous user for pool A. It then
searches at the global level and finds a mapping for the anonymous user (f oo/

f oo_passwor d).

For example, in Example 9-1, consider two connection pools with the following
outbound credential mappings:

9.2.2.2 Initial Connection: Requires a ManagedConnection from Adapter Without
Application's Request

WebLogic Server requires a ManagedConnection from an adapter without the
application's request. This can either be when WebLogic Server creates initial
connections at deployment time (meaning the i ni ti al - capaci ty element in

webl ogi c-ra. xm is set to greater than 0), or when WebLogic Server needs to get a
ManagedConnection specifically for XA recovery.

Note:

Applies to both Container-Managed sign-on and Application-Managed sign-
on.

WebLogic Server searches for outbound mappings in the following order:

1. Initial mappings at the connection factory level.
2. Initial mappings at the global level.

3. Default mappings at the connection factory level.
4. Default mappings at the global level.

Example 9-2 Credential Mapping Examples

pool A
initial user nane: admin
initial password: adm n_password

pool B
defaul t user nane: harry
defaul t password: harry_password

gl obal

initial user nanme: sysman
initial password: sysman_password

Security 9-5

Security Inflow

Referring to Example 9-2, WebLogic Server needs to perform XA Recovery for pool A
and so makes a connection request against pool A. Because the initial outbound
credential mapping is defined for system for pool A, the resource adapter uses this
mapping (adm n/admi n_passwor d).

If WebLogic Server makes the same request against pool B, there is no corresponding
initial outbound credential mapping for pool B. WebLogic Server then searches for the
initial credential mapping at the global level where it finds a mapping (sysman/
sysman_passwor d).

If neither an initial nor default mapping is defined, WebLogic Server uses nul | as the
Subj ect when making calls to the adapter to create a ManagedConnection.

For example, consider two connection pools with the following outbound credential
mappings:
9.2.2.3 Special Users

Three special users are provided for use by resource adapters:

¢ Initial User (user for creating initial connections) — If you define an outbound
credential mapping for this user, the specified credentials are used for the initial
connections created when:

— Starting the connection pool for this resource adapter

— Doing XA transaction recovery for the connection pool

The I ni ti al Capaci ty parameter on the pool specifies the number of initial
connections. If you do not define a mapping for this user, the default mapping (if
provided) is used. Otherwise, no credentials are provided for the initial
connections.

¢ Anonymous User (unauthenticated WebLogic Server user) — If you define a
mapping for this user, the specified credentials are used when no user is
authenticated for the connection request on the resource adapter.

® Default User — If you define a mapping for this user, the specified credentials are
used when:

— No other mapping applies for the current user.

- No anonymous mapping is provided in the case where there is no authenticated
user.

9.2.3 Creating Outbound Credential Mappings Using the Console

You can create outbound credential maps with the WebLogic Server Administration
Console. If you are using the WebLogic Credential Mapping provider, the outbound
credential maps are stored in the embedded LDAP server. For information about how
to create an outbound credential map, see "Create outbound credential mappings" in
the Oracle WebLogic Server Administration Console Online Help.

9.3 Security Inflow

JSR 322: Java EE Connector Architecture 1.6 defines a standard, generic security
context between the EIS/resource adapter and the application server that leverages
the work done in JSR 196: Java Authentication Service Provider Interface for
Containers. The security context enables a resource adapter to establish security

9-6 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196

Security Inflow

information that is used when submitting a Wr k instance for execution and
delivering messages to message endpoints that are hosted in WebLogic Server.

JSR 322: Java EE Connector Architecture 1.6:

¢ Defines an abstract class Secur i t yCont ext as the contract between the resource
adapter and the application server

e Defines two scenarios on how to handle flown-in identities based on whether or
not they belong to the application server's security domain:

— Case 1 (see Section 16.4.3, "Case 1: Identity in the Container Security Domain,"
in JSR 322: Java EE Connector Architecture 1.6.)

— Case 2 (Section 16.4.4, "Case 2: Identity Translated Between Security Domains.")

e Uses the CallbackHandler defined in the JSR 196: Java Authentication Service
Provider Interface for Containers.

e Uses three callbacks from JSR 196: CallerPrincipalCallback,
GroupPrincipalCallback, and PasswordValidationCallback.

Note:

When the WebLogic Server Connector container calls the

set upSecuri t yCont ext method of the Secur it yCont ext
implementation provided by the resource adapter, the ser vi ceSubj ect
passed to the adapter will always be null.

9.3.1 Inbound Principal Mappings

A resource adapter deployed in the WebLogic Connector container can flow in an
identity (that is, a caller principal, a group principal, or both) into a container, and the
identity may be defined in either the WebLogic domain (as in the Case 1 scenario) or
in the EIS security domain (as in the Case 2 scenario).

If the identity is defined in the EIS security domain, the WebLogic Connector
container must be able to map the flown-in principal to a principal defined in the
WebLogic domain. To support this scenario, WebLogic Server provides the ability to
create an inbound principal mapping between the EIS principal and the
corresponding WebLogic domain.

The following mappings can be created:

¢ Default mapping of EIS user names to either a specific WebLogic user, or the
WebLogic user anonynous

* A specific EIS user name to either a specific WebLogic user, or the WebLogic user
anonynous

¢ Default mapping of EIS group names to a WebLogic group name

¢ A specific EIS group name to a WebLogic group name

A principal name defined in an inbound principal mapping configuration must
contain at least one non-space character. A string that contains only space characters is
not a valid principal name (and is not accepted by the WebLogic Server
Administration Console).

Security 9-7

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/en/jsr/detail?id=196
http://jcp.org/en/jsr/detail?id=196

Security Inflow

Note the following behavior regarding inbound principal mapping:

e Although JSR 322: Java EE Connector Architecture 1.6 allows a resource adapter to
pass any user and group combination to the container, Connector Architecture 1.6
also allows the container to apply security restrictions. In the case of WebLogic
Server, not all user and group combinations are valid: the WebLogic principals
specified in the mapping must currently be defined in the WebLogic security
realm, and the user must be defined in the WebLogic security realm as being a
valid member of the group specified in the mapping. This is a requirement
imposed by WebLogic Server.

For example, if a mapping specifies a particular user and group combination, and
either the user or the group is not defined in the WebLogic Server security realm,
the mapping is not valid. Additionally, if both the user and group are defined in
the security realm, but the user is not a member of the particular group specified in
the mapping, the mapping is not valid. When WebLogic Server determines that a
mapping is not valid, it throws an exception.

Note also that WebLogic Server does not validate users or groups at the time an
inbound principal mapping is configured. Because a security realm can be
modified after the resource adapter has been deployed, WebLogic principals
specified in an inbound principal mapping are validated only at run time.

* A flown-in identity cannot run as a principal (that is, a user or group) that is
mapped to an administrator role, such as Adni n, Admi nChannel User,
Depl oyer, Oper at or, or Moni t or.

¢ If no default inbound mapping is configured for an EIS user principal, and no
mapping specific to the EIS user is configured, the user is mapped to an
unauthenticated user.

¢ If no default inbound mapping is configured for a EIS group principal, and no
mapping specific to the EIS group is configured, the group principal is ignored.

¢ Inbound principal mappings can be configured after the resource adapter has been
deployed.

For information about how to create an inbound principal mapping using the
WebLogic Server Administration Console, see "Create inbound principal mappings" in
Oracle WebLogic Server Administration Console Online Help.

9.3.2 Security Inflow Callback Requirements

When a resource adapter flows in a identity that is used by the application server
through handling CallerPrincipalCallback, GroupPrincipalCallback, and
PasswordValidationCallback, JSR 322: Java EE Connector Architecture 1.6 does not
specify any restrictions how those callbacks may be combined. However, not all
combinations are valid in WebLogic Server Connector Architecture 1.6. The WebLogic
Connector container validates these callbacks according to the requirements described
in this section. You must design resource adapters so that they meet these
requirements when they pass callbacks to the WebLogic Connector container.
Otherwise, those callbacks are rejected.

WebLogic Server imposes the following requirements on callbacks passed to the
Connector container:

¢ If a resource adapter handles a PasswordValidationCallback, the adapter must also
handle a CallerPrincipalCallback. The WebLogic Security Service requires that a

9-8 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00512
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Security Policy Processing

caller principal that is established by means of a CallerPrincipalCallback must
match the user name that is authenticated by means of the
PasswordValidationCallBack.

e If a resource adapter handles a GroupPrincipalCallback, the adapter must also
handle a CallerPrincipalCallback.

* A resource adapter must not handle a PasswordValidationCallback in Case 2 (see
Section 16.4.4, "Case 2: Identity Translated Between Security Domains," in JSR 322:
Java EE Connector Architecture 1.6). Because the username and password in the
PasswordValidationCallback belong to the EIS security domain, the application
server (that is, WebLogic Server) cannot authenticate them.

9.3.3 Backward Compatibility with Connector Architecture 1.5 and 1.0

WebLogic Server allows a resource adapter to use a configured principal to execute
the Wor k. r un() method. This principal can be configured in the WebLogic Server
Administration Console, as described in "Configure security principals" in Oracle
WebLogic Server Administration Console Online Help, or in the webl ogi c-ra. xm file
using the r un- wor k- as- pri nci pal - nane and def aul t - pri nci pal - nane.

The Wor k. r un() method then executes using the principal, if configured, or
anonynous, by default, if this principal is not configured.

This mechanism provides a basic security configuration at the adapter level that
applies to all Wr k instances submitted by the adapter. However, other security
principals cannot be used selectively for different Wor k instances.

The security context feature in Connector Architecture 1.6 provides more flexibility by
allowing each Wor k instance to provide its own SecurityContext, allowing each Wor k
instance to be run under a different security principal.

Because the WebLogic Server Connector container is backward compatible with 1.0
and 1.5 adapters, note the following behavior when a resource adapter submits a Wor k
instance:

e If the Wr k instance is submitted without a SecurityContext, the Wr k instance
uses the principal defined in the r un- wor k- as- pri nci pal - nane and
def aul t - pri nci pal - nane elements in the webl ogi c-ra. xml file.

¢ If the Wor k instance is submitted with a SecurityContext, the Wor k instance runs
under the security principals that are defined according to the description of the
Securi t yCont ext class in JSR 322: Java EE Connector Architecture 1.6. The
principals defined in the r un- wor k- as- pri nci pal - name and def aul t -
pri nci pal - name elements, if present, are ignored.

9.4 Security Policy Processing

A security policy is an association between a WebLogic resource and one or more
users, groups, or security roles and is designed to protect the WebLogic resource
against unauthorized access. JSR 322: Java EE Connector Architecture 1.6 defines
default security policies for resource adapters running in an application server. It also
defines how resource adapters can provide their own specific security policies
overriding the default. The webl ogi c. pol i cy file that ships with WebLogic Server
establishes the default security policies as specified in the Java EE Connector
Architecture Specification.

Security 9-9

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00505
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring Security Identities for Resource Adapters

If the resource adapter does not have a specific security policy defined, WebLogic
Server establishes the runtime environment for the resource adapter with the default
security policies specified in the webl ogi c. pol i cy file, which conforms to the
defaults specified by the Java EE Connector Architecture Specification. If the resource
adapter has defined specific security policies, WebLogic Server establishes the runtime
environment for the resource adapter with a combination of the default security
policies for resource adapters and the specific policies defined for the resource
adapter. You define specific security policies for resource adapters using the
security-perm ssion-spec elementin thera. xm deployment descriptor file.

For more information on security policy processing requirements, see the "Security
Permissions" section of Chapter 21, "Runtime Environment," in JSR 322: Java EE
Connector Architecture 1.6. For more information about security policies and the
WebLogic security framework, see "Security Policies" in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

9.5 Configuring Security Identities for Resource Adapters

This section describes how to configure various security identities for WebLogic
Server resource adapters in the webl ogi c-ra. xm deployment descriptor. Security
identities determine which security principals can perform particular resource adapter
functions. In a WebLogic resource adapter, you can either have a single security
identity that can perform all functions, or use separate identities for separate classes of
functions. You can define the following four types of security identities in the

webl ogi c-ra. xm deployment descriptor:

¢ default principal — Security principal that can perform all resource adapter tasks.

® run-as principal — Security principal used by calls from the connector container
into the resource adapter code during connection requests.

¢ run-work-as principal — Security principal used for Work instances launched by
the resource adapter.

* manage-as principal — Security principal used for resource adapter management
tasks, such as startup, shutdown, testing, and transaction management.

Example 9-3 is an excerpt from a webl ogi c-ra. xm deployment descriptor that
illustrates how you would configure all four of these available security identities for
performing different resource adapter tasks.

Example 9-3 Configuring All Security Identities for Resource Adapters

<webl ogi c- connector xm ns="http://xm ns. oracl e. com webl ogi ¢/ webl ogi c- connect or ">
<j ndi - name>900bl ackbox- not x</j ndi - name>
<security>
<defaul t - pri nci pal - nane>
<pri nci pal - nane>syst enx/ pri nci pal - name>
</ def aul t - princi pal - name>
<run-as- princi pal - nane>
<pri nci pal - nane>r ar user </ pri nci pal - nane>
</run-as-princi pal - nane>
<run- wor k- as- princi pal - name>
<pri nci pal - name>wor kuser </ pri nci pal - nane>
</ run-wor k- as- pri nci pal - name>
<manage- as- pri nci pal - name>
<pri nci pal - nane>r ar user </ pri nci pal - nane>
</ manage- as- pri nci pal - nane>

9-10 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Configuring Security Identities for Resource Adapters

</security>
</ webl ogi c- connect or >

Example 9-4 illustrates how you could use the def aul t - pri nci pal - nanme element
to configure a single default principal security identity for performing all resource
adapter tasks.

Example 9-4 Configuring a Single Default Principal Identity for a Resource Adapter

<webl ogi c- connector xm ns="http://xnl ns. oracl e. com webl ogi ¢/ webl ogi c- connect or">
<j ndi - name>900bl ackbox- not x</ j ndi - nane>
<security>
<defaul t - pri nci pal - nane>
<pri nci pal - nane>syst enx/ pri nci pal - name>
</ defaul t- princi pal - nane>
</security>
</ webl ogi c- connect or >

For more information on setting security identity properties, see security.

9.5.1 default-principal-name: Default Identity

You can define a single security identity that can be used for all resource adapter
purposes using the def aul t - pri nci pal - nane element. If values are not specified
for run-as- pri nci pal - name, manage- as- pri nci pal - nane, and r un- wor k-
as- princi pal - nane, they default to the value set for def aul t - pri nci pal - nane.

The value of def aul t - pri nci pal - nane can be set to a defined WebLogic Server
user name such as syst emor to use an anonymous identity (which is the equivalent
of having no security identity) as shown inExample 9-5

For example, you can create a single security identity that makes all calls from
WebLogic Server into the resource adapter and manages all resource adapter
management tasks with a default syst emidentity as shown in Example 9-6:

Example 9-5 Using a Defined WebLogic Server Name

<security>
<def aul t - pri nci pal - name>
<princi pal - name>syst enx/ pri nci pal - nane>
</ defaul t - princi pal - name>
</security>

You can set the def aul t - pri nci pal - nane element to anonynous as follows:
Example 9-6 Setting Up an Anonymous Identity

<security>
<def aul t - pri nci pal - name>
<use-anonynous- i dentity>true</ use- anonynous-i dentity>
</ defaul t - princi pal - name>
</security>

9.5.2 manage-as-principal-name: Identity for Running Management Tasks

You can define a management identity that is used for running various resource
adapter management tasks such as startup, shutdown, testing, shrinking, and
transaction management using the manage- as- pri nci pal - name element.

As with def aul t - pri nci pal - nane, the value of manage- as- pri nci pal - nane
can be set to a defined WebLogic Server user name such as syst emor to use an
anonynous identity (which is the equivalent of having no security identity). If you do

Security 9-11

Configuring Security Identities for Resource Adapters

not set up a value for the manage- as- pri nci pal - nane element, it defaults to the
value set up for def aul t - pri nci pal - nane. If no value is set up for def aul t -
pri nci pal - nane, it defaults to the anonynous identity.

Example 9-7 illustrates how you can configure a resource adapter to run management
calls using the WebLogic Server-defined user name syst em

Example 9-7 Using a Defined WebLogic Server Name

<security>
<manage- as- pri nci pal - nane>
<pri nci pal - nane>syst enx/ pri nci pal - name>
</ manage- as- pri nci pal - nane>
</security>

Example 9-8 illustrates how you can configure a resource adapter to run management
calls using an anonynous identity.

Example 9-8 Setting Up an Anonymous ldentity

<security>
<manage- as- pri nci pal - nane>
<use-anonynous- i dentity>true</use-anonynous-i dentity>
</ manage- as- pri nci pal - nane>
</security>

9.5.3 run-as-principal-name: Identity Used for Connection Calls from the Connector
Container into the Resource Adapter

You define the principal name that should be used by all calls from the connector
container into the resource adapter code during connection requests in the r un- as-
pri nci pal - name element. This principal name is used, for example, when resource
adapter objects such as the ManagedConnect i onFact or y are instantiated - in other
words, when the WebLogic Server connector container makes calls to the resource
adapter, the identity defined in the r un- as- pri nci pal - nanme element is used. This
may include calls as part of either inbound or outbound requests or setup, or as part of
initialization not specific to either inbound or outbound resource adapters (for
example, Resour ceAdapt er . start ()).

The value of the r un- as- pri nci pal - nanme element can be set in one of three ways:
¢ To a defined WebLogic Server name
¢ To use an anonymous identity

¢ To use the security identity of the calling code.

If the value of the r un- as- pri nci pal - nane element is not defined, it defaults to the
value of the def aul t - pri nci pal - nanme element. If the def aul t - pri nci pal -
name element is not defined, it defaults to the identity of the requesting caller.

9.5.4 run-work-as-principal-name: Identity Used for Performing Resource Adapter
Management Tasks

For inbound resource adapters, Oracle recommends that you use Work instances to
execute inbound requests. To establish the security identity for Work instances
launched by a resource adapter, you specify this value using the r un- wor k- as-

pri nci pal - nanme element. However, Work instances can also be created as part of
outbound resource adapters to execute outbound requests. If an adapter does not use
Work instances to handle inbound requests, then inbound requests are either run with

9-12 Developing Resource Adapters for Oracle WebLogic Server

Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

no security context established (anonynous) or the resource adapter can make
WebLogic Server-specific calls to authenticate as a WebLogic Server user. In this case,
the WebLogic Server user security context is used.

The value of the r un- wor k- as- pri nci pal - nane element can be set in one of three
ways:

¢ To a defined WebLogic Server name
¢ To use an anonymous identity

¢ To use the security identity of the calling code

If the value of the r un- wor k- as- pri nci pal - nane element is not defined, it
defaults to the value of the def aul t - pri nci pal - nane element. If the def aul t -
pri nci pal - name element is not defined, it defaults to the identity of the requesting
caller.

To run work using the requesting caller's identity, you specify the r un- wor k- as-
pri nci pal - nane element as shown in Example 9-9:

Example 9-9 Using the Requesting Caller's Identity

<security>
<run- wor k- as- princi pal - name>
<use-cal l er-identity>true</use-caller-identity>
</ run-wor k- as- pri nci pal - name>
</security>

9.6 Configuring Connection Factory-Specific Authentication and Re-
authentication Mechanisms

You specify authentication and re-authentication mechanisms for a resource adapter
in the Java EE standard resource adapter deployment descriptor, r a. xm . These
settings apply to all outbound connection factories.

e The aut henti cat i on- mechani smelement specifies an authentication
mechanism to be used by all outbound connection factories.

e Thereaut henti cati on-support element specifies whether outbound
connection factories support re-authentication of existing Managed-Connection
instances. This is intended to be the default value for all connection factories of the
resource adapter.

You can override the aut hent i cat i on- nechani smand r eaut henti cati on-
support values in thera. xm deployment descriptor by specifying them in the
webl ogi c-ra. xm deployment descriptor. Doing so allows you to apply these
settings to a specific connection factory rather than to all connection factories. See
authentication-mechanism and reauthentication-support in Table A-18.

Security 9-13

Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

9-14 Developing Resource Adapters for Oracle WebLogic Server

10

Packaging and Deploying Resource
Adapters

This chapter describes how to package WebLogic resource adapters (RARs) and
deploy them in an exploded directory format or as an archive file.

This chapter includes the following sections:
* Packaging Resource Adapters

¢ Deploying Resource Adapters

Deploying applications on WebLogic Server is covered in more detail in "Deploying
and Packaging from a Split Development Directory" in Developing Applications for
Oracle WebLogic Server.

10.1 Packaging Resource Adapters

For production and development purposes, Oracle recommends packaging your
assembled resource adapter (RAR) as part of an enterprise application (EAR).

10.1.1 Packaging Directory Structure

A resource adapter is a WebLogic Server component contained in a resource adapter
archive (RAR) within the appl i cati ons/ directory. The deployment process begins
with the RAR or a deployment directory, both of which contain the compiled resource
adapter interfaces and implementation classes created by the resource adapter
provider. Regardless of whether the compiled classes are stored in a RAR or a
deployment directory, they must reside in subdirectories that match their Java
package structures.

Resource adapters use the same directory format, whether the resource adapter is
packaged in an exploded directory format or as a RAR. A typical directory structure of
a resource adapter is shown in Example 10-1:

Example 10-1 Resource Adapter Directory Structure

| META- I NF/ ra. xm

/ META- | NF/ webl ogi c-ra. xm

/ META- | NF/ MANI FEST. MF (opti onal)
/images/ra.jpg

[readne. htm

leis.jar

futilities.jar

[wi ndows. dl |

/uni x. so

10.1.2 Packaging Considerations

The following are packaging requirements for resource adapters:

Packaging and Deploying Resource Adapters 10-1

Packaging Resource Adapters

¢ Deployment descriptors (ra. xm and webl ogi c-ra. xm) must be in a directory
called META- | NF.

* An optional MANI FEST. MF also resides in META- | NF. A manifest file is
automatically generated by the JAR tool and is always the first entry in the JAR file.
By default, it is named META- | NF/ MANI FEST. MF. The manifest file is the place
where any meta-information about the archive is stored.

* A resource adapter deployed in WebLogic Server supports the cl ass- pat h entry
in MANI FEST. MF to reference a class or resource such as a property.

* The resource adapter can contain multiple JARs that contain the Java classes and
interfaces used by the resource adapter. (For example, ei s. j ar and
utilities.jar.)Ensure that any dependencies of a resource adapter on
platform-specific native libraries are resolved.

* The resource adapter can contain native libraries required by the resource adapter
for interacting with the EIS. (For example, wi ndows. dI | and uni x. so.)

® The resource adapter can include documentation and related files not directly used
by the resource adapter. (For example, r eadrre. ht ml and /i nages/ra. j pg.)

* When a standalone resource adapter RAR is deployed, the resource adapter must
be made available to all Java EE applications in the application server.

* When a resource adapter RAR packaged within a Java EE application EAR is
deployed, the resource adapter must be made available only to the Java EE
application with which it is packaged. This specification-compliant behavior may
be overridden if required.

10.1.3 Packaging Limitation

If you reload a standalone resource adapter without reloading the client that is using
it, the client may cease to function properly. This limitation is due to JSR 322: Java EE
Connector Architecture 1.6 limitation of not providing a remotable interface.

10.1.4 Packaging Resource Adapter Archives (RARs)

After you stage one or more resource adapters in a directory, you package them in a
Java Archive (JAR) with a . rar file extension.

Note:

Once you have assembled the resource adapter, Oracle recommends that you
package it as part of an enterprise application. This allows you to take
advantage of the split development directory structure, which provides a
number of benefits over the traditional single directory structure. See
"Creating a Split Development Directory Environment" in Developing
Applications for Oracle WebLogic Server.

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

2. Compile or copy the resource adapter Java classes into the staging directory.

10-2 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Deploying Resource Adapters

. Create a JAR to store the resource adapter Java classes. Add this JAR to the top
level of the staging directory.

. Create a META- | NF subdirectory in the staging directory.

. Create anr a. xn deployment descriptor in the META- | NF subdirectory and add
entries for the resource adapter.

Note:

Refer to the following document for information about the r a. xm document
type definition: ht t p: // j ava. sun. com xml / ns/ j avaee/
connector_1 6.xsd.

. Create awebl ogi c-ra. xm deployment descriptor in the META- | NF subdirectory
and add entries for the resource adapter.

Note:

Refer to weblogic-ra.xml Schema for information on the contents of the
webl ogi c-ra. xm file.

. When the resource adapter classes and deployment descriptors are set up in the
staging directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir
This command creates a RAR that you can deploy on a WebLogic Server or
package in an enterprise application archive (EAR).

The - Cst agi ng- di r option instructs the JAR command to change to the
st agi ng- di r directory so that the directory paths recorded in the JAR are relative
to the directory where you staged the resource adapters.

For more information on this topic, see Creating and Configuring Resource Adapters:
Main Steps.

10.2 Deploying Resource Adapters

Deployment of a resource adapter is similar to deployment of Web Applications, E]Bs,
and Enterprise Applications. Like these deployment units, you can deploy a resource
adapter in an exploded directory format or as an archive file.

10.2.1 Deployment Options

You can deploy a standalone resource adapter (or a resource adapter packaged as part
of an enterprise application) using any one of these tools:

¢ WebLogic Server Administration Console

e webl ogi c. Depl oyer tool

e w depl oy Ant task

* WebLogic Scripting Tool (WLST)

Packaging and Deploying Resource Adapters 10-3

http://java.sun.com/xml/ns/javaee/connector_1_6.xsd
http://java.sun.com/xml/ns/javaee/connector_1_6.xsd

Deploying Resource Adapters

For information about these application deployment techniques, see "Deploying
Applications and Modules with weblogic.deployer" in Deploying Applications to Oracle
WebLogic Server.

You can use a deployment plan to deploy a resource adapter deployment. For a
resource adapter, a WebLogic Server deployment plan is an optional XML document
that resides outside of the RAR and configures the resource adapter for deployment to
a specific WebLogic Server environment. A deployment plan works by setting
deployment property values that would normally be defined in the resource adapter's
deployment descriptors, or by overriding property values that are already defined in
the deployment descriptors. For information on deployment plans, see "Configuring
Applications for Production Deployment" in Deploying Applications to Oracle WebLogic
Server.

You can also deploy a resource adapter using auto-deployment. This may be useful
during development and early testing. For more information, see "Auto-Deploying
Applications in Development Domains" in Deploying Applications to Oracle WebLogic
Server

10.2.2 Resource Adapter Deployment Names

When you deploy a resource adapter archive (RAR) or deployment directory, you
must specify a name for the deployment unit, for example, myResour ceAdapt er .
This name provides a shorthand reference to the resource adapter deployment that
you can later use to undeploy or update the resource adapter.

When you deploy a resource adapter, WebLogic Server implicitly assigns a
deployment name that matches the path and filename of the RAR or deployment
directory. You can use this assigned name to undeploy or update the resource adapter
after the server has started.

The resource adapter deployment name remains active in WebLogic Server until the
server is rebooted. Undeploying a resource adapter does not remove the associated
deployment name; you can use the same deployment name to redeploy the resource
adapter at a later time.

10.2.3 Production Redeployment

Using WebLogic Server's production redeployment feature, you can redeploy a new
version of a WebLogic Server application alongside an older version of the same
application. By default, WebLogic Server immediately routes new client requests to
the new version of the application, while routing existing client connections to the
older version. After all clients using the older application version complete their work,
WebLogic Server retires the older application so that only the new application version
is active.

10.2.3.1 Suspendable Interface and Production Redeployment

Typically, a resource adapter bean implements the

j avax. resource. spi . Resour ceAdapt er interface. This interface defines

start () and st op() methods. This type of resource adapter is not eligible for
production redeployment. Resource adapters connect to one or more ElSes for
incoming/outgoing communication. All communication is performed in a resource
adapter-proprietary way with no knowledge of the application server. If on-the-fly
production redeployment is attempted, the application server can only provide
notifications to the resource adapter to manage the migration of connections from the
existing resource adapter to a new instance. However, the resource adapter can
implement the Suspendabl e interface, which provides the capability to allow

10-4 Developing Resource Adapters for Oracle WebLogic Server

Deploying Resource Adapters

resource adapters to participate in production redeployment. For information about
implementing the Suspendabl e interface, see Suspending and Resuming Resource
Adapter Activity.

10.2.3.2 Production Redeployment Requirements

All of the following requirements must be met by both the old and new version of the
resource adapter in order for production redeployment to work; otherwise, the
redeployment fails.

¢ The resource adapter must be based on Connector Architecture 1.7. (Support for
production redeployment of 1.0 resource adapters is not available.)

¢ The resource adapter must implement the Suspendabl e interface (see Example
4-3).

® The resource adapter must be packaged inside an enterprise application (EAR file).
Production redeployment of standalone resource adapters is not supported.

¢ The Suspendabl e. support sVer si oni ng() method must returnt r ue when
invoked by WebLogic Server.

e The enabl e- access- out si de- app element in the webl ogi c-ra. xm
descriptor must be set to f al se.

10.2.3.3 Production Redeployment Process

The following process assumes the older version of the resource adapter is deployed
and running. It also assumes that the older version (named ol d) as well as the newer
version (named new) of the resource adapter meet all of the requirements mentioned
in Production Redeployment Requirements, as well as the application requirements
described in "Redeploying Applications in a Production Environment" in Deploying
Applications to Oracle WebLogic Server.

The following calls are made into the resource adapters during production
redeployment:

1. WebLogic Server callsnew. i nit (ol d, null) toinform the new resource
adapter that it is replacing the old resource adapter.

2. WebLogic Server calls ol d. st art Ver si oni ng(new, nul |') to inform the old
resource adapter to start its production redeployment operation with the new
resource adapter.

3. WebLogic Server calls new. st ar t (ext endedBoot st r apCont ext) . See
Extended BootstrapContext.

4. When the old resource adapter is "finished" (meaning it has succeeded in migrating
all clients and inbound connections to the new resource adapter), it calls
(Ext endedBoot st r apCont ext) bsCt x. conpl et e() . This informs WebLogic
Server that it is safe to undeploy the old resource adapter.

5. When undeployment occurs, WebLogic Server calls ol d. st op() and production
redeployment is complete.

The calls tonew. i ni t () and ol d. st art Versi oni ng() give the old and new
resource adapters an opportunity to migrate inbound or outbound communications
from the old to the new resource adapter. How this is done is up to the individual
resource adapter developer.

Packaging and Deploying Resource Adapters 10-5

Deploying Resource Adapters

10.2.4 Deploying a Resource Adapter Configured with Multiple Outbound Connection
Pools

By default, when deploying a resource adapter that is configured with multiple
outbound connection pools, the adapter deployment fails if a failure occurs in any
connection pool. However, a deployment option is available that enables deployment
to succeed, with the failed connection pools isolated from the healthy ones. This
enables you to isolate, diagnose, and repair the failed connection pools and
dynamically update the deployment without the need to redeploy the whole adapter.

To configure resource adapter deployment to succeed if a failure occurs with an
outbound connection pool, you can do either of the following:

¢ Using the WebLogic Server Administration Console, make sure the Deploy As A
Whole flag is not checked. This option is available from the Resource Adapter >
Configuration > General page. For information, see "Configure resource adapter
properties" in the Oracle WebLogic Server Administration Console Online Help.

e Set the depl oy- as- a- whol e element in the webl ogi c-ra. xm file tof al se.

10-6 Developing Resource Adapters for Oracle WebLogic Server

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00503
http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=WLACH00503

A

weblogic-ra.xml Schema

This appendix describes the deployment descriptor elements that can be defined in the
WebLogic Server-specific deployment descriptor webl ogi c-ra. xni .

The schema for webl ogi c-ra. xml ishttp://xm ns. oracl e. conf webl ogi c/
webl ogi c- connect or/ 1. 5/ webl ogi c- connect or . xsd. If your resource adapter
archive (RAR) does not contain a webl ogi ¢-ra. xm deployment descriptor,
WebLogic Server automatically selects the default values of the deployment descriptor
elements.

This appendix includes the following sections:
* weblogic-connector

¢ work-manager

® connector-work-manager

® security

® properties

* admin-objects

¢ outbound-resource-adapter

A.1 weblogic-connector

The webl ogi c- connect or element is the root element of the WebLogic-specific
deployment descriptor for the deployed resource adapter. You can define the
following elements within the webl ogi c- connect or element.

Table A-1 weblogic-connector subelements

Element Required/Optional Description
) S Required if native ~ Specifies the directory where all the native libraries
native-1ibdir libraries are exist that are required by the resource adapter.
present.
jndi-name Required only ifa Specifies the JNDI name for the resource adapter. The
resource adapter resource adapter bean is registered into the JNDI tree
bean is specified. with this name. It is not a required element if no

resource adapter bean is specified. It is not a
functional element if a JNDI name is specified for a
resource adapter without a resource adapter bean.

weblogic-ra.xml Schema A-1

http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

weblogic-connector

Table A-1 (Cont.) weblogic-connector subelements
. __|

Element Required/Optional Description

enable-access-outside-app Optional As stated byJSR 322: Java EE Connector Architecture
1.6, if the resource adapter is packaged within an
application (in other words, within an EAR), only
components within the application should have
access to the resource adapter. This element allows
you to override this functionality.

Note: This element does not apply for standalone
resource adapters.

Default Value: f al se

Note: When set to false, the resource adapter can only
be accessed by clients that reside within the same
application in which the resource adapter resides.
For version 1.0 resource adapters (supported in this

release), the default value for this element is set to
true.

Optional When set to t r ue, the resource adapter allows global
access to its classes, and the adapter's classes are
loaded by the WebLogic Server system classpath
classloader directly so that these classes can be
accessed by all applications.

enabl e- gl obal - access-t o- cl asses

When set to t r ue, the EE compliant setting of
resource adapter in the domain configuration is
ignored. For more information, see"About Resource
Adapter Classes" in Developing Applications for Oracle
WebLogic Server.

The default value is f al se, in which case the
adapter's classes are loaded by a classloader that is a
child of the EAR's application classloader.

This value normally should be set to t r ue for
standalone adapters.

When set to t r ue, you must restart WebLogic Server
if you change the adapter's classes and want to
redeploy the adapter.

Optional When set to t r ue, the resource adapter deployment
fails if any error occurs, such as a failure with an
outbound connection pool or an admin object bean.

depl oy- as- a- whol e

When set to f al se, the resource adapter deployment
succeeds, but in a HEALTH_CRITICAL state, if an
error occurs when creating or configuring at least one
outbound connection pool. This setting enables you to
isolate, diagnose, and correct a failed outbound
connection pool without needing to redeploy the
resource adapter. If any other error occurs during
deployment, such as the inability to parse or validate
thera. xm orwebl ogi c-ra. xnl files, a
ResourceAdapter bean failure, or an admin object
bean failure, the resource adapter deployment fails.

Default value: t r ue

A-2 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

weblogic-connector

Table A-1

(Cont.) weblogic-connector subelements

Element Required/Optional

Description

Optional
wor k- manager

This complex element is used to specify all the
configurable elements for creating the Work Manager
that will be used by the resource adapter bean. The
wor k- manager element is imported from the

webl ogi c-j avaee. xsd schema.

The Work Manager dynamically adjusts the number
of work threads to avoid deadlocks and achieve
optimal throughput subject to concurrency
constraints. It also meets objectives for response time
goals, shares, and priorities.

For subelements of wor k- manager , seework-
manager .

Optional
connect or - wor k- manager

This complex element is used to specify all the
configurable elements for the Connector Work
Manager for this adapter module itself.

This element provides configurations that are not
supported by the standard Work Manager.

For subelements of connect or - wor k- nenager,
seeconnector—work—manager .

. Optional
security

This complex element is used to specify all the
security parameters for the operation of the resource
adapter.

See security, for information on the security defaults
that will be taken by the connector container.

Optional
properties pHona

This complex element is used to override any
properties that have been specified for the resource
adapter bean in the r a. xm file.

For subelements of pr opert i es, see properties.

weblogic-ra.xml Schema A-3

weblogic-connector

Table A-1 (Cont.) weblogic-connector subelements
. __|

Element Required/Optional Description

Optional This complex element defines all of the admin objects
in a resource adapter. As with the out bound-
resour ce- adapt er complex element (see
outbound-resource-adapter), the adm n- obj ect s
complex element has four hierarchical property levels
that specify the configuration scope:

admi n-obj ects

1. Global level — at this level, you specify
parameters that apply to all admin objects in the
resource adapter; you do so using the def aul t -
properties element. See #unique_198/
unique_198_Connect_42_11079634 in Table A-14.

2. Group level — at this level, you specify
parameters that apply to all admin objects
belonging to a particular admin object group
specified in the r a. xm deployment descriptor;
you do so using the admi n- obj ect - gr oup
element. The properties specified in the group
override any parameters that are specified at the
global level. See admin-object-group.

3. Instance level — under each admin object group,
you can use the adni n- obj ect - i nst ance
element to specify admin object instances. These
correspond to the admin object instances for the
resource adapter. You can specify properties at
the instance level and override those properties
provided in the group and global levels. See
admin-object-instance.

For admi n- obj ect s subelements, seeadmin-objects .

A-4 Developing Resource Adapters for Oracle WebLogic Server

work-manager

Table A-1 (Cont.) weblogic-connector subelements

___|]
Description

Element

Required/Optional

out bound- r esour ce- adapt er

Optional

This complex element is used to describe the
outbound components of a resource adapter. As with
the admin-objects complex element, this element has
three hierarchical property levels that specify the
configuration scope for defining outbound connection
pools:

1.

Global level — at this level, you specify
parameters that apply to all outbound
connection pools in the resource adapter using
the def aul t - connecti on- properties
element. Seedefault-connection-properties .

Group level — at this level, you specify
parameters that apply to all outbound
connections belonging to a particular connection
factory specified in the r a. xm deployment
descriptor using the connect i on-
definition-group element. A one-to-one
correspondence exists from a connection factory
inra. xm to a connection definition group in
webl ogi c-ra. xnl . The properties specified in
a group override any parameters specified at the
global level. See connection-definition-group.

The instance level — under each connection
definition group, you can specify connection
instances. These correspond to the individual
connection pools for the resource adapter.
Parameters can be specified at this level too and
these override those provided at the group and
global levels. See connection-instance.

For out bound- r esour ce- adapt er subelements,
seeoutbound-resource-adapter .

A.2 work-manager

The wor k- manager element is a complex element that is used to specify all the
configurable elements for creating the Work Manager that will be used by the resource
adapter bean. The wor k- manager element is imported from the webl ogi c-

j avaee. xsd schema. The following subelements can be configured in the wor k-
manager element.

Table A-2 work-manager subelements

weblogic-ra.xml Schema A-5

work-manager

Table A-2 (Cont.) work-manager subelements
__|

Element Required/ Description
Optional

Required Specifies the name of the Work Manager.

JSR 322: Java EE Connector Architecture 1.6
describes how a resource adapter can submit
work threads to the application server. These
work threads are managed by the WebLogic
Server Work Manager. The Work Manager
dynamically adjusts the number of work
threads to avoid deadlocks and achieve
optimal throughput subject to concurrency
constraints. It also meets objectives for
response time goals, shares, and priorities.

nane

Optional A wor k- manager element can include one
and only one of the following four elements:

response-ti nme-request-cl ass -
Defines the response time request class for
the application. Response time is defined
with attribute goal-ms in milliseconds. The
increment is ((goal - T) Cr)/R, where T is the
average thread use time, R the arrival rate,
and Cr a coefficient to prioritize response
time goals over fair shares.

fair-share-request-cl ass - Defines the
fair share request class. Fair share is defined
with attribute percentage of default share.
Therefore, the default is 100. The increment is
Cf/(P R T), where P is the percentage, R the
arrival rate, T the average thread use time,
and Cf a coefficient for fair shares to
prioritize them lower than response time
goals.

cont ext - request - cl ass - Defines the
context class. Context is defined with
multiple cases mapping contextual
information, like current user or its role,
cookie, or work area fields to named service
classes.

response-tine-request-cl ass
fair-share-request-class
cont ext - request - cl ass
request - cl ass- name

request - cl ass- nane - Defines the request
class name.

Optional You can choose between the following two
elements:

m n-threads- constrai nt - Used to
guarantee a number of threads the server
allocates to requests of the constrained work
set to avoid deadlocks. The default is zero. A
min-threads value of one is useful, for
example, for a replication update request,
which is called synchronously from a peer.

m n-t hr eads- const rai nt
m n-t hr eads- const r ai nt - nanme

m n-t hreads- const rai nt - nane -
Defines a name for the mi n-t hr eads-
constrai nt element.

A-6 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

connector-work-manager

Table A-2 (Cont.) work-manager subelements
__|

Element

Required/ Description

max-t hr eads- const rai nt

max-t hr eads- const r ai nt - name

You can choose between the following two
elements:

max-t hreads- constrai nt - Limits the
number of concurrent threads executing
requests from the constrained work set. The
default is unlimited. For example, consider a
constraint defined with maximum threads of
10 and shared by 3 entry points. The
scheduling logic ensures that not more than
10 threads are executing requests from the
three entry points combined.

max-t hr eads- const rai nt - nane -

Defines a name for the nax-t hr eads-
constrai nt element.

capacity
capaci ty- name

You can choose between the following two
elements:

capaci ty - Constraints can be defined and
applied to sets of entry points, called
constrained work sets. The server starts
rejecting requests only when the capacity is
reached. The default is zero. Note that the
capacity includes all requests, queued or
executing, from the constrained work set.
This constraint is primarily intended for
subsystems like JMS, which do their own
flow control. This constraint is independent
of the global queue threshold.

capaci t y- nane - Defines a name for the
capaci ty element.

A.3 connector-work-manager

The connect or - wor k- manager element is a complex element that is used to specify
all the configurable elements for the Connector Work Manager for the resource
adapter module. This element provides configurations that are not supported by the
standard WebLogic Work Manager. The following subelement can be configured in

the connect or - wor k- manager element.

Table A-3 connector-work-manager subelement

weblogic-ra.xml Schema A-7

security

Table A-3 (Cont.) connector-work-manager subelement
. __|

Element Required/ Description
Optional

Optional Specifies the maximum number of concurrent long-
running Wr K instance requests allowed for a resource
adapter instance.

max- concurrent -1 ong- runni ng-request s

Because each long-running Wor k instance request
executes in its own thread, an excessive number of long-
running Wor K requests can have a negative affect on
server performance and stability. A resource adapter
typically needs only a few long-running Wr Kk requests,
such as periodically listening to a socket or scheduling
other Wr k instances. New long-running Wor k request
submissions are rejected if the number of currently active
long-running Wor k requests exceeds the specified limit.

Default value: 10

A.4 security

The securi ty complex element contains default security information that can be
configured for the connector container. For more information, see Configuring
Security Identities for Resource Adapters.

Table A-4 security subelements
- - __|]

Element Required/ Description
Optional

Optional Specifies the default secure ID to be used for calls into the

defaul t-princi pal - name resource adapter.

If this value is not specified, the default is the anonynmous
identity, which is the same as no security identity.

See default-principal-name for subelements of this element.

Optional Specifies the secure ID to be used for running various
resource adapter management tasks, including startup,
shutdown, testing, shrinking, and transaction management.

If not specified, it defaults to the def aul t - pri nci pal -
name value. If def aul t - pri nci pal - nane is not specified,
it defaults to the anonynous identity.

manage- as- pri nci pal - name

See manage-as-principal-name for subelements of this
element.

Optional Specifies the secure ID to be used by all calls from the
connector container into the resource adapter code during
connection requests. (This element currently applies only to
outbound functions.)

run-as- principal - nane

If not specified, it defaults to the def aul t - pri nci pal -
nare value. If def aul t - pri nci pal - nane is not specified,
it uses the identity of the requesting caller.

See run-as-principal-name for subelements of this element.

A-8 Developing Resource Adapters for Oracle WebLogic Server

security

Table A-4 (Cont.) security subelements

Element Required/ Description
Optional
Optional Specifies the secure ID to be used to run all work instances

run-wor k- as- pri nci pal - nane

started by the resource adapter.

If not specified, it defaults to the def aul t - pri nci pal -
nare value. If def aul t - pri nci pal - nane is not specified,
it uses the identity that was used to start the work.

See run-work-as-principal-name for subelements of this
element.

] Optional
securit y-wor k- cont ext

This complex element specifies all security contextual
parameters of the Wor kCont ext .

Two choices related to establishing the caller identity for a
work instance are described in JSR 322: Java EE Connector
Architecture 1.6:

e Case 1: The resource adapter flows an identity into the
application server's security policy domain. In this case,
the application server may just use the initiating
principal, flown-in from the resource adapter, as the
caller principal in the security context that the Wr k
instance executes as.

® Case 2: The resource adapter flows in an identity
belonging to the EIS security domain. The resource
adapter establishes a connection to the EIS and executes a
Wor k instance in the context of an EIS identity. In this
case, the initiating or caller principal does not exist in the
application server's security domain. A translation from
one domain to the other is required to be performed.
That is, the user or group name in the EIS security
domain is mapped to a corresponding user or group
name in the application server's security domain. If no
such a user or group mapping is found, the default
mapping is applied.

The element i nbound- mappi ng- r equi r ed specifies

whether the flown in identity translation from the EIS

security domain to the application server's security domain
is required.

See security-work-context, for subelements of this element.

A.4.1 default-principal-name

The def aul t - pri nci pal - nanme element contains the following subelements.

Table A-5 default-principal-name subelements

Element

Required/ Description
Optional

use- anonynous-i dentity

Required Specifies that the anonymous identity
should be used.

princi pal - name

Required Specifies that the principal name should
be used. This should match a defined
WebLogic Server user name.

weblogic-ra.xml Schema A-9

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

security

A.4.2 manage-as-principal-name

The nanage- as- pri nci pal - name element contains the following subelements.

Table A-6 manage-as-principal-name subelements

Element Required/ Description
Optional

Required Specifies that the anonymous identity should be

use- anonynous-identity used.

Required Specifies that the principal name should be used.
This should match a defined WebLogic Server
user name.

princi pal - nane

A.4.3 run-as-principal-name

The run- as- pri nci pal - name element contains the following subelements.

Table A-7 run-as-principal-name subelements

Element Required/ Description
Optional

Required Specifies that the anonymous identity should be

use-anonynous-i dentity used.

Required Specifies that the principal name should be used.
This should match a defined WebLogic Server
user name.

princi pal - name

) . Required Specifies that the caller's identity should be used.
use-cal ler-identity

A.4.4 run-work-as-principal-name

The r un- wor k- as- pri nci pal - name element contains the following subelements.

Table A-8 run-work-as-principal-name subelements

Element Required/ Description
Optional

Required Specifies that the anonynous identity should be

use-anonynous-i dentity used.

Required Specifies that the principal name should be used.
This should match a defined WebLogic Server
user name.

princi pal - name

) . Required Specifies that the caller's identity should be used.
use-cal ler-identity

A-10 Developing Resource Adapters for Oracle WebLogic Server

security

A.4.5 security-work-context

The securi t y-wor k- cont ext element contains the following subelements.

Table A-9 security-work-context subelements

Element Required/ Description
Optional

Optional ~ The default value is f al se, which means Case 1. All
cal | er-princi pal - mappi ng and gr oup- pri nci pal -
mappi ng subelements are ignored.

i nbound- mappi ng- requi r ed

If setto t r ue, it means Case 2. All cal | er - pri nci pal -
mappi ng and gr oup- pri nci pal - mappi ng elements are
used to determine the correct mapping from the EIS
security domain to the WebLogic domain.

Default value: f al se

Optional ~ Specifies the default mapping for EIS user names to either a
specific WebLogic user name or the WebLogic user
anonynous.

cal l er-principal -defaul t - mapped

That is, if no WebLogic user name is found for an EIS user,
this default mapping is used. See caller-principal-default-
mapped, for subelements of this element.

Optional Specifies the mapping of an EIS user name to either a
specific WebLogic user name or the WebLogic anonynous
identity. There may be zero or more cal | er - pri nci pal -
mappi ng elements specified in webl ogi c-ra. xm .

cal I er-princi pal - mappi ng

See caller-principal-mapping, for subelements of this
element.

- Optional Specifies the default mapping for EIS group names to a
gr oup-pri nci pal - def aul t - mapped specific WebLogic group name.

That is, if no WebLogic group name is found for an EIS
group, this default mapping is used.

Optional Specifies the mapping of an EIS group name to specific
WebLogic group name. There may be zero or more gr oup-
princi pal - mappi ng elements specified in webl ogi c-
ra.xm.

group- princi pal - mappi ng

See group-principal-mapping, for subelements of this
mapping.

A.4.5.1 caller-principal-default-mapped

The cal | er - pri nci pal - def aul t - mapped element contains the following
subelements.

Table A-10 caller-principal-default-mapped subelements

weblogic-ra.xml Schema A-11

properties

Table A-10 (Cont.) caller-principal-default-mapped subelements

Element Required/ Description
Optional

Required Specifies that the WebLogic anonynous user
identity should be used. Note that you can choose
either use- anonynous-i dentity or
princi pal - name, but not both.

use-anonynous-i dentity

Required Specifies that the principal name should be used.
This should match a WebLogic user name defined
in the WebLogic security realm.

princi pal - nane

A.4.5.2 caller-principal-mapping

The cal | er - pri nci pal - mappi ng complex element is used to specify a mapping
from an EIS group name to WebLogic group name. It contains the following
subelements.

Table A-11 caller-principal-mapping subelements

Element Required/ Description
Optional
Required Specifies an EIS user principal name.

ei s-call er-principal

Required Specifies either the mapped WebLogic user
principal name or the anonynous user identity
(but not both).

mapped- cal | er - pri nci pal

A.4.5.3 group-principal-mapping
The gr oup- pri nci pal - mappi ng element contains the following subelements.
Table A-12 group-principal-mapping subelements

Element Required/ Description
Optional

Required Specifies an EIS group principal name.
ei s- group-princi pal qut pecih group princip

Required Specifies the mapped WebLogic group principal

mapped- gr oup- pri nci pal name.

A.5 properties

The pr operti es element, a subelement of webl ogi c- connect or, is a container for
properties specified for the resource adapter bean in r a. xni . It holds one more or
more pr operty elements.

You define pr oper t y elements within the pr operti es element as follows.

Table A-13 properties subelements

A-12 Developing Resource Adapters for Oracle WebLogic Server

admin-objects

Table A-13 (Cont.) properties subelements
. ___|

Element Required/ Description
Optional
Required The property element is used to override a property that
property has been specified for the resource adapter bean in the
ra.xm file.

It holds two subelements:

nare - Specifies the same name as the conf i g- property-
nane element (a subelement of conf i g- property in the
ra. xm deployment descriptor). Setting this parameter
causes the associated conf i g- property-val ue element
inra. xm to be overridden. This is a required element.

val ue - Specifies the value that overrides conf i g-
property-val ue element (a subelement of confi g-
property inthera. xm deployment descriptor). This is an
optional element.

A.6 admin-objects

The admi n- obj ect s complex element defines all of the admin objects in the resource
adapter. As with the outbound-resource-adapter complex element, the adm n-
obj ect s complex element has three hierarchical property levels that you can specify.

The adni n- obj ect s element is a sub-element of the webl ogi c- connect or
element. You can define the following elements within the adm n- obj ect s element.

Table A-14 admin-objects subelements
|

Element Required/ Description
Optional
default-properties Optional Specifies the default properties that apply to all admin

objects (at the global level) in the resource adapter.

The def aul t - properti es element can contain one or
more property elements, each holding a nane and
val ue pair. See properties .

One or Specifies the default parameters that apply to all admin

more objects belonging to a particular admin object group
specified in the r a. xm deployment descriptor. The
properties specified in the group override any
parameters that are specified at the global level.

admi n- obj ect - group

For admi n- obj ect - gr oup subelements, see admin-
object-group .

A.6.1 admin-object-group

The admi n- obj ect - gr oup element is used to define an admin object group. At the
group level, you specify parameters that apply to all admin objects belonging to a
particular admin object group specified in the r a. xm deployment descriptor. The
properties specified in the group override any parameters that are specified at the
global level.

weblogic-ra.xml Schema A-13

admin-objects

The adm n- obj ect - i nt er f ace element (a subelement of the adm n- obj ect -

gr oup element) serves as a required unique element (a key) to each admni n- obj ect -
gr oup. There must be a one-to-one relationship between the webl ogi c-ra. xmi
admi n- obj ect -i nt er f ace element and thera. xm admni nobj ect-i nterface
element.

The adni n- obj ect - gr oup element is a sub-element of the webl ogi c- connect or
element. You can define the following elements within the admni n- obj ect - gr oup
element

Table A-15 admin-object-group
-]

Element Required/ Description
Optional

Required The admi n- obj ect - i nt er f ace element serves as
a required unique element (a key) to each adni n-
obj ect - gr oup. There must be a one-to-one
relationship between the webl ogi c-ra. xni
admi n-obj ect -i nt er f ace element and the
ra. xm adni nobj ect-i nt erface element.

admi n-obj ect-interface

] . Required The combination of the admi n- obj ect -
admi n-obj ect - cl ass inl6 i nt er f ace element and the adni n- obj ect -
adapters cl ass element serves as a required unique element
(a key) to each admi n- obj ect - gr oup. There must
be a one-to-one relationship between the following
two pairs:
e The admni n- obj ect-interface and adni n-
obj ect - cl ass element pair defined in
webl ogi c-ra. xm
e admin-object-interfaceandadni n-
obj ect - cl ass element pair defined in r a. xni

Optional Specifies all the default properties that apply to all

defaul t-properties admin objects in this admin object group.

The def aul t - properti es element can contain one
or more pr oper ty elements, each holding a nane
and val ue pair. See properties.

One or Specifies one or more admin object instances within

more the admin object group, corresponding to the admin
object instances for the resource adapter. You can
specify properties at the instance level and override
those provided in the group and global levels. For
subelements, see admin-object-instance.

admi n-obj ect -i nstance

A.6.1.1 admin-object-instance

You can define the following subelements under adm n- obj ect - i nst ance.

Table A-16 admin-object-instance subelements
- - - - - - - ----- - - |

A-14 Developing Resource Adapters for Oracle WebLogic Server

outbound-resource-adapter

Table A-16

(Cont.) admin-object-instance subelements

Element Required/ Description
Optional

oo Required The JNDI name used to define the reference

j ndi - name name for the connection instance.
The connection pool is bound into a JNDI that
clients outside the application can see.
Note: The enable-access-outside-app element
must be settot r ue.

or opert es Optional Defines all the properties that apply to the

i

admin object instance.

The pr operti es element can contain one or
more pr oper ty elements, each holding a nane
and val ue pair. See properties.

A.7 outbound-resource-adapter

The out bound- r esour ce- adapt er element is a sub-element of the webl ogi c-
connect or element. You can define the following elements within the out bound-

resour ce- adapt er element.

Table A-17 outbound-resource-adapter subelements
-~ |

Element Required/ Description
Optional
)) Optional This complex element is used to specify

defaul t-connect i on-properties the properties at an global level. At this
level, the user is able to specify
parameters that apply to all outbound
connection pools in the resource adapter.
For subelements, see default-connection-
properties.

) o One or This element is used to specify all the
connect i on- def i ni tion-group more connection definition groups. There must

be a one-to-one correspondence
relationship between the connection
factories in the r a. xm deployment
descriptor and the groups in the

webl ogi c-ra. xm deployment
descriptor. A group does not have to
exist in the webl ogi c-ra. xnm
deployment descriptor for every
connection factory inr a. xm . However,
if a group exists, there must be at least
one connection instance in the group.

The properties specified in the group
override any parameters that are
specified at the global level using
defaul t - connecti on- properties.

For subelements, see connection-
definition-group.

weblogic-ra.xml Schema A-15

outbound-resource-adapter

A.7.1 default-connection-properties

The def aul t - connect i on- properti es element is a sub-element of the
out bound-r esour ce- adapt er element. You can define the following elements
within the def aul t - connect i on- properti es element.

Table A-18 default-connection-properties subelements

Element

Required/
Optional

Description

pool - par ans

Optional

Serves as the root element for providing
connection pool-specific parameters for this
connection factory. WebLogic Server uses these
specifications to control the behavior of the
maintained pool of ManagedConnections.

This is an optional element. Failure to specify this
element or any of its specific element items results
in default values being assigned. Refer to the
description of each individual element for the
designated default value.

For subelements, see pool-params.

| oggi ng

Optional

Contains parameters for configuring logging of
the ManagedConnect i onFact ory and
ManagedConnect i on objects of the resource
adapter.

For subelements, see logging.

transaction-support

Optional

Specifies the level of transaction support for a
particular Connection Factory. It provides the
ability to override the transaction-support value
specified in the r a. xm deployment descriptor
that is intended to be the default value for all
Connection Factories of the resource adapter.

The value of transaction-support must be one of
the following:

NoTr ansact i on
Local Transacti on
XATr ansacti on

For related information, see Connection
Management.

authentication-mechanism

Optional

The aut hent i cati on- mechani smelement
specifies an authentication mechanism supported
by a particular Connection Factory in the resource
adapter. It provides the ability to override the

aut henti cat i on- mechani smvalue specified
in ther a. xm deployment descriptor that is
intended to be the default value for all Connection
Factories of the resource adapter.

Note that Basi cPasswor d mechanism type
should support the

javax. resource. spi.security. PasswordC
redenti al interface.

A-16 Developing Resource Adapters for Oracle WebLogic Server

outbound-resource-adapter

Table A-18 (Cont.) default-connection-properties subelements
___|

Element Required/

Optional

Description

reauthentication-support Optional

A Boolean that specifies whether a particular
connection factory supports re-authentication of
an existing ManagedConnect i on instance. It
provides the ability to override the

reaut henti cati on- support value specified
in thera. xm deployment descriptor that is
intended to be the default value for all Connection
Factories of the resource adapter.

) Optional
properties

The pr operti es element includes one or more
property elements, which define name and value
subelements that apply to the default connections.

Optional
res-auth

Specifies whether to use container- or application-
managed security. The values for this element can
be one of Appl i cati on or Cont ai ner . The
default value is Cont ai ner .

A.7.1.1 pool-params

The pool - par anms element is a sub-element of the def aul t - connect i on-
properti es element. You can define the following elements within the pool -

p

ar ans element.

Table A-19 pool-params subelements

Element

Required/ Description

Optional

initial-capacity

Optional

Specifies the initial number of
ManagedConnections, which WebLogic Server
attempts to create during deployment.

Default Value: 1

max- capaci ty

Optional

Specifies the maximum number of
ManagedConnections, which WebLogic Server
will allow. Requests for newly allocated
ManagedConnections beyond this limit results
in a Resour ceAl | ocat i onExcepti on being
returned to the caller.

Default Value: 10

capaci ty-increnent

Optional

Specifies the maximum number of additional
ManagedConnections that WebLogic Server
attempts to create during resizing of the
maintained connection pool.

Default Value: 1

shri nki ng- enabl ed

Optional

Specifies whether unused ManagedConnections
will be destroyed and removed from the
connection pool as a means to control system
resources.

Default Value: true

weblogic-ra.xml Schema A-17

outbound-resource-adapter

Table A-19 (Cont.) pool-params subelements
. ___|

Element Required/ Description
Optional

Optional Specifies the amount of time (in seconds) the
Connection Pool Management waits between
attempts to destroy unused
ManagedConnections.

Default Value: 900 seconds

shri nk-frequency-seconds

Optional Specifies the maximum number of threads that
can concurrently block waiting to reserve a
connection from the pool.

Default Value: 0

hi ghest - num wai ters

Optional Specifies the maximum number of
ManagedConnections in the pool that can be
made unavailable to the application for
purposes such as refreshing the connection.

hi ghest - num unavai | abl e

Note that in cases like the backend system being
unavailable, this specified value could be
exceeded due to factors outside the pool's
control.

Default Value: 0

Optional The periodicity of retry attempts by the pool to
create connections.

Default Value: 0

connection-creation-retry-frequency-seconds

Optional Sets the number of seconds after which the call
to reserve a connection from the pool will
timeout.

connection-reserve-timeout - seconds

Default Value: -1 (do not block when reserving
resources)

Optional The frequency with which connections in the
pool are tested.

Default Value: 0

test - frequency- seconds

Optional Enables the testing of newly created connections.

t est-connecti ons-on-create
Default Value: false

Optional Enables testing of connections when they are
being released back into the pool.

Default Value: false

test - connections-on-rel ease

Optional ~ Enables testing of connections when they are
being reserved.

Default Value: false

t est-connections-on-reserve

Optional Specifies how frequently the profile for the

profile-harvest-frequency-seconds connection pool is being harvested.

A-18 Developing Resource Adapters for Oracle WebLogic Server

outbound-resource-adapter

Table A-19 (Cont.) pool-params subelements
. ___|

Element Required/ Description
Optional

Optional ~ When the connection pool is being shut down,
this element is used to specify whether it is
acceptable to ignore connections that are in use
at that time.

i gnor e-i n-use-connect i ons-enabl ed

, Optional Indicates whether the resource adapter supports
mat ch- connect i ons- supported the

ManagedConnect i onFact ory. mat chManage
dConnecti ons() method. If the resource
adapter does not support this method (always
returns null for this method), then WebLogic
Server bypasses this method call during a
connection request.

Default Value: true

A.7.1.2 logging

The | oggi ng element is a sub-element of the def aul t - connecti on- properties
element. You can define the following elements within the | 0ggi ng element.

Table A-20 logging subelements

Element Required/ Description
Optional

Optional Specifies the name of the log file from which output generated from
the ManagedConnect i onFact ory or a ManagedConnecti onis
sent.

| og-filenane

The full address of the filename is required.

Optional Indicates whether or not the log writer is set for either the
ManagedConnect i onFact ory or ManagedConnect i on. If this
element is set to true, output generated from either the
ManagedConnect i onFact ory or ManagedConnect i on will be
sent to the file specified by the | og-f i | enamne element.

Default Value: false

| oggi ng- enabl ed

, Optional Sets the file rotation type.
rotation-type . . .
Possible values are by Si ze, by Ti e, none

bySi ze - When the log file reaches the size that you specify in
file-size-1imnmt,theserver renames the file as Fi | eNane. n.

byTi me - At each time interval that you specify infi | e-ti nme-
span, the server renames the current log file. After the server
renames a file, subsequent messages accumulate in a new file with
the name that you specified in| og-fi | enane.

none - Messages accumulate in a single file. You must erase the
contents of the file if the log size becomes unwieldy.

Default Value: bySi ze

weblogic-ra.xml Schema A-19

outbound-resource-adapter

Table A-20 (Cont.) logging subelements
. __|

Element Required/ Description
Optional

Optional Specifies whether to limit the number of files that this server instance
creates to store old log messages. (Requires that you specify a
rotation-type of bySi ze or by Ti me). After the server reaches
this limit, it overwrites the oldest file. If you do not enable this
option, the server creates new files indefinitely and you must clean
up these files as you require.

If you enable nunber - of - fi | es-1i mi t ed by setting it to true, the
server refers to your r ot at i onType variable to determine how to
rotate the log file. Rotate means that you override your existing file
instead of creating a new file. If you specify f al se for nunber - of -
files-limted,theserver creates numerous log files rather than
overriding the same one.

Default Value: false

nunber-of -files-linted

Optional =~ The maximum number of log files that the server creates when it
rotates the log. This number does not include the file that the server
uses to store current messages. (Requires that you enable nunber -
of-files-limted.)

Default Value: 7

file-count

Optional The size that triggers the server to move log messages to a separate
file. (Requires that you specify a rotation-type of by Si ze.) After the
log file reaches the specified minimum size, the next time the server
checks the file size, it will rename the current log file as Fi | eName. n
and create a new one to store subsequent messages.

Default Value: 500

file-size-limt

Optional Specifies whether a server rotates its log file during its startup cycle.
rotate-log-on-startup Default Value: true

,)) Optional Specifies the directory path where the rotated log files will be stored.
log-file-rotation-dir

Optional The start time for a time-based rotation sequence of the log file, in the
format k: mm where Kk is 1-24. (Requires that you specify a rotation-
type of by Ti me.) At the specified time, the server renames the
current log file. Thereafter, the server renames the log file at an
interval that you specify infi | e-ti me- span.

rotation-time

If the specified time has already past, then the server starts its file
rotation immediately.

By default, the rotation cycle begins immediately.

Optional The interval (in hours) at which the server saves old log messages to
another file. (Requires that you specify a r ot ati on-t ype of
byTi me.)
Default Value: 24

file-time-span

A.7.2 connection-definition-group

The connect i on-defi ni ti on-group element is used to define a connection
definition group. At the group level, you specify parameters that apply to all

A-20 Developing Resource Adapters for Oracle WebLogic Server

outbound-resource-adapter

outbound connections belonging to a particular connection factory specified in the

ra. xm deployment descriptor using the connecti on- defi ni ti on-group
element. A one-to-one correspondence exists from a connection factory inra. xm toa
connection definition group in webl ogi c-r a. xim . The properties specified in a
group override any parameters specified at the global level.

The connecti on-factory-i nt erf ace element (a subelement of the

connect i on-definition-group element) serves as a required unique element (a
key) to each connect i on-def i ni ti on- gr oup. There must be a one-to-one
relationship between the webl ogi c-ra. xm connecti on-definition-

i nterface elementand thera. xm connectiondefinition-interface
element.

The connecti on-defi ni ti on- group element is a sub-element of the out bound-
resour ce- adapt er element. You can define the following elements within the
connecti on-definition-group element.

Table A-21 connection-definition-group subelements
- |

Element Description

Every connection definition group has a key (a required
unique element). This key is the connect i on-f act ory-
interface.

connection-factory-interface

The value specified for connecti on-factory-
interface nust be equal to the value

speci fied for connection-factory-interface
inra xm.

This complex element is used to define properties for

defaul t-connection-properties ,upound connections at the group level.

See default-connection-properties.

Under each connection definition group, the user can
specify connection instances. These correspond to the
individual connection pools for the resource adapter.
Parameters can be specified at this level too and these
override those provided in the group and global levels.

connection-instance

This element specifies a description of the connection
pool. (A connection instance is equivalent to a connection
pool.) It is used to document the connection pool.

See connection-instance.

A.7.2.1 connection-instance

You can define the following subelements under connect i on-i nst ance.

Table A-22 connection-instance subelements
- - - - - "~ - -

Element Required/ Description
Optional
o Optional Specifies a description of the connection instance.
description
 ndi Required The JNDI name used to define the reference name for
j ndi - nane

the connection instance.

weblogic-ra.xml Schema A-21

outbound-resource-adapter

Table A-22 (Cont.) connection-instance subelements
___|

Element Required/ Description
Optional

Optional Defines all the properties that apply to the connection

connection-properties instance.

The connect i on- properti es element can contain
one or more pr oper t y elements, each holding a nane
and val ue pair. See properties.

A-22 Developing Resource Adapters for Oracle WebLogic Server

B

Resource Adapter Best Practices

This appendix describes some best practices for resource adapter developers.

This appendix includes the following sections:

¢ C(lassloading Optimizations for Resource Adapters
¢ Connection Optimizations

¢ Thread Management

* InteractionSpec Interface

¢ Using javax.jms.ConnectionFactory

B.1 Classloading Optimizations for Resource Adapters

You can package resource adapter classes in one or more JAR files, and then place the
JAR files in the RAR file. These are called nested JARs. When you nest JAR files in the
RAR file, and classes need to be loaded by the classloader, the JARs within the RAR
file must be opened and closed and iterated through for each class that must be
loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size,
there will be no significant performance impact. On the other hand, if there are many
JARs and the JARs are large in size, the performance impact can be great.

To avoid such performance issues, you can do either of the following:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of
JARs and hence reduces the performance hit involved in looking for classes.

2. If deploying the resource adapter in exploded format is not an option, the JARs
can be exploded within the RAR file. This also eliminates the nesting of JARs and
thus improves the performance of classloading significantly.

B.2 Connection Optimizations

Oracle recommends that resource adapters implement the optional enhancements
described in sections 7.16.1 and 7.16.2 of JSR 322: Java EE Connector Architecture 1.6.
Implementing these interfaces allows WebLogic Server to provide several features that
will not be available without them.

Lazy Connection Association Optimization, as described in section 7.16.1, allows the
server to automatically clean up unused connections and prevent applications from
hogging resources. Lazy Transaction Enlistment Optimization, as described in 7.16.2,
allows applications to start a transaction after a connection is already opened.

Resource Adapter Best Practices B-1

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

Thread Management

B.3 Thread Management

Resource adapter implementations should use the Wor kManager (as described in
Chapter 10, "Work Management," in JSR 322: Java EE Connector Architecture 1.6 to
launch operations that need to run in a new thread, rather than creating new threads
directly. This allows WebLogic Server to manage and monitor these threads.

B.4 InteractionSpec Interface

WebLogic Server supports the Common Client Interface (CCI) for EIS access, as
defined in Chapter 17, "Common Client Interface,” in JSR 322: Java EE Connector
Architecture 1.6. The CCI defines a standard client API for application components
that enables application components and EAI frameworks to drive interactions across
heterogeneous ElSes.

As a best practice, you should not store the | nt er act i onSpec class that the CCI
resource adapter is required to implement in the RAR file. Instead, you should
package it in a separate JAR file outside of the RAR file, so that the client can access it
without having to put the | nt er act i onSpec interface class in the generic
CLASSPATH.

With respect to the | nt er act i onSpec interface, it is important to note that when all
application components (E]Bs, resource adapters, Web applications) are packaged in
an EAR file, all common classes can be placed in the APP- | NF/ | i b directory. This is
the easiest possible scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the
interface is serializable (as is the case with | nt er act i onSpec), then both the client
and the resource adapter need access to the | nt er act i onSpec interface as well as
the implementation classes. However, if the interface extends j ava. i 0. Renot e, then
the client only needs access to the interface class.

B.5 Using javax.jms.ConnectionFactory

When using an EJB or servlet to send messages using a JCA adapter backing a JMS
provider using XA transactions, the r esour ce- r ef needs to be
j ava. |l ang. obj ect.

In a WebLogic Server environment, specifying j avax. j ms. Connect i onFact ory
implements WebLogic JMS Wrappers which are not compatible with this JCA adapter
configuration. See "Enhanced Support for Using WebLogic JMS with E]Bs and
Servlets" in Developing [MS Applications for Oracle WebLogic Server.

B-2 Developing Resource Adapters for Oracle WebLogic Server

http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 Examples for the Resource Adapter Developer
	1.5 New and Changed Features in This Release

	2 Understanding Resource Adapters
	2.1 Overview of Resource Adapters
	2.1.1 Comparing WebLogic Server and WebLogic Integration Resource Adapters
	2.1.2 Inbound, Outbound, and Bidirectional Resource Adapters
	2.1.3 Connector Architecture 1.7 Support
	2.1.4 Connector Architecture 1.6 Support
	2.1.5 Comparing 1.0 Resource Adapters to 1.5 and 1.6
	2.1.6 Additional Support Provided by the WebLogic Server Connector Container

	2.2 Java EE Connector Architecture
	2.2.1 Java EE Architecture Diagram and Components
	2.2.2 System-Level Contracts

	2.3 Resource Adapter Deployment Descriptors

	3 Creating and Configuring Resource Adapters
	3.1 Creating and Configuring Resource Adapters: Main Steps
	3.2 Modifying an Existing Resource Adapter
	3.3 Configuring the ra.xml File
	3.3.1 Creating the ra.xml File Manually
	3.3.2 Using Metadata Annotations to Specify Deployment Information
	3.3.3 Resource Adapter XML Schema Definitions

	3.4 Configuring the weblogic-ra.xml File
	3.4.1 Editing Resource Adapter Deployment Descriptors
	3.4.1.1 Editing Considerations
	3.4.1.2 Schema Header Information
	3.4.1.3 Conforming Deployment Descriptor Files to Schema

	3.4.2 Dynamic Descriptor Updates: Console Configuration Tabs
	3.4.2.1 Dynamic Reconfigurable Configuration Properties
	3.4.2.2 Dynamic Configuration Parameters
	3.4.2.3 Dynamic Pool Parameters
	3.4.2.4 Dynamic Logging Parameters

	3.4.3 Automatic Generation of the weblogic-ra.xml File
	3.4.4 (Deprecated) Configuring the Link-Ref Mechanism

	3.5 Bean Validation Configuration File
	3.6 Long-Running Work Support
	3.7 Tooling Support
	3.8 Monitoring Resource Adapter Health
	3.8.1 Obtaining Resource Adapter Health State
	3.8.2 Deployment Requirements for Monitoring Health

	4 Programming Tasks
	4.1 Required Classes for Resource Adapters
	4.2 Generic Work Context
	4.2.1 Interfaces, Classes, and Methods Added to Support the Generic Work Context
	4.2.2 Deployment Descriptor Element Added to Support the Generic Work Context

	4.3 Programming a Resource Adapter to Perform as a Startup Class
	4.3.1 Minimum Content of a Resource Adapter
	4.3.2 Submitting a Work Instance
	4.3.3 Retrying a Work Submission

	4.4 Suspending and Resuming Resource Adapter Activity
	4.5 Extended BootstrapContext
	4.5.1 Diagnostic Context ID
	4.5.2 Dye Bits
	4.5.3 Callback Capabilities
	4.5.4 Bean Validation
	4.5.5 BeanManager

	4.6 Administered Object Uniqueness

	5 Using Contexts and Dependency Injection in Resource Adapters
	5.1 Overview
	5.2 Resource Adapter Bean Discovery
	5.3 Obtaining Contextual References to Resource Adapter Beans
	5.4 Invoking Resource Adapter Beans From Other Application Types
	5.5 Using Resource Adapters Deployed as CDI Bean Archives
	5.5.1 BeanManager Support
	5.5.2 Injection Points

	5.6 Using CDI with Resource Adapter Component Beans
	5.6.1 Resource Adapter Component Beans Must Not Be Managed Beans
	5.6.2 Using Dependency Injection
	5.6.2.1 Notes on Injection Usage
	5.6.2.2 Example

	6 Connection Management
	6.1 Connection Management Contract
	6.1.1 Connection Factory and Connection
	6.1.2 Resource Adapters Bound in JNDI Tree
	6.1.3 Obtaining the ConnectionFactory (Client-JNDI Interaction)
	6.1.4 Specifying and Obtaining Transaction Support Level
	6.1.5 Specifying an Unshareable ManagedConnectionFactory

	6.2 Configuring Outbound Connections
	6.2.1 Connection Pool Configuration Levels
	6.2.2 Retrying a Connection Attempt
	6.2.3 Isolating, Troubleshooting, and Fixing Outbound Connection Pool Failures Without Redeploying the Adapter
	6.2.3.1 Using the Deploy-As-A-Whole Option
	6.2.3.2 Troubleshooting Failed Connection Pools
	6.2.3.3 Connection Pool Recovery Steps
	6.2.3.4 Other Options for Recovering Failed Connection Pools

	6.2.4 Multiple Outbound Connections Example

	6.3 Configuring Inbound Connections
	6.4 Configuring Connection Pool Parameters
	6.4.1 initial-capacity: Setting the Initial Number of ManagedConnections
	6.4.2 max-capacity: Setting the Maximum Number of ManagedConnections
	6.4.3 capacity-increment: Controlling the Number of ManagedConnections
	6.4.4 shrinking-enabled: Controlling System Resource Usage
	6.4.5 shrink-frequency-seconds: Setting the Wait Time Between Attempts to Reclaim Unused ManagedConnections
	6.4.6 highest-num-waiters: Controlling the Number of Clients Waiting for a Connection
	6.4.7 highest-num-unavailable: Controlling the Number of Unavailable Connections
	6.4.8 connection-creation-retry-frequency-seconds: Recreating Connections
	6.4.9 match-connections-supported: Matching Connections
	6.4.10 test-frequency-seconds: Testing the Viability of Connections
	6.4.11 test-connections-on-create: Testing Connections upon Creation
	6.4.12 test-connections-on-release: Testing Connections upon Release to Connection Pool
	6.4.13 test-connections-on-reserve: Testing Connections upon Reservation
	6.4.14 deploy-as-a-whole: Isolating Outbound Connection Pool Failures from the Whole Adapter Deployment

	6.5 Connection Proxy Wrapper - 1.0 Resource Adapters
	6.5.1 Possible ClassCastException
	6.5.2 Turning Proxy Generation On and Off

	6.6 Reset a Connection Pool
	6.7 Testing Connections
	6.7.1 Configuring Connection Testing
	6.7.2 Testing Connections in the Administration Console

	7 Transaction Management
	7.1 Supported Transaction Levels
	7.1.1 XA Transaction Support
	7.1.2 Local Transaction Support
	7.1.3 No Transaction Support
	7.1.4 Runtime Transaction Support Level Specification

	7.2 Configuring Transaction Levels
	7.2.1 Configure XA Transaction Recovery Credential Mapping

	8 Message and Transactional Inflow
	8.1 Overview of Message and Transactional Inflow
	8.1.1 Architecture Components
	8.1.2 Inbound Communication Scenario

	8.2 How Message Inflow Works
	8.2.1 Handling Inbound Messages
	8.2.2 Proprietary Communications Channel and Protocol

	8.3 Message Inflow to Message Endpoints (Message-driven Beans)
	8.3.1 Deployment-Time Binding Between an MDB and a Resource Adapter
	8.3.1.1 Binding an MDB and a Resource Adapter

	8.3.2 Dispatching a Message
	8.3.3 Activation Specifications
	8.3.4 Administered Objects

	8.4 Transactional Inflow
	8.4.1 Using the Transactional Inflow Model for Locally Managed Transactions

	8.5 Configuring and Managing Long-Running Work
	8.5.1 Setting the Maximum Number of Concurrent Long-Running Work Instances
	8.5.2 Monitoring Long-Running Work

	9 Security
	9.1 Container-Managed and Application-Managed Sign-on
	9.1.1 Application-Managed Sign-on
	9.1.2 Container-Managed Sign-on

	9.2 Credential Mapping for Making Outbound Connections
	9.2.1 Authentication Mechanisms
	9.2.2 Outbound Credential Mappings
	9.2.2.1 Non-initial Connection: Requires ManagedConnection from Adapter Upon Application's Request
	9.2.2.2 Initial Connection: Requires a ManagedConnection from Adapter Without Application's Request
	9.2.2.3 Special Users

	9.2.3 Creating Outbound Credential Mappings Using the Console

	9.3 Security Inflow
	9.3.1 Inbound Principal Mappings
	9.3.2 Security Inflow Callback Requirements
	9.3.3 Backward Compatibility with Connector Architecture 1.5 and 1.0

	9.4 Security Policy Processing
	9.5 Configuring Security Identities for Resource Adapters
	9.5.1 default-principal-name: Default Identity
	9.5.2 manage-as-principal-name: Identity for Running Management Tasks
	9.5.3 run-as-principal-name: Identity Used for Connection Calls from the Connector Container into the Resource Adapter
	9.5.4 run-work-as-principal-name: Identity Used for Performing Resource Adapter Management Tasks

	9.6 Configuring Connection Factory-Specific Authentication and Re-authentication Mechanisms

	10 Packaging and Deploying Resource Adapters
	10.1 Packaging Resource Adapters
	10.1.1 Packaging Directory Structure
	10.1.2 Packaging Considerations
	10.1.3 Packaging Limitation
	10.1.4 Packaging Resource Adapter Archives (RARs)

	10.2 Deploying Resource Adapters
	10.2.1 Deployment Options
	10.2.2 Resource Adapter Deployment Names
	10.2.3 Production Redeployment
	10.2.3.1 Suspendable Interface and Production Redeployment
	10.2.3.2 Production Redeployment Requirements
	10.2.3.3 Production Redeployment Process

	10.2.4 Deploying a Resource Adapter Configured with Multiple Outbound Connection Pools

	A weblogic-ra.xml Schema
	A.1 weblogic-connector
	A.2 work-manager
	A.3 connector-work-manager
	A.4 security
	A.4.1 default-principal-name
	A.4.2 manage-as-principal-name
	A.4.3 run-as-principal-name
	A.4.4 run-work-as-principal-name
	A.4.5 security-work-context
	A.4.5.1 caller-principal-default-mapped
	A.4.5.2 caller-principal-mapping
	A.4.5.3 group-principal-mapping

	A.5 properties
	A.6 admin-objects
	A.6.1 admin-object-group
	A.6.1.1 admin-object-instance

	A.7 outbound-resource-adapter
	A.7.1 default-connection-properties
	A.7.1.1 pool-params
	A.7.1.2 logging

	A.7.2 connection-definition-group
	A.7.2.1 connection-instance

	B Resource Adapter Best Practices
	B.1 Classloading Optimizations for Resource Adapters
	B.2 Connection Optimizations
	B.3 Thread Management
	B.4 InteractionSpec Interface
	B.5 Using javax.jms.ConnectionFactory

